
International Handbooks on Information Systems

Handbook 
on Project 
Management and 
Scheduling Vol. 2 

Christoph Schwindt
Jürgen Zimmermann Editors



International Handbooks on Information
Systems

Series Editors
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Preface

This handbook is devoted to scientific approaches to the management and schedul-
ing of projects. Due to their practical relevance, project management and scheduling
have been important subjects of inquiry since the early days of Management Science
and Operations Research and remain an active and vibrant field of study. The
handbook is meant to provide an overview of some of the most active current areas
of research. Each chapter has been written by well-recognized scholars, who have
made original contributions to their topic. The handbook covers both theoretical
concepts and a wide range of applications. For our general readers, we give a brief
introduction to elements of project management and scheduling in the first chapter,
where we also survey the contents of this book. We believe that the handbook will be
a valuable and comprehensive reference to researchers and practitioners in project
management and scheduling and hope that it might stimulate further research in this
exciting and practically important field.

Short-listing and selecting the contributions to this handbook and working with
more than one hundred authors have been a challenging and rewarding experience
for us. We are grateful to Günter Schmidt, who invited us to edit these volumes.
Our deep thanks go to all authors involved in this project, who have invested
their time and expertise in presenting their perspectives on project management
and scheduling topics. Moreover, we express our gratitude to our collaborators
Tobias Paetz, Carsten Ehrenberg, Alexander Franz, Anja Heßler, Isabel Holzberger,
Michael Krause, Stefan Kreter, Marco Schulze, Matthias Walter, and Illa Weiss, who
helped us to review the chapters and to unify the notations. Finally, we are pleased
to offer special thanks to our publisher Springer and the Senior Editor Business,
Operations Research & Information Systems Christian Rauscher for their patience
and continuing support.

Clausthal-Zellerfeld, Germany Christoph Schwindt
Jürgen Zimmermann
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ck Cost for resource k per unit
Cmax D SnC1 Project duration (project makespan)
f .S/ Objective function value of schedule S (single-criterion problem);

Vector .f1.S/; : : : ; f�.S// of objective function values (multi-
criteria problem)

f .S; x/ Objective function value of schedule S and mode assignment x
f� Single objective function in multi-criteria project scheduling
LB Lower bound on minimum objective function value
npv Net present value of the project
PF Pareto front of multi-criteria project scheduling problem
UB Upper bound on minimum objective function value
wi Arbitrary weight of activity i

Temporal Scheduling

Ci Completion time of activity i
ECi Earliest completion time of activity i
ES Earliest schedule
ESi Earliest start time of activity i
LCi Latest completion time of activity i
LS Latest schedule
LSi Latest start time of activity i
S Schedule
Si Start time of activity i or occurrence time of event i
TFi Total float of activity i
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Models and Solution Methods

	kij Amount of resource k transferred from activity i to activity j

mut Mutation rate
�pop Population size
` Activity list .i1; i2; : : : ; in/
C Set of activities already scheduled (completed set)
D Decision set containing all activities eligible for being scheduled
SC Partial schedule of activities i 2 C
t Time period, start of period t C 1

T Last period, end of planning horizon

Computational Results

�ø
LB Average relative deviation from lower bound

�max
LB Maximum relative deviation from lower bound

�ø
opt Average relative deviation from optimum value

�max
opt Maximum relative deviation from optimum value

�ø
UB Average relative deviation from upper bound

�max
UB Maximum relative deviation from upper bound

LB0 Critical-path based lower bound on project duration
LB� Maximum lower bound
nbest Number of best solutions found
nø

iter Average number of iterations
nmax

iter Maximum number of iterations
nopt Number of optimal solutions found
OS Order strength of project network
pfeas Percentage of instances for which a feasible solution was found
pinf Percentage of instances for which the infeasibility was proven
popt Percentage of instances for which an optimal solution was found
punk Percentage of instances for which it is unknown whether there

exists a feasible solution
RF Resource factor of project
RS Resource strength of project
t limcpu CPU time limit
tøcpu Average CPU time
tmax
cpu Maximum CPU time
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Three-Field Classification ˛ j ˇ j � for Project Scheduling
Problems1

Field ˛: Resource Environment

PS Project scheduling problem with limited (discrete) renewable
resources

PS1 Project scheduling problem without resource constraints (time-
constrained project scheduling problem)

PSc Project scheduling problem with limited continuous and discrete
renewable resources

PSf Project scheduling problem with limited renewable resources
and flexible resource requirements (problem with work-content
constraints)

PSS Project staffing and scheduling problem with multi-skilled
resources of limited workload capacity

PSS1 Project staffing and scheduling problem with limited multi-skilled
resources of unlimited workload capacity

PSp Project scheduling problem with limited partially renewable
resources

PSs Project scheduling problem with limited storage resources
PSt Project scheduling problem with limited (discrete) time-varying

renewable resources
MPSm; �; � Multi-mode project scheduling problem with m limited (discrete)

renewable resources of capacity � and � nonrenewable resources
MPS Multi-mode project scheduling problem with limited renewable

and nonrenewable resources
MPS1 Multi-mode project scheduling without resource constraints

(time-constrained project scheduling problem)

Field ˇ: Project and Activity Characteristics

The second field ˇ � fˇ1; ˇ2; : : : ; ˇ13g specifies a number of project and activity
characteristics; ı denotes the empty symbol.

ˇ1 W mult Multi-project problem
ˇ1 W ı Single-project problem
ˇ2 W prec Ordinary precedence relations between activities

1The classification is a modified version of the classification scheme introduced in Brucker P, Drexl
A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation,
classification, models, and methods. Eur J Oper Res 112:3–41.
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ˇ2 W temp Generalized precedence relations between activities (minimum
and maximum time lags between start or completion times of
activities)

ˇ2 W feed Feeding precedence relations between activities
ˇ3 W d Prescribed deadline d for project duration
ˇ3 W ı No prescribed maximum project duration
ˇ4 W bud Limited budget for activity processing
ˇ4 W ı No limited budget for activity processing
ˇ5 W pi D sto Stochastic activity durations
ˇ5 W pi D unc Uncertain activity durations from given intervals
ˇ5 W pi D fuz Fuzzy activity durations
ˇ5 W ı Deterministic/crisp activity durations
ˇ6 W ci D sto Stochastic activity cost
ˇ6 W ci D unc Uncertain activity cost from given intervals
ˇ6 W ci D fuz Fuzzy activity cost
ˇ6 W ı Deterministic/crisp activity cost
ˇ7 W Poi Stochastic arrival of projects with identical project network

according to Poisson process
ˇ7 W ı Immediate availability of project(s)
ˇ8 W act D sto Set of activities to be executed is stochastic
ˇ8 W ı Set of activities to be executed is prescribed
ˇ9 W pmtn Preemptive problem, activities can be interrupted at any point in

time
ˇ9 W pmtn=int Preemptive problem, activities can be interrupted at integral

points in time only
ˇ9 W l-pmtn=int Preemptive problem, activities can be interrupted at integral

points in time, the numbers of interruptions per activity are
limited by given upper bounds

ˇ9 W ı Non-preemptive problem (activities cannot be interrupted)
ˇ10 W ril D 1 Each activity requires at most one resource unit with skill l for

execution
ˇ10 W ı Each activity i requires an arbitrary number of resource units with

skill l for execution
ˇ11 W cal Activities can only be processed during certain time periods

specified by activity calendars
ˇ11 W ı No activity calendars have to be taken into account
ˇ12 W sij Sequence-dependent setup/changeover times of resources be-

tween activities i and j
ˇ12 W ı No sequence-dependent changeover times
ˇ13 W nestedAlt The project network is given by a nested temporal network with

alternatives, where only a subset of the activities must be executed
ˇ13 W ı No alternative activities have to be taken into account
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Field �: Objective Function

f General (regular or nonregular) objective function
reg Regular objective function
mac General mode assignment cost
staff General project staffing cost (project staffing and scheduling)
rob Robustness measure
mult General multi-criteria problem
f1=f2= : : : Multi-criteria problem with objective functions f1, f2, . . .
Cmax Project duration
˙cFi ˇ

Ci Net present value of project
˙ck max rkt Total availability cost (resource investment problem)
˙ck˙r

2
kt Total squared utilization cost (resource leveling)

˙ck˙okt Total overload cost (resource leveling)
˙ck˙�rkt Total adjustment cost (resource leveling)
˙ci .pi / Total cost of activity processing (time-cost tradeoff problem)
wT Weighted project tardiness

Examples

PS j prec j Cmax Basic resource-constrained project scheduling prob-
lem (RCPSP)

PS j temp; pmtn j Cmax Preemptive resource-constrained project scheduling
problem with generalized precedence relations

MPS1 j prec; d j ˙ci .pi / Discrete time-cost tradeoff problem (deadline ver-
sion)

MPS j temp j ˙cFi ˇCi Multi-mode resource-constrained net present value
problem with generalized precedence relations

PS j prec j Cmax=˙r
2
kt Bi-criteria resource-constrained project scheduling

problem (project duration, total squared utilization
cost)

PS j prec; pi D sto j Cmax Stochastic resource-constrained project scheduling
problem





Project Management and Scheduling

Christoph Schwindt and Jürgen Zimmermann

1 Projects, Project Management, and Project Scheduling

Nowadays, projects are omnipresent. These unique and temporary undertakings
have permeated almost all spheres of life, be it work or leisure, be it business or
social activities. Most frequently, projects are encountered in private and public
enterprizes. Due to product differentiation and collapsing product life cycles, a
growing part of value adding activities in industry and services is organized as
projects. In some branches, virtually all revenues are generated through projects.
The temporary nature of projects stands in contrast with more traditional forms of
business, which consist of repetitive, permanent, or semi-permanent activities to
produce physical goods or services (Dinsmore and Cooke-Davies 2005, p. 35).

Projects share common characteristics, although they appear in many forms.
Some projects take considerable time and consume a large amount of resources,
while other projects can be completed in short time without great effort. To get
a clear understanding of the general characteristics of a project, we consider the
following two definitions of a project, which are taken from Kerzner (2013, p. 2)
and PMI (2013, p. 4).

1. “A project can be considered to be any series of activities and tasks that:

• have a specific objective to be completed within certain specifications,
• have defined start and end dates,
• have funding limits (if applicable),
• consume human and nonhuman resources (i.e., people, money, equipment),
• are multifunctional (i.e., cut across several functional lines).”

C. Schwindt (�) • J. Zimmermann
Institute of Management and Economics, Clausthal University of Technology,
Clausthal-Zellerfeld, Germany
e-mail: christoph.schwindt@tu-clausthal.de; juergen.zimmermann@tu-clausthal.de

xxv

mailto:christoph.schwindt@tu-clausthal.de
mailto:juergen.zimmermann@tu-clausthal.de


xxvi C. Schwindt and J. Zimmermann

2. “A project is a temporary endeavor undertaken to create a unique product,
service, or result.”

According to these definitions, we understand a project as a one-time endeavor
that consists of a set of activities, whose executions take time, require resources, and
incur costs or induce cash flows. Precedence relations may exist between activities;
these relations express technical or organizational requirements with respect to the
order in which activities must be processed or with respect to their timing relative to
each other. Moreover, the scarcity of the resources allocated to the project generally
gives rise to implicit dependencies among the activities sharing the same resources,
which may necessitate the definition of additional precedence relations between
certain activities when the project is scheduled. A project is carried out by a project
team, has a deadline, i.e., is limited in time, and is associated with one or several
goals whose attainment can be monitored.

Typical examples for projects are:

• construction of a building, road, or bridge,
• development of a new product,
• reorganization in a firm,
• implementation of a new business process or software system,
• procurement and roll-out of an information system,
• design of a new pharmaceutical active ingredient, or
• conducting an election campaign.

Project management deals with the coordination of all initiating, planning,
decision, execution, monitoring, control, and closing processes in the course of
a project. In other words, it is the application of knowledge, skills, tools, and
techniques to project tasks to meet all project interests. According to the Project
Management Institute standard definition (PMI 2013, p. 8), managing a project
includes

• identifying requirements,
• establishing clearly understandable and viable objectives,
• balancing the competing demands for time, quality, scope, and cost, and
• customizing the specifications, plans, and approach to the concerns and expecta-

tions of the different stakeholders.

Consequently, successful project management means to perform the project
within time and cost estimates at the desired performance level in accordance with
the client, while utilizing the required resources effectively and efficiently.

From a project management point of view, the life cycle of a project consists
of five consecutive phases, each of which involves specific managerial tasks (cf.,
e.g., Lewis 1997; Klein 2000). At the beginning of the first phase, called project
conception, there is only a vague idea of the project at hand. By means of some
feasibility studies as well as economic and risk analyses it is decided whether
or not a project should be performed. In the project definition phase the project
objectives and the organization form of the project are specified. In addition, the
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Project conception
• feasibility study
• economic analysis
• risk analysis
• project selection

Project definition
project objectives•

• project organization
• operational organiza-
tion

Project planning
• structural analysis
• time, resource, and
cost estimation

• project scheduling

Project execution
• project control
• quality and configu-
ration management

Project termination
• project evaluation
• project review

Fig. 1 Project life cycle

operational organization in the form of a roadmap (milestone plan) is conceived.
In the project planning phase the project is decomposed into precedence-related
activities. Then, for each activity the duration, the required resources, and the
cost associated with the execution of that activity are estimated. Furthermore, the
precedence relations among the activities are specified. Finally, a project schedule
is determined by some appropriate planning approach (project scheduling). After
these three phases the project is ready for implementation and the project execution
phase starts. By monitoring the project progress, project management continuously
evaluates whether or not the project is performed according to the established
baseline schedule. If significant deviations are detected the plan has to be revised
or an execution strategy defined in the planning phase is used to bring the project
back to course. Moreover, quality and configuration management are performed in
this phase (Turner 2009; PMI 2013). The final project termination phase evaluates
and documents the project execution after its completion. Figure 1 summarizes the
five phases of the project life cycle. Next, we will consider the project scheduling
part of the planning phase in more detail.

Project scheduling is mainly concerned with selecting execution modes and
fixing execution time intervals for the activities of a project. One may distinguish
between time-constrained and resource-constrained project scheduling problems,
depending on the type of constraints that are taken into account when scheduling
the project. In time-constrained problems it is supposed that the activities are to
be scheduled subject to precedence relations and that the required resources can
be provided in any desired amounts, possibly at the price of higher execution
cost or unbalanced resource usage. In the setting of a resource-constrained project
scheduling problem, the availability of resources is necessarily assumed to be
limited; consequently, in addition to the precedence relations, resource constraints
have to be taken into account. Time-cost tradeoff and resource leveling problems are
examples of time-constrained project scheduling problems. These examples show
that time-constrained problems also may include a resource allocation problem,
which consists in assigning resource units to the execution of the activities over
time.

Different types of precedence relations are investigated in this handbook.
An ordinary precedence relation establishes a predefined sequence between two
activities, the second activity not being allowed to start before the first has
been completed. Generalized precedence relations express general minimum and
maximum time lags between the start times of two activities. Feeding precedence
relations require that an activity can only start when a given minimum percentage
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of its predecessor activity has been completed. The difference between generalized
and feeding precedence relations becomes apparent when the activity durations are
not fixed in advance or when activities can be interrupted during their execution.

Throughout this handbook, the term “resource” designates a pool of identical
resource units, and the number of resource units available is referred to as the capac-
ity or availability of the resource. In project scheduling, several kinds of resources
have been introduced to model input factors of different types. Renewable resources
represent inputs like manpower or machinery that are used, but not consumed
when performing the project. In contrast, nonrenewable resources comprise factors
like a budget or raw materials, which are consumed in the course of the project.
Renewable and nonrenewable resources can be generalized to storage resources,
which are depleted and replenished over time by the activities of the project.
Storage resources can be used to model intermediate products or the cash balance
of a project with disbursements and progress payments. Resources like electric
power or a paged virtual memory of a computer system, which can be allotted
to activities in continuously divisible amounts, are called continuous resources.
Partially renewable resources refer to unions of time intervals and can be used to
model labor requirements arising, e.g., in staff scheduling problems.

A common assumption in project scheduling is that activities must not be inter-
rupted when being processed. There exist, however, applications for which activity
splitting may be advantageous or even necessary. Examples of such applications are
the aggregate mid-term planning of project portfolios composed of subprojects or
working packages and the scheduling of projects in which certain resources cannot
be operated during scheduled downtimes. The preemptive scheduling problems
can be further differentiated according to the time points when an activity can
be interrupted or resumed. Integer preemption problems assume that an activity
can only be split into parts of integral duration, whereas continuous preemption
problems consider the general case in which activities may be interrupted and
resumed at any point in time.

An important attribute of a project scheduling problem concerns the number
of execution modes that can be selected for individual activities. The setting of
a single-modal problem premises that there is only one manner to execute an
activity or that an appropriate execution mode has been selected for each activity
before the scheduling process is started. A multi-modal problem always comprises
a mode selection problem, the number of alternative modes for an activity being
finite or infinite. Multiple execution modes allow to express resource-resource,
resource-time, and resource-cost tradeoffs, which frequently arise in practical
project scheduling applications.

With respect to the scheduling objectives, one may first distinguish between
single-criterion and multi-criteria problems. A problem of the latter type includes
several conflicting goals and its solution requires concepts of multi-criteria decision
making like goal programming or goal attainment models. Second, objective func-
tions can be classified as being regular or non-regular. Regular objective functions
are defined to be componentwise nondecreasing in the start or completion times of
the activities. Obviously, a feasible instance of a problem with a regular objective
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function always admits a solution for which no activity can be scheduled earlier
without delaying the processing of some other activity. Since in this case, the search
for an optimal schedule can be limited to such “active” schedules, problems with
regular objective functions are generally more tractable than problems involving a
non-regular objective function.

A further attribute of project scheduling problems refers to the level of available
information. The overwhelming part of the project scheduling literature addresses
deterministic problem settings, in which it is implicitly assumed that all input data of
the problem are precisely known in advance and no disruptions will occur when the
schedule is implemented. In practice, however, projects are carried out in stochastic
and dynamic environments. Hence, it seems reasonable to account for uncertainty
when deciding on the project schedule. This observation leads to stochastic project
scheduling problems or project scheduling problems under interval uncertainty,
depending on whether or not estimates of probability distributions for the uncertain
parameters are supposed to be available. Fuzzy project scheduling problems arise in
a context in which certain input data are vague and cannot be specified on a cardinal
scale, like assessments by means of linguistic variables.

Finally, project scheduling problems may be categorized according to the
distribution of information or the number of decision makers involved. Most work
on project scheduling tacitly presumes that the projects under consideration can
be scheduled centrally under a symmetric information setting, in which there is
a single decision maker or all decision makers pursue the same goals and are
provided access to the same information. However, in a multi-project environment,
decentralized decision making may be the organization form of choice, generally
leading to an asymmetric information distribution and decision makers having their
own objectives. In this case, a central coordination mechanism is needed to resolve
conflicts and to achieve a satisfying overall project performance.

Table 1 summarizes the classification of project scheduling problems considered
in this handbook. For further reading on basic elements and more advanced concepts
of project scheduling we refer to the surveys and handbooks by Artigues et al.
(2008), Demeulemeester and Herroelen (2002), Hartmann and Briskorn (2010), and
Józefowska and Wȩglarz (2006).

2 Scope and Organization of the Handbook

Given the long history and practical relevance of project management and schedul-
ing, one might be tempted to suppose that all important issues have been addressed
and all significant problems have been solved. The large body of research papers,
however, that have appeared in the last decade and the success of international
project management and scheduling conferences prove that the field remains a very
active and attractive research area, in which major and exciting developments are
still to come.
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Table 1 Classification of project scheduling problems

Attributes Characteristics

Type of constraints Time-constrained problem

Resource-constrained problem

Type of precedence relations Ordinary precedence relations

Generalized precedence relations

Feeding precedence relations

Type of resources Renewable resources

Nonrenewable resources

Storage resources

Continuous resources

Partially renewable resources

Type of activity splitting Non-preemptive problem

Integer preemption problem

Continuous preemption problem

Number of execution modes Single-modal problem

Multi-modal problem

Number of objectives Single-criterion problem

Multi-criteria problem

Type of objective function Regular function

Non-regular function

Level of information Deterministic problem

Stochastic problem

Problem under interval uncertainty

Problem under vagueness

Distribution of information Centralized problem (symmetric distribution)

Decentralized problem (asymmetric distribution)

This handbook is a collection of 62 chapters presenting a broad survey on key
issues and recent developments in project management and scheduling. Each chap-
ter has been contributed by recognized experts in the respective domain. The two
volumes comprise contributions from seven project management and scheduling
areas, which are organized in 19 parts. The first three areas are covered by Vol. 1
of the handbook, the remaining four areas being treated in Vol. 2. The covered
topics range from basic project scheduling problems and their generalizations
through multi-project planning, project scheduling under uncertainty and vagueness,
recent developments in general project management and project risk management
to applications, case studies, and project management information systems. The
following list provides an overview of the handbook’s contents.

• Area A: Project duration problems in single-modal project scheduling

– Part I: The Resource-Constrained Project Scheduling Problem
– Part II: The Resource-Constrained Project Scheduling Problem with

Generalized Precedence Relations
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– Part III: Alternative Resource Constraints in Project Scheduling
– Part IV: Preemptive Project Scheduling

• Area B: Alternative objectives in single-modal project scheduling

– Part V: Non-Regular Objectives in Project Scheduling
– Part VI: Multi-Criteria Objectives in Project Scheduling

• Area C: Multi-modal project scheduling

– Part VII: Multi-Mode Project Scheduling Problems
– Part VIII: Project Staffing and Scheduling Problems
– Part IX: Discrete Time-Cost Tradeoff Problems

• Area D: Multi-project problems

– Part X: Multi-project scheduling
– Part XI: Project Portfolio Selection Problems

• Area E: Project scheduling under uncertainty and vagueness

– Part XII: Stochastic Project Scheduling
– Part XIII: Robust Project Scheduling
– Part XIV: Project Scheduling Under Interval Uncertainty and Fuzzy Project

Scheduling

• Area F: Managerial approaches

– Part XV: General Project Management
– Part XVI: Project Risk Management

• Area G: Applications, case studies, and information systems

– Part XVII: Project Scheduling Applications
– Part XVIII: Case Studies in Project Scheduling
– Part XIX: Project Management Information Systems

The parts of Areas A to E, devoted to models and methods for project schedul-
ing, follow a development from standard models and basic concepts to more
advanced issues such as multi-criteria problems, project staffing and scheduling,
decentralized decision making, or robust optimization approaches. Area F covers
research opportunities and emerging issues in project management. The chapters
of the last Area G report on project management and scheduling applications and
case studies in various domains like production scheduling, R&D planning, make-
or-buy decisions and supplier selection, scheduling in computer grids, and the
management of construction projects. Moreover, three chapters address the benefits
and capabilities of project management information systems.

Most chapters are meant to be accessible at an introductory level by readers with
a basic background in operations research and probability calculus. The intended
audience of this book includes project management professionals, graduate students
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in management, industrial engineering, computer science, or operations research, as
well as scientists working in the fields of project management and scheduling.

3 Outline of the Handbook

Area A of this handbook is dedicated to single-modal project scheduling problems
in which the activities have to be scheduled under precedence relations and resource
constraints and the objective consists in minimizing the duration (or makespan) of
the project. In practice, these project scheduling problems have a large range of
applications, also beyond the field of proper project management. For example, pro-
duction scheduling and staff scheduling problems can be modeled as single-modal
project scheduling problems. In order to model specific practical requirements
like prescribed minimum and maximum time lags between activities, availability
of materials and storage capacities, or divisible tasks, project scheduling models
including generalized precedence relations, new types of resource constraints, or
preemptive activities have been proposed. These extensions to the basic model are
also addressed in this portion of the handbook.

Part I is concerned with the classical resource-constrained project scheduling
problem RCPSP. Solution methods for the RCPSP have been developed since the
early 1960s and this problem is still considered the standard model in project
scheduling. In Chap. 1 Rainer Kolisch reviews shifts, schedule types, and schedule-
generation schemes for the RCPSP. A shift transforms a schedule into another
schedule by displaying sets of activities. Based on the introduced shifts, different
types of schedules, e.g., semi-active and active schedules, are defined. Furthermore,
two different schedule-generation schemes are presented. The serial schedule-
generation scheme schedules the activities one by one at their respective earliest
feasible start times. The parallel schedule-generation scheme is time-oriented and
generates the schedule by iteratively adding concurrent activities in the order
of increasing activity start times. Variants of the two schemes for the resource-
constrained project scheduling problem with generalized precedence relations and
for the stochastic resource-constrained project scheduling problem are discussed as
well. Chapter 2, written by Christian Artigues, Oumasr Koné, Pierre Lopez, and
Marcel Mongeau, surveys (mixed-)integer linear programming formulations for the
RCPSP. The different formulations are divided into three categories: First, time-
indexed formulations are presented, in which time-indexed binary variables encode
the status of an activity at the respective point in time. The second category gathers
sequencing formulations including two types of variables. Continuous natural-date
variables represent the start time of the activities and binary sequencing variables are
used to model decisions with respect to the ordering of activities that compete for the
same resources. Finally, different types of event-based formulations are considered,
containing binary assignment and continuous positional-date variables. In Chap. 3
Sigrid Knust overviews models and methods for calculating lower bounds on the
minimum project duration for the RCPSP. Constructive and destructive bounds are
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presented. The constructive lower bounds are based on the relaxation or Lagrangian
dualization of the resource constraints or a disjunctive relaxation allowing for activ-
ity preemption and translating precedence relations into disjunctions of activities.
Destructive lower bounds arise from disproving hypotheses on upper bounds on the
minimum objective function value. Knust reviews destructive lower bounds for the
RCPSP that are calculated using constraint propagation and a linear programming
formulation. Chapter 4 by Anurag Agarwal, Selcuk Colak, and Selcuk Erenguc
considers meta-heuristic methods for the RCPSP. Important concepts of heuristic
methods as well as 12 different meta-heuristics are presented. Amongst others,
genetic algorithms, simulated annealing methods, and ant-colony optimization are
discussed. A neuro-genetic approach is presented in more detail. This approach is a
hybrid of a neural-network based method and a genetic algorithm.

Part II deals with the resource-constrained project scheduling problem with
generalized precedence relations RCPSP/max. Generalized precedence relations
express minimum and maximum time lags between the activities and can be
used to model, e.g., release dates and deadline of activities or specified maxi-
mum makespans for the execution of subprojects. In Chap. 5 Lucio Bianco and
Massimiliano Caramia devise lower bounds and exact solution approaches for the
RCPSP/max. First, a new mathematical formulation for the resource-unconstrained
project scheduling problem is presented. Then, they propose a lower bound
for the RCPSP/max relying on the unconstrained formulation. The branch-and-
bound method is based on a mixed-integer linear programming formulation and
a Lagrangian relaxation based lower bound. The mixed-integer linear program
includes three types of time-indexed decision variables. The first two types are
binary indicator variables for the start and the completion of activities, whereas
the third type corresponds to continuous variables providing the relative progress of
individual activities at the respective points in time. Chapter 6 presents a constraint
satisfaction solving framework for the RCPSP/max. Amedeo Cesta, Angelo Oddi,
Nicola Policella, and Stephen Smith survey the state of the art in constraint-
based scheduling, before the RCPSP/max is formulated as a constraint satisfaction
problem. The main idea of their approach consists in establishing precedence
relations between activities that share the same resources in order to eliminate
all possible resource conflicts. Extended optimizing search procedures aiming at
minimizing the makespan and improving the robustness of a solution are presented.
Chapter 7, written by Andreas Schutt, Thibaut Feydy, Peter Stuckey, and Mark
Wallace, elaborates on a satisfiability solving approach for the RCPSP/max. First,
basic concepts such as finite domain propagation, boolean satisfiability solving, and
lazy clause generation are discussed. Then, a basic model for the RCPSP/max and
several expansions are described. The refinements refer to the reduction of the initial
domains of the start time variables and the identification of incompatible activities
that cannot be in progress simultaneously. The authors propose a branch-and-bound
algorithm that is based on start-time and/or conflict-driven branching strategies and
report on the results of an experimental performance analysis.

Part III focuses on resource-constrained project scheduling problems with
alternative types of resource constraints. The different generalizations of the
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renewable-resources concept allow for modeling various kinds of limited input
factors arising in practical applications of project scheduling models. Chapter 8,
written by Sönke Hartmann, considers the resource-constrained project scheduling
problem with time-varying resource requirements and capacities RCPSP/t. After
a formal description of the problem, relationships to other project scheduling
problems are discussed and practical applications in the field of medical research
and production scheduling are treated. The applicability of heuristics for the RCPSP
to the more general RCPSP/t is analyzed and a genetic algorithm for solving the
RCPSP/t is presented. In Chap. 9 Jacques Carlier and Aziz Moukrim consider
project scheduling problems with storage resources. In particular, the general project
scheduling problem with inventory constraints, the financing problem, and the
project scheduling problem with material-availability constraints are discussed. For
the general problem setting, in which for each storage resource the inventory level
must be maintained between a given safety stock and the storage capacity, two
exact methods from literature are reviewed. The financing problem corresponds
to the single-resource case in which the occurrence times of the project events
replenishing the storages are fixed and no upper limitation on the inventory levels
are given. This problem can be solved by a polynomial-time shifting algorithm.
Eventually, the authors explain how the general problem can be solved efficiently
when the storage capacities are relaxed and a linear order on all depleting events is
given. Chapter 10, written by Grzegorz Waligóra and Jan Wȩglarz, is concerned with
the resource-constrained project scheduling problem with discrete and continuous
resources DCRCPSP. First, the authors survey the main theoretical results that have
been achieved for the continuous resource allocation setting. Then, the DCRCPSP
with an arbitrary number of discrete resources and a single continuous resource with
convex or concave processing rate, respectively, is analyzed. For the case of concave
processing rates, a solution method based on feasible sequences of activity sets is
presented. In Chap. 11 Ramon Alvarez-Valdes, Jose Manuel Tamarit, and Fulgencia
Villa discuss the resource-constrained project scheduling problem with partially
renewable resources RCPSP/� . After the definition of the problem, the authors
review different types of requirements of real-world scheduling problems that can
be modeled using partially renewable resources and survey the existing solution
procedures for RCPSP/� . Preprocessing procedures and two heuristic approaches,
a GRASP algorithm and a scatter search method, are treated in detail.

Part IV is devoted to preemptive project scheduling problems, in which activities
can be temporarily interrupted and restarted at a later point in time. In some
applications, especially if vacation or scheduled downtimes of resources are taken
into account, the splitting of activities may be unavoidable. Chapter 12 by Sacra-
mento Quintanilla, Pilar Lino, Ángeles Pérez, Francisco Ballestín, and Vicente Valls
considers the resource-constrained project scheduling problem Maxnint_PRCPSP
under integer activity preemption and upper bounds on the number of interrup-
tions per activity. Existing procedures for the RCPSP are adapted to solve the
Maxnint_PRCPSP, and procedures tailored to the Maxnint_PRCPSP are presented.
In addition, the chapter reviews a framework for modeling different kinds of
precedence relations when activity preemption is allowed. In Chap. 13 Christoph
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Schwindt and Tobias Paetz first present a survey on preemptive project scheduling
problems and solution methods. Next, they propose a continuous preemption
resource-constrained project scheduling problem with generalized feeding prece-
dence relations, which includes most of the preemptive project scheduling problems
studied in the literature as special cases. Based on a reduction of the problem
to a canonical form with nonpositive completion-to-start time lags between the
activities, structural issues like feasibility conditions as well as upper bounds on
the number of activity interruptions and the number of positive schedule slices
are investigated. Moreover, a novel MILP problem formulation is devised, and
preprocessing and lower bounding techniques are presented.

Area B of the handbook is dedicated to single-modal project scheduling
problems with general objective functions, including multi-criteria problems. Non-
regular objective functions motivated by real-world applications are, e.g., the net
present value of the project, the resource availability cost, or different resource lev-
eling criteria. In practice, project managers often have to pursue several conflicting
goals. Traditionally, the respective scheduling problems have been tackled as single-
objective optimization problems, combining the multiple criteria into a single scalar
value. Recently, however, more advanced concepts of multi-criteria decision making
received increasing attention in the project scheduling literature. Based on these
concepts, project managers may generate a set of alternative and Pareto-optimal
project schedules in a single run.

Part V treats project scheduling problems with single-criteria non-regular
objective functions. These problems are generally less tractable than problems
involving a regular objective function like the project duration because the set
of potentially optimal solutions must be extended by non-minimal points of the
feasible region. The resource-constrained project scheduling problem with dis-
counted cash flows RCPSPDC is examined in Chap. 14. The sum of the discounted
cash flows associated with expenditures and progress payments defines the net
present value of the project, and the problem consists in scheduling the project
in such as way that the net present value is maximized. Hanyu Gu, Andreas
Schutt, Peter Stuckey, Mark Wallace, and Geoffrey Chu present an exact solution
procedure relying on the lazy clause generation principle. Moreover, they propose
a Lagrangian relaxation based forward-backward improvement heuristic as well as
a Lagrangian method for large problem instances. Computational results on test
instances from the literature and test cases obtained from a consulting firm provide
evidence for the performance of the algorithms. In Chap. 15 Savio Rodrigues and
Denise Yamashita present exact methods for the resource availability cost problem
RACP. The RACP addresses situations in which the allocation of a resource incurs a
cost that is proportional to the maximum number of resource units that are requested
simultaneously at some point in time during the project execution. The resource
availability cost is to be minimized subject to ordinary precedence relations between
the activities and a deadline for the project termination. An exact algorithm based
on minimum bounding procedures and heuristics for reducing the search space
are described in detail. Particular attention is given to the search strategies and
the selection of cut candidates. The authors report on computational results on
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a set of randomly generated test instances. Chapter 16, written by Vincent Van
Peteghem and Mario Vanhoucke, considers heuristic methods for the RACP and
the RACPT, i.e., the RACP with tardiness cost. In the RACPT setting, a due date for
the project completion is given and payments arise when the project termination is
delayed beyond this due date. Van Peteghem and Vanhoucke provide an overview of
existing meta-heuristic methods and elaborate on a new search algorithm inspired
by weed ecology. In Chap. 17 Julia Rieck and Jürgen Zimmermann address different
resource leveling problems RLP. Resource leveling is concerned with the problem of
balancing the resource requirements of a project over time. Three different resource
leveling objective functions are discussed, for which structural properties and
respective schedule classes are revisited. A tree-based branch-and-bound procedure
that takes advantage of the structural properties is presented. In addition, several
mixed-integer linear programming formulations for resource leveling problems are
given and computational experience on test sets from the literature is reported. In
Chap. 18 Symeon Christodoulou, Anastasia Michaelidou-Kamenou, and Georgios
Ellinas present a literature review on heuristic solution procedures for different
resource leveling problems. For the total squared utilization cost problem they
devise a meta-heuristic method that relies on a reformulation of the problem as
an entropy maximization problem. First, the minimum moment method for entropy
maximization is presented. This method is then adapted to the resource leveling
problem and illustrated on an example project.

Part VI covers multi-criteria project scheduling problems, placing special
emphasis on structural issues and the computation of the Pareto front. Chapter 19,
written by Francisco Ballestín and Rosa Blanco, addresses fundamental issues
arising in the context of multi-objective project scheduling problems. General
aspects of multi-objective optimization and peculiarities of multi-objective
resource-constrained project scheduling are revisited, before a classification of
the most important contributions from the literature is presented. Next, theoretical
results for time- and resource-constrained multi-objective project scheduling are
discussed. In addition, the authors provide a list of recommendations that may
guide the design of heuristics for multi-objective resource-constrained project
scheduling problems. Chapter 20, contributed by Belaïd Aouni, Gilles d’Avignon,
and Michel Gagnon, examines goal programming approaches to multi-objective
project scheduling problems. After presenting a generic goal programming model,
the authors develop a goal programming formulation for the resource-constrained
project scheduling problem, including the project duration, the resource allocation
cost, and the quantity of the allocated resources as objective functions. In difference
to the classical resource allocation cost problem, the model assumes that the
availability cost refers to individual resource units and is only incurred in periods
during which the respective unit is actually used.

Area C of this handbook is devoted to multi-modal project scheduling problems,
in which for each activity several alternative execution modes may be available
for selection. Each execution mode defines one way to process the activity, and
alternative modes may differ in activity durations, cost, resource requirements, or
resource usages over time. The project scheduling problem is then complemented
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by a mode selection problem, which consists in choosing one execution mode for
each activity. Multi-modal problems typically arise from tradeoffs between certain
input factors like renewable or nonrenewable resources, durations, or cost. Other
types of multi-modal problems are encountered when multi-skilled personnel has
to be assigned to activities with given skill requirements or when the resource
requirements are specified as workloads rather than by fixed durations and fixed
resource demands.

Part VII deals with multi-modal project scheduling problems in which the
activity modes represent relations between activity durations and demands for
renewable, nonrenewable, or financial resources. This problem setting allows for
modeling resource-resource and resource-time tradeoffs, which frequently arise
in practical project management. In Chap. 21 Marek Mika, Grzegorz Waligóra,
and Jan Wȩglarz provide a comprehensive overview of the state of the art in
multi-modal project scheduling. One emphasis of the survey is on the basic multi-
mode resource-constrained project duration problem MRCPSP, for which they
review mixed-integer linear programming formulations, exact and heuristic solution
methods, as well as procedures for calculating lower bounds on the minimum
project duration. Moreover, they also revisit special cases and extensions of the
basic problem as well as multi-mode problems with financial and resource-based
objectives. Chapter 22, written by José Coelho and Mario Vanhoucke, presents a
novel solution approach to the multi-mode resource-constrained project scheduling
problem MRCPSP, which solves the mode assignment problem using a satisfiability
problem solver. This approach is of particular interest since it takes advantage
of the specific capabilities of these solvers to implement learning mechanisms
and to combine a simple mode feasibility check and a scheduling step based
on a single activity list. A capital-constrained multi-mode scheduling problem is
investigated in Chap. 23 by Zhengwen He, Nengmin Wang, and Renjing Liu. The
problem consists in selecting activity modes and assigning payments to project
events in such a way that the project’s net present value is maximized and the
cash balance does not go negative at any point in time. The execution modes of the
activities represent combinations of activity durations and associated disbursements.
In Chap. 24 Philipp Baumann, Cord-Ulrich Fündeling, and Norbert Trautmann
consider a variant of the resource-constrained project scheduling problem in which
the resource usage of individual activities can be varied over time. For each activity
the total work content with respect to a distinguished resource is specified, and
the resource usages of the remaining resources are determined by the usage of
this distinguished resource. A feasible distribution of the work content over the
execution time of an activity can be interpreted as an execution mode. The authors
present a priority-rule based heuristic and a mixed-integer linear programming
formulation, which are compared on a set of benchmark instances.

Part VIII addresses different variants of project staffing and scheduling prob-
lems. In those problem settings, the execution of a project activity may require
several skills. It then becomes necessary to assign appropriate personnel to the
activities and to decide on the skills with which they contribute to each activity.
Isabel Correia and Francisco Saldanha-da-Gama develop a generic mixed-integer
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programming formulation for project staffing and scheduling problems, which is
presented in Chap. 25. The formulation captures various features like unary multi-
skilled resources, which contribute with at most one skill to each activity, workload
capacities of the resources, multi-unit skill requirements of the activities, and
generalized precedence relations. This framework is illustrated by providing MILP
models for two project staffing and scheduling problems discussed in the literature,
the multi-skill project scheduling problem MSPSP and the project scheduling
problem with multi-purpose resources PSMPR. In Chap. 26 Carlos Montoya, Odile
Bellenguez-Morineau, Eric Pinson, and David Rivreau present a heuristic method
for the MSPSP, which is based on integrating column generation and Lagrangian
relaxation techniques. The MSPSP consists in assigning the multi-skilled resources
to the activities so as to minimize the project duration under ordinary precedence
relations between the activities. The authors develop two master problem formula-
tions, which are heuristically solved by iteratively considering restricted versions
of the master problem defined on a pool of variables. In each iteration, new
variables with negative reduced cost are entered into the pool, which are identified
via respective pricing problems. The required dual multipliers are obtained from
solving the LP relaxation of the current restricted master problem by alternating
iterations of a subgradient procedure for the Lagrangian dual and simplex iterations.
Project staffing and scheduling problems of type PSMPR are discussed in Chap. 27.
In difference to the MSPSP, the availability of each resource is limited by a
maximum workload that can be processed in the planning horizon, and a general
staffing cost function is considered. The staffing cost depends on the assignment
of resources to skill requirements of the activities. Haitao Li devises an exact
algorithm for the general problem with convex staffing cost. The hybrid Benders
decomposition method starts from hierarchically dividing the problem into a relaxed
master problem covering the assignment decisions and a feasibility subproblem
modeling the scheduling decisions. Both levels are linked by top-down instructions
and a bottom-up feedback mechanism adding Benders cuts to the relaxed master
problem when the scheduling problem is infeasible. The feasibility of the scheduling
problem is checked using a constraint programming algorithm. In Chap. 28 Cheikh
Dhib, Ameur Soukhal, and Emmanuel Néron address a generalization of the MSPSP
in which an activity can be interpreted as a collection of concurrent subactivities
requiring a single skill each and possibly differing in durations. Moreover, it
is assumed that the subactivities must be started simultaneously, but may be
interrupted and resumed individually at integral points in time. The authors propose
a mixed-integer linear programming formulation of the problem and describe
priority-rule based solution methods, which are based on the parallel schedule-
generation scheme.

Discrete time-cost tradeoff problems, which are the subject of Part IX, represent
a type of multi-modal project scheduling problems that are frequently encountered
in practice. This type of problems occur when the processing of certain activities
can be sped up by assigning additional resources, leading to higher execution cost.
In Chap. 29 Joseph Szmerekovsky and Prahalad Venkateshan provide a literature
review on the classical discrete time-cost tradeoff problem DTCTP. Furthermore,
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they discuss a new integer programming formulation for a version of the DTCTP
with irregular start time costs of the activities. For the special case where the
start time costs represent the net present value of an activity, the formulation
is compared to three alternative MILP models in an extensive computational
experiment. In Chap. 30 Mario Vanhoucke studies three extensions of the DTCTP
and an electromagnetic meta-heuristic algorithm to solve these problems. The
setting of the DTCTP with time-switch constraints presupposes that activities can
only be processed in certain time periods defined by given work/rest patterns. In
addition to the direct activity costs, the objective function of the DTCTP with work
continuity constraints also includes costs for the supply of resources required by
groups of activities; this variant of the problem can be reduced to the basic DTCTP.
Finally, the DTCTP with net present value optimization is considered.

Area D of the handbook is dedicated to project planning problems involving sev-
eral individual projects. We distinguish between multi-project scheduling problems,
for which the set of projects to be scheduled is assumed given, and project portfolio
selection problems, dealing with the choice of the projects to be actually performed.
In both scenarios, there may exist dependencies between the individual projects, for
example due to precedence relations between activities of different projects or due
to the joint requirements for resources.

Part X deals with the first type of multi-project problems. When scheduling
concurrent projects, an important question concerns the distribution of information.
In the basic multi-project scheduling problem, it is assumed that all planning data are
available to a single decision maker, who may centrally schedule the entire project
portfolio. On the other hand, decentralized multi-project scheduling covers the sit-
uation in which information is distributed over different decision makers, who may
pursue individual targets. In this case, a central coordination mechanism is needed
to resolve conflicts between the individual projects. In Chap. 31 Jos Fernando
Gonçalves, Jorge Jos de Magalhes Mendes, and Mauricio Resende provide a liter-
ature overview on basic multi-project scheduling problems BMPSPS. Furthermore,
they develop a biased random-key genetic algorithm for the variant of the problem
in which a separable polynomial function in the tardiness, the earliness, and the
flow time overrun of all projects is to be minimized subject to precedence relations
and the limited availability of shared resources. The decentralized multi-project
scheduling problem DRCMPSP is addressed in Chap. 32. In their contribution,
Andreas Fink and Jörg Homberger discuss implications of the distributed character
of the problem. In addition, they provide a classification scheme of different types
of DRCMPSP, categorizing problems according to the basic problem structure, the
number of decision makers, the distribution of information, and the local and global
objectives. The chapter also contains an extensive discussion and classification of
solution approaches presented in literature, including auction and negotiation based
coordination schemes.

Part XI focuses on project portfolio selection problems. Often there are more
projects on offer than resources available to carry them out. In this case project
management has to choose the right project portfolio for execution. In Chap. 33
Ana Fernández Carazo considers multi-criteria problems in which the performance
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of a portfolio is measured according to a set of conflicting goals. First she identifies
a number of key factors characterizing multi-criteria project portfolio selection
problems and discusses the different ways in which those factors have been modeled
in the literature. Based on this analysis, a proposal for a general project portfolio
selection model is developed, which synthesizes various features of previous
models. Finally, a binary nonlinear multi-criteria programming formulation of the
new model is provided. Walter Gutjahr in Chap. 34 surveys models for project
portfolio selection problems which include learning and knowledge depreciation
effects. Different types of learning curves are reviewed and it is explained how
these models have been used in the context of project staffing and scheduling
problems. For the integration of skill development into project portfolio selection
models, a mixed-integer nonlinear programming formulation is proposed. More-
over, analytical results for continuous project portfolio investment problems under
skill development are reviewed, for which it is assumed that projects can also be
partially funded.

Area E of the handbook covers the realm of project scheduling under uncertainty
and vagueness, an issue that is widely recognized as being highly relevant to
practical project management. Stochastic scheduling problems refer to decision
situations under risk, in which quantities like activity durations or activity costs
are defined as random variables with known distributions and the objective consists
in optimizing the expected value of some performance measure. A solution to such
a stochastic problem is commonly given by a policy that is applied when the project
is executed. Robust project scheduling is concerned with the problem of finding a
predictive baseline schedule that still performs well in case of disruptions or adverse
scenarios. Interval uncertainty designates a situation in which only lower and upper
bounds can be estimated with sufficient accuracy, but no probability distributions
are known. Finally, the concept of fuzzy sets allows to model situations in which
vague information, which is only available on an ordinal scale, should be taken into
account.

Part XII addresses different types of stochastic project scheduling problems.
Chapter 35, contributed by Wolfram Wiesemann and Daniel Kuhn, deals with the
stochastic time-constrained net present value problem. Both the activity durations
and the cash flows associated with the activities are supposed to be independent
random variables. Having discussed the relevance and challenges of stochastic net
present value problems, the authors review the state of the art for two variants of
the problem. If the activity durations are assumed to be exponentially distributed,
the problem can be modeled as a discrete-time Markov decision process with a
constant discount rate, for which different exact solution procedures are available.
Alternatively, activity durations and cash flows can be represented using discrete
scenarios with given probabilities. The resulting stochastic net present value
problem SNPV can be formulated as a mixed-integer linear program. Several
heuristic solution approaches from literature are outlined. In Chap. 36 Evelina
Klerides and Eleni Hadjiconstantinou examine the stochastic discrete time-cost
tradeoff problem SDTCTP. They survey the literature on static and dynamic versions
of the deadline and the budget variant of this problem. For the dynamic budget
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variant of SDTCTP it is shown that the problem can be formulated as a multi-stage
stochastic binary program with decision-dependent uncertainty. Furthermore, the
authors present effective methods for computing lower bounds and good feasible
solutions, which are respectively based on a two-stage relaxation and a static mode
selection policy. The resource-constrained project scheduling problem with random
activity durations SRCPSP is the subject of Chap. 37. Maria Elena Bruni, Patrizia
Beraldi, and Francesca Guerriero give an overview of models and methods that have
been proposed for different variants of this problem. They develop a heuristic based
on the parallel schedule-generation scheme, which in each iteration determines
the predictive completion times of the scheduled activities by solving a chance-
constrained program. The presented approach is innovative in two respects. First,
the use of joint probabilistic constraints allows to relax the traditional assumption
that the start time of an activity can be disturbed by at most one predecessor activity
at a time. Second, similar to robust project scheduling approaches, a solution to
the problem is a predictive baseline schedule that is able to absorb a large part
of possible disruptions. The objective, however, still consists, for given confidence
level, in finding a schedule with minimum makespan. Hence, the problem to be
solved can be viewed as a dual of a robust scheduling problem. The heuristic
is illustrated on a real-life construction project. Chapter 38, by Saeed Yaghoubi,
Siamak Noori, and Amir Azaron, tackles a multi-criteria multi-project scheduling
problem in which projects arrive dynamically according to a Poisson process.
Activity durations and direct costs for carrying out activities are assumed to be
independent random variables. The execution of the projects is represented as a
stochastic process in a queueing network with a maximum number of concurrent
projects, each activity being performed at a dedicated service station. The expected
values of the activity durations and the direct costs are respectively nonincreasing
and nondecreasing functions of the amount of a single resource that is assigned to
the service station. The problem consists in allocating the limited capacity of the
resource in such a way that the mean project completion time is minimized, the
utilization of the service stations is maximized, and the probability that the total
direct cost exceeds the available budget is minimum. The authors apply continuous-
time Markov processes and particle swarm optimization to solve this multi-objective
problem using a goal attainment technique.

Part XIII comprises two chapters on robust optimization approaches to project
scheduling problems under uncertainty. The basic idea of robust project scheduling
consists in establishing a predictive baseline schedule with a diminished vulnera-
bility to disturbances or adverse scenarios and good performance with respect to
some genuine scheduling objective. There are many ways in defining the robustness
of a schedule. For example, a schedule may be considered robust if it maximizes
the probability of being implementable without modifications. Alternatively, the
robustness may refer to the genuine objective instead of the feasibility; a robust
schedule then typically optimizes the worst-case performance. In difference to
stochastic project scheduling, robust project scheduling approaches do not neces-
sarily presuppose information about the probability distributions of the uncertain
input parameters of the problem. In Chap. 39 Öncü Hazır, Mohamed Haouari, and
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Erdal Erel discuss a robust discrete time-cost tradeoff problem in which for the
activity cost associated with a given mode an interval of possible realizations is
specified, but no probability distribution is assumed to be known. The authors devise
a mixed-integer programming formulation for this problem. The objective function
is defined to be the sum of all most likely activity mode costs plus the maximum
surplus cost that may be incurred if for a given number of activities, the direct
cost does not assume the most likely but the highest value. The latter number of
activities may be used to express the risk attitude of the decision maker. In addition,
six categories of time-based robustness measures are presented and a two-phase
scheduling algorithm for placing a project buffer at minimum additional cost is
outlined. Based on this algorithm, the relationship between the required budget
augmentation and the average delay in the project completion time can be analyzed.
The robust resource-constrained project scheduling problem with uncertain activity
durations is investigated in Chap. 40 by Christian Artigues, Roel Leus, and Fabrice
Talla Nobibon. Like in the preceding chapter, it is assumed that no probability
distributions are available; the sets of possible realizations of activity durations
may form intervals or finite sets. The problem is formulated as a minimax absolute-
regret model for which the objective is to find an earliest start policy that minimizes
the worst-case difference between the makespan obtained when implementing the
policy and the respective optimum ex-post makespan. An exact scenario-relaxation
algorithm and a scenario-relaxation based heuristic are presented for this problem.

Part XIV is devoted to project scheduling problems under interval uncertainty
and to fuzzy project scheduling. In Chap. 41 Christian Artigues, Cyril Briand, and
Thierry Garaix survey results and algorithms for the temporal analysis of projects
for which the uncertain activity durations are represented as intervals. The temporal
analysis computations provide minimum and maximum values for the earliest and
latest start times of the activities and the total floats. Whereas the earliest start
times can be calculated as longest path lengths like in the case of fixed activity
durations, the computation of the latest start times is less simple. Two algorithms
with polynomial time complexity are presented. Interestingly, the maximum total
float of the activities can also be computed efficiently, whereas the computation of
the minimum total floats constitutes an NP-hard problem. The chapter elaborates
on a recent branch-and-bound algorithm for the latter problem. Hua Ke and Weimin
Ma in Chap. 42 study a fuzzy version of the linear time-cost tradeoff problem in
which the normal activity durations are represented as fuzzy variables. The authors
survey literature on time-cost tradeoff problems under uncertainty and vagueness.
Using elements of credibility theory, the concepts of expected values, quantiles, and
probabilistic constraints can be translated from random to fuzzy variables. Based on
these concepts, three fuzzy time-cost tradeoff models are proposed, respectively,
providing schedules with minimum ˛-quantile of the total cost, with minimum
expected cost, and with maximum credibility of meeting the budget constraint. In
addition, a hybrid method combining fuzzy simulations and a genetic algorithm for
solving the three models is presented.

Area F addresses managerial approaches to support decision makers faced with
increasingly complex project environments. Complex challenges arise, for example,
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when dealing with project portfolios, or when a project is performed on a client-
contractor basis and the goals of both parties must be streamlined, or when risks
arise from several sources and these risks are not independent from each other. These
and further challenges are discussed in the two parts of Area F.

Part XV is concerned with general project management issues, covering project
portfolio management, relational partnerships and incentive mechanisms, and spe-
cific challenges encountered in product development and engineering projects.
In Chap. 43 Nicholas Hall contrasts the rapid growth of project activities in
firms with the lack of trained project management professionals and research-
based project management concepts. He proposes 11 areas for future research to
reduce the gap between the great practical importance and the limited theoretical
foundations of project management in these areas. Chapter 44 by Peerasit Patanakul
addresses issues that arise in multi-project environments. These issues comprise
the assignment of project managers to projects, organizational factors that enhance
multi-project management, and alternative roles of a project management office.
New product development constitutes a classical application area of project man-
agement procedures and tools. Nevertheless, managing product innovation is still a
challenging task, due to the uncertainty associated with the development process and
the strategic importance of its success. In Chap. 45 Dirk Pons provides guidelines
from a systems engineering perspective, emphasizing on the management of human
resources in the development process. Another traditional application area of project
management is the construction industry. Construction projects involve two main
parties: the contractor and the client receiving the project deliverables provided by
the contractor. The concept of partnering tries to overcome the adversarial relation
between contractor and client, which still tends to prevail in many construction
projects. In Chap. 46 Hemanta Doloi examines key factors that are crucial for
successful partnering and draws conclusions from a survey conducted in the
Australian construction industry. Chapter 47, written by Xianhai Meng, deals with
incentive mechanisms, which are frequently used to enhance project performance,
especially in the construction industry. The author discusses different kinds of
incentives and disincentives that are related to project goals such as time, cost,
quality, and safety. A case study of a road construction project gives insight into the
practical application of incentive mechanisms. Project complexity is a prominent
cause for project failure. Hence, it is vitally important for managers to know about
sources of complexity. In Chap. 48 Marian Bosch-Rekveldta, Hans Bakker, Marcel
Hertogh, and Herman Mooi identify drivers of complexity. Based on a literature
research and six case studies analyzing the complexity of engineering projects, they
provide a framework for evaluating project complexity. The framework comprises
technical, organizational, and external sources of project complexity.

Part XVI deals with project risk management. Since the importance of projects
has grown and revenues from project work may constitute a considerable share
of a firm’s total income, managing project risk is vitally important as it helps
to identify threats and to mitigate potential damage. In Chap. 49, Chao Fang and
Franck Marle outline a framework for project risk management, which considers
not only single risks separately but also interactions between risks. The authors
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show how interactions can be captured in a matrix-based risk network and provide
a quantitative method to analyze such a network. Chapter 50 is concerned with risk
management for software projects. Paul Bannerman reviews empirical research on
the application of risk management in practice, the effectiveness of risk manage-
ment, and factors that hinder or facilitate the implementation of risk management.
He describes different perspectives on risk management in order to show the wide
range of approaches and to identify avenues for further research. An important goal
of risk management is to identify risks and to decide on the risks that should be
mitigated. This decision is frequently based on a ranking of the identified risks. In
Chap. 51 Stefan Creemers, Stijn Van de Vonder, and Erik Demeulemeester survey
the different ranking methods that were proposed in the literature. In particular, they
consider so-called ranking indices that provide a ranking of activities or risks based
on their impact on the project objectives. They show that the ranking methods may
differ in their outcome and evaluate their performance with a focus on the risk of
project delay.

The last Area G proves evidence for the relevance of concepts developed in
the preceding parts of this handbook to the practice of project management and
scheduling. The area covers different domains beyond proper project scheduling
and puts the concepts treated in the previous parts into the perspective of real-life
project management. It includes chapters on project scheduling applications, case
studies, and project management information systems.

Part XVII collects six industrial applications of resource-constrained project
scheduling, where different models and methods presented in previous chapters
are put into practice. In particular, test, production, and workflow scheduling
problems are considered. Chapter 52, written by Jan-Hendrik Bartels and Jürgen
Zimmermann, reports on the problem of scheduling destructive tests in automotive
R&D projects. The planning objective consists in minimizing the number of
required experimental vehicles. The problem is modeled as a multi-mode resource-
constrained project scheduling problem with renewable and storage resources, in
which the required stock must be built up before it can be consumed. In addition
to different variants of a priority-rule based heuristic, an activity-list based genetic
algorithm is proposed. Both heuristic approaches prove suitable for solving large-
scale practical problem instances. In Chap. 53 Roman Čapek, Přemysl Šůcha, and
Zdeněk Hanzálek describe a scheduling problem with alternative process plans,
which arises in the production of wire harnesses. In such a production process,
alternative process plans include production operations that can be performed in
different ways, using fully or semi-automated machines. A mixed-integer linear
programming model for a resource-constrained project scheduling problem with
generalized precedence relations, sequence-dependent setup times, and alternative
activities is presented. Furthermore, a heuristic schedule-construction procedure
with an unscheduling step is proposed, which can be applied to large prob-
lem instances. Chapter 54 is concerned with the scheduling of jobs with large
computational requirements in grid computing. An example of such jobs are
workflow applications, which comprise several precedence-related computation
tasks. A computer grid is a large-scale, geographically distributed, dynamically
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reconfigurable, and scalable hardware and software infrastructure. Marek Mika
and Grzegorz Waligóra present three models for scheduling the computation and
transmission tasks in grids, differing in their assumptions with respect to the
workflow applications and computer networks. For the models with distributed
resources and sequence-dependent setup times, resource allocation and scheduling
algorithms are presented. For the model in which transmission tasks compete for
scarce network resources it is shown how a feasible resource allocation can be
determined. Chapter 55 by Haitao Li considers make-or-buy and supplier selection
problems arising in conjunction with the scheduling of operations in make-to-order
supply chains. A multi-mode resource-constrained project scheduling problem is
formulated to minimize the total supply chain cost, in which synergies and inter-
actions between sourcing and scheduling decisions are captured. The total supply
chain cost involves the total fixed cost, cost of goods sold, and total pipeline stock
cost and depends on the selected activity modes. The proposed solution algorithm
draws on the hybrid Benders decomposition framework exposed in Chap. 27. The
relaxed master problem (RMP) covers the assignment decisions, whereas the sub-
problem (SP) is concerned with the scheduling of the operations. The feasibility
of an optimal RMP solution is checked by solving the respective SP. If the SP is
feasible, an optimal solution has been found; otherwise, the algorithm identifies
some cause of infeasibility and adds respective cuts to the RMP, which is then solved
again. A numerical example is discussed to demonstrate the scope and depth of
decision-support offered by the solutions of the model for purchasing and program
managers. In Chap. 56 Arianna Alfieri and Marcello Urgo apply a project scheduling
approach to make-to-order systems for special-purpose machinery like instrumental
goods or power generation devices, in which products are assembled in the one-
of-a-kind production mode. They present a resource-constrained project scheduling
problem with feeding precedence relations and work content constraints and explain
its application to a real-world case of machining center production. In Chap. 57
Matthew Colvin and Christos Maravelias apply multi-stage stochastic programming
to the development process of new drugs. The problem consists in scheduling a set
of drugs, each of which has to undergo three trials. If one trial fails, the development
of the related drug is canceled. The required resources are limited and the objective
is to maximize the expected net present value of the project. After an introduction
to stochastic programming and endogenous observations of uncertainty, a mixed-
integer multi-stage stochastic programming model is presented. Some structural
properties of the problem are discussed and three solution methods including a
branch-and-cut algorithm are developed.

Part XVIII presents two case studies in project scheduling. In Chap. 58 Maurizio
Bevilacqua, Filippo Ciarapica, Giovanni Mazzuto, and Claudia Paciarotti combine
concepts of robust project scheduling and multi-criteria project scheduling to
tackle a construction project for an accommodation module of an oil rig in the
Danish North Sea. To guarantee an efficient use of the resources, the project
management identified the minimization of the project duration and the leveling
of the manpower resources as primary goals. Using historical data from 15 past
projects, the means and the standard deviations of the activity durations could be
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estimated with sufficient accuracy. To obtain a robust baseline schedule for the
project, project buffers and feeding buffers were inserted in the schedule according
to the lines of Goldratt’s Critical Chain methodology. Compared to the traditional
CPM method, the presented robust goal programming approach was able to reduce
the project duration by 14 % and to improve the resource utilization by more than
40 %. In Chap. 59 Jiuping Xu and Ziqiang Zeng consider a multi-criteria version
of the discrete time-cost tradeoff problem, which is called the discrete time-cost-
environment-tradeoffproblem DTCETP. They assume that normal activity durations
are represented as triangular fuzzy numbers and that for each period there exists a
limit on the total cost incurred by the processing and crashing of activities. This cash
flow constraint can be modeled as a renewable resource whose capacity coincides
with the cost limit. The capacity is taken up according to the requirements of
alternative execution modes. In sum, the problem can be formulated as a fuzzy
multi-criteria multi-mode resource-constrained project scheduling problem. Four
objective functions are taken into account: the total project cost, the project duration,
the total crashing costs of activities, and the quantified environmental impact of the
project. Xu and Zeng develop an adaptive hybrid genetic algorithm for this problem
and describe its application to the Jinping-II hydroelectric construction project on
the Yalong River in the Sichuan-Chongqing region. Both the input data of the case
study and the computed schedule are provided. The performance of the algorithm is
evaluated based on a sensitivity analysis with respect to the objective weights and
the results obtained with two benchmark heuristics.

Project management information systems PMIS play a crucial role in the transfer
of advanced project management and scheduling techniques to professional project
management. Part XIX addresses the question of the actual contribution of PMIS
on the project performance, studies the effects of PMIS on decision making in
multi-project environments, and investigates the project scheduling capabilities of
commercial PMIS.

Based on a PMIS success model and a survey conducted among project
managers, Louis Raymond and François Bergeron in Chap. 60 empirically assess
the impact of PMIS on decision makers and project success. Their model comprises
five constructs: the quality of the PMIS, the quality of the PMIS information output,
the use of the PMIS, the individual impacts of the PMIS, and the impacts of
the PMIS on project success. Each construct is measured using several criteria.
Structural equation modeling with the partial least squares method is used to analyze
the relationships between the different dimensions and to test the validity of six
research hypotheses. The results obtained show that the use of PMIS in professional
project management significantly contributes to the efficiency and effectiveness of
individual project managers and to the overall project performance. Chapter 61
presents a related study in which Marjolein Caniëls and Ralph Bakens focus on
the role of PMIS in multi-project environments, where project managers handle
multiple concurrent but generally less complex projects. After a survey of the
literature on multi-project management and PMIS the research model is introduced,
which contains six constructs: the project overload, the information overload, the
PMIS information quality, the satisfaction with PMIS, the use of PMIS information,
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Table 2 Overview of project scheduling problems treated in the handbook, respective acronyms
used in the literature, and three-field notations of Brucker et al. (1999)

Chaps. Project scheduling problem Acronym Three-field notation

1 – 4 Resource-constrained project
scheduling problem

RCPSP PS j prec j Cmax
5 – 7 Resource-constrained project

scheduling problem with generalized
precedence relations

RCPSP/max PS j temp j Cmax

8 Resource-constrained project
scheduling problem with
time-varying resource requirements
and capacities

RCPSP/t PSt j prec j Cmax

9 Project scheduling problems with
storage resources

PSs j temp j Cmax
10 Discrete-continuous

resource-constrained project
scheduling problem

DCRCPSP PSc j prec j Cmax

11 Resource-constrained project
scheduling problem with partially
renewable resources

RCPSP/� PSp j prec j Cmax

12 Integer preemptive
resource-constrained project
scheduling problem with limited
number of interruptions per activity

Maxnint_
PRCPSP

PS j prec; l-pmtn=int j Cmax

13 Continuous preemptive
resource-constrained project
scheduling problem with generalized
precedence relations

PRCPSP/max PS j temp; pmtn j Cmax

14 Resource-constrained project
scheduling problem with discounted
cash flows

RCPSPDC PS j prec; d j ˙cFi ˇCi

15 Resource availability cost problem RACP PS1 j prec; d j˙ck max rkt

16 Resource availability cost problems RACP,
RACPT

PS1jprec; d j˙ck max rkt,
PS1jprecj˙ck max rkt C wT

17 Resource leveling problems RLP PS1 j temp; d j ˙ck˙r2kt,
PS1 j temp; d j ˙ck˙okt, and
PS1 j temp; d j
˙ck˙�rkt

18 Resource leveling problem RLP PS1 j prec; d j ˙ck˙r2kt

19 Multi-objective time- and
resource-constrained project
scheduling problems

MOPSPs,
MORCPSPs

PS1 j prec j mult,
PS j precjmult

20 Multi-objective resource-constrained
project scheduling

MORCPSPs PS j prec j mult

(continued)



xlviii C. Schwindt and J. Zimmermann

Table 2 (continued)

Chaps. Project scheduling problem Acronym Three-field notation

21 Multi-modal resource-constrained
project scheduling problems

MPS j prec j f

22 Multi-mode resource-constrained
project scheduling problem

MRCPSP MPS j prec j Cmax
23 Multi-mode capital-constrained net

present value problem
MNPV MPSs j prec j ˙cFi ˇCi

24 Project scheduling problem with
work content constraints

PSf j prec j Cmax
25 Project staffing and scheduling

problems
PSS j temp j f

26 Multi-skill project scheduling
problem

MSPSP PSS1 j prec j Cmax
27 Project scheduling with

multi-purpose resources
PSMPR PSS j temp j staff

28 Preemptive multi-skill project
scheduling problem

PSS j prec; pmtn j Cmax
29 Discrete time-cost tradeoff problem

(deadline version)
d-DTCTP MPS1 j prec; d j ˙ci .pi /

Discrete time-cost tradeoff problem
with irregular starting time costs

MPS1 j prec; d j f

30 Discrete time-cost tradeoff problem
with time-switch constraints

d-DTCTP-tsc MPS1 j prec; d ; cal j˙ci .pi /

Discrete time-cost tradeoff problem
with net present value optimization

d-DTCTP-npv MPS1 j prec; d j ˙cFi ˇCi

31 Basic multi-project scheduling
problem

BMPSP PS j mult; prec j f

32 Decentralized multi-project
scheduling problem

DRCMPSP

33 Multi-criteria project portfolio
selection problem

34 Project selection, scheduling, and
staffing with learning problem

PSSSLP

35 Stochastic net present value problem SNPV PS j prec; pi D sto j˙cFi ˇCi
36 Stochastic discrete time-cost tradeoff

problem (budget version)
b-SDTCTP MPS1jprec; bud;

piDsto j Cmax
37 Stochastic resource-constrained

project scheduling problem
SRCPSP PS j prec; pi D sto j Cmax

38 Markovian multi-criteria
multi-project resource-constrained
project scheduling problem

MPSm; 1; 1 j mult; prec;
bud; pi Dsto; ciDsto;Poi j
mult

(continued)
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Table 2 (continued)

Chaps. Project scheduling problem Acronym Three-field notation

39 Robust discrete time-cost tradeoff
problem

MPS1 j prec; d ;
ci D unc j ˙ci .pi /

40 (Absolute regret) Robust
resource-constrained project
scheduling problem

AR-RCPSP PS j prec; pi D unc j rob

41 Temporal analysis under interval
uncertainty

PS1 j prec; pi D unc j f
with f 2 fESi ; LSi ; TFig

42 Fuzzy time-cost tradeoff problem
(deadline version)

MPS1 j prec; d ;
pi D fuz j ˙ci .pi /

52 Multi-mode resource-constrained
project scheduling problem with
storage resources

MPSs j temp; d j˙ck max rkt

53 Resource-constrained project
scheduling problem with generalized
precedence relations, sequence
dependent setup times, and
alternative activities

RCPSP-APP PSjtemp; sij; nestedAltjCmax

54 Multi-mode resource-constrained
project scheduling problems

MRCPSP MPS j prec j Cmax
55 Multi-mode resource-constrained

project scheduling problem
MPS j prec; d j mac

56 Resource constrained project
scheduling problem with feeding
precedence relations and work
content constraints

PSft j feed j Cmax

57 Stochastic net present value problem
in which the set of activities to be
executed is stochastic

PS j prec; act D sto j˙cFi ˇCi

58 Robust multi-criteria project
scheduling problem

PS j prec; pi D sto j
Cmax=˙r

2
kt

59 Fuzzy multi-criteria multi-mode
project scheduling problem

DTCETP MPS j prec; d; bud;
pi D fuz j mult

and the quality of decision making. Based on the results of a survey among project
managers, several hypotheses on the relationships between the constructs are tested
using the partial least square method. It turns out that project and information
overload are not negatively correlated with PMIS information quality and that
the quality and use of PMIS information are strongly related to the quality of
decision making. In the final Chap. 62, Philipp Baumann and Norbert Trautmann
experimentally assess the performance of eight popular PMIS with respect to their
project scheduling capabilities. Using the more than 1.500 KSD-30, KSD-60, and
KSD-120 instances of the resource-constrained project scheduling problem RCPSP
from the PSPLIB library, the impact of different complexity parameters and priority
rules on the resulting project durations is analyzed. The results indicate that for the
project duration criterion, the scheduling performances of the software packages
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differ significantly and that the option of selecting specific priority rules generally
leads to schedules of inferior quality as compared to PMIS that do not offer this
feature.

Table 2 gives an overview of the different types of project scheduling problems
treated in this book. In the literature many of those problems are commonly desig-
nated by acronyms, which are provided in the third column of the table. The last
column lists the respective designators of the (extended) three-field classification
scheme for project scheduling problems proposed by Brucker et al. (1999). The
notation introduced there and the classification scheme, which are used in different
parts of this handbook, are defined in the list of symbols, which is included in the
front matter of this book.
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Chapter 31
The Basic Multi-Project Scheduling Problem

José Fernando Gonçalves, Jorge José de Magalhães Mendes,
and Mauricio G.C. Resende

Abstract In this chapter the Basic Multi-Project Scheduling Problem (BMPSP) is
described, an overview of the literature on multi-project scheduling is provided, and
a solution approach based on a biased random-key genetic algorithm (BRKGA) is
presented. The BMPSP consists in finding a schedule for all the activities belonging
to all the projects taking into account the precedence constraints and the availability
of resources, while minimizing some measure of performance. The representation of
the problem is based on random keys. The BRKGA generates priorities, delay times,
and release dates, which are used by a heuristic decoder procedure to construct
parameterized active schedules. The performance of the proposed approach is
validated on a set of randomly generated problems.

Keywords Genetic algorithm • Meta-heuristics • Multi-project scheduling •
Random keys

31.1 Introduction

Managing multiple projects is a complex decision-making process, where a number
of projects must share concurrently a set of limited resources. Examples of multi-
project environments are new product development, multi-product manufacturing,
infrastructure constructions, and maintenance of systems.
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The basic multi-project scheduling problem (BMPSP) can be considered an
extension of the well-known resource constrained project scheduling problem
(RCPSP) where two or more projects which require the same scarce resources are
scheduled simultaneously.

There are two main distinguished research fields in multi-project scheduling—the
static and the dynamic project environment (Dumond and Mabert 1988). In this
chapter we assume a closed project portfolio, which does not change over time.
The BMPSP in a static environment has been studied, amongst others, by Fendley
(1968), Pritsker et al. (1969), Kurtulus and Davis (1982), Kurtulus and Narula
(1985), Lawrence and Morton (1993), Lova et al. (2000), Lova and Tormos (2001,
2002), Gonçalves et al. (2008), Krüger and Scholl (2010), Browning and Yassine
(2010), Kumanam and Raja (2011), and Cai and Li (2012).

The existing solution methods apply either a single- or a multi-project approach.
The single-project approach is equivalent to the RCPSP, since it merges all projects
of the multi-project into an artificial super-project with dummy start and end
activities. The multi-project approach keeps the projects separate. The approach
considered in this chapter uses a single-project approach.

Scheduling involves the allocation of the given resources to projects to determine
the start and completion times of a set of detailed activities. There may be multiple
projects contending for limited resources, which makes the solution process more
complex. The allocation of scarce resources then becomes a major objective of the
problem and several compromises have to be made to solve the problem to the
desired level of near-optimality.

In this chapter, we present a biased random-key genetic algorithm (BRKGA)
approach to solve the BMPSP. The remainder of the chapter is organized as follows.
Section 31.2 describes the problem and presents a conceptual model and Sect. 31.3
reviews the literature. Section 31.4 describes the approach used to solve the
BMPSP. Section 31.5 describes the parameterized schedule-generation procedure
and Sect. 31.6 reports on some computational experiments. Concluding remarks are
made in Sect. 31.7.

31.2 Problem Description

The BMPSP consists of a set Q of projects, where each project q 2 Q is composed
of activities j 2 Vq , where activities ˛q and !q are dummies and represent,
respectively, the initial and final activities of project q. Let V be the set of all
activities and let R D f1; : : : ; Kg represent the set of renewable resources. While
being processed, activity j 2 V requires rjk units of resource k 2 R during each
time instant of its non-preemptable duration pj . Resource k 2 R has a limited
availability of Rk at any point in time. Parameters pj , rjk, andRk are assumed to be
non-negative and deterministic. The activities are interrelated by the following two
kinds of constraints:
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• Precedence constraints, which force each activity i 2 V to be scheduled after all
predecessor activities j 2 Pred.i/ are completed;

• Resource constraints, which assure that the processing of the activities is subject
to the availability of resources with limited capacities.

For the start and end activities of each project q, we have, for all q 2 Q, that

p˛q D pwq D 0 and r˛qk D rwqk D 0 .k 2 R/

Activities 0 and nC1 are dummy activities, have no duration, and correspond to the
start and end of all projects.

The BMPSP consists in finding a schedule for all the activities taking into
account precedence constraints and the availability of resources, while minimizing
some measure of performance. Let Cj represent the finish time of activity j 2 V . A
schedule can be represented by a vector of finish times (C1; : : : ; CnC1/. Let A .t/ be
the set of activities being processed at time t . The conceptual model of the BMPSP
can be described as

Min. Measure of Performance . C1; : : : ; Cn / (31.1)

s.t.

Ci � Cj � pj .j 2 V I i 2 Pred.j // (31.2)
P

j2A .t/

rjk � Rk .k 2 RI t � 0/ (31.3)

Cj � 0 .j 2 V / (31.4)

According to objective (31.1) we seek to minimize some performance measure.
Constraints (31.2) impose the precedence relations between activities, and con-
straints (31.3) limit the resource usage imposed by the activities being processed
at time t to the available capacity. Finally, constraints (31.4) force the finish times
to be non-negative.

A variety of measures of performance have been used for the BMPSP. Mini-
mization of project duration has been used widely (Baker 1974). Other measures
of performance include: minimization of total project delay, lateness, or tardiness
(Kurtulus and Davis 1982), minimization of average project delay (Lova and
Tormos 2001), minimization of total lateness or lateness penalty (Kurtulus 1985),
minimization of the overall project cost (Talbot 1982), minimization the total
cost of delay (Kurtulus and Narula 1985), and maximization of the resource
leveling (Woodworth and Willie 1975). In this chapter, we seek to minimize a
measure of performance which involves the due date (tardiness), starting time
(earliness), and work in process (flow time) of each project (Gonçalves et al. 2008).
This performance measure simultaneously incorporates three criteria: tardiness,
earliness, and flow time and is described below. The following notation will be used:
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Opq : Target duration for project q.
dq: Due date for project q.
Cq : Conclusion date for project q in the generated schedule.
Sq: Start date for project q in the generated schedule.
Tq: Tardiness of project q D max

˚
Cq � dq ; 0

�
.

Eq: Earliness of project q D max
˚
dq � Cq ; 0

�
.

FDq : Flow time deviation for project q D max
˚
Cq � Sq � Opq; 0

�
.

LBq
0: Critical path length of project q.

the performance measure is defined as

wT
X

q

T
3
q C wE

X

q

E
2
q C wFD

X

q

FD2
q (31.5)

where wT , wF , and wFD are parameters defined by the decision maker. Note that
the tardiness has an exponent equal to 3 because in the real-world it is considered
more important than the earliness or the flow-time (which have an exponent equal
to 2). To overcome the problem of not knowing the target duration of a project in a
real-world situation, we replace

wT
X

q

FD2
q by wT

X

q

�
Cq � Sq

�2

LBq0

In the above model, the constraints for the resources are expressed by condition
(31.3). However, there are others types of constraints related with the start of a
project which cannot be modeled by that condition. To be able to model this kind of
constraint, we add

C˛q � ESq .q 2 Q/

to the model, where ESq represents earliest release date for project q. These
constraints are enforced in the model implicitly by assigning to the initial activity of
each project a duration ESq � ESq , i.e.,

p˛q D ESq � ESq .q 2 Q/

31.3 Literature Review

The BMPSP is a generalization of the RCPSP. Blazewicz et al. (1983) show that the
RCPSP, as a generalization of the classical job shop scheduling problem, belongs
to the class of N P-hard optimization problems. Therefore the BMPSP, as a
generalization of the RCPSP, is also N P-hard.
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Exact methods to solve the BMPSP are proposed in the literature. The pioneering
work of multi-project scheduling by Pritsker et al. (1969) proposed a zero-
one programming approach. Mohanthy and Siddiq (1989) studied the problem
of assigning due dates to the projects in a multi-project environment. Drexl
(1991) considered a non-preemptive variant of the resource-constrained assignment
problem using a hybrid branch-and-bound/dynamic programming algorithm with a
Monte Carlo-type upper bounding heuristic. Deckro et al. (1991) formulated the
BMPSP as a block angular general integer programming model and employed
a decomposition approach to solve large problems. Vercellis (1994) describes a
Lagrangian decomposition technique for solving multi-project planning problems
with resource constraints and alternative modes of performing each activity in the
projects.

Several approaches to the BMPSP using heuristic methods have been proposed
in the literature. For example, Fendley (1968) used multi-projects with three and
five projects and considered three efficiency measurements in the computational
analysis. Kurtulus and Davis (1982) designed multi-project instances whose projects
have between 34 and 63 activities and resource requirements for each activity
between two and six units.

Kurtulus and Narula (1985) studied penalties due to project delay. Dumond and
Mabert (1988) studied the problem of assigning due dates to the projects in a multi-
project environment. Tsubakitani and Deckro (1990) proposed a heuristic for multi-
project scheduling with resource constraints using the Kurtulus and Davis (1982)
approach to select appropriate heuristic decision rules. Bock and Patterson (1990)
designed a computational experiment based on the work of Dumond and Mabert
(1988) with three factors. Lawrence and Morton (1993) studied the due date setting
problem of scheduling multiple resource-constrained projects with the objective of
minimizing weighted tardiness costs. Shankar and Nagi (1996) proposed a two-level
hierarchical approach consisting of the planning and scheduling stages.

Özdamar et al. (1998) examined different dispatching rules for the tardiness
and the net present value objective embedded in a multi-pass heuristic. Ash (1999)
proposed a deterministic simulation scheme using available project data to choose
an activity scheduling heuristic which not only allows for the establishment of
good project schedules, but determines a priori which resources will be assigned
to specific project activities.

Lova et al. (2000) developed a multi-criteria heuristic that, lexicographically,
improves two criteria: a temporal criterion (mean project delay in relation to the
unconstrained critical path duration or multi-project duration increase) and a non-
temporal criterion (project splitting, in-process inventory, resource leveling, or idle
resources) that can be chosen by the user.

Mendes (2003) presents a genetic algorithm that uses a random-key representa-
tion and a modified parallel schedule-generation scheme (SGS).
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31.4 Biased Random-Key Genetic Algorithm

We begin this section with an overview of the proposed solution process. This is
followed by a discussion of the biased random-key genetic algorithm, including
detailed descriptions of the solution encoding and decoding, evolutionary process,
and fitness function.

31.4.1 Overview

Considering the difficulty to solve real-world problems with exact methods, a new
solution approach is developed that combines a genetic algorithm with a schedule-
generation scheme (SGS) that creates parameterized active schedules. The SGS
constructs a schedule based on the priorities and delay times of the activities, and
the release dates of the projects.

The role of the genetic algorithm (GA) is to evolve the encoded solutions, or
chromosomes, which encode the vectors of priorities (˘ ) and delays (�) of the
activities and the vector of project release dates (ES). For each chromosome, the
following phases are applied to decode the chromosome:

1. Decoding of the priorities. This phase transforms a part of the chromosome
supplied by the genetic algorithm into the vector of activity priorities (˘ ).

2. Decoding of the delay times. This phase transforms a part of the chromosome
supplied by the genetic algorithm into the vector of activity delays (�).

3. Decoding of the release dates. This phase transforms a part of the chromosome
supplied by the genetic algorithm into the vector of project release dates (ES).

4. Schedule generation. This phase makes use of ˘ , �, and ES, generated in the
previous phases, and constructs parameterized active schedules.

5. Fitness evaluation: This phase computes the fitness of the solution (or measure
of quality of the schedule) according to Eq. (31.5).

Figure 31.1 illustrates the sequence of steps applied to each chromosome generated
by the BRKGA.

The remainder of this section details the genetic algorithm, the decoding
procedure, and the SGS

31.4.2 Biased Random-Key Genetic Algorithm

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
for solving problems like sequencing, whose solutions can be encoded as permu-
tation vectors, were introduced in Bean (1994). In an RKGA, chromosomes are
represented as vectors of randomly generated real numbers in the interval Œ0; 1�.
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Fig. 31.1 Architecture of the algorithm

The decoder, a deterministic algorithm, takes as input a chromosome and associates
with it a solution of the combinatorial optimization problem for which an objective
value or fitness can be computed.

Random key GAs are particularly attractive for sequencing problems and/or
when the chromosomes have several parts (see, for example, Gonçalves and
Almeida 2002; Gonçalves and Resende 2004; Gonçalves and Sousa 2011). Unlike
traditional GAs, which need to use special repair procedures to handle permutations
or sequences, RKGAs move all the feasibility issues into the objective evaluation
procedure and guarantee that all offspring formed by crossover correspond to
feasible solutions. When the chromosomes have several parts, traditional GAs
need to use different genetic operators for each part. However, since RKGAs use
parametrized uniform crossovers (instead of the traditional one-point or two-point
crossover), they do not need to have different genetic operators for each part.

A RKGA evolves a population of random-key vectors over a number of
generations (iterations). The initial population is made up of � init

pop vectors of nkey

random keys. Each component of the solution vector, or random key, is generated
independently at random in the real interval Œ0; 1�. Next, the fitness of each
individual is computed by the decoder in generation g, the population is partitioned
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into two groups of individuals: a small group of nelit < � init
pop=2 elite individuals,

i.e., those with the best fitness values, and the remaining set of � init
pop � nelit non-

elite individuals. To evolve the population of generation g, a new generation of
individuals is produced. All elite individuals of the population of generation g
are copied without modification to the population of generation g C 1. RKGAs
implement mutation by introducing mutants into the population. A mutant is a
vector of random keys generated in the same way in which an element of the initial
population is generated. At each generation, a small number nmut < � init

pop=2 of
mutants is introduced into the population. With nelit C nmut individuals accounted
for in the population of generation g C 1, � init

pop � nelit � nmut additional individuals
need to be generated to complete the � init

pop individuals that make up population gC1.
This is done by producing � init

pop �nelit �nmut offspring solutions through the process
of mating or crossover.

A biased random-key genetic algorithm, or BRKGA (Gonçalves and Resende
2011a), differs from a RKGA in the way parents are selected for mating. While in
the RKGA of Bean (1994) both parents are selected at random from the entire current
population, in a BRKGA each offspring is generated combining a parent selected at
random from the elite partition in the current population and one selected at random
from the rest of the population. Repetition in the selection of a mate is allowed and
therefore an individual can produce more than one offspring in the same generation.
As in RKGAs, parameterized uniform crossover (Spears and Dejong 1991) is used to
implement mating in BRKGAs. Let �elit be the probability that an offspring inherits
the vector component of its elite parent. Recall that nkey denotes the number of
components in the solution vector of an individual. For l D 1; : : : ; nkey; the l-th
component c.l/ of the offspring vector c takes on the value of the l-th component
e.l/ of the elite parent e with probability �elit and the value of the l-th component
Ne.l/ of the non-elite parent Ne with probability 1 � �elit.

When the next population is complete, i.e., when it has � init
pop individuals,

fitness values are computed for all of the newly created random-key vectors and
the population is partitioned into elite and non-elite individuals to start a new
generation.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous nkey-dimensional hypercube, using the
decoder to map solutions in the hypercube to solutions in the solution space of the
combinatorial optimization problem where the fitness is evaluated.

To specify a biased random-key genetic algorithm, we simply need to specify
how solutions are encoded and decoded and how their corresponding fitness values
are computed. We specify our algorithm next by first showing how the resource-
constrained multi-project scheduling solutions are encoded and then decoded and
how their fitness evaluation is performed.
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31.4.3 Chromosome Representation

A chromosome represents a solution to the problem and is encoded as a vector of
random keys. In a direct representation, a chromosome represents a solution of the
original problem, and is usually called genotype, while in an indirect representation
it does not and special procedures are needed to derive a solution from it usually
called phenotype.

In the present context, the direct use of schedules as chromosomes is too
complicated to represent and manipulate. In particular, it is difficult to develop
corresponding crossover and mutation operations. Instead, solutions are represented
indirectly by parameters that are later used by a schedule generator to obtain
a solution. To obtain the solution (phenotype) we use the parameterized active
schedule generator described in Sect. 31.5. Each solution chromosome is made of
2nCm genes, where n is the number of activities and m is the number of projects:

Chromosome D .gene1; : : : ; genen„ ƒ‚ …
Priorities

; genenC1; : : : ; gene2n„ ƒ‚ …
Delay Times

; gene2nC1; : : : ; gene2nCm„ ƒ‚ …
Release Dates

/

The first n genes are used to determine the priorities of each activity. The genes
n C 1 to 2n are used to determine the delay time used at each of the n iterations
of the scheduling procedure, which schedules one activity per iteration. The last m
genes are used to determine the release dates of each of them projects.

31.4.4 Decoding of the Activity Priorities

As mentioned in Sect. 31.4.3, the first n genes are used to obtain activity priorities.
Activity priorities are values between 0 and 1. The higher the value, the higher the
priority will be. Below, we present the decoding procedure for the activity priorities.

Let TFj D dq.j /� lj , represent the slack of activity j where dq.j / is the due date
of the project q to which activity j belongs and lj is the length of the longest-length
path from the beginning of activity j to the end of the project q.j / to which activity
j belongs. Furthermore, let TFmax be the maximum slack for all activities amongst
all projects.

The priority of each activity j is given by an expression which produces priority
values between 70 and 100 % of the normalized slack. The priority of each activity
j is given by the following expression

˘j D TFj
TFmax

� �0:7C 0:3 � genej
�
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31.4.5 Decoding of the Delays

Genes nC1 to 2n are used to determine the delay times�i , used by each scheduling
iteration i . The delay time for each activity i is calculated by

�i D genei � 1:5 � pmax

where pmax is the maximum duration amongst all activity durations. The factor 1.5
was obtained after experimenting with values between 1.0 and 2.0 in increments of
0.1.

31.4.6 Decoding of the Release Dates

The last m genes of each the chromosome (genes 2n C 1 to 2n C m) are used
to determine the release dates of each project q 2 Q. The following decoding
expression is used to obtain the release date of each project q 2 Q:

ESq D ESq C gene2nCq � �dq � ESq
�

Consequently, the duration of the initial activity of each project q is equal to

p˛q D ESq .q 2 Q/

31.5 Schedule-Generation Procedure

The set of active schedules is usually very large and contains many schedules
with relatively large delay times, having therefore poor quality in terms of the
performance measure. To reduce the solution space, parameterized active schedules,
introduced by Gonçalves and Beirão (1999) and Gonçalves et al. (2005) are used.
The basic idea of parameterized active schedules consists in controlling the delay
time allowed for each activity to encounter. By controlling the maximum delay time
allowed, one can reduce or increase the solution space. A maximum delay time
equal to zero is equivalent to restricting the solution space to non-delay schedules
and a maximum delay time equal to infinity is equivalent to allowing general active
schedules.

The procedure used to construct parameterized active schedules is based on a
schedule-generation scheme that proceeds by time-increments. For each iteration
�, there is a scheduling time t�. All activities which are active at t� form the active
set, i.e.,

A� D ˚
j 2 V j Cj � dj � t� < Cj

�
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Fig. 31.2 Pseudocode to generate parameterized active schedules

The remaining resource capacity of resource k at instant time t� is given by

R
0

k.t�/ D Rk.t�/�
X

j2A�

rjk

All activities that have been scheduled up to iteration � are contained in the set C�
and �� denotes the set of finish times of the activities in C�. Let �� be the delay
time associated with the activity being scheduled at iteration �, and let the set D�

comprise all activities which are precedence-feasible in the interval Œt�; t� C ���,
i.e.,

D� D ˚
j 2 V n C��1 j Ci � t� C�� 8i 2 Pred.j /

�

The algorithmic description of the schedule-generation scheme used to generate
parameterized active schedules is given by the pseudocode shown in Fig. 31.2.

The basic idea of parameterized active schedules is incorporated in the selection
step of the procedure, i.e., in the step

j � WD argmax
j2D�

˚
˘j

�
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The set D� forces the selection to be made only amongst activities which will have
a delay smaller or equal to the maximum allowed delay.

Parameters ˘j (priority of activity j ) and D� (delay for the activity being
scheduled at iteration �) are supplied by the genetic algorithm.

31.6 Computational Results

In the next subsections we present the details of the computational experiments used
to illustrate the effectiveness of the algorithm described in this chapter.

31.6.1 Test Problems

The test problems used in the computational experiments are the ones proposed by
Gonçalves et al. (2008). These test problems have known optimal solutions equal
to zero for the measure of performance described in Sect. 31.2 (i.e., tardiness D 0,
earliness D 0, and flow time deviationD 0).

Five types of multi-project instances were used, with 10, 20, 30, 40, and
50 single-project instances, each with 120 activities. For each problem type, 20
instances were used. Since each single-project instance has 120 activities, we have
that each multi-project instance has 1,200, 2,400, 3,600, 4,800, and 6,000 activities,
respectively. Each activity can use up to four resources. The average number of
overlapping projects in execution can be 3, 6, 9, 12, and 15. Table 31.3 shows the
combinations of the number of overlapping projects used for the problems with 10,
20, 30, 40, and 50 single-projects.

31.6.2 BRKGA Configuration

Although there is no straightforward way to configure the parameters of a genetic
algorithm, our past experience with genetic algorithms based on the same evolu-
tionary strategy (see Gonçalves and Almeida 2002; Gonçalves and Resende 2004,
2011b, 2012, 2013, 2014; Gonçalves et al. 2005, 2008) has shown that good results
can be obtained with the values of nelit, nmut, and Crossover Probability (�elit) shown
in Table 31.1.

Table 31.1 Range of
parameters for the
evolutionary strategy

Parameter Interval

nelit (0.10–0.25) � � init
pop

nmut (0.15–0.30) � � init
pop

Crossover probability (�elit) (0.70–0.85)
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Table 31.2 Configuration of the BRKGA for the computational experiments

Population size: min{0.2 � Number of activities in the multi-project, 250}

Crossover probability: 0.7
Selection: The top 10 % from the previous population chromosomes

are copied to the next generation

Mutation: 20 % of the population chromosomes are replaced with new
randomly generated chromosomes

Fitness: See Eq. (31.5)

Stopping criterion: 50 generations

For the population size we obtained good results by indexing it to the size of the
problem, i.e., use small size populations for small problems and larger populations
for larger problems. Having in mind this past experience and in order to obtain a
reasonable configuration, we conducted a factorial analysis on a small pilot set of
problem instances not included in the experimental tests. The configuration shown
in Table 31.2 was the best in terms of the sum of fitness values and the number
of best results and was held constant for all problem instances in the experiments.
The experimental results demonstrate that this configuration not only provides high-
quality solutions but it is very robust.

31.6.3 Results

Table 31.3 summarizes the experimental results. It lists the fitness, earliness,
tardiness, and flow time deviation for each problem type. Let m be the number of
projects in each problem instance. Averages and standard deviations were computed
for the 20 problem instances included in each problem type. Columns Avg1 and SD1

list averages and standard deviations for the expression

1

m

 

wT
mX

iD1
T 3i C wE

mX

iD1
E2
i C wFD

mX

iD1
FD2

i

!

Columns Avg2 and SD2 list, respectively, averages and standard deviations for the
expression

1

m

mX

iD1
Ei

Columns Avg3 and SD3 list, respectively, averages and standard deviations for the
expression
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1

m

mX

iD1
Ti

and columns Avg4 and SD4 list, respectively, averages and standard deviations for
the expression

1

m

mX

iD1
FDi

The last column with heading % Improv represents the percentage improvement
of the average last generation fitness values on those of the first generation, i.e.,

100 % � .Fitness at first generation � Fitness at last generation/

Fitness at first generation

Table 31.3 shows that all averages of the tardiness are close to zero and that the
averages values of the earliness are also close to zero for all instances with more
than three overlapping projects. As expected, the fitness obtained gets smaller (i.e.,
improves) as the number of overlappings of projects increases. This is due to the
fact that as the number of overlapping projects increases, so does the flexibility
in terms of capacity, therefore allowing for more possibilities of finding good
schedules. Finally, the % Improv values show that the BRKGA achieves a substantial

Table 31.3 Experimental results

No No Fitness Tardiness Earliness Flow dev. No %

Proj’s Overl. Avg1 SD1 Avg2 SD2 Avg3 SD3 Avg4 SD4 Best Improv

10 3 10.35 18.56 0.00 0.00 1.20 1.41 0.38 0.54 17 99.99

20 3 73.14 117.52 0.00 0.00 2.57 2.91 1.07 1.97 17 100.00

6 0.95 2.10 0.00 0.00 0.42 0.27 0.03 0.07 20 100.00

30 3 210.13 202.81 0.01 0.02 3.92 2.88 1.74 1.45 18 100.00

6 3.89 7.11 0.00 0.00 0.60 0.40 0.09 0.20 20 100.00

9 0.48 0.37 0.00 0.00 0.38 0.12 0.02 0.05 19 100.00

40 3 1,324.14 1,282.69 0.06 0.06 9.45 7.29 6.15 4.77 15 100.00

6 6.18 15.00 0.00 0.00 0.59 0.35 0.11 0.22 18 100.00

9 4.48 16.52 0.00 0.00 0.50 0.25 0.06 0.21 18 100.00

12 2.00 4.28 0.00 0.00 0.52 0.26 0.04 0.08 17 100.00

50 3 2,584.49 2,887.14 0.07 0.04 14.68 5.68 7.40 6.42 11 99.91

6 25.87 57.23 0.00 0.00 0.87 0.60 0.23 0.39 17 100.00

9 0.73 0.79 0.00 0.00 0.43 0.11 0.02 0.05 20 100.00

12 1.35 2.16 0.00 0.00 0.50 0.17 0.02 0.05 18 100.00

15 1.07 1.98 0.00 0.00 0.50 0.15 0.01 0.04 13 100.00
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Table 31.4 Average elapsed time for 50 generations

Problem instance type (number of projects): 10 20 30 50

Average elapsed time (in seconds) for 50 generations: 178 449 840 1,860

improvement in the quality of the solutions. Sometimes the average percentage
improvement is as large as 100 %.

The computational experiments were run on a PC with a 1.33 GHz AMD
Thunderbird CPU on the MS Windows Me operating system and the algorithm was
implemented in Visual Basic 6.0. Table 31.4 presents the average computational
times, in seconds, for each problem instance and for 50 generations.

31.7 Conclusions

This chapter presents the Basic Multi-Project Scheduling Problem and a solution
approach using a biased random-key genetic algorithm. The chromosome represen-
tation of the problem is based on random keys. The schedules are constructed using
a schedule-generation scheme that generates parameterized active schedules based
on priorities, delay times, and release dates generated by the biased random-key
genetic algorithm.

The approach is tested on a set of test problems with 10, 20, 30, 40, and 50
projects (having 1,200, 2,400, 3,600, 4,800, and 6,000 activities, respectively). In
the computational experiments, the algorithm obtained values near the optimum
(zero), therefore validating the effectiveness of the proposed approach.
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Chapter 32
Decentralized Multi-Project Scheduling

Andreas Fink and Jörg Homberger

Abstract This chapter is concerned with the decentralized resource-constrained
multi-project scheduling problem (DRCMPSP), which is characterized in that
individual involved decision makers pursue individual goals, whereas some overall
coordination mechanism is needed to resolve conflicts due to the interdependencies
between multiple projects. The connection between activities from these projects
may result from temporal and resource-orientated constraints. In general, there may
be two kinds of autonomous decision makers, on the one hand those that control
individual projects, and on the other hand those that control globally available
resources. After providing a more detailed description of such kinds of problems
and the resulting peculiarities of decentralized decision making, a classification
of respective problem types is provided, which leads to related requirements for
solution procedures. Overall, there are two basic solution approaches, namely
auctions and negotiations. These methods are described in connection with a review
of the related literature.

Keywords Auctions • Decentralized decision making • Multi-project schedul-
ing • Negotiations

32.1 Introduction

The kind of management of multiple interconnected projects depends on whether
a single decision making entity is basically authorized to centrally schedule all
activities of all projects, or not. While the preceding Chap. 31 of this handbook
mainly assumes the former situation, this chapter is concerned with the latter case
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(decentralized multi-project scheduling). Each individual project is represented by
an autonomous self-interested decision maker, which generally aims at an effective
scheduling for one’s own project. This applies in particular if individual projects
stem from different profit-maximizing firms or autonomous business units with
conflicting goals. Then it is not appropriate to presuppose full central availability of
reliable information about the individual projects and a governance structure where
a single project manager is authorized and qualified to define and pursue an overall
goal on behalf of all the parties.

The connection between individual projects and respective activities may result
from temporal (precedence) and resource-orientated constraints. The involved
resources may be distinguished in, firstly, local resources, which are owned by a
project decision maker and which are usually used exclusively by activities from
the respective project, and, secondly, global (shared) resources, which could be used
by any project (i.e., projects generally compete for these resources). As each global
resource is owned by someone, only this owner is generally authorized to control
the use of the related resource.

Consequently, decentralized multi-project management means that there is no
single decision maker that is entitled to hierarchically allocate all resources and
instruct which activities from multiple projects have to be executed when. On the
contrary, one may have to take into account two kinds of decision makers, on
the one hand those that control individual projects, and on the other hand those
that control globally available resources. Accordingly, the decentralized resource-
constrained multi-project scheduling problem (DRCMPSP) is characterized in that
individual decision makers pursue individual, generally conflicting goals, whereas
some overall coordination mechanism is needed to resolve conflicts due to the
interdependencies between the projects.

Decentralized project management is thus principally a matter of governance,
where the organizational structure which constitutes the framework for coordinating
multiple projects has to be established at first. For example, the involved decision
makers that control the projects and resources may agree on a protocol which
formally defines rules on who is entitled and/or obliged to contribute to the overall
scheduling procedure in a specific manner. The design of such a protocol is generally
aimed at the quality of resulting solutions. This involves some measurement of
individual utility for the respective decision makers, yet fairness criteria may also
be relevant (e.g., because decision makers might refuse to collaborate at all if the
used coordination procedure is deemed as unfair in some way). However, there is
no single, obvious concept for measuring quality in practice under consideration
of information asymmetry and conflicting preferences of multiple autonomous
decision makers.

This intrinsic decentralized organizational character of the DRCMPSP, with mul-
tiple autonomous decision makers, must be distinguished from technical distribu-
tion, i.e., some distributed implementation of a solution procedure that nonetheless
is centrally devised. The latter case would allow to design a distributed solution
procedure that supposes that all information about multiple projects is honestly
disclosed and thus in principal globally available (see also Chap. 31), while in a
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genuine decentralized situation rational decision makers may communicate biased
information to influence the project scheduling in their interest (for example,
proclaiming overstated lateness penalties to work towards an earlier scheduling
of particular project activities). In this chapter we generally consider the genuine
decentralized resource-constrained multi-project scheduling problem.

In Sect. 32.2 we formally define the problem, discuss special characteristics and
requirements according to the decentralized character of the problem, and mention
several application examples. In Sect. 32.3 we describe a general classification of
the DRCMPSP with related requirements on solution approaches. In Sect. 32.4 we
describe main ideas of decentralized coordination approaches for the DRCMPSP
and review the related literature. In Sect. 32.5 we give some conclusion and discuss
avenues for future research on the DRCMPSP.

32.2 Problem Description

We first provide a formal definition of the DRCMPSP. Then we discuss the
peculiarities that result from the decentralized character of the problem. Eventually
we mention applications, which further illustrate the problem.

32.2.1 Formal Problem Definition

Given is a set Q of multiple projects. Each project q 2 Q is controlled by
a corresponding autonomous project decision maker (agent) PAq . As usual we
assume that the basic project configuration has been established beforehand, which
results in the following characteristics. Each project q 2 Q consists of a set of
activities Vq . The overall set of activities V results from the union [q2QVq , where
Vq \ Vp D ; for q 2 Q;p 2 Q; q ¤ p. Each activity i 2 V has a duration
(processing time) pi 2 R�0. Once started an activity must not be interrupted.

The processing of activities must observe ordinary finish-start precedence con-
straints. For each activity i 2 V the sets Pred.i/ and Succ.i/ consist of the
(immediate) predecessors and successors, respectively, of activity i . An activity i
must not be started before all its predecessors from Pred.i/ have been finished.
Each project q 2 Q includes in Vq dummy start and end activities ˛q and !q ,
respectively. For these activities it holds that p˛q D 0, p!q D 0, Pred.˛q/ D ;,
Succ.!q/ D ;, Succ.˛q/ D Vqnf˛qg, Pred.!q/ D Vqnf!qg. If there are restrictions
on the earliest starting time of a project q this may be modeled by an earliest starting
time parameter for the dummy start activity ˛q . Furthermore for an activity i 2 V

there may be a due date di for the completion of this activity.
The structure of the overall multi-project can be represented by an activity-on-

node project network G D .V;E/, where E is the set of precedence relationships
which results from all given predecessor and successor relationships. In the usual
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static version of the DRCMPSP all information on all projects is generally known
from the beginning. In dynamic versions of the problem projects or activities may
become known (released) later within the planning horizon.

There is a set of renewable resources R. Each resource k 2 R is available with
capacity Rk 2 R>0 in each period (time unit). An activity i requires an amount of
rik 2 R�0 of resource k in each processing period. The resources are partitioned in
a set of global (shared) resources Rglobal and local resource sets R local

q ; q 2 Q.
An activity i 2 Vq can only use resources from Rglobal and R local

q . Each local
resource k 2 R local

q is owned and controlled by the corresponding project decision
maker (agent) PAq . Each global resource k 2 Rglobal is owned and controlled by a
corresponding autonomous resource decision maker (agent) RAk . It may be the case
that a resource decision maker owns and controls a group of global resources (i.e.,
there may be different global resources k1 and k2 with RAk1 D RAk2/.

Multi-project scheduling means that there are interdependencies between the
projects in the set Q. The usual assumption is that the dependency results from
the fact that activities from different projects compete for global resources, i.e.,
Rglobal ¤ ;, while precedence constraints only apply within a project q, i.e., for
all activities i 2 Vq Pred .i/ � Vq and Succ .i/ � Vq . On the other hand, one may
also take into account precedence relationships between activities from different
projects, i.e., for some activity i 2 Vq it may hold that Pred .i/ nVq ¤ ; or
Succ .i/ nVq ¤ ;.

A feasible solution (schedule)S for some scheduling problem is given by starting
times Si and corresponding completion times Ci D Si Cpi for each activity i such
that precedence (temporal) constraints as well as resource constraints are observed.
That is, Si � maxj2Pred.i/ Cj for all activities i and rk.S; t/ � Rk at time t where
rk .S; t/ D P

i2V WSi�t<Ci rik represents the amount of resource k used at time t
given schedule S . The completion time of a project q 2 Q is given by C!q . The
overall multi-project schedule S may be decomposed in accordance with the set of
partial schedules of the different projects fSqjq 2 Qg.

The quality of a schedule may be assessed by taking into account different local
and global criteria (objectives). First of all, the quality of each project q 2 Q may
be evaluated individually (locally) by the project decision maker (agent) PAq , e.g.,
by either a time-oriented objective function or by a cost-oriented (or profit-oriented)
objective function. Typical time-oriented local objective functions are minimization
of completion time C!q (makespan) or minimization of project delay (tardiness) Tq ,
i.e., maxf0; C!q � d!qg for a given due date d!q for this project. With regard to the
latter criterion a project’s due date is usually considered as a soft constraint with
penalization in case of violations. In the literature on the DRCMPSP the due date
d!q of a project q is often artificially calculated as, firstly, the makespan of project
q when neglecting the global resources (i.e., for this criterion, one may need to
locally solve a traditional resource-constrained project scheduling problem RCPSP)
or, secondly, the critical path length d˛q!q when neglecting all resource constraints
(i.e., the longest path from ˛q to !q when only observing the precedence constraints
of the project network).
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It may be possible to convert a delay into a cost value by some transformation
function which incorporates penalties that arise when the respective project is
finished late. Furthermore, special versions of the problem may involve time-
dependent costs for resource utilization or time-dependent revenues (cash flows) for
completing certain activities. Only if a cost-oriented (or profit-oriented) objective
function is available it is possible to directly compare the effect of changes to
the project schedule between different projects (assumption of transferable utility),
which may be relevant for the design of a coordination procedure.

In addition to project-specific (local) objectives global criteria (coordination
goals) evaluate schedules for the multi-project problem as a whole. Because
of the decentralized character of the decision problem and related information
asymmetries the latter kind of assessment may only be possible in simulation
experiments for artificial problem instances but not for a real application. If not
implicitly guaranteed by the solution procedure, achieving a feasible solution (in
particular a feasible allocation of global resources) may be regarded as the basic goal
of the coordination of multiple projects. Assuming feasibility, Pareto-efficiency is a
common criterion; that is, it should not be possible to modify the overall schedule in
a way such that some local objective function value is improved without worsening
any other project. Further global objective functions may involve (1) a weighted sum
of the local objective functions (e.g., average project delay), which may be regarded
as a proxy for social welfare, (2) something such as the minimum completion time
or the minimum delay over all projects, or (3) some fairness measure when dealing
with the different projects in comparison.

Based on the three field classification for project scheduling problems
(Brucker et al. 1999) we basically consider problems of the kind PS j mult, prec,
inter j private-mult with different kinds of objective functions taking into account
conflicting goals of autonomous self-interested decision makers with interfering
job sets in a decentralized decision situation In Sect. 32.3 we classify different
versions of the DRCMPSP under consideration of the basic problem structure and
the specific kind of decentralization, which leads to respective requirements on
solution approaches.

32.2.2 Decentralized Character of the Problem

In a genuine decentralized decision situation there are multiple autonomous decision
makers (for the DRCMPSP regarding local project management and maybe also
resource management). These decision makers selfishly pursue individual goals,
which are generally conflicting. For example, there are tradeoffs between favorably
scheduling different projects or utilizing different resources and there is no superor-
dinate decision maker which is entitled to centrally balance individual preferences.

Only if the decentralized character of the multi-project scheduling problem
is disregarded, the objective functions of multiple projects might be aggregated
in some straightforward way (for example by a weighted sum or some other
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transformation of the multiple criteria). However, for a truly decentralized problem
it is generally not reasonable to simply aggregate different goals into a single scalar
objective function. In an experimental setting it may nevertheless be useful to
evaluate overall schedules by an aggregate objective function (for example social
welfare under the assumption of transferable utility).

Considering multiple self-interested decision makers, achieving Pareto-
efficiency is a basic goal. Pareto-efficient (non-dominated) solutions are
characterized by the fact that it is not possible to improve some decision maker’s
situation without worsening at least one other decision maker’s goal attainment.
Since for a DRCMPSP instance in general many different Pareto-efficient solutions
exist, additional criteria must be devised to possibly select among these. In
particular, one may aim at a fair allocation which treats different projects equally
in some way (yet this is easier said than done regarding a unique and applicable
measure of fairness).

As already mentioned above, one may distinguish the DRCMPSP from dis-
tributed scheduling according to an implementation point-of-view. In the latter
case multiple projects may take place at different locations and distributed local
project manager entities may exist. For certain such application scenarios it might
be conceivable to centrally manage all projects by taking care of multiple objectives
via some procedure from multi-criteria optimization (by, e.g., aggregating multiple
objectives into a single scalar objective function or computing/approximating the set
of Pareto-efficient solutions). Only in such a situation it is appropriate to design an
agent-based solution approach where each agent is kind of a white box software
component which is purposefully designed by a central authority. This general
concept of hierarchically designing cooperating agents which eventually pursue a
collaborative goal is related to the distributed problem solving paradigm in computer
science. According to this paradigm one designs a “system so that the agents solve
the problem in a good way, in a distributed way, in an efficient way. [. . . ] there is
assumed to be a single body that is able, at design time, to directly influence the
preferences of all agents in the system” (Rosenschein and Zlotkin 1994, p. 32).
Such an approach in particular serves to cope with complexity (e.g., related to a
dynamic character of the problem) but it must be distinguished from a multi-agent
coordination mechanism that addresses genuine decentralization with self-interested
agents that represent decision makers which are intrinsic to the problem. In the
latter case agents have to be regarded as autonomous black box components with no
option to centrally control or observe the internal reasoning of the agents.

In order to devise a coordination mechanism for the genuine DRCMPSP one
may draw on project manager agents (one agent for each project) and possibly also
resource manager agents (which each own one or more global resources). These
agents represent corresponding autonomous decision makers with individual goals.
Within an overall interaction protocol (which must be agreed on beforehand), the
project manager agents aim at acquiring global resources and scheduling activities
from their project as well as possible; resource manager agents may aim to sell or
utilize their resources in a best possible way. From a global point of view each of
these agents is a black box; i.e., there is no centralized control and no complete
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global (symmetric) information. Verification of agent behavior is only possible
according to checkable rules, which are part of an agreed upon interaction protocol.
To clarify this point, we have to distinguish between the possible ways to use
symmetric information, which is known to all agents, vs. asymmetric information,
which is only known to corresponding project or resource manager agents. It is
reasonable to consider all aspects that are observable beforehand or at the latest
while the project is running as symmetric information (e.g., activity durations),
while other information is not observable (e.g., cost functions, deadlines). Verifying
whether an agent completely behaves truthfully is generally impossible; it is
only possible to ensure compliance with rules that do not depend on asymmetric
(private) information. In consideration of the impossibility of a general verification
that stated information conforms to the true preferences of an agent, it is not
appropriate to simply presuppose that rational decision makers honestly disclose
private information (instead of, e.g., announcing overstated lateness penalties to
obtain an earlier scheduling of the affected project activities). Instead it is reasonable
to aim at incentive-compatible interaction protocols where lying does not pay-off,
i.e., an agent’s best strategy would be to behave truthfully.

32.2.3 Application Examples

To illustrate the DRCMPSP we mention some applications which differ with
respect to the number of global and local resources, the existence of an actual
owner and thus autonomous manager of global resources, the existence of temporal
interdependencies between projects, and various kinds of objectives.

• In a manufacturing firm different research projects, product development and
engineering projects, as well as regular production projects may compete for
shared (global) machine resources, while each project may also have exclusive
local resources (e.g., engineers). Usually there are no precedence constraints
between activities from different projects. The global resources (machines) are
managed by a business unit which aims at maximizing machine utilization. The
different kinds of projects are related to different business units, which pursue
individual goals such as maximizing throughput or observing deadlines.

• Different contractor firms may collaborate in a make-to-order project (e.g., in a
large construction project for a building complex there may be concrete construc-
tion, staging, roof work, different kinds of interior work, electric installations,
finishing of the house fronts, etc.). Precedence constraints between activities
from different projects may generally prevail, but there is no or only one global
resource (overall construction site management), since the firms mainly use their
own, task-specific resources. The contractor firms are partly paid depending on
the completion times of individual activities (milestones) but these payments,
the budget restrictions as well as the resource availabilities of the firms may be
regarded as private information.
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• Some contractor firm may be involved within different customer projects (for
example regarding engineering or auditing kind of work). Considering that this
firm’s resources are limited it needs some resource balancing procedure which
is connected to the management of the multiple projects (considering, e.g.,
respective precedence constraints and activity due dates).

32.3 Classification of Problem Types

We describe a classification of different versions of the DRCMPSP, which also
leads to related requirements for applicable solution approaches. In particular,
we consider the basic problem structure, the actual character of decentralization
and related information-oriented restrictions, and local and global objectives. The
resulting classification is summarized in Table 32.1. Concrete problem versions
impose respective requirements on solutions methods (the latter will be further
discussed and classified in Sect. 32.4).

32.3.1 Basic Problem Structure

The basic problem structure mainly conforms to elements of the centralized
resource-constrained multi-project scheduling problem (see Chap. 31). The follow-
ing description builds on the notation introduced in Sect. 32.2.1.

• Set Q of individual projects

– Basic type(s) of the individual projects (default: assumptions analogous to
RCPSP; otherwise special characteristics such as, e.g., multiple modes or
time-dependent resource costs)

– Number .
ˇ
ˇ
ˇR local

q

ˇ
ˇ
ˇ/ and type (default: renewable) of local resources of project

q 2 Q

Table 32.1 Overview on classification for different versions of the DRCMPSP

Basic problem structure Number and type of individual projects

Kind of project interdependencies

Consideration of randomness

Decision makers and distribution of information Project decision maker agents (PAs)

Resource decision maker agents (RAs)

Global (symmetric) information

Private (asymmetric) information

Objectives Individual (local) objectives

Coordination (global) objectives

Transferability of utility
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• Kind of project interdependencies

– Default: Activities from different projects compete for global (shared)
resources .Rglobal ¤ ;/

– Possible precedence constraints between activities from different projects
(9 q 2 Q 9i 2 Vq W Pred .i/ nVq ¤ ; _ Succ .i/ nVq ¤ ;/

• Randomness in the development of events and the future state of the system

– Deterministic (default) vs. nondeterministic information
– Static (default) vs. dynamic character of the project portfolio (e.g., considera-

tion of project release times and rolling planning horizon)

32.3.2 Decision Makers and Distribution of Information

The DRCMPSP is characterized by the fundamental assumption that there are
autonomous decision maker agents that constitute intrinsic features of the underly-
ing problem. Firstly, individual projects are represented by project manager agents
that autonomously pursue individual preferences (local objective function) subject
to the coordination needs due to the interdependencies between multiple projects.
Secondly, global resources may be represented by resource manager agents. For
both kinds of agents, individual preferences (and possibly further aspects of the
individual projects and global resources) have to be regarded as private information.
Accordingly, while these agents’ external behavior is observable, the respective
internal reasoning is hidden in a black box.

• Default: Each project q 2 Q is controlled by a corresponding autonomous
project decision maker (agent) PAq .

• Each global resource k 2 Rglobal may be owned and controlled by a correspond-
ing autonomous resource decision maker (agent) RAk

• Global (symmetric) information

– Example: information related to the activities (such as durations)

• Private (asymmetric) information

– In particular: information related to individual (local) preferences (e.g., due
dates or delay costs)

– Interest in secrecy: Private information may be distinguished with respect
to the agents’ willingness to disclose secret information, which restricts
information exchange in solution mechanisms.

32.3.3 Objectives

The objectives are closely connected to the particular kind of the decentralized
decision situation with the involved decision makers. We mainly distinguish
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between individual objectives of the different decision makers and coordination
(global) objectives that are related to the assessment of the overall multi-project
system.

• Individual (local) objectives

– Related to projects (e.g., minimize project delay, minimize project completion
time, minimize costs due to the resource utilization, maximize discounted cash
flow depending on the starting times of particular activities)

– Related to global resources (e.g., minimize incurred costs, maximize obtained
revenues, maximize utilization)

– Homogeneous or heterogeneous agent types/objectives

• Coordination (global) objectives

– Always: Obtain an overall feasible schedule
– Achieve Pareto-efficiency (or minimize distance to nearest Pareto-optimal

solution)
– Maximize some measure of social welfare (e.g., minimize average project

delay) or minimize the deviation from the result of a hypothetical centralized
solution procedure

– Consider some measure of fairness

• Is utility transferable between individual projects/project manager agents and/or
(global) resources/resource manager agents?

– If this applies, agents can evaluate changes to a project schedule in mon-
etary terms (as the usual common denominator), which allows for solution
approaches that utilize the exchange of money (e.g., most auctions types and
certain kinds of negotiations with side payments).

In case of nondeterministic information, robustness may constitute an additional
criterion for evaluating schedules (both locally and globally).

32.4 Solution Approaches and Literature Review

Centralized resource-constrained multi-project scheduling has been introduced by
Pritsker et al. (1969) and Kurtulus and Davis (1982); for further literature references
on this type of problem and related solution approaches see Chap. 31.

Agnetis et al. (2007) provide a survey on decentralized/multi-agent machine
scheduling problems and different solution approaches. In the following we focus
on the literature on decentralized resource-constrained multi-project scheduling
problems (DRCMPSP). We note that the title of many manuscripts (like the title
of this chapter) does not include “resource-constrained” yet resource restrictions
are nonetheless considered. Furthermore, in the literature on the DRCMPSP there
are some papers where the “D” is an abbreviation for “distributed”, while otherwise
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“D” usually represents “decentralized”. Mostly, but not in all cases, this conforms to
the foregoing discussion regarding genuine decentralization vs. distributed problem
solving. Moreover, some papers use in the title the term “multi-agent” to indicate the
decentralized character of the problem and/or planning approach. When considering
the related literature it is important to notice possible hidden simplifications that
are connected with devising certain procedures in comparison to the underlying
decentralized problem. For example, sometimes it is implicitly supposed that
autonomous agents act cooperatively and honestly disclose private information or
incorporate a global objective function in their decision making. However, it is
preferable to work towards designing incentive-compatible mechanisms where a
rational agent’s individually best strategy would be to simply behave truthfully.

32.4.1 Classification

In the following we mainly distinguish between auction-based solution methods
and negotiation-based solution methods. Both kinds of methods usually build on
an iterative procedure with two scheduling levels, global scheduling (in particular
allocation of shared resources) and local scheduling (individual projects). Wang
et al. (2013) distinguish three basic solution concepts: In the top-down decision
mode at first an allocation of shared resources is determined; schedules for the
individual projects are locally generated subject to the provided global resources.
In the bottom-up decision mode local scheduling is done at first and resulting
global resource conflicts are detected afterwards, which usually leads to the need to
reschedule local projects. When no such idealized hierarchy of global coordination
and local scheduling prevails, the coordination between the individual projects may
be carried out according to some peer-to-peer architecture.

We note that some solution approaches make use of payments between original
decision maker agents (e.g., prices or side payments). This requires transferable
utility in connection with cost-oriented or profit-oriented objective functions.

In addition to the autonomous project manager or resource manager agents
(see Sect. 32.3.2) a solution approach may be based on a protocol which involves
further active software components, which are often also termed agents. However,
in contrast to the original project manager or resource manager agents (which
genuinely correspond to the original structure of the decentralized scheduling
problem) these artificial agents are purposefully devised and designed to play a
particular supportive role in the coordination procedure (e.g., some kind of mediator
agent MA). These facilitator agents generally act openly. That is, their behavior
is traceable similar to a white box software component. Therefore, these artificial
agents may be reproduced and simulated as duplicates in parallel by each genuine
decision maker agent (instead of using, e.g., a dedicated mediator agent). On the
other hand some solution approaches might presuppose trusted third party agents.
Such agents are assumed to honestly follow given rules and to not disclose any
received information. However, if it is realistic to have such trusted third party agents
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Table 32.2 Overview on classification for solution approaches for the DRCMPSP

Basic mechanism Auction

Negotiation

Protocols with or without Facilitator agents with specific roles (e.g., auctioneer or

artificial agents mediator agent (MA), activity agents)

Trusted third party agents (problematic assumption)

Information exchange Favored schedules or partial schedules

Transfers (e.g., willingness to pay for some resource at some time)

Meta-information (e.g., resource requirements, preferences,

activity time windows, objective values)

one might even use a traditional centralized solution procedure, which is carried out
by such an agent.

Solution methods generally differ with regard to the kind of information
exchange between the agents. This issue is closely connected to the basic solution
mechanism. For example, an auction approach usually employs a bidding process
where agents partly disclose their willingness to pay for some resource at some
time. A negotiation procedure might involve that agents submit particular resource
requirements or favored partial schedules or compare different schedules. In general
it is not possible to ensure that private information is truthfully unveiled (i.e.,
disclosed information could be misleading), while only for incentive-compatible
mechanisms rational agents might provide unbiased information. It is nonetheless
possible that agents are not willing to disclose private information to a large extent
to prevent that other agents learn about their costs or revenues and thus might be
able to strategically exploit this informational edge.

The main elements of the preceding discussion on classification aspects for
solution approaches are summarized in Table 32.2.

32.4.2 Auction Approaches

One stream of scheduling research uses market-oriented auctions to allocate
resources among different projects to resolve respective conflicts. An auction at
first requires some notion of goods, for which bidders submit bids, which signal
the desire to acquire goods at an announced price. An allocation scheme allocates
goods to bidders in connection with determined prices. Auctions thus require that
the involved parties evaluate schedules or changes to schedules in monetary terms
(as the common denominator for transferable utility). The involved payments may
actually have to be carried out, since otherwise (virtual/artificial payments) decision
makers may simply overbid without bearing the consequences.

Since renewable resources are inherently coupled to the time of use, goods are
commonly modeled as a combination of a resource and time. A bid involves the
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desire of a project decision maker (agent) to acquire a specific resource at a specific
time. Accordingly, such kind of preference information will be disclosed by the
project manager agents.

Typical auction types suppose a discrete modeling of goods. Regarding the
DRCMPSP one usually assumes a discretization of time as an ordered set of time
slots. Then, a basic good represents a combination of a resource and one particular
discrete time slot. Since non-interruptible activities generally require a resource for
a successive set of time slots, these time slots usually constitute complementary
goods (i.e., the benefit from a set of time slots is larger than the sum of individual
benefits). Then, results from economic theory show that it is not reasonable to
devise a market-oriented mechanism that is based on isolated prices for resource
consumption for individual time slots and related allocations (Gul and Stacchetti
1999; Wellman et al. 2001). In general there are no respective equilibrium prices
that support optimum solutions. Thus an effective outcome is usually not achievable
by such auctions which individually determine prices and allocate resources for
single time slots (either sequentially or in parallel). Therefore, it is advisable to use
combinatorial auctions. There, a single bid comprises a bundle of goods (Cramton
et al. 2006), in our case consumption of a resource for a set of consecutive time
slots.

In general it proves computationally infeasible to use a single one-shot com-
binatorial auction to simultaneously make all required allocations for a complete
schedule for some DRCMPSP instance (e.g., because an exponential number of
bids might be needed). Therefore, in the literature it is usually proposed to use
an iterative combinatorial auction approach. Within an iteration bids may or may
not be restricted to a time window or to those activities where all predecessors
have already been finished. The auction process evolves according to a successive
determination or adjustment of resource prices and allocations until all eligible
activities or projects have acquired needed resources.

If there is only one global resource, the owner of this resource [i.e., the
corresponding autonomous resource decision maker (agent)] may take on the role
of the auctioneer. Otherwise some artificial agent may be devised to facilitate the
auction process as a dedicated auctioneer agent.

As an early example of the use of auction approaches for scheduling prob-
lems we refer to Kutanoglu and Wu (1999), who consider a decentralized type
of the job-shop scheduling problem (a special case of the DRCMPSP where
a project is constituted by a single job). They describe iterative combinatorial
auction procedures, with different ways to determine prices and payments, which
progressively lead to an allocation of machine use (resource consumption) for
respective time slots to the jobs (bidders), and discuss the relation to Lagrangean-
based decomposition approaches. A related market-oriented auction approach is
applied for the DRCMPSP by Lee (2002) and Lee et al. (2003) by constituting
for each global resource an artificial market where resource time slots are allocated
to the different projects by a combinatorial auction procedure. As long as there
is no equilibrium considering the supply and demand for the resource time slots,
prices are updated within an iterative tâtonnement process. A related market-based
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allocation of resource time slots to different projects is described by Kumara et al.
(2002).

The iterative combinatorial auction approach is used by Confessore et al. (2007)
for the special version of the DRCMPSP with only one disjunctive global resource
(Rglobal D fk1g ; Rk1 D 1, rik1 2 f0; 1g for all i 2 V /. Within an iterative process,
each local project manager submits a bid (i.e., a price offer for a bundle of time
slots for the shared resource) to an auctioneer (in the role of the owner of the shared
resource). The auctioneer heuristically solves the NP-hard winner determination
problem and the resulting provisional allocation is the basis for the next round of
the auction, where losing agents update their bids to acquire wanted time slots of
the shared resource. Further iterative auction-based methods for the DRCMPSP are
described by Adhau et al. (2012) and Araúzo et al. (2009, 2010). These approaches
also take into account more than one global resource with multi-unit resource
availability and a dynamic project portfolio with positive project release times.

Some descriptions of auction-based approaches in the literature do not elaborate
on the problem how project manager agents that, e.g., pursue some time-oriented
objective function reasonably determine bid prices and whether payments according
to the resulting allocations are actually put into effect. Without analyzing such kinds
of questions it is problematic to address the issue of incentive compatibility and thus
it is uncertain how self-interested project manager agents would behave if such a
method would be put into practice. Actually, related methods should be regarded as
distributed problem solving approaches with agents that are purposefully designed
by a central authority (see the discussion in Sect. 32.2.2). In this respect the genuine
decentralized character of the DRCMPSP is not addressed, but those approaches
primarily aim at a flexible dynamic scheduling procedure for a complex and
uncertain problem setting.

Auctions can be regarded as a special kind of a negotiation, where the interaction
protocol is built on a bidding and price-based allocation mechanism as described
above. For negotiation approaches in general there are more degrees of freedom;
related methods are described in the following section.

32.4.3 Negotiation Approaches

Negotiations generally subsume approaches where autonomous agents communi-
cate with each other according to some interaction protocol with the aim to somehow
collaboratively search for an agreement on some negotiation issues (Kraus 2001).
In each negotiation round one or more alternative offers (possible agreements) are
generated by some agents and accepted or rejected by other agents. Depending on
the involved exchange of information one may refer to argumentation-based nego-
tiations, where agents unveil additional information (meta-information) on offers
or requests for offers to purposefully influence other agents and the negotiation
process towards specific regions of the solution space (Rahwan et al. 2003). For
the generation of offers as well as for the generation of meta-information the agents
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apply individual negotiation strategies. In order to describe and classify the different
negotiation approaches from the literature for the DRCMPSP, we use the following
characteristic elements (see also Tables 32.3 and 32.4).

• Problem type
Approaches can be distinguished with regard to the considered decision maker

agents [project decision maker agents (PAs), resource decision maker agents
(RAs)]. Moreover, negotiation approaches differ in regard to supposing and
exploiting transferable utility or not. General issues related to the transfer of
utility (e.g., by using money as the common denominator of utility) have already
been mentioned in Sects. 32.3.3 and 32.4.1. Approaches that do not presuppose
transferable utility are partly motivated by the fact that it may be hard to quantify
the monetary gain/loss due to different scheduling decisions (taking into account
time-oriented objective functions, which are commonly used in the literature on
resource-constrained project scheduling). On the other hand there are approaches
where prices and money are involved (e.g., prices for using global resource
capacities). These approaches can be useful in cases where the agents have
monetary objective functions.

• Protocol
In the context of the DRCMPSP we frequently find mediator-based protocols.

Within these approaches an artificial mediator agent (MA) can have different
tasks: (1) generate offers in a centralized manner, (2) make acceptance decisions
in a centralized manner, (3) support the decentralized generation of offers
by project agents, and (4) host a voting procedure in order to determine the
negotiation outcome (e.g., on the basis of the acceptance decisions of the decision
agents). In addition to mediator-based protocols, we also find one alternating
offer protocol, one contract net protocol, and one market-based protocol.

• Information exchange
Negotiation approaches for the DRCMPSP search for an agreement on

schedules and the allocation of global resources to projects. In the case that
the DRCMPSP model at hand considers transferable utility (e.g., side payments
between agents), transfer-related agreements are also sought after. Hence, offers
in the context of negotiation approaches for the DRCMPSP include schedule-
related information and—in the case of transferable utility—also transfer-related
information. With respect to the representation of schedule-related information
two main approaches can be distinguished. In the first approach schedule-related
information simply consists of starting times of some activities (partial sched-
ules) or of all activities (schedule). In the second approach project ordering lists
are used as schedule-related information (Wauters et al. 2010, 2012; Homberger
2012). A project ordering list defines the sequence by which the projects have to
be scheduled. The latter approach enforces the generation of feasible solutions
because the access to global resources is synchronized.

Negotiation approaches usually require that some private information are
partly disclosed and used (e.g., by a mediator agent) to ensure the generation of
feasible schedule offers, to generate acceptance decisions, and to determine the
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negotiation outcome. Examples for meta-information are resource requirements
and activity time windows, which can be used to generate feasible offers with
regard to starting times of activities. In some approaches also local objective
values or changes on local objective values are exchanged in order to determine
the final outcome of the negotiation. If a method’s requirements for information
disclosure are very extensive (e.g., in the case that local objectives are exchanged)
these approaches actually do not fully address the genuine DRCMSP but the
case where in principal the assumptions of centralized multi-project management
(see Chap. 31) prevail. For some reasons, however, the solution approach might
nonetheless be designed in a distributed way. That is, eventually there may be no
information asymmetry and it is assumed that all local project manager agents are
cooperative to the effect that they do not opportunistically pursue their own goals
but they act as a white box software component (which is purposefully designed
by a central authority in order to pursue a collaborative goal).

• Negotiation strategy
Negotiations may be regarded as (decentralized) search procedures; thus it is

not surprising that related approaches often incorporate heuristics and concepts
from metaheuristics. Therefore, agents are provided with local heuristics, and
metaheuristic concepts are used in order to schedule activities, to generate
schedule offers, and to make acceptance decisions. The heuristic scheduling
procedures partly differ from their counterparts which are used in the context
of central project scheduling. For example, a local scheduling procedure (e.g., a
serial schedule-generation scheme) which is applied by a project agent usually
considers rules for synchronization with the local scheduling procedures of other
agents (e.g., Wauters et al. 2010, 2012). In order to incorporate metaheuristic
concepts into negotiations, two kinds of approaches can be distinguished. In
the first approach, an agent applies a complete metaheuristic in each negotiation
round (Lau et al. 2005a,b; Mao et al. 2009; Mao 2011). In the second approach,
an agent applies only one element from a metaheuristic in each negotiation round
(e.g., Homberger 2012; Fink and Homberger 2013). For example, a crossover
operator from evolutionary algorithms to generate a new offer from previous
ones may be applied, or a probabilistic acceptance rule according to simulated
annealing may be utilized to decide about a submitted offer. Related negotiation
approaches thus constitute kind of decentralized metaheuristics.

In the following we describe the main concepts of negotiation approaches for
specific versions of the DRCMPSP from the literature (see also Tables 32.3 and
32.4). We first consider approaches which have been designed for problems that do
not suppose transferable utility (Table 32.3).

The approach of Homberger (2007) consists of a simple mediator-based protocol,
which is based on the idea that the project agents iteratively propose a reallocation
(offer) of global resource capacities in order to improve their local schedules. In
addition to each offer, the corresponding agent has to provide honest information
about the potential improvement on its local objective value in the case that the offer
is accepted and the proposed reallocation is arranged. Based on this information, the
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Table 32.3 Classification of negotiation approaches for the DRCMPSP—part 1

Homberger
(2007)

Wauters et al.
(2010, 2012)

Fink and Homberger
(2013)

Homberger
(2012)

Problem type
Decision
agents

PAs PAs PAs PAs

Local
objectives

Time-oriented Time-oriented Monetary Time-oriented

Global
objective(s)

Social welfare Social welfare Social welfare,
Pareto

Social welfare

Utility transfer No No No No

Protocol
Artificial
agents

MA MA MA MA

Interaction Mediator-based Mediator-based Mediator-based Mediator-based

Propose offer PAs (evolution
strategy)

MA, PAs
(dispersion
game)

MA (ant colony opt.) MA, PAs
(evolution
strategy)

Accept/reject
offer

MA (global
objective)

MA (global
objective)

PAs (local objective) PAs (local
objective)

Information exchange
Offer
(schedule-
related)

Reallocation of
global resource
capacities

Project
ordering list,
activity lists

Schedule Project
ordering list

Offer (transfer-
related)

– – – –

Meta-
information

Improvement
on local
objective value

Local objective
values

– –

Strategies
Heuristics s-SGS, shift s-SGS, shift s-SGS, shift s-SGS

Metaheuristic Evolutionary
algorithm

Learning
automata

– Evolutionary
algorithm

mediator iteratively accepts one offer and reallocates the global resource capacities
accordingly. This means that local objective values are used by the mediator
similarly to a centralized scheduling approach. It is shown that the approach is
suitable for solving large DRCMPSP instances.

The approach of Wauters et al. (2010, 2012) is based on a learning concept.
The negotiation is mediated in the sense that a mediator supports the decentralized
generation of project ordering lists by managing a dispersion game of project agents.
Moreover, the agents use learning automata to generate activity lists which are
offered to the mediator. Based on these lists (project ordering list and activity
lists) the mediator applies a serial schedule-generation scheme (s-SGS) and a
forward/backward shifting heuristic in order to generate and evaluate a complete
solution (schedule for each project). The approach is based on the assumption
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Table 32.4 Classification of negotiation approaches for the DRCMPSP—part 2

Lau et al.
(2005a,b)

Mao et al. (2009) and Mao
(2011)

Lau et al.
(2006)

Problem type
Decision agents PAs, RAs PAs, RAs PAs, RAs

Local objectives Monetary Monetary Monetary

Global objective(s) Social welfare Social welfare Social welfare

Utility transfer Yes Yes Yes

Protocol
Artificial agents MA – –

Interaction Alternating offer,
mediator-based

Market-based Contract net

Propose offer PAs, RAs RAs RAs

Accept/reject offer PAs PAs PAs

Information exchange
Offer
(schedule-related)

Start time of an
activity

Resource time slots Start time of an
activity

Offer
(transfer-related)

Price for
performing an
activity

Slot prices Price for
performing an
activity

Meta-information Processing time,
schedule
flexibility
information (e.g.,
activity time
window, flexibility
costs), relative
costs

Resource req., activity time
window

Processing
time, resource
req., activity
time window

Strategies
Heuristics Shift s-SGS, priorities, shift Shift

Metaheuristic Tabu search Co-evolutionary algorithm –

that all problem data and solution information can be used by the mediator in a
centralized way. The decentralized idea of this approach is that the project agents—
participating in the decentralized generation of encoded offers by choosing positions
in the project ordering list—use learning procedures to learn positions and activity
lists, which increase local utility. The approach obtains high quality solutions for
instances of the MPSPLib (Homberger et al. 2008).

Homberger (2012) suggests a meditated negotiation method on the basis of an
evolutionary algorithm. The protocol is based on the idea to search for a project
ordering list which allows the project agents to generate local schedules with a high
solution quality. Therefore, in each negotiation round the mediator generates and
offers a population of project ordering lists. These offers are used by the project
agents to generate alternative local schedules in a synchronized way. The agents
evaluate their schedules and make acceptance decisions regarding the schedules and



32 Decentralized Multi-Project Scheduling 703

the corresponding project ordering lists. Based on these acceptance decisions, the
mediator selects some project ordering lists from the current population as parents in
order to generate a new (promising) population of project ordering lists by mutation.
In order to avoid early stagnation of the negotiation, mutual acceptance rates are
defined. The decentralized generation and evaluation of schedules takes into account
that project-oriented precedence relations of activities and local objectives are
private information. The meditated negotiation method finds better solutions than
the approach of Homberger (2007) for MPSPLib instances.

Fink and Homberger (2013) describe an ant-based coordination mechanism for
resource-constrained project scheduling with multiple agents and cash flow objec-
tives. It differs from most of the preceding papers in that it considers precedence
constraints between activities from different projects and objective functions which
involve cash flows. The approach is mediated in the sense that a mediator agent
iteratively generates schedules (offers) on the basis of symmetric information (i.e.,
restrictions according to private preference information are observed) by using
a modified ant colony approach. The centrally generated offers are evaluated
internally by the local project manager agents; i.e., the approach allows the agents
to keep their private objective values (cash flow values) as a secret. Based on the
acceptance decisions of the project agents the mediator updates the pheromones
according to the ant colony optimization procedure in order to facilitate an effective
generation of schedules. It is shown that the adaptation of pheromones depending
on acceptance decisions leads to good solutions in comparison to a centralized
approach, which can directly use the objective function values of the agents.

The following approaches consider extended versions of the DRCMPSP which
involve resource agents and transferable utility (see Table 32.4).

Lau et al. (2005a,b, 2006) use an extended variant of the DRCMPSP in order
to model a supply chain network. Each agent has a monetary objective function
(minimizing its operation costs). In addition to the basic problem description in
Sect. 32.2.1, earliness costs, lead times, and transportation costs are considered.
Moreover, activities can be carried out by a set of alternative resources and
corresponding resource agents. Therefore, project agents have to select resource
agents when scheduling their activities. In order to solve the extended DRCMPSP
the authors develop two negotiation approaches, one on the basis of a contract net
protocol (Lau et al. 2006), and one on the basis of an alternating-offers protocol
(Lau et al. 2005a,b). The alternating-offers protocol is extended by a mediator-
based protocol in order to determine the final outcome by a voting rule. In the
context of voting the project agents are enforced to disclose relative cost values
with regard to their local objective functions. Lau et al. examine the effect of partial
information sharing on the overall system performance within the supply chain
structure. In particular, both negotiation processes may be improved when project
manager agents honestly share time window information. Overall the alternating-
offers protocol outperforms the contract net protocol in terms of the achieved social
welfare (total operation costs).
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Mao et al. (2009) and Mao (2011) model the scheduling of airport ground
handling services as a DRCMPSP. The model takes uncertainty of project release
times and of activity durations into account and considers prices for reserving
timeslots of resources. Each agent has a monetary objective function, which
considers resource utilization costs in case of resource agents, and project delay
costs in case of project agents. In order to handle uncertainties a cooperative
online scheduling approach is developed. It includes a market-based protocol, which
determines the interaction of a project agent and necessary resource agents to
negotiate resource time slots. The agents behave in a cooperative manner in the
sense that they exchange meta-information (secure activity time windows) during
the negotiation. This information allows to increase the flexibility of resource agents
to shift time slots and thus to reduce the resource utilization costs. Moreover, in
order to handle uncertainties of activity durations the agents learn slack times for
handling services with a co-evolutionary algorithm. The approach was successfully
tested for instances of a deterministic version of the DRCMPSP (instances from the
MPSPLib) and for instances of a dynamic version.

Finally we mention the approaches of Yan et al. (2000), Hao et al. (2006) and
Chen and Wang (2007), which focus on implementation issues of negotiations
according to multi-agent system architectures.

32.5 Conclusions

The preceding sections provide an overview on the DRCMPSP. This includes a
comprehensive discussion on the kind of problem and a review on main solution
approaches from the literature. It has been shown that it is necessary to clearly state
assumptions on the considered problem with regard to the decentralized character
of the decision situation. According to the genuine character of the DRCMPSP it is
in general not reasonable to readily presuppose that the involved decision maker
agents honestly disclose private preference information and cooperatively work
towards some overall objective function. Therefore, it is of particular importance to
elaborate on the behavior of the involved self-interested agents and on information
asymmetry taking into account conflicting individual objectives and goals of the
overall coordination procedure.

In our opinion, avenues for future research on the DRCMPSP include more
evaluation effort with regard to an experimental and empirical comparison of
different solution approaches. For this purpose, existing benchmark instances (e.g.,
instances of the MPSPLib) should be extended with regard to further aspects of
different DRCMPSP models (e.g., considering both project and resource decision
agents as well as actual utility transfers between agents). Moreover, the evaluation
should address precisely the underlying assumptions concerning private information
and supposed agent behavior. It is of particular interest to analyze the connection
between solution quality and a varying extent of information exchange or different
assumptions on the behavior of the involved agents.
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Negotiation approaches from the literature have been mainly evaluated regarding
social welfare measures. Only one coordination mechanism has also been evaluated
with regard to Pareto-efficiency (Fink and Homberger 2013). So far no approach has
been further assessed on the basis of fairness criteria, which may be regarded as an
important aspect of coordination mechanisms (Stadtler 2009).
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Part XI
Project Portfolio Selection Problems



Chapter 33
Multi-Criteria Project Portfolio Selection

Ana F. Carazo

Abstract A very common problem in businesses consists in the planning and
allocation of a limited set of resources among a set of candidate projects in
order to fund them and carry them out within a given time horizon. Several
issues must be taken into account during this decision process: multiple and
conflicting objectives, different types of constraints, the planning horizon, and the
interdependences between some projects (synergies, precedence, complementarity,
incompatibility, etc.).

This chapter provides an in-depth analysis of the main contributions that different
authors have made in this field under a multi-criteria approach. The study describes
the evolution in the treatment of the key aspects that define the problem of project
portfolio selection and shows the advantages and disadvantages of the different
approaches. Finally, taking into account all the previously mentioned aspects, a
global and very flexible mathematical model is presented that will help decision
makers to decide how to invest their scarce resources among a set of candidate
projects, that is, how to choose a project portfolio.

Keywords Multi-criteria optimization • Nonlinear binary model • Project
planning • Project portfolio selection • Synergies

33.1 Introduction

The problem of selecting a project portfolio arises from the everyday dilemma faced
by organizations in finding the best possible way to distribute a limited budget
among candidate projects to fulfil the needs of the organization. In this process, the
projects compete for funds and other resources (such as manpower, equipment, etc.)
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to fulfil a set of objectives, priorities, and restrictions of the organization. Usually,
there are more projects than resources to carry them out. This decision-making
process is a difficult task and requires far more than just the insights and intuition of
the managers, given that there is a vast amount of information to manage. Making
the wrong decisions during this process may have two negative consequences:
resources are wasted, and the benefits that would have been derived from allocating
such resources to better projects are also lost.

Therefore, these decisions are crucial. As a consequence of their importance,
this process has received significant attention from managers and researchers, as
reported in different studies (Archer and Ghasemzadeh 1999; Say et al. 2003;
Martinsuo and Lehtonen 2007). Traditionally, decision makers in organizations
have performed decision making processes based on either their experience alone
or by using a mixture of their professional judgment and ranking tools (Moore
and Baker 1969; Cooper et al. 2001), such as financial methods (Silvola 2006),
scoring models (Lawson et al. 2006), analytical hierarchy process (Feng et al.
2011), or multi-attribute utility (Duarte and Reis 2006). Thus, projects were selected
from the highest to the lowest score until the budget available for the period was
spent.

However, these approaches are not always feasible for four main reasons:

• They only take into account one objective when choosing the projects, while in
most cases decision makers have to deal with multiple conflicting objectives to
answer the needs of the organization (Martino 1995).

• They only take into account one constraint, the budget constraint. However,
organizations have to deal with other constraints regarding staff, equipment,
political factors, etc. (Mavrotas et al. 2008).

• There may be complementarity and incompatibility relationships as well as
synergies between the projects, such that the best group of individual projects
may not necessarily be the best set (project portfolio) when all these interactions
are taken into account (Chien 2002).

• The dynamic nature of the process is not taken into account. The budget
constraint usually refers to one period, and all the projects selected start at the
same time. This could be restrictive since some projects may be more flexible
than others regarding execution time, and a more dynamic approach would
encourage a better distribution of resources (Archer and Ghasemzadeh 1999).

These considerations have led to growing interest in other techniques derived
from mathematical programming, as they are able to address the aspects mentioned
above. This interest is also driven by advances in the technical procedures used to
solve the optimization problems generated (Weber et al. 1990).

Also, nowadays, the increasing size and complexity of many organizations makes
this process more complicated, which generates the need to seek a global model that
helps any organization decide on the project portfolio selection.

The objective of the present chapter is not the design of the model itself, but
the process followed to arrive at this mathematical model. We think that the
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detailed description of this process allows the appreciation of the key stages in
the elaboration of the model and contributes to visualizing the way in which the
socioeconomic aspects correspond with the mathematical decisions taken. This
process can be structured into the following steps, which will be widely developed
in the later sections:

• Identification of the fundamental aspects for a suitable project portfolio selection
and an analysis of the way these aspects have been treated over the years in the
literature on multi-criteria project portfolio selection.

• Contribution of an alternative for each of the considered aspects, showing how
they have been incorporated into the mathematical model produced.

This chapter is structured as follows. Section 33.2 identifies and gives an analysis
of the treatment and mathematical formulas that different authors have given, over
the years, for each of the factors considered fundamental in making a suitable
project portfolio selection. Also, a description is given of the deficiencies that have
been found in these models. After analysing each of these aspects, in Sect. 33.3
is shown how we have incorporated them into our own global project portfolio
selection proposal, and we briefly formalize the mathematical model proposed to
solve the problem of project portfolio selection. Finally, this chapter ends with the
main conclusions in Sect. 33.4.

33.2 Identification and Analysis of Key Aspects in Project
Portfolio Selection

The aspects or factors that we have identified as fundamental for the presentation of
a global model helping decision makers to select an efficient project portfolio are:
the simultaneous consideration of diverse objectives (multi-objective optimization),
in other words dealing with a multi-criteria decision making process; the interaction
or dependency between projects allowing the evaluation of all types of relationships
between projects (positive or negative synergies, precedence relationships, comple-
mentarity between projects, etc.); and time as a fundamental aspect in analysing the
problem from a more dynamic and complete aspect that allows giving flexibility to
the model. The fundamental nature of these aspects is confirmed by the reviewed
literature in the field (see for example: Baker 1974; Ghasemzadeh et al. 1999;
Graves and Ringuest 2003; Carazo et al. 2010).

In the following sections we will justify the importance of these aspects and
motivate why we felt it was key to include them in a proposed mathematical model
for the selection and planning of a project portfolio. We will also focus, among the
approaches available, on the optimization models as they offer quantitative tools that
will allow us to deal with all the indicated aspects in a combined manner.
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33.2.1 Multi-Criteria Problem

The first important issue is the observation that there are often multiple conflicting
criteria (such as returns, cost, risk, etc.) that have to be taken into account in the
decision process. Therefore, the problem must be analyzed using a multi-criteria
approach.

Until the decade of the 1970s most project selection decisions were based on
selection models which only considered one criterion. Good examples are the
economic assessment measurements [net present value (NPV), the internal rate
of return (IRR), etc.] that can be found in several studies (Lorie and Savage
1955; Weingartner 1963; Myers 1972). Later, in the decades of the 1980–1990s,
the development of the mono-objective optimization models applied to the field
of project portfolio selection allowed decision makers to solve the problem in a
simplified manner, seeking that set of projects that optimized the main objective of
the organization. Thus, they considered only one criterion subject to the restrictions
and conditions established by the organization, which led to the presentation of
a simplified and unreal solution to the problem. In these models, the hypothesis
usually adopted was that projects are not fractionable, that is to say, the decision
variables are usually binary, representing the selection, or not, of each of the
investment proposals. However, “versions” of the same project can be considered,
that is, alternative forms such as monetary funds or other necessary resources, which
can be treated as different projects, although taking into account that it only makes
sense to carry out one version.

As the use of mono-objective programming developed as a project portfolio
selection technique, the first deficiencies began to arise, as the sphere in which
decisions are taken in any organization is usually characterized by a set of competing
objectives.

This aspect, however, was not considered in most works until the beginning of
the 1990s. From that time, different studies can be found (Czajkowski and Jones
1986; Ringuest and Graves 1989; Schniederjans and Wilson 1991; Santhanam and
Kyparisis 1995; Lee and Kim 2000, 2001; Badri et al. 2001; Klapka and Piños 2002;
Stummer and Heidenberger 2003; Medaglia et al. 2007, 2008) in which the selection
process was made with a multiple objective optimization approach (maximizing:
profit, revenue, utility, etc. or minimizing: resource use, cost, risk, runtime, etc.).

The multi-objective nature of project selection and planning is evident. When
organizations need to assign their scarce resources to a set of projects, they wish
to simultaneously optimize several measures or criteria, such as benefits, risks, the
value of the chosen portfolio, and so on. The simultaneous optimization of all the
objectives provides a set of solutions called efficient or Pareto optimal. This is the
set of feasible non-dominated portfolios, i.e., there is no other portfolio able to yield
higher values in at least one objective without detriment to any other.

In this field of study, optimization models have received a lot of attention as they
can address different types of interdependencies, multiple objectives and constraints
and they allow planning the process in time. Specifically, it is customary to use
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multi-objective programming models with binary variables to represent the different
candidate projects.

In formal terms, the multi-objective problem of project portfolio selection can be
expressed by the following general structure:

Opt: F .x/ D ff1.x/; f2.x/; : : : ; fv.x/g (33.1)

s:t: x 2 X; .xq 2 f0; 1g I q D 1; 2; : : : ; m/ (33.2)

where x is the vector of the decision variables x D .x1; x2; : : : ; xm/, whose
dimension equals the number of initial candidate projects m D jQj beingQ the set
of all candidate projects, where xq D 1 indicates that the project q is selected, and
xq D 0 otherwise. On the other hand, f�.x/ is the objective function that evaluates
�-th criterion .� D 1; : : : ; v/, and X is the feasible region.

In this context, different studies present different approaches to the
problem depending on the type of information available and how they
incorporate the decision maker’s preferences into the process. Authors such
as Ghasemzadeh et al. (1999) and Medaglia et al. (2008) combine the different
objectives into a single function, assigning a weight score that reflects the relative
importance that each objective has for the decision maker. A different approach is
offered by goal programming techniques, in which the decision maker can set a
priori aspiration levels for each objective function (Santhanam and Kyparisis 1995;
Lee and Kim 2001; Badri et al. 2001). Other authors do not use a priori information
regarding the preferences of decision makers; rather, once they have obtained a first
set of efficient portfolios they include such preferences using interactive techniques
(Klapka and Piños 2002; Stummer and Heidenberger 2003), or a multi-criteria tool
(Electre, Promethee, and Analytic Hierarchy Methods, among others) that allows
them to rank the efficient portfolios (Gaytán and García 2009).

It should be noted that among the different approaches to address this multi-
objective problem there is no one that is a priori superior to the others. The selection
of one of them mainly depends on the type of information available, and how
the preferences of the decision maker are incorporated when choosing one of the
possible solutions, so that it better fits those preferences. In the model shown in
Sect. 33.3, we have chosen the approach that demands the least information from
the decision maker, i.e., to generate the set of efficient portfolios and later select one
of the solutions by means of an interactive procedure (Carazo et al. 2012). The fact
of presenting the set of efficient solutions (efficient frontier) still remains a major
challenge (Doerner et al. 2006; Medaglia et al. 2007) in the context of a nonlinear
problem with binary variables. Obtaining this set allows us to identify the tradeoffs
between the objectives, which helps the decision maker to better understand the
situation.

There are many applications related to multi-criteria project portfolio selection
that can be found in the literature. Gaytán and García (2009) presented a multi-
objective model for selecting transportation infrastructure projects. Badri et al.
(2001) considered project investment decisions in health service institutions.
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Santhanam and Kyparisis (1995) used their model to select projects in a large service
organization. Mavrotas et al. (2008) developed an approach to evaluate and select
projects in the context of a university department. Medaglia et al. (2008) employed
portfolio selection in a public enterprise providing water and sewerage services, and
Ghasemzadeh et al. (1999) did so in a telecommunications manufacturing company,
etc. These models assume the managers of the organizations to be able to estimate
costs, human resources, benefits, and any other data relating to the involved projects.

Also, it is not only the techniques and their use that have been changing or
evolving over the years, but also the problem to be solved. Currently, it is not so
much a question of selecting the best projects, with the resources available, but a
matter of considering diverse criteria and choosing a set of interdependent projects
in time, which respond to the requirements of the organization. This leads to the
incorporation of the other factors that will be analysed in the following Sects. 33.2.2
and 33.2.3.

33.2.2 Interdependence Between Projects

The analysis of the literature on project selection shows that the relationships and
interdependences between projects appear as a fundamental aspect, which helps to
differentiate between selection of a group of independent projects and selection of a
project portfolio. A project portfolio is a set of projects that share resources during
a given period, and among which there may be complementarity, incompatibility, or
synergies produced by sharing costs and benefits, derived from conducting more
than one project at the same time (Fox et al. 1984). This means that it is not
sufficient to simply compare two projects, but rather we need to compare groups
of projects (Chien 2002) in order to identify the one best adapted to the needs
of the organization. Therefore, the project portfolio concept necessitates a global
assessment, which is different from the sum of the individual assessments of each
of the projects that make up the portfolio, such as would be the case where a group
of independent projects were selected.

Although the first studies in the field of project selection already indicated that
it was necessary to incorporate the interactions between projects to achieve a better
use of resources (Reiter 1963; Reisman 1965; Reiter and Rice 1966; Weingartner
1966; Baker 1974), their treatment was not considered in a broad sense until the end
of the 1980s.

The main reason for this was the difficulty supposed in introducing or formalizing
the interactions between projects in the traditionally used simple mathematical
models (Baker 1974). These interactions were quantitatively formalized in the
works of Czajkowski and Jones (1986) and Schmidt (1993) and shortly after in
Dickinson et al. (2001). These works presented different models the main problem
being that they only quantified relationships between pairs of projects, that is, they
did not allow, for example, that the joint implementation of three or more projects
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could reduce or increase the need for a certain resource and/or the value of an
objective by a certain amount.

The first of the models that allowed a global study of the interactions was
that proposed by Santhanam and Kyparisis (1995). They presented a generic and
complete model, which was applicable to all types of interdependences and to any
degree of interaction or interdependence.

There is a classification of these types of interdependences accepted by most
researchers, as reflected in the studies by Hillier (1967), Baker (1974), Gear and
Cowie (1980), Czajkowski and Jones (1986), Schmidt (1993), Santhanam and
Kyparisis (1995, 1996), Chien (2002), Verma and Sinha (2002), among others which
distinguish between technical, resource and benefit interactions.

• Technical or result interactions take place when the accomplishment of a
determined project necessarily involves the joint, total or partial accomplishment
of another project or projects, or the non-accomplishment of a determined
project or group of projects, as the case may be. These types of interactions
are accommodated through additional restrictions. Thus, for example, if project
q0 depends on the execution of the projects contained in the group Q.q/,
the restriction xq0 � xq; q 2 Q.q/ would be added. Serial relationships or
precedence relationships could also be considered within these interactions, as
Chien (2002) established. These relationships will be analysed in great detail in
Sect. 33.2.3 (in relation to time planning).

• Resource interactions originate when the simultaneous implementation of two
or more projects requires less (or more) resources than if they were carried out
separately. It implies that the cost of a project portfolio is inferior (or superior) to
the sum of the costs of all its projects (Spradlin and Kutoloski 1999).

• Benefit interactions derive from two or more projects producing greater or less
benefits when carried out simultaneously than if they were accomplished at
different times.

To model the last two types of interactions, additional terms are included in
the objective functions, and/or in the restrictions. The total contribution, whether
in each of the objective functions or restrictions involved, is given by the sum of
the individual contributions of each selected project, plus (or minus) the additional
contributions given by the interdependences if these exist. Adding such terms (for
example, in one of the cost/benefit functions) leads to the following expression:

f�.x1; x2; : : : ; xm/ D c1x1 C c2x2 C : : :C cmxm C y.x1; x2; : : : ; xm/ (33.3)

where cq indicates the individual contribution of the q-th project and the term y.x/

represents the algebraic sum of all the additional terms due to the interdependences
between projects.

The other aspect of interest when considering these interdependences is the
degree of interdependences existing between projects, that is, the interrelationships
between two, three, or more projects. Over the years, very different ways have been



716 A.F. Carazo

attempted to quantify the interdependences included in term y.x/ of Eq. (33.3).
Three groups of basic formulas have been evolving, until we currently have the
most global of all, presented by Stummer and Heidenberger (2003). A more general
variant will be incorporated in the model shown in Sect. 33.3. Next, each one of
these groups will be described.

• The first group of formulas only considers binary relationships. That is, they only
measure the interactions that may exist through the joint accomplishment of two
projects. Examples of these can be found in the studies of Czajkowski and Jones
(1986) and Schmidt (1993). Thus, if cqq0 is the additional contribution if projects
q and q0 are carried out simultaneously, then, modelled as a quadratic term, the
term y.x/ of Eq. (33.3) would be given by:

y.x1; x2; : : : ; xm/ D
m�1X

qD1

mX

q0DqC1
cqq0xqxq0 (33.4)

Later, Santhanam and Kyparisis (1995) incorporated an additional term that
included the interactions between three projects, so that:

y.x1; x2; : : : ; xm/ D
m�1X

qD1

mX

q0DqC1
cqq0xqxq0 C

m�2X

qD1

m�1X

q0DqC1

mX

q
00 Dq0C1

cqq0q00xqxq0xq00

(33.5)

where cqq0q00 is the additional contribution of the simultaneous execution of
projects q, q0 and, q00. This model is used by authors such as Lee and Kim (2000,
2001) and Klapka and Piños (2002).

• The second group of formulas allows the interactions between any number
of projects (it measures any degree of interactions) and was introduced by
Santhanam and Kyparisis (1995) using a polynomial model. This case assumes
the existence of different sets of projects ¢ where Q
 � Q with .¡ D 1; : : : ; ¢/,
which contain at least four projects and produce an additional contribution c
, so
that expressions (33.4) and (33.5) would be modified in the following manner:

y.x/ D
m�1X

qD1

mX

q0DqC1
cqq0xqxq0 C

m�2X

qD1

m�1X

q0DqC1

mX

q00Dq0C1
cqq0q00xqxq0xq00 (33.6)

Cc1
Y

p2Q1

xp C : : :C c�
Y

p2Q�

xp

• The third of the models is that proposed by Stummer and Heidenberger (2003),
who presented a much more generic formula, which generalizes the previous
model. These authors assume that additional effects c
 take place if the portfolio
contains at least a number m
 of projects that are elements of some subset
Q
 � Q with .¡ D 1; : : : ; ¢/ and that additional effects Nc
 are produced if
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the portfolio contains, at most, a number M
 of some subset Q
 � Q with
.¡ D ¢ C 1; : : : ; ¢ 0/ so that:

y.x/ D
�X


D1
c
y
.x/C

� 0

X


D1
Nc
z
.x/ (33.7)

where, on the one hand, y
.x/ is a function that will be equal to 1 if the portfolio
contains at least m
 projects of Q
 � Q with (¡ D 1; : : : ; ¢/, that is, if the
interaction 
 is activated, and 0 otherwise. On the other hand, z
.x/ is another
function that will be equal to 1 if, at most, M
 projects of Q
 � Q with .¡ D
¢ C 1; : : : ; ¢ 0/ are selected.

The structure of this formula allows the interaction presented by Santhanam
and Kyparisis (1995, 1996) to be incorporated as a particular case in expres-
sions (33.4)–(33.7) when it is established that all the projects of the subset are
carried out at the same time.

This proposal has been used in later works such as Doerner et al. (2004,
2006), and will be the one used in the model in Sect. 33.3, both for the objective
functions and for some of the restrictions that define the feasible set of portfolios.

33.2.3 Project Planning

The third aspect refers to integrating the selection process within a planning horizon.
Organizations seek solutions that enable them to plan their resources over several
periods of time. In other words, they seek to develop stable, ongoing policies that
allow them to reach their overall economic, social, and environmental objectives
in the medium to long term. For this reason, managers face the task of having
to simultaneously select project portfolios and plan them within a given planning
horizon.

In this context, most studies deal with multi-criteria project portfolio selection
first and then with the scheduling of the selected projects, or it is assumed that all the
projects selected start at period one (Stummer and Heidenberger 2003). However,
this approach may result in some projects not being implemented due to lack of
resources in a given period. This drawback may be overcome by using models that
are more flexible regarding when the projects are launched.

The importance of suitable project planning within the selection process has
already been shown by works like those of Ireland (2002), which establish that not
all the projects have to start at the same time, because of both the existence of limited
resources of each period and differences in the duration and priority of each project.

In order to analyze a correct treatment of project portfolio planning, two aspects
will be commented upon in detail. We will justify why it is fundamental to perform
the selection and planning of the portfolio projects simultaneously, and we will
briefly describe how this scheduling has been approached in the literature over
the years.
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33.2.3.1 Justification of the Simultaneous Project Selection
and Planning Processes

Most works in the field of project portfolio selection carry out an initial selection of
the projects that form the portfolio, and schedule them later, establishing when each
of the proposals that compose the portfolio must start. This section will justify why
it is more appropriate to carry out a joint selection and planning process.

Consider the following example. Suppose that a certain company tries to select
and to plan the projects of a portfolio for a specific planning horizon, say the next 4
years, and it has the following information:

• Type A resource (workforce). It has ten workers per year available.
• Type B resources (budget). It has 1;000e/year for financing the portfolio.

The distribution of the resource needs for each of the six candidate projects is
shown in Table 33.1.

As additional information, it is known that the experts have established that
there is no preference for the accomplishment of any particular project, and that
in addition the portfolio should allow the greatest possible number of projects to be
financed with the resources available.

We consider a company selecting a project portfolio without accounting for the
scheduling of the projects that compose it. First, it would choose the portfolio on
the basis of the resources available, supposing that all the projects would begin at
the same time and, later, these projects would be distributed in the planning horizon
deciding when each must start. In the specific example, the possible portfolios of
candidate projects to finance would be:

• fq1; q3; q4g with the resulting consumption of resources: type A (3C4C3 D 10

workers per year); type B .300C 500C 200 D 1;000e/.
• Other possible options: fq1; q2g ; fq1; q3g, fq1; q4g ; fq2; q4g, fq3; q4g, fq4; q6g

or to finance some of the projects fq1g ; fq2g, fq3g, fq4g, or fq6g individually.

If, in the proposed example, it were established that the project portfolio would be
selected based on the inclusion of the greatest number of projects, then fq1; q3; q4g

Table 33.1 Resource needs and duration of each of the candidate projects

Type A Type B

Projects/resources (workers/year) (budget/year) Duration

q1 3 300e 2 years

q2 4 600e 4 years

q3 4 500e 2 years

q4 3 200e 4 years

q5 11 50e 1 year

q6 7 800e 2 years

Total resources/Time available 10 1,000e 4 years
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would be selected. Once this selection is made, the execution of the selected projects
would have to be scheduled. Three possible alternatives are found:

The first considers that all the projects begin at time zero (see Fig. 33.1):
The second and third options are illustrated in Fig. 33.2. In both cases it is

attempted to make a more balanced utilization of the resources, not beginning all the
projects at the same time but in a way that allows for a more balanced scheduling.

Following a portfolio selection process of selecting first and scheduling later,
could lead, as has been commented in Table 33.2, to an underutilization of
available resources year on year. An alternative would be to undertake the selection
and planning of the projects at the same time. This alternative would provide
the portfolio fq1; q3; q4; q6g making it unlikely that resources remain idle. The
scheduling is shown in Fig. 33.3.

As can be seen in Table 33.2, this last option, joint selection and planning, allows
the best use of the available resources.

Joint selection and planning attempts to determine which projects to carry
out, as well as their start times, so that the pursued objectives are reached, with
the condition that the available finances and personnel, etc. are not exceeded at
any time. Selection and planning must also accommodate the time restrictions,
complementarity and interdependences between the projects, as well as other
requirements (strategic, segmentation, policies, etc.) that the organization may have.

This time flexibility regarding the start of projects within the planning horizon
means that precedence relationships can appear between some projects, that is,
certain projects can only start if others (its precursors) have been completed or if
at least a certain amount of time has passed since the latter were started. In addition,
it may be of interest to the organization to consider the possibility that not all the
selected projects finish within the time horizon, deciding in the following period
whether or not to continue with such projects.

q1

q3

q4

1 2 3 40

Fig. 33.1 Temporal representation of a portfolio in which all projects begin at start time

a b

q1 q3

q4

1 2 3 40

q3 q1

q4

1 2 3 40

Fig. 33.2 Temporal representation of portfolios in which all the projects do not begin at start time
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Table 33.2 Consumption of type A and B resources per year for Figs. 33.1, 33.2, and 33.3

Fig. 33.1 Fig. 33.2a
Resource
consumption

Surplus
resource

Resource
consumption

Surplus
Resource

Year A B A B A B A B

1st 3C 4C 3 300C 500C 200 0 0 3C 3 D 6 300C 200 4 500

D 10 D 1;000 D 500

2nd 3C 4C 3 300C 500C 200 0 0 3C 3 D 6 300C 200 4 500

D 10 D 1;000 D 500

3rd 3 200 7 800 4C 3 D 7 500C 200 3 300

D 700

4th 3 200 7 800 4C 3 D 7 500C 200 3 300

D 700

Fig. 33.2b Fig. 33.3
Resource
consumption

Surplus
resource

Resource
consumption

Surplus
resource

Year A B A B A B A B

1st 4C 3 D 7 500C 200 3 300 3C 4C 3 300C 500C 200 0 0

D 700 D 10 D 1;000

2nd 4C 3 D 7 500C 200 3 300 3C 4C 3 300C 500C 200 0 0

D 700 D 10 D 1;000

3rd 3C 3 D 6 300C 200 4 500 7C 3 800C 200 0 0

D 500 D 10 D 1;000

4th 3C 3 D 6 300C 200 4 500 7C 3 800C 200 0 0

D 500 D 10 D 1;000

Fig. 33.3 Temporal
representation of the portfolio
obtained under a
simultaneous process of
selection and planning q3

q1

q4

1 2 3 40

q6

This problem, which in the case of few alternatives seems to be an easy puzzle
into which each of its pieces (candidate projects) have simply to be fitted, becomes
complex when there are large numbers of combinations, and therefore difficult to
solve without the help of a suitable quantitative tool that considers all the aspects.

33.2.3.2 Contributions to Project Selection and Planning in the Literature

The increased complexity of this situation may explain the fact that there are only
a few models in the literature that simultaneously address both project selection
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and planning within a multi-objective decision-making framework. The main works
that have considered it have the main disadvantage of not including the interactions
of resources and/or benefits between projects, see for example the paper of Chun
(1994), Coffin and Taylor (1996a,b), Ghasemzadeh et al. (1999), Sun and Ma
(2005), and Medaglia et al. (2008).

Among the publications we have found that jointly consider time and the
interrelationships for project portfolio selection, the following can be highlighted:
Dickinson et al. (2001), Stummer and Heidenberger (2003), Doerner et al. (2004,
2006), and Rabbani et al. (2010). The papers of Dickinson et al. (2001) and
Rabbani et al. (2010) present the main disadvantages (1) of considering that all
the projects must be completed within the time horizon, (2) that the resources
remaining from one period cannot be transferred to successive periods, and (3)
that they are limited to very elementary interdependences (only admitting binary
interdependences). On the other hand, in Stummer and Heidenberger (2003) and
Doerner et al. (2004, 2006) we found that, although interrelationships and time are
considered as important factors, all the selected projects must begin at the same
time.

Consequently, we did not find studies that take all the following aspects into
account: flexibility regarding the start of projects within the time horizon; variability
of the resources to be consumed in each period, allowing, when possible, to transfer
surplus resources to the following period; consideration of the fact that the value
of the interrelationships can be different depending on the particular moment in
time; and existence of multiple objectives and restrictions for the evaluation of the
projects.

To address these aspects, Sect. 33.3 presents a multi-objective binary model that
allows the incorporation of all these key aspects under general conditions and which
can be applied in both public and private settings.

33.3 Evolution from the Previous Proposals: A More General
Mathematical Model

Next, we briefly describe a mathematical model1 that formulate the multi-criteria
project portfolio selection problem in a general way, considering all the key aspects
mentioned in the previous section.

Assume an organization withm candidate projects, wherem D jQj andQ is the
set of all projects from which efficient portfolios have to be selected according to a
set of objectives and some constraints. We are also interested in determining when
each selected project will start .t/ within a given planning horizon divided into T
periods.

1A broader description of the model is given in Carazo et al. (2010).
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Thus, the decision variables are denoted by xqt and are defined by

xqt D
�
1; if project q starts at t .q D 1; : : : ; mI t D 1; : : : ; T /

0; otherwise
(33.8)

and thus x D .x11; : : : ; x1T ; x21; : : : ; x2T ; : : : ; xm1; : : : ; xmT / is a vector with m � T
binary variables, which represent one portfolio.

Next, the objective functions used to select the efficient portfolios are shown,
followed by the set of constraints that form the feasible set of portfolios:

Opt:
x

8
ˆ̂
<̂

ˆ̂
:̂

C�t 0 .x/D
mP

qD1

t 0P

tD1

cq�.t 0C1�t/ � xqtC
�P


D1

y
t 0 .x/ �f�
t 0 .�D1; : : : ; vI t 0D1; : : : ; T /

C�.x/D
TP

t 0D1

w�t 0C�t 0 .x/ .�Dv C 1; : : : ; v0/

9
>>>=

>>>;

(33.9)

s:t:
mP

qD1

t 0P

tD1

rqk.t 0C1�t/ � xqt C � 0P


D�C1

y
t 0 .x/ �fk
t 0 � Rk.t
0/ .k D 1; : : : ; KI t 0 D 1; : : : ; T /

(33.10)

mP

qD1

t 0P

tD1

rqk.t 0C1�t/ � xqt C
� 0P


D�C1

y
t 0 .x/ �fk
t 0 � Rk.t
0/C .1C ˛kt0 /�

 

Rk.t
0 � 1/ �

 
mP

qD1

t 0�1P

tD1

rqk.t 0�t/ � xqt C � 0P


D�C1

y
.t 0�1/.x/ �fk
.t 0�1/

!!

.k D K C 1; : : : ; K 0I t 0 D 1; : : : ; T /
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t 0X

tDt 0�pqC1
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 Cm .
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M
 �
0

@
X

q2Q


t 0X
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b � B �
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aq �
TX

tD1

xqt � 1 .q 2 Q/ (33.16)

ES �
TX

tD1

xqt �
TX

tD1

t � xqt � LS .q 2 Q0/ (33.17)

TX

tD1

xqt �
TX

tD1

xq0 t .q 2 QI q0 2 Q.q// (33.18)

TX

tD1

xq0 t �
 

TX

t�D1

t � xqt� Cdmin
q

!

�
TX

tD1

t � xq0 t �
TX

tD1

t � xqtCdmax
q .q 2 QI q0 2 Q.q// (33.19)

xqt 2 f0; 1g .q 2 QI t D 1; : : : ; T / (33.20)

The objective functions are defined in (33.9). This multi-objective model
assumes that the organization wishes to evaluate the portfolios according to a set
of attributes � (cash-flow, sales, risk, etc.). Function C�t 0.x/ is composed of two
terms: the first represents the added value of each of the selected projects and the
second incorporates the value produced by the interrelationships between projects. It
is worth indicating that both terms depend on the specific execution period at which
each project q is found in period t 0, being t 0 every period of the planning horizon.
Thus, we must differentiate between the specific period we are in (period t 0), and
the execution time of the selected project q up to that time. If project q starts at t ,
then the execution time of project q in period t 0 is t 0 C 1 � t . If t 0 C 1 � t � 0, the
project has not been started yet, and if t 0 C 1� t > pi , the project has already been
completed. Thus, project q will be active in t 0 if and only if:

Pt 0

tDt 0�pqC1 xqt D 1.
So, if project q starts at t and lasts pq periods, then cq�.t 0C1�t / represents the

individual contribution of project q to f� in period t 0.
In addition, y
t 0.x/ is a function that takes value 1 when synergy 
 occurs,

and 0 otherwise. Thus, the second part of expression (33.9) represents the effect
of positive (or negative) synergies between projects, which is similar to Stummer
and Heidenberger’s proposal. To consider the synergies or relationships between
projects, the organization has also specified different subsets of projects Q
 � Q

with 
 D 1; : : : ; � such that, if in period t 0 the portfolio contains a number of
projects belonging to Q
 that is between m
 and M
, there is an increase (or
decrease) in value f�
t 0 (synergy 
, 
 D 1; : : : ; �) in the attribute � .� D
1; : : : ; �/. The technical constraints (33.12) and (33.13) are introduced to ensure
that the synergies are activated properly.
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On the other hand, the organization may be interested in optimizing the weighted
aggregated value of some attributes .� D � C 1; : : : ; �0/, at different periods. In
such a case, the objective functions would be: C�.x/ D PT

t 0D1 w�t 0C�t 0.x/ .� D
v C 1; : : : ; v0/ where w�t 0 is the weight assigned to the attribute � in period t 0.
Furthermore, if some attribute �0 has an economic value and we want it to be
sensitive to the interest rate to reflect different monetary values in each period, then
w�t 0 D .1C˛�0t 0/

�.t 0�1/ where ˛�0t 0 is the interest rate to be applied to the attribute
�0 in period t 0.

The feasible region is defined by Eqs. (33.10)–(33.20). The time restrictions (for
each period t 0) are specified by the expressions (33.10)–(33.14), and the global ones
(those that do not depend on the time period) are dealt with by (33.15)–(33.20).

In particular, the constraints (33.10) and (33.11) determine the availability
of resources for every period. They have the same structure as the objective
functions (33.9), that is, they are restrictions that deal with possible interactions that
may exist between some sub-groups of projects. Symbol Rk.t 0/ denotes the total
availability of resource k .k D 1; : : : ; K/ for the time period t 0, and rqk.t 0C1�t / is
the amount of resource k consumed by the project q that began at t . The difference
between the two expressions (33.10) and (33.11) is that in the second, reference is
made to nonrenewable resources (for example, budget) .k D KC1; : : : ; K 0/ which,
if not completely consumed in a period, can be transferred to the following period
increased/decreased by the corresponding interest rate .˛kt0/.

The expressions (33.12) and (33.13) are technical restrictions that force in y
t 0.x/
to have a value of 1 if synergy 
 occurs in period t 0, and 0 otherwise.

Additional linear restrictions are reflected through conditions (33.14)
and (33.15). The first one deals with the constraints that the organization imposes
on the active projects that may compose the portfolio in each period t 0, but which
do not depend on the specific progress of these projects. In this restriction, b.t 0/
and Nb.t 0/ are the lower and upper bound vectors for period t 0 and B.t 0/ is the
coefficient matrix of linear constraints in period t 0. In contrast (33.14) expresses
linear restrictions that are independent of the time period. In this restriction, b and
Nb are lower and upper bound vectors and B is the coefficient matrix of global linear
constraints. This condition allows it, for example, to formulate the requirement that
different versions of the same project cannot belong to the same portfolio.

Expression (33.16) is a restriction that establishes that each project, if selected,
can only start once within the time horizon. In addition, this restriction allows the
decision makers to establish that a project must be selected by putting aq equal to 1.
Restriction (33.16) establishes time intervals [ES, LS] within which certain projects
must begin, beingQ0 a subset of Q.

The last two inequalities formalize the precedence relationships between
projects. Inequality (33.18) specifies that a project q0 cannot be selected unless
its precursors Q.q/ have already been selected, and (33.19) specifies that a project
q0 must be started between dmin

q and dmax
q periods after starting its precursors.

To summarize, Eqs. (33.8)–(33.20) constitute a multi-objective model with
binary variables and a nonlinear structure, whose solution is N P-hard (Ehrgott
and Gandibleux 2000). Especially when the number of projects or periods in the
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planning horizon increases, it is difficult to reliably solve this model using classic
mathematical programming techniques (Rabbani et al. 2010). The intractability of
these types of multi-objective problems has driven a growing interest, in recent
years, in using heuristic procedures (Coffin and Taylor 1996a; Klapka and Piños
2002; Hsieh and Liu 2004; Doerner et al. 2006; Medaglia et al. 2007) as they
provide a good compromise between the quality of the solution and computational
time. Evolutionary algorithms are particularly suitable in a multi-objective context,
since they provide a set of efficient solutions in a single run, in contrast to the
traditional techniques of mathematical programming that require several runs (Deb
2001). Among the authors who have applied these algorithms in portfolio selection
are Gaytán and García (2009) and Medaglia et al. (2007).

This problem has been approached using a metaheuristic method called SS-
PPS (Scatter Search for Project Portfolio Selection), which was described and
empirically validated by Carazo et al. (2010). This method is an adaptation of
the evolutionary method SSPMO (Scatter Search Procedure for Multiobjective
Optimization, Molina et al. 2007).

33.4 Conclusions

This work has shown the process followed in the construction of a mathematical
model which allows the solution of a basic problem in any organization: that
of selecting and planning a project portfolio from a group of candidate projects
with a multi-criteria approach and a fixed planning horizon. This model takes into
account the features of each candidate project, the available resources, the multiple
objectives, restrictions and characteristics of the organization, etc.

The review of the literature led us to both identify needs in the field of project
portfolio selection and to analyse, review, and incorporate the advances and aspects
already considered by other studies. This allowed us to justify the suitability of
presenting a more general model than those that existed in the field of portfolio
selection and management until now, since, in addition to incorporating all those
aspects that have been collected in previous works, it has some global characteristics
that render the model more complete.

The mathematical model presented is a multi-objective binary programming
model with a nonlinear structure that facilitates the selection of efficient portfolios
according to the set of objectives pursued by the organization, as well as their
scheduling with regard to the optimum time to launch each project within the
portfolio. This global and flexible model includes all those characteristics that
different authors have shown to be necessary, not only through incorporation but
also through omission, in an integrated manner to solve a rather general version of
this kind of project selection problem. In particular:
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• It incorporates different objectives pursued by the organization. Some of them
can be considered per period of time, and others can be aggregated in time,
according to the aims of the central decision maker.

• It incorporates temporal constraints and technical limitations that are established
by the decision makers, such as pre-selected projects, precedence relationships
between projects, requirements of strategy, policy, etc.

• It incorporates the value of the synergies in this selection process, both in the
objectives and in some restrictions, allowing the synergy values to be different
depending on the moment in time in which they are originated.

• It allows projects to start in any period of the time horizon. This makes the model
flexible allowing, when the organization wishes, that one or more of the projects
can finish, or not, within the considered planning horizon, so that when a new
period of planning begins the decision maker incorporates his preferences in the
model regarding the continuation, or not, of that project.

• It allows unused resources to be transferred from one period to the next,
enabling economically measurable resources to be capitalized at the interest rate
determined by the central decision maker.

To summarize, the stages of the process that we have followed and demonstrated
here, consist of reviewing earlier work, identifying needs and advances, and incor-
porating them into what exists to produce a more global model. To conclude, we
hope that our global model proposal will help in the difficult task faced by decision
makers when attempting to solve problems of portfolio selection and planning, and
that reflecting on the process will lead to more awareness of the complexity entailed
in incorporating different socioeconomic aspects in mathematical models.
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Chapter 34
Project Portfolio Selection Under Skill
Development

Walter J. Gutjahr

Abstract This chapter surveys models for project portfolio selection that incorpo-
rate the development of skills by learning and/or forgetting. Basic learning models
(starting with Wright’s learning curve) are recapitulated and their relations are
discussed. Attention is given to simple exponential as well as to S-shaped learning
curves or laws derived from inventory-like considerations. Moreover, it is shown
how these models have been used by diverse authors as components of approaches
to support staffing and scheduling decisions. Then, the integration of learning
and forgetting within models for project selection is described in more detail
by providing mathematical programming formulations, discussing approximations,
and outlining numerical solution techniques. Also analytical results on optimal
project portfolio selection over time are recalled. The survey discusses both, models
where skill development goals are formulated as objectives, and models where they
are used as constraints. Multi-objective formulations and corresponding solution
techniques are outlined as well. Skill-based project selection under uncertainty is
identified as a major open issue for future research.

Keywords Core competencies • Learning models • Portfolio optimization •
Project portfolio selection • Skill development • Strategic management

34.1 Introduction

It is well-recognized that project selection is one of the most crucial tasks in project
management, especially in a multi-project context. The job of conducting a set of
projects in a best-possible way concerns the “how” of project management, but it
does not yet address the “what” question. As it is rarely the case that a company
or institution does not have any influence on which projects to carry out, a suitable
choice of a set of projects, a so-called project portfolio, constitutes a substantial
managerial decision (cf. also Chap. 33 in this book).
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Considered formally, there are several similarities between project portfolio
selection and financial portfolio selection, an area that has received vast attention in
the scientific literature and plays a fundamental role in practical economic decision
making. On the other hand, there are also differences between both forms of
portfolio choice. One of these differences is that carrying out a project is not a
“memoryless” investment: Whereas the fact that an investor has put money into a
financial asset in the past does not give her or him an advantage for investments in
this particular asset in the future, the completion of a project by a company’s own
staff increases the chances that similar projects can be carried out successfully at a
future time—and it decreases the costs of their execution.

To a good part, this is a consequence of learning effects: By working, employees
improve their skills, their competencies and their knowledge, and their ability
to do related work in the future grows. As a result, the company employing
them gains a considerable competitive advantage, since hiring human resources
in an ad hoc fashion at the time they are needed is usually expensive, causes
frictional losses in project organization, and is sometimes infeasible at all. For some
especially innovative strategic directions, the availability of suitably skilled in-house
personnel is even an indispensable precondition. Thus, we may say that one of the
distinguishing features of project portfolio selection, compared to other forms of
portfolio selection, is that it faces learning-dependent returns on investment.

Just as skills can grow, they can also diminish. This can be caused simply by
forgetting as a consequence of a lack of continuous training. Another possible cause
of skill reduction is knowledge depreciation: Some specific form of knowledge
or information may become obsolete because of new technological developments,
and a person who is not actively working in the corresponding area may miss the
opportunity to update her or his state of knowledge.

The present chapter surveys quantitative models for optimal project selection,
taking the aspect of skill development (may it be upwards or downwards) into
account. We shall focus on skill changes as an immediate result of carrying out
(or not carrying out) some type of work, i.e., on “learning by doing”. Because of
its complex internal dynamics, this form of skill development poses the greatest
challenge for quantitative modeling. Of course, in practice, also skill improvements
by external training (courses etc.) play an important role. We can omit this issue here
since in most of the outlined modeling approaches, a course equipping somebody
with knowledge or increasing her or his skills can be represented as the special case
of a project with negative financial return, but favorable learning opportunities.

The endeavor to develop skills on the one hand and the aim of making short-
term revenues on the other hand often appear as (possibly conflicting) different
objectives, even if from a long-term perspective, they serve the same purpose,
since skill development and capacity building is not an end in itself. Some of the
models reviewed here take a bi-objective optimization stance to deal with these two
concerns. In any case, combining the analysis of returns from projects with that of
skill development sheds light on the interesting question how (short-term) monetary
goals and (long-term) strategic goals can be balanced. Evidently, the strategic vision
of a company and its plans concerning skill development are closely connected.
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Ideas such as that of “core competencies” or of the “innovator’s dilemma” have had
a tremendous impact on the practice of management in the last years, but the related
phenomena seem to be still rather poorly understood at the level of theoretical
analysis. By incorporating skill development in project selection models, they may
become amenable to quantitative modeling.

The organization of this chapter is as follows: Sect. 34.2 provides
learning-curve-based modeling approaches to skill evolution and their application
in the context of staffing and scheduling. Section 34.3 formulates a model for
project selection under skill development integrating the staffing/scheduling aspect.
In Sect. 34.4, a slightly different modeling framework is used to investigate optimal
project portfolio management over time on an analytical level. Section 34.5 outlines
model extensions and more recent developments. Concluding remarks can be found
in Sect. 34.6.

34.2 Skill Development: General Models and Applications
in Staffing and Scheduling

34.2.1 Learning Curves in Management Science

Mathematical laws for learning and forgetting have been investigated early in
psychology. The first paper applying theoretical learning curves in the area of
management seems to be Wright (1936). Wright studied the amount to which
increased experience of workers in the aircraft industry reduced the time required
by them for manufacturing an airplane. His basic law, the Wright learning curve,
reads

y.s/ D a s�b (34.1)

where a is the time needed to produce the first unit, s is the variable representing
the number of units, y.s/ is the time needed to produce the sth unit, and b > 0

is a parameter controlling the speed of learning. Sometimes (34.1) is written in its
logarithmic form, logy.s/ D log a � b log s.

Epple et al. (1991) write the learning curve (34.1) in the form dt=ut D as�b
t�1,

where t is the time period, dt denotes hours worked, ut denotes output, and

st D
tX

�D1
u�

is cumulative output. Then the authors invert both sides, which gives

ut =dt D Oa sbt�1 (34.2)
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with Oa D 1=a. Taking logarithms on both sides, we get a linear statistical model
enabling the estimation of the parameters log Oa and b. Note that ut =dt is the
production rate, a measure of the efficiency of work; we shall return to this issue
later.

A similar approach is followed in Darr et al. (1995). However, this latter article
also includes the possibility of knowledge depreciation in the model. Knowledge
depreciation (or alternatively forgetting, which has the same consequence) acts
in the opposite direction as learning: skills that are not exerted decrease. To take
account of this effect, cumulative output st is replaced in the model equation by a
variable Ost updated according to Ost D � Ost�1 C ut with some (positive) depreciation
factor � � 1. Evidently, the boundary case � D 1 reproduces the model without
forgetting.

Fioretti (2007) develops a model with the aim to explain the pace and extent
at which, by organizational learning, the production time decreases with growing
number of produced units. Improved flows between organizational units are seen as
a main factor of learning, and consequently the model builds on the changes of these
flows.

In Pendharkar and Subramanian (2007), the envisaged application is software
development using integrated computer-aided software engineering (ICASE) tools.
The authors replace Wright’s learning curve by the equation

y D a e�bx (34.3)

with y denoting effort, x denoting tool experience, and constants a > 0, b > 0.
Obviously, by setting s D ex , we get back to (34.1), so on the assumption that
tool experience grows as the logarithm of cumulative output, Wright’s law is
obtained. An essential contribution of the article consists in the extension of the
learning curve to group learning: A team of K programmers is considered, where
each programmer has a learning curve of identical form, but differing experience
parameters x1; : : : ; xK . The values xk .k D 1; : : : ; K/ are assumed as independent
identically distributed random variables. The form of the overall team learning curve
is derived, and it is shown how the parameters of this curve can estimated by means
of an artificial neural network.

Before proceeding to the next articles on learning models, a drawback of
Wright’s formula should be noted: As s ! 1, the time y.s/ to produce a unit
tends to zero (or, in other words, the production rate tends to infinity), which may
be considered unrealistic. The models described in the following two publications
avoid this shortcoming.

Ngwenyama et al. (2007) address the question at which time an IT manager
should upgrade the firm’s software. If upgrades are done too early, the users have
not yet reached the stage where they can make best use of the currently applied
software or technology, which reduces average productivity. By too late upgrades,
on the other hand, productivity gains offered by the new software or technology
may be missed. For modeling the underlying learning process, the authors suggest
a learning curve of the following type:
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Fig. 34.1 Logistic function for a D b D 1

r.t/ D r1
1C a e�bt (34.4)

Therein, r.t/ is the value drawn from the currently applied technology (due to
benefits or cost reductions) at time t , the constant r1 is the upper limit of this
value, b is the rate of learning, and a is the curve initialization factor. The function
in (34.4) is a logistic function. It is increasing, has an S-shape and tends to its upper
limit r1 as t tends to infinity. In the leftmost part, growth is slow, which expresses
the empirical observation that in an early phase of learning, it takes time until skills
are improved. In the middle part, the function has larger slope, which represents
fast learning. In the rightmost part, the curve flattens again, which takes account
of the effect that for a person who already has a high skill level, the marginal
skill improvements by additional experience diminish. As the authors emphasize,
the added value achieved by learning the technology approaches a plateau, it is
not unlimited. In Fig. 34.1, a special logistic function is shown. With t on the
input axis and r.t/ on the output axis, this curve represents r.t/ for r1 D 1 and
a D b D 1; the time scale is chosen in such a way that the point where the curve
has its maximum slope corresponds to time t D 0.

In its main part, the article (Ngwenyama et al. 2007) deals with the decision
problem of finding points in time where the technology update should take place.
We omit the details since our interest is here rather in the learning model.

Armbruster et al. (2007) present a learning model which is used within the
context of the organization of a bucket brigade production system. As an effect
of training and growing experience, workers improve their velocity in performing
assigned jobs. The growth is modeled by the following formula: At time t , the
velocity is given as

v.t/ D v` C .vu � v`/.1 � e�t=� / (34.5)
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where v` and vu are lower and upper bounds on the velocity, respectively, and �
measures the ease of learning. Since velocity is measured as output per time unit,
this quantity can be considered as the production rate, corresponding to the ratio
ut =dt in (34.2). However, contrary to (34.2), where the right hand side is unbounded
as t ! 1, the velocity v.t/ given by (34.5) approaches a plateau which it cannot
exceed. This is similar as in the model of Ngwenyama et al. (2007), although the
function (34.5) is not a logistic function. As an alternative, the authors also discuss
the learning curve v.s/ D v` sb with s denoting the number of times the worker has
performed a task. Obviously, this model corresponds to (34.2). The authors observed
that in their simulations of a self-organizing bucket brigade system, both learning
models produced similar results.

34.2.2 Integration of Learning Models in Staffing
and Scheduling Decisions

In this subsection we shortly recapitulate three articles where skill learning models
are incorporated as components of optimization models for decisions on task
scheduling or staff assignment. The three papers consider the project(s) to be
executed as given; the more complex case where also project portfolio decisions
have to be made will be addressed in Sect. 34.3.

Chen and Edgington (2005) view organizational learning as a knowledge creation
process. It is clear that in the area of knowledge management, learning on the
one hand and knowledge depreciation on the other hand are particularly important
issues for planning. The model proposed in Chen and Edgington (2005) is a rather
comprehensive optimization model with either the sum or the net present value of
different types of benefits as the objective function. Decisions are made about the
portion of work each worker devotes in each time period to each task and to each
knowledge creation (KC) process. For each task, a required competence is defined,
and it is assumed that the degree of competence of each worker for performing
each task can be measured. Over time, workers loose competence at a fixed rate by
knowledge depreciation, but they can (over-)compensate for that by participating in
KC processes, which produce competence increments in proportion to the intensity
of the KC process, to the value of a logistic function applied to the time invested
in the KC process, and to the value of another logistic function applied to the
existing competence. The relation between the required competence to complete
a task and the actual competence of the workers assigned to the task is quantified
and influences the objective function. By a simulation framework, the authors show
typical results from the described model in diverse scenarios.

Wu and Sun (2006) deal with a multi-project R&D environment and address
the issues of task scheduling and staff assignment. Their model does not consider
forgetting or knowledge depreciation. The learning component of the model is based
on a Wright-type learning curve, the basic formula being NEp D NE1pb , where
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NEp denotes the average efficiency, p denotes the total number of time periods
spent by the staff on the task under consideration, and b is a parameter. This is
similar to Eq. (34.2). However, a difference should be noted: Whereas in (34.2), the
variable s stands for the output, the variable p refers to real work time, which is
only proportional to the output as long as the efficiency remains constant. We shall
examine this difference in more detail in Sect. 34.3. With Et denoting the efficiency
in time period t , we have

NEp D 1

p

pX

tD1
Et and thus Ep D p NEp � .p � 1/ NEp�1

The authors consider n D jQj projects, each of them involving one or several
tasks. The staff allocation decision consists in the assignment of staff to tasks for
each period t . The task scheduling decision consists in determining the workload
of each task in each period t . The authors formulate a mixed-integer nonlinear
program to minimize outsourcing costs, where it is assumed that each task that
cannot be completed before its due date will be subject to outsourcing. Scheduling
decisions are represented by real-valued variables, whereas staff allocations and
outsourcing decisions are represented by integer variables. A genetic algorithm is
used for solving the mathematical model heuristically.

Süer and Tummaluri (2008) propose an operator assignment model considering
learning and forgetting for a cellular manufacturing application. In the third phase
of a three-phase approach, operators are to be assigned to operations based on
their skills. Nine different skill levels are distinguished, and a stochastic model
for switches between these levels is described, where the essential criterion for a
change of the level is the number of weeks an operator has continuously performed
an operation (in the case of a level improvement) or not performed an operation
(in the case of level deterioration). Two strategies for the assignment are compared:
The first strategy consists in repeatedly solving linear assignment problems with the
skill levels as input data. This strategy has the disadvantage that it usually leads to
a high degree of specialization by assigning operators to operations at which they
are already good, but letting their skills at other operations deteriorate. On the long
run, this reduces the overall productivity. The second strategy identifies bottleneck
operations and assigns very skilled operators to them, but gives the other operators
the opportunity to improve their skills at non-bottleneck operations.

34.3 Project Portfolio Selection Under Skill Development

In this section, we turn to the application of skill development models in the area of
project selection. In particular, an optimization model introduced in Gutjahr et al.
(2008) under the name Project Selection, Scheduling and Staffing with Learning
Problem (PSSSLP) will be recapitulated in somewhat more detail. For general
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techniques of project portfolio selection and for skill-based project scheduling, the
reader is referred to Chaps. 26 and 27 in the first volume of this handbook and
Chap. 33 of this volume.

Suppose a set Q of candidate projects is given. The upper decision level of the
PSSSLP consists then in the selection of a subset of projects, a so-called project
portfolio, from the set Q. Let yq D 1 if project q is selected, and yq D 0 otherwise.

The (fixed) planning time interval is discretized into T periods t D 1; : : : ; T .
On the lower decision level, human resources from a set R have to be assigned to
the selected projects over time. As in other models for multi-skilled resources, it is
supposed that each human resource k 2 R can have a different skill level zkl in each
element l of a set L of skills (competencies). The PSSSLP model assumes that
skills increase by exertion and decrease by non-exertion. Thus, more precisely, the
skill levels are real numbers zklt also depending on t as they evolve over time (later,
we shall describe how).

Each project q 2 Q contains a set Vq � V of activities, where V D S
q2Q Vq

is the set of all activities occurring in one of the candidate projects. The sets Vq
are assumed as disjoint, i.e., projects do not “overlap”. Let aiq D 1, if i 2 Vq and
aiq D 0 otherwise. For an activity i , its ready time (earliest start time) ESi and its
due date di are given in terms of period indices. Furthermore, to each project q 2 Q,
a real number vq denoting the return gained from its execution is given.

Considered from a (long-term) strategic point of view, the single skills l 2 L
may have different values for the company. This can be captured by assigning a
weight wl > 0 to each skill l 2 L .

From the skill level zklt, an efficiency value �klt of resource k in skill l during
period t is obtained by applying some nondecreasing function ' that maps the set
of reals into the interval Œ0; 1�. In this survey, we shall call ' the efficiency function.
Efficiency in skill l is the output of a resource in an activity requiring only skill l ,
produced during the same time in which a resource perfectly skilled in skill l would
produce one unit of output. In other words, efficiency is relative production rate in
relation to a perfectly skilled worker. For example, if '.1/ D 0:3 and '.2/ D 0:9,
then a person with skill level 1 and a person with skill level 2 will (during the
same time) perform 30 and 90 %, respectively, of the amount of work of a person
with perfect skill. It is seen that upper bounds for skill levels need not to exist;
nevertheless, by the efficiency function ' mapping skill levels to efficiencies, the
marginal efficiency gain will diminish when already high skill levels are further
increased, since efficiencies cannot exceed the value 1.

A suitable shape of the efficiency function ' can be determined empirically by
restricting the set of possible functions to a parameterized class and estimating the
parameters from data. In Gutjahr et al. (2008), the class of logistic functions has
been chosen, based on the ideas in Chen and Edgington (2005) and Ngwenyama et
al. (2007) (see Sect. 34.2.2). Using this choice, '.z/ is of the form

'.z/ D �
1C a e�bz

��1
(34.6)
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with real-valued parameters a > 0 and b > 0. For the special case a D b D 1, refer
again to Fig. 34.1; now the input axis represents the skill level z and the output axis
represents the efficiency '.z/.

The part of activity i requiring skill l is called the work package .i; l/. It is
assumed that each work package .i; l/ consumes a so-called effective work time pil

.i 2 V; l 2 L /. The effective work time pil is defined as the time needed by a
person with maximum efficiency �klt 	 1 for completing work package .i; l/. The
work time unit is the maximum possible work time in one period. Since efficiencies
are typically smaller than one, real work times have to be computed: For a person
with efficiency �klt 	 � < 1, the real work time needed for performing work
package .i; l/ is pil=� , since per period, only the fraction � of the effective work
of one period is performed.

In period t , human resource k has a free capacity of Rk.t/ 2 Œ0; 1� .k 2 R; t D
1; : : : ; T /, expressed in units of (real) work time. Both the effective work times
associated with the work packages and the free capacities of the human resources
are assumed as given.

Now let us turn to the dynamics of the skill levels zklt. By learning, the value
zklt increases in each period where human resource k works in an activity requiring
skill l , and by forgetting (or by knowledge depreciation), the value zklt decreases in
each period where human resource k does not use skill l . The initial values zkl1 of
the skill levels are considered as known. It is assumed that the skill level of person k
in skill l increases in each period where person k has worked during an amount x
of time in skill l by an increment of size �l � x, where the “learning factor” �l is a
proportionality constant that can depend on l . Similarly, it is assumed that the skill
level of a person k in skill l is reduced by the amount ˇl in each period by forgetting
or knowledge depreciation, where ˇl is a “forgetting factor” that can depend on l as
well. The assumption �l > ˇl ensures that learning can over-compensate forgetting.

Whereas the upper level-decision on projects to be selected is described by the
binary decision variables yq , the lower-level decision on personnel assignment and
work distribution over time (respecting ready times and due dates of projects) is
described by real-valued decision variables xiklt 2 Œ0; 1� .i 2 V; l 2 L ; k 2
R; t D 1; : : : ; T /. The number xiklt gives the planned amount of real work time
spent on work package .i; l/ by human resource k in period t . Time unit is again the
maximum possible work time in one period, so that xiklt cannot exceed the value 1.

There may be constraints requiring that in each period t , the effective work time
invested in work package .i; l/ must not exceed a value bil (i 2 V , l 2 L ). In
particular, such constraints also allow it to formulate the requirement that the work
on certain activities has to be distributed evenly over time, if this is desired.

In total, the PSSSLP can be formulated as the mixed-integer mathematical
program (34.7)–(34.15) below. In view of the nonlinearity of ', it is evident that
this mathematical program is nonlinear.

The objective function of (34.7)–(34.15) is a weighted sum of the total return
from the selected projects and the strategic benefits resulting from the improvements
of the efficiencies �klt, aggregated over all persons k of the staff of the company. The
improvement is measured by the difference of the efficiencies in the period T C 1
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following the last planning period T , and the levels at the beginning (period 1). As it
is seen, the numbers wl express the strategic importance of the single skills from the
viewpoint of the management. By choosing these values, the management defines
the goals concerning the future orientation of the firm with respect to competencies.
It is clear that a tradeoff between immediate financial returns and strategic benefits
may occur. In such a situation, the management can decide rather to invest in a
promising competence development, which comes at a certain price, or rather to
put competence development goals aside for the sake of high immediate returns.
If the weights wl can be quantified, the optimization model above determines the
optimal compromise, taking the current competencies of the human resources of the
company into account.

Max.
X

q2Q

vqyq C
X

l2L

wl
X

k2R

.�k;l;TC1 � �kl1/ (34.7)

s. t. �klt D '.zklt/ .k 2 RI l 2 L I t D 1; : : : ; T / (34.8)

zklt D zkl1 � ˇl .t � 1/C �l
X

i2V

t�1X

sD1

xikls .k 2 RI l 2 L I t D 1; : : : ; T /

(34.9)
X

i2V

X

l2L

xiklt � Rk.t/ .k 2 RI t D 1; : : : ; T / (34.10)

diX

tDESi

X

k2R

�klt xiklt D pil

X

q2Q

aiq yq .i 2 V I l 2 L / (34.11)

X

k2R

�klt xiklt � bil .i 2 V I l 2 L I t D 1; : : : ; T / (34.12)

xiklt D 0 if t … fESi ;ESi C 1; : : : ; dig .i 2 V I k 2 RI l 2 L I t D 1; : : : ; T /

(34.13)

xiklt � 0 .i 2 V I k 2 RI l 2 L I t D 1; : : : ; T / (34.14)

yq 2 f0; 1g .q 2 Q/ (34.15)

The first constraint of (34.7)–(34.15) derives efficiencies from skill levels. The
second constraint describes the dynamics of skill level evolution by learning and
forgetting: note that forgetting causes a fixed decrement ˇl per period, whereas
the increment by learning is proportional to the invested real work time. The third
constraint ensures that the capacity limits of the human resources are respected, and
the fourth constraint guarantees that the effective work time required for each work
package of a selected project is covered by the invested real work of the human
resources, weighed by efficiencies. The sum on the right hand side is 1 exactly
if activity i belongs to a selected project and zero otherwise. The fifth constraint
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takes upper bounds on the effective work time per period into account. The sixth
constraint forbids work in a project before its ready time and after its due date, and
the remaining constraints specify the range of the used decision variables.

Because of its nonlinearity, the problem (34.7)–(34.15) is difficult to solve
numerically. A considerable simplification is achievable if the learning factor
and the forgetting factor can be considered as small, which gives a reasonable
approximation for the case of a comparably short planning period.

Mathematically, the assumption of small learning and forgetting factors �l and
ˇl , respectively, is represented by setting �l D O�l � � and ˇl D Ǒ

l � �, where the
numbers O�r and Ǒ

r are constants and � 
 1. This would also make the second
(skill-related) term in the objective function of (34.7)–(34.15) proportional to �,
if the wl values would be considered as constants. In order not to fade out the
influence of the skill term, it is reasonable to set wl D Owl =�. After performing these
substitutions, a Taylor expansion at � D 0, neglecting terms of order O.�2/, can
be carried out. Subtracting the constant term � Ǒ

l T from the resulting asymptotic
approximation of the objective function of (34.7)–(34.15), one obtains

Max.
X

q2Q
vqyq C

X

l2L
Owl O�l

X

k2R
' 0.zkl1/

X

i2V

TX

sD1
xikls (34.16)

with ' 0 denoting the first derivative of '. This objective function is linear in the
decision variables xiklt and yq .

Also the constraints simplify in a first order-approximation near � D 0: One gets

X

k2R
�klt xiklt �

X

k2R
�kl1 xiklt .� ! 0/ (34.17)

which is linear in the variables xiklt again. Note that the first two constraints are not
required anymore.

Computational Solution. The resulting mixed-integer LP still poses compu-
tational challenges if the number n D jQj of candidate projects is large. For
these cases, Gutjahr et al. (2008) propose solve the problem by a metaheuristic.
Experiments with ant colony optimization as well a with a genetic algorithm are
reported, based on synthetic test instances and on instances from a real-world project
management application (E-Commerce Competence Center Austria).

Model Extensions. Model (34.7)–(34.15) and its asymptotic approximation can
be extended by additional constraints. The formulations preserve the linear structure
of the model version obtained from the asymptotic approximation.

1. Maximum number of human resources per activity. The effective work required
by an activity can be covered by cooperation of several human resources.
However, it is not realistic to allow a too large number of people to con-
tribute to an activity, otherwise the communication overhead could become
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counter-productive. It is possible to introduce linear constraints that limit the
number of workers assigned to the activities to pre-defined bounds.

2. Expert constraint. In order to prevent solutions where the competency required
for a work package is covered numerically by cumulating small contributions of
a larger number of human resources with low skill level each, a constraint can be
formulated ensuring that at least one assigned worker serves as an “expert” for
the work package in the sense that s/he contributes a certain minimum amount of
effective work.

3. Minimum and maximum number of projects from predefined sets. A constraint of
this type makes sure that from a given subset of Q, a certain minimum and/or
maximum number of projects is selected.

4. Precedence relations between activities. As customary in project scheduling,
precedence relations between certain activities can be formulated.

5. Avoiding project interruption. The underlying scheduling model of (34.7)–
(34.15) is preemptive, but if necessary, a constraint can be defined ensuring that
once work in a project is started, it does not end (or drop below some minimum
activity level) before the project is terminated.

Connection to Classical Learning Models. In its standard version, the learning
model recalled in the beginning of Sect. 34.3 adopts the logistic function as the
efficiency function ' and continues in this way those prior works that apply
S-shaped learning curves. However, the model can also be used to cover learning
models of the type of Wright’s law (34.1). Below we shortly outline the idea,
approximating the time-discrete by a time-continuous learning process (for a
formally precise derivation, see Appendix B in Gutjahr 2011). With a parameter
˛ > 0, choose the efficiency function as '.z/ D z˛ , restricted to a suitable interval
for z, and set ˇl D 0 (no forgetting). Assume work of constant amount x0 (real work
time) per time unit. Then, omitting indices k and l in model (34.7)–(34.15), writing
time t as a continuous argument instead of a discrete index, and choosing a suitable
initial value z.1/, we get z.t/ D c t with some constant c, and hence �.t/ D c˛ t˛ .
Let s.t/ denote the cumulated effective work time up to time t . By definition of the
efficiency � ,

ds

dt
D x0 � �.t/ D x0 c

˛ t˛

Integration gives s D C t˛C1 with some constant C . Thus s˛=.˛C1/ is proportional
to �.t/, that is, 1=�.t/ is proportional to s�b with b D ˛=.˛ C 1/. However, the
reciprocal 1=�.t/ of the efficiency corresponds to the time needed for producing
one unit at time t , and the cumulated effective work s corresponds to the number of
units produced so far. Thus, within the considered interval of skill levels, Wright’s
law is obtained.
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34.4 Analytical Results on Project Portfolio Investment
over Time

Whereas Gutjahr et al. (2008) assume that 0–1 decisions on whether or not to
include a project in the portfolio have to be made, the model of project portfolio
selection with learning proposed in Gutjahr (2011) supposes that projects can
also be partially funded. A particular focus of the last-mentioned article is to
derive analytical results in order to obtain a deeper understanding of some of the
mechanisms and features of multi-period project portfolio management under skill
development, compared to financial portfolio management or to project portfolio
management with skills considered as fixed. Financial portfolios typically use the
effect of diversification as a means to hedge against risk. The model in Gutjahr
(2011) shows that under skill development, the aim of concentration becomes
important and has to be balanced against the risk-reducing effect of diversification.
This provides a theoretical argument for management styles oriented on core
competencies.

A basic and an extended variant of the model are presented. In both variants, a
set Q is assumed to be given, where q 2 Q is now considered rather as a project
class than as a single project. The decision maker can invest in a project class q
by an arbitrary amount of funding. This amount can also vary over time. Time is
discretized into periods t D 1; : : : ; T .

The human resources available to the company are now viewed as homogeneous
with respect to skills, i.e., the skill level zlt in skill l at time t is seen as a property
of the entire staff rather than as an attribute of an individual worker.

Basic Variant. The basic model variant supposes that to each project class q,
a unique particular skill required by this project class is assigned. Different project
classes require different skills, so the skill assigned to q can be denoted by q again.
This is obviously a rather strong assumption, though it is not uncommon in the
literature, cf. Chen and Edgington (2005). It is relaxed in the extended variant of the
model which will be described later; therein, each project class q 2 Q can require
one or more skills from a set L of skills to a certain pre-defined amount.

By the managerial decision, work time is assigned to project classes for each
period t , and similarly as in the model recapitulated in Sect. 34.3, it is assumed that
assigning an amount x of work time to project class q (requiring skill q) during a
period t increases the skill level of the staff in this skill by an increment proportional
to x. The proportionality constant is denoted by �q . On the other hand, the effect of
forgetting reduces the skill level in each skill by a fixed decrementˇq in each period.
Thus, if a skill is exerted to a sufficient extent, its level increases, and otherwise it
decreases.

As in the model presented in Gutjahr et al. (2008), the efficiency �qt 2 Œ0; 1� in
the skill corresponding to project class q in period t is computed from the skill level
zqt by the application of a nondecreasing efficiency function ' W R ! Œ0; 1�. If a
team with perfect skill in q needs d units of real work time to complete a project
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from project class q, then a team with efficiency �qt � 1 needs d=�qt � d units of
real work time to complete the same project. In both cases, the effective work time
is d . A standard choice for ' is again the logistic function (34.6), see Sect. 34.3.

It is assumed that the time capacity of the entire staff remains constant during
all periods. Taking the capacity of the staff during one period as the work time
unit, the amount of real work time of the staff that is invested into project class q
during period t is denoted by xqt. These variables are the decision variables. By the
choice of the work time unit, we have

P
q2Q xqt D 1 for all t . The overall effective

work time in project class q computes as yq D PT
tD1 �qt xqt. Note that contrary to

the model (34.7)–(34.15), binary decision variables (denoted there by yq) are not
needed anymore; the amount of engagement into a project class q is expressed now
by the continuous quantities yq .

To describe the returns from projects, it is assumed that each unit of effective
work time invested into any project from project class q yields a return of vq > 0.
The values vq represent the market situation. The model assumes that these values
remain constant over the planning horizon.

After substituting for variables as far as possible, we arrive at the following
nonlinear mathematical program:

Max.
X

q2Q
vq

TX

tD1
xqt '

 

zq1 � ˇq.t � 1/C �q

t�1X

sD1
xqs

!

(34.18)

s. t. xt 2 Sn .t D 1; : : : ; T / (34.19)

where xt is the vector of the variables xqt .q 2 Q/, and Sn D fx 2 R
n j Pn

qD1 xq D
1g is the standard simplex in the space R

n with n D jQj.
The following results are proven. We present the statements of the theorems

in informal terms; for the formal statements, the reader is referred to the original
article.

Theorem 34.1. If, for each project class, the effort invested in it is not allowed to
change over time, then it is optimal to put all efforts into one of the project classes
and none into the other project classes.

Theorem 34.2. Suppose that parameters and initial values are such that during all
periods, the current skill levels remain in an interval where the efficiency function '
is convex. Then there is an optimal policy investing in each period in only one project
class. The optimal project class can change from period to period.

Comment: This may be viewed as a theoretical argument for concentration on
“core competencies”. However, three points should be noted. First, the condition
concerning the local convexity of ' is essential for the result. Considering, e.g., a
logistic efficiency function (cf. Fig. 34.1), we see that it has a convex part for smaller
skill levels and a concave part for higher levels. Thus, by the result, a “newcomer”
lacking expert-level competencies is recommended to invest in a narrow portfolio
(which may be changed over time) in all periods, but for a company with expertise
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in one or several areas, it may be better to go through periods of diversification.
Second, the optimal project class for investment is not defined by the current skill
resources alone, but by the relation between skill resources and market. Third, the
model is deterministic. In the presence of uncertainty, the advantage with respect
to skill development achievable by a narrow portfolio may be outweighed by the
disadvantage of higher business risk.

Theorem 34.3. If the efficiency function ' is strictly increasing and forgetting does
not take place (ˇq D 0), an optimal policy under the additional constraint that in
each period, investment in only one project class is allowed, consists of identical
investment decisions for each period.

Comment: In other words, the theorem says that a manager who has decided to
restrict herself/himself to a focused strategy of portfolio selection only faces a static
decision problem: s/he has to find out the most profitable project class and can then
stick to it as long as the market conditions remain unchanged. (However, except
e.g. in the situation given by the conditions of Theorem 2, the mentioned restriction
to one project class per period may be suboptimal itself!)

Theorem 34.4. There is an optimal policy with the following property: In the last
period T , it invests only in a single project class. In the second-last period T � 1, it
can invest in this class and in at most one additional project class. In period T � 2,
it can invest in these two classes and in at most one additional project class, etc.

Comment: Of course, the assumption of a fixed time horizon T is an idealization,
so the result cannot be immediately transferred to practice. Its essence is the
following: It may happen that a company starts with a broad project portfolio. The
theorem recommends then that the management should successively (but in general
not abruptly!) restrict the set of active project classes until only one single (optimal)
project class survives. Again, it should be noted that the presence of uncertainty or
market changes can make this recommendation invalid.

Extended Variant. In applications, a project class often requires several differ-
ent skills instead of only one. Moreover, also the assumption that the available work
capacity is the same for each period may be violated. Therefore, Gutjahr (2011)
presents an extended model variant overcoming these two restrictions. The share
by which project class q 2 Q requires skill l 2 L is represented by a number
pql . As shares, the values pql are normalized by

P
l2L pql D 1 8q 2 Q. If the

manager decides to invest an effort yq in project class q, this generates a demand
of effective work of size pql yq in work package .q; l/. Real work times have now
triple indices: xqlt denotes the amount of real work in work package .q; l/ during
period t . The available real work time capacityR.t/ in each period t is considered as
given. Using these additional parameters, a generalization of model (34.18)–(34.19)
can immediately be defined. To give the model more realism with respect to skill
investment over time, it is possible to add a homogeneity constraint requiring that
the ratio �lt xqlt = �l 0t xql 0t between the effective work times in two work packages
.q; l/ and .q; l 0/ of the same project class remains the same in each period t .



744 W.J. Gutjahr

The article discusses numerical solution methods for this extended optimization
model and addresses also the case where the degree yq of investment in project
class q is limited by a pre-defined upper bound Bq .q 2 Q/.

In summary, the model recapitulated in this section shows that learning effects on
the supply side introduce a strong force towards portfolio concentration into optimal
project management. To a smaller or larger extent, this force is counteracted by the
force towards diversification caused by the effect of uncertainty on the demand side.
Although successful practical project portfolio management evidently depends on a
suitable balance between both, an integrated theoretical model for project portfolio
selection with learning under uncertainty seems not yet to be available.

34.5 Other Recent Literature

Several recent articles and working papers deal with project management under skill
development in a similar vein as the models recapitulated in the last two sections.
Project selection decisions are not addressed explicitly in all of these paper, but
also where this is not the case, the proposed models could be extended to a project
portfolio selection framework in a rather straightforward way. Let us outline some
of these approaches.

The Model by Heimerl and Kolisch. The article Heimerl and Kolisch (2010)
proposes an “inventory-type” model for skill development. It is based on a learning
curve of the general form y.zkl/ D fkl.zkl/, where zkl is the experience of human
resource k 2 R in skill l 2 L , and y.zkl/ is the unit production time as in (34.1).
In the experiments, the function fkl is chosen as

fkl.zkl/ D akle
��klzkl C bkl

which extends the Pendharkar’s and Subramanian’s formula (34.3) by the addition
of a positive constant term bkl, denoting the steady state unit production time. In
this way, the problem of production times tending to zero is avoided. Internal and
external human resources are distinguished. Work can also be assigned to external
resources (“outsourcing”), but typically with higher cost rates.

Time is discretized into periods t D 1; : : : ; T . In period t , to human resource k,
an amount sklt of work related to skill l is assigned. Experience develops according
to the inventory equation

zklt D zk;l;t�1 � ˇklt C sklt (34.20)

where ˇklt denotes the loss of experience caused by forgetting or knowledge
depreciation. By integrating the function fkl, the (real) work time xklt spent by
human resource k to perform the assigned sklt units of (effective) work in skill l
during period t can be computed. Multiplying xklt by cost rates ckt and summing
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over all l , k, and t , the overall cost is obtained. It forms the objective function of the
model.

Skill development targets are represented within the model as constraints. For
each skill l 2 L , the firm defines a skill target value 	l , to be reached at the end of
the last period T . This gives the constraints

X

k2Ri
l

1

fkl.zklT/
� 	l .l 2 L / (34.21)

where R i
l � R denotes the internal human resources having skill l (clearly, skill

development goals only refer to the internal personnel). Note that the quotient on
the left hand side of Eq. (34.21) gives the production rate of human resource k in
skill l at the end of the time horizon.

By adding resource availability constraints
P

l xklt � Rk.t/ and the constraintsP
k sklt � plt indicating that in each period t , the overall required work plt in

skill category l has to covered, a nonlinear mathematical program is obtained.
(Nonlinearity results from the property that the function representing the variables
xklt by the variables zklt and sklt is a difference of convex functions.) The authors
solve the model for special instances by using a primal-dual interior point filter
line-search algorithm with repeated choice of random starting points. An interesting
managerial insight from these instances is that for a steeper learning curve, a higher
degree of specialization among individual resources resulted.

Multi-Objective Project Selection. In the practice of project management,
one frequently observes a tradeoff between economic objectives as cost reduction
or (immediate) profit maximization on the one hand, strategic goals concerning
competence development (which may pay off in the future) on the other hand. The
model in Heimerl and Kolisch (2010) takes this tradeoff into account by formulating
competence- or skill-related targets as constraints and letting cost represent the
objective function. Alternatively, however, one may also follow the well-established
approach in multi-objective optimization to define two or more objective functions,
to determine the efficient frontier (also known as Pareto frontier) with respect to
them, and to leave the final choice from the set of efficient solutions to the decision
maker.

In Gutjahr et al. (2010), a multi-objective extension of the project selection
model (34.7)–(34.15) is introduced, and numerical solution techniques are inves-
tigated. The problem reads now

Max. ff1.y/; : : : ; f�.y/; g1.x/; : : : ; g�0.x/g (34.22)

with

f�.y/ D
X

q2Q
v.�/q yq .� D 1; : : : ; �/ (34.23)
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and

g�.x/ D
X

l2L
w.�/l

X

k2R
.�k;l;TC1 � �kl1/ .� D 1; : : : ; �0/ (34.24)

The constraints are essentially the same as in (34.7)–(34.15). The set (34.23) of
objective functions represents the economic benefits from the selected projects.
Therein, the objective function f�.y/ represents the �-th economic benefit measure

computed from the values v.�/q assigned to the single projects. Observe that it is
possible to evaluate a project according to more than one economic criterion. For
instance, v.1/q could denote return, and v.2/q could denote turnover of project q.
The set (34.24) of objective functions represents the skill-related benefits obtained
from the increments of the efficiencies �klt over the planning horizon. Therein, the
objective function g�.x/ measures the total increment of weighted efficiencies,
cumulated over employees, where the efficiency value corresponding to skill l is
weighted by the importance value w.�/l . Again, more than one criterion could be

used. For instance, the weights w.1/l could focus on skills needed in a state-of-the-art

production technology, whereas the weights w.2/l could put emphasis on skills
required by a promising new alternative technology. Since the efficiencies �klt are
determined by their initial values �kl1 and the assigned real work times xikls up to
time s D t , the objectives g� are functions of the vector x of the variables xiklt.

As (34.7)–(34.15), the problem above can be simplified by a linear asymptotic
approximation, but remains computationally hard. For the upper decision
level (determination of the binary variables yq), the authors investigate two
multi-objective metaheuristics, namely the multi-objective genetic algorithm
NSGA-II and the swarm-intelligence-based technique P-ACO. The lower-level
problem (determination of the continuous variables xiklt) is solved by means of the
Linear Programming solver of CPLEX.

If in the multi-objective optimization model (34.22)–(34.24) above, more than
two objective functions are included, it may become difficult to present the efficient
solutions to the decision maker in a transparent form. Moreover, with growing
number of objectives, the number of efficient solutions may become too large
for evaluation by direct comparison. The article Stummer et al. (2009) proposes
an interactive decision support system enabling the user to explore the solutions
of model (34.22)–(34.24). Graphical representation tools are offered to facilitate
the analysis, and special mechanisms allow a gradual interactive restriction of the
currently considered set of candidate solutions by introducing or strengthening
aspiration levels for certain objective functions. All these mechanisms can be com-
putationally fast since as soon as the basic set of efficient solutions is determined,
the decision support system can work directly on this set instead of having to solve
further optimization problems. Some practical experiences with the application of
the method and the decision support system are discussed in Stummer et al. (2012).
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Cross-Training Effects. The main contribution of the article Olivella et al.
(2013) is that it introduces the effect of cross training into the skill development
model. It is a frequent observation that learning-by-doing does not only improve
the skill immediately needed for the activity under consideration, but, at least to
some extent, also related skills. The model presented by the authors is similar to
model (34.7)–(34.15). As in several other papers, a one-to-one relation between
skills and tasks is assumed. Contrary to (34.7)–(34.15), the efficiency function '
does not have the real work time, but the effective work time as its argument.
As a consequence, the equation for the update of experience levels looks a little
bit different as in (34.7)–(34.15). What is more important, however, is that the
efficiency �klt of human resource k in task (skill) l during period t is not made
dependent on the experience in skill l alone, but also on the experience in related
skills: The authors assume that

�klt D 'l.eklt C e0
klt/

where eklt is the experience of human resource k in task (skill) l at the beginning
of period t , and e0

klt is the equivalent of the experience of human resource k in task
(skill) l at the beginning of period t , obtained by doing other tasks. Both eklt and e0

klt
are measured in units of effective work time.

The objective function considered in Olivella et al. (2013) is total (effective) work
performed at the end of the planning horizon. Some tasks may have due dates, others
not. For those tasks i that have an assigned due date di , a constraint requires that
they are completed within this due date. The other jobs can be completed within
the planning horizon, but they need not to be completed. Cross-training goals are
introduced in the form of constraints (this is similar as in the model in Heimerl and
Kolisch 2010): For each skill for which a cross-training goal exists, a minimum level
of experience to be reached at the end of the planning horizon is defined.

For the numerical solution, the authors relax one of the constraints and replace the
resulting problem by a convex piecewise linear approximation. In a second phase,
the solution of the relaxed problem is taken as a starting solution for the construction
of a feasible solution to the original problem.

Other Approches. Chacosky et al. (2012) build on a model for learning and
forgetting developed in Nembhard and Norman (2007). Only task assignment is
addressed, no project portfolio decisions are made. Tasks and skills are considered
equivalent. The skill development model is given by

�kl� D Ikl CKkl

�

1 � exp

	

�
P�

tD1 xklt

Lkl


�

exp

	P�
tD1 xklt � �

Fkl




(34.25)

where �kl� is the production rate (efficiency) of individual k in period � , xklt is a
binary variable indicating whether or not individual k is assigned to task (skill) l
in period t , Lkl and Fkl are the parameters governing the speed of learning and
forgetting, respectively, and Ikl and Kkl are initial and steady state efficiency of
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individual k in skill l , respectively. The task assignment model assumes an ordered
sequence of tasks that have to be passed sequentially. In each period, each individual
can be assigned to at most one task, and each task can be performed by at most
one individual. The objective function represents the overall output produced after
the last task has been completed. The output of an individual k assigned to task l
in period t is equal to �klt. The authors used the binary structure of the decision
variables to derive a reformulation of the task assignment problem that can be solved
efficiently by standard optimization software.

In Ollila (2009), the decision maker is a research funding agency distributing
funding among research groups. The specific feature of the model presented in this
paper is that it assumes skill development not to depend on the time of exertion of
a skill, but rather on received funding which increases the competence level of the
research group.

For further related recent literature, see, for example, Fikri et al. (2011) or Attia
et al. (2012). Both papers provide models without project selection decisions, but
with consideration of staff assignment and skill development during the execution
of multi-period projects.

34.6 Conclusions

Taking account of skill learning and skill depreciation in project selection models
is not simply a refinement of basic skill-based modeling approaches. It is a more
substantial attempt insofar as competence development lies at the core of the
fundamental issue of strategy in project management. The “resource-based view of
the firm” (see Peteraf 1993) has underlined the observation that typically, companies
are heterogeneous in terms of their resources, and that competitive advantage results
if distinctive organizational competencies are developed in agreement with market
opportunities. To map this feature in formal models for strategic project man-
agement, some quantitative representation of competence development is needed.
As we have seen, the awareness of this point has grown during the last years,
documented by the emerging literature on skill learning in project management.

Concerning opportunities for future research, let us restrict ourselves here to
one aspect that deserves particular attention. As generally in the quantitative
project management literature, also in the area of project selection under skill
development, most articles started with deterministic models. However, the presence
of uncertainty is notorious in project management, so it would be highly desirable to
extend existing optimization or decision support models by incorporating suitable
representations of uncertainty, either by stochastic models or by other approaches
as robust optimization, fuzzy logic etc. Publications on skill-based project selection
under uncertainty are very rare at the moment. As far as strategic objective functions
are concerned, competence-driven project selection under uncertainty has been
addressed in Gutjahr and Reiter (2010), but one would like to have more com-
prehensive stochastic models where skill development is also represented within
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the constraints. Works on project portfolio selection of this type will inevitably get
closer to the area of financial portfolio selection in which stochastic models have
a long tradition. A good starting point for investigations may be Liesiö and Salo
(2012) where portfolio selection models from financial engineering are adopted to
the field of project management. It is an open question how such approaches can be
extended to the consideration of skill development.

Acknowledgements The author wants to thank Christian Stummer for useful hints.

References

Armbruster D, Gel ES, Murakami J (2007) Bucket brigades with worker learning. Eur J Oper Res
176:264–274

Attia E-A, Duquenne P, Le-Lann J-M (2012) Decision-based genetic algorithms for solving
multi-period project scheduling with dynamically experienced workforce. In: Proceedings
of the 9th international conference on modeling, optimization and simulation (MOSIM’12),
Bordeaux

Chacosky A, Grasman SE, Hewitt M, Thomas BW (2012) A reformulation technique for solving
non-linear workforce planning models with learning. Available at http://myweb.uiowa.edu/
bthoa/iowa/Research_files/reformulation_article_Oct2012.pdf. Cited 30 Dec 2013

Chen ANK, Edgington TM (2005) Assessing value in organizational knowledge creation:
considerations for knowledge workers. MIS Q 29:279–309

Darr ED, Argote L, Epple D (1995) The acquisition, transfer, and depreciation of knowledge in
service organizations: productivity of franchises. Manag Sci 440:1750–1762

Epple D, Argote L, Devadas R (1991) Organizational learning curves: a method for investigating
intra-plant transfer of knowledge acquired through learning by doing. Organ Sci 2:58–69

Fikri M, Alaoui AEH, Khomssi ME (2011) Assignment staff with dynamic competencies in
multi-projects and multi-periods: modelling and solving by a hybridization of ant colony
optimization. Int J Comp Sci and Netw Secur 140:227–240.

Fioretti G (2007) The organizational learning curve. Eur J Oper Res 177:1375–1384
Gutjahr WJ (2011) Optimal dynamic portfolio selection for projects under a competence

development model. OR Spectr 33:173–206
Gutjahr WJ, Reiter P (2010) Bi-objective project portfolio selection and staff assignment under

uncertainty. Optim Method Softw 59:417–445
Gutjahr WJ, Katzensteiner S, Reiter P, Stummer C, Denk M (2008) Competence-driven project

portfolio selection, scheduling and staff assignment. Cent Eur J Oper Res 16:281–306
Gutjahr WJ, Katzensteiner S, Reiter P, Stummer C, Denk M (2010) Multi-objective decision

analysis for competence-oriented project portfolio selection. Eur J Oper Res 205:670–679
Heimerl C, Kolisch R (2010) Work assignment to and qualification of multi-skilled human

resources under knowledge depreciation and company skill level targets. Int J Prod Res
48:3759–3781

Liesiö J, Salo A (2012) Scenario-based portfolio selection of investment projects with incomplete
probability and utility information. Eur J Oper Res 217:162–172

Nembhard DA, Norman BA (2007). Cross training in production systems with human learning and
forgetting. In: Nembhard DA (ed) Workforce cross training, Chap. 4. CRC Press, Boca Raton,
pp 111–129

Ngwenyama O, Guergachi A, McLaren T (2007) Using the learning curve to maximize IT
productivity: a decision analysis model for timing software upgrades. Int J Prod Econ 105:524–
535

http://myweb.uiowa.edu/bthoa/iowa/Research_files/reformulation_article_Oct2012.pdf
http://myweb.uiowa.edu/bthoa/iowa/Research_files/reformulation_article_Oct2012.pdf


750 W.J. Gutjahr

Olivella J, Corominas A, Pastor R (2013) Task assignment considering cross-training goals and
due dates. Int J Prod Res 540:952–962

Ollila M (2009) Dynamic impacts of competence-based competitive research funding. Available
at http://salserver.org.aalto.fi/vanhat_sivut/Opinnot/Mat-2.4108/pdf-files/eoll09b.pdf. Cited 30
Dec 2013

Pendharkar PC, Subramanian GH (2007) An empirical study of ICASE learning curves and
probability bounds for software development. Eur J Oper Res 183:1086–1096

Peteraf MA (1993) The cornerstones of competitive advantage: a resource-based view. Strateg
Manag J 14:179–191

Stummer C, Kiesling E, Gutjahr WJ (2009) A multicriteria decision support system for
competence-driven project portfolio selection. Int J Inf Tech Decis 8:379–401

Stummer C, Gutjahr WJ, Denk M, Riedmann H, Froeschl KA (2012) Training on the project:
a quantifying approach to competence development. Knowl Manag Res Pract 10:64–78

Süer GA, Tummaluri R (2008) Multi-period operator assignment considering skills, learning and
forgetting in labor-intensive cells. Int J Prod Res 46:469–493

Wright TP (1936). Factors affecting the cost of airplanes. J Aeronaut Sci 3:122–128
Wu M-C, Sun S-H (2006) A project scheduling and staff assignment model considering learning

effect. Int J Adv Manuf Technol 28:1190–1195

http://salserver.org.aalto.fi/vanhat_sivut/Opinnot/Mat-2.4108/pdf-files/eoll09b.pdf


Part XII
Stochastic Project Scheduling



Chapter 35
The Stochastic Time-Constrained Net Present
Value Problem

Wolfram Wiesemann and Daniel Kuhn

Abstract The successful management of capital-intensive development and engi-
neering projects requires a careful timing of the involved cash in- and outflows.
To this end, the project management literature proposes to schedule the project
activities so as to maximize their net present value (NPV), that is, the sum of all
discounted cash flows. Traditionally, the literature on NPV maximization ignores
the uncertainty inherent in the activity durations and cash flows. In this survey, we
argue that this uncertainty should be accounted for explicitly, and we investigate
the computational challenges involved in doing so. We then review the two major
strands of literature on stochastic NPV maximization. The first set of papers
provides optimal solutions under the assumption that the activity durations follow
independent exponential distributions. The second strand of literature allows for
generic distributions but focuses on suboptimal solutions. We conclude with a list
of research questions that we believe deserve further attention.

Keywords Net present value • Project scheduling • Stochastic scheduling •
Uncertain cash flows • Uncertain durations

35.1 Introduction

Traditionally, the project scheduling literature has investigated models and algo-
rithms for timing a project’s activities so as to minimize the project makespan, that
is, the time required to complete all project activities, subject to various types of
precedence and resource constraints. Despite its popularity, the project makespan
largely ignores the financial aspects of a project. While this may be acceptable

W. Wiesemann (�)
Imperial College Business School, Imperial College London, London, UK
e-mail: ww@imperial.ac.uk

D. Kuhn
Risk Analytics and Optimization Chair, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland
e-mail: daniel.kuhn@epfl.ch

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 2, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05915-0_5

753

mailto:ww@imperial.ac.uk
mailto:daniel.kuhn@epfl.ch


754 W. Wiesemann and D. Kuhn

for small or highly time-critical projects, the prudent coordination of cash in- and
outflows is crucial for the viability of large and capital-intensive projects found in
the construction, IT, and manufacturing industries. In such projects, cash inflows
arise from progress payments for completed work, whereas cash outflows account
for salaries and payments to contractors as well as investment and operating costs.

The financial viability of a project is typically measured by its net present value
(NPV), which results from discounting all cash flows to the start time of the project.
For example, if a project gives rise to the cash flows cF1 ; : : : ; c

F
n 2 R at the times

t1; : : : ; tn, respectively, then the project’s NPV evaluates to

NPV D
nX

iD1
ˇti � cFi

where ˇ D .1 C r/�1 denotes the discount rate associated with the interest rate r
per unit time (e.g., r D 0:1 for 10%). By convention, positive cash flows denote
cash inflows, while negative cash flows represent expenditures. The NPV can be
interpreted as the “cash equivalent” of undertaking the project (Luenberger 1997).

The inclusion of economic considerations in project scheduling dates back to
the 1960 of the last century, see Kelley (1961). Project scheduling models with
NPV objective were first investigated by Russell (1970). The most elementary
formulation disregards resource constraints and assumes that all model parameters
are known. More precisely, we consider a project that is defined on an acyclic
directed graph G D .V;E/, where the nodes V D f1; : : : ; ng represent the project
activities and the arcs E � V � V denote the precedence relations of finish-start
type. Activity i 2 V requires pi 2 R�0 time units to finish and gives rise to a cash
flow of size cFi when it is started. Without loss of generality, we assume that 1 and
n are the unique source and sink of the network, respectively, and that activity 1 is
to be started at time zero. For a given discount rate ˇ 2 .0; 1/, the problem can then
be formulated as follows.

Max.
X

i2V
cFi � ˇSi

s. t. S 2 R
n

Sj � Si C pi ..i; j / 2 E/
S1 D 0

In this formulation, which we henceforth refer to as NPV, the decision variable Si
denotes the start time of activity i 2 V . The constraints ensure nonnegativity of the
project schedule and satisfaction of the precedence constraints. A project deadline of
d can be imposed by adding the constraint Sn Cpn � d . We say that problem NPV
is deterministic since it assumes that the network structure G, the activity durations
pi and cash flows cFi , as well as the discount rate ˇ are known. Problem NPV is
called time-constrained as it only accounts for precedence relations but disregards
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resource constraints. Note that the NPV maximization problem NPV generalizes
the makespan minimization problem, which we recover by setting cFi D 0, i D
1; : : : ; n � 1, and cFn D 1.

Although the objective function in NPV is nonconvex, the variable substitution
yi WD ˇSi allows us to equivalently reformulate the problem as a linear program:

Max.
X

i2V
cFi � yi

s. t. y 2 R
n�0

yj � ˇpi � yi ..i; j / 2 E/
y1 D 1

This reformulation, which we henceforth refer to as NPV’, has been discovered
by Grinold (1972). A project deadline of d can again be enforced by adding the
constraint yn � ˇd�pn . The resulting problem can be solved with a network simplex
algorithm. More efficient solution schemes have been proposed by Elmaghraby
and Herroelen (1990), Neumann and Zimmermann (2000), and Schwindt and
Zimmermann (2001).

Over the last decades, numerous authors have extended the deterministic time-
constrained NPV maximization problem NPV to accommodate renewable, nonre-
newable, and doubly-constrained resources as well as time-dependent cash flows.
We refer the interested reader to Herroelen et al. (1997), Kimms (2001), Demeule-
meester and Herroelen (2002) and Chap. 14 in the first volume of this book for
extensive reviews of the literature. Perhaps surprisingly, the stochastic version of the
time-constrained NPV maximization problem has received much less attention. This
chapter aims to give an overview of the available literature and point out interesting
avenues for future research. While we focus on the temporal aspects of the problem
and disregard phenomena related to resource usage, we provide references to the
literature on the resource-constrained formulations where applicable. In terms of
the classification scheme proposed by Brucker et al. (1999), we thus study the
problems PSjpj D sto, precjP cF

j ˇ
Cj
j and PSjpj D sto, tempjP cF

j ˇ
Cj
j , which

correspond to the problems ıjcpm, cont,cj jEŒnpv� and ıjgpr, cont,cj jEŒnpv� in the
classification scheme by Herroelen et al. (1999).

The literature on NPV maximization in stochastic project selection is reviewed
by Kavadias and Loch (2004). NPV maximization problems in stochastic machine
scheduling and process systems engineering are discussed by Slotnick (2011),
Verderame et al. (2010), Ierapetritou and Li (2009), Li and Ierapetritou (2008),
while NPV maximization in new product development is studied, amongst others,
by Colvin and Maravelias (2010, 2011), De Reyck et al. (2007), and De Reyck and
Leus (2008), see Chap. 57 in this book. The estimation of activity durations and
cash flows is studied by Lock (2007), Maylor (2010), and Meredith and Mantel
(2006). Herroelen et al. (1997) illuminate the relation between stochastic NPV
maximization and real options theory (Dixit and Pindyck 1994). For the literature
on the payment scheduling problem, where the cash flows are themselves decision
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variables that can be optimized by the project manager or the client, we refer to
Dayanand and Padman (1999, 2001), He et al. (2012), and Kolisch and Padman
(2001).

The remainder of this chapter proceeds as follows. The next section highlights the
importance of stochastic project scheduling and its associated computational chal-
lenges. Section 35.3 reviews the literature on the stochastic time-constrained NPV
problem with independent and exponentially distributed activity durations, whereas
Sect. 35.4 surveys the available solution methods when the activity durations are
modeled as random variables that follow generic distributions. We conclude in
Sect. 35.5 with some open questions that we believe deserve further scrutiny.

35.2 Stochastic Project Scheduling:
Importance and Challenges

A key characteristic of projects is their one-off nature (Project Management Institute
2013), which implies that the parameters in problem NPV are typically uncertain at
the planning stage. In particular, some of the activities i 2 V required to complete
the project may be unknown, the activity durations pi and cash flows cFi may be
uncertain, and the interest rate r underlying the discount rate ˇ can fluctuate subject
to the financial situation of the company as well as macroeconomic developments.
Adopting the consensus view in the project scheduling literature, we assume that
the network structure G and the discount rate ˇ are known, and we study the
consequences of uncertain activity durations p and cash flows cF . For a survey
on project scheduling with stochastic network structure, see Neumann (1999).

The stochastic NPV maximization problem models the activity durations and
cash flows as random variables. In the following, we designate random objects by
the tilde sign, that is, the uncertain activity durations and cash flows are denoted
by Qp and QcF , whereas their realizations are written as p and cF . To simplify the
exposition, we assume that the cash flow QcFi arises when activity i is started,
whereas the duration Qpi of activity i is known once i is completed. The models
can readily be adapted to accommodate cash flows that arise when the activities
are completed. In analogy to the deterministic NPV maximization problem, our
objective is to select activity start times that maximize the project’s NPV. However,
the stochastic variant of the problem raises several new questions. Firstly, how can
we choose activity start times when we do not know the activity durations? After all,
assigning a deterministic start time to an activity j 2 V may violate the precedence
constraints if a predecessor of j finishes later than anticipated. Secondly, how can
we compare the NPVs of different project schedules when the NPVs are themselves
random variables? In fact, being the discounted sum of the uncertain activity cash
flows, the project’s NPV is itself no longer deterministic.

In view of the first question, we can think of the project as a stochastic process
that evolves in continuous time. At any point in time t , some of the activities are
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t1 t2 t3

Fig. 35.1 For the project graph on the left, the Gantt charts on the right illustrate the project
evolution at three time points t1 < t2 < t3. At time t1, the project manager only knows the
realization of QcF1 since the first activity is still active. At time t2, the first activity has finished.
Knowing the realizations of QcF1 and Qp1, the project manager decides to start activities 2 and 3.
At time t3, the second activity has finished. Under the knowledge of QcF1 , QcF2 , QcF3 , Qp1, and Qp2, the
project manager initiates activity 4

completed, some may be active, and others are idle, that is, they have not yet
been initiated. The project manager can then decide which of the idle activities
are started at time t , given (1) her knowledge of the durations of the activities
that are completed by time t , (2) the information that the durations of the active
activities must exceed their current “lifetimes”, and (3) the knowledge of all the cash
flows of the activities that have been started by time t . This is the non-anticipativity
requirement in stochastic programming (Kall and Wallace 1994; Ruszczyński and
Shapiro 2003): the decisions selected at any point in time must only depend on
the available information, that is, we are not allowed to “look into the future”.
Contrary to the deterministic NPV maximization problem, the activity start times
are therefore no longer deterministic decision variables, but they represent non-
anticipative functions of the available information. Mathematically speaking, we say
that the activity start times have to be stopping times. The situation is complicated by
the fact that the times at which we observe the realizations of the random variables
Qpi and QcFi themselves depend on our scheduling decisions, that is, the information

structure of our problem is decision-dependent. Problems of this type are typically
very challenging to solve, and they have received fairly limited attention in the
stochastic programming literature. Figure 35.1 illustrates the situation.

How can we compare the NPVs of two project schedules if those NPVs are
random variables? A preference order over random variables is commonly obtained
via risk measures, which assign each random variable a real number. An elementary
risk measure that is used extensively in the stochastic project scheduling literature
is the expected value, which can be interpreted as the “average outcome” that we
would expect to observe if we repeated the same project many times. Although the
expected value is attractive from a computational viewpoint, it does not account
for the risk aversion of the decision maker. Indeed, most projects are unique
undertakings that involve substantial financial investments. As such, the project
manager might be much more concerned about particularly undesirable project
outcomes than about the average performance. Risk measures that account for
the decision maker’s risk aversion include the variance, the value-at-risk (VaR),
and the conditional value-at-risk (CVaR), see Pflug (2000) and Rockafellar and
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Uryasev (2000). Omitting some technical details, the "-VaR of a random variable
Q� represents the "-quantile of the distribution of Q� , whereas the "-CVaR denotes the
expected value of Q� under the assumption that Q� takes on one its " � 100% “worst”
values. Thus, using VaR or CVaR gives the undesirable outcomes more weight in
the objective than the average outcomes.

Our discussion so far indicates that the stochastic NPV maximization problem
is significantly more involved than its deterministic counterpart. As such, the
question naturally arises whether it may be sufficient to approximate the stochastic
problem with a nominal model in which we replace the uncertain parameters with
deterministic quantities (such as their expected or most likely values). To answer
this question, we follow the reasoning by Möhring (2001) and consider a project
G D .V;E/ with activities V D f1; : : : ; ng and precedences E D f.1; i/ W i D
2; : : : ; n � 1g [ f.i; n/ W i D 2; : : : ; n � 1g. The cash flows satisfy QcFi D 0,
i D 1; : : : ; n � 1, and QcFn D 1. The durations Qp2; : : : ; Qpn�1 follow independent
uniform distributions with support Œ0; 10�, whereas Qp1 D Qpn D 0 almost surely.
Figure 35.2 (left) illustrates the project network for n D 6. If we replace the
uncertain activity durations with their expected values, then the nominal model
amounts to a deterministic time-constrained NPV problem with activity durations
p1 D pn D 0 andpi D 5, i D 2; : : : ; n�1, and cash flows cFi D 0, i D 1; : : : ; n�1,
and cFn D 1. For a fixed discount rate ˇ 2 .0; 1�, the deterministic model is
optimized by the early start schedule (“start each activity as soon as all of its
precessors are completed”) with an NPV of ˇ5. Let us now investigate the optimal
objective value of the stochastic NPV maximization problem. Since n is the only
activity with a nonzero cash flow and QcFn > 0 almost surely, the early start policy
also maximizes the NPV in the stochastic setting. Note that the early start policy
is non-anticipative by construction. The probability that the NPV in the stochastic
problem exceeds z 2 R�0 evaluates to

p̃i ∼ U [0; 10]

c̃F2 = : : : = c̃F5 = 0

c̃Fi = 0

c̃F6 = 1

c̃F6 = 1

c̃F1 = 0

c̃F1 = 0
p̃6 = 0p̃1 = 0

1 6
3

2

4

5

1

4

3

2

6

5

Fig. 35.2 Two example projects. In the left project, the durations of the first and the last activity
as well as all cash flows are deterministic, whereas the other durations follow independent uniform
distributions. In the right project all cash flows are deterministic, and the durations follow inde-
pendent distributions with known density functions fi and cumulative distribution functions Fi



35 The Stochastic Time-Constrained Net Present Value Problem 759

P
�
ˇmaxf Qp2;:::; Qpn�1g > z


D P

�
min

n
ˇ Qp2 ; : : : ; ˇ Qpn�1

o
> z



D
n�1Y

iD2
P
�
ˇ Qpi > z


D

n�1Y

iD2
P
� Qpi < logˇ z

�

D
	

logˇ z

10


n�2

where the second identity follows from the independence of the activity durations.
For fixed ˇ, this quantity goes to zero for all z > ˇ10 when the number of activities
n approaches infinity. Since ˇ5 > ˇ10, we thus conclude that the nominal problem
provides a poor approximation if the number of activities n is large. For further
details, see Jørgensen and Wallace (2000) and Elmaghraby (2005).

In view of the disappointing approximation quality of the nominal problem
there is a need to solve the stochastic NPV maximization problem. We tackle this
challenging task from two angles. First, we discuss how we can characterize the
NPV if the optimal start time policy is known. Afterwards, we comment on the
structural properties of the optimal start time policy.

Consider the project shown in Fig. 35.2 (right), which is an adaptation of an
example presented by Demeulemeester and Herroelen (2002). We assume that
the activity durations Qpi follow independent probability distributions with density
functions fi and cumulative distribution functions Fi . For ease of exposition, we
assume that the cash flows satisfy QcF1 D : : : D QcF5 D 0 and QcF6 D 1 almost surely.
Note that the non-anticipative early start policy is again optimal since n is the only
activity with a nonzero cash flow and QcFn > 0 almost surely. We aim to characterize
the cumulative distribution function of the project’s NPV under the early start policy.
If we denote the cumulative distribution function of activity i ’s earliest start time by
Gi , then we obtain for the first three activities that

G1.t/ D
(
1 if t � 0;

0 otherwiseI and G2.t/ D G3.t/ D P . Qp1 � t/ D F1.t/

The distribution of the earliest start time of activity 4 is

G4.t/ D P . Qp1 C Qp2 � t/ D .F1 � f2/ .t/

where .�1 � �2/.t/ WD R
�2R �1.�/ � �2.t � �/ d� denotes the convolution of two

functions �1 and �2. The earliest start time of activity 5 depends on the maximum
of two independent random variables:

G5.t/ D P .max f Qp1 C Qp2; Qp1 C Qp3g � t/ D P . Qp1 C max f Qp2; Qp3g � t/

D .f1 � � /.t/ D .f1 � ŒF2 � F3�/ .t/
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where

� .t/ WD P .max f Qp2; Qp3g � t/ D P . Qp2 � t; Qp3 � t/

D P . Qp2 � t/ � P . Qp3 � t/ D F2.t/ � F3.t/

Here, we use the notation .�1 � �2/.t/ WD �1.t/ � �2.t/. Calculating G6 is more
involved as it depends on the maximum of dependent random variables:

G6.t/ D P .max f Qp1 C Qp2 C Qp4; Qp1 C Qp2 C Qp5; Qp1 C Qp3 C Qp5g � t/

D P . Qp1 C max f Qp2 C Qp4; Qp2 C Qp5; Qp3 C Qp5g � t/

D .f1 � � 0/.t/

where

� 0.t/ WD P .max f Qp2 C Qp4; Qp2 C Qp5; Qp3 C Qp5g � t /

D
Z

ı2;ı5�0

P .ı2 C Qp4 � t / � P.ı2 C ı5 � t / � P . Qp3 C ı5 � t / � f2.ı2/ � f5.ı5/ dı2 dı5

D
Z

ı2;ı5�0;
ı2Cı5�t

P . Qp4 � t � ı2/ � P . Qp3 � t � ı5/ � f2.ı2/ � f5.ı5/ dı2 dı5

D
Z

ı2;ı5�0;
ı2Cı5�t

F4.t � ı2/ � F3.t � ı5/ � f2.ı2/ � f5.ı5/ dı2 dı5

Hence, the probability that the project’s NPV exceeds z 2 R�0 is given by

P
�
ˇ Qp6 > z


D P

� Qp6 < logˇ z
� D G6.logˇ z/

Estimating a project’s NPV in this way can be done algorithmically (Ghomi
and Hashemin 1999; Schmidt and Grossmann 2000), but the approach becomes
impractical for large networks. In fact, we cannot expect that there is an algorithm
that efficiently determines the cumulative distribution function of a project’s NPV.
It follows from Hagstrom (1988) that even if all cash flows are deterministic and
nonnegative and the activity durations are independent Bernoulli random variables,
the calculation of any pre-specified quantile of a project’s NPV under the early start
policy is #PSPACE-hard.

So far, we have only considered NPV maximization problems where all cash
flows were nonnegative. Such problems are optimized by the (non-anticipative)
early start policy. However, it is well-known that the NPV is a non-regular objective,
that is, it is not optimized by the early start schedule in general. This is illustrated by
the deterministic project in Fig. 35.3 (left). If we solve the associated deterministic
NPV maximization problem NPV for a sufficiently large discount rate ˇ (i.e.,
ˇ > 3

p
1=2), then we obtain the optimal activity start times S?1 D S?2 D 0, S?3 D 2
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Fig. 35.3 The left graph shows an example project with nominal activity durations (first value)
and cash flows (second value). The charts on the right show the optimal non-anticipative start time
policies for activity 3 if Qp2 and Qp3 follow independent uniform (middle) and exponential (right)
distributions

and S?4 D 5. Thus, the activities 1, 2, and 4 are started as early as possible, whereas
activity 3 is started as late as possible (without affecting its successor’s start time).
More generally, it follows from the extreme point optimality of problem NPV’ that
there is always an optimal schedule for the deterministic time-constrained NPV
problem in which every activity starts immediately after all of its predecessors
are completed, or it is completed at the time when one of its successors is started,
see Neumann and Zimmermann (2000).

Unfortunately, this property does not carry over to the stochastic problem
formulation, even if we assume that all cash flows are deterministic and that the
activity durations follow independent probability distributions. This is due to the
fact that activities in stochastic project scheduling problems typically have no slack,
that is, delaying any activity beyond its earliest start time may affect the start time
of other activities. To illustrate this, assume that the durations in Fig. 35.3 (left)
satisfy Qp1 D Qp4 D 0 almost surely, whereas Qp2 and Qp3 follow independent
uniform distributions with supports Œ4; 6� and Œ2; 4�, respectively. By construction,
any optimal schedule will start the activities 1, 2, and 4 as early as possible. To
find an optimal start time policy, we therefore only need to determine the optimal
start time for activity 3. Clearly, we should never start activity 3 later than the
completion of activity 2 (if ˇ > 4

p
1=2). Since no further cash flow is observed

between the start and the completion of activity 2, the optimal start time of activity
3 must be determined by the minimum of a deterministic time t and the random
completion time of activity 2. The dependence of the project’s expected NPV on t
is shown in Fig. 35.3 (middle). The optimal value is t? � 2.42. Note that at time
t?, the expected duration of activity 3 (which is 3) exceeds the expected residual
duration of activity 2 (which is 2.58). The situation changes fundamentally if we
assume that Qp2 and Qp3 follow independent exponential distributions with expected
values EŒ Qp2� D 5 and EŒ Qp3� D 3. In this case, Fig. 35.3 (right) shows that
t? D 1, that is, activity 3 should be started only once activity 2 is completed. This
is no coincidence. In fact, under the assumption that all activity durations follow
independent exponential distributions, the next section shows that there is always
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an optimal start time schedule which only starts activities when other activities
terminate.

In conclusion, the stochastic time-constrained NPV problem poses at least two
challenges. On one hand, evaluating a risk measure of the project’s NPV under any
fixed policy becomes difficult if more than just a few activities are involved. On the
other hand, the optimal activity start times are difficult to characterize as they lack
the structural properties known from the deterministic problem. In order to facilitate
a numerical solution, the existing methods make some simplifying assumptions. In
the next two sections, we discuss the two most common simplifications, namely
the assumption of independent and exponentially distributed activity durations
(Sect. 35.3) and the restriction to suboptimal start time policies (Sect. 35.4).

35.3 Stochastic NPV Maximization: Exponential Activity
Distributions

We consider again stochastic NPV maximization problems where the project graph
G D .V;E/ and the discount rate ˇ are known, whereas the activity durations Qpi
and cash flows QcFi are uncertain. We assume that the activity durations Qpi follow
independent exponential distributions with known rates �i > 0, so that the expected
durations areEŒ Qpi � D 1=�i < 1. The cash flows QcFi can follow any distributions as
long as they are mutually independent and also independent of the activity durations.
We assume that the cash flows arise when the respective activities are initiated. As
usual, node 1 represents the unique source of the project graph, and we assume that
this activity is to be started at time zero. At the end of this section, we will comment
on relaxations of these assumptions.

Exponential distributions are memoryless. This means that the time s 2 R�0
already spent on activity i does not provide any information about the remaining
time t 2 R�0 still to be spent on i , or mathematically: P. Qpi > s C t j Qpi > s/ D
P. Qpi > t/. In other words, the probability that activity i takes 5 more weeks to
finish is not affected by the fact that we have already spent 10 weeks on i ; it would
be the same if we had just started the activity. This assumption is not very realistic
in project scheduling, but it will be crucial for the algorithmic developments in this
section.

Motivated by the discussion of the previous section, we describe a project’s state
at any time t � 0 through a partition st D .It ;At ;Ct / of the project activities
i 2 V into the sets It of idle activities (activities that have not yet been started),
At of processed activities (activities that are currently being processed) and Ct of
completed activities. The project starts at time t D 0 in state s0 D .V n f1g; f1g;;/
where activity 1 is being processed and all other activities are idle. The project
is finished when it reaches the state .;;;; V / where all activities are completed.
At any time t � 0, the project manager takes an action at � It that prescribes
which of the idle activities j 2 It are started (if any). The precedence constraints
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Fig. 35.4 For the project graph on the left, the diagram on the right visualizes the project states
(nodes) and the admissible actions (arcs). From left to right, each node label lists the idle, active,
and completed activities (with “�” encoding the empty set). The arc labels indicate which activities
are started by the associated action (absent labels imply that no activities are started). We omit the
unlabeled self loops that are associated with each node

stipulate that only those activities j 2 It can be started that satisfy fi 2 V W
.i; j / 2 Eg � Ct , that is, an activity can only be started if all of its immediate
predecessors are completed. At time t , the project manager takes the decision at
under the knowledge of the entire history .s� ; a� /, � 2 Œ0; t �, of the past states and
actions. The objective is to find a policy, that is, a non-anticipative mapping from
state-action histories to actions that maximizes the project’s expected NPV. The
project evolution is illustrated in Fig. 35.4.

Under the assumption of independent and exponentially distributed activity dura-
tions, our stochastic NPV maximization problem has an equivalent representation as
a continuous-time Markov decision process. This was first discovered by Kulkarni
and Adlakha (1986) for stochastic makespan minimization problems. The result
was later extended by Buss and Rosenblatt (1997) to analyze stochastic NPV
problems where up to two activities can be delayed. To our knowledge, Sobel
et al. (2009) were the first to propose a generic reformulation of the stochastic
NPV maximization problem as a continuous-time Markov decision process. This
reformulation allows us to apply a classical result for uniformizable continuous-
time Markov decision processes with the following implication:

Whenever the project enters a new state st D .It ;At ;Ct / at some time
t � 0, it is optimal to either immediately start some idle activities
i 2 It or to wait until at least one of the active activities i 2 At is
completed.

We have already observed this phenomenon in an example in the previous section.
The fact that we only need to start activities when the project state changes

allows us to drastically simplify the problem. In particular, we can subdivide the
continuous-time project evolution into discrete decision epochs t 2 Z�0 within
each of which the project state remains unchanged. By slight abuse of notation, we
denote the state in epoch t by st D .It ;At ;Ct /. The project starts in the epoch
0 in state s0 D .V n f1g; f1g;;/ where all but the first activity are idle. In any
epoch t 2 Z�0 and state st D .It ;At ;Ct /, the project manager selects a subset
at of the idle activities It that are to be started immediately (at D ; is allowed).



764 W. Wiesemann and D. Kuhn

The project then transitions into an intermediate epoch s0
t D .I 0

t ;A
0
t ;C

0
t / where

I 0
t D It n at , A 0

t D At [ at and C 0
t D Ct . Afterwards, the project manager waits

until one of the active activities i 2 A 0
t is completed. If activity i 2 A 0

t is the
first activity to be completed, then the project transitions to epoch t C 1 and state
stC1 D .I 0

t ;A
0
t n fig;C 0

t [ fig/.
In order to truthfully reproduce the dynamics of the continuous-time project

evolution, we need to specify the random time spent in each intermediate epoch
corresponding to state s0

t and the random successor state stC1. Let us first determine
the distribution of the time minj2A 0

t
Qpj spent in the intermediate epoch s0

t D
.I 0

t ;A
0
t ;C

0
t /:

P

	

min
j2A 0

t

Qpj < ı



D 1 � P � Qpj � ı .j 2 A 0
t /
�

D 1 �
Y

j2A 0

t

e��j �ı D 1 � e
�ı�P

j2A 0

t
�j (35.1)

Here, the second identity is due the fact that the activity durations follow inde-
pendent exponential distributions. From the expression on the right-hand side we
see that the time spent in the intermediate state s0

t is described by an exponentially
distributed random variable with rate

P
j2A 0

t
�j .

Activity i 2 A 0
t is completed first among the activities in A 0

t with probability

P
� Qpi < Qpj .j 2 A 0

t n fig/� D
Z

ı2R
�0

P
�
ı � Qpi � ı C dı ^ Qpj > ı .j 2 A 0

t n fig/�

D
Z

ı2R
�0

�i � e��i �ı Y

j2A 0

t nfig
e��j �ı dı D �i

X

j2A 0

t

�j

(35.2)

Here, the second identity holds because the activity durations follow independent
exponential distributions, while the last identity follows from elementary algebraic
manipulations. One can show that the time spent in s0

t and the activity that finishes
first in s0

t are independent random variables (Bertsekas 2007; Puterman 1994).
The subdivision of the project evolution into decision epochs allows us to

reformulate the stochastic NPV maximization problem as a discrete-time Markov
decision process with state- and action-dependent discount rates. To this end, we
define a discrete-time Markov decision process through

• a state space S with designated start state s0 2 S,
• an action space As associated with each state s 2 S, with A D S

s As ,
• transition probabilities � W S � A � S 7! Œ0; 1� so that

P
s0 �.s

0js; a/ D 1 .s; a/,
• a reward function r W S � A 7! R, and
• state- and action-dependent discount factors � W S � A 7! Œ0; 1/.
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A discrete-time Markov decision process starts in state s0. At any time t 2 Z�0,
the process occupies a state st 2 S, and we select a decision a 2 As under the
knowledge of the entire state-action history .s� ; a� /, � 2 f0; : : : ; tg. We then obtain
an immediate reward of r.s; a/, and the Markov decision process stochastically
transitions to a successor state stC1 2 S according to the transition probabilities
�.stC1jst ; at /. Note that the transition probabilities do not depend on the history of
past states and actions s0; a0; : : : ; st�1; at�1; this is the Markov property. The goal is
to determine a non-anticipative policy, that is, a mapping from state-action histories
to actions, that maximizes the expected total discounted reward. The discount factor
between periods t and t C 1 is given by �.st ; at /, which depends on both the state
st in period t and the action at taken in period t .

We define the discrete-time Markov decision process associated with our NPV
maximization problem as follows. We identify the state space S with the set of all
partitions .I ;A ;C / of V with the property that all immediate predecessors of
active or completed activities are completed, that is, fi 2 V W .i; j / 2 Eg � C
for all j 2 A [ C . Note that this state space typically grows exponentially with
the number n of project activities. For each state s D .I ;A ;C / 2 S, the set of
dormant activities fj 2 I W fi 2 V W .i; j / 2 Eg � C g contains all idle activities
that have only completed predecessors. Moreover, we identify the action space As

with the set of all subsets of the dormant activities, including the empty set.
For the state s D .I ;A ;C / 2 S and the action a 2 As , the probability to

transition to the state s0 D .I 0;A 0;C 0/ 2 S is given by

�.s0js; a/D

8
ˆ̂
<

ˆ̂
:

�iX

j2A [a
�j

if I 0 DI n a; A 0 DA [ a n fig and C 0 DC [ fig ;

0 otherwise:

Intuitively, �.s0js; a/ is nonzero if and only if the state s0 emerges from state s by
initiating the activities in a and afterwards waiting until the first activity i 2 A [fag
terminates. We have derived the probability of this event in (35.2).

For any state s 2 S and action a 2 As , we define the reward r.s; a/ DP
j2a EŒ QcFj � as the sum of expected cash flows of those activities that we start in

state s. Thus, the expected value is all we need to know about the uncertain cash
flows.

Consider next the discount factor �.s; a/ associated with state s D .I ;A ;C / 2
S and action a 2 As . We discount the cash flows arising after state s byEŒˇQı�, where
Qı denotes the random time spent in the intermediate state s0 D .I n a;A [ a;C /:

�.s; a/ D E
h
ˇ

Qıi D
Z

ı2R
�0

ˇı � � � e�ı� dı D �

� � logˇ

where � D P
j2A[a �j . Here, the second identity follows from (35.1).
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Sobel et al. (2009) show that the state- and action-dependent discount rate can
be absorbed in the transition probabilities. The resulting problem is a discrete-
time Markov decision process with a constant discount rate for which a variety of
solution methods exist (Bertsekas 2007; Puterman 1994). Note that every state of
the project is visited at most once, that is, active activities never become idle again,
and completed activities remain completed. This allows us to determine the optimal
policy with a standard backward recursion. Using such a backward recursion, Sobel
et al. (2009) solve networks with up to 25 activities within a few minutes.

The major computational bottleneck of the backward recursion is the need to
simultaneously store information about all states s 2 S in memory. Creemers
et al. (2010b) propose a memory-efficient variant of the backward recursion.
The algorithm is based on a partition of the state space induced by the maximal
antichains of the project graph. A maximal antichain is defined as a maximal set
of project activities i 2 V that can be processed simultaneously. The authors show
that only a fraction of the maximal antichains and their associated states need to
be stored in memory at any point in time. Numerical experiments show that their
algorithm can solve projects with up to 120 activities within a few hours.

We close this section with extensions that have been proposed in the literature.
Sobel et al. (2009) relax the assumption of exponentially distributed activity

durations and consider activity durations that follow independent phase-type distri-
butions. To this end, they model each activity i 2 V as a subproject that consists of
a network of exponentially distributed subactivities. Since phase-type distributions
are dense in the set of all positive-valued distributions, we can approximate any
activity duration arbitrarily well at the expense of augmenting the state space S.
Sobel et al. (2009) report on numerical results where they solve projects with up
to ten activities, each of which consists of up to five subactivities. Note that even
with this extension, the activity durations must still be stochastically independent.
Also, activities can only be started whenever an entire activity i 2 V is completed
because the newly introduced subactivities have no counterpart in the real project.
This implies, however, that the determined policies are no longer guaranteed to
be optimal. Benmansour et al. (2010) discuss how probability distributions can be
approximated by phase-type distributions in an economical way.

Sobel et al. (2009) also show how to incorporate the option to abandon the project
during its execution. This is achieved by amending the action spaces As , s 2 S, by
an “abandonment decision” that deterministically leads to the state .;;;; V /.

Creemers et al. (2009, 2010a) study project scheduling problems in which any
of the activities can fail, and failure of an activity results in the abandonment of
the entire project. Such failures can be accounted for by introducing stochastic
transitions from each state-action pair .s; a/, s 2 S and a 2 As , to an auxiliary
“project failure” state. The authors also consider projects where intermediate project
milestones can be achieved by pursuing either of several alternative strategies.
Both extensions are motivated in the context of research-and-development projects.

The models in this section can readily accommodate multiple renewable
resources (such as labor and machinery) if we restrict the action spaces As .
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In particular, in state st D .It ;At ;Ct / we restrict Ast to those actions at � At that
satisfy all precedences and that lead to intermediate states s0

t D .It nat ;At[at ;Ct /
where the active activities At [ at satisfy the resource constraints. If the resource
allocation also affects the activity durations, then we face a multi-mode problem.
When there are finitely many alternative execution modes for each activity, all of
which result in exponentially distributed activity durations, then we can solve the
multi-mode problem by augmenting the state space. To this end, we need to record
for each project state st D .It ;At ;Ct / the execution modes of the active activities
i 2 At . Such discrete multi-mode problems have been studied in the context of
weighted cost/tardiness project scheduling problems, see Tereso et al. (2004, 2008,
2010). These problems are very difficult to solve, and projects with 18 activities
already require several days of computing time (Tereso et al. 2003). If the resource
allocation can vary continuously, these reformulations are no longer possible.
Rudolph and Elmaghraby (2009) and Nadjafi and Kolyaei (2010) solve stochastic
project scheduling problems with continuous resource allocations through heuristics
that alternate between computing the optimal project schedule for a fixed resource
allocation and modifying the resource allocation. Azaron et al. (2006) and Azaron
and Tavakkoli-Moghaddam (2006, 2007) solve multi-objective variants of the
stochastic project scheduling problem with continuous resource allocations through
time discretization. The resulting multi-objective nonlinear optimization problems
are solved using the surrogate worth trade-off, the STEM, or the goal attainment
method. We can also incorporate nonrenewable resources (such as capital) if we
record the remaining resource budget in each state. Again, this comes at the expense
of a significantly increased state space. For further information, we refer to Chap. 38
in this book.

We finally mention the paper by Gutin et al. (2013) that studies two-player
stochastic interdiction games. In these games, a proliferator aims to minimize
the expected duration of a nuclear weapons development project, whereas an
interdictor endeavors to maximize the project duration by delaying some of the
project activities. Using similar techniques as in this section, the authors reformulate
the interdiction game as a discrete-time Markov decision process. The assumption
of independent and exponentially distributed activity durations is again crucial for
their reformulation.

35.4 Stochastic NPV Maximization: Generic Activity
Distributions

We now relax the assumption that the activity durations follow independent
exponential distributions. Instead, we model the activity durations and cash flows as
random variables that are described by a finite set of scenarios f.p�i ; cF�i / W � 2 ˙g
with associated occurrence probabilities �� , � 2 ˙ . The assumption of a discrete
distribution may seem restrictive since the activity durations are often described via
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independent Beta distributions (Malcolm et al. 1959). In those cases, we can replace
the continuous probability distribution with a discrete approximation using scenario
reduction techniques (Heitsch and Römisch 2003; Henrion et al. 2009). Note that
we allow the activity durations and cash flows to exhibit stochastic dependencies
even across different activities. This is meaningful as longer activity durations often
imply higher expenditures, which in turn result in lower cash flows. To simplify the
exposition, we again assume that nodes 1 and n are the unique source and sink of
the network, respectively, the discount rate ˇ is deterministic, all precedences are of
finish-start type, and we aim to maximize the project’s expected NPV. At the end of
this section, we comment on generalizations.

We consider the following generic stochastic NPV maximization problem.

Max.
X

�2˙
�� �

X

i2V
cF�i � ˇS�i

s. t. S 2 R
j˙ jnI y 2 ˘

S�j � S�i C p�i ..i; j / 2 E/
S�1 D 0

S� D f �.y/

9
=

;
.� 2 ˙/

In this problem, which we henceforth refer to as SNPV, the decision variable S�i
denotes the factual start time of activity i 2 V in scenario � 2 ˙ . The decision
vector y encodes a start time policy that is selected from the set of policy parameters
˘ . In analogy to the deterministic NPV maximization problem NPV, the first two
constraints impose nonnegativity of the activity start times and satisfaction of the
precedence constraints in all scenarios � 2 ˙ . The last constraint requires the
activity start times S� in scenario � 2 ˙ to be generated by the non-anticipative
start time policy y. For any fixed policy encoded by y 2 ˘ , the functions
f �.y/ characterize the unique activity start times for scenario � that result from
implementing policy y.

As we have discussed in Sect. 35.2, the space of non-anticipative start time
policies is huge. It contains all functions that for any time point t � 0 and
any possible constellation of completed, active, and idle activities prescribe which
activities (if any) are to be started. Moreover, in absence of independent and
exponentially distributed activity durations, it is no longer optimal to start activities
only when other activities finish. In the following, we study subsets of the space
of all non-anticipative policies that allow us to formulate and solve optimization
problems. Thus, we are interested in suboptimal but implementable (that is, non-
anticipative) start time policies.

A particularly simple class of start time policies is given by the rigid start time
policies (Wiesemann et al. 2010). In this case, we set ˘ D R

n and

S� D f �.y/ , S�j D yj .j 2 V /
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Fig. 35.5 For the project graph on the left, the Gantt charts on the right illustrate a rigid start time
policy in two scenarios. For y to be a feasible policy, it needs to satisfy y2 � S�1 C p�1 for all
� 2 ˙

Rigid start time policies start all activities j 2 V at scenario-independent times
yj 2 R, see Fig. 35.5. Since the start times do not depend on the information
revealed over time, they trivially satisfy the non-anticipativity requirement. Under
the variable transformations S�i WD ˇS

�
i and yi WD ˇyi , the stochastic NPV

maximization problem SNPV with rigid start time policies can be reformulated as a
linear program:

Max.
X

�2˙
�� �

X

i2V
cF�i � S�i

s. t. S 2 R
j˙ jn
�0 I y 2 R

n�0
S�j � ˇp

�
i � S�i ..i; j / 2 E/

S�1 D 1

S�i D yi .i 2 V /

9
=

;
.� 2 ˙/

This problem can either be solved with standard linear programming software
or using decomposition methods from stochastic programming (Kall and Wallace
1994; Ruszczyński and Shapiro 2003). Note that the activity start times S�j
have to satisfy the precedence constraints in all scenarios � 2 ˙ . Since the
activity durations vary across the scenarios, we can expect scenario-independent
activity start times to provide overly conservative solutions to the stochastic NPV
maximization problem SNPV. This is confirmed by numerical tests, see Wiesemann
et al. (2010).

A richer class of start time policies is given by the target processing time policies.
In this case, we set ˘ D R

n and

x D f �.y/ , S�j D max

�

sup
i2V

fS�i C p�i W .i; j / 2 Eg ; yj
�

.j 2 V /

Here, the inner supremum over the predecessor activities of j 2 V evaluates
either to minus infinity (if j has no predecessor activities, that is, if j D 1) or
to the earliest start time of activity j in scenario � . The outer maximum requires
activity j to start either at its earliest start time or at its (scenario-independent)
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Fig. 35.6 For the project graph on the left, the Gantt charts on the right illustrate a target
processing time policy in two scenarios. Activity 2 is started either at its target processing time
(first chart) or at its earliest possible start time (second chart)

target processing time yj , depending on which value is larger. Thus, under the
target processing time policy y, the activity j 2 V is started as early as possible
but never before its target processing time yj , see Fig. 35.6. By construction, target
processing time policies are non-anticipative, that is, they do not require the project
manager to “look into the future”. We can also see that any feasible rigid start time
policy y constitutes an admissible target processing time policy that results in the
same activity start times but not vice versa. Thus, target processing time policies
are more general than rigid start time policies. Target processing time policies can
be traced back to the stochastic machine scheduling literature where they are used
to determine the latest job release times that achieve prespecified due dates with a
high probability (Elmaghraby et al. 2000; Elmaghraby 2001). More recently, they
were applied to stochastic project scheduling problems to determine stable project
plans that minimize earliness and tardiness penalties, see Trietsch (2005, 2006) and
Bendavid and Golany (2011a,b).

Under the variable transformations S�i WD ˇS
�
i and yi WD ˇyi , the stochastic

NPV maximization problem SNPV with target processing time policies can be
reformulated as the following nonlinear program:

Max.
X

�2˙
�� �

X

i2V
cF�i � S�i

s. t. S 2 R
j˙ jn
�0 I y 2 R

n�0
S�j � ˇp

�
i � S�i ..i; j / 2 E/

S�1 D 1

S�j D min

�

inf
i2V

n
ˇp

�
i � S�i W .i; j / 2 E

o
; yj

�

.j 2 V /

9
>>=

>>;
.� 2 ˙/

(35.3)

Here, the inequality constraint is redundant because it is implied by the last equality
constraint. Since the last equality constraint in (35.3) has a nonlinear right-hand side,
the problem is nonconvex. Moreover, we cannot relax the equality to a less than or
equal constraint without potentially violating non-anticipativity. However, we can
eliminate the nonlinearity at the cost of introducing auxiliary binary variables:
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Max.
X

�2˙
�� �

X

i2V
cF�i � S�i

s. t. S 2 R
j˙ jn
�0 I y 2 R

n�0
z�ij 2 f0; 1g . .i; j / 2 EI � 2 ˙/
z�i 2 f0; 1g .i 2 V I � 2 ˙/
S�1 D 1

S�j � ˇp
�
i � S�i ..i; j / 2 E/

S�j � yj .j 2 V /
S�j � ˇp

�
i � S�i � .1 � z�ij/ ..i; j / 2 E/

S�j � yj � .1� z�j / .j 2 V /
z�j C

X

.i;j /2E
z�ij D 1 .j 2 V /

9
>>>>>>>>>=

>>>>>>>>>;

.� 2 ˙/

(35.4)

Note that the factual activity start times satisfy S�j 2 Œ0; 1�. Thus, the third and

fourth inequality constraint ensure that S�j D ˇp
�
i � S�i if z�ij D 1 and S�j D yj if

z�j D 1, whereas they are redundant whenever z�ij D 0 or z�j D 0, respectively. The
last constraint ensures that all but one of these constraints are redundant for each
j and � . This implies that there is always an optimal solution in which the factual
activity start times S�j satisfy the nonlinear equality constraint from model (35.3).

Problem (35.4) constitutes a mixed-integer linear program that can be solved
with off-the-shelf optimization software. Wiesemann et al. (2010) report that
problem instances with up to 20 activities and 10 scenarios can be solved reliably
with CPLEX 11.2 within a time limit of 10 min.1 For larger problem instances,
they propose a problem-specific branch-and-bound scheme. The basic idea of the
algorithm is as follows. The root node of the branch-and-bound tree considers a
relaxation of problem (35.3) that replaces the nonlinear equality constraints with
less than or equal constraints. This relaxation has an equivalent reformulation as a
deterministic NPV maximization problem and can thus be solved very efficiently.
The algorithm then branches on violations of the relaxed equality constraints. If a
relaxation of problem (35.3) violates the nonlinear equality constraint associated
with activity j and scenario � , for example, the procedure adds jfi 2 V W .i; j / 2
Egj C 1 child nodes to the branch-and-bound tree, each of which contains one
additional constraint of the form S�j D ˇp

�
i � S�i , .i; j / 2 E , or S�j D yj .

The relaxations associated with the child nodes again constitute deterministic NPV
maximization problems, and they can be solved very efficiently using warm-starting
techniques. The branch-and-bound algorithm can solve instances with up to 50
activities within a time limit of 10 min.

In the related literature, Tavares et al. (1998) suggest a generic solution method
for stochastic project scheduling problems that is based on floating factor policies.
To this end, they define the total float of an activity i 2 V as the difference between

1CPLEX homepage: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
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Fig. 35.7 For the project graph on the left, the Gantt charts on the right illustrate an activity delay
policy in two scenarios. Activity 2 is always started y2 time units after its earliest possible start
time

its latest start time LSi and earliest start time ESi , given some project deadline and
average activity durations. A floating factory policy � 2 Œ0; 1� then assigns a target
processing time of ESi C � � .LSi � ESi / to each activity i 2 V . The authors suggest
to determine optimal floating factor policies through simulation.

A different class of start time policies is given by the activity delay policies. Here,
we set ˘ D R

n�0 and

S D f �.y/ , S�j D
8
<

:

max
i2V

fS�i C p�i W .i; j / 2 Eg C yj if j ¤ 1;

y1 otherwise
.j 2 V /

Under the activity delay policy y, activity j 2 V is started yj time units after its
earliest possible start time in each scenario � 2 ˙ , see Fig. 35.7. One can show
that the classes of target processing time policies and activity delay policies are
incomparable, that is, neither one is a subset of the other. Note that the classes of
rigid start time policies and activity delay policies are incomparable as well.

Under the variable transformations S�i WD ˇS
�
i and yi WD ˇyi , we can

reformulate the stochastic NPV maximization problem with activity delay policies
as a nonlinear program. However, the resulting formulation contains bilinear terms
of the form ˇp

�
i � S�i � yj which can no longer be linearized with binary variables.

Nevertheless, one can adapt the branch-and-bound scheme from Wiesemann et al.
(2010) to this policy class. To our knowledge, this has not been attempted so far.

Activity delay policies date back to the eighties of the previous century. Begin-
ning with the early start schedule, Shtub (1986) proposes a heuristic that iteratively
delays activities with negative cash flows until a probabilistic deadline constraint is
violated. The activities are considered in order of ascending cash flows, that is, the
activity with the largest negative cash flow is delayed first. During its execution, the
algorithm generates a frontier of approximately Pareto-efficient solutions that trade
off the net present value against the probability to complete the project on time.
Satisfaction of the deadline constraint is verified using Monte Carlo sampling.

Buss (1995) determines activity delay policies using a stochastic gradient
descend method. He concludes that the problem is very challenging since the
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objective function is highly variable but almost flat near the suspected optimum.
The author reports solutions for projects with up to 21 activities.

Benati (2006) proposes a two-stage heuristic for the stochastic NPV maximiza-
tion problem with activity delay policies. In the first stage, optimal “average”
activity start times are determined through a variant of the deterministic NPV
maximization problem NPV that uses average activity durations and cash flows:

Max.
X

�2˙
�� �

X

i2V
cF�i � ˇSi

s. t. S 2 R
n

Sj �
X

�2˙
�� � max fSi C p�i W .i; j / 2 Eg .j 2 V n f1g/

S1 D 0

In the second stage, an activity delay policy y is determined by setting y1 D S?1 and

yj D S?j �
X

�2˙
�� � max

i2V fS?i C p�i W .i; j / 2 Eg .j 2 V n f1g/

where S? denotes the optimal activity start times from the first stage. Intuitively, the
activity delay policy thus found aims to start the activities close to their “average”
optimal starting times. In numerical experiments, the activity delay policies deter-
mined by this two-stage procedure are outperformed by the target processing time
policies presented earlier, see Wiesemann et al. (2010). It is unclear whether this is
caused by the suboptimality of the two-stage procedure or whether target processing
time policies generically perform better than activity delay policies. Another attempt
to determine optimal activity delay policies is reported by Wang et al. (2000), who
develop a simulated annealing heuristic for the problem.

We close with some remarks about possible generalizations of the models
considered in this section. It is straightforward to extend the models to account for
uncertainty in the interest rate r underlying the discount rate ˇ. More interestingly,
the models allow the network structure G to be uncertain as well. Uncertain
precedence constraints, for example, can be accommodated by choosing a different
arc set As � V � V for each scenario � 2 ˙ . As shown by Wiesemann et al.
(2010), the models can be extended to generalized precedence constraints such as
project deadlines and maximum time lags (Elmaghraby and Kamburowski 1990,
1992). Moreover, it is possible to formulate models that combine target processing
time policies with activity delay policies. For example, one could envision policies
that schedule each activity either according to a target processing time or according
to an activity delay, or possibly according to the earlier or later time specified by
them. To our knowledge, this has not been considered so far. Finally, the models
considered here can be extended to cater for the decision maker’s risk aversion.
For example, a variant of the stochastic NPV maximization problem SNPV that
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maximizes the "-CVaR of the project’s NPV (see Sect. 35.2) can be formulated as
follows.

Max. ˛ � 1

"
�
X

�2˙
�� � ��

s. t. S 2 R
j˙ jnI y 2 ˘ I ˛ 2 RI � 2 R

j˙ j
�0

S�j � S�i C p�i ..i; j / 2 E/
S�1 D 0

S� 2 f �.y/

�� � ˛ �
X

i2V
cF�i � ˇS�i

9
>>>>=

>>>>;

.� 2 ˙/

In this model, ˛ and � are auxiliary decision variables that are required to
evaluate the CVaR, see Pflug (2000) and Rockafellar and Uryasev (2000). One
readily verifies that the discussed methods for rigid start time policies, target
processing time policies, and activity delay policies extend to this formulation. To
our knowledge, this CVaR formulation has not yet been explored in the literature.

Ke and Liu (2005) study resource-constrained variants of the stochastic NPV
maximization problem that optimize the expected value and the value-at-risk of a
project’s NPV. The authors develop a genetic algorithm that aims to determine an
optimal target processing time policy. The algorithm is extended to fuzzy activity
durations in Ke and Liu (2007, 2010). Chen and Zhang (2012) consider a multi-
mode resource-constrained variant of the stochastic NPV maximization problem
and solve it via ant colony optimization and Monte Carlo sampling. The authors
determine a static selection of execution modes for each activity such that the early-
start policy results in a high expected NPV. Özdamar (1998) and Özdamar and
Dündar (1997) study a resource-constrained multi-mode variant of the stochastic
NPV maximization problem with capital as a single nonrenewable resource. Capital
is randomly replenished through project revenues and can be temporally acquired
at given costs. The authors propose an online scheduling heuristic that aims
to maximize the project’s NPV while satisfying a specified deadline as a soft
constraint.

Uçal and Kuchta (2011) aim to maximize a project’s fuzzy NPV under resource
constraints. It is assumed that the activity durations are known, whereas the
cash flows are described by fuzzy numbers. The authors propose a heuristic that
schedules activities according to the sum of their NPV and the NPVs of their
immediate successor activities.

Shavandi et al. (2012) maximize a project’s fuzzy NPV in the reverse situation
where the cash flows are known but the activity durations are fuzzy. The authors
reformulate the problem of finding the optimal fuzzy activity start times as a multi-
objective nonlinear program, which they solve via Taylor approximations.

The start time policy y in the stochastic NPV maximization problem SNPV bears
some similarity to the baseline schedules considered in robust project scheduling.
A baseline policy is defined as a set of deterministic activity start times that are
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selected in the planning stage and that should be followed as closely as possible
during project implementation. Robust project scheduling assumes that the activity
durations are uncertain, and it determines baseline policies that minimize the
expected sum of weighted differences between the (uncertainty-affected) factual
activity start times and the start times in the baseline schedule. For reviews of the
literature on robust project scheduling, we refer the interested reader to Herroelen
and Leus (2004, 2005) and Chaps. 39 and 40 in this book.

We remark that in practice, the models presented in this chapter would be solved
again whenever new information becomes available. For a detailed discussion of
this point, we refer to Jørgensen and Wallace (2000) and Bidot et al. (2009).

35.5 Conclusions

Stochastic project scheduling has a long and distinguished history that dates back
to the early days of operations research (Fazar 1959; Malcolm et al. 1959).
Nonetheless, the literature on stochastic NPV maximization is still in its infancy. In
the light of recent theoretical and practical advances in project management under
uncertainty (Goldratt 1997; Herroelen and Leus 2005), we expect that stochastic
NPV maximization will receive renewed interest in the future. To this end, we
identify several fruitful directions for further research.

First and foremost, the current models make very restrictive assumptions about
the probability distributions governing the uncertain problem parameters. We
therefore advocate to study variants of the dynamic programming-based models of
Sect. 35.3 that can accommodate non-exponentially distributed activity durations.
Such problems are likely to resist exact solution, but they could be optimized
using approximate dynamic programming techniques (Bertsekas and Tsitsiklis
1996; Powell 2011). First attempts in this direction are reported by Herbots et al.
(2007). Similarly, the informational requirements of the stochastic programming-
based models of Sect. 35.4 could be relaxed to allow for partial knowledge of
the probability distributions. Using modern robust optimization techniques (Ben-
Tal et al. 2009), this could also lead to scenario-free problem formulations that
scale gracefully with problem size. First results of this type have been reported by
Goh and Hall (2013), Wiesemann (2012) and Wiesemann et al. (2012b), but we are
not aware of any contributions to the NPV maximization problem.

A second promising area for future research is the modeling of risk aversion.
As we discussed in Sect. 35.2, managers are likely to give greater weight to
undesirable outcomes than the average project performance. To date, this is not
reflected in the project scheduling literature, which predominantly studies expected
value problems. The models in Sect. 35.3 can cater for risk aversion through the
inclusion of higher-order moments (Kulkarni and Adlakha 1986), whereas the
formulations in Sect. 35.4 can be extended to optimize risk measures such as the
conditional value-at-risk. Risk-averse project scheduling has been explored recently
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in the context of makespan minimization by Goh and Hall (2013), Wiesemann
(2012) and Wiesemann et al. (2012a).

Another interesting research direction is the integration of resource constraints.
While this has been largely accomplished in the models of Sect. 35.3, it is yet to be
investigated for the formulations in Sect. 35.4. A possible starting point would be to
optimize over modified versions of the policy classes proposed by Yang et al. (1995)
for the resource-constrained deterministic NPV maximization problem.

NPV maximization bears similarity to the payment scheduling problem, where
both the activity start times and the cash flows can be chosen by the decision maker
(Dayanand and Padman 1999, 2001; He et al. 2012; Kolisch and Padman 2001).
It would be instructive to study the effects of uncertainty and risk aversion in the
context of this problem, which to our knowledge has not been attempted.

Finally, we remark that the stochastic NPV maximization problem is closely
related to real options theory (Dixit and Pindyck 1994). Research in that area
has shown that the NPV criterion may lead to incorrect advice if applied to
investment decisions that can be delayed (i.e., that are not of the “now-or-never”
type). Although the potential impact of real options theory on project scheduling
has been recognized for some time (Herroelen et al. 1997), the NPV maximization
literature has largely disregarded these results.
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scheduling. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications.
Kluwer Academic, Dordrecht, pp 1–26

Ierapetritou M, Li Z (2009) Modeling and managing uncertainty in process planning and
scheduling. In: Chaovalitongse W, Furman KC, Pardalos PM (eds) Optimization and logistics
challenges in the enterprise. Springer, Berlin, pp 97–144

Jørgensen T, Wallace SW (2000) Improving project cost estimation by taking into account
managerial flexibility. Eur J Oper Res 127(2):239–251

Kall P, Wallace SW (1994) Stochastic programming. Wiley, Hoboken
Kavadias S, Loch CH (2004) Project selection under uncertainty: dynamically allocating resources

to maximize value. Kluwer Academic, Dordrecht
Ke H, Liu B (2005) Project scheduling problem with stochastic activity duration times. Appl Math

Comput 168(1):342–353
Ke H, Liu B (2007) Project scheduling problem with mixed uncertainty of randomness and

fuzziness. Eur J Oper Res 183(1):135–147
Ke H, Liu B (2010) Fuzzy project scheduling problem and its hybrid intelligent algorithm. Appl

Math Model 34(2):301–308
Kelley JE Jr (1961) Critical path planning and scheduling: mathematical basis. Oper Res 9(3):296–

320
Kimms A (2001) Mathematical programming and financial objectives for scheduling projects.

Kluwer Academic, Dordrecht
Kolisch R, Padman R (2001) An integrated survey of deterministic project scheduling. Omega-Int

J Manag S 29(3):249–272
Kulkarni VG, Adlakha VG (1986) Markov and Markov-regenerative PERT networks. Oper Res

34(5):769–781
Li Z, Ierapetritou M (2008) Process scheduling under uncertainty: review and challenges. Comput

Chem Eng 32(4–5):715–727
Lock D (2007) Project management, 9th edn. Gower Publishing, Burlington
Luenberger DG (1997) Investment science. Oxford University Press, Oxford
Malcolm DG, Roseboom JH, Clark CE, Fazar W (1959) Application of a technique for research

and development program evaluation. Oper Res 7(5):646–669
Maylor H (2010) Project Management, 4th ed. Prentice Hall, Upper Saddle River, NJ
Meredith JR, Mantel SJ (2006) Project management: a managerial approach. Wiley, Hoboken
Möhring RH (2001) Scheduling under uncertainty: Bounding the makespan distribution. In: Alt H

(ed) Computational discrete mathematics: advanced lectures. Springer, Berlin, pp 79–97
Nadjafi BA, Kolyaei S (2010) A multi objective Fibonacci search based algorithm for resource

allocation in PERT networks. J Opt Ind Eng 3(6):13–23
Neumann K (1999) Scheduling of projects with stochastic evolution structure. In: Wȩglarz J (ed)
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Chapter 36
The Stochastic Discrete Time-Cost Tradeoff
Problem with Decision-Dependent Uncertainty

Evelina Klerides and Eleni Hadjiconstantinou

Abstract In this chapter we examine how managerial flexibility can be incorpo-
rated into project management techniques where project activities are executed
under time-cost tradeoff settings and uncertainty. We advocate the use of a stochastic
dynamic model where the activity scheduling decisions are taken dynamically
over time thus offering flexibility to the decision maker of adjusting the decisions
according to observations. To this end, we show that the problem is amenable to
a Multi-Stage Stochastic Integer Programming approach with decision-dependent
uncertainty as the decisions influence the revelation time of the random variables.
We present the mathematical formulation of this problem and develop algorithmic
approaches for obtaining effective lower and upper bounds. Our extensive compu-
tational results, based on a large number of test instances of varying size and degree
of uncertainty, demonstrate the effectiveness of the proposed approaches in finding
tight bounds for a class of non-standard stochastic programs bearing additional
computational complexity.

Keywords Project scheduling • Stochastic programming • Time-cost tradeoff •
Uncertain durations

36.1 Introduction

Stochastic Programming (SP) is an area of Mathematical Programming which
provides a framework for modeling optimization problems involving uncertainty.
Generally, the goal of SP techniques is to find a solution that is feasible for all
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(or for some selected or representative) realizations of the random parameters
while minimizing or maximizing a performance measure, usually a function of the
decision variables. Depending on the decision maker, we may consider measures
such as expectations, worst case performance, or a probability of attaining a
predetermined target goal. Most of the work in the SP literature is devoted to the
expected value model involving worst-case constraints.

For presentation purposes, assume we wish to minimize the expected value of the
objective function f .x; Q�/ for decisions x 2 X and random variables Q� 2 � . The SP
literature defines three types of decisions, based on either a “Here-and-Now” (HN),
“Wait-and-See” (WS) or “Mean-Value” (MV) approach. As their name suggests,
HN decisions are taken a priori, i.e., before any randomness is considered, and their
objective value zHN is given by zHN D minx E. Q�/Œf .x; Q�/�. On the other hand, the
WS solution xWS D arg minxŒf .x; �WS/� is obtained a posteriori, where �WS are the
realized values of the random parameters Q� , and the resulting objective value is given
by zWS. In this case, we assume a perfect information state and that all randomness
has already been realized. Finally, the MV approach only considers expected values;
its solution xMV D arg minxŒf .x;E. Q�//�, leads to the deterministic objective value
zdet

MV D f .xMV ; E. Q�//, and to the expected objective value zMV D E. Q�/Œf .xMV ; Q�/�,
if xMV is feasible with respect to all possible outcomes of the random variables.

In SP models, the stochastic process is characterized by three basic concepts,
namely, the scenario tree, the scenario problems and the non-anticipativity con-
straints, Higle (2005). A scenario is one particular realization of all the stochastic
elements in the problem. The scenario tree depicts the manner in which the
stochastic elements evolve over time and is a structured representation of the way
information is observed. Hence, each node represents a possible information state
while each arc emanating from a node represents a possible transition to another
information state, at a later time. Associated with this arc is a transition probability.
A scenario problem is the deterministic optimization problem derived from one
scenario; the latter corresponds to a path from the root node to a leaf node in the
scenario tree. The probability of a scenario is a combination of all the probabilities
of the arcs included in the path and is equal to the probability of reaching the
corresponding leaf node from the root node.

In general, the sequence of decisions taken for stochastic programs needs to
conform to the information structure of the problem, as this is defined by the
scenario tree. For this purpose, we impose the non-anticipativity or implementability
constraints which link decisions for different scenarios. Two scenarios are said to be
indistinguishable at a given point in time if they are identical in the realizations for
all stochastic parameters in which uncertainty has been resolved until that time. The
non-anticipativity constraints state that if two scenarios are indistinguishable at a
given point in time then decisions for these two scenarios at the current time should
be the same. In other words, decisions taken at a given time can only be based on
knowledge that is available at that point in time and not based on information that
will be revealed in the future. Hence, we refer also to the above as implementability
constraints as they result in solutions that are implementable.

From the modeling perspective, standard SP techniques in the literature involve
assigning appropriate probability distribution functions to the stochastic problem
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parameters and assume that the optimization decisions cannot influence the stochas-
tic process. The uncertainty is then said to be of exogenous nature and the scenario
tree is treated as an input into the optimization problem. However, when the
underlying stochastic process depends on the optimization decisions, the scenario
tree must be treated as a decision variable. In this case, the optimization decisions
can influence either the transition probabilities or the revelation time of the values
of the uncertain variables. The formulation of the non-anticipativity constraints thus
becomes more complicated as the nodes of the scenario tree, and hence the sets of
scenarios passing through each node, are not fixed. This is the case of the so-called
decision-dependent or endogenous uncertainty, which may become an impeding
factor in preserving tractability of the optimization model.

In this chapter, we study the Stochastic Discrete Time-Cost Tradeoff Problem
(SDTCTP), in which the decision-maker is allowed to execute each activity in a
project under a number of different modes, each associated to a time-cost pair,
so that either the project completes within budget in minimum time or within
its deadline in minimum cost. The activity durations are random variables to the
problem. Klerides and Hadjiconstantinou (2010) showed that by assuming the
mode selection variables to be static and fixed regardless of the realisations of the
stochastic parameters, the SDTCTP automatically reduces to a two-stage SP model,
where the mode selection is done at the first stage, and the scheduling process is
performed during the second stage. In this paper, we investigate the modeling and
algorithmic implications of relaxing the above assumption, hence, we consider the
SDTCTP with Dynamic Modes. This problem is referred to in this paper as the
SDTCTP with DM.

The remainder of this chapter is organized as follows. In the next section we
provide an overview of the state-of-the art developments in the area of SDTCTP and
decision-dependent uncertainty (Sect. 36.2). A problem description of the SDTCTP
with DM is given in Sect. 36.3 and its mathematical formulation is presented in
Sect. 36.4, including the complicating non-anticipativity constraints, as a result of
decision-dependent uncertainty. In the same section we also present effective and
efficient lower bounding techniques as well as heuristic methodologies, specifi-
cally designed to provide tight bounds to the SDTCTP with DM. Section 36.5
provides an illustrative example and the computational study presented in Sect. 36.6
demonstrates the capabilities of the proposed algorithms. The final conclusions are
given in Sect. 36.7.

36.2 Literature Review

The focus of this chapter is on the budget version of the SDTCTP, where the
objective is to minimize the expected project makespan subject to a pre-defined
budget. In this section we provide an overview of the relevant literature on both the
budget and deadline versions of the SDTCP; the latter aims to minimize the total
cost subject to a pre-defined deadline.
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The first part of this section provides an overview of the static and dynamic
models developed for the SDTCTP. The second part describes the modeling and
algorithmic advances for problems dealing with decision-dependent uncertainty.

To the best of our knowledge, the only developments in the field of optimal
solution methodologies for SDTCTPs have only considered the static version of
the problem. This is different to the problem considered in this chapter, which is
able to dynamically make the mode selections according to different outcomes of
the random variables, i.e., are scenario-dependent. This new feature exploits the
revelation of uncertainty (duration of activities that have been completed) during
project execution thus allowing to make more informed decisions for the activities
that have not yet been started. In the described developments which follow, the
proposed models assume that the optimization provides a choice of modes for each
activity which is independent of the scenarios; the solutions cannot be adapted to
observed outcomes.

Godinho and Branco (2012) propose an electromagnetism-based heuristic
approach for dynamic multi-mode project scheduling under uncertainty. They
apply a tardiness penalty whenever the project duration exceeds the pre-determined
deadline and each activity’s execution mode is found by comparing its starting time
to a set of thresholds. Klerides and Hadjiconstantinou (2010) consider the budget
SDTCTP with static modes, where, as opposed to the dynamic SDTCTP considered
in this chapter, the activities are processed under pre-selected modes which cannot
be adapted during the project execution according to different outcomes of the
random variables. The approach assumes that the mode selection is performed at
the first stage and all the uncertainty is resolved at the second stage. The authors
propose a path-based two-stage SP approach for the time-cost tradeoff problem
that examines different scenarios of activity durations and delivers a solution which
accommodates fluctuations in the activity durations. The SP model is solved using
a decomposition-based approach which allows decoupling the different scenario
problems and proves to be capable of solving for the first time in the literature,
many large and hard test instances in reasonable computational time using modest
memory requirements. Zhu et al. (2007) also study the static two-stage SP approach
for the problem of setting target finish times (due dates) for activities in a project
network under time-cost tradeoffs and stochastic activity durations. The authors
study the budget-constrained version of the problem using a heuristic methodology
and report computational results for test instances consisting of 90 activities. For
a special case of the SDTCTP, based on a two-stage formulation with recourse, a
stochastic branch-and-bound approach has been suggested by Gutjahr (2000). A
specified number of mode combinations is available for the project activities. The
author assumes that penalty costs are incurred if the project exceeds its deadline;
the proposed model minimizes the expected penalty cost plus the cost associated
with the selected activity modes. The paper reports promising computational results
for 33 randomly generated activity-on-arc problem instances consisting of 25, 50,
and 100 nodes with beta-distributed activity durations and 10, 15, or 20 crashing
modes.
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The remaining developments in the literature deal with the continuous stochastic
TCTP, see for example Wollmer (1985) and Laslo (2003).

Since this chapter deals with endogenous or decision-dependent uncertainty, we
now review the previous work in the more general SP framework on this type of
uncertainty. Due to the challenging nature of these problems, relevant previous
work is limited to a few papers only. Pflug (1990) was the first to address problems
with decision-dependent uncertainty. Decisions may influence the evolution of the
scenario tree in at least two ways. On the one hand, the decision maker may
take action to influence one possibility or outcome to become more probable
than another, hence, influence the probability distributions. On the other hand, the
decision maker could make decisions in order to get more accurate information by
resolving some of the uncertainty and as a result, either completely disregard future
(thereafter impossible) outcomes or become more certain as to which possibilities
may occur.

For the first type of endogenous uncertainty, Vishwanath et al. (2004) consider
a two-stage network problem, where in the first stage investment decisions may be
taken to increase the probabilities of some arcs being available for traversal at the
second stage. Ahmed (2000) also considers network design, server selection, and
facility location problems with decision-dependent uncertainty of the first type. A
0-1 hyperbolic programming formulation as well as an exact algorithm for single
stage problems with discrete decisions are presented.

Jonsbraten et al. (1998) addressed problems with the second type of endogenous
uncertainty. The proposed implicit enumeration algorithm, which solves two-stage
problems of this type, includes a branch-and-bound approach to determine the
optimal set of decisions, each corresponding to a different scenario tree. Held
and Woodruff (2005) propose a heuristic approach for the multi-stage network
interdiction problem. Goel and Grossmann (2004) consider the gas field problem,
which also suffers from the second type of decision-dependent uncertainty. A
disjunctive formulation of the non-anticipativity constraints is presented, which is
then solved using a heuristic algorithm. Goel and Grossmann (2007) generalize
their approach to accommodate both exogenous and endogenous uncertainty and
suggest problem reduction techniques. Their formulation is solved via a Lagrangian
duality based branch-and-bound algorithm. Extensions of this work are found in
Tarhan et al. (2009). Solak (2007) presents a formulation for the project portfolio
optimisation problem which is amenable to scenario decomposition. The author
solves sample problems using Lagrangian relaxation and lower bounding heuristics.
Finally, Colvin and Maravelias (2010) develop a branch-and-cut algorithm to solve
the multi-stage stochastic pharmaceutical clinical trial planning problem, where the
essential non-anticipativity constraints are removed and only added when they are
violated within the search tree. The model is initially reduced in size using several
theoretical properties including some proposed in Goel and Grossmann (2007)
for problems involving scenarios covering the entire space of possible outcomes.
The algorithm is tested on six instances, with the smallest instance involving 64
scenarios and 12 stages solved within 100 CPU seconds and the largest instance
with 4;608 scenarios and 6 stages solved in almost 78 CPU hours.
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36.3 Problem Definition

The SDTCTP can be defined as follows: We are given an activity-on-node project
network of n activities. The network is defined by an acyclic digraph G D .V;E/,
where V D f0; : : : ; n C 1g is the set of nodes (activities) and E is the set of arcs
(immediate precedence constraints) of the project. We assume that node 0 is the
unique source node in the network and that node n C 1 is the unique sink node;
nodes 0 and nC1 represent dummy activities. Without loss of generality, we assume
that the activities are topologically ordered, so that all the predecessors of activity i
have an index which is less than i . We denote the start activities, i.e. the activities
whose only predecessor is node 0 as the set V s . Let P be the index set of all paths
in the project network, starting from activity 0 and ending at activity n C 1 and V`
the set of activities contained in path ` 2 P .

Each activity i 2 V has an index set of Mi possible modes of size Mi and each
mode m 2 Mi is associated to a (stochastic) duration Qpim, and a (deterministic)
cost, cim. Since Qpim is unknown before the completion of activity i under mode m,
it is represented by a vector of possible realisations. Following the classic PERT
approach, we assume that the random variables Qpim are independent and that the
corresponding individual distributions can be estimated. We also assume that Qpim

for all i 2 V;m 2 Mi take integer values.
The uncertainty in the SDTCTP is represented using a set of discrete scenarios,

˙ , in which each scenario � 2 ˙ is associated to a probability of occurrence,
�� , where

P
�2˙ �� D 1, and a realization of activity durations p�im.i 2 V; m 2

Mi ). In other words, each scenario � 2 ˙ contains one possible realisation of the
vector . Qpim/i2V;m2Mi . For simplicity, we assume that the vectors Qpim are ordered
with respect to the scenario index: Qpim D .p1im; p

2
im; : : : ; p

j˙ j
im /. Dummy activities 0

and nC 1 have one mode with zero duration/cost under all scenarios.
It is assumed that the project’s lifetime is represented by the discrete set of time

periods 0; 1; : : : ; T where T denotes the project’s horizon. If T is not known, we set
it to the completion time of the project using the mode of longest duration for each
activity i under each scenario � , T �max D max`2P Œ

P
i2V` maxm2Mi Œp

�
im��, and max-

imize across all scenarios, i.e., T D max�2˙ T �max. Similarly, the minimum com-
pletion time (feasible for all scenarios), Tmin, is calculated via the modes of shortest
duration for each activity i under scenario � , T �min D max`2P Œ

P
i2V` minm2Mi Œp

�
im��

and taken as the maximum across all scenarios. For the maximum (bmax) and
minimum (bmin) budget we use the summation of the maximum and minimum costs
for all the activities, respectively.

The notation used to describe the SDTCTP with DM and its mathematical
formulation is given in Table 36.1.

This chapter deals with finding bounds for the HN solution to the SDTCTP with
DM. The value of this solution is bounded from below by the WS solution value,
zWS, taken as the expectation across all scenarios. For each scenario problem � , let
z�WS denote the optimal objective value for the DTCTP involving the durations of the
activities defined for scenario � . Similarly, the solution to the MV problem (zMV )
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Table 36.1 Notation: SDTCTP with DM

Sets

V D f0; : : : ; i; : : : ; nC 1g Set of nodes (project activities)

E Set of arcs (immediate precedence constraints)

Mi Index set of modes for activity i

Mi D jMi j Size of set Mi

P Index set of all paths in the network

V s Set of start activities

V` Set of activities contained in path `

˙ Index set of scenarios

Indices

i; j 2 V An activity in the project

m;m0 2 Mi A mode of activity i

` 2 P A path in the project network

t; t 0; � 2 N A time period

�; � 0 2 ˙ A scenario

Parameters

b Project budget

.bmin; bmax/ Minimum, maximum total project cost

�� Probability of scenario �

.p�im; cim/ Duration, cost of activity i under mode m under

scenario �

.T �min; T
�
max/ Minimum, maximum project completion time under

scenario �

T D max�2˙ŒT
�

max� Project horizon

Tmin D max�2˙ ŒT
�
min� Minimum project completion time feasible for all

scenarios

Optimization variables

x�imt Whether or not activity i is started at time t under

mode m under scenario �

zb�DM.x/ Project completion time of b-SDTCTP with DM

bounds zHN from above. The optimal decision values under the MV scenario are
denoted by xMV . Using xMV , the corresponding objective function value under each
scenario � 2 ˙ is denoted as z�MV . Table 36.2 gives the definition of these concepts,
as these are applied for the SDTCTP with DM.

The HN solution to the SDTCTP with DM is to select a mode and assign a
starting time for each activity under each scenario so that a given objective is
achieved. Note that the focus of this chapter is on the budget version of the problem,
denoted as b-SDTCTP with DM, where the objective is to minimize the expected
project makespan subject to a pre-defined budget. In this problem, the assignment
of modes is dynamic, i.e., the decision on the execution mode for an activity is
only made when the activity becomes eligible to start and the selection depends
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Table 36.2 Notation: standard stochastic programming for the SDTCTP with DM

z�WS Optimal WS project completion time under scenario � found by solving
the deterministic scenario problem �

zWS D P
�2˙ �� z�WS Expected project completion time under a WS approach

zHN Optimal expected project completion time under a HN approach. This is
equivalent to the solution value of Model 1

�MV MV scenario, that considers only expected values for random variables

xMV Optimal mode selection variables for the MV scenario

z�MV Project completion time using xMV under scenario �

zMV D P
�2˙ �� z�MV Expected project completion time under a MV approach

on the observations made during the course of the decision process until that time.
The decision process consists of a stage-wise selection of execution modes for a
number of eligible activities under each scenario. Hence, an appropriate approach
is to formulate the problem as a multi-stage stochastic program with recourse, in
which recourse actions can be taken at each stage, after uncertainty on the durations
of completed activities is revealed.

36.4 A New Multi-Stage SP Model for the b-SDTCTP
with DM

In this section, we present a multi-stage stochastic integer formulation for the
b-SDTCTP with DM (36.2)–(36.8) that will be used for finding its HN solution. In
this problem, the time horizon is represented by a discrete set of time periods. Each
stage (time period or decision point) of the problem is defined as either the beginning
of the project (t D 0) or any point in time during project execution for which at
least one activity in any scenario has been completed. The observed duration value
of the completed activity reduces the number of scenarios under consideration at
the current stage in the following way. Assume that an activity i was executed at a
previous stage under modem and has been completed by the current time stage. The
observed duration value of the completed activity is p�im for some � 2 ˙ . It follows
that all scenarios � 0 2 ˙ , such that p�

0

im ¤ p�im, are excluded from the decision
process at the current and all subsequent stages; we are certain they cannot be the
true scenario. Following the completion of the activity, one or more activities may
become eligible to start. The assignment of the execution modes for the eligible
activities, based on realized duration values of the completed activities, should put
the decision maker in the best possible position to cope with the future uncertainties
captured by the scenarios which are still under consideration at the current stage. At
the end of the decision process, all the activities are completed and the true scenario
is revealed; the true path on the scenario tree becomes known. However, as at the
beginning of the process we are completely unaware of which path/scenario will be
revealed, a set of solutions for all scenarios is required; for each possible outcome
an “optimal” action is necessary.
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To develop a mathematical model of the b-SDTCTP with DM (36.2)–(36.8), we
define the binary decision variables x�imt (Table 36.1) for all activities i 2 V and
m 2 Mi , at time t � T and under all scenarios � 2 ˙ such that:

x�imt D

8
<̂

:̂

1; if activity i is executed under modem; started at time t;
under scenario �

0; otherwise

(36.1)

Ideally, for any common part of two or more paths in the scenario tree, we
would only have a single decision variable. However, this is impossible, since the
timing of the stages of the problem cannot be predicted in advance, as they depend
on the activities’ durations, which are the stochastic elements of the problem. To
make matters worse, the durations are also dependent on the modes selected at a
previous stage during the scheduling process. This means that the realization of
future stochastic parameters depends on the decisions made so far, hence revealing
that the problem contains decision-dependent uncertainty; the scenario tree is thus
unknown.

To preserve the structure of the scenario tree, i.e., the common parts of the
paths, we apply the non-anticipativity constraints (Sect. 36.1). In the case of the
b-SDTCTP with DM, two scenarios � and � 0 (� ¤ � 0) are indistinguishable, if
the observed duration value of any activity which has been completed before and
including time t is identical under both scenarios � and � 0. It is worth noting that,
similarly to Solak (2007), in the mathematical formulation, we consider an explicit
representation of the decision-dependent non-anticipativity constraints in a compact
way. This enables the use of solution approaches developed in the literature for
classical stochastic integer programs and also scenario decomposition methods.

As in Goel and Grossmann (2007), we define a set �.�; � 0/ for all pairs of
scenarios � and � 0, with � ¤ � 0 consisting of elements which distinguish between
� and � 0. The set consists of all pairs .i;m/; i 2 V;m 2 Mi such that the value
of the duration of activity i under mode m is different for scenarios � and � 0, i.e.,
�.�; � 0/ D .i;m/

i2V;m2Mi ;p
�
im¤p�0

im
. By definition,�.�; � 0/ D �.� 0; �/.

The sequence of events in the b-SDTCTP with DM is as follows. Observations
p�jm (realized duration values), for already scheduled activities j , and decisions
x�imt, for unscheduled activities i , are both made at the beginning of period t , with
decisions being made immediately after observations. Note that the observations
resulting from decisions taken at time t may be made after several stages; if decision
x�imt D 1 is taken, then the resolution of the uncertainty regarding activity i under
mode m will be made at the beginning of time period t 0 D t C p�im and before new
decisions are taken at time t 0.

The mathematical formulation of the b-SDTCTP with DM is given in
Eqs. (36.2)–(36.8).

Objective (36.2) minimizes the expected project completion time of the stochas-
tic dynamic model. Note that zdyn.x/ is a function of the decision variables x and
denotes the expected project makespan of the b-SDTCTP with DM. Constraints
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(36.3) and (36.4) ensure that the selection of modes does not exceed the available
budget and that the precedence relations between the activities are satisfied,
respectively. Logical constraints (36.5) impose the fact that only one mode must
be assigned to each activity.

Min. zdyn.x/ D
X

� 2˙

X

m2MnC1

TX

tD0
�� tx

�
.nC1/mt (36.2)

s.t.
X

i2V

X

m2Mi

TX

tD0
x�imtcim � b .� 2 ˙/ (36.3)

TX

tD0

X

m2Mj

tx�jmt �
TX

tD0

X

m2Mi

tx�imt�

X

m2Mi

TX

tD0
x�imtp

�
im � 0 ..i; j / 2 EI � 2 ˙/ (36.4)

X

m2Mi

TX

tD0
x�imt D 1 .i 2 V I � 2 ˙/ (36.5)

x�im0 �
X

� 02˙
�� 0x�

0

im0 D 0 .i 2 V I m 2 Mi I � 2 ˙/ (36.6)

jx�imt � x� 0

imtj �
X

.j;m0/2�.�;� 0/

t�minfp�
jm0

;p�
0

jm0

g
X

�D0
.x�jm0� C x�

0

jm0� / � 0

.�; � 0 2 ˙ W � < � 0I i 2 V I m 2 Mi I t D 1; 2; : : : ; T / (36.7)

x�imt 2 f0; 1g .i 2 V I m 2 Mi I t D 0; 1; : : : ; T I � 2 ˙/ (36.8)

The non-anticipativity requirements are applied via constraints (36.6) and (36.7).
If scenarios � and � 0 are indistinguishable at time t , then the decisions x.:/imt should
be the same for both scenarios � and � 0. All scenarios are indistinguishable before
any decision is taken at the first stage (t D 0) (constraint (36.6)). Constraint (36.7)
imposes the non-anticipativity rule to scenarios � and � 0 for t � 1, if � and
� 0 indistinguishable. To explain this, assume for now that only two scenarios, �
and � 0, are under consideration. (The concepts can be easily extended to the case
where more than two scenarios are considered.) Scenarios � and � 0 are said to
be indistinguishable if no activity j has been scheduled under a mode m0 and
at time � , such that, .j;m0/ 2 �.�; � 0/ and � � t � minfp�

jm0

; p�
0

jm0

g. Time

� D t � minfp�jm0

; p�
0

jm0

g is the latest starting time for activity j which, scheduled
under mode m0, distinguishes between scenarios � and � 0 by time t . To clarify this
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statement, assume without loss of generality that p�jm0

< p�
0

jm0

. Then if activity j has

been scheduled under mode m0 by time � D t � minfp�jm0

; p�
0

jm0

g D t � p�jm0

, this
implies that either the activity would be completed by time t , revealing that scenario
� 0 is not the true scenario, or it would still be in progress by time t , revealing that � is
not the true scenario. In either case, scheduling the activity under that mode by time
� would result in distinguishing between those two scenarios; constraints (36.9) are
then redundant. If the activity is scheduled under that mode at any time after time � ,
then scenarios � and � 0 would still be indistinguishable at time t ; activity j would
still be in progress, revealing that any of � and � 0 could be the true scenario. In that
case, constraints (36.7) restrict all decisions taken at time t for the two scenarios
into being the same; the two scenarios at time t have not yet taken a different route
in the scenario tree.

Finally, constraints (36.8) define the domain of the decision variables.
Let z�

dyn D minxfzdyn.x/g denote the optimal objective value of the model given
by Eqs. (36.2)–(36.8).

36.4.1 Scenario Tree Generation: An Illustrative Example

We illustrate the concepts regarding the multi-stage nature of the b-SDTCTP with
DM, including the evolution of the scenario tree, the non-anticipativity constraints,
the sets of indistinguishable scenarios, and the scenario problems (Sect. 36.1), using
the example project network given in Fig. 36.1 and the corresponding data displayed
in Table 36.3.

In Fig. 36.2, we show the early stages of a possible scenario tree for the example
(using specific decisions). Note that the leaf nodes of the tree correspond to a partic-
ular scenario problem, denoted at the bottom of Fig. 36.2. The tree is constructed by
enlisting all the possible information states/decision points (identified by the node
numbers shown in the circles), along with their probabilities (numbers shown on the
arcs of the tree) in a tree structure which respects the order of the timings of the
information revelations.
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Fig. 36.1 Project network example
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Table 36.3 Data for the
activities of the project
example in Fig. 36.1

Activity duration

Activity scenarios

Activity Mode cost 1 2 3 4 5

0 1 0 0 0 0 0 0

1 1 7 10 10 11 8 11

2 8 5 4 4 6 7

3 9 4 2 3 3 2

4 20 2 1 4 3 2

2 1 16 18 17 16 18 16

2 17 15 17 14 15 14

3 18 12 10 11 11 14

4 20 6 8 7 5 7

3 1 10 13 14 14 15 14

2 11 9 10 10 9 9

3 13 8 6 9 10 7

4 18 6 7 8 7 4

4 1 2 19 19 19 18 18

2 3 17 15 17 17 17

3 7 8 6 8 8 9

4 15 5 5 4 4 4

5 1 1 18 19 20 18 18

2 2 10 10 8 12 8

3 9 8 8 10 10 8

4 15 3 2 2 5 5

6 1 2 15 16 13 13 15

2 6 12 14 12 13 11

3 17 6 5 6 5 5

4 20 4 3 2 5 4

7 1 3 18 18 19 20 18

2 5 7 7 6 9 6

3 8 6 5 4 7 6

4 17 5 3 5 3 6

8 1 2 14 15 13 15 16

2 6 12 13 14 13 13

3 16 3 4 5 5 3

4 20 2 1 4 1 4

9 1 6 16 17 15 15 16

2 10 11 12 11 10 12

3 16 7 8 8 9 6

4 19 4 2 3 5 4

10 1 3 15 15 15 17 16

2 10 8 10 7 9 9

3 13 7 8 8 7 5

4 18 5 3 5 6 3

11 1 0 0 0 0 0 0
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Fig. 36.2 Scenario tree for the project network of Fig. 36.1

The beginning of the project (t D 0) denotes the first decision point of the
problem when no observations have been made yet; this decision point is associated
to node 0 in Fig. 36.2. As no scenario-related information has been revealed at
this point, all five scenarios are indistinguishable. To respect the non-anticipativity
constraints, we require that all scheduling decisions at this stage are common to
all five scenarios. Four activities are eligible to start following the dummy start
activity 0, namely activities 1; 2; 3; and 4. Let us assume that these activities are
scheduled under modes 1; 2; 1; and 2, respectively, at t D 0, by setting x�im0 D 1 for
� D 1; : : : ; 5 and m D 1; 2; 1; 2 for i D 1; 2; 3; 4, respectively. Table 36.4 shows
the different possible observations (realized duration values) resulting from these
decisions.

We observe that the earliest possible time for which new information may be
revealed is at time t D 8. This occurs if activity 1 is completed by time 8, which is
only true under scenario 4 (observation p41;1 D 8); we denote this particular state as
node 1. All other activities are still in progress at node 1. As this information state is
only possible under scenario 4, this particular scenario distinguishes itself from the
remaining scenarios by time t D 8 and is the only scenario to go through node 1.
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Table 36.4 Possible
observations resulting from
the scheduling decisions
taken at t D 0

Activity Mode Activity durations for scenario �

i m � D 1 � D 2 � D 3 � D 4 � D 5

1 1 10 10 11 8 11

2 2 15 17 14 15 14

3 1 13 14 14 15 14

4 2 17 15 17 17 17

Decisions on scheduling eligible activities at stages/nodes originating from node 1
are independent of the remaining scenarios (the non-anticipativity constraints which
include decision variables for scenario 4 become thereafter redundant). If, on the
other hand, activity 1 is still in progress at time 8, then scenario 4 is considered
impossible and is thus left out of the decision process at all subsequent stages.
Only one of the remaining scenarios 1; 2; 3; and 5 may be the true scenario (these
scenarios are still indistinguishable at time t D 8).

Following the same process, we create node 2 to represent the information state
where we observe the completion of activity 1 at t D 10 (observation p11;1 D p21;1 D
10) which is only true under scenarios 1 and 2; both of these scenarios are said
to be indistinguishable between them at t D 10 but have distinguished themselves
from scenarios 3; 4; and 5. There are no scheduling decisions to be made under this
state as there are no eligible activities to start at t D 10. Scenarios 1 and 2 are
separated in the scenario tree at t D 13. By this time, activity 3 is either completed
(observation p13;1 D 13), denoted by node 4, or still in progress; in the latter case,
activity 3 is eventually completed at t D 14with observationp23;1 D 14 and denoted
by node 5. The non-anticipativity constraints on decisions under scenario 1 taken at
stages originating from node 4 and on decisions under scenario 2 taken at stages
originating from node 5 are thereafter redundant.

So far, we have considered the possibility of activity 1 ending either by time 8
or by time 10. In fact, if activity 1 is not completed by time 10, then it must end
by time 11. Node 3 is associated to the state where the duration of activity 1 is
equal to 11; scenarios 3 and 5 are the only scenarios to pass through this node and
are therefore still indistinguishable between them at this time (p31;1 D p51;1 D 1).
Node 6 represents the state where both activities 2 and 3 are completed at time
t D 14, which is the case under both scenarios 3 and 5. At this stage, activity 5
is eligible to start, but the non-anticipativity constraints still apply. Therefore the
selected execution mode for activity 5 has to be the same under both scenarios
3 and 5. Assume that activity 5 is to be scheduled under mode 4, meaning that
x35;4;14 D x55;4;14 D 1. Scenarios 3 and 5 are distinguished from each other at time
t D 16 when activity 5 ends under scenario 3 (node 10) but is still in progress under
scenario 5. All the non-anticipativity constraints leave the decisions unaffected after
time t D 16.

The above process is repeated until all activities are scheduled under all scenarios
and the scenario tree is then completed; the route from the root node to a particular
leaf node indicates the sequence of observations and associated scheduling decisions
for the corresponding scenario.
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36.4.2 Computation of Lower Bound LB Based on a Two-Stage
Relaxation Algorithm

In this section, we propose an algorithm, referred to as TSA, for solving a relaxation
of (36.2)–(36.8); the obtained solution value is a valid lower bound for the
b-SDTCTP with DM. In Sect. 36.3 we stated that the optimal solution to (36.2)–
(36.8), also referred to as the HN solution, is bounded from below by zWS. In this
section, we prove that the proposed lower bound also bounds zHN from below and is
at least as strong as zWS.

Although the problem involves a multi-stage decision making process, a natural
simplification is a two-stage relaxation in which we assume a perfect information
state once the decisions at the first-stage are made. This relaxation is expected
to ease the computational burden induced by the complicating non-anticipativity
constraints, which grow exponentially with the number of scenarios. The lower
bound is also expected to be stronger than the WS lower bound, since it includes
additional constraints on the non-anticipativity property of the decisions taken at t D
0, i.e., the mode selections for the activities which have no predecessors. Following
the revelation of the uncertainty regarding these activities, it is expected that some
scenarios will become distinct, thereby making a subset of the non-anticipativity
constraints redundant. This feature is expected to contribute in delivering a tight
lower bound.

36.4.2.1 Overview of Algorithm CPAb�DTCTP

Before we describe in detail the proposed lower bound, we briefly provide an
overview of Algorithm CPAb�DTCTP proposed in Hadjiconstantinou and Klerides
(2010) for the deterministic DTCTP and which is implemented in this section.
Algorithm CPAb�DTCTP is a delayed-constraint generation approach, specifically
designed to solve the path-based formulation of the DTCTP. The algorithm begins
by enumerating all the source-sink paths in the project. Each path corresponds
to a path constraint in the path-based formulation which ensures that the project
completion time is at least as large as the sum of the durations of the activities on
the path. The algorithm then iteratively solves the path-based formulation of the
DTCTP using a subset of the path constraints, each time adding the path constraints
which are violated by the obtained solution. The algorithm ends when the predefined
optimality criteria are met.

36.4.2.2 Algorithm TSA

In the relaxation of (36.2)–(36.8), constraints (36.7), i.e., the non-anticipativity
constraints for all times t � 1, are ignored. The non-anticipativity requirements are
only applied for t D 0, the first stage of the problem. Once the decisions at t D 0
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are made, the scenarios are decoupled as all the remaining constraints are defined
separately for each scenario. Hence, at the second stage, the problem decomposes
into distinct scenario problems. For this reason, the relaxed problem can be viewed
as the two-stage relaxation of the b-SDTCTP with DM, thereafter referred to as
problem TS.

TSA is a two-stage algorithm which solves problem TS. The value of the resulting
optimal solution is a lower bound to (36.2)–(36.8) and is denoted by LB. Algorithm
TSA involves finding the best combination of fixed modes mF D .mi/i2V s for the
start activities, such that the expected project completion time across all scenarios
is minimized, i.e.,

LB D min
mF

fLB.mF /g D min
mF

f
X

�2˙
�� z��

TS .m
F /g (TS)

where z��
TS .m

F / is the optimal solution value to the specific deterministic scenario
problem � given fixed modes mF . The latter problem is given in (36.9)–(36.14),
where the binary decision variables yim denote whether or not activity i 2 V is
executed under modem 2 Mi .

Min. z�TS.m
F ; y/ (36.9)

s.t.
X

i2V

X

m2Mi

yimcim � b (36.10)

X

m2Mi

yim D 1 .i 2 V n fV sg/ (36.11)

z�TS.m
F ; y/ �

X

i2V`

X

m2Mi

yimp
�
im � 0 .` 2 P/ (36.12)

yimFi
� 1 .i 2 V s/ (36.13)

yim 2 f0; 1g .i 2 V I m 2 Mi / (36.14)

Objective (36.9) minimizes the two-stage project completion time under scenario
� when fixed modes mF are assigned to all i 2 V s . Constraint (36.10) ensures
that the selection of modes does not exceed the available budget and logical
constraints (36.11) allow only one execution mode to be selected for each activity.
Inequalities (36.12) guarantee that the project completion time is greater than
or equal to the lengths of all the paths in the project network. Finally, con-
straints (36.13) and (36.14) impose the fixed modes for the start activities and define
the domain for the decision variables, respectively.

If constraints (36.13) are ignored, the model is the same as the deterministic
path-based model for the b-DTCTP given in Hadjiconstantinou and Klerides (2010).
Equations (36.9)–(36.14) can then be solved using algorithm CPAb�DTCTP proposed
in that paper, where constraints (36.13) are additionally included in the model of the
relaxed problem at each iteration.
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Clearly, the complexity of the algorithm depends on the number of scenarios as
well as on the number of start activities in the project and their execution modes.
In the worst-case, the CPAb�DTCTP algorithm is invoked a number of times equal to
j˙ jQi2V s jMi j. To improve the computational performance of the algorithm, we
have developed a dominance rule, which is able to significantly reduce the search
space for mF . The dominance rule is applied for a given combination of modes
mF , and each time algorithm CPAb�DTCTP is applied to solve scenario � 2 ˙ . The
fundamental idea is that, for each scenario, a lower bound on the expected project
completion time is computed. If this lower bound is greater than a known upper
bound on the expected project makespan, the combination of modes is discarded.
The dominance rule is described in detail below.

36.4.2.3 Dominance Rule

The dominance rule uses as input a known upper bound UB for the expected project
completion time (e.g., the project horizon T ) and the WS completion times for all
scenarios � 2 ˙ , z�WS, the latter values being obtained using algorithm CPAb�DTCTP.
The rule is applied for each combination of mF and each time the value z�

�

TS .m
F /

is computed (using (36.9)–(36.14)), for any scenario � 2 ˙ . Note that if a scenario
problem turns out to be infeasible formF , then the choice of modes is automatically
discarded.

Consider a specific combination of fixed modes for the set V s , given by mF

and apply algorithm CPAb�DTCTP for all � 0 � � to obtain optimal objective values
z�� 0

TS .m
F / for all � 0 � � .

The dominance rule calculates the lowest possible value that can be obtained for
the current combination of modes,mF . This lower value, LBDR, is calculated as

LBDR D
X

� 0��
�� 0z�� 0

TS .m
F /C

X

� 0>�

�� 0 z�
0

WS (36.15)

If the value LBDR is greater than UB, then mF is dominated. Clearly, the lower the
upper bound used, then more effective the dominance rule. The computation of the
upper bound is discussed in Sect. 36.4.3.

The complete algorithm TSA is given in Algorithm 36.1.

Proposition 36.1. LB � zWS.

Proof. The WS problem is a relaxation of problem TS, namely the two-stage
b-SDTCTP with DM (constraints (36.6) are omitted). Therefore, the lower bound
obtained from algorithm TSA is at least as large than the one obtained from solving
all scenario subproblems individually (zWS). Hence, LB � zWS. ut

Additionally to the lower bound LB, algorithm TSA also provides a lower
bound on the project completion time under each scenario � given by
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LB� D minmF fz�s
TS.m

F /g. We now prove that the derived lower bound is stronger
than the standard WS lower bound for each scenario problem � .

Proposition 36.2. LB� � z�WS for all � 2 ˙ .

Proof. z�WS is the optimal solution found by solving a relaxation of (36.9)–(36.14),
which ignores fixed modes for any activities. Hence, it is lower than z�

�

TS . In general,
the following is true: LB� � z�WS; for all � 2 ˙ . ut

Algorithm 36.1 TSA: enumeration algorithm for problem TS

initialize
� WD 1; mF

i .�/ WD 1 .i 2 V s/

LB� WD T .� 2 ˙/

LB WD T

while � < �max do

Step 1: Set lb WD 0.

while � 2 ˙ and mF .�/ is not dominated do

Step 2.1: Apply CPAb�DTCTP to solve (36.9)–(36.14) for scenario � using fixed modes
mF .�/.
Step 2.2: If the problem is infeasible, mF .�/ is discarded. Otherwise, compute
z�

�

TS .m
F .�//. Update lb WD lb C z�

�

TS .m
F .�//.

Step 2.3: Use the dominance rule to check if mF .�/ is dominated.

end while

if mF .�/ is not dominated then
Step 3: LB WD minflb; LBg
while � < j˙ j do

Step 4: LB�TS WD minfLB� ; z�
�

TS .m
F .�//g

end while
end if
Step 5: Set � WD �C 1 and set new combination of modes mF .�/.

end while

return LB ; LB� .� 2 ˙/

36.4.3 Computation of Upper Bound UB Based
on a Static-Modes Policy

In this section we will present a heuristic approach for finding a good feasible
solution to the b-SDTCTP with DM. The proposed heuristic, referred to as HEUR,
achieves nearly optimal solutions in a fast and efficient way.
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36.4.3.1 Overview of Algorithm DAb�SDTCTP

The heuristic algorithm described in this section refers to Algorithm DAb�SDTCTP

proposed in Klerides and Hadjiconstantinou (2010) for the two-stage SDTCTP. This
algorithm was specifically designed to solve to optimality the path-based two-stage
stochastic programming model for the SDTCTP with static modes. The first step
of the algorithm is to solve a relaxation of the problem using delayed constraint
generation, with constraints (cuts) being selected from the set of path constraints
for each scenario. The solution to the relaxed problem (mode selections) enables
the decomposition of the original problem into separate scenario subproblems,
where each subproblem reduces to finding the project completion time under that
scenario, using forward calculations and the mode values. The constraint generation
procedure is repeated over a number of iterations until the termination criteria are
satisfied.

36.4.3.2 Heuristic Algorithm HEUR

The fundamental idea behind the heuristic algorithm is building a feasible,
non-anticipative solution Ox.˘/ D . Ox�imt.˘//i2V;m2Mi ;t�T;�2˙ from a static
(scenario-independent) mode selection policy ˘ . Note that ˘ is a list of modes
˘i 2 Mi for each activity i 2 V and is associated to mode selection variables y˘

such that:

y˘ D .y˘im/i2V;m2Mi jy˘imD1 for mD˘i (36.16)

The reverse is also true, i.e., for mode selection variables y˘ , there exists a mode
selection policy˘ such that:

˘i D
X

m2Mi

my˘im (36.17)

Once the non-anticipative solution is found, then the heuristic solution value is
given by

UB D zdyn. Ox.˘// .HEUR/

found by using Ox.˘/ as a solution to (36.2)–(36.8).
The proposed heuristic algorithm HEUR is described below (Algorithm 36.2).

It is interesting to note that we derive the static mode selection policy ˘ from
the optimal solution to the b-SDTCTP with static modes by using (36.17) and the
decomposition algorithm DAb�SDTCTP proposed in Klerides and Hadjiconstantinou
(2010).
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Algorithm 36.2 HEUR: heuristic algorithm for the b-SDTCTP with DM

Step 1: Use DAb�SDTCTP to derive optimal mode selection variables y�

im. Set ˘i WDP
m2Mi

my�

im.
Step 2: Use NONANT.�/ (Procedure 36.1) to derive the heuristic non-anticipative solution
Ox.˘/.
Step 3: Using Ox.˘/, set UB WD zdyn. Ox.˘// from (36.2).
return UB.

Step 2 of Algorithm HEUR involves procedure NONANT.˘/ (described in
Procedure 36.1), which constructs a non-anticipative solution Ox.˘/ based on a static
mode selection policy ˘ . The procedure goes through all the decision stages of
the project scheduling process. At each iteration, for given time t and decisions
Ox D . Ox�im� /i2V;m2Mi ;�<t;�2˙ , Procedure FindIndistinguishableScenarios(t, Ox) (Pro-
cedure 36.2) is invoked to find all the sets of indistinguishable scenarios ˙� for
� D 1; : : : ; jIS j (Procedure 36.1, Step 1). For all such sets which are not singletons,
all eligible activities are found using Procedure FindEligibleActivities(t, Ox;˙�)
(Procedure 36.3); the modes prescribed by policy ˘ (Procedure 36.1, Step 2.2)
are assigned to the eligible activities. The essence of NONANT.˘/ lies in the
assignment of modes for any set ˙� of indistinguishable scenarios with a single
member (j˙�j D 1), i.e., a scenario which has completely differentiated itself from
all remaining scenarios. In such a case, the procedure allows assigning modes and
starting times for all unscheduled activities independently of the policy ˘ , as long
as this mode assignment is feasible and minimizes the project completion time of
that scenario. The procedure terminates when either all of the scenarios have been
distinguished or when the project horizon has been reached.

Procedure 36.2 displays the details of procedure FindIndistinguishableScenar-
ios(t,x). The procedure returns the set IS, which contains all sets of indistinguishable
scenarios at time t and for decisions x taken so far, with

S
��jISj˙� D ˙ and

˙�1 \ ˙�2 D ; for �1 ¤ �2. The history of observations and decisions for each
pair of scenarios � and � 0 (� < � 0) is examined. If an activity i has been scheduled
at modem 2 Mi with .i;m/ 2 �.�; � 0/ at time � � t � maxfp�im; p� 0

img under either
of the two scenarios, then both scenarios are distinct from each other by time t .
Otherwise, these scenarios are indistinguishable at time t and are therefore included
in the same set.

Procedure 36.3 finds all the activities which are eligible to start at time t , using
decisions x taken so far for a set of indistinguishable scenarios ˙ 0. Since all
scenarios in set ˙ 0 share the same history we need only perform the procedure
for one of the members of the set ˙ 0. Let � D ˙ 0

1 denote the first element of set˙ 0.
The eligible activities for scenario � will be automatically eligible for all scenarios
in ˙ 0. The eligible activities are identified as those having all their predecessors
completed by time t . Note that the output of FindEligibleActivities(t,x,˙ 0) is a list
of the eligible activities in a non-decreasing order of index.
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Procedure 36.1 NONANT.�/

initialise
distinct_scenario� WD false .� 2 ˙/.
t WD 0.
Ox WD 0; : : : ; 0.

while t � T do

Step 1: IS WD FindIndistinguishableScenarios.t; Ox/.
Step 2: � WD 1.

while � � jISj do

� WD ˙�

if j˙�j D 1 and distinct_scenario� D false then
Step 2.1: V 0 WD fi 2 V j Ox�im� D 1 for some m 2 Mi ; � < tg
Apply CPAb�DTCTP with additional constraints in the relaxed problem:

yi˘i � 1 .i 2 V 0/ (36.18)

to get optimal values Oy�

im for all i 2 V nV 0. Use forward calculations to get the optimal
starting times S�

i for all i 2 V nV 0.

Set Ox�imt WD 1 .i 2 V nV 0Im D X

m0

2Mi

m0yim0 I t D S�

i /.

else
Step 2.2: D D FindEligibleActivities.t; Ox�;˙�/

Set Ox�imt WD 1 .� 2 ˙�I i 2 DIm D ˘i/.
end if
� WD �C 1.

end while
Find the next decision point t .

end while

return Ox.

In the worst case, the mode assignment, Ox.˘/, obtained by NONANT.˘/ is
exactly the same as prescribed by ˘ for all scenarios and no additional benefit
is achieved by using the algorithm. In such a case, the solution value zdyn. Ox.˘// is
equal to the one obtained by solving the b-SDTCTP with static modes with policy
˘ , zst.x

˘ /.
Therefore, algorithm NONANT.˘/ guarantees to give a solution with expected

project completion time at most as large as the one obtained from applying the
solution x˘ to the b-SDTCTP with static modes:

zst.x
˘ / � zdyn. Ox.˘// (36.19)

Proposition 36.3. UB � zMV .
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Procedure 36.2 FindIndistinguishableScenarios(t,x)
initialise

NoOfSets WD 1; IS WD f;g:
for �; � 0 2 ˙; � < � 0 do

if
P

.j;m0/2�.�;� 0/

Pt�maxfp�
jm0

;p�
0

jm0

g

�D0 .x�jm0�
C x�

0

jm0�
/ D 0 then

if 9L 2 f1;NoOfSetsg such that � 2 ˙L then
˙L WD ˙L [ fs0g:

else
NoOfSets WD NoOfSets C 1.
˙NoOfSets WD f�; � 0g.
IS WD f˙1; : : : ; ˙NoOfSetsg.

end if
end if

end for

return IS.

Procedure 36.3 FindEligibleActivities(t,x,˙ 0)
initialise

� WD ˙ 0

1; D WD ;.
V 0 WD fi 2 V jx�im� D 18� 2 ˙ 0; for some m 2 Mi ; � < tg.
G WD fi 2 V 0jP�<t .� C p�im/x

s
im� � t; 8� 2 ˙ 0g.

for i 2 V nV 0 do
predi WD fj 2 V j.j; i/ 2 Eg.

if j 2 G 8 j 2 predi then
D WD D [ fig.

end if
end for
Reorder D in non-decreasing order of index.

return D .

Proof. Assume that the MV decision values, yMV , represent the optimal solution
to the b-SDTCTP with static modes. Then, zMV D z�

st D zst.yMV /, where zst.y/ is
the solution value of the SDTCTP with static modes when values y are used and
z�

st D minyfzst.y/g.
Now suppose that yMV is not the optimal policy obtained from solving the

b-SDTCTP with static modes. This means that there exists a mode selection y˘ ¤
yMV such that zst.y

˘ / � zMV . Note that y˘ is associated to a policy ˘ such that
˘i D m if y˘im D 1 from (36.16). We also have that zb�DM. Oy.˘// � zst.y

˘ /

from (36.19) and the proof follows. Therefore, in general we have that:

UB � zMV (36.20)

ut
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The complexity of HEUR is mostly affected by two procedures, namely
algorithms CPAb�DTCTP and DAb�SDTCTP, implemented in Step 2.1 of Algo-
rithm 36.1 and Step 1 of Algorithm 36.2, respectively. These two algorithms solve
to optimality N P-hard problems and are therefore of exponential complexity.
However, the algorithms are not essential to the implementation of the fundamental
idea of the heuristic and can be easily replaced by any other optimal or heuristic
approach. In the absence of the exact solution approaches, the computational effort
of the heuristic is expected to be mostly spent on Procedure 36.2, which performs a
number of operations of order T j˙ j2Pi2V Mi . In the computational study which
follows we show that experimentally the two exact solution approaches are quite
fast and converge within reasonable computational times.

36.5 Illustrative Example

In this section, we will demonstrate the value obtained from considering different
models to estimate the expected project completion time of a project example.
Consider the activity-on-node project network shown in Fig. 36.1 and assume, for
illustrative purposes, only five equiprobable scenarios given in Table 36.4 are used
and the budget is equal to b D 117.

If we solve the deterministic model assuming all the random variables take
their expected values (Mean-Value (MV) approach associated to scenario 1), the
deterministic optimum project completion time is given by zdet

MV D 23. Using
xMV D .1; 2; 4; 3; 3; 4; 3; 2; 1; 3; 3; 1/, the expected project completion time, found
by applying the solution to all five scenarios, is found to be zMV D 25:6.
Furthermore, the optimal static expected objective value is z�

st D 24:8 obtained
using the algorithm in Klerides and Hadjiconstantinou (2010).

Assuming dynamic modes for the example problem, we apply TSA
(Algorithm 36.1), which gives a lower bound equal to LB D 24:2 and HEUR
(Algorithm 36.2) producing a heuristic solution value equal to UB D 24:2,
thus proving optimality (z�

dyn D 24:2). Full details of the algorithm are shown
below. These results confirm that estimating the expected project completion
time of the example without taking into account managerial flexibility leads to
poor approximations. On the one hand, the expected objective value associated to
xMV overestimates the stochastic dynamic solution by at least 5:8%. Similarly,
the stochastic static model solution overestimates the corresponding dynamic
solution by at least 2:5%. As a result we can claim that the bound UB is a better
approximation to the optimum stochastic dynamic objective value and provides an
improvement over the optimum static value. In fact, in this case it provides the
optimal solution.

Step 1: Use DAb�SDTCTP to derive optimal policy ˘ D .1; 3; 4; 3; 3; 4; 3; 3; 1; 3;

2; 1/ for activities 0; 1; : : : ; 11.
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Step 2: Use NONANT.˘/ to derive the heuristic non-anticipative solution Ox.˘/
in the following way.
Initialize distinct_scenario� WD false .� 2 ˙ I Ox WD .0; : : : ; 0//.

• t D 0. Apply procedure FindIndistinguishableScenarios.0; Ox/ to obtain set of
indistinguishable scenarios IS D ff1; 2; 3; 4; 5gg.

• n D 1 and � D 1.Apply procedure EligibleActivities.0; Ox1; f1; 2; 3; 4; 5g/ to
find the eligible set of start activities D D f1; 2; 3; 4g. Set Ox�imt WD 1 .� D
1; : : : ; 5I i D 1; 2; 3; 4Im D 3; 4; 3; 3/.

• t D 5 is the next decision point (activity 5 is eligible to start for � D
4). Apply procedure FindIndistinguishableScenarios.5; Ox/ to obtain IS D
ff1g; f2; 5g; f3g; f4gg.

• n D 1 and � D 1. Since j˙1j D 1 and distinct_scenario1 D false, set the set of
scheduled activities as V 0 WD 1; 2; 3; 4 and apply CPAb�DTCTP with additional
constraints in the relaxed problem:

yim � 1 .i D 1; 2; 3; 4Im D 3; 4; 3; 3/ (36.21)

to obtain optimal modes mi D 4; 3; 3; 1; 3; 2; 1 and optimal starting times
S�
i D 6; 8; 9; 9; 15; 15; 23 for unscheduled activities i D 5; 6; 7; 8; 9; 10; 11.

Update Ox1 and set distinct_scenario1 WD true.
• n D 2 and � D 2. Apply procedure FindEligibleActivities.5; Ox2; f2; 5g/, to

find that there are no eligible activities at t D 5 for � D 2; 5, i.e., D D ;.
• n D 3 and � D 3. Since j˙3j D 1 and distinct_scenario3 D false, set
V 0 D 1; 2; 3; 4 and apply CPAb�DTCTP with additional constraints (36.21) to
get optimal modes mi D 4; 3; 3; 1; 3; 2; 1 and optimal starting times S�

i D
7; 9; 9; 9; 13; 15; 22 for unscheduled activities i D 5; 6; 7; 8; 9; 10; 11. Update
Ox3 and set distinct_scenario3 WD true.

• n D 4 and � D 4. Following the same procedure as for n D 1 and n D 3,
get optimal modes mi D 4; 3; 3; 1; 3; 2; 1 and optimal starting times S�

i D
5; 10; 10; 10; 17; 17; 26 for unscheduled activities i D 5; 6; 7; 8; 9; 10; 11. We
update Ox4 and set distinct_scenario4 WD true.

• t D 6 is the next decision point (activity 6 is eligible to start for � D 2).
• Apply procedure FindIndistinguishableScenarios.6; Ox/ to obtain the set of

indistinguishable scenarios IS D ff1g; f2g; f3g; f4g; f5gg.
• For � D 1; 3; 4 we have that distinct_scenario� D true.
• n D 2 and � D 2.
• Apply CPAb�DTCTP with additional constraints (36.21) to obtain opti-

mal modes mi D 4; 2; 2; 1; 4; 4; 1 and optimal starting times S�
i D

8; 8; 10; 10; 17; 22; 25 for unscheduled activities i D 5; 6; 7; 8; 9; 10; 11.
Update Ox2 and set distinct_scenario2 WD true.

• n D 5 and � D 5.
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• Apply CPAb�DTCTP with additional constraints (36.21) to obtain
optimal modes mi D 4; 2; 2; 2; 3; 3; 1 and optimal starting times
S�
i D 7; 7; 12; 12; 18; 18; 25 for unscheduled activities i D 5; 6; 7; 8; 9; 10; 11.

Update Ox5 and set distinct_scenario5 WD true.
• Since distinct_scenario� D true� D 1; : : : ; 5, exit procedure NONANT.˘/.

Step 3: Solve (36.2)–(36.8) using Ox.˘/ and obtain UB D 24:2.

36.6 Computational Results

The study presented in this section addresses the computational aspects of
implementing the algorithms proposed in this chapter and solving SDTCTPs with
DM. In the first part of the study, we discuss the test set for the computational
experiments, including the project network characteristics and the stochastic
parameters of the test instances. In the second part, the performance of the lower
and upper bounding techniques is evaluated with respect to several performance
measures.

36.6.1 Test Problem Generation

The computational study presented in this section is based on a set of stochastic
DTCTPs of varying network complexity and levels of uncertainty. We follow the
same test problem generation procedure used in the computational study of Klerides
and Hadjiconstantinou (2010).

The preliminary results of several computational experiments we performed led
us to the following selection of representative deterministic benchmark instances.
The deterministic instances, which are to be extended to stochastic instances, are
taken from the test set used in Demeulemeester et al. (1998). Networks of 10
and 20 activities and 2, 4, and 6 modes per activity were selected. The activity
durations/costs are randomly selected from two intervals Œ1; 20� and Œ1; 100�, the
network complexity assumes the relatively most difficult Coefficient of Network
Complexity (CNC) (namely, CNC D 2:1) and the budget b D bmin C �.bmax � bmin/

of the problem is obtained from two values for � 2 f0:25; 0:5g.
For the scenario generation procedure, we consider a uniform probability

distribution function, four values for the variance (1; 5; 9; 13) and 5, 10, 20, or 50
scenarios.

Table 36.5 displays the complete set of problem parameters used in our
computational study. Each combination of the parameters forms a problem class
and ten instances were randomly generated in each class.
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Table 36.5 Problem
characteristics and stochastic
parameters for the stochastic
instances originating from
Demeulemeester et al. (1998)

Parameter Values

No. of activities 10, 20

No. of modes 2; 4; 6

Scale Œ1; 20�; Œ1; 100�

CNC 2:1

� 0:25; 0:5

Distribution uniform

Variance 1; 5; 9; 13

No. Of scenarios 5; 10; 20; 50

Allowed CPU time 1;000 s

Table 36.6 Computational
results for TSA and HEUR:
effect of the variance

Variance No. of problem instances popt �;

LB

1 120 55 % 0.19 %

5 120 51 % 0.33 %

9 120 46 % 0.59 %

13 120 48 % 0.47 %

All instances Overall averages 50 % 0.39 %

36.6.2 Results

Algorithms TSA and HEUR have been coded in Microsoft Visual Studio C++ and
run on an Intel Core 2 processor (2.5 GHz with 3.5 GB of RAM, Windows Operating
System) using CPLEX v11.1. Note that the imposed time limit was set to 1;000CPU
seconds.

Tables 36.6, 36.7, 36.8 provide information on the following performance
indicators:

• popt: Percentage of problems for which the resulting lower bound LB equals the
upper bound UB, thus finding the optimal solution;

• �;
LB: Average percentage deviation of the resulting upper bound UB from the

lower bound LB, calculated as 100% � .UB�LB/
LB ;

36.6.2.1 Impact of the Variance

We first report on the results obtained from the computational implementation of
TSA and HEUR with respect to the variance. Table 36.6 displays the effect of the
choice of variance on the computational performance of the proposed algorithms.
Note that the results are based on the instances with ten scenarios; we additionally
fix � to take the value 0:5. Hence our results are based on solving 2�3�2�10 D 120

instances per value of variance.
We observe that the lower and upper bounds obtained seem be of better quality

for the lowest value of the variance (1); the bounds obtained prove optimality for
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55% of the instances. The average percentage deviation of the upper bound from
the lower bound is only 0:19% when the variance equals 1 and it is on average
0:39% over all instances solved.

36.6.2.2 Impact of Number of Scenarios

The number of scenarios to be considered by the mathematical model is expected to
have a significant effect on the computational performance of the solution algorithm.
This is due to the fact that the model size increases exponentially with the number
of scenarios, as a result of the non-anticipativity constraints (36.6)–(36.7). For this
reason, it is extremely important for the model to feature a number of scenarios
which not only provides a good quality solution (good estimation of the true
optimum) but also allows a solution to be obtained in reasonable computational
time.

Table 36.7 shows the effect of the number of scenarios on the computational
performance of TSA and HEUR. Note that the instances assume a variance equal to 1
and � D 0:5. Hence, the results represent averages over 2 � 3 � 2 � 10 D 120

instances for each value chosen for a given number of scenarios.
As it can be observed from Table 36.7, the gap between the lower and upper

bounds obtained becomes smaller as the number of scenarios increases. However,
the lower bound equals the upper bound more often (71% of the instances) for
models with five scenarios, compared to 55%, 40% and 29% of the instances with
10, 20, and 50 scenarios, respectively.

36.6.2.3 Impact of Network Characteristics

Overall, the lower bound obtained in Sect. 36.4.2 equals the upper bound proposed
in Sect. 36.4.3 for 58% of the instances (Table 36.8). On average, the obtained upper
bound deviates by 0:26% from the lower bound. The greatest effect on the bounding
techniques is noted by the choice of the scale of the activity durations and costs.
Increasing the scale from Œ1; 20� to Œ1; 100�, significantly reduces �;

LB, the average
percentage deviation of the upper bound from the lower bound. Our bounding
techniques perform particularly well for larger scales of the activity durations,

Table 36.7 Computational
results for TSA and HEUR:
effect of the number of
scenarios

No. of scenarios No. of problem instances popt �;

LB

5 120 71 % 0.24 %

10 120 55 % 0.19 %

20 120 40 % 0.13 %

50 120 29 % 0.11 %

All instances Overall averages 49 % 0.19 %
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Table 36.8 Computational
results for TSA and HEUR:
effect of the network
characteristics

Problem No. of problem

Parameters Instances popt �;

LB

Activities

10 120 68 % 0.24 %

20 120 47 % 0.29 %

Modes

2 80 78 % 0.16 %

4 80 63 % 0.20 %

6 80 33 % 0.45 %

Activity durations/costs

[1,20] 120 42 % 0.49 %

[1,100] 120 73 % 0.05 %

�

0.25 120 60 % 0.24 %

0.5 120 55 % 0.29 %

All instances Overall averages 58 % 0.26 %

proving optimality for 73% of the instances; optimality is proven for only 42%
of instances with scales ranging between Œ1; 20�.

36.7 Conclusions

In this chapter, we have introduced the Stochastic DTCTP with Dynamic Modes,
SDTCTP with DM. As opposed to the SDTCTP with Static Modes, this problem
offers flexibility to the project manager to adjust the mode selection variables
according to observations. This flexibility, however, comes at a cost in terms
of model complexity. The model suffers from decision-dependent uncertainty,
which makes even the mere formulation of the non-anticipativity constraints rather
cumbersome.

The chapter describes the lower and upper bounding techniques that we have
developed for the SDTCTP with DM. Our extensive computational results on a
large number of test instances of varying size and degree of uncertainty show the
effectiveness of the bounds. It is expected that including such strong bounds would
bring significant improvements to the performance of exact solution methodologies.
We are currently in the process of developing a branch-and-bound methodology that
uses these bounds in order to solve to optimality SDTCTPs with DM.
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Chapter 37
The Stochastic Resource-Constrained Project
Scheduling Problem

Maria Elena Bruni, Patrizia Beraldi, and Francesca Guerriero

Abstract Resource-constrained project scheduling has been widely investigated in
the academic literature, but the issue of the incorporation of uncertainty in project
scheduling has received a growing research attention only in the last 15 years.
This chapter gives an overview of models and methods for the resource-constrained
project scheduling under uncertainty. The case of known deterministic renewable
resource requirements and random activity durations with a known probability
distribution function is studied in detail. In particular, we show how, through the
use of joint probabilistic constraints, a feasible baseline schedule with minimum
makespan can be built, which is able to tolerate a certain degree of uncertainty and
to absorb dynamic variations in activity durations. The use of joint probabilistic
constraints, within the stochastic scheduling problem, represents an innovative
element in the literature and enables the relaxation of the common assumption that
only one activity at a time disturbs the starting time of a successor activity, rather
limiting the joint probability of disruption of the preceding activities to a given
probability level. The results obtained with the proposed heuristics are discussed
and compared with two well known heuristics taken from the literature on a set
of randomly generated project instances. A practical application concerning a real
project for construction of students’ apartments at the University of Calabria, Italy,
is also illustrated. Based on the analysis of the various researches discussed in this
chapter, avenues for future research will be also outlined.
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37.1 Introduction

Most of the literature that studies the resource-constrained project scheduling
problem RCPSP assumes complete information on the resource usage and activity
durations, and determines a feasible baseline schedule, i.e., a list of activity starting
times, minimizing the makespan value (see Chap. 1 in the first volume of this
handbook). Interesting extensions of the RCPSP involve the introduction into the
problem of randomness that is present to a some extent in all projects. In a
construction project, for example, a plethora of adverse events (worker sickness,
weather, delayed parts delivery, unforeseen difficulty of tasks) may produce a
schedule shifting and a raise in costs.

The stochastic RCPSP (SRCPSP, for short) tries to incorporate in the formulation
itself the uncertainty by expressing the random parameters of the problem as random
variables. The resulting stochastic problem is challenging from both a theoretical
and computational point of view. The first issue concerns the genuine interpretation
of the RCPSP under uncertainty and the way this uncertainty is tackled. The problem
can be viewed as a stochastic dynamic optimization problem, where decisions
are made each time new information becomes available. We observe that in the
terminology used in the robust project scheduling literature (see Chap. 40) this can
be intended as a purely reactive approach.

For some projects, a baseline plan should be agreed long before the project starts.
In these cases, if we interpret the RCPSP under uncertainty as a problem where
a tentative plan—which can be changed during project execution—is determined
before knowing the realization of uncertainty, we have in fact a standard stochastic
program with recourse. This means that before the project is started, we can make
investments and scheduling decisions and, afterward, we shall interfere in order to
fix shortcomings. This can be thought of a proactive-reactive approach, in which a
robust initial schedule is built, by following a proactive scheduling strategy whereas
reactive procedures revise or re-optimize the baseline schedule.

If, on the contrary, the project manager has little opportunity to change the base-
line plan (milestone dates are referenced in contracts and penalty clauses applied if
missed), the activity schedule should be as reliable as possible and deviations should
be avoided to the maximum extent. In this case, the chance constraints framework
can be a useful mathematical toolkit to address the problem, which becomes purely
proactive. Whereas recourse models transform the randomness into a risk neutral
probability measure, namely the expectation, chance-constrained models deal more
explicitly with the distribution itself.

The last approach, which will not be treated in this chapter, is related to what
is known as the wait-and-see solution in the field of stochastic programming. It
represents a situation where all uncertainty will be resolved before the project starts
and decisions can be postponed until this point in time.

Unfortunately, there is no generally valid justification to state that any one of
these approaches is more appropriate. It depends on the applicative context at hand
and on the project manager’s risk aversion. Although very different, and regardless
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the specific paradigm adopted, all the approaches presented cannot overlook the
importance of an adequate treatment of uncertainty.

A significant amount of theoretical work has been done to conceptualize and
measure uncertainty in project scheduling (Jaafari 2001; Perminova et al. 2008),
but even the most proficient managers have difficulty handling it. They use decision
milestones to anticipate outcomes, risk management to prevent disasters but too
often the project ends up with an overrun schedule or overflowing budget. As
a matter of fact, whilst project risk management has become a well established
and widely used project management method (see Chap. 49), uncertainty has
been seldom if ever, dutifully incorporated into a scheduling/project management
system providing insight on preventive and contingent actions to hedge against
uncertainty. Project managers are familiar with risk management thank also to a
large repertoire of tool supporting important analytical activities. However, the same
tools do not explicitly address uncertainty in the construction of a schedule. The
lack of practitioner’s knowledge on adequate answers to uncertainty in RCPSP is
surrounded by a relatively sparse scientific interest for this hot topic. In effect, whilst
RCPSPs have been widely investigated in the academic literature, the issue of the
incorporation of uncertainty in project scheduling has received a growing research
attention only in the last 15 years.

We should mention that, while probability theory can be a powerful tool in most
circumstances, sometimes the type of uncertainty encountered in particular classes
of projects does not fit the axiomatic basis of probability theory simply because
uncertainty is related to fuzziness rather than to randomness. In this chapter we will
review only the former type of uncertainty, referring the reader to Chaps. 41 and 42
of this book for other kind of approaches.

In the next section we shall review the literature on the SRCPSP. The Sect. 37.3
is devoted to the presentation of a chance-constrained heuristic for the SRCPSP,
whereas in Sect. 37.4 an application of the SRCPSP to construction projects is
presented. Finally, Sect. 37.5 conclusions are given and avenues for future research
discussed.

37.2 Literature Review

The literature concerning the SRCPSP has almost neglected the full range of sources
of uncertainty associated with a project (Atkinson et al. 2006), rather focusing on
the most obvious aspect concerning the estimates of potential variability of activities
duration. Besides this, uncertainty might be related to resources availability, for
possible breakdowns or simply temporary shortage and/or resource consumption.
Furthermore, new activities may be incorporated in the project or other activities
may be even deleted (Lambrechts et al. 2007).

In this section, we will review only the approaches that consider activity duration
uncertainty, bearing in mind that different sources of uncertainty may affect the
RCPSP and leaving the discussion to the Sect. 37.5 of this chapter.
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In methodologies for stochastic project scheduling with uncertain durations,
the scheduling problem is mostly viewed as a stochastic dynamic optimization
problem with the expected makespan being the most studied objective. Starting
times for the activities are defined through a multi-stage decision process also called
policies. A policy is a dynamic decision process that defines, at completion of
some activity, appropriate actions concerning the choice of a set of activities that
should be executed next. The activities that can be started at decision points are
such that neither precedence nor resource constraints are violated. In deterministic
scheduling, this strategy is well-known as parallel list scheduling scheme (see
Chap. 1 in the first volume of this handbook). Any policy can be viewed as a
dynamic decision process (as we explained before) or as a function. In fact, a policy
transforms a combinatorial object (represented by an ordered list of activities) into
a schedule. Radermacher (1981) used this view to formally define a priority policy,
which schedules activities according to a given priority order. At any decision
point, the maximum number of activities, amongst the set of activities not yet
started and with all its predecessors completed, are scheduled following the priority
given. While priority policies are easy to define and implement, they have been
neglected since they may lead to anomalies (Graham 1966) related to the possibility
of increasing project duration due to decreasing activity durations.

To circumvent this drawback, preselective policies have been studied by
Igelmund and Radermacher (1983a,b). Germane to these policies is the concept
of minimal forbidden set defined as the minimum cardinality set of activities,
without precedence constraints, whose total resource consumption exceeds the
resource availability. A preselective policy defines for each minimal forbidden set a
(preselected) activity to be postponed in order to solve potential resource conflicts.
This activity is subject to a waiting condition since it is not executed until at least
one activity in the forbidden set has been completed. A preselective policy can
be then represented by a collection of partially ordered sets, which extends the
partial order of precedence constraints inducing a digraph which has a node for
each activity and for each waiting condition.

Möhring and Stork (2000) following Igelmund and Radermacher (1983a) studied
the so-called linear preselective policies, which combine priority and preselective
policies. In effect, an activity is selected to be delayed and the choice respects
the order imposed by a priority list in such a way that, in a forbidden set,
the activity dominating (with respect to the prespecified order) all the activities
belonging to the same set is chosen. Since each linear preselective policy is also
a preselective policy, linear preselective policies inherit the analytic properties of
being monotone and continuous. These properties were exploited by Stork (2001) to
develop a branch-and-boundprocedure equipped with dominance rules and different
branching schemes to efficiently compute an optimal preselective policy. The lower
bound is computed by approximating the expected makespan with the help of
simulation techniques. The branch-and-bound was also tested on the class of so
called activity-based policies, that have the nice feature of avoiding the handling of
the minimal forbidden sets. In particular, an activity-based policy is represented by
a priority list of the activities and starts each activity in the order imposed in the
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list as early as possible, considering the side constraint that the starting time of any
activity should be greater than the starting time of any dominated (with respect to
the ordering criterion selected) activity. Since these activity-based policies perform
activity incrementation rather than time incrementation, they are the stochastic
counterpart of the serial schedule-generation scheme described in Chap. 1 in the
first volume of this book.

More recently, a hybrid proactive-reactive approach has been proposed in
Ashtiani et al. (2011), where a new class of policies, called preprocessor policies, is
defined, which make a-priori sequencing decisions resolving some, but not necessar-
ily all, resource conflicts in a preprocessing phase, while the remaining conflicts are
dynamically resolved during project execution. In particular, a preprocessor policy
is defined by a set of activity pairs (which adds extra precedence relations between
activities) and an ordered list used by a priority based policy to solve conflicts during
project execution. In order to find a good list and also good activities pairs, genetic
algorithms are applied, able to obtain competitive results for the SRCPSP.

Policies have also been used for determining predictive activity starting times,
with the objective of minimizing costs related to positive and negative deviations of
actual starting times, from the predicted ones, and to penalties/bonuses associated
with late/early project completion. For this problem, Deblaere et al. (2007) proposed
a solution procedure that generates an initial policy then improved through a
descent procedures. The vector of predictive starting times is then determined by
a methodology combining insights from the newsvendor problem and simulation.
The whole procedure heavily relies on simulation.

Golenko-Ginzburg et al. (1997) presented a heuristic algorithm for the SRCPSP
with random activities duration and the expected makespan as objective. The
heuristic shares, with the scheduling policies reviewed above, the use of decision
points at which starting times are determined. If, at a certain point of time, a resource
conflict arises, amongst the set of activities that can be feasibly started, a competition
among the activities is carried out by solving a zero-one integer programming
problem. The problem aims at maximizing the total contribution of the accepted
activities to the expected project duration, where such contribution is defined as the
product of the average duration of the activity and its probability of being on the
critical path, calculated via simulation.

The same authors (Golenko-Ginzburg et al. 1998) extended the case by consid-
ering random durations dependent on the resource allocation. Their purpose was
to find both the activities starting times and the optimal allocation of resources
in order to minimize expected project duration. The problem is more involved
than before, since the probability density functions of the random durations do
not remain unchanged in the course of the project realization, but they depend on
the resource allocation. Four heuristics are then proposed in order to circumvent
this issue and both exact and heuristic algorithms devised to address the knapsack
resource allocation problem set up to solve resource conflicts. Starting from the
concept of critical chain introduced by Goldratt (1997), in Rabbani et al. (2007) a
new heuristic was presented, implementing backward pass scheduling for feeding-
in resources, with the objective of minimizing the expected project duration and its
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variance. Similarly to the work of Golenko-Ginzburg et al. (1997), the solution of
a zero-one integer programming approach is suggested to allocate the resources,
considering that the activities with the greatest probability to be on the critical
chain and the greatest correlation with the project variance are fed-in first. After
the resource allocation has been completed, the most critical chain and its standard
deviation are calculated on the basis of criticality probability of each chain. Finally,
a project buffer, proportional to the standard deviation of the project duration, is
added to the end of the most critical chain.

Tsai and Gemmil (1998) proposed a tabu search based heuristic, which uses
multiple tabu lists, randomized short-term memory, and multi start diversification
mechanism. Later, Ballestín (2007) developed regret-based biased random sam-
pling procedures then embedded into a genetic algorithm, whereas Ballestín and
Leus (2009) proposed a greedy randomized adaptive search procedure capable of
outperforming other heuristic algorithms in the literature.

For a special case involving only one renewable resource (the budget) a two-
stage integer linear stochastic program has been proposed in Zhu et al. (2007), where
target times are determined in the first stage, whereas in the second stage a deviation
from this target is allowed. The objective is to balance the cost of project completion
as a function of activity target times with the expected penalty related to possible
deviations from the target.

The authors of this chapter, in Bruni et al. (2011a), proposed a chance-
constrained based heuristic aiming at building a baseline schedule which is protected
against possible disruptions. This work brings its own originality for the fact that
it has as a focal point the machinery of chance constraints and for the proactive
point of view, rather unusual in the stochastic scheduling literature. The next section
will be devoted to a detailed description of this method and to a presentation of a
summary of the computational results obtained.

37.3 A Chance-Constrained Based Heuristic

The method proposed in this section separates the dynamic from the stochastic
aspects of the problem, considering the project as a sequence of stages where
uncertainty is resolved by means of an anticipative static policy. According to
this approach, the stochastic programming framework, in the form of probabilistic
constraints, is used to take anticipative decisions in the planning phase and not
during project execution.

To the best of our knowledge, none of the methods proposed in the literature
considers joint probabilistic constraints. Our work differs from the cited papers
in some important aspects. First of all, we consider the stochastic programming
framework and, in particular, the probabilistic paradigm in the form of joint
probabilistic constraints. This powerful tool allows us to relax the assumption,
common in the literature, that only one activity at a time disturbs the starting
time of a successor activity, rather limiting the joint probability of disruption of
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the preceding activities to a given probability level. Secondly, our point of view is
rather unusual in the literature on stochastic project scheduling since our aim is the
construction of a proactive schedule under uncertainty, partially bridging the gap
between the stochastic scheduling literature and the robust one.

We assume that the activity network of a SRCPSP is given by a directed acyclic
graph G D .V;E/.

We assume the presence of a set R of K renewable resources with a per-period
availability Rk . Each activity i 2 V has to be processed without interruptions,
requiring a constant amount of resource rik for each renewable resource type
k 2 R. We assume that activities durations are represented by random variables
Qpi ;8i 2 V , defined on a given probability space ˝ equipped with an algebra F

and with a probability measure P . The random vector of starting times is denoted
as QS D . QS0; : : : ; QSnC1/.

In uncertain environments, especially from a practical point of view, project
managers are mainly interested in the generation of a proactive schedule (i.e., a
vector of proactive starting times S and proactive completion timesC ) with a quality
that does not degrade during execution with respect to future perturbations. In fact,
during the execution of a project, the realized starting time of an activity may be
different from its predictive starting time. The corresponding deviation is still a
random variable defined for a generic activity i as follows:

Q�i D
( QSi � Si ; if QSi � Si > 0

0; otherwise

A natural question is how to construct a schedule, with associated vectors of
predictive starting and completion times, that attempts to limit the risk of such
deviation. Two classical approaches can be used to deal with random deviations.
Unit penalty costs can be assigned for each individual deviation, and the resulting
expected penalty cost can be minimized, or alternatively, one may specify a model
in which the risk of deviations is accepted with a certain probability.

From a mathematical standpoint, risk averse constraints can be formulated by
using the theory of joint probabilistic constraints as in the sequel:

P. Q�i > 0; .i 2 V // � � (37.1)

This probabilistic constraint limits from above the probability of a schedule
disruption by the parameter � 2 Œ0; 1�.

Though appealing, determining a vector of predictive starting times such that
the makespan of the schedule is minimized and constraint (37.1) is fulfilled is
cumbersome from both a theoretical and a computational point of view. Hence,
rather than tackling the full complex stochastic dynamic problem presented above,
the problem is decoupled and the dynamic and the stochastic aspects handled
separately, reconciling their benefits through the use of stochastic information. The
ultimate objective is still the minimization of the project makespan.
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Decisions to be made concern which activities to start at certain decision points
by taking into account the resources availability. A decision point occurs either at the
beginning of the project, or when at least one of the running activities is completed,
until the last activity is scheduled. At each decision point, a resource-feasible partial
schedule is built and suitable proactive starting and completion times are set by
means of an anticipative stochastic model that accounts for future uncertainty. Since
the policy we use can be viewed as a stochastic dynamic version of the parallel
schedule-generation scheme, it is easy to verify that the partial schedule constructed
is feasible with respect to precedence and resource constraints.

A detailed description of the stochastic dynamic generation scheme (SDGS)
heuristic is given in what follows. Let us introduce the required notation:

• � the iteration counter;
• t� the decision time associated with iteration �;
• C� the set of activities already scheduled and completed up to t�;
• A� the set of activities, which are active at t�;
• D� the set of activities whose predecessors have been completed at time t�;
• D

0

� a subset of D� containing activities that will start at time t�;
• Rk.t�/ the residual resource availability at time t�;
• 
 a priority rule.

An algorithmic description of the SDGS heuristic is given below.

Algorithm 37.1 Scheme of the SDGS Heuristic
Initialization
Set � WD 0, t0 WD 0, C0 WD ;, D0 WD ;, A0 WD f0g, D

0

0 WD f0g, C0 D t0, S0 D t0
Rk.t0/ WD Rk , k 2 R
Choose a priority rule 

repeat
� WD �C 1

t� WD minj2A��1Cj
C� WD C��1 [ fi 2 A��1jCi � t�g
A� WD fi 2 V jCi > t�g
D� WD fi 2 V n .C� [ A�/jPred.i/ 	 C�g
D

0

� WD ;
Rk.t�/ WD Rk �P

i2A�
rik

while D� ¤ ; do
Use the priority rule 
 to select a new activity i 2 D� to be scheduled
D� WD D� n fig
if i is such that Rk.t�/� rik � 0 then

D
0

� WD D
0

� [ fig
A� WD A� [ fig
Rk.t�/ WD Rk.t�/� rik

Si WD t�
end if

end while
Determine the proactive completion times Ci ; 8i 2 D

0

�

until jC� [ A�j D nC 1
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Decisions concerning the appropriate selection of activities to start D
0

� and
their proactive completion times should ensure the satisfaction of the stability
constraint (37.1) accounting for the potential impact of a delay. At a generic instant
t� � t � t�C1, the probability of not causing a disruption in the schedule in
the future is the probability that for any activity i currently under execution the
condition Ci � QCi is verified. In order to enforce this condition, at each decision
point t� the following problem with joint chance constraints is solved:

Min. C�
max (37.2)

s. t. C�
max � Ci .i 2 D

0

�/ (37.3)

P
�
Ci � t� C Qpi .i 2 D

0

�/


� .1 � �/ (37.4)

where C�
max represents the makespan of the partial schedule built considering

activities i 2 D
0

� and t� C Qpi D QCi 8i 2 D
0

�. Here joint chance constraints
are imposed to set the completion time of the activities, at each decision point, in
such a way that the probability of not disrupting the schedule in the future is at least
.1 � �/ (i.e., the risk of disruption is at most �).

We should point out that if, at least in principle, separate chance constraints can
be used to deal with uncertain durations, the solution provided by the corresponding
model may in some context be considered inappropriate. In fact, imposing a small
probability of disruption for each activity i 2 D

0

� does not assure a small joint

probability for all i 2 D
0

�.
It is worth observing that, although at each decision point we accept the risk of

a disruption with probability �, we cannot impose a limit on the probability of not
completing the whole project on time. However, we may express the timely project
completion probability as a function of the number of decision points performed by
the algorithm. A crude lower bound for the probability of project to be completed
on time is .1 � �/� where � is an upper bound on the number of iterations. In order
to show how the heuristic works, we report an illustrative example with only five
activities plus the two dummy activities 0 and 6 (see Fig. 37.1). Only one resource

0

1

2

3

4

5

6

Fig. 37.1 Toy example
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2

3

4

5

0

1

2

3

4

5

Fig. 37.2 Resulting schedule

is required to execute the activities (i.e.,K D 1) and the resource consumptions are:
r11 D 2, r21 D 2, r31 D 1, r41 D 1, r51 D 2, and R1 D 5. In addition, activities
durations follow a Poisson distribution with mean 1:5 for activities 1; 2; 3, and 1 for
activities 4 and 5. The value of � is fixed to 0:45.

The activities have been ordered by the rule 
 as follows: .1; 2; 3; 4; 5/.
After the dummy activity 0 has been scheduled, activities 1; 2; 3 can be scheduled

at time t1 D 0 (D
0

1 D f1; 2; 3g) since they do not cause any resource conflict.
Therefore S1 D S2 D S3 D 0. Problem (37.2)–(37.4) is then invoked and
completion times C1; C2, and C3 are appropriately set. The next decision point
is t2 D 2. At that time, activity 4 is an eligible activity and there are sufficient
resources units available, so it is started. For activity 5 no sufficient resource units
are available. Therefore D

0

2 D f4g, and problem (37.2)–(37.4) reduces to a problem
with a single chance constraint. The next decision point is t3 D 3. At this time
activity 5 is started.

The resulting feasible schedule is depicted in Fig. 37.2. We note that the
disruption probability of activity 4 depends on the disruption probability of activities
1 and 2, whereas it is not influenced by the completion time of activity 3. By
imposing a threshold risk parameter of � D 0:45 our heuristic set completion times
of activities 1; 2; 3 in such a way that

P

8
<

:

C1 � QC1
C2 � QC2
C3 � QC3

9
=

;
� 0:55

thus limiting the disruption probability of activity 4.

37.3.1 Solving the Joint Probabilistically Constrained Problem

The SDGS heuristic involves the repeated solution of model (37.2)–(37.4). In the
following, we show how to derive a deterministic equivalent formulation, in the
case of independent random variables.
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Under the independence assumption among the random variables Qpi , the proba-
bilistic constraints (37.4) can be rewritten as

Y

i2D 0

�

P
�
Ci � t� C Qpi

� � .1 � �/ (37.5)

Denoting with Fi the marginal probability distribution function of the random
variable Qpi , and with a variable substitution xi D Ci � t�, constraints (37.5) can
be stated equivalently as

Y

i2D 0

�

Fi .xi / � .1 � �/ (37.6)

and by taking logarithms:

X

i2D 0

�

lnFi .xi / � ln.1 � �/ (37.7)

(see, for example, Miller and Wagner 1965; Jagannathan 1974). Since the logarithm
is an increasing function and 0 < Fi � 1, this transformation leads to an equivalent
condition. Furthermore, for log-concave distribution functions (including several
commonly used probability distributions as for example the Uniform, Normal,
Exponential, and many others, see Prékopa 1995 and Dentcheva et al. 1998)
convexity of the constraints is preserved. We observe that also in the case of
discrete distributions, problems with joint probabilistic constraints can be reduced
to deterministic equivalent problems. For more details, the interested readers are
referred to Dentcheva et al. (1998). Therefore, depending on the continuous or
discrete nature of the random variables involved in the problem, the deterministic
equivalent problem takes the form either of a nonlinear continuous problem or a
linear integer problem.

We will show how deterministic equivalents are built for the example network
of Fig. 37.1. Let us first consider the case of a discrete distribution. From Eq. (37.7)
if li C qi is a known upper bound, where li represents the .1 � �/ quantile of the
marginal distributionFi , that is, the smallest integer value such that Fi .x/ � .1��/,
it is evident that xi can be written as xi D li C P

qD1;:::;qi xiq where xiq are binary
variables. Therefore, the probabilistic constraints can be rewritten as

X

i2D 0

�

X

qD1;:::;qi
aiqxiq � b (37.8)

where aiq D lnFi .li C q/� lnFi .li C q � 1/ and b D ln.1 � �/ � lnF.l/.
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In the considered case:

x1 D l1 C
5X

qD1
x1q D 1 C x11 C x12 C x13 C x14 C x15

x2 D l2 C
5X

qD1
x2q D 1 C x21 C x22 C x23 C x24 C x25

x3 D l3 C
5X

qD1
x3q D 1C x31 C x32 C x33 C x34 C x35

Therefore, the joint probabilistic constraints can be transformed in the following
mixed-integer problem.

Min. C1
max

s. t. C1
max � 1C x11 C x12 C x13 C x14 C x15

C 1
max � 1C x21 C x22 C x23 C x24 C x25

C 1
max � 1C x31 C x32 C x33 C x34 C x35

a11x11 C a12x12 C a13x13 C a14x14 C a15x15 C a21x21 C a22x22 C a23x23 C a24x24C
C a25x25 C a31x31 C a32x32 C a33x33 C a34x34 C a35x35 � ln.1� �/� ln..1� �/3/

x11; x12; x13; x14; x15; x21; x22; x23; x24; x25; x31; x32; x33; x34; x35 2 f0; 1g
Cmax � 0

If we instead suppose that Qp1, Qp2, and Qp3 follow a Uniform distribution U1Œa1; b1�,
U2Œa2; b2�, and U3Œa3; b3�, respectively, the joint probabilistic constraints can be
transformed in the following nonlinear problem.

Min. C1
max

s. t. C1
max � C1

C 1
max � C2

C 1
max � C3

lnF1.C1/C lnF2.C2/C lnF3.C3/ � ln.1 � �/

or equivalently

ln

	
�1 � a1

b1 � a1



C ln

	
�2 � a2

b2 � a2



C ln

	
�3 � a3

b3 � a3



� ln.1 � �/

C1; C2; C3; Cmax � 0
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37.3.2 Computational Experiments

In this section, with the aim of assessing the performance of the SDGS heuristic,
some computational experience will be presented together with a comparative
evaluation with a set of benchmark heuristics. These are modifications of both par-
allel schedule generation schemes (PSGS) and serial schedule generation schemes
(SSGS), in which the deterministic durations are replaced by their .1 � �/-
quantile counterparts (p1��). We should remark that this is equivalent of using
separate chance constraints within classical schedule generation heuristics for the
deterministic RCPSP. Different static priority rules for generating the priority list
were tested:

1. (MaxC) The MaxC rule orders the activities j 2 V by decreasing value of their
total resource requirement r.j / D PK

kD1 rjk.
2. (MinC) The MinC rule orders the activities j 2 V by increasing value of their

total resource requirement r.j / D PK
kD1 rjk.

3. (MaxD*C) The MaxD*C rule orders the activities by decreasing value of
F �1
j .1 � �/ � r.j / with r.j / defined as above.

4. (MinD) The MinD rule orders the activities by increasing value of F�1
j .1� �/:

5. (LST) The LST rule orders the activities by increasing value of their latest
starting time as described in Kolisch and Hartmann (1999).

6. (LFT) The LFT orders the activities by increasing value of their latest finish time
as described in Davis and Patterson (1975).

7. (MTS) The MTS orders the activities by decreasing value of the number of their
successors as described in Alvarez-Valdes and Tamarit (1989).

Whilst the last three rules have been taken from the literature Kolisch and Hartmann
(1999), the other rules have been proposed by the authors in Bruni et al. (2011a),
who consider also the STC (Van de Vonder et al. 2008) and the RFDFF heuristic
(Van De Vonder et al. 2006).

Only a summary of the computational experience is reported; the interested
readers are referred to Sect. 3.2 in Bruni et al. (2011a) for the complete set of results.

The computational experiments have been carried out on a set of benchmark
problems selected from the project scheduling problem library PSPLIB (Kolisch
and Sprecher 1997), available at http://129.187.106.231/psplib/, including 30, 60
and 90 nodes, leading to a total of 2,550 runs.

For all the instances, two types of distribution have been tested in order to
asses the effectiveness of the proposed approach with both continuous and discrete
distributions. In particular, for the continuous case, real activity duration is assumed
to be a uniform random variable U.0:75p; 2:85p), where p equals the deterministic
duration. For the discrete case it has been considered a Poisson distribution with
mean p. Activity durations are assumed to be independent.

For every network instance, 1,000 scenarios have been simulated by drawing
different actual activity durations from the described distribution functions. Using
these simulated activity durations, the realized schedule is constructed by applying

http://129.187.106.231/psplib/
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the following reactive procedure. An activity list is obtained by ordering the
activities in increasing order of their starting times in the proactive schedule. Ties
are broken by increasing activity number. Relying on this activity list, a parallel
schedule generation scheme builds a schedule based on the actual activity durations.
We opted for the railway execution mode never starting activities earlier than their
prescheduled start time in the baseline schedule (Deblaere et al. 2007). Actually,
this type of constraint is inherent to course scheduling, sports timetabling, railway
and airline scheduling, or when activity execution cannot start before the necessary
resources have been delivered. The quality has been evaluated by the following a
posteriori measures: average tardiness (Tavg), average timely project completion
probability (TPCP), average disruption probability over all networks and executions
(Davg). Also the predictive makespan (Mak) has been reported enabling a fair
comparison amongst the different algorithms.

Computational times are rather low and do not constitute a bottleneck for
the algorithms execution notwithstanding at each decision point either a MIP for
discrete random variables case and or a nonlinear continuous model for continuous
random variables is solved.

A first set of numerical experiments has been carried out with the aim of assessing
the variation of the performance measures of our SDGS algorithm as a function of
the risk level (measured by �) for different priority rules. Figures 37.3 and 37.4
report the Tavg and the TPCP for different � values and priority rules from 1 to 4,
for the 30 nodes test problems. As we can observe in Fig. 37.3, the average tardiness
decreases with �. This is an expected result since for decreasing value of �, we
impose a more prudent project manager’s position imposing a higher risk aversion
level. Mathematically speaking, as the value of � decreases, probabilistic constraints
are somehow more binding and the schedule is more robust, since it is less exposed
to disruptions. The opposite trend can be observed in Fig. 37.4 for the TPCP which
increases for decreasing � values.

Fig. 37.3 � values versus Tavg
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Fig. 37.4 � values versus TPCP

Fig. 37.5 Expected makespan for varying � values: 30 nodes, discrete case

A second set of experiments has been carried out to compare the performance of
the SDGS with respect to the benchmark approaches. In particular, we shall present
hereafter a graphical comparison on the basis of the expected makespan EXPMAK,
(obtained as the sum of the predictive makespan Mak plus the expected tardiness
Tavg) and the average probability of disruption Davg.

Figures 37.5, 37.6, and 37.7 show the EXPMAK for the 30, 60, and 90 nodes
networks, respectively. Average values have been reported for the SDGS and all the
benchmarks considered (named OTHERS). The STC heuristic has been included in
the graph, whereas the RFDFF heuristic has been excluded from the comparison
since it is always largely outperformed.

It is immediately clear from Figs. 37.5, 37.6, and 37.7 that the expected makespan
of SDGS is in general smaller than that of STC, but the same is not thoroughly
true for the benchmarks. Observing the intersection between the continuous line
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Fig. 37.6 Expected makespan for varying � values: 60 nodes, discrete case

Fig. 37.7 Expected makespan for varying � values: 90 nodes, discrete case

and the dashed line for � between 0:05 and 0:1 we may conclude that for relevant
risk levels (� 2 Œ0:05; 0:2�) SDGS should be preferred in terms of EXPMAK. An
opposite behaviour emerges for lower risk levels. In practice, risk-averse project
managers, for budget restrictions, may accept to bear some risk to avoid unnecessary
extra costs. Therefore, the range Œ0:05; 0:2� constitutes a meaningful choice for
moderately risk averse project managers.

The reader may notice a seemingly strange trend in the expected makespan,
that seems to have a non-monotone behaviour, with a decreasing slope up to the
minimum and an increasing or constant slope afterwards. This behaviour is more
evident for the 30 nodes networks, and in general it is relevant for the benchmark
algorithms (OTHERS) and for the STC in the case with 90 nodes. This unforeseen
descendant behaviour of the expected makespan is due to the influence of two
opposing forces that are in effect. As depicted in Fig. 37.8, on the one hand there is
a predictive makespan (Mak) whose value increases as � decreases, and on the other
hand the expected tardiness (Tavg) that drastically reduces as long as the risk we are
willing to bear decreases.
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Fig. 37.8 Expected makespan components for varying � values: 30 nodes, discrete case

Fig. 37.9 Davg for varying � values: 90 nodes, discrete case

Investigating the comparative performance of the algorithms in terms of Davg,
we observed that SDGS exhibits the best performance with very low Davg,
especially for large networks, as evident from Fig. 37.9. This claim is supported by
the consideration that the Davg gap between SDGS and STC algorithms increases
with the dimension of the network. With respect to the comparison between these
two algorithms, there is some evidence on the superiority of SDGS over STC for
the stability measures considered up to this point. This superiority is also supported
by the Tavg values, which can be unacceptably high for both the STC heuristic and
the others benchmark heuristics considered. In effect, an apposite behaviour can be
observed for the TPCP for which the superiority of the STC is evident over all the
algorithms considered. We would like to remark that in the worst case, the TPCP of
the STC heuristic doubles the TPCP of the SDGS.

If solution stability is deemed of utmost importance, the best choice seems to
be the SDGS heuristic. This heuristic guarantees very good stability performance
in terms of disruption probability. If, on the contrary, the sensitivity of the schedule
performance in terms of the objective value is the criterion to pursuit, we observe
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that nice results are obtained for � � 0:01 by the STC heuristic with high TPCP and
also acceptable stability indicators. When the project manager is very conservative
and risk averse (� � 0:05), an attractive alternative especially for large instances
can be constituted by the benchmark procedures that offer a good comprise between
computational time and solution quality. However, above this risk level they fall
inevitably in solutions of substantially lower quality.

As far as the RFDFF is concerned, we observe that notwithstanding the
unbuffered schedule fed into RFDFF depends on the � value considered, the results
obtained are almost the same whatever the risk aversion of the decision maker
is. This behaviour can be due to the right-justification mechanism, which inserts
buffers in front of the activities in order to make the schedule solution robust.

The general trend of the continuous distribution function is similar to the one
observed for the discrete case, albeit with some differences. We notice that the
performance in terms of EXPMAK of the benchmark heuristics (excluding as before
the RFDFF) is now comparable to the performance of the SDGS, at least for the 30
and 60 nodes networks. As already observed in the discrete case, also in this case the
benchmark procedures outperform SDGS and STC in the expected makespan for �
value between 0:1 and 0:15. We further observe that in this case, STC outperforms
SDGS for � values above 0:1 for the 30 nodes network and above 0:15 for the 60
nodes network. The EXPMAK of the STC for the network with 90 nodes is on the
contrary quite high. This worsening in the EXPMAK is compensated by a higher
TPCP for the SDGS, as evident from Fig. 37.10.

As a byproduct, we observe that the STC heuristic seems to be less sensible to
the variation of the risk value, with Davg quite high, especially if compared with the
SDGS values. It is also worth noting that the Davg of the SDGS heuristic is very
low, falling down to zero for small � values.

In conclusion, the heuristic presented is able to build a proactive baseline
schedule with a satisfactory behavior under uncertainty. Since the scheduling
decisions anticipate the uncertainty, by embedding it into the mathematical program
with joint probabilistic constraints, the resulting plan will be hedged against possible

Fig. 37.10 TPCP for varying � values: 60 nodes, continuous case
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disruptions and only a minimum adaptation effort will be required during the project
execution in case of disruptions. This is a nice feature, especially for some projects
for which a baseline schedule is not only compellingly important but also absolutely
necessary. The next section presents an example of such projects concerning the
interesting applicative context of the construction industry.

37.4 The SRCPSP in Construction Projects

Construction projects are usually characterized by high complexity. Several factors
determine this feature: a great number of activities has to be performed in order
to achieve project completion, a variety of resources, both material and human,
are necessary to perform activities, and therefore great capital investments have to
be managed. An efficient scheduling phase is crucial in order to ensure that the
project is completed on time and within budget. In this respect, a detailed baseline
project schedule plays a crucial role: as widely recognized in Mehta and Uzsoy
(1998), it supports project managers in monitoring the work progress, facilitating
resource allocation, and providing a basis for managing external activities, such as
relations with contractors. In construction industry, baseline schedule generation is
usually performed by using different scheduling techniques, like, for instance, PERT
(Malcolm et al. 1959) embedded in most computer software packages developed
for construction project management. The main drawback of these time-oriented
scheduling techniques is the assumption of unlimited availability of resources for
each project activity (Nkasu 1994). In real construction projects, many problems
arise when activities require resources that are available only in limited quantities
making resource allocation indispensable in the generation of realistic baseline
project schedules (Kim and Garza 2005). As a matter of fact, ignoring resource
considerations in the scheduling phase of the project will lead to extremely poor
schedule performance. Moreover, the complex dynamic and uncertain environment
in which construction projects have to be performed highlights the need for effective
planning and scheduling tools.

The objective of this section is to describe an application of SRCPSP on a
real project for construction of students’ apartments at the University of Calabria,
Italy, where the need of a proactive approach and the generation of a baseline
schedule which is protected against disruptions is of utmost importance. A user
friendly tool for project scheduling under uncertainty was developed and used
as a risk response method that the project team could easily use, after a proper
risk assessment program has quantified the impact of potential risks involved in
the project at hand on individual activities duration. The only action required to
managers is to define the project breakdown structure and store project data such as
activity number, ID, resource requirement, precedence relations among activities,
and resource availability. Furthermore, the manager has the possibility to choose
the value of reliability parameter 1 � � controlling the probability of the project to
finish on time. Once the data are uploaded on the system, the baseline schedule is
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Fig. 37.11 Screenshot of the simulation experiments

automatically generated, and if desired, the simulation phase performed. A screen-
shot of the graphical interface developed for our tool is shown in Fig. 37.11.

The project consists of 43 activities; the first and the last one are dummy activities
representing the starting and the ending of the project, respectively. The project
network is displayed in Fig. 37.12, while ID, number, expected duration, and labour
requirement of activities are listed in Table 37.1.

The project managers considered two risks to be important: errors in execution
and poor weather conditions. Estimates of probability and the impact of different
case scenarios as well as the overall frequency of risk occurrence were obtained
from the project management team during an interview session and compared with
the historical data of similar construction projects completed at the University of
Calabria. Using this information, a protected schedule for the UNICAL project
was built by using the scheduling mechanism described in Bruni et al. (2011b),
in which the probability level for the on-time completion of the project was set to
0.95. On the other hand, an unprotected deterministic schedule was generated by
the project managers on the basis of their own experience and with the support of
a deterministic quantitative tools for the solution of resource-constrained project
scheduling problems. Managers estimated project completion time taking into
account external/internal critical factors such as weather conditions, manpower, and
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Table 37.1 Project description

Expected duration Resource

Activity ID Activity description (days) requirement

START DUMMY START 0 0
A1 Building yard delimitation 10 7
A2 Building yard resource preparation 20 7
B1 Excavation works 16 5
B2 Grading 16 5
B3 Site preparation 18 5
C1 Basement foundations 16 6
C2 Footings 16 6
C3 Foundation walls 18 6
D Crawl space 50 6
E First floor 100 6
F Second floor 75 6
G Third floor 75 6
H Fourth floor 50 6
I Fifth floor 50 6
J Roofing 45 23
K1 Exterior wall 90 6
K2 Exterior wall 30 6
L1 Interior wall 70 6
L2 Interior wall 30 6
M Wall and ceiling finishes 50 15
N Electric installation 60 12
O Other system 30 12
P Waterworks and plumbing 60 12
Q Heating system 60 9
R Interior plaster 100 15
S Finish electrical 30 12
T Finish other system 30 12
U Tiling 120 7
V Finish heating system 30 9
Z External door and window frames 100 5
W Internal door and window frames 100 5
X Finish waterworks plumbing 30 12
Y1 4 Exterior sidings 30 4
Y2 Interior sidings and painting 90 4
AA Services connections 45 14
AB Exterior lighting system 45 3
AC Fire fighting system 30 6
AD1 Driveway and parking 60 2
AE Pedestrian crossing 76 3
AF Disable crossing 20 4
AG Garden 30 6
Z DUMMY END 0 0
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resources availability and most-likely durations of activities. In order to perform
an a posteriori analysis we tested the two schedules in a simulation phase, in
which a number of possible project realizations, called scenarios, were simulated
and a reactive scheduling procedure was applied for each scenario, opting for
never starting activities earlier than their prescheduled start time in the baseline
schedule. The schedule generated by managers sets a completely unrealistic planned
project delivery date of about 1,250 days, with a probability around 50 % to be
exceeded. This performance can be very unsatisfactory especially for construction
projects for which very high penalties are usually associated to heavy due date
violations and schedule breakages. Such observation underlines the crucial value
of an accurate planning phase and, as a byproduct, the inadequacy of traditional
scheduling procedures in facing uncertainty. Furthermore, managers can consider a
more realistic delivery date when take part in a call, rather than a tentative date, for
project completion, that will not be respected with a high probability.

The schedule generated by the SDGS method results in a planned project delivery
date with a probability (estimated in the simulation phase) of being completed on
time equal to 0.96. In Fig. 37.13 the tardiness for different � values is reported.
The tardiness represents the difference between its actual completion time and
the planned one in the baseline schedule. It is evident that if a penalty is due for
each extra period required to execute an activity, tardiness represents an important
measure of performance for scheduling in construction project. As confirmed by the
results, higher probability values lead to better solutions in term of risk adverseness.
The proper calibration of the reliability value is up to decision maker, who could
find the best tradeoff on the basis of his experience.

This application can be seen as the first attempt to provide managers with a robust
analytical tool with a graphical interface and very easy to use, capable to quantify
the risk associated to a baseline schedule and to support their experience in the
planning phase of complex projects.

Fig. 37.13 Tardiness for varying � values
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37.5 Conclusions

The SRCPSP is a very challenging problem both from a computational and a
theoretical point of view. It poses interesting modeling and computational questions,
yet far to be resolved. Nonetheless, relevant scientific contributions have shown the
tractability of the SRCPSP and its importance in practical applications. Notwith-
standing the encouraging results obtained, some remarks are in order. The results
of the researches reviewed are not valid for dealing with uncertainty in a general
setting. Potential uncertainties may stem from unavailability of resources, changes
in ready times and due dates, incorporation or dropping of new activities, etc. The
appropriate treatment of these kinds of uncertainty is an interesting area of future
research.

Potential for further research lies also in generalized RCPSP stochastic variants
and solutions based on combined proactive-reactive approaches into the framework
of two-stage stochastic programming. Moreover, the research could look into the
potential for creation of proactive methods for the resource allocation problem under
uncertainty.

References

Alvarez-Valdes R, Tamarit JM (1989) Heuristic algorithms for resource constrained project
scheduling. A review and an empirical analysis. In: Słowiński R, Wȩglarz J (eds) Advances
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Chapter 38
The Markovian Multi-Criteria Multi-Project
Resource-Constrained Project Scheduling
Problem

Saeed Yaghoubi, Siamak Noori, and Amir Azaron

Abstract This chapter develops a Markovian multi-objective mathematical pro-
gramming model for the resource allocation problem in dynamic PERT networks
with a finite capacity of concurrent projects. It is assumed that new projects are
generated according to a Poisson process and activity durations are independent
random variables with exponential distributions. This system is represented as
a queueing network with finite concurrent projects, where each activity of a
project is operated at a dedicated service station with one server located in a
node of the network. In this investigation, not only activity durations, but also
operating costs of service stations per period are all considered as independent
random variables. This problem is formulated as a multi-objective model using
continuous-time Markov processes with three conflicting objectives to optimally
control the resources allocated to service stations. It is impossible to solve this
problem optimally in a reasonable time, and consequently we apply a particle
swarm optimization (PSO) method to solve this multi-objective continuous-time
problem using a goal attainment technique. Finally, to show the effectiveness of
the proposed PSO, we compare the results of a discrete-time approximation of the
original optimal control problem with the results obtained by the proposed PSO.
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38.1 Introduction

Nowadays, multi-project scheduling is extensively applied because all projects in
the context of an organization are considered as one system, while constrained
resources are allocated among multiple projects. Furthermore, in some organiza-
tions, the project-oriented approach is adopted as a primary approach. Therefore,
multi-project management is of significant interest in project management and
scheduling, whereas traditional project management concentrates on individual
projects.

A Multi-Project Resource-Constrained Scheduling Problem (MPRCSP) in static
and deterministic conditions is one of the major topics in the literature of multi-
project scheduling. In general, two types of approaches for analyzing the MPRCSP
exist.

To analyze this problem, one approach is to link all projects of an organization
synthetically together into a large single project, while the other approaches consider
the projects as independent components subject to resource constraints. In addition,
these approaches use an objective function considering all projects.

Wiest (1967) and Pritsker et al. (1969) first studied the MPRCSP and presented a
zero-one programming approach and a heuristic model for analyzing this problem,
respectively. Next, Kurtulus and Davis (1982) and Kurtulus and Narula (1985)
studied this problem by employing the priority rules and describing measures.
Furthermore, some studies have been focused on the MPRCSP by using multi-
objective and multi-criteria approaches. For instance, Chen (1994) developed a
zero-one goal programming model for the MPRCSP with maintenance of mineral
processing, and Lova et al. (2000) presented a multi-criteria model for analyzing
the MPRCSP. Kanagasabapathi et al. (2009) analyzed the MPRCSP in a static
environment by defining performance measures including the maximum tardiness
and mean tardiness of projects. In addition, Tsubakitani and Deckro (1990) and
Lova and Tormos (2001) presented heuristic methods for solving the MPRCSP. In
addition, Krüger and Scholl (2008) developed the MPRCSP by considering transfer
times and their costs.

Meta-heuristic methods, such as particle swarm optimization, genetic algorithm,
simulated annealing, artificial neural networks, and their hybrids, are used in various
fields, while these methods have been rarely applied in multi-project scheduling
(Chen and Shahandashti 2009). Kumanan et al. (2006) and Gonçalves et al. (2008)
proposed a genetic algorithm for the resource-constrained multi-project scheduling
problem. Ying et al. (2009) presented a hybrid genetic algorithm for the MPRCSP.
In addition, Chen and Shahandashti (2009) developed a hybrid of genetic algorithm
and simulated annealing for multiple project scheduling with multiple resource
constraints.

In all of the mentioned studies, the MPRCSP has been studied in static and
deterministic environments, while a few investigations have been focused on
multi-project scheduling under uncertainty conditions. Fatemi Ghomi and Ashjari
(2002) described a simulation model for multi-project resource allocation with
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stochastic activity durations by considering a multi-channel queueing. A mixed-
integer nonlinear programming model was also extended by Nozick et al. (2004) to
optimally allocate the resources, while the probability distributions of the activity
duration and allocated resources are dependent. Furthermore, Kao et al. (2006) and
Byali and Kannan (2008) proposed an event-driven approach and Critical Chain
Project Management (CCPM) approach for overcoming uncertainty in multi-project
environment, respectively.

Clearly, multi-project scheduling is more complex than single project scheduling
and the problem is even more difficult when the task durations are stochastic. On
the other hand, in many organizations, not only the tasks durations are uncertain,
but also new projects emerge dynamically over the time horizon. In such occasion,
organization is faced with a multi-project system denominated as “dynamic PERT
network”, in which its scheduling procedure is more elaborate than before. Adler
et al. (1995) first presented a process-based system for a dynamic PERT network
by using simulation and considering the organization as a stochastic processing
network. They supposed that the organization comprises a collection of “service
stations” (work stations) or “resources”, where one or more identical parallel
servers can be located. Thus, the dynamic PERT network can be considered as
a queueing network and is appropriate and attractive for organizations that have
similar projects, such as maintenance projects. Anavi-Isakow and Golany (2003)
then applied the concept of CONWIP (constant work-in-process) in dynamic PERT
networks by using a simulation study. They explained two control mechanisms,
CONPIP (COnstant Number of Projects In Process) and CONTIP (CONstant Time
of projects In Process). The CONPIP mechanism restricts the number of projects,
while the CONTIP mechanism limits the total processing time by all the projects
that are active in the system.

For the resource allocation problem in dynamic PERT network, two general
approaches exist. In the first approach, the number of servers in every service
station is fixed and allocated resources affect the mean of service times. We call
this approach “resources affecting servers”. Azaron and Tavakkoli-Moghaddam
(2006, 2007) as the first pioneering researchers presented multi-objective models
using continuous-time Markov processes for the resource allocation problem in
dynamic PERT networks, where new projects are generated according to a Poisson
process and the activity durations are exponentially distributed random variables.
They also assumed that the capacity of the system is infinite, the number of servers
in every service station is either one or infinity, the discipline of queues is First
Come First Served (FCFS), and the allocated resources affect the mean activity
durations. Yaghoubi et al. (2011a) introduced an analytical multi-objective model
using continuous-time Markov processes for the resource allocation problem in a
dynamic PERT network, where the capacity of the system is finite and projects are
generated according to a Poisson process. Yaghoubi et al. (2014) also developed a
simulated annealing algorithm to solve the multi-class version of the same problem
when projects from different classes are different in their precedence networks and
the durations of the activities.



840 S. Yaghoubi et al.

The second approach was proposed by Cohen et al. (2005, 2007), where
resources may work in parallel, i.e., the number of servers and resources allocated
in every service station are equal (e.g., electrical work station with electricians,
mechanical work station with mechanics, etc.) and the amount of resources available
to be allocated to all service stations is constant. We refer to this approach as
“resources as servers”. Cohen et al. (2005, 2007) achieved nearly optimally allo-
cated resources to the entities that perform the projects in CONPIP system by using
Cross Entropy (CE) based on simulation. Yaghoubi et al. (2011b) then extended
an analytical multi-objective model using continuous-time Markov processes to
optimally control resources allocated to the activities in a multi-server dynamic
PERT network, for this approach.

In all mentioned papers, it is assumed that the direct cost of the service station
is deterministic and increases when we allocate more resources to that particular
service station. In this chapter, we relax this assumption and assume that the direct
cost of the service station is stochastic, which is the main difference between this
chapter and the previous mentioned papers.

Moreover, the multi-objective continuous-time stochastic programming prob-
lems of previous mentioned papers are impossible to solve optimally for large-
sized problems in a reasonable time. Therefore, the continuous-time problem
is discretized, which means that the differential equations are transformed into
difference equations and the integral terms into summation terms. Li and Wang
(2009) also proposed a multi-objective risk-time-cost tradeoff problem in a dynamic
PERT network by using a general project risk element transmission theory. They
transformed the continuous-time model into a discrete-time model and used radial
basis function (RBF) neural networks to solve this discrete model of the problem.

Reviewing the above mentioned studies shows that no meta-heuristic method has
already been proposed to solve the resource allocation (time-cost tradeoff) problem
in dynamic PERT networks with the finite capacity (CONPIP) and this problem was
only solved in discrete-time approximation form. In this chapter, we introduce a
particle swarm optimization (PSO) method to solve this multi-objective continuous-
time problem using a goal attainment technique, which is another contribution of
this chapter over the existing literature.

It is worth mentioning that Azaron et al. (2005) developed a multi-objective
model for the time-cost tradeoff problem in classical PERT networks with gener-
alized Erlang distributions of activity durations, using a genetic algorithm. They
also compared the results obtained by a genetic algorithm against the results of
a discrete-time approximation method for solving the original optimal control
problem. Moreover, Azaron et al. (2006, 2007) developed some multi-objective
models for the time-cost tradeoff problem in classical PERT networks with different
assumptions on the distributions of activity durations (exponential in one and
generalized Erlang in the other paper), different objective functions, and also
different solution techniques (goal programming and goal attainment in one and
the interactive SWT technique in the other one).

In this chapter, we consider a multi-project system with similar projects and
finite capacity. It is assumed that the new projects, including all their activities,
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arrive in the system according to a Poisson process. Such a system is represented
as a queueing network with finitely many concurrent projects, while each activity
of any project is performed at a dedicated service station settled in a node of the
network based on the FCFS discipline. It is also assumed that there is only one
server in each service station, while the activity durations (i.e., service times) are
independent random variables with exponential distributions. On the other hand,
not only activity durations, but also direct costs of service stations per period are all
considered as independent random variables. Therefore, the total direct cost, which
is the summation of direct costs of service stations, will also be a random variable.
Moreover, the mean time spent in each service station is decreased and the mean
direct cost of the service station is increased when we allocate more resources to that
particular service station. It means that the mean time spent in each service station
and the mean direct cost of the service station are, respectively, non-increasing and
non-decreasing functions of the amount of resources allocated to that service station.

In this chapter, we propose a multi-objective model using continuous-time
Markov processes for the resource allocation problem in dynamic PERT networks
with the finite capacity of concurrent projects (CONPIP) for the resources affecting
servers approach, and solve this model by a particle swarm optimization algorithm
(PSO).

The problem is formulated as a multi-objective model with three conflicting
objectives to optimally control the resources allocated to service stations. In this
model, the first objective is to maximize the probability that the total direct cost
of service stations per period does not exceed a certain cost level or budget. The
mean project completion time in the steady state is also considered as the second
objective, which should be minimized. Moreover, the probability that the system
becomes empty in the steady state is considered as the third objective function,
which should be minimized as well.

Since the resulting mathematical model is continuous-time, it is too complicated
to be solved optimally. Therefore, we develop a particle swarm optimization (PSO)
approach to solve it using a goal attainment technique. The reason is that PSO gets
better results in a faster, cheaper way compared with other methods. In addition,
PSO needs few parameter settings and is also an efficient global optimizer for
continuous variables, while it does not require that the optimization problem is
differentiable. Finally, to show the effectiveness of the proposed PSO, we compare
the results of the discrete-time approximation of the original optimal control
problem with the results obtained by the proposed PSO based on the computational
time of the discrete-time approximation technique as its stopping criterion.

In the remainder of this chapter, firstly, the dynamic PERT network with the finite
capacity of concurrent projects is modeled as finite-state continuous-time Markov
processes. Secondly, a multi-objective model to optimally control the resources
allocated to the servers is developed, where the direct costs of the service stations are
stochastic. Thirdly, we propose a particle swarm optimization algorithm for solving
the resulting multi-objective problem, and finally draw the conclusions.
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38.2 Modeling of Markov Dynamic PERT Networks
with CONPIP

In this section, we model the dynamic PERT networks with finite capacity of
concurrent projects (CONPIP) using continuous-time Markov processes. For this
purpose, we extend the method of Kulkarni and Adlakha (1986) in this step, because
this method is an analytical one, simple, easy to implement on a computer, and
computationally stable. It is assumed that a project is represented as an activity-
on-node (AoN) graph, and also the new projects including all their activities are
generated according to a Poisson process with the rate of �. Each activity is
processed at a dedicated service station located in a node of the network. The
activities associated with successive projects contend for resources on the FCFS
basis. This dynamic PERT network can be represented as a network of queues,
where the service times represent the durations of the corresponding activities and
the arrival stream to each node follows a Poisson process with the rate of �. It is
also assumed that the number of servers in each service station equals one, while
the service times (i.e., activity durations are independent random variables with
exponential distributions).

To model dynamic PERT networks with the CONPIP, we transform the dynamic
PERT network, represented as an activity-on-node (AoN) network, to a classic
PERT network represented as an activity-on-arc (AoA) network as follows by
replacing any node in the AoN network with a stochastic activity:

• The activity-on-arc network is denoted by G D .V;E/ with node set V and arc
set E . Note that the words “activity” and “arc” are used synonymously in what
follows.

• The indices of the nodes (i.e., the events) are i and j : i; j 2 V .
• Each activity corresponds to an arc a D .i; j / 2 E .
• The set of activities with start event i coincides with the set of arcsEC

i emanating
from node i , and the set of activities with end event j coincides with the set of
arcs E�

j leading into node j .
• The start and end nodes of activity a D .i; j / are designated by s.a/ D i and
e.a/ D j .

Any node with a service station is substituted by an activity .i; j /, whose length
is equal to the waiting time in the service station. The indicated process is the
opposite of absorbing an edge e in a graph G in graph theory, see Azaron and
Modarres (2005) for more details. Then, all arcs with zero length are eliminated.

Let s and t be the source and sink nodes, respectively. The length of arc a 2 E

is an exponentially distributed random variable with parameter �a.

Definition 38.1. For V1 � V such that s 2 V1 and t 2 V2 D V nV1, an .s; t/-cut is
defined as follows:

.V1; V2/ D fa 2 E W s.a/ 2 V1; e.a/ 2 V2 g (38.1)
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An .s; t/-cut .V1; V2/ is denominated a uniformly directed cut (UDC), if
.V2; V1/ D Ø (i.e., there are no two arcs in the cut belonging to the same path
in the project network). Each UDC is clearly a set of arcs, in which the starting node
of each arc belongs to V1 and the ending node of that arc belongs to V2.

Definition 38.2. An .E1;E2;E3/, E1, E2, and E3 being subsets of E is defined as
admissible three-partition of a uniformly directed cut D if D D E1 [ E2 [ E3 and
E1 \ E2 D E1 \E3 D E2 \ E3 D Ø, and also E�

e.a/ 6� E2 for any a 2 E2.
Definition 38.3. During the project’s execution at time t , each activity can be in
one and only one of active, dormant, in queue or idle states, which are defined as
follows:

(i) Active: an activity a is active at time t , if it is being performed at time t .
(ii) Dormant: an activity a is called dormant at time t , if it has been completed but

there is at least one unfinished activity in E�
e.a/ at time t .

(iii) In queue: activity a is in queue at time t , if all preceding activities of activity
a have been completed, but service station a is serving another project.

(iv) Idle: an activity a is idle at time t , if it is neither active, nor dormant, nor in
queue at time t .

Definition 38.4. The state of project q at time t is Xq.t/ D .Aq.t/;Dq.t/;Qq.t//,
where Aq.t/, Dq.t/, and Qq.t/ are defined as follows:

Aq.t/ D set of active activities in project q at time t
Dq.t/ D set of dormant activities in project q at time t
Qq.t/ D set of in queue activities in project q at time t

Let N be the maximum number of projects in the system, the state of the system at
time t is defined as follows:

X.t/

D Œ.A1.t/;D1.t/;Q1.t//; .A2.t/;D2.t/;Q2.t//; : : : :; .AN .t/;DN .t/;QN .t//�

(38.2)

Also, the admissible three-partition cut of the system is denoted by:

ŒE1; E2;E3� D Œ.E11 ; E21 ; E31/; .E12 ; E22 ; E32/; : : : ; .E1N ; E2N ; E3N /� (38.3)

where .E1q; E2q; E3q / can be any admissible three-partition cut of project q or
.Ø;Ø;Ø/.

Let E q
3 be the set containing .Ø;Ø;Ø/ and all admissible three-partition UDCs

of project q. Note that the same admissible three-partition cuts of different projects
cannot occur simultaneously. Also, the project that has been entered to the system
earlier than the other projects, is regarded as “forward project” (project 1). The
activities of forward project do not wait in queue.
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The state of the system at the time zero is X.0/ D Œ.Ø;Ø;Ø/; .Ø;Ø;Ø/; : : : :;
.Ø;Ø;Ø/� and obviously fX.t/; t � 0g is a finite-state continuous-time Markov
process, where all the states are transient and there is no absorbing state. Thus,
the components of the infinitesimal generator matrix of this process, denoted by
G D �

g
˚
.E1;E2;E3/; .E

0
1; E

0
2; E

0
3/
��

, are calculated as follows:

1. Transition 1: In this transition, the transition rate is �a

if a 2 E1q ; E
�

e.a/ 6
 E2q [ fag then

Begin:

E 0

1q
WD E1qn fag ;

E 0

2q
WD E2q [ fag ;

for j D q C 1 to N do

if a 2 E3j then
n
E 0

1j
WD E1j [ fa g ; E 0

3j
WD E3j n fag

o
;

end

2. Transition 2: In this transition, the transition rate is �a

if a 2 E1q ; E
�

e.a/ 
 E2q [ fag then

Begin:

if q D 1 then
Begin:

E 0

11
WD .E11n fag/[E

C

e.a/;

E 0

21
WD E21nE�

e.a/;

for j D 2 to N do

if a 2 E3j then
n
E 0

1j
WD E1j [ fag ; E 0

3j
WD E3j n fag

o
;

end
if q ¤ 1then

Begin:

H WD Ø;

for j D 1 to q � 1 do

H WD H [ .E
C

e.a/ \ E1j /;

E 0

1q
WD .E1qn fag/[ .E

C

e.a/nH/;
E 0

2q
WD E2qnE�

e.a/;

E 0

3q
WD E3q [H;

for j D q C 1 to N do

if a 2 E3j thenn
E 0

1j
WD E1j [ fag ; E 0

3j
WD E3j n fag

o
;

end
end
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3. Transition 3: In this transition, the transition rate is �

if E1q D E2q D E3q D Ø and .E1q�1 ¤ Ø or E3q�1 ¤ Ø or E2q�1 ¤ Ø/
then

Begin:

H WD Ø;

for j D 1 to q � 1 do
H WD H [ .EC

s \E1j /;

E 0

3j
WD H;

E 0

1j
WD EC

s nH;
end

As mentioned before, fX.t/; t � 0g is a finite-state continuous-time Markov
process, when all states are transient and there is no absorbing state. Representing
† as the set of system states, whose members are numbered as 1; 2; : : : ; K D j†j,
where state 1 is the initial state X.0/ D Œ.Ø;Ø;Ø/; .Ø;Ø;Ø/; : : : :; .Ø;Ø;Ø/�.
Clearly, the number of system states grows exponentially with the number of UDCs
and the capacity of the system, in which there is a limit on the number of projects in
the system. Also, we define

�i .t/ D P.X.t/ D i jX.0/ D 1/ i D 1; 2; : : : ; K (38.4)

According to Chapman–Kolmogorov forward equations, the system of linear
differential equations for the vector �.t/ D Œ�1.t/; �2.t/; : : : ; �k.t/� is given by:

� 0.t/ D d�.t/

dt D �.t/ �G
�.0/ D Œ1; 0; : : : ; 0�

(38.5)

where � 0.t/ denotes the derivative of the state vector �.t/, andG is the infinitesimal
generator matrix of the stochastic process fX.t/; t � 0g .

38.3 Resource Allocation Problem

In this section, we propose a Markovian multi-objective model in order to optimally
control the resources allocated to the servers in a dynamic PERT network with
finite capacities, where such a system is represented as a queueing network. In this
investigation, not only the service times but also the direct costs of service stations
per period are independent random variables. Therefore, the total direct cost, which
is the summation of direct costs of service stations, will also be a random variable.
Moreover, it is assumed that the mean time spent in each service station is decreased
and the mean direct cost of the service station is increased when we allocate more
resources to that particular service station. It means that the mean time spent in each
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service station and the mean direct cost of the service station are non-increasing and
non-decreasing functions of the amount of resource allocated to that service station,
respectively.

In our model, the first objective is to maximize the probability that the total
direct cost of service stations per period does not exceed a certain cost level or
budget. The mean project completion time in the steady state is considered as the
second objective, which should be minimized. The last objective is to minimize
the probability that the system becomes empty in the steady state. This objective is
equivalent to maximizing the utilization factor of the system, because the utilization
factor is the probability that the system is busy. The first and the second objectives
are in conflict with each other, because if we allocate more resources to service
stations, then the probability that the total direct cost of service stations per period
do not exceed a certain budget will be decreased and therefore the mean project
completion time will be increased.

Let xa be the amount of resources allocated to service station a and Qc be the
random variable representing the total direct cost of service stations per period.
Moreover, let Ca.xa/ and Va.xa/ be, respectively, the mean and the variance of
direct cost of service station a per period. We also define b as a certain cost level
or budget value, which the total direct cost should not exceed. It is assumed that
Ca.xa/ is a non-decreasing function of amount of the resources xa allocated to it.

According to the Central Limit Theorem, the summation of a sufficiently large
number of independent random variables, each with a well-defined mean and well-
defined variance, will be approximately normally distributed. Moreover, in real
projects, the number of activities is sufficiently large. Therefore, the distribution
of the total direct cost converges to a normal distribution. Note that the distribution
of Z D . Qc � P

a2E Ca.xa//=.
pP

a2E Va.xa// converges to the standard normal
distribution.

Max. P . Qc � b/ is considered as the first objective, which is equivalent to

Max: P

0

B
B
@Z D

Qc � P

a2E
Ca.xa/

rP

a2E
Va.xa/

�
b � P

a2E
Ca.xa/

rP

a2E
Va.xa/

1

C
C
A (38.6)

On the other hand, considering the bell shape of the normal distribution, this
objective will also be equivalent to

Max:

b � P

a2E
Ca.xa/

rP

a2E
Va.xa/

) Max:

	

b � P

a2E
Ca.xa/


2

P

a2E
Va.xa/

(38.7)

Consequently, in our model, we consider (38.7) as the first objective.
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In addition, let †p be the subset of † in that the system has p projects in
processing, i.e., the system hasN�p capacity for accepting new projects. LetL and
W be the average number of projects in the system and the mean project completion
time in the steady state, respectively. Therefore, according to Little’s Law, we have
L D �0W , where �0, the effective arrival rate, is equal to lim

t!1�
P

i2†�†N �i .t/,
and L is given by:

L D lim
t!1

NX

jD1

X

i2†j
j�i .t/ (38.8)

Consequently, the second objective to be minimized is as follows:

W D lim
t!1

NP

jD1
P

i2†j
j�i .t/

�
P

i2†�†N
�i .t/

(38.9)

Finally, the third objective to be minimized is equal to lim
t!1�1.t/.

Moreover, the mean service time in the service station a is a non-increasing
function pa.xa/ of the amount of resource xa allocated to it. Thus, the mean service
time in the service station a is equal to 1=�a.D pa.xa//, because there is one server
located in it. Let Rmax

a denote the maximum amount of resource available to be
allocated to the service station a, Rmin

a denote the minimum amount of resource
needed to get the activity a done, x D .xa/

T
a2E , and R represent the amount of

resource available to be allocated to all service stations. In practice, Ca.xa/, Va.xa/,
and pa.xa/ can be obtained using linear regression by referring to the previous
similar activities or the judgments of experts in this area.

Finally, we have a multi-objective stochastic programming problem in that the
objective functions are given by:

1. Maximizing the probability that the total direct cost of service stations per period
does not exceed the budget b:

Max:f1.x/ D

	

b � P

a2E
Ca.xa/


2

P

a2E
Va.xa/

(38.10)

2. Minimizing the mean project completion time in the steady state:

Min:f2.x/ D lim
t!1

NP

jD1
P

i2†j
j�i .t/

�
P

i2†�†N
�i .t/

(38.11)
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3. Minimizing the probability that the system becomes empty in the steady state:

Min: f3.x/ D lim
t!1�1.t/ (38.12)

The infinitesimal generator matrix G is a function of the control vector x D
.xa/

T
a2E . Therefore, the nonlinear dynamic model is represented by

� 0.t/ D �.t/ �G.�/ (38.13)

�i .0/ D 0 .i D 2; : : : ; K/

�1.0/ D 1
(38.14)

The following constraint should also be considered to guarantee having a
response in the steady state:

� lim
t!1

P

i2†�†N
�i .t/

�a
< 1 ) �a � � lim

t!1
X

i2†�†N
�i .t/ > 0 .a 2 E/ (38.15)

In any optimization model, such constraints cannot be used. Hence, it is replaced
it by

�a � � lim
t!1

X

i2†�†N
�i .t/ � " .a 2 E/ (38.16)

Consequently, the resulting multi-objective optimal control problem (OCP) will
be:

Max. f1.x/ D
	

b� P

a2E
Ca.xa/


2

P

a2E

Va.xa/

Min. f2.x/ D lim
t!1

NP

jD1

P

i2†j
j�i .t/

�
P

i2†�†N
�i .t/

(38.17)

Min: f3.x/ D lim
t!1�1.t/

s:t: � 0.t/ D �.t/ �G.�/
�i .0/ D 0 .i D 2; : : : ; K/

�1.0/ D 1

�i .t/ � 1 .i D 1; 2; : : : ; K/

pa.xa/ D 1

�a
.a 2 E/
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�a � � lim
t!1

X

i2†�†N
�i .t/ � " .a 2 E/

xa � Rmin
a .a 2 E/

xa � Rmax
a .a 2 E/

X

a2E
xa � R

38.3.1 Goal Attainment Method

We now need to use a multi-objective method to solve (OCP). We actually use a
goal attainment technique for this purpose, because it is simple and computationally
efficient. The goal attainment method needs to determinate a goal, g�, and a weight,
w�, for each objective function. w�’s represent the importance of the �-th objective,
where, if an objective has the smallest w�, then it will be the most important
objective. w�’s .� D 1; 2; 3/ are normalized such that

P3
�D1 w� D 1. To determine

g� for the �-th objective, we have to solve the corresponding single objective
problem first and then set the value of g� very close to the optimal single objective
value. The goal attainment method is actually a variation of the goal programming
method intending to minimize the maximum weighted deviation from the goals.

Since the goal attainment method has fewer variables to work with, compared
to other simple and interactive multi-objective methods, it will be computationally
faster and more suitable to solve the complex optimization problem (OCP). The
resulting goal attainment formulation of the resource allocation problem (RAP) is
given by

Min: z

s:t:

	

b� P

a2E
Ca.xa/


2

P

a2E
Va.xa/

C w1z � g1
(38.18)

lim
t!1

NP

jD1
P

i2†j
j�i .t/

�
P

i2†�†N
�i .t/

� w2z � g2

lim
t!1�1.t/ � w3z � g3

� 0.t/ D �.t/ �G.�/
�i .0/ D 0 .i D 2; : : : ; K/

�1.0/ D 1

�i .t/ � 1 .i D 1; 2; : : : ; K/
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pa.xa/ D 1

�a
.a 2 E/

�a � � lim
t!1

X

i2†�†N
�i .t/ � " .a 2 E/

xa � Rmin
a .a 2 E/

xa � Rmax
a .a 2 E/

X

a2E
xa � R

38.4 Particle Swarm Optimization Algorithm

The continuous-time stochastic programming problem (RAP) is impossible to solve
in this form (see Azaron and Tavakkoli-Moghaddam 2007 for more details). There-
fore, we apply a particle swarm optimization (PSO) approach to solve (RAP), using
a goal attainment formulation. PSO is a population-based stochastic optimization
technique proposed by Kennedy and Eberhart (1995), inspired by social behavior
of bird flocking or fish schooling. Eberhart and Kennedy (1995) and Eberhart et al.
(1996) soon extended the PSO into a powerful optimization method. In the PSO
algorithm, a number of simple particles are randomly selected in the search space of
some problems or functions, and each evaluates the objective function at its current
position. Each particle’s movement is determined by considering some aspects of
the history of its own current and best (best-fitness) positions with those of one or
more components of the swarm, with some random perturbations. The next iteration
occurs after all particles have been moved and it is expected to move the swarm
toward the better solutions.

Each individual in the particle swarm consists of three m-dimensional vectors,
namely, the current position pos(p), the previous best position posbest.p/, and the
velocity vel(p), where m is the dimensionality of the search space. Moreover, the
current location pos(p) can be assumed as a set of coordinates describing a point in
the space. On each iteration of the PSO algorithm, the current location is evaluated
as a problem solution. If the current location is better than any that has been
obtained so far, then the coordinates are saved in posbest.p/. For comparison with
next iterations, the value of the best function result so far is also saved in variable
'best.p/. Indeed, the aim is to find better locations and updating posbest.p/ and
'best.p/. New positions are obtained by adding vel(p) coordinates to pos(p), and
the algorithm is controlled by regulating vel(p).

A particle swarm by itself has almost no ability to solve any problem and
improvement takes place only when the particles interact together. PSO is a
population-wide phenomenon, while populations are formed based on some sort of
communication structure or topology. In the particle swarm optimization process,
each particle interacts with some other points and is influenced by the best particle
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found by any member of its topological neighborhood. The velocity of each particle
is also iteratively regulated so that the particle randomly fluctuates around posbest.p/

and posbest positions, where posbest is the best known position that has been found
so far.

In order to have the simple form of (RAP) and to prepare it for implementing the
proposed PSO algorithm, we reformulate it as follows (RAP’):

Min: z D max

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

g1�

 

b�

P

a2E
Ca.xa/

!2

P

a2E
Va.xa/

w1
;

lim
t!1

NP

jD1

P

i2†j
j�i .t/

�
P

i2†�†N
�i .t/

�g2
w2

;
lim
t!1

�1.t/�g3
w3

9
>>>>=

>>>>;

s:t: � 0.t/ D �.t/ �G.�/; �.0/ D Œ1 0 : : : : 0� .a/
pa.xa/ D 1

�a
.a 2 E/ .b/

�a � � lim
t!1

P

i2†�†N
�i .t/ � " .a 2 E/ .c/

P

a2E
xa � R .d/

xa 2 �Rmin
a ; Rmax

a

�
.a 2 E/

(38.19)

Moreover, to determine the fitness function of the PSO algorithm, we use a
Lagrangian function. The Lagrangian function consists of objective function plus
the sum of penalty terms corresponding to the constraints of the model. With regard
to the objective function of the model (RAP’), the fitness function of the PSO
algorithm, '.x/, is given in Eq. (38.20). This equation is the original objective
function plus the penalty terms corresponding to the violation of constraints (c)
and (d) in RAP’. Parameters �1 and �2 are penalty coefficients, which should be
relatively large.

'.x/ D max

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

g1 �
	

b� P

a2E

Ca.xa/


2

P

a2E
Va.xa/

w1
;

lim
t!1

NP

jD1

P

i2†j
j�i .t/

�
P

i2†�†N

�i .t/
� g2

w2
;

lim
t!1�1.t/ � g3

w3

9
>>>>>>=

>>>>>>;

C

�1
X

a2E
max

(

" � �a C � lim
t!1

X

i2†�†N
�i .t/; 0

)

C �2max

(
X

a2E
xa � R; 0

)

(38.20)

Let �pop and nmax
iter be the size of the population and the maximum number of

iterations, respectively. The population size is often determined empirically on the
basis of the dimensionality and perceived difficulty of the problem. However, values
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in the range 20–50 are quite common for the population size. In this chapter, the
number of nmax

iter iterations is considered as stopping criterion. Note that usually
a sufficiently good fitness or a maximum number of iterations is determined as
the stopping criterion in the PSO algorithm. To present the solution representation
scheme in PSO, we also use posk.p/ D .xkp;a/

T
a2E as the designator for the position

of particle p at the k-th iteration, i.e., the amount of resources allocated to service
stations for particle p at the k-th iteration, where xkp;a 2 �

Rmin
a ; Rmax

a

�
.a 2 E/,

p D 1; : : : ; �pop, k D 1; : : : ; nmax
iter . Let posbest

k .p/ and posbest
k be the best position of

particle p and the best known swarm position until the k-th iteration, respectively.
It is also assumed that velk.p/ is the velocity of particle p at the k-th iteration,

where each component of velk.p/ is kept within the range Œ�velmax; velmax�. Note
that determining the optimal value of velmax is problem-specific in PSO; however,
no reasonable rule of thumb is known. In addition, let 'best

k .p/ and 'best
k be the best

fitness function of particle p and the best known swarm fitness function until the
k-th iteration, respectively.

PSO needs proper acceleration coefficients ˛1 and ˛2, and also inertia weight !
to warrant that the algorithm converges to a good solution. The treatment of a PSO
changes fundamentally with the value of ˛1 and ˛2, while these parameters specify
the magnitude of the random forces in the direction of personal best posbest

k .p/ and
neighborhood best posbest

k in each iteration. The values ˛1 D ˛2 D 2:0 are almost
ubiquitously adopted in early PSO research (for more details see Shi and Eberhart
1998; Poli et al. 2007). In addition, we consider the linear inertia weight reduction
of PSO as !kC1 D � � !k , where !k is the inertia weight of the k-th iteration and �
is the decrement factor.

Consequently, the proposed PSO algorithm to solve the problem (RAP’) is
presented as follows:
Initial stage:

– Determine the values of the population size �pop, the number of iteration nmax
iter ,

acceleration coefficients ˛1 and ˛2, the inertia weight !1, the penalty coefficients
�1 and �2, and ".

– for p D 1; : : : ; �pop

Randomly initialize particle positions pos1.p/ D .x1p;a/
T
a2E , where x1p;a 2

�
Rmin
a ; Rmax

a

�
.a 2 E/.

– for p D 1; : : : ; �pop

Randomly initialize particle velocities vel1.p/, where each component of
vel1.p/ is kept within the range of Œ�velmax; velmax�.

– for p D 1; : : : ; �pop

'best
1 .p/ WD M ,

and also 'best
1 WD M , where M is a large value.

– Set the counter k WD 1.

Optimizing loop (Repeat):

– Obtain �a’s .a 2 E/ based on the constraint (b) in (RAP’), pa.xkp;a/ D 1=�a,
and obtain the matrix G for each particle p .p D 1; : : : ; �pop/.
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– Solve the system of differential equations based on constraint (a) in (RAP’), and
compute �i .T 0/ .i D 1; : : : ; K/.limt!1 �i .t// for each particle p .p D 1;

: : : ; �pop/, where T ’ is a large constant.
– Calculate the fitness function, 'kp.posk.p//, according to (38.20) for each particle
p .p D 1; : : : ; �pop/.

– for p D 1; : : : ; �pop

if 'kp.posk.p// < '
best
k .p/ then

posbest
k .p/ WD posk.p/

'best
k .p/ WD 'kp.posk.p//

– for p D 1; : : : ; �pop

if 'kp.posk.p// < '
best
k then

posbest
k WD posk.p/

'best
k WD 'kp.posk.p//

– for p D 1; : : : ; �pop

velkC1.p/ WD !kvelk.p/C ˛1u1.posbest
k .p/ � posk.p//C ˛2u2.posbest

k .p/ �
posk.p//, where u1 and u2 represent vectors of random numbers uniformly
distributed in Œ0; 1�. Also, each component of velkC1.p/ is kept within the range
of Œ�velmax; velmax�.

– for p D 1; : : : ; �pop

poskC1.p/ WD posk.p/C velkC1.p/, where xkC1
p;a 2 �Rmin

a ; Rmax
a

�
.a 2 E/.

– !kC1 WD � � !k;where � is the decrement factor.
– k WD k C 1

Until the stopping criterion is met .k > nmax
iter /.

– Display posbest
k and 'best

k as best solution.

End.
To show the effectiveness of the proposed PSO approach, we also compare the

associated results against the results of a discrete-time approximation of the problem
(RAP), where the differential equations are converted into difference equations. Let
T 0 be the time from which on the system is in the steady state, which we divide it into
�.D T 0=t/ equal portions with the length oft . Consequently, the corresponding
discrete model (DRAP) (see Azaron and Tavakkoli-Moghaddam 2007) is as follows:

Min: z

s:t:

	

b � P

a2E
Ca.xa/


2

P

a2E
Va.xa/

� w1z � g1

NP

jD1
P

i2†j
j�i .�/

�
P

i2†�†N
�i .�/

� w2z � g2

�1.�/ � w3z � g3
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�.r C 1/ D �.r/C �.r/ �G.�/t .r D 0; 1; 2; : : : ; � � 1/
�i .0/ D 0 .i D 2; : : : ; K/

�1.0/ D 1

�i .r/ � 1 .i D 1; : : : ; K/; .r D 1; 2; : : : ; �/

pa.xa/ D 1

�a
.a 2 E/

�a � �
X

i2†�†N
�i .�/ � " .a 2 E/

xa � Rmin
a .a 2 E/

xa � Rmax
a .a 2 E/

X

a2E
xa � R (38.21)

38.5 Numerical Example

To illustrate the proposed PSO algorithm, we consider the network depicted in
Fig. 38.1 taken from Yaghoubi et al. (2011a). It is assumed that we have a system
with the capacity of two concurrent projects and six service stations depicted as the
AoN graph in Fig. 38.1.
The assumptions are:

• The new projects including all their activities are generated according to a
Poisson process with the rate of � D 3 per year.

• The activity durations (service times) are independent random variables with
exponential distributions.

• There is one server in every service station located in the nodes.
• The capacity of the system is two projects.
• The direct costs of service stations per period are independent random variable.
• The amount of resource available to be allocated to all service stations is 18.
• The value of " is equal 0.01.

2

3

4

51 6Start Finish

Fig. 38.1 AoN network
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Table 38.1 Characteristics of the activities

Activity .a/ Ca.xa/ Va.xa/ pa.xa/ Rmin
a Rmax

a

1 2x21 C 1 x1 0:5� 0:05x1 1 5

2 x2
x2=4 0:6� 0:1x2 1 4

3 3x3 C 4 x3=2 0:7� 0:12x3 1 4

4 x4 C 3 x4=3 0:8� 0:08x4 1 6

5 2x5
x5=4 0:4� 0:03x5 1 5

6 x6 C 2 x6=3 0:5� 0:06x6 1 5

Table 38.2 Admissible three-partition cuts

1. ŒØ;Ø� 8. Œ.3; 4/; 1� 15. Œ6;Ø� 22. Œ.3�; 4/; .3; 4q/� 29. Œ5; .3�; 4/�

2. Œ1;Ø� 9. Œ2; 2q� 16. Œ5; 1� 23. Œ.3; 4�/; .3q; 4/� 30. Œ5; .3; 4�/�

3. Œ2;Ø� 10. Œ.3; 4�/;Ø� 17. Œ.3�; 4/; 2� 24. Œ6; 2� 31. Œ6; .3�; 4/�

4. Œ1; 1q� 11. Œ5;Ø� 18. Œ.3; 4�/; 2� 25. Œ5; .3; 4/� 32. Œ5; 5q�

5. Œ.3; 4/;Ø� 12. Œ.3�; 4/; 1� 19. Œ.3; 4/; .3q; 4q/� 26. Œ.3�; 4/; .3�; 4q/� 33. Œ6; .3; 4�/�

6. Œ2; 1� 13. Œ.3; 4/; 2� 20. Œ6; 1� 27. Œ.3; 4�/; .3q; 4�/� 34. Œ6; 5�

7. Œ.3�; 4/;Ø� 14. Œ.3; 4�/; 1� 21. Œ5; 2� 28. Œ6; .3; 4/� 35. Œ6; 6q�

Fig. 38.2 Rate diagram for the continuous-time Markov chain

Table 38.1 shows the characteristics of the activities, where the time unit and the
cost unit are, respectively, in year and in thousand dollars.

In Table 38.2, all admissible three-partition cuts of the network of Fig. 38.1
are presented, where we use superscript star and q to denote “dormant” and “in
queue” activities, respectively. Figure 38.2 shows the rate diagram, where the nodes
represent the states of the system.

After determining the system states and transition rates depicted in Table 38.2
and Fig. 38.2, we obtain the infinitesimal generator matrix G.�/. Table 38.3 shows
the infinitesimal generator matrix G.�/, where diagonal components are equal to
the negative sum of the other components at the same row.
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Table 38.4 Classification of states

Number of projects State †p

0 1 †0

1 2,3,5,7,10,11,15 †1

2 4, 6, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35

†2

To illustrate the second objective, consider Table 38.4. The second objective for
this example is

Min. lim
t!1

�

�2.t/C �3.t/C �5.t/C �7.t/C
11P

iD10
�i .t/C �15.t/

�

�

�

�1.t/C �2.t/C �3.t/C �5.t/C �7.t/C
11P

iD10
�i .t/C �15.t/

�

C
2

�

�4.t/C �6.t/C
9P

iD8
�i .t/C

14P

iD12
�i .t/C

35P

iD16
�i .t/

�

�

�

�1.t/C �2.t/C �3.t/C �5.t/C �7.t/C
11P

iD10
�i .t/C �15.t/

�

The aim is to obtain the optimal resource allocation to the different activities.
For this purpose, we consider the goals, g1 D 1:652, g2 D 1:3, g3 D 0:05, and the
following sets of weighted parameters c for the three objectives to generate a set of
Pareto-optimal solutions according to the goal attainment formulation (RAP):

Set 1: w1 D 0:3; w2 D 0:1; w3 D 0:6;

Set 2: w1 D 0:2;w2 D 0:1; w3 D 0:7;

Set 3: w1 D 0:2; w2 D 0:2; w3 D 0:6;

According to proposed PSO algorithm, we set the penalty coefficients to be
�1 D 10, �2 D 20, the maximum number of iterations to be nmax

iter D 100 or
nmax

iter D 200, and acceleration coefficients to be ˛1 D ˛2 D 2:0. Moreover, we set
the inertia weight to be !1 D 1, and the decrement factor to be � D 0:99. For this
example, we consider velmax D 0:1.Rmax

a � Rmin
a / for every service station and all

PSO experiments are replicated five times using different random initial solutions.
To do so, we use MATLAB 7 on a PC Pentium 4, CPU 3 GHz.

The optimal allocated resources according to PSO algorithm, the computational
times, tcpu (mm:ss), and also the values of all objectives functions for the different
combinations of T 0, �pop, and nmax

iter for the first set of weights .w1 D 0:3;w2 D 0:1;

w3 D 0:6/ are shown in Table 38.5.
So, the optimal allocated resources for set 1 are x1 D 1:667, x2 D 2:940,

x3 D 2:862, x4 D 5:272, x5 D 1:036, x6 D 4:222, and the objective function
values are: f1 D 0:178, f2 D 2:148, f3 D 0:039 .z D 8:483/. Based on Table 38.5,
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Table 38.5 The computational results of the PSO algorithm for set 1 .w1 D 0:3;w2 D 0:1;
w3 D 0:6/

T 0 �pop nmax
iter x1 x2 x3 x4 x5 x6 z f1 f2 f3 tcpu

18.0 30 100 1.519 2.672 2.290 4.208 2.945 4.366 9.134 0.192 2.213 0.057 000 W 1700

18.0 30 200 2.081 2.643 2.498 4.513 1.406 4.859 8.766 0.093 2.177 0.056 000 W 1900

18.0 50 100 1.714 3.019 2.547 4.801 1.709 4.210 8.724 0.105 2.172 0.044 000 W 2200

18.0 50 200 1.640 2.849 2.880 5.272 1.260 4.098 8.576 0.149 2.158 0.040 000 W 2800

19.2 30 100 2.942 3.007 2.145 4.411 1.900 3.595 9.287 6.711 2.229 0.046 000 W 1500

19.2 30 200 1.586 2.667 2.464 4.396 2.038 4.849 8.845 0.251 2.185 0.065 000 W 1900

19.2 50 100 1.621 2.699 2.962 5.315 1.326 4.077 8.669 0.122 2.167 0.040 000 W 2600

19.2 50 200 1.601 2.693 3.079 5.488 1.061 4.076 8.566 0.153 2.157 0.036 000 W 3000

21.6 30 100 2.031 2.278 2.004 4.671 3.477 3.522 9.714 0.278 2.271 0.081 000 W 1800

21.6 30 200 2.182 2.827 2.435 4.618 1.696 4.241 8.876 0.348 2.188 0.047 000 W 2200

21.6 50 100 1.616 2.764 2.893 5.264 1.495 3.968 8.672 0.121 2.167 0.042 000 W 2500

21.6 50 200 1.667 2.940 2.862 5.272 1.036 4.222 8.483 0.178 2.148 0.039 000 W 3100

25.2 30 100 1.202 2.082 1.999 4.251 3.562 4.904 9.248 0.784 2.225 0.062 000 W 1700

25.2 30 200 1.736 2.728 2.558 4.615 1.548 4.814 8.720 0.106 2.172 0.055 000 W 2100

25.2 50 100 1.560 2.543 3.089 5.448 1.557 3.804 8.774 0.902 2.177 0.041 000 W 2500

25.2 50 200 1.818 3.548 2.523 5.102 1.015 3.993 8.648 0.128 2.165 0.042 000 W 3200

Table 38.6 Pareto-optimal solutions obtained by the PSO algorithm

w x1 x2 x3 x4 x5 x6 z f1 f2 f3 tcpu

Set 1 1.667 2.940 2.862 5.272 1.036 4.222 8.483 0.178 2.148 0.039 000 W 3100

Set 2 1.276 3.130 2.813 5.294 1.184 4.303 8.438 1.035 2.144 0.039 000 W 2900

Set 3 1.078 3.396 2.701 5.268 1.049 4.508 4.166 1.889 2.133 0.038 000 W 3100

Table 38.7 Pareto-optimal solutions obtained by the discrete-time approximation technique

w x1 x2 x3 x4 x5 x6 z f1 f2 f3 tcpu

Set 1 1 3.552 3.184 5.265 1 3.999 8.257 1.343 2.126 0.044 100 W 0200

Set 2 2.293 3.587 3.039 5.378 1 2.702 8.493 1.024 2.149 0.042 140 W 2600

Set 3 1 3.714 2.849 4.677 1 4.761 4.116 1.899 2.123 0.052 110 W 4300

if the values of �pop and nmax
iter are increased, for any specific T 0; the quality of

solution is increased. However, the computational times are also increased, which is
undesirable.

Table 38.6 summarizes the results obtained by the PSO algorithm for the three
sets of weight parameter combinations.

Now, we consider various combinations of T 0; � , and t . To do so, we use
LINGO 8 on a PC Pentium 4, CPU 3 GHz. The optimal allocated resources, the
computational time, tcpu, and also the values of all objectives functions for the three
sets of parameter combinations w are given in Table 38.7.
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Table 38.8 Comparing the PSO results against the discrete-time approximation technique with
the same tcpu for the parameters of set 1

No. T 0

Discrete-time approximation technique PSO algorithm ˇ
ˇ
ˇzØ

PSO � zØ
Dis

ˇ
ˇ
ˇ Rank� t zØ

Dis topu zØ
PSO topu

1 18.0 100 0.18 8.904 030 W 1500 8.276 030 W 1500 0.628 14

2 18.0 120 0.15 8.626 050 W 3100 8.175 050 W 3100 0.451 10

3 18.0 150 0.12 8.423 060 W 5200 8.159 060 W 5200 0.264 4

4 18.0 180 0.10 8.318 080 W 3400 8.146 080 W 3400 0.172 1

5 19.2 107 0.18 8.939 040 W 4800 8.261 040 W 4800 0.678 16

6 19.2 128 0.15 8.713 060 W 0900 8.163 060 W 0900 0.550 12

7 19.2 160 0.12 8.572 080 W 1100 8.072 080 W 1100 0.500 11

8 19.2 192 0.10 8.310 090 W 2600 8.048 090 W 2600 0.262 2

9 21.6 120 0.18 8.894 030 W 5400 8.305 030 W 5400 0.589 13

10 21.6 144 0.15 8.527 060 W 4900 8.152 060 W 4900 0.375 9

11 21.6 180 0.12 8.450 080 W 3100 8.116 080 W 3100 0.334 7

12 21.6 216 0.10 8.297 100 W 0200 7.995 100 W 0200 0.302 6

13 25.2 140 0.18 8.863 050 W 2700 8.231 050 W 2700 0.632 15

14 25.2 168 0.15 8.604 040 W 4500 8.268 040 W 4500 0.336 8

15 25.2 210 0.12 8.338 080 W 5000 8.075 080 W 5000 0.263 3

16 25.2 252 0.10 8.261 110 W 4300 7.989 110 W 4300 0.272 5

As we noted, solving the goal attainment formulation (RAP) optimally and
comparing the PSO results with the optimal results is impossible. Therefore, we
try to compare the PSO results with the results of the discrete-time model (DRAP).
As stopping criterion for the PSO algorithm we use the computational times of the
LINGO solver, which is applied to the discrete-time approximation. The population
size is chosen to be �pop D 50.

Table 38.8 presents the results of the discrete-time approximation technique for
different combinations of the parameters and the results of the PSO algorithm
based on the computational time of the discrete-time approximation technique as
its stopping criterion. A paired sample Wilcoxon signed-rank test analysis with ˛ D
0:05 is utilized to investigate whether solutions obtained by solving the discrete-
time approximation differ from the PSO algorithm with same tcpu or not. The paired
sample Wilcoxon signed-rank test is an alternative non-parametric method for the t-
test. When the normality assumption is not satisfied or the sample size is too small,
the t-test is not valid (for more details see Siegel 1956), and the paired sample
Wilcoxon signed-rank test is then used. Let n be the sample size, i.e., the number of
pairs. For ` D 1; : : : ; n, let z`Dis and z`PSO be the objective function values obtained
by the discrete-time approximation algorithm and the PSO algorithm with the same
amount of tcpu, respectively. Moreover, let zØ

Dis and zØ
PSO be the mean of the objective

function values obtained by the discrete-time approximation algorithm and the PSO
algorithm with the same amount of tcpu, respectively. The null hypothesis .H0/ is
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defined as zØ
Dis � zØ

PSO D 0, while the alternate hypothesis .H1/ is zØ
Dis � zØ

PSO > 0.
Consequently, the test procedure will be as follows:

for ` D 1; : : : ; n

calculate
ˇ
ˇz`Dis � z`PSO

ˇ
ˇ and sgn

�
z`Dis � z`PSO

�
.

Exclude pairs with
ˇ
ˇz`Dis � z`PSO

ˇ
ˇ D 0.

Order the remaining n0 pairs from the smallest value of
ˇ
ˇz`Dis � z`PSO

ˇ
ˇ to the

largest.

Rank the pairs and let R` denote the rank.

Calculate W D
ˇ
ˇ
ˇ
ˇ

nP

`D1
�
sgn

�
z`Dis � z`PSO

�
R`
�
ˇ
ˇ
ˇ
ˇ.

When n0 increases, the distribution of W converges to normal. In this case, for
n0 � 10, a zW –score can be computed as zW D .W � 0:5/=�W , in which

�W D p
Œn0.n0 C 1/.2n0 C 1/�=6.

if zW > z1�˛ , then reject H0

if (n0 < 10 and W � W1�˛.n0/), then reject H0.

Based on the results shown in Table 38.8, zW D 3:503, while z1�˛ is 1.65.
Therefore, H0 is rejected against H1. Consequently, the quality of the optimal
solution obtained by solving the PSO algorithm is better than the discrete-time
approximation technique. This shows that the performance of the PSO algorithm is
better than the discrete-time approximation technique, considering the same amount
of tcpu. PSO is a very good algorithm for obtaining near-optimal allocated resources.
Note that similar results are obtained for the parameters of sets 2 and 3.

38.6 Conclusions

In this chapter, we developed a multi-objective model using continuous-time
Markov processes for the resource allocation problem in dynamic PERT networks
with a finite capacity of concurrent projects, a control mechanism called COnstant
Number of Projects In Process (CONPIP). It was assumed that the new projects
are generated according to a Poisson process and activity durations are independent
random variables with exponential distributions. The system was represented as a
queueing network with a finite number of concurrent projects, in which each activity
of a project is processed at a dedicated service station with one server located in a
node of the network serving activities according to the FCFS discipline. In addition,
it was assumed that the direct costs of service stations per period are independent
random variables.
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The number of system states grows exponentially with the number of UDCs
of the network and the system capacity, which is the main drawback of the
proposed analytical model. However, this is a major drawback in many analyt-
ical approaches. The problem was formulated as a multi-objective model using
continuous-time Markov processes with three conflicting objectives to optimally
control the resources allocated to service stations. Since it is impossible to solve the
original continuous-time problem to optimality in a reasonable time, we developed
a PSO algorithm to solve it. Finally, to show the effectiveness of the proposed
PSO, we compared the results of the discrete-time approximation of the original
optimal control problem with the results obtained by the proposed PSO based on
the computational times of the discrete-time approximation technique.
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Chapter 39
Robust Optimization for the Discrete Time-Cost
Tradeoff Problem with Cost Uncertainty

Öncü Hazır, Mohamed Haouari, and Erdal Erel

Abstract Projects are subject to various sources of uncertainty that hamper reach-
ing project targets; hence, it is crucial importance to use effective approaches to
generate robust project schedules, which are less vulnerable to disruptions caused
by uncontrollable factors. In this vein, this chapter examines analytical models and
algorithms of robust multi-mode project scheduling, specifically, the robust discrete
time-cost tradeoff problem (DTCTP). The models and algorithms presented in this
chapter can support project managers from a wide range of industries in scheduling
activities to minimize deviations from project goals. Furthermore, some surrogate
measures that aim at providing an accurate estimate of the schedule robustness are
developed and related experimental results are presented. Finally, some potential
research areas are proposed and discussed.

Keywords Project management • Robust optimization • Scheduling • Uncertain
cost

39.1 Introduction

In order to better control and organize activities and reach organizational targets,
today, organizations are becoming more and more project-driven. As a consequence,
developing effective management techniques and applying them efficiently in
projects attract the attention of both practitioners and academics. In this regard,
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we focus on multi-mode project scheduling methods; specifically a well-known
problem, the discrete time-cost tradeoff problem (DTCTP). A mode corresponds
to a processing alternative of an activity, i.e., a different technology or a different
resource assignment. These finite number of processing alternatives accommodate
a compromise; faster ones being more costly. We examine two versions of the
problem: deadline (DTCTP-D) and budget (DTCTP-B). In the deadline problem,
total cost is minimized while terminating the project within the given deadline;
whereas, the budget problem consists in minimizing the project duration without
surpassing the given budget. Both of these multi-mode scheduling problems have
practical application areas since they tackle the important time-cost tradeoff in
processing activities.

DTCTP is a special case of multi-mode project scheduling. In single and multi-
mode project scheduling literature, the majority of the studies assume knowledge of
complete information. A detailed review of these studies can be found in Kolisch
and Padman (2001), Herroelen (2005), Wȩglarz et al. (2011) and in Chap. 21 in the
first volume of this handbook. Specializing on the problem, De et al. (1995, 1997)
have respectively presented a survey on the problem and shown that the DTCTP is
strongly NP-hard. For solution to optimality, Demeulemeester et al. (1996) provided
a branch-and-bound algorithm; whereas Hazır et al. (2010a) developed a Benders
decomposition based algorithm. On the other hand, to solve large instances, Akkan
et al. (2005) and Vanhoucke and Debels (2007) proposed approximate approaches
(see also Chap. 30 in the first volume of this handbook).

Although the majority of the studies in the field rely on the deterministic
approaches, projects face various sources of uncertainty: some activities take more
time than expected or some resources become unavailable due to reasons such as
machine breakdowns. In order to reach project targets, hedging against uncertainty
and proactive planning of the activities have become important. Stochastic pro-
gramming, robust optimization, sensitivity analysis, parametric programming, and
fuzzy programming are the main candidate optimization approaches to model and
integrate project uncertainty in planning (Herroelen and Leus 2005).

In this chapter, we address robust scheduling of the DTCTP. In Sect. 39.2 we
present and explain some robust optimization models, application areas. Later,
in Sect. 39.3 we introduce relevant robustness measures. Finally, we discuss the
rewarding topics and directions in Sect. 39.4.

39.2 Robust Optimization and Project Management

Robust optimization aims to build solutions that are insensitive to data uncer-
tainty. As the worst-case performance of the system is focused (Kouvelis and Yu
1997), some degree of pessimism is inherent in this approach. The most common
approaches involve minmax cost and minmax regret objectives (Gabrel and Murat
2010). Respectively, maximum cost and maximum regret, which is the difference
between the cost of the solution and optimal one across all scenarios, are mini-
mized. They have been applied to well known combinatorial optimization problems
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(Aissi et al. 2009) and used in various application areas such as engineering and
finance (Bertsimas et al. 2011).

In project management, following a scenario based approach, Yamashita et al.
(2007) proposed robust optimization models for the resource availability cost
problem, which consists in minimizing a cost function of resource availability.
Each scenario corresponds to a realization of the uncertain durations. Differently,
Cohen et al. (2007) used interval uncertainty in their recent robust scheduling study.
Their study examines the effects of uncertainty on the continuous time-cost tradeoff
problem. Similarly, Hazır et al. (2011) assumed interval uncertainty; but, focused
on the discrete problem. For this problem, Klerides and Hadjiconstantinou (2010)
addressed uncertainty in durations and used stochastic programming (see Chap. 36
of this book); whereas, Xu et al. (2012) applied fuzzy logic and presented a case
study for an extension of the problem (see Chap. 59 of this book). Recently, Artigues
et al. (2013) investigated minmax regret policies to model the robust version of the
well-known resource-constrained project scheduling problem (see also Chap. 40 of
this book).

When accurate records of past data are available to estimate probability distribu-
tions appropriately, stochastic programming has the advantage of incorporating this
available information. However, as each project is unique, usually it is difficult to
obtain reliable data. Therefore, in that sense, robust optimization is advantageous;
furthermore, the project performance remains under control even in the worst-case
conditions. In addition, the robust approach is distinctively different from sensitivity
analysis, since it is proactive; it addresses uncertainty in the modeling phase.

Next, we summarize the modeling and solution approach of Hazır et al. (2011)
for the robust DTCTP in the following section.

39.2.1 Robust DTCTP

Consider a project with a set of n activities and a precedence graph in AoN (activity-
on-node) representation, G D .V;E/, where V , the node set, contains n activities
and two dummy nodes, 0 and nC 1, that signify project start and termination.E �
V � V , the arc set corresponds to precedence relationships among activities. Each
activity j 2 V can be carried out in one of the jMj j modes, where each one,
m 2 Mj , is defined by duration pjm and a cost interval

�
cjm; cjm

�
. We define cjm

and �cjm as the most likely cost estimate and maximum cost increase from the
nominal value;�cjm D cjm �cjm. Using this notation, a mixed-integer programming
formulation of the robust DTCTP-D can be given as follows:

Min.
nX

jD1

X

m2Mj

cjmxjm C g.x/ (39.1)

s. t.
X

m2Mj

xjm D 1 .j D 1; : : : ; n/ (39.2)
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Cj � Ci �
X

m2Mj

pjmxjm � 0 ..i; j / 2 E/ (39.3)

CnC1 � d (39.4)

g.x/ D Max.

8
<

:

X

j2V

X

m2Mj

�cjmxjmuj W
X

j2V
uj � �; uj 2 f0; 1g

9
=

;
(39.5)

In the formulation, the continuous decision variable, Cj , represents the comple-
tion time of activity j , whereas the binary variable xjm assigns mode m 2 Mj for
activity j , i.e., xjm D 1. With the objective of minimizing the total cost (Eq. 39.1),
a unique mode should be chosen for each activity (Eq. 39.2), while precedence
constraints (Eq. 39.3) must be satisfied and the deadline, notated with d , must not
be exceeded (Eq. 39.4).

Note that maximum cost deviation is formulated with function g.x/ (Eq. 39.5).
In this function, binary vector u is used to determine the activities (at most � ) that
will be processed with the worst-case cost values, i.e., fj W uj D 1g. Note that
if � D 0, the deterministic DTCTP-D is obtained, whereas high values of this
parameter represent risk-averse decision making behavior.

Based on the formulation given above, Hazır et al. (2011) examined three
robust versions of DTCTP-D. Model formulations, exact and approximate solution
approaches, and computational results were presented.

The first version assumes that uncertainty could be defined as a cardinality
constrained set (Bertsimas and Sim 2003; Bertsimas et al. 2011); that is, only a
subset of coefficients (� of them) reach the worst case values. For solution, Benders
decomposition, which has been widely used in various combinatorial optimization
problems including project and airline scheduling, was used (Erenguc et al. 1993; Li
and Womer 2009; Sherali et al. 2010; Chap. 27 in the first volume of this handbook).

Regarding robustness of project schedules, an important factor to be investigated
is total slack, which is the amount of time by which the activity completion could
be delayed without delaying the project termination (see Garaix et al. 2013 and
Chap. 41 of this book for calculating the slack values in case of interval uncertainty
for activity durations). Note that larger slacks provide flexibility in scheduling and
resource allocation. Moreover, activity costs and durations are interdependent, as
they both depend on the amount of resource allocation. During project execution,
non-critical activities could be started later or less amount of resources could be
allocated to these activities. Therefore, in achieving the cost targets, these activities
constitute less risk when compared to the critical ones. Hence, assigning the worst-
case costs to activities with ample slacks could be unrealistically pessimistic. On
the other hand, in case of disruptions, for finishing critical activities on time, more
monetary resources might have to be allocated.

In this regard, in the second version, Hazır et al. (2011) considered only the
potentially critical activities to define the possible cost deviations (criticality-
based robust model). These activities are identified based on the total slack/activity
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duration ratio. The smaller the ratio, the more critical the activity. Lastly, a third
model that gives priority to critical activities over non-critical ones in calculating
cost deviations was also developed. As could be expected, the second and third
models are more difficult to solve; hence high quality approximate solutions were
sought using tabu search.

When these approaches are compared, the first approach is the most pessimistic
one and performs well under extreme scenarios. However, the second one allocates
larger project buffers at the end, which has been shown to be efficient in case of
variations in activity durations. The third one results in total slacks distributed more
evenly among activities.

39.2.2 An Application Area

As an application area, Hazır et al. (2011) cite Build-Operate-Transfer (BOT) proj-
ects, in which a public service or an infrastructure investment is undertaken and
operated for a specific period of time by a private firm and then transferred to a
public institution. The BOT contracts offer several mutual advantages. For the public
sector, they offer an alternative financing mechanism to carry out large investment
projects and encourage foreign investment inflow. On the other hand, as the client is
usually the government, they reduce demand and credit risks of the private sector.
To have more information about the characteristics of these contracts, we refer to
the paper of McCarthy and Tiong (1991).

One of the application areas of BOT model are airport and construction projects.
The private enterprise constructs the airport or harbor and operates it for a predefined
period of time and then transfers the right to operate to the public. The enterprise
can extend the operating period via completing the construction earlier. Early
completion could be highly profitable. For that reason, in case of deviations from
the baseline plan, extra resources are commonly used to speed up the activities.
However, these additional allocations create cost uncertainty. Protection against
deviations in total cost and project duration then becomes the key concern of
project managers and in this regard, decision support systems that involve robust
planning approaches are valuable. In addition, considering multiple alternatives for
processing activities fit the characteristics of these types of contracts.

39.3 Robustness Measures

In addition to algorithm design, another important issue in robust scheduling
is to evaluate the robustness of schedules and the comparison of scheduling
algorithms based on the robustness of the designs produced (example studies are:
Goren and Sabuncuoglu 2008 for machine scheduling, and Chtourou and Haouari
2008 for resource-constrained project scheduling problem). For this well-known
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Fig. 39.1 The relationship between budget amplification and performance measure

project management problem, Al-Fawzan and Haouari (2005) followed a bi-
objective approach by optimizing both robustness and project makespan. Regarding
DTCTP, Hazır et al. (2010b) proposed nine time-based measures, which could be
categorized as:

1. Average Slack
2. Weighted Slack
3. Slack Utility Function
4. Dispersion of Slacks
5. Percentage of Potentially Critical Activities
6. Project Buffer Size

In order to evaluate these measures, a simulation study was carried out for a
large number project networks. As a result of the simulation, project buffer size
and weighted slack (weights referring to the number of immediate successors of the
activity) were found to be best estimates of schedule robustness.

Based on these results, a two phase scheduling algorithm to place a project buffer
with minimal cost was proposed (inserting project buffers instead of augmenting
the activity durations is one of the important characteristics of critical chain project
scheduling). To accomplish that, an inflated budget is used; the initial budget is
augmented so that the scheduling algorithm produces a schedule with a shorter
termination time. Then, the effect of this budget amplification is experimentally
tested using a subset of instances of Akkan et al. (2005). One of the performance
measures (PM) is the average delay in the project completion time as percentage of
the project deadline. That is, using this measure, schedules that exhibit less delays
in case of disruptions are considered to be more robust.

In the simulation based analysis, first, a budget amplification rate is set and a
baseline schedule with a project buffer is generated using this new budget value.
Then, for each instance of the test bed, perturbations in processing times were
randomly generated and the resulting project termination time is noted. Figure 39.1
shows some of the results. The coefficient of variation (CV) values 0.25 and 0.5
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characterize small and moderate variability in activity durations. In case of low
variability, PM could be significantly improved with small budget increases. For
instance, with a 6 % budget increase (� D 0:06), the average delay decreased
from about 3 to 2 %. Further increasing the budget accompanies a decrease in the
marginal gain. However, in case of higher variability, improvement in project delays
are more drastic, but larger budget increases are needed to have a stabilized pattern
and eliminate tardiness.

39.4 Discussion on Future Research Directions

Possible future research topics are summarized as follows:

1. Project management has mainly focused on the variations in activity durations.
However, variations in resource requirements and resource availability could
also have significant consequences. Studies on variability of resource are scarce;
however, considering real instances there is a need for further analysis and
analytical models. In this regard, robust versions of multi-mode resource-
constrained scheduling models should be investigated.

2. For multi-mode scheduling, minmax and minmax regret models could also be
studied. These models are usually difficult to solve, hence the development of
efficient solution algorithms, especially approximate ones for large instances, is
important and interesting for further research.

3. Other than well-known minmax algorithms, some recent approaches could be
used to model robust project scheduling problems. Especially two of them are
appealing:

• The bw robustness proposed by Gabrel et al. (2013) aims to obtain objective
values smaller than w in all scenarios and below the target value of b as much
as possible b < w (in a minimization problem).

• Lexicographic ˛-robustness reduces the influence of worst-case scenario and
incorporates some tolerance with the help of the threshold ˛ (Kalai et al.
2012). Project scheduling problems would be a relevant application area for
these approaches; but establishing efficient solution algorithms for large scale
projects stays to be arduous and important.

4. The majority of project scheduling studies optimizes a single performance mea-
sure, such as minimization of the project completion time. However, schedules
that are developed with traditional algorithms may result in poor performances in
case of disruptions. Therefore, multi criteria optimization models that combine
a time or cost based objective with a robustness criterion are promising research
topics and are better adapted to the requirements of industry.

5. Modeling robust versions of multi project environments systems may constitute
a rewarding research field.



872 Ö. Hazır et al.

6. If robustness with respect to project completion time is taken as the fundamental
optimization criterion, there will be tendency to schedule activities at their
earliest start times (see experimental study and results of Tian and Demeule-
meester 2013 on road runner scheduling). On the other hand, late starts have the
advantage of decreasing WIP inventory costs, which is one of the key elements of
just-in-time (JIT) management philosophy. Moreover, in large capital-intensive
projects, cash flow management is vital and delaying cash outlays as much as
possible is usually preferred. Therefore, an optimal compromise between project
costs and robustness has to be achieved. Modeling this relationship between
robust scheduling and project costs is an interesting research topic.

7. Combining reactive and robust project scheduling improves project perfor-
mance. This combined approach is new in scheduling literature and referred
as “proactive-reactive scheduling”. This approach protects against disruptions
through the combination of a proactive scheduling and a reactive improvement
procedure. The baseline schedule could be created by the maximization of a
robustness measure so that it involves enough safety time to absorb anticipated
disruptions. Even though this baseline schedule will be insensitive to some
extent, all possible disruptions might not be anticipated. For this reason, it is
better to include reactive scheduling as the second protection mechanism to
prevent large performance deviations due to disruptions.

8. Specific project contract types should be further investigated and specific robust
planning models approaches for these projects could be developed. One example
is the BOT project types, which we have already mentioned. Recently, these types
of contracts have been widely signed especially in developing countries.

9. Finally, developing robust project scheduling as a model base of a DSS to assist
managers is crucial. Embedding these DSS tools in a commercial software pack-
age such as in the widely used Microsoft Project system would be of considerable
help to project managers. At this point, combining these scheduling algorithms
with efficient project control modules that define intervening strategies in case of
disruptions will be a promising application area. We refer to the study of Hazır
and Schmidt (2013) as an example to integrate scheduling and control functions
in multi-mode projects.

39.5 Conclusions

Robustness of solutions has been increasingly attracting the attention of researchers
and practitioners in operations research and related fields. In this chapter, we
examine and discuss application of robust optimization on multi-mode project
scheduling. We present mathematical models to generate schedules and measures
to assess their robustness. Models and extensions have practical meaning in the
sense that they could constitute the model basis of a decision support system on
this subject. Furthermore, discussion on research directions can facilitate identifying
research topics that have theoretical values or practical applications.
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Chapter 40
Robust Optimization
for the Resource-Constrained Project
Scheduling Problem with Duration Uncertainty

Christian Artigues, Roel Leus, and Fabrice Talla Nobibon

Abstract In this chapter, we examine the RCPSP for the case when there is
considerable uncertainty in the activity durations, to the extent that the decision
maker cannot with confidence associate probabilities with the possible outcomes
of a decision. Our modeling techniques stem from robust discrete optimization,
which is a theoretical framework that enables the decision maker to produce
solutions that will have a reasonably good objective value under any likely input
data scenario. We develop and implement a scenario-relaxation algorithm and a
scenario-relaxation-based heuristic. The first algorithm produces optimal solutions
but requires excessive running times even for medium-sized instances; the second
algorithm produces high-quality solutions for medium-sized instances and outper-
forms two benchmark heuristics.

Keywords Project scheduling • Robust optimization • RCPSP • Scenario
relaxation • Uncertain durations

40.1 Introduction

Project parameters such as activity durations and resource requirements are seldom
precisely known and usually subject to estimation errors. Uncertainty is the prime
cause of incomplete and unreliable data. This uncertainty can originate from a
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great number of potential sources. As some of the most frequently encountered
causes, we can cite activities that take more or less time than originally estimated,
machine breakdowns, materials that arrive behind schedule, worker absenteeism
and delays due to bad weather. Although the sources of variability in the project
environment are manifold, the main scheduling objectives are mostly related to the
activities’ starting (or ending) times, with the project makespan being the single
most studied objective, next to other ones such as weighted earliness-tardiness and
net present value of the project. This justifies a restriction to the study of uncertainty
in processing times only, although many different sources may be at the basis of this
variability. Ultimately, inability to compensate adequately for activity-time variation
is a prominent cause of project failure (see Hughes 1986).

Uncertainty in key project parameters is usually modeled in terms of probability
theory (Jørgensen 1999). Malcolm et al. seem to have been the first in 1959 to
recognize that randomness in the duration of a project’s individual activities can be
modeled by a stochastic variable. Subsequently, a large number of stochastic models
for evaluating project duration have been developed, see for instance Adlakha and
Kulkarni (1989), Elmaghraby (1977), Kulkarni and Adlakha (1986) and Ludwig
et al. (2001). All these studies neglect (renewable) resource constraints and assume
that proper resource allocation decisions have already been made at a higher
decision level. As coherently described by Stork (2001), an important new aspect
comes into play when moving from the deterministic to the stochastic case: what is
a solution? A solution should define for each possible ‘event’ that occurs during the
execution of the project an appropriate ‘action’, typically the start of new activities.
To make such decisions, one may want to exploit the information given by the
current state of the project. One schedule does not contain enough information to
make decisions in all possible execution scenarios of the project. Stork (in line with
Igelmund and Radermacher 1983, among others) uses the term ‘policy’ to refer to a
suitable set of decision rules that constitutes a solution. In the absence of resource
constraints, the minimum-makespan objective requires no real scheduling effort: it
is a dominant choice to start each activity as soon as its predecessors are completed.
We formally define scheduling policies and related concepts in Sect. 40.3; most
of the material on scheduling policies developed for stochastic scheduling can be
transferred to robust optimization without major alterations.

Decision theory distinguishes between risk, uncertainty and ignorance. In a risk
situation, the distribution of the outcomes under study is known with certainty.
This is to be contrasted with ‘unmeasurable’ uncertainty, in a decision-theoretic
context often simply termed ‘uncertainty’, in which it is not possible to attribute
probabilities to the possible outcomes of a decision (French 1988; Knight 1921;
Rosenhead et al. 1972). The case where even the possible outcomes are not known is
usually referred to as ‘unawareness,’ ‘ignorance’ or ‘incomplete state space’; Loch
et al. (2006) speak of ‘unk unks’ (unknown unknowns). Rosenhead et al. (1972)
note:

It may be possible to convert an uncertainty problem into a risk problem, for example by
the subjective estimation of probabilities, and used appropriately this can be a valuable
simplification. However, some aspects of the future are genuinely unknowable, even in
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the probability sense. To insert notional probabilities may make the decision maker more
comfortable, but that is not necessarily the objective in tackling a decision problem.

It is to be noted that the definitions of the concepts of risk, uncertainty
and ignorance are still not universally accepted and remain subject to ongoing
discussion—see, for instance, Walley (1991).

Our purpose is to propose models for the RCPSP that are useful when there is
considerable uncertainty in the activity durations, and when the decision maker does
not have sufficient confidence in the subjective probabilities that can be attributed to
the different duration scenarios. Our modeling techniques stem from robust discrete
optimization, which is a theoretical framework that enables the decision maker to
produce solutions that will have a reasonably good objective value under any likely
input data scenario (Aissi et al. 2009; Kasperski 2008; Kouvelis and Yu 1997).

In this chapter, we will (1) describe how robust optimization can be applied to
project scheduling under uncertainty; (2) develop a scenario-relaxation algorithm to
solve the optimization problem at hand; and (3) based on the scenario-relaxation
algorithm, develop a heuristic procedure that produces better results than two
benchmark heuristics for medium-sized instances.

The remainder of this chapter is organized as follows. First, we survey the
literature on decision making under uncertainty in Sect. 40.2, with a particular focus
on the objectives that are examined in the remainder of this chapter. Subsequently,
we give a number of definitions and a detailed problem statement in Sect. 40.3. The
evaluation of the adopted objective function is discussed in Sect. 40.4, followed by
a description of an optimization routine (Sect. 40.5) and of a heuristic procedure
(Sect. 40.6). The results of our computational experiments on larger datasets are
presented in Sect. 40.7. Finally, a summary and some conclusions are provided in
Sect. 40.8.

40.2 Decision Making Under Uncertainty

A number of criteria can be distinguished for decision making under uncertainty (for
an overview, see French 1988); some of the most important ones for a minimization
problem are (1) minimax: minimize the worst makespan realization that can occur
(Wald 1950), (2) minimin: minimize the best outcome that can occur, which is an
optimistic approach, as opposed to the pessimistic minimax (see Hurwicz 1951),
who also proposes to optimize a weighted average of minimin and minimax),
(3) minimax regret: minimize the largest possible difference in makespan between
the policy to be selected and the optimal makespan for a given realization (Savage
1951), and (4) minimize the objective in expectation. Within the context of this
chapter, the objectives (1) and (2) can be solved via the classic RCPSP, since the
duration realizations of the different activities will be assumed to be independent
of each other. The most-studied objective for the so-called stochastic RCPSP
(Stork 2001; Ballestín and Leus 2009; Ashtiani et al. 2011), where a probability
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distribution is known for the duration scenarios, is to select a policy that minimizes
the expected value (4) of the project makespan within a specific class of policies. In
the context of this chapter, however, probability distributions are not available and
so expected values cannot be computed.

Assavapokee et al. (2008a) state that, because of incomplete information about
the joint probability distribution of the uncertain parameters in the problem, decision
makers are often unable to search for decisions with the best long-run average
performance. Instead, they look for robust decisions, which perform well across all
possible input scenarios without attempting to assign a fixed probability distribution
to any ambiguous parameter. Daniels and Kouvelis (1995) motivate the choice of
regret-based objectives as follows:

A decision maker may be rightfully concerned not only with how a schedule’s performance
varies with the actual realizations of the task parameters, but also with how actual
performance compares with the optimal performance that could have been achieved if
perfect information had been available prior to scheduling. Such comparisons against
optimal performance focus the decision maker on opportunities to free short-term capacity
by reducing uncertainty and efficiently utilizing resources through scheduling, . . .

Comparable regret-based objectives have recently been examined for various
combinatorial optimization problems, see Assavapokee et al. (2008b,a), Averbakh
(2000), Averbakh and Lebedev (2004), Lebedev and Averbakh (2006), Montemanni
(2007), Talla Nobibon and Leus (2014a,b). Scheduling with regret-based objectives
is studied by Kouvelis et al. (2000), Kouvelis and Yu (1997), Daniels and Kouvelis
(1995) in a machine environment, with two objective functions: the absolute-
deviation robust scheduling problem and the relative-deviation robust scheduling
problem. The underlying deterministic machine problems studied in these refer-
ences are easy (solvable in polynomial time). Aissi et al. (2009) also point out that
they prefer to study robust versions only of problems that are solvable in polynomial
or pseudo-polynomial time, in the hope that they could preserve the complexity. The
RCPSP, however, is strongly NP-hard (Błażewicz et al. 1983).

Other approaches to robust optimization can be found in the literature; we briefly
discuss some of these in the following lines. An extensive survey is given by
Nikulin (2006). Ben-Tal and Nemirovski (1999, 2000, 2002) find robust solutions to
convex optimization problems with data uncertainty, when the data are drawn from
ellipsoids; they produce solutions such that the constraints are respected whatever
the realization of the data. A practical drawback of this approach is that it leads to
non-linear, although convex, models, which are computationally rather demanding.
Bertsimas and Sim (2003, 2004) propose an approach to address data uncertainty
for discrete optimization and network-flow problems that allows the degree of
conservatism of the solution to be controlled: protection is provided for the case
where only a pre-specified number of the input coefficients changes from its base
value, which allows to reduce the ‘price of robustness’ when the protection required
is not too high. Finally, Mulvey et al. (1995) present an approach that integrates
goal-programming formulations with a scenario-based description of the problem
data; they distinguish between solutions that remain close to optimal and those that
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remain ‘almost feasible’ and use the terms ‘solution robust’ and ‘model robust,’
respectively.

40.3 Definitions and Problem Statement

40.3.1 Project Scheduling

We examine the scheduling of a single project. The project consists of a set
V D f0; 1; : : : ; nC 1g of activities that need to be performed. We associate with
each activity i 2 V a set ˙i � R�0 containing the possible realizations of the
duration of activity i . This set ˙i can be a discrete set fpi1; pi2; pi3; : : : ; pi j˙i jg
or an interval Œpmin

i Ipmax
i �; in the first case, we also write pmin

i 	 min˙i pik and
pmax
i 	 max˙i pik. The (dummy) activities 0 and nC1 have zero duration (meaning

that P0 D PnC1 D f0g). We use vector � D .p0; p1; : : : ; pnC1/ with pi 2 ˙i for all
i 2 V , to represent one particular scenario of the durations (also called sample or
realization). The set containing all scenarios is denoted by˙ D P0�P1�: : :�PnC1:
the possible durations for one activity are not dependent on the values chosen for
the other activities.

When each j˙i j D 1, we are in the case of the deterministic RCPSP. Each
duration is a constant in this case, and so this corresponds with one scenario
� D .p0; : : : ; pnC1/. A solution to the RCPSP is a schedule S , i.e., an .nC2/-vector
of starting times .S0; S1; : : : ; SnC1/ with Si � 0 for all i 2 V . In most projects,
some of the activities can only be started once other activities are completed. Such
precedence relationships between the activities are represented by a binary relation
E � V �V . We assume thatE is a (strict) partial order on V , i.e., an irreflexive and
transitive relation. The activities 0 and n C 1 represent the start and the end of the
project, respectively, meaning that 8i 2 V nf0g W .0; i/ 2 E , and 8i 2 V nf.nC1/g W
.i; nC1/ 2 E , or in other words, 0 and nC1 are predecessor, respectively successor,
of all other activities. A so-called precedence network .V;E/ is inferred, where
the nodes correspond to activities and arcs represent precedence relations. For a
binary relation E 0 on V , we let TE D T .E 0/ denote its transitive closure, defined
as the minimal transitive relation on V that contains E 0. Since E is transitive and
irreflexive, .V;E/ does not contain a cycle, and all precedence networks .V;E 0/
with the same transitive closure .V;TE/ represent the same scheduling instance.
The schedule S is said to be precedence feasible if Si C pi � sj for all .i; j / 2 E .
Without loss of generality, we usually set S0 D 0.

The project activities are to be scheduled on a set R of renewable resource
types with availability Rk for each k 2 R (e.g., groups of equivalent workers or
machines). Each activity i 2 V occupies a fixed number rik 2 N units of each
resource type k during its execution. The activities 0 and nC1 do not use resources:
r0k D rnC1;k D 0 for all k 2 R. A schedule S is said to be resource feasible if,
at any time t and for each resource type k 2 R, it holds that

P
i2E 0.S;t/ rik � Rk ,
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Fig. 40.1 Example project network and activity data
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Fig. 40.2 A feasible schedule for the example project under scenario �1

where the active set E 0.S; t/ D fi 2 V jSi � t < Si C pi g contains the activities
in V nf0; nC 1g that are in progress at time t . The objective of the RCPSP is to find
a precedence-feasible and resource-feasible schedule S that minimizes the project
makespan SnC1.

In this chapter, we examine the following problem: at the start of the project,
the decision maker does not know which activity duration scenario will occur, and
yet a number of sequencing decisions need to be made already (at least, he/she
needs to decide which activities to release for execution at the start of the project
horizon). We assume that an activity’s duration realization is known only when the
activity finishes (although this may implicitly be discovered earlier in the discrete
case, namely as soon as the last-but-one scenario is exceeded). Sequencing decisions
take the form of scheduling policies, which are the subject of the next subsection.

Figure 40.1a represents a precedence network for a small project with n D 5

non-dummy activities, so V D f0; 1; : : : ; 6g (the dummy nodes 0 and 6 are omitted
for brevity). In our example project, the resource availability of a single resource
type (K D jRj D 1) is R1 D 3 units. All remaining data are provided in
Fig. 40.1b. The schedule graphically represented in Fig. 40.2 is a feasible schedule
for this project when the activity durations are the components of the vector
�1 D .0; 2; 2; 2; 1; 2; 0/.
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40.3.2 Scheduling Policies

The execution of a project with uncertain activity durations is a dynamic decision
process. A solution is a policy, which defines actions at decision times. Decision
times are typically the start of the project and the completion times of activities. An
action can entail the start of a set of activities that is both precedence feasible and
resource feasible. A schedule is thus constructed gradually through time. A decision
at time t can only use information that has become available before or at time t ; this
requirement is often referred to as the non-anticipativity constraint. As soon as all
activities are completed, the activity durations are known, yielding a realization � .

A set of activities F � V is a forbidden set of a precedence relation E 0 if it is
an antichain of E 0 (a stable set in graph .V;E 0/) and if

P
i2F rik > Rk for at least

one k 2 R: these sets can give rise to resource conflicts during project execution.
A subset-minimal forbidden set is called a minimal forbidden set or mfs (see for
instance Stork and Uetz 2005). The set of mfss for precedence relationE 0 is denoted
by F .E 0/. For the example project presented in the previous subsection, we have
E D f.2; 3/g and F .E/ D ff1; 2; 5g; f1; 3; 4g; f2; 4g; f3; 4; 5gg. Several scheduling
policies for projects with stochastic activity durations were presented by Igelmund
and Radermacher (1983) based on the concept of forbidden sets. In this chapter,
we study the set of earliest-start policies (ES-policies), which can be applied also
when the probability distributions are not known. An ES-policy is characterized by
a set of activity pairs X � .V � V / n E , such that for the extended set of activity
pairs E [X it holds that F .T .E [X// D ;. The implication is that we can ignore
the resource constraints if we respect the precedence constraints corresponding with
E [ X ; in line with Balas (1971), we call X a selection. The policy is feasible if
.V;E [ X/ is still acyclic. A selection X of activity pairs that leads to a feasible
ES-policy is called a sufficient set or sufficient selection.

An ES-policy parameterized by a sufficient selection X can be interpreted
(Igelmund and Radermacher 1983; Stork 2001) as a function R

nC2
�0 ! R

nC2
�0 W � 7!

S.X; �/ that maps given samples � of activity durations to feasible schedules S .
Let .V;E [ X; �/ denote the weighted graph where each arc .j; k/ 2 E [ X is
valued by pj . The starting time Si .X; �/ is the length of a longest path from 0 to
i in .V;E [ X; �/, which can be determined recursively (via standard longest-path
calculations in acyclic graphs). The optimal makespan S�

nC1.�/ for the RCPSP with
durations � equals

S�
nC1.�/ D min

X2X SnC1.X; �/ (40.1)

where X is the set containing all sufficient selections. For known durations, this
model is an extension of the disjunctive-graph representation of the classical job-
shop scheduling problem (Roy and Sussmann 1964), and has been known for quite
some time already (see, for instance Balas 1971).

In what follows, we will use transshipment networks that represent the flow of
resource units between activities; these networks are subsequently referred to as
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(resource) flow networks. Such networks have recently been proposed by various
sources (Artigues and Roubellat 2000; Bowers 1995; Leus and Herroelen 2004;
Naegler and Schoenherr 1989; Neumann et al. 2003). In this chapter, the word flow
usually refers to a resource flow, unless noted otherwise. A flow 	 assigns to each
triple .i; j; k/ 2 V � V � R a value 	.i; j; k/ 	 	kij 2 N, representing the number
of resource units of type k that are transferred from the end of activity i to the start
of activity j . These values must satisfy the following constraints, which are flow-
conservation constraints as well as lower and upper bounds on the flow through
intermediate nodes (not the start or end node):

X

j2V Wj¤i
	kji D

X

j2V Wj¤i
	kij D rik .i 2 V n f0; nC 1gI k 2 R/

For each resource type k 2 R, Rk resource units are sent into the network from the
start node and collected at the end node:

X

j2V Wj¤0
	k0j D

X

j2V Wj¤.nC1/
	kj.nC1/ D Rk .k 2 R/

We are most interested in the flow-carrying arcs that are not in E , which do not
coincide with technological precedence constraints; these are gathered in the set
C.	/ D f.i; j / 2 V � V W 	.i; j; k/ > 0 for at least one k 2 Rg n E . A flow 	

entails a detailed resource allocation decision for the individual units of each
resource type, and induces additional precedence constraints via the elements of
C.	/ under the condition of invariant resource allocation (for a discussion, see
Bowers 1995). We say that a flow 	 is feasible when .V;E [ C.	// is acyclic, in
which case the project can be implemented with the resource-allocation decisions
inherent in 	.

It is obvious that for a feasible flow 	, X D C.	/ is a sufficient set; conversely,
if the selection X defines a feasible ES-policy, then a feasible flow 	 exists with
E [ C.	/ � T .E [ X/. A further discussion of the equivalence between ES-
policies and resource flows can be found in Leus and Herroelen (2004) and Leus
(2011a,b).

For the example project, the schedule depicted in Fig. 40.2 does not provide
information on the detailed allocation of the activities to the individual resources.
Two possible allocations corresponding with the same schedule are depicted in
Fig. 40.3a, b, where each horizontal band corresponds with a resource unit (e.g.,
one machine); the resource units are denoted by ui (i D 1; 2; 3). The resource flow
networks corresponding with Fig. 40.3a,b are depicted in Fig. 40.4a,b. The dummy
activities 0 and 6 function as source and sink for the three resource units of the
single resource type: the three units are dispatched into the network from activity 0
and gathered at node 6. Obviously, if more than one resource type is considered
(K > 1), there will be a separate flow network for each resource type.
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Fig. 40.3 Two possible resource allocations for the example project; the durations correspond
with scenario �1. (a) Allocation 1. (b) Allocation 2
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Fig. 40.4 Flow networks corresponding with the resource allocations in Fig. 40.3a,b. Flow
quantities are indicated next to each arc. (a) Flow 	1. (b) Flow 	2

In the flow networks, some resource units are transported between activities that
are not originally precedence-related (e.g., from activity 1 to 4 in case of 	1). If
we decide to maintain the same resource allocation throughout the execution of
the project then arcs such as .1; 4/ in the flow network induce additional ‘hard’
precedence constraints. In fact, once a decision has been made regarding the
allocation of resources and as long as all (original and extra) precedence constraints
are respected, we can disregard resource constraints altogether and still produce
a resource-feasible schedule. The schedule in Fig. 40.2, for instance, is the result
of starting all activities as early as possible subject to the original precedence
constraints augmented with the extra arcs from either Fig. 40.4a or b.

40.3.3 Problem Statement

In this chapter, we examine the minimax absolute-regret robust resource-constrained
project scheduling problem or AR-RCPSP. The objective of the AR-RCPSP is to
find an ES-policy that minimizes the maximum absolute regret over all scenarios.
The absolute regret 
.X; �/ for a sufficient selection X and duration vector � is
the difference between the makespan SnC1.X; �/ obtained by selection X and the
optimal makespan S�

nC1.�/ for � , or
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.X; �/ D SnC1.X; �/ � S�
nC1.�/

D SnC1.X; �/ � min
Y2X SnC1.Y; �/

D max
Y2X fSnC1.X; �/ � SnC1.Y; �/g

If we define the regret of a policy X relative to a policy Y as 
.X; Y; �/ D
SnC1.X; �/ � SnC1.Y; �/ then 
.X; �/ D maxY2X 
.X; Y; �/.

The maximum regret 
max.X/ for a given sufficient selection X is


max.X/ D max
�2˙ 
.X; �/

D max
�2˙;Y2X fSnC1.X; �/ � SnC1.Y; �/g D max

�2˙;Y 2X 
.X; Y; �/

The optimization problem that we wish to solve can now be stated as follows:

.AR � RCPSP/ 
� D min
X2X 
max.X/ D min

X2X max
�2˙ 
.X; �/

D min
X2X max

�2˙;Y2X 
.X; Y; �/

A problem closely related to AR-RCPSP is the minimax relative-regret robust
resource-constrained project scheduling problem RR-RCPSP. For given X and � ,
the relative regret Q
.X; �/ is given by:

Q
.X; �/ D SnC1.X; �/ � S�
nC1.�/

S�
nC1.�/

D max
Y2X

SnC1.X; �/
SnC1.Y; �/

� 1 D max
Y2X Q
.X; Y; �/

where the last equality serves as a definition for Q
.�; �; �/. The maximum relative
regret can be written as follows:

Q
max.X/ D max
�2˙;Y2X Q
.X; Y; �/

The RR-RCPSP then amounts to the following problem:

(RR-RCPSP) Q
� D min
X2X Q
max.X/ D min

X2X max
�2˙ Q
.X; �/

40.3.4 Objective-Function Evaluation

The RCPSP, which has known durations � , is strongly NP-hard, and RCPSP
reduces to the evaluation of the regret for a known selectionX and duration vector � :

.X; �/ is the difference between SnC1.X; �/ and S�

nC1.�/, where the first term can
be obtained by a longest-path computation in .V;E [ X; �/ and the second term is
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the optimal solution to the RCPSP instance. Consequently, once we know 
.X; �/,
we also know S�

nC1.�/. Hence, since the RCPSP is NP-hard, computing 
.X; �/
is also NP-hard. A similar reasoning shows the NP-hardness of evaluating the
relative regret.

Since computing the regret for a fixed ES-policy and duration vector is itself
NP-hard, the computation of the maximum regret is not easy either. More
precisely, evaluating the maximum absolute regret 
max.X/ as well as the maximum
relative Q
max.X/ is NP-hard for a given ES-policy defined by X : if the set of
possible durations ˙i is a singleton for each activity i 2 V then j˙ j D 1 and
the evaluation of 
max.X/, respectively Q
max.X/, is equivalent to the evaluation
of 
.X; ��/, respectively Q
.X; ��/, where ˙ D f��g. In project scheduling,
when activity durations are decision variables, one deals with a so-called multi-
mode scheduling problem. The problem of evaluating the maximum regret of a
given ES-policy amounts to a multi-mode resource-constrained project scheduling
problem.

By similar arguments, we also see that the computation of 
� and Q
� is hard:
when j˙ j D 1, minimizing the maximum regret amounts to finding a policyX with
critical-path length of the extended network equal to the minimal RCPSP makespan,
which is equivalent to solving the RCPSP.

40.3.5 Extreme Duration Scenarios

We will say that the following two duration scenarios are extreme scenarios: �min D
.pmin

1 ; : : : ; pmin
n / and �max D .pmax

1 ; : : : ; pmax
n /. According to Averbakh (2005), for

the category of subset-type combinatorial optimization problems, the maximum
regret can always be attained at an extreme scenario, and this for both the absolute
and the relative maximum regret. In this section, we show that this is also the case
for 
max.X/ but not for Q
max.X/.

Theorem 40.1. There is always an extreme duration scenario in which the maxi-
mum absolute regret of an ES-policy X is reached.

Proof. For a duration vector � D .p1; : : : ; pn/, let V 0.�/ denote the set of activities
with a duration that is strictly between its extreme values, so V 0.�/ D fi 2 V j
pmin
i < pi < p

max
i g. We let �� D .p�

1 ; : : : ; p
�
n / and Y � represent a duration scenario

and an ES-policy that achieve the maximum regret, i.e.,


.X; Y �; ��/ D SnC1.X; ��/ � SnC1.Y �; ��/ D 
max.X/

Suppose that �� is not an extreme scenario (i.e., jE.��/j � 1) and that jE.��/j
is minimal. We choose an activity j 2 E.��/, so pmin

j < p�
j < pmax

j . Recall
that SnC1.X; ��/ is equal to the length of `X;�� , which denotes the longest path
in .V;E [ X; ��/, while SnC1.Y �; ��/ is the length of `Y �;�� , the longest path
in .V;E [ Y �; ��/. Changing the duration of j from p�

j to a different value in
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Pj preserves the feasibility of ES-policies X and Y �. Let Y 0 denote an ES-policy
of minimal makespan for a modified duration vector � 0 D .p0

1; : : : ; p
0
n/, we have

necessarily

SnC1.Y 0; � 0/ � SnC1.Y �; � 0/ (40.2)

The following four possibilities are mutually exclusive and jointly exhaustive:

1. If j 2 `X;�� and j 2 `Y �;�� , let � 0 be such that p0
i D p�

i for i ¤ j and
p0
j D pmax

j . `X;�� and `Y �;�� remain the longest paths in the respective graphs
with new lengths SnC1.X; � 0/ D SnC1.X; ��/Cpmax

j �p�
j and SnC1.Y �; � 0/ D

SnC1.Y �; ��/C pmax
j � p�

j .
2. If j … `X;�� and j … `Y �;�� , let � 0 be such that p0

i D p�
i for i ¤ j and

p0
j D pmin

j . `X;�� and `Y �;�� remain the longest paths with unchanged lengths
SnC1.X; � 0/ D SnC1.X; ��/ and SnC1.Y �; � 0/ D SnC1.Y �; ��/.

3. If j 2 `X;�� and j … `Y �;�� , let � 0 be such that p0
i D p�

i for i ¤ j and
p0
j D pmax

j . This keeps `X;�� as the longest path in .V;E[X; � 0/ and its length is
increased, so SnC1.X; � 0/ D SnC1.X; ��/Cpmax

j �p�
j . If a path in .V;E[Y �; � 0/

becomes longer than SnC1.Y �; ��/, its length increases by at most pmax
j � p�

j .
Hence we have SnC1.Y �; � 0/ � SnC1.Y �; ��/C pmax

j � p�
j .

4. If j 62 `X;�� and j 2 `Y �;�� , we let � 0 be such that p0
i D p�

i for i ¤ j and
p0
j D pmin

j . This keeps `X;�� as the longest path in .V;E [ X; � 0/ and its length
is unchanged with SnC1.X; � 0/ D SnC1.X; ��/. The length of the longest path
in .V;E [ Y �; � 0/ decreases (by at most p�

j � pmin
j time units), so we have

SnC1.Y �; � 0/ � SnC1.Y �; ��/.
For each of the four listed cases together with expression (40.2), the new regret
verifies SnC1.X; � 0/ � SnC1.Y 0; � 0/ � SnC1.X; ��/ � SnC1.Y �; � 0/. Hence, the
value of pj can be changed to pmin

j or pmax
j without decreasing 
.X; Y �; ��/, which

reduces jE.��/j and contradicts the hypothesis of minimality. In conclusion, �� and
Y � always exist such that E.��/ D ;. ut

Unfortunately, the same property does not hold for the relative regret. Consider
a two-activity example with P1 D f2; 3; 6g and P2 D f1; 3; 5g, without precedence
constraints and with a resource usage such that the two activities can be scheduled
in parallel. For any of the nine scenarios, the optimal makespan is maxfp1; p2g.
Suppose we want to evaluate the maximum regret of ES-policy X1 D f.1; 2/g. For
any scenario � D .p1; p2/ (we omit the dummy activities, for brevity), we have
SnC1.X1; �/ D p1Cp2. The relative regret of ES-policyX1 for duration scenario �
is equal to

Q
.X1; �/ D p1 C p2

maxfp1; p2g � 1 D minfp1; p2g
maxfp1; p2g

It is easily verified that the unique maximizer of this value is the duration scenario
.3; 3/, which is not an extreme scenario. For this reason as well as due to the non-
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linearity inherent in the relative regret, we will focus only on the absolute regret in
the remainder of this chapter. Note that the absolute regret 
.X1; �/ of policy X1 is
equal to p1Cp2�maxfp1; p2g D minfp1; p2g, which is maximized by the extreme
scenario with p1 D 6 and p2 D 5.

40.3.6 Example Project

For the example project presented in Sect. 40.3.1, define X1 D C.	1/ and X2 D
C.	2/, with 	1 and 	2 as described in Fig. 40.4. The regret of X1 is maximized for
duration vector �2 D .p01; p13; p21; p31; p42; p52; p61/ D .0; 8; 2; 2; 3; 2; 0/, with
an optimal selection for this scenario being Y D f.2; 5/; .4; 2/g, which isolates
activity 1 on a separate resource unit because this activity may have a high duration
(namely 8); the regret in this case is equal to the highest possible duration of
activities 4 and 5, which are successors of activity 1 according to X1. We have

max.X1/ D 
.X1; �

2/ D s6.X1; �
2/ � s6.Y; �

2/ D 13 � 8 D 5. Similarly, the
maximum regret of X2 equals 2, which is the duration of activity 3 (which has only
one possible value).

The maximum regret 
max.�/ is minimized by both the policies Y and X2 and
equals 2 (so 
� D 2). A maximum-regret scenario for Y is �3 D .0; 1; 3; 2; 3; 1; 0/,
with s6.Y; �3/ D 8 while s6.Z; �3/ D 6, where Z D f.1; 3/; .2; 1/; .2; 4/; .5; 4/g.
The value of 
max.Z/, on the other hand, is 5.

40.4 Evaluation of the Maximum Regret of an ES-Policy

The absolute maximum regret of an ES-policyX is given by:


max.X/ D max
�2˙;Y2X fSnC1.X; �/ � SnC1.Y; �/g

D max
�2˙

�

max
c2C .X;�/ l.c/� min

Y2X max
c2C .Y;�/ l.c/

�

where C .Z; �/ denotes the set of all paths from 0 to .n C 1/ in .V;E [ Z; �/

for a selection Z and l.c/ is the length of the path c in the appropriate graph.
The determination of each of these longest-path lengths can be cast into a linear
formulation. Since the path lengths appear in the objective function with a positive
sign for graph .V;E [ X; �/ and with a negative sign for .V;E [ Y; �/, we opt
for the ‘event-oriented’ formulation for .V;E [ X; �/ and for the ‘flow-oriented’
formulation for .V;E [ Y; �/; see Wiest and Levy (1969) for more details. This
leads to
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max.X/ D max
�2˙

8
<

:

0

@
X

.i;j /2E[X
pi'ij

1

A � S�.�/

9
=

;

s.t.

X

.i;j /2E[X
'ij D

X

.j;i/2E[X
'ji .i 2 V n f0; nC 1g/

X

.0;j /2E[X
'0j D

X

.j;nC1/2E[X
'j;nC1 D 1

'ij � 0 ..i; j / 2 E [ X/

S�.�/ D min
Y2X SnC1

s.t. Sj � Si C pi
S0 D 0

..i; j / 2 E [ Y /

By replacing the longest-path lengths by their linear-programming expressions, the
maximum regret 
max.X/ of a given selection X is the optimal objective value of
a bi-level mathematical program with, in our case, an RCPSP instance at the lower
level. The variables 'ij search for the longest path in .V;E [ X/ by routing a unit
flow through the network. An integration of the two levels of optimization is easily
achieved:


max.X/ D max
�2˙

8
<

:

0

@
X

.i;j /2E[X
pi'ij

1

A � SnC1

9
=

;
(40.3)

s.t.

X

.i;j /2E[X
'ij D

X

.j;i/2E[X
'ji .i 2 V n f0; nC 1g/ (40.4)

X

.0;j /2E[X
'0j D

X

.j;nC1/2E[X
'j;nC1 D 1 (40.5)

'ij � 0 ..i; j / 2 E [ X/ (40.6)

Sj � Si C pi ..i; j / 2 E [ Y / (40.7)

S0 D 0 (40.8)

Y 2 X (40.9)

We neglect for a moment the variable duration vector � and focus only on the
RCPSP formulation with variable Y (cf. Eq. 40.1). The RCPSP formulation can be
linearized using a resource-flow formulation, which has the benefit that it contains
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only a polynomial number of constraints and that it does not require the explicit
determination of all minimal forbidden sets (Demassey 2008). In particular, we add
the following constraints:

X

j2V Wj¤i
	kji D

X

j2V Wj¤i
	kij D rik .i 2 V n f0; nC 1gI k 2 R/ (40.10)

X

j2V Wj¤0
	0jk D

X

j2V Wj¤.nC1/
	j;.nC1/;k D Rk .k 2 R/ (40.11)

	kij � 0 ..i; j / 2 V � V I 8k 2 R/ (40.12)

The sufficient selection Y in the optimization problem is replaced by the set C.	/,
with 	 a flow satisfying the above constraints (40.10)–(40.12) as well as acyclicity
of .V;E [ C.	//. We replace the constraints (40.7) and (40.9) by the following:

0 � 	kij � Myij ..i; j / 2 V � V I k 2 R/ (40.13)

Sj � Si C pi �M.1� yij/ ..i; j / 2 V � V W i ¤ j / (40.14)

yij D 1 ..i; j / 2 E/ (40.15)

yij 2 f0; 1g ..i; j / 2 V � V / (40.16)

The constraint sets (40.13) and (40.14) both contain ‘big-M’-type constraints. The
large number M can be chosen more specifically for each particular value of the
indices i; j and k, a convenient choice is minfrik; rjkg in (40.13) for i; j … f0; nC1g,
with replacement of rik by Rk in this min-expression for i D 0; n C 1. In (40.14),
M can be an upper bound on the project makespan with durations �max. When
combined with the constraint sets (40.13)–(40.16), acyclicity of .V;E [ C.	// is
not an issue when the activity durations are non-zero.

Reverting to the optimization over ˙ in (40.3), we should remove the non-
linearity in the first term of (40.3) caused by the multiplication of pi and 'ij in
order to obtain a linear model. According to Theorem 40.1, we need only consider
two values pmin

i and pmax
i for pi , with pmin

i D pmax
i D 0 for i D 0; n C 1 (these

zero values can be substituted immediately). We introduce n binary variables ai
(i D 1; : : : ; n), where ai D 0 means that duration pmin

i is selected for activity i ,
whereas ai D 1 indicates that pi D pmax

i . In Eq. (40.14), we replace pi by
.1 � ai /p

min
i C aip

max
i . The non-linear terms pi'ij in (40.3) are replaced by

pmin
i 'min

ij C pmax
i 'max

ij and each occurrence of 'ij in the constraints is replaced by
'min

ij C 'max
ij , in which 'min

ij fulfills the role of 'ij when ai D 0 and 'max
ij functions as

'ij in the cases where ai D 1. This is achieved by adding the following two equation
sets to the formulation:
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X

.i;j /2E[X
'max

ij � ai .i 2 V n f0; nC 1g/ (40.17)

X

.i;j /2E[X
'min

ij � 1 � ai .i 2 V n f0; nC 1g/ (40.18)

Summarizing the foregoing, we find that the determination of the maximum regret
of an ES-policyX reduces to an instance of a multi-mode RCPSP with a composite
objective function consisting in the maximization of the difference between the
length of the longest path in .V;E[X/ and the optimal makespan SnC1. We call this
formulation integrated, because it simultaneously finds an optimal duration vector
(an optimal scenario) and an optimal selection for the scenario (Y in the above). The
full integrated formulation is included in the Appendix of this chapter.

As an alternative to this integrated formulation, we also propose a scenario-based
formulation, in which some intermediate results are to be computed beforehand. We
have


max.X/ D max
�2˙

˚
SnC1.X; �/ � S�

nC1.�/
�

D min 
 (40.19)

s.t.


 � SnC1.X; �/ � S�
nC1.�/ .� 2 ˙/ (40.20)

If the longest-path length SnC1.X; �/ and the RCPSP solution S�
nC1.�/ are known

for each scenario � then (40.19)–(40.20) is a linear formulation.

40.5 Absolute Minimax-Regret Optimization

In this section, we present a procedure for finding an optimal solution to the
problem AR-RCPSP, which was defined in Sect. 40.3.3. The procedure is based
on an extension of the scenario-based formulation for evaluation of a given policy
(see Sect. 40.4). In principle, we could also extend the integrated formulation. This,
however, would lead to a rather cumbersome model, and the main interest of the
scenario-based solution procedure lies in its modifications that will lead to an
effective heuristic for the AR-RCPSP, as will be set out in Sect. 40.6.

When we plug the scenario-based model (40.19)–(40.20) into the definition of
the absolute-regret objective, we obtain the following bi-level formulation of AR-
RCPSP:
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� D min
X2X 
max.X/

D min
X2X

8
<

:

min 

s.t.

 � SnC1.X; �/ � S�

nC1.�/ .� 2 ˙/

9
=

;

Again, we can assume that ˙ contains only the extreme duration scenarios. The
two levels of optimization are easily integrated and we resort to an event-based
formulation for the longest-path computations in the graph .V;E [ X/. Let ˙ D
f�1; : : : ; � j˙ jg. This leads to


� D min 
 (40.21)

s.t.


 � ShnC1 � S�
nC1.�h/ .h D 1; : : : ; j˙ j/ (40.22)

Shj � Shi C phi �M.1 � xij/ ..i; j / 2 V � V W i ¤ j Ih D 1; : : : ; j˙ j/
(40.23)

Shi � 0 .i 2 V Ih D 1; : : : ; j˙ j/ (40.24)

together with the following scenario-independent constraints, which are similar
to (40.10)–(40.13) and (40.15)–(40.16) (substituting xij for yij):

X

j2V Wj¤i
	kji D

X

j2V Wj¤i
	kij D rik .i 2 V n f0; nC 1gI k 2 R/ (40.25)

X

j2V Wj¤0
	0jk D

X

j2V Wj¤.nC1/
	j;nC1;k D Rk .k 2 R/ (40.26)

	kij � 0 ..i; j / 2 V � V I k 2 R/ (40.27)

0 � 	kij � Mxij ..i; j / 2 V � V I k 2 R/ (40.28)

xij D 1 ..i; j / 2 E/ (40.29)

xij 2 f0; 1g ..i; j / 2 V � V / (40.30)

In the worst case, we have j˙ j D 2n. Hence, the MILP (mixed-integer linear
program) includes an exponential number of variables Shi and constraints (40.22)–
(40.24). Furthermore, for each duration vector �h the optimal RCPSP solution
S�
nC1.�h/ has to be computed. We therefore investigate the possibility of solving

a relaxed version of the foregoing formulation by only incorporating the constraints
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corresponding with a subset Ȯ � ˙ , iteratively adding scenarios until it can be
guaranteed that the solution obtained for Ȯ has the same objective as the full model
with ˙ . Following Assavapokee et al. (2008a), we will refer to this approach as
scenario relaxation. We call the resulting MILP the master problem, by analogy
with Benders’ decomposition, with objective function value 
�. Ȯ / for set Ȯ .
Clearly, 
�. Ȯ / is a lower bound on 
� 	 
�.˙/. The variables Shi D 0 for
scenarios �h 2 ˙ n Ȯ can be removed from the model without any influence.

In Assavapokee et al. (2008a), a scenario-relaxation method is proposed to solve
a general absolute min-max regret optimization problem with two-stage variables.
The first stage-variables are binary “choice” variables, corresponding to our 	 and
x representing the ES-policy. The second-stage variables are continuous “recourse”
variables, in our case the variables Sh. To overcome the implementation problems
caused by an exponential number of constraints, Assavapokee et al. (2008a) propose
a three-stage algorithm, based on the iterative solution of the model on a restricted
scenario set. The first stage consists in solving the master problem with a restricted
scenario set so as to obtain a lower bound and the corresponding values for the
first-stage decision variables. For a general optimization problem, these values can
be infeasible for some scenarios excluded from the scenario set. For this reason,
the second stage consists in finding such ‘infeasible’ scenarios, which are added to
the scenario set and the algorithm returns to the first stage. If no infeasibilities are
found, the algorithm proceeds to the third stage, which aims to identify a scenario
in ˙ n Ȯ achieving the largest regret for the candidate robust solution x and 	. In
this chapter, each ES-policy produced by the master problem will be feasible for all
scenarios: the feasibility of an ES-policy is independent of the activity durations.
A comparable iterative solution approach for an inventory model has recently been
examined by Bienstock and Özbay (2008).

We propose the framework described by Algorithm 40.1, in which LB and UB
constitute a lower and upper bound on 
�, which are stepwise tightened over
the course of the algorithm. Since an extreme duration vector is generated at
each iteration, the solution framework converges within at most 2n iterations. The
restricted set of scenarios is updated at each iteration; we consider Ȯ

q at iteration q.
At initialisation (Step 1), j Ȯ

1j D 1 (although any number is possible). Bienstock
and Özbay (2008) call the master problem (Step 2) the ‘decision maker’s problem,’
where the decision maker makes a first-stage decision (the ES-selection) while
accounting for only a subset of the scenarios, and Step 3 is the ‘adversarial problem,’
in which the worst scenario is generated for the candidate solution from Step 2, to
verify its objective function against the full set of scenarios. Put differently, Step 3
looks for a scenario �h that is not currently in Ȯ and for which constraint (40.22)
does not hold.

Computationally, the multi-mode-like instances in Step 3 of Algorithm 40.1 turn
out to be especially hard. We can slightly modify the procedure by noting that at
Step 3, it is not necessary to solve the maximum-regret evaluation to optimality. Let
z represent the objective function of the subproblem; the correct functioning of the
algorithm only requires that a duration vector �qC1 be found such that z � LB C 1.
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Algorithm 40.1 scenario relaxation for AR-RCPSP
1: (initialisation)

Consider duration-vector set Ȯ
1 containing a single duration vector �1. Set q WD 1, LB WD 0

and UB WD C1. Compute S�

nC1.�
1/.

2: (master problem)
Solve the restricted master problem (40.21)–(40.30) to obtain LB D 
�. Ȯ

q/ and the
corresponding ES-policy Xq . If LB D UB then stop.

3: (maximum-regret computation)
Evaluate the maximum regret 
max.Xq/ of policy Xq using the integrated formulation of
Sect. 40.4 and obtain the corresponding worst-case duration vector �qC1 and the associated
optimal RCPSP makespan S�

nC1.�
qC1/. Set UB WD minf
max.Xq/I UBg.

4: (optimality check)
If LB D UB then stop; else set q WD q C 1, Ȯ

q WD Ȯ
q�1 [ f�qg and goto Step 2.

If one such duration vector exists then it can be included in the master problem,
otherwise LB is optimal. To that purpose, we replace the objective function in the
integrated formulation of Sect. 40.4 by

f �.X/ D minf

and we add the constraints

z C f � LB C 1

z �
0

@
X

.i;j /2E[X
pmin
i 'min

ij C pmax
i 'max

ij

1

A � SnC1

z; f � 0

The resulting model has a solution f �.X/ D 0 if and only if there exists z � LBC1.
The drawback of this approach is that for the value S�

nC1 corresponding to a duration
vector �� output by this new subproblem, there is no guarantee that it equals the
optimal makespan. Consequently, we additionally need to solve a standard RCPSP
instance to obtain S�

nC1.��/ (in Step 3) before adding �� to Ȯ (in Step 4). We refer
to the resulting subproblem as scenario generation with bounded contribution.

40.6 A Heuristic for AR-RCPSP

Our computational results (see Sect. 40.7) indicate that the execution of the standard
scenario-relaxation procedure (Algorithm 40.1) until convergence may take an
inordinate amount of time even for medium-sized instances. We will therefore
proceed with the development of heuristic solution procedures in this section, with
the framework provided by Algorithm 40.1 as a basis. A first obvious such heuristic
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Algorithm 40.2 Heuristic framework for AR-RCPSP
1: (initialisation)

Consider duration-vector set Ȯ
1 containing a single duration vector �1, set q WD 1 and

compute Os�

nC1.�
1/.

2: (generate new solution)
Use Os�

nC1.�
q/ and Ȯ

q to produce a new approximate solution (ES-policy) Xq .
3: (generate new duration vectors)

Generate one or more new duration vectors �qC1 that represent scenarios under which policy
Xq performs badly, together with an RCPSP upper bound Os�

nC1.�
qC1/.

4: (iterate)
Set q WD q C 1, Ȯ

q WD Ȯ
q�1 [ f�qg and goto Step 2.

is the variant of Algorithm 40.1 that is not run until the stopping criterion LB D UB
is met, but rather until LB and UB are ‘reasonably close’ to each other, for instance
when .UB � LB/=LB < � for a fixed (small) value of �.

However, even this truncated run of Algorithm 40.1 will sometimes require very
high running times, mainly due to the computational effort needed for performing
Steps 2 and 3. We therefore propose a different approach, still following the same
overall algorithmic structure but with significant efficiency gains also in each
execution of both Steps 2 and 3; the main steps are presented as Algorithm 40.2.
The essential drawback is that we again abandon the guarantee of finding an optimal
solution: a number of approximations are inserted throughout the procedure. In the
general variant of the algorithm, OS�

nC1.�h/ is a heuristic solution (upper bound) to
the RCPSP instance with optimal objective value S�

nC1.�h/.
Step 2 produces a new solution, which is hopefully better than the current best

solution. In our implementation, for the current scenario (duration vector �h), we
solve the deterministic RCPSP to optimality (so Os�

nC1.�q/ is actually S�
nC1.�qC1/ in

our computations). With this schedule, we associate an activity list ` that orders the
activities in non-decreasing starting times (subsequently referred to as ‘associated
list’). This list is then compared to the list `� associated with the current best
solution. If the two are identical, the algorithm returns to Step 3 to obtain a new
scenario, otherwise we consider all intermediary lists obtained by modifying the
list `� step-by-step until ` is obtained. To each intermediary list, we apply a serial
schedule generation scheme (Kolisch 1996) to find a new schedule, which then in
turn is used to produce a new solution (ES-policy) via the algorithm of Artigues
et al. (2003). This solution will be used as current best solution if it performs
better (based on its regret) than the latter on the scenarios already generated.
Let `� D .`�

1 ; `
�
2 ; : : : ; `

�
n/ and ` D .`1; `2; : : : ; `n/; notice that `�

0 D `0 and
`�
nC1 D `nC1. The intermediary lists between `� and ` are generated as follows.

Let i be the lowest index for which `�
i ¤ `i . We consider the list `0 obtained

from `� by moving the activity `i from its current position in `� to position i in
`0. Hence, the activities between position i and the current position of `i in `�
are shifted. Next, we set `� D `0 and repeat the procedure until `0 D `. This
step constitutes a path-relinking procedure (Glover et al. 2000; Glover and Laguna
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1997), generating feasible policies on a neighborhood path from an optimal policy
(in terms of makespan for a given scenario) to another one.

In Step 3, a new scenario is generated by running the integrated formulation for
evaluation of the current ES-policy X (as described in Appendix) but from which
all the yij-variables are removed (apart from those corresponding to .i; j / 2 E): we
effectively solve the problem

max
�2˙ fSnC1.X; �/ � SnC1.;; �/g

which delivers an upper bound for the actual regret of policyX and so also an upper
bound for the minimax regret. This upper-bound formulation is handed to a MIP
solver, which yields a new scenario. If the addition of this scenario does not lead to
a solution different from the current best solution, we have a cycling phenomenon.
In that case, we identify a longest path in the graph .V;E [ X/, where X is the
current best solution, to generate a new scenario: the activities on the path are set at
their maximum durations, all other activities receive the minimum duration. In case
this scenario also leads to cycling, a new scenario is generated randomly.

When solving the example project described in Sect. 40.3.1 using the basic
implementation of Algorithm 40.1, the optimal value of 2 is obtained after three
iterations and a running time of 0:03 s. Using the implementation with bounded
contribution, four iterations are used and the running time is only 0:02 s. Finally,
Algorithm 40.2 finds an optimal solution after six iterations, but its running time
is 0 s.

40.7 Computational Results

All algorithms have been coded in C using Visual Studio C++ 2005; all the
experiments were run on a Dell Optiplex 760 personal computer with Pentium R
processor with 3:16 GHz clock speed and 3:21 GB RAM, equipped with Windows
XP. CPLEX 10:2 was used for solving the MIP instances. Below, we first provide
some details on the generation of the datasets, then we discuss some implementation
details, and subsequently we present the computational results. Throughout this
section, computation time is referred to as t;cpu and is expressed in seconds.

40.7.1 Data Generation

The algorithms are tested on randomly generated instances of AR-RCPSP
with n non-dummy activities, for n D 10, 20 and 30. We use the software
RanGen (Demeulemeester et al. 2003) to generate instances of the deterministic
RCPSP. Using this software, we can choose different values for the number
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of activities n, the order strength (OS), the resource factor (RF) and the
resource constrainedness (RC) (for more information on these parameters, see
Demeulemeester et al. 2003). For our experiments, we have chosen three different
values for OS and two values for RF and RC, as follows. OS takes its value in the
set f0:4; 0:6; 0:8g, RF is chosen from f0:45; 0:9g and RC is a value in f0:3; 0:6g.
For each combination of n, OS, RF and RC, we randomly generate ten instances
of the deterministic RCPSP. From each RCPSP instance, we create an instance of
AR-RCPSP by randomly choosing for each activity i with processing time pi an
integer ıi between zero and pi � 1. In the AR-RCPSP instance, the lower (upper)
bound on the processing time of activity i is pi � ıi (respectively pi C ıi ). In total,
there are 3 � 2 � 2 � 10 D 120 instances for each value of n.

40.7.2 Implementation Details

In this section, we describe some of the implementation details for the algorithms
proposed in Sects. 40.5 and 40.6. We also present two simple heuristics that will
serve as benchmarks in Sect. 40.7.3 for evaluation of the performance of the
algorithms on the generated instances.

40.7.2.1 Algorithm 40.1

The implementation of Algorithm 40.1 follows the pseudocode of Sect. 40.5 with
the following details and adaptations: we start with Ȯ

1 containing only �1 D �min,
the scenario in which the processing time of each activity is minimal. We use the
branch-and-bound algorithm developed by Demeulemeester and Herroelen (1992)
to solve the resulting deterministic RCPSP. Subsequently, the first master problem
is set up but instead of solving it, we use the algorithm proposed by Artigues et al.
(2003) to find a feasible resource flow and hence an ES-policy. The master problem
is solved using CPLEX starting from the second iteration. We wish to underline that
this implementation was chosen after preliminary experiments with other variants,
among which an implementation where the initial scenario is chosen randomly, a
variant where we initially add the two extreme scenarios (minimum and maximum
durations) and one that initially adds three scenarios (minimum and maximum
durations, and the third scenario is selected randomly).

Since Algorithm 40.1 is an exact procedure, we have investigated the bottleneck
of its CPU time on the set of 10-activity instances. The CPU time of this algorithm
is mainly made up of the time spent solving the master and the time needed to
evaluate a given policy; we study the contribution of each of these two computations
to the overall CPU time. In Table 40.1, we report the average CPU time for the
master problem, for the evaluation procedure and the total average running time.
We also report the average number of iterations (itr.) and the number of instances
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Table 40.1 Distribution of average CPU time of Algorithm 40.1

Parameters Algorithm 40.1 (I) Algorithm 40.1 (II)
t;cpu t;cpu

OS RF RC Master Evaluation Total itr. fopt Master Evaluation Total itr. fopt

0:4 0:45 0.3 0.03 0.04 0.07 2.7 10 0.02 0.02 0.04 2.7 10

0.6 0.12 1.15 1.27 2.1 10 0.12 0.71 0.83 2.1 10

0.9 0.3 11.30 15.27 26.57 9.0 10 10.23 9.15 19.38 15.40 10

0.6 16.48 882.59 899.07 1.6 8 19.06 734.84 753.90 4.25 9

0:6 0:45 0.3 0.01 0.02 0.03 2.1 10 0.01 0.02 0.03 2.8 10

0.6 0.06 0.12 0.18 2.1 10 0.06 0.07 0.13 2.8 10

0.9 0.3 0.15 0.40 0.55 3.4 10 0.17 0.24 0.41 4.3 10

0.6 0.20 11.17 11.37 1.2 10 0.22 14.77 14.99 1.7 10

0:8 0:45 0.3 0.01 0.02 0.03 1.2 10 0.01 0.00 0.01 1.2 10

0.6 0.01 0.02 0.03 1.2 10 0.01 0.02 0.03 1.2 10

0.9 0.3 0.03 0.05 0.08 1.8 10 0.03 0.04 0.07 1.8 10

0.6 0.05 0.14 0.19 1 10 0.05 0.14 0.19 1.0 10

solved to guaranteed optimality within a time limit of 30 min (fopt). Each reported
value in the table is the average of ten values, except in the last column (fopt).
“Algorithm 40.1 (I)” refers to the “basic” implementation while “Algorithm 40.1
(II)” is the implementation “with bounded contribution.” In general, the second
implementation outputs results that are slightly better than those produced by
the first implementation. Moreover, the implementation with bounded contribution
cannot optimally solve one instance while the implementation without bounded
contribution fails to solve two instances to optimality. We observe, however,
that for one group (OS D 0:6, RF D 0:9 and RC D 0:6) the average CPU
time of the implementation with bounded contribution is larger than the standard
implementation. In fact, for that group of ten instances, there are two instances for
which the implementation with bounded contribution takes substantially more time
than the implementation without bounded contribution.

As mentioned, among the 120 instances, there is only one (for variant II) or two
(for I) that are not solved within the time limit (for these two instances, the optimal
solution was actually found but a certificate of optimality could not be produced
within the time limit). These two instances belong to the same group with OS D 0:4,
RF D 0:9 and RC D 0:6, which also has the highest average CPU time. We also
observe that very few iterations are usually needed to arrive at an optimal solution:
the average is never higher than 16, and in most cases even below 4; the algorithm
with bounded contribution generally uses more iterations than the basic variant.
When we compare the running times for evaluation and for the master problem, the
former come out considerably higher than the latter.
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40.7.2.2 Algorithm 40.2

The implementation of Algorithm 40.2 also follows its pseudocode. We again start
with Ȯ

1 D f�ming. For this minimum scenario, the deterministic RCPSP is solved
and an ES-policy is constructed following Artigues et al. (2003); this solution is
set as the current best solution and is optimal for the scenario set Ȯ

1. In the first
iteration, we can therefore skip Step 2 and immediately go to Step 3.

The stopping criteria for the algorithm are a limit on the computing time (30
min), a maximum number of scenarios generated (100) and a maximum number of
consecutive scenarios giving rise to cycling (10). This implementation was chosen
after preliminary experiments with different values for the maximum number of
scenarios generated and the maximum number of consecutive scenarios engendering
cycling.

40.7.2.3 Two Simple Heuristics

We present two additional heuristics that will be used as benchmarks for our two
main algorithms. The rationale behind the choice for these simple heuristics is the
fact that it is extremely difficult to provide meaningful bounds for AR-RCPSP even
for medium-sized instances. The first heuristic is referred to as Heuristic 1 and is
described in pseudocode below. As before, the deterministic RCPSP is solved using
the branch-and-bound algorithm of Demeulemeester and Herroelen (1992).

Algorithm 40.3 Heuristic 1

1: determine the average duration pi D b pmin
i Cpmax

i

2
c for each activity i

2: solve the corresponding deterministic RCPSP
3: impose a resource flow on this schedule with the algorithm of Artigues et al. (2003)
4: output the solution found

The second heuristic is named Heuristic 2 and is outlined below. The problem
encountered in Step 2 is formulated as a MIP where the objective is to minimize
the number of arcs in the transitive closure, which is solved using CPLEX. We refer
to Leus (2011b) for a motivation for this choice of objective function.

Algorithm 40.4 Heuristic 2
1: ignore the activity durations
2: find a solution (ES-policy) with a transitive closure having the minimum number of arcs
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40.7.3 Computational Experiments

Below, we present our computational results for instance sets with 10, 20, and 30
activities.

40.7.3.1 Comparison of the Algorithms for 10-Activity Instances

Table 40.2 displays for every algorithm the average CPU time (t;cpu), the number of
instances for which the algorithm finds an optimal solution (opt.) and the average
gap (�;

opt) for the set of instances with ten non-dummy activities. We opt for variant
II of Algorithm 40.1. In the table, each value reported in the columns t;cpu and �;

opt
is the average of ten values. Since the optimal objective value can be zero, the usual
‘gap’ is not well defined. Therefore, throughout this section, we use �;

opt defined
as follows. For an instance, let f .H/ be the value of the solution found by the
considered algorithm and fopt be the optimal objective value (for n D 10, this
optimal value is found by Algorithm 40.1). Let ı be the average difference between
minimum and maximum duration of activities, so ı D 1

n

Pn
iD1

�
pmax
i � pmin

i

�
. We

define�;
opt D 100 � f .H/�fopt

ı
.

Table 40.2 shows that Algorithm 40.1 optimally solves all the instances apart
from one; this, however, is sometimes coupled with a high average CPU time.
Among the remaining algorithms, Algorithm 40.2 solves 82 instances out of 120 to
optimality, while Heuristic 1 finds optimal solutions for 47 instances and Heuristic 2
provides optimal solutions for only 40 instances. Algorithm 40.2 usually produces
the smallest average �;

opt for this dataset. However, the average CPU time of

Table 40.2 Comparison for n D 10

Parameters Algorithm 40.1 Algorithm 40.2 Heuristic 1 Heuristic 2

OS RF RC t;cpu �;

opt fopt t;cpu �;

opt fopt t;cpu �;

opt fopt t;cpu �;

opt fopt

0:4 0:45 0.3 0.04 0.00 10 2.03 17.78 5 0.00 26.09 2 0.02 75.98 2

0.6 0.83 0.00 10 2.53 31.37 5 0.00 80.21 3 0.04 90.12 2

0:9 0.3 19.38 0.00 10 3.88 44.87 4 0.00 59.71 3 0.02 62.35 3

0.6 753.90 0.00 9 2.58 25.00 5 0.00 138.70 0 0.06 45.60 3

0:6 0:45 0.3 0.03 0.00 10 1.36 28.21 7 0.00 21.65 6 0.02 52.57 5

0.6 0.13 0.00 10 2.44 25.00 7 0.00 30.93 4 0.04 38.56 3

0:9 0.3 0.41 0.00 10 2.24 30.51 4 0.00 52.07 3 0.07 91.88 2

0.6 14.99 0.00 10 1.86 11.90 8 0.00 20.41 6 0.44 33.15 4

0:8 0:45 0.3 0.01 0.00 10 0.21 0.00 10 0.00 7.32 7 0.01 94.59 4

0.6 0.03 0.00 10 0.00 0.00 10 0.00 13.96 7 0.13 47.53 6

0:9 0.3 0.07 0.00 10 1.22 17.50 7 0.00 75.02 0 0.46 199.15 0

0.6 0.19 0.00 10 0.73 0.00 10 0.00 11.10 6 0.90 10.40 6
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Algorithm 40.2 is higher than for Heuristic 2, which, in turn, is higher than for
Heuristic 1.

40.7.3.2 Comparison of the Algorithms for 20-Activity Instances

In this section, we focus on the set of instances with 20 non-dummy activities.
For these instances, attempts to provide optimal solutions by solving the mixed-
integer formulation with CPLEX produced extremely poor results within the time
limit of 30 min: when interrupting CPLEX after 30 min, the best lower bound is
usually zero and the best upper bound is very large. Without an optimal value nor a
good lower bound, �;

opt defined in the previous section is meaningless. Therefore,
to compare the different algorithms we first report the average CPU time and the
number of optimal solutions found in Table 40.3. In fact, each algorithm may have
found more optimal solutions than what is reported in Table 40.3 because we count
only the number of optimal solutions with objective value zero (for Algorithm 40.1,
other instances that were solved to guaranteed optimality within the time limit are
obviously also counted).

Variant I of Algorithm 40.1 provides guaranteed optimal solutions to 52 instances
out of 120 within the time limit of 30 min; this number goes up to 58 for the
bounded-contribution implementation. The average CPU time of this algorithm is
very large for both implementations. We observe that for most unsolved instances,
the time limit is reached before two iterations are fully completed. This confirms
that solving both the master problem and the evaluation problem in an exact fashion
is simply overly time-consuming. Algorithm 40.2 produces optimal solutions for 18
instances, with a maximum average CPU time less than 6 s. Heuristic 1 is the fastest
algorithm but obtains optimal solutions for only six instances, while Heuristic 2
provides such solutions for nine instances but needs more time.

In order to further compare the quality of the outputs of the algorithms, we have
performed a pair-wise comparison, the results of which are reported in Table 40.4.
For a given instance of AR-RCPSP, let X and Y be the solutions output by two
different algorithms. Using CPLEX, we compute the quantity

LB.X; Y / D max
�2˙

n
SnC1

�
X; �

� � SnC1
�
Y; �

�o

which entails the maximum regret of the output of the first algorithm with respect
to the output of the second algorithm over all the scenarios; LB.X; Y / is a
lower bound for 
max.X/ for any feasible Y . The quantity LB.Y;X/ represents a
similar comparison of the second algorithm with respect to the first one; LB.X; Y /
and LB.Y;X/ need not be the same. In Table 40.4, we denote Algorithm 40.1
(with bounded contribution) by A1, Algorithm 40.2 by A2, Heuristic 1 by H1 and
Heuristic 2 by H2. Observe that any number in this table is the average of ten values.
We conclude that Algorithm 40.1 achieves the best comparison for those instances
where it regularly finds optimal solutions. Overall, Algorithm 40.2 tends to display
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the smallest difference with respect to the output of the other algorithms. Between
Heuristic 1 and Heuristic 2, however, there is no clear domination of one over the
other.

40.7.3.3 Comparison of the Algorithms for 30-Activity Instances

We have performed comparisons for the set with 30 non-dummy activities sim-
ilar to the previous sections. We do not, however, include the exact algorithm
(Algorithm 40.1) because within the imposed time limit, this algorithm is unable
to perform even a single iteration. In Table 40.5, we compare the average CPU
time and the number of solutions with zero objective value found by each of the
three remaining algorithms. Algorithm 40.2 obtains solutions with zero objective
value for nine instances while Heuristic 1 and Heuristic 2 do so for only one
instance. Again, it is important to note that this does not mean that these algorithms
did not solve more instances until optimality, since we do not know the optimal
objective value. From Table 40.5, we also observe that (somewhat logically) the
average CPU time of each algorithm has increased compared to Table 40.3. The
pair-wise comparison of the three algorithms is described in Table 40.6. For this
dataset, Algorithm 40.2 displays the smallest values when compared to the other
two heuristics.

Table 40.5 Comparison for n D 30

Parameters Algorithm 40.2 Heuristic 1 Heuristic 2

OS RF RC t;cpu fopt t;cpu fopt t;cpu fopt

0.4 0.45 0.3 4.99 2 0.00 0 0.27 0

0.6 6.89 1 0.00 0 105.54 1

0.9 0.3 25.79 0 0.00 0 703.85 0

0.6 17.59 0 0.00 0 1800.17 0

0.6 0.45 0.3 21.15 1 0.00 1 976.51 0

0.6 17.30 1 0.00 0 1800.06 0

0.9 0.3 52.18 0 0.01 0 1800.03 0

0.6 53.07 0 0.00 0 1800.04 0

0.8 0.45 0.3 14.74 2 0.01 0 1753.83 0

0.6 11.62 1 0.01 0 1800.07 0

0.9 0.3 31.81 1 1.19 0 1800.05 0

0.6 32.46 0 0.00 0 1800.02 0
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Table 40.6 Pair-wise comparison for n D 30

Parameters A2 H1 H2

OS RF RC H1 H2 A2 H2 A2 H1

0.4 0.45 0.3 36.90 41.65 150.30 57.24 239.00 77.62

0.6 39.20 43.70 403.50 108.31 344.00 94.87

0.9 0.3 15.50 18.80 381.80 163.44 310.10 124.64

0.6 55.20 58.80 420.10 122.18 390.70 210.23

0.6 0.45 0.3 34.20 39.40 244.40 132.52 197.00 97.56

0.6 39.80 54.90 332.00 142.10 304.60 56.78

0.9 0.3 34.60 56.50 354.80 180.30 365.10 169.23

0.6 73.70 86.90 467.30 156.34 444.80 274.59

0.8 0.45 0.3 18.50 28.10 206.60 93.24 169.30 73.52

0.6 57.00 86.40 376.00 196.03 358.80 216.76

0.9 0.3 59.70 90.50 406.70 215.73 400.80 91.08

0.6 80.20 100.80 445.20 106.07 490.30 134.27

40.8 Conclusions

In practical project management, a project’s parameters such as activity dura-
tions and resource requirements are seldom precisely known and usually subject
to estimation errors. In this chapter we have proposed a robust optimization
approach to project scheduling with uncertain activity durations, assuming that
the decision maker cannot with confidence associate probabilities with possible
activity durations. The resulting robust project scheduling problem that we have
studied, has turned out to be exceptionally difficult, in that even exact objective-
function evaluation is intractable and computationally overly demanding, even for
medium-sized instances. We have developed and implemented a scenario-relaxation
algorithm and a scenario-relaxation-based heuristic. The first algorithm produces
optimal solutions but requires excessive running times even for medium-sized
instances; the second algorithm produces high-quality solutions for medium-sized
instances, which are significantly better than those produced by two benchmark
heuristics—although the latter consume less CPU time.

Further research should be oriented towards the formulation and solution of
more practical variants of the AR-RCPSP, for instance by considering an objective
function that can be evaluated in polynomial time for a given scheduling policy, so
that the corresponding decision problem is at least in NP . This could be the case
for the minimization of the upper bound of the minimax regret of a policyX defined
as max�2˙ fSnC1.X; �/ � SnC1.;; �/g, the complexity status of which, to the best
of our knowledge, is open. Incorporation of uncertainties different from activity
durations is another avenue for future work; the most important factors that can
play a role in practical project management are probably the resource availabilities,
the structural properties of the project network (the precedence relations) and the
addition of extra activities. The incomplete specification of probabilities also leads
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to the question of what the value of information associated with a full or partial
resolution of these uncertainties would be. In particular: future research might study
the case where the decision maker can acquire more information about probabilities,
possibly at a cost, and decide how these efforts of information acquisition should be
targeted.
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Appendix: Integrated Formulation for Max-Regret Evaluation

The full integrated formulation for evaluation of the maximum regret of a policyX ,
which was developed in Sect. 40.4, is given below.
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'min
j;nC1 C 'max

j;nC1 D 1

0 � 	kij � Myij ..i; j / 2 V � V I k 2 R/

Sj � Si C .1 � ai /p
min
i C aip

max
i �M.1� yij/ ..i; j / 2 V � V W i ¤ j /

X

j2V Wj¤i
	kji D

X

j2V Wj¤i
	kij D rik .i 2 V n f0; nC 1gI k 2 R/

X

j2V
	k0j D

X

j2V
	kj.nC1/ D Rk .k 2 R/

X

.i;j /2E[X
'max

ij � ai .i 2 V n f0; nC 1g/

X

.i;j /2E[X
'min

ij � 1 � ai .i 2 V n f0; nC 1g/

'min
ij ; 'max

ij � 0 ..i; j / 2 E [ X/

yij D 1 ..i; j / 2 E/
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yij 2 f0; 1g ..i; j / 2 V � V /
S0 D 0

	kij � 0 ..i; j / 2 V � V I 8k 2 R/

ai 2 f0; 1g .i 2 V /
a0 D anC1 D 0
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Part XIV
Project Scheduling Under Interval

Uncertainty and Fuzzy Project Scheduling



Chapter 41
Temporal Analysis of Projects Under Interval
Uncertainty

Christian Artigues, Cyril Briand, and Thierry Garaix

Abstract Given an activity-on-node network where every activity has an uncertain
duration represented by an interval, this chapter takes an interest in computing
the minimum and maximum earliest start times, latest start times and floats of
all activities over all duration scenarios. The basic results from the literature are
recalled and efficient solving algorithms are detailed. A particular focus is put on the
computation of minimum float, which remains an N P-hard optimization problem.
For this last case, a recent and efficient branch and bound algorithm is described that
outperforms previously proposed methods.

Keywords Algorithms • Branch-and-bound • Complexity • Interval uncer-
tainty • Project scheduling • Temporal analysis

41.1 Introduction

In standard deterministic project scheduling, temporal analysis aims at determining
the temporal degree of freedom of activities under simple finish-start precedence
constraints. More precisely, it aims at computing for every activity i its earliest start
and completion times ESi and ECi , its latest start and completion times LSi and LCi

and its total float TFi . It is well known that these values can be computed via longest
path computation in the project network where each arc .i; j / is evaluated by the
duration of i . More precisely, if dij denotes the length of the longest path from i to
j in this graph, ESi is the longest path from dummy node 0 to node i : ESi D d0i .
LSi is the length of the longest path from dummy node 0 do dummy node n C 1

(schedule length or makespan) minus the length of the longest path from node i to
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node nC 1: LSi D d0.nC1/ � di.nC1/. The total float can be defined as the difference
between LSi and ESi or, equivalently, TFi D d0.nC1/ � d0i � di.nC1/ D LSi � ESi .
Standard longest path computations in acyclic graph allow to compute all these
values in O.jEj/ time, E being the set of precedence constraints.

When problem parameters are ill-known, a common way of modeling uncertainty
is to define each such parameter as an interval, as discussed in Chap. 40 of this book.
In this chapter, we consider that the duration of each activity i 2 V is defined as
an interval Œpmin

i ; pmax
i �. Under such an assumption, temporal analysis now focuses

on the computation of the minimum and maximum values of the earliest start times,
latest start times and total floats.

Let us define the scenario set ˙ as the set of possible duration vectors:

˙ D f� 2 R
njpmin

i � pi � pmax
i ;8i 2 V g

The temporal analysis of a project network under interval uncertainty consists in
computing the following values for each activity i 2 V :

• Best-case (minimum) earliest start time ESmin
i D min�2˙ ESi .�/ .

• Worst-case (maximum) earliest start time ESmax
i D max�2˙ ESi .�/ .

• Best-case (maximum) latest start time LSmax
i D max�2˙ LSi .�/ .

• Worst-case (minimum) latest start time LSmin
i D min�2˙ LSi .�/ .

• Best-case (maximum) float TFmax
i D max�2˙ TFi .�/ .

• Worst-case (minimum) float TFmin
i D min�2˙ TFi .�/ .

These values are of interest for providing valuable information to the decision-
maker about the level of criticality of the activities despite the uncertain nature of
the processing times. Any activity i such that TFmax

i D 0 is necessarily critical
and should consequently be carefully monitored independently of the scenario. Any
activity i such that TFmin

i D 0 is possibly critical and a special attention should be
paid to it, especially for risk-adverse decision policies. On the contrary, if TFmin

i > 0,
the information that the activity has flexibility for all scenarios is obtained.

Table 41.1 provides the minimum and maximum earliest start times, latest start
times and floats for the project network displayed in Fig. 41.1.

We see in Table 41.1 that some non-dummy activities are necessarily critical
(activities 3 and 8) while others are possibly critical (activities 1, 5, and 7). We
also remark that intuition does not necessarily work to obtain the minimum total
float. In fact we have some cases where TFmax

i ¤ LSmax
i � ESmin

i and others where
TFmin

i ¤ LSmin
i � ESmax

i .

Table 41.1 Minimum and maximum earliest start times, latest start times and floats

i 1 2 3 4 5 6 7 8 9

ŒESmin
i ;ESmax

i � [0,0] [0,0] [0,0] [3,4] [10,10] [4,8] [12,13] [19,22] [20,25]

ŒLSmin
i ; LSmax

i � [0,8] [2,14] [0,0] [6,17] [10,18] [17,23] [13,20] [19,22] [20,25]

ŒTFmin
i ; TFmax

i � [0,8] [2,14] [0,0] [2,14] [0,8] [9,19] [0,8] [0,0] [0,0]
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Fig. 41.1 Project network with interval uncertainty

Several authors have studied these temporal analysis problems. The chapter is
based on the results obtained by Chanas et al. (2001, 2002), Chanas and Zieliński
(2002, 2003), Dubois et al. (2003, 2005), Fargier et al. (2000), Fortin et al. (2010),
Kasperski and Zieliński (2010), Zieliński (2003, 2005, 2006), Garaix et al. (2013).
Among these works we refer in particular to the survey by Fortin et al. (2010) in
which it is also remarked that the interval problems are particular cases of fuzzy
project scheduling problems (see Chap. 42 of this book). Section 41.2 summarizes
the main structural properties complexity results and proposed solution algorithms
detailed by Fortin et al. (2010). Section 41.3 focuses on algorithms for the minimum
and maximum latest start time problems. Section 41.4 presents the algorithms for
solving the minimum and maximum float problems. Finally, Sect. 41.5 provides
concluding remarks and direction for future works in connection with related
problems, such as controllability of simple temporal networks with uncertainty.

Let us precise that in this chapter, in contrast with some of the above-cited papers,
the formalism on Activity-on-Node graph is used instead of the one of Activity-on-
Arc (AoA).

41.2 Basic Properties, General Algorithms and Complexity
Results (Fortin et al. 2010)

41.2.1 Extreme Scenarios

Let us define the notion of extreme scenario induced by an activity subset. Let
�max.Q/, with Q � V , the extreme scenario such that each activity i 2 Q is set
to pmax

i while each activity of i 2 V n Q is set to pmin
i . Remark that the minimum

and maximum earliest start times of each activity i 2 V are attained on extreme
scenarios induced by the empty set and V , respectively:

ESmin
i D ESi .�

max.;//
ESmax

i D ESi .�
max.V //
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For determining the latest start times and floats, the solution is not so trivial.
However Dubois et al. (2003) showed that the searched minimum and maximum
values are attained for extreme scenarios.

Theorem 41.1 (Dubois et al. 2003). For every activity i 2 V :

LSmax
i D max

Q	V LSi .�
max.Q//

LSmin
i D min

Q	V LSi .�
max.Q//

TFmax
i D max

Q	V TFi .�
max.Q//

TFmin
i D min

Q	V TFi .�
max.Q//

Proof. To understand these properties, let us illustrate them on the minimum float
case. Suppose that the minimum float of an activity i is reached on a scenario �
that is not extreme. Let P denote the longest path passing through i on scenario � .
Suppose in addition that among all scenarios yielding the minimum float for i , �
is such that the position on P of the first activity j not set to its largest or smallest
duration is minimum. First, let us change scenario � in scenario � 0 by modifying
the duration of all activities—except those located onP—by switching them to their
minimum duration. Obviously the longest path in the network cannot be increased
by this operation andP remains one of the longest path passing through i . It follows
that the float of i cannot be increased by this modification of � . We further modify � 0
by increasing j to its maximum duration so as to obtain scenario � 00. This obviously
increases the longest path passing through i by p0

j � pmin
j . This also potentially

increases the longest path in the network, but at most by p0
j � pmin

j . Hence the float
of i cannot be decreased by this last change, which contradicts the minimality of the
position of j in P . ut

A purely enumerative algorithm would then enumerate all 2n extreme scenarios
and, for each of them, compute the required longest paths. In the eight non-
dummy activities example of Fig. 41.1, these would yield to 256 � 2 longest path
computations.

41.2.2 Path-Induced Extreme Scenarios

Dubois et al. (2005) further restricted the search space by establishing the following
properties on extreme scenarios induced by paths. They first show that the minimum
and maximum floats, as well as the maximum latest start time of any activity are
always attained for an extreme scenario induced by the activities located on a
(0–n C 1) path. Let Pij denote the set of paths from activity i to activity j . By
a slight abuse of notation, we identify the set of activities located on a path P by the
path itself.
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0
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n
n+1

Fig. 41.2 Project network with an exponential number of paths

Theorem 41.2 (Dubois et al. 2005). For every activity i 2 V :

LSmax
i D max

P2P0.nC1/

LSi .�
max.P //

TFmax
i D max

P2P0.nC1/

TFi .�
max.P //

TFmin
i D min

P2P0.nC1/

TFi .�
max.P //

Proof. Observing the proof of Theorem 41.1, we can only change the definition of
� as an optimal extreme scenario not induced by a path and of j as the activity
located in P with minimal position such that pj ¤ pmax

j . Then the modifications
change P into an optimal path where j is set to pmax

j . ut
Then, to compute the maximum latest start times, the minimum and the maximum
float, one could enumerate all paths in P0.nC1/, and for each of them, obtain the
induced extreme scenario and compute the longest path lengths.

In the example from Fig. 41.1, the number of longest path computations boils
down to jP09j � 2 D 8. Although the number of paths from 0 to n C 1 is always
smaller than 2n and can be small for sparse graphs, it can also be unfortunately
exponential in n, as illustrated in the network given in Fig. 41.2 where the number
of paths from 0 to nC 1 is equal to 2

n
2 .

The reader may have noticed that the minimum latest start time was excluded
from Theorem 41.2. For this value, Dubois et al. (2005) show that one can restrict
the search to scenarios induced by a path from i to nC 1.

Theorem 41.3 (Dubois et al. 2005). For every activity i 2 V :

LSmin
i D min

P2Pi.nC1/

LSi .�
max.P //

Proof. The proof proceeds the same way as for Theorems 41.1 and 41.2. Suppose
� is an optimal extreme scenario not induced by a .i–nC 1/ path and let P denote
the longest path from i to nC1 for scenario � . Setting all activities in V nP to their
minimum duration cannot increase the latest start time. Setting then all activities
duration of P to their maximum duration can only decrease or leave unchanged the
latest start time. ut
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There can still be an exponential number of paths in Pi.nC1/. However Fortin
et al. (2010) provided a dynamic programming recursion allowing to compute the
optimal path of an activity i in a polynomial time (see Sect. 41.3.2), given the
optimal paths of its direct successors.

Can we obtain the same positive complexity results for the maximum latest start
time, the minimum and maximum floats?

41.2.3 Complexity Results

Actually, asserting the necessary criticality of an activity requires O.jEjjV j/ time
using the algorithm proposed in Fortin et al. (2010), while the asserting the possibly
criticality is strongly N P-complete (Chanas and Zieliński 2002). However, both
problems were shown to be polynomial by Zieliński (2005) in O.jEj C jV j/ time,
when durations of the predecessors of the activities are precisely known (Zieliński
2005).

Even if the minimum float problem is polynomial for series-parallel graphs
(Fargier et al. 2000; Zieliński 2006), these positive complexity results cannot be
extended to this problem for general graphs. The minimum float problem was
indeed proven to be strongly N P-hard and even has no polynomial approximation
(Chanas et al. 2002; Chanas and Zieliński 2002; Zieliński 2005).

41.2.4 Link with Min Max Regret Longest Path Problems

Let us point out that the minimum float problem can be linked to the min max regret
longest path problem in acyclic graphs. Let P be a path between 0 and nC1. Given
a scenario � , the regret of P is the difference between the length of the longest path
in the network for scenario � and the length ofP for scenario � . The min max regret
longest path problems amounts to find a path P � from 0 to n C 1 that minimizes
this maximum regret.

If there exists a scenario for which the min max regret is zero, we have found
a scenario for which P is critical, which amounts to find a set of possibly critical
activities, with a zero minimum float. Conversely if we have a path of necessarily
critical activities (of zero maximum floats), we have found a critical path for all
scenarios and consequently a path of zero min max regret.

In the remaining of this chapter, we describe the polynomial algorithms for
computing the minimum, maximum latest start times and the maximum float.
We also describe a branch and bound algorithm that performs remarkably well,
compared to the path algorithm, for the minimum float problem.
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41.3 Maximum and Minimum Latest Start Time

In Zieliński (2005), two similar polynomial algorithms are given to compute the
minimum and maximum latest start times of an activity. They are respectively linked
to two underlying problems; asserting on possibly and necessary criticality of an
activity when durations of its predecessors are fixed. For the case of minimum latest
start time, another recursive algorithm is proposed in Fortin et al. (2010). In this
section, we propose a slightly different description of these algorithms, for the sake
of clarity and concision.

41.3.1 Maximum Latest Start Time

Theorem 41.4 allows to restrict the number of scenarios to consider during the
search of the maximum latest start time of an activity i . We refer to Succ.i/
(Pred.i/) as the set of all immediate and transitive successors (predecessors,
respectively) of each activity i .

Theorem 41.4. The set of scenarios ˙i;max D f� 2 ˙ jpj .�/ D pmax
j , 8j …

Succ.i/ [ figg is dominant when the maximum latest start time of activity i 2 V is
sought.

Proof. The proof is straightforward as the latest start time of an activity LSi , i 2 V ,
is defined by the gap between d0.nC1/ and di.nC1/. Transformations of a scenario by
switches from pmin

j to pmax
j on activities j … Succ.i/ [ fig can only increase this

gap and, finally, reach a scenario of ˙i;max. ut
In order to describe the algorithm of Zieliński (2005), it is necessary to link the

maximum latest start time of an activity to its necessary criticality. Let ˙i;max.pi D
v/ the subset of scenarios of ˙i;max where in addition pi D v, v being any value in
Œpmin
i ; pmax

i �.

Theorem 41.5. LSmax
i D ESmax

i C�, where� D minfı 2 Rji is necessary critical
in f� 2 ˙i;max.pi D pmin

i C ı/gg, 8i 2 V .

Proof. It is enough to show that ESmax
i C� D ESi .�/C� D LSi .�/ for all scenarios

of ˙i;max.pi D pmin
i C�/. For any � 2 ˙i;max.pi D pmin

i C�/, LSi .�/ can not be
strictly greater than ESi .�/C�, by definition of necessary criticality of i . A strictly
lower value of LSi .�/ contradicts the minimality of �. ut

The main idea of Algorithm 41.1 is to iteratively increment the duration of i until
reaching the minimum value .pmin

i C �/, such that i becomes necessarily critical,
the considered set of scenarios being restricted to˙i;max. Note that for large enough
values of �, ˙i;max.pi D pmin

i C �/ does not include feasible scenarios since pi
can become greater than pmax

i . The tricky point is to define the increment step at
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Algorithm 41.1 Computing LSmax
i

1: � WD 0;
2: ı WD minj2Succ.i/fıj .�/g on ˙i;max.pi D pmin

i C�/;
3: if ı > 0 then
4: � WD �C ı and goto Step 2;
5: end if
6: LSmax

i WD ESmax
i C�;

each iteration. That is done by considering activities j 2 Succ.i/ for which i is not
j -critical, this concept being defined in Theorem 41.6.

Theorem 41.6. Activity i is not necessary critical in � 2 ˙i;max.pi .�/ D Np/, if
and only if there exists at least one activity j 2 Succ.i/ on each longest path from
i to nC 1 such that ıj .�/ D d0j .�/ � .d0i .�/C dij.�// > 0, i.e., the longest path
from 0 to j traversing i is not a longest path from 0 to j in � . Activity i is said
j -critical when ıj .�/ D 0.

Proof. The proof is directly derived from the definition of the criticality of an
activity. ut

According to Theorems 41.5 and 41.6, for any duration Np < pmin
i C �, there

exists at least one scenario � 2 ˙i;max.pi .�/ D Np/ and one activity j 2 Succ.i/
such that i is not j -critical (ıj .�/ > 0). Then an increase of the duration of i by the
minimum ı D minj2Succ.i/ ıj .�/ will decrease by at least one (j itself) the number
of activities for which i is not j -critical in each scenario. The algorithm ends when
i becomes j -critical for all activities of j 2 Succ.i/, and so necessary critical as
expected in Theorem 41.5.

At the initialization phase, the maximum earliest start time of i and the minimum
earliest start times of activities Succ.i/ in scenarios˙i;max.pi D pmin

i / can be com-
puted, as a preprocessing phase, through a PERT algorithm under extreme scenario
�max

�
V n .Succ.i/ [ fig/�. The procedure called at Step 2 of Algorithm 41.1, which

computes values ıj .�/, is detailed in Algorithm 41.2. Since the topological order
is followed, the value of ıj .�/ only depends on (predecessor) activities with fixed
durations; initialized at Step 1 and updated at Steps 4–8 of Algorithm 41.2. By
construction (Steps 4–8), the gap between d0j .�/ and d0i .�/C dij.�/, is decreased
as much as possible for next activities k 2 Succ.j /. Thus, each computed value
of ıj .�/ is maximal on ˙i;max.pi D pmin

i C �/. We highlight that ıj .�/ can be
viewed as the total float of activity i , under scenario ˙i;max.pi D pmin

i C �/,
in the subgraph involved by Pred.j / with j 2 Succ.i/. The evaluation of ıj .�/
can be done in constant time as lengths of partial longest paths d0j .�/ and dij.�/

can be dynamically updated. Therefore, Algorithm 41.2 runs in O.jEj/ time and
Algorithm 41.1 in O.jV jjEj/ time.

Note that Algorithm 41.2 allows to assert the necessary criticality of an activity
when the durations of its predecessors are precisely known (Zieliński 2005).
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Algorithm 41.2 Computing ıj .�/;8j 2 Succ.i/ on ˙i;max.pi D pmin
i C�/

1: Set partial scenario � 2 ˙i;max.pi D pmin
i C�/;

2: j WD next activity of Succ.i/ according to the topological order;
3: ıj .�/ WD d0j .�/� d0i .�/� dij.�/;
4: if ıj .�/ > 0 then
5: pj .�/ WD pmax

j ;
6: else
7: pj .�/ WD pmin

j ;
8: end if
9: if j D nC 1 then

10: stop;
11: else
12: goto Step 2;
13: end if

41.3.2 Minimum Latest Start Time

Theorem 41.3 gives graph-topological properties that reduce the search space to
longest paths from i to n C 1. The recursion procedure of Theorem 41.7 allows to
compute the optimal path from i to nC 1.

Theorem 41.7 (Fortin et al. 2010). For each activity i 2 V :

LSmin
i D min

j2Succ.i /
LSi

�
�max.fig [Qj /

�
with Qj 2 Pi.nC1/;LSmin

j D LSj
�
�max.Qj /

�

From this recursion, as a unique path can be computed for each successor, a
polynomial algorithm can be obtained. Fortin et al. (2010) proposed an O..jEj C
jV j/2/ algorithm. This shows that the minimum latest start time computation is
polynomial despite the possibly exponential number of paths in Pi.nC1/.

Another O..jEj C jV j/2/ time algorithm has been previously proposed in
Zieliński (2005). Algorithm 41.3 is similar to the algorithm that computes the
maximum latest start time of an activity but it is based on the relation between
the minimum latest start time and the possible criticality of an activity.

The dominant set of scenarios is denoted ˙i;min and is defined by setting
durations of activities of V n fSucc.i/[ figg to their respective lower bounds. This
result is justified in the argument of Theorem 41.3.

Here � represents the minimum value to add to the duration of i to make it
possibly critical, i.e., j -critical in at least one scenario. This procedure is given
in Algorithms 41.3 and 41.4. The main difference with Algorithms 41.1 and 41.2,
which gives LSmax

i , is the updating step of partial scenario � . The gap between
d0k.�/ and d0i .�/ C dik.�/ for next activities k 2 Succ.i/, can only be decreased
by Steps 4–8 of Algorithm 41.4.

Again, one can derive an algorithm, presented in Zieliński (2005), which allows
to assert the possibly criticality of an activity when its predecessors have fixed
durations.
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Algorithm 41.3 Computing LSmin
i

1: � WD 0;
2: ı WD minj2Succ.i/fıj .�/g on ˙i;min.pi D pmax

i C�/;
3: if ı > 0 then
4: � WD �C ı and goto Step 2;
5: end if
6: LSmin

i WD ESmin
i C�;

Algorithm 41.4 Computing ıj .�/;8j 2 Succ.i/ on ˙i;min.pi D pmax
i C�/

1: Set partial scenario � 2 ˙i;min.pi D pmax
i C�/;

2: j WD next activity of Succ.i/ according to the topological order;
3: ıj .�/ WD d0j .�/� d0i .�/� dij.�/;
4: if ıj .�/ > 0 then
5: pj .�/ WD pmin

j ;
6: else
7: pj .�/ WD pmax

j ;
8: end if
9: if j D nC 1 then

10: stop;
11: else
12: goto Step 2;
13: end if

41.4 Minimum and Maximum Floats

41.4.1 Maximum Floats

In Zieliński (2005), the author proposed a polynomial time algorithm able to
determine whether an activity i is necessarily critical. It is based on two properties.
The first one states that if i is necessarily critical in a subgraph made of the activities
of Succ.j /, for some j 2 Pred.i/, then i is necessarily critical in the general graph
if and only if there exists a scenario � with pj .�/ D pmin

j such that TFi .�/ D 0.
The second one claims that if i is not necessarily critical in the subgraph made of
the activities of Succ.j /, for some j 2 Pred.i/, then i is necessarily critical in
the general graph if and only if there exists a scenario � with pj .�/ D pmax

j such
that TFi .�/ D 0. These properties allow to derive Algorithm 41.5 that asserts the
necessary criticality of activity i . The algorithm is called with the initial scenario
�min. At the first iteration (i.e., j D i ), it first calls Algorithm 41.2 (see Step 2)
to determine whether i is necessarily critical in the graph made of the activities
of Succ.i/. Thus it is possible to fix the durations of the activities immediately
preceding i , with respect to both above properties, without modifying the necessary
criticality of i (at Steps 3–7). We can reiterate this processus considering the
activities of Pred.i/ according to the reverse topological order (see Step 1). Once
the durations of the activities belonging to Pred.i/ are totally set, i is necessarily
critical if and only if, at the last iteration, TFi .�/ D 0. Algorithm 41.5 asserts the
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Algorithm 41.5 Asserting the necessary criticality of activity i

1: j WD next activity of fPred.i/[ figg according to the reverse topological order;
2: Compute ı D TFi .�/ in the subgraph Succ.j / using Algorithm 41.2;
3: if ı > 0 then
4: pj .�/ WD pmax

j ;
5: else
6: pj .�/ WD pmin

j ;
7: end if
8: if j ¤ 0 then
9: goto Step 1

10: end if;

necessarily criticality of i in O..jEj C jV j/2/ time. Nevertheless, let us highlight
that in the case where i is not necessarily critical, the value TFi .�/ > 0 eventually
found gives a lower bound of TFmax

i .
The algorithm that computes the maximum float of activities is based on the

previous algorithm and uses the following property.

Theorem 41.8 (Zieliński 2005). If � is the smallest positive real value such that
i becomes necessarily critical in scenario � such that pi.�/ D pmin

i C �, then
TFmax

i D �.

Proof. The argument is based on the fact that, whatever the considered scenario
� 2 ˙ , any longest path traversing i remains a longest path if pi is increased by a
small value. If � is the minimum value to add to pi such that i become necessarily
critical (i.e., TFi .pmin

i C�/ D 0) then, because TFi .pmin
i C�/ � TFmax

i , it easy to
deduce the claimed property. ut

The problem is now to find �. The idea is to use a similar approach that the
one used for computing LSmax

i using the property (proved in Zieliński 2003) that
TFmax

i D LSmax
i � ESmax

i in the case where the durations of the activities belonging
to Pred.i/ are known (that property being falsed in the general case). So, it becomes
possible to determine the smallest ı such that i becomes necessarily critical in a
subgraph made by the activities of Succ.j /, with j 2 Pred.i/.

The above idea is implemented in Algorithm 41.6, which works as follows.
A first assignment of the durations of the activities Pred.i/ is made by Algo-
rithm 41.5 in Step 3. If TFi .�/ D 0 then i is necessarily critical. Otherwise,
for every j 2 Pred.i/ and for the scenario � determined by Algorithm 41.5
(i.e., the durations of Pred.i/ are known), the lower bound of the maximum float
LSmax

i .�/ � d0i .�/ is computed in the graph Succ.j / using Algorithm 41.1 (see
Step 7). The value ı of the smallest positive lower bound is then memorized (see
Steps 8–10). Finally, � and pi are incremented by ı in Steps 14 and 15 and the
value of TFi .�/ is recomputed. The algorithm ends when i becomes critical in �
and TFmax

i D �. This algorithm works in O..jEj C jV j/4/.
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Algorithm 41.6 Computing TFmax
i D �

1: pj .�/ WD pmin
j , 8j 2 V n fPred.i/[ Succ.i/g;

2: � WD 0I
3: Compute TFi .�/ and update � with respect to decisions made in Algorithm 41.5;
4: while TFi .�/ > 0 do
5: ı WD C1;
6: j WD previous activity of Pred.i/ according to the reverse topological order;
7: Compute LSmax

i .�/ in the subgraph Succ.j / using Algorithm 41.1;
8: if LSmax

i .�/� d0;i .�/ > 0 then
9: ıj .�/ WD min.ı; LSmax

i .�/� d0;i .�//;
10: end if
11: if j ¤ 0 then
12: goto Step 6
13: end if;
14: � WD �C ı;
15: pi .�/ WD pmin

i C�;
16: Compute TFi .�/ and update � with respect to decisions made in Algorithm 41.5;
17: end while

41.4.2 Minimum Floats

This subsection focuses on the computation of the minimum float TFmin
i of every

activity i , which is an N P-hard problem (Chanas et al. 2002; Chanas and Zieliński
2002; Zieliński 2005). From Theorem 41.2, we know that any optimum is obtained
for a particular scenario �max.P / with P 2 P0.nC1/. Note that P is also the longest
path from 0 to n C 1 traversing i . Using this property, Dubois et al. (2005) and
Fortin et al. (2010) proposed a first exact algorithm based on path enumeration, the
float of activities being computed for every generated path using standard PERT
method. Typically, this algorithm is able to compute in a few seconds the minimum
float TFmin

i of an activity on medium-density graph with 100 activities. However, its
performance gets worse on high density graph since the number of paths to explore
grows exponentially.

A faster branch-and-bound procedure was recently proposed in Garaix et al.
(2013). It takes benefits from other problem properties. This procedure is able
to compute minimum floats within few milliseconds for 100-activity graph, this
CPU-time remaining rather insensitive to graph density variation. We review in this
section the basic ingredients of the Garaix et al. (2013) procedure: a dominance
property and a bounding rule.

Let us first take an interest in the structure of the longest path obtained for a
path-induced extreme scenario �max.P /.

The dominance Theorem 41.9 below states that the longest path P 0 2 P0.nC1/
in any optimal scenario �max.P / differs from P only by a subpath P 0

a!b , a being a
predecessor of i in P , and b a successor of i in P . Moreover, in the particular case
where TFmin

i D 0 then, since P and P 0 are identical, a D b D i . This property is
illustrated in Fig. 41.3 where the arcs in bold define the longest path P traversing
i inducing the extreme scenario. The thin arc P 0

a!b represents the deviation from
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Fig. 41.3 Dominant path structures for float computation

Fig. 41.4 Partial path structure for float computation

P of the longest path P 0 that results from the concatenation of three partial paths
(i.e., P 0 D .P0!a; P

0
a!b; Pb!nC1/). Furthermore, the length of P 0

a!b equals the
length of the longest path from a to b in the scenario �min.V /, plus pmax

a �pmin
a (the

duration of activity a being set to pmax
a as it belongs to P ).

Theorem 41.9 (Garaix et al. 2013). For any activity i 2 V , there exists an optimal
pathP with scenario �max.P / and a pair of activities a; b 2 P such that the longest
path P 0 in this scenario is P 0 D .P0!a; P

0
a!b; Pb!nC1/ verifying

TFmin
i D dab.�

min.V //C pmax
a � pmin

a �
X

k2Pa!bnfbg
pmax
k

Proof. The proof of this theorem goes by showing that if P0!a is not a longest path
from 0 to a then there exists an alternative path P 0

0!a such that TFi .�max.P // �
TFi .�max.P 0

0!a; Pa!b; Pb!nC1//. Similarly, if Pb!nC1 is not a longest path from b

to nC 1 then there exists another scenario path-induced scenario leading to a lower
float for i . ut

A major interest of Theorem 41.9 is to formalize the intuitive fact that any path-
induced scenario �max.P / such that the subpath from 0 to a is not also a longest path
from 0 to a can be discarded (since it is dominated with respect to the minimization
of TFi ). Symmetrically, any path P 2 P whose subpath from b to n C 1 is not
also a longest path from b to n C 1 under scenario �max.P /, is also dominated. In
the sequel, any path which cannot be discarded in this way will be said valid with
respect to the minimization of TFi .

Let us take an interest now in the computation of lower bounds for TFmin
i . For that

purpose, let us consider a valid partial path Px!y with i 2 Px!y (see Fig. 41.4).
We highlight thatPx!y D .Px!a; Pa!i ; Pi!b; Pb!y/ is said valid in the sense that
P 0 D .Px!a; P

0
a!b; Pb!y/ is the longest path in the scenario �max.Px!y/ between

x and y.
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From the optimality principle of Bellman it is easy to show that the following
theorem holds:

Theorem 41.10 (Garaix et al. 2013). Considering a valid partial path Px!y with
i 2 Px!y , if there exists a valid path P0!nC1 extending Px!y towards activities 0
and nC 1, it satisfies:

TFi .�
max.P // � LBi .Px!y/

with

LBi .Px!y/ D dab.�
min.V //C pmax

a � pmin
a �

X

k2Pa!bnfbg
pmax
k

Proof. Considering a valid path extensionP0!nC1 of a partial path Px!y , we know
from Theorem 41.9 that there exists a� and b� 2 V such that TFi .�max.P // D
da�b�.�min.V //Cpmax

a�

�pmin
a�

�Pk2Pa�

!b�
nfb�g pmax

k . From Bellman’s optimality
principle, any path from 0 to n C 1 diverging from P from an activity a ¤ a�
and converging back to P on an activity b ¤ b� has a length lower or equal to the
longest one passing through a� and b�. From this latter property, it is easy to deduce
the inequality claimed in Theorem 41.10. ut

In other words, whatever the considered possible valid extension P of Px!y ,
Theorem 41.10 ensures that TFi .�max.P // will never be lower than LBi .Px!y/.
This value actually corresponds to the float of i under the scenario �max.Px!y/

when only the activities belonging to .Px!y [ P 0
a!b/ are considered.

Theorems 41.9 and 41.10 allow to design an efficient branch-and-bound proce-
dure for the computation of the minimum floats. In this procedure, the nodes of
the search tree correspond to valid partial paths related to a given activity i , which
are stored inside a stack Q for depth-first search. Given a valid partial path Px!y

with i 2 Px!y , the branching scheme consists in alternatively extending the path
to the left or to the right, by considering either all the immediate predecessors of x,
or all the immediate successors of y, discarding the non-valid path extensions (with
respect to the dominance rule). Thus, considering a given path-extension direction ı,
a node has always as many children as immediate valid path-extensions. Each node
of the search tree also memorizes the direction ı (ı 2 fleft, rightg) to consider for
the next path extension. A leaf of the search tree corresponds to a valid path P from
0 to n C 1 and is evaluated by TFi .�max.P //. Classically, a partial path Px!y is
deleted only if its current evaluation, LBi .Px!y/, is not smaller than the best float
TFi already found.

Let us comment on Algorithm 41.7. We remark first that the longest path
values dij.�

min.V // are precomputed using the variant of Bellman–Ford’s algorithm
for DAGs. Computing the minimum float of all activities requires running the
branch-and-bound procedure n times (see Step 1). At the beginning of each run
(Steps 2 and 3), TFi is set to 1, stack Q only contains a single partial path
Px!y D i , and the path-extension direction is set to left by default. The branch-
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Algorithm 41.7 Branch-and-bound
1: for all i 2 V n f0; nC 1g do
2: TFi WD 1;
3: push.P; .i; left//;
4: while P ¤ ; do
5: .px!y ; ı/ WDpop.P/;
6: .a; b/ WD argmax

fu2px!i ;v2pi!yg

du;v.�
min.V //C pmax

u � pmin
u �P

k2Pu!vnfvg

pmax
k ;

7: if da;b.�min.V //C pmax
a � pmin

a �P
k2Pa!bnfbg

pmax
k < TFi then

8: if x D 0 AND y D nC 1 then
9: TFi WD da;b.�

min.V //C pmax
a � pmin

a �P
k2Pa!bnfbg

pmax
k ;

10: else if ı Dleft then
11: for all x0 2 � �1.x/ do
12: if pmax

x0

C P
k2Px!unfug

pmax
k � dx0 ;u.�

min.V // C pmax
x0

� pmin
x0

.u 2 Px!i /

then
13: if y ¤ nC 1 then
14: ı WDright;
15: else
16: ı WDleft;
17: end if
18: push

�
P;

�
.x0; Px!y/; ı

��
;

19: end if
20: end for
21: else if ı Dright then
22: for all y0 2 � .y/ do
23: if pmax

y0

C P
k2Pv!ynfvg

pmax
k � dv;y0.�min.V // C pmax

v � pmin
v .v 2 pi!y/

then
24: if x ¤ 0 then
25: ı WDleft;
26: else
27: ı WDright;
28: end if
29: push.P;

�
.Px!y ; y

0/; ı
�
/;

30: end if
31: end for
32: end if
33: end if
34: end while
35: end for

and-bound procedure is implemented in Steps 4–34. While stack Q is not empty,
a partial path Px!y is taken from the stack, with its path-extension direction ı
(Step 5). Preliminarily, the activities .a; b/ for which the longest path from x to y
differs frompx!y are updated (see Step 6). Note that this can be done incrementally
in linear time: if x (y) is the last activity toward which the path has been extended,
only pairs .u; v/ such that u D x (v D y) and v 2 Pi!y (u 2 Px!i ) are considered,
respectively.

If TFi � LBi .Px!y/, the path is deleted (see Step 7). Otherwise, if Px!y 2
P0.nC1/, the new TFi value is memorized (see Steps 8–9). If Px!y … P0.nC1/, it is
extended with respect to direction ı. Below, only the case ı D left is commented on
(see Steps 10–20), the case ı D right (see Steps 21–32) being symmetrical.
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All the immediate predecessors x0 of x are first considered for possible path
extension .x0; Px!y/ (see Step 11). With respect to Theorem 41.9, Step 12 verifies
that it does not exist any activity u 2 Px!i such that the path .x0; Px!u/ has a
smaller length than the one of the longest path between x0 and u, otherwise the
path extension is not valid. We underline that the validity of a path extension can
be checked in linear time since all longest path at minimum duration have been
precomputed. Once a new left-path-extension is found, the next extension direction
is set to right unless y D nC 1 (see Steps 13–18).

41.5 Conclusions

Computing the minimum and maximum values for the starting times and floats of
project activities is a major concern of project managers. This assertion remains
particularly valid when activity durations are modelled as intervals. Indeed, uncer-
tain durations bring the concepts of possible and necessary activity criticality. This
chapter showed how the necessary criticality can be checked in polynomial time,
while the possible criticality remains N P-hard to assert in general. An effective
branch-and-bound procedure is proposed to cope with this last problem, which is
able to compute the minimum float of the project activities.

It has already been pointed out by Fortin et al. (2010) the close connections of the
criticality analysis presented in this chapter with fuzzy PERT scheduling problems
on the one hand and min-max regret longest path problems on the other hand. We
also mention here that a closely related model, the simple temporal networks under
uncertainty (STNU) have also been studied in the artificial intelligence community,
see, e.g., Morris et al. (2001). Actually STNUs can be seen as a generalization
of the activity network with uncertain interval duration to generalized precedence
constraints, i.e., where arcs can have negative value representing a maximum time
lag between two time points. The research that is mainly done in STNU is to
assert dynamic controllability, which is roughly the ability of defining a schedule
for any uncertain scenario. The criticality analysis presented in this chapter could
be of interest to provide additional information on STNUs. A step towards such a
generalization has recently been made by Yakhchali and Ghodsipour (2010).
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Kasperski A, Zieliński P (2010) Minmax regret approach and optimality evaluation in combinato-
rial optimization problems with interval and fuzzy weights. Eur J Oper Res 200:680–687

Morris P, Muscettola N, Vidal T (2001) Dynamic control of plans with temporal uncertainty. In:
Nebel B (ed) Proceedings of the 17th international joint conference on artificial intelligence,
Seattle, WA, pp 494–499

Yakhchali S, Ghodsipour S (2010) Computing latest starting times of activities in interval-valued
networks with minimal time lags. Eur J Oper Res 200(3):874–880
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Chapter 42
The Fuzzy Time-Cost Tradeoff Problem

Hua Ke and Weimin Ma

Abstract The time-cost tradeoff problem is a specific type of the project scheduling
problem, which studies how to modify project activities so as to achieve the
tradeoff between the completion time and the project cost. In real projects, the
tradeoff between the project cost and the completion time, and the uncertainty of
the environment are both considerable aspects for managers. In this chapter, three
new fuzzy time-cost tradeoff models are proposed, in which credibility theory is
applied to describe the uncertainty of activity durations. A searching method by
integrating fuzzy simulation and genetic algorithm is developed to search quasi-
optimal schedules under some decision-making criteria. The purpose of this work is
to reveal how to obtain the optimal balance of the completion time and the project
cost in fuzzy environments.

Keywords Credibility theory • Fuzzy sets • Project scheduling • Time-cost
tradeoff

42.1 Introduction

The time-cost tradeoff problem studies how to modify project activities so as to
achieve the tradeoff between the completion time and the project cost, which
is a specific type of the project scheduling problem. Kelley (1961) first studied
this type of the project scheduling problem, which also initiated the research on
project scheduling problems. In the following years, the research on the time-cost
tradeoff problem mainly focused on the deterministic cases (Phillips and Dessouky
1977; Siemens 1971). For solving the deterministic time-cost tradeoff problem, the
common analytical methods are linear programming and dynamic programming
(Butcher 1967; Talbot 1982). Besides, some heuristic algorithms, such as genetic
algorithm (Azaron et al. 2005; Chua et al. 1997; Feng et al. 1997), have also been
introduced.
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Though most research work on the time-cost tradeoff problem assumes that the
problem is always in some deterministic environment, the real world is full of
nondeterministic factors. For instance, the project completion time may vary due
to many external influence factors, such as the change of weather, the increase of
productivity level, the use of additional manpower, etc. Hence, many recent studies
introduced uncertain factors. Furthermore, Goldratt (1997) questioned the validity
of deterministic environments in the project scheduling problem. The readers may
refer to Charnes and Cooper (1962), Freeman (1960), Golenko-Ginzburg and Gonik
(1997), and Ke and Liu (2005) to see the progress in stochastic project scheduling.
In recent years, the stochastic time-cost tradeoff problem has also attracted many
researchers’ interest. Wollmer (1985) discussed a stochastic linear time-cost tradeoff
problem, in which some discrete random variables were introduced. Gutjahr et al.
(2000) designed a modified stochastic branch-and-bound approach and applied
it into a specific stochastic discrete time-cost tradeoff problem. Laslo (2003)
described a stochastic critical-path-method time-cost tradeoff model, including four
fundamental formulations of the model and several new ideas for formulating the
relationships between time-cost tradeoffs. Zheng and Ng (2005) presented a new
approach for a time-cost optimization model by integrating fuzzy set theory and
the nonreplaceable front concept with genetic algorithms, where fuzzy set theory
was introduced to model the managers’ prediction on activity durations and costs
as well as the associated risk levels. Zahraie and Tavakolan (2009) embedded two
concepts of time-cost tradeoff and resource leveling and allocation in a stochastic
multiobjective optimization model, where fuzzy set theory was applied to represent
different options for each activity. Ke et al. (2009) presented three stochastic time-
cost tradeoff models to meet different practical optimization requirements.

Probability theory can be regarded as a tool for the description of objective
uncertainty, while credibility theory, a new theory dealing with fuzziness, is a
powerful instrument for treating with subjective uncertainty. In fact, the activities
of some projects may have been processed many times before, and with historical
data, the uncertainty of the activity durations can be described by probability
distributions. While the activities of some other projects may be short of statistical
data, the durations can be better described by fuzzy variables. Zadeh (1965)
originally introduced the concept of fuzzy set to describe fuzzy phenomena via
membership function. Zadeh (1978) proposed the concept of possibility measure
for measuring a fuzzy event. Liu and Liu (2002) presented a self-dual credibility
measure for measuring a fuzzy event, as possibility measure has no self-duality
property, which is a very important property for most applications. Liu (2004)
provided axiomatic foundation for credibility theory.

With the development of the research on fuzziness, fuzzy set theory was also
applied to project scheduling problems, originally by Prade (1979). Furthermore,
many other authors, such as Chanas and Kamburowski (1981), Kaufmann and Gupta
(1988), and Ke and Liu (2010), discussed the fuzzy project scheduling problem.
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In recent years, the study focuses on the resource-constrained project scheduling
under fuzzy environments, which was initiated in Hapke et al. (1994) and Hapke
and Slowinski (1993, 1996). Wang (1999, 2002) developed a fuzzy beam search
approach for solving product development project scheduling. Hapke and Slowinski
(2000) applied simulated annealing to the resource-constrained project scheduling
problem for solving some multi-objective cases. Özdamar and Alanya (2001)
established a nonlinear mixed-binary mathematical model for software development
projects with fuzzy activity duration times, in which four priority-based heuristics
were used on some case study. Long and Ohsato (2008) performed a fuzzy critical
chain method for fuzzy resource-constrained project scheduling problem.

To the knowledge of the authors, the first work on the fuzzy time-cost tradeoff
problem was done by Leu et al. (2001). In Leu et al. (2001), the activity
durations were characterized by fuzzy numbers due to environmental variation,
and the fuzzy relationship between the activity duration and the activity cost
was taken into account by membership function. Furthermore, the philosophy of
chance-constrained programming, which was initiated by Charnes and Cooper
(1959), was introduced as a decision-making approach. Jin et al. (2005) gave a
GA-based fully fuzzy optimal time-cost tradeoff model, in which all parameters
and variables were characterized by fuzzy numbers and an example in ship building
scheduling was demonstrated. Eshtehardian et al. (2008) established a multi-
objective fuzzy time-cost model, in which fuzzy logic theory was introduced
to represent accepted risk levels. Ghazanfari et al. (2008) and Ghazanfari et al.
(2009) applied possibilistic goal programming to the time-cost tradeoff problem
to determine the optimal duration for each activity in the form of triangular
fuzzy numbers. However, as we mentioned above, possibility measure does not
have self-duality property, which is an important property in many applications.
Especially, self-duality property is necessary for well defining the concept of
expected value of stochastic event or fuzzy event, which is the most widely used
decision-making criterion in optimization problems.

In this chapter, with the credibility theory of Liu (2004), some decision-making
criteria will be proposed, and some fuzzy time-cost tradeoff models will be
established, which is the main contribution of this study. In addition, a hybrid
intelligent algorithm integrating fuzzy simulation and genetic algorithm (GA) will
be designed to deal with the proposed fuzzy time-cost tradeoff models.

This chapter is organized as follows: In Sect. 42.2, the fuzzy time-cost tradeoff
problem is described, in which some assumptions and some parameters are given
to deduce the project completion time and the project cost. In Sect. 42.3, some
important concepts of credibility theory are introduced and based on these concepts,
three fuzzy models are proposed. Section 42.4 introduces a hybrid intelligent
algorithm integrating fuzzy simulation and GA. Then we give some numerical
examples to illustrate the effectiveness of the proposed algorithm in Sect. 42.5.
Section 42.6 draws some conclusions.
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42.2 Problem Description

For the change of the environment influencing the project, the activity durations
might vary, and meanwhile the corresponding activity costs also change. For
example, hiring more workers might accelerate the project execution process and
consequently decrease the project duration and simultaneously increase the total
project cost. Actually, in most real projects, the managers always need to take
account of the tradeoff between the total project cost and the project completion
time. It is naturally desirable for managers to find the most effective way to complete
a project within some predetermined completion time limit and with the “minimal”
cost in some sense, which is just what the time-cost tradeoff problem is about.

Generally, a project can be described by a directed acyclic graph as illustrated
in Fig. 42.1. Let G D .V;E/ be a directed acyclic graph with the activity-on-node
(AoN) network structure representing a project, where V D f0; 1; 2; : : : ; n C 1g
is the set of nodes representing the activities of the project, and E is the set of
arcs corresponding to the precedence relationships among the activities. Note that
dummy activities 0 and nC1 represent the beginning and completion of the project.

First we introduce the parameter Opi as a fuzzy variable representing the normal
duration of activity i , whose uncertainty is attributed to the variation of the external
environment, and ci as the normal cost per time unit of activity i , which is a constant.
That is, Opi represents the duration of activity i without the influence of the decision
made by the manager. The fuzzy normal activity durations are concisely written
as Op D . Op1; Op2; : : : ; Opn/. The decision variable xi , which is assumed to be an
integer, represents the change of the duration of activity i , which may be due to
some decisions of the manager, such as hiring more or less workers, applying better
or worse instruments, etc. Owing to some practical conditions, the variable xi is
bounded by some interval Œxmin

i ; xmax
i �, where xmin

i and xmax
i are assumed to be

integers. Accordingly, for each activity i , there exists another associated cost di ,
which is the additional cost of per unit change of xi and is also assumed to be a
constant. Then our goal is to find the optimal vector x D .x1; x2; : : : ; xn/ meeting
some scheduling requirements.
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We denote the starting time of activity i by Si.x; Op/ and the starting time of
the project is assumed to be 0. For simplicity, we assume that each activity can be
processed only if all the foregoing activities are finished, and it should be processed
without interruption. With these assumptions, the starting time of activity j , j D
1; 2; : : : ; n, can be determined by

Sj .x; Op/ D max
.i;j /2E fSi.x; Op/C Opi C xi g

and the completion time of the project can be calculated by

SnC1.x; Op/ D max
.i;nC1/2E fSi.x; Op/C Opi C xi g (42.1)

Consequently, the total cost of the project is

C.x; Op/ D
nX

iD1
.ci Opi � dixi / (42.2)

42.3 Fuzzy Models of Time-Cost Tradeoff Problem

42.3.1 Credibility Theory

Credibility theory, founded by Liu (2004), is a branch of mathematics for studying
the behavior of fuzzy phenomena. In this subsection, we will introduce some basic
concepts, which will be helpful for establishing some fuzzy models for the time-cost
tradeoff problem. Let � be a nonempty set and P.�/ be the power set of �.

Definition 42.1 (Liu and Liu 2002). The set function Cr is called a credibility
measure if it satisfies:

.i/ Crf�g D 1.
.ii/ CrfAg � CrfBg whenever A � B .
.iii/ CrfAgCCrfAcg D 1 for anyA 2 P.�/, whereAc represents the complement

of set A.
.iv/ Crf[iAi g D supi CrfAig for any Ai with supi CrfAig < 0:5.

Next, we will introduce the concept of a credibility space, which will be used to
define a fuzzy variable.

Definition 42.2 (Liu 2004). Let � be a nonempty set, P.�/ the power set of �,
and Cr a credibility measure. Then the triplet .�;P.�/;Cr/ is called a credibility
space.

Definition 42.3 (Liu 2004). A fuzzy variable is a function from a credibility space
.�;P.�/;Cr/ to the set of real numbers.
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With the concept of fuzzy variable, we can define the membership function of a
fuzzy variable.

Definition 42.4 (Liu 2004). Let Oz be a fuzzy variable defined on the credibility
space .�;P.�/;Cr/. Then its membership function is derived from the credibility
measure by

�.z/ D .2CrfOz D zg/ ^ 1 .z 2 R/

where ^ is the minimum operator, i.e., for a; b 2 R, a^ b equals to the smaller one
of a and b.

Actually, the credibility measure can also be derived from the membership
function of a fuzzy variable, which is called the credibility inversion theorem.

Theorem 42.1 (Liu 2006a). Let Oz be a fuzzy variable with membership function �.
Then for any set B of real numbers, we have

CrfOz 2 Bg D 1

2

	

sup
z2B

�.z/C 1 � sup
z2Bc

�.z/




For giving out some decision-making criteria for managers, we will introduce the
following definitions:

Definition 42.5 (Liu and Liu 2002). Let Oz be a fuzzy variable. The expected value
of Oz is defined by

EŒOz� D
Z C1

0

CrfOz � rgdr �
Z 0

�1
CrfOz � rgdr

provided that at least one of the above two integrals is finite.

Definition 42.6 (Liu 2002). Let Oz be a fuzzy variable, and ˛ 2 .0; 1�. Then

Ozinf .˛/ D inf fr jCrfOz � rg � ˛g

is called the ˛-pessimistic value of Oz.

42.3.2 ˛-Cost Minimization Model

The philosophy of chance-constrained programming (CCP) initiated by Charnes and
Cooper (1959) is a useful decision-making approach, with which managers prefer
satisfying some chance constraints with at least some given confidence levels. Liu
and Iwamura (1998a,b) have studied several types of fuzzy CCP models. Based on
the philosophy of fuzzy CCP, we can present a model as follows:
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8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

Min. NC
s.t. CrfC.x; Op/ � NC g � ˛

CrfSnC1.x; Op/ � dnC1g � ˇ

xi 2 Œxmin
i ; xmax

i � .i D 1; 2; : : : ; n/

xi 2 Z .i D 1; 2; : : : ; n/

where ˛ and ˇ are predetermined confidence levels, dnC1 is the due date of the
project, xmin

i and xmax
i are integers given in advance, and SnC1.x; Op/ andC.x; Op/ are

defined by (42.1) and (42.2), respectively. The model is referred to as the ˛-cost min-
imization model, where the ˛-cost is defined by min

˚ NC ˇ
ˇ CrfC.x; Op/ � NC g � ˛

�
.

42.3.3 Expected Cost Minimization Model

Comparing expected values is the most widely used decision-making criterion in
practice. Managers, who are risk-averse, usually want to find the optimal decision
with minimum expected project cost subject to some expected project completion
time constraint. With this criterion, we can present the following expected cost
minimization model:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Min. EŒC.x; Op/�
s.t. EŒSnC1.x; Op/� � dnC1

xi 2 Œxmin
i ; xmax

i � .i D 1; 2; : : : ; n/

xi 2 Z .i D 1; 2; : : : ; n/

where dnC1 is the due date of the project, xmin
i and xmax

i are integers given in
advance, and SnC1.x; Op/ and C.x; Op/ are defined by (42.1) and (42.2), respectively.

42.3.4 Credibility Maximization Model

In practice, some project scheduling goals cannot be attained absolutely due to the
uncertainty of the external environment. In that case, a realistic approach may be to
maximize the chance of achieving the optimization goals, which corresponds to the
philosophy of dependent-chance programming by Liu (1997, 1999). Following this
approach, we can present the following credibility maximization model:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Max. Cr fC.x; Op/ � bg
s.t. CrfSnC1.x; Op/ � dnC1g � ˛

xi 2 Œxmin
i ; xmax

i � .i D 1; 2; : : : ; n/

xi 2 Z .i D 1; 2; : : : ; n/
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where ˛ is a predetermined confidence level, dnC1 is the due date of the project,
b is the budget, xmin

i and xmax
i are integers given in advance, and SnC1.x; Op/ and

C.x; Op/ are defined by (42.1) and (42.2), respectively.

42.4 Hybrid Intelligent Algorithm

In this section, we describe the design of a hybrid intelligent algorithm integrating
fuzzy simulations and genetic algorithm for solving the above three models.

We have three types of fuzzy functions, i.e.,EŒC.x; Op/�, Cr fSnC1.x; Op/ � dnC1g,
and min

˚ NC ˇ
ˇ CrfC.x; Op/ � NC g � ˛

�
, which are all to be estimated by fuzzy

simulations. With the relationship between credibility measure and membership
function shown in the credibility inversion theorem, the above three fuzzy functions
can be formulated or estimated by the form of membership function. The detailed
procedure of fuzzy simulations will be explained in this section. The theory and the
application of fuzzy simulations can be found in Liu (2002) and Liu (2006b).

The first type of fuzzy functions is EŒC.x; Op/�. Let � be the membership
function of Op and ui the membership functions of Opi , i D 1; 2; : : : ; n, respectively.
According to the concept of expected value of a fuzzy variable, the first type of
fuzzy simulations can be performed as follows:

Algorithm 42.1: (Fuzzy Simulation for Expected Value)
Step 1. Set e D 0.
Step 2. Randomly generate u1h; u2h; : : : ; unh from the "-level sets of fuzzy vari-

ables Op1; Op2; : : : ; Opn, and put uh WD .u1h; u2h; : : : ; unh/, h D 1; 2; : : : ;M , where
" is a sufficiently small positive number and M is a sufficiently large number.

Step 3. Set a D C.x;u1/^C.x;u2/^� � �^C.x;uM/, b D C.x;u1/_C.x;u2/_
� � � _ C.x;uM/.

Step 4. Randomly generate r from Œa; b�, and set e WD e C CrfC.x; Op/ � rg.
Step 5. Repeat the fourth step forN times, whereN is a sufficiently large number.
Step 6. E ŒC.x; Op/� D a C e � .b � a/=N .

The second type of fuzzy functions is credibility measure. According to the
definition, the credibility can be obtained approximately by the following formula

L D 1

2

	

max
1�k�N

˚
�.uk/

ˇ
ˇ SnC1.x;uk/ � dnC1

�

C min
1�k�N

˚
1 � �.uk/ ˇˇ SnC1.x;uk/ > dnC1

�



Hence, the fuzzy simulation for credibility measure can be performed as follows:
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Algorithm 42.2: (Fuzzy Simulation for Credibility Measure)
Step 1. Let k D 1.
Step 2. Randomly generate ui from the "-level sets of fuzzy variables Opi , i D
1; 2; : : : ; n, where " is a sufficiently small positive number.

Step 3. Set uk D .u1; u2; : : : ; un/ and �.uk/ D �1.u1/ ^ �2.u2/ ^ � � � ^ �n.un/.
Step 4. k WD kC 1. Turn back to Step 2 if k � N , whereN is a sufficiently large

number, and else, go to Step 5.
Step 5. Return L.

The third type of fuzzy functions is min
˚ NC ˇ

ˇ CrfC.x; Op/ � NC g � ˛
�
. In order

to find the minimal NC such that CrfC.x; Op/ � NC g � ˛, we define

L.r/ D 1

2

	

max
1�k�N

˚
�.uk/

ˇ
ˇ C.x;uk/ � r

�C min
1�k�N

˚
1 � �.uk/

ˇ
ˇ C.x;uk/ > r

�



Then the process of fuzzy simulation can be performed as follows:

Algorithm 42.3: (Fuzzy Simulation for ˛-Cost)
Step 1. Let k D 1.
Step 2. Randomly generate ui from the "-level sets of fuzzy variables Opi , i D
1; 2; : : : ; n, where " is a sufficiently small positive number.

Step 3. Set uk D .u1; u2; : : : ; un/ and �.uk/ D �1.u1/ ^ �2.u2/ ^ � � � ^ �n.un/.
Step 4. k WD kC 1. Turn back to Step 2 if k � N , whereN is a sufficiently large

number, and else, go to Step 5.
Step 5. Find the minimal r satisfying L.r/ � ˛.
Step 6. Return r .

Subsequently, we embed the fuzzy simulations, which can simulate the above
three types of uncertain functions, into GA to design a hybrid intelligent algorithm
for searching quasi-optimal solutions for the fuzzy time-cost tradeoff models.

The procedure of the hybrid intelligent algorithm can be sketched as follows.

Algorithm 42.4: (Hybrid Intelligent Algorithm)
Step 1. Initialize �pop chromosomes, where the three types of fuzzy functions

can be calculated and the feasibility can be checked by the proposed fuzzy
simulations.

Step 2. Update the chromosomes by crossover and mutation operations, in which
the feasibility of offsprings may also be checked by the proposed fuzzy simula-
tions.

Step 3. Compute the objective values for all chromosomes and accordingly
calculate the fitness of each chromosome.

Step 4. Select the chromosomes by spinning the roulette wheel.
Step 5. Run the second to fourth steps for a given number of cycles and report the

best chromosome as the quasi-optimal solution.
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42.5 Computational Results

Now let us consider a project as shown in Fig. 42.1. The durations, which are
assumed as triangular fuzzy variables, the normal costs, and the additional costs
of the activities in the project are listed in Table 42.1.

First, let us consider the following 0.90-cost minimization model:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

Min. NC
s.t. CrfC.x; Op/ � NC g � 0:90

CrfS17.x; Op/ � 36g � 0:90

xi 2 Œ�3; 3� .i D 1; 2; : : : ; 16/

xi 2 Z .i D 1; 2; : : : ; 16/

The parameters of the algorithm, including the population size of one generation
�pop, the probability of mutation 
mut, and the probability of crossover 
crs,
will be set to different values to compare the different results. It can be seen
from Table 42.2 that the “�best”s, calculated by the formula: (actual value�best
value)/best value�100 %, do not exceed 0.88 %, which does not exceed the general
project demand. Note that the “best value” here means the minimal value among the
costs in Table 42.2.

The second numerical experiment is about the expected cost minimization
model. The manager may want to minimize the expected project cost with the

Table 42.1 Fuzzy durations
and costs of activities

Activity Normal duration Normal cost Additional cost

i Opi ci di

1 .7; 9; 12/ 170 200

2 .4; 6; 8/ 300 280

3 .7; 10; 12/ 45 70

4 .4; 6; 9/ 270 300

5 .8; 10; 13/ 35 50

6 .7; 8; 10/ 25 30

7 .6; 8; 11/ 150 100

8 .5; 6; 8/ 600 400

9 .6; 8; 11/ 55 100

10 .7; 10; 12/ 200 180

11 .5; 7; 9/ 300 400

12 .9; 11; 14/ 320 380

13 .7; 10; 13/ 45 30

14 .6; 8; 10/ 70 50

15 .9; 11; 13/ 50 40

16 .5; 7; 9/ 90 120
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Table 42.2 Computational results for the ˛-cost minimization model (˛ D 0:90)

�pop 
mut 
crs Quasi-optimal solution Cost �best(%)

50 0.4 0.3 .0; 1; 0; 3; 0;�3; 2; 3;�2; 3;�3; 0; 0; 0; 1; 3/ 17,650 0.28

50 0.3 0.4 .0; 0; 1; 2; 1;�1; 1; 3; 0; 3;�3;�1; 0;�1; 3; 3/ 17,755 0.88

60 0.3 0.2 .1; 1; 0; 2; 0;�2; 3; 2; 0; 3;�1;�2; 0;�1; 3; 3/ 17,602 0.01

60 0.3 0.5 .0; 1;�1; 3; 0;�2; 1; 3;�1; 3;�1;�2; 0;�3; 3; 3/ 17,734 0.76

70 0.2 0.3 .2; 0; 0; 3; 0;�2; 0; 3;�1; 3;�3;�3; 0; 0; 1; 3/ 17,730 0.74

70 0.3 0.3 .0; 1; 0; 3; 0;�3; 0; 3;�1; 3;�3;�1; 0; 0; 2; 3/ 17,600 0.00

Table 42.3 Computational results for the expected cost minimization model

�pop 
mut 
crs Quasi-optimal solution Cost �best(%)

30 0.3 0.4 .1;�2;�1; 0; 0;�1; 0; 3;�1; 3;�3;�1; 0;�1; 0; 3/ 18,425 0.10

30 0.5 0.3 .1; 0; 0; 0; 0;�2; 0; 3;�1; 1;�2;�1; 0;�2; 1; 3/ 18,529 0.67

40 0.2 0.3 .2; 1; 0; 2; 1;�3; 0; 0;�2; 1;�1;�3; 0;�2; 3; 3/ 18,442 0.20

40 0.4 0.2 .0; 0; 0; 2; 0;�1; 1; 2;�1; 2;�1;�2;�2;�2; 1; 2/ 18,406 0.00

50 0.2 0.4 .0; 0; 0; 1;�1;�1; 0; 3; 0; 3;�3;�2;�2;�1; 0; 1/ 18,497 0.49

50 0.4 0.3 .0;�1; 0; 2; 0;�2; 0; 3; 0; 2;�2;�3;�3;�2; 2; 3/ 18,489 0.45

expected project completion time limit as it is shown in the following expected cost
minimization model:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Min. EŒC.x; Op/�
s.t. EŒS17.x; Op/� � 34

xi 2 Œ�3; 3� .i D 1; 2; : : : ; 16/

xi 2 Z .i D 1; 2; : : : ; 16/

The result comparison is shown in Table 42.3. As the maximal error is only
0.67 %, we can say that the proposed hybrid intelligent algorithm performs well on
the expected cost minimization model.

The last model is the credibility maximization model. Suppose that the project
budget is 17,800 and the project completion time limit is 36. With the philosophy
of dependent-chance programming, the credibility maximization model can be
established as follows:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Max. Cr fC.x; Op/ � 17800g
s.t. CrfS17.x; Op/ � 36g � 0:9

xi 2 Œ�3; 3� .i D 1; 2; : : : ; 16/

xi 2 Z .i D 1; 2; : : : ; 16/

The results of the credibility maximization model are shown in Table 42.4. The
designed hybrid intelligent algorithm is stable for solving the model as all the errors
do not exceed 1.18 %.
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Table 42.4 Computational results for the credibility maximization model

�pop 
mut 
crs Quasi-optimal solution Credibility �best(%)

40 0.2 0.4 .3; 0; 0; 1; 0; 0; 0; 3; 0; 3;�1;�3;�1;�2; 3; 3/ 0.9201 1.05

40 0.3 0.2 .2; 0; 0; 2; 0;�2; 1; 3;�1; 3;�1;�3;�1;�2; 3; 3/ 0.9195 1.18

50 0.4 0.2 .0; 0; 0; 2; 0;�1; 3; 3; 0; 3;�2;�1; 0;�1; 3; 3/ 0.9283 0.17

50 0.2 0.3 .0; 0;�2; 2; 0;�2; 2; 3; 0; 3;�1;�1; 0; 0; 3; 3/ 0.9204 1.02

60 0.3 0.4 .0; 2; 0; 3; 0;�3; 0; 3;�2; 3;�1; 0; 0;�2; 1; 3/ 0.9270 0.31

60 0.5 0.2 .1; 3; 0; 3; 0;�3; 1; 1;�2; 3;�1;�2;�2;�2; 3; 3/ 0.9299 0.00

42.6 Conclusions

The tradeoff between the project cost and the project completion time is an
important issue for managers in real projects. In this chapter, we proposed three
new fuzzy models: the ˛-cost minimization model, the expected cost minimization
model, and the credibility maximization model of the time-cost tradeoff problem, in
which the uncertainty of the activity durations was described by credibility theory.
To solve the models, a hybrid intelligent algorithm integrating the fuzzy simulation
and genetic algorithm was devised. The main contribution of this study is that
we adopted credibility theory to establish a framework for the time-cost tradeoff
problem with fuzzy factors, which can be studied more deeply in the future research.

Acknowledgements The work was partly supported by the National Natural Science Foundation
of China (71001080, 71371141), and the Fundamental Research Funds for the Central Universities.

References

Azaron A, Perkgoz C, Sakawa M (2005) A genetic algorithm approach for the time-cost trade-off
in PERT networks. Appl Math Comput 168:1317–1339

Butcher WS (1967) Dynamic programming for project cost-time curve. J Constr Div 93:59–73
Chanas S, Kamburowski J (1981) The use of fuzzy variables in PERT. Fuzzy Set Syst 5:11–19
Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6:73–79
Charnes A, Cooper WW (1962) A network interpretation and a direct sub-dual algorithm for

critical path scheduling. J Ind Eng 13:213–219
Chua DKH, Chan WT, Govindan K (1997) A time-cost trade-off model with resource consideration

using genetic algorithm. Civil Eng Syst 14:291–311
Eshtehardian E, Afshar A, Abbasnia R (2008) Time-cost optimization: using GA and fuzzy sets

theory for uncertainties in cost. Constr Manag Econ 26:679–691
Feng CW, Liu L, Burns SA (1997) Using genetic algorithms to solve construction time-cost

trade-off problems. J Constr Eng M 11:184–189
Freeman RJ (1960) A generalized network approach to project activity sequencing. IRE Trans Eng

Manag 7:103–107
Ghazanfari M, Shahanaghi K, Yousefli A (2008) An application of possibility goal programming

to the time-cost trade off problem. J Uncertain Syst 2:22–28



42 The Fuzzy Time-Cost Tradeoff Problem 941

Ghazanfari M, Yousefli A, Ameli MSJ, Bozorgi-Amiri A (2009) A new approach to solve time-cost
trade-off problem with fuzzy decision variables. Int J Adv Manuf Tech 42:408–414

Goldratt E (1997) Critical chain. The North River Press, Great Barrington
Golenko-Ginzburg D, Gonik A (1997) Stochastic network project scheduling with non-consumable

limited resources. Int J Prod Econ 48:29–37
Gutjahr WJ, Strauss C, Wagner E (2000) A stochastic branch-and-bound approach to activity

crashing in project management. INFORMS J Comput 12:125–135
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Chapter 43
Further Research Opportunities in Project
Management

Nicholas G. Hall

Abstract The practice of project management has expanded exponentially over
the last 15 years. Currently, one-fifth of the world’s economic activity, or U.S.
$12 trillion annually, is organized as projects. Meanwhile, the range of business
applications that are conducted as projects has also expanded greatly into areas
with quite different characteristics. However, these developments have not been
matched by a corresponding increase either in research activity, or in the training of
academic researchers in project management. This mismatch is creating significant
opportunities for academic research in project management to be conducted over the
next 10 years. The present work is a successor to a previous article (Hall, J Syst Sci
Syst Eng 21(2):129–143, 2012) on recent developments and research opportunities
in project management. It updates the information given in the previous article, and
identifies an additional research agenda for project management. The 11 new topics
presented support a wide range of practical aspects of project management, and
require the use of widely varying research methodologies. The conclusions suggest
that significant research opportunities remain open within project management.

Keywords Emerging research directions • Opportunities for research •
Overview • Project management

43.1 Introduction

There are several reasons for the increasing importance of project management as a
business process. Principal among these reasons are the following.

1. Project management controls change, allowing organizations to introduce new
products, processes and programs effectively.

2. Projects are becoming more complex, making them more difficult to control
without a formal management structure.
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3. The life cycles of products and services are becoming shorter, thereby motivating
the use of project management to reduce time to market.

4. Projects with substantially different characteristics, especially in IT, are emerg-
ing.

5. Companies are using project management to develop and test their future leaders.

The use of project management as a business process goes back a long time.
Indeed, the building of the Egyptian pyramids is believed by many to have been
assisted by the use of simple project management principles. For much of the history
of project management, the predominant application type was engineering and
construction projects—for example, roads, bridges and skyscrapers. This was still
the case when project management became formalized in the 1960s with the help of
new computing power. A particularly impressive project management achievement
at that time was the Apollo moon landing project (1961–1969), which required the
coordination of about 410,000 workers at a cost of $25 billion in 1961 dollars, or
$154 billion in 2011. Another impressive achievement, repeated every 2 years, is the
organization of the summer or winter Olympic Games using project management.
This is an example of an event project, where the project deadline is fixed and cannot
be violated.

There are several features of projects that make them particularly challenging to
perform, compared to other business processes. One such feature is their uniqueness
(Kerzner 2009), which inhibits learning from previous experience and introduces
greater variance into project performance. Another feature is precedence constraints
between the tasks (Klastorin 2004), which complicate resource planning and result
in the proliferation of delays at the task level. By contrast, early completion of
tasks tends to become lost within the project, owing to Parkinson’s Law (Wikipedia
2013a). Also, in typical projects, the resource requirements vary widely over time,
which stresses the available resources of the organization. A further complication is
that the problem of scheduling the tasks of a project, subject to resource constraints,
is a highly intractable one. As a result, for most projects of practical size, optimal
solution of the project scheduling problem is substantially beyond the capabilities of
available software (Demeulemeester and Herroelen 1992). Due to these difficulties,
the frequency with which projects are “successful”, i.e. on schedule, on budget and
meeting scope, remains problematically low, especially in modern applications like
IT (The Standish Group 2009).

However, these difficulties have failed to discourage the use of project manage-
ment as a business process. Currently, one-fifth of the world’s economic activity, or
U.S. $12 trillion annually, is organized as projects (Project Management Institute
2013). The Project Management Institute operates branches in 180 countries, and
has grown from a membership of less than 10,000 in 1980, to about 50,000 by
1996 and about 500,000 members today. Few, if any, other business processes have
demonstrated such dramatic, indeed exponential, growth in professional interest.
This expansion of interest has surpassed the availability of trained labor, resulting
in, for example, 10,000 unfilled jobs in IT project management in Asia during the
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summer of 2010. Moreover, academic research has failed to keep pace with the
development of new practice-based methodologies for project management.

This is particularly problematic because the characteristics of modern projects
are often very different from those of traditional ones. Traditional project man-
agement applications in engineering and construction, for example skyscrapers and
bridges, are usually highly deterministic, meaning that the eventual configuration
of the project is known before the start of the execution phase. However, modern
applications of project management, such as research and development, software,
pharmaceuticals and organizational change management, are nondeterministic, i.e.
the eventual project configuration needs to be found as part of the execution process.
Further, new product and service development is a midrange application, with some
characteristics of both deterministic and nondeterministic projects.

Modern applications of project management also suffer from a difficulty in esti-
mating progress. Whereas progress in skyscraper construction is easily observable,
in software development it is much less so, and indeed much of the value is only
delivered on completion of the software program. This lack of information about
project progress makes it difficult to estimate project time and cost variance during
the execution phase, which in turn makes decisions about resource reallocations to
the project difficult. Another defining difference relates to the shortness of product
and service life cycles in industries for which modern projects are performed.
Examples include new product development in consumer electronics and technol-
ogy products. Where competitive time to market is a major performance factor,
the balance within the familiar “triple constraint” (Wikipedia 2013b) of project
management changes in favor of time, and puts pressure on cost and on scope
fulfilment. For these reasons, many project managers and academic researchers
believe that traditional project management methodology does not match modern
applications well, in that it is too inflexible and too focused on time consuming
planning and documentation. A variety of research opportunities emerge from this
mismatch, as we discuss below with specific examples.

This work is organized as follows. In Sect. 43.2, we provide an update regarding
research progress on the topics discussed in Hall (2012). In Sect. 43.3, we identify
many specific research opportunities in project management. These are classified
by subsection into three broad categories, based on the type of research issue that is
being considered. Section 43.4 provides a conclusion.

43.2 Update on Previous Research Agenda

There are some recently published works that relate to the research topics discussed
in Hall (2012). In this section, we provide a brief summary of several of those works.
We refer to the research topics by their section number in Hall (2012). The literature
discussed here is representative, rather than complete.
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43.2.1 Robust Optimization for Project Scheduling (Hall 2012,
Sect. 4.1.1)

Wiesemann et al. (2012) consider a resource constrained project management
problem where task times are uncertain, but can be influenced by the amount
of resources allocated to the task. The decision maker chooses an allocation of
resources to all the tasks, so as to minimize the worst case project makespan.
The authors describe upper and lower bounds on the optimal objective value that
converge monotonically as the computation proceeds, along with a procedure for
generating a feasible resource allocation to the tasks that is lower than the upper
bound. A computational study for projects with up to 300 tasks demonstrates
substantial improvement over decision rule approximation benchmarks. Further, for
projects with 200 tasks, the gaps between upper and lower bounds are reasonable.
The proposed procedure works best when the resource budget is large and the
uncertainty budget is small, in which case the bounds converge faster.

Artigues et al. (2013) consider a resource constrained project scheduling prob-
lem, where task times are chosen from a known discrete set of scenarios. The
decision maker needs to make sequencing decisions, i.e. to decide for each resource
what is the sequence of tasks that it will process, without knowledge of future task
time realizations. The objective considered is the minimization of the maximum
relative regret. The authors describe an optimal scenario-relaxation algorithm that
requires excessive computation time for instances with 20 or more tasks. They
therefore describe a heuristic procedure which has reasonable computation time,
and show computationally that it provides good quality solutions and outperforms
two benchmark approaches.

Goh and Hall (2013) consider projects with activity times from a partially
specified distribution within a family of distributions. This family is described by
one or more of the following details about the uncertainties: support, mean, and
covariance. The objective considered is total completion time penalty plus crashing
and overhead costs, using a robust optimization model with a conditional value-
at-risk satisficing measure. Decision rules are developed for activity start time
and crashing decisions. Computational studies show that, compared to PERT and
Monte Carlo approaches, the robust crashing policies provide both a higher level
of performance, i.e. higher success rates and lower budget overruns, and substantial
robustness to activity time distributions.

43.2.2 Robust Optimization for Project Selection (Hall 2012,
Sect. 4.1.2)

Hall et al. (2013) consider a project selection problem where each project has an
uncertain return with a partially characterized probability distribution. The decision
maker selects a feasible subset of projects to minimize the underperformance risk
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of the project portfolio and the uncertain portfolio return. The model captures
correlation and interaction effects such as synergies, and is solved using binary
search, with solution of the subproblems from Benders decomposition techniques.
A computational study shows that project portfolios generated by minimizing the
underperformance risk are at least competitive with those found by all the standard
benchmark approaches.

Hassanzadeh et al. (2013) develop a multiobjective binary integer programming
model for R&D project portfolio selection with competing objectives, when the
data in both the objective functions and constraints are uncertain. They apply robust
optimization to deal with the uncertainty, and an interactive procedure to evaluate
tradeoffs between the different objectives. Robust nondominated solutions are found
by solving the linearized version of a robust augmented Tchebycheff program. The
final project portfolio chosen by the decision maker is robust in terms of all possible
realizations of the uncertain problem coefficients.

43.2.3 Earned Value Analysis (Hall 2012, Sect. 4.1.3)

Kwak and Anbari (2012) note that earned value management (EVM) is now
mandated for many U.S. government projects and programs, and provide an
extensive historical perspective on implementations of earned value management
in government. Current practices in the adoption and implementation of EVM at
NASA are studied in detail. The study concludes that implementation of EVM deliv-
ers substantial value. Recommendations for broadening and improving the use of
EVM within government programs are provided. For example, the authors propose
that EVM can be used to encourage innovation in projects, sharpen management
estimates of project resources and scope as they change during the execution stage,
and advocate for additional rigor in project planning and implementation.

Mortaji et al. (2013) formulate earned value management in a vagueness envi-
ronment, using fuzzy numbers. This makes earned value management more useful
in uncertain conditions, leading to better management decisions. They develop an
efficient procedure for calculating estimates at completion in this environment, and
illustrate the use of their methodology with a case study.

43.2.4 Policies for Task Notification (Hall 2012, Sect. 4.1.4)

Hou et al. (2013) consider the flow of information between the project manager and
the task operators. It is inefficient and costly for a task to become available either
earlier or later than the completion time of the last of its predecessor tasks. However,
uncertainty in the task times makes it difficult to match that time exactly. The authors
study the issue of what notification should be given to the task operator about the
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time when their task should be made available, and when should that notification be
given as the project execution proceeds and the task time uncertainties are realized.
Various models of the problem, which allow for a baseline schedule or for multiple
notifications, are studied and solved, either optimally or heuristically. The authors
also discuss the implications of their work for agile project management.

43.2.5 Cooperation in Project Management (Hall 2012,
Sect. 4.2.1)

Estévez-Fernández (2012) studies how to divide the total reward or penalty in a
project that is not executed according to plan. The reward and penalty are arbitrary
nondecreasing functions of the earliness or lateness of the project, respectively. She
establishes a link between this game and bankruptcy and taxation games, and uses
this result to establish nonemptiness of the core. She also includes an interesting
discussion of what should be considered as desirable properties for allocations,
indicating that it is not the properties of the game as a whole that matter, but rather
the properties of the derived solutions.

Cai et al. (2013) consider a project management problem where the project
manager outsources expeditable tasks to independent subcontractors. An optimal
project schedule requires coordination among the subcontractors, in sharing their
resources and completing their tasks. This problem falls within the principal-
agent framework. The subcontractors’ cooperative game is balanced, and a profit
sharing scheme is developed using linear programming. Algorithms are described
to compute the optimal contract parameters for profit sharing. The pooling effect
of the subcontractors’ cooperation mitigates the cost of poor parameter estimation
by the project manager. Interesting results include: (1) the subcontractors’ profits
may decrease if they strategically provide false information, and (2) it is safer
for the project manager to overestimate subcontractors’ crashing costs than to
underestimate them.

43.2.6 Real Options Analysis in Project Evaluation (Hall 2012,
Sect. 4.2.2)

Zhu (2012) applies a real options approach to the investment evaluation of nuclear
power projects. These projects are difficult to evaluate because of substantial
uncertainties, especially with respect to technology, nuclear energy generating cost,
radioactive leakage, and energy prices. A real options analysis model that uses
Monte Carlo simulation to represent these uncertainties is developed, and applied to
two case studies. An interesting conclusion is that, in view of the low electricity
price, third-generation nuclear power is currently not a worthwhile investment
in China.
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Chang (2013) discusses the problem of evaluating renewable energy projects.
Three important recent advances are critically reviewed: the systematic use of
financial risk management instruments, the integration of real options analysis tech-
niques, and incorporation of the logic of real options analysis into decision analysis
and system dynamics frameworks. However, some potential deficiencies of these
approaches are also identified, specifically behavioral uncertainty and the danger
of contract breakup. The paper addresses these two problems by incorporating the
concept of risk-bearing capacity into a net present value framework.

43.2.7 Design of Early Completion Incentives (Hall 2012,
Sect. 4.2.3)

Wu et al. (2013) identify an important behavioral factor in project performance,
which they term cost salience. This factor causes project team members to view
the cost of immediate effort as greater than the cost of future effort. This leads to
procrastination during the early stages of project execution, and overwork during the
later stages, which in turn result in delays in project delivery and also loss of quality.
Traditional analysis of incentives in project management, without consideration of
behavioral issues, focuses on the later stages of the project. However, the authors
conclude that, as a result of cost salience, incentives should be focused on the early
stages of a project, where they are needed more and can also be more effective. A
variety of practical issues that affect the design of incentives in project management
are discussed in Chap. 47 of this handbook.

In project management, the widely observed behavioral phenomenon known
as Parkinson’s Law results in the benefit towards project completion time from
potential early completion of tasks being wasted. In many projects, this leads to
poor project performance. Chen et al. (2013) describe an incentive compatible
mechanism to resolve Parkinson’s Law for projects planned under the critical path
method (CPM). This scheme can be applied to any project where, among the tasks
that are allocated to a single task owner, none is a predecessor of another. They
also describe an incentive compatible mechanism to resolve Parkinson’s Law for
projects planned under critical chain project management (CCPM). The incentive
payments received by all task owners under CCPM weakly dominate those under
CPM. Finally, the authors develop an incentive compatible mechanism for repeated
projects, where commitments to early completion continue for subsequent projects.

43.2.8 Learning Between Projects (Hall 2012, Sect. 4.3.1)

Eggers (2012) explores the relationship between organizational experience and
product development capability. An empirical study of new products in the U.S.
mutual fund industry is conducted. Organizations face initial challenges as they
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adapt their processes to meet new market opportunities. Quality increases with the
number of similar projects in particular product niches, but decreases as the portfolio
of products in the organization’s portfolio broadens.

Bartsch et al. (2013) study the difficulties that organizations have in learning
across boundaries and in making project-level knowledge available to the whole
organization. They conduct an empirical study of a large number of engineering
firms in Germany. Their conclusion is that the social ties between project team
members and other employees of the organization are highly important in dissem-
inating lessons learned from the project. Indeed, they compensate for a lack of
organizational incentives and formal structure for knowledge transfer. Other benefits
of such social ties include organizational learning about market conditions and
technologies.

43.2.9 Scalability of Agile Project Management Methodologies
(Hall 2012, Sect. 4.3.2)

Paasivaara et al. (2012) address one of the key issues in scaling agile project man-
agement methodology. Customer expectations are managed by the product owner,
who based on communication with the customer prioritizes backlogged items and
communicates them to the project team. When an application is sufficiently large
to require tens of project teams, several area product owners may be needed in
place of a single overall one. The authors conduct 58 interviews to identify the
key activities that make this process successful. These include having local product
owner representatives, forming a product owner team, frequent communication
between the local product owner and his/her team, and clear communication of the
backlog to all stakeholders.

43.2.10 Sustainable Project Management (Hall 2012,
Sect. 4.3.3)

Maltzman and Shirley (2012) provide a comprehensive overview of many practical
aspects of sustainable project management. This book provides an informative
starting point for relevant research on this topic. Hwang and Tan (2012) use
survey and interview techniques with 31 construction industry experts in Singapore,
to identify problems in green construction projects. Foremost among these is
cost, which can be addressed by a broadening of government incentives. They
further conclude that a higher level of communication is needed among the project
team members in environmentally sensitive projects, due to the need for in-depth
understanding of green principles. Also recommended is the development of a
project management framework for green building construction.
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Esenduran et al. (2013) study the environmental regulation of projects. They
consider a regulator who attempts to maximize social welfare, and project com-
panies who respond to regulation by controlling their costs. In this bilevel nonlinear
program, the upper level regulator specifies waste reduction targets, and the lower
level project companies respond using waste stream reduction or remediation.
High waste diversion targets lead to outcomes with little pollution, but excessive
project costs and only modest waste stream reduction. Projects that have lower task
precedence density, or pollutants with different environmental impacts, show larger
increases in project cost and time resulting from regulation. The authors design a
subsidy that coordinates the system and a bonus that encourages truthful reporting
by the project companies.

43.3 Research Opportunities

In this section, we present 11 research topics that will represent important advances
in support of the rapidly growing and changing project management environment.
These topics are divided into three categories. Section 43.3.1 discusses three
topics that inform a choice between fundamentally different project management
methodologies. Section 43.3.2 discusses four opportunities for enhancing existing
project management planning techniques, either to improve efficiency, or to respond
to new practical challenges. Finally, Sect. 43.3.3 discusses four opportunities for
using new or more advanced modeling techniques to address various specific issues
that arise in project management.

43.3.1 Strategic Choice of Methodology

This section consider tradeoffs and choices between different project management
methodologies.

43.3.1.1 Choice Between CPM and CCPM Methodology

Critical chain project management (CCPM) was developed by Goldratt (1997)
as a response to concerns about the performance of projects that are planned
using traditional methodology based on the critical path method (CPM). These
concerns begin with the inclusion of safety slack for individual tasks during project
planning. It is well documented that, in many projects, this slack proliferates due to
Parkinson’s Law (Parkinson 1955, 1958), and project performance is compromised.
Hence, projects routinely take longer than expected to perform, and fail to meet due
dates that have been previously agreed with clients.
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CCPM builds the project plan using median task times, and thus without
including safety slack time for individual tasks. In addition, the traditional notion of
due dates for tasks, based on late finish times from CPM calculations, is suppressed.
Then, the management of the project is based on the monitoring of three types of
buffers: a project buffer for the project makespan, a resource buffer for the startup
time of both internal and external resources, and a feeding buffer for protection
of the critical chain which is the longest sequence of tasks with respect to the
given resources. There is substantial anecdotal evidence that the use of CCPM can
improve project performance (Patrick 1998; Leach 1999). Nonetheless, CCPM can
be criticized for a lack of solid statistical foundation and a lack of clarity about how
specific issues should be handled during the execution phase (Raz et al. 2003).

In managing a given project, an important issue is the choice between traditional
and CCPM methodology. There are many projects in which Parkinson’s Law is not
a major issue, but where the due dates for the tasks provide an important source
of control. Such projects are better managed using traditional CPM methodology.
However, where the use of safety slack is extensive but tasks are routinely not
delivered early due to Parkinson’s Law, the CCPM methodology is likely to be
more effective. For each project, a choice of methodology is needed. Apparently,
no standard protocol exists for making this choice. A factor-based approach
seems ideal for this purpose. We now discuss how such an approach might be
developed.

Relevant factors include:

• The extent to which proliferation of slack and Parkinson’s Law are likely to be
problematic in a given project.

• The extent to which project team members feel comfortable and motivated
working with median time estimates, and without due dates, for the tasks.

• The availability of a reliable formula for calculating project buffer size.
• The development of a reliable procedure for allocating a feeding buffer among

different successor tasks.
• The availability of a good algorithm or heuristic for solving the resource leveling

problem as part of buffer calculations.
• The development of a reliable procedure for handling changes to the critical chain

during the execution phase.
• The availability of reliable information about lead times from subcontractors.

A multiple regression or other statistical analysis (Black 2001), can be developed
from these factors to predict the relative success of CCPM methodology compared
to that of CPM. This analysis can be used to inform an organization’s choice
between the CPM and CCPM methodologies for project management, either across
all projects or on an individual project basis.
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43.3.1.2 Choice Between Traditional and Agile Project Management
Methodology

Many traditional applications of project management methodology were largely
deterministic, i.e. the final configuration of the end of project deliverables was
mostly specified before the start of project execution. Examples of deterministic
applications include construction and engineering, where very detailed blueprints
are typically developed during project planning. By contrast, many modern applica-
tions include uncertainty about the final project configuration, and new information
which resolves that uncertainty is revealed as the project execution proceeds.
Depending on the application, this information is revealed as a result of testing,
clinical trials, regulatory decisions, or technological and business developments.
Examples of such nondeterministic applications include research and development,
and the development of software and pharmaceuticals. A widely used response
to the different characteristics of modern projects is the development of agile
project management methodology (agilemanifesto.org 2001). The principles of
agile project management include reduced planning and documentation, a focus
on customer requirements, and the submission of prototype deliverables in small
increments, followed by rapid user feedback and rework. Real world success stories
for agile methodology are reported at objectmentor.com (2012).

Paykina and Zhou (2011) compare the performance of traditional plan-driven
and agile project management methodologies for software development projects.
The purpose of their study is to identify the main organizational and project
characteristics that appear to be significant factors in this choice. The methodology
used is semi-structured interviews and questionnaires with experienced employees
of an IT company. The four major characteristics that are identified are: project
complexity (e.g., project size and the number of interdependent parts), communi-
cation capability between the customers and the project team, competencies (e.g.,
knowledge, abilities, skills, motivations, and attitudes) and product requirements
(e.g., accuracy and urgency).

Estler et al. (2012) conduct a study of 66 globally distributed software develop-
ment projects run by 31 companies. They consider the effect of the choice between
traditional project management methodologies such as waterfall, and agile project
management ones such as Scrum and extreme programming. The project perfor-
mance criteria studied include (a) overall success, (b) economic savings, (c) the
importance customers attribute to projects, (d) the motivation of the project team,
and (e) the amount of real-time communication needed during project development.
Perhaps surprisingly, the results show no significant differences between the project
performance that results from the two methodologies. It should be noted, however,
that the range of applications used in this study is rather narrow, and hence the same
conclusions may not apply more generally.

In many projects, the final project configuration is mostly deterministic and
the planning requirements are not excessive, often due to similar projects having
been performed before. Such projects should be managed using traditional method-
ology (Nerur et al. 2005). In research and development projects, however, the
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flexibility provided by agile project management methodology is an essential asset
(Boehm 2002). There are many intermediate projects, however, where the choice of
methodology is less obvious. Examples arise frequently in new product and service
development projects.

Apparently, no standard protocol exists for making this choice. However, anec-
dotal evidence suggests that some organizations, especially those which manage a
variety of projects, have developed their own protocol. A factor-based approach
seems ideal for this purpose. We now discuss how such an approach might be
developed.

Relevant factors include whether:

• The project deliverables are well specified.
• Rapid completion of the project is a higher priority than cost control.
• There is availability of a cross-trained project team with substantial project

management, ideally agile project management project, work experience.
• The project team is enthusiastic about working in a dynamic, interactive,

synergistic, agile project management environment.
• The existence of a corporate culture, including senior management, that is

supportive of an agile project.
• Colocation of the project team is possible.
• The size of the project team is not more than 15.
• The project can be divided into modules that can be developed separately.
• The project has few dependencies within the organization.
• A system is in place for continuous, incremental, implementation of the project.
• A fast test and response mechanism for evaluating prototypes is available.
• Archiving of lessons learned from the project is not a critical issue.

A few of the above factors require some explanation. First, agile project
management tends to deliver projects to completion quickly, but with less formal
control of costs than traditional project management. An experienced and cross-
trained project team is important because agile project management requires sharing
of management responsibilities. Also, most successful agile project management
implementations have been for small project teams. It is apparently difficult to
sustain the synergy of the agile project management environment beyond this,
and hence scalability of agile project management is problematic (see Hall 2012,
Sect. 4.3.2). Finally, agile project management emphasizes limited documentation,
which may inhibit the systematic archiving of lessons learned from the project.
It would be valuable to consider the above factors in a multivariate regression or
other statistical analysis (Black 2001), to predict project performance using agile
methodology.

43.3.1.3 Whether to Use a Project Management Office

A project management office (PMO) is an organizational structure used by com-
panies that run many projects. A PMO performs several functions. First, it makes
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recommendations about which of the projects that are available to the company will
be undertaken. Second, it makes decisions about resource allocations, including the
appointment of a project manager, to projects. Third, it monitors the performance of
current projects, relative to benchmarks and to other similar projects, which possibly
results in resource reallocations among projects. Fourth, on completion of a project,
the PMO archives information about what worked well and what did not, in the
format of lessons learned, and acts as a repository for this information for the benefit
of similar future projects. See Chap. 44 of this handbook for a discussion of different
forms of PMOs.

The advantages that are observed for PMOs include the following (Santosus
2003). First, the group of subject matter experts and experienced project managers
who form the PMO become highly skilled, through experience and training, at
dealing with project management issues. Second, the PMO encourages and supports
the use of the best project management practices and tools. Third, the PMO
establishes a formal mechanism to reallocate resources between projects, as needed,
which resolves political issues often associated with such decisions. Fourth, the
PMO provides and frequently updates detailed assessments of project risk and
impact.

However, some concerns about PMOs are also documented (D’Amico 2010).
First, the formation and maintenance of a PMO introduces a substantial overhead
cost. This cost is only likely to be justifiable if the organization routinely runs a
sufficient number of projects. There is often a concern among project managers
about the PMO creating more bureaucracy, more paperwork, and more meetings.
Since the PMO is typically viewed as an extension of senior management, project
managers may protect themselves by hiding information that reflects badly on them.
Some poorly functioning PMOs have a tendency to collect information from their
projects, but provide little in return. Another problem is that PMOs may attempt to
standardize project performance standards, even where doing so is unrealistic due
to the unique circumstances of each project. This leads to unfair comparisons and
resentment among project managers.

Consequently, the choice of whether or not to use a PMO is not always an easy
one. Factors in this choice include:

• How many projects the organization typically operates simultaneously.
• How many projects the organization typically completes during the year.
• The availability of experienced subject matter experts and project managers to

run an effective PMO.
• A senior management that is supportive of projects.
• The availability of experienced project managers.
• The need to manage external resources, for example through subcontracting, on

many projects.
• The turnover rate among the organization’s project managers.
• The similarity of the organization’s projects.

The last two points require some explanation. An organization with a high
turnover rate for its project managers faces more situations where a project manager
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has not worked on a similar project before. In such situations, the support and
lessons learned provided by a PMO are highly valuable. Also, where an organi-
zation’s projects are more similar, the value of lessons learned becomes greater.

43.3.2 Enhancement of Traditional Methodology

This section identifies several ways in which traditional project planning techniques
can be extended to improve project performance.

43.3.2.1 Effect of Work Breakdown Structure on Project Success

A work breakdown structure (WBS) is a decomposition of the deliverables involved
in a project, during the early stages of its planning process (Devi and Reddy
2012). The WBS defines the work to be completed within the project, establishes
a hierarchical network showing the decomposition of that work by similarity and
ownership, and enables the creation of a detailed schedule and budget for the project.
The decomposition is exhaustive and mutually exclusive, i.e. all parts of the project
are assigned to exactly one branch. At the lowest level of a WBS is a “work package”
that is assigned to a specific organizational unit. A work package typically contains
very similar subtasks. Globerson (1994) summarizes the importance of a WBS, as
follows, “The correct use of a WBS contributes significantly to the probability of
successful project completion”, and provides several supporting examples.

However, the connection between WBS design and project success has not been
extensively studied. Moreover, some fundamentally different WBS designs can
emerge from the same project. Globerson (1994) provides an interesting example
involving the opening of five new restaurants on five different campuses at the
same university. The WBS can be organized according to (1) geographical location,
(2) restaurant function, e.g. process design, (3) subsystem, e.g. the dining room,
(4) logistics activity, e.g. operations, or (5) project phase, e.g. restaurant startup.
Two issues arise from this variety of choices. The first issue is that, depending on the
WBS chosen, the work packages from which the detailed planning and scheduling
of the project is performed may be different. Differences in work package definition
also produce differences in precedence relations between them, which in turn affects
opportunities for concurrent processing (Hoedemaker et al. 1999). The second
issue is that, even if the work packages resulting from different WBSs are the
same, the level of compatibility between the WBS hierarchy and the organizational
structure of the company may vary considerably. Both these issues may affect the
time and cost performance of the project. These issues are further complicated
by the following tradeoff. Decomposition of work packages creates opportunities
for overlapping of tasks; however, this is not always beneficial, since the planning
complexity of the project is increased.
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There is some related literature. Jung and Woo (2004) propose a flexible work
breakdown structure that integrates schedule and cost control. This methodology is
illustrated using a case study. Golpayegani and Emamizadeh (2007) use modular
neural networks to plan the WBS of projects, and also provide a case study.

It would be valuable to study the specific influence of WBS design on project
success in a scientific way. Doing so would require detailed modeling of the linkages
between WBS design and project performance. A successful model would provide
guidance to a company about the appropriate hierarchy to use in designing the
WBS, and also about the appropriate level of decomposition in specifying its work
packages. A related topic of interest is how to design a WBS that provides project
performance which is robust against changes, for example in the scope or resource
availability of the project, that occur during the execution stage.

43.3.2.2 New Methodologies for Data Estimation

Among the most widespread and financially significant modern applications of
project management is software development. Data estimation in software devel-
opment projects is performed differently from that in traditional projects, for
two reasons. First, the tasks in software development are less likely to have
well documented data, although the task programmer sometimes has a reasonably
accurate estimate based on related experience. Second, planning in software devel-
opment projects is typically lightweight in style, such as agile project management
methodology, and so less time and other resources are invested in data estimation.
For these two reasons, specialized data estimation techniques have been developed
for such projects.

Such techniques fall into two categories. First, using individual task estimation,
task data is estimated individually by the task operator. This procedure is subject to
a natural bias for the task operator to inflate estimates. Second, an alternative that
tends to reduce this bias is the use of group consensus methods, where a procedure
is developed for combining individual expert estimates. Moløkken-Østvold et al.
(2008) identify six group consensus methods in popular use: Delphi, wideband
Delphi, unstructured groups, statistical groups, decision markets and planning
poker. The last of these is of particular interest here. Planning poker is a lightweight
planning technique in which each participant writes an estimate of task cost on
a card, without discussion. After all the estimates are revealed simultaneously, a
discussion moves the process towards consensus. An advantage of planning poker,
relative to other group consensus techniques, is that everyone is required to justify
their estimate, therefore everyone participates. Based on an empirical study, the
authors conclude that planning poker reduces a bias towards optimism that occurs
in statistical combination of individual estimates.

However, the features of the planning poker methodology do not restrict its
applicability uniquely to agile projects. Therefore, of great interest is the applica-
bility of planning poker beyond the software application domain. Some specific
questions related to this issue include the following. How would planning poker
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work in different size, especially larger, project teams? How can planning poker
be combined along with project re-estimation during the execution phase? Also,
how does planning poker influence the motivation level of the project team and
the quality of its work? Answering these questions could reveal the potential of
this recent planning technique from software development projects to influence
the practice of data estimation across a broader range of project management
applications.

43.3.2.3 Estimation of PERT Adjustment Factors

The project planning methodology known as Program Evaluation and Review
Technique (PERT) was developed by the consulting firm Booz Allen Hamilton in
1958, in connection with the Polaris military defense program (Fazar 1959). The
purpose of PERT is to estimate a probability distribution for the occurrence time
of various milestones within the project, including the overall project makespan.
Knowledge of these probability distributions enables the project company to quote
milestone completion times to the project client, based on its minimum probability
of on-time delivery, or “service level”.

However, PERT is based on three statistical assumptions that are, in practice, hard
to justify for many projects. The first assumption is that the uncertain task times of
the tasks are probabilistically independent. This assumption is difficult to justify
when the same resources are used for different tasks. The second assumption is that,
based on the Central Limit Theorem (Black 2001), the sum of several uncertain task
times in series is closely approximated by the normal distribution. This assumption
is difficult to justify when the number of tasks in series is less than 30. Moreover,
depending on the configuration of the project network, this may require a much
larger number of tasks in the project. While both these assumptions are questionable,
they introduce inaccuracy but not systematic bias into PERT estimates.

However, the third assumption does introduce bias. This assumption is that the
path within the network that is critical, i.e. longest, in expectation remains critical
when all the task times are realized. The reason for making this assumption is that
it greatly simplifies the calculations required to estimate the probability distribution
of the project makespan, since only the longest path in expectation needs to be
considered. However, by ignoring the possibility that other paths may become
longer than, or overtake, the path that is critical in expectation, many possible
scenarios that could increase the project makespan are removed from consideration.
As a consequence, PERT estimates are systematically too optimistic. Thus, the
estimate of the expected project makespan is systematically too low, whereas the
probability that the project completes by a given time is systematically too high.
Examples are provided by Schonberger (1981).

Although the Project Management Body of Knowledge (Project Management
Institute 2008) now recommends Monte Carlo simulation as an alternative to PERT,
many companies continue to use PERT (White and Fortune 2002). In many cases,
they do so with the help of an ad hoc adjustment procedure that attempts to
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compensate for the bias described above in the estimate of the expected project
makespan. Anecdotal evidence suggests that typical adjustment factors range from
10 to 25 %. However, these adjustment factors lack any scientific basis. Hence,
they often lack robustness in performance. This is especially problematic for
organizations that manage projects with widely varying sizes or characteristics.

What is needed here is a statistically robust procedure for calculating PERT
adjustment factors, based on reliable estimation of the amount of overtaking that
is likely, using easily observable characteristics of the project. The main factors
that affect the amount of overtaking, and hence the amount of PERT adjustment
necessary, are (a) the number of paths lengths that are near critical in expectation,
(b) how close to critical those path lengths are, (c) the variance of those path lengths,
and (d) the correlation between those path lengths, for example due to having
tasks in common. It would be valuable to incorporate these factors into a robust
procedure for estimating adjustments to the expected makespan found by PERT.
Even more challenging, but potentially even more valuable, would be developing a
methodology to find robust estimates of the probability of completing the project
by any given time. This information could be used to implement service level
preferences in quoting project durations to potential clients.

43.3.2.4 Buffer Sizing in CCPM

The influential work of Goldratt (1997) has popularized the project planning
approach of critical chain project management (CCPM). The critical chain is the
set of tasks, considering both precedence and resource availability, that determines
the overall project duration (Patrick 1998). The critical chain is protected by three
types of buffers. A project buffer at the end of the critical chain protects the project
delivery date. Resource buffers serve as warning devices to ensure that resources
are ready when needed. Feeding buffers prevent delays on non-critical chains from
affecting the performance of the critical chain. The size of these buffers is important.
Buffers that are too large add costs and make bids less competitive. Whereas,
buffers that are too small result in financial penalties for late project delivery, or
expensive crashing or outsourcing measures to avoid those penalties (Tenera 2008).
Problematically, however, the CCPM literature provides little scientifically validated
guidance about how buffer sizes should be determined (Ashtiani et al. 2007).

Newbold (1998) proposes two simple buffer sizing methods. First, the cut and
paste method aggregates the savings achieved by allocating to the tasks only 50 % of
their possibly inflated safe estimates. Second, the root square error method computes
the difference between the safe time estimate and the average time estimate of
each task, and then finds the square root of the sum of squared differences along
the critical chain. Both these methods are widely used, although computational
studies indicate a lack of robustness in their performance. Herroelen and Leus
(2001) conduct a computational study, from which they report that the cut and
paste method substantially overstates buffer sizes, whereas the root square error
method performs better, especially for larger projects. Tukel et al. (2006) introduce
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two additional variables that intuitively should influence the appropriate buffer size,
project complexity and resource tightness. These variables are incorporated into two
more complex buffer size calculation algorithms. The results of a computational
study suggest that the new algorithms outperform the two previous ones.

Because of the widespread use of CCPM, further refinement of buffer sizing
methods would be highly valuable. This refinement could include incorporating
other relevant features of projects into more complex, but potentially more accurate,
buffer sizing algorithms. Also, as mentioned by Tukel et al. (2006), cost asymme-
tries are an issue that is relevant; for example, the costs of early completion are
typically much less than those of late completion. Tenera (2008) incorporates Monte
Carlo simulation into a buffer sizing algorithm, and this approach can be developed
further. A reason for optimism about the potential of simulation approaches is that
they consider the effect of the characteristics of different parts of the project, instead
of relying on overall average measures. This intuition can also be useful for the
development of other algorithms that do not use simulation. Finally, the adjustment
of buffer sizes based on real time information during the execution stage is also
worth studying.

43.3.3 Modeling Extensions

This section explores possibilities for the power of modeling to improve detailed
decision making in project management.

43.3.3.1 Combining Resources for Performing Tasks

Consider a generic project with several tasks. Further, consider two resources that
can be applied to the tasks. Each task in the project can be performed by either of the
resources, individually, with a known task time distribution. Alternatively, the same
task can be performed by the use of both resources together, with a different task
time distribution, and on average more quickly. This example illustrates the problem
of combining, or “teaming”, resources. The fundamental question, which can be
applied to every task, is when is it efficient for the project to combine resources
in completing a task, and when not (Klastorin 2004). This problem can be viewed
as equivalent to the general resource-constrained project scheduling problem, and
therefore it is highly intractable both in theory and in practice (Brucker et al. 1999).
However, local improvements may be achieved by developing intuition about the
problem.

A factor in favor of combining resources is that there may be a synergistic effect
on productivity. For example, if two identical resources are combined, the task
time may be reduced by more than 50 %. This is particularly evident in project
management applications where detailed checking of work is important. A common
example is the pairing of programmers in software development (see Sect. 43.3.3.2).
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In many other applications, however, the reduction in task time from the use of two
identical resources is likely to be less than 50 %, especially where the task cannot
be divided equally between the resources, or the subtasks cannot be accelerated by
applying additional resources. An example of the latter situation occurs with various
physical tasks that require a fixed amount of time, such as concrete setting, paint
drying or various chemical processes.

When task times are uncertain, there is an additional factor in favor of combining
resources. Recall that the makespan of a project is defined by the length of its
longest chain of tasks with respect to the given resources. When resources are
combined, the number of chains is reduced. A smaller number of chains provides
fewer opportunities for the longest chain to be very long. An equivalent way of
viewing this is that allocating resources separately increases the parallelization of
the project.

The tradeoff issues involved in combining resources for certain tasks in a project
have received little scientific investigation. It would be of great practical value to
develop some robust rules of thumb for this decision. As discussed above, the main
factors to consider are the improvement in task time distribution from combining
resources, and the effect of reduced parallelization of the project when they are
combined. The extent of the latter effect depends on the distribution of the lengths of
the chains that are close to critical in the project network. Such rules of thumb could
be used to make decisions about combining resources either for individual tasks,
or for subsets of tasks, in a project. In view of the intractability of the problem,
what is being sought here is only a local, rather than globally, optimal solution.
Kolisch and Hartmann (2006) provide an extensive computational comparison of
the performance of several well-known heuristics for the general project scheduling
problem. It is possible that some ideas from these heuristics can be used to develop
good rules of thumb for the problem of combining resources.

43.3.3.2 Models of Paired Programming

A common practice in software development projects is paired programming
(Williams and Kessler 2003). Using paired programming, two programmers work
side by side at a single computer, keyboard and mouse, to produce a software
product. The programmers assume the roles of a driver who writes code, and a
navigator who looks for errors and tries to identify opportunities for improvement.

An important issue is how should pairs of programmers be formed. Charac-
teristics such as skill level, motivation, and personality type should naturally be
included in pairing choices. Pöyhönen (2001) finds that gender and age issues
may also be important. Kangas (2004) conducts a literature survey, and provides a
“suggestive summary” of the literature. Example suggestions include two extroverts
being a great pairing but one that requires close supervision, introvert/extrovert pairs
requiring balanced communication, and the need to avoid pairing of programmers
with excessive egos.
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An opportunity that has not so far been explored is the use of formal modeling
techniques for pairing programmers. This problem can be addressed using matching
techniques (Ahuja et al. 1993), which can solve the pairing problem for many pairs
of programmers. The advantage of this modeling technique is that it efficiently
compares all the numerous combinations of pairings, and selects one that is, subject
to the accuracy of the available data, the best.

A more complex, but also potentially more powerful, modeling opportunity
arises from simultaneous consideration of not only the pair of programmers, but also
the software development task that is assigned to them. This problem is equivalent
to the highly intractable optimization problem Three-Dimensional Matching (Garey
and Johnson 1979), but it should still be solvable optimally for small instances, or
heuristically for larger ones.

43.3.3.3 Managing a Secret Project

Pinker et al. (2013) discuss the management of a secret project. This problem
involves project scheduling in a competitive environment with an adversary, who
might represent a competitor company. As the tasks of the project are completed,
the adversary obtains a clearer understanding of the project, until at some point
the project is fully “exposed”. At that point, the adversary initiates a competitive
reaction, such as the development of a competing product. The objective is to
minimize the difference between the project completion time and the time of
exposure. The project manager uses a combination of task scheduling and crashing
to achieve this. The authors establish intractability of a general form of their
problem, and provide efficient solution procedures for special cases.

The secret project problem is closely related to the problem of project inter-
diction. Brown et al. (2005) model the interaction between a project manager and
an adversary as a Stackelberg game. In this game, the leader wants to delay a
project managed by the follower, to the greatest extent possible. The authors provide
algorithmic and intractability results. Brown et al. (2009) model the project man-
ager’s problem as minimizing project duration, given some nonrenewable resources,
crashing of task times by the expenditure of additional resources, and decision
nodes that allow different ways of achieving milestones. The interaction between
the project manager and the adversary is modeled as a two-stage Stackelberg game.
Algorithms for solving this problem are presented.

The secret project environment is one that suggests numerous interesting research
questions. Below, we provide a partial list of such questions.

• Various possible objectives can be considered for the problem, for example based
not only on the project makespan but also on the completion times of several
milestones within the project.

• A useful and practical generalization would be to consider stochastic task times,
with known probability distributions, where crashing can be used to modify those
distributions favorably.
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• In environments where a sequence of related projects will be run, it would be
valuable to minimize the amount of information exposed, subject to a given
makespan, or in the case of stochastic task times the expected makespan, of
the project.

• The information available to the different parties can be modeled in various ways,
for example symmetrically or asymmetrically.

• Models where the adversary makes multiple decisions over time, with informa-
tion and modification of his strategy, should be studied.

• The mechanism by which the adversary learns about the project can be modeled
in a variety of practically relevant ways, and can influence the decisions and
outcomes available to the project manager.

• The existing models of secret projects can be extended to include multiple
adversaries, i.e. multiple potential competitors of the project firm, who act
independently or in competition with each other.

• Models of strategic behavior can be used to increase the range of options
available to the adversary; for example, the adversary can attempt to mislead
the project company as to its intentions.

• The concurrent development of a suite of several secret projects, such as a new
product range to be introduced simultaneously, including resource allocation
issues between the projects, should be studied.

From the above examples, it appears that work on secret projects is only
beginning, and can enrich the methodology and practical applicability of project
management over the next several years.

43.3.3.4 Maximization of Risk-Adjusted NPV

One of the most widely used measures for evaluating a project is the net present
value (NPV) of its cash flows. Given any schedule, including the timing of all
the tasks, the NPV of the project can be calculated. Then, using NPV, a company
can reasonably compare the value of investing in a project with the value of
alternative investments. However, every practical project involves both cash inflows
and outflows, with discounted values that depend on the decisions about the timing
of the tasks. Moreover, as a result of precedence relationships between the tasks, the
timings of the tasks are connected. This complicates the problem of determining the
timing of the tasks that maximizes the NPV.

This problem has apparently been studied only under the assumption of a
constant discount rate over time. For example, if cFi denotes a cash flow for
tasks i D 1; : : : ; n, Ci is the time when it occurs, and ˛ is the constant project
discount rate, then the present value of a schedule is given by

Pn
iD1 cFi e�˛Ci .

Russell (1970) models this problem as a nonlinear program with linear constraints
and a nonconcave objective. However, Grinold (1972) shows that this problem can
be modeled as an equivalent linear program that allows an efficient specialized
algorithm based on tree networks. He further investigates the tradeoff between
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project duration and net present value. Russell (1986) provides a computational
comparison of the performance of six heuristic scheduling rules for the more general
problem that considers resource constraints. Schwindt and Zimmermann (2001)
consider the maximization of project NPV subject to general temporal constraints,
and describe a steepest ascent procedure that runs efficiently.

The above works can all be criticized, in that they ignore the fact that the risk
component in the discount rate may change over time. Moreover, the change over
time is a function of project scheduling decisions. While there is typically a risk
free component in a discount rate, the level of risk in the project is also a large
component in the discount rates used by most companies. As most projects are
executed, the meeting of various challenges embodied in the tasks, and the passing
of various reviews and tests, lowers the amount of risk in the project. An example
is the development of a new pharmaceutical, a project that becomes less risky
with the passage of each stage of clinical trial success or regulatory approval. The
monotonically decreasing risk level in the project can be modeled, for example, by
reducing the project discount rate, whenever a task is completed, by a prespecified
task-dependent amount.

However, modeling the project discount rate in this way introduces additional
mathematical complexity into the problem, because the discount rate becomes a
function of the decisions about the timing of the tasks. For this reason, the linear
program proposed by Grinold (1972) is no longer equivalent to NPV maximization.
Indeed, the objective function of maximizing the NPV now contains additional
nonlinearities. While this problem is computationally challenging, solving it would
represent a major contribution to the project management literature, since the
assumption of a constant discount rate in the existing literature is unrealistic for most
projects. Even heuristic solution of this problem could provide more realistic results
than optimal solution of the problem under the constant discount rate assumption.

43.4 Conclusions

This work provides a detailed list of research opportunities within project manage-
ment. These research opportunities arise from several sources. The first source is
industry’s increasing focus on new project management applications with character-
istics that differ greatly from those of traditional applications. The second source is
the development of new methodologies that have evolved from project management
practice, but are not yet well supported by academic research. The third source is
the considerable underestimation of the value of project management as a planning
methodology over the last 20 years. This has in turn caused research to lag behind
recent business innovation and the growing range of applications. Perhaps because
of this underestimation, there has been little Ph.D. education in project management
during the last 15 years, and hence few new researchers have entered the project
management field. Finally, leading academic journals in OR/OM have published few
articles on project management in the last 10 years, compared to many other topics
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of comparable or less practical importance or potential for interesting academic
research.

The open research problems described here and in Hall (2012) require a wide
variety of analytical techniques, including network analysis of WBS structures,
multiple regression and other statistical analyses, robust and nonlinear optimization,
cooperative and noncooperative game theory, competitive and strategic behavior,
and stochastic analysis of project networks. This variety itself presents an interesting
challenge to researchers.

Over the next 10 years, emerging trends within the practice of project manage-
ment will identify further important research questions, besides those discussed
here. One of the most important is understanding to what extent agile project
management methodology can be effective for applications outside the range for
which they were originally developed. It is unlikely that agile project management
methodology will come to be used routinely for highly deterministic applications
such as construction and engineering, since it apparently offers few advantages
in such environments. However, there are applications with a mixture of deter-
ministic and nondeterministic characteristics for which agile project management
methodology may be useful. One natural application area to consider in this range
is new product and service development. The special difficulties that arise for
project management in this application area are discussed in Chap. 45 of this
handbook. Some interesting practical discussions about the potential for agile
project management methodology to be applied in this environment appear in Smith
(2007). The research issues that surround this potential will crystallize over time.

In conclusion, we expect that the next 10 years will see fundamental advances
in academic research on project management, and that such advances will greatly
improve the practice of the challenging business process of project management.
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Chapter 44
Project Management in Multi-Project
Environments

Peerasit Patanakul

Abstract This chapter discusses project management in multi-project environ-
ments, which can be seen from the organizational level and project manager level.
From the organizational level, such a practice can be seen in the contexts of multiple
project management, project portfolio management, and project management office.
From the project manager level, it can be seen in the context of the management
of a group of multiple projects. To illustrate such a practice, first, the chapter
introduces the concept of multiple project management (MPM) and contrasts it
with that of project portfolio management (PPM). Second, the concept of the
management of a group of multiple projects (MGMP) is introduced together with
key factors contributing to MGMP effectiveness. Those factors include project
manager assignment, resource allocation, organizational culture, project manage-
ment processes, and competencies of multiple-project managers. Third, the chapter
discusses the concepts of project management office (PMO) and different forms of
PMO representing PMO as a project office, a functional project office, a customer
group project office, a project management center of excellence, a coordinating
center, and a corporate project office.

Keywords Multi-project environment • Process competency • Project manage-
ment • Project management office

44.1 Introduction

It is typical in an organization that there are several projects going on at the
same time. These projects can be selected as parts of the project portfolio and
managed in a multi-project environment or multiple project environment. The
term “multiple project management” is used to represent such a management
condition. In an organization, these multiple projects can be managed as parts of
a project management office (PMO). While some project managers are responsible
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for leading one project at a time, many project managers lead more than one
project at a time. Those project managers can be referred to as multiple-project
managers. This chapter will first discuss the difference between project portfolio
management and multiple-project management. Next, the chapter focuses on
multiple-project management and discusses the issues related to multiple-project
managers, especially the management of a group of multiple projects (MGMP).
Furthermore, the chapter presents the concepts of project management office.
Conclusions are presented at the end of the chapter.

44.2 Multiple Project Management

The term multiple project management (MPM) needs to be clearly defined. Broadly
speaking, MPM can be referred to as an organizational-level environment in which
multiple projects are managed concurrently. These projects are diverse in size and
importance, may be at any point in their life cycle, and may not necessarily be
interdependent or directly related (PMI 2008a). In the case that the projects are
mutually dependent, share a common goal, and lead to a single deliverable product
or service, these projects are part of a program. In an essence, program management
is a centralized and coordinated approach that is used to manage a group of goal-
related projects to achieve the program’s strategic objectives and benefits (PMI
2008a). In some cases, projects in an MPM setting can be parts of a project
portfolio. Typically, project portfolio management (PPM) involves the selection
and management of the collection of projects and programs in which a company
invests to implement its strategy so as to maximize the contribution of those projects
and programs to the overall welfare and success of the enterprise (Levine 2005;
Rajegopal et al. 2007). A typical goal of PPM is to ensure that an organization is
doing the right work, rather than doing the work right (PMI 2008b). From industry
practices, Cooper et al. (2001) suggest that the maximization of portfolio value,
portfolio balance, and strategic alignment are the typical goals of PPM for new
product development.

Contrasting PPM and MPM, PPM has a strategic focus. MPM, on the other
hand, focuses on tactical issues. Typically, MPM emphasizes, e.g., the allocation
of resources to multiple projects (Pennypacker and Dye 2002; Patanakul 2013),
the assignment of project managers (Patanakul et al. 2007), and the use of project
management processes, tools, and techniques. Despite the differences in their intent
and focus, PPM and MPM are interrelated. With a constant change in most multiple
project environments, a well-defined project selection and prioritization process can
give guidance to project and resource managers for properly planning and allocating
resources to multiple projects (Pennypacker and Dye 2002). Also, PPM has to be
complemented by MPM as information from MPM can help a PPM committee
making appropriate portfolio decisions.

In an MPM setting, some of the project managers have only one project under
their responsibility. Typically, those projects are sufficiently large and strategic
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in nature. Other projects in an MPM environment that are of smaller size and
more tactical nature tend to be grouped such that one project manager (called
a multiple-project manager) handles several concurrent projects at a time. This
approach can be referred to as management of a group of multiple projects (MGMP).
Typically, projects in the group are not mutually dependent in terms of objectives
and goals but rather grouped for the sake of efficiency and better management at a
project manager level, leading to interdependencies among these projects as they
are managed by the same project manager (Archibald 1975; Ireland 1997). An
example is the assignment of a product improvement project, an internal process
improvement project, and a small IT upgrading project to one project manager. This
form of project management is of the interest of the industries (some researchers
and practitioners refer to it as multiple project management).

44.3 Management of a Group of Multiple Projects

At a project manager level, MPM can be perceived as the management of groups
of several concurrent projects. Each group of projects managed by a project man-
ager typically termed a multiple-project manager. These managers are tasked with
making decisions lower in an organization hierarchy and have interrelationships
with multiple functional units from which they draw resources (Galbraith 1994).
Essentially, this form of MPM is designed as an overlay to an existing functional
organization (Galbraith 1994) and is of strong interest to many organizations in var-
ious industries (Levy and Globerson 1997; Fricke and Shenhar 2000; Pennypacker
and Dye 2002).

Multiple-project managers share many characteristics with single-project
managers (project managers who manage one project at a time), but also differ
in many ways. First, a major piece of multiple-project managers’ role, linking
multiple concurrent projects, doesn’t exist in single-project management. Second,
in dealing with multiple projects at a time, a multiple-project manager leads multiple
teams for the projects of different objectives, while a single-project manager leads
only one team. Third, multiple-project managers face the challenge of switchover
from project to project, at times several times a day (Fricke and Shenhar 2000)
while the switchover among projects does not exist in a single project.

As for factors impacting the effectiveness of MGMP, Patanakul and Milosevic
(2009) suggest that such factors can be categorized in to the organizational
factors and the operational level factors. The organizational level factors include
project manager assignment, resource allocation, and organizational culture. The
operational level factors include project management processes and competencies
of multiple-project managers.
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44.3.1 Project Manager Assignment

A realistic project manager assignment is one of the most important factors leading
to the effectiveness in MGMP (Patanakul and Milosevic 2009; Patanakul 2013).
With the realistic assignment, a multiple-project manager would have skills and
time availability to effectively lead each project. With sufficient attention from a
multiple-project manager, a project tends to be more successful.

What is a realistic project manager assignment? A realistic project manager
assignment is the one that management attempts to find a good match between skill
sets of multiple-project managers and the project requirements, including an addi-
tional consideration on the project priority and some other limitations (Patanakul
and Milosevic 2006). Those limitations include, e.g., having an appropriate number
of projects per multiple-project manager and having a balanced mix of projects
in terms of project types and phases. Kuprenas et al. (2000) proposed that the
effectiveness of MGMP depends on the number of projects a multiple-project
manager leads at a time. Being assigned too many projects, a project manager would
lose a tremendous amount of time catching up with all the issues in the projects
instead of focusing on leading projects. There is no universal rule of thumb on how
many projects should be assigned to a project manager. The appropriate number of
projects being assigned to a project manager varies from company to company and
from industries to industries. It also depends on the complexity of projects and their
phase (Patanakul and Milosevic 2006). In manufacturing support environments, a
study found that assigning two to three “major” projects to an engineering project
manager is an effective maximization of his/her productivity (Fricke and Shenhar
2000). In an Information Technology environment where projects tend to be smaller
in size, assigning five to six projects to a multiple-project manager seems to lead to
the overall MGMP effectiveness (Patanakul 2011).

44.3.2 Resource Allocation

Having resources when needed is another critical factor and is a prerequisite for
effective MGMP (Patanakul 2013). However, having sufficient resources is rare
for most multiple-project managers. With the nature of MGMP, e.g. the smaller
project size and tactical nature of projects, a multiple-project manager always faces
a challenge with insufficient resources. In addition, smaller projects are always on
the back burner resource. Usually, they have to deal with resource sharing and
live with the risk of unsustainable resources. Even with such a systematic resource
allocation process, there is no guarantee that multiple-project managers will end up
with resources they need.

Resource sufficiency and sustainability are uncommon in many organizations. It
is not only the nature of project management in MGMP but it is also the nature of
the competitive environments these companies are in that leads to the insufficient
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resource allocation. There are a lot of new opportunities for a company to pursue.
Without a good resource management system, the company will always be resource-
strapped (Adler et al. 1996). This discussion leads to the concept of project portfolio
management. By having a balanced portfolio, first, a company would not implement
too many projects such that the resource bottleneck is created (Adler et al. 1996).
Second, the project priority would be set such that resources can be allocated
to the projects accordingly (Seider 2006). The use of project management office
can also help balance the resource usage (Crawford 2001; Kerzner 2003). The
implementation of Enterprise Resource Planning (ERP) system should help alleviate
the resource allocation issue. However, research found that ERP implementation
is a complex and expensive process (Muscatello and Parente 2006; Seider 2006).
Even though ERP promises to computerize an entire business, its focus is on
promoting the integration between all functional areas within a firm’s supply chain,
especially related to manufacturing. Even though ERP was used in other parts of
the organization that implement MGMP, it is not commonly used when it comes
to project management, especially for managing project resources. Besides ERP,
several studies proposed tools and techniques for scarce resource allocation, which
include integer programming, heuristic methods, queuing theory, etc. (Dean et al.
1992; Morse et al. 1996; Levy and Globerson 1997; Hendriks et al. 1999). However,
these techniques were proposed for a use in the functional level to allocate the
functional resources across multiple projects. Since they were not proposed for the
MGMP settings, these techniques may not be applicable to an operational level for
a multiple-project manager to allocate resources across projects in his/her group.

44.3.3 Organizational Culture

To be effective in MGMP, an organization should establish the culture that supports
such a management form. It is typical to witness in an MGMP setting that (1) the
functional managers attempts to solve resource challenges across multiple projects,
(2) the multiple-project managers juggles issues among projects, and (3) the project
teams work on tasks of multiple projects. In such a setting, commitment, communi-
cation, strong working relationship, and reward for performance are needed for the
effective MGMP (Patanakul and Aaronson 2012).

In terms of commitment, the project commitment has to come from top
management and has to be supported by every level of the organization. At the
project level, commitment of the project team is also important. With multiple
projects to work on simultaneously, having the culture that supports communication
is also significant. With clear communication channels, the project teams can share
knowledge and experience across projects. Multiple-project managers can use these
channels to communicate project objectives to the teams in order to engage them
in project activities. In addition, the organization should have the culture that helps
build a strong working relationship and supports reward for performance.
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44.3.4 Project Management Processes

Having shared project management processes helps multiple-project managers to be
effective in MGMP (Patanakul and Milosevic 2009). The shared processes include,
first, the typical project management process for individual project, and second,
interproject processes, which include sequence of steps to concurrently lead and
complete multiple projects, while delivering results.

To be effective in MGMP, it is necessary that an organization should have
standard project management processes and multiple-project managers should
have a solid foundation of those processes. For each individual project, the process
would lead a way for multiple-project manager to plan, schedule, monitor, and
control project activities, allocate resources, manage risks, etc. In addition to
a standard process to lead each project individually, to be effective in MGMP,
multiple-project managers should be proficient in interproject processes and the
management of interdependencies among projects (Patanakul 2013). Research has
shown that even though knowing and executing interproject processes is a must
because it is the hard core of MGMP, many companies still do not have a formal or
a shared interproject process (Patanakul and Milosevic 2009). Research has shown
that, to be effective, multiple-project managers use various methods to manage
interproject processes e.g. consolidating projects’ deliverables or milestones of
projects and managing them together (Patanakul and Milosevic 2009). This will help
multiple-project managers optimize their own resource capacity and also reduce the
magnitude of multitasking. Having interproject processes also help multiple-project
managers manage interdependencies and interactions among projects related to
shared milestones, resources and technology. In other words, these processes help
multiple-project managers manage the impact of one project on the others.

44.3.5 Competencies of Multiple-Project Managers

Literature in project management has always suggested that project manager is a key
success factor of a project (Brown and Eisenhardt 1995). Multiple-project managers
should possess a combination of competencies that help them lead each individual
project and coordinate among projects to be effective (Patanakul and Milosevic
2008).

Multiple-project managers should have experience managing multiple-project
for the organization for some time. Multiple-project managers should have adminis-
trative competencies that include planning, scheduling, monitoring and control, and
management of cost, resource, and risk. They should also have a solid foundation
of project management processes both individual project and interproject processes,
discussed earlier. In addition, multiple-project managers should possess the ability
in interdependency management. They should also have the business competencies,
which include having business sense, understanding customers, having integra-
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tive capability, having strategic thinking, and being profit/cost conscious. Having
business competencies helps project managers solve interdependency problems to
benefit all projects they lead as much as possible.

The ability to multitask is very important for effectiveness in MGMP (Patanakul
2013). Multiple-project managers must be able to estimate their own resource
capacity in order to set priorities and switch contexts to multitask among different
projects. Multitasking poses a significant challenge when managing more than one
project because often, each project has its unique characteristics. During switchover
from one task to another, it is not only multiple-project managers have to recognize
the difference between tasks, but they also have to realize different project objectives
associate with those tasks. As a result, they often lose some time while refocusing.
Rubinstein et al. (2001) refer to it as “switchover-time cost”:To be considered as
being competent in multitasking, multiple-project managers must possess the ability
to minimize the switchover-time cost. This includes those who usually are intensely
organized, methodical, and focused. Sometimes, it is more effective to trust the
project team and delegate some project activities.

Another group of competencies is internal traits, which includes being organized
and disciplined, being proactive, being mature and self-controlled, being self-
motivated, and being flexible. Last but not least, leadership/simultaneous team
management should be mentioned. Multiple-project managers must be competent
in simultaneously leading several project teams, literally at the same time. To do
so, multiple-project managers should have knowledge, skills, and experience in
interacting with numerous project stakeholders, a.k.a. interpersonal competencies.
In a speedy manner and in a limited time, multiple-project managers must be
able to (1) putting together a team that is committed and mutually accountable,
(2) setting direction, (3) delegating authority, and (4) influencing a project team with
fairness. Importantly, they must have ability to select and use different leadership
styles specifically for each team. This is especially important in multidisciplinary
and distributed teams, a frequent organizational design in a current business
environment. In addition, to be effective, multiple-project managers should be a
good communicator. They should be capable of listening, asking questions, com-
municating (verbally and in writing), and articulating and handling the information
whether it is technical, legal, administrative, or interpersonal in nature. Problem
solving competence is also significant in MGMP.

44.4 Project Management Office

To facilitate efficiency and effectiveness of project management in a multi-project
environment, many organizations establish project/program management offices
(PMOs). Contingently to the parent organization, PMOs take on different
forms (Milosevic et al. 2007). A PMO of one organization may function as a
project/program office, serving one specific project/program (Bernstein 2000).
In other organizations, the PMO can be seen as a corporate project office,
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focusing on corporate and strategic issues related to projects, programs, and
portfolio management (Crawford 2001; Kerzner 2003). Many organizations
utilize a PMO as a functional project office, managing a critical resource pool
(Kerzner 2003). The PMO can also be seen as a center of project excellence,
assisting project stakeholders on strategic matters and functional entities throughout
the organization in the implementation of project management principles, best
practices, methodologies, tools and techniques, including maintaining PM standards
and organizing PM training (Block and Frame 1998; Dai and Wells 2004).

Within a company, depending on its needs and what PMO provides, multiple
PMOs can be found (Crawford 2001; Crawford and Cabanis-Brewin 2006; Kerzner
2006; Milosevic et al. 2007). An organization can establish a project control office
for direct management of a project. At a division level, e.g. IT department, a
functional program office can be established to manage critical resource pool of
that particular function. At the enterprise level, the establishment of a center of
excellence or a corporate PMO can help set up a common platform for project
management. Literature has suggested that having an established enterprise PMO is
one measure of an organization maturity since project management is recognized as
a true function of the organization (Archibald 2003). The following sections discuss
various forms of PMO.

44.4.1 PMO as a Project Office

As a project office, also called, project control office (Crawford and Cabanis-Brewin
2006; Milosevic et al. 2007), this PMO is an organizational entity established to
manage a specific project, a related series of projects, or a program, usually headed
by a project or program manager. To serve the needs of a single, large, complex
project, the PMO provides administrative and tracking support for the project teams.
Work is focused on maintaining project procedures, schedule maintenance, earned-
value tracking, tool usage and support, and project metrics and report generation
(Milosevic et al. 2007).

44.4.2 PMO as a Functional Project Office

This type of PMO is utilized in one functional area or division of an organization
and is set up to support the project managers within a division (Kerzner 2003).
With its more administrative nature, the functional project office may not operate
as a true function within the company (Milosevic et al. 2007). Even though this
type of PMO still provides support for individual projects such as the maintenance
of project schedules, project-data tracking, and development of project indicators
and reports (Milosevic et al. 2007), its primary task is managing the integration of
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multiple projects of varying sizes within the division (Crawford and Cabanis-Brewin
2006).

44.4.3 PMO as a Customer Group Project Office

Kerzner (2003) suggests that this type of PMO is set up for better customer
management and customer communications. For better management, customer
focus, and customer relations, projects with common customers are clustered
together. As a result, within one organization, multiple customer group PMOs can
exist at the same time. Within each PMO, a permanent project manager is assigned
to manage projects.

44.4.4 PMO as a Project Management Center of Excellence

The responsibility of this organizational-levelPMO is to supply project management
support to the project team, provide the organization with project consulting and
mentoring, develop and maintain commonality of project management methods,
tools, and metrics, identify best practices, provide project management training,
develop a corporate resource capability/utilization plan, be a knowledge center etc.
(Block and Frame 1998; Crawford 2001; Kerzner 2003; Crawford and Cabanis-
Brewin 2006; Milosevic et al. 2007).

44.4.5 PMO as a Coordinating Center

In many companies, multiple PMOs are established to serve the needs of different
functions. To achieve better organization and control, a coordinating PMO is also
established to network together those multiple PMOs (Kerzner 2006). This type
of PMO may be considered a regional PMO in other companies serving as a
coordinating center for groups of project managers or team members who perform
project management duties within specific regions or industry-specific areas. The
primary responsibility of this PMO may include promoting enterprise project
management methodology, including the use of standard project management
process, tools, and techniques; being a source of project management experts; and
coordinating multinational project management knowledge (Kerzner 2006). This
type of PMO can be seen as a variation of the center of excellence.



980 P. Patanakul

44.4.6 PMO as a Corporate Project Office

Another variation of PMO is a corporate project office. This type of PMO serves
the entire company with the major responsibility on project management-related
corporate and strategic issues rather than functional issues (Kerzner 2003, 2006).
Some authors refer to this type of PMO as a strategic project office or an enterprise
project office (Milosevic et al. 2007). Besides taking a role of a project management
center of excellence or a project management coordinating center, an important
responsibility of a corporate PMO is to ensure the alignment between the company’s
strategic direction with the projects or programs implemented within the company
(Anonymous 2006). Its responsibilities may also include project selection, project
portfolio management, and project manager assignments.

44.5 Conclusions

This chapter discusses project management in multi-project environment. First, the
chapter presents the concept of multiple-project management (MPM), which can
be broadly referred to as an organizational-level environment in which multiple
projects are managed concurrently. Those projects can be parts of programs or
portfolio. At the project manager level, MPM can be seen as the management
of a group of multiple projects (MGMP). The majority of the chapter dedicates
to the discussion of the factors impacting the effectiveness of MGMP. Those
factors are project manager assignment, resource allocation, organizational culture,
project management processes, and competencies of multiple-project managers.
The chapter ends with the discussion of project management office (PMO) that
many organizations establish to promote efficiency and effectiveness in management
of multiple projects.
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Chapter 45
Project Management for the Development
of New Products

Dirk Pons

Abstract New product development (NPD) projects are difficult to manage
because of the subjectivity of the customer requirements, the inter-dependencies
between different parts of the solution, and the subjective nature of personal and
collective innovation. This chapter describes the NPD life cycle and how it may
be managed. A systems perspective is applied. This describes the processes of
identifying the desired product functionality, assessing feasibility (and terminating
the project if necessary), and how to manage the NPD team.

Keywords Human resource management • New product development • Product
development life cycle • Project management • Systems engineering

45.1 Introduction

New product development? (NPD) is a difficult process with risky outcomes. There
are many theories of how to do it, and many complexities to consider. This makes it
difficult for practitioners to manage. What actions should they be taking? What are
the downstream implications of decisions they are about to make right now? How
should organisations manage themselves to optimise innovation

Existing theories of design theories primarily address the engineering aspects
of the NPD process, and therefore are relatively weak at providing guidance for
the underlying project management activities (cf. Chap. 48 of this handbook).
Engineering design involves complex problem-solving (Söderlund 2002). The
objectives (e.g. customer’s needs) are often partly implicit, specific solutions may
not be readily available, multiple solution paths may exist with outcomes that cannot
be predicted. Different parts of a solution are entangled, so that solving one sub-
problem affects other parts of the solution. The variables are often qualitative and
so much of the body of standard engineering sciences is inoperable. Furthermore,
the criteria for determining “success” usually involve qualitative factors, and the
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decision-making processes have an element of subjectivity. Also, design involves
the activity of personal and collective creativity, and this too adds a subjective
complexity to the management of NPD. For all these reasons, NPD is a complex
process, and hence difficult to manage (Smulders et al. 2003; Leus and Herroelen
2004; Olin and Wickenberg 2001). This chapter applies a systems engineering
method to represent this complex situation. It demonstrates the value of approaching
NPD as a net of interacting activities. Existing approaches to this problem are
reviewed in Sect. 45.2, followed in Sect. 45.3 by considerations of the design life
cycle. A systems perspective is applied in Sect. 45.4, and progressively developed
to encompass the management of NPD projects (Sect. 45.5), the customer needs
and product attributes (Sect. 45.6), design activities (Sect. 45.7), the assessment
of project feasibility (Sect. 45.8), and the integration of NPD process with the
production activities (Sect. 45.9). These sections focus on the task-oriented aspects
of the NPD process, but there is also the people-oriented aspects to evaluate. These
are considered in Sect. 45.10, which takes in a number of topics including creativity,
management of innovative people, teams, conflict, and organisational culture.
Implications for practitioners are summarised in Sect. 45.11, and opportunities for
further research are also identified there.

45.2 Existing Approaches

There are several existing methods that are commonly applied to managing NPD
projects. These include systematic design methods, project management, and
general management. These are briefly reviewed below.

45.2.1 Systematic Design Methods

The systematic engineering design theories (Hubka 1987; Hubka and Eder 1988,
1996; Pahl and Beitz 1988; Hales 1994) take the position that design is primarily
a creative activity, one of finding solutions to pre-defined problems. Consequently
these theories require that the design problem needs to be fully specified before
creative solutions can be found, and spend considerable attention on that spec-
ification process. The validity of the solution is then apparent by determining
the extent to which it satisfies the initial specification. The acceptance decision
itself is thus easy to make. The requirement for definition of specification is also
important for artificial intelligence design methodologies, e.g. genetic algorithms
and expert systems (Andert and Peters 1994; Biondo 1990; Haykin 1994; Kuipers
1994; Silverman 1994).

These formal design methodologies also rely heavily on another characteristic:
that the problem is decomposable into sub-problems that can be solved indepen-
dently and those solutions then reassembled to make a whole. Real design problems
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may instead present with complex functional interdependencies between parts or
production processes. This is also known as the distributed design problem (Finger
and Dixon 1989a,b). This makes it difficult to plan design projects, because it can be
difficult to anticipate when in time the different workstreams are likely to intersect,
until closer to the time.

Another complexity arises because the NPD process invariably involves itera-
tions, i.e. the recursive nature of design. This is particularly so for radical design,
less so for routine incremental design. Concepts are selected and design proceeds,
only to find an obstacle, and the designer goes back and takes a different conceptual
approach. The locus of effort for any one design workstream within a NPD project
is therefore convoluted over time: it intersects with other workstreams, and it folds
back in rework loops. This makes it difficult to develop detailed project plans up
front.

Consequently the formalised project management methods are often only par-
tially applied in NPD. Their adoption is low during the conceptual stages but higher
at detailed development (Lewis et al. 2002; Panico 2004).

45.2.2 Project Management Methods

Perhaps the best-known formalised project management (PM) method is the
Project Management Body of Knowledge (PMBOK) (PMI 2004). It identifies nine
knowledge areas: Project Integration, Scope, Time, Cost, Quality, Human Resource,
Communications, Risk, and Procurement. Superficially, many of these elements
would seem highly relevant to NPD. Scope corresponds to customer requirements
and design specification, time and schedule are evident in the Gantt charts frequently
used in NPD projects, quality is well-understood in design, human resources are
important, as is the communication around the design process, e.g. design history
files. In fact the project management method is often applied to NPD: it is just that
the results are not always ideal, and the process cannot be followed completely (Olin
and Wickenberg 2001).

The perceived irrelevance of the PM framework to NPD is undoubtedly partly
due to lack of suitable contextualisation of the PMBOK, which otherwise is much
more suited to infrastructure projects and activities of a more routine nature than
NPD. Specific criticisms of the PMBOK are: that it takes a contractual approach
to scope, and hence results in deterministic and pre-determined objectives that
do not fit well with the changing landscape of design; that its understanding of
quality is severely limited, being primarily manufacturing variance, and excludes the
voice-of-the customer concept; that it treats people as mere homogenous units
of labour that can be discarded at the end of the project; that its perspective of
communication is overly directed at the formal contracting situation, and it has
little real understanding of the difference between client and customer (end-user)
so necessary in design. The client is the person who owns the intellectual or
commercial rights to put the product on the market, as opposed to the customer
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who buys the product and is the end user. The client may be internal or external
to the organisation that does the design, and has specific needs that must be met,
e.g. design for manufacture and production economics. In contrast the customer’s
needs are for product functionality. While these needs are less proximal, and may be
merely implicit, they are vital since the product can only be commercially successful
if customers desire to purchase it.

The NPD practitioners have their own more effective methods for all these things,
and therefore do not find the PM method in its entirety particularly useful. The PM
method is not well-suited to the type of thinking required to manage NPD. The
complexity of the NPD tasks is more than can be managed by a simple piecemeal
application of the nine knowledge areas. Methods have been developed to handle
task dependencies in NPD, such as the design structure matrix (DSM) method
(Yassine and Falkenburg 1999; Denker et al. 2001).

The need in NPD is therefore for a system of management that accommodates
the complexities (flexibility), and can include all the workstreams (integration).
While the PMBOK does have a particular section devoted to project integration,
it advocates a rather rigid system of delegated authority, more suited to contractual
situations than NPD.

One of the strengths of the PM method is its strong focus on the temporal
dimension. This is evident in how PM defines itself (a time terminated endeavour),
a focus on schedule, and its representation in the Gantt chart. Also, the PM method
includes well-developed tools for identifying the critical path (in time), handling
uncertain time estimates (PERT), and optimising schedule, as other chapters in this
book illustrate. However, that also results in a limitation, in that PM is preoccupied
with time as the critical success factor. This limitation becomes apparent in NPD,
where uncertainties in the technology solution path are often a major disruptor of
the planning. In an ideal world we would have a methodology that could identify
the critical path for time, the critical route for technology completion (including
interdependencies between design decisions), the critical cost drivers, etc.

45.2.3 Management Perspective

By comparison the management perspective tends to view “innovation” in a
decontextualised manner. There is not much recognition that different types of
innovation may require different types of support from management (exceptions
exist, de Leede and Looise 2005). Instead there tends to be a one-size-fits-all
approach based on an implicit premise that some universal key success factors
exist for innovation. Thus the management literature is less explicit in identifying
which type of innovation is being considered, though a distinction is typically made
between process (also termed administration) and product innovation (Mavondo
et al. 2005). The management view also encompasses the idea that “product inno-
vation . . . [includes] diffusion of the product to new sets of customers” (Mavondo
et al. 2005, p. 1246), whereas the engineering perspective would see that as effective
marketing rather than innovation per se.



45 Project Management for the Development of New Products 987

In this chapter we take the premise that NPD refers specifically to physical prod-
uct development, and necessarily involves the application of design or engineering
activities. Thus we do not specifically address financial “products” (e.g. saving
accounts), or service “products” (e.g. mobile data plans), nor innovation generally.

45.3 Design Life Cycle: A Long-Term Strategic Project

The NPD process plays out in the time dimension. Thus a helpful perspective on
design is the temporal life cycle. All products have an origin in time, and eventually
become obsolete, hence life cycle.

The process starts with the customer’s needs, and proceeds to deliver a product
in satisfaction of those needs. Many activities are undertaken on the way, as
shown in Fig. 45.1. Many organisations have multiple such NPD projects running
concurrently at different stages of completion, and this diagram represents a single
project. It can be helpful to perceive of the NPD process as catching a customer’s
need and (after some intense effort) replying back with a product.

The customer-orientation is therefore a core attribute of successful NPD. The
complexity of the NPD process arises from the diversity of activities that need to
be undertaken, and the interactions between them (including rework loops). The
challenge in managing NPD projects is providing the integration necessary. Without
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Fig. 45.1 The new product development (NPD) life cycle. The process starts in response to a
customer need, and proceeds to reflect a product back to the customer and thereby satisfy the need
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this integration it is difficult to develop a product that satisfies all the stakeholders
needs (customer, producer, and potentially others) in a coherent manner. The
temporal life cycle is an important perspective at the organisational level, for two
reasons. The first is that NPD projects can have a long life cycle. It may be many
years from concept development, through detailed design, into production, then
several years in the market, and finally withdrawal of the project. Even then, there
is a need to decommission production plant and retain sufficient spares for the rest-
of-life usage of the product. Accommodating recycling and disposal of old product
is also an increasingly important consideration, especially for the environmentally
hazardous components of the product. The life cycle has to be managed over this
entire time, and even though the individual designers only see a part of the product
life cycle, the organisation still has to maintain a coherent approach to how it
introduces its new products, supports the customer’s use thereof, and eventually
withdraws them. Organisations built up brand awareness, wherein customers know
about their products and have specific expectations regarding the quality thereof.
Since customers apply that knowledge to future purchase decisions, it benefits
organisations to actively manage their market portfolio of product offerings. These
decisions are strategically important and therefore form a significant part of the
activities of executives and the board.

The second reason why the temporal NPD life cycle is important to the
organisation is that projects consume resources, and any organisation only has
finite resources. Organisations must therefore make strategic decisions about which
product to develop, and which to abandon or suspend. This is the capital rationing
consideration. Given that applying resources to product development now only
results in sales income in the future, there are important cash-flow implications.

For start-up organisations with a capital intensive NPD project, the temporal
considerations are paramount, and a matter of life-or-death for the organisation. This
time in the life cycle of the start-up organisation is termed the valley of death. The
issue is the prolonged negative cash-flow during the NPD process, and the frequent
organisational failure that results. This phase is not attractive to professional venture
capitalists, because of the risks, and the entrepreneurial founders of the organisation
often have to rely on their own wealth to get through this phase. This puts
considerable pressure on the management of such projects. These organisations
value lean design, reliable manufactured products, and minimised time-to-market.

Fortunately it is relatively easy to apply project management methods to the life
cycle part of the NPD process. When constructing a project plan with projections
for perhaps 5–20 years, the complexities of the design process itself, including the
inevitable rework loops, are less significant, and may be considered a lumped block
of time. In addition, it is possible to anticipate the major milestones in the product
life cycle and build them into the plan, as follows (adapted from Pons 2008):
New product development life cycle

1 Identify desired product functionality

Identify customer perceptions and decision-making mechanisms
Determine customer needs for the product
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Evaluate quality of current system (product, service)
Identify strategic risks to the organisation
Define criteria for new system (product, service)

2 Generate early design concepts

Idea generation
Concept design

3 Assess feasibility of project

Consider production implications
Check strategic feasibility (e.g. SWOT—an analysis of strengths, weak-
nesses, opportunities, and threats)
Check market
Check technology capability
Check financial feasibility
Check schedule feasibility
Check for resources available
Create project proposal
Make decision to proceed/not
Close project (if required)

4 Design and optimise the product

Set the specifications
Design key characteristics
Evaluate production implications
Produce computer aided design (CAD) models
Analyse and optimise design
Produce drawings
Produce prototype

5 Test and validate the design

Test product for user satisfaction
Test key characteristics (e.g. engineering)
Finalise design

6 Review the design

Validate production capability
Board approval
Revise design
Freeze the design

7 Commission production system

Procure manufacturing capability
Design the tooling
Build the tools
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Modify building
Obtain equipment
Obtain manufacturing staff capability
Commission plant

8 Produce product

Get first parts from production
Test parts
Verify quality tolerances
Produce in volume

9 Market and distribute product

Market product
Identify key benefits of product
Identify potential users
Plan marketing strategy
Produce brochures, adverts
Produce campaign

Arrange distribution
Establish sales chain
Find local representatives
Establish business procedures for ordering, shipping, accounting, repair

Set up technical support capability
Write user manual
Write service manual
Decide on warranty conditions
Obtain staff capability

Market economics
Market growth
Market maturation
Market decline and rejuvenation

Declining sales
Refresh product
Launch derivative product
Differentiate service
Launch new product

10 Decommission product and production system

Decision to withdraw
Produce lifetime spares requirement
Decommission production
Archive documentation

11 Project closure
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Fig. 45.2 Gantt chart showing the activities of the NPD life cycle placed into a work breakdown
structure and scheduled in the temporal dimension. The detail here is merely representative, the
more important point to note being the long duration of NPD projects, and the consequences for
the organisation. Image adapted from Pons (2008)

These activities may readily be included into a Gantt chart, with its strong
representation of the time dimension. The activities can then be scheduled, to
determine likely time to market and other key milestones, see Fig. 45.2. It is then
possible to estimate the future positive cash-flows, based on assumptions about
production cost, price and sales volumes (Pons 2008). Naturally these estimates
are of unknown validity, but that is not usually a problem with this type of project
planning, for which the purpose is to understand the big-picture and the long-term
potential of the NPD project. The time to break-even (as soon as possible is
preferred) and the return-on-investment (ROI) can then be determined. Potential
investors are particularly interested in the information that this type of longitudinal
analysis provides. Furthermore the project management method readily provides
a means to introduce some variability into these projections, through the PERT
(project evaluation and review technique) method. PERT addresses stochastic
variability in estimates of duration, which is a good start since time-based costs
are important in this situation. However there are many other project variabilities
that are not captured in PERT, such as unexpected rework loops, difficulties getting
the product technology to work, cost variability, and discrete events (e.g. responses
by competitors).

The temporal dimension is readily evident in Gantt charts. The cashflow
implications can also be anticipated once the Gantt chart is created and the project
scheduled and costed. However the Gantt chart does not capture the strong customer
orientation that NPD organisations show: this is better represented in Fig. 45.1,
though it will be seen that the two figures represent the same activities.

It is also possible to include the risk-management process with this type
of long-term planning, by combining strategic methods (including SWOT and
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PESTLE) with qualitative risk management (Pons 2010). (SWOT: strengths,
weaknesses, opportunities, and threats, PESTLE: political, economic, social,
technological, legal, environmental). Hence a form of strategic risk management
may be achieved, one closely coupled to project management.

In this way, the conventional project management methods have a lot to offer
in strategic scheduling at the organisational level. The PM methods, particularly
the Gantt chart, also are very commonly used to manage the work breakdown
structure and schedule of specific workstreams with the NPD project. Yet as the
life cycle demonstrates, there is a lot more to managing NPD projects than schedule
considerations alone, and it is to these other considerations that attention now turns.

45.4 Systems Perspective

Given the complexity, it is useful to take a systems engineering (SE) perspective of
NPD projects. This lens is very similar to PM, and they share many commonalities
and tools, but the key difference is how SE approaches the problem. Complex
projects don’t respond well to piecemeal solutions, because of the interaction of
effects. These problems need to be treated holistically, and solutions implemented
in an integrated manner. This is what SE aims to achieve. Examples of systems
engineering applications are shown in Figs. 45.3 and 45.4.

Fig. 45.3 The Curiosity Mars rover was landed by a rocket-powered hovering skycrane. Getting
all this hardware to this situation is a system problem, not merely a project. Image credit: http://
mars.jpl.nasa.gov/m2020/images/PIA14839-fi.jpg

http://mars.jpl.nasa.gov/m2020/images/PIA14839-fi.jpg
http://mars.jpl.nasa.gov/m2020/images/PIA14839-fi.jpg
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Fig. 45.4 Here are more details about the Mars rover deployment. More of the systems become
apparent at this level. For example we see previous separation and control activities, and the
subsequent decommissioning of the skycrane. Managing these system interactions for maximum
dependability is an essential part of managing such NPD projects. Image credit: http://mars.jpl.
nasa.gov/msl/images/msl/MSL_TL_EDL_1.jpg

Systems engineering is the application of engineering analysis tools in a system-
atic and integrated manner, for the solution of complex problems, typically for the
development of new products and equipment. It is particularly focussed on:

1. Taking the big-picture perspective: e.g. using Integration definition zero (IDEF0)
flowcharts (FIPS 1993)

2. Making sure that all the design is consistent with the customer requirements: e.g.
using quality function deployment (QFD)

3. Ensuring that the analysis is realistically representative of real issues the product
will have to face in its life, e.g. finite element analysis (FEA)

4. Effectively managing the design & product development process: typically using
project management (PM) methods, and Risk management (RM)

5. Planning for appropriate testing regimes to validate the analyses and product
performance: often using Design of Experiments (DoE), and Reliability testing.

6. Integrating the manufacturing into the design considerations: e.g. Design for
manufacturing and assembly (DFMA) and concurrent engineering

7. Considering the full life of the project (from concept through to commissioning
of plant), and of the product in the customer’s hands (supply chain, manufac-
ture, distribution & sales, user instructions, maintenance/support/repair, product
disposal, recycling). Hence life cycle analysis (LCA).

http://mars.jpl.nasa.gov/msl/images/msl/MSL_TL_EDL_1.jpg
http://mars.jpl.nasa.gov/msl/images/msl/MSL_TL_EDL_1.jpg
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A more formal definition of systems engineering from its professional body the
International council on systems engineering (INCOSE) is: “Systems engineering
integrates participating disciplines and specialty groups into a team effort by
coordinating contributions throughout the system life cycle stages from concept to
disposal. Systems engineering balances the social, business, and technical needs
of all stakeholders to achieve a quality product that meets these needs” (INCOSE
2013). There is nothing in here that the project management method would contend
with, and rather than seeing these as competing frameworks it is more useful to
see them as different methodological approaches that can complement each other.
As the descriptions show, systems engineering is particularly focussed on product
development, whereas project management has a more general field of application.
The PM method has the advantage of being more specific about process—it has a
standardised methodology—whereas the systems engineering method is somewhat
vague in places. On the other hand, it is that flexibility that makes it attractive
to NPD. Systems engineering is about avoiding unintended consequences that
could have been anticipated, whereas project management is more focussed on
anticipating work packages and scheduling them temporally.

One of the ways that systems engineering helps the management of NPD projects
is by providing a high-level integrated perspective. In the next section we show how
this may be applied.

45.5 Managing NPD Projects

As we have seen, the development of a new product involves projects that typically
go through phases, and have wide-ranging interactions with other activities in the
organisation, such as marketing and manufacturing. These activities have already
been shown in the simple flowchart of Fig. 45.1, and the Gantt chart of Fig. 45.2.
Now we reconfigure them in the system-representation of Fig. 45.5. This shows the
same information, but with additional detail. The value in doing this is that it permits
a deeper exploration of some of the issues with managing NPD projects.

This diagram is represented in integration definition zero (IDEF0) system mod-
elling notation (FIPS 1993). The IDEF0 model represents the proposed relationships
of causality for a complex situation. As is usual with this method, we focus on the
activities which in this case are the actions that are conducted as part of managing
the NPD process. With IDEF0 the object types are inputs, controls, outputs, and
mechanisms (ICOM) and are distinguished by placement relative to the block,
with inputs always entering on the left, controls above, outputs on the right, and
mechanisms below. A block represents an action. The inputs (if any) are transformed
or even consumed by the function in the block, to produce one or more outputs.
Input arrows are always on the left of the block, and outputs on the right. Controls
(or constraints) enter above the block and initiate or ensure the output is correct. The
mechanisms (if any) that support the function enter under the block. The notation
therefore permits inputs and outputs to be clearly distinguished from other factors



45 Project Management for the Development of New Products 995

Assess feasibility
of project

(3)

Finalise design and
validate

production
capability

(6)

Commission
produc�on system

(7)

Decommission
product and

production system
(10)

Manage the NPD
people

(11)Create the
organisational

platform
(12)

Generate early
design concepts

(2)

staff
knowledge,

skills,
motivation

Manage new product development  process

Design and
optimise the
product (4)

new
design of
product

Identify desired
product

functionality
(1)

customer  value
preferences

(voice), expressed
explicit needs,

technical
objectives and
importances,
product and

service features

Customer
requirements,
voice, or needs

Produce product
(8)

product
available for
distribution

and sales

raw
materials

staff labour

operational
funding

research,
experience

Creative
design

concept

produc�on
requirements

project proposal
and commitment

to resource
implications

Test and validate
the design

(5)

product
passes
tests

design
drawings and

manufacturing
instructions,
product flow,
supply chain

production
plant ready

Market and
distribute product

(9)

Product to
customer,

with
satisfaction

Terminate
project & Apply
organisational

effort elsewhere

end of market
life

close
production
and divert

resources to
next NPD
project

collaborative
interactions

between marketing,
design,

manufacturing,
sales, finance

organisational
structure,

resources, plant
capability,

knowledge, staff

entrepreneurial
activity

organisational
agility and

culture

NPD-1

NPD-3

NPD-5NPD-4

NPD-11

NPD-2

NPD-6

PRD OM-4-2-2

PRD-1-5 PRD-7

NPD

OM-5

A separate organisational management (OM) system model
describes entrepreneurship, the formation & operation of an
organisation, and a production (PRD) model covers the generalised
development and operation of production plant including quality
and lean manufacturing. Space does not permit these to be
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Fig. 45.5 System model of the new product development process. This diagram shows the same
activities as the previous representations of the NPD life cycle, but with additional detail and using
IDEF0 notation. Notice that the inputs to the process are the “Customer requirements, voice, or
needs”, and the output is a “Product to customer, with satisfaction”, as before
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that influence the activities. With other flowchart notations the meanings of the
arrows is seldom explicit, and they generally represent sequence of activities or
influence. However, with IDEF0 it is essential to note that arrows convey objects to
activities. Therefore, an activity may begin autonomously when its required inputs
are available, mechanisms are operable, initiators exist and constraints permit.
Consequently, the IDEF0 notation readily provides that multiple activities can
be simultaneously active, i.e. concurrent. It retains support for sequenced (serial)
activities. Also, the locus of effort may make multiple iterations through some
activities.

We briefly describe the activities apparent at this level. First is the customer
orientation of identifying the desired product functionality (1). This is an important
activity in understanding the NPD process, and we describe it in further detail
below. One of the important outcomes is the identification of the test and acceptance
criteria: these are necessary to know whether or not the design is sufficient for
the intended purpose. Next are a bracket of design-centric activities. There is the
development of creative thinking (13), and generation of early design concepts (2),
which are where the creativity occurs for which design is renowned. This is usually
followed by an activity of assessing the feasibility of the project (3), though this
activity could alternatively be positioned earlier or later in the process.

The next activity is the design and optimisation of the product (4). For most
products of a consumer nature, there is a strong reliance on computer aided design
tools. The design process is primarily focussed on physical geometry, e.g. solid
models and printed circuit board design. It is augmented by a variety of analysis
tools, too many to list here, but including finite element stress/strain analysis (FEA),
computational fluid dynamics (CFD) for fluid flow, electromagnetic analysis, mold-
flow analysis (for plastic injection molded parts). These tools allow the optimisation
of the design before parts are made.

Test and validation of the design (5) is next. The test and acceptance criteria
are generally already available, having been set at (1), but a considerable effort
may be involved in producing prototypes and testing them in all the load cases
expected of the product in service. Rapid prototyping and 3D printing technologies
are useful at this stage. The manufacturing and production requirements are
considered throughout these design activities, i.e. design for manufacture and
assembly (DFMA) methods. This finds its fulfilment in the next activity, which is
to finalise the design (e.g. production of manufacturing drawings and instructions)
and validation of the production capability (6). Sometime concurrent with this,
it is necessary to commission the production system (7). This can have a long
lead time, and benefits from the release of preliminary design information much
earlier in the process, e.g. the sizes of the parts, even if not the details. When all
that is ready, then its time to produce the product (8). Production is a large topic
in its own right, and we do not go into it here. However it is relevant to note
that the quality, continuous improvement, and lean management methods operate
here. Consequently the production process will eventually start identifying areas for
improvement in the design, and thus generate a re-design process (not shown in the
figure). Naturally the marketing and distribution of the product (9) is a key activity
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in actually getting the product to the customer. The diagram also shows some other
activities. One is the withdrawal of the product from the market at the end of its
economic life, and the decommissioning of the production system (10). Generally
this activity is poorly anticipated, if at all, in project planning for NPD. In many
cases the cost implications are low, but there are situations, such as nuclear power,
where the decommissioning costs exceed the original fabrication costs, so it is worth
keeping this is mind. Finally we wish to mention two other organisational activities.
One is to create the organisational platform in the first place (12). The other activity
worth considering is the management of this whole NPD process and the people
involved (11). There are some particular challenges in here, because the creative
temperament that drives the conceptual design at (2) also needs to be channelled
constructively.

The IDEF0 model is progressively decomposed to show finer detail where
necessary. As will be shown, this approach permits us to take a holistic perspective
of NPD, and gives us the means to integrate the many activities in a coherent manner.
It also permits detailed models of specific workstreams, and these can readily be
converted to a work breakdown structure (WBS) and scheduled into a Gantt chart
with the usual PM methods. Generally the detailed design activities, (4) onwards,
enjoy more substantial project management effort than the conceptual stages (1) and
(2) (Lewis et al. 2002). These earlier stages are the more challenging, and therefore
we will concentrate our analysis here.

45.6 Identify Desired Product Functionality

The ultimate objective of this part of the NPD process is to define the design
criteria for the new product. However there is much to be done beforehand, and
the anticipated actions are represented in Fig. 45.6. Customers have perceptions
about the product, that affect their purchasing decision (1) and these need to be
understood. The organisation also wants to determine the customer needs for the
product (2), because these will be directly useful in the engineering design activities.
Another activity is for the organisation to evaluate the quality of its current product
offering (3). Design and manufacturing engineers understand this well, since this
type of thinking is embedded into quality and the continuous improvement process.
This is a particularly valuable activity once the product (or a previous variant) has
already been on the market, such that customer feedback is available. Much of the
incremental product improvement activities are focussed in this area. It has been
an enormously successful approach, as evident in the low cost, feature-rich and
high reliability of modern automobiles for example. Another consideration is that
NPD is invariably a strategic activity for an organisation, as the life cycle schedule
showed. It is therefore important to identify strategic risks to the organisation (4)
and the implications for new product developments. In this context risk refers to
both threat and opportunity. Organisations always have the choice to do nothing
different, merely maintain the status-quo. However that has risks that their product
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Fig. 45.6 System representation of the process for identifying the customer needs and product
functionality. This is a key process in NPD, and drives the entire venture

becomes obsolete in the market, and then causes the organisation to fail. NPD is the
route to organisational invigoration, but it can also fail spectacularly. Hence strategic
choices have to be made.

Thus at this level of the model we see several very different activities taking
place, before the NPD project is even initiated. There is marketing/advertising, voice
of the customer, continuous improvement, and strategic decision-making occurring.
Next we briefly look at several of these in turn. Space does not permit a full
elaboration, rather our purpose here is to help the practitioner understand the issues
involved, suggest some tools that may be used to manage these work streams, and
identify some of the relevant literature. These IDEF0 flowcharts represent actions
and outputs, and can therefore readily be repurposed into WBS work packages,
scheduling applied, and Gantt charts created.
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45.6.1 Identify Customer Perceptions and Decision-Making
Mechanisms

In NPD it is desirable to know what the customer is likely to think and feel about the
product. In the later stages of product development it is possible to present prototype
products to focus groups and solicit this information. However that cannot always
be done at the early NPD stages. In which case a useful way of approaching the
problem is in terms of the competitive position: products are successful to the extent
that they are rare (only available from this producer), inimitable (others cannot or
may not copy the product), and valuable (has worth to customer) (Barney 1991).
With the addition of organisation this is also called the VRIO framework (Barney
and Hesterly 2012). The implications for products are modelled in Fig. 45.7. Thus
products have a proposition of value to the customer, and the customer has her own
perception of the value equation, and uses this to make the purchase decision. It
should not be expected that the purchase decision will be purely rational, especially
for consumer products. Nor is the organisation undertaking the NPD endeavour
passive in the process: it uses marketing and advertising to present its proposition
of value in the product, and it seeks to shape the customer’s needs and priorities.

45.6.2 Determine Customer Needs for the Product

If seeking to affect the customer’s decision-making process is one of the
organisational activities associated with NPD, another is seeking to determine what
the customer specific needs are in the product, see Fig. 45.8. The customer value
preferences (voice) are often tacit, but this is not helpful to the NPD process: they
need to be extracted and made explicit. Ultimately we need to obtain the customer
value preferences (voice), which are expressed explicit functional needs that the
customer wants from the product. We also want to know the relative importance
of each, because this helps prioritise the downstream design activities (as will be
shown). Customers will have general needs in the area under consideration (1), as
well as preferences regarding specific products (own and competitor’s). There are
a number of market-research mechanisms available to determine customer needs,
including quantitative methods (analytical hierarchy process, conjoint analysis), and
qualitative (focus groups, analysis of user experience). However research is of no
use if the organisation does not have the culture to act on it, and in this regard NPD
organisations need staff with the necessary customer focus and market orientation.

Market research and focus groups are typical mechanisms for determining needs.
The problem here is that customer needs are often implicit. Hence the situation is
similar to knowledge management (KM), where the need is to convert implicit (tacit)
knowledge into explicit (Polanyi 1958; Nonaka 1994; Nonaka et al. 2000). The KM
capture process may use interviews, observations, simulations, or other mechanisms
sometimes termed cognitive task analysis (Meso et al. 2002).
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Fig. 45.7 Customer perceptions affect purchase decisions, thereby affecting NPD

The systems engineering method readily lends itself to analysis in this area. One
such example is shown in Fig. 45.9, which analyses how a user (car driver) interacts
with a car mirror. The analysis is broken into discrete activities, strung together
in the time dimension. It is then a simple task of determining what additional
functionality the user might appreciate at each of these stages. (These are shown in
italics in the figure). Taken together, these provide a set of functional requirements.
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Fig. 45.8 NPD seeks to satisfy customer needs, and therefore seeks to identify those needs in
the first place. This is termed customer voice. Note that customer needs may not be explicit to
themselves

45.6.3 Evaluate Quality of Current Product, System or Service

Organisations that already have a product in the market have a potentially large
and valuable source of ideas for new product features, if they can tap into the
information. There are several ways of achieving this, shown in Fig. 45.10. The first
is to analyse failed products (1), including warranty claim and maintenance reports.
This information is typically used as part of the internal continuous improvement
process (2), and can result in significant incremental improvements in the product by
inexpensive improvements. The quality literature has much to contribute in this area.
Another source of NPD ideas is customer feedback (3), including the complaints. In
addition many NPD firms compare their product against that of a competitor (4), or
compare their processes (e.g. design and analysis tools) against those of a friendly
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Fig. 45.9 Example of how user needs may be determined by analysing the interactions of the user
with the product, in this case a car wing mirror
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Fig. 45.10 Failed product and the evaluation of competitors’ products is valuable information to
NPD. Also, NPD is usually closely coupled to the manufacturing activities, and the continuous
quality improvement processes within the latter also suggest new improvements to the design

firm which is not a competitor (benchmarking). From these ideas the NPD manager
determines the vision for the functionality in the next generation of product.

45.6.4 Identify Strategic Risks to the Organisation

The strategic management of an NPD organisation is important to its success,
because of the nature of the risks, threats and opportunities, that come with NPD.
However the strategic issues have had limited attention in the NPD literature. In
this part of the model, see Fig. 45.11, we show how the strategic considerations
operate. This model is consistent with the Baldrige framework (NIST 2013), and
the representation given here is necessarily a simplification. Typical activities here
are the governance actions of setting organisational purpose (1), the evaluation of
NPD opportunities (2) and the development of a vision for the future state of the
organisation (3). A strategic plan (4) is developed for achieving the vision, taking
into account the organisation’s capability (5) and anticipating the organisational
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Fig. 45.11 NPD activities are key to the rejuvenation of the organisation, and therefore intimately
connected with the strategy and vision activities. These activities tend to occur at more senior levels
than the design engineers and project managers, but are nonetheless key drivers in the NPD process
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changes required (7) before value can be produced (6). The role of leaders is to
motivate others to effort or change (8) within these processes. As this shows, there
is an intersection of strategy, vision, leadership, and change-management. These set
the context in which innovation and NPD occur.

The activities most directly relevant to NPD are the need to evaluate the NPD
opportunities, and these processes are shown in Fig. 45.12. These high-level activi-
ties are conducted by the design manager, as opposed to the designers themselves.
Chief of these activities is to evaluate the competitive position (1) of the existing
and proposed products. This may include market research into relative market
size, current success factors, changing customer value preferences and expectations
(voice), emergent markets (and declining markets). An evaluation of the degree to
which the product is rare, inimitable, and valuable can also be done here if not
already completed (see Fig. 45.7 above). It is also necessary to scan for changed
regulatory constraints (2). For an NPD organisation that is distributing a product
into multiple countries, the regulatory constraints can be significant. Some examples
in the NPD area are new national standards for product safety, and changes to
product liability legislation. There is also a large class of constraints emerging in the
environmental area, in the form of supply-chain and disposal considerations. These
are discussed in further detail later (see Life Cycle Analysis), but the main point here
is that regulatory constrains can be threats to existing products, and opportunities for
new products.

All these considerations help form an opinion of the commercial prospects for
the product, and identify where the product is in its commercial life cycle (3).
Technology changes make certain products obsolete, and open opportunities for
new products (4). For example digital cameras replaced film, and firms like Kodak
failed to anticipate how profoundly these changes would affect their future product
portfolio. Environmental scanning is important in building awareness of the external
situation. Methods like PESTLE analysis are often used here, since they prompt to
evaluate these different dimensions.

The above strategic risks originate external to the organisation. There are also
internal risks to consider (5). Of particular relevance to NPD are the innovative
ideas of inventive staff. Organisations need their staff to be active agents in the
innovation process, as opposed to mere spectators. This requires an organisational
culture that rewards rather than stifles such behaviours. This aspect of culture is
also important in sustaining production quality improvements and implementing
lean manufacturing. The lack of such a culture is thus a major threat, of internal
origin, to NPD. There can also be threats from the organisation’s own inaction, e.g.
Kodak’s complacency towards digital imaging, which may require a deliberate risk
management treatment (6).

Taken together, these activities form the basis for envisaging the new NPD
direction for the organisation (7). This might include the recognition of new product
functionality, complementary products (or services), or whole new NPD directions.
However it is seldom possible to only continue with the status-quo. NPD projects
can have long lead times and it is therefore necessary to anticipate the remaining
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Fig. 45.12 New product development involves risks, both threats and opportunities, and these may
arise in several areas
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market life of the existing product, and commence the new NPD process in a timely
manner, rather than wait until sales are already dropping. Apart from Kodak, other
examples of misjudging the strategic direction for new product development are
Nokia and Microsoft dismissing smart phones until Apple, Google Android, and
Samsung had already dominated the market, and General Motors being fixated on a
future of large heavy motor cars and failing to develop a hybrid electric motor car
until Toyota’s Prius was already successful.

Much of the strategy and vision literature is relevant to NPD, in that the
development of new products (and services) is a key part of competitive advantage,
and provides a way to seek differentiation from other organisations, i.e. “performing
different activities from rivals‘ or performing similar activities in different ways”
(Porter 1996, p. 62). Porter went on to suggest that new entrant organisations were
best placed to find these differences either because they found niches that others had
already overlooked, or because they were more able to respond to new opportunities
(their lack of established business activities making them more flexible). He felt
that organisational forces in large firms tended to defeat the strategic efforts of
managers. Nor is vision for new products solely or even mainly done by senior
managers. NPD often requires an organisational transformation, and thus needs the
collaborative foresight of many within the organisation, rather than the vision/dream
of an individual leader, i.e. the “synthesis of many people’s visions” (Hamel and
Prahalad 2002, p. 30). This construct of emergent strategy also features in the
literature on organisational innovation (Nonaka 1994; Lau and Ngo 2004).

45.6.5 Define Criteria for New Product

From the engineering perspective the objective of this set of activities, see
Fig. 45.13, is first to convert the customer value preferences (voice) and the
organisation’s strategic vision for new products, into the engineering attributes
of the product. It is important to know the relative importance of the various
engineering features, so that the NPD project can be managed appropriately. The
second activity is to define the test and acceptance criteria. These are important as
they give confidence that the customer’s needs will have been met. Another way to
consider these activities is that they describe what a satisfactory solution will look
like (Ullman 2001). This can also be considered the technical part of the project
scope (PMI 2004).

Identifying the engineering attributes in a customer need is a special type of
transformation process, and there are particular mechanisms used to achieve this,
notably quality function deployment (Gustafsson 1996; Martin et al. 1998; Mill
1994). See Fig. 45.14 for an example applied to the car wing mirror case study.

From the systems engineering perspective these activities are part of the require-
ments analysis process, which seeks to take the client needs, in all the dimensions
in which the client seeks value, and identify the implications for the engineering
design and development process.
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Fig. 45.13 Customer requirements flow into engineering attributes for NPD activities, and
onwards to determine the testing implications

45.7 Generate Early Design Concepts

One approach to design is to simply progress as quickly as possible to designing the
product details. This is especially relevant to simple problems for which the problem
can be fully defined and the solution is obvious. However this is not necessarily a
viable approach to more complex design problems. For these it is usually necessary
not to converge too quickly onto a solution, but rather to explore the solution space
beforehand. This exploration of the solution space is termed conceptual design.
The objective is to generate multiple candidate solutions. The process is usually
divergent, i.e. broad ranging and not closing on the first suitable solution found,
since the intent is to see if there are any other solutions hidden in the space.
The engineering community has long recognised that different cognitive processes
are required for “early conceptual” design vs. “detailed” design (Andersson 1994;
Calantone et al. 1999; Fairlie-Clarke and Muller 2003; Finger and Dixon 1989a,b).

The main design activities, see Fig. 45.15, are to generate concepts (1), as many
and as creative as possible. The figure suggests several of the mechanisms that are
used for this, such as but not limited to brainstorming. At this point the concepts are
generally vague and even short in practical detail. A subsequent activity is to refine
the concepts (2) and get them all up to a similar level of uncertainty, so that they can
be compared.

In those cases where a precursor design existed, it is important to retrieve the
past design intent and record the current one (3). The risk is that designers move
on, and the new team, while “improving” the design, unintentionally breaks some
functionality in the old design, or repeats a similar error.
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engineering features
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In some cases research may be involved, either in the search for new ideas, new
solutions, or to better understand the issues. Research and development (R&D) is
a set of activities closely associated with NPD. R&D often precedes or overlaps
the NPD processes. The main point of difference is that NPD, unlike research,
necessarily seeks to produce an output artefact in the form of a product that
the organisation can sell. By contrast, R&D is more focussed on finding new
or improved processes, e.g. production mechanisms, usually by seeking to better
understand the relationships of causality, i.e. what variables affect the outcome and
how. R&D results in intellectual property (IP), and may also lead to NPD.

45.8 Assess Feasibility of Project

Not all new product ventures are likely to be successful, and since organisational
resources are scarce it is necessary to evaluate the innovative new product idea, as
shown in Fig. 45.16. Here we have nominally placed the assessment after concept
design, but this is merely for descriptive purposes and the activity actually occurs
at the outset, and periodically throughout the venture. The obvious main activity,
where most people perhaps start, is determining the requirements specification
for the product and developing the project plan (3). Other actions are to evaluate
the idea for its intellectual property (IP) and economic prospects (1). There are
many opportunities for stochastic and fuzzy decision analysis methods to be used
here. Also necessary is to identify the technical ambiguities in the product and its
production (2), since this has important implications for the amount of research
required, and hence also consequences for risk and resources. The point being
made here is that there are several activities, other than determining the product
specification, that should be considered.

Next the temporal stages in the project may be identified, and the main work
streams too (3). The project management methods are useful, particularly the
work breakdown structure and scheduling approaches. Work streams have resource
implications, and these need to be anticipated. In parallel and particularly important
for products with an environmental attribute, is the activity of life cycle analysis (4),
which is discussed in further detail later.

In this way the feasibility of the project is evaluated (6), both at the outset
of the venture, and periodically later. In the latter case the project management
monitoring methods, e.g. earned value, are useful tools for evaluating the temporal
and financial adherence to the intended work streams. However in NPD there can be
many changes in direction, especially if there are many ambiguities in the technical
solution path requiring a large component of research. The PM monitoring methods
(5) are good at comparing actual versus planned effort, but do not directly assess
technological progress. Consequently NPD projects necessitate periodic reappraisal
of the residual technical ambiguities, and the adaptation of the work plan. In some
cases it is necessary to terminate the project and apply the organisational effort
elsewhere (7).
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Fig. 45.16 NPD projects are evaluated for feasibility at the outset, and periodically throughout the
life cycle
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Fig. 45.17 New product ideas need to be evaluated against a number of criteria, to determine the
economic attractiveness of taking them to market

There are particular challenges in the evaluation of an innovative new product
idea, especially with regard to its economic prospects, and these are explored in
Fig. 45.17. The first need is to evaluate the freedom to operate from the perspective
of intellectual property (1). This involves searching patent literature and for evidence
of prior disclosure. This is a complex activity because it is seldom that a new
product is entirely novel in every attribute. Instead there is inevitably a degree to
which it relies on existing principles, product features, or production mechanisms,
all of which may be protected. Furthermore IP protections, such as patents, vary
in their strength and defensibility. This means that it can be difficult to ascertain
how strong the encumbrance may be, until it is tested in court. For entrepreneurial
NPD, there is a need to identify the business model and the strategic path by
which economic success may be achieved (3). This includes the intended method
of developing the product for readiness for market, and the distribution method
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(route to market). A staged product development agenda is typically applied,
especially where the research and development ambiguities are large or the required
capital investment is high. Included in here is the business plan, setting out the
market opportunity, proposition of economic value, investment requirements, and
the cash-flow. There is also a need to evaluate the competitive position of the product
(2). This may be achieved by evaluating it according to the rare, inimitable and
valuable framework (see above). For existing products there is valuable implicit
information in the relative market size and growth. It is useful to consider what the
current success factors might be. All products have a life in the market, and it is
therefore necessary to consider the market life cycle of the product (4). Customer’s
needs change, competitors offer alternative products, disruptive new products or
technologies emerge, and legislative changes may prevent production or sale of the
product. For these and other reasons the product may have a shorter life in the market
than its owner might hope, and this affects the economic case for its introduction.
Agencies that fund innovative start-ups are particularly interested in an evaluation
of the IP freedom to operate (1), for obvious reasons. They also invariably require a
clear statement of the intended route to market (3).

A number of conventional project management methods have been mentioned
above, and Fig. 45.18 puts these into context. It is not our intention to elaborate
on these, but instead we simply point out that these methods may be adapted to
serve parts of the NPD situation. The activities include definition of the scope and
purpose (1), determination of work breakdown structure and tasks (2), estimation
of durations (3) and determination of task interaction (4), allocation of resources
(5), and the assembly of the work plan (6). Optimisation of this plan may be done
(7) by analysing critical temporal (path), cost and technology attributes. Software
is typically used to assist these processes (8), and frames what can and cannot be
achieved for most practitioners.

These are the core activities of the general project management method, and this
handbook provides much material elaborating on these methods. Specifically, the
optimisation of project duration is addressed in Part I to II, resource allocation in
Part III, V, and VIII, optimisation of cost in Part V and IX, and non-deterministic
(e.g. stochastic and fuzzy methods) in Part XII, XIII, and XIV.

Attention now focusses on three of the activities that are particularly important
for NPD: requirements analysis, environmental life cycle analysis, and project
termination.

45.8.1 Requirements Analysis and Determination of Scope

An important early activity is to determine the project scope. The objective is to
be able to list the project deliverables (objects and characteristics thereof), and
the timelines. The scope is not the same as the work breakdown structure (WBS),
though sometimes a WBS may be included. The scope defines the ends and the
WBS defines the means (or at least the work that will be done to achieve those
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Fig. 45.18 Project management methods are applicable to NPD projects
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ends). In engineering design the term specification is more often used, though
it tends to be more limited to the functionality and engineering considerations.
The dominant premise in the existing design theories is that the design problem
needs to be fully specified before creative solutions can be found (Hubka 1987;
Hubka and Eder 1988, 1996; Pahl and Beitz 1988). However that premise is
questionable. A full and complete specification (scope) may work in many cases,
but it does tend to under-emphasise the role of decision making. In particular,
it is critically dependent on complete prior identification of the specification,
something that is not always possible to achieve in practice (Frost 1999; Eder
1998). This is especially the case in complex design projects where the outcomes
are qualitative and cover a range of domains, e.g. styling, mechanical function,
electronics hardware, software. Specifications are sometimes difficult to set even
in traditionally quantitative engineering areas, e.g. reliability, because of stochastic
uncertainty (randomness). We take the perspective that it is only necessary to have a
sufficient scope, and that a complete one is generally only obtainable for simple NPD
problems. Inability to completely define a specification is usually not a problem
for the creative design processes, providing that at least a sufficient specification is
available. This is seldom a problem to define. The creative design processes, e.g.
brainstorming, are not initially too focussed on the constraints anyway.

From the systems engineering perspective these activities are called requirements
analysis. The focus is on defining the customer needs and the requirements (we
covered the test requirements earlier). Obviously there are commonalities with
the project management scope-setting process as evident in the PMBOK (PMI
2004), but SE has a wider field of view than merely the explicit activities and
work-packages necessary to get to the deliverables. It is more explicitly aware of the
whole product life, all the way through to field support and eventual disposal. SE
takes a wide and temporally open-ended view, whereas PM is more task-oriented
and time-terminated. By definition PM sees the project as a temporary endeavour
that only extends to delivery of the outcomes.

The project evaluation phase is about making a decision on whether to proceed
with the venture. The decision may be outright acceptance or rejection. Alternatively
it could simply be a decision that not enough is known yet, and more work is
required. The decision is made by considering the candidate solutions and the
expected project effort required to get each one to market. That has to be weighted
up in comparison to the organisation’s constraints regarding technology, commercial
(capital, production economics, market), and any time constraints (desired time
to market, product life cycle). A common way of informing the decision is using
feasibility analyses, or more generally risk assessment (ISO 31000 2009; ISO/IEC
31010 2009; AS/NZS 3931 1998; AS/NZS 4360 2004). The latter can look at
not only the commercial dimension, but also the technical and the strategic.
Project management methods are particularly useful at this point, as they permit
the development cost to be estimated. Decisions at this point may involve senior
executive or the board, depending on the resource implications. It is at this activity
that the organisation makes a commitment to the project. Consequently this phase
corresponds most closely to the charter stage in the PMBOK, though that term is
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seldom used in NPD. See also Chaps. 49–51 of this handbook for risk management
methods.

There are several other methodologies that are available to assist the design
and decision-making processes. These include the theories of design science (Eder
1998; Hubka 1987; Hubka and Eder 1988, 1996; Pahl and Beitz 1988; Ullman
2001), decision theory (Clemen 1996; Herling et al. 1995), fuzzy theory, expert
systems (Silverman 1994), neural networks, and management science. They all tend
to construct the problem as rational selection among candidate solutions, based on
quantitative determinants of value or likelihood or rule. However, people do not
always structure their solution approaches this way. Instead, in complex situations
they apparently instead strive for an adequate rather than a perfect solution (Simon
1981). Neither are managers somehow different: they too make adequate rather
than purely rational decisions (Wagner 1991) This problem has been approached
by others from the philosophical perspective, and as Simon observed, designers use
“decision methods that look for good or satisfactory solutions, instead of optimal
ones” (Simon 1981, p. 138). He termed this a process of satisficing.

Furthermore, this decision is almost never made by one individual acting alone.
Instead, teams of people solve the technical problems and make decisions. These
decisions cover a wide scope, including the selection of promising but uncertain
solutions (and the abandonment of other candidates), and the specification of design
parameters that have a significant downstream effect on production, organisational
profitability, and customer satisfaction. With teams comes team behaviour, and with
organisations comes politics. So the decision-making process is complex.

At the end of this phase the organisation has made a decision on which concept to
take forward to detailed development. In rare cases more than one concept may be
advanced, but this costs more. Assessment of feasibility occurs throughout the NPD
life cycle, not only in the beginning. This is part of the project monitoring activities,
at which the PM methods excel. In NPD these are typically augmented by design
reviews.

45.8.2 Life Cycle Analysis

Historically product-design has focussed on functionality, delighting the customer,
and production quality. To that list is now added the need to minimise the
environmental impact of the use of the product. Life cycle analysis (LCA) is
a systems engineering approach that involves evaluating everything that goes
into and out of a product and its production and usage system, throughout the
life of the product. When applied to environmental cases (ISO 14040), it is the
environmental burden of the product that is under consideration. The life cycle
for a product consists of several phases, see Fig. 45.19: Extraction of materials !
Manufacture and Production of the part ! Distribution of product (e.g. Packaging,
Transport) ! Customer’s Use of the part (Consumables need to be considered too)
! Maintenance of the product ! Disposal of the product (including Recycling,
Disposal, Toxicity in disposal).
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Fig. 45.19 Life cycle analysis examines the full life of the product, particularly the materials and
their processing

The process of analysis involves the following steps. Each of these considers the
full life of the product, i.e. all the phases identified above. This is sometimes called
cradle-to-grave analysis, or other similar terms. The following is the ISO14040
process.

1. Identify the goal and scope of the study. This includes the product, the system
boundaries, and the impact categories selected. The system boundary is the entire
life of the product. The impact categories are typically within the broad areas of
human health (human toxicity), ecological health effects (freshwater, marine and
terrestrial ecotoxicity, pollution, acidification, eutrophication), climate effects
(global warming, stratospheric ozone depletion, smog/photo-oxidants), and
resource depletion. For example, the manufacture of a new product may have
effects (impacts) in carbon value of energy usage (a type of resource depletion)
and release wastes that are toxic in the aquatic environment (thus affecting
ecological health).

2. Inventory analysis: This typically involves producing a flow chart showing the
flow of energy and input raw materials into the system, and the discharges out
of the system. These flows occur at different phases in the life of the product.
The whole provenance chain should be included in the life cycle analysis, i.e.
suppliers of suppliers are included. Data need to be collected of the actual or
expected effects, which can be difficult.

3. Impact assessment: The different impacts are categorised and quantified. This
is where the data are needed. Usually the environmental effects occur in multiple
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dimensions, e.g. different types of waste with different effects on different parts
of the ecological system. Thus there is often a need to normalise these and
sum them into common equivalence units. This can be difficult to achieve.
One option is to use subjective weights: this is very simple and easy, but also
difficult to justify, and may be ill-advised if the LCA needs to be presented
to external stakeholders, though it can be useful for an organisation’s internal
decision-making. A more robust option is to retain the different dimensions, and
keep them all independent, as per the risk assessment method (ISO/IEC 31010
2009).

4. Interpretation: Here the results of the analysis are interpreted, and any
significant issues are identified. These may be large environmental impacts
that have simply never previously been noticed or connected to the product. In
other cases it may be many small effects, which are individually insignificant
but cumulatively important. Once these are identified, it may be possible to
recommend treatments. Data are seldom perfect in this area, so it is important to
determine the confidence in the results. How accurate really is the study under
examination? How robust are the raw data in supporting the interpretation and
recommendations? How sensitive would the outcomes be to small changes in
the input assumptions? Where outcomes cannot be accurately foreseen, choices
must be based on risk reduction and the precautionary principle (IPENZ 2005):
that new risk be avoided in the absence of data.

5. Implementation: Organisations usually take a Pareto approach, by concentrating
improvement efforts on the largest deficiency. They seek to at least reduce
its consequences, since it will not always be possible to eliminate an effect
altogether however preferable that may be. Once one effect is suitably reduced,
the organisation can then put the resources into addressing the next biggest effect.
Often this is accomplished in a project based manner.

45.8.3 Project Termination

Assessment may also result in a decision to close the project at any stage (4), and
sometimes such checks are built into the project plan, hence a stage-gate approach
(Hart et al. 2003; Howe et al. 2000). However the project closure/termination
activities are generally done badly (Ceran and Dorman 1995). It is worth considering
why, since this is an important consideration given the riskiness of all NPD projects
especially those with a high content of research and development.

The preferred outcome is a project that provides the deliverables and is shut
down in a controlled and progressive manner PMI (2008, 2004), leaving everyone
content (Meredith and Mantel 1995). In other words, the project should satisfy
all the stakeholders: the client, project organisation, sub-contractors, and the team
members. If that is not possible then it is generally held to be desirable that a
failing project be terminated cleanly. The problem is that a variety of partial failure
modes are possible. For example a project can grind on interminably consuming
a steady trickle of resources, or terminate abruptly by providing only the basic
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deliverables and leaving loose ends. There are two aspects to decision-making
regarding termination. One is to predict whether the project is likely to be successful,
and this activity happens at the outset and at various decision-stages within the
project life. The second is to respond to initiating hazard events.

As regards the first, the practitioner and research literatures assert that certain
factors are critical (De 2001; Meredith and Mantel 1995; PMI 2006), though the
evidence base for these assumptions is not always clear. For example a study
(Balachandra and Brockhoff 1995) of research and development projects identified
various factors as being related to project success: technical route (smoothness
and probability of success); project champion. Others were associated with failure:
deviations in cost schedule; chance events. However many other factors had an
ambiguous contribution. Other research findings, also for R&D, are somewhat
contradictory and suggest that technical feasibility and economic analysis are not
strong components of decision-making, thus: “basic research projects are much less
likely to be subjected to a formal economic analysis and are generally thought of
as being ‘strategic’ investments” (Cook and Rizzuto 1989, p. 291). Hazard events
that force the organisation to a decision whether to terminate or continue a project
include (adapted from Meredith and Mantel 1995; Melymuka 2004):

• impending failure of project scope (e.g. either schedule, cost, function, or
quality),

• lack of support from senior management (they have changed objectives, disinter-
est, or the external environment has changed),

• loss of motivation of project staff (they are stressed, pathological team relation-
ships, despondent),

• loss of key capability (key technical skills lost, technology has been usurped by
another project, intended technology solution is non-feasible, funding is drying
up),

• loss of political support for project, e.g. loss of sponsor, project champion.

Much of the literature states that termination should be made on rational economic
criteria (Cook and Rizzuto 1989; Dobson and Dorsey 1993; Melymuka 2004;
Messica and Mehrez 2002; Rad and Levin 2005; Statman and Caldwell 1987).
However the research is not entirely clear on what the termination decision is
actually made on. Economic criteria do not feature in reality as much as might
be expected. It seems that time, especially calendar time, is important at least
in some cases (Dilts and Pence 2006). The sunk cost bias suggests that peoples’
decisions about ongoing investment in a project are influenced by how much they
have invested in it. The theory says that the more money and time they have invested,
the more they are likely to want to persist with the project to completion, i.e.
an escalation of commitment bias (Dilts and Pence 2006). However, the research
evidence for this bias is ambiguous. Some research has found no support for the
effect (Boehne and Paese 2000), while other studies have confirmed the existence of
the bias (Garland 1990; Dilts and Pence 2006). Other research suggests the opposite
effect, namely de-escalation of commitment as sunk cost increased (Garland et al.
1990). In some ways sunk cost might not be the best term, because it suggests
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financial cost, whereas there is evidence that it can be time that really matters. Thus
some research suggests it may be more accurate to say that decisions are based
on how close the project is to completion (Boehne and Paese 2000; Conlon and
Garland 1993; Paese 2000). This is consistent with the strong strategic motivation
behind NPD projects: they are seen as vital for the competitive advantage of the
organisation.

45.9 Other Design, Production and Economic Activities

There are several design and production activities identified in the top level system
model (Fig. 45.4), that are beyond the present scope to detail. These include design
and optimise the product, test and validate the design, finalise design and validate
production capability, commission production system, production of the product
and its distribution and marketing. Finally there is decommissioning of the product
and production system. Most of these are relatively self-explanatory, and some have
large literatures of their own. There is neither the space nor the need to elaborate
them here. This system model has been extended to detailed design (Pons and Raine
2005), and commissioning (Lawry and Pons 2013).

That leaves two activities unaccounted for on the top level model. One is the need
to create the organisational platform. This activity precedes and runs concurrently
with the other activities. This is where the entrepreneurship occurs, and this is
particularly prevalent in NPD start-ups. As discussed earlier, this type of organi-
sation has acute problems with cashflow and therefore often builds organisational
capability as and when needed. These tend to be small firms, hence small-to-medium
enterprises (SMEs), and are often the focus of government encouragement of the
innovation sector. Therefore it is not always safe to assume, as is common in
most models of NPD, that the process is undertaken by a stable, mature, well-
resourced firm. However we do not at this point need to open an entire discussion
on NPD entrepreneurship, but instead we simply point out that the start-up nature of
many NPD organisations causes constraints on the process. The last activity in this
particular model is the management of the people. The NPD process is critically
dependent on people. Consequently we close with a consideration of some of the
issues involved.

45.10 Managing Innovation and the NPD Staff

NPD involves innovative thinking. Therefore part of the design manager’s
responsibility is managing the creativity of individuals, and the interaction of
people. There are interesting human resource (HR) implications: Can managers
selectively recruit for creativity? The model for this is shown in Fig. 45.20.
The desired output is that human effort results in an innovative product being
developed (2). This requires that individual designers show creativity (1) in the
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Fig. 45.20 Optimising the creative outputs of staff on NPD projects involves a complex set of
organisational factors



45 Project Management for the Development of New Products 1023

application of their knowledge (3). Many organisations seek to deliberately record
and manage their collective knowledge (4) to reuse it in future situations. Research
and development effort (5) may need to be expended to address the residual
technological ambiguities. Individuals need to be motivated to personal agency
(6), which in the design situation often involves intrinsic motivation. This requires
the development of an organisational culture (7). The design manager will also
encourage collaboration between specialists (8), since significant NPD projects are
complex and need a variety of skills. This means that the design team must be
managed (9), and sufficient group cohesiveness created for effective collaboration.
Human resource management (10) is therefore also involved, and in a more intimate
way than in general project management where people are often merely considered
resources.

45.10.1 Is There a Relationship Between Creativity
and Intelligence?

The relationship between creativity and intelligence (IQ), despite being of interest
to people for a long time, is unclear and probably depends on the measures used
(Runco and Albert 1986; Singh 2006). Some authors are of the opinion that
intelligence is not involved: that innovation is the combination of creativity and
risk-taking (Byrd and Brown 2003, p. 7), e.g. “creativity is measured by originality”
not intelligence (Byrd and Brown 2003, p. 13). However, this is not the majority
view, and in this area where people can be so passionate it is prudent to instead
examine the research evidence. Most studies have found either none or some (but not
particularly strong) correlation between creativity and intelligence (Gardner 1988;
Hauck and Thomas 1972; Kim 2005; Lindemann and Fullagar 1975; Nijsse 1975;
Popescu-Neveanu and Facaoaru 1972; Richards 1976; Rushton 1990; Starr and
Nicholl 1975). However others have found moderate correlation (Lopez et al. 1993;
Meer and Stein 1955), or correlation only at low intelligence (Jaswal and Jerath
1991), or correlation consistent with IQ (Preckel et al. 2006; Sligh et al. 2005). Yet
others reported significant correlations (Kazelskis et al. 1972; Singh et al. 1977;
Virgolim 2006; Cheung 2008). A different perspective is that of neuroanatomy,
where creative innovation (CI) is defined as “the ability to understand and express
novel orderly relationships” (Heilman et al. 2003, p. 369). Those authors asserted
that “a high level of general intelligence, domain-specific knowledge and special
skills are necessary components of creativity, . . . [but] are not sufficient for CI.”
(p. 369). They suggested that the ability for divergent thinking was important, and
associated these activities with particular anatomical regions.

Clearly the relationship, whatever it may be, is complex and not as simple as
saying that intelligence results in creativity, or that intelligence is necessary for
creativity. Based on current evidence all that can be concluded is that creativity
and intelligence are related but independent characteristics, and that the relationship
depends on how the variables are characterised and measured.
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A second question is the relationship between creativity and innovation. It is
widely held as an article of faith that creativity is necessary for innovation. Or as
has been elegantly stated, “Innovation is the practical application of imagination”
(Lin 2004, p. 13). The empirical evidence in this area is somewhat lacking, and
few studies are available. One study showed that “knowledge innovation was
significantly related to new product creativity” (Mingjie et al. 2008, p. 96). Further
research is required before confident recommendations can be made to practitioners.
For the present it is tentatively assumed that the concepts are closely linked:
that creativity refers to cognitive conceptualisation processes, and innovation to
embodiment in an artefact or other tangible output.

45.10.2 Is Creativity a Personality Variable?

It is commonly held that different temperaments have different creative abilities,
whether for arts or engineering or other areas of creative endeavour. Creativity is
at least partly a personality factor, as research has confirmed (Popescu-Neveanu
and Facaoaru 1972). To what extent it is learnable is uncertain, but for the
present this is presumed to be the case to some extent. In Eysenck’s three
factor model (extroversion-introversion, neuroticism-stability, and psychoticism) he
has suggested a “connection between creativity and personality psychopathology
(psychoticism)” (Eysenck 1995, p. 217). Indeed, one study found a moderately
strong correlation between enjoyment of research and psychoticism (Rushton 1990).
Again, stereotypes suggest that highly creative people can be temperamental and
emotionally unstable (hence somewhat psychotic). In the five factor personality trait
model (e.g. OCEAN, NEO-PI) (McAdams 1992; McCrae and Costa 1990, 1999;
Saucier and Goldberg 2001), creativity is lumped together with intelligence in one
factor. That does not necessarily mean that they are the same measure, but simply
that there is a statistical similarity in the language used to describe creativity and
intelligence. Thus part of the problem in finding relationships between creativity
and intelligence is that we are not totally sure what we mean by each construct. On
top of that, measuring creativity is difficult (Forteza 1974), and diverse tests exist
(Singh 2006).

The management literature offers a bewildering variety of personality
categorisations for innovation/creativity. Lacking, as they generally do, any
supporting evidence, or underlying theory, it is prudent to consider them interesting
ideas but of uncertain validity. Thus innovators have been categorised into
innovation-scientists, engineers, explorers, and astronomers (Lin 2004). Or,
another author has offered isolators, stagnators, and navigators (McAllum 2004).
Somewhat related, though representing the personality of the organisation rather
than individuals, the traditional Miles and Snow topology (e.g. Daft 2004) posits that
organisations have four strategies for innovation: innovator (or “prospector” seeks
opportunities and accepts risks), defender (steady efficiency, stability), analyzer
(seeks opportunities and stability), and reactor (ad hoc reaction to external events).
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There is no particular methodological difficulty in conceptualising different
types of innovators, and creating personality tests that people can undertake to
categorise themselves. Thus, “Tests have been developed that allow us to map
individual innovation profiles” (Lin 2004, p. 23). However the ability to implement
a categorisation scheme does not necessarily mean that the underlying theory for
the typology is sound, or that the categorisation is helpful to people who undertake
it, unless there is evidence to support it. Overall, there is an obvious lack of any
evidence-based approach to typologies of personality-innovation, and much of the
work in this area must be viewed sceptically.

Apart from the obvious issue of validating these various categorisations and
weeding out those that are unreliable, there is much work to be done to develop an
underpinning conceptual theory of why the different styles exist. Furthermore, there
are many unasked questions in this area. For example, what about non-innovators?
Are there different types of them too? What about precursor types of innovators,
and how may they be developed into full innovators?

Returning to the five factor personality model, openness to experience has been
associated with creativity, but conscientiousness not (Furnham et al. 2006). This has
interesting implications because it suggests that creative people are open to experi-
ence, but not necessarily conscientious. Indeed, we have popular stereotypes ready
to categorise these people, e.g. absent-minded professor or alternative-lifestyle
artist, so perhaps this research is simply confirming something we already know
intuitively.

On the current research evidence it would seem that creativity is partly associated
with intelligence, but is distinguishable from it. Thus creativity does not necessarily
require intelligence (depending on the construct for creativity, i.e. how one elects to
define or measure it). Thus, one construct of creativity could be that it is a form
of problem-solving (Gardner 1988). However, other constructs are possible. For
example, some have constructed creativity as an internal drive for meaning, thus
“our creations are the gifts of our selves to the world” (Byrd and Brown 2003, p.
15). Thus a personal agency may be involved, along with self-efficacy (Bandura
1989, 1997). From this perspective managers would foster creativity by providing
intrinsic rewards that express appreciation and value for the ideas of staff. Some of
those intrinsic rewards would presumably be provided by the organisational culture,
therefore the manager would perhaps need to work at creating an appropriate
culture. All this goes to show that the implications for managers will depend on
how creativity is constructed in the first place.

45.10.3 Managing Knowledge for Innovation

That knowledge is essential for innovation is undisputed (Nonaka 1990, 1994).
What is not so certain is how to best manage that knowledge for effective innovation.
The field of knowledge management (KM) has arisen over the years, but there is still
some distance to be covered before it can be considered to effectively and reliably
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add value to the process of new product development (NPD). The issue is that the
causal efficacy of KM, particularly for NPD, is unproven.

There are many concepts behind KM, and even implementation in information
and computer technology, yet our understanding of implementation for NPD is
still tenuous. The core concept is one of capturing and reusing the knowledge of
individuals, thereby equipping the organisation for innovation. The diversity arises
in the implementation of this. The types of knowledge that concern KM have been
categorised into intellectual capital (patents, technology licences) (Brooking 1998),
structural capital (production processes including financial and manufacturing), and
human capital (people’s professional skills) (Goh 2005). There has been substantial
work done by Nonaka and others on the amplification of knowledge within
organisations. However, there is an implicit premise within KM that increased
knowledge somewhat automatically results in innovation, or at least that information
enables innovation, thus: “In the information economy we have unlimited amounts
of information, and so our potential and opportunity for innovation is unlimited
as well” (Lin 2004, p. 11). How then can knowledge be reused to aid innovation?
One of the processes, proposed by Nonaka, is that people who are given surplus
(“redundant”) information may be able to form other associations between that
information and their own internal (“tacit”) knowledge, thereby resulting in inno-
vative ideas (Nonaka 1990, 1991, 1994). On the whole KM has several theories
for increasing knowledge (see below), but does not have a lot to say about
how knowledge is converted into innovation (Lee and Choi 2003). The process
is obscure, and its efficacy more assumed than demonstrated. It is an area that
has received little research attention. The underlying premise of causality, that
information begets innovation, has not been tested.

Accepting a partition into tacit and explicit knowledge, Nonaka further
postulated that knowledge was created by converting between tacit and explicit
forms (four combinations of “entanglement”), in what he termed a spiral (Nonaka
1994). He held that shared experiences (“socialization”) were essential for creating
tacit knowledge, “externalization” used metaphor to express perspectives as tacit
knowledge, “combination” was the assembly of explicit facts, and that conventional
learning (“internalization”) simply converted explicit knowledge to tacit, hence
“SECI”. From his perspective the individual’s experiences, especially the variety
thereof, were important because they “crystallized into a unique perspective” (p.
22) that would grow knowledge in the next part of the cycle. Nonaka, following
Plato, asserted that knowledge was “justified true belief” (Nonaka 1994), i.e. was a
personal belief that had been personally validated through experience. Nonaka’s
four SECI types of knowledge and the amplification spiral have become the
dominant paradigm on knowledge creation, accepted as a given and widely adopted
by many others as the basis for further theoretical work or practical deployment
(Dyck et al. 2005; Hasan and Al-hawari 2003; Herschel et al. 2001; Johnson 2002;
Meso and Smith 2000).
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45.10.4 How Can We Assess Innovation?

Those who see value in classifying and storing organisational knowledge
(Kakabadse et al. 2001) naturally also see value in measuring that knowledge.
The knowledge is perceived to be intellectual capital (IC), and quite as important,
if not more so, than physical assets and financial capital. However, there is no
consensus on the measures to use (Marr et al. 2003). Although methods exist,
such as balanced scorecard (Kaplan and Norton 1992), and human capital (Elias
and Scarbrough 2004) they are difficult to calibrate. Furthermore, they tend to be
preoccupied with quantifying artefacts, e.g. adding up quantities of patents as if they
were of equal value, which misses the qualitative nature of innovation. Creating
more holistic measures of an organisation’s innovation is relatively straightforward.
For example one such instrument (Tidd et al. 2001) consisted of a set of questions,
grouped into categories. Those categories included strategic planning (external
opportunities, threats), external linkages (partnerships, supply chain, customers),
design (stage gate, cross-functional teams, new product development process),
organisational culture (rewards, climate), and learning (knowledge management,
training, knowledge sharing). At a superficial level, this type of approach is
presumably useful in that it gives organisations and their leaders a tangible measure
of innovation. Thus it can be for them a key performance indicator for which they
can set target, exhort staff effort, and monitor progress. So these instruments may
be useful as tools for leadership action. However they have some weaknesses,
in that their external validity is unknown. The fundamental question is how we
know whether the right questions have been included in the first place. The second
weakness is that few if any of these tools have been validated by empirical evidence,
so their reliability is unknown. Will a project that builds up the organisation’s score
on these measures really result in greater commercial innovation? The risk is that
practitioners could apply the tools enthusiastically, but in an illusion of purposeful
activity and end up being disappointed by the actual eventual outcomes. There is
also the risk of too great an emphasis on managing the commodity of knowledge
rather than managing the people (Smoliar 2003).

45.10.5 Implications for Human Resource Management
of NPD

What then are the implications from an organisational perspective, particularly
that of human resource management? The management literature makes much
of the need for innovative staff behaviour, and seeks ways to make staff more
innovative (Cheung 2008). Three forms of HR control are: behaviour (operating
procedures and surveillance of staff); output (targets are set, appraisal, rewards,
management by objectives); and input (selection and training) (Snell 1992). Some
research has showed that input control can facilitate product innovation, and output
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control inhibit it (Liao 2006). It was found that product innovation was associated
by an emphasis on input control. The corollary was that innovation characterised
by high task analysability (determinism of outcomes) was better managed by
output or behaviour control. However one would have to question whether any
process involving high task analysability was really innovative: certainly in the
engineering design tradition this would be considered routine incremental design
at best. Training (a type of input control) is commonly held to be effective for
innovation and organisational performance in general, and indeed there is some
support for this (Garcia 2005), however the relationship is not as certain as might
appear.

In another study, a developmental culture was found to be associated with
new product development (Lau and Ngo 2004). They further concluded that
“an HR system which emphasizes training, performancebased reward, and team
development is critical for creating a developmental culture” (p. 697). However, they
also pointed out that “a simple relationship between HR systems or organizational
culture and innovation outcomes should not be assumed” (p. 699), and that an
“HR system alone may not be able to elicit innovation performance” (p. 699). HR
practices such as selection, training and incentives have been found to be important
for knowledge exchange (Collins and Smith 2006). In a longitudinal study it was
found that “recruitment and selection, induction, appraisal and training—predict
organizational innovation in products and production technology” (Shipton et al.
2005, p. 118). In fact there is some evidence that HR practices can have a larger
effect on innovation than on organisational performance (Panayotopoulou and
Papalexandris 2004), which is surprising as they are generally intended for the latter.

At this point strategic human resource management (SHRM) practices are com-
monly invoked. These seek to align the staff with the organisational purpose. Within
those SHRM practices appraisal and performance-based pay feature strongly.
However organisations generally need to be successful in multiple dimensions, e.g.
productivity, short-term profitability, innovation, etc., and the SHRM practices are
too blunt to be able to differentiate between the different outcomes. Furthermore, it
is possible that SHRM is quite the wrong way to go about developing innovation.
That contrary finding emerged from a longitudinal study which suggested that a
focus on the strategic role of HR does not give sustainable competitive advantage
(Hailey et al. 2005). SHRM was indeed found to result in financial performance,
but at the cost of staff dissatisfaction and low commitment to the organisation. They
concluded that SHRM “does not necessarily enhance the value of the firm’s human
capital” (p. 63). Thus it is possible that SHRM can be effective in the short term,
but may be too cold, harsh, and incentivised, to create the type of organisational
culture necessary to sustain tasks like innovation that would seem to require high
motivation and commitment. Another longitudinal study found that appraisal linked
to remuneration is a significant impediment to innovation (Shipton et al. 2005). Thus
core SHRM practices (appraisal, remuneration) which may be useful in optimising
some organisational outcomes, appear to be counter-productive to other outcomes
like innovation. This paradox has been identified by others regarding management
of diversity (Bassett-Jones 2005).
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45.10.6 Managing the NPD Managers

The discussion up to here has been on managing the creativity of staff. How does one
get managers who are good at managing NPD projects? This is an under-explored
area of NPD, and though there is some research (Clift and Vandenbosch 1999; Lewis
et al. 2002; Swink 2005; Barczak and Wilemon 2003; Jeffrey et al. 2003), it is still
difficult to be definitive about the implications for practitioners. Since it has been
identified that unintended consequences of creativity can include low conscientious-
ness and high psychoticism, one has to question whether a strategy of appointing
many creative managers is necessarily the best approach for every organisation. It
can be anticipated that a cadre of creative managers and leaders would result in a
dynamic and quirky organisational culture. Indeed, the management literature is full
of case studies about highly innovative companies and their organisational cultures.

Thus it is possible that a quirky culture is a necessary unintended consequence
of highly creative managers and staff. However, this is not a possibility that the
literature has considered in any depth. The common wisdom is that all companies
should strive for maximum creativity, on the premise that it will result in innovative
products and thus organisational success. But if this should have unintended
consequences on the culture, then is this still the best strategy? The literature does
not address this in detail. Perhaps it might be better to nurture different types of
creativity in different parts of the organisation?

It is also prudent to consider also how the creativity of the leader, e.g. chief
executive officer (CEO) may affect the subordinates. In this regards there is not
a great amount of research, but the little that exists is not encouraging in that it
suggests that leaders with intelligence and creativity tended, under stress, to be
associated with reduced group performance: they inhibited other members (Gibson
et al. 1993).

Putting those caveats aside, and assuming that an organisation seeks to increase
the creativity of its staff and managers, whether all or some, then what are the means
to achieve this? If the general consensus is true in stating that creativity is a personal-
ity characteristic, then it may respond to nurturing and development, but ultimately
could be limited. It may be necessary to also recruit staff who already have the
required high levels of creativity. How can this be done? Research has found that
measures of divergent thinking adequately predict manager creativity (Scratchley
and Hakstian 2001). This suggests a selection method for those organisations who
wish to optimise manager creativity.

A manager who wishes to encourage innovation would therefore do well to
create workplace relationships of trust by modelling trustworthy behaviour towards
subordinates, providing intrinsic motivation opportunities for staff, and ensuring
trusting relationships within teams (may require active management). In addition,
the manager would want to develop the skills and experiences of staff, by training,
project teams, temporary assignments, and hiring people who already had those
skills. Similar recommendations for specific environments, e.g. research, have also
been identified by other authors (Graversen et al. 2005).
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A discussion of NPD would be incomplete without mention of reputation
and ethical behaviour of the organisation. Products are very strongly part of the
brand of the organisation. The greater the competitive advantage conferred by the
product (through being rare, valuable and inimitable) the more important organisa-
tional reputation becomes. Consequently the ethical behaviour of the organisation
becomes important. In this context ethics refers to the decisions made during the
NPD process. Many are the product-reliability issues that have been caused by an
expedient decision in design or manufacturing. Not only do such failures cause
reputational damage, but they can also expose the organisation to product liability
claims. The financial penalties in these cases can far outweigh the savings intended
by the original short-cut. Managers need wisdom in how they make decisions when
there are conflicting priorities. Wisdom in this context has been described as the
values underpinning the choices people make in the application of their intelligence
and creativity toward a common good (Sternberg 2004). This is a job for leaders, and
it is difficult since the NPD process is full of conflicting priorities, and organisations
have both altruism and selfishness in their mission statements.

45.10.7 Teams: Temporal Development

One of the perspectives that is almost totally lacking in the conventional
project management paradigm is the concept of teams, specifically the temporal
development of group cohesiveness. The general PM approach is to consider people
as resources, hence homogenous units of labour that can be applied against tasks in
the WBS as the project manager determines. Hence we have the typical Gantt-chart
approach to managing the people. This may work adequately for construction
projects where the staffing comprises contractors who come and go. When such
people come onto the project they can safely be assumed to immediately bring to
bear a high level of competence and productivity. These are not safe assumptions in
the NPD arena.

NPD is characterised by being done in teams of closely-interacting people. They
develop their skills co-dependently over time, and the resulting attitudes towards
personal interaction are cemented in the organisational culture that they create. This
culture and the nature of the personal interactions is an important component in the
success of NPD teams. Consequently such teams cannot be considered merely a
summation of independent agents, as conventional project management would view
the situation.

Perhaps the most popular theory of temporal (time) development is Bruce
Tuckman’s model of group development (Tuckman 1965): forming, storming,
norming, performing (FSNP). He proposed a classification system with three
independent dimensions: setting (therapy, training, natural, laboratory), realm (task
or interpersonal/group structure), and four temporal stages, and then showed how
the literature of the time slotted into those categories. His original model was
a complex one, with a separate strand of activities for each realm. This model
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has subsequently been simplified over the years. This has become the dominant
paradigm in social-work and management. It has been influential with practitioners
and researchers, and continues to attract attention (e.g. Sweet and Michaelsen 2007).
The model has formed the underlying premise for other research (Vroman and
Kovacich 2002; Farrell et al. 2001; Aubert and Kelsey 2003) and inspired replication
of the categorisation method (e.g. Cassidy 2007). The current models of group
development are based on Tuckman’s model, e.g. the integrated model proposes
that the stages are (1) dependency and inclusion, (2) counter-dependency and fight,
(3) trust and structure, (4) work, and (5) termination (Wheelan et al. 2003). Others
offer: (1) Identify acceptable behaviours (member anxiety), (2) conflict and eventual
stability (power), (3) development of trust, (4) task orientation, and (5) termination
(Arrow et al. 2004). Models of group development are widely accepted (Wheelan
et al. 2003, p. 225), but nonetheless the processes are imperfectly understood.

Its popularity notwithstanding, there are significant theoretical gaps in the
Tuckman model. Implicit in the categorisation was the premise that social and
task elements of group-interaction are separable (independent), and while he
acknowledged that it was a fuzzy distinction he kept it nonetheless to maintain the
continuity. In other words the realm dimension was a somewhat artificial construct.
How, if at all, those two strands were related was not clarified, and indeed the
model has subsequently been better-known by the colloquial names and the realm
dichotomy has not survived into practitioner usage and is rarely mentioned in
research papers.

As a conceptual-model the lack-of-connectedness between the elements is
apparent: one expects to a see variables being passed from one stage to the other,
mechanisms identified for the execution of the stages, and a description of those
factors that impeded or enhanced the completion of the stage. By mechanisms we
refer to underlying processes for achieving the purported outcomes. The model fails
to identify the mechanisms that bring about the various stages, e.g. how does stage
2 conflict progress to stage 3 cohesion given the obvious differences in those states?
The model is a summation of observable outcomes rather than a theory of how
those outcomes arise. This also makes it difficult to test the model, because of a
lack of reliable measures (Farrell et al. 2001). The model is not a conceptual model,
since it does not propose any causal theory, but rather a categorisation—which was
all that Tuckman claimed for it. Tuckman anticipated that the main value of the
model would be the “derivation of many specific hypotheses relating independent
variables to the sequence of temporal change” (p. 398), but that has not occurred
as expected, nor have there been the expected major modifications to the model
(bar the subsequent addition of the minor phase of “adjourning”).

The setting considered by Tuckman, and invariably adopted by all subsequent
theorists, is one of a team of peers. However the reality is that most teams, at
least in commercial and industrial practice, have some internal authority structures.
There is delegation of power and designation of leadership from still higher
authorities in the organisation. There are names, which are in common use, for
these people: “Team Leader”, “Design Manager”. The existing Tuckman-derivative
theories totally ignore this important dynamic.
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The bigger question, of which Tuckman investigated but a fraction, is the
development of groups over time: the temporal perspective (Arrow et al. 2004).
Temporal is one of many ways to examine groups (Chang et al. 2006). Even within
the temporal perspective there are multiple ways of conceiving time, including
social (e.g. events, seasons, epochs) (Ballard et al. 2008), resource (scarcity of
time, pressure, time allocation), level (individual, group, organisation), life cycle
(purposeful, cyclical, sequential) (Arrow et al. 2004). Thus Tuckman provided
what can be identified as a sequential stage model. That has been a good base on
which many subsequent works have built, but the model is not a theory and cannot
further inform practitioners or researchers. It will eventually be necessary to develop
more sophisticated theories of how groups develop and how practitioners can make
them more effective. Therein lies an opportunity for further research: to determine
how the temporal team development process works in NPD teams, and if possible
enhance the process.

45.10.8 Do Teams Actually Work?

The dominant way of thinking is that teams are better than individual effort. There
seems little doubt that in situations where the tasks are complex and beyond
the ability of a single person, e.g. NPD, then teams are necessary at least for
the division of labour. Whether teams, even in these situations, deliver higher
reliability or greater cost-effectiveness than individuals, is less certain. However
in the more general business processes that exist within organisations, evidence
suggests teams are less effective than commonly perceived. Individuals are often
better at certain tasks e.g. creativity and decision-making (Allen and Hecht 2004).
In fact, overall the research literature does not confirm that teams have any great
advantage over individuals, and that sometimes a single individual can outperform
a group. Evidence shows that for certain tasks such as brainstorming, individuals
are better than teams (Mullen et al. 1991; Oxley et al. 1996), for example there is
“strong evidence that interacting groups actually generate far fewer or, at best, the
same number of ideas, as compared with the combined efforts of several individuals
working alone” (Allen and Hecht 2004, p. 440). Training can help compensate to
some degree, since research has shown that “groups with a highly trained facilitator
may achieve the productivity of nominal groups [individuals]” (Oxley et al. 1996,
p. 644). However this result is unsurprising given that the treatment (specialist
facilitator) was available to the group and not the control (individuals). To turn the
case around, it appears that individuals perform as well as, if not better, than groups,
even groups with trained facilitators.

The reasons theorised for the inferior performance of teams at brainstorming
include evaluation-apprehension (“fears of being negatively evaluated by the other
group members” (Oxley et al. 1996, p. 634), free-riding (“group members may
feel that their efforts are dispensable and not work to their full potential” p. 635),
production blocking (“inability of group members to state ideas freely and without
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interruption” p. 635), and social influence (“decrease in performance is subsequently
maintained because individuals match their performance to that of the other group
members” p. 635). These theories have not been validated. While groups potentially
have more resources, and more diversity of resources, than an individual or set of
individuals, they are not always more efficient in their usage of those resources. In
particular groups loaf, become polarised, seek consensus rather than novel ideas,
and sustain an “illusion of group productivity” (Paulus and Van der Zee 2004, p.
476). The implications for practitioners are that if quantity and quality of ideas
is required (which is usually the overt purpose of brainstorming), then individuals
are generally better, especially compared to groups led by untrained facilitators.
If groups are used then facilitators seem advisable, and the attributes of such
people might be as follows, though it is worth noting that those authors could not
identify precisely which attributes were the cause: “more experienced, . . . training
in recognizing ideas and in keeping members focused, . . . reintroduce[d] topics that
were not fully discussed” (Oxley et al. 1996, p. 644).

It is possible that there might be other secondary benefits to brainstorming,
perhaps socialisation effects, but if so these are not evident in the existing research.
This suggests several areas where research is required. Why do teams not work
reliably? Why do people typically believe they succeed when the evidence suggests
otherwise (for consideration of this question, see Allen and Hecht 2004)? In what
situations do teams succeed? Are there other structures for work that are more
effective and in what situations? How do within-team behaviours affect performance
(Cordery 2004)? The need from a research and practitioner perspective is therefore
to better understand the way teams succeed (fail), so as to more effectively deploy
them (or alternative work structures) (Allen and Hecht 2004).

45.10.9 Conflict

The phase models suggest that conflict arises not at the beginning but some way
into the group life, the storming stage (Tuckman 1965). Those models perceive
the conflict as a process of clarifying the group’s objectives, a positive force for
making sure the purpose is well designed, well understood by everyone, and that the
processes for achieving it are accepted by the whole group. They state that conflict
is necessary for trust to develop, and is a natural part of developing a common set of
goals (Wheelan et al. 2003). Likewise some have suggested that groups operate, or
should operate, with well-defined expectations of decision-making: “unambiguous,
consensually approved expectations about decision making, about each member’s
rights and responsibilities in his or her professional role, and about the procedures
for working together” (Farrell et al. 2001). The difficulty is the naivety of such
positions regarding the known negative consequences of conflict. They fail to
identify the mechanisms whereby the negativity of conflict is transformed into
positive outcomes.
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A more insightful perspective is provided by the communication and psychology
perspective, whereby conflict is the expressed struggle of people over interference
from each other in the pursuit of incompatible individual goals (Rothwell 2007).
The conflict is expressed in behaviour. Conflict can be positive: encouraging
creative problem solving; initiating good changes; balance power; enhance group
cohesiveness (Rothwell 2007). In this mode the conflict is based on seeking mutual
satisfaction, and this requires communication that is cooperative. Conflict can
also be destructive: aggressive and domineering behaviour; deliberate hurting of
adversary; selfish personal gain. This type of conflict reduces group productivity,
reduces member satisfaction, increases stress, and results in further behavioural
consequences. Another perspective is that conflict may be over the task, relationship,
or values:

• Task conflict is over processes. When the processes are routine (little variability
possible) then the conflict tends to have negative effects, whereas conflict over
non-routine (high uncertainty) tasks can have positive effects (Rothwell 2007).

• Relationship conflict is over personality styles. In these situations avoidance is
often used as a solution.

• Value conflict is over the morals and ethics of the situation. These are expressed
in strongly-held beliefs. Examples are homeland, racial, and origin-of-life
beliefs. People do not readily compromise their beliefs, so that solution is
unavailable. In fact there are no easy solutions other than on-going competition
or plain avoidance. This type of conflict can cause break-away organisations.

Various strategies have been proposed for solving conflict. A popular model is
the win-win approach, which seeks to satisfy both parties, as opposed to win-lose
where one is satisfied but not the other, or lose-lose where neither are satisfied. The
win-lose model might be suitable for negotiation type conflicts where the outcomes
can be represented in binary states. However it does not capture the complexity
of general conflict situations where there may be more outcomes and states other
than fully satisfied-fully dissatisfied. Consequently the more general approach has
several solutions:

• Collaboration: working together to find a solution that generally satisfies
everyone. This corresponds to the win-win solution.

• Accommodation: giving up own needs and agreeing with the antagonist. This is
the surrender solution, corresponding to win-lose.

• Compromise: mutual sacrifice, both parties give up some of their needs to find a
solution that partially satisfies both.

• Avoidance: ignoring the conflict and not seeking any solution.
• Competing: seeking to dominate the antagonist, and to satisfy own needs even if

at the cost of denying the needs of the antagonist. i.e. may be destructive. Both
parties may compete: it is not necessary that the other moves to accommodation.

Late-onset conflict arises because opposition slowly builds. People resent the fact
that they have had to take a conciliatory approach and suppress their own needs for
the benefit of the aggressor and his faction. When the time is right and the antagonist
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is weak, they launch a counter-attack. Possible solutions for managers: Change
group roles; Re-plan the tasks and work breakdown structure for the remaining
tasks in the project; Recalibrate expectations within the team, by voicing personal
concerns and expressing own hopes and fears for the project.

45.10.10 Creation of a Culture of Innovation

The opinions of many authors strongly suggest that organisational culture
encourages collaboration and learning (Mårtensson 2000). Innovation is a complex
activity and managers should not expect to control it with any determinism. This
is because many of the activities cannot simply be mandated to occur. Indeed, it
is likely that an authoritarian management style will do more harm than good, at
least to innovation. Nonetheless, there are many ways in which managers can affect
the innovation process (Jiménez-Jiménez and Sanz-Valle 2005), even if indirectly.
The following is not intended to be an exhaustive list, but simply identifies and
elaborates on several features that appear to be more important.

45.10.10.1 Provide Physical Space

Nonaka asserted that self-organising teams needed to have a place (called “ba”
in Japanese) in which to discuss their perspectives and resolve their conflicts, if
knowledge was to be successfully amplified (Nonaka 1994). He implied that the
process of knowledge creation in Japanese culture involved strong socialisation
driven by the “sharing of mental and physical rhythm” (Nonaka 1994). He felt that
dialogue was essential for the social process of knowledge creation, and asserted the
value of face-to-face communication, free and candid expression, and redundancy
of information (people are given more information than they need because some of
the excess may generate new associations).

45.10.10.2 Select Leaders Wisely

It is likely that certain personalities are better than others at managing innovation.
The leader’s personality sets the relationships at the top management team level
and propagates into the rest of the organisation to profoundly affect the overall
culture. Likewise the leader’s priorities, which can very easily be for short-term
gain (George 2003) at the expense of future developments, propagate as goals
into the organisation and can hinder or advance innovation. Desirable leader
attributes for innovation might be openness, lack of ego-defences, participative style
(non-authoritarian) (Jeffrey et al. 2003), along with intelligence, creativity, and
divergent thinking (Scratchley and Hakstian 2001). Task-relevant knowledge is
probably valuable in providing the right resources to subordinates. A board should
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expect that appointment of an egotistical, narcissist chief executive officer (CEO)
could put at risk the development of a trusting positive learning culture within the
organisation. Likewise, a CEO who provides strong motivational rewards that are
contingent on successful performance of strategic business units, should expect that
the same could provide incentives for internecine intraorganisational competition
that damages staff collaboration.

45.10.10.3 Select SHRM Practices Carefully

Unfortunately many strategic human resource management incentives that are
intended to motivate staff and align them with the organisational purposes can
have unintended consequences. These incentives may include internal competition
between units, performance based pay, appraisals, etc., and are typical of SHRM
high-performance practices. Thus workgroup competition suppresses knowledge
sharing (Burgess 2005), and appraisal linked to remuneration impedes innovation
(Shipton et al. 2005). While SHRM may indeed motivate staff to work harder
for the organisational success, some of its practices do so by appealing to selfish
needs at the individual and work-group level. Consequently SHRM output control
(Liao 2006; Garcia 2005) may increase some aspects of organisational success,
at least in the short-term, but risks destroying the contribution that knowledge
sharing can make to long-term success. This should not surprise us, as there
is no reason to believe that one perfect management strategy exists that will
simultaneously optimise organisational performance for every dimension in which
that can be measured. Instead managers must seek to obtain a balanced basket of
organisational outcomes, and dynamically use components of various strategies to
achieve this. Sometimes the causality reverses: innovation shapes the HR practices
(Jiménez-Jiménez and Sanz-Valle 2005). Organisations that have been innovative
are likely to adjust their HR practices to sustain those outcomes.

45.10.10.4 Encourage Knowledge Sharing

How can an organisation create a climate where people are motivated to share
knowledge? Solutions might include: provide extrinsic rewards and recognition for
sharing (Carmen and Cano 2006), reduce internal competition, build identification
with whole organisation not just work group, promote on competence rather
than influence, and build trust with the organisation. The softer HR practices
are better (Collins and Smith 2006): “firms that employ commitmentbased HR
practices [selection, training and development, and pay incentives] are associ-
ated with organizational climates containing higher levels of trust, cooperation
[and knowledge sharing]” (p. 555).
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45.10.10.5 Build Trust

If there is one thing that a leader can do to enhance knowledge within an
organisation, it is creating a culture of trust (Lee and Choi 2003; Mårtensson
2000; Follon 1998). The trust in this case is peer-to-peer trust, not necessarily
trust of subordinates in the leader though that is also important. To achieve
this managers may model trustworthy behaviour towards subordinates, provide
intrinsic motivation opportunities for staff, provide visible support, and ensure
trusting relationships within teams. If trust is lacking, then collaboration can-
not thrive (Nonaka 1994), because trust provides the willingness to lower ego
defences and risk damage by the other. The organisational culture provides a
common set of values (Meso et al. 2002) that support trust (Kakabadse et al.
2001). Mutual trust has been held to be essential for self-organising teams (also
called “communities of practice”) to be effective at innovation (Nonaka 1994).
Collaboration results in greater individual learning (Lee and Choi 2003) as well
as immediate organisational benefits of greater work effectiveness and efficiency
(potentially better and faster projects).

45.10.10.6 Accept Divergent Thinking

It is within the manager’s control to provide an environment where creative ideas are
not scorned, risks are genuinely embraced along with opportunities, and the pressure
on staff is not so great that creativity is suppressed.

45.10.10.7 Apply Input Control Rather Than Output Control

Input control (selection and training) can facilitate product innovation, and output
control (targets are set, appraisal, rewards, management by objectives) inhibit it
(Liao 2006; Garcia 2005; Shipton et al. 2005). Managers may also develop the
skills and experiences of staff, by training, cross functional project teams, diversity
of work experiences, temporary assignments, etc.

45.10.10.8 Accept Individual Diversity

In the five factor personality model, openness to experience has been associated
with creativity, but conscientiousness not (Furnham et al. 2006). This has interesting
implications because it suggests that creative people are open to experience, but not
necessarily conscientious. Likewise Eysenck’s three factor model links creativity
to psychopathology (psychoticism) (Rushton 1990; Eysenck 1995). How will these
people be managed if conscientiousness is not their strong point and they may tend
towards psychoticism? Some simple solutions can be anticipated: provide a mix of
personalities in a team, and manage the team to prevent excess conflict arising over
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different expectations of conscientiousness. Factors such as conscientiousness are
practically universally appreciated across engineering in whatever culture, but not
so agreeableness (Norman 1963; McCrae and Costa 1985). So it may be necessary
to accept that diversity and a level of disagreement is a necessary part of creativity.

45.11 Discussion

As this chapter has shown, the management of innovative NPD projects involves
solving a complex problem in scheduling, with a long timeframe over the product
life cycle. There is also the challenge of indeterminism in the work breakdown
structure, caused by decisions that cannot be made until future information becomes
available. Adding further complexity is the need to manage the people and the
culture within which they work.

45.11.1 Outcomes

A system engineering model has been presented for the NPD process. There are
other models of design, and separately of the project management process, but the
present one is novel in that it explicitly includes the broader organisational features
involved in the management of NPD projects. At a superficial level it is straight
forward to apply PM methods, such as the Gantt chart, to the NPD process. Indeed
it is useful to do so. However the issues with managing NPD run much deeper,
being a consequence of the complexity of the process. In this chapter we have
shown how the systems engineering approach is a useful complementary tool. SE
provides a mechanism to identify the context in which the NPD process occurs.
These correspond approximately to the integration activities of the PM method. SE
lacks the detailed process control methods inherent in the PM method. However it
does bring the bigger picture into focus, and this is valuable because the issues for
NPD are not so much in the scheduling but in the other complex interactions that
occur between people in activities that in all likelihood will not even be on the WBS.

The model captures many of the existing concepts in the literature, and using the
systems perspective it also introduces new ideas and a different way of looking
at NPD projects. The model we have presented here identifies the main NPD
activities. Naturally there are many more activities that could be included, either
in deeper models or at the top level. Examples are distributed NPD projects
(conducted across multiple workplaces) (Pratim Ghosh and Chandy Varghese 2004),
procurement/outsourcing, product families (Tatikonda 1999).
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45.11.2 Contrary Perspective

The general premise throughout the literatures in engineering and management is
that innovation and design are crucial for organisational success. Lack of innovation
is thus widely perceived pejoratively. That innovation could occur in the form
of product, service, or process. This is the perspective that we have taken here.
However to be fair we need to present the contrary perspective, which is that
innovation (at least product innovation) is not necessarily critical for success in
mature industries (Mavondo et al. 2005). Innovation carries risks and costs, which
may be too great for these industries compared to the anticipated benefits. Those
same authors found that process and administrative innovation were nonetheless
related to performance, even for mature industries.

45.11.3 Implications for Practitioners

Having sketched a system model of how NPD and innovation operates in an
organisation, and having reconciled it with some of the literature, the next question
is the implications for practitioners, namely managers. We suggest that the usual
PM lens, of a project being a time-terminated endeavour, is unhelpful in the NPD
situation. This is not to diminish the importance of time, especially time-to-market,
but simply to point out that time is not the sole, nor even the most important,
determinant of quality in NPD. The successful development of new products is
strongly dependent on the context, which needs to be managed just as much as the
schedule. What this means, to frame it in the language of the PMBOK, is that the
integration activities are core. Project practitioners in the NPD area might consider
using systems engineering approaches, like that shown here, in parallel to their
project planning, as a method to ensure the integration activities are happening.
Important tasks are managing the trial and error processes, fostering cooperation
between the people, and channelling the collective effort into sub-problems where
the ambiguity really needs resolving.

45.11.4 Implications for Further Research

As we have shown throughout this chapter, there are many interesting research
questions that are still open, particularly in the area of managing people for
innovation. There is also the related area of knowledge management with its open
questions.
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45.12 Conclusions

The process of new product development design is a complex process, and the time
schedule represents only one dimension of the endeavour. Whereas a conventional
project is typically viewed as a time-terminated endeavour to achieve specific
deliverables, NPD is somewhat different. It has very long time frames (the product
life cycle), is a strategic activity that changes focus but is never really terminated,
and relies on the tacit knowledge of people (and therefore does not view them as
merely resources). It is an ambiguous process too, in that the deliverable is not
so much a product, but a new product, i.e. one that has the potential to be rare,
inimitable, and valuable in the eyes of customers. The ambiguity also means that
significant parts of the problem have no pre-existing proven solution path. Instead
the team have methods that they will try, and they may have to change them part way
through if they are not getting the results they need. This complex problem-solving
situation requires careful management. There is a very obvious place in NPD for
careful project planning, in terms of work breakdown structure and schedule, but
this needs to be balanced by the other considerations that the systems engineering
perspective provides. Ultimately a successful NPD project is not so much about how
close the deployed project follows the project plan, but what the point of difference
is of the finished product.
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Chapter 46
Key Factors of Relational Partnerships
in Project Management

Hemanta Doloi

Abstract Relational partnership is one of the most widely used procurement
mechanisms for construction projects. While the relational procurement is based
on principles of contracting parties being cohesive and committed to work with
an agreed project outcome, what really drives the success of a good relationship
among the parties and the underlying factors are difficult to ascertain. Among
many factors highlighted by researchers, the three widely known significant factors
are communication, trust and confidence and joint risk management. Based on an
empirical study in Australian construction industry, a comprehensive investigation
was undertaken by the author to analyse these factors further and thereby to
understand the impacts on the success of relational partnerships in construction
projects. The results of the investigation identified communication as the single
most influencing factor impacting relational partnering success. While the trust and
confidence were found to be mutually inclusive for effective communication, both
the factors have direct influence on developing capability for joint risk management
within the partnering organisations.

Keywords Construction projects • Contract management • Procurement mecha-
nisms • Project management • Relational partnership

46.1 Introduction

Perhaps the most recognizable characteristic in standard forms of project procure-
ment within the construction industry is the existence of the uncompromised culture
among the contracting parties towards achieving the target objectives. The idea that
“your profit loss is my gain” is entrenched throughout all standard procurement
methods and can only be seen as counter-productive as it generates a variety
of inefficiencies during project delivery. While the problem is recognized widely
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across many countries, this chapter aims to generate a meaningful debate on the
issue based on empirical observations in medium to large scale development projects
within Australian construction industry.

The adversarial attitudes among the contracting parties often result in a difference
of opinion which eventually end up with disputes and claim of compensations (Jones
2001). The conflict will then result in unnecessary cost and time delay which could
otherwise be avoided. Numerous studies have shown that errors by the contractor
in competitive tender prices can result in sub-standard quality of workmanship and
design non-conformance (Naoum 2003). Anecdotally, an earlier involvement of an
integrated team potentially assists in reducing conflicts among the project partners.
Relationship agreements promote the culture of working together within a cohesive
team to achieving an agreed outcome. Rather than penalising non-conformance
with the threat of liquidated damages and excessive variation claims, participants
in a relationship agreement generally receive a share of profit that is determined by
the overall team performance. Some of the key benefits in relationship agreements
include accelerated delivery times, reduction in conflict, appropriate risk allocation,
informed decision making and a reduction in the overall project cost. Studies have
shown that sharing of profit margins ensures “best for the project” outcomes in
projects and such philosophy forms the primary theory behind the relationship
agreements (Rahman and Kumaraswamy 2002). The remainder of the chapter will
analyse the key factors associated with the relational agreement based on empirical
evidence collected from Australian construction industry.

In Sect. 46.2, partnering has been discussed in the context of relationships among
the parties. Section 46.3 then reviews some of the key literature to identify the gaps
within the published domain in order for highlighting the challenges associated
with the current practice. In Sects. 46.4–46.7, some of the key factors have been
analysed and explored based on statistical analysis of the data collected empirically
in Australian construction industry. The findings and contributions of the research
have been summarised in Sect. 46.8.

46.2 Partnering Through Relational Agreements

Relational Agreement can be viewed as the core in both Project Alliance and
Partnership, where the notion of partnering is well understood. While the project
alliancing is relatively a new concept, partnership practice in construction projects
is quite common (Walker and Shen 2002). However, the link between the processes
of forming the partnerships and achieving success in projects is not quite reported in
the project management literature. This chapter proposes to unveil the perceptions
of the industry, identifying the pros and cons of relationship agreement in relation to
traditional approach and thereby highlight the key distinctions of the critical factors
in achieving project success.

Partnering has been viewed as an effective tool in successful delivery of projects
across many countries including UK (Wood and Ellis 2005; Naoum 2003), Europe
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(Williams and Lilley 1993), Hong Kong (Rahman and Kumaraswamy 2002) and
Singapore (Kwan and Ofori 2001). There is an increasing perception that partnering
could help managing risks and uncertainties and thereby improve productivity
in projects. However, clear understanding of the influencing factors is a critical
element for deriving true value in effective partnerships (Chan 2001). To this
effect, Bresnen and Marshal (2000) highlighted the significance of long term
relational links between contractors and subcontractors in achieving partnering
success in projects. Halman and Braks (1999) asserted the importance on the
organizational structure of the partners for deriving potential benefits in reduced
costs and enhanced profits. Given the nature of modern construction projects where
involvement of multitude of contracting parties results in very high risks, partnering
based on relationship agreements and cooperative teamwork is perceived to be an
effective medium for managing conflicts between diverse participants (Rahman
and Kumaraswamy 2002). Over the last few decades, numerous enquiries have
been reported highlighting the underlying factors and their impacts on relational
partnering success. According to published literature, the three factors critical to the
success of relational partnering include the establishment of the joint risk manage-
ment for effectively managing the project risks (Rahman and Kumaraswamy 2005),
trust and confidence (Ngowi 2007) and open and reliable lines of communication
between team members (Cheung et al. 2003). Although the theory behind relational
partnering remains relatively simple, previous studies including Phua (2006) and
Ngowi (2007) have shown that a lack of trust between parties and a difference in
opinion on resolving disputes may jeopardize an otherwise successful project and
cause an unwarranted market perception of the particular procurement process.

In order for clients, designers and contractors to appropriately contribute to
the success of relational partnerships, a clear understanding of these attributes is
a difficult task. By establishing the relational links, a better understanding of the
effects of these factors for successful delivery of projects can be created objectively.
Results of such analysis help the contracting partners to prioritize the factors in
terms of their criticality for developing contractual arrangements and assuming
responsibilities in order to obtain the desired outcomes. It is anticipated that the
contributions of this chapter will provide a meaningful insight to the relative effect
of the relational partnering process for effective development and implementation
in construction projects. By increasing each discipline’s knowledge in meeting
requirements and expectations of all the contracting parties, it may be possible to
accurately highlight the pros and cons of relational contracting approach and clarify
the perceived views within the construction industry.

46.3 Background Reviews

The use of relational partnerships is not a new concept and there has been
numerous studies examining the influences of the underlying factors affecting
their performance in projects. In an effort to understand the current scholarships
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and significance of influencing factors, a comprehensive literature review was
undertaken and the summary is presented below.

Williams and Lilley (1993) examined the influencing factors by taking into
consideration of individual importance of each factor in selecting suitable part-
ners for developing alliances in project. Based on a UK based case study, their
research discussed the criticality and importance of nine different perspectives in
the partners’ selection process. Among them, ‘communications barriers’ between
contracting parties was reported to be most important perspective in the partner
selection process. However, mutual dependency was found to be the least important
in the adopted case study. While the relative importance of all nine perspectives was
critically discussed, this research did not attempt to quantify the impacts of these
perspectives in the context of partnering success.

Halman and Braks (1999) investigated the organizational concepts of project
alliancing in the context of reduce project costs and enhance profits for all the
contracting parties in the project. Based on an in-depth case study carried out within
a contractor company in the offshore oil industry, their research asserted that open
communication within the partners at an early stage results in more deliberation and
as a consequence more time consuming in senior management decision process.
Such assertion certainly contradicts the widely accepted view that communication
is one of the key elements in partnering success.

In the UK, Bresnen and Marshal (2000) developed a predictive model to examine
the critical issues and links associated with partnering in construction from a
cultural perspective at both organizational and inter-organizational levels. Based on
a theoretical analysis of the partnering concepts, it was asserted that application
of tools and techniques to partnering must be backed up with strong commitment,
trust and unity and behavioural compliance among the contracting parties for
partnering success. In a separate study, Bresnen and Marshal (2000) investigated
the relationships of use of incentives, motivation and commitments among partners
in partnering and alliancing success. Based on a semi-structured interview approach
across five case projects and qualitative research methods, this research concluded
no evidence on any strong or systematic relationships between incentive systems and
consolidation of trust and commitments between participants. While this research
did not address the interrelated elements and practices of enhanced relationships in
partnering success, the need for further investigation had been clearly highlighted.

In a study in Singapore, Kwan and Ofori (2001) reviewed the success of
partnerships by developing a synergy from Chinese cultural perspective. Based on a
postal survey on twenty-seven Chinese-owned large contractors in Singapore, their
research ascertained that trust and friendship, commitment and open communication
are some of the fundamental elements for successful partnering implementation.
However, such outcome was considered not robust to define the links between each
of these elements leading to conducive relationships among partners and the overall
partnering success.

In Hong Kong, Rahman and Kumaraswamy (2002) examined the attitudes of
contracting parties and their co-operative relationships for joint management of
risks in partnering implementation. Based on the transaction cost economy (TCE)
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and relational contracting (RC) principles and 47 responsive questionnaire across
construction industry in Hong Kong, two conceptual models were developed. The
findings clearly highlighted the requirements of better relationships, cooperative
teamwork and adaptation of appropriate restoration techniques for collaborative
management of risks and successful partnering in projects. Though Rahman and
Kumaraswamy (2002) highlighted the advantages of joint risk management (JRM)
in partnership arrangement, exclusion of the critical elements such as communica-
tion and trust and confidence made the usefulness of the research in the context
of establishing the impacts on partnering success incomprehensive. While the
importance of adaptive contractual arrangement among the contracting parties is
emphasized, significance of the critical drivers for successful development and
implementation of partnerships have not been explicitly reported in the research.

Based on the UK construction projects, Naoum (2003) explored the ingredients
for good partnering practice from the perspectives of improved productivity, lower
costs, satisfactory quality and on time delivery. Based on a theoretical ground and
perceived best practices across construction industry in the UK, this research con-
tended relational partnership as the single most value-based procurement approach
for success. While cost and time savings have been identified as a result of long term
partnering relationships, measure and motivation for successful partnering were
not quite well discussed. In a separate study in Hong Kong, Cheung et al. (2003)
investigated the behavioral aspects of construction partnering with a specific focus
to trust and cooperation among the contracting parties. Based on a major railway
project in Hong Kong, the research reported that trust and commitment are the
only decisive factors in construction partnering success. A high level of trust and
commitment naturally promote the cooperation, open and joint problem solving
attitudes among contracting partners leading the partnering success. However, find-
ings of such qualitative research could not be considered exhaustive in establishing
relational links among the critical elements.

In a separate study in Hong Kong, Wong and Cheung (2004) examined the
relative importance of trust factors contributing to partnering success. Based
on a questionnaire survey response from private and public sector developers,
consultant firms and contractors, 14 trust attributes were analyzed using statistical
factor analysis. Among all 14 attributes, five attributes namely problem solving,
competent, unity, communication and respect were reported to be highly influencing
in successful partnering implementation. Focusing on UK construction projects
and by investigating the contractors’ experience of partnerships relationships over
the life of the project, Wood and Ellis (2005) concluded co-operation, teamwork
and shared vision as most cited factors for a successful partnering process. This
research also confirmed the widely expressed view that partnering arrangements
are largely cost-driven as gain sharing and pain-sharing are some of the underlying
principles in partnership arrangements. Wong and Cheung (2005) investigated
the influence on trust in partnering by identifying four major factors: partners’
performance, partners’ permeability, system-based trust and relational bonding.
While the findings of this research highlighted the clear links between partner’s
trust levels and the first three factors, departure of relational bonding in the equation



1052 H. Doloi

made the model incomprehensive. All these findings were found to be insufficient
in defining professional obligations, motivation and relational links among the
contracting parties in the overall partnering success.

46.3.1 Key Issues in Relational Partnerships

From the above literature review, a few gaps in understanding the impacts and
criticality of the widely known factors associated with the partnering process
emerge. A large proportion of the existing research in the field of construction
partnering notes the difficulties faced by the contracting parties as a consequence of
the existence of the cost-driven, gain sharing and pain sharing principles. However,
much of the partnering literature tends to report on critical success factors based
on anecdotal evidence of the success stories (Bresnen and Marshal 2000). The
weakness, however, lies in overlooking the importance of these factors in the context
of relational links and influence in successful partnering implementation in projects.
Having reviewed the work conducted by the above researchers in the field, it has
been evident that trust and confidence, communication and joint risk management
factors broadly represent the partnership principles leading to partnering success.
Ngowi (2007) noted the influence of partner trustworthiness that can eliminate the
needs for contractual clauses to effective operation in partnering process. While
Rahman and Kumaraswamy (2002) asserted capability of joint risk management
as a result of relational partnering, Naoum (2003) reported on the shortfall of any
clear link between success measures and partnering in projects. Jones (2001) and
Naoum (2003) considered motivation among the partners as an emerging good
practice. However, a clear consensus on the role of each contracting party and
distinctive degree of responsibility across the global issues of relational partnering
could not be drawn decisively. While the outcomes of the above research aimed
to identify many key issues in a disjointed manner, the root causes surrounding
the working relationships between all parties and the behavioral implications in
relational partnering success remain unexplored.

46.3.2 Scholarships and Contributions

As evidenced by the above research, the field of partnering and underlying processes
are reasonably understood. However, it is unclear how each of the elements or
attributes associated with the contracting parties in relational partnering contracts
relates to one another and how do they impact on successful partnering outcomes.
This chapter aims to highlight some of the key inherent attributes associated with
the contracting parties involved in relational partnering process and to investigate
their relative importance and significance in successful project implementation.
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46.4 Empirical Evidence from Australian Construction
Industry

Anecdotally, relational agreement is quite a common practice across Australian
construction industry. However, there is no any documented evidence on how
the relational agreements between the parties perform in relation to the project
delivery. While the fragmental Australian construction industry generally supports
the relational agreement as one of the key forms of procurement strategies within a
relatively smaller market, much investigation is required for developing appropriate
understanding of partners’ behaviors and their linkages to the performance out-
comes using the field data. In an attempt to collect the relevant empirical evidence
for analysis, a survey method was considered appropriate as part of this study. A
questionnaire survey was designed for respondents to assess the performance of a
project they had participated in and to evaluate the influence of trust and confidence,
communication and joint risk management in that project. Field data was collected
using a Likert scale requesting the respondents to provide the responses with varying
degrees of agreement or disagreement.

The preliminary data was based on a total of 43 medium to large construction
firms in Australia. The target population of the survey in this study was contractors,
architects, consultants and owners involved mostly in infrastructure, residential
and commercials projects. A total of 150 questionnaires were mailed out or hand
delivered to target participants involved mostly in the senior management teams and
97 valid responses were returned. Among the 97 respondents, 56 are contractors,
10 are architects, 18 are consultants or designers and 13 are owners or developers.
The responses of the questionnaires were analyzed using two methods: standard
statistical methods and Structural Equation Modeling (SEM). While the statistical
significance of the data sample is crucial for deriving any meaningful observations
in Standard Statistical Methods, the selection of the indicators is highly significant
in the context of true measure of the representative practices across the latent or
unmeasured variables for the use in SEM (Doloi 2009). Details of the selection
processes of the measured and latent variables are not included in this chapter but
can be referred to Doloi (2009).

46.5 Results from Standard Statistical Analysis

Determination of a suitable analytical tool for testing the data is quite an important
process for developing appropriate understanding of the impacts of the measured
parameters on the outcomes. In order to derive the advantages and limitations in
relationship agreements, a number of analytical tools were used namely descriptive
analysis, bi-variate correlations, independent t-test and factor analysis. The results
of some of these analyses are discussed in the following sections
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Table 46.1 Top five mean scores of the five key factors

Relationship agreements
Rank Variable Mean

1 Team member build a broad range of skills 4.25

2 Team environment facilitating informed decision making 3.94

3 Delivery method for achieving best project outcome 3.89

4 Team members understand risks 3.78

5 Team member pro-active in resolving problems 3.78

46.5.1 Descriptive Observations

Table 46.1 shows the list of the five variables in the survey with the highest mean
scores in relationship agreements and thus could be interpreted, on a basic level,
as the most important variable for each procurement method. As indicated in the
literature by Ross (2006), the most important variable for relationship agreements,
with a mean score of 4.25 (above agree), was “team members are able to build on a
broad range of skills”. This result highlights the benefit of the integrated project
team established by relationship agreements and suggests that in removing the
adversarial nature present in many traditional procurement methods, team members
are able to learn important skills from one another.

The second most important variable was that the “team environment consistently
resulted in informed decision making” with a mean score of 3.94 (agree). One
would expect that constant interaction between team members is an advantage of
relationship agreements as it not only results in informed decision making but also
enables team members to build on a broad range of skills. The third ranked variable
for relationship agreements was “The project delivery method consistently results
a best for project outcome” with a mean score of 3.89 (agree). This variable is an
obvious advantage in the agreement structure and the result confirms its importance
in comparison to other believed advantages (Ross 2006).

“Team members understanding the project risks” was the fourth most important
variable, with “team members being proactive in resolving disputes” the fifth with
means of 3.78 and 3.78 respectively. While both variables ranked in the top five
of importance for relationship agreements, it is difficult to confirm the findings of
Rahman and Kumaraswamy (2002) as members in relationship agreements didn’t
report to have any greater knowledge of the project risks than participants in
traditional procurement approach.

In regards to the limitations, the integrated project team established by relation-
ship agreements does not necessarily lead to reliable communication between the
project team, and therefore, could not be identified as an advantage of the delivery
method. Furthermore, the relationship agreements are not necessarily more cost
efficient than traditional methods and the mean difference indicates that traditional
procurement methods may, in fact, be the most cost efficient delivery process. The
analysis suggests that both relationship and traditional methods could improve the
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level of trust between project team members to increase efficiency. However, a
mean difference of 0.46 indicates that lack of trust generates more inefficiency
in traditional procurement methods than relationship agreements. The findings
regarding lack of trust influencing project efficiency support those of Ngowi (2007),
who suggested partners in relationship agreements will be vulnerable to project
inefficiencies in project delivery due to lack of trust.

In addition to the above, the results for relationship agreements indicate that
the delivery process could be reviewed to be more time efficient and that disputes
regularly arise from a difference of opinion by the project team. It is expected that
“disputes” in this case may relate to problems that are resolved internally rather than
referring to issues that may require legal intervention, to resolve a standoff between
two or more parties.

46.5.2 Findings from Factor Analysis

A total of 18 key attributes associated with relational agreements have been reduced
to six broad factors by employing the Factor Analysis using Statistical Package
for Social Sciences (SPSS). As seen in Fig. 46.1, the first factor (Factor 1) in
the relational agreements named as a cohesive project team, comprises five key
attributes namely team environment, dispute resolutions, proactive project team,
risks and responsibility and competent team. As seen, all five attributes highlight
the importance of team performance in achieving success in the project. A positive
team environment is highly desirable for proactive dispute resolutions and sharing
risks and responsibilities within the project. Willingness to risks and responsibility
sharing is highly dependent on the team’s technical competency and being pro-
active in the decision making context. Under the traditional method, the issue of
team performance is confined to predominately time and quality performance only.
However, focus on time, cost and quality performance was the third factor (Factor 3)
under the relational agreements which show a significant shift of focus across both
procurement methods. Time and cost performance is usually coupled with some of
the key performance measures within the project. Such performance measures are

Relational
Contracting

Factor 1: Cohesive
project team

- Team environment
- Dispute resolutions
- Proactive project team
- Risks and responsibility
- Competent team

Factor 2: Trust and
communication

- Communication
- Trust
- Clear reporting

Factor 3: Project
Time and Cost

- Milestones
- Quality of work
- Cost control

Factor 4: Pricing
and competition

- Consultation
- Consistency
-Transparency

Factor 5: Efficiency
in delivery process

- Timely
- Economical

Factor 6: Risk
and Quality
management

- Workmanship
- Risks allocation

Fig. 46.1 Underlying factors associated with the relationship contracting agreements
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usually meeting the milestones, achieving the desired quality outcome or controlling
cost within the approved budget in the project.

The second factor (Factor 2) Trust and Communication comprising three key
underlying attributes has been widely branded by many past researchers as one of
the most important factors especially in developing relational partnerships in project
(Bresnen and Marshal 2000; Rahman and Kumaraswamy 2005; Smyth and Edkins
2007). The three attributes are communication, trust and clear reporting protocols
within the organisation. In contrast, the importance of trust and communication
is considered to be not quite important due to the strict contractual obligation
among the parties concerned. The risk management in traditional methods is found
to be process driven in terms of appropriate risk allocation between the partners.
Ensuring high quality workmanship and informed decisions require strict process
control in traditional approach. However, increased trust and confidence under
relational agreements allow sharing risks and devising appropriate management
strategy within a cohesive team environment.

Factor 4, pricing and competition under the relationship agreements is closely
coupled with the attributes associated with cost efficiency, consistency and trans-
parency in delivery processes. Team members are expected to be consulted in
relation to achieving cost efficiency across the supply chain within the project. Sim-
ilarly consistency across the organisational conducts and transparency in decision
making processes are highly desirable within the parties for achieving efficiency in
partnering projects.

46.6 SEM Analysis and Outputs

In order to unfold the significance and criticality of the three key factors, trust
and confidence, communication and joint risk management in achieving relational
partnering success, the empirical dataset was then further analyzed using Structural
Equation Modelling (SEM). SEM is a co-variance based research methods capable
of establishing relational links between the latent variables with hypothetical
constructs (Doloi 2009). Table 46.2 shows the four latent factors used in the hypo-
thetical construct on the first column and their corresponding measured attributes or
variables on the second column.

The initial structural model was analysed using AMOS 16.0. As discussed by
Molenaar et al. (2000), the initial SEM that was based on theoretical expectations
and past empirical findings, found to be premature without meeting the standard
indices of model-fit (such as t-statistics and R-Squares for model equations). A
feasible model should be selected based on the recommended Goodness-For-Fit
(GOF) measures and the model that satisfies both theoretical expectations and GOF
is finally selected for SEM analysis (Molenaar et al. 2000). Thus, in this research,
by employing the GOF measures, the model refinement was performed to improve
the fit to its recommended levels (Jin et al. 2007; Molenaar et al. 2000). Based
on a number of trials through eliminating some of the attributes across three latent
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Table 46.2 Constructs and measurements for SEM analysis

Factors Attributes/Indicators

Trust/Confidence • Lack of trust (T1)
• Increased confidence and trust (T2)
• Importance of trust and confidence (T3)
• Lack of confidence (T4)
• Effects on dispute resolution and delays (T5)
• Mutual confidence among partners (T6)
• Long term working relationships (T7)
• Likelihood of disputes being erupted (T8)

Communication • Lack of communication (C1)
• Increased communication (C2)
• Reliable and frequent communication (C3)
• Effect on reduction of conflicts (C4)
• Effect on informed decision making (C5)
• Effect on improvement in expectations (C6)
• Likelihood of disputes being erupted (C7)
• Scope changes without causing disputes and delays (C8)

Joint risk management • Efficiency in managing project risks (R1)
• Advantages in relationship agreements (R2)
• Effective monitoring and successful project delivery (R3)
• Effects on communication (R4)
• Importance of trust and confidence (R5)

Relational partnering
success

• On time project delivery (P1)
• On budget project delivery (P2)
• Desired quality outcomes (P3)
• Cost savings (P4)

factors and the relational partnering success indicators, a total of nine attributes were
required to be eliminated due to their low correlations with other latent factors in the
final SEM. Due to sake of brevity, the details of this elimination process have not
been discussed which can be found in Molenaar et al. (2000); Wong and Cheung
(2005), and Doloi (2009). A final SEM model was established that highlights the
relational linkages among the latent variables as expected in the research.

46.7 Findings of the SEM Analysis

The summary of the standardized coefficient of the final SEM is shown in Fig. 46.2.
As seen, the test results generally support the relationships between communication,
trust and confidence and joint risk management. A significant and positive rela-
tionship was found between communication and trust and confidence factors. The
two way relationship between these two factors suggests that effective and frequent
communication certainly influence in enhancing the trust and confidence among
partners and vice versa. According to the measurement model of the final SEM, trust
and confidence in the final SEM was measured by four attributes: increased trust
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(C8)
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Monitoring and
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Communication (R4)

Trust and
confidence (R5)

Relational
Partnering
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Communication

Trust/confidenceTrust/confidence

Joint Risk
Management

0.74
0.72
0.51

0.45

0.51

0.58
0.73
0.65

0.54
0.76
0.71

0.72

0.54

Fig. 46.2 Standardized coefficient estimates (p-value) of the final SEM

and confidence (T1), importance of trust and confidence (T2), lack of confidence
(T3) and effects on dispute resolution and delays (T4). All these four attributes
with standardized loadings over 0.55 have been found to be sufficient to judge the
trustworthiness of the partners.

The final SEM results as depicts in Fig. 46.2 also suggests that only one
factor namely communication, has the significant correlation with the relational
partnering success Among the three main factors, trust and confidence and joint risk
management were found to have least direct influence on the relational partnering
success. While role of communication has been found to be the greatest influencing
factor for relational partnering success, the trust and confidence were found to
be mutually inclusive for effective communication. Consequently, the trust and
confidence were found to have direct influence on developing capability for joint
risk management within the partnering organisations. This finding alters the widely
accepted view across Australian construction industry that partnering is built on
trust and confidence only and any risks associated in projects are best dealt with
joint responsibility without any problems (Williams and Lilley 1993).

The results of the above model with a small positive standardized coefficient
between trust and confidence and relational partnering success .p D 0:16/ and
a marginal standardized coefficient between joint risk management and relational
partnering success .p D 0:36/ direct weaker linkages between the respective
factors. While trust and confidence are assumed to be one of the important factors
in partnerships arrangement, this is the east important factor directly affecting
project success through relational agreements. The result highlights the fact that
there is too little or no relationship between the latent variable and the relational
partnering success. The research revealed quite a contradiction to some of the



46 Key Factors of Relational Partnerships in Project Management 1059

findings highlighted in earlier studies by Wong and Cheung (2004) and Ngowi
(2007). Most of the past studies asserted trust and confidence as a critical factor
contributing to success of relational partnerships.

The finding revealed that the communication is rather an essential factor in
the successful delivery of relational partnering success with the high standardized
coefficient .p D 0:81/. It has been revealed that reliable line communications has
the capability to contribute to the success of a relational partnering agreement more
than simply relying on trust and confidence building exercises. Therefore projects
that experience lack of communication are less likely to achieve their objectives.
Previous findings also suggest similar conclusions that preliminary function of
adopting partnering is to provide a merely conducive platform for partners for active
communication for managing any conflicts and potential disputes in projects (Wood
and Ellis 2005)

On the other hand, contradicting to research conducted by Rahman and
Kumaraswamy (2002), the practice of joint risk management was also found to
be a least contributing factor to the success of relational partnerships. There was a
clear assertion that the integrated project team established in relational partnerships
collectively better manage the project risks without putting the sole responsibilities
on the individuals. Rather, as stated earlier, increased trust and confidence among
partners has relatively a greater influence in collective management of risks in
projects. While there may be a relationship between joint risk management and
project success, the magnitude of the relationship is rather small or even negligible.
From the above, it is difficult to state with any conviction, that joint risk management
is an important factor directly contributing to the relational partnering success.

46.8 Conclusions

The benefit of relational partnering in achieving project delivery success is acknowl-
edged within the reviewed literature. Previous studies identified communication,
joint risk management and trusts among partners as important attributes in part-
nering success. Amongst all, trust was perceived to be one of the most critical
factors influencing relational partnerships and previous research suggests that lack
of trust has been a major reason behind inefficiencies in project delivery (Wong
and Cheung 2004; Ngowi 2007). However, in contrast, the findings of this research
suggest that trust and confidence has little or no effect on project success. While
trust and confidence may have been a major reason behind project inefficiencies,
the inefficiencies created by lack of trust and confidence do not affect the success of
a relationship agreement.

Based on the mean score ranking for relationship agreements, the importance
of the key variables were highlighted and discussed in relation to the traditional
practices. Variables such as building skills, understanding risks and being pro-active
in resolving problems were important to both relational and traditional management
techniques. However, cost efficiency, trust and communication between the project
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team require improvement under both relationship agreements and traditional
procurement methods.

On reviewing the means values, it was concluded that while relationship
agreements may not be as time efficient as traditional procurement methods, the
integrated management team has a number of advantages. In the relationship
agreement, the team environment consistently results in informed decision making
and working with other members of the project team enabled the individual to build
on a broad range of skills. Current delivery process consistently produces a best for
project outcome and the milestones are consistently achieved on program across the
projects. Disputes are resolved quickly and efficiently.

The structural equation models developed on the empirical dataset also suggested
that joint risk management was not critical in terms of achieving success in relational
partnerships in project. However, joint risk management capability is influenced by
the level of trust and confidence among the parties. This finding proves that joint
risk management becomes better as the perceived trust and confidence among the
partners become higher. The latter was also found to be mutually inclusive with the
level of communication within the partners in the project. The trust and confidence is
also found to be higher as the perceived communication between partners becomes
better and vice versa. This finding contrasts to the results published by Rahman and
Kumaraswamy (2002) which contended that by collectively managing the risks, the
project team can easily prevent the occurrence of undesirable activities interfering
with the project objectives. The results found in the SEM, therefore, do not support
these previous findings. However, it has been revealed that increased trust and
confidence among partners has relatively greater effect on collective risk sharing and
effective management in projects. Supporting part of the first hypothesis, the SEM
identified communication as the single critical factor to the relational partnering
success. This finding confirms the previous assertion that achieving reliable lines
of communication will contribute to the success of a relational partnership, while
projects that experience lack of communication are less likely to achieve their
objectives (DTF DOTAF 2006; Naoum 2003; Cheung et al. 2003).

It has been revealed that the success of relational partnering can only be achieved
if all the key partners engage in clear line of communication across all levels. In
order to improving the practice of effective communication, firms need to set out
the protocols between the associated partners with clear definition of lines of roles
and responsibilities in the organisation. A conducive environment for facilitating
effective communication evidently leads to developing trust and confidence among
partners, which eventually supports developing the collaborative risk management
capability for the project. The revelation for the need of free communication among
partner’s organizations is considered as a major shift towards developing successful
partnership relationships and hence achieving the project success.
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Chapter 47
Incentive Mechanisms and Their Impact
on Project Performance

Xianhai Meng

Abstract Good performance characterizes project success and value for money.
However, performance problems are not uncommon in project management. Incen-
tivization is generally recognized as a strategy of addressing performance problems.
This chapter aims to explore incentive mechanisms and their impact on project
performance. It is mainly based on the use of incentives in construction and
engineering projects. The same principles apply to project management in other
industry sectors. Incentivization can be used in such performance areas as time,
cost, quality, safety and environment. A client has different ways of incentivizing
his contractor’s performance, e.g. (1) a single incentive or multiple incentives;
and (2) incentives or disincentives or a combination of both. The establishment
of incentive mechanisms proves to have a significant potential for relationship
development, process enhancement and performance improvement. In order to
ensure the success of incentive mechanisms, both contractors and clients need to
make extra efforts. As a result, a link is developed among incentive mechanisms,
project management system and project performance.

Keywords Improvement • Incentive mechanism • Project performance • Reward

47.1 Introduction

Construction and engineering projects are often large and complex. It is not
uncommon for these projects to suffer from performance problems, such as time
delays, cost overruns and quality defects (Sun and Meng 2009). Performance
problems significantly affect the success of a project. According to Bubshait (2003),
for example, a 1-day production delay in an industrial project may cost the client
millions of dollars and damage his return on investment. Many studies, such as
Lam (1999) and Miller and Lessard (2001), have identified unsuccessful completion
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as a major risk in construction and engineering projects. Introducing incentives
provides a strategic response to this major risk (Floricel and Miller 2001). On the
other hand, the lack of incentives is often a cause of poor performance in a project
(Assaf and Al-Hejji 2006; Doloi et al. 2012). This is because without appropriate
incentives the contractor may have less motivation to work together with the client
for performance improvement.

Incentive schemes have received an increasing recognition from construction
practitioners and researchers. In a project under such schemes, incentivization aligns
the client’s and the contractor’s objectives (Chapman and Ward 2008). According
to the incentivization report released by the Construction Industry Research and
Information Association (CIRIA) and written by Mouchel Richmond-Coggan in
2001, the objectives of both parties are aligned through the use of appropriate
performance measures and the link between the contractor’s performance and the
client’s payment. The contractor is incentivized to increase his efforts towards the
client’s objectives beyond minimum contractual specifications (Rose and Manley
2010). As a result of incentivization, the contractor works quicker, cheaper and
better and therefore there is a greater certainty of delivering the client’s desired
performance (Hughes et al. 2007). The client may expect the project to be completed
in the shortest possible time, at the lowest possible cost and with the best possible
quality (Arditi et al. 1997). In this case, incentivizing the contractor’s performance
is an inevitable choice.

The first section of this chapter explains the reasons for introducing incentive
mechanisms. It is followed by the review of previous practices of performance
incentives. The third section focuses on the summary of project objectives and
performance indicators. How to select appropriate incentives is further discussed in
the fourth section. The fifth section presents a case study on the use of incentives in
a road project. The impact of incentive mechanisms is analyzed in the sixth section,
providing empirical evidence for their application. Finally, this chapter ends with a
model to describe how an incentive mechanism works.

47.2 Previous Practices of Performance Incentives

Performance incentivization emerged in line with the development of project
management. According to Herten and Peeters (1986), the United States Department
of Defense (DOD) tried several types of incentive provisions during World Wars
I and II for large military acquisitions. This is probably the earliest practices of
performance incentives in the project environment. During the 1960s, the DOD and
the National Aeronautics and Space Administration (NASA) developed the policy
for performance incentives and the guide for incentive contracting (Hildebrandt
1998). The incentive policy and guide proved to be useful for ensuring the success of
large NASA projects, such as Apollo (Morris 1994). In Europe, the European Space
Agency (ESA) can be described as an early advocator of establishing incentive
mechanisms. One of the ESA examples was the use of incentives for the Highly
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Eccentric Orbit Satellite project HEOS-1 in the late 1960s (Herten and Peeters
1986). Subsequent to the successful application in the military and aerospace
sectors, performance incentives were gradually introduced into the construction
industry and its projects in the global context.

Existing studies demonstrate the successful application of incentives in various
construction and engineering projects across different countries. For example,
Christiansen (1987) investigated a highway project with incentive provisions in
the United States. Berends (2000) analyzed eight incentive projects from the oil
and chemical industry in the Netherlands. Richmond-Coggan (2001) discussed 20
incentive schemes in different types of UK construction and engineering projects,
such as road, tunnel, power station and waste treatment. Based on four Australian
building projects, Rose and Manley (2010) provided recommendations for project
clients who design and implement financial incentives. Chan et al. (2010) presented
an underground railway station modification project in Hong Kong in which
performance was improved through the use of incentives. In addition to various
construction and engineering projects, it is possible to apply incentives to other types
of projects, such as software development and research development, which can be
witnessed in Gopal et al. (2003) and Seston et al. (2003).

47.3 Project Objectives and Performance Indicators

A common understanding in the construction industry is that three major objectives
of the client in a project are: time, cost and quality. According to the construction
contract, it is the responsibility of the contractor to meet the client’s major
objectives. For this reason, time, cost and quality are generally described as an “iron
triangle” for project management. They are also defined as three key indicators to
measure the contractor’s performance or the completed project’s performance. If
completion on time, on budget and with the specified quality is considered as normal
performance, it is possible to define completion behind schedule, over budget and
with the quality lower than the specifications as underperformance and completion
ahead of schedule, under budget and with the quality higher than the specifications
as outperformance (Meng and Gallagher 2012). Obviously, outperformance repre-
sents performance above “business-as-usual” (Rose and Manley 2011). In contrast,
performance below “business-as-usual” characterizes underperformance.

In addition to time, cost and quality, other project objectives or performance
indicators have been gradually introduced into project management to reflect
different stakeholders’ needs and expectations. The change is described as “going
beyond the iron triangle” (Toor and Ogunlana 2010). For example, Ofori (1992)
identified environment as the fourth project objective or performance indicator.
Safety was identified by Toor and Ogunlana (2010) as another important project
objective or performance indicator. The recognition of the time-cost-quality triangle
and the movement of going beyond the iron triangle are the same for projects in
other industry sectors as for those in construction. The new paradigm illustrates the
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necessity of measuring project success from a wider perspective. It also illustrates
the importance of customizing performance measures, varying from one industry
sector to another, from one project to another, and from one stakeholder to another.

47.4 Selection of Incentive Mechanisms

There are different ways of establishing incentive mechanisms. In the following,
they are classified in terms of which project objective is selected for performance
incentivization, whether outperformance is financially paid or not, whether incen-
tives are contractually specified or not, whether a single incentive or multiple
incentives should be selected, and whether incentives for outperformance or dis-
incentives for underperformance are more preferable.

47.4.1 Incentivization for Different Project Objectives

Both Herten and Peeters (1986) and Bower et al. (2002) stated that an incentive
mechanism can be established for time, cost, quality or safety performance. At the
first step of incentivization in a project, the client should make clear which project
objective needs to be incentivized. In construction practice, time and cost incentives
are more commonly used than quality and safety incentives (Bubshait 2003; Meng
and Gallagher 2012). Time incentives are particularly important for schedule-driven
project management (Yaghootkar and Gil 2012). This means that the contractor is
motivated to complete the project earlier than the target date if time objective is of
great importance. Generally, a bonus is paid to the contractor for early completion.
In order to benefit from early start-up, for example, the client in a case project
provided by Abu-Hijleh and Ibbs (1989) set up a $3,000 bonus for each day of
early completion and meanwhile there was a cap on the total bonus. When a time
incentive is used in a project, the contractor has motivation to complete the project as
early as possible. Even if the project cannot be completed early due to any reasons,
the time incentive will help to avoid late completion.

Cost incentives represent an important mechanism to encourage cost savings
and improve cost efficiency and effectiveness. This mechanism is directly linked
with payment methods in construction contracts. Generally, there are three types
of payment methods: fixed price contract, cost reimbursement contract and target
cost contract. Fixed price contracts and cost reimbursement contracts themselves
have no incentives for cost savings. However, incentives can be added to form fixed
price incentive contracts and cost reimbursement incentive contracts that enable
contractors to either share cost savings with clients or receive incentive fees from
clients as rewards for cost saving efforts. Among existing publications, Ward and
Chapman (1995) paid particular attention to fixed price incentive contracts, whereas
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Al-Harbi (1998) and Berends (2000) focused on cost reimbursement incentive
contracts. On the other hand, target cost contracts have cost incentives/disincentives
that allow contractors to share both savings and overspendings with clients accord-
ing to sharing formulas (Chan et al. 2010). This is usually called gain/pain sharing
or reward/risk sharing (Bresnen and Marshall 2000). Target cost contracts have
attained a growing popularity in the construction industry, which can be seen from
a considerable number of publications. There are two main concerns for target cost
contracting: one is the appropriate selection of sharing ratios and the other is the
accurate estimation of target costs. The higher a sharing ratio is, the greater impact
an incentive mechanism has on cost reduction (Badenfelt 2008). On the other hand,
cost incentives only work if target costs are estimated accurately (Hughes et al.
2012).

Quality incentives can be used to encourage project completion with the quality
higher than the specifications, e.g. zero defects. In a project under a quality incentive
scheme, the contractor is usually awarded a bonus if he can achieve the incentive
quality target. Unlike a large number of studies on time and cost incentives,
few studies have reported the use of quality incentives in construction practice.
Richmond-Coggan (2001) and Meng and Gallagher (2012) are two of the few
studies in which empirical evidence is provided for the use of quality incentives.
According to Meng and Gallagher (2012), quality incentives are less commonly
used than time or cost incentives. Meng and Gallagher (2012) further found that
quality incentives are seldom used individually but are often combined with time
and/or cost incentives. The phenomenon can also be found in Richmond-Coggan
(2001). All these explain why quality-specific incentive studies are quite limited
within existing literature.

According to Bubshait (2003), safety incentives can be used for contractors to
comply with safety rules and standards established by clients. If the requirements
provided in safety acts and regulations are regarded as safety performance at the
normal level, safety performance required by clients in their rules and standards
may be higher than the normal level. Compared to quality incentives, there are a
little more publications on safety incentives, such as Hinze (2002) and Gangwar
and Goodrum (2005). However, these publications refer to construction firms
incentivizing their workers rather than clients incentivizing contractors. On the other
hand, safety incentives were not found in any of the three case projects provided by
Bower et al. (2002). Similarly, Meng and Gallagher (2012) did not find any signs
of safety incentives in almost all the surveyed projects. Project management today
is influenced by increasing health and safety acts and regulations and contractors
have to comply with the latest legislations. No need for additional mechanisms to
incentivize safety performance may be the primary reason for the limited report of
safety incentives in construction practice (Meng and Gallagher 2012).

In addition to time, cost, quality and safety incentives, the following two
mechanisms can be established in construction practice to incentivize contractors
in other performance areas:
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• Environment incentives that motivate contractors to protect the environment from
construction pollution (Meng and Gallagher 2012); and

• Innovation incentives that motivate contractors to make innovation for better
value for money (Bubshait 2003; Leiringer 2006).

47.4.2 Achievable and Attractive Incentive Targets

Different types of incentives provide project clients with enough flexibility. A
client can decide whether or not his project needs incentivization and which
project objective should be incentivized: time, cost, quality, safety, environment
or innovation. According to Abu-Hijleh and Ibbs (1989), on the other hand, a
contractor’s motivation to perform will be maximized when:

• The contractor believes that the performance at the desired level is possible;
• The contractor believes that performance improvement efforts will lead to certain

positive outcomes; and
• The outcomes attract the contractor.

This means that incentive targets must be achievable and attractive. If incentive
targets are not achievable, a contractor will lose the ability to perform even if
incentive payment is very attractive. It is important to realize that not all incentive
projects are successful. One of the possible reasons for unsuccessful incentive
projects is that incentive targets are too high to be achieved. Therefore, a client
has to take achievability into consideration when setting up incentive targets.

On the other hand, clients have to ensure the attraction of incentivization to their
contractors. In order to achieve incentive targets, contractors need to make extra
efforts, both internally and externally. Distributive justice theories suggest that the
amount of rewards should be judged by the fairness relative to efforts (Rose and
Manley 2011). In incentive practice, this means that rewards must be enough to
attract contractors. Matching rewards with efforts explains why Badenfelt (2008)
and Hughes et al. (2012) emphasized the appropriate selection of sharing ratios in
target cost contracts. This is because too low sharing ratios will make gain sharing
unattractive to contractors. As a result, contractors may become unenthusiastic for
cost reduction. In other words, mismatch of efforts and rewards will affect the
success of incentive mechanisms.

47.4.3 Financial or Non-Financial Incentives

Incentives can be financial, non-financial or a combination of both (Richmond-
Coggan 2001). Financial incentives mean that outperformance must be paid through
bonus, incentive fee or cost saving sharing. The basic principle of financial incen-
tives is simply to take advantage of a contractor’s general objective to maximize
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his profits by giving him the opportunity to make greater profits if he can perform
the contract more efficiently and effectively (Bower et al. 2002). Although most
incentives may be financially based, not all incentives need financial rewards.
For example, Fischer and Nunn (1992) identified recognition as an excellent
non-monetary incentive. Recognition is even considered by Carrillo (2004) more
important than financial rewards. Similarly, Nyström (2005) found that non-
financial incentives, such as appreciation, influence and development, can also
create motivation and improve efforts. According to Rose and Manley (2011),
possible future work is a strong motivator of contractors’ behavior. Both financial
and non-financial incentives are important in practice. Compared to pure financial
incentives, there may be a more positive effect if financial incentives are combined
with non-financial incentives.

47.4.4 Contractual or Non-Contractual Incentives

Incentives can be contractual, non-contractual or a combination of both. Formal
incentives are built into construction contracts. Generally, contractual incentives are
based on financial rewards, e.g. a certain amount of bonus per day or per week
for early project completion. On the other hand, non-contractual incentives are
informal and usually do not rely on financial rewards. For example, recognition
is not specified contractually and not paid monetarily. Rahman and Kumaraswamy
(2008) took risk allocation as an example to distinguish contractual incentives from
non-contractual incentives: contractual incentives may include clear and fair risk
allocation in contracts, whereas non-contractual incentives may include a change in
the attitude for such equitable risk allocation. Similar to financial and non-financial
incentives, both contractual and non-contractual incentives are important for project
management and performance improvement. In incentive practice, a combination of
both may be more effective than any single one.

47.4.5 Single or Multiple Incentives

Project clients can provide time incentives for early completion, cost incentives for
cost savings, quality incentives for zero defects, safety incentives for complying
with stricter safety rules and standards, environment incentives for protecting the
environment from construction pollution, or innovation incentives for innovation
activities. The use of only one incentive is called a single incentive. For example,
Abu-Hijleh and Ibbs (1989) focused on time incentives to reduce project duration.
On the other hand, two or more of these incentives can be combined, either
dependently or independently, to form multiple incentives (Herten and Peeters
1986). For example, Jaafari (1996) twinned time and cost in an incentive scheme
for potential savings in both time and cost. The combination of different incentives
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aims to make improvement in more than one performance area. Multiple incentives
are complicated to manage (Bower et al. 2002). For this reason, the use of multiple
incentives is a challenge to project participants (Meng and Gallagher 2012). In order
to ensure the success of multiple incentives, project participants have to make much
more efforts compared to a single incentive.

One project objective may have priority over another (Parker and Craig 2008).
Compared to a low priority objective, more resources are usually allocated to the
achievement of a high priority objective. When a single incentive is established
in a project, an objective with the highest priority is selected for incentivization
and this objective receives the most resources. The establishment of multiple
incentives means that some objectives in a project are much more important than
others. Although these important objectives are incentivized in the project, they
may still have different priorities. For this reason, it is necessary to trade off
these incentives so that their priorities are well reflected (Bower et al. 2002;
Meng and Gallagher 2012). The trade-off between these incentives is crucial to
optimal resource allocation. On the other hand, multiple incentives with the same
importance are not encouraged in a real world of limited resources. Otherwise, it is
not impossible to only achieve a partial success of multiple incentives or even suffer
a failure of multiple incentives, which can be found in some examples provided by
Richmond-Coggan (2001).

47.4.6 Incentives or Disincentives

As discussed above, outperformance or excellent performance, such as early
completion, cost savings and zero defects, should be rewarded. That is why
there is a need for incentivization. On the other hand, underperformance or poor
performance should be penalized. The penalty of underperformance is called
disincentivization, e.g. time disincentives for late completion, cost disincentives
for budget overruns, and quality disincentives for major defects. According to
existing studies, disincentives are also useful in practice. If an incentive is used to
motivate the contractor for outperformance, a disincentive is used to demotivate the
contractor for underperformance (see Fig. 47.1). The National Museum of Australia
Project provided a good example of time disincentives. In this project, there was no
reward for early completion, but a significant penalty was awarded even if it was

IncentivesDisincentives

− +

Normal
performance

OutperformanceUnderperformance

Fig. 47.1 Incentives and disincentives on a spectrum
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1 day late (Walker et al. 2002). As aforementioned, fixed price contracts have no
incentives for cost savings. Under a fixed price contract, the client pays a fixed
amount for the total scope of work and the contractor takes the risk of overspendings
completely (Al-Harbi 1998; Berends 2000). For this reason, the fixed price can be
regarded as a cost disincentive.

Disincentives can be used separately from incentives. If a client only desires to
ensure normal performance, such as on-time completion, pure disincentives may be
enough. This can be seen from using a time disincentive but lacking a time incentive
in the National Museum of Australia Project illustrated by Walker et al. (2002). On
the other hand, it is possible to combine disincentives with incentives (Arditi et al.
1997; Bubshait 2003). The combination of both can be used in any performance
areas, such as time, cost, quality, safety and environment. It has a dual effect on
the improvement of a contractor’s performance: discouraging underperformance
and encouraging outperformance (Meng and Gallagher 2012). It aims to complete
a project as efficiently and effectively as possible, making the shift of project
performance from the negative side to the positive side across the spectrum shown
in Fig. 47.1.

When incentives and disincentives are combined, how to balance them appro-
priately is an important question. An optimal balance depends on the relative
importance of outperformance to normal performance. It also depends on the
management philosophy, namely, whether rewards or penalties are more preferable.
In reality, clients and contractors may have different management philosophies.
According to Bubshait (2003), the majority of clients of industrial projects, such
as petro-chemical projects and power projects, in Saudi Arabia would assign incen-
tives and disincentives equally or sometimes incline to disincentives, whereas the
majority of contractors would expect more incentives than disincentives. Based on
the investigation of highway projects in the United States, Arditi et al. (1997) found
that disincentives were generally larger in amount and accompanied incentives.

47.5 Case Study

A case study is provided in Meng and Gallagher (2012) to demonstrate the
successful application of multiple incentives/disincentives in construction practice.
It was based on a road project whose client was a county council in Ireland.
This project was scheduled to take 22 months to complete. It was budgeted at
e81,000,000. The design-build approach was chosen in this project for its delivery.
Based on tender competition, a joint venture was selected by the client to take
the overall responsibility for design and construction. The selected design-build
contractor did the construction work by himself and subcontracted the design work
to a design firm. On the other hand, another firm was employed by the client to act
as the project management consultant.

Working in the public sector, the client sought cost certainty and value for
money. For this reason, the client adopted target cost contracting in this project.
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The target cost was finalized through the modification of the initial target cost based
on value engineering in design and the negotiation between the client’s management
team and the design-build contractor. The use of target cost contracting established
a gain/pain sharing arrangement and provided both a cost incentive and a cost
disincentive. The contractor was encouraged to reduce costs as much as possible
during the project. The sharing ratio was determined through the identification of
each other’s risks and the mutual negotiation. The determined sharing ratio was
acceptable to both parties.

In addition to cost incentivization/disincentivization, incentives/disincentives
were established for time, quality and environment in this project. However, there
was no safety incentive/disincentive. According to the contract, a bonus would
be offered to reward the contractor for early completion. On the other hand, late
completion was regarded as delay damages and therefore the contractor would be
charged on a daily basis. The quality disincentive was mainly reflected by defect
liability clauses in the contract. If there were any avoidable defects after the defect
liability period, the contractor was still required to pay the cost of rework. In addition
to the defect liability, the payment to the contractor would be affected in the case of
quality defects. In order to minimize the impact of construction activities on the
environment, an environment incentive/disincentive mechanism was established,
which encouraged the contractor to avoid the noise pollution and the pollution of
nearby watercourses.

Particular attention was paid to the balance between incentives and disincentives
and the trade-off among time, cost, quality and environment incentive targets. This
was because the client wanted to maintain a good working relationship with the
contractor and encourage the contractor to pursue best practice. During the project,
the contractor made enormous efforts. The contractor selected management staff
carefully so that they were experienced enough. The contractor also made full use of
management techniques, such as critical path method, earned value analysis and risk
register, to respond to multiple incentives/disincentives. A performance monitoring
and control system was well established to ensure successful performance in
different incentive areas. In response to time incentive/disincentive, the contractor
introduced a 6-day workweek into site management. Bonus was passed down to
staff and workers on site for overtime work or night shift.

During the project, the client and the contractor worked collaboratively together.
They maintained a good working relationship throughout the project, which could
be seen from the absence of claims and disputes. As a result of incentiviza-
tion/disincentivization, this project was completed 2 months ahead of the schedule
and e500,000 below the target cost. There were also no defects and no environmen-
tal pollution. The client was satisfied with the contractor’s overall performance and
benefited from better value for money. On the other hand, the contractor received
incentive payment at the end of the project. The excellent performance also helped
the contractor to gain a good recognition from the client. The client would like to
develop a long-term business relationship with the contractor. Clearly, the use of
incentives/disincentives achieved a win-win result in this project.
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47.6 Impact of Incentive Mechanisms

Existing studies have provided clear evidence for the significant impact of incentive
mechanisms in construction practice. Based on these studies, the impact of incentive
mechanisms is summarized in this section.

47.6.1 Potential Benefits of Incentive Mechanisms

As mentioned earlier in this chapter, particular benefits of incentive mechanisms,
such as aligning clients’ and contractors’ objectives and addressing performance
problems, have been identified by some studies. They are recognized as the two pri-
mary reasons for introducing incentivization. On the other hand, Richmond-Coggan
(2001) summarized potential benefits of incentive mechanisms more systematically,
including:

• Alignment of each other’s objectives to create a better working relationship;
• Incorporation of a structured management process;
• Encouragement of gain/pain sharing;
• Development of performance-focused contract documentation system;
• Greater chance to achieve expected outcomes for both parties; and
• Better performance in terms of time, cost, quality, safety and environment.

The summary of these benefits is based on 20 construction incentive schemes
provided in the CIRIA’s report written by Richmond-Coggan (2001).

47.6.2 Contribution to Relationship Development

Relationship management used to be a part of business management at the corporate
level, but it becomes a new focus of project management in today’s practice (Meng
2012). It describes project management from the “soft” perspective. Working rela-
tionships can be divided into inter-personal relationships within a project team and
inter-organizational relationships between a project team and other project parties.
Inter-personal relationships within a project team represent internal relationships,
whereas inter-organizational relationships between a project team and other project
parties characterize external relationships. Based on existing studies, it is found
that incentivization contributes to the development of both internal and external
relationships.

Traditionally, project parties treat each other as adversaries. The adversarial
working relationship between construction organizations pulls their efforts in
different directions. On the other hand, the use of incentives is a trigger of
aligning each other’s objectives. The reason behind the alignment of objectives
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is that incentivization enables a contractor to share gains with his client if he
can perform excellently. The alignment of objectives creates a more proactive,
cooperative relationship between the parties and produces a cultural shift away
from the reactive, adversarial approach (Bower et al. 2002). It also helps to reduce
or avoid conflicts between the parties. Incentive mechanisms have three key roles
in inter-organizational relationships: sources of extrinsic motivation, symbols of
mutual trust, and generators of effective communication (Kadefors and Badenfelt
2009). With the appropriate use of incentives, an inter-organizational relationship is
harmonized and the parties work together as partners (Ling et al. 2006).

Extrinsic incentivization only works when it is successfully translated into intrin-
sic motivation. In order to achieve the incentive targets in a project, the contractor
must improve the efficiency and effectiveness and increase the productivity and
predictability during construction. For this reason, it is very important for the
contractor to motivate his team members so as to develop a high performance team.
Motivation has proven its major influence on a contractor’s team and workforce
(Bubshait 2003; Meng and Gallagher 2012). A team working environment is
characterized by good leadership, strong commitment, team spirit, mutual trust,
effective communication between team members, and low inter-personal conflicts
(Thamhain 2004). Based on the motivation throughout a contractor’s team, a team
working environment is well established and the whole team runs very smoothly.
As a result, team members concentrate their efforts on overcoming any difficulties
and achieving incentive targets.

47.6.3 Enhancement of Process Management

In an incentive project, the contractor has no choice but to improve the efficiency and
effectiveness and increase the productivity and predictability during construction.
In addition to the creation of a good working environment through internal and
external relationship improvement, the challenge requires the contractor to enhance
project management processes within his team (Meng and Gallagher 2012). Process
management must be enhanced in all the incentive performance areas. From
the internal process perspective, extra efforts are needed during construction for
effective coordination, material and equipment testing, construction plans and
methods, construction procedures, and examination of completed items (Tang et al.
2008).

Process management represents “hard” project management. In addition to the
enhancement of process management in all the incentive performance areas, risk
management and contract management have a great potential for strengthening the
project management system. Both contractors and clients need project management.
Experienced clients manage projects by themselves, whereas inexperienced clients
employ independent consultants for project management on their behalf (Bennett
2003). In addition to the contractor in an incentive project, it is also important for
the client to enhance project management processes. Although the client is not
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involved in site management, he must pay close attention to risk management,
contract management, information management and other management processes
during the project.

47.6.4 Impact on Performance Improvement

Existing studies have provided empirical evidence for a significant impact of
incentive mechanisms on performance improvement in construction. For example,
Arditi et al. (1997) compared 28 incentives/disincentives (I/D) highway projects
and 29 non-I/D highway projects in terms of time performance. The comparative
analysis results shows that 90.3 % of I/D projects were completed on time or earlier,
whereas 41.4 % of non-I/D projects were completed on or ahead of schedule. By
comparison, the impact of time I/D on time performance improvement is evident.
Based on a survey with 60 responses, Meng and Gallagher (2012) compared I/D
projects and non-I/D projects in terms of time, cost and quality performance.
It is found in this study that the significant impact of incentive mechanisms on
performance improvement in different areas is at different levels. For example, the
impact of time I/D on time performance improvement is more significant than the
impact of quality I/D on quality performance improvement.

Existing studies on the use of multiple incentives are quite limited. Among
the limited number of studies on the use of multiple incentives, case study is
the main methodology. For example, Bower et al. (2002) provided three case
projects and Walker et al. (2002) provided one case project, in which the use
of multiple incentives was successful. On the other hand, Meng and Gallagher
(2012) contributed to the performance comparison between a single incentive and
multiple incentives in the surveyed projects. The findings of this study include
(1) a single incentive is more effective for performance improvement in a certain
area compared to multiple incentives; and (2) multiple incentives are useful for the
overall improvement of project performance although they are not as effective as a
single incentive for performance improvement in a certain area. The findings suggest
that project clients should think about the selection of a single incentive or multiple
incentives carefully before making incentivization decisions.

47.7 How an Incentive Mechanism Works

Based on the above discussion in this chapter, Fig. 47.2 is developed to illus-
trate how an incentive mechanism works. As shown in this figure, incentiviza-
tion/disincentivization is the input of a project. On the other hand, project perfor-
mance in terms of time, cost, quality, safety and environment is the output. There are
two key aspects in a project management system: one is relationship management
in soft, and the other is process management in hard. With the appropriate use
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Fig. 47.2 Operation of an incentive mechanism

of incentivization/disincentivization, both the contractor and the client make extra
efforts for process management during the project. On the other hand, both parties
pay more attention to the working relationship with each other. In addition to the
external working relationship with the client, the contractor has to motivate his team
and improve the internal working relationship. Consequently, the development of
working relationships and the enhancement of management processes contribute to
the achievement of excellent performance.

47.8 Conclusions

Incentivization is an important mechanism for improving project performance in
terms of time, cost and quality. In addition to time, cost and quality, incentive
mechanisms can be used for the improvement of project performance in other
areas, such as safety, environment and innovation. The appropriate use of incentives
contributes to the alignment of different parties’ objectives in a project and the
integration of each other’s efforts. It is possible for a project client to incentivize
his contractor in a single performance area or in multiple performance areas. By
comparison, multiple incentives are complicated to manage and therefore there
is a need for more efforts. In contrast to incentivization for outperformance,
disincentivization is useful to deal with underperformance. A project client can use
incentives, disincentives or both to influence his contractor’s behavior. Generally,
the combination of incentivization and disincentivization has a more significant
effect on project performance. Incentives/disincentives do not link project perfor-
mance directly. Therefore, the use of incentives/disincentives does not necessarily
mean a success. In order to ensure the success of incentives/disincentives, two
important issues should be highlighted during a project: one is the development of
working relationships and the other is the enhancement of management processes.
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Chapter 48
Drivers of Complexity in Engineering Projects

Marian Bosch-Rekveldt, Hans Bakker, Marcel Hertogh, and Herman Mooi

Abstract This chapter investigates drivers of complexity in engineering projects.
Based upon literature and empirical data, the TOE (technical, organizational,
external) framework is developed, which captures the drivers of complexity in
engineering projects. The empirical data was gathered by means of case studies in
which interviews were held with three persons of six different projects. The resulting
TOE framework consists of elements related to technical aspects, organizational
aspects and external aspects of the project, all potentially contributing to project
complexity. This chapter shows that organizational aspects can be considered as the
particular drivers of project complexity. The interviewees seem to be well educated
to deal with technical aspects; external aspects seem harder to recognise.

Keywords Complexity drivers • Engineering projects • Project complexity •
Project management

48.1 Introduction

Complexity of projects played an important role in the project management debate
in literature and at project management conferences the last decade (Bosch-Rekveldt
2011; Williams 2002; Geraldi and Adlbrecht 2007; Hass 2007; Dombkins and
Dombkins 2008; Bosch-Rekveldt and Mooi 2008; Maylor et al. 2008; Vidal and
Marle 2008; Bosch-Rekveldt et al. 2011, 2009; Hertogh et al. 2008). The interest
in “complexity” is fed by the assumption that one of the reasons for project failure
would be the increasing complexity of projects and underestimation of this complex-
ity (Williams 2002, 2005; Neleman 2006). The complexity of projects is assumed to
increase as a result of rapid changes in environment, increased product complexity

M. Bosch-Rekveldt (�) • M. Hertogh
CITG, Delft University of Technology, Delft, The Netherlands
e-mail: m.g.c.bosch-rekveldt@tudelft.nl; m.j.c.m.hertogh@tudelft.nl

H. Bakker • H. Mooi
3ME, Delft University of Technology, Delft, The Netherlands
e-mail: h.l.m.bakker@tudelft.nl; h.g.mooi@tudelft.nl

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 2, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05915-0_18

1079

mailto:m.g.c.bosch-rekveldt@tudelft.nl
mailto:m.j.c.m.hertogh@tudelft.nl
mailto:h.l.m.bakker@tudelft.nl
mailto:h.g.mooi@tudelft.nl


1080 M. Bosch-Rekveldt et al.

and increased time pressure (Williams 1999) and this complexity heavily hampers
the successful completion of projects (Hertogh and Westerveld 2010). Therefore
research has been undertaken to better understand project complexity. A common
understanding of the concept of project complexity is however lacking and research
even expressed the need for “the development of new models and theories which
recognize and illuminate the complexity of projects and project management, at all
levels” (Winter et al. 2006, pp. 642).

This chapter describes drivers of complexity in engineering projects according
to literature and according to project professionals.1 After presenting the notion of
complexity in Sect. 48.2, a case study set-up is described in Sect. 48.3. Results of
the case study are presented in Sect. 48.4, after which the drivers of complexity
in engineering projects are discussed by means of a framework to grasp project
complexity in Sect. 48.5.

48.2 Project Complexity According to Literature

This section introduces and details concepts of project complexity from literature.
First, project complexity definitions are explored. Next, concepts on project com-
plexity are presented. This section concludes with a discussion on the literature
findings and explains our view on project complexity.

48.2.1 Defining Project Complexity

Van der Lei et al. (2010) provide an overview of complexity in multi-actor systems
research. In their research, they distinguish the concept of complexity in the
context dimension and the concept of complexity in the actor dimension. This
distinction was based on systems theory (Waldrop 1992), which says that complex
systems consist of many actors that continuously interact with a physical/technical
environment with an emergent character. Earlier, complex systems were already
defined as systems that consist of a large number of components that heavily interact
with each other (Simon 1962). Following these definitions of a complex system, a
project can be considered, and often is considered a complex system (Whitty and
Maylor 2009).

However, in line with the work of Geraldi, no clear, unambiguous definition of
complexity of projects, or projects in a complex environment, was found in literature
at this stage (Geraldi 2008). Although the complexity of projects and their envi-
ronment obviously influences important decisions on and in project management,

1This chapter is largely based on the partial content of a dissertation and a preceding conference
paper (Bosch-Rekveldt 2011; Bosch-Rekveldt et al. 2009).
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complexity as such is often taken intuitively or from previous experiences. Project
complexity by definition has a subjective character (Hertogh and Westerveld 2010).
Despite the inherent difficulty of defining complexity and the different views on
complexity (Flood 1990), a high level definition of project complexity should
include structural, dynamic and interaction elements (Whitty and Maylor 2009).
Describing projects as complex adaptive systems or socially constructed entities
(Cicmil et al. 2006), complexity in projects could then be considered to be related
to such structural elements, dynamic elements and interaction of these; broader than
the technical or technological domain.

According to the College of Complex Project Managers and Defence Materiel
Organisation (DMO) of Australia complex projects can be distinguished from
traditional projects in the following aspects (DMO 2006): disorder, instability,
uncertainty, irregularity and randomness. In one word: dynamics. A distinction
however should be made between complex projects and project complexity, also
referred to as the complexity of a project; the first is a specific class of projects
(namely the complex ones) and the latter focuses on what aspects make a project
complex.

48.2.2 Concepts of Project Complexity

What are well-known literature concepts of project complexity? The goals and
methods concept (Turner and Cochrane 1993) classifies projects according to
whether the goals of the project are well defined or uncertain and whether the
methods to achieve these goals are well defined or uncertain. Baccarini published a
review on the concept of project complexity in the construction industry, propos-
ing the following objective measure of project complexity: “Project complexity
consists of many varied interrelated parts and can be operationalized in terms
of differentiation and interdependency” (Baccarini 1996, pp. 202). Complexity as
a project characteristic is distinguished from other project characteristics such as
size and uncertainty. Both organizational and technological complexities are further
elaborated by differentiation and interdependencies (Williams 1999).

Williams (1999) further operationalized the concepts of Baccarini and Turner.
To investigate aspects of project structural complexity, measures for product
complexity which influence project complexity are described. Project complexity is
influenced differently by various types of interdependency, such as pooled, sequen-
tial and reciprocal. It is suggested that concurrent engineering is causing more
reciprocal interdependency, adding to a project’s complexity. Further dimensions
of structural complexity include multi-objectivity and multiplicity of stakeholders.
Williams assumes that uncertainty adds to the complexity of a project and therefore
can be considered as a dimension of project complexity. Adding the concept of
Turner and Cochrane (uncertainty in goals’ and methods’ definition) to Baccarini’s
concept of project complexity, as well as adding interactions between complexity
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Fig. 48.1 Overview of dimensions of project complexity (Williams 2002)

and uncertainty, leads to the model given in Fig. 48.1 (Williams 2002). Note the
similarity of structural complexity and the definition of a complex system as
provided by Simon about half a century ago (Simon 1962) .

Xia and Lee (2004) measured the complexity of information systems (IS)
development projects along two dimensions: organizational/technical and structural/
dynamic. They concluded amongst others that complexity in IS development
projects has a multidimensional nature.

Whereas the authors mentioned above focused on “structural complexity” and
“uncertainty”, also softer aspects and influences from the environment are assumed
to influence project complexity (De Bruijn et al. 1996; Jaafari 2003; Geraldi and
Adlbrecht 2007). Geraldi further developed the Williams concept earlier described
and distinguished the complexity of fact and the complexity of faith (Geraldi
and Adlbrecht 2007) as well as the complexity of interaction. The complexity of
interaction, taking place at the interfaces between people and organizations, includes
aspects like politics, ambiguity and empathy (Geraldi 2009), which are considered
the softer aspects that contribute to the overall project complexity.

De Bruijn et al. (1996) also paid explicit attention to softer aspects related
to project complexity. They assumed that project complexity would break down
into technical, social and organizational complexity. Here technical complexity was
assumed to be related to amongst others technological uncertainty, dynamics and the
uniqueness of the project. Organizational complexity was assumed to be related to
amongst others the organization structure, the project team, and the actors involved.
Social complexity referred to (again) actors involved, their interests and the risks
and consequences of the project in relation to its environment. Also other studies
indicated the environment as an important contributor to project complexity (Jaafari
2003; Xia and Lee 2005; Mason 2007). Also Antoniadis et al. (2011) favour an
approach in which complexity is considered broader than just technical complexity:
they showed the importance of recognizing socio-organizational complexity.
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The Williams’ model, introduced above (Williams 2002), primarily covers the
technical aspects and to a lesser extent the organizational aspects and aspects related
to the environment, although the number of stakeholders involved, their diversity
and interdependency could be considered as being part of structural complexity.
Integrating Williams’ model in a broader model taking into account these “softer”
aspects is therefore suggested.

48.2.3 Discussion

The leading theoretical concept of project complexity is built upon the concepts
of uncertainty in goals and methods, structural complexity by differentiation
and interdependency and interactions between the different aspects (Fig. 48.1).
Literature seems to dominantly focus on aspects of technical complexity, although
the importance of the softer aspects of complexity is recognized. Literature mostly
describes complexity at relatively high, abstract level. Although it expresses com-
mon sources of complexity, such as uncertainty and number and interdependencies
of elements (Williams 2002), it lacks a real operationalization of project complexity,
which would be helpful in order to better manage project complexity.

In the current research, project complexity is broken down into at least techni-
cal complexity, organizational complexity and external complexity (T,O,E). With
external complexity we refer to complexity related to the direct environment of the
project, physical as well as relational (such as location and stakeholders).

48.3 The Case Study Setup

In order to further operationalize project complexity, empirical research was
undertaken to investigate the concept of project complexity from the perspective
of project professionals working on engineering projects in the process industry.
Exploratory case studies were performed to answer the research question: What is
project complexity as experienced by project professionals?

48.3.1 Case Study Design

The chosen unit of analysis was a completed project in the process engineering
industry: projects with the aim to develop and/or construct and/or modify a certain
asset or facility. The project was taken in its wide definition: it covers all activities
from initiation to close-out (including the feasibility (or scouting) phase, front-end
development, implementation and close-out/handover, but excluding operations and
maintenance of the facility built).
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A multiple-cases embedded design was followed (Yin 2002): six cases were
studied, each consisting of interviews with three different persons involved. Find-
ings were combined with the study of written project documentation (such as official
reports and project archives).

The six projects were selected from within one major company in the Dutch
process industry, active member of the NAP network.2 This company was selected
because of its size, which enabled inclusion of very different types of projects
from within one company, the well-developed project management procedures and
the positive attitude towards further professionalization of project management.
The choice to perform the case study within one company, with a well-developed
project management process, limits variation across the cases in the standard front-
end activities to be applied. Thereby the main phenomenon under study (project
complexity and how it was dealt with) can be better explored.

Semi-structured interviews were held to investigate what elements in a project
contributed to the project’s complexity and how project complexity was dealt with.
These interviews were held with the project managers of these six projects, a project
team member (lead process engineer, lead project engineer, control manager, or
engineering manager) and an owner representative [future site/plant owner, asset
development manager (ADM), managing director]. For one of the cases (case 6), no
owner representative was involved in the interviews. Instead, for case 6 two project
managers were included since the first was replaced during the project. In total,
eighteen interviews were held.

48.3.2 Case Study Protocol

To increase validity of the study, a case study protocol was followed. The foreseen
participants were asked to participate in the interview with a short letter of
information. All project professionals approached were willing to participate in the
research. Before performing the interviews, project documentation such as progress
reports and close out reports were studied.

All interviews were taped with permission of the interviewees. The interviews
were following the same list of base questions, but there was room to further deepen
the answers of the participants. The interviews included questions related to project
performance, activities during front-end development and project complexity. The
transcripts of the interviews, made by the interviewer, were approved by the
interviewee before starting further analysis. In this chapter only the questions and
answers related to “project complexity” are discussed.

2The NAP network is a competence network of the Dutch process industry, see http://www.
napnetwork.nl/.

http://www.napnetwork.nl/
http://www.napnetwork.nl/
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Regarding project complexity, interviewees were asked to express their ideas on
project complexity and whether or not they considered their project as complex
(and in what way). Only after obtaining their initial ideas on project complexity, in
subsequent questions several potential areas of project complexity were introduced
(commercial, economical, organizational, political, technical, and health, safety and
environment) and it was asked whether any elements in the project had contributed
to project complexity in that area. These potential areas of project complexity,
serving as wide categories, were following the in-company risk identification model
because this framework allowed a broad approach to the concept of complexity.
Even more important; the interviewees were already familiar with the framework.
Also, the interviewees were asked to assess the project’s complexity on a 1–5
scale (1 D least complex, 5 D most complex) in the three main areas (technical,
organizational, external).

Finally, the participation of the interviewee in the review process was asked
for and any other business could be discussed, if this was felt appropriate. Some
questions were considered more important than others and these questions got
preferred attention during the interviews and the analysis.

48.3.3 Case Selection

Based on Yin a replication logic was used for case selection (Yin 2002). This
information oriented strategy was chosen in order to “maximize the utility of
information from small samples and single cases” (Flyvbjerg 2006, pp. 230).
The cases together, summarized in Fig. 48.2, covered both successful and less
successful projects in terms of meeting budget and schedule estimates and delivering

Fig. 48.2 Summary of the selected cases 1–6
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according to technical specifications (project performance: poor–good). A range
of project types in existing or new markets was included, such as innovative
projects, construction of facilities and new businesses (market/business: existing–
new). Technology involved in the projects ranged from old/proven technology to
new/unproven technology (technology: old–new). The capital expenditure (Capex:
0–600 $Million) of these projects ranged between 20 and 600 M$. Different geo-
graphical areas were covered (Europe, Asia and Middle-America) and the project
location varied between industrialized and remote areas (location: industrialized–
remote). The projects differed in project ownership; e.g. from 100 % owned to Joint
Venture (JV) partnerships with partial ownership (project owner type: single owner–
JV). Figure 48.2 shows the broad variety in project characteristics for the projects
included in the case studies. The selected cases were all completed, rather recent
and data availability was checked upfront.

48.3.4 Data Analysis

Qualitative analysis of the cases was done per case as well as across the different
cases, focusing on the different perspectives of the interviewees on the project’s
complexity. All data was gathered in one database, combining the answers of the
interviewees with information regarding the background of the participants and
information regarding the project.

Per case, a general picture of the project was sketched based on the written
information and an overview of the interview results. After the writing of these
narratives (about four A4s per interview), the actual analysis took place by
comparing mentioned complexity elements. The answers on the interview questions
were analysed by a qualitative comparison, and differences and similarities were
explained. Interviewees were not aware of the answers of their colleagues. After the
in-depth single case analysis, a cross case analysis was performed focusing on an
overall comparison of the results and exploring trends across the single case results
(Miles and Huberman 1994).

48.4 Case Results

A summary of the partial case results is given in Table 48.1. Subsequent sections
present and explain the case results in more depth.
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Table 48.1 Summary of the case results

Scores (1–5)a

Project Perspective of Project complex? Technical Organizational External

1 Project manager Yes 1 2 2

1 Project controls manager Yes 2 2 2

1 Future site owner Yes 3.5 4 2

2 Project manager Yes 2.5 4 2.5

2 Engineering manager No 2 3 4

2 Project owner No/yes 3 4 5

3 Project manager Yes 1 5 3

3 Process design/ADM No 2 4 2

3 Future plant owner No 2 5 1

4 Project manager Yes 4 4 4

4 Lead process engineer Yes 3 4 1

4 Asset development manager Yes/no 4.5 3.5 2.5

5 Project manager Yes 4 3 4

5 Lead engineer Yes 4 2–5b 2

5 Managing director No 3 4 2–4c

6 Project manager Yes 4 4 3–4

6 Project manager front-end Yes 3 2 4

6 Control manager Yes 5 5 4
a1 D low complexity, 5 D very high complexity
bPerspective owner’s organization: 2, perspective contractor: 5
cProject execution phase: 2, front-end phase: 4

48.4.1 Case 1: Design, Construct and Start-Up of a Chemical
Plant—Good Project Performance

The objective of project 1 was to design, construct and start up a new chemical
plant in South-East Asia, in an industrialized environment. The plant was a copy
of an existing plant and mainly proven technology was used, with some smaller
unproven parts. The project was owned by a two partner JV that was established for
this project. The project team consisted of about 55 members in the owner’s team.
There was close co-operation with the engineering contractor, who worked under
a lump sum plus incentive fee EPCM (Engineering, Procurement, Construction,
Management) contract. The contractor’s team consisted of about 200 members. A
maximum of around 4,000 workers were onsite during peak time. The planned
capital expenditure of the project was about 520 M$ and it was a cost driven
project. The project was considered as existing business for the company. Based on
project documentation, it was concluded that the project performance was very good
in terms of meeting budget, schedule, quality and health, safety and environment
(HSE) requirements.
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In view of the project manager, project 1 was complex in terms of size:
the number of people involved in the project but also the physical size of the
construction site. He however indicated that it was still manageable and as such, he
didn’t experience the project as being complex while executing. Further, he stressed
the importance of the people in the project. He considered the organizational aspects
in the project most complex. Because it was a JV project, there were two home
offices and the project manager had to communicate with the two company boards.

In view of the project controls manager, project 1 was complex in terms of being
organized in a JV which required approval of the other JV partner on allocation
models, agreed budgets, etc. The construction of the facility as such he did not
consider complex since it was just a copy of an existing facility. The aspect
contributing most to the project complexity was the fact that the project was done
with a partner in a JV structure.

In view of the future site owner, project 1 was complex in terms of having a
JV partner, resulting in extra interfaces. Also at the contractor side, a JV structure
was in place with split responsibilities, introducing additional interfaces. Further,
complex arrangements had to be made with feedstock suppliers, resulting in extra
logistic interfaces and dependencies. The aspect contributing most to the project’s
complexity was related to the many parties involved at both owner and contractor’s
side.

All three interviewees indicated that the organizational aspects contributed most
to project complexity, particularly the fact that the project was run by a JV. Based on
their scores, they did not really consider the project complex, with the majority of
their scores being 2. Note that all three were very experienced employees and that
they were involved in both front-end development and project execution.

Although at first sight, project 1 could appear to be very complex [working with a
JV partner, large CAPEX (capital expenditure), a large number of people involved];
this wasn’t experienced as such by the experienced interviewees. They indicated
that the project was complex, but only to a small extent. From the interviews,
the value of the integrated team became apparent. In this project a well-integrated
project team was realized, with people from the contractor and the two owner’s
organization working closely together in the FED (front-end development) phase as
well as during project execution. Note the (accepted but apparent) dominance of the
project manager’s company in the JV. Still the presence of the JV did considerably
contribute to the complexity of project 1: additional effort was spent to align the
parties involved.

48.4.2 Case 2: Development and Construction of a New
Facility—Good Project Performance

The objective of project 2 was to develop and build a large facility in Central
America, in a rather industrialized environment. The facility consisted of proven
technology. The project was owned by a two partner JV that was established for



48 Drivers of Complexity in Engineering Projects 1089

this project. The two partners both had a background in the oil and gas industry.
The project team consisted of about 22 members (12 expats and 10 locals) in
the owner team. The maximum number of workers on site was around 1,500.
The planned capital expenditure was about 370 M$ and the project was schedule
driven. The owner’s organization had neither experience with building such a facility
in that country nor with the engineering contractor involved, although they did
have experience with this type of asset. The project was therefore considered as
considerable new business for the company. The contractor worked under an EPCC
(Engineering, Procurement, Construction and Commissioning) lump sum contract.
Based on project documentation, it was concluded that the project performance was
very good in terms of meeting budget, schedule, quality and HSE requirements.

The project manager considered project 2 as complex in several aspects: multiple
shareholders with non-aligned objectives, technically complex because of the
physical size of the site location and its consequences for logistics. Further, in his
view the project included a complex technical process, in which different steps had
to be taken in a specific order with different materials and specialisms involved,
high quality requirements and limited specialized resources available. The aspect
that contributed most to the project complexity, according to the project manager,
was related to the different stakeholders involved.

In contrast to the project manager, in view of the engineering manager, project 2
was not complex: the technical scope he didn’t consider as complex. He considered
the interfaces little more complex; particularly the relations with stakeholders and
clients in the country where project 2 was performed. He did not consider the project
as complex, but still the most contributing element to the complexity of the project
would be some political aspects together with the local stakeholders that he found
were difficult to influence.

In view of the project owner project 2 was not complex in comparison with
other projects. He would not consider project 2 complex because the players in the
project were known and there were no interlinked investment decisions to be made,
which he would consider really complex. The timing and joining of all project parts
together just before the final investment decision, he found the most difficult.

Comparing the answers of the three interviewees, a major difference in per-
spective regarding project complexity was observed. The project manager, most
experienced of the three interviewees for this project, found the different stake-
holders with non-aligned objectives the most complex, and the project owner,
who just considered the project as not being complex, nevertheless scores the
project relatively high on its complexity. The opinion of the engineering manager
is somewhere in between; he agreed with the project owner that the project as such
was not complex, but the aspect that contributed most to the (limited) complexity
was similar to the project manager, in the area of stakeholder relations.

Based on the project characteristics this project could have been perceived as
considerably complex: working in a JV, new business, neither experience in the
country nor with the contractor involved. The interviewees, however, showed con-
siderable differences in their opinion on the project’s complexity, ranging from not
complex at all to considerably complex. Also their ideas on the direction of changes
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in project complexity across the different project phases differed considerably. Their
different perceptions might be related to years of experience, role in the project or
involvement in the different project phases. Not all of the interviewees were involved
throughout the entire project (project initiation, FED and project execution), but still
the importance of continuity within the team across the different project phases
was emphasised in the interviews. This might be related to the extremely late
mobilisation of the owner’s organization project team (apart from a few project
developers) and the absence of such continuity in project 2, resulting in a slow start
after FID. Maybe also the perceived complexity of the stakeholders’ relations can be
explained by the absence of continuity in the project team: discontinuity in the team
negatively affects longer term relationships. Although this project was performed
as a JV, this was not mentioned as an element contributing to the complexity of the
project by any of the three interviewees: potentially because the JV partners had a
similar background in oil and gas.

48.4.3 Case 3: Design and Construct of Chemical
Plant—Marginal Project Performance

The objective of project 3 was to design and construct a chemical plant in an
industrial area in Western Europe. The plant was a copy of an existing plant,
only the layout had to be adapted for this project. Although some improvements
were made with respect to the existing plant, proven technology was used, but
the owner’s organization didn’t have much experience in this specific field. The
project was fully owned by a subsidiary company of the owner’s organization. The
project team only consisted of the project manager (owner’s organization), a project
engineer (subsidiary company) and a process engineer (subsidiary company). The
contractor worked under a reimbursable EPCM contract with incentive scheme.
The planned capital expenditure was about 34 M$ and the project was cost driven.
The project was considered as existing business for the company. Based on project
documentation, it was concluded that the project performance was just acceptable:
very good quality and HSE (health, safety, environment) performance was achieved
against poor budget and schedule performance.

In view of the project manager, project 3 was complex in terms of bringing the
different parties involved together, not in terms of technology. He considered the
organizational part complex: he had experienced major differences in the ways of
working, particularly within the owner’s organization. The final objectives of the
project were aligned, in his view, but the way to achieve those objectives was not.
Further a mismatch in personal characters contributed to project complexity. The
aspect that contributed most to the project complexity, according to the project
manager, was related to these organizational aspects.
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For the process designer [and in later stages, the project asset development
manager (ADM)], project 3 would not be complex, assessed against his background
and experience in the field. Still, aspects contributing most to this project’s complex-
ity would be organizational aspects such as poor co-operation and communication
as well within the company as with the engineering contractor.

In view of the future plant owner, project 3 was not complex because of
the many years of experience the subsidiary company had in the business. He
however could imagine the project could be considered complex by somebody
without experience, particularly because of its non-standard character. In view
of the future plant owner: it is all in the eyes of the beholder and compared to
a billion dollar project, project 3 was peanuts. The aspect that still contributed
most to the project complexity, according to the future plant owner, was related to
organizational aspects; particularly the link between the owner’s organization, the
subsidiary company and the engineering contractor. In his view, the complexity of
the interfaces between these parties was underestimated. Further, he mentioned the
complexity of dealing with the non-standard technical process; new for the owner’s
organization as well as for the engineering contractor.

The three interviewed project members fully agreed about the organizational
aspects that contributed most to project complexity, although not all of them would
consider project 3 complex. The aspects that all three indicated are related to
management of interfaces within the project (communication and co-operation).
Note that all three interviewees were very experienced and involved in both front-
end development and project execution.

Looking generally at the project characteristics, this project would not be
considered very complex. There was only one company involved (the owner’s
organization, albeit with a subsidiary company), the plant was a copy of an existing
plant (although non-standard for the project owner) and the CAPEX was rather
small. This opinion was shared by two of the three interviewees. However, the
complexity of managing the interfaces within the company was underestimated,
which became a major source of organizational complexity. Partly, the character of
the organizational complexity was different than shown in the previous cases: in this
project 3, complexity was also induced by the poor co-operation between the people
involved. From this case, the influence of the relations in the project team on project
complexity became clear: obviously there was some tension between the owner’s
organization and the subsidiary company, with the owner’s organization providing
the project manager. This tension might have influenced the perception of the
interviewees on how the project’s complexity developed across the different project
phases. Lots of the complexities faced in this project were related to inexperience
with and between parties and differences in working procedures between the parties
involved.
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48.4.4 Case 4: Modification of Current Facility—Poor Project
Performance

The objective of project 4 was to improve operational performance at a large site
in an industrialized area in Western Europe. The project was a typical brownfield
project consisting of modification and extension of current equipment. Only proven
technology was included in the project, but not all partners did have experience with
the technology involved. A subsidiary company of the owner’s organization was
the owner of the project. Several departments within the company were involved
including technical disciplines and more project related ones. The project team
consisted of the project manager, the cost controller, the construction manager of the
engineering contractor and the project manager of the engineering contractor. The
contractor worked under an EPCM contract as part of a broader alliance contract.
The workforce typically ranged between 20 and 70 people on site. The planned
capital expenditure of the project was about 35 M$ and the project started as a
schedule driven project. The project schedule drive, however, decreased because of
unforeseen changes in the market. The project was considered existing business for
the company. Based on project documentation, it was concluded that the project
performance was poor in terms of meeting budget, schedule, quality and HSE
requirements.

In view of the project manager, project 4 was complex in team aspects, in terms of
underestimation of the technical complexity and organizational aspects like multi-
phased project execution and the brownfield character. The aspect that contributed
most to the project complexity, according to the project manager, was related to
technical organizational aspects, particularly in the project execution phase.

The lead process engineer would not consider project 4 as technologically
complex, rather he would call the project complex because of the large variety and
diversity of items involved and the need to monitor all work processes related to
these items. The aspect that contributed most to the project complexity, in view
of the lead process engineer, was related to the involvement of multiple internal
customers, again in the organizational area.

In view of the asset development manager, the project was complex because
of the inclusion of lots and lots of different scope elements, all interrelated and
spread over large areas of the site. Particularly brownfield projects like project 4
she considered more complex than green field projects, because of the linkages with
existing systems in case of a brownfield project. The aspect most contributing to
project complexity in view of the asset development manager was related to the
scope definition; she indicated the scope was not complete and not well enough
understood in terms of interrelations. She also mentioned the weakness of the
operational implementation plan at the moment of the final investment decision.
Further she mentioned the, contradicting, good front-end loading score received in
IPA benchmarking (IPA 2009).
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Comparing the answers of the three interviewees again organizational complex-
ity arose as the aspect contributing heavily to project complexity. Besides, the
importance of a thorough and well understood scope definition and corresponding
operational implementation plan became clear: technical complexity was also rated
high and should not be underestimated for this type of brownfield project. By his
role, which is mostly internally focused, the lead process engineer probably had
less attention for the external complexity. Underestimation of the complexity of the
project scope seems a shared opinion amongst the interviewees.

Based on the project characteristics, some complexity could have been expected
in the project. It was a brownfield project, i.e. there could be complicating
interactions with the current site. Not all partners involved did have experience
with the technology involved. On the other hand, it was existing business for the
company and there were not so many people involved. Still the complexity of the
project was considerably underestimated in the FED phase, particularly because of
all different (small) scope elements and their unforeseen interactions, and the project
showed serious underperformance. The complexity of the project was perceived to
increase during the lifetime of the project, but it seems this increase is related to
underestimation of complexity in earlier project phases. Also underestimation of
the interaction with the current site might have played a role, e.g. the brownfield
character of the project in contrast to a greenfield project in which less interaction
problems would be expected.

48.4.5 Case 5: Development of a New Offshore Energy
Facility—Good Project Performance

The objective of project 5 was to gain experience with the development of new off-
shore energy sources in Western Europe, hence in a remote environment. Unproven
technology was involved. The project can be characterized as a demonstration
project for companies as well as governmental parties involved. The project was
owned by a two partner JV, established for this project. The two partners were
complementary in terms of expertise. The contractor worked under a lump sum
turnkey contract. The owner’s project team consisted of 5–6 members, the project
team at the contractor had about 50 members. Including the workers, at the peak
there were about 130 people working on the project. The planned capital expenditure
of the project was about 200 M$, partly financed by governmental subsidies. The
project was both cost and schedule driven; there was a fixed price as well as a fixed
schedule. Note that this twofold drive (cost & schedule!) is remarkable, but in this
project it was related to the obtained subsidies. This project was considered new
business for the company. Based on project documentation, it was concluded that
the project performance was good in terms of meeting budget, schedule, quality and
HSE requirements.
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In view of the project manager, project 5 was complex in terms of the scale of
the overall project. The number of parties involved was high (lots of subcontractors)
and the arrangements for corporate governance were numerous (it was a JV structure
both at owner’s and contractor’s side). Because of the contract type, the contractor
had to control most of the complexity, but still the project manager considered
the project complex. He could not indicate what aspect contributed most to the
complexity of the project; in his view it was the combination and the number of
issues that made the project complex.

In view of the lead engineer, project 5 was complex, although merely for the
contractor, since all activities were outsourced and all risks were transferred to
the contractor. The project complexity in project 5 resulted from the number of
parties involved, parallel activities that took place with a variety of tasks, high safety
demands, difficult logistics and the lack of experience of most parties involved. The
aspect that contributed most to the project complexity was related to the differences
in background and safety culture of the parties involved, requiring extra effort of the
project team to create more HSE awareness. Also the technical complexity of the
equipment was heavily contributing to the project complexity, in view of the lead
engineer.

In view of the managing director, project 5 was not complex. Some elements in
the project he found difficult because of dependencies and he indicated quite some
elements had to come together, but all together it did not result in a complex project,
despite the innovative character of the project, the low cost requirement and the hard
contract negotiations. He considered the relation with the governmental parties the
most difficult because of their different roles in the project.

The three interviewees were non-aligned about which aspect contributed most to
project complexity. Either they thought it was highly interrelated (project manager)
not complex at all (managing director) or in some aspects complex, particularly
organizationally complex in perspective of the engineering contractor (according to
the lead engineer). Not all were involved in all project phases, and also their years of
work experience considerably differs, which might partially explain this difference.
The lead engineer indicated that the project was technically complex, which was not
the case in view of the managing director. This difference could be explained by the
managing director having a more external focus, compared to a lead engineer.

Looking at the project characteristics, this project would be characterized as
complex with complexities in various areas: new technology, new business, working
in a JV, government involvement and the fact that the project was driven by both
cost and schedule. However, because of the lump sum turnkey contract, most of the
complexities were faced by the contractor, not by the project owner’s employees
who were interviewed. Still, the interviewees indicated the areas from which
they perceived considerable complexity: political, technical, and the non-expected
differences in safety culture between the parties involved. The complexity as a result
of the large number of dependencies was indicated by all three interviewees.
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48.4.6 Case 6: Construction of a New Facility—Marginal
Project Performance

The objective of project 6 was to build, own and operate a new plant that would act
as the gas supplier for an existing plant in a rural area in Asia. Implementing a new
technological process was seen as a sustainable solution to keep that existing plant
economically viable. New and unproven technology was included in the project.
The project was owned by a two partner JV. The partners of the JV had different
backgrounds (international oil company and a local, government owned company).
The main contract type with the engineering contractor was EPC (Engineering,
Procurement, Construction) lump-sum. The project team consisted of about 20–
25 members in the owner’s team. The majority of the project team members were
local employees, also because of the required local content. In total, there were
about 1,000 workers onsite. The planned capital expenditure of the project was
about 220 M$ and it was a cost driven project. The project was considered rather
new business to the company. Based on project documentation, it was concluded
that the project performance was just acceptable in terms of meeting budget,
schedule, quality and HSE requirements. Schedule delays and cost overruns were
compensated by a successful start-up and handover.

In view of the project manager, project 6 was complex because of the non-
alignment between the business objectives of the JV partners. One partner was
focused on having a profitable project, run as efficient as possible, whereas the
other was more focused on getting as many local people employed as possible.
Further, she considered the project technically complex, with a lot of moving parts
involved, resulting in some (expected) iterations in the start-up process. The aspect
contributing most to the project complexity, according to the PM, was related to
HSE, particularly because of the major difference in HSE standards between the
owner and the local organizations. Because of the scarcity of skilled resources
onsite, this required additional HSE awareness building and training.

In view of the front-end project manager, project 6 was complex due to a lack
of local experience of the owner’s company and the complexity of the technology.
The aspect that contributed most to the project complexity in his view, was related
to operating in this specific environment, with much less influence for the owner’s
organization than he was used to have, requiring on-going compromising between
the owner’s standards and what could be achieved in that environment.

The control manager considered project 6 complex in terms of not having
experience with the JV partner, being the first execution project in this technical
area at this location, including novel technology and a novel technical process. He
could not indicate which aspect contributed most to the project complexity. In his
view, the aspects were quite interlinked and influencing each other, such as cultural
differences, novel technology, organization of the project team, unfamiliarity with
the JV partner and experience with the contractor.

For the front-end project manager the external complexity was most contributing
to project complexity. His opinion was slightly different than the similar opinions
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from the two others, but they both could speak the local language, hence eliminating
potential communication problems. Still they valued organizational complexity as
equally high adding to project complexity as technical complexity. Note that the
opinion of the front-end project manager was heavily based on his experiences in
front-end.

Based on the project characteristics, this project would be assessed as potentially
complex with complexities in various areas: the project took place in Asia in a rural
area, involvement of a JV, involvement of new technology, considerable number of
workers, required local content and new business for the company. This first view
was confirmed by all the interviewees. One of the major complexities to overcome
was the lack of local experience and the corresponding language problems. Once
the FED PM was replaced by a PM who did have local experience and could
speak the local language, this aspect of complexity was overcome. In the FED
phase, the FED project manager clearly relied on the contract with the local JV
partner that was deliberately drawn up to deal with this. Although contracts are
there to act accordingly, this emphasis on the contractual aspects suggests that the
relation between the JV partners could have been better and more “easy-going”. This
suggestion is supported by the fact that the business drivers (or objectives) across
the JV partners were non-aligned, in view of the project manager. In this project,
public and private interests conflicted.

48.5 Drivers of Project Complexity

This section analyses the interviews, grouped into perspectives of the project
managers (7), the team members (6) and the owner representatives (5) on the
complexity of their projects, in order to find drivers of project complexity.

48.5.1 Influence of Project Role

The view of the project manager, having main responsibility for the project, is
considered most important. All project managers considered their project “com-
plex”. The aspect they considered most complex was for five of them related to
organizational complexity, for one related to operating in the specific environment
and for one a combination of different aspects, including organizational complexity.
Hence organizational complexity prevails, in perspective of the project managers.
Technical complexity is not mentioned by the project managers as contributing
most to project complexity, even though some (parts) of the projects could be
considered as highly innovative. The project managers, all having an engineering
background, seem so well trained in the technical area that they have full grip on,
and understanding of, the technical aspects.
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Four of the six team members considered their project “complex”. Similar
to the project managers, the aspect they considered most complex was for the
majority of the team members (four) related to organizational aspects. One team
member stressed the linkage of different aspects being the most important and
one team member considered the difficulty of influencing the local stakeholders
as contributing most to project complexity. Again technical complexity was not
referred to as contributing most to project complexity.

The owner representatives tended to consider their projects not complex: twice
a frank “no” was scored, twice they couldn’t make a clear decision and once a
“yes” was scored. Despite this overall impression, they unexpectedly scored the
different aspects of project complexity relatively high, compared to the other two
groups (project managers and team members). This might be related to a sort
of “strategic” behaviour: the written outcome was “more conservative” (higher
complexity) than from the oral discussion could be concluded. It emphasizes the
difficulty of an absolute interpretation of the complexity scores given. They also had
very different opinions about which aspect contributed most to project complexity;
some mentioned organizational aspects, some mentioned external aspects, but also
technical complexity was mentioned. The latter is little surprising since the owner
representatives were expected not to be concerned about the technical aspects.
On the other hand, because they were more “on a distance” (and less involved in
technical aspects), they might have perceived it as more technically complex.

All project managers did consider their project complex, which was not the case
for all team members, neither for the owner representatives. Some sort of defence
mechanism might play a role here; admitting that something is complex, protects in
case of project failure (see for example case 4). However, also the opposite might
play a role; your image as a project manager boosts in case you successfully deliver
a highly complex project (see for example case 5).

48.5.2 The Need for a Complexity Framework

Table 48.1 summarizes the scores given by the interviewees for the areas con-
tributing most to project complexity. These can only be interpreted per interviewee;
absolute scores have no value since these are amongst others coloured by previous
experience and role in the project. Thus analysing, 13 interviewees did score the
organizational aspects highest, 8 interviewees did score the external aspects highest
and 6 interviewees did score the technical aspects highest. This emphasized the
important contribution of organizational aspects to project complexity, partly related
to working in a JV, in view of the project professionals. Note that 16 of the 18
interviewees scored technical, organizational and external aspects differently, hence
indicating the usefulness of distinguishing different categories.
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Every person has an own view on project complexity and an own definition of
project complexity—“it is all in the eyes of the beholder”. Such a definition might be
coloured by one’s experiences, skills or role in the project under concern. Different
perspectives make it difficult to objectify a definition of project complexity. More-
over, also the dynamic character of project complexity complicates the situation.
Over different project phases, the complexity of the projects could change, which
should be taken into account when assessing project complexity.

What more can we conclude from the case studies? The cases showed that a large
project including lots of employees (case 1), was not perceived as complex, whereas
a small brownfield project (case 4) was perceived as complex by experienced
professionals. Hence the project context is important in assessing a project’s
complexity, as well as other than technical aspects that at first sight might be
overlooked (Sauser et al. 2009; Antoniadis et al. 2011). Drivers of complexity are
different for different participants and these drivers come from very different areas.

An extensive framework, listing all potential drivers of complexity, could support
an inventory of project complexity taking into account different perspectives
(dependent on work experience, role in the project, . . . ). Such a framework could be
the starting point of complexity “footprints” of projects, allowing different views of
different project participants and stimulating constructive discussions.

48.5.3 A Complexity Framework: TOE

Based on the findings of the case studies as described in this chapter and subsequent
research gathering additional data, amongst others a quantitative survey (Bosch-
Rekveldt 2011), such a complexity framework capturing the drivers of project
complexity was developed: the TOE framework, see Sect. 48.6.

The TOE framework is a framework to grasp project complexity: to create
awareness of potential project complexities that could be faced in the project (in
near future). The framework is to be used in early project phases, preferably by
the project team rather than just the project manager and preferably more often than
just at the beginning, since project complexity is (a) highly subjective, and (b) highly
dynamic.

In the TOE framework, the T-elements represent the potential complexity causes
in the project related to the project scope or the content of the project. The O-
elements represent the potential complexity causes in the project related to the
project internal organization. The E-elements represent all the potential external
complexity causes in the project, related to external issues or external organizational
complexities (Fig. 48.3).
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Fig. 48.3 TOE Complexity framework (Bosch-Rekveldt 2011)

48.6 Conclusions

This chapter searched for drivers of project complexity. From the case studies,
it is concluded that various aspects contributed to the complexity of the projects
under investigation. Organizational complexity prevailed over external complexity
and technical complexity in view of the project managers and the team members.
The owner representatives seemed less outspoken: next to organizational complexity
also external complexity and even technical complexity were mentioned.

Overall, it was concluded that the technically well-educated interviewees seemed
well prepared to deal with technical complexities, did recognize external complex-
ities to a lesser extent and particularly faced organizational complexities in their
project.

What then are the drivers of project complexity? Based on the cases discussed in
this chapter and on additional research, the TOE framework presents the drivers
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of complexity in engineering projects clustered in three dimensions: technical,
organizational and external. Elements of the framework that were mentioned most
frequently in the cases include: a lack of experience with the technology (T), uncer-
tainties in scope (T), unavailability of resources and skills (O), incompatibilities
between different project management methods/tools (O), contract types (O), lack
of experience with the parties involved (O), presence of JV partner (O), number of
stakeholders and variety of their perspectives (E).

The TOE complexity framework could be used to create complexity footprints
of a project in order to identify the specific drivers of complexity in a particular
project. It could help in identifying the different perspectives on project complexity
of several involved parties, hence stimulating constructive discussion in the project.
Finally, the gained knowledge and awareness could be used to take adequate
management actions to improve the project’s performance.
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Chapter 49
A Framework for the Modeling
and Management of Project Risks
and Risk Interactions

Chao Fang and Franck Marle

Abstract Nowadays, projects are facing a growing complexity and are thus
exposed to numerous and interdependent risks. However, existing methods have
limitations for modeling the real complexity of project risks. In this chapter, a four-
phase framework for project risk management is proposed. It not only deals with
project risks in terms of their probability and impact, but also brings in the modeling
of risk interactions. Through identifying and assessing risks and risk interactions, a
project risk network is constructed to represent the complexity of project risks. A
quantitative model is then developed to describe the propagation behavior in the
risk network for refining the risk analysis results. A numerical example is given to
illustrate how to apply the framework in practice. The proposed approach provides
more insights on project risks and risk interactions for their management, and can
be used as a powerful complement to the classical methods for subsequent decision
support.

Keywords Project risks • Risk interactions • Risk management • Risk network •
Risk prioritization

49.1 Introduction

Project Risk Management (PRM) is an important aspect of project management.
It is crucial and indispensable to the success of projects. The objectives of PRM
are to increase the probability and impact of positive events, and decrease the
probability and impact of negative events in the project (PMI 2008). Because of the
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uncertainty and potential change inherent to the nature of projects, the PRM process
is iterative and goes through progressive elaboration throughout the project’s life
cycle. Classical PRM process is generally comprised of four major phases: risk
identification, risk analysis, risk response planning, and risk monitoring and control.

Nowadays, projects are facing a growing complexity, in both their structure
and context. In addition to the organizational and technical complexities described
in Baccarini (1996), project managers have to consider a growing number of
parameters (e.g., environmental, social, safety, and security) and a growing number
of stakeholders, both inside and outside the project. The existence of numerous and
diverse components which are strongly interrelated is one of the main characteristics
of complexity (Chu et al. 2003). Project systems are then in essence complex and
this complexity is undoubtedly a major source of risk, since the project organization
may not be able to cope with it. As a consequence, the complexity of projects
leads to the increasing complexity of project risks which are associated with the
components.

Many risk management methods and associated tools have been developed until
now in the context of project management, in both academia and industry. A
typology of project risk management is introduced in Zhang (2011). The methods
are qualitative and/or quantitative approaches, often based on the two concepts
of probability and impact (or severity) of the risky event. For example, Chap. 51
of this handbook discusses different ranking indices based on risk characteristics
for risk mitigation. However, many of these methods independently evaluate the
characteristics of risks, and focus on analysis of individual risks. Risks are usually
listed and ranked by one or more parameters (Baccarini and Archer 2001; Chapman
and Ward 2003; Ebrahimnejad et al. 2010). To comprehensively understand a risk,
it is helpful to identify its causes as well as its effects. Several tree-structure
methods include this principle, but they still concentrate on a single risk for
simplifying the problem (Carr and Tah 2001; Heal and Kunreuther 2007). For
instance, Failure Modes and Effects Analysis (FMEA) consists in a qualitative
analysis of dysfunction modes followed by a quantitative analysis of their effects,
in terms of probability and impact (Bowles 1998); Fault Tree and Cause Tree
Analyses determine the conditions which lead to an event and link them through
logical connectors in a tree-structure which clearly displays causes and effects of
the particular risk analyzed (Pahl et al. 2007). These existing methods are unable to
model complex interactions among different risks.

According to Fang and Marle (2012), the complexity of project risks can be
represented in terms of a risk network, describing how risks interact and propagate
from one to another. For instance, there might be propagation from one “upstream”
risk to numerous “downstream” risks; on the other side, a “downstream” risk may
arise from the occurrence of several “upstream” risks which may belong to different
categories. In such network, local risk occurrences may trigger global phenomena
like the chain reaction or the “domino effect”. In practice, propagation effects
throughout the project structure are likely to notably reduce the performance of
the risk management process (Eckert et al. 2004). Particular attention should be
paid to this performance since poor or delayed risk mitigation decisions may have
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great potential consequences in terms of crisis, underachievement of objectives and
avoidable waste (Kloss-Grote and Moss 2008). In this regard, we argue that risk
propagation behavior should be modeled and analyzed in the process of project
risk management. Therefore, to manage project risks with growing complexity, it is
necessary to first integrate the characteristics of risks like probability and impact,
and then bring the modeling of risk interactions into the PRM process. The main
contribution of this chapter is to introduce an innovative framework for the modeling
and management of project risks and risk interactions

The remainder of this chapter is organized as follows. Section 49.2 presents
the structure of the framework. Section 49.3 introduces the process and method
for modeling the project risk network. A risk propagation model is developed in
Sect. 49.4 to analyze the built network for decision support. A numerical example is
provided to illustrate how to use the proposed approach. Section 49.5 concludes the
chapter and discusses some extensions of this study.

49.2 A Framework for Project Risk Management

In order to manage a project with interdependent risks, it is necessary to bring
the modeling of risk interactions into the PRM process. Risk interactions should
be modeled with a network structure instead of a classical list or tree structure
for representing the real complexity of the project. Certainly, this involves using
classical risk characteristics like probability and impact as inputs for this network
(the nodes for individual risks).

With the purpose of managing the complexity of project risks and based on the
classical process of project risk management, we present an original framework for
the modeling and management of project risks and risk interactions. This framework
includes four phases:

• risk network identification;
• risk network assessment;
• risk network analysis;
• risk management implementation

Figure 49.1 illustrates this framework. First, the network is built. Details are
provided in Sect. 49.3. Project risks are identified by classical methods and the
output is a project risk list. Based on this list, risk interactions are identified
and represented using a matrix-based method. In the phase of assessing the risk
network, the probability and impact of identified risks are evaluated by classical
PRM methods; then the strength of risk interactions is assessed directly by experts
or through pairwise comparisons, in terms of the cause-effect probability between
risks. In addition to project risks, the identification and evaluation of risk interactions
makes it possible to construct the project risk network.

Next, the risk network is analyzed. Details are given in Sect. 49.4. A matrix-based
risk propagation model is developed to quantitatively describe risk propagation
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Fig. 49.1 A framework for
project risk management

behavior. It enables risk characteristics to be re-evaluated, for updating possibly the
risk prioritization. This innovative project risk analysis serves as a powerful com-
plement to classical project risk analysis. The outcomes provide project managers
with re-evaluation and new insights on risks and risk interactions for supporting
subsequent decision-making.

The decision makers may design and plan risk response actions based on the
previous risk network model and risk analysis results. Finally, the evolution of the
risk network is monitored and the effectiveness of the actions is evaluated to keep
the project under control. The phase of monitoring and control provides feedback for
the previous phases, which allows the modification and improvement of their results.
In this chapter, we only deal with the first three phases concerning risk network
modeling and analysis, while not showing the planning and effects of risk response
actions.
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49.3 Modeling of Project Risk Network

To understand and manage the complexity of project risks, a network is built
by modeling project risks and their interactions. Project risks are identified and
represented as the nodes, and their potential interactions are directed edges in the
network.

49.3.1 Identification of Project Risk Network

Risk identification is the process of determining which risks may potentially
affect the project and documenting them for the next step of analysis. In our
study, classical tools and techniques such as documentation reviews, brainstorming,
interviewing, and checklist analysis are used to identify project risks. The output of
risk identification is a conventional project risk list.

The next step is to determine the dependency relationship between the identified
risks. Risk interaction is considered as the existence of a possible precedence
relationship between two risks. The nature of risk interactions can be classified
into several categories. Research on this subject has appeared in several papers,
for example, ALOE model developed by Vidal and Marle (2008) defines different
kinds of relationship of links between project risks such as:

• Hierarchical link
• Contribution link
• Sequential link
• Influence link
• Exchange link

Several links with different natures might exist between two risks. In this study,
they are all expressed with potential cause-effect relation.

The Design Structure Matrix (DSM) method introduced by Steward (1981) has
proven to be a practical tool for representing and analyzing relations and dependen-
cies among system components (Browning 2001; Danilovic and Browning 2007).
In our work, we use the concept of DSM with project risks, first introduced in Marle
and Vidal (2008). The interrelations between project objects such as tasks, actors
and product components help identifying the correlations between the risks attached
to these objects. For instance, the project schedule gives information about task-task
sequence relationships. This helps to identify the correlation between two risks of
delay for these tasks. A component-component relationship (functional, structural or
physical) means that the risks, which may be related to product functions, quality,
delay or cost, can be linked, since one problem on one component may have an
influence on another (e.g., budget or mass limits, or energy or heat flow).

We define the Risk Structure Matrix (RSM) as a binary and square matrix with
RSMij D 1 when there is a link from Rj to Ri . It does not address concerns
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about the probability or impact assessment of this interaction. We put a sanity check
betweenRi andRj . Suppose we know that Ri declaredRj as a cause, ifRj did not
declare Ri as a consequence, then there is a mismatch. Each mismatch is studied
and solved, like the analogous works by Sosa about the interactions between project
actors (Sosa et al. 2004).

49.3.2 Assessment of Project Risk Network

Besides evaluating risk characteristics such as risk probability and risk impact,
we also assess the strength of risk interactions, which is interpreted as transition
probability between risks.

Risk impact may be assessed on a qualitative scale (ordinal or cardinal scale with
5 or 10 levels for instance) or on a quantitative scale (financial loss for instance).
Risk impact is assessed by classical methods, based on previous experience in
project management and expert judgment.

For the probability assessment, we make a distinction between the probability of
a risk to be triggered by another risk inside the network and its probability caused
by external events or risks which are outside the system. Spontaneous probability
can be interpreted as the evaluated likelihood of a risk, which is not the effect from
other activated risks inside the system. On the other hand, transition probability is
the evaluation of direct cause-effect relation between two risks. For the example
in Fig. 49.2, Risk 1 occurs only in accordance with its spontaneous probability; and
Risk 4 may arise from both its spontaneous probability and the transition probability
between Risk 3 and Risk 4.

A numerical structure matrix can provide more detailed information than a
binary one about the risk network for assisting decision-making. Thus the RSM
can be converted into the Risk Numerical Matrix (RNM) through assessing the risk
interaction. Assessment is the process of measuring and estimating the strength of
the link between risks. Two ways can be used for the estimation: direct assessment

Fig. 49.2 Using DSM method to build the risk network structure
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and relative assessment. As a result, RNMij is defined as the strength value of the
cause-effect interaction from Rj to Ri . With regard to the project risk network,
values in the RNM can also be interpreted as the transition probability between
risks. For example, if the element RNM(4,3) is equal to 0.25, then the probability
of Risk 4 originating from Risk 3 is considered to be 25 % under the condition that
risk 3 is activated. More details about the assessment of risk interactions like using
an AHP-based method is discussed in Fang and Marle (2012).

49.3.3 A Numerical Example

A simple example is introduced to illustrate the framework. Let us consider an
example of a project with 7 identified risks.

Figure 49.2 displays the risk network of this project, using the matrix-based
approach (on the left) or the classical graph approach (on the right).

After the modeling of binary risk interactions as described in the RSM, we get
the RNM of the example. The RNM is denoted by matrix A in Eq. (49.1):

A D

2

6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0 0

0 0 0 0 0 0:08 0

0 0 0 0 0:15 0 0:125

0 0 0:25 0 0 0 0

0:32 0 0 0:28 0 0 0:09

0:42 0:39 0 0 0:22 0 0

0 0 0 0:22 0 0 0

3

7
7
7
7
7
7
7
7
7
5

(49.1)

To interpret this matrix, for example, A.4; 3/ D 0:25 indicates that if Risk 3 is
activated, then there is a transition probability of 25 % originating from Risk 3 to
trigger Risk 4. The spontaneous probability vector and gravity vector are obtained
through evaluation by classical methods. s and G are given as follows:

s D Œ0:350 0:220 0:220 0:170 0:080 0:010 0:010�T (49.2)

G D Œ20:0 25:0 100:0 10:0 10:0 125:0 50:0�T (49.3)

Here the gravity values in G can be understood as potential impact of risks, such
as capitalized loss.

These values will serve as inputs for the next step of analysis and management
of project risk network.
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49.4 Analysis of the Project Risk Network

After constructing the project risk network, in this section we introduce how
to analyze this network. Particularly, the propagation behavior through the risk
interactions will be modeled to refine the project risk analysis.

49.4.1 A Risk Propagation Model

In the project risk network, the nodes (risks) are assessed in terms of spontaneous
probability and impact (or severity); the edges (risk interactions) are assessed as the
probability of transition from one risk to another. As described in Sect. 49.3.2, a
distinction between the spontaneous probability of a risk, for example, caused by an
external reason or by undefined risks outside the system, and the probability of this
risk triggered by any other identified risk inside the system has been made during
the assessment process. Thus in this matrix-based propagation model, we assign
the spontaneous probability evaluated by classical methods without considering
interactions as the initial risk probability.

Some assumptions are made in order to calculate risk propagation in the
network:

• A risk may occur more than one time during the project (this does accord with the
situation in reality). Risk frequency is thus accumulative if arising from different
causes or if arising several times from the same cause.

• The structure and values of RNM do not vary during the analysis time. In other
words, there is no added or removed risk, and the transition probability between
risks will not change during the analysis.

Suppose there are N identified risks in the network. We use vector s to represent
the spontaneous probability of risks. Let the N -order square matrix A denote
the RNM of transition probabilities. P.R/ is the vector of risk probabilities after
propagation analysis.

Vector s also represents the initial vector of risk probabilities. After m steps,
the probability vector of risks propagated from initial state is thus equal to Am � s.
If we only consider m steps of propagation and according to the assumption of
accumulative risk frequency, the re-evaluated risk probability vector can be obtained
by the following equation:

P.R/ D s C
Xm

iD1 A
i � s D

�
I C

Xm

iD1 A
i


� s D
�Xm

iD0 A
i


� s (49.4)

where I is the N -order identity matrix. Multiplying both sides of Eq. (49.4) by
.I � A/ we obtain

.I �A/ � P.R/ D .I �A/ �
�Xm

iD0 A
i


� s D .I �AmC1/ � s (49.5)
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If not considering the limit of stages in project, the steps m will be infinite. It is
not guaranteed that the infinite power of the matrixAwould converge to 0, as shown
in the following equation:

limm!1AmC1 D 0 (49.6)

Here 0 is the zero matrix or null matrix in linear algebra. Some research papers
established sufficient conditions for the convergence of infinite product of matrix,
e.g., in Thomason (1977), Holtz (2000), Daubechies (1992), and Bru et al. (1994).
In practice of project risk management, for example, if a risk is involved in several
loops and the sum of the products of all the transition probabilities along these loops
is greater than 1, the occurrence of this risk leads to chain reactions which will
come back and trigger itself again with a probability of more than 100 %. In this
way, the risk propagation process does not converge. This type of risk propagation
is not likely to occur in practice and is outside the scope considered by the proposed
model.

Nevertheless, since A is the risk numerical matrix which is usually sparse and
composed of transition probabilities at small values less than 1, usually the condition
of Eq. (49.6) is satisfied. Thus, risk probability can be re-evaluated by the following
equation:

P.R/ D .I �A/�1 � s (49.7)

Moreover, it is possible to predict the consequences of the occurrence of one or
more initial risks. In this model, we assign for instance 100 % to the spontaneous
probability of Ri , while all the other risks have 0 % initial values. That is to say,
the initial vector s D I i , where I i is the i -th column of the identity matrix
I . We can then anticipate the occurrence of the rest of the network, and thus
evaluate the global consequences of Ri . Criticality is another important indicator
used for prioritizing risks and usually defined as the product of risk probability
and impact. Similar to risk probability, we can refine risk criticality by integrating
all the potential consequences in the network of a given risk. Giving Ri with its re-
evaluated probability (risk frequency) instead of 100 %, we redefine its criticality by:

C.Ri / D
Xn

jD1 G.Rj / � PRi .Rj / (49.8)

where C.Ri / is the criticality of Ri ; G.Rj / is the original evaluated impact (G for
gravity) of Rj ; and PRi .Rj / denotes the probability of Rj as the consequence of
P.Ri /. According to Eq. (49.7), the re-evaluated risk criticality is expressed by the
equation:

C.Ri / D GT � .I � A/�1 � .I i � P.Ri // (49.9)
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The vector of risk criticalities can be calculated by the following equation:

C.R/ D .I �AT /�1 �GıP.R/ (49.10)

Here AT represents the transpose matrix of A; and the symbol “ı” denotes
the array multiplication or the Hadamard product (Johnson 1974) of matrices. For
example, the Hadamard product c D aıb of two vectors a D Œa1; a2; : : :; an� and
b D Œb1; b2; : : :; bn� is still an n-order vector and its elements are defined as:

ci D ai � bi (49.11)

The re-evaluation of risk characteristics such as probability and criticality enables
us to update the risk prioritization results and then to design risk response plans.

49.4.2 The Numerical Example

Based on the numerical example given in Sect. 49.3.3, we are able to calculate
the risk propagation according to Eq. (49.7), and then get the re-evaluated risk
probability vector:

P.R/ D .I � A/�1 � s D
�
0:350 0:245 0:267 0:237 0:264 0:311 0:062

�T (49.12)

Equally, risk criticalities are calculated using Eq. (49.10). Risks are prioritized
according to different indicators. These refined results are consolidated and com-
pared with original estimates, as shown in Table 49.1.

From the results in Table 49.1, we can see that the probability of some risks has
significantly increased after re-evaluation, such as R6 and R5. This kind of risks
has little probability to happen spontaneously, but some other events may lead to

Table 49.1 Risk re-evaluation and prioritization results of the example

By spontaneous By re-evaluated By classical By re-evaluated

probability probability criticality criticality
Ranking Risk ID Value Risk ID Value Risk ID Value Risk ID Value

1 R1 0.350 R1 0.350 R3 22.0 R6 40.7

2 R2 0.220 R6 0.311 R1 7.0 R1 32.5

3 R3 0.220 R3 0.267 R2 5.5 R3 29.5

4 R4 0.170 R5 0.264 R4 1.7 R2 18.6

5 R5 0.080 R2 0.245 R6 1.3 R5 14.6

6 R6 0.010 R4 0.237 R5 0.8 R4 9.6

7 R7 0.010 R7 0.062 R7 0.5 R7 4.3
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them. The risk prioritization results have changed after taking into account risk
interactions in the network. For example, in classical method, R3 was considered to
be the most critical risk, but the one with the highest re-evaluated criticality is R6.
Moreover, in the new prioritization results, the value gap between risks becomes
different from that in the results of classical method. For instance, R5 and R7 are
two risks with low criticalities and R5 is ranked superior to R7. After re-evaluation,
R5 is still ranked superior to R7, but the gap between their relative criticality values
becomes much larger. This is the opposite for R3 and R2. R2 is still behind after
re-evaluation, but closer.

Important insights of this complementary analysis are priority swaps between
risks. For instance, in terms of probability, R4 and R5 have a ranking swap.
Similarly, R3 and R1 are ranked differently considering or not risk interactions.
This implies a significant potential difference in future risk management decisions,
because they are often based on rankings. Without considering interactions, priority
may be given to R3. On the contrary, taking into account risk interactions, R3 drops
to the third place, R6 becomes the most important and R1 remains second.

49.5 Conclusions

For dealing with the increasing complexity in projects, we propose an innovative
framework for modeling and management of project risks and risk interactions.
First, project risks and the interactions among them are identified with the help
of expertise and experience. This enables the risk network structure to be built.
It can represent the complexity of project risks and provide more insights on the
relationship among risks for understanding and managing them.

Then, the parameters in the project risk network can be assessed so that we are
able to model and analyze the risk propagation behavior in the risk network in a
quantitative manner. Based on some assumptions, the RNM can be regarded as
a specific stochastic matrix describing the risk propagation process as the project
progresses. In this chapter a risk propagation model based on matrix calculation
is developed. Thanks to this model, risk characteristics such as probability and
criticality are re-evaluated, which may lead to updated priorities.

A simple example of seven-risk network illustrates how to use the framework
and the propagation model. Under the original risk propagation model for risk
analysis, some risks have been upgraded in terms of criticality ranking. The
proposed approach serves as a complement to the classical project risk analysis.
It may support project managers in designing more effective risk response actions
and making subsequent managerial decisions. Readers may refer to Fang et al.
(2012), which introduces a complementary approach based on network theory for
identifying key factors in the risk network.

However, budget and resources are always tight for project implementation and
particularly for managing risks as potential loss or threat to the project. For this
reason, risk response actions should be selected in order to minimize the negative
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risk exposure while keeping the project within budget. In this chapter we do not
deal with the fourth phase of the framework concerning risk response planning and
implementation of risk management actions. For further details, readers may refer
to Fang et al. (2013), which discusses how to optimize the risk response plan under
resource constraints.
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Chapter 50
A Reassessment of Risk Management
in Software Projects

Paul L. Bannerman

Abstract In software projects, risk management has long been recognized as the
junior partner to project management in improving performance outcomes. This
chapter reassesses fundamental aspects of software project risk management to
highlight what we currently know from empirical research and uncover opportuni-
ties for improvement. The chapter considers evidence of the relationship between
risk management and project performance; the adoption of risk management in
practice, and barriers and enablers to risk management in practice. It then introduces
six risk management perspectives and their related schools of thought as a basis
for framing future research opportunities. It concludes with a consideration of
implications for future research.

Keywords Contingency theory • Management science • Project performance •
Risk management • Schools of thought • Software projects

50.1 Introduction

Is risk management worth practicing in software projects? The initial reaction is
probably a conditioned: “Yes!” Upon reflection, however, there may be equivocal
answers. Conceptually, we know that risk management is a good, indeed, necessary,
thing to do. However, actual experience with risk management in practice may be
less forthright. Also, the movement towards Agile practices has tended to mitigate
some risks through the iterative nature of the development process itself, seemingly
obviating the need for an explicit add-on risk management process.

This chapter re-examines software project risk management from research and
practice perspectives (the scope is limited to commercial software and systems
projects, excluding specialist domains such as safety critical systems). It builds
on prior work in Bannerman (2008c). It aims to highlight key aspects of what we
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currently know from empirical research and uncover opportunities for developing
further knowledge through future research. A central contribution of the chapter
is the description of six current and emerging risk management perspectives—
and their underlying theoretical schools of thought—that frame current research
approaches and promising areas of future work. The central argument is that
software project risk management is still in its infancy, but evidence suggests that
benefits are real. Specific opportunities are identified to extend risk management in
practice and diversify research.

First, the next section reviews the status quo of software project risk management
in research and practice, focusing on evidence relating to its impact on project
performance, adoption in practice, and implementation barriers and enablers. Then
the perspectives and foundational schools of thought that frame current approaches
to risk management are outlined. Finally, implications of this research-practice
landscape and conclusions are drawn for the future.

50.2 State of Play

Prior study has found a research-practice anomaly: risk management research
lags the needs of practice and risk management practice lags the prescriptions
of research (Bannerman 2008c). In this (and the next) section we examine the
current state of risk management research and practice in software projects to
determine if progress has been made and seek to uncover roadblocks that need
to be cleared by researchers and practitioners going forward. First, this section
considers evidence of risk management’s contribution to project outcomes; trends in
the adoption/non-adoption of risk management in practice; and barriers and enablers
to risk management utilization in practice.

50.2.1 Does Risk Management Improve Project Performance?

We usually take for granted that risk management is a good thing; that it helps to
remove or reduce potential problems that could affect the successful outcome of a
project. Considering the significant cost and effort in applying risk management in
software projects, a pivotal question, therefore, is whether it does actually make a
difference: does empirical research show that use of risk management is positively
related to project performance?

Overall, evidence suggests that risk management is related to project success.
However, the answer to the question is complicated by the multidimensionality
of the concept of project success (Bannerman 2008b), the multiple categories of
risks that can impact a project, and the range of available risk response treatments
(Bannerman 2008c). As a consequence, achievement of a particular type of project
success (such as process success or product success) will likely require appropriate
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management of particular types of project risks that are contingent on the focal
success criterion. Several research examples illustrate this finding (see also Na et al.
2007 for further background).

In a study of 86 experienced information systems (IS) project managers, Jiang
and Klein (1999, 2000) found that three risk categories (lack of clarity of role def-
initions among team members, application complexity, and lack of user experience
on applications) were most significantly related to system success. Further, in a
study of 194 IS project managers, it was found that success also requires matching
risk reduction strategies to the risks identified in the project (Jiang et al. 2001).
System success was significantly related to behavioral-related risks, behavioral-
based strategies (most influential), and technology-based strategies.

Similarly, Wallace et al. (2004b) found that social subsystem risk influences
technical subsystem risk, which influences the level of project management risk
and, subsequently, project performance. The latter was viewed separately as product
performance and process performance. Product success was critically dependent on
managing customer/user risks, scope and requirements, and project execution, while
process success was dependent upon managing scope, requirements and project
execution—the risks over which project managers feel that they have the most
control (Wallace and Keil 2004).

Further, in a study of over 100 projects, Raz et al. (2002) found that risk
management practices are more correlated with success in meeting time and budget
goals than with product performance success. Overall, however, they conclude
that higher levels of risk management are associated with higher levels of project
success.

Finally, recent case study research supports this conclusion with the finding that
individual risk management activities contribute to project success (as defined by
stakeholder opinion) via direct instrumental effects and communicative effects that
create a shared view of the project situation (de Bakker et al. 2012).

50.2.2 Risk Management Adoption/Non-adoption in Practice

Few studies have specifically focused on the adoption of risk management in
software projects. Most evidence is provided as secondary observations in studies
with other foci. Overall, this evidence suggests that risk management awareness is
high but practices are not widely or consistently used; adoption of early process
model practices is quite common (such as risk identification and assessment);
adoption occurs early in the project and risk management life cycles but then
tends to drop away; and integration with other project management and software
development practices is varied but generally under-developed. In general, risk
management practice adoption lags the prescriptions of research. Several examples
of research illustrate support for these conclusions.

First, a study of 83 project managers found that while a large number were
engaged in some form of risk management activity, 75 % of the project managers
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did not follow any detailed risk management approach, and only vaguely understood
the software risk concept and its managerial implications (Ropponen and Lyytinen
1997; Ropponen 1999).

Further, a multi-industry study of project management maturity based on PMI’s
knowledge areas found that the risk knowledge area had the lowest maturity of all
knowledge areas in the IS industry, and the risk maturity level of the IS industry was
the lowest of the four industries in the study (Ibbs and Kwak 2000).

More recently, a study of 37 software organizations compared the industrial risk
models used against a best-practice model synthesized from the literature (Nyfjord
and Kajko-Mattsson 2008a). In support of the earlier findings, it was found that most
of the organizations had defined a risk management process model; most used the
risk identification and analysis phases but use dropped off for the other phases; and
only some of the core activities in the comparison model were used in the phases that
were used. Process integration was found to be still in its infancy. Most organizations
had integrated their risk management processes with the software processes to some
degree but in an ad hoc manner, without a defined integrated process model (Nyfjord
and Kajko-Mattsson 2008b).

50.2.3 Risk Management Barriers/Enablers in Practice

If research evidence suggests that risk management is worthwhile, contributing
to successful project outcomes, why is adoption of risk management practices so
limited? The answer may lie, at least in part, in an array of barriers that can
reduce or make implementing risk management unattractive in practice (Gemmer
1997; McGrew and Bilotta 2000; Dedolph 2003; Kwak and Stoddard 2004;
Bannerman 2008c; Kutsch and Hall 2009; Kutsch et al. 2012). Risk management
implementation barriers include:

• Cost: Formally and explicitly practicing risk management can add a significant
process overhead to software projects and detract attention from the main game
of developing or implementing quality software-based systems. Applying risk
mitigation strategies and developing/testing contingency plans can be expensive
in resource effort and schedule time, as well as financial cost. Projects may
also be considered too small to justify these overheads. Further, some software
development methods, such as Spiral and Scrum, may be considered to have
sufficient inherent risk management features that an additional process is not
justified. Combined with other barriers, stakeholders may conclude that the costs
of risk management outweigh the benefits.

• Culture: Companies vary in their position on the risk acceptance–risk aversion
scale, which can influence the extent to which risk management is practiced (if
at all). Some companies view risk management as negative thinking, while some
managers view practicing risk management as impugning their ability to manage
organizational activities through to successful completion. Others methodically
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manage risks because it is a company practice standard to do so. Organizational
culture can work for or against effective risk management.

• Uncertain benefits: This is also referred to as causal ambiguity or the ‘Y2K
effect’. As noted above, overall, it is difficult to show that risk management
improves project performance (most empirical evidence points to specific risk
factor, risk strategy or project component performance effects). Risk man-
agement interventions may change the course of a project but it is difficult
to determine whether these changes actually reduced the threat and avoided
a negative impact on project outcomes and whether the risk response was
appropriate (or an overkill) for each treated risk. This causal ambiguity can
greatly dampen enthusiasm for risk management in practice.

• Capability: While risk management awareness is high, expertise in practicing
risk management processes and techniques is often underdeveloped and a
secondary priority to other project-related activities. Consequently, adoption
and effectiveness of risk management practices can be constrained by limited
individual and organizational capabilities in applying risk management.

• Ownership: In software projects, responsibility and process ownership of risk
management are often not explicitly defined, resulting in an absence of propri-
etorship of the process. Project managers tend to view risk management as the
responsibility of project governance while governance bodies see themselves as
too remote from the action to accept full accountability. Ultimately, however, it
is the role of governance to ensure that the operational responsibility for risk
management is assigned and overseen.

• Reviews: Post-project reviews are one of the least performed project management
activities and, when they are held, the role and contribution of risk management
to the project is even less likely to be considered. Without a review, the value
of risk management is unlikely to be understood and the process is unlikely
to be continuously improved to deliver increasing benefits. Compounding this
problem, project success is usually claimed by the project manager or sponsor
as the result of good project management rather than attributed to good risk
management. Monitoring and reviewing the process can provide visibility into
its value and effectiveness.

• Reward structures: Typically, project reward structures are directed towards ‘on-
time, within-budget, to-specification’ delivery, not identification and mitigation
of potential barriers to success. The view tends to be that if risk management
contributes to project success then well and good, but it is not an objective in
itself.

Key enablers of risk management adoption and utilization avoid these barriers
and build a climate that encourages proactive risk management thinking and
practice. Enablers include:

• Senior management commitment and support: Executive support provides a
strong signal to the project team that managing risks is aligned to organizational
priorities, practices and expectations.
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• Governance: Holding governance bodies ultimately accountable for process
improvement and benefits realization from project and risk management activ-
ities ensures that project practices are aligned to expected standards.

• Empowerment: Empowering and developing individuals and project teams to
deliver and defend project objectives fosters risk awareness and buy-in to risk
management processes.

• Culture: Institutionalizing risk management into the culture of how software
projects are run makes risk management the normal way of smoothing and
securing business-as-usual and project activity outcomes in the organization.

• Continuous improvement: Monitoring, evaluating and continuously improving
risk management practices and techniques sharpens skills and increases returns
on investment in practices over time.

• Highlighting successes: Acknowledging and celebrating risk management suc-
cesses communicates and reinforces the benefits derived from risk management
practices throughout the project and organizational communities.

50.3 Risk Management Perspectives

This section overviews the research foundations of six risk management perspec-
tives, namely, risk management as: factor analysis; a rational process; modeling;
a social process; a capability; and data analytics. The first three reflect common
current practice, while the last three are emergent approaches that offer potential
additional contributions in diversifying risk management in the future. The aims
of this analysis are to highlight the current and possible potential scope of risk
management in software projects, and provide a framework within which to
encourage and promote further research and practice development.

50.3.1 Risk Management as Factor Analysis (Contingency
School)

Arguably the most recognizable approach to risk management in software projects
seeks to identify and mitigate contextual variables that might threaten a successful
project outcome. The perspective reflects the logic of the contingency school of
management which argues that situational factors—inherent to the activity and its
environmental context—may influence the outcome of the activity (in this case,
a software project). Therefore, from a risk management perspective, to ensure
successful project performance, it is necessary to identify the specific factors that
might impact the project and manage them away to avoid or minimize their impact
on outcomes.
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Within this perspective, three broad research approaches are evident from the
literature. The first and most common approach aims to identify and mitigate
individual risk factors that might impact a particular project or project type. These
factors are commonly cited in ‘top ten’ checklists of risk/success/failure factors that
must be managed to ensure the project succeeds. Example lists are provided by
Alter and Ginzberg (1978), Keil et al. (1998), Boehm (1991), Heemstra and Kusters
(1996), Sumner (2000), Houston et al. (2001), Johnson et al. (2001), Schmidt et al.
(2001), Addison and Vallabh (2002), and Han and Huang (2007). Risk factors
include, for example, clear objectives, firm requirements, user involvement, senior
management commitment, and skilled resources. According to this approach, each
factor is individually assessed to determine its probability of occurrence, likely
impact, and relative priority (in comparison to other identified risk factors), and
is individually mitigated to manage the threat. Depending on the complexity of the
project and the organization’s risk tolerance (or aversion), risk management under
this approach can carry a substantial effort overhead and cost for the project.

The second factor analysis approach seeks to identify categories of sources of
risk factors that could impact the project. The rationale here is that risk factors often
arise from common sources of exposure or threat (Barki et al. 1993), and may be
treated in common by one or more specific control measures, rather than treating
each factor separately. This approach can leverage risk management effort and
reduce cost. Risk identification, therefore, seeks to uncover the critical categories
of threats that might affect the project. Examples of source categories are provided
by Boehm and Ross (1989), Barki et al. (1993), Carr et al. (1993), Chittister and
Haimes (1993), Heemstra and Kusters (1996), Keil et al. (1998), Cule et al. (2000),
Ropponen and Lyytinen (2000), Jiang et al. (2002), Tiwana and Keil (2004), Wallace
and Keil (2004), Wallace et al. (2004b), and Han and Huang (2007). Examples of
source categories include requirements, technology, client, people, organization, and
environment.

The third factor analysis approach aims to identify and apply higher level
project dimensions that might have risk implications for the project, particularly
in contexts characterized by high levels of change and/or uncertainty (hence the
focus on broader dimensions of risk). This typically involves an explicit contingency
approach to factor analysis that identifies and applies environmental dimensions
(high level factors) to determine an overall risk profile for each project. Each
dimension is usually scaled to reflect various levels of risk exposure. Assessing the
project against the scale of each dimension—often in the form of a radar (or spider)
chart—enables the risk profile of the project to be plotted for analysis of where
risk treatments might be best applied. Examples of this approach are provided by
McFarlan (1981), Ropponen and Lyytinen (2000), Wallace et al. (2004a), Shenhar
and Dvir (2004), Han and Huang (2007), Howell et al. (2010), and Taylor et al.
(2012). Shenhar and Dvir, for example, identify four key project dimensions against
which project risk can be assessed: product novelty, technological uncertainty,
complexity, and pace.
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The main benefit of risk management as factor analysis is that it focuses
attention on potential threats to a particular project. Its key limitation, however, is
maintaining the effort and discipline in identifying, treating, and tracking relevant
factors throughout the course of the project.

50.3.2 Risk Management as a Rational Process (Process
School)

Closely associated with factor analysis is risk management as a rational process,
which prescribes processes for managing project risk. Processes typically specify
predefined (planned) stepwise tasks to follow throughout the risk management life
cycle. Identifying, assessing and treating risk factors (the focus of the previous
approach) are common steps within such processes. This approach draws on
the logic of the process school of management which argues that organizational
performance (including in project organizations) can be improved by performing
work according to defined, efficient, repeatable and managed processes. Processes
can incorporate accepted ‘best practices’ to improve efficiency and effectiveness
in completing routine operational tasks. Such processes can be embedded into the
routines of the organization as operational capabilities, improving the prospects of
consistent, strong performance outcomes. According to this view, risk management
is best approached as a managed process.

Risk management processes tend to lie on a continuum that reflects the level of
certainty/uncertainty (or ease of identifying and responding to risks) in the project
environment. The most common processes are plan-based, which are positioned
at the certainty end of the continuum where it is assumed that risk factors can be
explicitly identified, assessed and treated. Conceptually, these processes share simi-
lar steps that are executed iteratively throughout the project. These typically include:
risk strategy; risk identification; risk analysis (or assessment); risk response; and risk
control (or monitoring and review). Examples of such process approaches include:
Boehm (1991), ISO 31000 (2009), PRINCE2 (2009), PRAM (2010), CMMI (2010),
and PMBOK (2013).

At the other end of the continuum, where knowledge of the project and its
environment is incomplete or highly uncertain due to high levels of change,
complexity and/or ambiguity, the assumptions of plan-based processes no longer
apply. In particular, relevant contingent factors cannot be readily identified within
sufficient time for mitigations to be determined and applied to manage the risks.
Two alternative process solutions that draw from the innovation management
literature are relevant here: trial and error learning and selectionism. Trial and
error learning refers to iterative incremental adjustments to project activities and
targets in response to emerging new information. Selectionism refers to trying
out several different solution strategies in parallel and selecting the best variation
ex post. Examples of this approach are provided by: Pender (2001), Pich et al.
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(2002), Sommer and Loch (2004), and Loch et al. (2006). A related third approach,
scenario analysis, is drawn from the strategy management literature. It confronts
uncertainty by considering alternative possible futures (scenarios), the likelihood
and consequences of each scenario, and the risk mitigation strategies that might
be applied to avoid the negative effects of each scenario (for example, Ahn and
Skudlark 2002; Bahi and Rivard 2003).

The major benefit of risk management as a rational process is that it provides
a defined map to follow to manage risks under different environmental conditions.
The main limitation, however, is the potential for complacency in executing the
process mechanically and/or assuming that it will guarantee a successful outcome.

50.3.3 Risk Management as Modeling (Management Science
School)

Less commonly used in software projects (other than in software-based safety
critical systems and hazard analysis applications), risk management as modeling
aims to represent the risk management context as an abstraction of a phenomenon
that can be analyzed to determine and/or assess threats to its successful operation.
In essence, this perspective represents a loosely related collection of analysis tech-
niques that are unified by a modeling approach to managing risk. It is influenced by
the traditions of management science which apply advanced analytical methods—
usually but not always quantitatively-based—to help make better decisions and
produce better outcomes. Applied to software projects, risk management modeling
can help ‘flesh-out’ complex project and/or system dynamics and dependencies to
clarify risks, responses, decision options and/or paths forward based on probabilistic
and non-probabilistic analysis techniques in a structured manner. Examples of
analysis techniques used in modeling risk include: fault tree analysis; event tree
analysis; root cause analysis; cause-consequence analysis; failure mode and effects
analysis; decision analysis; expected value analysis; Bayesian network analysis;
system dynamics, Markov analysis; Petri net analysis; Monte Carlo simulations;
fuzzy logic; and genetic algorithms (Prichard 2005; Borison and Hamm 2010; Kwan
and Leung 2011; Li, Chen and Feng 2012; Xiao et al. 2013). Chapter 49 of this
handbook, for example, proposes a framework for modeling complex project risk
interactions for analysis in a network structure diagram. When used in software
projects, because of the overheads involved in these techniques, risk management
as modeling tends to be used in high stakes projects involving complex software-
based systems.

A particular benefit of risk management as modeling is in contexts that permit
and require precise mathematical analysis to manage risk. By contrast, the risk
analysis techniques used in the risk management as a rational process perspective
tend to be less sophisticated and more qualitative. This, however, does not make
them inferior. The ‘best’ risk management approach is likely to be from the
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perspective that aligns closest to the needs of the project and its context. The main
limitations of risk management as modeling are the measurement/data, analysis
overhead, and analytical expertise required. Careful justification of the chosen
approach is needed to ensure beneficial returns.

The following three perspectives are emergent, with isolated support in the
literature. They are profiled here as promising software project risk management
perspectives that may attract wider acceptance in research and practice as their
respective benefits are confirmed.

50.3.4 Risk Management as a Social Process (Behavioral
School)

Project management has a long history of recognizing and balancing the key roles
of technical elements and people’s behavior in projects (Slevin and Pinto 2004).
Similarly, behavior in social (team, project and organizational) contexts is both an
important enabler of risk management and a source category of potential project
risks. Therefore, it is not surprising that risk management as a social process has
attracted research attention. This perspective is influenced by the organizational
behavioral school of thought which seeks to improve organizational effectiveness
by understanding the impact of individual and group behaviors.

March and Shapira (1987) set the stage for a behavioral perspective on risk
management by arguing that managerial approaches to risk follow a different
process to that assumed by classical conceptions. By contrast, managers are quite
insensitive to probability estimates of possible outcomes; their decisions are driven
by a focus on current performance targets; and they sharply distinguish between
taking risks and taking a bet on a particular course of action. Lyytinen et al. (1998)
extend the departure from a “rational calculus” approach to risk management by
integrating a behavioral view embodying organizational attention shaping routines
in a socio-technical model of organizational change. According to this approach,
“risk management forms a continuous exercise where project managers engage in
multiple maneuvers to master their environment” (page 236).

Other research within this perspective includes a focus on desirable functional
behavior (Gemmer 1997); organizational culture and human behavior (Kwak and
Stoddard 2004; Krivkovich and Levy 2013); project risk as a subjective social
construction (Zhang 2011; Lim et al. 2011); and how project managers define and
react to risk (Moeini and Rivard 2012).

Research on behavioral approaches to organizational work has a strong founda-
tion in other domains (such as organizational theory) as well as in software project
management more generally. Application and development of this knowledge could
be beneficially extended to the software project risk management domain. Its key
contribution is in highlighting the role of people, as individuals and in socio-cultural
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settings, as the primary actors in identifying and managing project risks. Its key
challenge is the tendency for IS practitioners to fixate on technical tasks and
solutions at the expense of human agency.

50.3.5 Risk Management as a Capability (Learning School)

This perspective focuses on identifying and developing personal skills and orga-
nizational capabilities that are important in successfully managing projects. It
has attracted research attention since the turn of the century (Bannerman 2013).
It recognizes that managing risk is about the ability to ‘do it’, not just ‘plan
it’—particularly in dynamic, uncertain and complex environments. We have seen
that while there is high awareness of risk management in practice, the level of
understanding and application of risk practices is low. This capability gap limits
a project’s ability to practice effective risk management as well as to be responsive
to unforeseen disruptive events. This perspective is influenced by resource-based
theory and organizational learning theory which argues that an organization’s ability
to perform well (and better than industry competitors) is critically dependent on its
ability to learn from experience and accumulate distinctive capabilities (Levitt and
March 1988; Barney and Clark 2007).

Examples of research from this perspective include contributions on: real time
management of risks (Jaafari 2001); learning as a strategy to cope with information
inadequacy (Pich et al. 2002); trial and error learning as a strategy to manage innova-
tion under uncertainty and complexity (Sommer and Loch 2004); capability-based
project performance (Bannerman 2008c, 2012, 2013); and managing unforeseen
project contingencies (Thamhain 2013).

Underpinning this perspective is recognition that risk response strategies cannot
always be planned. Sometimes project threats arise quickly, clouded in an infor-
mation vacuum. What is needed in these situations is a risk response capability,
similar to that used in crisis management, which cannot follow traditional processes
or permit time for detailed analyses (see Bannerman 2008a, 2008c for further
discussion on this perspective). The key benefits of this perspective are that it
focuses attention on the ability to respond to project threats quickly and do risk
management well. The main limitation is that it involves complex intangibles
(such as individual and organizational learning and capability development) that
are difficult to examine in research and measure in practice.

50.3.6 Risk Management as Data Analytics (Business
Analytics School)

For software projects, this perspective is more speculative and may ultimately
emerge as a subset of the modeling perspective. However, its scope is potentially
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broader than modeling so it is considered as a separate, emergent perspective. The
approach reflects the increased interest in business intelligence, business analytics,
and big data that has emerged over the last decade (Davenport et al. 2010). The
underpinning logic of this approach is that current and accumulated organizational
and project data can be a rich source of information to support risk identification,
risk strategy formulation and decision making. Data analytics can help understand
what happened in the past that needs to be changed (historical view), what problems
exist now that need action (current view), and what is likely to happen in the future
that needs to be managed (future view).

Of course, adoption of this approach assumes the availability of, and ability to
generate, relevant project-related data and risk-related metrics, as well as skilled
analysts and a tool-box of data analytics techniques. These are not insignificant
hurdles to overcome. As such, they may limit application of the perspective to large,
high stakes projects and complex software-based systems.

50.4 Conclusions

This chapter has briefly reassessed the state of risk management in software projects
with the aims of highlighting what we currently know from empirical research
and uncovering opportunities for further knowledge development through future
research. Key implications and conclusions from the reassessment include:

• Development of risk management in software projects remains slow, in both
research and practice. Risk management research still lags the needs of practice
and risk management practice still lags the prescriptions of research. Opportuni-
ties exist to both extend the application of existing research-based knowledge in
practice and broaden how risk management is viewed and studied in research.

• Further research is needed into the causal linkages between risk(s), risk strate-
gies, and project performance. Understanding risk-related paths to project perfor-
mance and the boundaries of risk management are foundational to legitimizing
a role for risk management in software projects and achieving demonstrable
benefits from risk management practices.

• Current perspective-based approaches to risk management in software projects
are narrow, reflecting a domain discipline still in its infancy. Opportunities exist
for further development within the core current approaches as well as in the
alternative emergent perspectives. In particular, to further apply risk management
as modeling in software projects and diversify research into the role of people
and social interactions in risk management; develop capability-based as well as
plan-based risk management; and business intelligence/data analytics to identify
source categories of risks.

The path forward would likely benefit from closer interaction between the
research and practice communities, perhaps via joint participation in focused
research-industry conferences and workshops, as well as in industry-based studies.
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Such interaction could mutually reinforce development of the interests of both
parties.

As the use of software-based systems continues to expand, software development
methods evolve, and project management improves, the need for a strong and effec-
tive risk management capability is likely to remain. The most capable organizations
are likely to adopt multiple risk management perspectives and match them to the
project context, rather than default to a single approach. When this is common
practice in industry, benefits and progress will likely be palpable.
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Chapter 51
Ranking Indices for Mitigating Project Risks

Stefan Creemers, Stijn Van de Vonder, and Erik Demeulemeester

Abstract The goal of project risk management is to mitigate the impact of risks
on project objectives such as budget and time. A popular approach to determine
where to focus mitigation efforts, is the use of so-called “ranking indices”. Ranking
indices produce a ranking of activities (or even better, risks) based on their impact
on project objectives. In turn, this ranking can be used to determine the risks that
are to be mitigated. Different ranking indices, however, produce different rankings.
Therefore, one might wonder which ranking index is best? In this chapter, we
provide an answer to this question.

Keywords Project risk • Ranking indices • Risk analysis • Risk management •
Risk mitigation

51.1 Introduction

A recent study shows that projects worldwide are still struggling to meet their
objectives (Standish Group 2009). During project execution, unforeseen events
occur that disrupt plans and that give rise to substantial budget overruns. Risk
management is widely recognized as an essential tool to deal with this kind of
project uncertainty (see for instance Chap. 49 of this handbook).

The Project Management Institute (PMI 2008) defines risk management as
the process that deals with the planning, identification, analyzing, responding,
monitoring, and controlling of project risks. In this chapter, we focus on the risk
analysis process and its effect on the risk response process. The risk analysis
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high-priority risks on overall project objectives
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occurrence and the impact of a risk and use 
them to create a shortlist of high-priority risks

Fig. 51.1 Risk analysis process

process can be divided into three subprocesses: risk prioritization, quantitative
risk assessment, and quantitative risk evaluation. Risk prioritization is a qualitative
procedure that allows to prioritize the risks that have been identified in an earlier
stage of the risk management process. Using ordinal estimates of both probability
of occurrence and impact of a risk, a shortlist of high-priority risks can be created.
During risk assessment, experts provide detailed estimates of the probability of
occurrence and the impact of high-priority risks. These estimates are used in the
quantitative risk evaluation procedure to analyze the impact of the shortlisted risks
on overall project objectives. Figure 51.1 provides an overview of the risk analysis
process.

Good risk management requires a risk analysis process that is scientifically sound
and that is supported by quantitative techniques (Hubbard 2008). A wide body of
knowledge on quantitative techniques has been accumulated over the last decades.
Monte Carlo simulation is the predominant quantitative risk evaluation technique
in both practice and in literature. Alternative techniques include neural networks,
fuzzy logic, and decision-tree analysis. Their advocates, however, have so far failed
to persuade most project schedulers of their practical use (refer to Hubbard 2008 and
Chap. 49 of this handbook for an evaluation of different risk analysis techniques).

Risk analysis aims to provide insight into the risk profile of a project as to
facilitate and to drive the risk response process (PMI 2008). The generated insights
include: the probability of achieving a specific project outcome, the distribution of
the project completion time etc. The risk response process will use these insights
to come up with practical risk responses that allow project managers to mitigate
risks (i.e., to reduce the impact of risks on project objectives). A popular approach
to determine where to focus mitigation efforts is the use of so-called “ranking
indices” (e.g., the criticality index and the significance index). Ranking indices
allow the ranking of project activities (or risks) based on the impact they have on
project objectives. A distinction needs to be made between activity-based ranking
indices (i.e., those that rank activities) and risk-driven ranking indices (i.e., those
that rank risks). Note that the ranking of the impact of an activity (or risk) may differ
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depending on the ranking index used. Therefore, one might wonder: which ranking
index is best? In the remainder of this chapter, we will address this question.

This chapter is organized as follows: in Sect. 51.2 we review the basic principles
of stochastic project scheduling. Section 51.3 compares the activity-based and
the risk-driven approach. In Sect. 51.4 we present the ranking indices. Their
performance is discussed in Sect. 51.5. Section 51.6 concludes.

51.2 Stochastic Project Scheduling

The Critical Path Method (CPM) has been developed in the fifties and it provides
the foundations of modern project scheduling. CPM represents a project as an
activity network which is a graph G D .V;E/ that consists of a set of nodes
V D f1; 2; : : : ; ng and a set of arcs E D f.i; j /ji; j 2 V g. The nodes represent
project activities whereas the arcs represent precedence relationships. Each activity
i has a deterministic activity duration pi and can only start when all its predecessors
have finished. CPM uses an early-start schedule in which activities are scheduled to
start as soon as possible. The early-start schedule ES is represented by a vector of
earliest start times ES D fES1;ES2; : : : ;ESng. The earliest start time of an activity i
is defined as follows:

ESi D max
˚
ECj j.j; i/ 2 E� (51.1)

Where ECj is the earliest completion time of activity j and equals:

ECj D ESj C pj (51.2)

The project starts at time instance 0 and completes at time instanceC . C is given by:

C D max.ECi ji 2 V / (51.3)

A path of scheduled activities is the longest path if its length equals C . A longest
path is also called a critical path and the activities on the path are referred to as
critical activities.

Since the fifties, many extensions of the basic model have been proposed:
resource constraint project scheduling, multi-mode scheduling, generalized prece-
dence relationships, etc. We refer to Demeulemeester and Herroelen (2002) for
an extensive overview of the field. In this chapter we are mainly interested in
what is called “stochastic project scheduling” or “stochastic CPM”. Stochastic
CPM acknowledges the stochastic nature of activity durations. The duration of an
activity i may be represented as a random variable Qpi . Because activity durations
are random variables, the earliest start time and the earliest completion time are
random variables as well. LetfESi and fECi denote the random variable of the earliest
start time and the earliest completion time of an activity i respectively. The project
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completion time is a random variable QC that is a function of Qpi . Calculating the
distribution function of QC is shown to be #P-complete (Hagstrom 1988) and thus
requires approximative methods such as Monte Carlo simulation (Van Slyke 1963).
Monte Carlo simulation is used to virtually execute a project a large number of
times, providing insights that can be used to enhance the actual execution of the
project.

We use Monte Carlo simulation to generate random variates of Qpi . More
formally, let pi D ˚

pi1; pi2; : : : ; piq
�

denote the vector of q random variates of
Qpi . We refer to pi as the vector of realized durations of Qpi . In addition, define ESi ,

the vector of realized earliest start times of an activity i :

ESi D max
˚
ECj j.j; i/ 2 E� (51.4)

Where ECj is the vector of realized earliest completion times of an activity j and
equals:

ECj D ESj C pj (51.5)

The vector of realized completion times C is defined as follows:

C D max.ECi ji 2 V / (51.6)

ESi , ECi , and C are vectors of random variates of random variables fESi , fECi , and
QC respectively.

51.3 Activity-Based or Risk-Driven?

One of the biggest challenges in project risk management is to estimate and to model
the uncertainty of activity durations. Often, it is assumed that the duration of an
activity follows a distribution that captures all uncertainty that originates from the
occurrence of risks (popular distributions include: the triangular distribution, the
beta distribution and the normal distribution). As such, risk assessment boils down
to providing the estimates of activity duration distribution parameters. We refer to
this approach as the activity-based approach.

It has been argued that the activity-based approach is inherently flawed
(Creemers et al. 2013). As pointed out by Hulett (2009), there is no clear link
between the impact of identified risks on the duration of an activity and the
distribution of the activity duration itself (i.e., the activity-based approach is unable
to identify the root causes of the uncertainty in activity durations). In addition,
it is our experience that practitioners have a hard time assessing uncertainty by
estimating the parameters of an activity duration distribution.
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To resolve the problems of the activity-based approach, Creemers et al. (2013)
have devised a risk-driven approach in which the impact of each risk is assessed
individually and is mapped to the duration of an activity afterwards. The approach
is based on previous work by Schatteman et al. (2008) and Van de Vonder (2006),
and is similar to the risk-driver approach of Hulett (2009). Figure 51.2 illustrates
the difference between the activity-based and the risk-driven approach. The activity-
based approach uses Monte Carlo simulation to generate random variates of activity
durations. The risk-driven approach, on the other hand, uses Monte Carlo simulation
to obtain random variates of risk impacts. These random variates are then used to
determine the activity durations.

The following example further supports the risk-driven approach. Consider an
activity whose duration is impacted by two risks. The first risk has a small impact
but a large probability of occurrence whereas the second risk has a large impact
yet a small probability of occurrence. The probability distribution function of the
duration of the activity is given in Fig. 51.3.

Figure 51.3 also shows the best fit of the triangular distribution (i.e., the dotted
line). It is clear that such a fit would result in significant errors. In addition, it would
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Fig. 51.2 Activity-based versus risk-driven approach
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Fig. 51.3 Example probability distribution function of the duration of an activity that is impacted
by two risks
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be very hard for practitioners to assess the parameters of the fitted distribution.
Estimating the probability of occurrence and the impact of both risks, however,
would be a manageable task.

51.4 Ranking Indices

Most risk analysis software packages provide the functionality to generate insight
into the source of project overruns. The activities (or risks) that contribute most to
the project delay are identified using ranking indices. Let .�/.W /i and .�/.W /w denote
the ranking values of a ranking index .�/ for an activity i and a risk w when activity
durations are subject to a set of risks W . A large ranking value indicates that
the activity (or risk) contributes a lot to the delay of the project. The ranking of
activities (or risks) is typically visualized using a ranked bar chart (see Fig. 51.4 for
an example of a ranked bar chart).

In the remainder of this section, we define how risks impact activity durations.
Next, we present the ranking indices themselves. For a more detailed discussion
on the ranking indices presented in this section, refer to Elmaghraby (2000),
Demeulemeester and Herroelen (2002), and Creemers et al. (2013).

51.4.1 Definitions

In order to formally define risks and their impacts, let R D f1; 2; : : : ; rg denote
the set of risks and let M D ˚ QMiwji 2 V ^ w 2 R� denote the set of risk impacts,
where QMiw is the random variable of the risk impact of a risk w on the duration of

Fig. 51.4 Example ranked
bar chart
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an activity i . Let Miw D ˚
Miw1;Miw2; : : : ;Miwq

�
represent the vector of random

variates of QMiw, and define p.W /i D
n
p
.W /
i1 ; p

.W /
i2 ; : : : ; p

.W /
iq

o
, the vector of random

variates of the duration of an activity i when subject to a set of risks W � R. The
entries of p.W /i are given by:

p
.W /
ix D pi C

X

w2W
Miwx .x 2 f1; 2; : : : ; qg/ (51.7)

Where pi is the deterministic, risk-free duration of an activity i . From p.W /i , we

obtain ES.W /i D
n
ES.W /i1 ;ES.W /i2 ; : : :;ES.W /iq

o
, EC.W /

i D
n
EC.W /

i1 ;EC.W /
i2 ; : : :;EC.W /

iq

o
,

and C.W / D
n
C
.W /
1 ; C

.W /
2 ; : : : ; C

.W /
q

o
by generalizing Eqs. (51.4)–(51.6):

ES.W /i D max
n
EC.W /j j.j; i/ 2 E

o
(51.8)

EC.W /
j D ES.W /j C p.W /j (51.9)

C.W / D max.EC.W /
i ji 2 V / (51.10)

The expected project delay over q simulation iterations is defined as follows:

�.W / D 1

q

qX

xD1
C .W /
x � C (51.11)

Where C is the risk-free project completion time and is obtained using Eq. (51.6).

51.4.2 Activity-Based Ranking Indices

In what follows, we discuss the activity-based ranking indices. These indices
produce a ranking of activities that may be used to determine where to focus
mitigation efforts.

51.4.2.1 Critical Activities (CA)

It is common practice to focus mitigation efforts on the critical activities of the
deterministic early-start schedule (Goldratt 1997). The Critical Activities (CA)
ranking values are computed as follows:

CA.W /i D ıi (51.12)

Where ıi equals 1 if i is critical in ES and 0 otherwise.
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While easy to implement, CA does not recognize the uncertain nature of a project.
In addition, the discriminative power of CA is limited because all activities on the
critical chain have an equal ranking value.

51.4.2.2 Activity Criticality Index (ACI)

In stochastic CPM, the critical path may change. The Activity Criticality Index
(ACI) recognizes that almost any path and any set of activity can become critical
(Van Slyke 1963). If Monte Carlo simulation is used, the ACI of an activity is the
proportion of simulation iterations during which the activity is critical:

ACI.W /i D 1

q

qX

xD1
ı
.W /
ix (51.13)

Where ı.W /ix equals 1 if activity i is critical in ES.W /x and 0 otherwise (ES.W /x is the
early-start schedule during simulation iteration x when activity durations are subject
to a set of risksW ).

Whereas ACI takes into account the criticality of an activity, it ignores the
variance of the activity durations. Therefore, ACI cannot identify the activities
that effectively contribute to the delay of the project (e.g., activities that are not
impacted by risks can have a larger ACI than activities that become critical only
when impacted by a risk).

51.4.2.3 Significance Index (SI)

The Significance Index (SI) was developed by Williams (1992) as a reaction to the
criticism on ACI. If Monte Carlo simulation is used, SI is given by:

SI.W /i D

0

B
B
@

1
qP

xD1
C
.W /
x

1

C
C
A

"
qX

xD1

 
p
.W /
ix

p
.W /
ix C TF.W /ix

C .W /
x

!#

(51.14)

Where TF.W /ix is the total float of an activity i during a simulation iteration x when
activity durations are subject to a set of risks W .

SI relates both the criticality of an activity and the project completion time. SI,
however, does still not take into account the variance of the activity durations and is
therefore also flawed.
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51.4.2.4 Cruciality Index (CRI)

The Cruciality Index (CRI) is the absolute value of the correlation between the
duration of an activity and the total project duration. If Monte Carlo simulation
is used, CRI is given by:

CRI.W /i D
ˇ
ˇ
ˇcorr

�
p.W /i ;C.W /

ˇ
ˇ
ˇ (51.15)

Although rather intuitive, CRI has some major drawbacks. First, it measures the
linear relationship between the duration of an activity and the project completion
time. It is, however, well known that the relationship between these two entities
does not have to be linear at all (Elmaghraby 2000). Second, CRI does not take into
account whether or not activities are critical. As such, an activity that is not critical
can have a larger CRI than a critical activity that has a small duration variability.

51.4.2.5 Spearman Rank Correlation (SRCA)

Cho and Yum (1997) have criticized CRI because of its assumption of a linear
relationship between activity durations and the project completion time. They
propose the use of a non-linear correlation measure such as the Spearman correlation
coefficient. The Spearman Rank Correlation Index (SRCA) is given by:

SRCA.W /i D
ˇ
ˇ
ˇcorr

�
rank

�
p.W /i


; rank

�
C.W /

�ˇˇ
ˇ (51.16)

Where rank .�/ transforms a vector � into a vector of ranking numbers.
SRCA is an improvement upon CRI as it allows for monotonic relationships

rather than linear relationships. SRCA, however, still does not take into account
whether or not activities are critical.

51.4.2.6 Schedule Sensitivity Index (SSI)

The PMI (2008) and Vanhoucke (2010) define a ranking index that combines (1)
ACI, (2) the variance of activity durations, and (3) the variance of the project
completion time. If Monte Carlo simulation is used, the Schedule Sensitivity Index
(SSI) is given by:

SSI.W /i D ACI.W /i

v
u
u
tvar

�
p.W /i



var
�
C.W /

� (51.17)
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SSI captures the variance of activity durations as well as the variance of the
project completion time. However, it ignores the covariance that might exist between
both entities.

51.4.2.7 Critical Delay Contribution for Activities (CDCA)

Creemers et al. (2013) propose a ranking index that redistributes the project delay
�.W / over the combinations of activities and risks that cause the delay. More
formally, the Critical Delay Contribution (CDC) of an activity i and a risk w may
be expressed as follows:

CDC.W /
iw D 1

q

qP

xD1
Miwxı

.W /
ix

�
C
.W /
x � C



P

i2V
P

w2W

qP

xD1
Miwxı

.W /
ix

(51.18)

D E

0

B
@

Miwy.W /i
P

i2V
P

w2W
Miwy.W /i

1

C
A�

.W / (51.19)

Where
�

y.W /i D
n
ı
.W /
i1 ; ı

.W /
i2 ; : : : ; ı

.W /
iq

o
. From CDC.W /

iw it is easy to obtain an

activity-based ranking index. The Critical Delay Contribution for Activities (CDCA)
is given by:

CDCA.W /i D
X

w2W
CDC.W /

iw (51.20)

51.4.3 Risk-Driven Ranking Indices

All prior ranking indices have been criticized in the literature (refer to Williams
1992; Elmaghraby 2000; Cui et al. 2006; Creemers et al. 2013) and are primarily
designed to rank activities, not risks. To the best of our knowledge, Hulett (2009)
and Creemers et al. (2013) are the only references that explicitly refer to a risk-
driven ranking index. In what follows, we introduce the risk-driven ranking indices
proposed by Hulett (2009) and Creemers et al. (2013).

51.4.3.1 Cruciality Index for Risks (CRIR)

Hulett (2009) proposes a simple adaptation of CRI. The Cruciality Index for Risks
(CRIR) calculates the correlation between the impact of a risk and the project
completion time. If Monte Carlo simulation is used, CRIR is given by:
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CRIR.W /w D ˇ
ˇcorr

�
Mw;C.W /

�ˇ
ˇ (51.21)

Where Mw D ˚
Mw1;Mw2; : : : ;Mwq

�
and

�
Mwx D P

i2V Miwx
�

for all w 2 W .

51.4.3.2 Spearman Rank Correlation for Risks (SRCR)

Creemers et al. (2013) propose an adaptation of SRCA which is similar to the
suggestion made by Hulett (2009) with respect to CRI. The Spearman Rank
Correlation for Risks (SRCR) is given by:

SRCR.W /w D ˇ
ˇcorr

�
rank .Mw/ ; rank

�
C.W /

��ˇ
ˇ (51.22)

51.4.3.3 Critical Delay Contribution for Risks (CDCR)

In order to compute the Critical Delay Contribution for Risks (CDCR), we use the
CDC-values that were discussed in Sect. 51.4.2.7. CDCR is given by:

CDCR.W /w D
X

i2V
CDC.W /

iw (51.23)

51.5 Computational Results

We perform an extensive computational experiment in order to evaluate the
resilience of the ranking indices in a wide variety of settings. At the core of our
experiment are the 600 projects of the PSPLIB J120 data set (Kolisch and Sprecher
1996). For each of the networks, we evaluate the mitigation potential of the ranking
indices discussed in Sect. 51.4. A similar approach is followed in Vanhoucke (2010)
and Creemers et al. (2013).

In what follow, we first discuss the experimental design and the experimental
setup. Next, we define the performance measures and present the results of the
computational experiment.

51.5.1 Experimental Design

For each of the projects of the PSPLIB J120 data set we introduce uncertainty by
means of risks. We use five parameters to characterize the risks: (1) risk uniformity,
(2) risk quantity, (3) risk probability, (4) risk impact, and (5) risk correlation.
The settings of the parameters are based on our experience in the field of risk
management.
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Risk uniformity determines the number of activities that are impacted by a single
risk. Often, clusters of activities have a similar task content and hence are subject to
the same risks. We refer to these clusters of activities as activity groups (Schatteman
et al. 2008). If risk uniformity is low, the number of activities impacted by any
risk w 2 R follows a discrete uniform distribution with minimum and maximum
equal to 1 and 3 activities respectively. A low risk uniformity setting results in an
average of 60 activity groups and the average number of activities in an activity
group equals 2. When risk uniformity is high, the number of activities impacted
follows a discrete uniform distribution with minimum and maximum equal to 1 and
11 activities respectively. A high risk uniformity setting corresponds to an average
of 20 activity groups and an average activity group size of 6 activities.

Risk quantity determines the number of risks that are identified during the
risk identification process. A low risk quantity corresponds to a setting in which
activities are impacted by 25 risks. When risk quantity is high, 50 risks impact the
project activities. Risks are randomly assigned to a single activity group.

Risk probability determines the probability of occurrence of a risk whereas risk
impact determines the impact of a risk on the duration of an activity. We define two
types of risks: (1) risks that have a small probability of occurrence yet a large impact
and (2) risks that have a large probability of occurrence but a small impact. Risks
are randomly assigned to one of both risk types, where each risk has a 25 % chance
of being of type 1. Table 51.1 summarizes the risk probability and the risk impact
settings. Note that the probability of occurrence and the risk impact are modeled
using a continuous uniform distribution and a triangular distribution respectively.
We opt for the use of uniform and triangular distributions because our experience
learns that practitioners find it easier to assess the parameters that correspond to
these distributions (e.g., a practitioner is able to assess the worst, best, and most
likely impact of a risk).

Risk correlation determines whether the occurrences of a risk (on activities in the
impacted activity group) are correlated. We investigate three possible scenarios. A
first scenario deals with the setting in which there is perfect correlation (i.e., either
all activities in the activity group are impacted or none are). In a second scenario,

Table 51.1 Parameter settings for risk probability and risk impact

Risk Risk Risk Probability Impact
probability impact type Min Max Min most likely Max

High High Type 1 0.05 0.05 1.0 2.0 9.0

Type 2 0.1 0.7 0.0 1.0 2.0

High Low Type 1 0.05 0.05 0.5 1.0 4.5

Type 2 0.1 0.7 0.0 0.5 1.0

Low High Type 1 0.025 0.025 1.0 2.0 9.0

Type 2 0.05 0.35 0.0 1.0 2.0

Low Low Type 1 0.025 0.025 0.5 1.0 4.5

Type 2 0.05 0.35 0.0 0.5 1.0
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we assume that the risk correlation is random, indicating that the occurrences of a
risk are correlated with a random correlation factor that is drawn from a continuous
uniform distribution with minimum and maximum equal to 0 and 1 respectively.
The third scenario, assumes that risk occurrences are independent (i.e., there is no
correlation between risk occurrences).

The settings of the five parameters combine to 48 different risk profiles that are
to be evaluated. For each risk profile and over all projects in the PSPLIB J120 data
set, we evaluate and compare the mitigation efficiency of the ranking indices. In
this experiment, we assume that the mitigation of a risk results in the elimination of
that risk.

51.5.2 Performance Measures

In order to compare the performance of the ranking indices, define the Relative
Residual Delay (RRD) after mitigation of z risks using ranking index .�/:

RRD.�/z D �.�/z
�.�/0 (51.24)

Where: (1)�.�/z is the expected project delay after mitigation of z risks using ranking
index .�/ and (2)�.�/0 is the expected project delay before any mitigation takes place.
Smaller values of RRD.�/z correspond to a more effective ranking index.

Another measure that allows to assess the performance of a ranking index is the
Mitigation Efficiency Index (MEI):

MEI.�/ D 1 � 2

rP

zD1
RRD.�/z

r � 1
(51.25)

The details of the dynamics of this measure may be found in Creemers et al.
(2013). In short, MEI.�/ is supported on the Œ�1; 1� real interval, where a value
of 0 indicates that the performance of the ranking index equals that of a random
procedure (i.e., a procedure that randomly mitigates risks). A value of 1 on the other
hand, corresponds to the optimal case in which the mitigation of a single risk is
sufficient to resolve all project uncertainty. In general, it is not possible to obtain
a value of 1.

51.5.3 Experimental Setup

We test the mitigation potential of each ranking index using a stepwise procedure.
In each step, the selected ranking index is used to identify the risk that contributes
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Algorithm 51.1 Computational Experiment
for all Project networks in the PSPLIB J120 data set do

for all Risk uniformity settings do
Assign activities to activity groups
for all Risk quantity settings do

Set r and define W WD f1; 2; : : : ; rg
for all Risk probability settings do

for all Risk impact settings do
for w D 1 to r do

Set the probability and impact of each risk
end for
for all Risk correlation settings do

Set the correlation of risk occurrences
for i D 1 to n do

for w D 1 to r do
for x D 1 to q do

For the current project and risk profile, generate common risk impact Miwx

end for
end for

end for
for all Ranking indices .�/ do

use Monte Carlo simulation to obtain �.�/z for all z W z 2 f0; 1; : : : ; rg
for all z D 0 to r do

compute performance measure RRD.�/z using Eq. 51.24
end for
For the current project and the current risk profile, compute performance measure MEI.�/

using Eq. 51.25
end for

end for
end for

end for
end for

end for
end for

most to the delay of the project. Next, this risk is eliminated (i.e., is fully mitigated).
After mitigation, we rerun the simulation and recalculate the expected project delay.
Once more, the selected ranking index is used to identify and to mitigate the risk
that has the largest impact on the project delay. This process continues until all risks
have been mitigated. An outline of the procedure is provided in Algorithm 51.1.

We evaluate a total of 12 ranking indices. Next to the ten ranking indices
discussed in Sect. 51.4 (i.e., CA, ACI, SI, CRI, SRCA, SSI, CDCA, CRIR, SRCR, and
CDCR), we introduce two additional ranking indices: (1) RAND randomly selects
a risk from those risks still active and (2) OPT is a greedy-optimal procedure that
evaluates the elimination of each risk and selects the risk that yields the largest
reduction in project delay. RAND may be considered as a worst-case scenario
whereas OPT represents the best-case scenario. OPT, however, has limited practical
value due to its computational requirements.

With respect to the activity-based ranking indices, selecting the largest risk is a
two-step procedure. In a first step, the highest-ranked activity is selected. In a second
step, the risk that has the largest expected impact on the selected activity is identified
as the highest-ranked risk. For instance, observe the matrix of realized (during a
given simulation iteration) and expected risk impacts presented in Table 51.2.
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Table 51.2 Example of
realized and expected risk
impacts

Realized impacts Expected impacts

Risk 1 2 3 Total 1 2 3 Total

Activity 1 2 1 1 4 1 2 1 4

Activity 2 0 0 2 2 0 0 1 1

Activity 3 0 0 1 1 0 0 1 1

Total 2 1 4 7 1 2 3 6

It is clear that activity 1 has the largest realized impact over all simulations. Risk 2
has the largest expected impact on activity 1 and hence is selected as the risk that
contributes most to the project overrun (i.e., risk 2 is the highest-ranked risk). It is
obvious, however, that risk 3 in fact has the most severe impact on the durations of
the different activities.

In order to evaluate the performance of the different ranking indices, we use
Monte Carlo simulation. The details of the simulation model are given in Creemers
et al. (2013). We simulate the execution of each of the 600 projects in the PSPLIB
J120 data set: (1) for each of the 48 risk profiles, (2) for each of the 12 ranking
indices, and (3) for each step in the mitigation process (i.e., for each number of risks
mitigated).

51.5.4 Results

Figure 51.5 gives an overview of the average performance of the activity-based
ranking indices with respect to measure RRD.�/z for the range starting from z D 0

(i.e., no risks have been mitigated) until z D 10 (i.e., ten risks have been mitigated).
The data are aggregated over all 600 project networks in the PSPLIB J120 data
set and over all 48 risk profiles. We observe that the mitigation of risks results in
a decrease of the expected project delay for each ranking index. Because RAND
randomly selects risks, its improvement is linear with the number of risks mitigated.
For all other ranking indices, the improvement is convex, implying that risks with a
larger impact on the project delay are selected first. One might conclude that SRCA
is the best activity-based ranking index, closely followed by CDCA. It is clear,
however, that there still exists a gap between the performance of the activity-based
indices and the OPT procedure.

Figure 51.6 is similar to Fig. 51.5 and presents the performance of risk-driven
ranking indices with respect to measure RRD. We observe that SRCR outperforms
CRIR as well as the activity-based ranking indices. More importantly, however, is
the observation that CDCR easily outperforms CRIR and SRCR, and even matches
the performance of the OPT procedure. It is clear that CDCR sets a new standard in
the field of ranking indices.

Table 51.3 presents the MEI of the different ranking indices. For each ranking
index, Table 51.3 shows: (1) the MEI for each risk profile and (2) the average
MEI over the 16 risk profiles that correspond to a given risk correlation setting.
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Fig. 51.5 Mitigation potential of activity-based ranking indices
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Fig. 51.6 Mitigation potential of risk-driven ranking indices
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Table 51.3 Mitigation efficiency of the different ranking indices

Index Avg Corr MEI

CA 0.621 0 % 0.46 0.50 0.49 0.52 0.48 0.52 0.50 0.53 0.69 0.75 0.72 0.76 0.73 0.77 0.74 0.78

0.619 100 % 0.44 0.49 0.47 0.50 0.47 0.51 0.49 0.52 0.70 0.75 0.72 0.76 0.73 0.77 0.74 0.78

0.614 RND 0.45 0.50 0.48 0.52 0.48 0.52 0.50 0.52 0.70 0.75 0.72 0.76 0.73 0.77 0.74 0.78

ACI 0.643 0 % 0.49 0.52 0.51 0.53 0.51 0.53 0.52 0.54 0.74 0.76 0.75 0.77 0.77 0.78 0.77 0.79

0.640 100 % 0.48 0.51 0.50 0.52 0.50 0.52 0.51 0.53 0.75 0.77 0.75 0.77 0.76 0.78 0.77 0.79

0.637 RND 0.49 0.52 0.50 0.52 0.50 0.52 0.51 0.53 0.75 0.77 0.76 0.77 0.76 0.78 0.77 0.79

SI 0.641 0 % 0.49 0.52 0.51 0.53 0.51 0.53 0.52 0.53 0.74 0.76 0.75 0.77 0.76 0.78 0.77 0.79

0.639 100 % 0.48 0.51 0.49 0.52 0.50 0.52 0.51 0.53 0.74 0.77 0.75 0.77 0.76 0.78 0.77 0.79

0.637 RND 0.49 0.52 0.50 0.52 0.50 0.52 0.51 0.53 0.74 0.77 0.75 0.77 0.76 0.78 0.77 0.79

CRI 0.612 0 % 0.45 0.49 0.47 0.50 0.45 0.49 0.47 0.50 0.71 0.74 0.73 0.75 0.74 0.76 0.75 0.77

0.636 100 % 0.49 0.53 0.52 0.55 0.50 0.54 0.53 0.56 0.73 0.76 0.75 0.77 0.75 0.77 0.76 0.78

0.643 RND 0.49 0.53 0.51 0.55 0.49 0.52 0.52 0.54 0.73 0.75 0.74 0.76 0.75 0.77 0.76 0.77

SRCA 0.657 0 % 0.49 0.53 0.51 0.54 0.52 0.55 0.53 0.56 0.75 0.78 0.77 0.79 0.78 0.81 0.79 0.81

0.677 100 % 0.53 0.57 0.55 0.58 0.56 0.59 0.57 0.60 0.77 0.79 0.78 0.80 0.79 0.81 0.80 0.82

0.680 RND 0.53 0.56 0.55 0.58 0.55 0.58 0.56 0.59 0.76 0.79 0.78 0.80 0.79 0.81 0.79 0.81

SSI 0.616 0 % 0.46 0.48 0.48 0.50 0.46 0.48 0.48 0.49 0.73 0.75 0.74 0.76 0.75 0.77 0.76 0.77

0.614 100 % 0.44 0.47 0.46 0.49 0.45 0.47 0.47 0.48 0.73 0.75 0.74 0.76 0.75 0.77 0.75 0.77

0.610 RND 0.45 0.48 0.48 0.50 0.46 0.48 0.47 0.49 0.73 0.75 0.74 0.76 0.75 0.77 0.76 0.77

CDCA 0.646 0 % 0.47 0.51 0.49 0.52 0.50 0.53 0.51 0.54 0.75 0.78 0.76 0.79 0.78 0.80 0.79 0.81

0.644 100 % 0.45 0.50 0.47 0.51 0.48 0.52 0.50 0.53 0.75 0.78 0.76 0.79 0.78 0.80 0.78 0.81

0.640 RND 0.46 0.51 0.48 0.53 0.49 0.53 0.50 0.54 0.75 0.78 0.76 0.79 0.78 0.80 0.79 0.81

CRIR 0.639 0 % 0.49 0.53 0.51 0.54 0.52 0.55 0.53 0.55 0.72 0.75 0.74 0.76 0.75 0.77 0.76 0.78

0.638 100 % 0.48 0.51 0.51 0.54 0.50 0.53 0.53 0.55 0.73 0.75 0.74 0.76 0.75 0.77 0.76 0.77

0.635 RND 0.49 0.53 0.52 0.55 0.50 0.54 0.53 0.55 0.73 0.75 0.74 0.76 0.75 0.77 0.76 0.77

SRCR 0.674 0 % 0.52 0.56 0.54 0.57 0.56 0.58 0.57 0.60 0.75 0.78 0.77 0.79 0.78 0.80 0.80 0.81

0.684 100 % 0.50 0.54 0.56 0.59 0.55 0.58 0.58 0.60 0.75 0.78 0.78 0.80 0.79 0.81 0.80 0.82

0.676 RND 0.54 0.58 0.56 0.60 0.56 0.59 0.58 0.60 0.76 0.78 0.78 0.80 0.79 0.81 0.80 0.82

CDCR 0.697 0 % 0.57 0.60 0.58 0.61 0.59 0.61 0.60 0.62 0.77 0.79 0.78 0.80 0.79 0.81 0.80 0.82

0.695 100 % 0.56 0.59 0.57 0.60 0.57 0.60 0.59 0.61 0.78 0.80 0.78 0.80 0.79 0.81 0.80 0.82

0.692 RND 0.56 0.60 0.58 0.61 0.58 0.61 0.59 0.61 0.77 0.80 0.78 0.80 0.79 0.81 0.80 0.82

RAND 0.000 0 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.000 100 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.000 RND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OPT 0.698 0 % 0.57 0.60 0.59 0.61 0.59 0.61 0.60 0.62 0.77 0.79 0.78 0.80 0.79 0.81 0.80 0.82

0.697 100 % 0.56 0.59 0.58 0.60 0.58 0.60 0.59 0.61 0.78 0.80 0.79 0.80 0.79 0.81 0.80 0.82

0.695 RND 0.57 0.60 0.58 0.61 0.58 0.61 0.59 0.62 0.78 0.80 0.79 0.80 0.79 0.81 0.80 0.82

Risk profile 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Risk impact H L H L H L H L H L H L H L H L

Risk probability H L H L H L H L

Risk quantity H L H L

Risk uniformity H L
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We observe that the MEI of the RAND procedure is close to zero, indicating that
it has no real mitigation potential. The OPT procedure has the highest values of
MEI and is rivalled only by CDCR. Virtually no difference exists between the
performance of the OPT procedure and the CDCR ranking index. With respect to the
activity-based ranking indices, it is clear that SRCA takes the pole position, followed
by CDCA, ACI, and SI.

Furthermore, we observe that risk correlation seems to have a limited impact
on the performance of the ranking indices. A similar conclusion holds for risk
probability. Risk uniformity on the other hand has a significant effect on the
mitigation efficiency of the ranking indices. A higher risk uniformity results in lower
performance (i.e., it is easier to distinguish between risks that only impact a small
number of activities). With respect to risk quantity, we observe that an increase in
the number of risks leads to a decrease of ranking index performance (i.e., if there
are more risks, the mitigation of a single risk tends to be less effective). Lastly, it is
clear that ranking index performance increases if risk impacts become less severe
(i.e., the relative effect of mitigating a risk increases if there are only a few risks that
impact project objectives).

51.6 Conclusions

Project risk management deals with the planning, identification, analyzing, respond-
ing, monitoring, and controlling of risks. In this chapter we have focussed on the
risk analysis process and its effect on the risk response process. When it comes to
analyzing risks, we have shown that a risk-driven approach is better than an activity-
based approach. Therefore project risk management should focus on assessing the
uncertainty on the level of risks (i.e., the root cause) rather than on the level of
activities themselves.

In addition, we performed a large computational experiment in order to compare
a number of ranking indices. Ranking indices are used to rank activities (or risks) in
order to determine where to focus mitigation efforts. We compared both activity-
based ranking indices (i.e., those that ranks activities) and risk-driven ranking
indices (i.e., those that ranks risks). The Spearman Rank Correlation (SRCA) is
the best activity-based ranking index. SRCA, however, is still far from optimal. The
Critical Delay Contribution (CDC) may be used to devise both an activity-based and
a risk-driven ranking index. The Critital Delay Contribution for Activities (CDCA)
is second only to SRCA among the activity-based ranking indices. The Critital Delay
Contribution for Risks (CDCR), on the other hand, nearly matches the performance
of a greedy-optimal procedure. Therefore, we conclude that CDCR is the state of
the art in the field of ranking indices.
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Chapter 52
Scheduling Tests in Automotive R&D Projects
Using a Genetic Algorithm

Jan-Hendrik Bartels and Jürgen Zimmermann

Abstract For each car model an automotive manufacturer has to perform hundreds
of tests on prototype vehicles before mass production can be started. In this chapter
we present heuristic methods for scheduling the individual tests in automotive
R&D projects such that the number of required experimental vehicles and hence
the testing costs are minimized. The problem at hand can be interpreted as a
multi-mode resource-constrained project scheduling problem with minimum and
maximum time lags and cumulative resources. We present forward and backward
variants of a priority-rule based method as well as a genetic algorithm based on an
activity list representation. The presented methods are examined in a comprehensive
computational study.

Keywords Genetic algorithm • Multiple execution modes • Priority-rule based
methods • Project scheduling • Renewable and cumulative resources • Schedul-
ing tests

52.1 Introduction

In the last decades the automotive market has changed from a seller’s to a buyer’s
market accompanied by a shortening product life cycle (cf., e.g., Henseler 2004).
Consequently, the number of cars produced throughout the life-span of a model
has decreased, which has led to an increase in the portion of indirect costs. In
particular, it is still a challenge to reduce development cost in interaction with
a decreasing time-to-market (Gembrys 1998). The product development process
in the automotive industry generally consists of two alternating stages. First,
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new components are constructed with the help of computer aided engineering
techniques. Subsequently, these components are tested using experimental vehicles
(prototypes) that have to be built up by the prototype section. Testing is necessary to
reveal further demand for engineering in order to reach the level of quality customers
expect. Additional tests verifying certain product attributes are prescribed by law.
While engineering costs have decreased throughout the last few years due to the
successful implementation of platform strategies, testing costs have risen because of
increasing product complexity and variety (Risse 2002). Since the construction of
one experimental vehicle costs up to 1.5 Million Euros, the majority of testing costs
is caused by the prototype section. All tests that have to be carried out are specified
in advance with the consequence that the demand for experimental vehicles depends
only on the schedule of these tests. Thus, we consider a scheduling problem where
we have to determine a start time for each test such that the number of required
experimental vehicles is minimized and several constraints concerning, e.g., the
capacity of the prototype section and the destructive effect of some tests are met.

To the best of our knowledge there exist only a few approaches for scheduling
tests in automotive R&D projects with the aim to reduce costs for the production
of prototypes. Assuming that each test imposes several requirements regarding
the equipment of the used vehicle, Chelst et al. (2001) focus on minimizing the
number of differently equipped prototypes by solving a set covering problem.
For the underlying problem, it was sufficient to consider only due dates for the
individual tests whereas resource constraints and constraints for destructive tests
are neglected. This approach was enhanced by Lockledge et al. (2002) using a
multi-stage mathematical programming model to optimize the prototype fleet for
the Ford Motor Company, where the planners have to specify the characteristics of
the fleet and have to assign the prescribed tests to the vehicles of the created fleet
simultaneously. Two steps are performed to minimize the number of vehicles built
subject to the constraint that every test must be completed on an appropriate vehicle
until a specific deadline. In the first step a classic set-covering problem is solved
with the aim to determine a minimum number of specific vehicle configurations
that are required to cover each test. For the solution of this set-covering problem,
test durations and deadlines are ignored. In the second step a minimum number of
corresponding prototype variants is determined such that all tests can be executed
with respect to their due dates. A basic version of the model implemented on a
complex vehicle program lead to a 25 % reduction in fleet size as compared to the
forecast originally made by the company.

In Scheffermann et al. (2005) a parallel machine scheduling problem is con-
sidered where the prototypes are associated with the machines and the tests
with the jobs. The authors search for an allocation of tests to prototypes and
an appropriate sequence for tests assigned to some prototype. Ignoring possible
differences between various prototypes, two objectives are taken into account:
firstly, the minimization of the number of prototypes used, and secondly, the
minimization of the makespan of the schedule. The authors propose a heuristic
approach to support the decision process of a manufacturer. Limtanyakul and
Schwiegelshohn (2007) as well as Limtanyakul (2008, 2009) consider the same
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problem and propose a constraint programming and integer programming approach.
They consider the problem as a variant of the classical parallel machine scheduling
problem Pmjrj ; dj ;Mj ; precjCmax, where Mj describes the prototypes eligible for
test j . Their procedure starts with a fixed number of prototypes while the makespan
is minimized. Subsequently, the number of prototypes is reduced successively to
find a minimal number of prototypes sufficient to perform all prescribed tests.

Bartels and Zimmermann (2006a,b, 2009) as well as Zimmermann and Bartels
(2006) contemplate the minimization of prototypes in the test phase of research
and development projects. Each test stage is considered as a single project which
must be scheduled taking into account temporal and resource constraints as well
as destructive tests and so-called “partial ordered destructive relations”. Besides
a mixed-integer linear programming formulation a priority-rule based method is
presented.

Recently, Limtanyakul and Schwiegelshohn (2012) treat the problem outlined
by Bartels and Zimmermann (2006a) and develop a hybrid method based on
Benders decomposition. The master problem which provides the resource allocation
and estimates the number of prototypes and corresponding variants needed is
modeled as a mixed-integer linear program (MILP) and solved by a standard solver.
The energetic reasoning principle and a lower bound on the number of required
prototypes based on pairs of tests which must be executed on different prototypes
(cf. Bartels 2009) are used to strengthen the MILP formulation. The slave problem
that complies with the original problem to determine an allocation of tests to
prototypes and a start time for each test is solved by constraint programming (CP),
where a so-called nogood constraint is used to remove infeasible solutions. Three
alternative CP models and corresponding Bender cuts are considered which differ
in whether or how it is allowed to partially change the pre-specifications of the
master problem. The results obtained are quite competitive to the results obtained
by Bartels (2009).

In this contribution we report on results for the problem of scheduling tests
devised by Bartels (2009) and Bartels and Zimmermann (2009). In particular we will
treat the problem as a multi-mode resource-constrained project scheduling problem
(see Chaps. 21 and 22 in the first volume of this handbook), where renewable and
cumulative resources are taken into account (see Chaps. 1 and 9 in the first volume of
this handbook), what leads to a variant of problem MPSs j temp; d j P ck max rkt.
Since some project activities cannot make use of the same resources if they are
carried out in a certain sequence, so-called partially ordered destructive relations are
considered. Moreover, experimental vehicles needed to perform the different tests
must be established before they can be used in test activities. Note that, therefore,
the overall number of required experimental vehicles is to be minimized and not
prescribed.

The remainder of this chapter is organized as follows. Section 52.2 gives an intro-
duction to the problem of scheduling tests in automotive R&D projects and presents
an appropriate project scheduling model. Section 52.3 is devoted to a priority-
rule heuristic based on a serial schedule-generation scheme. In Sect. 52.4 different
variants of the schedule-generation scheme including backward and bidirectional
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planning are discussed and in Sect. 52.5 we develop a genetic algorithm where
each individual is represented by a list of test activities. Section 52.6 presents
a comprehensive computational study that shows that the proposed methods are
promising and suitable to solve large sized instances. Finally, Sect. 52.7 is devoted
to concluding remarks and directions for further research.

52.2 Problem Description

Automotive R&D projects consist of m development stages, each containing an
engineering stage and a corresponding test series. The m stages differ by the
development status of the automobile under construction such that each test
series makes use of a different type of experimental vehicle. In an early phase,
vehicles of the preceding car model with incorporated components of the currently
developed automobile are used. In a later stage, the first prototype vehicle, which
is almost totally hand-made and contains all new components, is available for
testing. Finally, vehicles that were built under conditions of the series production
process are tested. Most kinds of tests are executed in every stage. As there are
no dependencies between tests of different test series, each of the m series can be
treated independently. In what follows, we restrict our considerations to a single
test series which, for simplicity, will be called a project. Note that the processing
times of the tests are specified a priori. After a test has been executed for a constant
duration, it is decided whether the test was successful or needs to be repeated.
The repetition of the test is usually done in the subsequent test series, after the
engineering sections were able to alter the failing components. Thus, uncertainty
usually does not influence a single project significantly and an independent near-
term planning of the individual test series that can make use of up-to-date data is
possible.

Each test series consists of a set V t WD f1; : : : ; nt g of nt tests each of which has to
be executed on an experimental vehicle. Before an experimental vehicle can be used
for testing, it must be built up. The process of building up a vehicle is represented
by a so-called building up activity. Let V b WD f1; : : : ; nbg be the set of all possible
building up activities, with nb being an appropriate upper bound for the number
of required prototypes. In order to execute all tests of the test series at hand with
minimal testing costs, all activities i 2 V t [ V b have to be scheduled such that the
number of vehicles used is minimized.

When performing the different types of activities the following constraints must
be observed:

• Temporal constraints: there are precedence relations between tests, release and
due dates for some tests, and a prescribed duration for each test series

• Variant and mode feasibility: each test has to be carried out on a suitable variant
of experimental vehicle
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• Destructive tests: several tests destroy the used vehicle, which, therefore, cannot
be used for further tests afterwards

• Partially ordered destructive relations: some test i disables the used vehicle to
perform some other test j afterwards

• Prototyping feasibility: an experimental vehicle cannot be used to perform a test
before it has been built up by the prototype section

Temporal constraints between the start times of activities can be described by
an activity-on-node network (Roy 1964; Zimmermann et al. 2010). Such a network
contains a set V WD f0; 1; : : : ; n; n C 1g of nodes, each of which represents an
activity. In the case of our test series project each activity, i 2 f1; : : : ; ng, represents
a building up or test activity thus n WD nt C nb gives the total number of real
activities with a processing time pi > 0. Activities 0 as well as nC 1 are fictitious
activities with processing time zero that specify the start and the end of the project,
respectively. For each minimum time lag, claiming that activity j has to start at
least dmin

ij time units after the start of activity i , the project network contains an
arc .i; j / with weight ıij WD dmin

ij . Likewise, for each maximum time lag, claiming
that j starts at most dmax

ij time units after the start of i , a backward arc .j; i/ with
weight ıji WD �dmax

ij is introduced (Neumann et al. 2006). Let S WD .Si /i2V be a
schedule assigning a start time Si to each activity i 2 V . We assume that the first
nb entries after the project start represent the start times of the building up activities
followed by the nt start times of the tests and the project end time. Minimum as well
as maximum time lags lead to restrictions of the form Sj � Si � ıij, .i; j / 2 E .
A schedule S for which none of these restrictions is violated is called time feasible.

Figure 52.1 shows an example for a project network containing five tests,
where the processing time pi of activity i is depicted by a label on the respective
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Fig. 52.1 Activity-on-node project network for the project of a test series
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node. A prescribed maximum project duration d is represented by the maximum
time lag between activities 0 and n C 1. Precedence relations between pairs of
tests are ensured by appropriate minimum time lags. Furthermore, there exist
dependencies between testing activities and engineering tasks. As the latter activities
are not part of the problem of scheduling tests, the dependencies between testing
and engineering activities are observed by release and due dates for the tests.
Accordingly, release and due dates for some activity i are modeled by minimum
time lags between nodes 0 and i and between nodes i and nC1, respectively. In the
example project test 4 can be started at point in time 3 at the earliest (release date)
and must be started at point in time 3 at the latest (due date) due to the time lags
between the project start and test 4 as well as the time lags between test 4 and the
project completion. Test 5 is destructive and partially ordered destructive relations
.2; 4/ and .2; 3/ have to be observed.

Since several variants of a model-line are developed simultaneously, different
variants v of experimental vehicles have to be distinguished. Set M contains all
those variants v, which differ, e.g., by their chassis, engine, or body. Some tests,
like the comfort level testing of seats, can be processed on some or all variants
of experimental vehicles, whereas the execution of other tests requires a specific
variant, e.g., a variant with a diesel engine. By Mi � M we denote the set of
variants that are suitable to perform a test i 2 V t . In Fig. 52.1 set Mi of test i is
shown by an additional label on the respective node.

Let nv be an appropriate upper bound for the required number of vehicles of
variant v. For the subsequent constraints it is not only important on which variant
v a test i is processed, but also which individual vehicle vk (k D 1; : : : ; nv) of
this variant v is used. According to the variants v 2 M , we call vk 2 M an
execution mode and Mi � M the set of modes that are feasible to execute test
i 2 V t , where M denotes the set of all existing modes. That is, each experimental
vehicle vk is identified with execution mode vk and vice versa. Let xivk be a binary
variable that is 1 if test i is executed in mode vk , and 0 otherwise. Then vector
x WD �

xivk

�
i2V t ;vk2M , that assigns each test i to an experimental vehicle vk 2 Mi

is termed a mode assignment. Note that modes of the same test differ only by
their resource allocation, whereas—in contrast to the usual use of modes (cf., e.g.,
Heilmann 2000, 2001)—processing times and temporal constraints for the tests do
not depend on the underlying mode.

A destructive test i 2 D � V t , e.g., a crash test, is taken into account by
occupying the used vehicle vk from the start of i to the end of the project. Moreover,
we must cope with partially ordered destructive relations .i; j / 2 P which imply
that a test i disables the used vehicle to perform a certain test j afterwards.
Thus, either tests i and j are performed on different experimental vehicles (i.e.,
xivk xjvk D 0; vk 2 Mi \Mj ) or test j ends before test i starts (i.e., Sj Cpj � Si ).
Each partially ordered destructive relation .i; j / 2 P leads to a restriction

�
Sj C pj

� X

vk2Mi\Mj

xivk xjvk � Si (52.1)



52 Scheduling Tests in Automotive R&D Projects Using a Genetic Algorithm 1163

Finally, an experimental vehicle vk must be built up before it can be used to
perform tests. The corresponding building up activity is denoted by bvk . Building up
any vehicle vk lasts, independently from the variant of the vehicle,pb time units. The
number of required vehicles and consequently the number of building up activities
that have to be processed is initially unknown. In our model, the set of building
up activities V b contains an activity bvk for each possible vehicle vk .v 2 M;k D
1; : : : ; nv/. The building up activities bvk of those vehicles vk not being used in a
solution of the underlying problem start at time d . Therefore, the project network
in Fig. 52.1 contains minimum time lags of zero time units between the building up
activities bvk 2 V b , which are represented by the dashed nodes, and the project’s
end.

Due to the limited capacity Rb.t/ of the prototype section at each point in
time t 2 Œ0; d C pb�, a renewable resource (cf., e.g., Neumann et al. 2003,
2006) is introduced that limits the number of building up activities bvk 2 V b

that are simultaneously in execution at point in time t 2 Œ0; d Œ. For time t 2
Œd ; d C pb� we set Rb.t/ WD nb in order to enable that, like described before,
all building up activities bvk of not required vehicles vk may take place at time
d . Let Svk be the start time of building up activity bvk . Given schedule S ,
Ab .S; t/ WD ˚

bvk 2 V b j Svk � t < Svk C pb
�

is the set of building up activities
that are processed at time t . The number of those activities that are simultaneously
carried out at time t is

rb .S; t/ WDj Ab .S; t/ j (52.2)

Since the experimental vehicles are provided successively, testing and building
up activities may overlap in time, and the determination of the sequence in which
the vehicles are built up becomes part of the optimization problem. Unfortunately,
our definition of modes prevents us from linking building up and testing activities by
temporal constraints in order to ensure that no test can start before the used vehicle
has been build. Instead, we ensure the “prototyping feasibility” by a concept making
use of so-called cumulative resources. Cumulative resources are typically used to
represent inventories that are depleted and replenished by the project activities over
time (cf., e.g., Neumann and Schwindt 2002). In our case, each vehicle vk 2 M is
considered as a cumulative resource, where its “inventory” rvk .S; t; x/ at point in
time t depends on the selected modes and start times of the activities i 2 V . Initially,
the inventory of each cumulative resource comprises zero units in order to indicate
that the respective vehicle vk is not available for testing. At the end of a building up
activity bvk , the inventory of the respective cumulative resource is incremented by
one unit, indicating that vehicle vk is again available for testing. Each test depletes
the inventory of the used resource by one unit at its start and, provided that the test
is not destructive, replenishes the inventory by one unit at its end. Let ıvk .t/ be a
binary variable that is 1 if the building up activity for vehicle vk has been finished
until t (i.e., Svk C pb � t), and 0 otherwise. Moreover, for a given schedule S ,
At .S; t/ WD fi 2 V t j Si � t < Si C pi g is the set of tests being in execution at



1164 J.-H. Bartels and J. Zimmermann

time t . Only a test i 2 At.S; t/ nD or i 2 D W Si � t may influence the inventory
of a vehicle vk at point in time t . Thus, given a mode assignment x and a schedule
S , the inventory of vehicle vk at time t is given by

rvk .S; t; x/ WD ıvk .t/ �
X

i2At .S;t/nD
xivk �

X

i2DWSi�t
xivk (52.3)

All activities i 2 V must be scheduled such that the inventory of any cumulative
resource vk does not fall below a minimum inventoryRvk

WD 0 at any point in time.1

Schedule S is called resource-feasible with respect to assignment x if it fulfills
constraints rb .S; t/ � Rb.t/ and rvk .S; t; x/ � Rvk

. A schedule that is time and
resource-feasible with respect to mode assignment x is termed feasible with respect
to x. The concepts of building up activities and cumulative resources for the problem
of scheduling tests are illustrated in Fig. 52.2 which is borrowed from Bartels and
Zimmermann (2009). For our problem instance with five tests and two modes (cf.
Fig. 52.1), a gantt chart is given, which shows, for a time feasible solution with two
vehicles 11 and 21 (one of each variant) and, respectively, two building up activities,
a time feasible schedule S D .0; 1; 0; 3; 5; 1; 3; 7; 9/ as well as mode assignments
where the modes .11; 21; 21; 21; 11/ are assigned to tests .1; 2; : : : ; 5/. Furthermore,
the inventory profile r11 .S; t; x/ for vehicle vk D 11 and the renewable resource
profile rb .S; t/ of the prototype section are presented.

Having introduced all relevant constraints, we can summarize the problem
of scheduling tests by the following project scheduling model (Bartels and
Zimmermann 2009):

b11 1 5

b21 43 2

0 1 2 3 4 5 6 7 8 9

vk

t
11

21

b11 1 5

r11
(S; t; x)

tR11

1

0

1

2

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

rb (S; t)

t

b21
b11

Rb(t)

Fig. 52.2 Gantt chart representing a feasible solution; inventory profile r11 .S; t; x/ of vehicle 11
and (renewable) resource profile rb .S; t/ of the prototype section

1A maximum inventoryRvk WD 1 cannot be exceeded as each test must have depleted the inventory
of the used resource before replenishing it and at most one prototyping activity per resource exists.
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Min. f .S; x/ D
X

vk2M
ıvk .d � 1/ (52.4)

s.t. Sj � Si � ıij ..i; j / 2 E/ (52.5)
�
Sj C pj

� X

vk2Mi\Mj

xivk xjvk � Si ..i; j / 2 P/ (52.6)

rb .S; t/ � Rb.t/ .t 2 Œ0; d �/ (52.7)

rvk .S; t; x/ � Rvk
.vk 2 M I t 2 Œ0; d �/ (52.8)

X

vk2Mi

xivk D 1 .i 2 V t / (52.9)

S0 D 0 (52.10)

Si � 0 .i 2 V / (52.11)

xivk 2 f0; 1g .i 2 V I vk 2 M / (52.12)

ıvk .t/ 2 f0; 1g .vk 2 M I t 2 Œ0; d �/ (52.13)

Equation (52.4) indicates that the number of used experimental vehicles is to be
minimized. As previously described, an experimental vehicle can only be used if
the corresponding building up activity has been completed no later than d � 1 (i.e.,
ıvk .d � 1/ D 1), that is, the model serves to decide whether a vehicle has to be
built or not. The building up activities bvk of all vehicles vk that are not used to
execute tests in an optimal solution to problem (52.4)–(52.13) start at time d and do
not affect the objective function value. Restrictions (52.5) ensure that the solution
is time feasible and inequalities (52.6) regard the partially ordered destructive
relations. Due to constraints (52.7) the capacity of the renewable resource (prototype
section) must not be exceeded and because of restrictions (52.8) no inventory con-
flict for the cumulative resources may occur. Furthermore, constraints (52.9) make
sure that each test is executed in an admissible mode. Finally, by (52.10)–(52.13) the
domains for the decision variables are defined. In Bartels and Zimmermann (2009) a
corresponding mixed-integer linear program is presented which can be used to solve
our test scheduling problem using a standard solver.

In Bartels and Zimmermann (2009) the following properties of problem (52.4)–
(52.13) are proved.

Lemma 52.1. Problem (52.4)–(52.13) is NP-hard in the strong sense. The
corresponding feasibility problem is NP-complete.

Due to Lemma 52.1 we must assume that problem instances of practical size
can not be solved to optimality within an acceptable amount of time. Thus, we
will report on heuristic solution methods in Sects. 52.3–52.5 that are able to solve
large problem instances in acceptable time and make use of the following Theorem
(Bartels and Zimmermann 2009).
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Theorem 52.1. i) Let .S; x/ be an optimal solution to problem (52.4)–(52.13).
Then each time-feasible schedule S 0 implying the same precedence relations
between the activities i 2 V as S , i.e., for all .i; j / 2 V � V it holds that
S 0
i C pi � S 0

j exactly if Si C pi � Sj , is optimal as well.
ii) There always exists an optimal schedule where all building up activities start

as early as possible, i.e., no building up activity can be started earlier without
delaying at least one other building up activity.

Theorem 52.1 enables a different consideration of the building up activities
bvk 2 V b . A priori we can determine an ordered multiset of possible start times
SP at which the building up activities must begin. Multiset SP contains nb C 1

elements. The first � D 1; : : : ; nb elements SP� 2 SP are derived by starting the
(possible) building up activities, which all require the same amount of resources
from the prototype section and have the same processing time pb , one after another
such that they begin as early as possible and no renewable resource constraint
is violated. Moreover, we set SP

nbC1 WD d . Having predetermined the possible

start times SP� 2 SP , we afterwards assign them to the start times Svk of the
real prototyping activities bvk 2 V b . In other words, we prescribe time slots in
which building up activities must be processed and afterwards assign the activities
bvk 2 V b to these time slots. Again, the building up activities of vehicles vk not
being used in a solution are started at Svk D SP

nbC1 D d . Note, that assigning the

predetermined start times of set SP to the building up activities always ensures that
the renewable resource constraints are met.

52.3 A Priority-Rule Based Approach

To solve large instances with up to 600 test activities of problem (52.4)–(52.13),
a priority-rule based heuristic to determine “good” solutions may be used which
brings together a serial generation scheme and some priority rules. The generation
scheme is based on an approach of Ballestín et al. (2007), Selle and Zimmermann
(2003), Zimmermann (1997) that has been devised in order to solve project
scheduling problems with non-regular objective functions. The basic idea of this
approach is to schedule the individual activities successively such that the respective
increase in the objective function value of the extended partial solution is minimal.

Let C be the set of activities that have already been scheduled. A partial solution
is represented by pair (SC ; xC ) with SC and xC being the partial schedule and the
partial mode assignment of tests i 2 C \ V t , respectively. By f C .SC ; xC / we
denote the objective function value of some partial solution (SC ; xC ). Moreover,
let ESCj and LSCj be the schedule dependent earliest and latest start times of the
activities j 2 V t nC that result from the temporal constraints. In each main step of
the proposed serial generation scheme (cf. Fig. 52.3), we first schedule those tests
i 2 V t n C that are critical (i.e., for which ESCi D LSCi holds). If no such activity
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Fig. 52.3 Generation scheme
(Bartels and Zimmermann
2009)
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exists, test i� 2 V t n C with highest priority value �.i�/ subject to some priority-
rule is determined to be scheduled next. Afterwards, we determine a start time Si�
as well as an execution mode Mi� for test i� and add i� to C . Having assigned a
start time Si� to test i�, the earliest and latest start times of all tests j 2 V t nC have
to be updated according to

ESC[fi�g
j WD max.ESCj ; Si� C di�j /

LSC[fi�g
j WD min.LSCj ; Si� � dji�/

where di�j .dji�/ is the length of a longest path between tests i� and j (j and i�) in
the project network. The longest path lengths dij between any two nodes i; j 2 V t

are computed in the initial step of the procedure by the Floyd-Warshall-Algorithm
in O.n3/ time (cf., e.g., Ahuja et al. 1993). In the same step, the initial earliest
and latest start times are determined by ESi WD d0i and LSi WD �di0, respectively.
Initializing the procedure by setting C WD ;, the procedure terminates once V t �C .

A start time Si� and an assignmentmi� 2 Mi� for selected test i� are determined
by procedure Schedule.i�/ (cf. Fig. 52.4). Note that mi represents a vehicle vk
for which xivk D 1 in the current partial mode assignment xC holds. First of all
let us present a summary of this procedure. A more detailed description is given
subsequently.

As already mentioned, a selected test i� is scheduled such that the increase in the
objective function value is minimal. The objective function is initialized with 0 and
increases by 1 if and only if for test i� an assignment mi� ¤ mi for all i 2 C \ V t

is chosen, i.e., no scheduled test i 2 C \ V t is performed on the selected vehicle
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Fig. 52.4 Procedure Schedule(i�)

vk D mi� . For simplicity, we then speak of adding an experimental vehicle to the
partial solution. Ifmi� D mi for any i 2 C \V t , we say an existing vehicle is used.
Thus, in order to avoid an increase in the objective function value, we first try to
schedule test i� on an existing vehicle vk . To this end, for each existing vehicle vk 2
Mi� we determine appropriate start times Si� 2 ŒESCi� ;LSCi� � that neither violate any
partially ordered destructive relation .i�; j / 2 P or .j; i�/ 2 P .j 2 C \ V t / nor
lead to an inventory conflict with the considered cumulative resource vk . However,
if no such opportunity exists at all, we start test i� on an additional vehicle accepting
that the objective function value increases by one. Next, we consider how to treat the
building up activities. According to Theorem 52.1 ii) we initially predetermine the
ordered multiset of possible start times SP for the building up activities which are
assigned to the activities bvk 2 V b in some later iterations of the solution procedure.
When adding an experimental vehicle to the current partial solution, we have to
assign a start time Svk 2 SP to the corresponding building up activity bvk . Therefore,
we denote a possible start time SP� “assignable” (� D 1; : : : ; nb) in partial solution



52 Scheduling Tests in Automotive R&D Projects Using a Genetic Algorithm 1169

.SC ; xC /, if � � f C .SC ; xC / and SP� has not been assigned to a building up
activity bvk . This means that the number of assignable start times SP� equals the
number of experimental vehicles vk used in partial solution (SC ; xC ), for which
building up activity bvk has not been scheduled so far. Multiset B � SP contains all
those assignable start times SP� . Moreover, we introduce two parameters ˇmax WD
maxfSP� 2 Bg C pb and ˇmin WD minfSP� 2 Bg C pb that represent the minimum
and maximum assignable completion time for a building up activity, respectively.
Each time a vehicle is added to the partial solution or a building up activity has
been scheduled, ˇmax and ˇmin are updated. If B D ;, we set ˇmax WD �1 and
ˇmin WD d . Parameter ˇmax serves to decide when the building up activity bvk of
an existing vehicle vk has to be scheduled. If there exists an experimental vehicle
vk without scheduled building up activity bvk that is used by a test i 2 C \ V t

with Si � ˇmax, building up activity bvk is started at the maximum SP� 2 B with
SP� C pb � Si .i W mi D vk/. This may occur, if either selected test i� is started
before ˇmax or ˇmax is increased due to the next possible start time SP� becoming
available with adding an experimental vehicle to the current solution. In the first
case, only vehicle vk D mi� needs to be considered, whereas in the latter case all
existing vehicles without scheduled building up activity are examined. Note that up
to its end the procedure does not schedule the building up activities bvk of all those
vehicles vk that are not used by a test i 2 V t before ˇmax. However, for all these
building up activities the remaining possible start times SP� 2 B can be assigned
arbitrarily.

The second parameter ˇmin reveals if even an additional vehicle may not be
used to perform a test i�. For LSCi� < ˇmin the building up activity bvk of an
additional vehicle vk could not be finished before the start of test i� and a procedure
Unschedule(i�) is called.

Next, we will give some additional details on the determination of start time Si�
in procedure Schedule.i�/ if i� is assigned to an established vehicle. Let multiset
�C
i�

contain all appropriate start times for test i�, for which a mode assignment
exists such that i� can feasibly be scheduled on an existing vehicle vk . To determine
multiset�C

i�
, we examine all vehicles vk 2 Mi� that are used by at least one test i 2

C \ V t . The previously selected test i� must start between its schedule dependent
earliest start time ESCi� and latest start time LSCi� (see Fig. 52.5).

Given partial solution (SC ; xC ), let #C
i�vk

� �
ESCi� ;LSCi�

�
be the time domain

in which test i� can start on vehicle vk such that neither the described minimum

(2;3) ∈ P4 2
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i∗ LSC

i∗

βmin d̄i∗ = 3 i∗ = 3
τC

i∗vk
τC

i∗vk
Legend: ϑC

i∗vk

Fig. 52.5 Appropriate start times �Ci�vk
2 �C

i� to schedule test i� on a vehicle vk



1170 J.-H. Bartels and J. Zimmermann

inventory Rvk
of vk nor any partially ordered destructive relation with a scheduled

test i 2 C \ V t is violated (cf. Fig. 52.5). Note that it is not necessary that a start
time Svk has already been assigned to building up activity bvk when scheduling test
i� on vehicle vk . Then, for vehicle vk we set #Ci�vk

WD #Ci�vk
n Œ0; ˇmin� to ensure that

at least the smallest assignable start time SP�0

2 B (i.e., SP�0

C pb D ˇmin) can be
assigned to building up activity bvk such that it can be finished before test i� may
start.

Recall that Theorem 52.1 i) says that the objective function value does not change
within the set of schedules S 0 implying the same precedence constraints. Thus,
within this set of schedules we may always select, for instance, the schedule for
which all activities start as early as possible. This means that only a number of
appropriate start times �Ci�vk

2 #Ci�vk
need to be examined for feasibly scheduling

i� on some vehicle vk 2 Mi� which is already used by some tests i 2 C \ V t . In
particular, it is sufficient to consider only those points in time �Ci�vk

2 #Ci�vk
at which

a scheduled test i ends on vehicle vk as well as point in time �Ci�vk
WD minf� 2

#Ci�vk
g. For each vehicle vk 2 Mi� that is already used by a test i 2 C \ V t all

appropriate start times �Ci�vk
of test i� are calculated and added to multiset �C

i� .
Within non-empty multiset �C

i� we may choose any appropriate start time, e.g., the
smallest one �C

i�v0

k0

WD min�C
i� . By selecting start time Si� WD �C

i�v0

k0

for test i�, we

simultaneously fix the mode assignment Mi� WD v0
k0

.
Referring to the example we introduced in Sect. 52.2, Fig. 52.5 illustrates the

appropriate start times for test i� D 3 on vehicle vk D 21, where we assume that
tests 2 and 4 have already been scheduled on vehicle 21, but no start time has been
assigned to building up activity b21 thus far.

For �C
i�

D ; the execution of test i� on an additional vehicle is examined as
follows. First of all, considering an additional experimental vehicle implies that the
next possible start time SP� of ordered multiset SP is added to B and after the
necessary update of ˇmax and ˇmin it is checked, whether a building up activity must
be scheduled on any existing vehicle like described before. Next, we determine the
earliest time t at which test i� may start. Since a possible start time SP� 2 B must be
assignable to the building up activity of the added vehicle, i� must not start before
ˇmin and we set t WD max.ˇmin;ESCi�/.

If t � LSCi� holds, the variant v0 of the additional vehicle is chosen such that test
i� can be performed on it (i.e., v0 2 Mi�) and a criterion called the unsatisfied
workload of variant v, which is calculated by �.v/ WD P

fi2V tnC Wv2Mi g pi , is
maximum.

If t > LSCi� , it is not sufficient to add a vehicle to the underlying partial solution in
order to find a feasible start time for activity i�. In this case, we remove the possible
start time SP� previously added to multiset B and call procedure Unschedule(i�)
illustrated in Fig. 52.6. Due to the relative small latest start time of i�, no possible
start time SP� 2 B can be assigned to the building up activity of an additional

vehicle. Hence, we first try to enlarge LSCi� . To this end, we remove a set U of
tests from the current partial solution which restrict LSCi� to a value smaller than
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Fig. 52.6 Procedure
Unschedule(i�)

Unschedule by delaying

Unschedule by replacing

Unschedule(i∗)

U := { j ∈C|βmin+di∗ j > S j}
ESC

j := βmin +di∗ j ∀ j ∈ U

Recalculate ESC
i ;LSC

i

LSi∗<
βmin?

Search activity j∗ ∈ C to replace

j∗
exists?

terminate

Remove j∗; Schedule (i∗)

Update C;π(i);ϑ (ν);B;βmin;βmax

Return 0

no
yes

no

yes

ˇmin (cf., e.g., Valls et al. 2006). Afterwards, we increase the earliest start times
of all tests j 2U such that, when these tests are scheduled again, LSCi� cannot
become smaller than ˇmin and the building up activity of an additional vehicle
can be processed before test i� must start. However, if the initial latest start time
LSi� D �di�0 is smaller than ˇmin, this approach is not expedient and we search for
a test j � 2 C \ V t that can be replaced by test i�. That is, we remove some test j �
from a vehicle vk which enables us to schedule test i� feasibly on vk . Subsequently,
test j � is scheduled on a different vehicle or at a different time by calling procedure
Schedule(j �). If no j � is found that can be replaced by test i�, the procedure
terminates without finding a feasible solution. By restricting the number of times
a test j � can be replaced, we prevent the procedure from cycling.

In our generation scheme (see Fig. 52.3) the priority values �.i/ are calculated
using one of the following priority-rules (cf., e.g., Neumann et al. 2003)

• Minimum latest start time first (LST)
• Most total successors first (MTS)
• Least not scheduled total predecessors first (LNTP)
• Minimum number of modes first (MNM)
• Minimum slack time first (MST)

which displayed superior performance in a preliminary computational study. For
the last rule MST let STCi be the schedule dependent slack time of activity i that is
calculated by STCi WD LSCi � ESCi .



1172 J.-H. Bartels and J. Zimmermann

We distinguish static and dynamic priority-rules. For static priority-rules like
MTS and MNM, the priority values are never changed throughout the solution
procedure, whereas for the dynamic versions of the rules LST, LNTP and MST , the
priority values are updated each time a test is scheduled. On average, the dynamic
versions of LST, LNTP, and MST lead to better results than their static versions.
Thus, we report only on the dynamic versions of these priority-rules.

If two activities have the same priority with respect to the chosen priority rule a
second rule or the activity number can be used to break ties. If a second rule is used,
we speak of a priority rule combination.

Next, two variants of the aforementioned described generation scheme namely
backward and bidirectional planning are outlined. In addition, we sketch a multi-
start procedure where some generation scheme is applied repeatedly, each time
using different priority values, and which holds a lot of promise compared to the
single-pass heuristics for details we refer to Bartels and Zimmermann (2009).

52.4 Variants of the Priority-Rule Based Method

Because the basic variant presented in Sect. 52.3 fails to schedule efficiently in
some special situations, it can be enhanced by some modifications in the schedule-
generation scheme as described subsequently.

52.4.1 Backward Planning

In the basic schedule-generation scheme destructive and partially ordered destruc-
tive tests are scheduled as early as possible. This tends to be inefficient, because
the used vehicle cannot be occupied by other tests afterwards. For some resource-
constrained project scheduling problems backward planning turned out to be
expedient to provide good heuristic solutions (cf., e.g., Klein 2000). A backward
planning approach schedules the selected activity as late as possible, which should
be advantageous for (partially ordered) destructive tests. That is, we either start
selected test i� at its latest start time LSCi� or such that it is completed at the
beginning of a scheduled test i 2 C\V t (i.e., Si�Cpi� D Si ). If several appropriate
start times leading to a feasible partial schedule exist, we select the latest one.
Compared to the forward planning approach, we also make use of different priority-
rules—e.g., instead of LNTP we now apply “Least not scheduled total successors
first” (LNTS).

52.4.2 Bidirectional Planning

We may also combine the forward and the backward planning approach to a
bidirectional planning procedure (cf., e.g., Klein 2000). Set E C then contains all
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activities for which all predecessors or all successors have already been scheduled.
A test that has no preceding test i 2 V t n C , is scheduled forward by means of the
serial schedule-generation scheme. A test that has no succeeding activity i 2 V t nC
is planned backward as indicated above.

52.4.3 Multi-Start Procedure

All proposed variants of our solution procedure are so called single-pass heuristics
which either compute a single or no feasible solution. Usually, generating a single
solution by means of the proposed heuristics requires less than 0.1 s for large
problem instances with 600 tests and 25 variants of experimental vehicles. Thus, it
is advisable to make use of a so called multi-pass heuristic (Valls et al. 2001), where
the priority-rule method is applied repeatedly, each time using different priority
values �.i/. However, since the number of adequate priority-rules is limited, we
make use of compound priority rules and values. Let �PR.i/ be the priority value for
test i that is calculated by priority-rule PR, P be the set of priority-rules that should
be applied within the multi-start procedure, and rndPR be a [0,1]-distributed random
number for each rule PR. Within the multi-start procedure, the random numbers
rndPR are generated individually for each solution that has to be computed. The
compound priority value for test i is defined as

�.i/ WD
X

PR2P
rndPR �PR.i/: (52.14)

Note that the priority values �PR.i/ of each rule PR are normalized by dividing
them by their maximum possible value.

52.5 A Genetic Algorithm

In this Section we suggest a genetic algorithm that makes use of the generation
scheme of the priority-rule based heuristic described before. The genetic algorithm
we developed to solve problem (52.4)–(52.13) is based on the so-called Standard
Genetic Algorithm of Holland (1975). Applying principles from evolution theory,
the Standard Genetic Algorithm works on a population of individuals, each of
them representing a solution to the underlying scheduling problem. By iteratively
selecting two promising individuals and recombining good properties of each
individual, the algorithm improves the population and, thus, the solution. To this
end, the Standard Genetic Algorithm consists of three elements, which are described
below:

• Selection strategy which determines how the population evolves over time by
selecting individuals to be eliminated or to be reproduced.
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• Crossover that determines how two selected individuals are combined to generate
new individuals.

• Mutation to randomly change the properties of selected individuals.

For more details on the theory of genetic algorithms we refer to Goldberg (1989)
and Michalewicz (1996). Before we describe how the three elements are applied
within our genetic algorithm, we first need to explain how a solution for our problem
is represented by an individual. Based on concepts developed by Hartmann (1998),
an individual is a list of activities that contains each test i 2 V t exactly once.
This list determines in which sequence the activities have to be scheduled by the
generation scheme explained in Sect. 52.3. That is, the scheduling sequence of the
tests is given by their order in the activity list, which hence replaces the function
of the priority-rule. We also speak of decoding an individual when the generation
scheme is applied to calculate a solution based on an activity list. Note that not every
activity list necessarily represents a feasible solution.

Let us now present the selection strategy and also provide more detail on how the
generation scheme is applied. Therefore, we have to introduce the term of a gene
pool. A gene pool is a subset of the population, containing individuals that have
been selected for reproduction. This also means that individuals that have not been
selected cannot reproduce and, thus, are eliminated. The selection of individuals
for the gene pool is driven by some selection strategy. Let us consider a population
˚ of individuals ` (activity lists) with population size �pop. To determine which
individuals ` of a population are selected for the gene pool, we calculate their
so-called fitness f .`/. Fitness f .`/ of individual ` is represented by the value of
the objective function of the solution it represents, adjusted by a corrective term
taking the solution’s “degree of feasibility” into account. To determine the fitness
of an individual, we decode it into a solution using a slightly modified version of
the generation scheme introduced in Sect. 52.3. The modification of the generation
scheme is restricted to its Unschedule function. Remember that this function tries to
unschedule activities in two different ways in case the generation scheme cannot find
a feasible start time and execution mode for the current activity i� to be scheduled.
Firstly, it tries to unschedule predecessors or successors of i� that restrict its
scheduling window

�
ESCi ;LSCi

�
. Secondly, it tries to remove a previously scheduled

activity j on a vehicle which could be used to time-feasibly execute activity i� if j
would not be run on it. The latter is not applied for the genetic algorithm since we
want to make sure that individuals “survive” where i� and j are in an appropriate
order and, thus, do not require a time consuming unscheduling step. Moreover, we
limit the total number of unscheduling steps for decoding an individual to u. In case
an activity cannot be scheduled because we cannot find an unschedule option or
the limit for unscheduling steps for the individual is reached, we do not interrupt
the generation scheme as described in Sect. 52.3. Instead, we leave the activity not-
scheduled and proceed with the next candidate in the activity list. At the end of the
decoding procedure, the number of activities that could not be scheduled is added
to the value of the objective function for the (partial) solution. This reflects the
assumption that all not-scheduled activities had to be run on separate vehicles which
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represents a kind of worst case consideration and therefore penalizes infeasible
solutions. Let V t � V t be the set of activities that could not be scheduled. Then,
the fitness of an individual ` that was decoded to solution .SC ; xC / is

f .`/ WD f .SC ; xC /C jV t j (52.15)

To select individuals for the gene pool, we make use of a so-called tournament
based selection (Pohlheim 1999). The tournament based selection works as follows.
We conduct � D 1; : : : ; �pop binary tournaments that compare the fitness of
individual ` with the fitness of a randomly selected individual `0 of the population
with � ¤ �0. The individual with the better fitness, i.e., the smaller value f .`/, is
considered winner of the tournament and selected for the gene pool. In case of both
individuals having the same fitness the individual with the smaller order number is
chosen. Given that every individual of the population is participating in at least one
tournament, we ensure that the individual with the best fitness is part of the gene
pool and the individual with the worst fitness is eliminated. Moreover, the better the
fitness of an individual the higher the probability that it has multiple occurrences in
the gene pool. On the other hand, the poorer the fitness of an individual the higher
the probability that it will be eliminated. The tournament based selection is a non-
fitness-proportional selection strategy and leads to sufficient selection pressure even
for problems where the spread of the fitness across the individuals of a population
is small. The latter is true for the problem under consideration.

Let us now describe the crossover which recombines individuals of the gene pool
to generate new individuals. We stepwise select two arbitrary individuals of the gene
pool which we call father and mother. A crossover-probability �cross determines
whether the individuals will actually be recombined (probability �cross) or whether
father and mother will become part of the new population without recombination
(probability 1��cross). In case of a recombination, we apply the following crossover-
operators to generate a so-called son and a daughter. The one-point crossover works
as follows. Let q be an integer random number from set f1; : : : ; nt �1g. To generate
a daughter we copy the first q tests from the father’s to the daughter’s activity list and
then fill up the remaining nt �q activities based on the order of tests in the mother’s
activity list. Of course, we only copy those activities from the mother that have
not already been added from the father, i.e., the daughter’s activity lists contains
each test i 2 V t exactly once. This procedure is depicted in Fig. 52.7. Additionally,
we make use of an alternative crossover-operator, the two-point-crossover. For this
operator, we determine two integer random numbers q1 and q2 with q1 < q2 from set
f1; : : : ; nt � 1g. The first q1 tests for the daughter’s activity list are copied from the
father, the next q2 � q1 tests result from the mother, and the remaining nt � q2 tests
are again copied from the father’s activity list (see Fig. 52.7). For both crossover-
operators a son is generated by exchanging the role of father and mother.

Next to the crossover-operator, we need to define the evolution strategy that
controls how the next population is created based on the generated individuals.
Three different strategies were tested. The first strategy builds the new population
solely based on the generated daughters and sons. The second strategy considers
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Two-Point CrossoverOne-Point Crossover

Father

Daughter

Mother

i1 · · · iq iq+1 iq+2 iq+3 · · · int

i1 · · · iq iq+3 iq+1 iq+2 int · · ·

iq+3 i1 iq+1 iq+2 · · · int iq · · ·

i1 · · · iq1
iq1+1 · · · iq2

iq2+1 · · · int

i1 · · · iq1 · · · · · · · · · · · · iq2+1 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Fig. 52.7 One-point and two-point crossover. Source: Neumann et al. (2003)

all four individuals being part of a crossover—father, mother, son, and daughter—
and keeps those two with the best fitness for the new generation. The third
evolution strategy firstly lets all four individuals involved in a crossover become
part of the new population. That is, once all crossovers have been conducted, the
population consists of 2�pop individuals. To restore the original population size
�pop, half of the population is eliminated by selecting those individuals with the
worst fitness. Computational results have shown that the first evolution strategy
leads to the best results. Hence, we are going to restrict our considerations to that
strategy in the remainder of this contribution. Let us mention that we do not apply
an elite strategy which would guarantee that the fittest individual of the current
population automatically becomes part of the next solution. In computational studies
we realized that an elite strategy leads to premature convergence of the genetic
algorithm. Instead we put the best solution found throughout the course of the
calculations on storage.

Finally, we describe the third element of our genetic algorithm—the mutation
which randomly modifies individuals of the population. Parameter �mut controls the
probability of an individual being mutated. For the mutation itself we make use of a
swap-operator. This operator exchanges the position of two activities being adjacent
on the activity list. Please note, that any activity list can be generated by using this
swap operator multiple times consecutively.

Having introduced all relevant elements of our genetic algorithm, we now can
describe the overall procedure that is depicted in Fig. 52.8. In an initial step we
generate a population consisting of �pop individuals that are randomly generated by
a permutation of the tests i 2 V t . The purpose of generating the start population
randomly is to find individuals that represent different areas of the solution space.
In each main step of the algorithm we create a new generation of the population.
Therefore, we first calculate the fitness of all individuals in the current population
using the generation scheme described in Sect. 52.3 with the slightly modified
Unschedule() function and then generate the gene pool by applying the tournament
selection. The individual with the best fitness is put on storage in case it is better
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Fig. 52.8 Genetic algorithm

than any individual found before. Then, with the help of the crossover (either the
one-point or the two-point version) we generate daughters and sons that, according
to our evolution strategy, form the next generation of our population. Finally, we
apply the described mutation to the individuals of the new population and proceed
with the next main step until one of the following stop criteria is met:

• The value of the objective function of the best solution found so far is equal to a
lower bound (for the determination of lower bounds to our problem see Bartels
2009)

• A maximum number of generations of the population has been built
• A maximum computation time has been reached
• No feasible solution has been found within a maximum number of populations
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• The value of the objective function has not been improved within a maximum
number of iterations

• All individuals of a generation have the same fitness

Let us make one final remark. The presented approach—even though in exper-
imental pre-analysis it led to the best results—does not fulfill one criterion that
is often claimed for genetic algorithms. Our activity-list based representation of
solutions together with the generation scheme described in Sect. 52.3 cannot make
sure that for any instance of problem (52.4)–(52.13), which has a feasible solution,
an optimal solution can be found. Therefore, we experimented with different
representations for a solution of problem (52.4)–(52.13).

In what follows, we show that based on our generation scheme two additional
lists can ensure that an existing optimal solution can be coded for any problem
instance. A precedence list with variable length prescribes additional precedence
relationships between two activities that have to be considered in addition to the
given temporal constraints. A variants list guides the generation scheme which
variant of a vehicle to use when an additional prototype is needed. That is, this list
replaces the criterion of the “unsatisfied workload” to control the variant selection
as described in Sect. 52.3. Moreover, by constructing appropriate cases, one can
show that any two of these three lists (activity, precedence, and variants list) are
not sufficient for coding an optimal solution. However, an important disadvantage
of this representation by three lists is that it leads to an exponential increase
of potential individuals compared to solely using the activity list, while many
individuals redundantly represent the same solution. Thus, the genetic algorithm
has to calculate much more solutions before it starts converging. Pre-studies have
shown that any combination of at least two lists led to significant higher computation
times (50% higher) but did not lead to significantly improved results compared to
the representation by a simple activity list.

Finally, we have experimented with different versions of the genetic algorithm
in terms of evolution strategy, selection strategy, and generation scheme, using
forward, backward, and bidirectional generation schemes as well as a combination
of them. In the end, even allowing large maximum computation times, the algorithm
using solely the activity list and applying the forward planning generation scheme
worked best in terms of solution quality and feasibility. This is due to the fact that it
enables very fast calculations for decoding and crossover operations. Therefore, we
restrict our consideration to the described version in the remainder of this chapter.

52.6 Computational Results

In this section we present the results of an experimental performance analysis for
the genetic algorithm introduced in Sect. 52.5. To illustrate the effectiveness of the
evolutionary elements of the genetic algorithm, we compare the results to those
of selected priority-rule based methods described in Sects. 52.3 and 52.4. Detailed
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results of an experimental performance analysis for priority-rule based methods
applied to our problem are provided in Bartels (2009).

For our performance analysis, we made use of one real-world problem instance
with 133 tests and 8 different variants of experimental vehicles. Moreover, we
analyzed the performance for two different standard test sets each of which
containing 100 problem instances. These problem instances were generated with
the problem generator ProGen/max (Kolisch et al. 1999 and Schwindt 1998) based
on parameters deducted from the real-world problem instance. Test set A (Test set B)
contains problem instances with 20 (600) tests and 4 (25) different variants of
experimental vehicles. In each instance, 10 % of tests are destructive and 30 % of
tests lead to partially ordered destructive relationships, where on average a test
destroys a vehicle partially for 50 % of the remaining tests.2 A more detailed
description of the instances’ properties and how they were generated is provided
in Bartels (2009).

The experimental performance analysis was conducted using a PC with Athlon-
3.2 GHz-Processor and 512 MB RAM operating under Windows XP (32 Bit). All
algorithms were coded in ANSI-C using Microsoft Visual Studio .NET 2003.

If not indicated differently in the subsequent explanations, we made use of the
following implementation variants and parameters for the individual methodologies.
Based on experimental pre-analyses we parametrized the genetic algorithm in a way
that it does not converge too early and at the same time leads to the most promising
results. It turned out that a population size of �pop D 20 individuals for test set A
and �pop D 100 for test set B, a crossover probability of �cross D 0:8 combined
with the two-point crossover, and a probability for mutation of �mut D 0:05 led
to best results. Moreover, we restricted the number of unscheduling steps u for a
single-pass priority-rule based method to u D .nt /2, for a multi-pass heuristic to
u D nt , and for the genetic algorithm to u D nt

2
. Differentiating the number of

maximum unscheduling steps is driven by the following rationale. Since for the
single-pass heuristic we only have one pass to come up with a feasible solution, we
allow more unscheduling steps to increase the probability of calculating a feasible
solution at all. For the genetic algorithm, we restrict the number of unscheduling
steps in order to increase its efficiency by generating selection pressure of those
individuals that require no or only few unscheduling steps. Please note that based
on these parameters all analyzed solution procedures found a feasible solution for
every problem instance.

First of all, we analyzed the small problem instances of test set A with 20
tests each. For all these instances, optimal solutions based on a MILP-formulation
of the problem solved with CPLEX 10.0 are known (for details see Bartels and
Zimmermann 2009). Therefore, we can compare the optimal solutions to the results
calculated by the procedures under consideration. For the genetic algorithm (GA) we
restrict the number of generated populations to 300, i.e., given a population size of
�pop D 20 we calculate 6,000 solutions for every instance unless the procedure does

2The test sets are available at the following URL: https://www.wiwi.tu-clausthal.de/testsets-evt/.

https://www.wiwi.tu-clausthal.de/testsets-evt/
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Table 52.1 Comparison
of performance results for test
set A

Method GA SAM MBPMNM=MST FWDLST=MNM

nmax
sol 6,000 6,000 6,000 1

�¿
optŒ%� 1:7 5:1 5:4 16:7

poptŒ%� 91 72 69 26

not finish earlier due to one of the other stop criteria. To make results comparable,
we let the multi-pass heuristics also calculate 6,000 solutions per instance.

Subsequently, we present the results for two different versions of the multi-pass
heuristics sketched in Sect. 52.4. Firstly, we consider the multi-pass bidirectional
heuristic (MBP) with priority-rule combination MNM/MST (MBPMNM=MST ). Sec-
ondly, a sampling multi-pass heuristic (SAM) which randomly determines the
planning sequence of the individual activities based on a random sampling approach
(Kolisch and Hartmann 1999) is treated. That is, it randomly generates activity lists.
The genetic algorithm is compared to the sampling approach in order to evaluate
the effectiveness of the GA’s evolutionary elements. Therefore, for the sampling
approach we also make use of the forward planning generation scheme. Finally, we
show the results for a priority-rule based single-pass heuristic that just generates a
single solution. Here, the forward planning approach with priority-rule combination
LST/MNM (FWDLST=MNM) provided the best solutions for test set A compared to all
other single-pass heuristics presented in Sect. 52.3. Table 52.1 shows the results for
test set A where�¿

opt is the average relative deviation of the objective function value
of the calculated compared to an optimal solution, and popt denotes the percentage
of problem instances that have been solved to optimality. The best results for test
set A are calculated by the genetic algorithm with 1.7 % average deviation from
an optimal solution. For 91 % of the problem instances an optimal solution was
found. These results are significantly better than those for the sampling multi-pass
heuristic. Thus, the evolutionary elements of the genetic algorithm seem to pay off.
Comparing the sampling multi-pass heuristic to the priority-rule based multi-pass
heuristic it delivers slightly better results. This seems surprising on a first view
but can be explained by the big number of solutions being calculated. While the
priority-rules restrict the search to a certain area of the solution space, the sampling
approach seems to analyze a much broader spectrum of the solution space given
that it can generate any planning sequence of activities.3 Thus, for the remainder
of the analysis we will restrict our comparison of the genetic algorithm to the
sampling approach. Finally, let us briefly consider the results for the priority-rule
based single-pass method. Even for the small problem instances its best version
FWDLST=MNM cannot compete with the genetic algorithm at all. Compared to the
genetic algorithm, it finds optimal solutions for less than a third of the problem

3Nota bene: A deeper analysis of this phenomenon has shown that for smaller sample sizes (e.g.,
100 calculated solutions) the priority-rule based method leads to better results than the sampling
algorithm.
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instances and the average deviation from an optimal solution’s objective value is
almost ten times higher.

For test set B no proven optimal solution is known so far. However, at least a
good lower bound for the problem at hand is given that was developed by Bartels
(2009) based on workload considerations. For the instances of test set A the average
deviation between an optimal solution and the lower bound amounts to 13.6 %. In
what follows, we compare the calculated results for test set B to its lower bound,
where�¿

LB denotes the average relative deviation of the calculated objective function
value from the corresponding lower bound. Moreover, we calculate the relative error
�¿

best within the set of compared heuristics. For a solution of a problem instance let
fX be the objective function value that is calculated by heuristic X and fbest be the
best objective function value that is computed by any of the heuristics that shall be
compared. Then for heuristic X �¿

best D fX
fbest

� 1 is the relative error with respect
to the set of compared heuristics. Furthermore, for the problem instances of test
set B the computation time becomes important, in particular with respect to the
applicability of the individual methods in practice. Thus, we have also analyzed the
average computation time per instance tCPU for the different heuristics.

For the genetic algorithm (GA), we first of all analyzed how the number of
generated populations affects the solution quality. Therefore, we restricted the
number of populations to 4,000, 10,000, and 30,000. Given the size of the population
with �pop D 100 this corresponds to a maximum of 0.4, 1, and 3 million solutions
generated per problem instance, respectively. Like for test set A, we compared the
results to a sampling multi-pass heuristic (SAM) that also generated 0.4 million
solutions per instance based on randomly generated activity lists.

Table 52.2 shows the results revealing two main insights.
Firstly, the solution quality increases with the maximum number of populations

the genetic algorithm is allowed to generate. With 30,000 populations we found
a best solution for every problem instance across all considered heuristics and
deviate 15.7 % from a lower bound. Given that for the small test set A the deviation
between optimal solution and lower bound is 13.6 % and the genetic algorithm
converges at about 30,000 populations, this might be a hint that we are not far away
from optimality. However, to obtain these results we require approximately 4.5 h
computation time. Accepting somewhat worse solutions, it is possible to reduce
computation time to 2 or even 1 h by terminating after 10,000 or 4,000 populations,
respectively. Here, one interesting insight is that the calculation of the first 4,000
populations takes almost as long as calculating the next 6,000 populations to reach
10,000 populations, where the next 20,000 populations take only slightly longer

Table 52.2 Comparison of
performance results for test
set B

Method GA GA GA SAM

nmax
pop 30,000 10,000 4,000 –

nmax
sol [Mil] 3 1 0.4 0.4

�¿
LBŒ%� 15.7 17.8 20.5 32.8

�¿
bestŒ%� 0 1.8 4.2 15.0

t¿cpu.min/ 275.3 113.7 54.8 90.3
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Table 52.3 Results for a
real-world problem instance

Method MAN GA

# maximum generated
solutions

1 300;000

#EV 35 24

�MAN Œ%� � �31:4
tCPU �1:5 weeksa 772 s

aTime span during which a manual planner generated a
solution (with about 50–60 % of his capacity)

than the first 10,000. This illustrates the effectiveness of the selection pressure to
foster individuals requiring no or only few unscheduling steps.

Secondly, comparing the results of the sampling multi-pass heuristic with the
corresponding genetic algorithm (both calculating up to 0.4 million solutions),
shows the effectiveness of the evolutionary elements, again. The average deviation
from a lower bound is more than 12 % points worse for the sampling multi-pass
heuristic and the computation time is more than 50 % higher. A detailed analysis
shows that the additional computation time for the sampling approach is partly
explainable by the additional unscheduling-steps required. The other part of the
additional computation time is due to the fact that generating the random numbers,
which are required for the sampling approach, is quite time consuming.

Finally, we used our genetic algorithm to calculate a solution for the initially
mentioned real-world problem instance with 133 tests and 8 variants of experimental
vehicles. To this end, we calculated 10,000 populations with �pop D 30 individuals
each. We compare our results with those having been generated by a manual
planner (MAN) considering the number of required experimental vehicles #EV , the
relative deviation from the manual solution �MAN , and the computation time tCPU.
The results are shown in Table 52.3. After 772 s, the genetic algorithm comes
up with a solution of 24 experimental vehicles. Compared to the solution with
35 experimental vehicles generated by the human planner it saves 31.4 % of the
expensive experimental vehicles. Although computation times between a manual
planning approach and an algorithmic approach are difficult to compare, we observe
that the genetic algorithm can significantly speed up test planning processes in
automotive R&D projects. Moreover, Bartels and Zimmermann (2009) calculated a
solution with 26 experimental vehicles for the same problem instance using a multi-
pass priority-rule based heuristic as described in Sect. 52.3. That is, using the genetic
algorithm we improved the best solution known so far by two vehicles or 7.7 %.

52.7 Conclusions

In this contribution we revisit the problem of scheduling tests in automotive R&D
projects presented in Bartels and Zimmermann (2009). We extend the set of solution
procedures for this problem by a genetic algorithm that was developed in different
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variants. The most promising variant is described in detail and is able to significantly
improve solutions known before.

For small problem instances with up to 20 tests it finds optimal solutions for
nearly all problem instances and outperforms the known priority-rule based multi-
pass heuristics. The calculation time of 2.77 s is not prohibitive in practice.

For problem instances with up to 600 tests the evolutionary elements of the
genetic algorithm lead to a clear outperformance compared to the multi-pass
heuristics. Considering lower bounds for our test instances, we get a hint that the
generated solutions might be close to an optimum once our genetic algorithm has
converged at approximately 30,000 populations. However, to calculate these 30,000
solutions the genetic algorithm requires about 4.5 h computation time. Nevertheless,
given that the problem of planning tests in automotive R&D projects belongs to the
class of tactical planning problems, and therefore is conducted only few times per
test series, a computation time of 4.5 h does not matter. It is even faster than the
current manual approach applied in practice.

For a real world problem instance, we were able to calculate a test plan that
improved the manually generated plan of a human planner by more than 30 %. In
other words, even for a rather small problem instance with 133 tests the genetic
algorithm was able to save 9 experimental vehicles each of which causing costs of
up to 1.5 Million Euros. Although this single result cannot be used to make a general
conclusion, it gives a hint that our solution procedure may enhance the planning
methods currently applied.

Meanwhile, we have tested the approach successfully with a second automotive
manufacturer. Going forward, we would suggest embedding the developed algo-
rithm into a holistic planning tool. This tool should facilitate the modeling of the
problem instance with all its constraints based on a knowledge database for testing
(containing typical test data like duration, interdependencies with other tests, etc.),
the visualization of the planning results, and a manual interface for the human planer
who likes to have a final say before a test plan is approved.

For further research, we suggest to evaluate the eligibility of our method for
related problems involving R&D projects in other industries, e.g., the aircraft
industry. Moreover, an automotive manufacturer discussed with us a related problem
in the environment of experimental vehicle testing. Objective of this problem is
to level the utilization of test resources (experimental vehicles, testing rigs, test
staff, etc.) once the number of experimental vehicles and the maximum duration
of a test program has been fixed. We believe that this problem can be solved
combining resource leveling methods as described in Neumann and Zimmermann
(2000), Zimmermann (2001), and Gather et al. (2011) with findings on structural
properties and solution approaches for the problem of scheduling tests in automotive
R&D projects as described in this contribution, Bartels (2009), and Bartels and
Zimmermann (2009).
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Chapter 53
Scheduling of Production with Alternative
Process Plans

Roman Čapek, Přemysl Šůcha, and Zdeněk Hanzálek

Abstract This chapter deals with a scheduling problem with alternative process
plans that was motivated by a production of wire harnesses where certain parts
can be processed manually or automatically by different types of machines. Only
a subset of all the given activities will form the solution, so the decision whether
the activity will appear in the final schedule has to be made during the scheduling
process. The problem considered is an extension of the resource constrained
project scheduling problem with positive and negative time-lags and sequence
dependent setup times. We extend the classic RCPSP problem by a definition of
alternative branchings and for this representation of the problem, an mixed integer
linear programming model is formulated. Furthermore, a heuristic algorithm based
on priority schedule construction with an unscheduling step is proposed for the
considered problem and it is used to solve the large instances of the considered
problem.

Keywords Alternative process plans • Heuristic algorithm • Mathematical
model • Project scheduling • Resource constraints • Temporal constraints

53.1 Introduction

Production processes often involve more than one way how to complete the product.
Such alternative process plans occur in the production of wire harnesses, where
operations to produce a wire harness can be performed in various ways, using
fully automated machines, semi-automated machines or manually operated ones
with special equipment. Not only the resource requirements are different, but the
processing times, precedence relations and also the number of activities in each
process plan can differ in general, too. The process plan defines a set of activities
such that their execution leads to the completion of a product. Each process plan
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is formed by a set of disjunctive activities. On the other hand, an activity can be
included in more process plans. We use the term alternative process plans since
there are more process plans in the studied problem while only one of them has to
be executed. Hence the goal of the scheduling is to choose a subset of all activities
that forms one process plan and schedule them according to the given constraints
and criterion.

Traditional scheduling algorithms according to Błażewicz et al. (1996) assume
exactly given set of activities to be scheduled, i.e. only one process plan is defined.
In this chapter, the traditional scheduling approach is extended by a definition of
alternative process plans, i.e. the traditional time scheduling and the decision which
process plan will be executed are both integrated into one problem. The problem can
be formalized as an extension of the PSjtemp; sijjCmax problem. Therefore, we deal
with the resource constrained project scheduling problem with positive and negative
time-lags, sequence dependent setup times and alternative process plans. Time-lags
(also called generalized precedence relations) are useful to specify the relative time
position of two activities in general. Sequence dependent setup times serve to cover
the time needed to change the equipment or set up a machine between two different
operations. The optimality criterion is to minimize the schedule length.

Although the resource constrained project scheduling problem (RCPSP) is a
well-studied problem, there were only a few attempts to include the alternatives
into the scheduling process. However, the alternative process plans can be found
as a natural part of the production processes and, therefore, we have decided to
extend the RCPSP problem by the definition of alternative process plans (RCPSP-
APP). The combination of generalized precedence relations and logical constraints
(in form of alternative process plans) makes the problem even more difficult since
we have to introduce new decision variables into the problem.

This chapter presents the RCPSP-APP problem motivated by the real production
of wire harnesses. A literature overview is given in Sect. 53.2. Section 53.3 contains
the statement of the PSjtemp; sij; nestedAltjCmax problem with the representation
based on the RCPSP-APP formalism. The model also considers sequence dependent
setup times and generalized precedence relations (positive and negative time-lags).
Section 53.4 contains the mathematical formulation. A heuristic method, where the
choice of process plan and traditional scheduling are executed simultaneously, is
described in Sect. 53.5. Computational experiments are discussed in Sects. 53.6 and
53.7 concludes the work.

53.2 Related Works

The problem outlined in the previous section is addressed in the literature as
scheduling with alternative (optional) activities (tasks) or problem with alternative
process plans or scheduling with alternatives (Beck and Fox 2000; Barták and
Čepek 2008; Capacho et al. 2009; Čapek et al. 2012b,a; Čapek 2012). To avoid
any misunderstandings, let us assume that the notions activity, operation and task
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have the same meaning and we will prefer to use the term activity in this chapter.
To represent alternative process plans, some type of special graph is usually used in
the existing works. Beck and Fox (2000) established the Modified Temporal Graph
with so called XorNodes, AndNodes and ActivityNodes to model the possibility
of choice among the process plans. All process plans are interconnected via the
aforementioned nodes. Another approach to model the alternative process plans in
scheduling, similar to the Modified Temporal Network methodology, was presented
by Barták and Čepek (2008). They use a special type of graph called Nested
Temporal Network with Alternatives (NTNA), which is a directed acyclic graph
where the nodes represent activities and the arcs correspond to temporal constraints.
Logical constraints are specified through the input and output labels of each node.
The NTNA formalism is used to represent the problem structure in this chapter.

Capacho et al. (2009) studied an assembly line balancing problem with alterna-
tives, where certain parts can be processed in several alternative modes and the goal
is to balance the workload of the available resources. Kis (2003) presented a genetic
algorithm and a tabu search for the job-shop problem with processing alternatives
using a special graph to represent the problem instance. Shao et al. (2009) dealt with
the problem of integrated planning and scheduling, which is close to the job shop
problem with alternative process plans, since each job includes more alternative
ways (process plans) to complete the product. The goal is to select a process plan
for each job and schedule job activities such that the schedule length is minimized.

The resource constrained project scheduling problem (RCPSP) is a well known
problem with many real applications. Dorndorf et al. (2000) proposed an effective
branch and bound method for the RCPSP problem denoted as PSjtempjCmax

(Błażewicz et al. 1996; Brucker et al. 1999a). The solution method is based on
the constraint propagation that reduces the search space. Nonetheless, setup times
are not considered and also the introduction of alternative process plans would
not be straightforward. Brucker et al. (1999a) summarized the notation of the
RCPSP including both single-mode and multi-mode problems with various resource
environments and activity characteristics. With the proposed classification, the
resource constrained project scheduling problem with positive and negative time-
lags and sequence dependent setup times can be formulated as PSjtemp; sijjCmax.
The problem studied in this chapter is an extension of such problem. Hanzálek and
Šůcha (2009) published a constructive algorithm for the PSjtemp; sijjCmax problem
which is extended to solve the problem with alternative process plans in this chapter.

Several solutions methods are described throughout this book. The schedule
generation approaches for the RCPSP problem are described in Chap. 1 in the first
volume of this handbook, Chap. 2 presents various mathematical formulations of the
RCPSP problem, and in Chap. 4, the metaheuristic approaches are discussed. The
formulation for the generalized precedence relations is presented in Chap. 5 in the
first volume of this handbook. Finally, the overviews for the multi-mode problem
extension are given in Chaps. 21 and 22 in the first volume of this handbook.
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53.3 Problem Statement

Let the production consist of n indivisible operations performed on the specified
machines according to the process plan. Consequently, there is a set of n C 2 non-
preemptive activities V D f0; : : : ; n C 1g to be scheduled on a set of K resources
R D f1 : : : Kg where each resource k 2 R has a discrete capacity Rk � 1, i.e. Rk
units are available for resource k. Each activity i is characterized by the processing
time pi and resource demand rik � 0 for the resource k 2 R. Only mono-resource
activities are considered in this chapter, meaning that each activity demands exactly
one resource, i.e.

P
k2RWrik>0 .1/ D 1 for all i 2 f1; : : : ; ng. Activities 0 and n C 1

with p0 D pnC1 D 0 and r0k D rnC1k D 0 for all k 2 R denote dummy activities
such that activity 0 is a predecessor and activity n C 1 is a successor of all other
activities. Precedence relations together with the definition of alternative process
plans are specified using an NTNA formalism (Sect. 53.3.1).

Generalized precedence relations, also called positive and negative time-lags, are
defined such that Si C dij � Sj for all .i; j / 2 V 2, where dij 2 R is the length of
the time-lag and Si is the start time of activity i in the schedule. We assume that
dij � 0 for all .i; j / 2 V 2 W i 2 Pred .j /. If there is no temporal constraint from i

to j , then dij D �1. If activity i has to be constrained by the release time ri and
the deadline di , then d0i D ri and di0 D �di .

Sequence dependent setup times sij are considered as an additional time needed
for setting up the resource between the activities scheduled consequently on the
same resource. We presume that the setup times satisfy the triangular inequality
sij C sjk � sik for all fi; j; kg 2 V 3 (Brucker 2007).

The goal of the scheduling is to select a subset V 0 � V of all activities (i.e. one
process plan) such that constraints for selection of activities given by the NTNA
instance (Sect. 53.3.1) are fulfilled and then to schedule V 0 to a set of resources
while minimizing the schedule length. To represent the schedule, three types of
variables vi 2 f0; 1g, Si 2 R

C
0 and ziqk 2 f0; 1g are considered. If vi D 1, then

activity i is present in the schedule and it is called selected activity; if vi D 0,
then the activity i is not in the schedule and it is called rejected activity. Variable
Si denotes the start time of activity i in the schedule. Finally, variable ziqk denotes
whether activity i is assigned to a resource unit q of resource k.

The described problem can be classified as PSjtemp; sij; nestedAltjCmax using
˛jˇj� notation (Błażewicz et al. 1996; Brucker et al. 1999a) where temp denotes the
generalized precedence relations and sij represents the setup times. We add the term
nestedAlt to the field describing constraints of the problem to denote the presence
of alternative process plans in the nested form (see the following subsection).
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53.3.1 Nested Temporal Networks with Alternatives

To define alternative process plans, the formalism of Nested Temporal Network with
Alternatives (NTNA) , proposed by Barták and Čepek (2008), is used. NTNA is an
acyclic directed graph where nodes represent activities and edges represent temporal
constraints. Each node i of the graph (corresponding to activity i ) has an input label
ini and an output label outi , denoting the type of input/output branching which can
be either parallel or alternative.

When there is a parallel branching at the input/output of selected activity i
(ini =outi D 0), all its direct predecessors/successors have to be selected. If activity i
is rejected, all its direct predecessors/successors have to be rejected. On the contrary,
when there is an alternative branching at the input/output of selected activity i
(ini =outi D 1), exactly one of its direct predecessors/successors has to be selected.
If activity i is rejected, all its direct predecessors/successors have to be rejected.
Finally, the selection rule for a pair of activities i and j constrained by a simple
precedence (i has only one successor j and vice versa j has only one predecessor
i ) is that both activities have to be Selected/rejected simultaneously. For the sake of
simplicity, outi D inj D 0 for such activities.

The term branch denotes a set of activities forming a connected component
that starts by a direct successor of activity i and ends by a direct predecessor of
corresponding activity j . A branch can further contain another parallel or alternative
branching and both parallel and alternative branchings can be arbitrary nested one in
another. Temporal constraints in the formalism of Nested Temporal Networks with
Alternatives are defined as follows. For each edge between nodes i and j , there is a
time-lag dij � 0 denoting the minimal time distance between start times of activities
i and j respectively. If it is needed to define a time-lag for activities i and j which
are not connected by the edge in the NTNA, dij is set to the desired value without
modification of the NTNA structure. An example of the NTNA instance is depicted
in Fig. 53.1. Parallel branchings are denoted as PAR and alternative branchings are
denoted as ALT. Each edge represents one temporal constraint, for the sake of
simplicity only two of them are depicted, and there are two further minimal time-
lags d97 D 3 and d11 14 D 8 and one maximal time-lag d90 D �16.

53.4 Mathematical Model

In this section, the MILP model for the PSjtemp; sij; nestedAltjCmax problem is
formulated. There are three types of constraints in the model—constraints for
selection of activities (53.1)–(53.4), temporal constraints (53.5) and resource con-
straints (53.6)–(53.10).
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Fig. 53.1 Example of the NTNA instance

Max.
i2V .Si C pi /

s. t. vi D
X

j2Succ.i/

vj .i 2 V W outi D 1/

(53.1)

vi D
X

j2Pred.i/

vj .i 2 V W ini D 1/

(53.2)

vi D vj
�
.i; j / 2 V 2 W outi D 0 ^ inj D 0 ^ j 2 Succ .i/



(53.3)
X

i2V
vi � 1 (53.4)

Si C dij � Sj C UB � �2 � vi � vj
� �

.i; j / 2 V 2


(53.5)
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Sj C pj C sji � Si C UB � �xij C yij
�C UB � �2 � vi � vj

�
..i; j / 2 M /

(53.6)

Si C pi C sij � Sj C UB � �1 � xij C yij
�C UB � �2 � vi � vj

�
..i; j / 2 M /

(53.7)

� xij C yij � 0 ..i; j / 2 M /

(53.8)

ziqk C zjqk � 1 � 1 � yij ..i; j / 2 M I k 2 RI q 2 f1 : : : Rkg/
(53.9)

RkX

qD1
ziqk D rik .i 2 V I k 2 R/

(53.10)

where

M D ˚
.i; j / 2 V 2 W i < j ^ rik > 0^ rjk > 0 for any k

� ISi 2 R
C

0 I vi ; xij; yij; ziqk 2 f0; 1g

Formulas (53.1)–(53.4) represent rules for the selection of activities. Formulas
(53.1) and (53.2) stand for the start and the end of alternative branching, Eq. (53.3)
stands for parallel branchings and direct precedences and Eq. (53.4) eliminates
solution corresponding to an empty schedule. Equation (53.5) represents temporal
constraint between each pair of activities. If there is no temporal constraint,
then dij D �1 and the equation is satisfied regardless the values of Si and
Sj . Formulas (53.6)–(53.10) represent the resource constraints. Equations (53.6)
and (53.7) ensure that there will be no resource conflict between activities that
are assigned to the same unit of the same resource, considering also the sequence
dependent setup times. For this purpose, let xij be a binary decision variable such
that xij D 0 if activity j precedes activity i on the same resource and xij D 1

otherwise. Furthermore, let yij be another binary decision variable such that yij D 0

if activities i and j share at least one resource unit and yij D 1 otherwise.
Formulas (53.8) and (53.9) determine whether there can be actual resource conflict
for each pair of activities and Eq. (53.10) ensures that each activity has assigned
appropriate resource capacity.

53.4.1 Problem Complexity

Let us focus on the complexity of the problem with alternative process plans. The
problem PSjtemp; sijjCmax, i.e. the case without alternative process plans, is NP-
hard since it is a generalization of the 1jrj ; dj jCmax problem (see reduction of
this problem from a three-partition problem in Lenstra et al. 1977). If the resource
constraints are omitted, we have a PS1jtempjCmax problem, which can be solved
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in polynomial time (e.g. using linear programming while eliminating the resource
constraints). On the other hand, the problem PS1jtemp; nestedAltjCmax, is NP-
hard, despite the resource constraints relaxation, see Čapek et al. (2012b) for more
details. This leads to the observation that the computation of the earliest start times
for all activities i 2 V is an NP-hard for the problem PSjtemp; sij; nestedAltjCmax

since the PS1jtemp; nestedAltjCmax problem is a subproblem of finding the earliest
start times for all activities.

53.5 Heuristic Algorithm

Since PSjtemp; sij; nestedAltjCmax is an NP-hard problem, the optimal solution
can be obtained, in reasonable amount of time, only for small instances. For large
instances, we propose a heuristic algorithm that does not ensure finding an optimal
solution, but it is able to handle instances with a significantly larger amount of
activities. The idea of this algorithm, called Iterative Resource Scheduling with
Alternatives (IRSA), is based on an IRS algorithm for PSjtemp; sijjCmax inspired
by software pipe-lining and presented by Rau (1994) and extended by Hanzálek
and Šůcha (2009) who focused on the acyclic scheduling problem and introduced
so called take-give resources into the problem. It is a constructive method where
activities are being added to the schedule according to their actual priority or being
removed if the partial schedule is not feasible. The input of the algorithm is an
instance of the PSjtemp; sij; nestedAltjCmax problem. The output of the algorithm is
a schedule S determined by the selected activities, their start times and assigned
resource units, i.e. S D Œs; v; z�. The main purpose of the proposed heuristic is to
deal with the problems where a feasible schedule cannot be found in polynomial
time in general case. The optimization of the Cmax criterion is achieved by the
gradual tightening of the constraint for the schedule length.

53.5.1 Initialization

The algorithm starts with the estimation of the bounds for the length of the schedule.
The upper bound is computed as UB D P

i2V max
�
pi C maxj2V .sij/;maxj2V .dij/

�

(Brucker et al. 1999b). The lower bound is computed as LB D SLB
nC1, i.e. the lower

bound of the earliest start time of activity n C 1. For this purpose, let Gtemp be
a directed graph with nodes corresponding to activities V.Gtemp/ D V and edges
E .Gtemp/ D ˚

.i; j / 2 V.Gtemp/ � V.Gtemp/ W dij ¤ �1�
with weights equal to dij.

Furthermore, let Gprec be a directed graph with nodes V.Gprec/ D V.Gtemp/ and
E .Gprec/ D f.i; j / 2 E .Gtemp/ W i 2 Pred .j /g. Then the estimated LB is equal to
the shortest path length between nodes 0 and nC 1 in Gprec computed by Dijkstra’s
algorithm (Korte and Vygen 2000).
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In the original IRS algorithm, the priority of an activity is equal to its longest
path length to the terminal activity nC 1. Due to NP-hardness of the longest path
lengths computation in our case, we use only the estimation retrieved from Gtemp,
i.e. negative time-lags are omitted. Moreover, we have to distinguish priorities
according to alternative process plans. Therefore, the priority of an activity increases
with its estimated distance to the end of the schedule and decreases with the length
of the alternative branch in which the activity is included. To compute priorities, we
first set apriori D c1 � dGi;nC1 � c2 � dGopen;close for each activity i where dGi;j is the
longest path length between nodes i and j inGtemp, the open and close are activities
that start and terminate the minimal alternative branch containing activity i and
c1 and c2 are constants. Minimal alternative branch for activity i is the alternative
branch (Sect. 53.3.1) containing activity i such that there is no other alternative
branch containing activity i with the lower number of activities. In the example
in Fig. 53.1, the open and close for activity 5 are activities 3 and 6 respectively. For
activity 2, the open and close are activities 1 and 8. Based on the algorithm testing
on various instances, the best performance is achieved when the longest path length
to the end of the schedule is given higher influence on the priority value (we use
c1=c2 D 5=3). Finally, the priority priorityi of each activity i is set to a value equal
to the position of its apriori value in the ascending order of all aprior values. In
other words, activity with the lowest aprior value will have priority equal to 1, next
activity will have priority equal to 2 and the activity with the highest aprior value
will have priority equal to nC 2.

53.5.2 Main Loop

In each iteration of the main loop, the function findSchedule tries to find the schedule
with the given upper bound while the number of steps is limited by the parameter
budget that is usually set as a number of activities multiplied by the parameter
budgetRatio. If a feasible schedule is found, all activities are shifted to the left by
the label-correcting algorithm (Brucker and Knust 2006) so that the constraints and
the order of activities in S are kept. A new upper bound of the schedule length
is computed as UB D UB � 1 and the next iteration of the loop is performed.
If a feasible schedule S is not found for the given schedule length, the algorithm
modifies the priority according to the returned partial schedule.

A general observation for heuristic algorithms is that more incorrect decisions are
made at the beginning and, therefore, the priority of the earliest scheduled activities
and activities that have been added to the schedule more often is decreased. The
function findSchedule is then called for the same upper bound UB using the modified
priorities. If the schedule was not found and the maximum number of priority
modification steps determined by the parameter maxModifications is exhausted, the
algorithm returns the best schedule.
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Algorithm 53.1 IRSA(budgetRatio, maxModifications, instance)
compute LB and UB;

set initial priorities;

budget WD budgetRatio � nI
actualRestarts WD 0I
while UB � LB

S WD findSchedule .UB; priority; budget/ I
if S is feasible

S WD shiftLeft .S/ I
UB WD SnC1 � 1I

else
if actualModifications < maxModifications

priority WD modifyPriority .priority; S/;

actualRestarts WD actualRestarts C 1I
else

break;

end
end

end

53.5.3 Inner Loop

In the inner loop of the IRSA algorithm, priorities are updated in the function
updatePriority (see Algorithm 53.2) such that the priority is increased for the
activities marked as selected and proportionally decreased to the number of
inclusions of the activity into the schedule. This update of priorities allows the
heuristic to switch between alternative branches instead of staying in the same
selection for the whole run of the algorithm. For each activity i , the priority is
updated such that priorityi D priorityi C0:5 �vi �0:5 �nAddsi where nAddsi denotes
the number of inclusions of activity i to the schedule. Activity l with the highest
priority is found among the set of not yet scheduled activities and a time window˝
SLB
l ; S

UB
l

˛
where activity l can be scheduled is computed. The lower bound for

start time SLB
l is calculated as the minimum time such that all temporal constraints

Sj C djl � Sl for all j 2 scheduled W djl � 0 are satisfied, where scheduled is a set
of activities that forms the current partial schedule. The start time upper bound SUB

l

is set to the maximal value such that the activity is completed before the given UB .
The function findSlot tries to find the earliest time slot within the given time

window with respect to the resource constraints. In other words, the time interval
given by SLB

l and SUB
l is explored while searching for a time point where the

given activity can be scheduled without violating any resource constraint. Sequence
dependent setup times are also considered. If no feasible time position is found,
then the time slot is set to SLB

l if the activity is being added to the schedule for the
first time. If the activity has been already included into the schedule in previous
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Algorithm 53.2 Inner loop of IRSA
findSchedule .UB; priority; budget/

scheduled WD fg I
nAddsi WD 0 .i 2 V / I
Si WD 0 .i 2 V / I
vi WD 0 .i 2 V / I
while budget � 0

priority WD updatePriority .priority; nAdds; v/;

l WD max
j2V Wj…scheduled^j…rejected

�
priorityj


I

SLB
l WD max

j2scheduled

�
Sj C djk

� I
SUB
l WD UB � pl I
Œconflicts; Sl � WD findSlot

�
l; scheduled; SLB

l ; S
UB
l

� I
nAddsl WD nAddsl C 1I
Œs; scheduled� WD insertActivity .l; Sl ; conflicts/ I
v WD findSelected .v; scheduled/ I
if schedule is complete

return S ;

end
budget WD budget � 1I

end
return SI

end

step, its time slot is set to SLB
l C 1 to avoid cycling of the algorithm. The function

findSlot then returns all conflicting activities, i.e. activities that cannot be kept in the
schedule without violating any resource or temporal constraint with respect to the
last included activity.

Activity l is then inserted into the partial schedule and all activities marked
as conflicting are removed in order to keep the partial schedule feasible at any
time. If an unscheduled activity (i.e. activity actually removed from the schedule)
is a member of some alternative branch, then all activities in the same alternative
branch are also removed. The list of the Selected/rejected activities is then updated;
the scheduled activities are marked as selected, activities belonging to the same
alternative branch are also marked as selected activities and all activities that cannot
be added to the schedule without violating propagation rules from the MILP model
are marked as rejected activities. The selection/rejection of other activities is not
decided yet. If each activity is already scheduled or marked as rejected, then the
schedule S is complete.
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Fig. 53.2 Example of the IRSA algorithm progress

53.5.4 Example of the IRSA Algorithm Progress

Figure 53.2 illustrates one iteration of the IRSA main loop for the instance
depicted in Fig. 53.1, considering three resources with capacity equal to one. In the
initialization, the algorithm sets priority D .16 15 10 9 7 8 6 11 14 13 12 5 3 2 4 1/

and consequently it starts with the addition of activity 0 into the schedule. Then
activity 1 is added to the schedule and its start time is set to its lower bound, i.e.
S1 D 0 (step 1 in Fig. 53.2). Then activity 8 is scheduled and the next not yet
scheduled activity with the highest priority is 9, which has to be scheduled to the
same resource as activity 8. Its time window is given as SLB

9 D 8 and SUB
9 D 16,
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resulting from d09 D 8 and d90 D �16. Within the given time window, there is no
space to schedule activity 9 without violation of resource constraints and therefore
activity 8 is marked as conflicting in function findSlot and then removed from the
schedule in function insertActivity (step three). Activity 9 is scheduled instead and
its start time is set to 8. In the following step, activity 10 is added and then activity 8
is added back to the schedule. Then the algorithm adds the activities one by one up
to the last activity nC 1 and the schedule is complete, since each activity is marked
as scheduled or rejected.

53.6 Computational Results

In this section, the performance evaluation for the MILP model proposed in
Sect. 53.4 and the heuristic algorithm IRSA is shown. Up to our knowledge, there
are no standard benchmarks for the PSjtemp; sij; nestedAltjCmax problem, hence
randomly generated instances have been used to test both the MILP model and
the IRSA algorithm. The heuristic algorithm is further evaluated on instances of
integrated process planning and scheduling (IPPS) problem from Shao et al. (2009),
which is a specific subproblem of the problem considered in this chapter. Finally, the
instances of the job shop scheduling problem with processing alternatives from Kis
(2003) are used to test slightly modified version of the IRSA algorithm. Experiments
were performed on a PC with 2x Intel Core 2 Quad CPU at 2.83 GHz with 8 GB of
RAM. To solve the MILP problems, the ILOG CPLEX 11.2 was used and the IRSA
algorithm was implemented in C# language.

53.6.1 Mathematical Model Complexity

Both the MILP model and the IRSA algorithm were tested on 500 randomly gener-
ated feasible instances for each number of activities and resources. Each randomly
generated instance contains an NTNA instance, where a ratio of alternative and
parallel branchings can be specified. The maximum value of the activity processing
time, the number and lengths of the positive and negative time-lags and the number
of resources can also be set for each generated instance.

The mixed integer linear programming model was tested with the processing time
chosen from a uniform distribution on the interval h1; pmaxi where pmax D 15, the
number of time-lags was set to jE .Gprec/ jCn=3 for the positive values and n=5 for
the negative values, where jE .Gprec/ j is the number of edges in graphGprec defined
in Sect. 53.5. Figure 53.3 shows the number of solved instances in dependence on
the solving time. 500 random instances have been generated for each number of
activities n. We measured how many instances the MILP solver was able to solve
within a given amount of time. The larger instances can be solved if the number
of resources is higher, which can be seen e.g. for the instances with 10 activities
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Fig. 53.3 Ratio of solved instances for MILP model

and one resource when compared to instances with 50 activities and five resources.
The effectiveness of the MILP model is the same in both cases even though the
difference number of activities per instance is considerable. This is obvious due to
the smaller amount of resource constraints to be resolved.

53.6.2 Performance Evaluation of IRSA Algorithm

The IRSA algorithm was evaluated using the same set of instances as for the
MILP solver. The parameters of the algorithm were set to budgetRatio D 6 and
maxModifications D 2. Figure 53.4a shows the mean difference of the IRSA
algorithm from the optimal value given by the MILP solver for feasible instances.
Problems with the different number of resources and different maximum processing
times are considered. Figure 53.4b demonstrates the number of feasible instances
(out of 500) that IRSA was not able to solve to feasibility. Instances with shorter
processing times of activities lead to results with a bigger difference from the
optimal value. On the other hand, the number of instances for which the IRSA was
not able to find a solution is slightly lower in the case with shorter processing times.

The influence of the budgetRatio parameter on the results obtained by the IRSA
is illustrated in Fig. 53.5a where the mean difference from the optimum and the
solution time are depicted in dependence on the given budget for the algorithm. Data
were measured on 500 instances with 20 activities and pmax D 15. Figure 53.5b
shows the influence of the maxModifications parameter using the same data sets as
in the previous case.

The mean solving time for the IRSA algorithm with regard to the number of
activities is shown in Table 53.1. For each number of activities, 20 feasible instances
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Table 53.1 Solving time for
IRSA algorithm

n 10 50 100 250 500 1,000 2,000

t¿cpu [s] 0.01 0.06 0.15 0.41 1.07 2.55 5.72

with pmax D 15 were generated. The number of positive and negative time-lags is
the same as in the MILP model evaluation. The parameters of the algorithm were the
same as in previous paragraphs, i.e. budgetRatio D 6 and maxModifications D 2.

53.6.3 Integrated Process Planning and Scheduling

The Integrated Process Planning and Scheduling (IPPS) problem studied in Shao
et al. (2009) is used to prove the effectiveness of our algorithms for the scheduling
problems containing alternatives. IPPS is again a subproblem of the problem
considered in this paper. The goal is to select and schedule a subset of all activities
based on the precedence graph containing alternative routes and alternative machine
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Table 53.2 Comparison of
IRSA algorithm with Shao
et al. (2009)

Instance 1 2 3 4 5 6 7

Shao et al. (2009) 116 116 95 93 116 116 162

IRSA 117 119 98 93 119 117 171

assignment such that the makespan is minimized. In Shao et al. (2009) there are six
small instances (1–6) of IPPS and one bigger instance (7) obtained by joining all
small instances into one graph. The comparison of the reported objective values and
the values obtained by the IRSA algorithm for all seven instances is depicted in
Table 53.2. It should be appointed out that the objective value for the first instance
indicated in Shao et al. (2009) is not possible, since the optimal value is 117 instead
of 116. The average solution time reported in Shao et al. (2009) is 1 s for small
instances, while for the bigger one there is no solution time at all. The algorithm
was coded in C++ language and run on a machine with 2.40 GHz Pentium IV. The
average running times for the IRSA algorithms is 12 ms for small instances and 2 s
for the bigger one.

As can be seen from Table 53.2, the IRSA algorithm is competitive with the
evolutionary algorithms proposed in Shao et al. (2009). Therefore we can conclude
that the solution methodology is eligible to solve the problems with alternative
process plans.

53.6.4 Evaluation on AJSP Instances

Finally, we have evaluated the IRSA algorithm on the instances of the job-shop
scheduling problem with processing alternatives (AJSP) proposed by Kis (2003).
We have decided to solve such instances since our problem is the generalized version
of the AJSP problem. The results are depicted in Table 53.3 where columns GA,
TABU and RAND contain the results found by algorithms proposed by Kis (2003)
and column IRSA contains the results found by the IRSA algorithm,�¿

LB is the ratio
of the schedule length found by the given algorithm over the lower bound estimated
by the MILP solver and t¿cpu is the average computational time in seconds.

As we can see, the results found by the algorithms proposed by Kis (especially
TABU algorithm) are superior than the results found by the IRSA algorithm. On the
other hand, the increase in the computational time in dependence on the number of
activities is more crucial for algorithms proposed by Kis. The total computational
time for each instance is also much lower in case of the IRSA algorithm, although
the comparison is not straightforward since Kis (2003) reported that C++ language
was used and the tests were performed on a machine with Pentium II 400 MHz.

The problem assumed in this chapter is more general than the problem described
by Kis. The main difference is that positive time-lags are restricted to be equal
to processing times of activities and there are no negative time-lags at all in the
AJSP instances. We also assume more general definition of alternative process plans
where the alternative and parallel branchings can be arbitrary nested one in another.
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Table 53.3 Comparison of IRSA algorithm with Kis (2003)

GA TABU RND IRSA

Instances �¿
LB t¿cpu [s] �¿

LB t¿cpu [s] �¿
LB t¿cpu [s] �¿

LB t¿cpu [s]

a01–a03 1.025 3.812 1.021 2.331 1.023 3.308 1.062 0.07

a04–a06 1.042 17.04 1.011 11.38 1.024 16.78 1.096 0.16

a07–a09 1.042 40.52 1.012 30.76 1.095 42.98 1.077 0.39

a10–a12 1.042 78.67 1.005 67.68 1.093 87.04 1.137 0.62

a13–a15 1.020 27.55 1.014 71.29 1.098 29.92 1.251 0.14

a16–a18 1.051 67.57 1.012 49.27 1.135 77.41 1.263 0.27

a19–a21 1.068 124.8 1.015 97.14 1.149 153.1 1.235 0.67

a22–a24 1.072 60.31 1.042 43.23 1.136 72.02 1.299 0.31

a25–a27 1.123 147.8 1.058 131.4 1.203 191.6 1.364 1.11

a28–a30 1.145 274.3 1.025 274.1 1.212 386.3 1.259 1.02

a31–a33 1.152 100.5 1.083 82.76 1.249 130.8 1.341 0.85

a34–a36 1.157 243.6 1.060 253.8 1.261 347.7 1.381 1.93

a37–a39 1.151 457.7 1.036 327.6 1.232 709.5 1.258 2.42

Furthermore, we do not focus on the particular situation where activities are joined
in jobs with the specific precedence relations and resource assignment. Finally, there
are no sequence dependent setup times in the AJSP problem.

To solve the AJSP instances, we have slightly modified function findSlot in the
IRSA algorithm. Each job in the AJSP problem is a sequence of activities where
at most one activity can be in process at each time but the order of activities in
and-subgraphs is not specified. Therefore, the function findSlot has to check one
more constraint during the search for the feasible time position, i.e. the feasible time
position of an activity has to satisfy three types of constraints—temporal constraints,
resource constraints and job constraints.

53.7 Conclusions

This chapter presented the resource constrained project scheduling problem with
alternative process plans PSjtemp; sij; nestedAltjCmax, motivated by the production
of the wire harnesses in Styl Plzeň. We have decided to represent the structure
of the problem by Nested Temporal Networks with Alternatives and for such
representation, the mathematical model able to solve, in a reasonable amount of
time, instances with up to 50 activities per resource time is presented. In order to
solve larger problems in the nested form, we have developed the heuristic algorithm
IRSA. Computational experiments demonstrate good performance of this algorithm
with a mean difference from the optimal value of the makespan less than 10 %,
while solving time for instances with 100 activities within 20 ms. Instances with
up to 2,000 activities can be solved in the order of a few seconds. Moreover, the
instances of two related problems have been used for the algorithm evaluation and
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the experiments showed that the IRSA algorithm is able to solve much more specific
problems with good quality of solutions in very short time.
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Chapter 54
Scheduling Computational and Transmission
Tasks in Computational Grids

Marek Mika and Grzegorz Waligóra

Abstract Computational grid is a computing environment dedicated to execute
applications with large computational requirements. These applications are mainly
scientific applications developed for using in many scientific areas. One type of such
applications are workflow application which consists of a set of precedence con-
strained computational tasks. The precedence constraints are caused by transmission
of data files and/or the control flow between two computational tasks. Three models
of the problem of resource allocation and scheduling workflow application in the
computational grid are considered. They differ among themselves in assumptions
about workflow applications and computer network. For the first model with dis-
tributed resources we present how to adopt metaheuristics developed for MRCPSP.
For the second model with setup operations we use the idea of schedule-dependent
setup operations and also present the adaptation of a metaheuristic. For the third
model with transportation network we present how to find a feasible resource
allocation.

Keywords Computational tasks • Grid computing • Project scheduling •
Resource allocation • Transmission tasks

54.1 Introduction

The term grid has been used for the first time in the context of the distributed
computer resources in the 1990s by Ian Foster. It is commonly believed that this
name was used because it expresses the analogy between the computing power
available by using a computer network, and the electric power available through
the power grid. The term grid has been used in this context, because it expresses the
efforts making the access to computing power as easy as the access to an electric
power grid.
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According to Foster and Kesselman (1998) a computational grid is defined as
an infrastructure consisting of hardware and software which provides dependable,
consistent, pervasive and inexpensive access to high-end computational capabilities.
Taking into account some specific characteristics of modern grids the computational
grid can be defined as a large-scale geographically distributed, dynamically recon-
figurable, scalable hardware and software infrastructure composed of heterogeneous
resources connected by a computer network. It can be viewed as an virtual
organization because resources are owned and shared by multiple administrative
organizations which are coordinated to provide transparent, reliable, pervasive,
efficient, secure, and consistent computing support to a wide class of computer
applications.

These applications are mainly scientific applications developed for using in many
scientific areas, such as high-energy physics, bioinformatics, astronomy, biology,
climatology, oceanography, meteorology, seismology, and others. Many of them
are composed of multiple simpler components (tasks) that process large data sets,
execute scientific simulations, communicate and interact with each other over the
curse of the application in order to share data and pass the control. The tasks are
very often precedence-related, and the precedence constraints usually follow from
the data and/or control flow between them. The data flow occurs when data files
generated by one task are needed to start another task. In other words, output of
one task becomes an input for the next task. Such complex applications consisting
of various precedence-related transformations (tasks) performed on certain data
between which data files have to be transmitted very often are called workflow
applications. In general, two types of workflows can be distinguished: data-
intensive, where transmitted files are very large and therefore file transfer times are
comparable or greater than the times of computational tasks, and compute-intensive,
for which file transmission tasks do not occur or transferred files are so small that
the transfer times can be neglected. Workflow applications are usually very time-
consuming (even if single tasks are short) and input/output data files for tasks can be
large. Execution time of a single workflow application usually ranges from several
hours to several days, although it may as well be much larger. For efficient execution
of both types of workflows, high computing power is required, due to a large amount
of computations and data involved. This computational power can be provided by a
computational grid, because the tasks of workflow applications have one interesting
feature – they can be executed asynchronously.

There are at least several approaches to grid resource allocation. They differ
among themselves depending on the grid architecture, purpose of a particular grid,
and grid management policies. Depending on the architecture, two types of grids
can be distinguished: peer-to-peer and centralized grids. In the peer-to-peer grid all
services are equal and communicate using a peer-to-peer model of the network. In
the centralized grid a grid resource management system plays a central role and is
surrounded by many other grid services structured in a layered architecture. In such
grids, there is usually one common, central grid broker or grid resource manager
that serves all users and their jobs. Such a situation is considered in this chapter.
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The modern grid resource management involves possibly several layers of
schedulers. At the highest level are metaschedulers (or grid-level schedulers), which
usually have a more general view of the resources but it does not own any resource
of the grid where the application will eventually run. At the lowest level is a local
resource management system that manages a specific resource or a set of resources,
but it does not know too much about other resources of the grid. In this chapter we
consider the metascheduler level only.

It is easy to observe the similarity between a workflow and a project. In both
cases we have a set of precedence-related tasks (activities) which are to be executed
on a given set of resources in one of several execution modes. Thus, it is justified
to describe the considered problem in terms of project scheduling and use the best
techniques developed for the MRCPSP (see Chap. 21 in the first volume of this
handbook) to approach the considered problem of scheduling computational and
transmission tasks in a computational grid.

The chapter is organized as follows. In the next section we present a sample
workflow application and a sample structure of the grid as well as the notation
which is used in the next sections of this chapter. In Sect. 54.3 a model with
distributed resources is introduced. Section 54.4 is devoted to the model with
schedule-dependent setup times and finally in Sect. 54.5 the most complex and the
most elaborated model with transportation network is discussed. For each of the
three considered models two sets of assumptions are presented: the first one with
assumptions about the computational grid and the second one with assumptions
about the workflow applications. Next the feasible resource allocation is defined
and some algorithms for the resource allocation and scheduling are presented.

54.2 Example and Notation

All the models presented in this chapter are deterministic ones. So, they are rather
an approximations of real grid resource allocation and scheduling problems. The
models assume that resources allocated to computational and transmission tasks will
be available for these tasks in time windows sufficient to execute them. In order to
meet this assumption a high quality services and an effective prediction mechanism
are required. Of course, in general, resource reallocation and/or rescheduling is still
possible during the execution of the schedule created.

As a scheduling criterion we choose the makespan, which is very interesting
from the client’s point of view, i.e., the owner of the applications. However,
let us stress here that various performance measures may be considered as the
scheduling criterion (e.g., cost, reliability, resource levelling, etc.). Furthermore,
a multi-objective approach is well justified which can combine two or even more
measures. For multi-criteria approaches to problems of scheduling on a grid, see
Kurowski et al. (2004, 2006, 2008). Similar problems with advance reservation of
resources and multicriteria and hierarchical approach were considered by Kurowski
et al. (2010, 2013).
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One of the most common examples of workflow applications is large-scale scien-
tific simulation. A typical framework of the simulation may consists of the following
steps: generation of data for simulation according to a given set of parameters,
simulation, translation of output data into a described format, postprocessing and
finally analysis and comparisons of the obtained results. The general structure of
such a workflow is presented in Fig. 54.1.

There are many practical examples of workflow applications built according to
the above scheme. One of them is a simulation of the Compact Muon Solenoid
(CMS). CMS is one of two large general-purpose particle physics detectors built
on the Large Hadron Collider (LHC) at CERN. It is designed to see a wide range
of particles and phenomena produced in high-energy collisions in the LHC. The
data recorded with the rate of 100 MB/s by different layers of detectors are used to
build up a picture of events occurring during the collision. After the data have been
recorded, they will be passed through various filter stages, which transform and
reduce the data into formats that are more easily analyzed by physicists. In order to
better understand the response of the detector to different input signals, large-scale
Monte Carlo simulations are performed which typically involve several different
computational stages (Deelman et al. 2003). These simulations are long-running,
parallel, multi-stage processes that are ideally suited for grid computation. Typically,
a single workflow application creates approximately 1 GB of data and requires
10–20 CPU/hours depending on the type of simulation. A typical production run
may include thousands executions of workflow application.

Analysis

Generation

Simulation

Translation

Postprocessing

Generation

Simulation

Translation

Postprocessing

Generation

Simulation

Translation

Postprocessing

Fig. 54.1 Generic structure of the simulation workflow application
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The structure of the workflow application is usually represented by a directed
acyclic graph G D .V;E/, where set of vertices V represents computational tasks,
and set of arcs E represents precedence constraints that follow from control and/or
data flow.

Each computational task i 2 V is characterized by its size pi (expressed in
assumed computational units, e.g. MIPS) and number of required processors ri .
Let us note that, although there are several types of processors in the grid, it
is not necessary to specify the resource requirement for all types of processors,
because due to the technological specifications all processor types have the same
functionality and differ between themselves only by their speed. So, it is only
needed to determine the minimal speed factor !i of the processor(s) required for
the execution of this task and the function fi .pi ;$k/ that is used to calculate the
actual execution time of computational task i on processor(s) with speed factor$k .
Of course it is necessary to meet the following condition $k � !i . We assume for
simplicity that fi .pi ;$k/ D f .pi ;$k/ D pi=$k .

A transmission task .i; j / 2 E that occurs between computational tasks i and j
concerns the transfer of the output data file(s) of task i from the computational node
where i is executed to another node where task j is executed. The transferred data
file(s) is (are) input data file(s) for the computational task j . For each .i; j / 2 E the
following parameters should be determined: the size Fij of transmitted data file(s),
the minimal required bandwidthBij of the connection between computational nodes
in which computational tasks i and j will be executed, and a function gij.Fij; Bij/

used to calculate the actual execution time of transmission task .i; j /. We assume for
simplicity that gij.Fij; Bij/ D g.Fij; Bij/ D Fij=Bij if tasks i and j are executed in
different nodes, or 0 otherwise (i.e. if in the same node). A very simple example of
computational grids presented in Fig. 54.2. This grid consists of six nodes. Three
of them denoted by X1 to X3 represent computational nodes, i.e. nodes where
processors are located. The other three nodes occur in the structure of the grid due to
the network topology, because they represent the junction of at least three network
links. There are eight processors with the lowest speed factor $1 in the node X1,
eight processors in X2 (four with $2 and four with $3/, and four processors in X3
(two with $3 and two with $4).

The structure of the computational grid is represented by an undirected multi-
graph � D .ˆ;‰/, where ˆ is a set of all nodes in the network, and consists of
two disjointed subsets of nodes X and …. Set X represents computational nodes
and is called set of resource nodes, and set … represents network nodes without
processors and is called set of non-resource nodes. Of course, ˆ D X [ …. Set
of edges ‰ contains network links between nodes. Each member of ‰ is a couple
.�; �/ W �; � 2 ˆ where  D 1; 2; : : : ; ‰�� ( denotes alternative links between
a given pair of nodes and ‰�� is the number of these links). For each resource node
X� 2 X the numbers Rk� of processors of type k (i.e. processors with the same
speed factor$k/ are given, and for each edge .�; �/ 2 ‰ a bandwidth‰��

 of the
corresponding network link is given.
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Fig. 54.2 A simple computational grid

54.3 Model with Distributed Resources

The first model of the considered problem is a basic one for two other models
described in Sects. 54.4 and 54.5. In this model a workflow application that is
executed in the computational grid is the compute-intensive one. We assume that
the transmission tasks do not occur during the execution of this application. In
practice, it means that if there is any communication between any two consecutive
computational tasks, it does not involve the transmission of large data files, but
is only used to pass the control or to transfer small data files. In consequence, a
computer network does not have a major impact on the schedule, because even
if there is a need to transfer some data files between computational tasks, then
the transmission time of data files is negligible compared to the execution time
of computational tasks. Thus, the only component of the grid which is included
in the model are the computational resources. In particular the most important
parameters of these resources are: location, type and number of units available in
a given location.
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54.3.1 Assumptions on the Computational Grid

In the model considered in this section we made the following assumptions about
the computational grid:

1. Computational grid is a set of network nodes connected by fast network links
2. There are various resource types in each node for which users’ computational

tasks may compete (e.g., processors, memory, disk space, I/O devices), but in
this model we consider the processors only

3. Processors are divided into types, depending on their power, which is given by
a function of some standard unit and is identical for all processors of a given
type – we assume a linear form of the processing speed function, as “a speed
factor multiplied by the standard unit”

4. For each node a set of resources available in this node is given, which means that
the number of units of each resource located in this node is known

5. The structure and the parameters of computer networks are irrelevant to the
scheduling problem, due to the limited communication between computational
tasks

6. Between the network nodes always exists a connection that allows to pass the
control or to transfer small amount of data between the two computational tasks
executed in two different network nodes.

54.3.2 Assumptions on the Workflow Application

We also made the following assumptions about workflow applications:

1. Only workflow applications are considered in the model, because of their high
practical importance (it is easy to extend it for jobs of other types in the future)

2. For simplicity, there is only one workflow application to be scheduled
3. The structure of a workflow application is represented by a directed acyclic

graph G, where each vertex corresponds to a computational task, and each arc
represents a precedence relation between two computational tasks

4. Computational tasks are non-preemptable (i.e., once started they have to be
completed with no interruptions and without change of the resource allocation)

5. Each computational task is characterized by two values: its size, i.e., the exe-
cution time on a standard processor (processors), and the number of processors
required for its execution

6. Computational tasks are not scalable, i.e., the number of processors required for
the execution of such a task is given a priori by the user and cannot be changed

7. Each computational task is executed by the specified number of processors of the
same type (it is not possible to assign a task to processors of different types).
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54.3.3 Resource Allocation and Scheduling

It is easy to observe that the considered problem is very similar to the special case of
the MRCPSP where only renewable resources are considered, but in the considered
model they are distributed over several different locations. Thus, a feasible resource
allocation for the workflow application is defined in this model as an allocation of
each computational task to a resource node X� 2 X that is capable to execute this
task, i.e.,Rk� � ri ^$k � !i . This problem is NP-hard as a generalization of the
MRCPSP, and therefore we propose to use metaheuristics to allocate resources and
schedule computational tasks. There are many different metaheuristic approaches
developed for the MRCPSP, but they cannot be used for the considered problem
without any modification. Let us assume that we use the same mechanisms as
in simulated annealing proposed by Józefowska et al. (2001). So, the solution is
encoded using the most commonly used representation, i.e., the activity list and
the mode assignment list. The activity list is a precedence feasible list representing
the order (or priorities) of activities. Each element of the mode assignment list
represents the execution mode of an activity. If execution modes are assigned to
activities according to the mode assignment list, and the priorities of all activities
are determined by the order of activities on the activity list, then the schedule is
generated using one of the decoding rules, e.g., serial SGS (see Chap. 1 in the
first volume of this handbook). In the considered model where computational task
correspond to activities such a mechanism is insufficient, because resources are
distributed over different locations. So, even if the total capacity of each resource
type is known, the more useful information is the one about the capacities of each
resource type in each location (resource node), because the computational task may
be assigned to exactly one location. So, we need another structure that represents
the location to which activity is assigned. Now, when solution is represented by
three abovementioned lists a schedule is constructed using, e.g., serial SGS where
each pair location-resource type is treated as a separate resource type. With this
assumption we do not need to modify this method. Finally, a neighbourhood
generation mechanism have to be changed. In order to generate a neighbour solution
we may make changes to any of the lists representing the solution. A change
on activity list may be implemented in the same way as in other metaheuristic
approaches developed for the MRCPSP, e.g., as the shift operation. Changes on
the mode assignment list have to take into account the currently assigned location,
because not every mode is executable at each location. We need to remove these
modes that are not executable in a given location. We have to use similar mechanism
for the change on the location list. Before a new location is chosen we need to
remove all the locations for which the resource requirements for a corresponding
mode assignment are not fulfilled.
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54.4 Model with Setup Operations

The second model which was considered by Mika et al. (2004, 2008) is a generaliza-
tion of the first one described in Sect. 54.3. In this model data-intensive workflow
application is considered instead of the compute-intensive one, which means that
transmission tasks of very large volumes of data occur between some computational
tasks. The size of the data files is so large that the execution time of such transfer,
even using high-speed network links, is so large that it cannot be neglected. In
addition, this model assumes that neither the structure of the network, nor the
quality of the links do not affect the transmission rate. It means, that in practice
at least one network link with a guaranteed bandwidth exists between each pair
of network nodes. Another assumption is that regardless of the current workload,
always exists a connection with required bandwidth between the nodes of the
network. In practice, this can be met only when the computer network connecting
the nodes with processors is sufficiently extensive (for example, when there is a
distinct link between each pair of nodes) and transmission tasks do not appear
frequently (for example, when at most one workflow application is performed
simultaneously with other types of applications where transmission tasks do not
occur, or occur sporadically, and their size is incomparably smaller than the size of
transmission tasks of the workflow application). Transmission tasks compete for the
resource, which is defined as bandwidth of network connection between selected
network nodes, where consecutive computational task are performed. However, it is
assumed that this is not a limited resource, taking into account both the structure of
the network and the workload of data transmissions occurring in this model. Thus,
the structure of the network has no impact on the resulting schedule. However,
the data transmission tasks are so time-consuming that they cannot be ignored.
Therefore, in the considered model, in addition to computational resources, it is
also considered the second aspect of the grid, which are links between pairs of
nodes, more precisely the guaranteed bandwidth of these links. In particular, the
most interesting in this model are: the location of network nodes with computational
resources, the type and the number of computational resources in a given location, as
well as bandwidth of network links existing between each pair of such nodes. Due
to the assumptions regarding the structure and parameters of computer network,
each transmission task .i; j / is always performed immediately after completion of
the preceding computational task i , using a direct network connection between two
computational nodes where tasks i and j are executed. The execution time of such a
task, i.e., the transmission time of a given file depends on the size of the file and the
bandwidth of the link. Since each computational task (except the first one) requires
as input a file that appears at the output of another directly preceding computational
task, the transmission time of this file depends on the location of computational
nodes where both precedence related activities are performed. More precisely, it
depends on the bandwidth between the two nodes. In this model network resources
by definition are not limited. Thus, we do not have to look for the available network
resources, we only need to calculate the time of transmission. Next, this transmission
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time should be suitably considered during the scheduling. In order to perform the
computational task in a given computational node, the node must meet the resource
requirements in terms of number of available units of a given types of resources
and all the input files must already be there. In other words, the computational
node that meets the resource requirements of the computational task will be ready
to perform this task only if all the input files will be transmitted to it. Thus, in
this case the transmission tasks can be seen as setup operations of computational
resources allocated to a given computational task. Such operations are characterized
by two parameters: the setup time and setup cost. Considering the makespan as the
scheduling criterion the more important is setup time because it may have a direct
impact on the schedule length. In this case, setup times depend on the schedule and
are called schedule-dependent setup times (Mika et al. 2006).

54.4.1 Assumptions on the Computational Grid

In the model considered in this section we made the following set of assumptions
about the computational grid. Assumptions 1–4 are the same as in the previous
model presented in Sect. 54.3.1.

5. Bandwidth within the node is unlimited, which means that the computational
tasks performed on the same node do not need to wait for the completion of
data transmission

6. Network devices and interfaces do not cause any bandwidth limitations, i.e.,
they are able to handle any incoming or outgoing data transfer—the network
bandwidth depends entirely on the bandwidths of links, and not on the
characteristics of the network interfaces

7. Breakdowns of physical links are so rare that can be neglected
8. Communication channels are highly reliable, i.e., network links guarantee that,

during transmission, packets are not being lost or duplicated
9. Delays do not affect the transmission times between nodes, i.e., transmission

lateness is so small in comparison to the transmission time itself that it can be
neglected

10. Data transfer does not involve any computational resources, i.e., each processor
used to perform a computational task is free immediately after the completion
of this task and may be used for the execution of the next computational task,
regardless of whether the file transfer of the output data of previous job is still
underway or it is already completed

11. Grid structure is represented by the undirected complete graph, which means
that between each pair of nodes of a network exist a link characterized by a
fixed and guaranteed bandwidth identical in both directions.
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54.4.2 Assumptions on the Workflow Application

In this model all assumptions made in Sect. 54.3.2 remain valid. So assumptions
1–7 are the same as in the previous model and there are four new assumptions listed
below:

8. A workflow consists of many tasks of two types: computational and
transmission ones

9. Transmission tasks are non-preemptable, i.e., they have to be executed with
once allocated resources and with no interruptions – once a connection is
established between two nodes, the whole transmission must be performed over
this connection (a sequence of links)

10. Transmission tasks are not scalable, i.e., the entire transmission is performed
using the assigned bandwidth, which may not be changed during the execution
of the transmission task

11. Transmission tasks are characterized by a single parameter: the size of the file(s)
to be transmitted, which is calculated by dividing the file size by a connection
bandwidth or is set to zero if both precedence related computational task are
executed in the same node.

54.4.3 Resource Allocation and Scheduling

In this model we additionally consider the transmission times of transmission
tasks, but we do not consider the network resources assuming that they
are unlimited. Thus, the definition of resource allocation is the same as in
Sect. 54.3.3. The transmission times are modeled as schedule-dependent setup
times (Mika et al. 2006, 2008), because they depend on the locations where the
corresponding computational tasks are executed, and may directly or indirectly
depend on some other parameters which depend on the schedule. The representation
of the solution and the neighbourhood generation mechanism may be the same as
described in Sect. 54.3.3. Only the method used to construct the schedule must
be changed. In this case we use a modified version of serial SGS that has been
proposed by Mika et al. (2008). Each pair of location and resource type is treated
as a separate resource type. Moreover, for each computational task j that requires
transmission task .i; j / the transmission time must be taken into account when the
computational task j is scheduled. The transmission time of transmission task .i; j /
is equal to 0 if both computational tasks i and j are executed in the same resource
node or is calculated according to the function gij.
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54.5 Model with Transportation Network

The third model of the considered problem is a generalization of the model pre-
sented in Sect. 54.4. In the previous model it is assumed that the transmission tasks
can be performed without limitation, i.e., network resources for which transmission
tasks compete are not scarce. In the model discussed in this section this assumption
is not valid, because the computer network is considered explicitly taking into
account its structure and other important parameters. The network links, and more
precisely speaking, the bandwidth of these links, are resources for which compete
the transmission tasks, which are members of set E that is one of two subsets of
tasks composing the workflow application. In the following subsections we present
the assumptions concerning the computational grid and workflow application as
well as the resource allocation process that is more complicated than those presented
in Sects. 54.3.3 and 54.4.3. We do not describe the scheduling phase.

54.5.1 Assumptions on the Computational Grid

As in two previous models we made the set of assumptions on the computational
grid. Assumptions 1–10 are the same as in the previous model presented in
Sect. 54.4.1, and we extend this set by the following four additional assumptions:

11. There are two types of nodes in the network: resource nodes which contain
resources for which computational tasks compete (i.e., processors) and non-
resource nodes considered only with respect to the network topology (there
may exist various resources in such nodes but they are either not available for
some reasons, or not constrained – not scarce, and computational tasks do not
have to compete for these resources)

12. Bandwidth between each two connected nodes is given and is identical in both
directions

13. Between two given nodes there can be more than one network link, and these
links may have different parameters, but these are alternative links and cannot
be merged in order to increase the bandwidth

14. The structure of the grid is represented by an undirected multigraph
15. Bandwidth of each link is discretely divisible, i.e., a minimal portion (quant) of

bandwidth is assumed.

54.5.2 Assumptions on the Workflow Application

Assumptions 1–10 are the same as in the previous model presented in Sect. 54.4.2
and Assumption 11 is a little bit changed and looks as follows:
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11. Transmission tasks are characterized by two values: the size of the data file(s)
to be transmitted, and the required bandwidth between the two nodes between
which the transmission is to be performed – the user, submitting a workflow to
the system, specifies the minimal bandwidth which is required to transmit data
between each two precedence-related computational tasks.

We assume that a transmission task gets for its execution a connection with
bandwidth equal to the minimal value given by the user. As a result, the transmission
time (i.e., the execution time of a transmission task) can take one of two values: the
data file size divided by the bandwidth, when successive computational tasks are
executed in different resource nodes, or zero, when they are executed in the very
same resource node. In our model we assume that the transmission is performed
according to the Available Bit Rate (ABR) class of service, as the user specifies a
minimum bandwidth needed for his transmission task. However, in this formulation
of the model we take this minimal value as the one that the task actually gets for
its execution, which makes it closer to the Constant Bit Rate (CBR) class. The
assumption on the considered class of service does not have a significant influence
during the resource allocation, but it is important in the phase of scheduling.

54.5.3 Resource Allocation

In the previous two models we present the definitions of feasible resource allocation
as well as some ideas for using metaheuristics to find a suboptimal schedule. In
these models the structure of the network was not taken explicitly into account, and
therefore a feasible resource allocation always exists if for each computational task
of the workflow application exists at least one resource node that is able to execute
this task. The model that was considered by Mika et al. (2011) and is presented in
this section is more complicated. The abovementioned condition for computational
tasks is insufficient, even if it is fulfilled, because there are also transmission
tasks which have their own requirements regarding the bandwidth of the network
links. Furthermore, the fulfillment of both the conditions separately may also be
insufficient, because it is possible that, even if two consecutive computational tasks
are assigned to two different computational nodes that are able to perform these
tasks, it may not exist the connection of the required bandwidth between these nodes
(even if there are network links in the network with the bandwidth greater than the
required one). Thus, the resource allocation for both types of tasks cannot be done
separately. In the remaining part of this section we explain how to check if a feasible
resource allocation exists, and how to find one or all of feasible resource allocations
for a given workflow application submitted to a given computational grid.

Firstly we need to introduce some definitions. Let us stress that we understand
resource allocation as assigning computational tasks to resource nodes, and assign-
ing transmission tasks to connections of required bandwidth. We do not assign
computational tasks to particular processors in resource nodes, i.e. we do not
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perform the scheduling phase, which may be done later when at least one feasible
resource allocation will be already known.

Definition 54.1. Resource node X� 2 X is capable for a computational task i 2 V
if Rk� � ri and $k � !i (Rk� is the number of processors with speed factor $k

available in resource node X�/.

Definition 54.1 determines conditions that have to be met to perform a computa-
tional task i in a given resource node. A node is capable for computational task i
if it contains at least a given number of processors with a required speed factor or
better.
The next two definitions (Definitions 54.2 and 54.3) determine the feasibility
conditions for transmission tasks. The first one refers to a single network link, and
the second one the chain of network links forming a path between two computational
nodes.

Definition 54.2. A link .�; �/ 2 ‰ is called a Bij-link if ‰��
 � Bij, otherwise it

is called non-Bij-link.

Let us assume that the computational task i is assigned to resource node X� 2 X,
and computational task j is assigned to resource node X� 2 X. Let Pij .�; �/ denote
a path in graph � .ˆ;‰/ from node X� to node X� .

Definition 54.3. A Bij-path is a path Pij.�; �/ which includes Bij-links only.

Notice, that Bij-path is capable of performing a given transmission task .i; j /
In the next definition, we define a feasible resource allocation RAW for the entire

workflowW .

Definition 54.4. Resource allocation RAW for workflow application W is
feasible if:

(i) each computational task i 2 V is assigned to a capable resource node X� 2 X,
i.e.:

8
i2V

i ˝ X� , 9
k
.Rk� � ri ^$k � !i / (54.1)

(ii) each transmission task .i; j / 2 E can be performed over a Bij-path, i.e.:

8
.i;j /2E

�
i ˝ X� ^ j ˝ X�

� ) 9
Pij.�; �/

8
.�; �/ 2Pij.�;� /

‰
��
 � Bij (54.2)

where i ˝X� denotes that computational task i is assigned to resource node X�.
As it was stated at the beginning of this section, these two conditions are interrelated,
but firstly we will discuss them separately.

Checking condition (i) is trivial, since it is sufficient to compare the resource
requirements of computational tasks with the computational capability of each
resource node. Let Yi � X denote the set of resource nodes capable of executing
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computational task i . Each task i then has to be assigned to exactly one node from
set Yi . If for any computational task i , Yi D ;, then there is no feasible resource
allocation for the considered workflow.

Checking condition (ii) is more complex. Firstly, we have to remove from graph
� all non-Bij-links. Then, in the resulting graph �ij � � , which may not be
a connected graph anymore, all connected components are identified using the
Depth-First Search (DFS) method. It is possible, that there will be more than one
connected component. We denote the u-th connected component in �ij by �u

ij � �ij,�
u D 1; 2; : : : ; u� I u� � jˆj� and we will call it briefly a subgrid. A transmission

task .i; j / can be assigned to any of these subgrids because subgrid �u
ij includesBij-

links only. If we denote by ˆu
ij the set of all nodes in subgrid �u

ij , then Xu
ij D ˆu

ij \ X
is the set of resource nodes in subgrid �u

ij . Transmission task .i; j / can be performed
in a given subgrid, if and only if both computational tasks i and j can be assigned to
their capable nodes from this subgrid. It is possible that it can be the same resource
node. Notice that in an extreme case all links from graph � may be removed,
if they all are non-Bij-links, and each subgrid �u

ij consists of one node only (i.e.
u D 1; :::; jˆj/. However, it is still possible to execute a transmission task .i; j / by
assigning tasks i and j to the same node, if it is capable of executing them both,
and the transfer time in this case equals 0.

Definition 54.5. A tri-task hi; j i is a triple fi; .i; j / ; j g, i.e., two consecutive
computational tasks and a transmission task between them.

Now we show how to find a feasible resource allocation for a tri-task hi; j i
Definition 54.6. A feasible resource allocation RAij for tri-task hi; j i is a pair�
X�;X�

�
such that i ˝ X�; j ˝ X�;X� 2 Yi and X� 2 Yj , and there exists at

least one Bij-path Pij .�; �/ between nodes X� and X� .

In order to find a feasible resource allocation RAij for tri-task hi; j i in subgrid �u
ij

we need to check if two sets Zu
i D Yi \ Xu

ij and Zu
j D Yj \ Xu

ij are not empty. If
yes it is sufficient to assign task i to any node from the set Zu

i and task j to any
node from the set Zu

j , otherwise it means that tri-task hi; j i cannot be performed in
subgrid �u

ij . In an extreme situation, if there is no subgrid capable of executing the
particular tri-task, it means that there is no feasible resource allocation for the given
workflow and, as a result, it cannot be executed on the grid it has been submitted
to. So, if there is at least one tri-task in the workflow for which no feasible resource
allocation exists, the whole workflow cannot be executed. In all other cases, we are
able to define all possible resource allocations for a given tri-task by defining sets
Zu
i and Zu

j for all subgrids �u
ij ; u D 1; 2; : : : ; u� and enumerating for each subgrid

all combinations
�
X�;X�

�
such that X� 2 Zu

i and X� 2 Zu
j . Collecting all those

combinations over the whole workflow (all subgrids) gives the set Aij of feasible
resource allocations for tri-task hi; j i. The following algorithm finds the set Aij:
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Algorithm RA-TT (Mika et al. 2011)

1. Aij WD ;
2. Find sets Yi and Yj . If Yi D ; or Yj D ;, then no feasible RAij exists and STOP.
3. Construct graph �ij by removing all non-Bij-links from graph � .
4. Use the DFS method to find all connected components (subgrids) �u

ij , u D
1; 2; : : : ; u� of graph �ij.

5. For each u D 1; 2; : : : ; u� define sets Zu
i D Yi \ Xu

ij and Zu
j D Yj \ Xu

ij, where
Xu

ij D ˆu
ij \ X . If Zu

i D ; or Zu
j D ;, then tri-task hi; j i cannot be executed in

subgrid �u
ij

6. For each u D 1; 2; : : : ; u� substitute Aij WD Aij [
�
Zu
i �Zu

j


. If Aij D ;, then

no feasible RAij exists.

Algorithm RA-TT detects two cases when the considered tri-task, and in
consequence the entire workflow, cannot be executed on the considered grid:

• if there is at least one computational task for which no capable resource node
exists (point 2 of Algorithm RA-TT), or

• if each computational task has at least one capable node, but there is at least
one transmission task which cannot be executed because no connection with the
required bandwidth between given nodes exists (point 6 of Algorithm RA-TT).

The complexity of the RA-TT algorithm is O.maxfjXj3 I .jˆj C j‰j/g/.
After the execution of Algorithm RA-TT for tri-task hi; j i of a workflow

application W we obtain set Aij of all feasible resource allocations RAij for hi; j i,
i.e., set of pairs

�
X�;X�

�
of resource nodes. In order to find a feasible resource

allocation for the whole workflow we have to find all feasible allocations RAij for
each tri-task hi; j i. Thus, we have to run Algorithm RA-TT for each tri-task and as
a result we obtain jEj different sets Aij. If any of them is an empty set, then there
is no feasible resource allocation for the whole workflowW . Otherwise, we have to
check dependencies between tri-tasks, because the condition 8 hi; j i 9Aij ¤ ; is not
sufficient for the existence of a feasible resource allocation for the entire workflow.
We explain this situation in Example 54.1 where case (1) from Definition 54.7 is
discussed.

Definition 54.7. Two tri-tasks hi; j i and hi 0; j 0i are called dependent, if one of the
following three cases occurs (Fig. 54.3): 1) i D i 0, or 2) j D j 0, or 3) j D i 0, which
is the same as j 0 D i .

Example 54.1. Assume a part of workflowW with three computational tasks i; j; j 0
and two transmission tasks .i; j / and .i; j 0/, as shown in Fig. 54.3 (case 1). The
required bandwidths for transmission tasks .i; j / and .i; j 0/ are given by Bij and
Bij0 , respectively. Workflow W has been submitted to the computational grid with
the simple structure presented in Fig. 54.4. Sets of resource nodes capable for
considered computational tasks looks as follows: Yi D fX1;X3g, Yj D fX2g
and Yj 0 D fX4g. The bandwidths of networks links are such that ‰1;2 � Bij and
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j

Fig. 54.3 Three cases of dependent tri-tasks

Χ3

Χ1 Χ2

Χ4

Fig. 54.4 An illustration for Example 54.1—a simple grid structure

‰3;4 � Bij0 , only. In all other possible pairs of‰ and B , always‰�� < Bij. It means
that RAij D .X1;X2/ is the only feasible resource allocation for tri-task hi; j i, and
RAij0 D .X3;X4/ is the only feasible resource allocation for tri-task hi; j 0i. Thus,
after the execution of Algorithm RA-TT for both tri-tasks we obtain the following
two sets of feasible resource allocations: Aij D f.X1;X2/g and Aij0 D f.X3;X4/g.
Since task i cannot be executed in resource nodes X1 and X2 at the same time, there
is no feasible resource allocation for workflowW .

Example 54.1 shows that another algorithm is necessary to remove from sets
Aij all resource allocations RAij which do not guarantee the proper assignment of
computational tasks from dependent tri-tasks to resource nodes. Let us first represent
a feasible resource allocation RAW for workflow W with respect to Definition 54.4
as a function w W V ! X, where .w .i/ D �/ , �

i ˝ X�

�
. Then, according to

Definition 54.7, for each pair .hi; j i ; hi; j 0i/ of dependent tri-tasks the following
conditions must be hold:

i D i 0 ) 9
X�

��
X�;X�

� 2 Aij ^ �X�;X


� 2 Aij0
�

(54.3)

j D j 0 ) 9
X


��
X�;X


� 2 Aij ^ �X� ;X


� 2 Ai 0j

�
(54.4)

j D i 0 ) 9
X�

��
X�;X�

� 2 Aij ^ �X� ;X


� 2 Ajj0
�

(54.5)
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In other words, function w assigns each computational task to a resource node in a
way that there is no conflict between dependent tri-tasks.

Let us define the sets AL
ij and AR

ij for each tri-task hi; j i by:

AL
ij D

�

Xl W 9
.Xl ;Xr /

.Xl ;Xr / 2 Aij

�

(54.6)

AR
ij D

�

Xr W 9
.Xl ;Xr /

.Xl ;Xr / 2 Aij

�

(54.7)

i.e., AL
ij is the set of resource nodes occurring as left elements of pairs RAij in Aij,

and AR
ij as right elements. Then for each computational task j , j D 1; : : : ; jV j, we

define set Aj as:

Aj D
Y

j

AR
ij \

Y

j

AL
jj0 (54.8)

where … denotes the intersection of multiple sets. Aj is a set of resource nodes
where task j can only be executed with respect to both computational and
transmission requirements of all tri-tasks in which j occurs. Finally, a new set Aij,
denoted AW

ij , is constructed thus

AW
ij D Aij \ �

Ai � Aj

�
(54.9)

Set AW
ij contains all resource allocations RAWij , which enable to maintain condi-

tions (54.3)–(54.5) over the entire workflow W . Consequently, if none of the sets
AW

ij is empty, there must exist at least one feasible resource allocation RAW for
workflowW . Otherwise, i.e., if at least one AW

ij D ;, then there is no feasible RAW .
Now, since each set AW

ij may contain more than one element, the problem of

choosing one RAij 2 RAWij for each tri-task hi; j i appears. This is necessary for
finding a particular feasible resource allocation RAW for workflowW . Each function
w satisfying the following conditions:

8
j2V 9

�2f1;:::;jXjg
w .j / D � (54.10)

�
X�;X�

� 2 AW
ij ) w .i/ D � (54.11)

�
X� ;X


� 2 AW
jj0 ) w

�
j 0� D 
 (54.12)

defines a feasible resource allocation RAW with respect to Definition 54.4.
In other words, each node j , j D 1; 2; : : : ; jV j of the workflow graph

representing a computational task must be assigned a number � indicating a resource
node of the grid. Then its incoming arcs (transmission tasks) must be covered by
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pairs (resource allocations) with the right element equal to � , whereas its outgoing
arcs must be covered with the left element equal to � . The number � does not need
to be unique, i.e., more than one node of the workflow may be assigned to the same
resource node.

Let us give the following illustration. We can treat pairs RAWij D �
X�;X�

�
from

sets AW
ij as domino bones with � spots on the left end, and � spots on the right end

(the orientation is important). The problem consists in covering all arcs of workflow
W with those domino bones in such a way that arc .i; j / is covered with a bone
from set AW

ij (left end to start of the arc, right end to finish of the arc) and, of course,
for each node every attached bone must have the same number of spots on the node-
adjacent end.

Summarizing, the following algorithm finds a feasible resource allocation RAW
for workflowW :

Algorithm RA-W (Mika et al. 2011)

1. Execute Algorithm RA-TT for each tri-task hi; j i to find the sets Aij. If at least
one Aij D ;, then no feasible RAW exists and STOP.

2. Find for each tri-task hi; j i sets AL
ij and AR

ij according to (54.6) and (54.7).
3. Find for each task j , j D 1; 2; : : : ; jV j set Aj using (54.8). If at least one

Aj D ;, then no feasible RAW exists and STOP.
4. Find for each tri-task hi; j i set AW

ij from (54.9).
5. Find a function w satisfying conditions (54.10)–(54.12).

It has been proved by Mika et al. (2011) that Algorithm RA-W always finds a
feasible resource allocation for workflow W if it does exist. Moreover, this feasible
resource allocation always can be found regardless of which pair of precedence-
related computational tasks is allocated first.

The complexity of the Algorithm RA-W is O.jV j2 � maxfjXj4 I .jˆj C j‰j/g/. It
means that finding a feasible resource allocation for a given workflow w submitted
to the computational grid � D .ˆ;‰/ can be done in polynomial time. Of course,
Algorithm RA-W can be also used as a full enumeration scheme to find all possible
feasible resource allocations. In such a case step 5 of the algorithm has to be changed
in order to find all possible functions w. In consequence the complexity of the
algorithm grows to O..jXj2/jV j2 /.

54.6 Conclusions

In this chapter the problem of scheduling workflow applications in computational
grid environments has been considered. Grid resources have been divided into two
types: computational resources and network resources. Accordingly, computational
tasks of a workflow as well as transmission tasks have been distinguished. The
problem consists in allocating grid computational resources to computational tasks,



1224 M. Mika and G. Waligóra

as well as grid network resources to transmission tasks in such a way that
resource demands of all tasks are satisfied and the makespan is minimized. Three
models of the problem are presented. In these models processors of different
types constitute computational resources, whereas the bandwidth is the network
resource for which transmission tasks have to apply. We have shown under which
assumptions the defined models of the scheduling and resource allocation problem
can be formulated.

For two of the considered models the scheduling algorithms are proposed. For
the last one an approach to the problem of finding feasible resource allocations for
a given workflow has been presented. The proposed algorithms find a computation-
and transmission-feasible allocation of resource nodes of a grid to computational
tasks of a workflow in polynomial time. They may also be used, under exponential
complexity to find all possible feasible resource allocations.

In future research some algorithms for the scheduling phase of the third model
will be developed. Moreover, heuristic algorithms for resource allocation can be
proposed and tested along with various strategies for local scheduling. Finally,
further extensions of the presented models can be considered.
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management. In: Nabrzyski J, Schopf JM, Wȩglarz J (eds) Grid resource management: state of
the art and future trends. Kluwer, Norwell, pp 271–294
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Mika M, Waligóra G, Wȩglarz J (2008) Tabu search for multi-mode resource-constrained project
scheduling with schedule-dependent setup times. Eur J Oper Res 187:1238–1250
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Chapter 55
Make-or-Buy and Supplier Selection Problems
in Make-to-Order Supply Chains

Haitao Li

Abstract Time- and cost-effective management of a make-to-order (MTO) supply
chain often requires sourcing decisions, such as make-or-buy and supplier selection,
to be jointly made with scheduling of supply chain operations. In this chapter,
we introduce an RCPSP-based modeling framework to exploit the synergies and
interactions between sourcing and scheduling decisions in MTO supply chains
under explicit resource constraints. A mixed-integer nonlinear program (MINLP)
is formulated to minimize the system wide total supply chain cost. We also present
a numerical example to demonstrate the scope and depth of decision-support offered
by the model for purchasing and program managers.

Keywords Make-or-buy • Make-to-order • Project scheduling • Resource
constraints • Supplier selection • Supply chain configuration

55.1 Introduction

Make-to-order (MTO) is a manufacturing paradigm widely found in defense,
airframe, shipbuilding, tooling, commercial transportation, and communication
industries (Wisner and Siferd 1995). Each order in MTO manufacturing is often
customized and unique, which requires supply chain functionalities ranging from
procurement, fabrication to assembly and delivery for fulfilling a customer order.
MTO differs from other business models such as assembly-to-order (ATO), build-to-
order (BTO) and make-to-stock (MTS) in the so-called customer order decoupling
point (CODP, Wouters 1991). MTS typically has the latest CODP toward the order
fulfillment end of the supply chain; ATO and BTO often include assembly of
standardized components (Gunasekaran and Ngai 2005); while the MTO supply
chain considered in this paper also involves sourcing, procurement and fabrication
operations.
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Effective management of MTO supply chains requires a well plan and coordina-
tion of sourcing, logistics and production operations. Assuming that the engineering
design of a product has been completed, purchasing and program managers need
to answer questions such as: whether to make the parts/components in-house or
procure them from suppliers (the make-or-buy decision); if the latter, where to
source from (the supplier selection decision); and when different operations or
processes are competing for limited availability of resources, what is the right
schedule (the project/program scheduling decision).

These decisions interact with each other and must be simultaneously addressed.
For instance, the make-or-buy decisions directly determine the cost and lead time of
each individual supply chain entity, i.e. a part, component, operation or a process.
However, their impact on the system wide performance such as the pipeline stock
cost, may also depend on the timing of these operations. Moreover, whether a
part can be produced in-house may depend on whether there is sufficient machine
capacity and capability. According to Wisner and Siferd (1995), 87.6 % of the
MTO manufacturers use process-focused (job shop) layout. Modern manufacturing
technologies further diversify the possible settings to flexible job shop (Pinedo
1995) and multi-purpose machines scheduling (Brucker 2001).

Production planning has been well-studied in the MTO research literature.
Early work focused on cost estimation and optimization of production rates with
learning effect (Walters 1963; Womer 1979). Various resource-constrained project
scheduling (RCPSP, Demeulemeester and Herroelen 2002) based models have been
proposed to optimize more detailed scheduling and sequencing decisions under
limited resources of machine, equipment and manpower. Notably, Demeulemeester
and Herroelen (1996) considered setup times, process and transfer batches. Neu-
mann and Schwindt (1997) modeled generalized temporal relationships such as
minimal and maximal time lags in a multi-project MTO setting. Kolisch (2000)
developed integrated models to simultaneously optimize lot sizing and assembly
scheduling decisions. A two-phase approach was proposed by Li and Womer
(2007) to optimize an MTO manufacturer’s bidding strategies. This line of research
emphasizes optimizing a portion of the MTO supply chain, i.e. the production and/or
assembly stage, while assuming cost and lead time of supply chain entities are fixed.
Therefore, these works do not exploit the interactions and synergies between the
procurement and production stages.

Sourcing and supplier selection for MTO supply chains have also been inten-
sively studied. For instance, Ronen and Trietsch (1988) developed a decision-
support system to manage purchasing and inventory for multiple large defense
programs. Bertrand and Sridharan (2001) proposed heuristic rules for making
subcontracting decisions. The model of Murthy et al. (2004) addresses buyer’s
vendor selection problem in presence of fixed costs, capacity constraints and
volume-based discounts. Yue et al. (2009) considered sourcing decisions of MTO
supply chains and the tradeoff between cost and reliability of on-time delivery.
Multi-objective supplier selection has been studied by Demirtas and Ustun (2008)
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and Sawik (2010) among others. Other approaches address supplier disruption due
to risk of supply shortage (Li and Zabinsky 2009; Sawik 2011; Wu et al. 2010)
and catastrophic events (Berger et al. 2004). These works have focused only on
the sourcing and procurement stage of an MTO supply chain. They make the
assumption that supply chain entities to be sourced are independent, thus do not
consider their demand, time and cost dependencies.

The existing methodologies optimize the MTO sourcing, supplier selection and
project scheduling decisions separately. Such decentralized approach may lead
to sub-optimal supply chain configuration in terms of system wide performance.
Therefore, there is a need of integrated modeling framework for designing an
MTO supply chain. The MTO supply chain configuration problem (MTO-SCCP)
introduced by Li and Womer (2012) has filled this gap.

We next formally describe the problem setting of MTO-SCCP with a numerical
example in Sect. 55.2. Detailed steps to model the key components of MTO-
SCCP and a mathematical programming formulation are presented in Sect. 55.3.
Section 55.4 discusses solution methods and presents an optimal solution to the
numerical example. We summarize conclusions and point out future research
opportunities in Sect. 55.5.

55.2 MTO Supply Chain Configuration

This section starts with a description of the MTO-SCCP setting with notations and
assumptions made. Then a numerical example of a multi-echelon MTO-SCCP is
presented to demonstrate its key components and features.

55.2.1 MTO-SCCP Setting

Consider an MTO manufacturer who just won a set O of new orders. Each order
demandsQo units of end product o 2 O before a deadline do.

Assumption 55.1. Engineering design of the products has been completed, so that
the bill-of-materials (BOM) of each product o is known.

Let Vo be the set of entities involved in the BOM of product o 2 O . An entity
can be a component, a part, or a process/operation, e.g., procurement, fabrication,
assembly, transporting, etc. Demand dependency between a pair of entities .i; j /
can be described by a constant 
ij, specifying that one unit of j requires 
ij units
of its predecessor i . Following Kolisch (2000), the BOM structure also defines the
precedence relationship among entities. That is, for an entity pair .i; j /, it is required
that j cannot start before i is finished. Thus the supply chain network described by
the BOM can also be viewed as a precedence project network.
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Assumption 55.2. The production or procurement of a part/component occurs as
an aggregated batch.

Assumption 55.2 means that the execution of entity i fulfills all the units needed
for i . It also implies that no preemption is allowed for each entity, i.e. an activity
cannot be interrupted once started. Here the manufacturer is more concerned about
the tactical level system wide supply chain design, rather than the operational level
lot sizing decisions.

Before production starts, the manufacturer must make sourcing decisions for
its supply chain entities. Sourcing is defined here, in a general sense, as the
way to provide or execute a supply chain entity. The company has three sets of
entities in consideration: V in representing the set of in-house only entities, V out for
procurement only entities, and V io being the set of undetermined entities which can
be either outsourced or produced in-house.

For entity i 2 V io the manufacturer must make the make-or-buy decision,
which may differ in fixed setup cost, direct cost per unit, lead time and resource
requirements of i . For instance, in-house production usually incurs significant
setup cost, or purchasing/renting cost for new equipment; it also requires certain
internal resource such as machines, equipment and skilled workforce. Outsourcing
or procurement often incurs less setup cost, and consumes little internal resource.

For each i 2 V out, several suppliers or vendors may be available, which may
differ in fixed ordering cost, direct cost per unit and lead time, reflecting the time-
cost tradeoff. For instance, an oversea supplier may supply an item at a lower
cost than a domestic supplier, but the transportation lead time may be significantly
higher; the next-day delivery is much faster than the ground shipping mode, but is
also much more costly.

For i 2 V in, the manufacturer has the option of crashing an entity (a process
or operation)by devoting more resources and exploiting the time-resource tradeoff.
For instance, a fabrication operation may take one machine and one skilled worker
20 days to complete, but will only take 7 days using two machines and two skilled
workers to complete.

Assumption 55.3. Exactly one option (mode) is selected for each entity.

For an entity i 2 V out, Assumption 55.3 specifies the single-sourcing require-
ment. Incentives for single-sourcing include quantity discounts and maintaining
long-term supplier relationship.

The MTO-SCCP simultaneously optimizes the following decisions:

• Mode selection for each supply chain entity
• Scheduling decision to determine the start time of each supply chain entity

The objective function is to minimize the system wide total supply chain cost
(TSC) consisting of three terms:

• Total setup cost for all in-house entities
• Total cost of goods sold
• Total pipeline stock cost, or the work-in-process (WIP) inventory cost
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The decisions must be made subject to the following constraints:

• Exactly one option is assigned to each entity
• An entity has only one start time (non-preemption)
• The precedence relationships among entities are satisfied
• The order delivery deadline is satisfied
• The resource requirement of all in-house activities cannot exceed the available

internal resources

The key feature of MTO-SCCP is that sourcing and scheduling decisions for
supply chain entities must be simultaneously made to obtain an optimal, even
a feasible solution. For instance, lead times of supply chain entities depend on
sourcing decisions, which directly impact the feasibility of a schedule to satisfy the
precedence, deadline and resource constraints. In addition, the MTO-SCCP seeks
to optimize the global performance of a supply chain, instead of a portion of it.
The MTO-SCCP can be compared with other supply chain design and configuration
problems (Chandra and Grabis 2007). It addresses the tactical level configuration,
which differs from the strategic level supply chain network design (Daskin 1995), or
the operational level coordination of supply chain activities (Hall and Potts 2003).

55.2.2 A Numerical Example

We present a numerical example to illustrate the problem setting and data input
needed for MTO-SCCP. This example is adapted from the one in the Supplementary
Material of Li and Womer (2012).

A manufacturer receives two new orders of 100 Flat Racks and 200 Rear
Doors from two different customers. Both orders must be delivered in 120 days.
The engineering team quickly comes up with the product design as their bill-of-
materials (BOM) shown in Fig. 55.1. The BOM has been simplified by aggregating
some parts/components into modules, but this simplification does not eliminate
any feature of a typical MTO-SCCP. Note that some parts and components can be
shared. This necessitates the need for simultaneously considering the two products.
Without loss of generality, a one-to-one relationship is assumed for the demand
dependency. That is, one unit of a component requires one unit of its immediate
successor down the BOM.

The manufacturer needs to come up with a plan to source some parts from
different suppliers. For the in-house entities, a program manager has the option
of using more resources to reduce production duration, or less resource to reduce
production cost. This reflects the well-known time-cost tradeoff in project crashing.
For those parts that can be either procured or made in-house, the make-or-buy
decision must be made. The delivery to customers is made by third-party logistics
providers who have various shipping options such as ground transportation and next-
day delivery. The available options for all the entities are provided in Table 55.1.
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Fig. 55.1 BOM for the two products: flat rack and rear door

Table 55.1 Available sourcing options for all the supply chain entities

Option 1 Option 2 Option 3

Outsourced p c p c p c

Low cost parts 40 120 20 125 10 128

High cost parts 30 200 15 208 10 212

Medium cost parts 20 150 10 155 5 158

Delivery of flat rack 15 12 7 22 3 26

Delivery of rear door 15 12 7 22 3 26

Option 1 Option 2 Option 3
In-house p c r1 r2 p c r1 r2 p c r1 r2

Flat rack 20 15 1 1 10 15 2 2 7 15 4 4

Rear door 8 10 1 1 4 10 2 2 3 10 4 4

In-house Outsource

Undetermined entity p sc c r1 r2 p sc c r1 r2

Bracket 30 3,000 20 1 2 25 0 30 0 0

Retaining pin 25 1,500 15 1 2 20 0 20 0 0

Front cross bar 15 500 10 1 2 10 0 15 0 0

Rear cross bar 15 500 10 1 2 10 0 15 0 0

Roller pin 10 1,000 20 1 2 8 0 25 0 0

Plate 10 1,000 15 1 1 8 0 20 0 0

Pintle adapter 10 800 12 1 1 8 0 16 0 0

p lead time (in days), c variable cost added (in $), r1 units of machines required, r2 units of skilled
workers required, sc fixed setup cost (in $)

For outsourced entities, a purchasing manager must consider the tradeoff
between lead time and cost. For instance, one supplier provides the Low Cost
Parts at $120/unit in 40 days, while the other supplier can deliver in 20 days (faster)
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at $125/unit (more expensive). Regular ground shipping of Flack Rack takes 15
days at $12/unit, but expedited shipping takes 3 days at $26/unit.

Options for in-house entities differ in lead time and resources committed. We
assume that the cost of machining and workforce is sunk, so that conserving unused
resources does not reduce the cost of the product. For instance, the task of Flat Rack
assembly using one machine and one skilled operator takes 20 days, while the lead
time can be shortened to 7 days by using four machines and four skilled operators,
but the direct cost added remains $15/unit. The company has a total of four machines
and four operators available.

Options for the remaining entities differ in setup cost, direct cost added, resources
required and lead time, depending upon in-house production or outsourcing. For
instance, the in-house subassembly of the Bracket costs $3,000 to start and $20/unit
to continue, requiring one machine and two skilled workers; while outsourcing this
entity requires no setup cost or resources, but leads to higher direct cost ($30/unit).
The outsourcing (25 days) is also a little faster than the in-house production for the
Bracket (30 days).

The purchasing and program managers would like to answer the following
questions:

• Should bracket, retaining pin, front cross bar, rear cross bar, roller pin, plate and
pintle adapter be made in-house or outsourced/subcontracted?

• Which suppliers and vendors should be selected for the low, medium and high
cost parts?

• What is the best resource level allocated for the final assembly of flat rack and
rear door?

• Which shipping mode should be chosen for delivering the finished flat rack and
rear door?

• What is an optimal schedule for the two programs to be delivered on time?

The company has been using a cost accounting based approach, emphasizing cost
of goods sold (COGS) minimization, to make sourcing decisions. For each item
to be procured, the purchasing department ranks a list of suppliers based on their
direct cost, handling and shipping cost, etc. and chooses the one with the lowest
total cost. This approach can be viewed as a direct cost minimization (MinCost
heuristic) method which minimizes the direct cost of each supply chain activity, thus
the COGS. There are exceptions, though, especially when the customer requires a
tight delivery deadline. Under such circumstance, each supplier is asked to quote an
estimated lead time. Then the purchasing department picks the one with the shortest
lead time (MinLT heuristic). For items or activities which can either be outsourced
or produced in-house, the make-or-buy decision is made using the well-known
break-even analysis for process selection (Jacobs et al. 2009), which compares the
fixed setup cost and total variable cost given the demand quantity.

After the sourcing decisions have been made, it is then the program manager’s
responsibility to plan and monitor supply chain activities to make sure orders are
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completed and delivered on time. A number of project management techniques
such as the work-breakdown-structure (WBS), critical path method (CPM) and
Gantt chart are employed for this purpose. The WBS is defined based on the
BOM provided by the operations department. CPM is used to obtain the earliest
completion time of contracts and the start-finish time of all the activities involved.
Gantt chart is employed to monitor and control the resource utilization of machines
and workforce to make sure it does not exceed the available capacities.

Such two-phase sourcing-planning approach works well when the manufacturer
has ample resource capacity available to accommodate all in-house production
activities. However, when the company’s resource capacity is limited, one often
struggles to execute the two-phase plan, thus delays and disruptions are not
uncommon. The root cause of such deficiency is the lack of a holistic view of the
entire supply chain and the available resources when making sourcing decisions.
That is, the company may sometimes commit too much in-house production (since
it may often appear to be less expensive than outsourcing), for which it will not have
enough capacity to support. Other deficiencies of the existing approach include:

• Items in the BOM are treated independently as isolated entities. Their inter-
dependencies in terms of demand and time are not addressed. For instance, if
one part becomes more expensive, its successive components and semi-finished
goods will also become more expensive, which will lead to higher inventory
holding cost; if one part has a longer lead time, its successors may be delayed
(depending on whether they are critical activities or not).

• The MinCost or MinLT heuristic focuses on only a single performance metric of
the supply chain. Specifically, the MinCost heuristic minimizes the COGS, but
not the system wide pipeline stock cost; the MinLT heuristic minimizes the order
completion time at the price of higher unit direct cost.

• The CPM itself does not explicitly consider resource constraints when develop-
ing the schedule.

55.3 Model Development

This section starts with detailed steps to model the supply chain structure, sourcing
decisions and cost components of the MTO-SCCP problem. We then present
a mixed-integer nonlinear programming (MINLP) model formulation for the
addressed problem.

55.3.1 Modeling Supply Chain Structure

The fundamental idea in our modeling approach is to view an MTO supply chain
as a project. While it is a common practice to manage and control MTO activities
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Fig. 55.2 MTO supply chain modeled as a project network

for fulfilling an order as a program/project (Christ 2001), the existing approach only
addresses the in-house portion of the chain. Our project network includes all entities
in the BOM plus any additional supply chain related activities such as procurement,
logistics and delivery.

More formally, the project network G D .V;E/ for the set O of orders can
be described by the set of all entities with V D V1 [ V2 : : : [ VjO j, and a set E
of arcs. Each arc .i; j / 2 E with a weight 
ij has two meanings: (a) it defines
the demand dependency between i and its immediate successor j , i.e. one unit of
j requires 
ij units of i . Thus the demand �i of i 2 V can be derived by the
backward recursion: �i D P

j W.i;j /2E 
ij�j , where the demand of the end product
o 2 O is given asQ0. (b) Following Kolisch (2001), an arch .i; j / also specifies the
precedence relationship between i and j , i.e. j cannot start before i is finished.

Using the above modeling framework, the BOM of the numerical example in
Fig. 55.1 can be transformed into the activity-on-node (AON) precedence project
network in Fig. 55.2. Here supply chain entities involved in the two orders of Flat
Rack and Real Door are represented by project activities (nodes), grouped into
stages of procurement, fabrication and assembly in a multi-echelon supply chain.
The last layer of nodes can be added to represent the delivery stage. We may further
add dummy nodes as start and end of the project. Each arc in the AON network
corresponds to the precedence relationship stipulated by the demand dependency
in BOM. For example, the subassembly of Pintle Adapter must precede the final
assembly of Rear Door. The use of project network offers a convenient platform to
model both complex demand- and time-dependencies in an MTO supply chain.
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55.3.2 Modeling Sourcing Decisions

We devise a unified framework to model various sourcing decisions including make-
or-buy, supplier selection and resource allocation. Let Mi be a set of sourcing
options (modes) available for an entity i , and R be a set of internal resources such
as machines, equipment and skilled workforce. Each modem 2 Mi is characterized
by a tuple: Tim D fpim; cim; scim; rikm.k 2 R/g, where pim denotes the lead time of
i executed in mode m, cim is the direct cost of i when mode m is chosen for i , scim

is the fixed setup cost of i in mode m, and rikm represents units of internal resource
k required by i in modem.

For an outsourced/procured entity i 2 V out, the mode m refers to different
available suppliers for i , which may differ in the fixed ordering cost scim, cost per
unit cim and lead time pim. For all i 2 V out, no internal resource is required, i.e.
rikm D 0 for all k 2 R.

For an in-house entity i 2 V in,m represents different resource allocation options
with different lead time pim, unit cost cim, and resource requirement rikm for some
resource k 2 R. Here we may fix scim D 0 assuming that the company already has
the core competence and expertise for entity i , so that there is no significant initial
setup cost incurred.

For entity i 2 V io, m means either in-house production or outsourcing. Here the
main tradeoff is between the fixed setup cost scim (high for in-house and low/zero
for procurement) and unit cost cim (low for in-house and high for outsourcing). What
differentiate in-house versus outsourcing are also the internal resource requirement
rikm (none if outsourcing and non-zero if in-house) and lead time pim.

55.3.3 Modeling Total Supply Chain Costs

Given the scope of MTO-SCCP, the objective function in the optimization model
must address the system wide supply chain performance. We consider the total
supply chain costs with three components: cost of goods sold (COGS), total fixed
setup cost (TFC) and total pipeline stock cost (TPC).

The TFC is the sum of fixed setup cost scim of each supply chain entity depending
upon the option selected for the entity.

The COGS can be computed based on the cumulative cost of each end product
o 2 O , which is a function of the sourcing decision and demand dependencies in
the supply chain network. Consider the example in Fig. 55.3, where entity i has a set
of 1; 2; : : : ; m available options with different direct cost ci1; ci2; : : : ; cim. Suppose
the second option is chosen for i (in gray), then the direct cost per unit of i is ci2.
To get the cumulative cost per unit of i , one should add up ci2 with the cumulative
costs of all i ’s immediately predecessors. If i has only one immediate predecessor
j (Fig. 55.3a), i ’s cumulative cost cci equals simply its own direct cost ci2 plus j ’s
cumulative cost ccj ; if i has two immediate predecessor j and j 0 (Fig. 55.3b), cci
is the sum of ci2, ccj and ccj 0 .
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Fig. 55.4 Compute the pipeline stock cost

To see how TPC is computed, consider entity i with lead time pi dependent
upon the option selected for i as shown in Fig. 55.4. Suppose i ’s direct cost is ci
(resulted from the option selected for i ), and its cumulative cost is cci (as sum of
the cumulative costs of all i ’s predecessors), then the mean cost of entity i is the
average of cci �ci and cci . The work-in-process (WIP) or pipeline inventory cost of
entity i can be computed as hc �pi�i .cci � ci=2/, where hc is the inventory holding
cost per time period. Because both pi and .cci � ci=2/ is a function of the option
selection decision, the TPC is clearly nonlinear.

55.3.4 MINLP Formulation

A mixed-integer nonlinear programming (MINLP) formulation is presented next to
model the MTO-SCCP.
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Define time-indexed binary decision variable ximt for i 2 V , m 2 Mi , t 2
f1; 2; : : : ; T g, where T is the maximum of due dates d1; d 2; : : : ; d joj of all the
orders. ximt D 1 if and only if entity i is assigned with modem and starts in the t-th
time point in the planning horizon. Note that the decision variable x simultaneously
makes mode assignment and scheduling decisions.

Several other decision variables are needed for the convenience of formulating
the model. Let pi 2 ZC represent the lead time of entity i 2 V , ci � 0 be the direct
cost of i , and cci � 0 denote the cumulative direct cost of i .

The objective function can be written as:

Min.
X

i2V
hX

m2Mi

XLSi

tDESi
scimximt C �ici C hc � �i .cci � ci=2/pi

i

(55.1)

It minimizes the total supply chain costs (TSC) consisting of total fixed cost
(TFC), cost of goods sold (COGS) and total pipeline stock cost (TPC). ESi and
LSi represent the earliest and latest starting time of i , respectively. They can be
obtained by the classical temporal analysis in project scheduling. The least duration
(most expensive) option is chosen for computing ES, and longest duration (least
expensive) option is chosen for computing LS.

Since an entity cannot be interrupted once started (non-preemption in Assump-
tion 55.2), it has exactly one start time. An entity is also assigned with exactly
one mode due to the single-sourcing requirement (Assumption 55.3). These two
requirements can be satisfied by the following constraint (55.2), which assigns
exactly one mode and starting time to an entity.

X

m2Mi

XLSi

tDESi
ximt D 1 .i 2 V / (55.2)

Based on the option selection decision, the lead time of an entity can be computed
by (55.3):

pi D
X

m2Mi

XLSi

tDESi
pimximt .i 2 V / (55.3)

In a similar way, an entity’s direct cost can be computed by (55.4):

ci D
X

m2Mi

XLSi

tDESi
cimximt .i 2 V / (55.4)

Next, Constraint (55.5) derives the cumulative direct cost of an entity as the
sum of the entity’s direct cost and the cumulative direct cost of all its immediately
predecessors.

cci D ci C
X

j W.j;i/2E ccj .i 2 V / (55.5)
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While Constraints (55.2)–(55.5) model the assignment aspect of the MTO-SCCP,
the scheduling aspect of MTO-SCCP are taken care of by the following constraints.

The precedence constraints between a pair of entities .i; j / 2 E can be enforced
by Constraint (55.6), where the left-hand-side of (55.6) is the difference between
the starting time of j and the starting time of j ’s immediate predecessor i .

X

m2Mj

XLSj

tDESj
txjmt�

X

m2Mi

XLSi

tDESi
tximt � pi ..i; j / 2 E/ (55.6)

The delivery deadlines of all orders are satisfied by Constraint (55.7), where the
left-hand-side of (55.7) is the finishing time of an entity computed as the entity’s
starting time plus its lead time or duration.

X

m2Mi

XLSi

tDESi
tximt C pi � do .o 2 O I i 2 Vo/

(55.7)

Finally, the resource requirement of all supply chain entities in any period
of the planning horizon cannot exceed the company’s available internal resource
capacities. The inequality (55.8) below models such resource constraint. For each
resource type k 2 R and time period t in the planning horizon, Constraint (55.8)
ensures that the total requirement of k by all the active entities in period t must not
exceed the available capacity Rk . The inner most summation at the left-hand-side
identifies those entities being active at t according to their starting time through the
time-indexed decision variable x. The outer summation adds up all entities that are
possible to be in-house, except those outsourced entities in V out.

X

i2V in[V io

X

m2Mi

rikm

Xminft�1;LSi g
�Dmaxft�pim;ESi g xim� � Rk .k 2 RI t 2 f1; : : : ; T g/

(55.8)

Given both the assignment and scheduling components in the MINLP formula-
tion (55.1) through (55.8), the MTO-SCCP is an instance of the assignment-type
RCPSP (Drexl et al. 1998). The model reduces to a single-mode RCPSP when the
mode assignments are fixed. Therefore, the MTO-SCCP is NP-complete, because
the single-mode RCPSP is well-known to be NP-complete (Bartusch et al. 1988).

55.4 Solution Methods and Results

The MINLP model for MTO-SCCP can be solved by the general MINLP algorithms
(Floudas 1995). For large-size instances, however, such exact methods may not
be efficient enough due to the NP-completeness nature of MTO-SCCP. In this
section, we first discuss alternative solution approaches, then present an optimal
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configuration solution to the numerical example in Sect. 55.2.2. The purpose is
to demonstrate various decision-supports provided by the MTO-SCCP model for
purchasing and program managers.

55.4.1 Solution Approaches

Li and Womer (2012) have developed a decomposition algorithm to exploit the
assignment-scheduling structure of the MINLP formulation. Their algorithm is
theoretically grounded in the classical Benders decomposition (Benders 1962)
and hybrid Benders decomposition (HBD) framework (cf. Chap. 27 in the first
volume of this handbook). It decomposes the MINLP into a relaxed master problem
(RMP)containing only the assignment component of model, and a sub-problem
(SP) containing only the scheduling component. An optimal solution to the RMP
is a partial solution to the original MINLP, and the optimal RMP objective
function value provides a lower bound to the MINLP. The feasibility of the optimal
RMP solution is checked by solving the resulting scheduling SP (with the RMP
assignment solution fixed). If the SP is feasible, an optimal solution has been found;
otherwise, the cause of infeasibility is deduced as “cuts” to be added back to the
RMP. The algorithm iterates until an optimal solution is found or infeasibility is
proved. We refer to Li and Womer (2012) for the detailed algorithm procedure and
finite convergence proof.

The advantage of HBD algorithm is its ability to find and prove optimality.
However, its performance depends largely on the tightness of order delivery
deadlines and effectiveness of handling the RMP. When order deadlines become
tight,the number of iterations will increase and the size of RMP will grow, which
makes the HBD less effective.

Various metaheuristic algorithms (Glover and Kochenberger 2003) are promis-
ing, as they have been successful for variants of RCPSP. The advantage of a
metaheuristic is its ability to work for problems with nonlinear objective function as
in the MTO-SCCP. This can be done through either a population-based framework
such as genetic algorithm (Holland 1975) and scatter search (Glover 1997) etc., or
local search based methods including tabu search (Glover and Laguna 1997) and
simulated annealing (Kirkpatrick et al. 1983) among others.

55.4.2 Optimal Configuration Results

An optimal solution to the numerical example can be found by the HBD algorithm.
Table 55.2 compares quality of the optimal configuration solution with solutions
found by the two heuristics, MinCost and MinLT, in Sect. 55.2.2. The MinCost
method clearly results in least COGS, but has a higher pipeline stock cost due
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Table 55.2 Computational results of different approaches

MinCost MinLT Optimization

heuristic heuristic solution

COGS (thousand $) 302.0 330.5 310.3

Total fixed cost (thousand $) 8.3 0 0

Pipeline stock cost (thousand $) 21.0 11.4 17.2

Total supply chain cost (thousand $) 331.3 341.9 327.5

Program makespan (days) 120 56 98

to longer program makespan. The MinLT solution requires the least makespan
to complete the orders, but at the price of much higher COGS. The optimal
configuration leads to a moderate level of both program makespan and COGS.
Insight 1 follows.

INSIGHT 1. An optimal configuration of MTO supply chain exploits the tradeoff
between cost and lead time and balances among COGS, pipeline stock cost, fixed
cost and program makespan to achieve minimum total supply chain cost.

It is insightful to examine the detailed configurations of the three solutions in
Fig. 55.5. The optimal supply chain configuration in Fig. 55.5a suggests low-cost
options for all the outsourcing entities, high-cost options for the two in-house
entities, and outsourcing to the high-cost (fast) suppliers for the undetermined
entities. The MinLT configuration in Fig. 55.5b does not recommend in-house
production for the undetermined entities either, and always chooses the fast and
high-cost options for all entities. One may also verify that the Flat Rack assembly
and Rear Door assembly cannot overlap when they are configured to utilize more
resources as in Fig. 55.5a, b. The MinCost configuration in Fig. 55.5c suggests in-
house production for undetermined entities, and always chooses the low-cost but
slow options for all entities. The optimal configuration leads to a moderate program
makespan compared with the shorter makespan of MinLT solution and the longer
makespan of MinCost solution.

Figure 55.6 shows the effect of order deadline on total supply chain cost (TSC).
As the deadline increases (becomes less tight), the optimal TSC decreases at a
diminishing rate. Such relationship may also depend on the available resource
capacity. These insights have created opportunities for the company to reduce supply
chain costs by negotiating the delivery date with customer. The MTO-SCCP solution
has provided an effective way for managers to quantify the monetary value of
time, thus reliable decision-support for such negotiation. For example, when the
resource capacity is four and the customer’s current deadline is 85 days, there is little
incentive to extend the delivery date. If the current deadline is 80 days, however,
there is a high incentive to negotiate with the customer to extend the deadline to 85
days, which will potentially save the company a total of $1,360 or $272/day.
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Fig. 55.5 Gantt charts illustrating supply chain configurations of three approaches. (a) Activities
with optimal configuration. (b) Activities with minimum lead time configuration. (c) Activities
with minimum direct cost configuration

Figure 55.7 further compares the three cost components: total fixed cost, COGS
and pipeline stock cost as a percentage of the optimal total supply chain cost when
order deadline varies. A large (less tight) deadline makes it feasible and attractive
to choose less costly options (but with longer lead time), so that the proportion of
COGS in the TSC can be reduced. As a result, however, longer lead times of supply
chain entities will potentially increase the proportion of total pipeline stock cost.
The observations in Figs. 55.6 and 55.7 can be summarized by Insight 2.
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Fig. 55.6 Optimal total
supply chain cost when order
deadline varies

INSIGHT 2. Increasing order delivery deadline will reduce the optimal total supply
chain cost at a diminishing rate. As the deadline increases, the percentage of total
pipeline stock cost will likely increase, and the percentage of COGS will likely
decrease.

Figure 55.8 depicts the optimal make-or-buy decision of four parts: Bracket,
Plate, Front Cross Bar and Pintle Adapter when the demands for the end products
(Flat Rack and Rear Door) vary. Both Bracket and Plate show a pattern that can
be explained by the break-even analysis: in-house production becomes preferable
to outsourcing when demand exceeds the break-even point. Notice that the decision
for the Bracket appears to depend on both the demand of Flat Rack and Rear Door,
while the decision for Plate seems to have little dependence on the demand of Flat
Rack. This can be explained by the BOM structure in Fig. 55.1: it is clear that
Bracket is required for both Flat Rack and Rear Door, whereas Plate is a part only
required by Rear Door.

The optimal make-or-buy decisions of Front Cross Bar and Pintle Adapter are
more interesting. There is no clear break-even point (boundary) for either Front
Cross Bar (required solely by Flat Rack) or Pintle Adapter (required solely by Rear
Door). The distribution of decisions is fairly even no matter how demand varies.
This deviates from the common wisdom as suggested by the break-even analysis,
but can be explained by the impact of limited availability of internal resources. Note
that the assemblies of Front Cross Bar and Pintle Adapter belong to the same supply
chain echelon (Fig. 55.2), thus will compete for their shared machines and skilled
operators. With limited resource capacity available, the company will always have
to outsource some entities in order to obtain a feasible schedule and ensure on-time
order delivery, no matter what the demand quantities are.
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Fig. 55.7 Tradeoffs among
different cost components
when order due date varies.
(a) TFC as a percentage of
TSC. (b) COGS as a
percentage of TSC.
(c) Pipeline stock cost as a
percentage of TSC
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Fig. 55.8 Optimal make-or-buy decisions of four parts when demand varies (0—make, 1—buy)

INSIGHT 3. The optimal make-or-buy decision in an MTO supply chain can be
affected by various factors such as demand quantities, BOM structure, order
deadline, resource requirement and capacity. Solutions of the naïve break-even
analysis may be suboptimal or even infeasible.

55.5 Conclusions

After receiving new orders or contracts, an MTO manufacturer must optimize its
make-or-buy and supplier selection decisions for all the relevant supply chain enti-
ties: parts, components and operations. These sourcing decisions are impacted by
demand quantity, delivery deadline, the products’ underlying BOM structure, their
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resource requirements and the company’s available internal resource capacities.
Sourcing also often interacts with scheduling of supply chain entities, especially
when there is limited availability of resources for executing operations. Most of the
existing research in MTO manufacturing, however, handles sourcing and scheduling
decisions separately.

The MTO supply chain configuration problem (MTO-SCCP) considered in this
chapter has filled this gap. We model the MTO-SCCP as a variant of RCPSP,
i.e. an assignment-type RCPSP, to optimize sourcing decisions including make-
or-buy, supplier selection and more general mode selection, in conjunction with
the scheduling of operations. The RCPSP-based modeling framework makes it
convenient to model the resource-constrained production environment and complex
demand dependencies in the BOM structure. The MTO-SCCP also minimizes the
system wide total supply chain costs including total setup cost, cost of goods sold
(COGS) and pipeline stock cost.

The MTO-SCCP solution assists purchasing and program managers to ensure
orders are delivered on time and in a cost-effective way. Specifically, the following
decision-supports are provided:

• Exploit the interaction between sourcing and scheduling of supply chain entities
• Optimize make-or-buy and supplier selection decisions in a resource-constrained

environment
• Exploit the tradeoff among direct cost, lead time and requirement of internal

resources
• Quantify the impact of order delivery deadline on the optimal sourcing decisions

and total supply chain costs
• Quantify the impact of internal resource capacity on the optimal sourcing

decisions and total supply chain costs

Our MTO-SCCP modeling framework opens an avenue of future research
opportunities. Other criteria,such as quality and reliability, can be considered in
the sourcing decisions. One may also balance multiple supply chain performance
measures of cost, earliness-tardiness in just-in-time (JIT) and responsiveness,
through a multi-objective optimization approach. Furthermore, the current model
does not allow preemption by assuming one aggregated batch. Such assumption can
be relaxed to address more detailed lot sizing decisions. Last but not least, the single-
sourcing assumption can be generalized to allow multiple-sourcing, i.e. multiple
suppliers or production modes, for supply chain entities.
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Chapter 56
Project Scheduling for Aggregate Production
Scheduling in Make-to-Order Environments

Arianna Alfieri and Marcello Urgo

Abstract Production planning of highly customised and complex products is a
difficult task and cannot be tackled efficiently by using well-known hierarchical
approaches. The main reason is that aggregate production operations correspond
to whole production phases, thus requiring planning, scheduling, and procurement
activities to be considered at the same decision level. This makes project scheduling
approaches particularly suitable for this context. However, the pervasive use of
human resources (most operations are executed manually) poses other problems
related to the definition of activity durations. In fact, the duration of an activity
cannot be a priori defined because it is related to the amount of allotted resources,
which in turn depends on the number of products processed at the same time in the
shop floor and on the number of workers involved, which can also vary over time.
This impacts also on the possibility of correctly modelling the precedence relations
between aggregate activities. In this chapter we propose a way to tackle such
problems, using a project scheduling approach with a variable intensity formulation
and feeding precedence relations and show its application to a real industrial case.

Keywords Aggregate production planning • Feeding precedence relations •
Make-to-order • Production scheduling • Project scheduling

56.1 Introduction

One of the core activities in the management of production systems is production
planning. It deals with the decisions on how and when the production has to
be made. These decisions must take into account the customers’ orders and the
availability of materials and resources (machines, tools, etc.) with the aim to
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minimise production time and cost, to use resources efficiently, and to maximise
the overall efficiency of the production system. Furthermore, financial, marketing
and technological constraints might be present, thus increasing the complexity of
the decisions.

Production planning typically addresses tactical decisions (Anthony 1965). The
production volumes in the different periods, the size of the workforce, the amount
of overtime and subcontracting work are set over a medium-term time horizon,
and are typically revised with a frequency not smaller than 6–12 months and not
larger than 2–3 years. Considering the time horizon of these decisions, it is clear
that they need to be based on aggregate information. In fact, detailed information is
not available and/or would increase the complexity of the problem. Hence, similar
products are combined into aggregate product families that can be planned together,
production resources, such as distinct machines or human workers, are combined
into an aggregate machine or labor resource, and time periods are usually defined
on a monthly basis. The existence of an aggregation structure for products, resources
and time periods is a necessary requirement for aggregate planning.

Once the aggregate plan has been devised, the availability of raw materials and
components must be assured. In fact, finished products are usually composed of
many components and sub-assemblies that must be available in the production
system before the production of end items starts. Otherwise, the production plan
cannot be executed. This availability is assured by the so-called material require-
ments planning (MRP) that works over a shorter time horizon, disaggregating the
aggregate demand and considering the bill-of-material structure in details. The MRP
provides the supply plan for the dependent-demand items (i.e., components and sub-
assemblies) in a coordinated and systematic way (Vollman et al. 1992). Aggregate
production planning and material requirement planning heavily depend on each
other and their interactions have a strong impact on the production performance
(Harris et al. 2002).

The decision phase following the MRP entails the definition of a detailed plan for
the production activities at the operational level, e.g., tool loading, job scheduling or
dispatching. This phase explicitly considers a higher level of details and addresses
the assignment of activities to production resources, the precedence relations among
them, etc.

This sequence of approaches resembles the so-called hierarchical production
planning and control framework (Hax and Meal 1975; Bitran and Tirupati 1993;
Hopp and Spearman 2000). It is characterised by the idea of separating the decisions
at the different levels of detail and uses linking mechanisms to transfer the results
from higher levels (those with less detailed information) to lower ones (those
with more detailed information). The hierarchical approach fits very well mass
production systems where repetitive operations (due to the presence of large batches
of identical products that require the same operations) do not need to be scheduled
in detail when dealing with tactical decisions.

On the contrary, in make-to-order (MTO) systems that produce items with
high complexity like instrumental goods, aircrafts, power generation devices, the
effectiveness of the hierarchical approach is somewhat decreased. The production,
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in these cases, is the so-called one-of-a-kind production, much more similar to the
execution of a project rather than to the production of goods. Hence, exactly as in
project management, planning, scheduling and material procurement tend to work
on similar time horizons, as it will be discussed in Sect. 56.2, and project scheduling
approaches are a suitable tool to address the production planning problem (Márkus
et al. 2003).

This chapter addresses the application of project scheduling approaches to
the production planning problem in MTO systems producing high-complexity
items. Section 56.2 contains the industrial motivation while Sect. 56.3 revises the
application of project scheduling approaches to MTO systems. The mathematical
formulation of the production planning problem analysed under a project scheduling
framework is described in Sect. 56.4. Finally, Sect. 56.5 presents an application of
the proposed approach to an industrial case of machining centre production.

56.2 Production Planning in MTO

The production of highly complex and customised items, such as production lines,
special production equipment, specifically designed civil or military aircrafts or
helicopters, can be considered as a one-of-a-kind process. In fact, not only the
system must be a MTO system, but each product has its own characteristics,
tailored for the specific customer, that need specific/dedicated design, production
and delivery activities and specific requirements in terms of work content, number
and kind of components.

As anticipated in Sect. 56.1, the hierarchical production planning and control
framework does not fit very well one-of-a-kind MTO production systems. However,
the concept of aggregation can be used also in this case, to make the planning
problem more easy to study. The aggregation can be performed by grouping distinct
production operations into aggregate activities and single machines and workers
into groups of production resources. The main difference from the mass production
case is that, in one-of-a-kind MTO systems, aggregate activities often represent
whole production phases whose duration could be within the range of weeks or
either months. Also, although aggregate activities are an aggregation of production
operations, they refer to a single product (or to a very small batch of products) whose
completion has to meet possible due dates negotiated with the customer. Hence,
even at the aggregate level, precedence constraints between activities cannot be
ignored and have to be considered because of their impact on the resource load. This
makes project scheduling approaches more suitable for one-of-a-kind MTO systems
compared to production and rough cut capacity planning approaches traditionally
adopted in mass production environments.

As in project scheduling, when considering aggregate activities, the classical
finish-to-start precedence relations, representing technological constraints between
single manufacturing operations, might not correctly represent the real production
process. A common approach to more accurately model the precedence relations is
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the use of generalised precedence relations (GPRs) (Elmaghraby 1977; Elmaghraby
and Kamburowski 1992) that allow a certain amount of overlap among activities and
have been extensively considered in the literature on project scheduling to model
complex precedence structures in activity networks (Demeulemeester and Herroelen
1997; Neumann and Schwindt 1998; De Reyck and Herroelen 1999; Klein 2000).

In addition, in one-of-a-kind MTO systems, production operations basically refer
to the production or the acquisition of a set of components that are assembled
together. In other words, each production operation models the assembling, mount-
ing or wiring of a single sub-assembly and many of these operations are often
performed manually. This characteristic makes it impossible to precisely define,
schedule and control every single activity because its execution, if not constrained to
a specific sequence, is autonomously managed at the shop floor level by the workers.
Their decisions could depend on the immediate availability of components, material
or equipment, the accessibility of the operation area (it could be already occupied
by other workers still operating there) or on other factors whose influence is not
visible at the planning level. In this context, a detailed planning is difficult or even
impossible and aggregate planning is the only viable choice.

As previously stated, single resources are grouped into aggregate production
resources. In case of human workers, these aggregate production resources consist
of teams of workers in charge of executing a set of tasks (an aggregate operation). In
a team, a worker can be assigned to different short activities in the same time period
and/or more workers can be assigned to the same activity. Hence, the concepts of
unary resource and activity duration need to be reassessed since either the resource
used in each time period or the duration of the activity are not univocally defined.
This makes the traditional project scheduling approaches no longer suitable and
claims for an approach able to consider a variable use of resources during the
execution of a production activity, such as the variable intensity formulation of the
resource constrained project scheduling problem (Leachman et al. 1990; Kis 2005).

However, combining generalised precedence relations with variable resource
intensity is a very critical task since the variable resource effort translates into an
infinite number of possible execution modes for the activities. The execution mode
of an activity influences its progress in time that is no longer a priori fixed. This leads
to the inability of GPRs to exhaustively describe the overlapping among activities
(Kis 2006; Tolio and Urgo 2007) and requires the development of a planning and
scheduling approach able to consider the execution of the activities both from
the temporal and the work content point of view, in order to guarantee that the
precedence relations correctly represent the characteristics and the constraints of
the real production problem (Alfieri et al. 2012b).

56.3 Project Scheduling Approaches for MTO

As described in Sect. 56.2, the production of a high-complexity customised product
can be modelled as the execution of a project and the simultaneously production of
different products can be rephrased as different projects being executed at the same
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time and competing for the same production resources (machines, workers, etc.).
Moreover, the variable intensity of resources has to be consider to correctly model
the presence of manually executed operations.

The use of a project scheduling approach for aggregate production planning in
MTO systems has been described by Neumann and Schwindt (1998), Hans (2001),
Neumann et al. (2003), Márkus et al. (2003), Alfieri et al. (2011, 2012a). Working
at an aggregate level, the planner can devise a production plan, constrained by the
capacity requirements, over a time horizon ranging from several weeks to several
months. This plan serves as a tool to manage customer orders, and their associated
due dates, as well as material and resource availability (Alfieri et al. 2012b).

To address the variable resource utilisation and its relation with the execution of
the activities, the variable intensity formulation of the resource constrained project
scheduling problem has been proposed in the literature. This formulation is based on
the introduction of an intensity variable used to define the effort dedicated to process
each activity in each time period (Leachman et al. 1990; Kis 2005). Resources are
considered continuously divisible and are used to process the activities in amounts
that can vary over time. In this framework, the execution of activity i is described by
a set of continuous variables xit representing the percentage of activity i executed in
time period t . The amount of work performed in each period t is not a priori given
but depends on the amount of resources committed to the activity, as it is typical for
activities executed by human workers.

As discussed in Sect. 56.2, the variable intensity formulation allows an infinite
number of execution modes since the time to process an activity is not a priori
defined. Specifically, the execution time is strictly related to the value of the intensity
execution variables xit and ranges between a minimal and a maximal duration. These
minimal and maximal durations are related to the minimal and maximal amount
of resources that can be allocated to each activity in each time period. Since the
durations of the activities are not a priori defined, the percentage executed in a given
time interval does not completely depend on the length of the time interval and, if
preemption is allowed, the maximum duration, in terms of number of time units
from activity starting and ending instant, is also not constrained.

The presence of an infinite number of execution modes for each activity causes
GPRs no longer to be suitable for modeling overlapping between activities in
terms of their percentage execution. To overcome this difficulty, the concept of
feeding precedence relation was introduced by Kis (2005), for the completion-to-
start precedence, through binary variables that define an execution mask. Each of
these masks cannot be assigned the value zero if the associated activity has not
been executed (completely or at least for a given percentage). Feeding precedence
relations have been further extended in Alfieri et al. (2011) to model precedences
different from the completion-to-start one. They are needed to represent the
execution of the activity according to the values of the intensity variables and four
cases can be defined:

• %Completed-to-Start (CtS) precedence: the successor activity j can start its
processing only when, in time period t , the percentage of the predecessor activity
i that has been processed is greater than or equal to qij (Fig. 56.1a).
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Fig. 56.1 Feeding precedence relations

• %Completed-to-Finish (CtF) precedence: the successor activity j can be com-
pleted only when, in time period t , the percentage of the predecessor activity i
that has been processed is greater than or equal to qij (Fig. 56.1c).

• Start-to-%Completed (StC) precedence: the percentage execution of the succes-
sor activity j , in time period t , can be greater than gij only if the execution of the
predecessor activity i has already started (Fig. 56.1b).

• Finish-to-%Completed (FtC) precedence: the percentage execution of the suc-
cessor activity j , in time period t , can be greater than gij only if the execution of
the predecessor activity i has been completed (Fig. 56.1d).

Carefully analysing the above described cases, it is clear that feeding precedences
provide a different perspective on the role of precedence relations between pairs
of activities by considering both their start and finish time and the progression of
their execution. Feeding precedence relations or similar concepts have also been
addressed in Bianco and Caramia (2012) and Schwindt and Haselmann (2012).

56.3.1 Aggregate Activity Definition

Aggregate activities are defined applying an aggregation criterion to the detailed set
of operations to be scheduled. Several aggregation criteria can be used such as the
required resource, the component on which the operations have to operate or the
type of tasks to be executed (Fig. 56.2).

Given the detailed network of production operations and their precedence
relations (Fig. 56.2a), if only Finish-to-Start precedence relations are considered,
then the aggregation causes a single precedence relation between two original
operations to enforce a precedence relation between two aggregate activities
(Fig. 56.2b). The feeding precedence relations are able to properly represent the
relations between aggregate activities, matching the real technological constraints.
In fact, as illustrated in Fig. 56.3, there exists a set of operations (belonging to the
aggregate activity j ) that can be executed even if the predecessor aggregate activity
i has not yet been completed. The amount of resources required to process the two
sets of operations needs to be computed by considering the work content of each
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Fig. 56.3 Feeding precedence on aggregate activities

single operation. This allows to estimate the percentage of j that can be executed
even if i has not been completed (i.e., gij).

An overlapping between the execution of the two aggregate activities i and j
is therefore allowed. This overlapping is not defined on a temporal basis but it
refers to a certain percentage of the predecessor or successor activity that has been
completed.

56.3.2 Aggregate Activity Disaggregation

The aggregate production plan provides start and finish times for the aggregate
activities but obviously no information about the execution of each single operation
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Fig. 56.4 Earliest and latest
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within the aggregate activities. However, such information is very important to
properly plan the procurement of materials, since the necessary components must be
available before the single operation starts. Requiring all the components needed by
the aggregate activity to be available before the start of the aggregate activity itself
would be ineffective from the point of view of system WIP and might also constrain
material procurement too much.

A possible way of dealing with this problem is to combine the information about
the start and finish times of each aggregate activity, the information on the single
manufacturing operations that are part of the aggregate activity, and the detailed
precedence relations among them (Alfieri et al. 2012b). The aggregate planning,
working on a medium/long time horizon, gives the exact time intervals for the
execution of each aggregate activity. This time interval and the knowledge about
the single operations (and their precedences) inside the aggregate activity allow to
define a range for the start time and the finish time of each operation. The length of
these ranges mostly relies on the structure of aggregate activities, as shown in the
example in Fig. 56.4. This approach is referred to as activity disaggregation and is
detailed in the following.

Given an aggregate activity and a manufacturing operation A within it, the
information on the other operations in the aggregate activity is used to provide
additional constraints on the start time of A. Considering the structure of the
precedence relations, it is possible to identify a set of operations (highlighted in
dark gray in Fig. 56.4) that must be executed before operation A can start. The
fraction of these operations, with respect to the whole aggregate activity, represents
the fraction q of the aggregate activity that must be processed before operationA can
start, i.e., the Earliest Start Execution Fraction for operation A (ESEFA). Similarly,
it is possible to find a set of operations (highlighted in light gray in Fig. 56.4) that
can be executed only after A has been completed, corresponding to a fraction g of
the aggregate activity. Let hA be the fraction of the aggregate activity devoted to
the execution of A, then 1 � g � hA is the maximum percentage of the aggregate
activity that can be executed even if operationA has not started, i.e., the Latest Start
Execution Fraction (LSEFA) for operation A.
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Both the ESEF and LSEF are based on the percentage execution of the aggregate
activity. Thus, the percentage and the temporal execution of each aggregate activity
must be matched to have a correct estimation in terms of the earliest and latest
start time for operation A. This can be done using the aggregate production plan.
Specifically, given the resource effort for the execution of the aggregate activity
over time (Fig. 56.5), ESEF and LSEF provide the Earliest Start Time (ES) and the
Latest Start Time (LS) for the considered operation.

Given the aggregate production plan, the time interval between ES and LS
represents the range for the actual start time of operation A. Because there is
a group of materials (components) associated with each operation, according to
the bill of materials of the final product, this range also provides the earliest and
latest due dates for the materials and components needed for the execution of the
manufacturing operation. If these components are available before the earliest due
date (ES), the operation can start at any time within the range. On the contrary, if
the components are available only after the latest due date LS, the manufacturing
operation will have to be delayed and hence also the aggregate activity may be
delayed with respect to the planned completion time. Finally, if the components
are available at some time between the earliest and latest due dates, the plan is
considered feasible by the time analysis but it cannot be assured that no delay will
occur. In fact, since the aggregate production plan does not provide the detailed
resource utilisation, the joint utilisation of the production resources could constrain
the execution of the single operations (if a resource is used for operations A, is
not available for other operations that might need it at the same time). However,
although not providing a complete description of the feasibility for the material
procurement phase, the information obtained through the disaggregation process
can play a significant role in the definition of the Material Requirement Plan.
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56.4 Problem Formulation

The aggregate production planning for the MTO systems previously described is
modelled using the mathematical formulation proposed in Alfieri et al. (2011) and
reported in the following.

Let V D f0; : : : ; n C 1g be the set of activities to be scheduled over T D
f1; : : : ; d g time periods and R D f1; : : : ; Kg be the set of available resources. Let
Rk.t/ be the total amount of resource k 2 R available in time period t 2 T and T
the set of precedence relations. This set is partitioned into four subsets that refer to
the different types of feeding precedence relations:

T1: subset of precedence relations of type %Completed-to-Start
T2: subset of precedence relations of type Start-to-%Completed
T3: subset of precedence relations of type %Completed-to-Finish
T4: subset of precedence relations of type Finish-to-%Completed

Each precedence relations p 2 T is characterised by a predecessor activity
ip 2 V and a successor activity jp 2 V . In addition, precedence relations in
T1 and T3, i.e., %Completed-to-Start and %Completed-to-Finish relations, are
characterised by a value qp representing the minimal fraction of activity ip that must
be processed before activity jp can start or finish. Analogously, precedence relations
in T2 and T4, i.e., Start-to-%Completed and Finish-to-%Completed relations, are
characterised by a value gp that represents the maximal fraction of activity jp that
can be processed before activity ip has started or finished.

The following parameters are associated with each activity j 2 V and com-
pletely characterise it:

Bj : maximum percentage of work that can be done in a single time period
bj : minimum percentage of work that can be done in a single time period
rj : release date
dj : due date
Qjk: amount of resource k needed to completely process activity j

Differently from parameters, variables are not a priori known and represent the
decisions that have to be taken to define the production plan. In the problem we
study, the following variables can be defined:

Cmax: maximum completion time (makespan)
xjt: continuous positive variable representing the percentage of work done on

activity j during time bucket t
�jt: binary variable whose value is 1 if activity j is processed in time bucket t ,

0 otherwise

In addition, an execution mask zjt is defined for each activity j . Activity j can be
processed in a time period t only if the value of the execution mask zjt is 1. Each zjt

is assigned value 1 at t D 0 and its behaviour is constrained to be non-increasing,
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assuming value 0 only after activity j has been completed. An execution mask zpt

is also associated to each feeding precedence relation p 2 T , in particular:

• %Completed-to-Start and %Completed-to-Finish precedences: the execution
mask zpt associated to these relations has value 1 as long as the percentage of
the predecessor activity ip is smaller than qp. If the completed percentage of the
predecessor activity ip becomes greater than or equal to qp in time period t , then
the value of the execution mask zpt must be 0 for each t � t C 1.

• Start-to-%Completed and Finish-to-%Completed precedences: the execution
mask zpt associated to these relations has value 1 as long as the processing
percentage of the successor activity jp is smaller than gp . When, in time period
t , this percentage becomes greater than or equal to gp , then the value of the
execution mask zpt must be 0 for each t � t C 1.

Execution masks zjt and zpt are represented by binary variables.
Using the variables and parameters previously defined, the production planning

problem can be formulated as follows:

Min. Cmax (56.1)

s. t. Cmax � t � zjt .j 2 V I t 2 T / (56.2)

djX

tDrj
xjt D 1 .j 2 V / (56.3)

xjt � Bj �jt .j 2 V I t 2 T / (56.4)

xjt � bj �jt .j 2 V I t 2 T / (56.5)

xjt � Bj zjt .j 2 V I t 2 T / (56.6)

zj;t�1 � zjt .j 2 V I t 2 T / (56.7)
X

j2V
Qjkxjt � Rk.t/ .k 2 RI t 2 T / (56.8)

zp;t�1 � zpt .p 2 T I t 2 T / (56.9)

xjt � Bj .1 � zpt/ .p 2 T1I j D jp 2 V I t 2 T / (56.10)

t�1X

hD1
xih � bi � zpt .p 2 T2I i D ip 2 V I t 2 T / (56.11)

.1 �
tX

hD1
xjh/ � bj zpt .p 2 T3I j D jp 2 V I t 2 T / (56.12)

xit � Bi zpt .p 2 T4I i D ip 2 V I t 2 T / (56.13)
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t�1X

hD1
xih � qp.1 � zpt/ .p 2 .T1 [ T3/I i D ip 2 V I t 2 T / (56.14)

.1 �
tX

hD1
xjh/ � .1 � gp/zpt .p 2 .T2 [ T4/I j D jp 2 V I t 2 T /

(56.15)

The objective function simply states that the performance measure to be mini-
mized is the makespan. It is a classical objective function in the theory of scheduling
but it also has an industrial relevance since the makespan minimization is linked to
the maximization of the utilization rate, i.e., the more efficient use of production
resources.

Equation (56.2) defines the makespan as the finishing time of the last activity
that finishes. Equations (56.3)–(56.8) model the execution of the activities from
the point of view of single activity parameters while Eqs. (56.10)–(56.15) manage
the precedence relations. The non-increasing behavior of the execution masks zpt is
forced by Eq. (56.9).

56.5 Industrial Application

A machining centre is a CNC (Computer Numerical Controlled) machine integrated
with an automatic tool changer and equipment for pallet or part handling. It
is typically made of a multi-axis computer controlled milling machine plus a
set of additional equipment providing different functionalities (e.g., devices to
automatically change the tools with, a tools storage, devices for automatically
change the machined pallets with new ones to be processed, a pallets storage,
equipment providing cooling and lubrication, a device for the disposal of metal
chips, automatic controllers and computers to manage the high degree of automa-
tion, etc.). Although machining centre producers provide standard configurations
for their products, customers often ask for modifications tailored to their specific
needs. This is a common practice for European (and in particular Italian) machining
centre producers.

As a matter of facts, the production of a machining centre is a complex one-of-a-
kind process typically addressed by project scheduling approaches. Upon the design
of the customised characteristics, the production of a significant set of components is
assigned to external suppliers, while only high precision manufacturing activities for
critical components are internally executed. Hence, the production process begins
with the assembling of the kernel structure of the machining centre together with
the main components, e.g., the spindle and the working table, that are internally
manufactured (Fig. 56.6). This is a critical step since the capability of the machining
centre (in terms of accuracy, repeatability and performance) strictly depends on the
quality of these components and on how they are assembled together.
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Fig. 56.6 Machining centre structure with preassembled components

Fig. 56.7 Complete machining centre

All the other components and parts are assembled around the main structure
and wired together. The final assembly (Fig. 56.7) is tested and then partially
disassembled to be delivered to the customer.
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For modelling purposes, the detailed production process has been considered tak-
ing into consideration about two hundreds of production activities, each addressing
the assembling, wiring or testing of a specific set of components. The definition
of aggregate activities has been carried out based on the bill of materials of the
machining centre. Components have been grouped into functional units and an
aggregate manufacturing or assembling activity has been defined for each group.

Once the definition of aggregate activities have been performed, the production
of a machining centre entails eight main phases:

• A01: Structure Preparation. The machine centre structure is prepared for the
assembling phase. Scraping operations are performed to provide a proper
finishing level where needed.

• A02: Pallet Preparation. The pallets are prepared for the assembling phase.
Scraping operations are performed to provide a proper finishing level where
needed.

• A03: Structure Painting. The machine centre structure is painted.
• A04: Autonomous Components Assembling. Autonomous components (e.g.,

spindle head, machine table, electrical cabinet), to be installed onto the machin-
ing centre, are separately assembled.

• A05: Assembling. The machine centre structure is placed in the assembling area
and all the components are installed.

• A06: Wiring. Electrical connection is provided for all the installed components
and for the control system.

• A07: Testing. The main functionalities are tested according to the main regula-
tions and internal standards. The machine centre accuracy is tested against its
declared capabilities and the customer’s specifications.

• A08: Disassembling and Delivery. The machining centre is partly disassembled
and delivered to the customer.

Feeding precedence relations have been used to correctly model the production
process. The need for feeding precedence relations is motivated by the fact that
finish-to-start precedence relations among aggregate activities would impose unnec-
essary constraints with respect to the real manufacturing process. Assembling phase
is made of a large number of sub-phases devoted to the separate assembling of single
autonomous components, i.e., the electrical cabinet, the spindle head, the working
table. These autonomous components need to be installed onto the machining centre
structure but, as a matter of fact, they need not be completely processed at the time
the Assembling phase starts. On the contrary, considering the detailed production
process, they can be mounted onto the machining centre’s structure only after a
certain set of other assembling operations have been completed. At the same time,
they must be completed at latest before the machining centre is ready to have them
installed onto.

For such cases, a Finish-to-%Completed precedence constraint can be used
to allow the assembly of different autonomous components to be completed at
the latest after a certain percentage of the machining centre assembling has been
executed. This percentage represents the percentage of the assembling activity that
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can be carried out even if the considered subassembly is not yet ready to be installed
onto the machining centre.

An analogous consideration can be done referring to the relations between the
Assembling and the Wiring phase. The last should not wait for the completion of
the whole Assembling phase to start but wiring can start as soon as components
that need to be wired together are installed. In this case, the wiring activity must be
allowed to start at the earliest after a certain percentage of the assembling activity
has been completed. Hence a %Completed-to-Start precedence constraint can be
used to allow the wiring phase to start as soon as the components that need to be
cabled together are installed onto the machining centre.

These phases are mainly processed by workers. Workers are grouped into seven
different types according to their particular skills and each production phase requires
only one type of skilled workers. The workers in a team can operate on different
production operations belonging to the same aggregate activity as well as some
of them can be moved to different teams working on different machining centres
that are produced at the same time. Their behaviour can be correctly modelled
using the variable intensity formulation that allows a variable resource utilisation.
The resource availability is considered constant even if, in the real industrial
environment, it depends on the requirements of the other orders that might be
simultaneously in production (Fig. 56.8).

The obtained schedule is represented in Fig. 56.9 that reports the execution of the
production activities in terms of their intensity. The schedule clearly shows that the
activity A05, which models the assembling of the machining centre, is the longest
one, starting on day 10 and finishing on day 27. As discussed before, the execution

A04

A02

A01 A03

A06

A07 A08A05
0.27 0.78

Fig. 56.8 Aggregate activities network
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Fig. 56.9 Activity execution profile
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Table 56.1 Results Sub-activity ESEF LSEF ES LS TF

A051 0.00 0.17 10 12 2

A052 0.17 0.34 13 15 2

A053 0.17 1.00 13 26 13

A054 0.22 0.48 13 17 4

A055 0.22 0.48 13 17 4

A056 0.17 0.48 13 17 4

A057 0.43 0.55 17 18 1

A058 0.50 1.00 18 26 8

A059 0.50 1.00 18 26 8

A0510 0.50 1.00 18 26 8

A0511 0.50 1.00 18 26 8

A0512 0.50 1.00 18 26 8

A0513 0.50 1.00 18 26 8

A0514 0.53 0.97 19 26 8

A0515 0.54 0.97 19 26 8

of activity A05 is associated to the availability of all the set of components to be
assembled together. However, requiring all the components to be available at the
beginning of the activity could be over-constraining.

To address this problem, the activity could be disaggregated to estimate time
intervals in which the different components should be required. The (aggregate)
assembling activity is decomposed into 15 sub-activities, each associated to the
assembling of a specific set of components. Thus, given the precedence structure
among these sub-activities, the ESEF and LSEF can be calculated and, considering
the execution of activityA05 in the schedule, the Earliest Start Time (ES) and Latest
Start Time (LS) can be computed for each sub-activity. These values actually provide
the Earliest and Latest Due Dates for the availability of the components associated
with each sub-activity (Table 56.1). The results also reports the values of the total
float (TF), i.e., the range between ES and LS.

The results show that several manufacturing operations, i.e., AO51, AO52, AO54,
AO55, AO56 and AO57, have a range betweenEST andLST between 1 and 4 days.
In such cases, the accuracy in the estimation of the start time of the sub-activity can
be considered good. Other assembling operations, i.e., A053, A058, A059, A0510,
A0511, A0512, A0513, A0514 and A0515, show a bigger range, between 8 and 13
days, i.e., between 1 and 2 weeks. Such a wide range, however, is mostly due to
the fact that these assembling operations can be processed in parallel with other
assembling operations that are on a critical path. Hence, a shift of only one of these
sub-activities within the provided range, due to a late component supply, will not
cause a delay of the whole assembling phase. However, when more than a single
group of components is supplied later than the ES, only a detailed scheduling phase
can verify the effective occurrence of a delay. Sub-activity AO53, having the widest
range, represents the installation of the hydraulic system, an external component
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that can be installed at any time after the axes and actuators have been assembled
onto the machining centre.

Even if the range could be considered not accurate, compared to what can be
obtained through a detailed scheduling and material requirement planning approach,
these results are based on an aggregate plan and exploit the available information,
i.e., the detailed structure of the aggregate activities, Hence, they allow to achieve
a fair compromise between the anticipation of procurement and the avoidance of a
computationally intensive detailed scheduling phase.

56.6 Conclusions

In this chapter an application of project scheduling to the production planning
problem of MTO manufacturing systems producing highly complex and customized
items has been addressed. A mathematical model based on a variable intensity
formulation and feeding precedence relations was proposed. The applicability of
the suggested approach has been shown through the application to a real industrial
case.

Acknowledgements The authors thanks M.C.M. S.p.A. for their support in the definition of the
industrial case.
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Chapter 57
Pharmaceutical R&D Pipeline Planning

Matthew Colvin and Christos T. Maravelias

Abstract The development of new drugs is a long and expensive process with
multiple sources of uncertainty and complex trade-offs. In this chapter, we discuss
how multi-stage stochastic programming (SP) methods can be used to develop tools
for decision-making in this sector. First, we present a basic model for the stochastic
resource constraint project scheduling problem we consider in this chapter, we
discuss extensions for features such as outlicensing and outsourcing, and present
modeling methods for risk management. Second, we review theoretical results that
allow us to formulate tractable SP models that account for endogenous observation
of uncertainty. Finally, we discuss solution methods that allow us to address realistic
instances and present two examples.

Keywords Endogenous uncertainty • Mixed-integer programming • Nonantici-
pativity • Project scheduling • Risk management • Stochastic programming

57.1 Introduction

The development of a new drug includes multiple stages: (1) discovery, (2) preclin-
ical testing, (3) clinical testing, and (4) regulatory approval. Once a compound is
found to be successful in a simple system (e.g., tube or individual cells) it moves
on to preclinical testing, where it is determined what happens when the compound
is metabolized and whether it is safe to test on people. Clinical testing typically
includes three phases: (1) phase I (PI): 20–100 healthy volunteers are used to
determine safety and dosage; (2) phase II (PII): 100–500 patient volunteers are
used to determine efficacy and side effects; and (3) phase III (PIII): 500–1,500
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Fig. 57.1 Pharmaceutical research and development activities

patient volunteers are used to monitor adverse reactions to long-term use. Upon
successful completion of all clinical trials, a compound can gain approval from
regulatory organizations. However, if a compound fails a trial, then its development
is discontinued. For each drug entering the market place, 5–10 drugs have to be
typically tested (see Fig. 57.1) and the total investment can exceed $1 billion.
Furthermore, a pharmaceutical company has limited resources for the development
of new drugs, which means that given a portfolio of compounds, projects have to
be prioritized, then resources be allocated to competing projects, and finally R&D
activities be sequenced.

Accordingly, the goal of this chapter is to present a stochastic programming
framework for the planning of research and development (R&D) activities in
pharmaceutical pipelines, including modeling approaches, theoretical results, and
solution methods (Colvin and Maravelias 2008, 2009, 2010, 2011).

The present chapter is structured as follows. In Sect. 57.2, we present background
information. In Sect. 57.3, we present the basic mixed-integer programming (MIP)
multi-stage stochastic programming model and a number of modeling extensions. In
Sect. 57.4, we present theoretical results that allow us to formulate tractable models,
and in Sect. 57.5 we present three solution methods. Finally, in Sect. 57.6 we present
two examples.

57.2 Background

In this section, we present the formal statement of the problem we consider, present
a literature review, and discuss stochastic programming and endogenous observation
of uncertainty.
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57.2.1 Problem Statement

The problem we consider can be stated as follows. Given are:

1. A set of drugs, i 2 I , at different stages of development. It is assumed that all
drugs in the pipeline have an approved patent just before PI clinical trial starts,
which means that the revenues from the successful lunching of a drug decrease
with development delays (since these lead to a shorter active patent live). Also,
it is assumed that due to competition, the market share of a drug decreases
with time, so the revenues also decrease with the launch time, regardless of the
duration of the active patent life.

2. A set of trials, j 2 J D fPI;PII;PIIIg. The trials have to be performed
sequentially, PI ! PII ! PIII. At a given time, a drug has to undergo a subset
of trials Ji . For simplicity, we will refer to trial j of drug i as trial .i; j /. The
cost and duration of trial .i; j / is cij and pij, respectively; the probability of trial
.i; j / being successful is �ij.

3. A set of resources, k 2 R. The availability of resource k is Rk ; the requirement
of trial .i; j / for resource k is denoted by rijk.

The objective function is to maximize the expected net present value (ENPV)
of the pipeline. We assume that uncertainty occurs only in the outcome of clinical
trials, with no advantage gained, either in knowledge or revenue from a failed trial.
We assume that all uncertainty is independent, though this can be relaxed. We
also assume that resources are renewable and have fixed availability. Both of these
assumptions can also be relaxed. Finally, our approach can be extended to account
for uncertainties in cost, duration, and resource requirements, but this would lead to
prohibitively large formulations.

57.2.2 Literature Review

The planning of R&D activities is similar to a stochastic version of the resource-
constrained project scheduling problem (RCPSP) since each product can be viewed
as a project consisting of a number of tasks (trials) with given processing times and
resource requirements, subject to precedence and resource constraints. However,
traditional methods for RCPSP cannot readily address the problem at hand for
three reasons. First, the focus in RCPSP has been on the development of methods
for instances with a large number of tasks. The number of tasks in this problem
is relatively small—what makes this problem hard is the stochastic nature of the
process and the fact that the decision-maker can alter uncertainty observation.
Second, most stochastic approaches to RCPSP consider uncertainty in the duration
and/or resource requirements of tasks. The major uncertainty in this application
however is in the outcome of a task. Third, RCPSP formulations often assume the
resource level is known and fixed at the beginning of the planning horizon. With
development projects spanning multiple years, the ability to adjust resource levels
can be as important as the timing of development tasks.
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The static selection of R&D projects has been the topic of extensive research
(Souder and Mandakovic 1986; Steele 1988). Heuristic methods for the RCPSP
can be generally categorized as genetic algorithms (Hartmann 1998), local search
methods (Mika et al. 2005; Bouleimen and Lecocq 2003), ant colony optimization
(Merkle et al. 2002), and forward-backward improvement (Tormos and Lova
2001; Valls et al. 2005). An overview of computational results for a number
of algorithms (Kolisch and Hartmann 2006) and a general overview of RCPSP
(Brucker et al. 1999) are available. The RCPSP has also been extended to include
ideas such as uncertain duration (Herroelen and Leus 2005), partially renewable
resources (Bottcher et al. 1999), and maximizing net present value rather than
minimizing makespan (Neumann and Zimmermann 2000). As far as R&D planning
is concerned, the problems of portfolio selection in the pre-clinical trials section
(Charalambous and Gittins 2008), and the planning of R&D activities with technical
failure without resource constraints (De Reyck and Leus 2008) have been addressed.
Recently, an anticipatory algorithm for the stochastic RCPSP (Mercier and Van
Hentenryck 2008) and a MIP model for portfolio optimization (Solak et al. 2010)
were proposed.

A number of approaches have also been presented in the process systems
engineering literature (Shah 2004), including deterministic MIP models (Schmidt
and Grossmann 1996; Jain and Grossmann 1999; Maravelias and Grossmann 2004);
a simulation-optimization framework (Subramanian et al. 2001, 2003); a dynamic
programming approach (Choi et al. 2004); and a real-options strategy (Rogers
et al. 2002). Finally, researchers have proposed methods for the related problem of
capacity planning (Gatica et al. 2003; Levis and Papageorgiou 2004). The interested
reader is also referred to papers offering a general discussion of new product
development (Stonebraker 2002; DiMasi and Grabowski 2007).

57.2.3 Stochastic Programming

In a two-stage SP problem the decision maker makes a set of first-stage decisions x
before the realization of uncertainty, and then makes second-stage decisions y (i.e.,
takes recourse action) upon uncertainty realization (Kall and Wallace 1994; Birge
and Louveaux 1997):

min
˚
cT x CE�2„ ŒQ .x; �/� W x 2 X� (57.1)

with

Q.x; �/ D min
˚
f .�/T y W T .�/x CWy D h.�/; y 2 Y � (57.2)

whereX � R
n1; Y � R

n2, are polyhedral sets, � is a random vector from an induced
probability space .„; F; P / with „ � R

L; f W „ ! R
n2; h W „ ! R

m2;W W
„ ! R

m2�n2, and T W „ ! R
m2�n1. Problem (57.1) is the first-stage problem
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with decisions x and problem (57.2) is the second-stage (recourse) problem with
decisions y.

If the probability density function for uncertain parameter �l , l D 1; : : : ; L

is represented (approximated) via a discrete density function with sample space
„l D ˚

�ml ;m D 1; 2; : : :;M l
�
, then each combination of realizations for vector

� D .�1; �2; : : :; �L/ corresponds to a scenario � 2 †. The total number of
scenarios is jPj D Q

l M
l . If the probability of outcome m for parameter �l is

�
�
�l D �ml

� D �ml and �l D �
mDm.�/
l in scenario � , then the probability of scenario

� is �� D Q
l �

m.�/

l . In this case, the two-stage problem can be written as:

min
n
cT x C

X

�2P ��q
T y� W x 2 X IT .�� /x CWy� D h.�� /; � 2

X
Iy� � 0

o

(57.3)

where �� is the vector in scenario � , q is the second-stage cost, y� is the solution of
the second-stage problem in scenario � , and the optimal solution to (57.3) consists
of a set of single first-stage decisions x and a collection of recourse (second-stage)
decisions y� .

Two-stage problems can naturally be extended to multi-stage problems where
uncertainty unfolds at different stages. Stages typically (but not always) correspond
to time periods, i.e., the planning horizon is divided into multiple periods (stages)
t 2 T D f1; 2; : : :; T g. At the beginning of the horizon, no uncertainty is known,
while at the end of each stage t the realizations of a subset of uncertain parameters
are observed. At t D 1 the decision-maker has to make a unique set of first-
stage decisions because all scenarios are indistinguishable. As the random variables
are observed, scenarios become distinguishable and the decision-maker can take
different actions to react to different realizations of uncertainty. At t D 2, the
decision-maker takes recourse action (second-stage decisions) to compensate for
the effect of the uncertain parameters that were realized earlier, and the process is
repeated at t D 3.

If we know the stage t�;�
0

at which scenarios � and � 0 become distinguishable,
and for simplicity we assume that the same decisions y are made at each stage t ,
then the decisions for scenarios � and � 0 at stage t must be identical if t < t�;�

0

,

yt� D yt� 0..t I � I � 0/ W t < t�;� 0

; � < � 0/ (57.4)

where yt� is the vector of optimization decisions at stage t in scenario � .
Alternatively, if

Pn
t is a maximal subset of indistinguishable scenarios at stage t ;

i.e.,
Pn

t D
n
� W t�;� 0

> t; � 0 2 Pn
t

o
, then the above equation can be re-written as:

yt�
X

� 02Pn
t

�� 0 �
X

� 02Pn
t

�� 0yt� 0 D 0 .t In 2 Nt I � 2
Xn

t
/ (57.5)

where Nt is the family of maximal subsets
Pn

t � P
.
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The equalities in Eq. (57.5) express the fact that we cannot anticipate possible
outcomes, thus our decisions have to be nonanticipative of future outcomes
(Birge and Louveaux 1997). Hence, Eq. (57.5) enforces nonanticipativity, and the
equalities in Eq. (57.5) are called nonanticipativity constraints (NACs).

57.2.4 Endogenous Observation of Uncertainty

Stochastic programming methods have been for the most part used to address prob-
lems under purely exogenous uncertainty, that is, problems where the underlying
stochastic process does not depend on the optimization decisions, which means that
uncertainty distributions and the way uncertain parameters are observed are fixed.

However, there are problems where the decision maker alters the underlying
stochastic process by either changing the distribution of random parameters or
by changing the time at which uncertainty is observed. In the first case, we have
problems under endogenous uncertainty, while in the second case we have problems
under endogenous observation of uncertainty.

As explained in the previous section, nonanticipativity in the presence of exoge-
nous uncertainty is enforced via Eq. (57.5), which leads to variable elimination. In
the presence of endogenous uncertainty observation, however, Eq. (57.5) cannot be
used because the stage t�;�

0

at which scenarios � and � 0 become distinguishable is
not known prior to optimization, which means that nonanticipativity is equivalent
to the following logic condition: If t < t�;�

0

then yt� D yt� , which can be re-
written as:

ft < t�;� 0g ) fyt� D yt� 0g (57.6)

To develop a mathematical programming formulation, we need to convert the
logic condition in Eq. (57.6) into algebraic constraints. To do so, we introduce binary
variable zt�� 0 which is 1 if scenarios � and � 0 are distinguishable at stage t , i.e.,
zt�� 0 D 1 if t � t�;�

0

. If all decision variables are binary, then nonanticipativity is
enforced by,

� zt�� 01 � yt� � yt� 0 � zt�� 01; .t I � I � 0 > �/ (57.7)

where 1 is vector of appropriate dimension whose elements are all equal to 1
(in the general case, vector 1 should be replaced by the vector of upper bounds
on variables yt� ). Furthermore, constraints that activate variables zt�� 0 , which are
typically linked with variables yt� , are needed.

An interesting implication of the variability of the NACs in Eq. (57.7) is that the
scenario tree is dynamic. A simplified instance of the stochastic-RCPSP problem
that illustrates this concept is shown in Fig. 57.2. Given are two tasks, T1 and T2,
that can either pass or fail; each task incurs a cost, but if it passes leads to revenue.
Each trial lasts 1 month and due to resource constraints trials cannot be carried out
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1,2,3,4

t = 1        t = 2

a)  Solution 1:
No task performed

1, 2

3, 4

T1

b) Solution 2:
Task T1 at t=1

t = 1        t = 2

1

2

3

4

1

3

2

4

c) Solution 3:
Task T1 at t=1
Task T2 at t=2

d) Solution 4:
Task T2 at t=1
Task T1 at t=2

T1 T1T2 T2

t = 1        t = 2 t = 1        t = 2

Scenarios

Scenario Task outcome

s T1 T2

1 Pass Pass

2 Pass Fail

3 Fail Pass

4 Fail Fail

1, 2

3, 4

T1®P

T1®F

T1®P

T1®F

T2®P

T2®F

1, 3

2, 4

Fig. 57.2 Stochastic-RCPSP: example of dynamic scenario tree. Scenarios: (1) T1 and T2 pass;
(2) T1 passes, T2 fails; (3) T1 fails, T2 passes; (4) T1 and T2 fail. Four different solutions lead
to four different scenario trees. In solution 1, no tasks are carried out and thus no uncertainty is
observed; all scenarios remain indistinguishable. In solution 2, only T1 is executed resulting into
a tree with a branching after the first period; scenarios f1; 2g and f3; 4g remain indistinguishable.
In solution 3, T1 is executed at t D 1 and T2 at t D 2 which means that all scenarios become
distinguishable; note that the first branching corresponds to the outcome of T1. In solution 4,
all scenarios become distinguishable (as in solution 3) but the first branching corresponds to the
outcome of task T2, leading to a different tree

simultaneously. Given a planning horizon of 2 months divided into two 1-month
periods, the goal is to determine whether and when to carry out the trials. As shown
in Fig. 57.2, different solutions lead to different scenario trees.

57.3 Mathematical Formulation

The planning horizon is divided into time periods, t 2 T D f1; 2; : : :; T g, which
also correspond to the stages of our SP model. The uncertainty considered in this
work is discrete: a drug either passes (P) or fails (F) a clinical trial. In other words,
the outcome of clinical trial .i; j /, can be viewed as a discrete random variable with
sample space „ij D fP;Fg. However, since a drug will not undergo a trial if it has
failed a previous trial, it is possible to aggregate these outcomes into four events per
drug based upon when the drug first fails a trial or successfully navigates all trials.
Thus, uncertainty can be represented via a single uncertain parameter, �i , per drug
i 2 I with sample space „i D fPI-F; PII-F; PIII-F; PIII-Pg.

57.3.1 Basic Model

For a given stage t and scenario � , only a subset IJt� � I � J of clinical trials can
be performed. A trial is not included in this subset because: (1) it was completed
prior to the start of the planning horizon, i.e., drug is ready to undergo PII or PIII
trials at t D 1; (2) a prerequisite trial fails in this scenario; and (3) there have been
insufficient stages to perform all prerequisite trials. We denote the subset of drugs
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that successfully complete all clinical trials in a given scenario by I� , and the first
clinical trial that must be performed on a drug by f .i/.

The major variable in this problem is binary xijt�—it indicates whether clinical
trial .i; j / begins testing at stage t in scenario � . We define two additional variables
through xijt� . Variable yijt� indicates if trial .i; j / has been completed by stage t :

yijt� D yij;t�1;� C xij;t�pij;� D yij0 C
X

t 0<t�pij
xijt 0� .t I � I .i; j / 2 IJt�pij;� /

(57.8)

where yij0 is 1 if drug i has already passed trial j , i.e., yij0 D 1 if j < f .i/.
Variable zijt� indicates if all prerequisites to trial .i; j / have been completed by

stage t in scenario � , but .i; j / has not been initiated:

zijt� D zij0 C
X

t 0�t�pi;j�1

xi;j�1;t 0� �
X

t 0�t xijt 0� .t I � I .i; j / 2 IJt� / (57.9)

where zij0 is a parameter indicating the status of trial .i; j / at the beginning of the
horizon; e.g., if drug i has passed preclinical testing and is ready to undergo PI trials,
then zi;PI;0 D 1 and zi;PII;0 D zi;PIII;0 D 0.

A clinical trial is not allowed to start until the preceding trial has been completed:

X

t 0�t xijt 0� � yi;j�1;t� ..t; �/I .i; j / 2 IJt� W j ¤ f .i// (57.10)

A resource limit is enforced over all trials being carried out at a given stage:

X

.i;j /2IJt�

Xt 0Dt
t 0Dt�pijC1 rijkxijt0� � Rk .kI t I �/ (57.11)

The time value of money is considered via a discount factor ˇt . The cost, CST� ,
associated with a scenario can then be calculated by summing the discounted costs
of all clinical trials performed in that scenario:

CST� D
X

.i;j /2IJt� ;t
ˇt cijxijt� .�/ (57.12)

Revenue, RV� , is modeled as a decreasing function of completion time and
developmental delays. The term rvmaxi represents the revenue received if a drug were
to have successfully completed all trials at the start of the time horizon. To indicate
the opportunity cost, both in terms of lost market share and alternate investment
possibilities, we estimate the fraction of revenue lost with parameter �it . To model
shorter effective patent life, we introduce parameter i which denotes how much
revenue is lost for each stage development is delayed once started:

RV� D
X

i2I� ;t
�
rvmaxi .1 � �i;tCpi;PIII /xi;PIII;t� � ıi .zi;PII;t� C zi;PIII;t� /

�
.�/

(57.13)
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Because positive cash flow occurs at the completion of PIII clinical trial and the
time horizon is finite, the optimization will lead to solutions with empty pipelines
towards the end of the horizon. At any stage, there are four states a drug can be
in: successfully completed, failed, idle, or undergoing a clinical trial. To simulate
an infinite horizon, it is necessary to approximate the revenue achieved beyond the
end of the time horizon, for which only the last two states are relevant. To do this,
we introduce three parameters, prrun

ijt , propen
ij and "ij, defined in Sect. 57.5.1. The first

two are approximations of the revenue that will be received from the successful
completion of drugs beyond the end of the planning horizon, while the last one is
a discount factor to favor the completion of drugs within the planning horizon. The
anticipated future revenues, FR� , can then be calculated by:

FR� D
X

i2I�

�X

j
"ijpropen

ij zijT� C
X

j¤PIII;t>T�pij
"ijprrun

ijt xijt�

�

.�/

(57.14)

where the first (second) term represents revenues from drugs that are idle (undergo-
ing trials) at the end of the time horizon.

The objective function, the expected net present value (ENPV) of the R&D
pipeline, can then be calculated as follows:

ENVP D
X

�
��NPV� D

X

�
�� .RV� C FR� � CST� / (57.15)

with �� being the probability of scenario � occurring.
The multi-stage SP model for the scheduling of clinical trials consists of

Eqs. (57.8)–(57.15) plus nonanticipativity constraints. In Sect. 57.4 we show how
the structure of the problem can be exploited to reduce the number of equations
necessary to enforce nonanticipativity.

Finally, we note that variables yijt� and zijt� can be eliminated. The former
were introduced to express precedence relationships (Eq. (57.10)) and the latter to
calculate revenues (Eqs. (57.13) and (57.14)). Since both of them are defined by
equalities in terms of xijt� , we can remove them. To do this however we have to
introduce Eq. (57.16) to forbid profit generating trials to be run multiple times:

X

t
xijt� � 1 .i I j I �/ (57.16)

57.3.2 Extensions

In pharmaceutical R&D, a company can outlicense products that have successfully
passed clinical trials. Outlicensing allows the allocation of scarce resources to a
subset of compounds while securing some revenue and it offers a way to reduce
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risk. If wijt� denotes the outlicensing of i at time t after it successfully passed trial
.i; j � 1/ in scenario � , then variable zijt� is calculated as follows:

zijt� D zij0 C
X

t 0�t�pi;j�1

xi;j�1;t 0� �
X

t 0�t
�
xijt 0� C wijt 0�

�
.i I j I t I �/

(57.17)

and a revenue term ˇt rvout
ij wijt 0� is added in Eq. (57.13) where rvout

ij is the revenue
from outlicensing.

Another feature that differentiates the planning of R&D activities from the
traditional RCPSP is the flexibility to consider resource planning and project
scheduling simultaneously since pharmaceutical companies can plan the acquisi-
tion of resources during the course of testing. Furthermore, outsourcing can be
selectively used during periods of high resource demand. To account for resource
planning, we introduce variable Rkt� to denote the availability of resource k and
variable REkt� to denote the level of expansion of resource k (reductions can be
modeled similarly). The availability of resource k is then given by

Rkt� D Rk;t�1;� CREk;t�1;� .kI t I �/ (57.18)

If variable ROkt� denotes the level of outsourcing, then the resource constraint
becomes:

X

.i;j /2IJt�

Xt 0Dt
t 0Dt�pijC1

rijkxijt 0� � Rkt� CROkt� .kI t I �/ (57.19)

The cost of resource planning, CSR� , is calculated as

CSR� D
X

t

X

k
ˇt
�
cEk R

E
kt� C cOk R

O
kt�

�
.�/ (57.20)

where cEk and cOk is the unit cost for resource expansion and outsourcing. It is then
added to the calculation of the expected NPV of the pipeline

The basic model can also be extended to account for the following features
(Colvin and Maravelias 2010, 2011):

1. General activities. In addition to clinical trials, a manufacturing process has to be
developed and validated prior to the introduction of a new drug into the market.
Also, in some cases, new manufacturing capacity has to be installed. This means
that activities other than clinical trials have to also be taken into account. The
outcome of these activities is typically deterministic, but they have resource
requirements and are subject to precedence constraints with respect to clinical
and non-clinical activities.

2. Shared activities. In pharmaceutical manufacturing it is common to produce
many different drugs in the same facility. Thus, if the installation of new
manufacturing capacity is considered (e.g., via expansion or retrofit of an
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existing facility), then the same CapacityInstallation activity belongs to the sets
of activities of many compounds, which makes the precedence constraints of
different compounds interconnected.

3. Uncertainty interdependence. First, the observation of uncertainty in one task
can merely change the probability of an outcome of another task because the
outcomes of the two are correlated. This type of interdependence arises when
compounds target similar conditions or their testing is similar. In this case, the
interdependence is used to calculate the probability of each scenario, which
can be performed offline, and the system can be modeled using basically the
same SP model. However, if the outcome of a task can lead to changes in the
way we perform tasks later (e.g., we can use our findings to redesign trials for
other compounds), then the decision-maker changes the probability distributions
resulting in a system under endogenous uncertainty, which is harder to address
using SP methods.

4. Operational interdependency. This type of interdependence relates to resource
use or revenue. An example would be a group of scientists and engineers able to
develop processes for two similar compounds at the same time allowing for lower
resource use than if the two processes were developed separately. Similarly,
products can be competitive (or complementary) in the marketplace, allowing
for lower (or higher) revenues if both are launched.

57.3.3 Risk Management

Risk considerations are often as important as the maximization of ENPV. In this
section, we present some methods for incorporating risk into our framework.

The first approach is to limit the probability that negative revenue will be realized.
To accomplish this, we introduce binary variable u� , which is 1 if scenario � has
an NPV below threshold ” (Eq. (57.21)), and then bound the probability of having
an NPV below ” to be less than ’ (Eq. (57.22)), where M is a sufficiently large
number:

NPV� � � � u�M .�/ (57.21)
X

�
��u� � ˛ (57.22)

An alternate approach is to use the probability weighted sum of NPV below a
threshold level ” as the downside risk (Eppen et al. 1989). To do this, we calculate
(Eq. (57.23)) the shortfall, NNPV� � 0, and then constrain the weighted sum
(Eq. (57.24)):

NNPV� � � � NPV� .�/ (57.23)
X

�
��NNPV� � ˇ (57.24)
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Finally, we can use the concept of conditional value at risk (CVaR) which is
a coherent measure of risk, in which the expected value of scenarios representing
the worst ’ percent is used as the risk measure (Rockafellar and Uryasev 2002;
Andersson et al. 2001). The standard CVaR methods cannot be readily used in this
problem because the scenarios cannot be ordered, from the worst to the best, prior to
optimization, but we can develop an approach building upon previously presented
concepts (Schultz and Tiedemann 2006). We first find the variable risk threshold,
VRT, above which at least 1�’ scenarios reside (Eq. (57.25)) and then the deviation
from this threshold is calculated by Eq. (57.26):

NPV� � VRT � u�M .�/ (57.25)

NNPV� � VRT � NPV� .�/ (57.26)

Variable VRT may not match the value at risk (VaR), but the term VRT �
1
˛

P
� ��NNPV� will be equal to the CVaR in an optimal solution, so we can

augment the objective function to include the risk term with weight !

max
X

�
��NPV� C !

�
VRT � 1

˛

P
� ��NNPV�

�
(57.27)

The above CVaR approach is based upon the fact that variable VRT appears in
the objective function, which means that it cannot be used in instances where risk
metrics are needed but their calculation cannot be enforced through the optimality
of the solution; e.g., when a risk threshold is added as constraint. To calculate CVaR
in this case, we introduce a second indicator variable Ou� , with VRU D VRT,

NPV� � VRU � Ou�M .�/ (57.28)
X

�
�� Ou� � ˛ (57.29)

which should satisfy:

u� � Ou� .�/ (57.30)
X

�
Ou� �

X

�
u� D 1 (57.31)

57.4 Theoretical Properties

The decision-maker in this problem affects the underlying process because decisions
xijt� determine when stochastic parameters (trial outcome) are observed, which
means that nonanticipativity should be enforced via constraints in the form of
Eq. (57.7). However, the structure of the problem allows us to develop properties that
reduce the number of necessary NACs. Let the outcome of drug i , �i , in scenario �
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be denoted by ��i . Then we can show the following (Colvin and Maravelias 2010,
2011):

Proposition 1. It is sufficient to express NACs only for pairs of scenarios .�; � 0/
that differ in the outcome of a single drug; i.e., .�; � 0/ does not need to be pairwise
constrained if ��i ¤ ��

0

i and ��i 0 ¤ ��
0

i 0 for any i ¤ i 0. For a constrained scenario
pair .�; � 0/ we will call the drug in which they differ the critical drug and denote it
by i�;�

0

.

Proposition 2. It is sufficient to express NACs only for pairs of scenarios .�; � 0/
that differ in the outcome of a single trial; i.e., .�; � 0/ does not need to be
pairwise constrained if ��i and ��

0

i are not consecutive elements in ordered set
„i D fPI-F, PII-F, PIII-F, PIII-Sg. For the constrained scenario pair .�; � 0/ we will
call the trial in which they differ the critical trial and denote it by .i�;�

0

; j �;�
0

/. The
reduced set of scenario pairs that must be constrained is denoted by ‰.

Proposition 3. For scenario pair .�; � 0/ 2 ‰, it is possible to express Eq. (57.7)
using decision variables present in the problem; i.e., it is not necessary to introduce
binary variable zt�� 0 . Specifically, we can use variable yijt� for the critical trial
.i�;�

0

; j �;�
0

/.

Proposition 4. For a given scenario pair .�; � 0/ 2 ‰, uncertainty can be treated
as exogenous until the earliest time, t�;�

0

min , these two scenarios could become

distinguishable, i.e., for t < t�;�
0

min D �i�;�0

;f .i/ C : : :C �i�;�0

;j �;�
0 C 1.

Lemma 1. Given a scenario � and stage t , NACs between � and all � 0 W t < t
�;� 0

min

can be expressed using NACs in the form of Eq. (57.4).

Proposition 5. Decision variables xijt� for trials .i�;�
0

; f .i�;�
0

//; : : :; .i�;�
0

; j �;�
0

/

in scenarios � and � 0 are identical. Variables for trial .i�;�
0

; j �;�
0 C 1/ should not

be subject to NACs.

Proposition 6. Let
Pn

t , n 2 Nt be a maximal subset of scenarios that are

indistinguishable at time t (i.e., t < t
�;� 0

min if � 2 Pn
t and � 0 2 Pn

t for some n).
NACs among scenarios in

Pn
t can be enforced using an equality in the form of

Eq. (57.5).

When resource planning decisions are considered, NACs should also be enforced
for decisions Rkt� , ROkt� , and REkt� . However, we can reduce the number of NACs
using the following results.

Proposition 7. If variables xijt� andRkt� satisfy nonanticipativity, then outsourcing
ROrt� and expansionRErt� variables satisfy nonanticipativity in an optimal solution.

Proposition 1 says that it is sufficient to express NACs only for pairs of scenarios
that differ in the outcome of a single uncertain parameter (Colvin and Maravelias
2008). It was first proposed in the context of offshore gas field planning (Goel and
Grossmann 2004, 2006). It is applicable to all SP problems, but leads to significant
reductions when applied to problems under endogenous uncertainty observation.
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Proposition 2 is applicable to problems where a subset of decisions has to be
made in a predefined sequence and each decision in this subset can lead to the
observation of a single outcome of a single uncertain parameter �i . In the problem
we discuss in this chapter, the clinical trials of a single drug have to be carried out
in sequence which means that parameter �i is observed sequentially.

Proposition 3 is applicable to problems where the stage at which scenarios
s and � 0 become distinguishable is unknown but it depends on the timing of a
single decision. In the problem addressed in this chapter, the outcome of a trial
can be observed only upon completion of this trial. Thus, the decision to perform
a trial determines if and when a subset of scenarios will become distinguishable.
Furthermore, for a given pair of scenarios in ‰ we determine that the trial that leads
to their differentiation is the critical trial .i�;�

0

; j �;�
0

/ which means that the main
NAC can be written as follows:

�yi�;�0

j �;�
0

t� � xijt� � xijt� 0 � yi�;�0

j �;�
0

t� ..�; � 0/ 2 ‰I t > 1I .i; j / 2 IJt� /

(57.32)

Proposition 4 is applicable to problems where we can calculate the earliest stage
at which scenarios can become distinguishable. It is more general than Property 2
because it is not necessary to have an one-to-one association between decisions and
uncertain parameter observation. Proposition 4 implies (Lemma 1) that some of the
double inequalities in Eq. (57.32) can be replaced by equalities:

xijt� D xijt� ; ..�; � 0/ 2 ‰I 1 < t < t�;� 0

min I .i; j / 2 IJt� / (57.33)

Proposition 5 is also applicable to problems where subsets of decisions have to
be made sequentially. It implies that the inequality NACs for the critical drug of pair
.�; � 0/ 2 ‰ can be replaced with the following equality:

xi�;�0 jt� D xi�;�0 jt� ; ..�; � 0/ 2 ‰I t > 1I .i�;� 0

; j / 2 IJt� ; j � j �;�
0

/ (57.34)

Property 6 is the most general one; it is applicable to all SP problems with binary
decision variables. It means that instead of expressing pairwise NACs, a single NAC
is sufficient for all scenarios in

Pn
t .

Finally, it can be shown that Proposition 7 is valid in any feasible solution where
NACs are satisfied for variables xijt� and Rkt� , and the remaining variables are
obtained by solving an LP. Thus, if variables xijt� and Rkt� satisfy nonanticipativity
in an integer feasible solution, then a feasible solution where all variables satisfy
nonanticipativity can be obtained by simply fixing variables xijt� and Rkt� and
solving an LP, so no NACs need to be expressed for ROkt� and REkt� .

Propositions 1–6 lead to a dramatic reduction in the number of NACs. For
example, the number of NACs for an instance with six drugs is reduced from
1:2 � 109 to  1:5 � 106. Furthermore, Propositions 1–6 result in an almost linear,
instead of quadratic, growth of NACs in the number of scenarios.
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57.5 Solution Methods

Despite the reductions based on the theoretical properties discussed in the previous
section, the size of the models that have to be generated to address realistic instances
with more than ten drugs in various stages of development remain prohibitively
large, so additional solution methods are required. In this section, we outline three
such methods.

57.5.1 Infinite Horizon Approximations

In general, the planning horizon should be sufficiently long so that the testing of all
drugs can be completed. If a drug cannot be completed within the horizon, then its
testing will never be started since this would lead to costs but no revenues. However,
using a long planning horizon increases the number of stages and thus the size of
the formulation. To address this challenge, we formulate our model over a medium
horizon but augment it with an approximation of the future effect of our decisions.
We achieve this by approximating the costs that will incur and the revenues that will
be generated beyond the horizon due to our decisions within the horizon.

First, we calculate an approximation of the profit propen
ij that would be generated

by a drug that has passed trial .i; j / but is currently idle:

propen
ij D rvmaxi

h
1 � �i;TCPj 0

�j pij 0

i
�
X

j 0�j ˇT cij

The two terms inside the brackets approximate the revenues from the successful
development of drug i , assuming it will be finished at T C P

j 0�j pij 0 , i.e., there
will be no delay in its development beyond the time horizon [delays within the
horizon are accounted for in Eq. (57.13)]. The summation in the right-hand side is
an approximation of the fixed costs for the remaining trials discounted at t D T .

Second, we approximate the profit prrun
ijt that will be generated by a drug that

is undergoing PI or PII clinical testing at the end of the horizon. If the trial .i; j /
started at stage t > T � pij then it will finish at t C pij > T , and PIII will be
completed at t CP

j 0�j pij 0 assuming again no delay.

prrun
ijt D rvmaxi

h
1 � �i;tCPj 0

�j pij0

i
�
X

j 0>j
ˇT cij 0

Finally, to avoid solutions where drugs are not developed despite resource
availability because their approximated potential profit is comparable to the actual
profit that would have been achieved if they were developed within the planning
horizon, we multiply propen

ij and prrun
ijt with "j 2 Œ0:8; 0:9� in Eq. (57.14).
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57.5.2 Rolling Horizon Using Relaxed Model

In general, accounting for uncertainties which will be realized in the future and
modeling our recourse actions is beneficial because it can lead to better early
decisions. The solution of our model therefore has to be feasible and (near) optimal
over a few early stages, the decisions for which will be implemented. Based on this
observation, we formulate a relaxed model (RM) consisting of Eqs. (57.8)–(57.15);
all equality NACs, Eqs. (57.33)–(57.34); and inequality NACs, Eq. (57.32) only for
the first t� stages. The solution of (RM) is feasible for the first t� stages because
all NACs are expressed for t 2 f1; : : : ; t�g, and it yields (near) optimal solutions.
Therefore, we use model (RM) in an iterative solution method that typically yields
the optimal solution: solve model (RM) for T D f1; 2; : : : ; T g; implement the
solution for t D 1; taking into account uncertainty observation at t D 1 reformulate
(RM) for T D f1; 2; : : : ; T C 1g and resolve; repeat as necessary.

57.5.3 Branch-and-Cut Algorithm

Even though none of the NACs is redundant, only a small fraction of these
constraints are active in any feasible solution. Specifically, it can be shown that
at most 12.5 % of inequality NACs can be violated in any solution, and in practice
less than 4 % of these constraints were violated (Colvin and Maravelias 2010). This
observation allows us to develop a branch and cut (B&C) algorithm in which the
initial formulation includes only equality NACs and inequality NACs are added
only if violated. Note that unlike typical B&C algorithms, we remove essential,
not tightening constraints, which allows for integer solutions that are infeasible to
the full model to be found feasible. To handle this, a number of modifications to
the standard B&C algorithm are made. First, heuristics are turned off to prevent
infeasible solutions to be found and used as lower bound for pruning. Second,
bound updating is modified so the lower bound is not updated immediately upon
finding an integer solution, as the solution must first be checked for NACs feasibility.
Finally, if an integer solution is found to violate removed NACs, it is resolved
after the addition of violated NACs (possibly leading to a fractional solution), and
subsequently partitioned using standard branching.

The algorithm can be further improved by developing specialized node selection
rules. Note that the advantage of local search of having the basis of the previous
node is diminished because hundreds or thousands of violated NACs are added,
especially in early nodes. In later nodes where fewer NACs are added and a lower
bound is available, the advantages of local search are important. We found that using
a best first search for a fixed number of nodes, Nmax , before using local search
provided for the fasted solution times.

Related to the node selection rules is the decision to test for violated NACs at all
nodes or at integer nodes only. Checking for infeasibilities at all nodes increases the
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computational cost per node substantially, but reduces the total cut additions because
a cut added at an early fractional node is carried to all descendent nodes. Testing for
infeasibilities at every node outperformed testing only at integer solutions; however,
when used in conjunction with the hybrid node selection rule, adding cuts at all
early nodes, but only at integer nodes after a fixed depth, Dmax, performed better
than either pure approach.

The proposed B&C algorithm allows us to solve problems with up to ten drugs. It
yields solutions faster and, most importantly, allows us to generate and solve models
for problems that were intractable because the corresponding models could not be
generated.

57.6 Examples

We present two examples to show how the proposed framework can be applied.
Problem data can be found in Colvin and Maravelias (2011).

57.6.1 Resource and Revenue Interdependence

We consider an example with deterministic tasks performed in parallel with
stochastic tasks and interdependencies (modified from De Reyck and Leus 2008).
We develop two products, D1 and D2, which require two resources: one consumable
and one renewable. Both drugs have the precedence graph shown in Fig. 57.3. Each
product has to pass six tasks with stochastic outcome leading to 12 total outcomes
for each drug and 144 total scenarios. Additionally, if task Tox II is performed
simultaneously with task Other II, then the combined resource requirements are
reduced (resource interdependence); and additional revenue is gained if both drugs
are launched. The model has 30 3-month stages (periods) and consists of 272,391
constraints, and 7,344 continuous and 63,504 binary variables. It was solved to
0.1 % optimality in 3,461 CPU seconds and 823 nodes.

Figure 57.4 shows the Gantt charts of two representative scenarios. The first
scenario represents the case in which D1 can be successfully launched while D2

Start

Agro

Tox I Med I

Other I Other II

Tox II Tox III

Med II Med III

Finish

Stochastic tasks (outcome)

Deterministic tasks

Dummy start/finish (launch) task

Precedence constraints

Fig. 57.3 Activity-on-node precedence graph for example in sect. 57.6.1
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Fig. 57.4 Gantt chart of representative scenarios for Example 1 (dashed line represents the point
at which the two scenarios become distinguishable)

fails Med II. The second scenario represents the case in which D1 fails Tox III, but
D2 reaches the market. As shown in Fig. 57.4, the expensive and long Agro task is
delayed until after much of the uncertainty is resolved without delaying the launch of
the drug. Also, Tox II and Other II start simultaneously in both scenarios, exploiting
the interdependency in resource requirements. Additionally, D1 is developed as
quickly as possible while D2 is delayed due to resource constraints.

57.6.2 Risk Management

In this example, we examine how the different risk management approaches affect
the solution. We consider a problem with four drugs having to undergo three clinical
trials resulting in 256 scenarios, and a 48-month time horizon divided into eight
6-month stages. All drugs can be outlicensed after successful completion of PI or
PII clinical trials. We studied four approaches: (1) no risk management; (2) the
probability of incurring a loss is limited to 20 % using Eqs. (57.21)–(57.22); (3)
the downside risk is limited to under $35M using Eqs. (57.23)–(57.24); and (4) the
CVaR formulation with ’ D 5% using Eqs. (57.22), (57.25)–(57.27). Figure 57.5
shows the breakdown of revenue coming from outlicensing, completed drugs, and
anticipated revenue from drugs under development at the end of the horizon.

If risk is not considered, no drug was outlicensed, leading to over 40 % of sce-
narios having a negative NPV, but the expected NPV is $1,835M. The expectation
of scenarios with negative NPV was found to be �$50M.

In the probabilistic approach, the probability of realizing a negative NPV was
limited to 20 %, approximately the probability of all drugs failing. In this case,
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Fig. 57.5 Breakdown of revenue sources for different risk management solutions

not all drugs are developed and some outlicensing occurs. The development of
drugs completed within the time horizon is similar to the instance with no risk
management, but drugs that were anticipated to be completed in the future were
outlicensed for a secure revenue source lowering the expected NPV to $1,615M.

In the third case, the downside risk was limited to roughly the expected cost
of developing a single drug. This approach yielded the greatest changes. PI trials
were performed for multiple drugs initially. If any drugs successfully reached PII
clinical trials, at least one of them was outlicensed or the development was stopped,
which reduced the number of trials performed and thus the revenue from completed
drugs and anticipated future revenues. Also, lower outlicensing revenue was realized
due to selling the drugs earlier (after completion of PI instead of PII trials). As a
result, the expected NPV dropped to $1,095M with a 50 % probability of realizing
a negative NPV.

Finally, using CVaR (with risk level of 5 %) led to a solution between the risk
neutral and the probabilistically constrained approach with an expected NPV of
$1,740M and a CVaR of �$101M. Similar to the probabilistically constrained
model, future uncertain revenues were traded for smaller but secure outlicensing
revenues, though this occurred more often when multiple drugs reached PIII testing.
Roughly 25 % of scenarios had a negative NPV with probability-weighted loss of
$50M.

57.7 Conclusions

In this chapter, we presented a multi-stage stochastic programming framework for
the planning of R&D activities in the pharmaceutical industry. Also, we discussed
several extensions, including risk management approaches. Finally, we presented
theoretical properties that allow us to formulate tractable models, and solution
methods that allow us to address realistic instances.
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Chapter 58
Robust Multi-Criteria Project Scheduling
in Plant Engineering and Construction

Maurizio Bevilacqua, Filippo E. Ciarapica, Giovanni Mazzuto,
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Abstract In this chapter we consider a real-life problem which consists in schedul-
ing the activities of a project subject to precedence and resource constraints so as to
optimize several conflicting goals. The durations of the activities cannot be specified
precisely in advance. Rather, we assume that based on the experience with previous
projects, the means, the standard deviations, and certain percentiles of the respective
probability distributions can be reliably estimated. The algorithm applied to solve
this problem relies on goal programming techniques in conjunction with Goldratt’s
Critical Chain Project Management (CCPM) method. The algorithm was applied to
a case study dealing with the construction of an accommodation module for an oil
rig. Goal programming is a multi-objective programming technique which attempts
to minimize the deviations to a set of target values for the given objectives in such
a way that all operational restrictions of the problem are satisfied. Several solutions
can be obtained, and the best solution will depend on the priority associated to each
goal. In this work we considered the minimization of the project makespan and
the levelling of the project resources as the objectives to be pursued. The results
obtained using the proposed algorithm have been compared with classical project
management techniques (PERT/CPM) that the company involved in the case study
used in many projects.
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58.1 Introduction

Critical Chain Project Management (CCPM) considers both the stochastic approach
and resource constraints (Goldratt 1964). This method, in our opinion, is still a topic
that needs to be further researched. One of the problems to be solved is the definition
of activity priorities. By changing the priority of activities the project duration
will change. The problem of CCPM scheduling has been highlighted recently by
Long and Ohsato (2008). They developed a fuzzy Critical Chain method trying to
incorporate some beneficial features of CCPM for project scheduling under resource
constraints and uncertainty. Bevilacqua et al. (2009) proposed a new method based
on risk assessment in order to minimize the risks related to accidents in the refinery
plants.

The procedure proposed in this chapter uses the goal programming (GP)
technique to tackle this problem. The proposed method for project scheduling was
applied to a case study considering the construction of an accommodation module
for an oil rig.

Goal programming is a well-known technique for decision-makers (DMs) to
solve multi-objective decision making (MODM) problems in finding a set of
satisfying solutions. It was first introduced by Charnes and Cooper (1961) and
further developed by Lee (1972), Ignizio (1976), and Tamiz et al. (1998). The
purpose of GP is to minimize the deviations between the achievement of goals
and their aspiration levels. The possibility of defining multiple goals from the
mathematical point of view can help project managers in their work.

Some GP applications deal with project selection problems. An example is the
work of Kim and Emery (2000), who use GP for project selection and the resources
levelling. Their GP model has been developed to determine which programs to
pursue in an effort to maximize profit over a 4-year period, develop machine
procurement plans, and estimate personnel requirements.

Azaron and Moghaddam (2006) develop a multi-objective model for the resource
allocation problem in a dynamic PERT network, where the activity durations are
exponentially distributed random variables and the new projects are generated
according to a Poisson process (see also Chap. 38 of this book). However, they note
that the limitation of this model is that the state space can grow exponentially with
the size of the network. Azaron et al. (2006) consider the case of Erlang distributed
durations, leading to the same problem.

In the present chapter a new approach of GP has been developed for CCPM,
defining an algorithm for the activities priority in order to minimize the project
makespan (i.e., the project duration) and to level the resource usage over time (i.e.,
resource levelling).

The remainder of this chapter is organized as follows. Section 58.2 gives a short
introduction to basic CCPM and GP concepts. The procedure applied in this paper is
described in Sect. 58.3. In Sect. 58.4 we present the case study. The results obtained
with the approach devised in this chapter are compared with schedules generated
by other techniques to assess the validity of the new procedure. This comparison is
discussed in Sect. 58.5. Finally, conclusions are drawn in Sect. 58.6.
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58.2 Methodological Background

In order to explain the procedure developed in this chapter for defining activity
priorities and scheduling the project, we provide some basic concepts of Critical
Chain Project Management and goal programming.

58.2.1 Critical Chain Project Management

Our procedure for scheduling a project relies on the Critical Chain Project Man-
agement (CCPM) method. CCPM is based on algorithms derived from the Theory
of Constraints (TOC), which has been devised by Goldratt (1997). The name TOC
refers to the hypothesis that any manageable system is limited in achieving its goals
by a very small number of constraints and that there always exists at least one
limiting constraint. Specifically, a constraint is anything that prevents the system
from improving the achievement of one or several goals.

Shou and Yao (2000) underlined that the Critical Chain planning method was
developed as a result of the chronic problems that existing methods present. Goldratt
(1997) argues that safety time and its use is of crucial importance in project
management. PERT/CPM is criticized as dealing with uncertainty in the same way
for all activities, even if they are not on the critical path. In the PERT/CPM approach
a safety time is added at the end of each activity, while in the Critical Chain approach
the safety times, which are viewed as “padding”, are aggregated, adjusted, and
relocated in strategic positions to protect the overall critical chain. Time estimates
may be reduced, but a project buffer is added at the end of the project. This has
the effect of reducing the length of the critical path and hence the overall project
duration (Watson et al. 2007).

Goldratt (1997) proposed to concentrate the uncertainty for each activity at the
end of the project in a buffer. His method is based on the property that the variance
of the sum of samples from a number of independent distributions is the sum
of variances for the populations from which samples come. The variance is the
square of standard deviation. The standard deviation is proportional to the amount
of variation in a single activity. In other words, the uncertainty in the amount of
activity in the critical chain is the square root of the sum of the squares of individual
variations.

To determine the critical activities of a project, the Critical Chain method
requires the priority definition of activities. Considering the example in Fig. 58.1, the
problem consists of defining a criterion for the optimal scheduling of the activities
(the set of critical activities immediately results from the generated schedule). We
assume that resource Y cannot process both activities B and D in parallel. Using
backward scheduling, when the activity E can start, it is important to determine
the activity that is completed immediately before. We show that the sequencing of
activities B and D significantly affects the duration of the critical chain. If activity B
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Fig. 58.1 Example (nodes
are labelled with activity
name [type of resource,
duration])

has a lower priority than D, D will start before B and the critical chain is composed
by all activities, leading to a project duration of 14 time units (activities sequence:
ACDBE). Conversely, if D has a lower priority than B, the critical chain is composed
of the activities A, C, D, and E with a total duration of 12 time units. This simple
example (with only five activities) shows that it is necessary to develop a reliable
tool that can help the project manager during the scheduling process.

58.2.2 Goal Programming

Goal programming (GP) is a pragmatic and flexible methodology capable of
addressing complex decision problems where several objectives as well as many
variables and constraints are involved (Tamiz et al. 1998). The approach of GP relies
on Simon’s (1955) concept of satisfying objectives.

According to Chap. 20 in the first volume of this handbook, in its basic form,
the GP methodology uses the same structure as linear programming (LP), but it
aims at optimizing a set of objective functions. To put it differently, it optimizes the
following function defined as the vector of the � objective functions:

f .x/ D
8
<

:

f1.x1; x2; : : : ; xn/

: : :

f�.x1; x2; : : : ; xn/

(58.1)

Extending the hypothesis of linearity (derived from LP) to the objective function
vector, the value z% of the �-th objective function can be written as

z� D Pn
iD1 c�ixi .� D 1; : : : ; �/ (58.2)

where c%i is the coefficient of the objective function that represents the marginal
contribution in reaching the �-th target by the i -th decision variable xi . � denotes
the index of objective functions and n is the number of decision variables. Each
objective function in (58.1) is associated with a target value z� that indicates a
realistic value to be reached for the �-th objective. By combining an objective
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with a target value we obtain a goal (Romero and Rehman 1989). Goals can be
considered “soft constraints” that can be violated without producing infeasible
solutions. The amount of deviation from the given target value expresses the
under/overachievement of the target. That is why the deviation, ı�, can be positive
(overrunning z�) or negative (failing z�). Hence, the deviation is usually represented
as the difference of two nonnegative deviational variables: one variable for the case
of overachievement, ıC

� , and one variable for the case of underachievement, ı�
� .

The �-th goal of can now be expressed as follows:

z� D Pn
iD1 c�ixi C ı�

� � ıC
� .� D 1; : : : ; �/ (58.3)

The most widely used GP formulation of the problem is given by the minimiza-
tion of Eq. (58.4) subject to the constraints (58.3) and (58.5)–(58.7):

zGP D
Xv

�D1 .ı
�
� C ıC

� / (58.4)

Xn

iD1 aikxi � Rk .k 2 R/ (58.5)

xmin
i � xi � xmax

i .i D 1; : : : ; n/ (58.6)

ı�
� � 0; ıC

� � 0 .� D 1; : : : ; �/ (58.7)

In a production-theoretical context,the parameters of the problem can be inter-
preted as follows: aik is the production coefficient, which represents the quantity
of resource k 2 R used by the production process i ; Rk denotes the limited
availability of resource k; xmin

i and xmax
i are the minimum and the maximum values,

respectively, of decision variable xi ; n designates the number of original decision
variables.

Deviational variables and goals have the same relative importance in the GP
model, whereas decision makers usually face the need to assign them different
priorities. This consideration is very important considering that GP models can be
classified into three major subsets:

1. Weighted Goal Programming (WGP), see Ballarin et al. (2011);
2. Minimax Goal Programming (MINMAX GP), see Inuiguchi and Sakawa (1995),

Yang (2000), or Romero and Rehman (1989);
3. Lexicographic Goal Programming(LGP).

In our study the LGP approach is used. The rationale behind LGP is based on
the observation that in some decision making systems some goals seem to prevail.
Preemptive weights are attached to the goals, which are classified in different
priorities. The procedure begins with comparing all the alternatives with respect
to the highest priority goals and continues with the next priority until only one
alternative is left. In other words, the fulfilment of goals that are rated with a certain
priority is immeasurably preferable to the achievement of any other set of goals
rated with a lower priority (Romero and Rehman 1989).
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58.3 Research Approach

In this section we explain how we have approached the real-life project planning
problem described in the case study of Sect. 58.4. First we briefly sketch the general
project planning procedure and then provide a goal programming formulation of the
bi-objective scheduling problem.

58.3.1 Overview of the Project Planning Approach

The proposed procedure is shown in Fig. 58.2.
Firstly, it is necessary to decompose the project into a set of individual activities.

Subsequently, all constraints with respect to resources, activity durations, and
precedence relationships among the activities have to be analyzed.

Having identified the constraints, it is then possible to formalize the planning
goals, giving rise to the objective functions of the project scheduling problem.
In this work we consider two conflicting criteria: the minimization of the project
makespan and the levelling of resources. These objective functions will be explained

Fig. 58.2 Proposed approach
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in more detail in Sect. 58.3.2, where we propose a goal programming formulation
for resource-constrained project scheduling.

58.3.2 Goal Programming Formulation

Having analyzed the project with all its constraints regarding precedencies, dura-
tions, and resources, it is possible to formulate the GP problem. As mentioned
before, we define two goals for the GP problem:

1. Minimization of the project makespan;
2. Levelling of resources;

These two goals have been chosen because of their importance in terms of
efficiency. The project manager of the case study presented in Sect. 58.4 decided
that the first goal should have higher priority than the second one.

Regarding the first goal and denoting the project duration by Cmax, the objective
function can be written as follows:

Cmax D maxi2V Ci D maxi2V .Si C pi/ (58.8)

where V is the set of all activities and Si , Ci , and pi respectively designate the
starting and completion times of activity i and its duration. Duration pi may vary in
interval

�
pmin
i ; pmax

i

�
with lower limit pmin

i and upper limit pmax
i ; the corresponding

constraint is formulated in Eq. (58.9):

pmin
i � pi � pmax

i .i 2 V / (58.9)

Moreover, all the technological constraints must be taken into account. Consid-
ering the starting time Sj of activity j and the starting times Si of all activities i
that are predecessors of j , it is possible to write the precedence constraints as in
Eq. (58.10):

Sj � Si C pi .j 2 V I i 2 Pred.j // (58.10)

where Pred.j / stands for the set of all predecessors of activity j .
The last constraints are given considering a finite set of resources k 2 R. In fact,

if rk.S; t/ is the total demand of the resource k at day t and Rk.t/ is the maximum
availability of k at t , then the constraints may be written as Eq. (58.11):

rk.S; t/ � Rk.t/ .k 2 RI t D 1; : : : ; Nd/ (58.11)

where Nd is some deadline for the project termination and

rk.S; t/ D P
i2A .S;t/ rik D P

i2A .S;t/
wlik
pi

(58.12)
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In Eq. (58.12) rik denotes the requirement of activity i for resource k and A .S; t/

is the set of activities being in progress at time t . Since we assume that the durations
of activities i can be varied in the given interval, rik is expressed as the ratio of the
given workload wlik D pi � rik of resource k incurred by activity i and the (variable)
duration of activity i .

Obviously, the starting time of each activity i must be chosen within the time
window between its earliest and latest starting times ESi and LSi arising from
deadline Nd for the completion of the project and the classical temporal scheduling
computations in the project network:

ESi � Si � LSi .i 2 V / (58.13)

Regarding the second goal, the resource levelling techniques aim at minimizing
the variations in the resource loads over time by shifting activities according to their
time windows (see, e.g., Chap. 17 in the first volume of this handbook). The model
determines the starting times of non-critical activities subject to the given deadline
of the project by optimizing its objective function. A well-suited objective function
to be minimized for this aim is given in Eq. (58.14):

X Nd
tD1 .R � r.S; t//2 (58.14)

where R and r.S; t/ are the availability of man-hours for each considered period
and the amount of man-hours that is required at time t . This problem is subject to
the following constraints:

Si C pi � Nd .i 2 V / (58.15)

Sj � Si C pi .j 2 V I i 2 Pred.j // (58.16)

Si � 0 .i 2 V / (58.17)

This model and the steps of our scheduling procedure have been implemented
using the Matlab R2011 software.

58.4 Case Study: The Halfdan Northeast Field Project

The case study examined in this chapter deals with the timing and scheduling of
activities for the construction of a module for an oil rig project located in Denmark.

The site consists of three plants: Center Dan, Halfdan and Tyra West. The plant
is shown in Fig. 58.3, where the ellipse highlights the Halfdan structure that is
analyzed in this study.

The Halfdan structure is composed of three main modules: a jacket type
monopalo, a top side used for production, and a topside accommodation module.
Across the riser inside of the jacket, deck hydrocarbons arrive at HCA. Here the
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Fig. 58.3 Extraction field plant

activities associated with the separation of gases by water are performed, and then,
using two subsea pipelines of 7 km length each, the gas and the liquid are sent to
the module and then to the platform HBB Dan Centre. The accommodation module
houses the management and maintenance personnel of the extraction Halfdan Field.

58.4.1 Project Analysis

The realization of the project can be subdivided into three sub-projects, one for
each module. However, the three modules have to be realized in parallel because the
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Table 58.1 Phases and activities of the Halfdan project

Activity No. Activity No. Activity No.

Engineering phase Construction phase Construction phase
Start project 1 Structure 11 Insulation 21

Structure 2 Painting in shed 12 Plumbinginstalling 22

Architecture 3 Assembling 13 Fire and safety installing 23

Electronics 4 Machinery installing 14 Commissioning 24

Piping 5 Piping installing 15 Load out 25

HVAC 6 Architecture 16 Ready to sail away 26

Equipment on board 7 HVAC installing 17

Management Electronics installing 18

Strategydefinition 8 Equipment installing 19

Supplying 9 Painting on site 20

Subcontracting 10

customer provides a means of on-site towing, a single pontoon. This is one of the
most important constraints for the whole project. The activities for each sub-module
are shown in Table 58.1.

They have been grouped into three sections: activities for the engineering phase,
for the management phase and concluding, for the construction phase. The first six
activities are concerned with several areas of engineering. This phase is essential
for managing all operations to be performed on the construction site. The following
phase is related to the procurement. The construction phase is the most interesting
part of the project with respect to the planning problem and for this reason it is used
for validating the procedure proposed in this chapter.

In the construction phase, the accommodation module has been identified as the
critical element among the three modules, and this is due to a number of reasons:

1. There is less time available for this module than what is considered to be
optimum for the fulfilment of that part of the order;

2. It requires high development efforts, both on basic and detailed engineering for
all the facilities to be installed on the module;

3. It is equipped with complex and technologically advanced systems;
4. An extensive control and management of engineering, procurement, and con-

struction activities is required.

The accommodation module must be designed completing the basic engineering
and developing the detailed engineering. To have an overall understanding of the
problem it is necessary to analyze the precedence and resource constraints for each
activity of the project.

In Table 58.2 the precedence constraints for the construction phase are shown.
Regarding the resource constraints, considering that the module construction starts
when all the materials are ready to be used in the construction site, the only resource
to be considered is the manpower. Table 58.2 shows the necessary resource k for
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Table 58.2 Activities of the construction phase

Demand

Activity no. Specification Description Resources (workers) Successor(s)

11 Structure External structure
envelope
construction

Structural
engineers

305 12

12 Painting in
shed

Painting of the
various structural
blocks inside the
shed

Painters 129 13

13 Assembling Welding of all the
building blocks
realized

Structural
engineers

305 14, 15, 21

14 Machinery
installing

Assembly of all
machines for
extracting and
storing

Piping
technicians,
electricians

338 15

15 Piping
installing

Installation of the
piping for the
extraction plant

Piping
technicians

264 16, 17, 20, 22

16 Architecture Interior design of the
module

Architects 99 18, 19

17 HVAC
installing

Installation of
heating and
conditioning systems

HVAC
installers

84 18, 19

18 Electronics
installing

Installation of
electrical panels

Electricians 74 23

19 Equipment
installing

Installation devices
for the module
habitableness

Instrument
fitters

122 23

20 Painting on site Further painting Painters 129 24

21 Insulation Installation of
insulated panels to
thermally isolate the
interior of the
building

Insulation
engineers

149 24

22 Plumbing
installing

Installation of the
piping for housing

Plumbers 96 24

23 Fire and safety
installing

Assembly and
installation of the
safety and
firefighting systems

Plumbers,
electricians

170 24

24 Commissioning Commissioning of
various equipment
and systems

Commissioning 51 25

25 Load out Module loading
above of the pontoon

Commissioning 51 26

26 Ready to sail
away

Order fulfilment Commissioning 51 –
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Table 58.3 Activity durations in days

Standard 50 % 90 %
Activity Mean value deviation percentile percentile

1. Start 0.00 0.00 0 0

2. Structure 132.17 10.83 135 546

3. Painting in shed 116.92 9.58 118 402

4. Assembling 116.92 9.58 117 406

5. Machinery installing 147.42 12.08 148 718

6. Piping installing 167.75 13.75 169 979

7. Architecture 162.67 13.33 158 883

8. HVAC installing 147.42 12.08 148 698

9. Electronics installing 122.00 10.00 121 437

10. Equipment installing 101.67 8.33 101 294

11. Painting on site 61.00 5.00 61 116

12. Insulation 71.17 5.83 71 151

13. Plumbing installing 132.17 10.83 130 520

14. Fire and safety installing 96.58 7.92 97 263

15. Commissioning 50.83 4.17 51 87

16. Load out 10.17 0.83 10 11

17. Ready to sail away 5.08 0.42 5 5

18. Finish 0.00 0.00 0 0

each project activity i . Specifically, the demand rik for each resource has been given
in number of required workers. The maximum availability for the number of workers
is 338.

58.4.2 Critical Chain/Goal Programming Approach

The average duration and standard deviation of each activity has been estimated
using company historical data stemming from 15 projects previously carried out.
We assumed that all activity durations have a log-normal distribution. In Table 58.3
the 50 and 90 % percentiles of the duration distributions are reported, where the
activities of the construction phase have been renumbered from 1 to 18.

The 50 % duration percentiles have been used for project planning. According to
Goldratt’s (1997) theory, project buffer and feeding buffers have been determined
considering the 50 % percentile of the critical chain duration and all critical
activities. Figure 58.4 shows the result obtained using the CCPM method and
scheduling the activities according to the goal programming model.

The critical activities (the activities that compose the critical chain) are repre-
sented as red rectangles, the black rectangles corresponding to no-critical activities.
Yellow rectangles are feeding buffers, while the (right-most) green rectangle shows
the project buffer.
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Fig. 58.4 Critical Chain program

58.5 Discussion

In order to analyze advantages and disadvantages of different techniques, the
proposed method, based on CCPM in combination with GP techniques, has been
compared with PERT/CPM and traditional CCPM. In doing so, the results yielded
by the new approach have been compared with those the company obtained using
traditional approaches. Fifteen similar projects have been compared.

An initial comparison can be made by considering the adherence to the project
deadlines. As illustrated in Table 58.4 the new method allowed for a project duration
prediction which was closer to the real duration. Since activity times vary depending
on the availability of materials, workers, tools, and in some cases the weather, it
is natural for the estimator to integrate some margin of error into the estimate.
Therefore, in previous projects, it was not uncommon to have estimates reflecting
90–95 % confidence that the activity would be performed within the estimated time.
Furthermore, the practice of this type of scheduling prevents project managers from
taking advantage of the buffers built into the single activities. For this reason, should
a critical activity exceed its estimate for completion, the entire project will be
delayed. In this way variation in individual activity completion time accumulates
and on-time delivery is compromised. Critical Chain Planning allows activities to
be carried out according to their 50 % duration percentile, yielding considerably
shorter activity durations; moreover, by using the buffers, the reliability of the
completion dates has been increased and the need for frequent schedule changes
has been reduced.

Moreover, a comparison was made with respect to the resource utilization (i.e.,
the ratio worked hours/total paid hours). The improvement shown in Table 58.4
can be explained considering that in traditional project management any delay in
a critical activity will delay the project, but the opportunity to accelerate a critical
activity will generally not be seized:
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Table 58.4 Results obtained

Planned duration [days] Project duration [days] Resource saturation
(standard deviation) (standard deviation) (standard deviation)

PERT/CPM 1,978 (157) 2,286 (203) 49 % (12 %)

CCPM 1,764 (103) 1,811 (109) 62 % (9 %)

CCPM/GP 1,695 1,720 71 %

• a person working on a project might prefer to review his or her work rather than
to report that is has been completed;

• in a CPM program, if a predecessor activity is completed earlier than planned,
the resource required to perform a successor activity might not be ready to start
at an earlier date.

58.6 Conclusions

In this chapter we proposed a model, which is able to support the scheduling of
activities for the realization of a project of considerable complexity. In particular,
the presented case study involved the construction of the accommodation module
for the Halfdan Northeast field of oil extraction.

The combined application of the Critical Chain Project Management (CCPM)
method and techniques of goal programming (GP) provided a feasible schedule of
good quality within the constraints of limited resources, considering two important
criteria: the minimization of the project duration and the levelling of the resources of
the project in question. In this way it has been possible to comply with all technical
constraints and priorities of the practical resource-constrained project scheduling
problem (RCPSP).

In comparison to the traditional RCPSP methods applied to CPM/PERT net-
works, the method proposed in this chapter uses the CCPM scheduling logic in
order to concentrate the uncertainty for each activity in a project buffer at the end
of the project. This allowed the project manager to reduce project duration. This
happens because the traditional CPM methods aim at bringing individual activities
on time. In contrast, the proposed method is designed to produce schedules that
complete the entire projects on time. The method provides a tool to proactively
manage projects in such a way that harm caused by variations in activity completion
times is mitigated. In the control phase of the Critical Chain method, the penetration
of buffers was monitored. When the percentage of buffer penetration exceeded the
relative progress of the project, project crashing was carried out until the relative
progress again exceeded the proportion of the consumed buffer.

The applied method also demonstrates the potential of goal programming. In
fact, like the GP of linear programming, our model is able to take into account
multiple objectives simultaneously instead of one only, as well as a large number
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of variables and constraints. The capability of hedging against uncertainty and to
consider several goals simultaneously represent the most important advantages of
this combined CCPM/GP approach. In particular, the presented approach serves to
implement projects with limited resource availabilities that are completed in a short
amount of time with a levelled utilization of resources, without having to suppress
all time buffers that could absorb unforeseen delays.
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Chapter 59
Multi-Criteria Multi-Modal Fuzzy Project
Scheduling in Construction Industry

Jiuping Xu and Ziqiang Zeng

Abstract The construction project managers often face the challenges to compro-
mise among different conflicting aspects of a project, especially for the criteria of
time, cost, quality, and environment in a multi-modal project. This leads to a multi-
criteria multi-modal project scheduling decision making problem. The complexity
in the project scheduling is concentrated on the search for an ideal level of balance
among all the conflicting criteria. In fact, the tradeoff among these criteria is
determined by the modal selection and the duration reduction applied within the
selected mode in a multi-modal project. Therefore, it is important to improve the
optimality and effectiveness of modal selection that significantly contributes to the
success of a project. In this chapter, the introduction and statement of a discrete time-
cost-environment tradeoff problem (DTCETP) for large-scale construction systems
with multiple modes under fuzzy uncertainty are presented. The modelling process
of DTCETP is explained in detail. Since the DTCETP belongs to the class of
non-deterministic polynomial-time hard problems, a fuzzy-based adaptive-hybrid
genetic algorithm is developed to efficiently find feasible solutions. Finally, the
case study of Jinping-II Hydroelectric Project is employed as a practical application
example.

Keywords Construction industry • Fuzzy sets • Multi-criteria decision-making •
Multi mode • Project scheduling

59.1 Introduction

Time and project cost are crucial criteria of construction projects and have received
significant attention for several years (Akkan et al. 2005; Leu et al. 2001). As stated
in Chaps. 29 and 30 in the first volume of this handbook, the discrete time-cost
tradeoff problem (DTCTP), which was introduced by Harvey and Patterson (1979)
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and Hindelang and Muth (1979), is an important subject in multi-criteria project
scheduling theory and applications (Peng and Wang 2009).

Nowadays, the quantity and scale of construction projects world wide have
developed rapidly. Construction project managers often face the challenges to com-
promise among different conflicting criteria of a project (Liang 2010; Xu and Zeng
2011). This leads to a multi-criteria project scheduling decision-making problem.
In fact, multi-criteria decision-making or multiple criteria decision analysis is a
sub-discipline of operations research that explicitly considers multiple criteria in
decision-making environments.

Generally, the project management decisions focus on the minimization of
project completion time, and/or the minimization of total project cost through
crashing or shortening the duration of particular activities (Akkan et al. 2005;
Eshtehardian et al. 2009; Leu et al. 2001). Thus, a project decision maker may
be able to shorten project completion time, realizing savings on indirect costs,
by increasing direct expenses to accelerate the project (Liang 2010). Additionally,
although various project management decision techniques have been developed
to minimize project duration and/or total project cost, most do not minimize the
environmental impact (Ammar 2011; Wang et al. 2010). Therefore, this chapter
considers that construction managers need to develop a project management
methodology for directing and controlling not only the total project duration and
project cost, but also the environmental impact to achieve management objectives.
This leads to a discrete time-cost-environment tradeoff problem (DTCETP), an
extension of DTCTP. The criteria of the project management decision is to find a
starting time and a crashing time (Klerides and Hadjiconstantinou 2010) for each
activity such that the makespan is minimized and the schedule is feasible with
respect to some constraints, such as precedence (Al-Fawzana and Haouari 2005),
crashing time, total budget, and duration (Long and Ohsato 2008). In this chapter,
four criteria (objectives) for the DTCETP are considered: (1) the minimization of
the total project cost; (2) the minimization of the total project duration; (3) the
minimization of the total crashing cost; (4) the minimization of the environmental
impact.

In project scheduling, every activity can be executed in the crashing way in
which the project direct costs are used to shorten the activity duration. According
to the extent of the crashed activity duration, the execution of every activity can
be classified into different execution modes. So the decision maker should decide
which execution mode is selected while executing every activity. The crashed
duration of activities was introduced to project scheduling in Ahn and Erenguc
(1998), where the duration/cost of an activity is determined by the modal selection
and the duration reduction (crashing) applied within the selected mode. This leads
to a multi-mode project scheduling decision making problem (see Chap. 21 in the
first volume of this handbook).

Due to incomplete or unavailable relevant information over the project planning
horizon, the model inputs for the project management decisions are normally
imprecise in practice (see Chap. 42). In non-routine projects (e.g., new construction
projects) (Long and Ohsato 2008), the duration of each activity and completion time
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may be uncertain, and the project manager has to handle multiple conflicting goals in
an uncertain environment with information that may be incomplete or unavailable.
Uncertainty in the activity durations can be modeled by two groups of methods
such as probability-based methods and fuzzy set-based methods (Demeulemeester
and Herroelen 2002; Wȩglarz 1999), the use of which depends on the situation and
the project manager’s preference. In a new construction project it is difficult for a
project manager to characterize these random variables correctly, because activities
tend to be unique, and therefore lack historical data. For this reason, the fuzzy
method is considered an effective approach for such situations. First proposed by
Zadeh (1965), and consequently developed by researchers such as Dubois and Prade
(1988), and Nahmias (1978), fuzzy theory has been a useful tool in dealing with
ambiguous information.

In this chapter, a multi-criteria multi-modal fuzzy project scheduling problem is
discussed. The remainder of this chapter is organized as follows: Sect. 59.2 describes
the statement of DTCETP. In Sect. 59.3, the modelling process of DTCETP is
explained in detail. In Sect. 59.4, a fuzzy-based adaptive hybrid genetic algorithm
((f)a-hGA) is developed to solve the problem in construction projects. Section 59.5
involves a case study regarding the works of a construction system for a large-
scale hydroelectric project, a sensitivity analysis and a comparison of the results of
the (f)a-hGA with other heuristic algorithms are also provided. Finally, concluding
remarks and future research are outlined in Sect. 59.6.

59.2 Statement of DTCETP

This section, based on the analysis of construction systems, presents a discrete time-
cost-environment tradeoff problem (DTCETP) of multi-criteria multi-modal fuzzy
project scheduling in construction industry.

59.2.1 Problem Description

In a construction project, the construction planners have to compromise between
different aspects of projects, especially time, cost, and quality. In recent years, there
is increasing pressure on decision makers to search for a plan that minimizes not
only construction cost and time, but also environmental impact. In fact, in a multi-
modal project scheduling, the construction time, cost and environmental impact can
be determined by the mode selection and the duration reduction (crashing) applied
within the selected mode. The execution mode can be defined by the crashing way
in which the project direct costs are used to shorten the activity duration. According
to the extent of the crashed activity duration, the execution of every activity can
be classified into different execution modes. Therefore the problem for the decision
maker consists in how to optimally select the execution mode to obtain an ideal
tradeoff level of balance among time, cost, and environment for a construction
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Fig. 59.1 Relationship of elements in a multi-criteria multi-modal project scheduling problem

project. Figure 59.1 shows a relationship of elements in a multi-criteria multi-modal
project scheduling problem.

59.2.2 Environmental Impact on Project

Recently, the construction industry has been accused of causing environmental
problems ranging from excessive consumption of global resources both in terms of
construction and operation to the polluting of the surrounding environment (Ding
2008). In particular, hydroelectric projects significantly contribute to changes in
river environments (Chen et al. 2011), in which eco-environmental impact may arise
during all project phases (Brismar 2004). In this chapter, it is suggested that the
environment of a construction project may be affected by mode selection. As such,
when a hydroelectric project is being planned, its environmental impact should be
taken into consideration along with the time and cost tradeoffs.



59 Multi-Criteria Multi-Modal Fuzzy Project Scheduling in Construction Industry 1311

Fig. 59.2 Indicators of project environment

Project environment means that project teams are comfortable with, and sympa-
thetic towards, their cultural, organizational, social, environmental, and ecological
surroundings (Reschke and Schelle 1990; Xu and Li 2012). While the cultural and
organizational surroundings are part of the internal project environment (Pheng
and Chuan 2006), this chapter focuses on the external project environment (i.e.,
environmental and ecological surroundings), which includes air, water, soil, noise,
and solid waste pollution, and ecological alterations (Liu and Lai 2009). The
indicators of the project environment that have been evaluated by this study have
been highlighted in Fig. 59.2. The main objective is to analyze the cause-and-effect
relationship between the project environment and the environmental impact. The
environmental impact is a quantifiable measurement of the project environment.

59.2.3 Motivation for Employing Fuzzy Variables in DTCETP

The need to address uncertainty in construction project scheduling is widely
recognized, as uncertainties exist in a variety of system components. As a result,
the inherent complexity and uncertainty existing in real-world project scheduling
problems has essentially placed them beyond conventional deterministic optimiza-
tion methods. Although probability theory has been proved to be a useful tool for
dealing with uncertainty in project scheduling problems in hospital management,
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sometimes it may not be suitable for new construction projects due to the lack of
historical data. While it may be easy to estimate the probability distributions for
the duration of an operation for surgery since there are sufficient historical data, it
is usually difficult to do this for the duration of an activity in a new construction
project, especially in the early construction stages. In this case, fuzzy theory is more
suitable to deal with such situations encountered in the DTCETP.

The duration for each activity is a typical uncertain variable, which can fluc-
tuate because of many factors, such as, the weather, equipment properties, labor
efficiency, execution errors of decision makers, supply conditions of materials,
coordination problems among stakeholders and other uncertain factors. Let pi be
the normal duration for activity i , Opi the crashed duration for activity i , and Yi the
crashing time for activity i . In practice, the decision makers may give a statement
such as “it is possible that the normal duration for activity i is within an optimistic
and pessimistic range, where the optimistic margin is 15months, and the pessimistic
margin is 23months, and the most likely value of the normal duration is 19months”,
which can be translated into a triangular fuzzy number pi D .15; 19; 23/. If the
crashing time is 3 months, then the crashed duration for activity i can be calculated
as a triangular fuzzy number Opi D .12; 16; 20/ as shown in Fig. 59.3.

Fig. 59.3 The membership function of duration for each activity
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59.3 Modelling Process of DTCETP

To model the multi-criteria multi-modal fuzzy project scheduling problem in this
chapter, the assumptions dealing with the fuzzy variables, the model formulation,
and the model analysis are presented subsequently.

59.3.1 Assumptions

To model the DTCETP of construction systems for large-scale project scheduling
under fuzzy uncertainty, the following assumptions are made:

1. A single project consists of a number of activities, the duration of each activity
is considered as a triangular fuzzy number, and the minimum crashed duration is
known (Leu et al. 2001).

2. The fixed cost, unit variable cost, and the unit crashing cost of each activity are
known.

3. The capital used by all activities does not exceed limited quantities in any time
period, and the total project budget is within a deterministic limit.

4. The starting time of each activity is dependent upon the completion of its
predecessor.

5. Variable cost increases linearly with the duration of each activity which is
reduced from its normal duration to its crashed duration.

6. The total project cost can be divided into fixed cost and variable cost and crashing
cost. The unit variable cost keeps the same value during the whole activity
duration.

7. When an activity begins, it cannot be interrupted.
8. Managerial criteria are to minimize the total project cost, project duration,

crashing cost, and the environmental impact.
9. The decision maker takes a compromise attitude to risk.

Based upon the assumptions above, a multi-criteria model of DTCETP for
construction systems under fuzzy uncertainty is proposed.

59.3.2 Dealing with Fuzzy Variables

In order to transform these fuzzy numbers into crisp values, the expected value
operator for the fuzzy measure Me (Xu and Zhou 2011) is introduced to deal with
the uncertainty in the DTCETP. The expected value of a triangular fuzzy number is
presented as follows,
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(59.1)

where � is the optimistic-pessimistic index to determine the combined attitudes of
decision makers.

As all fuzzy variables are non-negative triangular fuzzy numbers (Fig. 59.3 shows
an example) in this chapter, the DTCETP belongs to the case 0 � r1, i.e., EMeŒ�� D
.1��/r1Cr2C�r3

2
(Xu and Zhou 2011).

For example, Opi �! EŒ Opi � D .1��/ Opi1C Opi2C� Opi3
2

, since all the fuzzy variables
in the problem are triangular fuzzy numbers, the transformations are presented as
follows,

pi ! EŒpi � D .1 � �/pi1 C pi2 C �pi3

2
;

ESi ! EŒESi � D .1 � �/ESi1 C ESi2 C �ESi3
2

S0 ! EŒS0� D .1 � �/S01 C S02 C �S03

2
;

SnC1 ! EŒSnC1� D .1� �/SnC1;1 C SnC1;2 C �SnC1;3
2

Cmax ! EŒCmax� D .1 � �/Cmax;1 C Cmax;2 C �Cmax;3

2
;

d ! EŒd � D .1 � �/d1 C d2 C �d3

2

where ESi is the earliest starting time of activity i ; S0 is the project starting time;
SnC1 is the project completion time; Cmax is the project completion time under
normal conditions; d is the specified project completion time.

59.3.3 Model Formulation

The problem is represented on an activity-on-node (AoN) network with a single
starting and a single ending node, both corresponding to dummy activities. Based on
the decision maker’s criteria for the project, a fuzzy optimization model is proposed.
The following subsections in this chapter explain the uncertain multi-criteria model
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in detail with criterion functions and constraints discussed separately to illustrate
the model more clearly.

59.3.3.1 Criterion Functions

The presented optimization model is formulated to minimize project time and cost,
while also minimizing its environmental impact. To this end, the model incorporates
four major criterion functions, shown in the following four equations, to enable the
evaluation of the performance in project time, cost, and environment, respectively.

Project Cost: Usually total project cost changes because of many factors, such
as fixed cost, duration, and the crashing time mode of each activity. Therefore,
decision makers aim to achieve the best option for the execution of the process,
where the total project cost is minimal. The total project cost is the sum of the fixed
cost, variable cost, and the crashing cost of each activity. The sum of “fixed cost of
activity i C expected duration of activity i in a certain executed crashing mode �
unit variable cost of activity i C unit crashing cost of activity i� crashing time of
activity i” is shown in the Eq. (59.2). The first criterion is to minimize the expected
total project cost, which is the minimization of the sum of the expected completion
cost for all activities.

Min. z1 D
X

i2V
.c

fix
i C EŒ Opi �cvar

i /C
X

i2V
ccr
i Yi (59.2)

where z1 is the total project cost; cfix
i is the fixed cost of activity i ; cvar

i is the unit
variable cost of activity i ; ccr

i is the unit crashing cost of activity i ; and Yi is the
crashing time of activity i ; V D f1; 2; � � � ; ng is the set of (real) activities.

Project Duration: The second criterion seeks to minimize the expected total
project duration, which is the expected makespan between the project starting time
and project completion time. It is also the minimization of the expected duration for
all activities.

Min. z2 D EŒSnC1� �EŒS0� (59.3)

where z2 is the total project duration.
Crashing Cost: The third criterion is to minimize the total crashing cost as

follows. It indicates that the crashing cost for each activity should be minimized
as much as possible. Generally, decision makers attempt to confirm the expected
duration for each activity beforehand. However, in practice, if an activity finishes too
early, it may cause additional costs, an unexpected change to the environment or lead
to the payment of penalties. Thus, crashing cost should be minimized individually
while keeping in mind the first criterion (Liang 2010).

Min. z3 D
X

i2V
ccr
i Yi (59.4)

where z3 is the total crashing cost.
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Environmental Impact: The fourth criterion is to minimize environmental
impact that is measured and quantified. It enables the aggregation of the estimated
environmental impact for all the considered activities to provide an overall environ-
mental impact on the project level using a simple weighted approach.

Min. z4 D
X

i2V
wi
X

p2P
wmip �Qm

ip (59.5)

where z4 is the total environmental impact; wi is the weight of activity i compared to
other activities in the project; wmip is the weight of score p for environmental impact
on activity i using them-th crashing mode; andQm

ip is the score p for environmental
impact on activity i using the m-th crashing mode; P is the set of scores for the
environmental impact.

Estimating and quantifying the environmental impact of a given crashing time
option on the environment of an activity and the entire project is a more challenging
task than predicting its impact on project cost and duration. This can be attributed
to two major challenges: (1) the difficulty in measuring and quantifying the impact
of each crashing time option on the environment of the activity being considered;
and (2) the complexity of aggregating environmental impact at the activity level to
provide an overall environmental impact at the project level. In order to overcome
these two major challenges, the present model incorporates a new criterion function
for optimizing the environmental impact. The following two paragraphs provide a
brief description of how this newly formulated function is designed to overcome the
above two major challenges in quantifying and considering environmental impact
in the optimization process.

In order to facilitate the measurement and quantification of the environmental
impact, the incorporated environmental impact criterion function enables the con-
sideration of a number of measurable environmental indicators for each activity
in the project. These indicators have been investigated and identified in studies
aimed at developing environment-based systems (Chiang and Lai 2002). The
identified environmental indicators were derived from the long-term performance
of each activity in the performance-based models. Environmental indicators should
be selected in a way that allows a practical and objective measurement of the
performance in each activity. For each crashing time option, the results of these
environmental impact tests can be easily obtained and stored. In fact, many data
are currently gathered and stored from ongoing projects using a variety of forms.
This collected and stored data can be statistically analyzed in order to estimate
environmental impact.

It should be noted that test results for the selected environmental indicators (i.e.,
air, water, soil, noise, and solid waste pollution, and ecological alteration), are often
expressed in different units of measurement (Chen et al. 2011; Liu and Lai 2009;
Li et al. 2010). As such, they need to be transformed into a unified measurement
system that can be consistently used to evaluate the performance of the different
environment indicators. In this model, the results of the different environmental test
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indicators are transformed to a common score ranging from 0 to 100 to represent
the degree of severity of environmental impact in each activity.

The formulated environmental criterion function enables the aggregation of the
estimated environmental impact for all considered activities to provide an overall
environmental impact at the project level using a simple weighted approach (Ding
2008; Peche and Rodríguez 2009). For each activity being evaluated for environ-
mental impact, this method requires planners to identify two types of weights:
(1) weight of activity i (i.e., wi ) that represents the importance and contribution
of the environmental impact of this activity to the overall environmental impact of
the project; and (2) weight of the score p of the environmental impact of activity
i using the m-th crashing mode (i.e., wmip) that indicates the relative importance of
this score to the others. These two types of weights are used to estimate the overall
environmental impact at the project level. The illustrated method can be applied to
additional construction activities using other measurable environmental indicators
(Gangolells et al. 2009; Li et al. 2010).

59.3.3.2 Constraints

Precedence Constraint: In a project, precedence is an important basic term
ensuring the rationality of the arrangement. Under this term, successive activities
must be and can only be started with a certain crashing time option when all the
predecessors have already been completed. Therefore, this constraint is used for
activity i considering its immediate predecessor h, one by one, here, the index h 2
Pred.i/, where Pred.i/ is the set of the immediate predecessors of activity i . The
relationship among the starting time and duration of predecessor h and the starting
time of activity i is the starting time of predecessor h C the duration of predecessor
h � the starting time of activity i � 0. It is important that none of the precedence
constraints are violated for all predecessors of activity i as shown in Eq. (59.6).

EŒESh�C EŒ Oph� � EŒESi � � 0 .i 2 V I h 2 Pred.i// (59.6)

where Pred.i/ is the set of the immediate predecessors of activity i .
Crashing Time Constraint: The crashed duration is equal to the normal duration

of activity i minus its crashing time. This is shown in Eq. (59.7).

EŒ Opi � D EŒpi � � Yi .i 2 V / (59.7)

On the other hand, the crashing time cannot exceed the difference between the
normal duration and the minimum crashed duration of activity i .

Yi � EŒpi � � Opmini .i 2 V / (59.8)

where Opmini is the minimum crashed duration of activity i .
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Total Budget Constraint: It is also important for projects to limit the total capital
within a deterministic limit (i.e., b). The range of total project cost is between its
normal cost and its crashed total cost during the project execution. Eq. (59.9) can be
used to describe these requirements.

z1 � b (59.9)

where b is the available total budget.
Logical Constraints: In order to describe non-negative variables and 0–1

variables in the model, the constraints in Eqs. (59.10)–(59.11) are presented.

EŒpi �; EŒ Opi �; Yi ; EŒESi �; EŒd � � 0 .i 2 V / (59.10)

ximt 2 f0; 1g .i 2 V I m 2 Mi I t 2 H/ (59.11)

where Mi D f1; 2; : : : ;Mig is the set of crashing modes of activity i and H D
f1; 2; : : : ; dEŒESnC1�eg is the set of periods in the planning horizon, ximt D 1means
that activity i in modem is scheduled in time period t .

Cash Flow Constraint: The sum of total fixed cost, variable cost, and crashing
cost of the activities that are scheduled in time period t cannot exceed the capital
limit per time period, as shown in Fig. 59.4 (Xu et al. 2012). The sum of the capital of
the activities which are scheduled in a certain time period during the whole project
duration, as well as in a certain crashing time option is shown in Eq. (59.12).

X

i2V

X

m2Mi

c
fix
i C EŒ Opi �cvar

i C ccr
i Yi

EŒ Opi � ximt < lim .t 2 H/ (59.12)

Fig. 59.4 Capital limit in a period for the DTCETP example (Xu et al. 2012)
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Duration Constraint: Generally, the decision makers need to confirm an
expected project duration beforehand to allow for the coordination of parallel
projects or other resources. Certainly, the expected duration is determined by the
decision makers based on their accumulated work experience regarding to the
appropriate finishing time of activities. So it cannot exceed the expected project
completion time, which is shown in Eq. (59.13).

EŒSnC1� � EŒd � (59.13)

Based on the above discussion, by integrating Eqs. (59.2)–(59.13), the mathe-
matical model of DTCETP for multi-criteria multi-modal fuzzy project scheduling
problem can be stated as follows:

Min. ff1; f2; f3; f4g
s. t. EŒESh�C EŒ Oph� � EŒESi � � 0 .i 2 V I h 2 Pred.i//

EŒ Opi � D EŒpi � � Yi .i 2 V /
Yi � EŒpi �� Opmini .i 2 V /
z1 � b

EŒpi �; EŒ Opi �; Yi ; EŒESi �; EŒd � � 0 .i 2 V /
ximt 2 f0; 1g .i 2 V I m 2 Mi I t 2 H/
EŒSnC1� � EŒd �
P

i2V
P

m2Mi

c
fix
i CEŒ Opi �cvar

i Cccr
i Yi

EŒ Opi � ximt < lim .t 2 H/

(59.14)

where f� (� D 1; : : : ; 4) are the objective functions z1, : : :, z4 in the mathematical
model of DTCETP.

59.3.4 Model Analysis

From the above model, we can see if ccr
i < c

var
i , then we have

C Opi D c
fix
i C cvar

i Opi C ccr
i .pi � Opi/ D c

fix
i C cvar

i .pi � Yi /C ccr
i Yi

< c
fix
i C cvar

i .pi � Yi /C cvar
i Yi D c

fix
i C cvar

i pi D Cpi
(59.15)

It proves that if ccr
i < cvar

i , then C Opi < Cpi and if ccr
i > cvar

i , then C Opi > Cpi .
So the time-cost tradeoff problem can be optimized by comparing ccr

i and cvar
i . If

ccr
i < cvar

i , the crashing activity duration can be easily calculated to a minimum
value which can minimize project duration and cost simultaneously. If ccr

i > cvar
i ,

a decision is made according to the practical situation or the decision maker’s
preference. That is also an easy problem to solve. However, in this study, the
DTCETP with total capital constraint and cash flow constraint in any time period
under fuzzy uncertainty needs to be considered. To obtain an optimal crashing time
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decision for all activities is an N P-hard problem and cannot be determined simply
by determining whether ccr

i > c
var
i or ccr

i < c
var
i .

59.4 Fuzzy-Based Adaptive Hybrid Genetic Algorithm
for DTCETP

Existing techniques for DTCTP can be categorized into two areas: namely, exact and
heuristic. Exact algorithms, including linear programming (Liu et al. 1995; Pagnoni
1990), dynamic programming (De et al. 1995), enumeration algorithms (Harvey and
Patterson 1979), or branch-and-bound algorithms (Demeulemeester et al. 1996),
have been extensively employed to solve DTCTPs (Eshtehardian et al. 2009).
However, none of the exact algorithms are able to solve large and hard instances
measured in terms of, say, the number of activities. In terms of what current state-
of-art algorithms can do, and considering the structure of the project networks as
well as the number of modes per activity, instances with a large number of activities
cannot be solved optimally in a reasonable amount of time (Tareghian and Taheri
2007). De et al. (1997) have shown that the DTCTP is an N P-hard problem
and difficult to solve (Deineko and Woeginger 2001). Consequently, the DTCETP,
which is an extension of the classical DTCTP, is also N P-hard. It follows that
the search for exact algorithms which are also formally efficient is all but futile and
that one should instead search for effective heuristic algorithms to solve a general
DTCTP. In this case, the use of heuristic solution procedures is justified. Among
these algorithms, GA has produced outstanding results in optimization problems
(Montoya-Torres et al. 2010). In order to cope with the larger and more complex
instances of the DTCETP and to improve the computation efficiency, this section
presents a fuzzy-based adaptive hybrid genetic algorithm ((f)a-hGA).

59.4.1 General Concept of (f)a-hGA

The GA, which was first introduced by Holland (1992), uses the Darwinian concept
to solve problems. GA belongs to the class of meta-heuristic optimization tech-
niques, and is very useful when there is a large search space with little knowledge.
A balance between exploitation and exploration in the search space is one of the
important factors when using GA. To provide this balance, the determination of the
design strategy for GA parameters, such as population size, cross over probability,
and maximum generation and mutation probability is one of the critical issues.
In contrast to prior studies, the (f)a-hGA proposed here can deal with a multi-
criteria objective function (i.e., total project cost, project duration, cashing cost,
and environmental impact) and constraints of the DTCETP simultaneously under
fuzzy uncertainty much more appropriately and effectively. The algorithm proposed
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here has two modes for linear and non-linear situations, respectively. In the linear
case, the fuzzy expected value model (EVM) is embedded in the a-hGA to deal
with the fuzzy variables that appear in linear functions, while in the non-linear
case, the fuzzy simulation is combined with a-hGA for handling the nonlinearity
of the fuzziness. For the multi-criteria model formulated above, it is possible to find
several Pareto optimal solutions for the problem. However, in construction project
practice, only one exact optimized solution could conduct the decision-making in
a pressing situation. Thus, the weighting method is applied to transform the multi-
criteria model into a single-criterion one.

In the method of this section, firstly, the fuzzy EVM technique is used to
defuzzify the fuzzy variable. Secondly, the weight-sum procedure is used to
concentrate multiple criteria in management practice while reflecting the importance
of each criterion in the decision maker’s mind. Thirdly, priority-based encoding,
and multistage-based encoding are introduced for activity priority, and activity
crashing time for GA encoding, respectively, with corresponding GA decoding
and GA evaluation proposed by Gen et al. (2008). Additionally, the one-point
crossover operator for the activity precedence and a repairing strategy for the
mutation operator for activity crashing time is adopted. Finally, an iterative hill
climbing routine and an adaptive regulation mechanism are introduced to carry
out searches around a convergence solution in the GA loop and to achieve faster
algorithm convergence.

59.4.2 Overall Procedure of the Proposed Method

According to the DTCETP under fuzzy uncertainty, the method consists of five
subsystems (see Fig. 59.5): (1) the input subsystem; (2) the activity duration
generation subsystem; (3) the project duration determination subsystem; (4) the
time-cost-environment tradeoff subsystem; (5) and the output subsystem. Each
subsystem has its own purpose.

The activity duration generation subsystem is created to manipulate the gen-
eration of all possible activity durations. A pool of chromosomes represents the
possible activity durations. Each gene in a chromosome represents the duration of
a corresponding activity, whose value can be obtained based upon fuzzy EVM or
fuzzy simulation (Xu and Zhou 2011).

Next, for the project duration determination subsystem, the normal duration and
minimum crashed duration are determined, based upon the aforementioned activity
duration and activity precedence relationships (defined in Eq. (59.6)).

Third, based upon a selected project duration within the normal duration and
the minimum crashed duration, the minimum project total cost, crashing cost,
and environmental impact are searched for in the time-cost-environment tradeoff
subsystem. The subsystem uses the one-point crossover and repairing strategy for
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Fig. 59.5 Fuzzy adaptive hybrid genetic algorithm for the DTCETP (Xu et al. 2012)
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the mutation operators to generate feasible child chromosomes. The concepts of the
one-point crossover and mutation operators (see Fig. 59.5) are introduced as follows.
The calculated fitness values in terms of the genetic algorithm are used to select the
surviving chromosomes for the next generation, according to the criterion functions
in Eqs. (59.2)–(59.5) and the weight-sum procedure. The surviving chromosomes
for the next generation are selected at the selection subsystem according to the
roulette wheel principle. The probability of variable selection is proportional to its
fitness value in the population, according to the formula given by Holland (1992).

�.I�/ D F.I�/
P�pop

�D1 F.I�/
(59.16)

where F.I�/ represents the fitness value of the �-th chromosome, and �pop is the
population size. The iterative hill climbing method can guarantee the properties
of local search techniques for hybridization. The iterative hill climbing method
suggested by Michalewicz (1996) is applied in the GA loop. In the final step of
the time-cost-environment tradeoff subsystem, the optimal solution is exported to
the output subsystem.

The process from Subsystem 2 to Subsystem 4 will be repeated until all the values
for the project duration are within the possible ranges, and individuals have passed
the feasible test.

At the final output subsystem, the total project cost, project duration, crashing
cost, and environmental impact are brought together for further plotting and analysis
of the results.

59.4.3 Weight-Sum Procedure

In this chapter, the weight-sum procedure is adopted to deal with the multi-criteria
model. The aggregated criterion in the form of a weighted sum makes it possible to
find the Pareto optimal solutions only when the solution set is convex (Gen et al.
2008). However, this term can be satisfied, because the criterion functions and
constraints of the model are convex. This means that the mathematical model of
DTCETP is a convex program. It is not hard to prove that the solution set of this
model is convex. Thus, this form of aggregated criterion is suitable for the problem.

To ensure the validity of conformity in multi-criteria models, dividing out the
dimensions and unifying the order of magnitude must be performed before the
weight-sum procedure. The estimated maximal value is used to divide out the
dimensions and unify the orders of magnitude. Here, the last four criteria are:
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4 D z4
zmax
4

(59.17)

zmax
1 , zmax

2 , zmax
3 and zmax

4 is the maximal value of z1, z2, z3 and z4.
For a given individual, the weighted-sum criterion function is given by the

following equation:

eval D min.w1z
0

1 C w2z
0

2 C w3z
0

3 C w4z
0

4/ (59.18)

Wherein, the weight w1 for the total project cost, w2 for the total project duration, w3
for the total crashing cost, and w4 for the environmental impact are given by decision
makers, and reflect the importance of each criterion in the decision makers’ mind.
Obtaining the weight of the criteria from the decision makers is the most direct and
convenient way to reflect their requirements. The weights should satisfy the equation
below.

w1 C w2 C w3 C w4 D 1 (59.19)

59.4.4 Fuzzy Adaptive Hybrid GA Operator

In this subsection, the crossover operator and the mutation operator used in the (f)a-
hGA approach are explained as follows.

59.4.4.1 Crossover Operators

The goal of the crossover is to exchange information between two parent chromo-
somes in order to produce two new offspring for the next population. There is a limit
on the crashing time for each activity in the DTCETP. That means there is a limited
number of different modes to be executed for different activities. For example, if
activity 1 can be crashed 4 units of time at most, then it has 5 modes to be executed,
and if activity 2 can be crashed 2 units of time at most, then it has 3 modes to
be executed. So the one-point crossover operator proposed by Goldberg (1989) is
used in this chapter. The one-point crossover operator randomly selects one point
at the parent strings and exchanges the right parts of two parent strings to generate
offspring strings (see Fig. 59.5). It changes one or more genes in corresponding
activities only if it guarantees the feasibility of the solution.
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59.4.4.2 Repairing Strategy for Mutation Operators

Uniform mutation is altering one or more genes in a chromosome, depending on
a predefined mutation rate. Each genotype has the probability of a mutation. A
mutation operator is a random process where one genotype is replaced by another to
generate a new chromosome. In our problem, there is a limited number of different
modes to be executed for different activities. If the altered genes go beyond the
limited modes, they should be repaired. Repairing a chromosome means taking
an infeasible chromosome and generating a feasible one through some repairing
procedure. For each particular problem, a specific repairing algorithm is designed.
A safe value is set for each gene according to the executed modes limit for each
activity. If the mutated gene value exceeds the corresponding limit, then the gene
will adopt the maximum value.

59.4.5 Regulation of GA Parameters by an Adaptive Method

In this section, the crossover and mutation ratios are adaptively regulated during
the genetic search process. Here, the crossover and mutation operator rates are
auto-tuning and evaluated repeatedly for all the generations during the genetic
search process. The occurring crossover rates and mutation operators are adaptively
regulated according to the results of the proposed procedure (Gen et al. 2008).

59.5 Case Study: DTCETP for the Jinping-II Hydroelectric
Project

This section presents a practical application for the DTCETP in a large-scale
hydroelectric construction project. The project contains eleven activities and two
dummy activities (start and end activity). Each activity has a certain maximal
crashing time limit.

59.5.1 Presentation of Case Problem

In recent years, as China has experienced rapid growth in both the economy and
society, the need for energy has also grown exponentially. New and renewable
sources of energy have become more important and consequently hydropower
resources have also become more important. Hydropower resources play an impor-
tant role in China, especially in the Sichuan Province. The Chinese government
has emphasized renewable energy development particularly in the areas of water
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conservancy and hydropower. The Ertan Hydropower Development Company, Ltd.
(EHDC) has been appointed to supply clean and renewable energy to support
the economic and social development of the Sichuan-Chongqing region through
the development of hydropower resources on the Yalong River in Sichuan. The
Jinping-II Hydroelectric Project is one of EHDC’s projects under construction. This
chapter focuses on a discrete time-cost-environment tradeoff problem (DTCETP)
in the Jinping-II Hydroelectric Project for minimizing the total project cost, project
duration, crashing cost, and environmental impact.

All data for the Jinping-II Hydroelectric Project are obtained from the Ertan
Hydropower Development Company. The multi-criteria DTCETP model for this
project is established based on the model formulation method, which can also be
used in similar projects.

The Jinping-II Hydroelectric Project is located on the large Jinping River Bend,
and is the second of the five cascade projects on the river section from Kala
down to the estuary. It is designed to cut the 150 km river bend with a group of
power tunnels to use the natural drop created by the bend. The project primarily
consists of a headwork sluice dam, spillway structures, power tunnels and a
powerhouse complex. The dam is located 7.5 km downstream of the Jinping-I dam.
The catchment area upstream of the dam measures 103,000 km2, and the multi-
year average inflow at the dam site is 1,220 m3=s. The Jinping-II reservoir itself
only has a capacity of daily regulation, but when jointly operated with the Jinping-
I, it also has the capacity of yearly regulation. The four power tunnels have an
average length of 16.6 km and an excavated diameter of 13 m, which makes them
among the world’s largest and longest hydraulic tunnels. The powerhouse complex
is located underground on the other side of the river bend. The project has a total
installed capacity of 4,800 MW (8 � 600 MW), which gives a multi-year average
annual generation of 24.23 TWh (Fig. 59.6).

The decision maker needs to optimize the work on the construction project but
is faced with an uncertain situation for the duration of each activity. To optimize

Fig. 59.6 Configuration of the construction project (Xu et al. 2012)
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all aspects of the project, the decision makers want to pursue their management
objectives through a better arrangement of the activity sequences and the selection
of crashing time options. The proposed model and method are used to assist the
decision maker in scheduling the construction activities optimally. The project has
ten activities from preliminary work to clearing up and finishing work. Each of
these has certain predecessors, successors, and a normal completion time. The
company traditionally defines one month as a time unit (i.e., 1 month per unit).
Two dummy activities were set up to help for the convenience of the model. The
detailed corresponding data for each activity are shown in Tables 59.1 and 59.2.

Based on the representation of the case problem, the proposed method can be
used to establish the mathematical model [i.e., Eq. (59.14)] for the DTCETP in the
Jinping-II Hydroelectric Project.

Other relevant data are as follows: the total budget is 265, the maximum amount
of capital is 12 units for each time period, the total project duration under normal
condition is 43 months, and the decision maker expects that the total project duration
will be below 40 months. The duration of each activity is given as follows:

p0 D .0; 0; 0/, p1 D .10; 13; 16/, p2 D .1; 2; 3/, p3 D .1; 4; 7/

p4 D .7; 9; 11/, p5 D .9; 13; 17/, p6 D .3; 5; 7/, p7 D .2; 4; 6/

p8 D .2; 3; 4/, p9 D .1; 3; 5/, p10 D .2; 4; 6/, p11 D .0; 0; 0/

59.5.2 Result of the Case Problem

Based on the above model, the proposed (f)a-hGA is programmed using the Visual
CCC language and run on a Core i3, 3.20 GHz clock pulse with 4 GB memory. The
performance of this method is then compared with other heuristic algorithms.

The evolutionary parameters for the problem are set as follows: the population
size is 20, the rate of crossover and mutation are 0.6 and 0.1, respectively, maximal
generation is 200, the optimistic-pessimistic index is � D 0:5.

The results are shown in Table 59.3, which are obtained based on the parameter
values w1 D 0:1, w2 D 0:5, w3 D 0:1, w4 D 0:3. It should be noted that the results
are obtained based on the following optimistic-pessimistic index, i.e., � D 0:5.
Using the chromosome illustrated above, Table 59.4 is obtained.

The detailed results are shown in Table 59.3, with the dummy activities not
included. When the weight-sum procedures are used to deal with the multiple crite-
ria, an equivalent treatment is proposed to obtain the fitness of each chromosome.

The above strategy is offered for the project, that is: arrange the activities in
the order as proposed in Table 59.3, and choose the corresponding crashing time
which fulfils the decision maker’s requirements. It should be noted that some non-
critical activities are flexible with respect to their execution time such as activity
4, which could be finished before the 23rd month and activity 7, which can be
executed between the 31st and the 38th month as shown in Fig. 59.7. Therefore,
the project manager can schedule these activities according to the situation which
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Table 59.2 Detailed information of each activity in Jinping-II Hydroelectric Project-2

Crashing Crashing Crashing

time time time

Activity option Qm
ip wmip Activity option Qm

ip wmip Activity option Qm
ip wmip

1 Y D 4 99 0.3 4 Y D 2 98 0.7 6 Y D 2 98 0.7

98 0.4 97 0.3 97 0.3

97 0.3 Y D 1 95 0.5 Y D 1 97 0.5

Y D 3 98 0.6 94 0.4 96 0.5

96 0.4 92 0.1 Y D 0 95 0.6

Y D 2 97 0.5 Y D 0 92 0.3 90 0.4

96 0.5 90 0.6 7 Y D 2 98 0.5

Y D 1 94 0.3 89 0.1 96 0.5

90 0.7 5 Y D 5 99 0.1 Y D 1 96 0.7

Y D 0 92 0.3 98 0.9 92 0.3

89 0.7 Y D 4 98 0.1 Y D 0 92 0.6

2 Y D 0 99 0.1 97 0.9 89 0.4

97 0.8 Y D 3 97 0.9 8 Y D 0 99 0.7

96 0.1 93 0.1 92 0.3

3 Y D 2 99 0.5 Y D 2 94 0.1 9 Y D 0 97 0.5

98 0.5 93 0.9 93 0.5

Y D 1 97 0.3 Y D 1 93 0.7 10 Y D 2 98 0.5

92 0.6 92 0.2 97 0.5

91 0.1 91 0.1 Y D 1 94 0.9

Y D 0 92 0.1 Y D 0 92 0.6 91 0.1

91 0.2 90 0.3 Y D 0 92 0.7

90 0.7 89 0.1 89 0.3

Table 59.3 Optimal solution
for � D 0:5, w1 D 0:1,
w2 D 0:5, w3 D 0:1,
w4 D 0:3

z1 D 262:93 Y1 D 4; Y2 D 0; Y3 D 0; Y4 D 0; Y5 D 1

z2 D 38:0 Y6 D 0; Y7 D 0; Y8 D 0; Y9 D 0; Y10 D 0

z3 D 5:70 t1 D 9; t2 D 2; t3 D 4; t4 D 9; t5 D 12

z4 D 94:62 t6 D 5; t7 D 4; t8 D 3; t9 D 3; t10 D 4

Table 59.4 Schedule for the DTCETP in Jinping-II Hydroelectric Project

a0.0/ W 0� 0 a1.4/ W 0� 9 a2.0/ W 9� 11 a3.0/ W 9� 13 a5.1/ W 11� 23 a4.0/ W 13� 22

a6.0/ W 23� 28 a8.0/ W 28� 31 a9.0/ W 31� 34 a7.0/ W 31� 35 a10.0/ W 34� 38 a11.0/ W 38� 38
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Fig. 59.7 Gantt chart for the DTCETP in Jinping-II Hydroelectric Project (Xu et al. 2012)

can be impacted by available manpower, equipment and holidays, and the need to
harmonize with other parallel projects or activities.

Since our mathematical model is formulated with some assumptions, there may
be some possible modeling errors. Thus, the results obtained above cannot 100%
surely represent an optimal time-cost-environment tradeoff solution. However, to
some extent, our results can be used to provide decision makers with a theoretical
optimal schedule for guiding current practice.

59.5.3 Sensitivity Analysis

A sensitivity analysis is performed: the weights of these four criteria are adjusted,
and the results of the analysis are shown in Table 59.5. It shows that the solutions
are not significantly influenced by the change in weight, and the result is satisfactory
to the decision makers of this company. It can be concluded from Combination 1
that if the balance of the tradeoff is a trend for the total project duration instead
of environmental impact, then the duration of the critical activity (i.e., activity 5)
will be crashed to a lower level, as shown in Table 59.5. On the contrary, from
Combination 3 it follows that, if the weights of the total project cost and crashing
cost increase, then the critical activity (i.e., activity 5) will not be crashed. It should
be noted that the results are obtained based on the following optimistic-pessimistic
index, i.e., � D 0:5.
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Table 59.5 Sensitivity analysis for the weights of criteria

Weights of criterion Fitness The optimal order and mode of crashing

Combination w1 w2 w3 w4 value time

Combination 1 0.15 0.6 0.15 0.1 0.627 2 3 4 6 5 7 9 10 8 11

9 2 4 10 9 5 3 3 4 4

Combination 2 0.1 0.5 0.1 0.3 0.570 2 3 4 6 5 7 9 10 8 11

9 2 4 12 9 5 3 3 4 4

Combination 3 0.2 0.4 0.2 0.2 0.648 2 3 4 6 5 7 9 10 8 11

9 2 4 13 9 5 3 3 4 4

Table 59.6 Sensitivity analysis for optimistic-pessimistic index of decision maker

Optimistic-pessimistic

index z1 z2 z3 z4 Crashing time for each activity

� D 0:1 248.51 31.2 13.94 95.59 Y1 D 2:8; Y5 D 3:4;

Y6 D 1:2; Y2 D Y3 D Y4 D Y7

D Y8 D Y9 D Y10 D 0

� D 0:2 252.07 32.4 12.98 95.53 Y1 D 3:1; Y5 D 2:8;

Y6 D 1:4; Y2 D Y3 D Y4 D Y7

D Y8 D Y9 D Y10 D 0

� D 0:3 255.16 33.6 12.22 95.07 Y1 D 3:4; Y5 D 2:2;

Y6 D 1:6; Y2 D Y3 D Y4 D Y7

D Y8 D Y9 D Y10 D 0

� D 0:4 259.25 36.6 11.56 94.68 Y1 D 3:7; Y5 D 1:6; Y2 D Y3

D Y4 D Y6 D Y7 D Y8 D Y9

D Y10 D 0

� D 0:5 262.93 38.0 5.70 94.62 Y1 D 4; Y5 D 1; Y2 D Y3

D Y4 D Y6 D Y7 D Y8 D Y9

D Y10 D 0

� D 0:6 267:50 > 262 Infeasible

The comparison, in Table 59.6, shows the sensitivity analysis for the optimistic-
pessimistic index of the decision maker. Analytical results obtained from the
Jinping-II Hydroelectric Project indicate that the optimistic-pessimistic index of the
decision maker has a significant impact on the decision. Since this chapter focuses
on discussing the environmental impact of the hydroelectric project, Combination 2
(i.e., w1 D 0:1, w2 D 0:5, w3 D 0:1, w4 D 0:3), which has the highest weight for
environmental impact compared with the two others, is selected for this comparison.
It should be noted that the optimistic-pessimistic index (i.e., �) is used to determine
the combined attitude of a decision maker, which is relevant to the total project
duration. For the DTCETP, the second criterion is to minimize the total project
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duration, where � D 1 is the pessimistic extreme, and � D 0, to the opposite, is
the optimistic extreme. Based on the results in Table 59.6, it can be concluded that a
more optimistic attitude of the decision maker will lead to an optimization trend for
the total project cost and total project duration. On the contrary, a more pessimistic
attitude of the decision maker will lead to an optimization trend for the total crashing
cost and the environmental impact. As shown in Table 59.6, if the decision maker
becomes more and more optimistic (i.e., � decreases), then the total project duration
(i.e., z2) will gradually reduce. Accordingly, the total project cost will reduce as
well since variable cost will largely decrease along with the project duration. As
a result, the optimization of the total crashing cost and the environmental impact
will be weakened in this tradeoff. These results are quite useful and may serve as a
reference for decision makers in guiding current practice.

59.5.4 Comparison with Other Algorithms

Based on the preceding project examples, the (f)a-hGA is compared with some
heuristic algorithms, i.e., the fuzzy-based genetic algorithm ((f)GA), and the fuzzy-
based hybrid genetic algorithm ((f)hGA). In order to carry out comparisons under
a similar environment, the three algorithms are programmed using the same Visual
CCC language, and are run on Core i3 with the same GA parameters in which the
rate of crossover and mutation are 0.6 and 0.1, respectively. The performance of the
iterative process for each algorithm is shown in Fig. 59.8.

It can be concluded that the (f)a-hGA obviously performs better compared to
the other two for the practical problem. It is demonstrated that the (f)a-hGA for the
DTCETP can perform scheduling better than the (f)GA and (f)hGA which may lead
to a local search. The convergence histories (Fig. 59.8) are based on the average

Fig. 59.8 The iterative
process of application by
(f)GA, (f)hGA and (f)a-hGA
(Xu et al. 2012)
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of the optimal results from 50 runs of the experiments (for (f)a-hGA, (f)GA, and
(f)hGA, respectively) that are able to obtain the minimal fitness value, excluding the
locally trapped ones.

The convergence histories in Fig. 59.8 indicate that: (1) (f)a-hGA converges a
little faster, that is, requires fewer iterations than (f)GA and (f)hGA to find optimum
solutions; and (2) (f)a-hGA has a more stable tendency than (f)GA and (f)hGA while
searching for the optimum. Due to the one-point crossover and repairing strategy for
mutations which are designed to avoid infeasible solutions, the proposed (f)a-hGA
shows an improved search performance when compared to (f)GA and (f)hGA under
similar conditions.

59.6 Conclusions

In this chapter, a multi-criteria DTCETP for a construction project is proposed
for dealing with multi-mode project scheduling while minimizing the total project
cost, project duration, crashing cost, and the environmental impact under fuzzy
uncertainty. The main advantage of the proposed method is that it provides a
systematic workable method for the decision-making process, enabling decision
makers to control the schedule according to their optimistic-pessimistic index.
The application of fuzzy variables makes the proposed multi-criteria model more
suitable for describing vague situations in the real world. In order to solve the
problem, an (f)a-hGA is developed to enhance the optimization quality and stability.
The one-point crossover and repairing strategy for mutation are designed to avoid
infeasible solutions. Finally, the Jinping-II Hydroelectric Project is used as a
practical example to demonstrate the practicality and efficiency of the model. The
results and a sensitivity analysis are presented to highlight the performance of the
optimization method, which is very effective and efficient as compared to other
algorithms. Future research will be concerned with three aspects: firstly, investigate
other uncertainties, such as fuzzy random or bi-fuzzy systems to handle the model
more reasonably and effectively. Secondly, more complex practical problems such
as multi-project scheduling problems and more dimensions should be considered.
Thirdly, more efficient heuristic methods to solve these N P-hard problems with
more constraints could be developed. Each of these areas is very important and
equally worthy of attention. A detailed analysis and further research are necessary
to reveal more properties for solving these problems.
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Part XIX
Project Management Information Systems



Chapter 60
Impact of Project Management Information
Systems on Project Performance

Louis Raymond and François Bergeron

Abstract Project management information systems (PMIS) usually acquired by
organizations as software packages are meant to provide managers with the
decision-making support needed in planning, organizing and controlling projects.
However, the actual contribution of PMIS to project success or performance is still
unknown. The purpose of this study is to empirically assess the quality of the PMIS
presently used in organizations and to examine their impact on project managers
and project performance, based on a PMIS success model. This model is composed
of five constructs: the quality of the PMIS, the quality of the PMIS information
output, the use of the PMIS, the individual impacts of the PMIS, and the impacts
of the PMIS on project success. Analysis of questionnaire data obtained from 39
project managers confirms the significant contribution of PMIS to successful project
management. Improvements in effectiveness and efficiency in managerial tasks
were observed here in terms of better project planning, scheduling, monitoring, and
control. Improvements were also observed in terms of timelier decision-making.
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60.1 Introduction

Globalization and the internationalization of markets have increased competitive
pressures on business enterprises. This has led companies to engage in projects
that are critical to their performance, if not their survival. These projects, common
in industries such as engineering services, information technology, construction,
and pharmaceutical have one thing in common: they need to be managed, that is,
they need to be planned, staffed, organized, monitored, controlled and evaluated
(Liberatore and Pollack-Johnson 2003). In order to succeed, companies must deliver
projects on time and within budget, and meet specifications while managing project
risk.

While large amounts of time and resources are dedicated to selecting and
designing projects, it remains of paramount importance that projects be adequately
managed in organizations if they are to achieve their performance objectives. In this
regard, what are we to think of the management of the Athens Olympic Games,
first estimated at a cost of 3 billion e, that finally ended costing 12 billion e
(Scotsman.com 2005)? Of the Canadian Arms Registry, an information system first
estimated at “no more than 2 million dollars a year” in 1995, that finally cost close
to one billion $ (CAN) 10 years later (CTV.ca News Staff 2006)? Or of the 275 %
cost overrun in Boston’s Big Dig (Central Artery/Tunnel Project), totaling 11 billion
$ (US) as of 2006 (Wikipedia 2007)? Even smaller projects face cost overruns:
the elaborate $18 million clubhouse reconstruction at the Belmont Country Club
in Massachusetts, initiated in 2011, has grown to a nearly $30 million fiasco in
only 2 years, costing each member at least $28,000 (Borchers 2013). Thus, “project
management still remains a highly problematical endeavour” (White and Fortune
2002).

In the information technology (IT) industry, Gartner Research estimates that
75 % of large IT projects managed with the support of a project management
information system (PMIS) will succeed, while 75 % of projects without such
support will fail (Light et al. 2005). Using PMIS to manage projects, while
not sufficient to insure project success, has thus become a necessity (Raymond
and Bergeron 2008). Project management, which has long been considered an
important characteristic of successful companies (Peters and Waterman 1982),
is more than ever necessary to efficiently and effectively manage these projects
and to support project managers in their decision-making. As powerful project
management software has been developed and diffused in all types of organizations
(Trautmann, Chap. 62 of this handbook), be they large or small, private or public,
extended or not (Braglia and Frosolini 2013), they are meant to make a significant
contribution to project management.

Similar to other information systems (IS), a successful PMIS should have
individual impacts in terms of satisfied users and effective use (Caniëls and Baken,
Chap. 61 of this handbook). But a successful PMIS should also have organizational
impacts, that is, impacts on project success in terms of respecting budget, schedule
and specifications. While PMIS are increasingly used by project managers in all
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types of industry, not much is known on the characteristics of these systems that
contribute to project success. Thus the purpose of this study is first, to empirically
assess the quality of the PMIS presently used in organizations and second, to
examine their impact on project managers and project performance.

Having defined the research question, the remainder of the chapter is outlined
as follows: The research background of the study is first presented, leading to the
elaboration of a research model. The survey research methodology designed to
test this model is then described. There follows a presentation and discussion of
the study’s results. The chapter ends with the limitations and conclusions of this
research on project management information systems.

60.2 Research Background and Model

In the project management literature, IT-based information systems were deemed
early on to be essential to project managers in support of their planning, organizing,
control, reporting and decision making tasks. As defined by Cleland and King
(1983), the basic function of a PMIS was to provide managers with “essential
information on the cost-time performance parameters of a project and on the
interrelationship of these parameters”. The nature and role of a PMIS within a
project management system, as presented in Fig. 60.1, have been characterized as
fundamentally “subservient to the attainment of project goals and the implementa-
tion of project strategies” (Raymond 1987).

Notwithstanding the theoretical and practical importance of PMIS to the project
management field, there have been as of yet few studies on the actual use and
impacts of these systems, thus highlighting the need to extend project management
theory in relation to the developing practice in this regard (Winter et al. 2006).
Empirical studies of PMIS have been mostly limited to describing the demographics
of project management software usage (Liberatore and Pollack-Johnson 2003) and
to evaluating specific applications of these systems or software modules to support
project management tasks such as planning (Amami et al. 1993), communicating
and reporting (Brackett and Isbell 1989), managing risks (Jaafari 1996), scheduling
(Herroelen 2005), estimating and controlling costs (Mahaney and Lederer 2010),
and managing documents (Amami and Beghini 2000). Project management soft-
ware usage has also been found to have many drawbacks and limitations, both in
theory when compared to an ideal PMIS by researchers (Jaafari and Manivong 1998)
and in practice as perceived by project managers (White and Fortune 2002).

An IS-based conceptualisation and definition of project management software
facilitates the import of knowledge from the IS field or discipline, knowledge that
can provide a deeper understanding of the PMIS usage phenomenon and help in
answering questions on the factors that explain the use and non use of PMIS, and on
the actual impacts of these systems on project managers and project performance.
This study will thus be founded on the recurrent constructs of antecedents and
consequences of IS use developed in DeLone and McLone’s (1992) IS success
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Fig. 60.1 The PMIS within the project management system (source: Raymond 1987)

model (ISSM), later updated (DeLone and McLean 2003), and in Davis’ (1989)
technology acceptance model (TAM) (Davis et al. 1989). These models stand out
by the continuance of their constructs, after a review of theories and models of IS
use that focused on their chronological examination and their cross-influences and
convergences. The ISSM incorporates information quality and system quality as
antecedents of IS use, leading to individual IS impacts, that is, on users and their
work (e.g., in regard to their effectiveness), and in turn to organizational impacts
(e.g., in regard to business strategy and performance). While the TAM explains
IS use in a similar manner by the system’s perceived usefulness and perceived
ease of use. Both the ISSM and the TAM offer widely accepted and validated
representations and explanations of the IS use phenomenon (Larsen 2003; Lee et al.
2003; Rai 2002).

Our objective is thus to improve our understanding of the impacts of PMIS on
project managers and on project performance. More specifically, one intends to
ascertain the success of these systems, i.e., their level of use by project managers,
as determined by the quality of PMIS and of the information they provide. One
will also ascertain to what extent PMIS contribute to the successful completion of
projects through their individual and organizational impacts. Indeed, one aims to
verify if the use of a PMIS is related to efficiency, productivity and effectiveness of
a project manager, and to the performance of the project itself. Thus, the following
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Fig. 60.2 Research model on project management IS success

research questions: What are the main determinants of the success of the PMIS
currently used? Does the use of PMIS increase the efficiency, productivity, and
effectiveness of project managers? And what is the contribution of the PMIS to
project success?

Given the research questions, an adaptation to—and specification for—project
management of the ISSM and the TAM was deemed to be most appropriate.
As presented in Fig. 60.2, the model as adapted and specified is composed of five
constructs, namely the quality of the PMIS, the quality of the PMIS information
output, the use of the PMIS, the individual impacts of the PMIS, and the impacts of
the PMIS on project success, linked through research hypotheses that follow.

Hypothesis 1: Greater PMIS quality is associated to greater quality of information
output by the system. This first hypothesis is based on empirical evidence linking
the technical and service aspects of an information system (e.g., ease of use,
response time) to the user’s satisfaction with the information output by the system
(e.g., perceived usefulness, timeliness of the information) (Igbaria et al. 1995).

Hypothesis 2: Greater PMIS quality is associated to greater system use (H2a)
and greater system impacts on the project manager (H2b). In applying IS theory
and results to project management, one finds that previous empirical tests of the
ISSM and the TAM have shown system quality to positively influence system use
and positively affect individual user performance in terms of job effectiveness,
quality of work and decision-making (Bergeron et al. 1995; Igbaria et al. 1997;
Taylor and Todd 1995; Weill and Vitale 1999).

Hypothesis 3: Greater quality of the information output by the PMIS is associated
to greater system use (H3a) and greater system impacts on the project manager
(H3b). The third hypothesis extends to project management the notion that
the managers’ use of IT-based information systems and their performance are
dependent upon the quality of information provided to them by these systems
(Bergeron et al. 1995; Etezadi-Amoli and Farhoomand 1996; Teng and Calhoun
1996; Wixom and Watson 2001).
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Hypothesis 4: Greater use of the PMIS is associated to greater system impacts
on the project manager. A number of IS studies have demonstrated that the
depth and breadth of IS use (e.g., usage dependency, pattern and frequency),
if voluntary and appropriate to the task, has positive impacts on users in terms
of job performance and decision-making performance (Igbaria and Tan 1997;
Seddon and Kiew 1994; Torkzadeh and Doll 1999; Yuthas and Young 1998).

Hypothesis 5: Greater use of the PMIS is associated to greater impacts of the
PMIS on project success. A number of IS researchers believe that the quality
and intensity of information system use, and the “full functionality” of this use
in particular, are essential to the achievement of desired organizational results
or to the realization of anticipated organizational benefits (DeLone and McLean
2003; van der Meijden et al. 2003).

Hypothesis 6: Greater impacts of the PMIS on the project manager are associated
to greater impacts of the PMIS on project success. This last hypothesis is based
on IS theory and evidence that the organizational impacts results not only from
IS use but also from the individual impacts of the system (Jurison 1996; Teo and
Wong 1998), i.e., that projects led by more efficient and effective managers, due
to their use of a PMIS, tend to be more successful in terms of meeting project
schedules, budgets, and specifications.

60.3 Research Methodology

To test the research model, a survey of 224 project managers and project man-
agement consultants was conducted, identified from a list of participants to a
project management national conference held in Canada. The questionnaire was
sent by e-mail, as electronic surveys allow the transmission of more information,
they support a better interaction between the researchers and the respondents,
and they contribute to a better quality of information, to a faster response cycle,
and to a reduction in research costs (Tse 1998; Klassen and Jacobs 2001). Forty
five questionnaires were received, out of which 39 were considered valid, thus a
17.4 % final response rate. Information on the respondent organizations and on the
respondents’ demographics is presented in Table 60.1.

The information quality, system quality, and system use constructs were mea-
sured by adapting to the specific PMIS context instruments previously developed
and validated in a general IS context (Bergeron et al. 1995; Wang and Strong 1996).
The quality of the PMIS was measured with eight items: accessibility, response time,
flexibility, ease of use, querying ease, learning ease, systems integration, and multi-
project capability. Each of these items was measured on a five-point scale varying
from 1 (low quality) to 5 (high quality). The quality of information was measured
with six items: availability, relevance, reliability, precision, comprehensiveness, and
security. Each of these items was measured on a five-point scale varying from 1 (low
quality) to 5 (high quality).
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Table 60.1 Characteristics of the sample

Characterization of the respondents .n D 39/ % of sample

Sector of respondents’ organization

Services 74%

Manufacturing 13%

Public sector 8%

Construction 5%

Function

Project manager/director/coordinator 51%

Project manager consultant/senior advisor 23%

Top-manager (general manager, president, vice-president) 13%

Project engineer/analyst 13%

Membership in a professional association

Yes (Project Management Institute mostly) 85%

No 15%

Education level

Master’s degree 43%

Bachelor’s degree 41%

College degree 16%

Gender

Male 79%

Female 21%

Project management experience

More than 30 years 25%

20–30 years 41%

10–20 years 31%

Less than 10 years 3%

PMIS software used (38 % use more than 1)

MS Project 90%

Work Bench 15%

Primavera 10%

The use of the PMIS was measured by ascertaining the extent to which various
system functions and their associated tools were actually used by project managers.
The PMIS functions were divided into five categories. The planning function tools
aim at preparing the overall project plan; they include work breakdown structure,
resource estimation, overall schedule, Gantt, PERT, and CPM. The monitoring
function tools are used to regularly assess project progress; they are used for
progress reports and curves, and to update operational reports such as completed
tasks, percent project completed, effective schedule, remaining tasks, and remaining
days to complete. The controlling function tools are used to make specific changes
to the project; they allow the project manager to fine-tune forecasts, modify tasks,
reassign resources to lower the costs, cancel tasks, and modify the cost of resources.
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The evaluating function tools are targeted toward project auditing; these tools
allow the identification of cost and schedule variations, and tracking the use of
resources. The reporting function tools give information on the most basic aspects
of the project; they include an overview of the project as well as reports on work-
in-progress, budget overruns, and task and schedule slippages. A score for each
category was obtained by averaging the project managers’ use of specific tools. The
five categories and their specific number of tools are: planning (6), monitoring (7),
controlling (6), evaluating (2), and reporting (9). Five-point scales were employed:
1 (never used), 2 (rarely used), 3 (occasionally used), 4 (often used), and 5 (very
often used).

Impacts on the project managers were measured by the perceived effect of the
PMIS on the following ten items: improvement of productivity at work, increase
in the quality of decisions, reduction of the time required for decision-making,
reduction of the time required to complete a task, improved control of activity costs,
better management of budgets, improved planning of activities, better monitoring
of activities, more efficient resource allocation, and better monitoring of the project
schedule (Lalonde and St-Pierre 2000). A five-point Likert scale was used, varying
from 1 (completely disagree) to 5 (completely agree). The impacts of the PMIS on
project success was based on the perceived contribution of the PMIS with regard to
three performance criteria: respecting deadlines, respecting budgets, and respecting
quality specifications (Shenhar et al. 1997), using a five-point scale varying from 1
(null contribution) to 5 (very high contribution).

60.4 Results and Discussion

Descriptive results on the antecedents, consequences and nature of PMIS use by the
respondents are presented in Table 60.2.

60.4.1 Test of the Measurement Model

To test the multivariate relationships hypothesised by the research model, structural
equation modelling was used. The partial-least-squares (PLS) method was chosen
for its robustness as it does not require a large sample or normally distributed
multivariate data in comparison to covariance structure methods such as LISREL
and EQS (Fornell and Larcker 1981). Figure 60.3 summarizes the results obtained.
The PLS method simultaneously assesses the theoretical propositions and the
properties of the underlying measurement model. Note that PLS does not provide
goodness-of-fit indices; model fit is rather assessed by the reliability of each
construct, the significance of the path coefficients, and the percentage of variance
explained .R2/ for each dependent construct (Gefen et al. 2000).
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Table 60.2 Characteristics of the respondents’ use of PMIS

Respondents’ characterization of PMIS .n D 39/ % of sample

Experience in the use of PMIS more than 6 years 36%

3–6 years 54%

1–3 years 8%

Less than 1 year 2%

Most important indicator of PMIS Quality

Ease of use 33%

Flexibility 23%

Accessibility 23%

Satisfaction with PMIS Quality

Very high 13%

High 48%

Project Manager work indicator most impacted by PMIS

Better monitoring of activities 46%

Better planning of activities 41%

Increase in productivity at work 39%

Satisfaction with Information Quality

Very high 18%

High 48%

Impact of PMIS on project manager’s work

Very high 13%

High 51%

Project Success indicator most impacted by PMIS

Meeting deadlines 59%

Respecting budgets 41%

Meeting project specifications 10%

Internal consistency of measures, i.e., their unidimensionality and their relia-
bility must be verified first. The observable variables measuring a non-observable
construct (or latent variable) must be unidimensional to be considered unique
values. Unidimensionality is usually satisfied by retaining variables whose loadings
.œ/ are above 0.5, indicating that they share sufficient variance with their related
construct. The unidimensionality criteria are thus met. Reliability can be verified
by considering the value of the rho .¡/ coefficient, defined as the ratio between the
square of the sum of the loadings plus the sum of the errors due to construct variance.
A ¡ greater than 0.7 indicates that the variance of a given construct explains at least
70 % of the variance of the corresponding measure, as is the case in Table 60.3 for
all constructs in the research model.

There is also evidence in Table 60.3 of the convergent validity of the constructs,
as their average variance extracted ranges from 0.72 to 0.83 in value. The last
property to be verified is discriminant validity. It shows the extent to which each
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Table 60.3 Reliability and discriminant validity of the research constructs

Variable ¡a 1. 2. 3. 4. 5.

1. PMIS quality 0:96 0:74b

2. PMIS information quality 0:97 0:69 0:83

3. PMIS use 0:95 0:37 0:49 0:77

4. Impacts on project manager 0:96 0:71 0:72 0:66 0:72

5. Impacts on project success 0:92 0:46 0:41 0:48 0:71 0:79

aReliability coefficient D .†œi /
2=..†œi /

2 C†.1-œi
2//

bDiagonal: average variance extracted D .†œi
2=n/

Sub-diagonals: shared variance D .correlation/2

construct in the research model is unique and different from the others. The shared
variance between a construct and other constructs (i.e., the squared correlation
between two constructs) must be less than the average variance extracted (i.e., the
average variance shared between a construct and its measures). Table 60.3 shows
this to be the case for all constructs.

60.4.2 Test of the Theoretical Model

The research hypotheses are tested by analyzing the direction, the value and the
level of significance of the path coefficients (betas) estimated by the PLS method, as
presented in Fig. 60.3. The high percentage of variance explained in each dependent
construct, varying from 0.49 to 0.83, is indicative of model fit.

H1—A positive and highly significant path coefficient .ˇ D 0:83/ confirms that
the quality of information output by a PMIS is strongly associated to the technical
and service aspects of the system, that is, to system quality. From the project
manager’s point of view, the PMIS cannot be considered simply as a “black box”
but must be evaluated for its level of sophistication and support provided by the
organization’s IS function and by the system providers, be they inside or outside
the organization.
H2—The second hypothesis could not be confirmed as PMIS quality was not
found to directly influence the use of the system .ˇ D 0:09/, nor its impacts on
the project manager .ˇ D 0:20/. There are however a significant indirect effect
of system quality on system use (equal to 0:83 � 0:62) and on impacts on the
project manager (equal to 0:83 � 0:40), that is, through the mediating influence
of information quality.
H3—The third hypothesis, presuming a positive influence of the quality of
information provided by the PMIS upon the use of the system and its impacts
on the project manager is confirmed. Indeed, the quality of information output is
significantly related to the use of the PMIS by project managers (H3a, ˇ D 0:62).
Path analysis also confirms the existence of a significant relation between the
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Fig. 60.3 Results of evaluating the research model with PLS

quality of information output and the system’s impacts on project managers
(H3b, ˇ D 0:40). Hence a PMIS must provide information on project costs,
resources, and milestones that is perceived to be relevant, reliable and accurate
by project managers if they are to use these systems in their planning, controlling,
monitoring, and reporting tasks and if they are to be more efficient and effective
in accomplishing these tasks.
H4—Testing the fourth hypothesis confirmed that the use of a PMIS is positively
related to its impacts on the project manager .ˇ D 0:42/. In other words, the use
of a PMIS by project managers increases their productivity, effectiveness and
efficiency in decision-making due to the quality of the information output by the
PMIS. Therefore, using project management software tools that enhance their
capacity to plan, control, monitor, audit, and report provides tangible benefits to
project managers and improves the quality of their work.
H5—The fifth hypothesis could not be confirmed as no direct relationship was
found between PMIS use and the system’s impacts on project success .ˇ D
0:00/. Significant improvements in project performance in terms of meeting
deadlines, respecting budgets, and meeting specifications can be obtained indi-
rectly however, through the system’s impacts on project managers.
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H6—Results confirmed the positive association between the impact of PMIS on
the project manager and the impact of PMIS on project success .ˇ D 0:84/.
Hence, the more project managers perceive their task to be positively impacted
by their use of project management software, greater is their belief in the positive
contribution of this software to the attainment of their projects’ performance
objectives.

60.4.3 Discussion

The objective of this research is to have a better understanding of the elements
that contribute to the impact of a PMIS on project success. The study results are
discussed in terms of direct and indirect effects on PMIS project success. To ease the
discussion, the elements are grouped in three dimensions: technical (PMIS quality
and quality of information), managerial (PMIS use and impact on project manager),
and organizational (PMIS impact on project success).

At the technical level, the first element indirectly influencing the impact of a
PMIS on project success is PMIS quality. The system’s ease of use, flexibility,
response time, learning ease and system integration play an important role in
producing quality information, as perceived by the project manager. Indeed, PMIS
quality is a strong predictor of the quality of information to be obtained from
the system. In the case of a higher-quality PMIS, the information output is more
available, reliable, precise, comprehensive, and secure. Conversely, a PMIS that
produces information of poor quality would be a system that is more difficult to use,
less flexible, and less integrated to other organizational information systems used
by the project manager and other managers or employees. This means that project
information quality requires sophisticated, well-serviced information systems.

The quality of information is directly and strongly related to PMIS use and to
the system’s impacts on the project manager. Information quality is not an end by
itself however, as it leads only indirectly to project success. At the managerial level,
it is only through the actual use of the PMIS by—and the system’s impacts on—the
project manager that the quality of information can influence project success. Better
quality of information output increases the opportunity of the PMIS being used,
which in turn allows the system to have a positive impact on the project manager. As
such, the quality of information output by the PMIS leverages the project manager’s
work as a professional. The latter will feel more professional at work if he or she has
access to project information of high quality and uses the system more intensively
and more extensively for the planning, control, monitoring, and reporting activities.
This combination of quality information and extensive use of the system allows the
project manager to feel more productive at work and provides improved support for
decision-making.

This leads us to the final relationship, at the organizational level, specifically the
impacts of the PMIS on project success. First, the PMIS itself has no direct influence
upon project success; it is only through higher-quality information, extensive use of
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the system, and individual impacts on the project manager that the system has an
effect on project success. While a positive impact on managerial work is essential
to project success, greater use of a PMIS does not lead per se to greater impacts
on project performance. It is only indirectly, through its contribution to managerial
work that this use contributes to project success. In summary, if it is to make a
significant contribution to the attainment of project objectives, i.e., to make an
impact in terms of project budget, schedule, and specifications, a PMIS must first be
sufficiently sophisticated and serviced and produce information of sufficient quality.
It must then be used with sufficient depth and breadth by project managers and it
must have a sufficiently beneficial impact on their work.

It is also worth noting that among the managers who participated in the study,
a number indicated strong impacts of the PMIS upon the successful completion
of their projects, while others did not. The results indicate that, in general,
the latter depended upon a PMIS of lower quality that produced lower quality
information; hence they used their system less and were less supported in their
project management task. Whereas generally speaking, the former were those for
whom the sufficient conditions were met, that is, PMIS quality, information output
quality, PMIS use, and positive impacts on managerial work.

Additional comments can be made in explaining these relationships. First, it is
worth noting that a reverse or “feedback” relationship is possible between individual
impacts of a PMIS and its use (DeLone and McLean 2003). As project managers
perceive the PMIS to be beneficial to them, it is likely that they will increase their
use of the system. Second, other dimensions of project management, related to the
organizational environment, evidently play a role in explaining project performance;
thus the managers’ authority on project activities, their involvement in project
design, and their accountability in meeting project objectives are potential success
factors other than the PMIS (Bergeron 1986). Third, another interesting aspect to
consider is the possible reluctance of project managers to report “bad news” on a
project, and the subsequent effect it could have on the accuracy of project reports
and on the assessment of project success (Keil et al. 2007). Finally, as suggested by
Shenhar et al. (1997), future studies of PMIS success could evaluate project success
or performance from the client’s perspective, that is, evaluate if the impacts of the
PMIS on project outcomes provide an adequate solution to the client’s problem,
bring true advantages to the organization in terms of quality of product/services
offered, greater output volume, quicker delivery and better strategic positioning,
and provide tangible benefits such as increased sales and revenues.

60.4.4 Limitations

This research has limitations however. First, the convenient rather than random
nature of the sample and its small size impose care in the generalizing the
results of this study to all project managers. Second, an electronic questionnaire
limits the number of questions and variables that can be addressed and, being
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self-administered, is subject to respondent bias. While the items measuring PMIS
quality, information quality, PMIS use, PMIS impacts on the project manager, and
PMIS impacts on project success were placed in separate parts of the questionnaire
to mitigate autocorrelation effects, other sources of common method or mono-
method biases may yet remain in the survey instrument (Podsakoff et al. 2003).
Third, to lessen this bias, one could have used additional objective rather than
perceptual measures of the impact of the PMIS on project success; this would have
been particularly interesting for the productivity measures. Finally, as the nature of
the study is cross-sectional rather than longitudinal, causality cannot be inferred.

60.5 Conclusions

The research aim of this study was to determine the actual impacts of IT-
based project management information systems upon project managers and project
performance. More specifically, one objective was to identify the main determinants
of PMIS and determine the extent to which these systems assist project managers
in terms of increased efficiency, productivity, and efficiency. Another objective was
to get a better understanding of the contribution of these systems to the success of
projects.

Following the conclusions of previous research that PMIS success models should
continue to be validated and challenged, the results of this research show that
the use of a project management information system is in fact advantageous to
project managers. Improvements in effectiveness and efficiency in managerial tasks
were observed here in terms of better project planning, scheduling, monitoring,
and control. Improvements in productivity were also observed in terms of timelier
decision-making. Advantages obtained from PMIS use are not limited to individual
performance but also include project performance. These systems were found to
have direct impacts on project success, as they contribute to improving budget
control and meeting project deadlines as well as fulfilling technical specifications.
One can therefore conclude that PMIS make a significant contribution to project
success and should continue to be the object of project management research.
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Chapter 61
Project Management Information Systems
in a Multi-Project Environment

Marjolein C.J. Caniëls and Ralph J.J.M. Bakens

Abstract Project management information systems (PMIS) should provide project
managers with decision making support for planning, organizing, and controlling
projects. Most project managers are dissatisfied with the information produced by
PMIS. Based on a survey among 101 project managers the interactions between six
factors related to PMIS information quality and usage and their effect on decision
making are examined in a multi-project environment. Using structural equation
modeling, new insights were gained in these complex relationships. Results indicate
that the use of a project management information system is advantageous to
project managers, while no adverse effects were observed due to project and
information overload. PMIS information quality is positively related to quality
of the decisions, satisfaction of project managers with PMIS and use of PMIS
information. Simultaneous handling of multiple projects causes project managers
to extend conclusions about the information quality for one project to all projects at
hand.

Keywords Information quality • Multi-project environment • Project manage-
ment • Project management information systems • Structural equations modelling

61.1 Introduction

The current business environment is complex. Managers need to make fast deci-
sions, allocate scarce resources efficiently, and have a clear focus. In organizations
that are engaged in many projects simultaneously, management is faced with
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multiple challenges (Elonen and Artto 2003). Project managers handling different
projects with different scopes, complexities and timelines face particular problems.
These can be related to resource conflicts and throughput times (Maylor et al. 2006;
Platje and Seidel 1993). Inadequate balancing of scarce resources often results in
additional pressure on the organization, which leads to poor quality of information
and longer lead times of projects (Elonen and Artto 2003). Interdependencies and
interactions between projects (Patanakul and Milosevic 2008b) and information and
project overload (Engwall and Jerbrant 2003; Zika-Viktorsson et al. 2006) present
specific challenges as well. Managers may become overwhelmed by the amount of
information that is available for decision making, and therefore they may lose sight
of relevant information or be unaware of inaccuracies.

In general, poor information quality leads to poor decision making (Blichfeldt
and Eskerod 2008; Elonen and Artto 2003; Engwall and Jerbrant 2003). The use
of Project Management Information Systems (PMIS) is considered advantageous
to project managers because of the alleged contribution regarding timelier decision
making and project success (Raymond and Bergeron 2008). The implementation
of PMIS in a multi-project environment may help to accomplish a realistic
project assignment, which is an effective strategy when managing multiple projects
(Patanakul and Milosevic 2008a).

Studies on the use of PMIS have predominantly focused on single projects with
high complexity, and PMIS are considered advantageous in such environments
(Raymond and Bergeron 2008). Project managers who deal with single projects
that are less complex may not be willing to use PMIS, because the time they have
to invest in keeping the system up to date may exceed the benefits gained from
utilizing the system (Ali and Money 2005; Bendoly and Swink 2007). However,
little research has been done to find out whether project managers handling multiple
but less complex projects benefit from PMIS. The objective of our study is to gain
better understanding of the elements of PMIS that contribute to adequate decision
making in a multi-project environment, and to provide insights in the relationship
between PMIS information quality and the project manager’s satisfaction with
PMIS.

In this study we define a multi-project environment as a setting in which project
managers are in charge of several (more than one) projects on the operational
level at the same time (see also Zika-Viktorsson et al. 2006 for characteristics
of a multi-project setting). Hence, a project manager simultaneously supervises
several teams performing product development work according to a project specific
delivery plan. Multi-project managers allocate resources to various projects on a
short term basis in an attempt to achieve maximum progress for each project. Multi-
project management differs from project portfolio management. Whereas portfolio
managers have projects that are strategically related, the projects of a multi-project
manager may be related on a strategic level, but projects may also be independent
strategically, and only share scarce time and resources with other projects (Dye and
Pennypacker 2000).
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Concrete, this study is of an empirical nature and aims to identify and quantify the
effects of PMIS information use on decision making in a multi-project environment,
as perceived by project managers. PMIS information use is seen as a function of
PMIS satisfaction and the quality of PMIS information. On the basis of a survey
among 101 project managers in a multinational pharmaceutical company this study
will provide insights in the problems that project managers encounter in a multi-
project environment, namely:

1. The extent to which PMIS information quality is perceived by project managers
to contribute to enhanced decision making in a multi-project environment. PMIS
information quality reflects whether the information generated by the PMIS
is perceived to be readily at one’s disposal (available); sound and dependable
(reliable); closely connected or appropriate to the matter in hand (relevant);
correct in all details (accurate) and understandable (comprehensible) (Zmud
1978; O’Reilly 1980).

2. The extent to which project overload and information overload is perceived by
project managers to influence the quality of PMIS information.

The organization of this chapter is as follows. The next section will review the
literature about project management, PMIS, and the factors that influence decision
making in a multi-project environment. This section will also introduce the research
model. Subsequently, the research methodology will be presented. Then, the results
are reported, followed by the discussion and conclusion, and limitations and issues
for further research.

61.2 Literature Review

61.2.1 (Multi) Project Management

Project management “covers all project management processes that are related
to planning, controlling, and coordinating projects” (Ahlemann 2009, pp. 19–20).
Project management is an intricate task regarding the complexity, uncertainties, and
large number of activities involved, even in a single-project environment (Mota et al.
2009). In a multi-project environment it is common that one project manager leads
multiple concurrent projects at the same time (Patanakul and Milosevic 2008a).

Issues related to (multi) project management are addressed in many studies, see
Table 61.1 for an overview. Empirical studies regarding (multi) project management
have largely focused on resource allocation issues (Blichfeldt and Eskerod 2008;
Hendriks et al. 1999; Laslo and Goldberg 2008; Payne 1995; Yaghootkar and
Gil 2012; Yang and Fu 2014), managerial problems in the form of delayed
projects, stress and lack of overview (Blichfeldt and Eskerod 2008; Patanakul
2013), differences between single and multi-project environment (Aritua et al.
2009), projectification and programmification (Maylor et al. 2006), and planning
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Table 61.1 Overview of studies on project management and PMIS

References

Studied areas (1) Single-project management, (2) Multi-
project management, (3) PMIS, (4) Project overload,
(5) Information overload, (6) Information quality, (7) Sat-
isfaction with IS, (8) IS use, (9) Decision making

1 2 3 4 5 6 7 8 9

Ahlemann (2009) x

Ali and Money (2005) x x x x

Ali et al. (2008) x x x x

Aritua et al. (2009) x

Atkinson (1999) x

Blichfeldt and Eskerod (2008) x

Canonico and Söderlund (2010) x

Cooper et al. (2001) x x x

DeLone and McLean (2003) x x x

Dietrich and Lehtonen (2005) x x x x

Dvir et al. (2003) x

Engwall and Jerbrant (2003) x x

Hendriks et al. (1999) x x

Laslo and Goldberg (2008) x x

Martinsuo and Lehtonen (2007) x x

Maylor et al. (2006) x

Mota et al. (2009) x x x

O’Reilly (1980) x

Patanakul (2013) x x

Patanakul and Milosevic (2008a) x

Patanakul and Milosevic (2008b) x

Payne (1995) x

Platje and Seidel (1993) x

Platje et al. (1994) x

Raymond (1987) x x x

Raymond and Bergeron (2008) x x x x x

Saeed and Abdinnour-Helm (2008) x x x

Seddon and Kiew (1994) x x x

Turner and Speiser (1992) x

Yaghootkar and Gil (2012) x

Yang and Fu (2014) x

Zika-Viktorsson et al. (2006) x x

and control (Canonico and Söderlund 2010; Dvir et al. 2003; Platje and Seidel 1993;
Platje et al. 1994; Turner and Speiser 1992). All these studies have in common that
they focus on organization design and the management of projects. However, no
study has examined the use of PMIS for multi-project management.
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In a multi-project environment, project managers make use of several pools of
mostly limited resources that they must share with other project managers. This
simultaneous management of the throughput times and resource allocations of
projects is a complex process in which the often-conflicting interests of multiple
participants have to be weighed and assessed (Maylor et al. 2006; Platje and Seidel
1993). Sharing pools of limited resources for multiple projects makes it possible
for organizations to use these resources efficiently (Zika-Viktorsson et al. 2006).
Pooling resources reduces idle time, and allows sharing of expertise. However,
in the case of shared resources it is likely that disturbances to one project affect
other projects. Since the prerequisites for valid planning and control in such
situations are impaired, there is a need to make the situation as a whole more
predictable by systematic planning and control (Zika-Viktorsson et al. 2006). When
it comes to multiple projects, a project manager has to manage interdependencies
and interactions among projects, in addition to managing each individual project.
Project managers can do so by integrating the activities of planning/scheduling,
monitoring/control, and resource management of different projects in order to
manage them simultaneously. Project managers have few tools and techniques
available to help them oversee the whole picture of all interdependencies and
interactions (Patanakul and Milosevic 2008b).

Project overload is also common in a multi-project environment. Project overload
is associated with over-commitment, i.e., too many projects in relation to the
existing level of resources (Engwall and Jerbrant 2003). Zika-Viktorsson et al.
(2006) found that the number of simultaneous projects in which a project manager
is engaged predicts project overload and that project overload results in a negative
impact on project performance measured in terms of adherence to time schedules
and quality of work. In order to prevent project overload it is essential to achieve
balance between project demand and available human resources (Zika-Viktorsson
et al. 2006). A PMIS is considered valuable in providing the information needed to
manage multiple project simultaneously (Patanakul and Milosevic 2008a). In this
study we aim to advance upon the current knowledge on the use of PMIS in the
decision making in a multi-project environment.

61.2.2 Project Management Information Systems (PMIS)

PMIS have become “comprehensive systems that support the entire life-cycle of
projects, project programs, and project portfolios” (Ahlemann 2009, p. 19). They
can support project managers in their planning, organizing, control, reporting, and
decision making tasks, while evaluating and reporting at the same time (Raymond
and Bergeron 2008).

Studies have shown that there are several important factors that encourage
project managers to use PMIS (Ali and Money 2005; Dietrich and Lehtonen 2005;
Raymond and Bergeron 2008). First, whether or not project managers will use PMIS
strongly depends on the quality of the information generated by the PMIS (Ali and
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Fig. 61.1 The PMIS within the project management system (adapted from Raymond 1987 to
reflect multi-project setting)

Money 2005; Dietrich and Lehtonen 2005; Raymond and Bergeron 2008; Gelbard
et al. 2002; Raz and Globerson 1998). Second, project managers are more eager to
use an information system if it provides them with the appropriate level of detail
in relation to their needs (Ali and Money 2005; Raymond and Bergeron 2008).
Third, it is important that the information generated is free of complexity, easy to
understand, and easy for project managers to share with the project team’s members
(Ali and Money 2005). Fourth, PMIS facilitates continuous monitoring of progress
(Ali and Money 2005).

Figure 61.1 shows the role of PMIS in a multi-project environment. The project
management system consists of three parts: the project managers, the PMIS itself,
and the project life cycles. The project life cycles consist of various evolving stages;
objectives, plans, concepts, solutions, specifications and resources, and contains
all information needed to support project managers in their planning, organizing,
control, reporting, and decision making tasks. The role of the PMIS can be seen
as the link between the multi-project environment and the project managers. This
role includes capturing, storing, and processing project data to assist the project
managers in their decision making tasks (Raymond 1987).
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61.3 Research Model and Hypotheses

Our research model links PMIS information quality to decision making quality.
Project and information overload are considered to influence PMIS information
quality, while satisfaction with and use of PMIS, together with PMIS information
quality, influence the quality of decision making.

61.3.1 Project Overload

There is a limit as to how many projects one project manager can handle simul-
taneously, based on available resource capacity. Routines and procedures can be
helpful in that if project processes are standardized, project workers know what
to do and how the work has to be carried out. However, too many or too few
routines can easily become a burden for project workers when effort and pay-off
are not balanced (Patanakul 2013). Too many procedures shift attention from the
actual project management tasks to procedural activities, while too few routines
create uncertainties about what to do next. Other issues are the interdependencies
and interactions between projects and managing lead times (Engwall and Jerbrant
2003). Since schedules of different projects in a multi-project environment (partly)
depend on each other, knowing the available time and resources at every moment in
time is crucial for project progress. The limited amount of time available has to be
spread over simultaneously running projects, which may result in time pressures and
few opportunities for recuperation (Zika-Viktorsson et al. 2006; Patanakul 2013).
Project teams acknowledge that it is very important to evaluate projects. However,
in practice, due to time pressures project members are involved in the next project
before having time to evaluate what went wrong and what went right in the previous
project and draw lessons from this experience (Zika-Viktorsson et al. 2006). This
suggests that in situations of project overload there may be too little time available
for project managers to feed a PMIS with high quality information at the end of the
project as well as during the project itself. Hence, we hypothesize,

Hypothesis 1a: Project overload has a negative impact on PMIS information
quality in a multi-project environment

61.3.2 Information Overload

According to O’Reilly (1980) there is a relation between information overload and
reduced project performance. Beyond some optimal point more information can
lead to decreased decision making performance. Too much information may cause
problems in selecting relevant information, due to difficulties in identifying relevant
information from the total set available and distractions that reduce the available
time for information processing (O’Reilly 1980). In a multi-project environment
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the information available to the project manager is multiplied by the number of
projects carried out simultaneously. When project information is abundant for each
single project, it becomes problematic in a multi-project environment. A multi-
project environment is characterized by a lack of transparency in project information
and quality of project information (Elonen and Artto 2003). Increased complexity
leads to confusion which makes that project workers are uncertain about what
information should be delivered to whom, when it should be delivered, and in what
format (Elonen and Artto 2003). In such settings project managers may have trouble
seeking out quality information. Therefore, we hypothesize,

Hypothesis 1b: Information overload has a negative impact on the PMIS
information quality in a multi-project environment

61.3.3 PMIS Information Quality

With regard to PMIS information quality we found empirical evidence that it
directly as well as indirectly relates to timelier decision making and therefore project
success (Martinsuo and Lehtonen 2007; Raymond and Bergeron 2008).

Dietrich and Lehtonen (2005) found a strong statistical correlation between the
availability, topicality and validity of information and project success as well as
adequate decision making. This indicates the importance of high quality information
as an enabler for organizations to successful project management. Cooper et al.
(2001) state that many of the go versus kill decisions of managers are made in the
absence of solid information and therefore are questionable. Having the right—
relevant, accurate, and reliable—information quickly available, allows project
managers to make deliberate decisions. However, the focus of these studies was on
project management in general and not explicitly on the use of PMIS as the source
of information.

Saeed and Abdinnour-Helm (2008) explicitly study information systems. In
particular, they explore the effects of characteristics of the information system on
its perceived usefulness. They find that the availability of high-quality information
in an information system is essential, because it assists a user in making sound
decisions and thereby improves a project manager’s work performance. In contrast,
information systems that provide users with unreliable and inaccurate information
have an adverse impact on its usefulness. Gelbard et al. (2002) show that reliability
of estimations regarding time and effort are crucial for successful project manage-
ment.

Research on project risk management pointed out that firms widely use tools to
analyze, track, and control project risks. Raz and Michael (2001) identified several
tools that have a great potential for contribution to successful risk management.
These tools, like for example risks impact assessment and risk classification and
ranking, are typically present in PMIS software packages like Primavera and
Microsoft Project and are expected to support and ameliorate decision making.
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On the basis of extant literature we expect that PMIS information quality is
positively associated with adequate decision making in a multi-project environment.
Thus,

Hypothesis 2: Greater PMIS information quality is associated with more ade-
quate decision making in a multi-project environment

61.3.4 Project Manager Satisfaction with PMIS

User satisfaction is generally defined as fulfillment of one’s wishes, expectations,
or needs, or the pleasure derived from this (Seddon and Kiew 1994). Ali and
Money (2005) reviewed several studies that relate relevance, accuracy, availability,
reliability, consistency, and timeliness of information to user satisfaction with an
information system. They conclude that the information quality has a crucial effect
on the use of project management software. Project managers appear more eager
to accept PMIS when the quality of the information output is high (Raymond and
Bergeron 2008), and willing to use software that provides them with data that has an
appropriate level of details, fits their work needs, is free of complexity, and is easy
to understand and share with project team members. In a study about Departmental
Accounting Systems, Seddon and Kiew (1994) found evidence that the level of
information quality generated by an information system is an important determinant
of user satisfaction with the system. In addition, Raymond and Bergeron (2008) find
that PMIS information quality has a positive impact on the self-image of the project
manager. Access to high quality project information stimulates the use of PMIS.

A multi-project environment increases the need for high quality information
being readily available, since project managers have little time to check the accuracy
and reliability of the information. Hence, we hypothesize,

Hypothesis 3: Greater PMIS information quality is associated with greater
satisfaction of the project manager with PMIS in a multi-project environment

61.3.5 PMIS Information Use

Many authors have employed the term ‘use’ as an objective measure of system
success. Note that, use and user satisfaction are strongly interrelated because a user
can only be satisfied when he has first used the system. Positive experiences during
the use of the system will automatically cause greater user satisfaction, which then in
turn lead to an increased intention to use, and thus use (DeLone and McLean 2002).
A multi-project environment generates repeated encounters of the project manager
with the PMIS. If the project manager is not satisfied with the accuracy or depth
of the information generated by the PMIS, he will not solicit PMIS for the next
project (Raymond and Bergeron 2008). Conversely, if the information provided by
the PMIS is in accordance with or even exceeds the project manager’s expectations
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Fig. 61.2 Research model

and hence the satisfaction with PMIS is high, then the project manager is likely to
use PMIS information. This is in line with DeLone and McLean’s (2003) finding
that increased user satisfaction will lead to increased intention to use, and in turn
increased use. Thus,

Hypothesis 4: Greater satisfaction of the project manager with PMIS is associated
with intensified use of PMIS information in a multi-project environment

61.3.6 Quality of Decision Making

Raymond and Bergeron (2008) examined the effect of PMIS use on project success,
but they did not find support for a direct relationship. However, they did find
an indirect relationship between PMIS use via project manager performance to
timelier decision making. To our knowledge, no literature explicitly examines a
direct relationship between the use of PMIS information and the quality of decision
making. It is reasonable to assume that the use of PMIS information will lead to
better decision making, especially when we take into account the hypothesis that
PMIS information will only be used in a multi-project setting if this information has
proved to be satisfactory in past projects. We hypothesize:

Hypothesis 5: Intensified use of PMIS information has a positive impact on the
quality of decision making in a multi-project environment

The resulting research model is shown in Fig. 61.2.

61.4 Methodology

61.4.1 Sample and Data Collection

The target respondents for this questionnaire were project managers with at least
two simultaneously active projects. We solicited the support of a large Dutch
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pharmaceutical company for identifying project managers with multiple projects.
This company develops and produces prescription drugs through pharmaceutical
research. All respondents belonged to project oriented departments operating within
a rather complex multi-project environment, e.g., process development, engineering,
clinical trials, R&D, and quality control. Several PMIS are in use to support the
project managers in managing their projects. Project managers are free to choose a
PMIS, since the company does not have a central project management organization
or a specific PMIS policy.

Data for this study was collected using a survey of 142 project managers,
identified from a list of project managers managing at least two simultaneously
active projects. The total number of project managers in the company is about
200. Respondents were screened and questionnaires were handed out personally.
Completed questionnaires could be returned anonymously using a white envelope.
A total of 110 responses were received. The answers were reviewed by two
researchers independent from each other. Afterwards the independent judgements
were compared and proved to be identical. An answer was judged ambiguous
when more than one answer option was circled for one question (two cases), an
answer was judged missing as no answer option was circled at all (six cases).
Respondents that indicated that they were handling only one project at a time, were
removed from the database as well (one case). Removing all responses containing
incomplete or ambiguous answers resulted in 101 valid responses (71 % response
rate). The respondents’ demographics are presented in Table 61.2. Note that the

Table 61.2 Characteristics
of the sample

Characterization of the respondents (N D 101) % of sample

Project management experience

More than 20 years 7

15–19 years 13

10–14 years 23

5–9 years 38

0–4 years 20

Gender

Male 88

Female 12

Age in years

60–69 3

50–59 17

40–49 48

30–39 31

20–29 2

PMIS software used

Primavera 69

MS Project 90 22

Other (Excel, Access) 10
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majority of respondents used Primavera as PMIS software. Primavera is a project-
management software package that enables users to track and analyze performance.
It is a multiuser, multiproject system with scheduling and resource control capa-
bilities. It supports control and monitoring of costs and project budgets. Resources
representing labor, materials and equipment are used to track time, and costs for
projects. Slippage of projects’ activities are updated resulting in the adjustment of
time-related Gantt bars. Primavera supports multi-tiered project hierarchies and it
includes tools for risk management (Primavera P6 Project Management Reference
Manual Version 6.2, p. ix). Microsoft Project has comparable features to Primavera,
however, Primavera is specifically developed to handle large complex projects,
whereas MS Project is somewhat limited in in-depth analysis of large data sets and
multiple projects. Hence, in a multi-project environment Primavera is best suited
and therefore used most often.

Even though the pharmaceutical company openly endorsed the study the data
were collected and analyzed without company involvement. Since the company has
no specific PMIS policy forcing project managers to use a certain PMIS, social
desirability bias is reduced. The questionnaire was accompanied by a cover letter
stating the purpose of the study and an assurance of confidentially and anonymity.
Prior to the distribution of the questionnaire, three subject-matter experts were
asked to provide comments and suggestions on the clarity and readability of the
questionnaire’s items. Based on their feedback, the content of the cover letter and the
design of the questionnaire were adapted to improve clarity and readability. These
procedures also reduce social desirability (Podsakoff et al. 2003). To encourage
submission of the questionnaire, each respondent was given a chance to win a gift
worth e 20.

As both the predictor variables and the criterion variable were measured with
self-reports, correlations between constructs may be inflated as a result of using a
monomethod design (Podsakoff et al. 2003). Spector (2006) however argues and
shows that the threat of common method bias is generally exaggerated. Still, we
believe a discussion of this threat to validity is warranted. To minimize common
method bias the following procedural remedies were undertaken in designing and
administering the questionnaire. First, the respondents’ anonymity was protected,
respondents were assured that there are no right or wrong answers, and they were
urged to answer questions as honestly as possible (Podsakoff et al. 2003). Second,
several questions were reverse coded, reducing the threat of respondent “guessing”,
which is one possible source of common method variance, together with social
desirability (Malhotra et al. 2006). In this way respondents cannot easily combine
related items and produce the correlation needed to produce common method
variance biased pattern of responses (Chang et al. 2010; Murray et al. 2005). Third,
the research model (Fig. 61.2) is quite complex, hence it is not likely that the
hypothesized relationships are part of the respondents cognitive map (Harrison et
al. 1996; Chang et al. 2010). Fourth, our questionnaire contained only 35 items.
Therefore, it was short enough to avoid boredom and fatigue, which might shift the
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cognitive effort of respondents away from response accuracy to response speed (Yu
and Cooper 1983). This would make the last items of the questionnaire vulnerable
to biases in the direction of consistency with previous responses, and stereotypical
responding, such as all midrange responses or all extreme responses (Lindell and
Whitney 2001).

We examined the potential for common method variance via Harman’s one-factor
test recommended by Podsakoff and Organ (1986). Specifically, we performed
an unrotated, principal components factor analysis with all manifest variables,
extracting five factors with eigenvalues larger than 1, and the first factor accounting
for only 36.7 % of variance. If common method variance existed, a single factor
would have emerged in the analysis, or one general factor would have accounted for
most of the covariance in the independent and criterion variables. Taken together,
the threat of common method variance in the data is considered to be low.

Another potential threat to validity is non-response bias. Non-response bias
threatens the validity of the findings if there is reason to suspect that non-
respondents may exhibit different traits than respondents (Armstrong and Overton
1977). Groves and Peytcheva (2008) indicate that non-response bias is lower in
case the respondent has some involvement with the sponsor, the questionnaire is
self-administered rather than interviewer-administered, and the survey population is
specific rather than general. These factors all are in favor of our study. At the same
time however, Groves and Peytcheva (2008) suggest that surveys with questions
about attitude (like ours) show higher non-response biases. We tested the extent of
non-response bias in our sample using the procedure recommended by Armstrong
and Overton (1977). T-tests indicated that no statistical significant differences
existed with respect to any of the demographic variables, nor on the manifest
variables or latent constructs between first respondents and late respondents. Hence,
the threat of non-response bias in the data is believed to be low.

61.4.2 Measures

Multiple-item scales, closely following previous studies, were used to measure each
construct. The items that were used to assess the construct variables as well as
their internal consistency are reported in Appendix 1. All items were measured
on 5-point Likert scales. We provided verbal labels for the midpoint of scales and
avoided using bipolar numerical scale values (e.g., �2 to C2) in order to reduce
acquiescence bias (Tourangeau et al. 2000). Wherever possible, existing measures of
the constructs were adapted and used. The survey items assessing project overload
are based on Hochdorfer and Bjarnason (2007). Information overload items are
taken from O’Reilly (1980). Items for project manager’s satisfaction with PMIS,
PMIS information quality, the use of PMIS information and the quality of decision
making are adopted from Raymond and Bergeron (2008). Table 61.3 presents an
overview of the main construct variables with definitions and item sources.
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Table 61.3 Constructs with definitions and item sources

Construct Definition Items adapted from

Project overload (PO) Project overload is defined as having
not enough capacity to deal with the
amount of given projects and their
unique schedules, tasks, and deadlines
at the same time. The assessment of
project overload is a subjective
appraisal.

Hochdorfer and Bjarnason
(2007, p. 28)

Information overload
(IO)

The information overload construct
measures the extent in which
respondents feel that their processing
capabilities differ with the information
load encountered. The assessment of
information overload is a subjective
appraisal.

O’Reilly (1980)

PMIS information
quality (IQ)

PMIS information quality is measured
by assessing the degree in which
information from the PMIS is (1)
available, that is whether the PMIS
information is readily at one’s
disposal; (2) reliable, that is whether
the PMIS information is sound and
dependable; (3) relevant, that is
whether the PMIS information is
closely connected or appropriate to the
matter in hand; (4) accurate, that is
whether the PMIS information is
correct in all details; and (5)
comprehensible, that is whether the
PMIS information is understandable.

Raymond and Bergeron
(2008)

Project managers
satisfaction with PMIS
(SAT)

Project managers satisfaction
represents the affective attitude
towards using the PMIS. An example
of an item is “The PMIS is very useful
in managing projects”. The construct
evaluates the PMIS’ perceived
adequacy, effectiveness, and efficiency.

Raymond and Bergeron
(2008)

Use of PMIS
information (USE)

The use of PMIS information
measures the perceived use of the
PMIS for different project
management tasks, including using
overview reports, project summary
reports, project budget reports,
resource usage reports, and tasks in
progress reports.

Raymond and Bergeron
(2008)

Quality of decision
making (DM)

The quality of the decision making
construct is composed of items such
as: a perceived increase in the quality
of decisions and reduction of the time
required for decision making.

Raymond and Bergeron
(2008)
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In addition, the following demographical and control variables were included in
the survey: age, gender, years of project management experience, and name of the
used PMIS. In order to avoid including “impotent control variables” (Becker 2005)
and reducing power of our analyses unnecessarily, we checked whether control
variables were correlated with the core variables of interest. For none of the control
variables we found significant correlations with the core constructs of our model.
Hence, we excluded the control variables in the analysis of our model.

61.5 Results

A component based structural equations modeling (SEM) method, more specifically
Partial Least Squares (PLS), was used to test the hypotheses. SEM was chosen
because it allows the analyses of systems of independent and dependent variables at
the same time, whereas multiple regression analysis does not. We found component
based SEM, and in particular PLS, more adequate for our purposes than covariance
based SEM methods such as LISREL and EQS (Fornell and Larcker 1981), as PLS
is robust with respect to multicollinearity (Cassel et al. 2000), small sample sizes
(Haenlein and Kaplan 2004), complex modeling including models with hierarchical
constructs, mediating and moderating effects (Chin et al. 2003; Wetzels et al. 2009),
and even violations of the normality distribution assumption (Haenlein and Kaplan
2004; Cassel et al. 1999). For an overview of conditions under which PLS might be
more appropriate than covariance based SEM, see Wetzels et al. (2009).

To carry out PLS we used SmartPLS software (Ringle et al. 2005). PLS examines
the significance of the relationships and their resulting R2 (Gefen et al. 2000).
Path coefficients in PLS indicate the strength of the relationship between constructs
and can be interpreted as regression coefficients between standardized variables.
Appendix 2 shows the correlation classification used in this study. The sample
size requirement for PLS analysis was met (Gefen et al. 2000). A power analysis
was performed using G�Power 3.1.2 (downloaded from http://www.psycho.uni-
duesseldorf.de/abteilungen/aap/gpower3) and showed that our sample size was
suitable (Erdfelder et al. 1996; Faul et al. 2009). Tenenhaus et al. (2005) suggest
a goodness of fit (GoF) measure for PLS path modeling that is defined as the
geometric mean of the average communality and average R2 for endogenous

constructs GoF D
q

AVE �R2. Wetzels et al. (2009) have derived the following
GoF criteria for small, medium, and large effect sizes of R2. GoFsmall D 0:1,
GoFmedium D 0:25, and GoFlarge D 0:36. For our model GoF was 0.38, exceeding
the cut-off value of 0.36 for large effect sizes of R2. Hence we conclude that our
model performs well compared to the baseline values as defined by Wetzels et al.
(2009).

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3
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61.5.1 Reliability and Validity

Reliability was assessed by evaluating the unidimensionality of items through their
factor loadings and by noting composite reliability as calculated in the PLS analysis.
Unidimensionality is usually satisfied by retaining the items whose loadings (œ/ are
above 0.7, indicating that they share sufficient variance with their related construct
(Ringle et al. 2005). A few items were excluded from the constructs in order to
fulfill unidimensionality of each construct. See Appendix 1 for all items and their
respective loadings.

Following Kaiser and Ahlemann (2010), we determined the composite reliability
of all the constructs to ensure that the items of the measurement models were
consistent internally. Composite reliability scores for each construct exceeded the
0.7 value recommended by Hock and Ringle (2010), and are shown in Table 61.4.
A composite reliability score greater than 0.7 indicates that the variance of a given
construct explains at least 70 % of the variance of the corresponding measure, as
is the case for all constructs in our research model. Since composite reliability is
above 0.7 for all constructs, the measures are reliable (Lewis et al. 2005).

Convergent and discriminant validity were assessed by examining the average
variance extracted (AVE) and the item construct correlations as generated by PLS.
Convergent validity tests whether the measures of constructs that should be related,
are related (Trochim 2010). AVE is the percentage of the total variance of a measure
represented or extracted by the variance due to the construct and ranges from 0
to 1. It should be 0.50 or above to exhibit convergent validity (Fadel and Brown
2010; Hock and Ringle 2010). Table 61.4 shows the AVE values for each construct.
Except for ‘project overload’ all constructs meet the criteria for convergent validity.
Retaining the minimum of three items per construct (Ringle et al. 2005), resulted
in an AVE of 0.460 for project overload. Hence, strictly speaking project overload
does not meet the criterion for convergent validity, but we feel that it’s AVE value is
close enough to 0.50 to be able to maintain this construct into our analysis.

Discriminant validity tests whether believed unrelated measures of constructs
are, in fact, unrelated (Trochim 2010). Adequate discriminant validity at the
construct level is established if the square root of AVE values (on the diagonal
of Table 61.5) is larger than the off-diagonal correlations. The criteria for this test
are met for all constructs. Cross-loadings are another test of discriminant validity,

Table 61.4 Means, standard deviations, PLS composite reliabilities

Construct No. of items Mean SD Composite reliability

Quality of decision making 4 3.45 0.67 0.84

Information overload 3 3.32 0.50 0.76

PMIS information quality 4 3.25 0.52 0.84

PMs satisfaction with PMIS 3 3.09 0.55 0.80

Project overload 3 3.47 0.42 0.71

Use of PMIS information 3 2.94 0.82 0.76
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Table 61.5 Construct AVE’s and inter-construct correlations

# Construct AVE 1 2 3 4 5 6

1 Quality of decision making 0.561 0.749

2 Information overload 0.525 0.067 0.725

3 PMIS information quality 0.567 0.574 0.174 0.753

4 PMs satisfaction with PMIS 0.567 0.565 0.080 0.577 0.753

5 Project overload 0.460 0.078 �0.018 0.215 0.117 0.678

6 Use of PMIS information 0.518 0.622 0.015 0.459 0.360 0.238 0.720

Fig. 61.3 Results of evaluating the research model with SmartPLS .n D 101/ significance level
of path coefficients: �p < 0:05; ��p < 0:01; ���p < 0:001

the item-construct cross-loadings are shown in Appendix 3. Each block of items
should load higher for its respective construct than for the block of items of the
other constructs. The criteria for this test is also met for all constructs, hence both
tests indicate adequate discriminant validity.

61.5.2 Structural Model

The structural model represents the relationships between constructs that were
hypothesized in the research model. For PLS there are no well-established overall
fit measures. Path coefficients (statistical and practical significance) and coefficients
of determination .R2/ together indicate how well the model performed. The R2 are
measures of the variance in endogenous constructs accounted by other constructs
that were hypothesized to have an effect on them. Therefore, they can be interpreted
as R2 in regression analysis (Gil-Garcia 2005). The hypotheses are tested by
analyzing the direction, the value and level of significance of the path coefficients
(gammas) estimated by the PLS method. A bootstrapping resampling procedure
(200 samples) was used to test the significance of path coefficients. The results of
the analysis are shown in Fig. 61.3.
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The hypothesis that project overload has a negative impact on the quality of the
PMIS information output (H1a) is not supported. The hypothesis that information
overload has a negative impact on the quality of the PMIS information quality (H1b)
is not supported as well. The significant path coefficients (� D 0:218; p < 0:01,
and � D 0:177, p < 0:05, respectively) indicate that there is a weak association of
project overload as well as information overload with PMIS information quality.
Instead of the expected negative associations, we found positive associations of
project overload as well as information overload with PMIS information quality.

The second hypothesis (H2) is supported and indicates that a greater quality of
the PMIS information output is significantly and positively associated with decision
making by project managers in a multi-project environment .� D 0:366Ip <

0:001/. Hence, a significant improvement in decision making in terms of improved
quality of the decisions, reduced time in making decisions, better allocation of
resources and better monitoring activities can be obtained directly by improving
the quality of the PMIS information output. In addition we found evidence for an
indirect effect of PMIS information quality on decision making (equal to 0.577 �
0.360 � 0.453). The indirect effect works via the mediating influence of the project
manager’s satisfaction with PMIS and the use of PMIS information. However, the
indirect effect .� D 0:094/ is much less than the direct effect .� D 0:366/.

Path analysis also confirms the existence of a significant relationship between the
quality of the PMIS information output and the satisfaction of the project manager
with PMIS .� D 0:577Ip < 0:001/, hypothesis 3 (H3). A higher quality of the
PMIS information output is associated with higher levels of satisfaction of project
managers with PMIS in terms of having faith in the reports generated by the PMIS,
easy interaction with the PMIS and increased use of the PMIS.

The fourth hypothesis (H4) concerns the positive relation between the satisfac-
tion of the project manager with PMIS to intensified use of PMIS information.
This hypothesis is supported .� D 0:360Ip < 0:001/. Indeed, the use of PMIS
information in the form of overview reports, resource usage reports, and task in
progress reports is positively influenced by the project manager’s satisfaction with
the PMIS.

The fifth hypothesis (H5) suggests a positive association between intensified
use of PMIS information and the quality of decision making. This hypothesis is
supported .� D 0:453Ip < 0:001/. In other words, using reports generated by the
PMIS increases the overall quality of decision making by enhancing the quality of
decisions, shorten the time to come to a decision, better allocating resources, and
better monitoring activities.

About 49 % of the variance with regard to the quality of decision making is
accounted for by its explanatory constructs. Similarly, the model explains about
33 % of the variance in project manager’s satisfaction with PMIS, 13 % of the
variance in the use of PMIS information, and 8 % of the variance in PMIS
information quality. The average explanatory power of the endogenous constructs
in the model is about 26 % .R2 D 0:258/.
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61.6 Conclusions

61.6.1 Summary and Relevance

The aim of this study was to gain a better understanding of the elements of PMIS
that contribute to adequate decision making in a multi-project environment, and
to provide insights in the relationship between PMIS information quality and the
project manager’s satisfaction with PMIS. Most of the findings of this study are in
line with prior studies regarding PMIS and studies about single complex projects,
however, a few deviations were found.

Two factors were expected to have a negative relationship with PMIS information
quality, namely project overload and information overload. The findings of this
study are not in line with what was expected beforehand. We found that project
overload as well as information overload are positively, albeit weakly, related to
PMIS information quality. An explanation for this seemingly paradoxical effect
is as follows. Previous research has indicated that the hours worked per week are
positively related to the total output of a project worker with an maximum of 60 h
per week for a full time project worker. When working more than 60 h per week,
output drops, not only per hour but in total as well (Hochdorfer and Bjarnason 2007).
Hence, if the project overload experienced by the respondents in our study is below
the maximum of 60 h per week per full time employee, there will not actually be
a situation of overall overload, although the project worker perceives it as such. A
similar reasoning can be given with respect to information overload. It may also
be true for information overload that only beyond some optimal point too much
information can lead to a decrease in the PMIS information quality (O’Reilly 1980).
Below this optimal point a respondent can still perceive information overload, but
it might not result in actual problems for output, i.e., PMIS information quality. In
fact, this might also give an explanation for the weak positive relationship we found
between information overload and PMIS information quality. One can imagine that
up to the presumed optimal point, extra information, although being excessive in the
eyes of the project manager, can lead to increased PMIS information quality.

We found that in a multi-project environment the availability of higher quality
information in the PMIS is associated with project managers that are more satisfied
with PMIS. These findings are in line with prior research in the field of accounting
systems (Seddon and Kiew 1994), that indicate that the level of information quality
generated by an information system is an important determinant of user satisfaction
with the system. In addition, evidence from single-project environments points in
a similar direction (Ali and Money 2005). Apparently, a multi-project environment
generates a high need for high quality information, since project managers are under
extreme time pressures and will not often investigate whether the information is
accurate and reliable.

The project manager’s satisfaction with PMIS was expected to be indirectly
related to the quality of decision making via the use of PMIS information. In our
study we found a positive effect between these constructs. These findings are in line
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with prior research (Ali and Money 2005), that showed that information quality has
a significant effect on the use of PMIS and that project managers are more likely
to use PMIS information that is free of complexity and is easy to understand. This
may indicate that the more satisfied a project manager is with the PMIS, the more
he will use the information generated by the PMIS, which in turn has a positive
impact on the quality of his decision making. With respect to the project manager’s
satisfaction with PMIS it is interesting to note that among the project managers who
participated in our study, only 37 % indicated to be more than averagely satisfied
with the quality of the information provided by the PMIS they use. Even 90 % of the
participants reported that they were particularly dissatisfied with the reliability of the
information. These results indicate that broadly speaking, project managers who are
dependent upon a PMIS that produces low quality information, are less satisfied and
as a consequence do not use the generated information in simultaneously running
projects. In turn, they are to a lesser extent supported in their decision making and
the quality of their decision making is negatively affected. The opposite may be
true for project managers who can rely upon a PMIS that produces high quality
information. In the PMIS literature this relationship is recognized as a “feedback”
relationship (DeLone and McLean 2003). As project managers perceive the PMIS
information to be beneficial to them, it is likely that they will increase their use of
the PMIS information. In a multi-project setting this effect is enhanced, because
project leaders will draw conclusions about the information quality for one project
and extend this conclusion to their other simultaneously running projects. When the
PMIS generates low quality information for one of their projects, project managers
are likely to draw negative conclusions about the quality of information for all
their simultaneously running projects, without checking whether the PMIS for these
projects might actually generate high quality information.

In this study, two factors directly influence the quality of decision making.
First, we found that the quality of the information produced by the PMIS is
directly related to the quality of decision making. This finding is consistent with
Saeed and Abdinnour-Helm (2008) who studied the effects of information system
characteristics and perceived usefulness on post adoption usage of information
systems. They found that high quality information helps project managers in making
sound decisions and improving their performance. In addition to the quality of
decision making, PMIS information quality also directly influences satisfaction with
the PMIS of multi-project managers. This supports the DeLone and McLean (1992)
model of information system success, in which information quality explained 33 %
of the variance in the project manager’s satisfaction with PMIS. Hence, we conclude
that reliability, relevance, accuracy as well as comprehensiveness of the PMIS
information play an important role in the quality of decision making, especially
in a multi-project environment. A PMIS that produces poor quality information will
not be used by project managers for their simultaneously running projects. The use
of PMIS information is a second factor that directly impinges on the quality of
decision making. We found that the use of PMIS information is significantly and
quite strongly related to the quality of decision making.



61 Project Management Information Systems in a Multi-Project Environment 1375

The theoretical contribution of this research lies primarily in the fact that the
study sheds light on factors that are important for the quality of decision making,
specifically in a multi-project environment. Our study suggests the presence of
spillover effects in the opinion of the project manager about PMIS information
from one project to another, simply because these are managed by the same person.
Whereas project managers always are in need of high quality information from
a PMIS, this need is even larger in a multi-project environment. Extreme time
pressures leave no time to multi-project managers to investigate whether PMIS
information is accurate and reliable. In a multi-project environment, the perceived
quality of PMIS information has an oil spotting effect. The perception of PMIS
information being trustworthy or not affects the opinion, and therefore the behavior,
of project managers in all of their simultaneously running projects at hand. As
project managers perceive the PMIS information to be beneficial to them for one
project, they extend this conclusion to their other projects, without checking whether
the PMIS for these projects indeed generate high quality information.

The findings from our study also have managerial relevance. Multi-project envi-
ronments generate specific challenges that find their origin in increased complexity.
Linkages and interdependencies between simultaneously running projects are at the
root of this increased complexity. It can be concluded from this study that project
managers running several projects at the same time benefit from using a PMIS.
Not all companies with a substantial part of activities organized in projects adopt a
central PMIS. This study suggests that the management of such firms might want to
design policy on the use of project management information systems. Furthermore,
companies that do have a PMIS policy should assess whether project managers are
satisfied with its information. Especially in a multi-project environment, companies
should adapt their PMIS or switch to another one much sooner as compared
to companies that mainly work with single projects, because the perception of
untrustworthy information in one project immediately spills over to parallel running
projects and hence the PMIS loses its function. Another option for companies
could be to appoint an assistant to the project manager, who has the particular
task of checking PMIS information quality, in order to ensure that inadequate
conclusions about information do not multiply and spill over to other projects.
Moreover, companies should invest in PMIS and devote time to certify that high
quality information is generated by the PMIS. Since, high quality PMIS information
will lead to high quality decision making.

In addition, our research suggests that up to a certain threshold no adverse
effects are to be expected from project and information overload, even when project
managers themselves perceive to be burdened by excess information. Management
should use this finding cautiously, because further research is needed on where
this threshold might lie. It would be unwise to jeopardize the well-being of project
managers because this will certainly affect the quality of work.
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61.6.2 Limitations and Issues for Further Research

The results of this study should be interpreted cautiously. The model explains
nearly half of the variance on the quality of decision making as perceived by
the project manager. The quality of decision making seems to be affected by the
quality of the PMIS information and the actual use of this information. However,
the quality of decision making is unexplained for the other half of the variance
which may indicate that there are other technical and managerial factors, beside
PMIS information quality and the use of PMIS information, that affect the quality
of decision making. This also holds for the constructs of PMIS information quality
and the use of PMIS information quality. The variance in the quality of the PMIS
information is explained for only 7.8 % by project and information overload. The
variance in the use of PMIS information is explained for 13.0 % by the project
manager’s satisfaction with the PMIS. The variance of the latter is, in turn, explained
for 33.3 % by the quality of the PMIS information. The unexplained parts of the
variance in these constructs may indicate that there are other factors that affect these
constructs. Hence, future research should take into account a larger set of factors
and develop a better explanation of, especially, the “PMIS Information” and “Use
of PMIS Information” constructs.

Another interesting avenue for further research is the counterintuitive finding
regarding the effect of project and information overload on the quality of the PMIS
information. Future studies should focus on the extent to which project overload as
well as information overload strengthens PMIS information quality. An additional
interesting aspect for further research regarding information overload might be the
possible positive effect of the substantial amount of graphical reports generated by
PMIS to reduce the reverse effects of information overload (Chan 2001).

In this study, the sample consisted of the multi-project managers of a multina-
tional firm. The set of respondents is certainly not a random sample of multi-project
managers worldwide and across all industries. Hence, the findings of this study can
only be generalized with caution. Further research should show whether our findings
can be generalized across industries and countries.

Finally, since the majority of our respondents indicated to be unsatisfied with
the quality of their PMIS a suggestion for further research is to investigate what
factors are important, in the perception of project managers, to generate high quality
information with respect to availability, accuracy, relevance, comprehensiveness,
and particularly, reliability. Factors like effective sizing and content definition of
work packages might play a crucial role in this (Raz and Globerson 1998) and
should be object of further study.

For the objectives of our study we focused on PMIS and whether and under what
conditions PMIS can lead to better quality of decision making for project managers
in a multi-project environment. From the literature on strategic Decision Support
Systems we know that various computer based information systems exist that
specifically are designed for supporting strategic business decision making activities
(e.g., Reich and Kapeliuk 2005). Decision Support Systems serve management,
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operations, and planning departments of an organization and help them to make
decisions. It might be worthwhile for further research to explore whether project
Decision Support Systems and knowledge based systems can provide project
managers with accurate predictions, help them design the desired project trajectory,
and validate process changes (Donzelli 2006), and save them from having to go
through large information systems that can generate overload.

Appendix 1: Constructs and Measures

Construct Abbreviation Item PLS factor loadingc

Project overload (PO) PO-1 On how many projects do
you usually work at the
same time?

0.56

PO-2 How often do you switch
between your projects?

0.81��

PO-3 How often do you have to
do the job of other people?

0.64�

PO-4a How often do you change
the priorities in your
work?

(0.09)

PO-5a How often do you have the
feeling that you are
wasting time on a task?

(0.26)

Information overload
(IO)

IO-1b On some occasions you
might have too little
information that you could
consistently handle for
making the best possible
work-related decisions. In
a typical work week,
approximately how often
does this situation happen?

0.83���

IO-2b Sometimes at work you
may receive more
information than you can
efficiently use. At other
times, however, you may
feel that you are not
receiving all the
information you need.
How often during a week
would you say that this
lack of information arises?

0.55�

(continued)
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Construct Abbreviation Item PLS factor loadingc

IO-3 Is the total amount of
information you receive in
a typical work week
enough to meet the
information requirements
for your job?

0.76���

PMIS information
quality (IQ)

IQ-1 Availability (0.31)*

IQ-2 Reliability 0.75���

IQ-3 Relevance 0.76���

IQ-4 Accuracy 0.81���

IQ-5 Comprehensiveness 0.68���

Project managers
satisfaction with PMIS
(SAT)

SAT-1 The PMIS is very useful in
managing projects

(0.57)���

SAT-2 I really trust the reports
from the PMIS

0.77���

SAT-3 The interaction with the
PMIS is fairly easy

0.62���

SAT-4 The understanding of the
PMIS is not difficult

(0.49)���

SAT-5 My satisfaction with the
PMIS makes me use it
more

0.78���

Use of PMIS
information (USE)

USE-1 Overview reports 0.72���

USE-2 Project summary reports (0.60)���

USE-3 Project budget reports (0.55)���

USE-4 Resource usage reports 0.70���

USE-5 Task in progress reports 0.64���

Quality of decision
making (DM)

DM-1 The PMIS improves the
quality of my decisions

0.81���

DM-2 The PMIS reduces the
time of my decision
making

0.76���

DM-3 The PMIS helps me to
better manage the budget
for activities

(0.56)���

DM-4 The PMIS helps me to
better allocate resources

0.66���

DM-5 The PMIS helps me to
better monitor activities

0.66���

Significance level of PLS factor loading: �p < 0:05; ��p < 0:01; ���p < 0:001
a Reverse-coded for a correct calculation of the composite reliability (Ringle et al. 2005)
b Reverse-coded
c After removing the items PO-4 and 5, IQ-1, SAT-1 and 4, USE-2 and 3, and DM-3



61 Project Management Information Systems in a Multi-Project Environment 1379

Appendix 2: Correlation Classification

Strength (Rubin 2009) Correlation coefficient

Perfect �1 1

Strong �0:999 to �0:500 0.500 to 0.999

Moderate �0:499 to �0:300 0.300 to 0.499

Weak �0:299 to �0:100 0.100 to 0.299

No correlation �0:099 to 0.000 0.000 to 0.099

Appendix 3: Item-Construct Cross-Loadings

Project

Quality of PMIS managers Use of

decision Information information Project satisfaction PMIS

making overload quality overload with PMIS information

(DM) (IO) (IQ) (PO) (SAT) (USE)

DM-1 0.819 0.082 0.482 0.089 0.479 0.537

DM-2 0.802 0.004 0.464 0.004 0.458 0.445

DM-4 0.679 �0.004 0.457 0.063 0.387 0.474

DM-5 0.686 0.141 0.278 0.082 0.353 0.384

IO-1 0.033 0.832 0.152 �0.005 0.076 �0.016

IO-2 0.108 0.552 0.070 �0.046 0.051 0.133

IO-3 0.040 0.760 0.136 �0.007 0.046 �0.021

IQ-2 0.350 0.230 0.762 0.108 0.554 0.270

IQ-3 0.544 0.105 0.764 0.197 0.408 0.515

IQ-4 0.429 0.182 0.805 0.173 0.412 0.320

IQ-5 0.399 �0.021 0.673 0.173 0.349 0.253

PO-1 0.018 0.148 0.127 0.558 0.043 0.065

PO-2 0.075 �0.099 0.186 0.811 0.109 0.238

PO-3 0.060 �0.050 0.111 0.640 0.078 0.155

SAT-2 0.419 0.228 0.529 0.098 0.770 0.275

SAT-3 0.289 0.047 0.369 0.007 0.683 0.142

SAT-5 0.544 �0.121 0.384 0.140 0.801 0.369

USE-1 0.440 �0.011 0.370 0.327 0.265 0.686

USE-4 0.440 0.084 0.407 0.162 0.254 0.748

USE-5 0.461 �0.038 0.218 0.029 0.259 0.724
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Chapter 62
Resource-Constrained Project Scheduling
with Project Management Information Systems

Philipp Baumann and Norbert Trautmann

Abstract Most commercial project management software packages include plan-
ning methods to devise schedules for resource-constrained projects. As it is
proprietary information of the software vendors which planning methods are
implemented, the question arises how the software packages differ in quality with
respect to their resource-allocation capabilities. We experimentally evaluate the
resource-allocation capabilities of eight recent software packages by using 1,560
instances with 30, 60, and 120 activities of the well-known PSPLIB library. In some
of the analyzed packages, the user may influence the resource allocation by means
of multi-level priority rules, whereas in other packages, only few options can be
chosen. We study the impact of various complexity parameters and priority rules
on the project duration obtained by the software packages. The results indicate that
the resource-allocation capabilities of these packages differ significantly. In general,
the relative gap between the packages gets larger with increasing resource scarcity
and with increasing number of activities. Moreover, the selection of the priority rule
has a considerable impact on the project duration. Surprisingly, when selecting a
priority rule in the packages where it is possible, both the mean and the variance of
the project duration are in general worse than for the packages which do not offer
the selection of a priority rule.

Keywords Experimental performance analysis • Project management • Project
management information systems • Project scheduling

62.1 Introduction

A project is a temporary endeavor that can be divided into a series of activities
which are interrelated by precedence constraints and require time and resources
for their execution. The planning of a project includes the computation of the
earliest and latest start times and the slack times of the activities (temporal
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scheduling), and the allocation of scarce resources over time to the execution
of the activities (resource allocation). In practice, project managers use project
management software for temporal scheduling and resource allocation (cf., e.g.,
White and Fortune 2002; Liberatore and Pollack-Johnson 2003; Herroelen 2005).
While the temporal-scheduling problem can be solved efficiently by longest path
length calculations (cf., e.g., Lawler 1976), the resource-allocation problem is in
general difficult to solve. Therefore, project management software packages use
heuristic solution procedures for allocating resources to activities.

In this chapter, we analyze the resource-allocation capabilities of recent project
management software packages by means of an experimental performance analysis.
Following previous papers on this subject (cf., e.g., Johnson 1992; Kolisch 1999;
Mellentien and Trautmann 2001; Trautmann and Baumann 2009), we investigate
instances of the resource-constrained project scheduling problem RCPSP. This
problem consists in determining a start time for each activity subject to finish-
start precedence relationships and constraints on the resource capacities such that
the project duration is minimized. Our analysis refers to the software packages
Acos Plus.1, Adept Tracker Professional, CS Project Professional, Microsoft Project
2010, Microsoft Project 2013, Primavera P6, Sciforma 5.0, and Turbo Project
Professional. For the experimental performance analysis we use the 1,560 PSPLIB
instances with 30, 60, and 120 activities and the software packages. Results for
(rather few) other instances have also been presented by Maroto and Tormos (1994),
Farid and Manoharan (1996), Khattab and Søyland (1996), Lova and Tormos
(2001), and Kastor and Sirakoulis (2009).

The outline of the present chapter is as follows. In Sect. 62.2, we describe the
resource-allocation features of the different software packages; for the packages
which offer the selection of a priority rule, we provide a short description of the
rules. In Sect. 62.3, we report the results of our experimental performance analysis.
In Sect. 62.4, we give some concluding remarks.

62.2 Project Management Information Systems

We restricted our analysis to commercial software packages that comprise a re-
source-allocation procedure and can be controlled by Visual Basic for Applications
(VBA); the latter is required to perform the experimental analysis automatically.
Table 62.1 lists for each package the name, the developer, and the number of the
release used.

62.2.1 Acos Plus.1

In Acos Plus.1 (cf. Fig. 62.1) the user may choose between 12 different priority
rules. A description of each rule is given in Table 62.2.
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Table 62.1 Analyzed software packages

Name Developer Release (Built)

Acos Plus.1 ACOS Projektmanagement GmbH 9.4b (755)

Adept Tracker Professional WangTuo Software 3.13 (10953)

CS Project Professional CREST Software 3.8 (.06)

Microsoft Project 2010 Microsoft Corporation 14 (6129.5000)

Microsoft Project 2013 Microsoft Corporation 15 (4420.1017)

Primavera P6 Oracle Corporation 8.2 (1926)

Sciforma 5 Sciforma Corporation 5.0c (2994)

Turbo Project Professional OfficeWork Software 4 (221.5)

Fig. 62.1 Acos Plus.1 (Instance j301_1)

The user may specify priority values for individual activities from the interval
[0,999]. The default priority value for each activity is 0. In the resource-allocation
dialog of Acos Plus.1, the user has the possibility to (a) limit resource allocation to
specific resources or selected activities, (b) chose a priority rule, and (c) allow the
procedure to change durations of tasks or to interrupt activities. By default, priority
rule A1 is selected, even if the user has not specified any priority values at all.

In our analysis we tested priority rules A1, A2, A4, A5, A6, A7 and A8. When
priority rule A3 was selected, Acos Plus.1 created infeasible schedules for some
instances. Therefore, we excluded priority rule A3 from our tests. We did not test
rules A10, A11 and A12 because we did neither perform a specific sorting of
activities nor defined any main activities.
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Table 62.2 Priority rules of Acos Plus.1

Name Id Description

Priority A1 Higher priorities for activities with a lower
priority value

Total float A2 Higher priority for activities with less total
float

Critical path A3 Higher priority for activities that constitute
the critical path

Longest duration A4 Higher priority for activities with a longer
duration

Free float A5 Higher priority for activities with less free
float

Total number of predecessors A6 Higher priority for activities with more
direct predecessors

Total number of successors A7 Higher priority for activities with more
direct successors

Total number of predecessors and successors A8 Higher priority for activities with a larger
total number of predecessors and successors

Shortest duration A9 Higher priority for activities with a shorter
duration

Sorting A10 Higher priority for activities with a lower
position in the current sorted list of
activities

Priority of main-activity A11 Higher priority for activities whose main
activity has a lower priority value

Sorting of main-activity A12 Higher priority for activities whose main
activity has a lower position in the current
sorted list of activities

62.2.2 Adept Tracker Professional

In Adept Tracker Professional (ATP) (cf. Fig. 62.2), five different resource-
allocation methods are available. According to the help file, all methods aim
at minimizing the project duration when resolving resource over-allocations.
The methods differ in the degree of optimization used for resource allocation.
Methods with a high degree of optimization may adjust the sequence and the
individual start times of all activities without limitation, whereas methods with a
low degree of optimization try to modify the current schedule as little as possible
when resolving resource conflicts. For example, the method “stable order” is not
allowed to change the current sequence of activities. The user may define priority
values of activities manually. The larger this value, the higher is the priority. By
default, a value of 500 is set for each activity. There are no priority rules to choose
from. In the resource allocation dialog, the user can (a) specify a start date for the
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Fig. 62.2 Adept Tracker Professional (Instance j301_1)

resource allocation procedure, (b) allow activity interruptions, and (c) adjustments
of resource requirements of activities.

For our analysis we investigated the method “level resources manually” which
has the highest degree of optimization. We did not specify any priority values for
activities.

62.2.3 CS Project Professional

CS Project Professional (cf. Fig. 62.3) offers eight rules to compute priority values
for activities. A description of each rule can be found in Table 62.3.

The user may specify priority values for individual activities from the interval
[1,64000]. The default priority value for each activity is 50. In the resource-
allocation dialog, the user can define multi-level priority rules using the rules listed
in Table 62.3 in ascending (a) or descending (d) order (cf. Fig. 62.3). Thereby up to
four levels can be used. By default, the combination C3a-C1a-C5a-C2a is selected.
Instead of manually defining multi-level priority rules, the user can apply the
CARLO (“cost and resource levelling optimisation”) algorithm which automatically
tries different combinations and returns, according to the help file, the best schedule
found. However, it is not indicated which criterion is used to select the best schedule.

In our analysis we tested all combinations of rules C1, C2, C4, C5, and C8
(ascending and descending) for the first three levels plus the selection of no rule
for the second and the third level (570 combinations in total). In addition, we tested
the default rule and the CARLO algorithm. We did not test rules C3, C6 and C7
because we did not specify activity-specific priority values or baseline schedules.
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Fig. 62.3 CS Project Professional (Instance j301_1)

Table 62.3 Priority rules of CS Project Professional

Name Id Ascending Descending

Total float C1 Higher priority for activities with
less total float

Higher priority for activities with
more total float

Free float C2 Higher priority for activities with
less free float

Higher priority for activities with
more free float

Priority C3 Higher priority for activities with
a lower priority value

Higher priority for activities with
a higher priority value

Duration C4 Higher priority for activities with
a shorter duration

Higher priority for activities with
a longer duration

Early start C5 Higher priority for activities with
an earlier early start date

Higher priority for activities with
a later early start date

Start-baseline C6 Higher priority for activities with
an earlier start date in the baseline
schedule

Higher priority for activities with
a later start date in the baseline
schedule

Finish-baseline C7 Higher priority for activities with
an earlier finish date in the
baseline schedule

Higher priority for activities with
a later finish date in the baseline
schedule

Late finish C8 Higher priority for activities with
an earlier late finish date

Higher priority for activities with
a later late finish date

62.2.4 Microsoft Project 2010

In Microsoft Project 2010 (cf. Fig. 62.4), the user must choose a period length
(e.g., minute, day, week) for resource allocation. A resource is considered as
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Fig. 62.4 Microsoft Project 2010 (Instance j301_1)

over-allocated only when the total requirement within the period exceeds the
total capacity. Individual time points within the period are not checked for over-
allocations.

The user may specify priority values for individual activities from the interval
[0,1000]; a higher value indicates a higher priority. Activities with a priority value
of 1,000 cannot be moved by the resource-allocation procedure. The default priority
value for each activity is 500. Alternatively, the priority value for an activity can be
set to the activity ID or to a predefined value which is computed based on precedence
relationships and float times.

In our analysis we used the predefined priority values for resource allocation.

62.2.5 Microsoft Project 2013

Microsoft Project 2013 (cf. Fig. 62.5) does not offer any additional options for
resource allocation. However, the computation of the predefined priority values for
activities differs from the 2010 version.

62.2.6 Primavera P6

In Primavera P6 (cf. Fig. 62.6) 13 different priority rules are implemented (cf.
Table 62.4).
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Fig. 62.5 Microsoft Project 2013 (Instance j301_1)

Fig. 62.6 Primavera P6 (Instance j301_1)

Similar to CS Project Professional, each of these rules can be combined in
ascending or descending order in a multi-level hierarchy. In Primavera P6, no limit
on the number of levels is imposed. By default, P2 is selected as a single-level rule.
If the user wants to specify individual priority values for activities, he must choose
between five different values (1,. . . ,5). The default priority value for each activity
is 3.
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Table 62.4 Priority rules of Primavera P6

Name Id Ascending Descending

Activity ID P1 Higher priority for activities
with a lower ID

Higher priority for activities
with a higher ID

Activity leveling
priority

P2 Higher priority for activities
with a low leveling priority

Higher priority for activities
with a high leveling priority

Early finish P3 Higher priority for activities
with an earlier early finish date

Higher priority for activities
with a later early finish date

Early start P4 Higher priority for activities
with an earlier early start date

Higher priority for activities
with a later early start date

Free float P5 Higher priority for activities
with less free float

Higher priority for activities
with more free float

Late finish P6 Higher priority for activities
with an earlier late finish date

Higher priority for activities
with a later late finish date

Late start P7 Higher priority for activities
with an earlier late start date

Higher priority for activities
with a later late start date

Planned duration P8 Higher priority for activities
with a shorter planned duration

Higher priority for activities
with a longer planned duration

Planned finish P9 Higher priority for activities
with an earlier planned finish
date

Higher priority for activities
with a later planned finish date

Planned start P10 Higher priority for activities
with an earlier planned start date

Higher priority for activities
with a later planned start date

Project leveling
priority

P11 Higher priority for activities that
belong to a lower priority project

Higher priority for activities that
belong to a higher priority
project

Remaining
duration

P12 Higher priority for activities
with a shorter remaining
duration

Higher priority for activities
with a longer remaining duration

Total float P13 Higher priority for activities
with less total float

Higher priority for activities
with more total float

In our analysis we tested all combinations of rules P3, P4, P5, P6, P7, P8 and
P13 (ascending and descending) for the first two levels (196 combinations in total).
In addition, we tested the default rule of Primavera P6. We did not test rules P1, P9,
P10, P11 and P12 because we considered only single project instances for which the
planned start and finish dates coincide with the early start and early finish dates, and
for which the remaining durations of activities coincide with the respective planned
durations.
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Fig. 62.7 Sciforma 5.0 (Instance j301_1)

62.2.7 Sciforma 5.0

In Sciforma 5.0 (cf. Fig. 62.7) the user has to choose a period length for resource
allocation, similar to Microsoft Project 2010 or 2013. Resource allocation can be
performed for the complete project or for selected resources and tasks only. The
time horizon within over-allocations are resolved can also be specified explicitly.
Furthermore it is possible to allow a certain exceedance of the resource capacities.
The user may set individual priority values, but cannot choose between different
priority rules.

62.2.8 Turbo Project Professional

Turbo Project Professional (cf. Fig. 62.8) also offers the possibility to limit resource
allocation to certain resources, tasks and a specific time horizon. The activity
priorities can be set to a user-defined value or to a predefined value. The package
does not offer different priority rules.
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Fig. 62.8 Turbo Project Professional (Instance j301_1)

62.3 Experimental Analysis

For our analysis, we installed the eight software packages on various standard PCs
with Windows XP or Windows 8 as operating system; we used Primavera P6 on
a Windows 7 system via a remote access. We downloaded the project durations in
the optimal (J30 set) and in the best known feasible schedules (J60 and J120 set),
respectively, from the Internet page http://129.187.106.231/psplib/ on 2013-08-01.
The respective schedules were obtained by the state-of-the-art algorithms from the
literature. In our analysis, we used these project durations as reference values.

The CPU time required by the various packages for resource allocation of a single
project never exceeded 30 s. With all packages and options, we always obtained a
feasible schedule. For none of the 1,560 projects, any software package computed a
schedule with a shorter project duration than the reference value.

62.3.1 Results for Default Resource-Allocation Options

First, we analyze the schedules that we obtained for the default resource-allocation
options. Tables 62.5 and 62.6, list the mean and the maximum, as well as the
variance, respectively, of the relative makespan deviation from the reference values
for the three test sets. For all 1,560 instances, Acos Plus.1 (total mean deviation of
7.95 %) computed the best project schedules with regard to the mean deviation,
followed by Adept Tracker Professional (8.35 %) and Microsoft Project 2010

http://129.187.106.231/psplib/
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Table 62.5 Default options: mean and maximum of relative makespan deviation [%]

Mean Maximum

n 30 60 120 All 30 60 120 All

Acos Plus.1 5.42 5.37 12.03 7.95 35.56 35.63 38.98 38.98

Adept Tracker Professional 5.58 5.76 12.63 8.35 33.90 37.62 36.13 37.62

Microsoft Project 2010 5.03 6.25 15.77 9.54 32.76 38.00 47.40 47.40

CS Project Professional 9.39 10.11 21.05 14.10 51.56 55.17 49.04 55.17

Sciforma 5 9.45 10.47 21.13 14.26 44.44 56.00 71.74 71.74

Primavera P6 9.45 10.54 24.16 15.44 44.44 56.00 50.89 56.00

Turbo Project Professional 8.94 10.22 25.19 15.58 57.14 54.43 72.90 72.90

Microsoft Project 2013 9.60 11.56 25.73 16.40 58.82 75.00 86.05 86.05

Table 62.6 Default options: variance of relative makespan deviation [%2]

n 30 60 120 All

Acos Plus.1 51.91 67.11 72.05 74.74

Adept Tracker Professional 54.74 73.26 76.91 80.44

Microsoft Project 2010 49.72 81.10 121.04 111.33

Sciforma 5 93.43 119.48 81.40 126.49

Primavera P6 93.43 120.52 99.36 151.70

CS Project Professional 125.38 149.02 130.54 164.96

Turbo Project Professional 123.47 171.43 235.55 239.28

Microsoft Project 2013 144.88 233.80 332.40 299.27

(9.54 %). The worst schedules were obtained by Microsoft Project 2013 (total mean
deviation of 16.40 %). Thus, for a user who does not want to decide about any
resource-allocation options, one of the packages that offer only few or not any
options seems to be a good choice.

62.3.2 Impact of Priority Rules

Next, we analyze how good are the schedules obtained when making use of the
various resource-allocation options. If in doing so a software computed several
schedules with different objective function values for the same instance, we analyze
the schedule with the shortest (best case) and the schedule with the longest (worst
case) project duration.

Table 62.7 lists the mean and the maximum of the relative makespan deviation
from the reference values for the test sets J30, J60, and J120 and the best-case
scenario. In contrast to the situation where the default resource-allocation options
were selected, with regard to the mean deviation Primavera P6 (5.69 % in total) and
Acos Plus.1 (6.57 %) outperform the other packages. When additionally taking into
account the maximum deviation, Acos Plus.1 again seems to be the best choice.
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Table 62.7 Priority rules, best case: mean and maximum of relative makespan deviation [%]

Mean Maximum

n 30 60 120 All 30 60 120 All

Primavera P6 2.38 3.75 9.90 5.69 18.64 24.24 48.84 48.84

Acos Plus.1 3.99 4.42 10.34 6.57 27.78 30.10 34.27 34.27

Adept Tracker Professional 5.58 5.76 12.63 8.35 33.90 37.62 36.13 37.62

CS Project Professional 3.32 5.46 14.70 8.35 20.59 23.89 32.89 32.89

Microsoft Project 2010 5.03 6.25 15.77 9.54 32.76 38.00 47.40 47.40

Sciforma 5 9.45 10.47 21.13 14.26 44.44 56.00 71.74 71.74

Turbo Project Professional 8.94 10.22 25.19 15.58 57.14 54.43 72.90 72.90

Microsoft Project 2013 9.60 11.56 25.73 16.40 58.82 75.00 86.05 86.05

Table 62.8 Priority rules, worst case: mean and maximum of relative makespan deviation [%]

Mean Maximum

n 30 60 120 All 30 60 120 All

Adept Tracker Professional 5.58 5.76 12.63 8.35 33.90 37.62 36.13 37.62

Microsoft Project 2010 5.03 6.25 15.77 9.54 32.76 38.00 47.40 47.40

Acos Plus.1 7.55 7.09 15.49 10.46 35.56 37.08 45.16 45.16

Sciforma 5 9.45 10.47 21.13 14.26 44.44 56.00 71.74 71.74

Turbo Project Professional 8.94 10.22 25.19 15.58 57.14 54.43 72.90 72.90

Microsoft Project 2013 9.60 11.56 25.73 16.40 58.82 75.00 86.05 86.05

CS Project Professional 18.02 18.26 32.40 23.63 74.36 60.00 58.00 74.36

Primavera P6 29.02 32.14 56.41 40.51 87.18 113.89 111.23 113.89

Recall that Table 62.7 refers to the case where for each instance and software,
a priority rule providing the best schedule was selected. The opposite situation is
addressed in Table 62.8; here, we assume that the user always selected the worst
priority-rule. Primavera P6 and CS Project Professional deliver rather poor project
schedules, whereas Acos Plus.1 again performs rather good. We note that in the
worst-case scenario, for a project with 60 activities, Primavera P6 computes a
schedule that takes more than 113 % longer than necessary.

62.3.3 Impact of Complexity Scenarios

In this subsection, we evaluate the resource-allocation capabilities for different
complexity scenarios, characterized by the mean number of resources used, the
scarcity of the resources, and the mean number of precedence relationships. The
analysis is based on the best-case scenario discussed in Sect. 62.3.2 and limited to
the 600 instances with 120 activities; the results for the smaller instances are similar.
Interestingly, all seven software packages behave uniform in this analysis.



1398 P. Baumann and N. Trautmann

Table 62.9 Mean relative
makespan deviation in set
J120 for various resource
factors (best case of all
priority rules) [%]

RF 0.25 0.50 0.75 1.00

Acos Plus.1 5.45 12.09 12.41 11.39

Adept Tracker Professional 6.75 15.45 14.93 13.39

CS Project Professional 8.19 16.92 18.03 15.65

Microsoft Project 2010 7.49 19.18 19.48 16.94

Microsoft Project 2013 6.18 38.80 38.71 19.22

Primavera P6 4.70 11.58 12.28 11.03

Sciforma 5 14.90 23.89 24.13 21.59

Turbo Project Professional 16.06 31.91 30.65 22.15

Table 62.10 Mean relative makespan deviation in set J120 for various resource strengths (best
case of all priority rules) [%]

RS 0.5 0.4 0.3 0.2 0.1

Acos Plus.1 1.99 5.98 10.19 14.55 18.97

Adept Tracker Professional 3.09 8.06 12.36 17.64 22.00

CS Project Professional 6.15 11.89 15.57 18.63 21.26

Microsoft Project 2010 4.19 10.18 14.89 20.95 28.66

Microsoft Project 2013 12.64 19.33 26.15 31.61 38.91

Primavera P6 1.91 5.94 9.79 13.90 17.94

Sciforma 5 13.32 17.93 22.06 25.42 26.90

Turbo Project Professional 9.39 18.15 24.61 32.58 41.24

Table 62.11 Mean relative
makespan deviation in set
J120 for various network
complexities (best case of all
priority rules) [%]

NC 1.5 1.8 2.1

Acos Plus.1 9.61 10.19 11.21

Adept Tracker Professional 11.89 12.33 13.66

CS Project Professional 14.19 14.65 15.25

Microsoft Project 2010 15.55 15.24 16.53

Microsoft Project 2013 25.01 25.65 26.53

Primavera P6 9.23 9.80 10.66

Sciforma 5 20.55 20.73 22.11

Turbo Project Professional 24.55 24.86 26.17

Table 62.9 shows that if all activities use one resource only (RF D 0:25) or all
resources (RF D 1), the mean deviation of makespan is smaller than in the case of
two or more resources used.

Table 62.10 lists the mean makespan deviation relative to the resource strength.
With increasing resource scarcity (decreasing RS value), the deviation increases
noticeably.

Table 62.11 indicates that the mean number of precedence relationships NC does
not affect remarkably the resource-allocation quality of any of the tested packages.
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62.4 Conclusions

In this chapter, we have reported on the results of an experimental analysis in
which we evaluated the resource-allocation capabilities of eight commercial project
management software packages. For the resource- and precedence constrained
project scheduling problem RCPSP, it has turned out that when using any of these
packages for resource allocation, a project manager must be aware of the risk that the
project takes considerably more time than necessary. This gap increases significantly
with the number of project activities and the resource scarcity. The results of this
study indicate that none of the tested software packages is currently competitive
with the best state-of-the-art algorithms from the literature. When working with
the default resource-allocation options only, the project durations computed by the
software packages Acos Plus.1, Adept Tracker Professional and Microsoft Project
2010 are noticeably shorter than for the other packages. Yet shorter project durations
may be obtained by the package Primavera P6; however, this requires in general to
investigate a large number of alternative priority rules.

Additional insights could be gained by an analysis of the schedule-generation
schemes used in the different software packages. Moreover, the distribution of the
makespan deviation for the various priority rules and software packages should be
investigated in more detail; this would allow for a more precise comparison of the
risk of obtaining an unnecessary large project duration with the different software
packages.
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Index

A
Acos Plus.1, 1386
Activity

aggregation, 1254, 1256
building up, 1160
completed, 762
dormant, 765
idle, 762
processed, 762
rejected, 1190, 1191
selected, 1190, 1191

Activity delay policy, 772, 773
Activity list, 1174
Adept Tracker Professional, 1386, 1388
Aggregate production planning, 1250, 1253
Agile project management, 952, 955
Alternative process plans, 1188, 1193
Antichain, 766, 881

maximal, 766
Asymmetric (private) information, 691
Auctions, 696

B
Backward planning, 1172
Baseline policy, 774
Baseline schedule, 812, 870, 1389
Basic multi-project scheduling problem

(BMPSP), 668
Behavioral school, 1128
Benders decomposition, 866, 1240
Best-case earliest start time, 912
Best-case float, 912
Best-case latest start time, 912

Biased random key genetic algorithm, 668,
672–676

Bidirectional planning, 1172
Bill-of-materials (BOM), 1229
BMPSP. See Basic multi-project scheduling

problem (BMPSP)
Branch-and-bound algorithm, 924
Branch-and-cut algorithm, 1282
Buffer, 954, 961
Building up activity, 1160
Business analytics school, 1129
Business competencies, 976

C
Candidate project, 709, 713
Capital expenditure (CAPEX), 1088, 1091
Case selection, 1085
Case study protocol, 1084
Cash flow, 754, 965, 1318
CCPM. See Critical chain project management

(CCPM)
Chance-constrained based heuristic, 816
Chance-constrained programming, 931, 934
Chance programming, dependent, 935
Completed activity, 762
Completion time, proactive, 817, 819
Complexity, 1106
Complexity framework, 1098
Complex projects, 1373
Computational grid, 1206
Computational resources, 1210
Computational task, 1209
Conceptual design, 1008
Conditional value at risk, 1278
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Constant number of projects in process
(CONPIP), 839, 842

Constant time of projects in process (CONTIP),
839

Constraint
chance, 816, 819
joint probabilistic, 816, 817, 822
non-anticipativity, 757, 782, 881, 1272
resource, 1231

Construction project, 829, 1298, 1308
Contingency school, 1124
Cooperative game, 950
Core competencies, 731, 741
CPM. See Critical path method (CPM)
Creativity, 1023
Credibility theory, 930, 933
Critical chain project management (CCPM),

953, 961, 1292, 1293
Critical path method (CPM), 953, 1137
Crossover, parameterized uniform, 674
CS Project Professional, 1386, 1389
Customer perceptions, 999

D
Decentralization, 689
Decentralized resource-constrained

multiproject scheduling problem
(DRCMPSP), 686, 694

Decision-dependent uncertainty, 783
Decision maker, 686
Decision making, 1356
Dependent-chance programming, 935
Design life cycle, 987
Design structure matrix, 1109
Destructive test, 1160
Discrete time-cost-environment tradeoff

problem (DTCETP), 1308, 1313
Discrete time-cost tradeoff problem (DTCTP),

866
robust, 867
stochastic, 783

Distributed problem solving, 690
Distribution

exponential, 762, 841
log-concave, 821
phase-type, 766
Poisson, 820, 823
uniform, 805

Diversification, 741
Dormant activity, 765
DRCMPSP. See Decentralized resource-

constrained multiproject scheduling
problem (DRCMPSP)

Drivers of project complexity, 1096
DTCETP. See Discrete time-cost-environment

tradeoff problem (DTCETP)
Dynamic PERT network, 839, 842
Dynamic programming

of memory-efficient, 766

E
Earliest start time

best-case, 912
worst-case, 912

Earned value management (EVM), 949
Effective work time, 737
Efficiency function, 736
Endogenous uncertainty, 783
Engineering, procurement, construction and

commissioning (EPCC), 1089
Engineering, procurement, construction and

management (EPCM), 1087, 1092
Environmental impact, 1310, 1316
Environmental scanning, 1005
ES-policy, 881
Expected value of fuzzy variable, 934
Experimental vehicle, 1158
Exploratory case studies, 1083
Exponential distribution, 762, 841
Exponentially distributed durations, 842, 854
Extreme scenario, 913

F
Factual start time, 768
Feedback relationship, 1374
Feeding buffers, 1302
Feeding precedence relation, 1253
Float

best-case, 912
worst-case, 912

Floating factor policy, 771
Forbidden set, 881

minimal, 881
Fuzzy-based adaptive hybrid genetic algorithm,

1320
Fuzzy number, 1312, 1313
Fuzzy simulation, 936, 937
Fuzzy theory, 1309, 1312
Fuzzy time-cost tradeoff problem, 931, 933

G
Generalized precedence relation, 1190, 1191
Genetic algorithm, 936, 937, 1173

biased random key, 668, 672
fuzzy-based adaptive hybrid, 1320



Index 1403

Global (shared) resource, 686
Goal attainment formulation, 850, 857
Goal attainment method, 849
Goal programming, 1292, 1294

lexicographic, 1295
Grid resource management, 1206

H
Here-and-now decision, 782
Hierarchical planning, 1250
Human resource management, 1027
Hydroelectric project, 1310, 1325

I
Integration definition zero (IDEF0), 994
Idle activity, 762
Incentive, 951, 952
Indirect representation, 675
Information overload, 1357
Information quality, 1342, 1356
Information system (IS)

impacts, 1342
success model, 1342
use, 1341, 1344

Innovation, 1023
Innovator’s dilemma, 731
Integrated process planning and scheduling

(IPPS), 1201
Intellectual capital, 1027
Intelligence, 1023
Interproject processes, 976
Interval uncertainty, 912

J
Job shop with alternatives, 1202

K
Knowledge depreciation, 730, 732
Knowledge management, 1025

L
Latest start time

best-case, 912
worst-case, 912

Learning, 946, 952
curve, 731
school, 1129

Lexicographic goal programming, 1295
Life cycle analysis, 1017
Local resource, 686
Log-concave distribution, 821

M
Make-or-buy, 1228
Make-to-order (MTO), 1227

production, 1253
Management of a group of multiple projects

(MGMP), 973
Management of groups of several concurrent

projects, 973
Management science school, 1127
Market research, 999
Markov decision process, 763, 764

continuous-time, 763
discrete-time, 764

Markov process, 842
Markov property, 765
Material requirement planning (MRP), 1250
Maximal antichain, 766
Mean-value decision, 782
Membership function, 934
Memory-efficient dynamic programming, 766
Memoryless property, 762
Metascheduler, 1207
Microsoft Project 2010, 1386, 1390
Microsoft Project 2013, 1386, 1391
MILP. See Mixed-integer linear programming

formulation (MILP)
Minimal forbidden set, 881
Minimax regret, 877

longest path, 916
MINLP. See Mixed-integer nonlinear

programming (MINLP)
Mixed-integer linear programming formulation

(MILP), 1191, 1199
Mixed-integer nonlinear programming

(MINLP), 1237
Monte Carlo simulation, 1136
Multi-agent system, 690
Multi-criteria decision making, 711, 721
Multi-criteria project scheduling, 1308
Multi-mode project scheduling, 866, 1308
Multi-objective, 712, 713

decision making, 1292
model, 723, 845
optimization, 711

Multiple project management, 972
Multi-project environment, 1356
Multi-project scheduling problem, 838, 839

basic (BMPSP), 668
Multi-start procedure, 1173
Multitasking, 977

N
Necessary criticality, 912
Negotiations, 698
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Nested temporal network with alternatives,
1191

Net present value (NPV), 754, 965
deterministic, 755
stochastic, 756, 768

Network
project risk, 1109
queueing, 839
resource flow, 882

Network resource, 1213
New product and service development, 947,

956
New product development, 983
Nominal model, 758
Non-anticipativity constraint, 757, 782, 881,

1272
Nonlinear binary model, 713, 724
Non-resource node, 1209

O
Optimal control, 848
Organisational culture, 975, 1005, 1035

P
Paired programming, 963
Parameterized active schedule, 676
Parameterized uniform crossover, 674
Partial Least Squares, 1369
Partially ordered destructive relation, 1161
Particle swarm optimization, 850
Path-induced extreme scenarios, 914
Personality, 1024
PERT. See Program evaluation and review

technique (PERT)
PERT network, dynamic, 839, 842
Phase-type distribution, 766
Phenotype, 675
Pipeline inventory cost, 1237
Planning of R&D activities, 1269
Planning poker, 959
PMIS. See Project management information

system (PMIS)
PMO. See Project management office (PMO)
Poisson distribution, 820, 823
Poisson process, 842, 854
Policy

activity delay, 772, 773
baseline, 774
ES, 881
floating factor, 771
rigid start time, 768
scheduling, 881

start time, 768
target processing time, 769

Possible criticality, 912
Precedence relation

feeding, 1253
generalized, 1190, 1191

Primavera P6, 1386, 1391
Proactive completion time, 817, 819
Processed activity, 762
Process

continuous-time Markov decision, 763
discrete-time Markov decision, 764
Markov, 842
Poisson, 842, 854
school, 1126

Production scheduling, 1260
Program evaluation and review technique

(PERT), 948, 960, 991
Project buffer, 1302
Project complexity, 1080, 1081, 1098
Project decision maker, 688
Project duration, 669, 1297

prediction, 1303
Project management, 867, 871, 1357

agile, 952, 955
Project management information system

(PMIS), 1341, 1356, 1385
Project management office (PMO), 956, 977
Project management software. See Project

management information system
(PMIS)

Project overload, 1357
Project portfolio management, 972, 975
Project portfolio selection, 717, 721
Project risk management, 1105
Project risk network, 1109
Project scheduling

multi-criteria, 1308
multi-mode, 866, 1308
stochastic, 756, 1137

Project termination, 1019
Prototype, 1158

Q
Quality function deployment (QFD), 993, 1007
Questionnaire, 1366
Queueing network, 839

R
Ranking index, 1137
RCPSP. See Resource-constrained project

scheduling problem (RCPSP)
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Real options analysis, 950, 951
Rejected activity, 1190, 1191
Requirements analysis, 1007, 1014
Resource

allocation, 974, 1206, 1357, 1385
constraint, 1231
decision maker, 688
flow network, 882
global, 686
levelling, 1297, 1298
network, 1213
nodes, 1209
planning, 1276

Resource-based view, 748
Resource-constrained project scheduling

problem (RCPSP), 1189, 1386
with feeding precedence relations, 1258
with generalized precedence relations,

sequence dependent setup times,
and alternative activities, 1188

robust, 883, 884
stochastic, 812, 813

Resource constraint, 1231
Return on investment (ROI), 991
Rigid start time policy, 768
Risk analysis, 1135
Risk assessment, 1136
Risk criticality, 1113
Risk evaluation, 1136
Risk management, 991, 1135, 1277

adoption/non-adoption, 1121
barriers/enablers, 1122
as a capability, 1129
as data analytics, 1129
as factor analysis, 1124
as modeling, 1127
and project performance, 1120
as a rational process, 1126
as a social process, 1128

Risk measure, 757
Risk prioritization, 1114, 1136
Risk propagation model, 1112
Risk response, 1135
Risk structure matrix, 1110
Robust optimization, 866, 877, 948, 949
Robustness measures, 866, 869
Robust resource-constrained project scheduling

problem
minimax absolute-regret, 883
minimax relative-regret, 884

ROI. See Return on investment (ROI)

S
Scenario, 879

relaxation, 892
Schedule, baseline, 812, 870, 1389
Schedule-dependent setup time, 1214
Schedule-generation scheme, 672, 676

serial, 1166
Scheduling policy, 881
Sciforma 5.0, 1386, 1394
SDTCTP. See Stochastic discrete

time-cost tradeoff problem
(SDTCTP)

Secret project, 964
Selected activity, 1190, 1191
Serial schedule-generation scheme,

1166
Setup time, schedule-dependent, 1214
Simulation, 870
Skill

development, 730, 734
level evolution, 738
targets, 745

Sourcing, 1230
SRCPSP. See Stochastic resource-constrained

project scheduling problem
(SRCPSP)

Start time
factual, 768

Start time policy, 768
activity delay, 772, 773
baseline, 774
floating factor, 771
rigid, 768
target processing time, 769

Stochastic critical path method, 1137
Stochastic discrete time-cost tradeoff problem

(SDTCTP), 783
Stochastic programming, 781, 812, 816, 834,

1268, 1275
Stochastic project scheduling, 756, 1137
Stochastic resource-constrained project

scheduling problem (SRCPSP), 812,
813

Strategic risk, 1003
Sunk cost bias, 1020
Supplier selection, 1228
Supply chain configuration, 1229, 1241
Sustainable project, 952
Synergy, 710, 723
System quality, 1342, 1343, 1348
Systems engineering, 992
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T
Target processing time policy, 769
TCTP. See Time-cost tradeoff problem (TCTP)
Technical organizational external (TOE)

framework, 1098
Technology acceptance model, 1342
Temporal analysis, 911

under interval uncertainty, 912
Test, 1158
Time-cost tradeoff problem (TCTP), 866, 929

fuzzy, 931, 933
stochastic, 930

Total pipeline stock cost, 1238
Training, 1028
Transmission task, 1209
Transportation network, 1216
Tri-task, 1219
Turbo Project Professional, 1386, 1394

U
Uncertain cost, 867
Uncertain durations, 813
Uncertainty, 812, 875

endogenous observation, 1268
interdependence, 1277
interval, 912

Uniform distribution, 805

W
Wait-and-see decision, 782
Work breakdown structure (WBS), 958
Workflow application, 1206
Worst-case earliest start time, 912
Worst-case float, 912
Worst-case latest start time, 912
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