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Foreword

Many terms have been used to describe our society. One of them, which appeared
in the 1980s and has become popular since the 1990s, is the term risk society. By
risk society we usually understand a society which is preoccupied with the future
and, thus, has to deal with the risks associated with it.!

There are many sources of risk for our society and mankind: environmental
change or disaster risks, risks from large-scale accidents, risks from pandemic
disease and biological war, risks from large meteorites, risks from civil unrest, even
risks from extraterrestrial or artificial intelligence. Although some sociologists are
pessimistic about the ability of our society to address such risks, Giddens is more
optimistic, suggesting that there “can be no question of merely taking a negative
attitude towards risk. Risk needs to be disciplined, but active risk taking is a core
element of a dynamic economy and an innovative society.”

For some time now, the community of academic and applied risk managers has
been showing a very strong interest in stochastic models. This stems from the fact
that the availability of stochastic models of real-world problems allows the intel-
ligent analysis of risk and planning for its management. As the environments are
very complex, in which risk managers are required to work, the corresponding
stochastic models are equally complex.

In the book at hand, the authors investigate such stochastic models making use
of the results of the theory of mixed probability distributions and characteristic
functions. The book is addressed to all graduate students and researchers as well as
to practitioners of risk management. As such, it is self-contained, requiring only an
introductory knowledge of probability and stochastic models.

! Giddens, A. (1999). Risk and responsibility. Modern Law Review 62(1), 1-10.

2 Giddens, A. (1999). Runaway world: How globalization is reshaping our lives. Profile, London
p- 29.



vi Foreword

I believe that the authors have done a good job at addressing the tackled issues.
I consider the book a good addition to the areas of stochastic modelling and risk
management and I am confident that it will help graduate students, researchers and
practitioners to understand and expand the use of stochastic models in real-world
problems.

George A. Tsihrintzis
University of Piraeus, Greece



Preface

The severe unstable performance and evolution of large organizations of the risk
society is generally recognized by management experts and the corresponding
academic community. This recognition significantly supports the amplification
of the contribution of risk management in the performance and evolution of modern
complex organizations. As a consequence, the discipline of risk management is in
the ascendancy. Moreover, risk management has a long and rich history matching
the breadth that characterizes this discipline. During the last 20 years, the interest
of the academic community in the discipline of risk management has been con-
sidered very important. The presence of that interest follows from the plethora of
conferences and research papers related to risk management matters, implemented
by experts on investigating and applying concepts, operations and principles of that
discipline. The recognition of risk management as a powerful tool for solving
problems arising in a very wide variety of natural and human activities is general.
Within the risk managers and the academic risk management community, there has
been a very strong interest in stochastic models. Once stochastic models are
available for the description of real-world problems in the area of risk management,
it is possible to intelligently evaluate the issues and alternatives and chart courses of
action for a proactive risk management program, which is particularly important for
implementing the strategic goals of an organization. Such models are employed in
many areas of the risk management process because risk managers work in an
extremely complicated and uncertain environment. From the fact that stochastic
models give their users a chance to isolate and study the various thought processes
involved, risk managers can gain insight into how to improve their decision-making
process in developing determinations about the risks faced by an organization. Risk
identification, risk measurement and risk treatment constitute the fundamental risk
management operations of an organization. The effective application of planning,
organizing, staffing, directing and controlling in risk management operations
implies the effective performance and evolution of modern complex organizations.
The stochasticity of the risk management process is an inevitable result of the
presence of random factors in the fundamental quantitative components of risk and
the fundamental risk management operations of an organization. The handling
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viii Preface

of these random factors requires the risk managers of modern large organizations to
have strong capabilities in formulating and implementing complex stochastic
models for describing fundamental concepts and operations of risk management.
The consideration of stochasticity of the risk management process is an extremely
important structural element for developing proactive risk management pro-
grammes. The recognition of probability theory as a powerful analytical tool of risk
management constitutes a very important reason for undertaking research activities
in the area of probability distributions arising in stochastic modelling of concepts
and operations of risk management. The investigation of such stochastic models
makes use of the results of the theory of mixed probability distributions. In par-
ticular, the very strong results of the theory of characteristic functions corre-
sponding to mixed probability distributions are extremely useful for investigating
properties and applicability in risk management operations of stochastic models of
this kind.

The authors would like to thank Profs.-Drs. Maria Virvou and George A.
Tsihrintzis of the University of Piraeus, Piraeus, Greece, for their encouragement,
fruitful discussions and comments over the last few years, which have helped to
shape this monograph. They would also like to thank Prof.-Dr. Lakhmi C. Jain
of the University of Canberra, Canberra, Australia, and the University of South
Australia, Adelaide, Australia, for agreeing to include this monograph in Springer’s
Intelligent Systems Reference Library series that he edits. Finally, they would like
to thank Springer and its personnel for their wonderful work in producing this
volume.

Constantinos Artikis
Panagiotis Artikis
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Chapter 1
Fundamental Concepts of Risk
Management

Abstract Risk management may be defined as the systematic process of managing
the risks threatening an organization in order to accomplish its goals in a way
consistent with common interest, human protection, environmental factors and the
law. It consists of the planning, organizing, directing, the safety operations or
equivalently the risk management operations with the aim of developing an efficient
plan that decreases the negative results of risks threatening that organization. The
first chapter consists of three parts. The first part concentrates on the definition,
historical consideration, components, consequences, and cost of risk. Moreover, the
second part concentrates on the operations, goals, structural disciplines, essence,
ascendancy, systemic approach, cindynic consideration, philosophy, and the fun-
damental factors of the evolution of risk management. The third part presents the
theoretical and practical possibilities of stochastic modeling and stochastic models
for shaping risk management as a particular discipline of general management.

1.1 Introduction

Recent social theory points towards the evolution of post-industrial society, termed
risk society. This phenomenon is impacting on the operating environment of many
organizations forcing on them dynamic and markedly unpredictable change. Such
instability has been recognized by many managers and risk management is
becoming an increasingly common term in business life. The unstable evolution of
the organizations of risk society is recognized by the management experts and the
corresponding academic community. Such recognition substantially supports the
amplification of the role of risk management in the evolution of modern large
organizations. As a result, the discipline of risk management is in the ascendancy.
Moreover, risk management has a long and rich history matching the breath that
characterizes this discipline. During the last two decades, the interest of academic
community for the discipline of risk management is generally recognized as par-
ticularly significant. The existence of that interest follows from the plethora of
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2 1 Fundamental Concepts of Risk Management

conferences and scientific publications, on risk management problems, imple-
mented by experts on the investigation and application of concepts, operations, and
principles of this discipline. The admission that risk management constitutes a very
strong tool for solving problems, arising in a wide variety of natural and human
activities, is universal. In particular, risk management activities are as significant for
the contemporary service economy as the textile industry was at the beginning of
the industrial revolution. Risk management cannot be implemented by the risk
manager only or some other manager of an organization. Such an implementation
requires the very good collaboration of all the personnel of an organization. Risks
arising from the production activities of an organization require the collaboration of
the production managers for the guidance of the involved personnel in the devel-
opment of safe goods and services with safe procedures. Similarly, risks arising
from the promotion of goods and services require the collaboration of marketing
managers for the guidance of the involved personnel in order to avoid actions which
can be considered as conditions or causes of various risks. Thus, the function of the
executive charged with responsibility for risk management is not to personally
reduce the adverse effects of all risks but, instead, to coordinate the efforts of all
managers in reducing risks for which each of them has some responsibility and,
therefore, control. That means the existence of a substantial difference between the
role of the risk manager and the roles of the other managers of an organization. The
basic characteristic of the role of risk manager is the coordination of all managers of
an organization for the effective treatment of risks threatening the existence,
function, and evolution of that organization. These characteristics are substantially
amplified by treatment of risks threatening the existence of an organization.

The relationships between the risk manager and other managers at all levels of
the organization are reflected in the communications flowing to the risk manager
from other departments. Three principal types of communications should reach the
risk manager. First, the risk manager should receive regular reports on changes in
the risks threatening the organization, or on situations from which changes can be
reduced. An important staff function of the risk manager might well be to design a
procedure by which all relevant reports reach the risk management department.
Second, the risk manager should receive guidance from senior management on risk
management policy, preferably as a written statement covering at least the broad
goals of the risk management process, the relationship of this process to the other
processes within the organization, and the standards for acceptable performance of
the risk management department. It is quite obvious that the guidance of senior
management to the risk manager very clearly defines the risk management policy of
an organization. In practice, the risk manager often drafts or participates actively in
drafting this statement of risk management policy to be submitted to and approved
and issued by senior management. Third, perhaps as part of the risk management
policy of the organization, the risk manager should receive a grant of staff and
perhaps limited line authority. The third type of information having as receiver the
risk manager concerns the delegation of authority to that manager. The delegation
of this authority is realized for supporting the development and implementation of
the risk management policy of the organization. The three types of information that
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the risk manager receives from the communications with the departments of the
organization make absolutely explicit that the risk manager can contribute to the
evolution of an organization with the properties of receiver, user, creator, admin-
istrator, transmitter, and organizer of information. These properties are extremely
important for developing and implementing of a very effective risk management
policy.

Risk management is mainly a logical process of making decisions. The practical
situations incorporating risk management problems are innumerable. The consid-
eration of the risk management process as a logical process of making decisions
makes the risk management process a completely exceptional process. The possi-
bility of applying a logical process of making decisions in every situation incor-
porating risks has as a direct consequence the separation of the role of the risk
manager from the role of any other manager of an organization. It is generally
recognized that the contribution of risk manager in implementing the goals of an
organization is particularly important. This is mainly due to the exceptional
importance fact that the risk manager deeply knows the function of every depart-
ment of an organization and thus the risk manager is able to have a holistic and
systemic perception of that organization. This perception increases the credibility of
the role of the risk manager in defining the strategic goals and the risk management
policy of an organization. This credibility becomes of extremely importance if the
risk manager has the ability and the experience of formulating mathematical models
for describing and solving risk management problems. The risk management pro-
cess or equivalently the logical process of decision making in every situation
incorporating risks has similarities with the process, which is known as scientific
method. The application of this method from a scientist means the definition of a
real problem, consideration of alternative assumptions which can terminate in the
solution of this problem, selection of the most probable assumption, verification of
this assumption, and comparison of the results derived from the solution of that
problem with the real results, which could arise, if the selection of the assumption
was correct. If the results of the solution of the problem are identical with the real
results then the selection of the assumption is correct and thus the problem has been
solved. If there is disagreement between the two categories of results then a new
assumption must be verified. The application of a logical process for describing and
solving problems in the area of risk management has the three following significant
advantages. First, since the operations of the risk management process have many
similarities with the techniques used by the academic community and the man-
agement experts for solving problems, then a risk management expert has the
possibility to apply these techniques for solving problems in the area of risk
management. Second, the application of the logical process in approaching new
problems gives to risk management experts the possibility to direct themselves to
the best use of their available time and the effective use of the resources of an
organization. The third advantage of a logical process for making decisions is the
very significant support that such a process provides in explaining and justifying the
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risk management decisions to the senior and other managers. A logical process of
making risk management decisions provides an explicit frame of presenting
problems and solutions of risk management problems with such a way that every
member of the organization understands, respects, and supports. The consideration
of risk management process as a logical decision making process in situations
incorporating risks makes quite clear the necessity of formulating and applying
mathematical models in various risk management operations. The presence of
random factors in these operations supports the formulation of stochastic models as
strong analytical tools in the discipline of risk management. The present work
mainly concentrates on the formulation, investigation, and implementation of sto-
chastic models for risk measurement and risk treatment operations. In particular, the
present work is devoted to the establishment of conditions for explicitly evaluating
the probability distributions of such models.

Within the international scientific risk management community, there has been a
very strong interest in stochastic models. Such models are employed in many areas
of risk management because risk managers work in an extremely complicated and
uncertain environment. From the fact that stochastic models give their users a
chance to isolate and study the various thought processes involved, risk managers
can gain insight into to improve their decision making process in making deter-
minations about the risks faced by an organization. Quantifiable information about
the risks to which an organization may be exposed is a necessity if risk managers
are to make prudent decisions for proactive and reactive treatment of these risks.
Stochastic models are extremely important in analyzing such information. The
mystique which has grown up around the application of stochastic models in risk
management problems has obscured for many risk management experts the extent
to which they can really apply such models in their daily work. The more
sophisticated stochastic models are very efficient elaborations of what most risk
management experts instinctively do in reaching and defending their more practical
management decisions. Management skill is necessary for efficient treatment of
risks faced by an organization. However, without a thorough analysis using the best
stochastic models currently available, risk management becomes virtually impos-
sible. Risk managers believe that the processes of making and implementing
effective decisions for a wide variety of risk management problems must be based
on stochastic models arising as results of hard and long standing activities. It is
generally accepted that the management abilities of risk experts are necessary for
the successful implementation of risk management principles. However, it is also
generally accepted that the implementation of risk management principles cannot be
successful without the formulation and implementation of effective stochastic
models. A formal treatment of the risk management process relies on the more
general problem of decision making under conditions of uncertainty, which has
traditionally approached with the theory of expected utility. The formal theory of
expected utility is, however, too restricted to handle practical applications, but it can
substantially contribute to give very significant insights by directing attention to the
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validity of underlying assumptions. Decision making under conditions of uncer-
tainty heavily relies on stochastic models for predicting outcomes of given actions
and stochastic models are often used to describe the problem of decision making
under conditions of uncertainty. The decision making process, under conditions of
uncertainty, uses stochastic models in order to make predictions about the outcomes
of given actions of the risk experts of an organization. Risk managers and experts in
formulating and implementing stochastic models are frequently called upon to
predict the occurrence of uncertain events. The predictions of such events usually
form the basis of extremely important risk management decisions. This means that
an understanding of uncertainty is critical to the performance of the risk manage-
ment process. Moreover, it is important that risk managers accurately reflect and
communicate uncertainties. For many years the risk management community has
recognized probability theory as one of the most important representations of
uncertainty. This implies that stochastic modeling and stochastic models have their
proper place in the area of risk management practices. With stochastic models, the
risk manager can obtain valuable information concerning selection and imple-
mentation of risk management operations.

Once such models are available, it is possible to intelligently evaluate the issues
and alternatives and chart courses of action for a proactive risk management pro-
gram. Many stochastic models have been readily available to corporate risk man-
agers for making risk management decisions. These models are being used to
improve not only the decisions are made, but also in the presentations to top
management of critical issues. As risk managers begin to use stochastic models
more skillfully they will become a more significant part of the long range planning
team.

1.2 Historical Consideration of Risk

The diachronic approach of the concept of risk from man includes the following
periods.

Period of Blood
Period of Tears
Period of Neurons

The study of this approach constitutes a significant factor for developing,
evaluating, selecting, and implementing new methods in the disciplines of risk
management, crisis management, and cindynics.
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1.3 Period of Blood

During this period, the therapy for natural and man made risks had to be found in
animal or human sacrifices. The act of pouring blood of animals or pure young girls
or boys was considered as more efficient than what we call today meetings of risk
managers with brokers and insurers. More precisely, this act was thought to reduce
the probability of return of such risks.

1.4 Period of Tears

With the spread of Christianity, human sacrifices will give way to other ritual
practices. This will start the period of tears where spilling tears instead of pouring
blood with the invocation of divine providence. Prayers and processions will be
regarded as natural treatments against risks. These ritual practices for risk will
perpetuate the idea that God and not man pulling the strings of risk.

1.5 Period of Neurons

This period will start from a dispute between Voltaire and Rousseau, on the
occasion of the earthquake of Lisbon in 1755. Since the time of Rousseau begins
the period of neurons, during of which the very nature of the issue of risk will
change. The risk will emerge from the mythological space to enter the logical space.
The period of neurons incorporates the following phases.

Philosophical Phase
Technological Phase

Scientific Phase

1.6 Philosophical Phase

Having shed blood and tears, man will undertake responsibility and put his mind in
front of risk. Indeed, while Voltaire continues to accuse nature and divine province,
Rousseau observes that the decisions of building cities in seismic zones implicate
intelligence and responsibility of man. The observation of Rousseau is the begin-
ning of philosophical discussion concerning risk. That discussion continued until
the start of the Second World War.
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1.7 Technological Phase

This phase begins after the start of the Second World War and continued until the
last decade of the previous century. Characteristics of this phase are the determi-
nation of quantitative rules on the frequencies of aviation accidents, studies of
reliability of electronic equipment, and the emergence of risk management.

1.8 Scientific Phase

This phase begins in the last decade of the previous century and continuous today.
During this phase, the risk is the subject of science. The study of risks will result in
the gradual accumulation of facts and concepts. In the last decade of the previous
century cindynics, the science of risk, coming from a fetal situation will come to
light and will grow very quickly.

Meanwhile, man will get a more reactive position by rejecting the myth of
destiny accidents and catastrophes. He will admit that he is able to greatly reduce
the effects of earthquakes, deaths in cities, deaths of transport, and ecological
destruction. Quite simply, man will feel responsible by rejecting the misleading
utopia of zero risk and engage in strategies of the calculated risk. From these
calculations, risk treatment techniques will witness a development without
precedent.

From the moral of destiny man moved to the moral of responsibility. In this
wavering, man is ready to recognize into the accidents the confirmation of certain
deficits of his knowledge, precautions or his actions. We are in a convergence
between a moral leap of man and an opening of scientific approaches to risk.

A simultaneous acceleration of research and publications on cindynics and ethics
characterizes the decade 1980-1990. This synchronization is based on a number of
major accidents of this decade.

1.9 Economic Loss and Economic Benefit

In this work, the concept of loss is generally identical with the concept of economic
loss, or equivalently the loss which can be interpreted in economic terms. Many
losses cannot be easily interpreted in economic terms and a very significant problem
of risk management is the invention of procedures for the economic interpretation
of various losses. Such procedures frequently incorporate subjective factors. Cor-
respondingly, in this work, the concept of benefit is generally identical with the
concept of economic benefit.
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1.10 Pure Risk

In risk management the concept of pure risk is related to the concept of random
economic loss, or equivalently the economic loss whose, the size and the time of
occurrence cannot be predicted with certainty. The following sections make use of
the term “risk” instead of the term “pure risk”.

The concept of risk has particularly important applications in many theoretical
and practical disciplines. This means that a general definition of risk is not possible.
Modern risk management considers the concept of risk as an initial one. The
relevant bibliography recognizes that the concept of risk is very complicated and
the understanding of this concept requires the use of a set of other qualitative and
quantitative concepts. These concepts are called components of risk. The set of the
components of risk is not precisely defined. However, it is generally accepted that
the fundamental elements of the set of the components of risk are the following
concepts.

Risk Cause
Risk Severity
Risk Frequency
Risk Duration

Hazard

Many practical investigations have reached to the conclusion that these five
concepts are particularly useful in treating of a wide and significant variety of
problems incorporating the concept of risk.

1.11 Risk Cause

A random event which can give rise to a loss of random size in random time is
defined as risk cause. The appearance of a risk cause is called a risk occurrence.
Examples of risk causes are the following.

Fire
Storm

Explosion
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Theft
Vandalism
Negligence
Strike
War

Earthquake

1.12 Risk Severity

The size of the economic loss arising from the occurrence of a risk is defined as the
severity of that risk. The suitable stochastic model for describing and investigating
the severity of a risk is a positive random variable.

1.13 Risk Frequency

The number of occurrences of a risk in a given time interval is defined as the
frequency of that risk. The suitable stochastic model for describing and investi-
gating the frequency of a risk is a random variable taking values in the set of
nonnegative integers.

1.14 Risk Duration

The length of the time interval, into which the cause of a risk is active, is called
duration of that risk. The suitable stochastic model for describing and investigating
the duration of a risk is a positive random variable.

1.15 Hazard

Any condition contributing to the appearance of the cause of a risk is defined as
hazard. There are three types of hazards.
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Physical
Moral

Morale

1.16 Physical Hazard

Physical hazards arise from the activities of nature. Examples of physical hazards
for the risk cause “collision of car” are the following.

Icy Road
Slippery Road
Insecure Car

Restricted Visibility

1.17 Moral Hazard

Moral hazards arise from dishonesty or character defects in an individual. Examples
of moral hazards for the risk cause “collision of car” are the following.

Unstable Personality of Driver
Inadequate Training of Driver

Arrogant Behavior of Driver

1.18 Morale Hazard

Morale hazards arise from carelessness or indifference to a risk. Morale hazard
should not be confused with moral hazard. Morale hazard refers to individuals who
are simply careless about protecting their property. Moral hazard is more serious
since it involves unethical or immoral behavior. Examples of morale hazards for the
risk cause “collision of car” are following.
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Young Age of Driver

Damaging Tendency of a Driver

1.19 Fundamental Stochastic Components of Risk

The set of the fundamental stochastic components of risk includes the following
elements.

Risk Severity
Risk Frequency

Risk Duration

The role of the fundamental stochastic components of risk in formulating sto-
chastic models of the risk management discipline is generally recognized as
extremely important.

1.20 Consequences of Risk

The consequences from the occurrence of a risk are the following.
Economic
Social
Political
Psychological
Natural
Legal

The present work concentrates on the economic consequences of risk. Since the
separation of the economic consequences from the other consequences of risk is not
possible then it is absolutely necessary the consideration of the economic conse-
quences of risk to incorporate some attention to the other consequences.
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1.21 Reaction to Risk

The reaction of a person to risk is the way in which the person behaves in a situation
incorporating risk. One factor affecting this reaction is the uncertainty of the person.
Other things being equal, one would expect the person to react more strongly, either
positively or negatively, the greater the uncertainty of this person. Other factors that
may be equal or greater significance are the size of the potential benefits or losses
involved and the impact of these benefits or losses upon the economic status of the
person. Even if all these factors are the same, people react differently because their
personalities, as determined by their heredity and their environment, vary. Indeed,
the same person may have a different affinity for or aversion to risk at different ages
and in different situations. Individuals making decisions under conditions of risk
should be aware of the impact of their own risk attitudes upon their decisions. Upon
closer inspection they may decide to change their attitudes. If they are making
decisions on behalf of a family or an organization, they should examine the extent to
which they should accept the attitude of others. Persons delegating these decisions to
someone else also study the attitude of this person toward risk and how it affects the
decisions that this person makes. In many cases it may be suitable to specify the
attitude that should be assumed in making decisions. Many researchers have
investigated the demographic characteristics, personality traits, and environmental
conditions that may determine the reaction of a person to risk. These investigations
have substantially contributed to the understanding of how persons behave in situ-
ations incorporating risk. They suggest that such behavior is extremely complex,
depending upon a host of factors and varying over time. They also indicate that a
person may react differently to financial risks than to physical and social risks.
Investigations that have attempted to describe the reaction of a person to risk in terms
of one demographic or personality trait have generally yielded contradictory results.
For example, some studies suggest that women tend to be more averse to risk than
men. Other studies suggest no difference in risk aversion between men and women.
Similar contradictory evidence exists concerning the effects of intelligence, and of
education. One extremely interesting and important finding is that individuals tend to
be more willing to accept risk after they participate in a group facing the same risk
than they would have previously as individuals. Consequently group decisions tend
to be riskier than the average decision made by the members of the group prior to
their group experience. The most popular explanation of this risky shift is that
individuals view themselves as being at least as willing as their peers to undertake
risks. Recent experiments, however, suggest that groups do not always respond in
this way. Indeed, under certain conditions group decisions may be more cautious
than the average individual decisions.
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1.22 Flight-Fight-Freezing Syndrome

The retreat in front of risks beyond our forces is a logical act with psycho-emotional
consequences. The trend of flight from adverse situations or unwanted persons was
and continues to be a primordial, life-saving knowledge and human ability of the
seasons that man was still naked and weak having to face animals more bigger than
him in the daily struggle for survival on our planet. The classic syndrome was and
remains almost unchanged and identified with the dilemma of “flight or fight”. The
fundamental psychological question which differentiates the healthy from the
pathological trend of flight is associated with both the severity and the frequency of
risk with which a particular person chooses to flee from adverse situations or
unwanted persons.

The modern conditions of life, without imitating the brutal challenge of the
jungle, contain significant elements of risk, creating numerous symbolic conflicts
between individuals and groups, looting continually the personality and mental
balance of man. Of course modern man, as a derivative of the industrial society, has
the necessary defense mechanisms of function and survival under the requirements
of the psycho-socio-economic structures within which he lives and works.

The trend of flight, innate part of the classic syndrome of “flight-fight” which is
present in every person, is defined as problematic when it becomes the only way to
tackle the demands of everyday life of a person. This finding is also valid for the
trend of fight.

The modern literature of risk management proposes the trend of freezing, as the
third innate part, in the classic syndrome of “flight-fight”. The trend of freezing
means the acceptance of a waiting period before the manifestation of the trend of
flight or the trend of fight. Therefore, the syndrome of “flight-fight-freezing” is the
modern expression of the classic syndrome of “flight-fight”.

1.23 Structural Elements of Firm

The structure of a firm includes the following elements.
Human Resources
Emotions, desires, wishes, initiatives, dynamic and creative thinking, values,
habits, and the motives of human resources of a firm constitute the regulating
factors of its behavior.

Production Facilities

This structural element arises as composition of buildings, machinery, and
production processes of the firm.
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Raw Materials

The purpose of raw materials is the supplying of the production facilities of the
firm.

Energy
This element constitutes the operative force of the firm.
Money

This element constitutes the medium of exchange for the supplying of produc-
tion facilities, cost of labor, and purchase of raw materials and energy.

Information

This element refers to the factors associated with the internal and external world
of a firm.

A detailed consideration of the elements shaping the structure of a firm con-
stitutes a very significant factor of the successful application of risk management
principles.

1.24 Objectives of Firm

The objectives which establish and justify the existence of a firm are the following.
Production of Goods or Services to Meet Needs

Meeting the Purposes of the Members of the Firm

The production of goods or services from the firm is the means to meet the
aspirations of all members of the firm, or equivalently of the individuals directly
associated with the firm and wishing the meeting of their needs.

The existence of the firm constitutes the main motive of the behavior of the firm.
The survival of the firm is not only ensured by the production of goods or services,
but by the ability of the firm to meet the needs of its members.

The contribution of risk management in the implementation of the objectives of
a firm is extremely important.
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1.25 Classifying Operations of Firm

A classification of the operations of a firm with particular practical importance is the
following.

Technical Operations

The exclusive purpose of these operations is the production of the goods and
services of the firm.

Commercial Operations

These operations are designed for marketing of goods and services produced by
the firm.

Financial Operations

These operations are devoted to the description of the role of money in the
production process of the firm.

Safety Operations

The main purpose of these operations is the reduction of damages due to the
activities of the firm.

Accounting Functions

These operations are designed to systematically record all the financial trans-
actions of the firm.

Management Operations

These operations seek the most efficient combination of the resources of the firm
to achieve its objectives. Management operations are also called operations of
management activity. The basic characteristic of management operations is the
application of these operations to the technical, commercial, financial, safety, and
accounting operations of the firm.

1.26 Safety Operations

The set of safety operations is not precisely defined. However, it is generally
recognized that fundamental elements of this set are the following operations.
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Risk Identification
Risk Measurement

Risk Treatment

It is well known that the term “risk management operations” is frequently used
instead of the term “safety operations”. The present work makes use of the term
“Risk Management Operations”.

1.27 Risk Identification

Risk identification is the operation by which an organization systematically and
continuously identifies property, liability, and personnel exposures as soon as or
before they emerge. The implementation of risk identification is based on the
following two activities.

Development of a list incorporating all the risks that could occur to any
organization;

Application of that list for identifying those risks threatening the given
organization.

The risk manager may personally conduct this two steps procedure or may rely
upon the services of an insurance agent, broker, or consultant. Risk identification is
the first and most important safety or risk management operation. Moreover,
practical experience supports that risk identification is the most basic and time
consuming activity of the risk manager. The following factors have particular role
in the successful implementation of risk identification.

Statistical Data

Imagination

1.28 Risk Measurement

Risk measurement is recognized as the most obscure and complex risk management
function. The obscurity and complexity of this operation is due to the inability of
providing a definition of the concept of risk which definition is accepted by all
disciplines incorporating that concept. From a strict mathematical point of view,
risk measurement is directly related with the concept of total risk severity. The total
risk severity is defined as the sum of losses from the occurrences of a risk into a
given time interval. Thus, the concept of total risk severity has as structural ele-
ments the concept of risk severity and the concept of risk frequency. Since risk
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severity is modeled by a positive random variable and risk frequency is modeled by
a discrete random variable with values in the set of nonnegative integers then total
risk severity is frequently modeled by a random sum of positive random variables.
Such a stochastic modeling of total risk severity is based on the absence of time
value of money. If time value of money under conditions of uncertainty is con-
sidered then the total risk severity is modeled by a random sum, of positive random
variables, which has a very complex form. Consequently, the formulation of a
random sum for the present value of the total risk severity under conditions of
uncertainty for risk severity, risk frequency, time value of money, and risk
occurrence time is defined as the strict mathematical consideration of risk mea-
surement. The evaluation and the investigation of the probability distribution of
such a random sum constitute the most important part of the mathematical con-
sideration of risk measurement. The extreme difficulties of formulating this random
sum and the evaluation of the corresponding probability distribution very frequently
result to the avoidance of the strict mathematical consideration of risk measurement.
Such an avoidance frequently results to wrong interpretation of the risk measure-
ment operation. The advantages of stochastic modeling substantially support the
strict mathematical consideration of risk measurement. The formulation and
investigation of stochastic models, supporting the strict mathematical consideration
of risk measurement, constitute two of the main purposes of the present work.

1.29 Risk Treatment

The risk manager, after the identification and measurement of the risks threatening
an organization, must apply the operation for treating of these risks. Risk treatment
is a complex operation incorporating the following operations.

Risk Control
Risk Financing

Risk treatment mainly includes decisions for handling the risks threatening an
organization in a proactive and reactive way. This operation is considered as the
most dynamic risk management operation of an organization.

1.30 Risk Control

The risk manager of an organization uses this operation in order to reduce and make
more predictable the losses due to the occurrences of risks faced by an organization.
Risk control is a complex operation incorporating the following operations.
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Risk Avoidance
Control of Total Risk Severity
Separation of Exposures to Loss
Combination of Exposures to Loss

Risk Transfer

The proactive character of risk control is the main advantage of this risk treat-
ment operation.

1.31 Risk Avoidance

One way to control a particular risk is to avoid the property, person, or activity with
which the exposure is associated. Risk avoidance can be implemented by the fol-
lowing two ways.

Refusing an Exposure
Abandoning an Exposure

According to the first way the firm refuses to undertake an exposure to risk and
according the second way the firm abandons an exposure to risk.

Risk avoidance is considered as the most effective risk control operation. If risk
avoidance is implemented by avoiding the factor which is exposed to risk then this
operation incorporates the opportunity cost that is the profit which did not occur by
losing an opportunity for profit. However, if risk avoidance is implemented by
abandoning of such a factor then risk avoidance incorporates the cost of under-
taking that factor.

Risk avoidance, whether it is implemented by abandonment or by refusal to
accept the risk, should also be distinguished from operations of controlling total risk
severity described by the next section. These operations assume that the firm will
retain the property, person, or activity creating the risk but the firm will conduct its
operations in the most possible safe manner.

Risk avoidance is a useful, fairly common approach to the handling of risk. By
avoiding a risk exposure the firm knows that it will not experience the potential
losses or uncertainties that the exposure may generate. On the other hand, it also
loses the benefits that may have been derived from that exposure. Risk avoidance
usually includes the following factors.
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Possibility of Applying Risk Avoidance

First, risk avoidance may be impossible. The more broadly the risk defined, the
more likely this is to be so. For example, the only way to avoid all liability
exposures is to cease to exist.

Losing Benefits of Applying Risk Avoidance

Second, the potential benefits to be gained from employing certain persons,
owing a piece of property, or engaging in some activity may so far outweigh the
potential losses and uncertainties involved that the risk manager will give little
consideration to avoiding the exposure. For example, most businesses would find it
almost impossible to operate without owing or renting a fleet of cars. Consequently
they consider risk avoidance to be an impractical approach.

Adverse Consequences of Applying Risk Avoidance

Third, the more narrowly the avoided risk is defined, the more likely it becomes
that avoiding that risk will increase another risk. For example, a firm may avoid the
risks associated with air shipments by substituting train and tracks shipments. In the
process, however, it has created some new risks.

To implement a risk avoidance decision the risk manager must define all those
properties, persons, or activities that create the exposure the firm wishes to avoid.
With the support of top management the risk manager should recommend certain
policies and procedures to be followed by other departments and employees. For
example, if the objective is to avoid the risks associated with air shipments, all
departments might be instructed to use train and truck shipments only.

Risk avoidance is successful only if there are no losses from the exposure the
firm wishes to avoid. Indeed, the method will not have been properly implemented
if some prohibited activity took place but the firm was lucky and no loss occurred.
To illustrate, if some air shipments are made in violation of the policy stated above,
some correction is necessary even if the firm incurred no losses on those particular
shipments. In addition the risk manager should of course reevaluate periodically the
decision to use risk avoidance techniques.

1.32 Control of Total Risk Severity

This operation concentrates on the reduction of the total loss from the occurrences
of a risk into a given time interval. The control of total severity of a risk is devoted
to the reduction of the severity of any occurrence of the risk and also the reduction
of the frequency of the risk into the given time interval.
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Examples of risk frequency reduction operations are the following.
Tightening Quality Control Limits
Safety Meetings
Improving Product Design
Examples of risk severity reduction operations are the following.
Providing Automatic Alarm Systems
Immediate First Aid
Medical Care

It is readily understood that the successful implementation of the control of total
risk severity is substantially facilitated by the simultaneous applications of risk
frequency and risk severity reduction operations.

1.33 Separation of Risk Carriers

We consider a system of entities facing the same risk. Generally, an entity facing a
risk is called a risk carrier. If some of entities can be detached from the system
without impeding the function of the system then we implement the risk control
operation which is called separation of risk carriers. The implementation of this
operation is based on the effective handling of the concept of time and the concept
of space. This means that detaching some entities from the system may have short
or long duration and require small or large space.
Examples of applications of separation of risk carriers are the following.

Individual Training of Personnel
Individual Evaluation of Personnel
Dispersion of Parking Places
Assigning of Responsibilities
Selection of Private Transportation
Rejection of Mass Entertainment Events

The separation of risk carriers as a risk control operation is particularly important
if the risk carriers are people.
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It is quite obvious that the separation of risk carriers aims to reduce the number
of the risk carriers which will suffer the adverse effects of the risk faced by these
carriers.

The applicability of the separation of risk carriers depends on the kind of risk
taken.

1.34 Combination of Risk Carriers

We consider various entities facing the same risk and which do not constitute a
system. If some or all the entities can be combined in order to form a system then
we implement the risk control operation which is called combination of risk car-
riers. The combination of risk carriers runs counter to separation of risk carriers.
Examples of applications of separation of risk carriers are the following.

Group Training of Personnel
Group Evaluation of Personnel
Remove of Responsibilities
Unifying Activities of Firm
Group Action
Collective Decision Making

Rejection of Selfish Behavior

The combination of risk carriers, as the separation of risk carriers, is of particular
practical importance.

It is quite obvious that the combination of risk carriers aims at enhancing the
effectiveness of risk carriers in the treatment of risk threatening these risk carriers.

The applicability of combination of risk carriers, as the applicability of sepa-
ration of risk carriers, depends on the kind of risk taken.

1.35 Risk Transfer

Risk transfer, as a risk control operation, refers to the various methods other than
insurance by which a risk and its potential financial consequences can be transferred
to another party. Some noninsurance techniques that are commonly used in risk
management programs include contracts, leases, and hold-harmless agreements.
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Risk transfer must not be confused with risk insurance which is a risk financing
operation.

In a risk management program, noninsurance transfers have several advantages.
They are summarized as follows.

The risk manager can transfer some potential losses that are not commercially
insurable

Noninsurance transfers often cost less than insurance

The potential loss may be shifted to someone who is in a better position to
exercise loss control

However, noninsurance transfers have several disadvantages. They are sum-
marized as follows.

The transfer of potential loss may fail because the contract language is
ambiguous. Also, there may be no court precedents for the interpretation of a
contract that is tailor-made to fit the situation

If the party to whom the potential loss is transferred is unable to pay the loss, the
firm is still responsible for the claim

Noninsurance transfers may not always reduce insurance costs, since an insurer
may not give credit for the transfers

1.36 Risk Financing

This operation is complex and includes the following two operations.
Risk Retention

Risk Insurance

Risk financing as a risk control operation is devoted to obtaining the funds for
covering the losses arising from the risks threatening an organization. The purpose
of risk financing is reactive.

1.37 Risk Retention

The most common operation of risk treating is retention by the organization itself.
The source of funds is the organization itself, including borrowed funds that the
organization must repay. Risk retention may be active or passive, conscious or
unconscious, planned or unplanned. Risk retention, however, is primarily appro-
priate for high frequency, low severity risks where potential losses are relatively
small.
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1.38 Risk Insurance

Insurance is one of the basic risk treatment operations, but it is easily the most
important illustration of the transfer technique and the keystone of most risk
management programs. Insurance can be defined from the two points of view. First,
insurance is the protection against financial loss by an insurer. Second, insurance is
a device by which the risks of two or more persons or firms are combined through
actual or promised contributions to a fund out of which claimants are paid. The
distinctive feature of insurance as a transfer device is that it involves some pooling
of risks, or equivalently the insurer combines the risks of many insured. Through
this combination the insurer improves its ability to predict its expected losses.
Although most insurers collect in advance premiums that will be sufficient to pay all
their expected losses, some rely at least in part on assessments levied on all insured
after losses occur. Insurance, as risk treatment operation, is usually applied to
financing risks of high severity and high frequency.

1.39 Management Concepts

Management may be defined as the process that achieves the most effective com-
bination of available resources for implementing the objectives of a firm.
The fundamental functions performed by managers are the following.

Planning
Organizing
Staffing
Directing
Controlling

The above functions constitute particularly important factors for every firm
whatever form, size and sector of activity. Moreover, these functions are incor-
porated in every activity of a firm.

Management is the structural element which achieves the efficient handling of
any collective effort and creation of a suitable environment encouraging the
cooperation and maximization of the performance of each part, in order to imple-
ment the desired results.

Factors of production such as labor, capital, and nature are static. These factors
should be connected to form a system in such a way as to have the best possible
use. The element by which this is achieved is management.
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A person exercises management if the person is responsible for achieving results
through others. Basically, management as a process includes all those functions that
are required for the correct utilization and optimization of available resources.
Managers perform part of planning, organizing, staffing, directing, and controlling
which are the functions of management process. It is quite obvious that manage-
ment covers all the activities of the firm. But the content of management should not
be confused with the implementation of activities framing the operations of the
firm. Of course, in practice there is no complete separation between the work of
management and the executive work. But the content of the work of management
differs from the content of executive activity.

Although management functions are not completely separated from each other
but they can be considered specific elements of procedures arising in the imple-
mentation of management process. In the following subsections, the functions of
management are described as independent and well separated from each other, for
facilitating the understanding of each function. The order of presentation of man-
agement functions shows the physical order of these functions in practice or
equivalently planning, organizing, staffing, directing, and controlling.

The function of planning includes the following activities.

Making predictions for the future behavior of all variable factors of the firm and
its environment affecting the activities of the firm

Defining the objectives of the firm, which shaping the behavior of the firm

Identifying and analyzing of alternative ways of action

Decision making for the selection of optimal ways of action

Coordinating all the actions which must be done to achieve the objectives of the

firm

It is necessary to emphasize that the function of planning is a very important
function of management. The functions of organizing, staffing, directing, and
controlling are based on the function of planning.

The use of informatics and operational research in the study of factors affecting
the activity of a firm has substantially improved the function of planning and
particularly the procedures of making predictions and decisions.

The function of organizing includes the following activities.

Dividing the work which is to be done in individual activities

Grouping these activities into separate sections

Assigning the corresponding authority to the persons responsible for these
sections in order these persons to be able to carry out their tasks in the most
efficient manner

It is obvious the function of organizing is not an end in itself but a means to
achieve specific objectives. The more complex the objective is the more complex is
the function of organizing and so complex relationships are needed to achieve this
objective.

The function of staffing includes the care for continuous manning of the firm
with appropriate people. The organizational structure determines the positions, or
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equivalently the duties and authority of each individual. The different positions
should be covered by individuals with only criterion of selection the suitability of
individuals for the requirements of the positions. The proper staffing substantially
contributes to the successful implementation of the program and the profitability of
the firm. For this reason, the issue of human factor is included in the main interests
of the firm.

The function of directing concentrates on the guidance of human resources in
such a way that every effort should be directed at achieving the objectives of the
firm. The key element of directing is leadership, whereby the human resources will
be directed towards meeting the objectives of the firm.

Basically, the function of directing includes the following activities.

Determining human needs, which as motives shape human behavior

Determining those needs, which may be activated and fulfilled into the firm, and
thus those needs may act as motives of behavior in the firm

Investigating tools which can be used to satisfy needs of human resources, such
as large salary, securing employment, ethical recognitions, and promotion
opportunities

Concurrency of the trend of satisfaction of human needs with the effort to carry
out the objectives of the firm, so that the measure of the implementation of the
objectives of the firm to provide the employees with the possibility of his personal
needs

Finding the appropriate system of guidance of human resources or equivalently
the democratic or authoritarian way to direct the human resources to objectives of
the firm

Controlling is the function which contributes to the achievement of objectives
and the implementation of the program of the firm. Controlling involves the exis-
tence of objectives and program for the firm. Moreover, controlling completes the
management process.

The function of controlling includes the following activities.

Measuring the results obtained, as production volume, the volume of material
used, the degree of success of an effort of advertisement, the amount of earnings,
and other results

Determining differences between planned and realized results

Identifying the causes, which created the differences between planned and
realized results

Taking measures to correct the differences appeared

The correction of differences closes the circuit of management functions,
because this correction requires the activation again of the other functions of
management.
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1.40 Management Approaches

The approaches which substantially contribute to the understanding and the
effectiveness of management are the following.

Mathematical Approach
Decision Theory Approach
Empirical Approach
Human Behavior Approach

Social System Approach

Since management includes risk management then the present work can be
considered as a part of the mathematical approach of management.

1.41 Mathematical Approach of Management

The mathematical approach of management makes use of mathematical models for
the description of management problems and with the use of mathematical logic
finds the possible solutions of these problems.

The theoretical basis of this approach, which is known as the approach of
operational research, is the principle that the functions of planning, organizing,
staffing, directing, and controlling are logical procedures and therefore these
functions can be expressed in mathematical symbols and mathematical
relationships.

The main topic of the mathematical approach of management is the possibility of
quantitative formulation of management problems. This problem mainly arises in
the human factor and the area of social relations, where the description of psy-
chological and social phenomena is often impossible with concepts and even more
with mathematical symbols and mathematical relationships. But this does not
necessarily entail challenging the systematic effort of mathematical science to
penetrate the disciplines of psychology, sociology, and in general the behavioral
sciences offering thereby mathematics for solutions of psychological and social
problems.

The application of mathematical science in many fields of human activity and
various approaches of management means that the mathematical approach of
management is a tool of solving management problems than such an approach.

In the relative literature the mathematical approach of management or the
approach of operational research is identified as the quantitative approach of
management.
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1.42 Definition of Risk Management

Risk management may be defined as the systematic process of managing the risks
threatening an organization in order to accomplish its goals in a way consistent with
common interest, human protection, environmental factors and the law. It consists
of the planning, organizing, directing, and controlling the safety operations of an
organization with the aim of developing an efficient procedure that decreases the
negative results of risks threatening that organization. Safety operations are usually
called risk management operations. Risk measurement and risk treatment are
generally considered as two particularly important risk management operations.
The formulation and investigation of stochastic models for risk measurement and
risk treatment operations constitute two of the main purposes of the present work.

1.43 Risk Management and Unprecedented Uncertainty

Risk management is clearly still evolving as discipline. All of the current discus-
sion, therefore, is extremely healthy, especially if it leads to practitioners from
different disciplines talking and responding to one another. Risk management is and
will remain a key ingredient of sound management in a world of unprecedented
uncertainty.

1.44 Risk Management Philosophy

There are three factors that effectively define an organization’s approach to man-
aging risk, those relating to:

Structure—the nature of the organizational infrastructure

Strategy—the nature and combination of techniques used in risk management

Culture—the beliefs and values that influence the actions of individuals and
groups, who are directly and indirectly responsible for risk management within the
organization.

1.45 Relationship of Risk Management to Management

Although risk managers in discharge of their major responsibilities are often con-
cerned with technical matters relating to risk analysis and treatment, they are also
typically in charge of a department and/or an insurance subsidiary and frequently in
contact with other functional areas in the organization. They often participate in the
managerial decision process, particularly as it relates to risk management policy.
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Thus, risk managers should be aware about the general principles of management.
Among these basic principles that would seem particularly pertinent to the risk
management function are the following.

Development of Objectives
Decision Making
Use of Quantitative Methods
Planning
Organizing
Staffing
Communication
Control

Management of Overseas Operations

Risk management as one of the specialties within the discipline of general
management shares many of the characteristics of general management. However,
the above operations are extremely important for implementing the goals of risk
management.

1.46 Prerequisites of Applying Risk Management

The implementation of risk management requires organizing such that the assess-
ment of risks is based on technocratic criteria, insurance knowledge, and systems
avoiding the creation of stress to the economic strength and solvency of the firm.
The following fundamental principles of insurance theory and practice are very
important in applying risk management.

Fragmentation of risk and the subsequent dispersion of the economic impact of
an adverse event

Securing the necessary reinsurance or coinsurance net of protection

Keeping overhead cost low and a reserve capable of responding to a cata-
strophic damage,

Elimination, as far as possible, of major risks through insurance combinations
ensuring small insurance cost but also adequate protection

Empirical studies have found that a key factor in the effective implementation of
risk management is the education of staff in the fundamental concepts and objec-
tives of risk management.
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1.47 Risk Management and Insurance

Historically, the risk management process has been closely linked with insurance.
Many risk managers have come from insurance companies where they have
acquired knowledge about insurer operations. Their role in the firm has been often
that of an insurance buyer and their activities have centered around problems of risk
transfer and those preventive activities that are closely related to insurance loss
experience. Insurance experience is valuable since insurance companies are the
primary example of businesses that undertake the risks of others. In spite of fairly
widespread use of risk assumption techniques, insurance contracts remain the
principal way of handling risk for many business firms. Thus any discussion of
risk management must treat insurance at some length, including the principles
surrounding its purchase.

1.48 Risk Management Objectives

Risk management has several fundamental goals. These objectives can be divided
into the following two categories. The first category incorporates the objectives of
risk management to be achieved prior to the occurrence of a risk. The second
category incorporates the goals of risk management to be achieved after the
occurrence of a risk.

The most fundamental objectives of risk management belonging to the first
category are the following.

Economy

The economy objective means that the firm should prepare for potential losses in
the most economical way. This involves a financial analysis of safety program
expenses, insurance premiums, and the costs associated with the different tech-
niques for handling losses.

Reduction of Anxiety

This objective is more complicated. Certain loss exposures can cause greater worry
and fear for the risk manager, key executives, and stockholders than other expo-
sures. However, the risk manager wants to reduce the anxiety and fear associated
with all loss exposures.

Meeting Externally Imposed Obligations

This objective is to meet any external imposed obligations. This means the firm must
meet certain obligations on it by outsiders. For example, government regulations may
require a firm to install safety devices to protect workers from harm. Similarly, a
firm’s creditors may require that property pledged as collateral for a loan must be
insured. The risk manager must see that these externally imposed obligations are met.
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The most fundamental objectives of risk management belonging to the second
category are the following.

Survival

The first and most important risk management objective after a loss occurs is
survival of the firm. Survival means that after a loss occurs, the firm can at least
resume partial operation within some reasonable time period if it chooses to do so.

Continuity of Operations

The second post-loss objective is to continue to operating. For some firms, the ability to
continue operating after a severe loss is an extremely important objective. This is
particularly true of certain firms, such as a public utility firm, which is obligated to
provide continuous service. But it is also extremely important for those firms that may
lose some or all of their customers to competitors if they cannot operate after the
occurrence of a loss. This would include banks, bakeries, dairy farms, and similar firms.

Stability of Earnings

Stability of earnings is the third post-loss objective. The firm wants to maintain its
earnings per share after a loss occurs. This objective is closely related to the objective
of continued operations. Earnings per share can be maintained if the firm continues to
operate. However, there may be substantial costs involved in achieving this goal, such
as operating in another location, and perfect stability of earnings may not be attained.

Growth

The fourth post-loss objective is continued growth of the firm. A firm may grow by
developing new products and markets or by acquisitions and mergers. The risk
manager must consider the impact that a loss will have on the firm’s ability to grow.

Social Responsibility

Finally, the objective of social responsibility is to reduce the impact that a loss has on
other persons and society in general. A severe loss by a firm can adversely affect
employees, customers, suppliers, creditors, taxpayers, and the community in general.
For example, a severe loss that requires shutting down a plant in a small community
for an extended period can lead to depressed business conditions and substantial
unemployment in the community. The risk manager must therefore be concerned
about the social responsibility of the firm to the community after a loss occurs.

1.49 Risk Management and Human Needs

Man is motivated to fulfill his needs, where the need is the avoidance of an
undesirable condition or the pursuit of some desired condition. The source of man’s
motivation to fill his perceived needs has been a major concern of psychological
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theory and research. Maslow categorizes and ranks basic sets of human needs into a
conceptual hierarchy. This hierarchy is important to analysis of risk because it
provides a basis for understanding how man values possible gains and unwanted
consequences. This, coupled with the idea that healthy versus abnormal people are
used to study behavior, makes the results more palatable for understanding normal,
individual, societal risk behavior. Maslow made the primary breakdown as follows
in hierarchy of needs.

Physiological Needs

The physiological category refers to food, warmth, shelter, elimination, water,
sleep, sexual fulfillment, and other bodily needs.

Safety Needs

The safety needs include actual physical safety, as well as a feeling of being safe
from physical and emotional injury; therefore, a feeling of emotional security as
well as a feeling of freedom from illness.

Need for Belongingness and Love

Whereas physiological and safety needs are centered round the individual’s own
person, the need for belongingness and love represents the first social need. It is the
need to feel a part of a group or the need to belong to and with someone else. It
implies the needs to both give and receive love.

Need for Esteem

The need for esteem is based on the belief that a person has a fundamental
requirement for self-respect and the esteem of others, except in extreme pathology.
The need for esteem is divided into two subsets. First, there is the need for feeling a
personal worth, adequacy, and competence. Second, there is the need for respect,
admiration, recognition, and status in the eyes of others.

Need for Self-actualization

Self-actualization is a more difficult concept to describe. It is the process whereby
one realizes the real self and works toward the expression of the self by becoming
what one is capable of becoming. Thus the need for self-actualization sets into
motion the process of making actual a person’s perception of his “self”.

The above hierarchy emphasizes the fundamental point that until one need is
fulfilled, a person’s behavior is not motivated by the next, higher level, need. For
example, a person whose physiological needs are not taken care of, is not concerned
with his safety. And until his physiological and safety needs are not fulfilled, he is
not particularly interested in fulfilling his need for love. Moreover, the above
hierarchy, the definition and the main goals of risk management discipline make
quite clear that this discipline substantially contribute to the satisfaction of human
needs.
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1.50 Safety Needs-Workplace—Risk Taking

In the workplace, safety needs manifest themselves in the form of confidence for
this post. Safety needs, in this sense, arise when people are under conditions of
dependency on other people or organizations and they are under the fear of arbitrary
dismissal. The feeling that people have the fairest possible treatment meets the
safety needs in the workplace. When people feel that they are treated properly, they
tend to take risks and they become more creative.

Almost all people working in commercial and industrial organizations are in
relationship of partial dependency. This relationship gives particular attention to
safety needs. The feeling of insecurity stems from arbitrary administrative behavior
that creates uncertainty which is strong incentive in shaping safety needs at each
level of the hierarchy of personnel. This factor explains at a large part the growing
trend to syndicalism.

Major objective of risk management is to meet human safety needs in the
workplace.

1.51 Spiritual Growth and Future Needs

Primitive man seeking to meet the needs of the present he did not see the needs of
the future, he had no fear of this and he did not make predictions for the future.
Since man spiritually grows, creates civilization, he can maintain and compare
information, draw conclusions from the past for the future, he is more afraid of the
future and he continuously thinks to find protection against eventual adverse con-
ditions of the future, he feels the intensity of the future needs, and avoids con-
suming goods, saves them for his future needs.

The importance of the role of risk management in modern society is revealed by
the powerful bond between the spiritual growth of man and the vision of his future.

1.52 Social Progress and Proactive Risk Management

Social progress is mainly based on the following factors.
Advancement of Human Intellectual Characteristics
Improvement of the Material Status of Man

Subordination of Individual Human Instincts to the Ideals of Human Life in Society

The particular importance of the proactive component of risk management
substantially supports the factors of social progress.
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1.53 Cost of Risk

Each of the insurable risks to which an organization is exposed should be seen as a
cost composed of interrelated factors. This cost is called cost of risk and incor-
porates the following factors.

Cost of Loss Prevention
Insurance Premiums
Losses Sustained Net of Indemnities from Insurers and Third Parties
Expenses of Administration

The cost of risk is the sum of the above four factors, and the objective of risk
management should be to minimize this cost by changing the amenable factors as
appropriate. The cost of risk is mathematical in principle, but since some of its
factors cannot be accurately forecasted or measured, a precise net total cannot be
calculated. However, since the factors can be estimated, it provides practical
direction for the efforts of the risk managers. Today, in many organizations, the cost
of risk is used as both an internal and external benchmark for performance
measurement.

1.54 Data-Information-Knowledge

Data are series of unconnected events and observations which can be converted to
information if we analyze, summarize or organize them in some other way. It is,
therefore, required work to convert data to information. Information is more
valuable than data. Data are transformed into information according to a sense for
specific purposes. Information has been overtaken land, labor, and capital and is the
most important inflow in modern production systems. Information reduces the
needs for labor, land, and capital. It creates whole new industries. It is separately
present in the market and is also the raw material of the fastest growing sector of the
industry of knowledge. The labor market is now dominated by information oper-
ators paid since they posses necessary information to implement objectives.

In turn, the sets of information can be processed to form a coherent system of
knowledge.

Knowledge consists of organized sets of information which form the basis of
theoretical conceptions and evaluations.

It is generally accepted that acquisition, creation, and use of information greatly
assist risk managers in the implementation of the tactical and strategic objectives of
an organization.
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1.55 Information Operators

The labor market is currently dominated by the following kinds of information
operators.

Information Organizers

This kind of information operators deals with the appropriate organizing of
information involved in modern production systems. The senior managers consti-
tute this kind of information operators.

Information Transmitters

This kind of information operators deals with the transmission of information.
Secretaries, journalists and other employees in mass media, and educational staff of
any category are information transmitters.

Information Administrators

This kind of information operators deals with the storage and retrieval of
information. Librarians and computer programmers are information administrators.

Information Creators

The creation of new information is the purpose of this kind of information
operators. Researchers of any category are information creators.

Information Users

This kind of information operators deals with the use of information for solving
specific problems. Lawyers, doctors, and consultants of any category are infor-
mation users.

Information Receivers

This kind of information operators is engaged in the acquisition of information.
Students of any category are receivers of information.

The chief risk officers and senior risk managers work as organizers, transmitters,
administrators, creators, users, and receivers of information in modern complex
organizations.
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1.56 Disciplines Contributed to Risk and Risk Management

The perception of the complex concept of risk and the essence of risk management
are substantially facilitated by making use of data, information, knowledge, and
theories from various disciplines. Such a use is an extremely difficult process. The
following sections incorporate several extracts from some disciplines. These
extracts contribute to a very good consideration of the possibilities of risk man-
agement. Such extracts are provided by the following disciplines.

Anthropology
History
Psychology
Neuroscience
Philosophy
Informatics
Literature
Management
Cindynics
Systemics

Mathematics

1.57 Risk Avoidance and Evolution of Memory

Antonio Damasio believes that memory requires the mobilization of many brain
systems that work together seamlessly to different levels of neural organization. He
argues that memory was evolved to help us to avoid risks, based on our experience
and not just to reminisce. And that is why we tend to remember what they seem
novel or important, while the rest are indiscriminately forgotten. This procedure is
considered necessary, since remembrance of everything would cause an explosive
overload of the brain circuits.

Antonio Damasio
Descartes’ Error: Emotion, Reason, and the Human Brain
Putnam Publishing, 1994
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1.58 Imaginary Risk and Brainwashing

Man is not only able to predict real risks in the future, he may even be convinced or
brainwashed by his leaders that he faces risks and when there are not actually risks.
Most modern wars are prepared by systematic propaganda of this type. People are
convinced by their leaders that there is a risk to be attacked and destroyed, so they
react with hatred against nations which threaten them. Often there is no threat.
Especially since the French Revolution that large armies of citizens appeared rather
than relatively small bodies of professional soldiers, it is not easy to the leader of a
nation to tell people to kill and to be killed because the industry wants cheaper raw
materials, or cheaper labor hands or new markets. Only a minority would agree to
participate in a war with such purposes. If on the other hand, a government can
make people to believe that they are threatened then the normal biological reaction
to the threat has been put into operation. Moreover, these predictions of the threat
from the outside bring often themselves the result: the aggressor nation with its
martial preparations forces the nation that is going to suffer the attack to make
respective martial preparations “demonstrating” so the alleged threat.

Erich Fromm
The Anatomy of Human Destructiveness
Holt, Rinehart & Winston, 1973

1.59 Specific Human Risk

Man was born as a whim of nature, being part of nature, and overtaking it. He must
find principles for action and decision making to replace the principles of instinct.
He must have a framework of orientation that allows him to organize a consistent
picture of the world as an assumption for consistent actions. He must fight not only
the risk of dying, starving, and hurting but also another risk which is specifically
human: the risk of ending up mad. In other words, he must protect himself from the
risk of losing his life, but also the risk of losing his mind.

Erich Fromm
The Revolution of Hope: Toward a Humanized Technology
Harper & Row, 1968

1.60 Risk Acceptance and Results of Calculations

The acceptance of a risk is not always the result of calculations—far from it. In the
economic sector, Keynes observed. “If human nature would not love risk, if the
construction of a factory or a railway, the exploitation of a mine or a farm would
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not give any other satisfaction than that offered by profit, then such a scale of
investments would not exist”.

Ivar Ekeland
The Broken Dice and Other Mathematical Tales of Chance
University of Chicago Press, 1993

1.61 Increasing Risk and Human Relations

We must always be conscious that the negative factor may play a positive role. We
often mention the famous verse of Hoelderlin: “But where the danger is, also grows
the saving power”. We are in such a situation. Hopefully the increasing risk will
not keep the pace with the increasing probabilities for salvation with the religious
sense, but with the improvement of human relations, which everyone, in the depth of
his self, expects.

Hoelderlin

1.62 Real Risk and Extraordinary Energy

A real risk tends to mobilize extraordinary energy for its treatment, often to the
extent that the person concerned could never put to its mind that it has such a great
physical strength, skill and endurance. However this extraordinary energy is
mobilized only when the entire body faces a real risk and for neurophysiologic
reasons, risks dreaming of the person do not irritate the body in this way, but only
lead to fear and anxiety.

Erich Fromm
The Anatomy of Human Destructiveness
Holt, Rinehart & Winston, 1973

1.63 Risk of Excessive Speed of Development

Our civilization is a victim of speed. Awareness of the mad pace, the risk of the
excessive speed of development is urgent. We have to brake, to slow, for being able
to look at a different future. It is now necessary to think and plan an international
regulation of growth and economic competition and to promote the creation of a
charter which will include the right to human time.
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Edgar Morin

Anne Brigitte Kern
Terre Patrie

Editions du Seuil, 1993

1.64 Overthrow of Primitive Human Nature

In selective adaptation in front of the risks of the Stone Age, human society
exceeded or subjugated the primitive tendencies as selfishness, criminal sexuality,
dominance, and fierce competition. Human society put the harmony and the
cooperation in place of conflict, solidarity over sex, and ethics over power. In these
early days human society conducted the biggest overhaul in its history, the over-
throw of the primitive human nature, thus ensuring a future full of evolution for the
species.

Erich Fromm
The Anatomy of Human Destructiveness
Holt, Rinehart & Winston, 1973

1.65 Risk and Need

A heart full of courage and cheerfulness needs a little danger from time to time, or
the world gets unbearable.

Friedrich Nietzsche

R. Flesch

The New Book of Unusual Quotations
Harper & Row, Publishers, Inc., 1966

1.66 Playing Man

Man is neither entirely preform of the genetic code or simple result of the action of
his environment. His behavior is not the set of his absolute or dependent reflective
nor an expression of absolute freedom. Man is neither absolute subject nor
absolute object. Maybe that is why it not easy a definition of man. However, man
has a proper name: Homo, and quite a few adjectives: sapiens (wise), laborans
(working), faber (creator), loquens (talking), oeconomicus (economic), even ludens
(playing). Attention to last adjective. Sometimes man plays with fire.
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Johan Huizinga
Homo Ludens: A Study of the Play—Element in Culture
Beacon Press, 1955

1.67 Developing Courage and Challenging Adversity

You do not develop courage by being happy in your relationships every day. You
develop it by surviving difficult times and challenging adversity.

Epicurus

1.68 Adversities and Evolution

For the modern observer, who looks at the life story through his view of many
millions years, some meaning is obvious. He sees that, with the struggle against
adverse conditions, each generation shapes the forms that its offspring will have.
The adversities and struggles are at the bottom of the pyramid of evolution. Without
adversities there is no pressure and without pressure there is no change. These
circumstances, so persistent on each individual, create currents needed for life to
evolve and reach from the most simple to the most complex. Finally, man stands on
the earth, most perfect of all the other creatures that inhabit it. Smart and aware of
own behalf, he alone of all the other creatures has the curiosity to ask himself about
the way of his creation and the forces which created him. Moreover, having as a
guide his scientific knowledge understands that he was created by all those who
lived before him, fighting to overcome the difficulties that they were finding ahead.

Robert Jastrow
Until the Sun Dies
Warner Books, 1977

1.69 Risk in Society

The notion of risk becomes central in a society which is taking leave of the past, of
traditional ways of doing things, and which is opening itself up to a problematic
future. This statement applies just as much as to institutionalized risk environment
as to other areas. Insurance is one of the core elements of the economic order of the
modern world it is part of a more general phenomenon concerned with the control
of time. The ‘openness’ of things to come expresses the malleability of the social
world and the capability of human beings to shape the physical settings of our



40 1 Fundamental Concepts of Risk Management

existence. While the future is recognized to be intrinsically unknowable, and as it is
increasingly severed from the past, that future becomes a new terrain, a territory of
counterfactual possibility.

Anthony Giddens
Modernity and Self-Identity
Polity Press, 1991

1.70 Risky Hunan Confusion and Impact of Computer
Revolution

Even the most optimistic fan of the human race will have to concede that our world
has reached a very risky stage of confusion and man, helpless, is rather unlikely to
accomplish many things in an attempt to rectify the situation. Now many people
believe that the more man left alone to manage their affairs, so it is compounded the
confusion—and the only solution would be to shake everything in the air with
hydrogen bombs-which unfortunately we cannot exclude it. Awareness of our
hopeless position in a world unimaginably complex and loaded with information
there that does not get another, it will become deeper in troubled and restless years
for decades, when we feel in all its breath and intensity the impact of revolution of
computers. Under these circumstances, the temptation to turn to computers for
support will be invincible. Of course, once we succumb to it, everything will
change. Man, only and undisputed master of this planet for centuries, will no
longer treat the universe alone. Other intelligent beings, in the beginning equal in
authority to him and later senior, will stand by his side.

Christopher Evans
The Mighty Micro
Victor Gollancz Ltd, 1979

1.71 Risk and Possession of Software

Possession of software is not risky, but possession of large amounts of software is
risky. The barnacle has trivial software—and that software has been devoted to the
basic needs of her digestive and reproductive system and therefore barnacle has
not software left to put her into trouble. However, man has large amounts of
software that a significant part of it is dedicated to ensuring the survival in a world
full of beings predators and prey, aggressors and victims. Unfortunately, for the
most part, this software is instinctual and tends to be exhausted in ruthless and
deeply selfish aggression. The remaining part of the software, which is non-
instinctual or acquired, tends to rotate in a different direction. The balance,
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however, leans towards the instinctual part as a result, while man has gained great
technological superiority in this world, when he is threatened, he is able to turn
with tremendous comfort to the programs that he inherited from his distant past of
the jungle and caves.

Christopher Evans
The Mighty Micro
Victor Gollancz Ltd, 1979

1.72 Risk of Atomic War and Genetic Material

DNA, the genetic material, is the most wonderful thing in the world, and it is
protected by the nature very carefully. Mankind went through epidemics, pests and
all kinds of tribulations, but nature kept this material intact, because whole life
depends on it. Today, for the first time in history, man has discovered the means of
destructing the genetic material. High radioactivity achieves the destruction of the
genetic material. This destruction is the big change in the nature of atomic war. In
the previous wars DNA was not under direct threat and humanity could continue to
live. There may be survivors after the atomic war, but they will be unable to
produce healthy offspring. The offspring of the survivors will suffer from abnor-
malities, deformities and diseases, which will make life unbearable, with no way
back to our time.

Albert Szent-Gyorgyi
The Crazy Ape
Philosophical Library, 1970

1.73 Risks of Savanna

The gradual replacement of mild, protective, and capable of providing food, forest
by relentless aggressive savanna spurs and drives the process of anthropogenesis.
Savanna creates the conditions of faceted use of two-legged, two-handed, and
cerebral skills, starting from the needs and the risks it creates. The new ecosystem,
indeed, involves its coercive powers, guidelines and risks, which are stimuli to
develop all sorts of skills that already exist in the ancestor of forest, which, relative
of the chimpanzee, gifted with an agile brain, with a piercing glance and an
omnivorous appetite, is able to convert a branch to a bat and a pebble in a
projectile and downs collectively, small mammals.

Edgar Morin
Le Paradigme Perdu: La Nature Humaine
Editions du Seuil, 1973
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1.74 Inability of Treating New Risks

Let us imagine the invasion of “conquistadores” to the empire of Incas. The society
of the Indians knew the acceptance of certain risks. It was an agricultural society,
so it was familiar with the risks of agricultural life. It was also an empire that had
been established after conquests, so it knew and the military risks. But it did not
treat the new risk posed by these bearded beings with armors, which were riding
unfamiliar animals, holding sticks which were throwing lighting, and provoked the
usual laws of life. The reasons of this collapse have disappeared along with
Atahualpa and the millions of his subjects, but it seems likely to be associated with
some psychological inability of accepting certain risks. It is preferable to surrender
than to fight with an opponent whose strength cannot be measured.

Ivar Ekeland
The Broken Dice and Other Tales of Chance
University of Chicago Press, 1993

1.75 Boldness and Risk of Death

Courage is the ability of someone to resist the temptation to risk hope and faith—
and thus destroy them—transforming them into hollow optimism or irrational
belief. Courage is the ability to say “no” when the world wants to hear “yes”. But
courage cannot be fully understood if we do not consider it from another point of
view: boldness. The bold person is not afraid of threats, even his death. However,
often, the word “bold” covers various, totally different attitudes. I mention the most
important: First, a person can be bold because the person does not care to live or
not. Life is not worth a lot of things about the person so the person is shown bold in
front of risk of dying. But while the person is not afraid of death, he may be afraid
of life. His boldness is based on lack of love for life. Usually the person is not bold
when he is not in front of risk of dying. In fact the person often searches risky
situations trying to avoid the fear of life for himself and for the people.

Erich Fromm
The Revolution of Hope: Toward a Humanized Technology
Harper & Row, 1968

1.76 Specific Boldness and Risk of Isolation

A specific kind of boldness is the boldness of a person which lives in a symbiotic
allegiance to an idol, whether it is a person or institution, or idea. The commands
of the idol are sacred. These commands are more compulsory than the commands
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of the survival of the body. If he could disobey or challenge the commands of the
idol, he would face the risk of losing his identification with the idol. This means that
the person would face the risk to be completed isolated, so the brink of madness. He
wants to die because he is afraid to expose himself to this risk.

Erich From
The Revolution of Hope: Toward a Humanized Technology
Harper & Row, 1968

1.77 Fear of Risk Taking

To try to eliminate risk in business enterprise is futile. Risk is inherent in the
commitment of present resources to future expectations: Indeed, economic progress
can be defined as the ability to take greater risks: The attempt to eliminate risks,
even the attempt to minimize them, can only make them irrational and unbearable:
It can only result in the greatest risk of all: rigidity:

David B. Hertz

Howard Thomas

Risk Analysis and its Applications
John Wiley and Sons, 1983

1.78 Imevitability of Thinking in Terms of Risk

Thinking in terms of risk becomes more or less inevitable and most people will be
conscious also of the risks of refusing to think in this way, even if they may choose
to ignore those risks. In the charged reflexive settings of high modernity, living on
‘automatic pilot’ becomes more and more difficult to do, and it becomes less and
less to protect any lifestyle, no matter how firmly pre-established, from the gen-
eralized risk climate.

Anthony Giddens
Modernity and Self-Identity
Polity Press, 1991

1.79 Risk and Time

Risk and time are opposite sides of the same coin, for if there were no tomorrow
there would be no risk. Time transforms risk, and the nature of risk is shaped by the
time horizon: the future is the playing field.
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Peter Bernstein

Against the Gods

The Remarkable Story of Risk
John Wiley & Sons, Inc., 1996

1.80 Mastery of Risk

The revolutionary idea that defines the boundary between modern times and the
past is the mastery of risk: the notion that the future is more than a whim of the
gods and that men and women are not passive before nature. Until human beings
discovered a way across that boundary, the future was a mirror of the past or the
murky domain of oracles and soothsayers who held a monopoly over knowledge of
anticipated events.

Peter Bernstein

Against the Gods

The Remarkable Story of Risk
John Wiley & Sons, Inc., 1996

1.81 Conversion of Risk Taking

This book tells the story of a group of thinkers whose remarkable vision revealed
how to put the future at the service of the present. By showing the world how to
understand risk, measure it, and weigh its consequences, they converted risk taking
into one of the prime catalysts that drives modern western society. Like Prome-
theus, they defied the gods and probed the darkness in search of the light that
converted the future from an enemy into an opportunity. The transformation in
attitudes toward risk management unleashed by their achievements has channeled
the human passion for games and wagering into economic growth, improved
quality of life, and technological progress.

Peter Bernstein

Against the Gods

The Remarkable Story of Risk
John Wiley & Sons, Inc., 1996

1.82 Risks and Globalization

Risks which are currently preoccupying the international community are not
divisible into neat compartments or equally distributed. Globalization is seen by
some as representing the possibility of eradicating disease, increasing access to
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markets, utilizing productive technology and modern management methods for the
benefit of all. What is less frequently mentioned are the risks which are inherent in
the process of globalization, which go beyond the immediate set of ecological risks.
There is a real risk that some countries could become marginalized from the world
economy, and that this would cause inequality within nations, unless we manage
the process of globalization in a way which ensures that its fruits are equally
distributed.

David Denney
Risk and Society
SAGE Publications, 2005

1.83 Nature of Man

Man is basically a risk aversive animal who usually seeks to avoid or minimize risk.
However to achieve some perceived benefit, man will undertake to increase his risk.
For example, men risk their lives with near certainty of premature death in war or
peace to achieve the perceived benefits of freedom. This subjective, qualitative
balancing of risks and benefits is an innate ability of man as a rational animal and
serves as a model for analytic processes as undertaken here and elsewhere.
Although aversive to risk, man faces risks he cannot control, including the certainty
of death. He evidently has built in physiological and emotional blocks that permit
him to ignore risks he can do nothing about and to go on living his life in a
pragmatic manner. Man also rationalizes unpleasantness, including risks, by
blanking them out: “out of sight, out of mind”.

William D. Rowe
An Anatomy of Risk
Robert E. Krieger Publishing Company, 1988

1.84 Risk Taking and Values

The accident rate and the incidence of unhealthy habits depend on people’s ori-
entation towards their future. The more they expect from it, the more careful they
will be with life and limb. If their expectations are low, they will try to find more
immediate gratification of their desires, and do so at a greater risk of jeopardizing
their lives. The extent of risk taking with respect to safety and health in a given
society, therefore, ultimately depends on values that prevail in that society, and not
on the available technology.
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Gerald J.S. Wilde
Target Risk
PDE Publications, 1994

1.85 Risk and Numbers

Modern methods of dealing with the unknown start with measurement, with odds
and probabilities. Without numbers, there are no odds and no probabilities;
without odds and probabilities, the only way to deal with risk is to appeal to the
gods and the fates. Without numbers, risk is wholly a matter of gut.

Peter Bernstein

Against the Gods

The Remarkable Story

John Wiley & Sons, Inc., 1996

1.86 Risks and Human Activities

Risks are ultimately caused by human demands and needs that generate human
activities. Examples of such activities are developing and operating a chemical
plant, living below sea level, drinking alcohol and traveling by car. Such activities
can lead to damage or loss involving human health, the environment or goods. The
aim of human activities is to produce benefits, but the inevitable side effect is the
creation of risks. This is why risks cannot be viewed separately from benefits.

Passchier, W.

Reij, W.

Risk is More Than Just a Number

RISK: Health, Safety & Environment, Vol. 8, 1997

1.87 Risky Shift

Risk shift is defined as the tendency of certain groups to become more extreme or
take riskier positions in their judgements than they would, acting as individuals.

William D. Rowe
An Anatomy of Risk
Robert E. Krieger Publishing Company, 1988
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1.88 Risk Acceptance

The willingness of an individual, group, or society to accept a specific level of risk
to obtain some gain or benefit is defined as risk acceptance.

William D. Rowe
An Anatomy of Risk
Robert E. Krieger Publishing Company, 1988

1.89 Risk as a Stimulus

An extremely important challenge for man is to learn how to live with uncertainty
so that risk can be an acceptable stimulus, rather an unacceptable threat.

Felix H. Kloman
Rethinking Risk Management
The Geneva Papers on Risk and Insurance, 17, 1992, 299-313

1.90 Risk as a Choice Rather Than a Fate

The word “risk” derives from the early Italian “risicare”, which means “to dare”.
In this sense, risk is a choice rather than a fate. The actions we dare to take, which
depend on how free we are to make choices, are what the story of risk is all about.
And that story helps define what it means to be human being.

Peter Bernstein

Against the Gods

The Remarkable Story of Risk
John Wiley & Sons, Inc., 1996

1.91 Essence of Risk Management

The essence of risk management lies in maximizing the areas where we have some
control over the outcome while minimizing the areas where we have absolutely no
control over the outcome and the linkage between effect and cause is hidden
from us.

Peter Bernstein

Against the Gods

The Remarkable Story of Risk
John Wiley & Sons, Inc., 1996
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1.92 Real Objective of Risk Management

Perhaps the real objective of risk management is to reduce fear of the unknown and
the unexpected, and to create confidence in the future. It is certainly not simply the
technical understanding of risk nor making financial provisions for alleviating the
pain of loss. To carry this theme further, could it have been some inchoate fear of
the future that spawned the incredible materialism and greed that have been the
symbols of the past decade? Are we so afraid of the future that, in compensation,
we devour the present, and, perhaps ironically, make a secure future less possible?
Considering the broad set of freedom from fear, we can conclude that there may be
a more significant role for risk management, to restore our faith in ourselves and
our futures, and to reestablish our confidence in our abilities to survive and
prosper. This is why rethinking risk management is so important today, in a period
in which we are beset by uncertainties. If risk management can contribute to the
larger goal of creating new confidence, reducing fear, it will be important to all of
us both individually and in the organizations and political structures in which
participate.

Felix Kloman
Rethinking Risk Management
The Geneva Papers on Risk and Insurance, 17, 1992, 299-313

1.93 Autopoiesis and Risk Management

To be alive, an entity must be autopoietic, that is, it must actively maintain itself
against the mischief of the world. Life responds to disturbance, using matter and
energy to stay intact. An organism constantly exchanges its parts, replacing its
component chemicals without ever losing its identity. This modulating, holistic
phenomenon of autopoiesis, of active self maintenance, is at the basis of all known
life; all cells react to “external perturbations in order to preserve key aspects of
their identity within their boundaries”.

Felix Kloman
Autopoiesis
Risk Management Reports, September 1996, Volume 23, No. 9

1.94 Uncertainty Principle of Risk Management

You will never know the losses avoided because of good risk management, but you
will eventually know the consequences of inadequate risk management.
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Chuck Marshall
Risk Management Reports
August 1997, Volume 24, No. 8

1.95 Risk Management and Probability Theory

As the years passed, mathematicians transformed probability theory from a gam-
blers’ toy into a powerful instrument for organizing, interpreting, and applying
information. As one ingenious idea was piled on top of another, quantitative
techniques of risk management emerged that have helped trigger the tempo of
modern times.

Peter Bernstein

Against the Gods

The Remarkable Story of Risk
John Wiley & Sons, Inc., 1996

1.96 Fundamental Factors of Risk Management Evolution

The following five factors could have significant effect on the continued develop-
ment of risk management as an important organizational discipline.

Risk Communication

Balkanization of Risk Management Practice
Short term versus Long term Thinking

Effect and Threat of Catastrophes

Role of the Insurance Industry

Felix Kloman
Rethinking Risk Management
The Geneva Papers on Risk and Insurance, Vol. 17, 1992, 299-313

1.97 Structural Elements of Risk Management

The structural elements of risk management are mainly provided by the following
scientific disciplines.
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General Management Theory
Economics

Systemics

Operational Research
Probability Theory

Decision Theory

Informatics

Behavioral Science

Felix Kloman
Rethinking Risk Management
The Geneva Papers on Risk and Insurance, Vol. 17, 1992, 299-313

1.98 Risk Management and Quality Control

Quality control is risk management in a particular area, and it would fit into a risk
management department that had appropriate status in the corporate organization.

Douglas Barlow
The Evolution of Risk Management
Risk Management, April 1993

1.99 Risk Manager Activities

The risk manager cannot be expected to personally minimize the adverse effects of
losses, but rather to act as an adviser and coordinator. In short, the risk manager
should be the catalyst to consolidate the efforts of all managers who control the
organization. Making risk management happen in an organization requires more
than just knowing risk management. It requires ingenuity and creative thinking.

Keith R. Gibson
Making Risk Management Happen in Your Organization
Risk Management, April 1991, Vol. 38, No. 4

1.100 Risk Management as Necessity

Risk exists whenever the future is unknown. Because the adverse effects of risk have
plagued mankind since the beginning of time, individuals, groups, and societies
have developed various methods for managing risk. Since no one knows the future
exactly, everyone is a risk manager not by choice, but by sheer necessity:
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C. Arthur Williams, Jr.

Richard M. Heins

Risk Management and Insurance
McGraw-Hill International Editions, 1985

1.101 Risk Management and Decision Making

The ability to define what may happen in the future and to choose among alter-
natives lies at the heart of contemporary societies. Risk management guides us over
a vast range of decision making, from allocating wealth to safeguarding public
health, from waging war to planning a family, from paying insurance premiums to
wearing a seatbelt, from planting corn to marketing cornflakes.

Peter Bernstein

Against the Gods

The Remarkable Story of Risk
John Wiley & Sons, Inc., 1996

1.102 Risk Management and Systemics

System, in the general sense of the term, is any kind of organization that integrates
space time and permits movement and development in the environment. Examples
of systems are a cell, a business organization, a society, a city, or a country. The
present section concentrates on the fundamental concepts of systems and the
relationships of these concepts with the important concept of risk.

1.102.1 Environment of System

Various flows—information, obligations, products, risks—exist between any system
and its environment. The system is influenced by and acts on its surroundings. What
are the interactions? What is their value? Where are the risks?

1.102.2 Aim of System

Any system is made up of interacting elements oriented to perform system’s aim. Each
element depends on its contribution to the whole. Is each element well positioned in
the whole? Does each element contribute to the risk? If yes, does it integrate
approaches to measure, control and reduce the risk in its contribution to the whole?
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1.102.3 Transformation

Each system in action puts its resources to work to produce foreseeable changes on
the incoming flows: This is the mission of the system. The risks are part of it.

1.102.4 Products of System

Products are the result of this transformation and are identified by the divergence
between the condition at input and after output. Is this change observable? Does
this increase or decrease risks? In particular, are the product’s risks under suffi-
cient control, and acceptable by the system’s surroundings?

1.102.5 Driving Mechanism of System

The system’s driving mechanism consists of the intervention of the elements—
variables of action—allowing the guiding of the device towards the attainment of
the objectives. Risk management is a matter of risk avoidance, reduction, transfer
and financing, but does a driving mechanism for this process exists? Is it active
regarding risks? What does the guidance mechanism tell us about risks?

1.102.6 Feedback Information

A system also has a tool that provides information on the system’s condition. This
information has to be transmitted to the driving mechanism. Are there detectors?
Do they take risks into consideration such as risks of loss, but also loss control,
measuring errors and processing errors?

1.102.7 Regulation

A system is also endowed with an interfering mechanism, aimed at stabilizing the
actualization of objectives on the defined level, and guided by feedback. Is that
feedback information utilized for consequent action? Is the system itself under
control, intervening at the appropriate time, at an adequate level and through
appropriate means on the components or interactions responsible for any
dysfunction?
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1.102.8 Anticipation\Resilience

A system must anticipate changes that will occur in the surrounding environment.
As a preventive measure, the system activates its adaptation reactions, but is it
functioning? Since anticipation is not always possible, is the system appropriately
trained to launch the reaction even in unanticipated circumstances? This adap-
tiveness and ability for resistance is called “resilience”. It is in this context that the
philosophy of risk management has to be proved.

Francois Settembrino
Risk Management in Enterprise: A Systemic Approach
Risk Management, August 1994, Vol. 41, No. 8

1.103 Combining Elements of Risk Management
and Resilience

Resilience is the ability of a system and its component parts to anticipate, absorb,
accommodate, or recover from the effects of a shock or stress in a timely and
efficient manner. Moreover, resilience a concept concerned fundamentally with how
a system, community or individual can deal with disturbance, surprise, and charge,
is framing current thinking about sustainable futures in an environment of growing
risk and uncertainty. Resilience has emerged as a fusion of ideas from multiple
disciplinary traditions including ecosystem stability, psychology, the behavioural
sciences and disaster risk reduction. Its recent appropriation by bilateral and
multilateral donor organizations is one example of how resilience is evolving from
theory into policy and practice. This appropriation has been driven by the need to
identify a broad-based discourse and set of guiding principles to protect devel-
opment advances from multiple shocks and stresses. Consequently, ‘resilience’ is
an agenda shared by those concerned with financial, political, disaster, conflict and
climate threats to development. Being a fusion of ideas and bridging many areas of
development policy and practice, resilience poses particular challenges for
programming

Tom Mitchell

Katie Harris

Resilience: A Risk Management Approach
Background Note

January 2012

Overseas Development Institute
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1.104 Ascendancy of Risk Management

Managing risk is not confined to the work of professional risk analysts and man-
agers. It has become an operational imperative for individual professionals,
organizations and governments. Risk assessment and management constitutes a
way of seeing the social world, which appears to be focused and managerially
controllable as risks become more elusive and complex. Consumers of services
expect risks to be identified and eliminated.

David Denney
Risk and Society
SAGE Publications, 2005

1.105 Risk Management and Crisis Management

Corporate leaders recognize that over the long term the only alternative to risk
management is crisis management, and crisis management is much more expensive,
time consuming and painful.

Chief Risk Officer of Fidelity Investments
Risk Mark
Famous Quotes

1.106 Risk Management and Cindynics

Cindynics is the new science of risks. As a subject of research, cindynics is
developing rapidly with the increasing number of major risks and the increasing
importance of risk management in modern complex organizations. The structural
elements of the conceptual framework of cindynics are the following. A set of
axioms on complex systems, a set of axioms for rationality operating in complex
combination of networks, a set of axioms specific of cindynics, a concept of
hyperspace for description of cindynic problems, a concept of cindynic situation, an
operator of transformation of cindynic situations, a concept of cindynic dissonance,
and a concept of event with a multidimensional structure. The international aca-
demic community of risk management recognizes and supports the role of the
conceptual framework of cindynics to the development of various new research
activities in the discipline of risk management.

Georges Kervern
Latest Advances in Cindynics
Economica, Paris, 1994
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1.107 Risk Management and Stochastic Models

The use of mathematics in the investigation of real systems has become wide spread
in recent times. This is partly due to the use of the scientific approach to problem
solving and the increasing computational power of computers and computing
methodology, both of which have made many more interesting problems amenable
to a mathematical solution. These very significant factors have made possible the
description, analysis, and solution with the use of mathematics of a very wide
variety and exceptional importance of real problems arising in many practical
disciplines.

The steps involved in using mathematics in the investigation of real world
systems are problem formulation, mathematical description, mathematical analysis,
and interpretation of analysis to obtain a mathematical solution. The most crucial
and important step is the satisfactory translation of the system from the real world
into a mathematical description. Once this is done, standard methods of mathe-
matical analysis can be used to obtain a solution of the problem. The mathematical
description is called a mathematical model and the sequence of activities for
obtaining it is called mathematical modeling. While mathematical modeling has had
a central consideration in economics, management, operational research, and
physics for many years, it now appears not only to have achieved a similar status in
such diverse fields as software, electronics, mechanics and other domains of
engineering, but also in biological and psychological sciences as well. Several
reasons were advanced to explain this situation. However, the main reason may lie
in the recent dramatic development of computing capabilities, particularly in the
form of microprocessors, which have enabled us to perform symbolic manipula-
tions in a way hitherto impossible. As a result, the complexity of the systems
modeled and the corresponding mathematical models have radically increased, a
complexity that has stimulated numerous contributions to support mathematical
modeling activities. The main reason of many important applications of mathe-
matical modeling in various scientific disciplines is the dramatic evolution of
computers over the last 30 years. Today mathematical modelers can perform
symbolic manipulations in such ways that these modelers could not imagine three
decades ago. The literature of modern mathematical modeling includes plethora of
excellent research publications which illustrate the very strong possibilities of the
combination of mathematical methodology and computational power. Result of this
combination is the increase of complexity of modeled real systems and the corre-
sponding mathematical models. These increases are challenges for the existing
processes of mathematical modeling and create opportunities for producing new
research publications supporting the mathematical modeling processes.

Many mathematical models are deterministic in the sense that they always give
the same output when a specific input is applied. A chance mechanism is included
in stochastic models. It has been observed that as a system, be it social, economic or
physical, gets more complex, it becomes more difficult to be described by deter-
ministic mathematical models. In fact, probability theory and stochastic models
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were developed in response to the failure of deterministic models to deal with
complicated systems. It is generally recognized that stochastic models can be
applied to practical situations in many ways. For the results to be applicable sto-
chastic models should be used in a region where they are valid.

It is generally accepted that stochastic models can be applied to practical situ-
ations in many ways. However, the successful implementation of a stochastic model
in a practical situation depends on the suitability of this model to describe the
particular practical situation. The ascertainment that a stochastic model provides a
suitable description of a real situation is an extremely difficult work, which requires
that the modeler must be very careful. Practical experience has shown that it is an
inevitable requirement the verification of the suitability of a stochastic model has to
be repeated many times by various experts in stochastic modeling matters. If the
verification of the reliability of a stochastic model is not possible then the appli-
cation of this model to the description and analysis of real situations should be
avoided.

The quantitative character of risk severity, risk frequency, risk occurrence time,
risk duration, and risk occurrence space and other fundamental components of the
complex concept of risk permit the use of mathematical models in risk management
problems. Moreover, since the quantitative components of risk are random variables
then these models are stochastic. The last 30 years the developments in the disci-
pline of risk management are impressive. These developments are largely due to the
use of stochastic models in describing, analyzing, and implementing the safety
operations of a firm, namely risk identification, risk measurement, and risk
treatment.

A thorough examination of stochastic modeling in the development of risk
management as an important function of a firm reveals the very significant role of
basic and mixed probability distributions in the implementation of risk measure-
ment and risk treatment. Since the evaluation of the probability distribution of a
stochastic model is a very difficult and sometimes impossible procedure, then it is
appropriate the interpretation of a given basic or mixed probability distribution as
the probability distribution of a stochastic model which is used to describe and
analyze problems or situations in the area of risk management.

The present section of this work presents the theoretical and practical possibil-
ities of stochastic modeling and stochastic models for shaping risk management as a
particular important discipline of general management. More precisely, the present
section makes quite clear that stochastic models are very strong analytical tools for
implementing the risk management operations of an organization. Moreover, this
section interprets the significant role of basic and mixed probability distributions in
stochastic modeling and stochastic models.

Risk managers and experts in formulating and applying stochastic models are
very often involved in making forecasts for the results of random procedures and
activities. This means that understanding of the uncertainty constitutes the most
crucial factor for the realization of principles, operations, and strategic objectives of
risk management. Moreover, it is very important risk managers and other risk
experts to recognize and accurately transmit the existing uncertainty. During the last
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four decades, the bibliography and practice of risk management recognize proba-
bility theory as the most suitable discipline for the mathematical representation of
uncertainty. This implies that stochastic modeling and stochastic models have a
significant role in the very wide area of practical applications of risk management.

Risk managers and other risk experts obtain valuable information concerning
selection and implementation of safety operations by making use of stochastic
models. The bibliography of risk management frequently makes use of the term
“risk management operations” instead of the term “safety operations”.

The existence of stochastic models available for describing real problems in the
area of risk management enables the evaluation of alternative courses of action
when designing a proactive risk management program, which is a key factor for the
implementation of the strategic goals of a firm. The clarification of the role of time
in formulating a stochastic model for risk management is very important. Many
problems in the area of risk management can be described and solved by static
stochastic models, or equivalently by stochastic models which are free of the
concept of time. Examples of static stochastic models for risk management are the
tree diagrams of probabilistic analysis of safety of various systems. The elimination
of the concept of time from these tree diagrams is made for more accurate modeling
of the structural elements of the system. Also many problems in the area of risk
management can be described, analyzed, and solved by making use of dynamic
stochastic models, or equivalently by stochastic models that include the concept of
time. The practical usefulness of dynamic stochastic models of risk management is
greater than the practical usefulness of static stochastic models of risk management.
However the formulation, investigation, and implementation of dynamic stochastic
models of risk management are more difficult than the formulation, investigation,
and implementation of static stochastic models of risk management. Static and
dynamic stochastic models of risk management are based on many assumptions that
must be checked very carefully in order to avoid false interpretations of these
stochastic models. Moreover, every stochastic model of risk management always
involves an unknown relationship between its random variables which relationship
has the potential to generate a sequence of random events with catastrophic
consequences.

The stochastic consideration of risk management is based on the general prob-
lem of decision making under conditions of uncertainty. Traditionally this problem
has been addressed by the theory of expected utility. This theory is of course very
limited for the description and treatment of real situations, but the theory of
expected utility helps internal consideration of decision making under conditions of
uncertainty by focusing the attention of researchers on the validity of the axioms
of the theory. Decision making under conditions of uncertainty makes use of sto-
chastic models for predicting the results of specific managerial actions.

The international scientific community of risk management has indicated a very
significant interest in stochastic models. These models are used in many areas of
risk management since risk managers, and other risk experts, work in an envi-
ronment which is extremely complex and uncertain. The fact that stochastic models
enable the users of these models to isolate and study the various cognitive
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procedures involved implies that risk managers can significantly improve the
decision making processes to treat risks that threaten the efficient function and
integrity of various firms. The quantitative information for the risks threatening
various firms is absolutely necessary if risk managers are to take effective decisions
for controlling and financing these risks. The stochastic models of risk management
are very important for the analysis of such quantitative information. The mystery
surrounding the application of stochastic models to problems occurring at the area
of risk management prevents risk managers and other risk experts to successfully
implement these models. Risk managers argue that processes of making and
implementing effective decisions in various areas of risk management should be
based on stochastic models which are the results of hard and lengthy efforts. It is
generally accepted that very good managerial skills are necessary for the successful
implementation of risk management objectives. However, without the use of
effective risk management stochastic models then the successful implementation of
the objectives of risk management is impossible.

During the last 30 years risk management became global, systemic, and proactive.
The fundamental risk management operations, namely risk identification, risk mea-
surement, and risk treatment have shown significant improvement due to the extensive
use of stochastic models. A very interesting research area of stochastic modeling is the
formulation, investigation, and application of stochastic models for the description,
analysis, and control of risk management operations incorporating the concepts of risk
severity, risk frequency, and risk duration. The main purpose of the present work is the
formulation and investigation of stochastic models incorporating the risk severity, risk
frequency, and risk duration. The particular practical significance of these quantitative
components of the concept of risk is the main reason for the consideration of the
stochastic models of this work.

The recognition of probability theory as a fundamental structural factor of risk
management constitutes a very important reason for undertaking research activities
in the area of probability distributions arising in stochastic modeling of safety
operations. A description of the role of stochastic models in risk management
problems makes quite clear the importance of the applications of probability dis-
tributions in the fundamental safety operations. These applications make use of very
strong results of probability theory and provide risk managers with very useful
information for risk management decision making.

Empirical investigations concentrating on the applications of risk management in
modern large organizations make quite clear that risk managers and other risk
experts substantially support the formulation, investigation, and use of stochastic
models for the treatment of new risks threatening these organizations. More pre-
cisely, for the treatment of new risks related to space exploration, engineering, and
use of computers.



Chapter 2
Stochastic Models of Risk Management
Concepts

Abstract The formulation and investigation of stochastic models for the funda-
mental quantitative concepts of risk management constitute the purpose of this
chapter. The concepts of the main quantitative components of risk and the concepts
of the main quantitative components of risk control and risk financing operations
constitute the fundamental quantitative concepts of risk management. This chapter
consists of two parts. The first part concentrates on the formulation and investi-
gation of stochastic models for risk severity, risk duration, risk frequency, and total
risk severity which are the main quantitative components of risk. The second part
concentrates on the formulation and investigation of stochastic models for the time
required for treating a risk occurrence, the time of the first occurrence of a major
risk, the minimum time of a random number of risk occurrences, the number of
ongoing risk occurrences, the multiplicative risk severity, and the riskiness which
are the main quantitative components of risk control and risk financing operations.

2.1 Introduction

The purpose of the present chapter is the formulation and investigation of stochastic
models for the fundamental quantitative concepts of the discipline of risk
management. These concepts include the concepts of the main quantitative
components of risk and the concepts of the main quantitative components of risk
control and risk financing operations. Risk severity, risk duration, risk frequency,
and total risk severity are the main quantitative components of risk. The concepts of
the main quantitative components of risk and the stochastic models of these con-
cepts constitute the first part of the present chapter. The time required for treating a
risk occurrence, the time of the first occurrence of a major risk, the minimum time
of a random number of risk occurrences, the number of ongoing risk occurrences,
the multiplicative risk severity, and the riskiness are the main quantitative com-
ponents of risk control and risk financing operations. The concepts of the main
quantitative components of risk control and risk financing operations and the
stochastic models of these concepts constitute the second part of the present

© Springer International Publishing Switzerland 2015 59
C. Artikis and P. Artikis, Probability Distributions in Risk Management Operations,
Intelligent Systems Reference Library 83, DOI 10.1007/978-3-319-14256-2_2



60 2 Stochastic Models of Risk Management Concepts

chapter. The stochastic models of the fundamental quantitative concepts of risk
management are generally recognized as very strong analytical tools for investi-
gating problems and making decisions in various areas of this discipline. These
models provide risk experts with valuable information for the implementation of
risk management principles. The implementation of risk management principles is
realized with the contribution of the stochastic models of the main quantitative
components of risk as structural elements in stochastic modeling activities of the
main quantitative components of risk control and risk financing operations. In
conclusion, the importance of the stochastic models of the main quantitative
components of risk substantially supports the importance of the stochastic models
of the main quantitative components of risk control and risk financing operations.

The investigation of the stochastic models of the fundamental concepts of risk
management uses the results of the theory of mixed probability distributions. In
particular, the very strong results of the theory of characteristic functions corre-
sponding to mixed probability distributions are very useful for investigating
properties of such stochastic models. The establishment of unimodality, infinite
divisibility, selfdecomposability, and other properties for the probability distribu-
tions of the stochastic models describing the fundamental concepts of risk
management is facilitated by the use of the corresponding characteristic functions.

2.2 Model of Risk Severity

The economic loss due to the occurrence of a risk is defined as risk severity. The
suitable stochastic model for the description and analysis of risk severity is a
continuous random variable X with values in the interval (0, co).

The distribution function Fx(x), the probability density function fx(x), and the
characteristic function @y (), u € R of the random variable X are the concepts of
probability theory which constitute the basic analytical tools for investigating the
behaviour of risk severity. The establishment of infinite divisibility, selfdecom-
posability, unimodality and other properties of the probability distribution of risk
severity substantially supports the activities of developing, investigating, and
applying of various risk control operations. These operations are the structural
elements of proactive risk management which is generally recognized as the
modern perspective of this discipline.

2.3 Model of Risk Duration

The length of the time interval in which the cause of a risk creates economic loss is
defined as risk duration. The suitable stochastic model for the description and
analysis of risk duration is a continuous random variable S with values in the
interval (0, c0).
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The distribution function Fi(s), the probability density function fs(s), and the
characteristic function @g(u) of the random variable S are the concepts of proba-
bility theory which constitutes the basic analytical tools for investigating the
behavior of risk duration. The establishment of theoretical properties for the
probability distribution of risk duration substantially supports the activities of
developing, investigating, and applying of various risk control operations. Risk
duration can be used in the formulation of stochastic multiplicative models for the
description and analysis of risk severity.

2.4 Model of Risk Frequency

The number of the occurrences of a risk in a given time interval is defined as risk
frequency. The suitable stochastic model for the description and analysis of risk
frequency is a discrete random variable N with values in the set No = {0, 1,2,...}.

The probability function P(N =n) =p,,n=0,1,2,... and the probability
generating function Py(z),|z] < 1 of the random variable N are the concepts of
probability theory which constitute the basic analytical tools for investigating the
behavior of risk frequency. The establishment of theoretical properties for the
probability distribution of risk frequency supports the activities of developing,
investigating, and applying of various risk control operations. Risk frequency is
particularly useful in formulating stochastic models for the description and analysis
of total risk severity. These models are structural elements of risk control and risk
financing operations.

The consideration of risk frequency in a time interval of the form [0,7] is of
significant practical interest. In this interval, risk frequency is represented by the
random variable N(7) with probability generating function

Py (z,0). (2.4.1)

In this case {N(z),7 > 0} is a counting stochastic process.
The consideration of risk frequency in a time interval of the form [0, T], where T
is a continuous random variable with probability density function

fr(0), (2.4.2)

is particularly useful in a wide variety of practical disciplines. The risk frequency in
the time interval [0, T is represented by the random variable K.
The probability generating function of this random variable has the form

Px(z) = E(E(Z¥|T)). (2.4.3)
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From (2.4.2) and (2.4.3) it follows that
/E (K| = t)fr(t)ar. (2.4.4)
0

Since the random variable K|T = ¢ is equally distributed with the random var-
iable N(r) then we get that

E(K|T =1) = E(ZN@). (2.4.5)
From (2.4.1) and (2.4.5) we get that
E(Z*|T = 1) = Py (2, 1). (2.4.6)

If we use (2.4.6) in (2.4.4) then the probability generating function of the random
variable K has the form

/PN (z, O)fr(t) (2.4.7)
0

If the counting stochastic process {N(z),# > 0} is a homogeneous Poisson

process with probability generating function Py (z,1) = 1) 7> 0, then
(2.4.7) has the form

o0

Pk(z) = / M (t)dr. (2.4.8)

0

Since the homogeneous Poisson process is the most important counting process,
from a theoretical and a practical point of view, and the discrete distributions with
probability generating functions of the form (2.4.8) are strong tools of probability
theory then the evaluation of special cases of (2.4.8) is very interesting.

If the random variable T follows the uniform distribution with probability
density function

fr)=1, 0<r<l, (2.4.9)

then from (2.4.8) and (2.4.9) it follows that the discrete random variable K, which
denotes the risk frequency in the time interval [0, 7], has probability generating

function Pk(z f @ dt or equivalently
0
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1— el(zfl)

The probability generating function (2.4.10) belongs to the renewal distribution
which corresponds to the Poisson distribution.

If the random variable T follows the exponential distribution with probability
density function

fr®) =pe™ t > 0, u > 0, (2.4.11)

then from (2.4.8) and (2.4.11) it follows that the random variable K, which denotes
the risk frequency in the time interval [0, 7], has probability generating function

Px(z) = / M e gy
0

or equivalently

u
Px(z) =——F7—. 24.12
If wesetp = #% and g = Fiu’ then the probability generating function (2.4.12)

has the form

p

PK(Z) = I _qz.

(2.4.13)

The probability generating function (2.4.13) belongs to the geometric type I
distribution.
We suppose that the Laplace transform of the random variable T is

oo

o(p) = / eI (1)dt, p > 0, (2.4.14)
0

Since the probability generating function (2.4.8) has the form

Px(z) = / e U= (1)t (2.4.15)
0
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then from (2.4.14) and (2.4.15) it follows that
Pk(z) = w(A(1 —2)). (2.4.16)

A particular case of (2.4.16) is the following. We suppose that the distribution of
the random variable T belongs to the class of continuous stable distributions with
Laplace transform

olp)=e*,0<y < 1. (2.4.17)

From (2.4.16) and (2.4.17) it follows that the random variable K, which denotes
the frequency of risk in the time interval [0, 7], has probability generating function

Px(z) = e #0797, (2.4.18)

The probability generating function (2.4.18) belongs in a distribution which is a
member of the class of discrete stable distributions. The class of discrete stable
distributions is very important, in theory and practice, for five reasons. The first
reason is the unimodality of the discrete stable distributions. The infinite divisibility
of the discrete stable distributions is the second reason. The fact that the class of
discrete stable distributions includes distributions of significant theoretical and
practical interest constitutes the third reason. An example of such distribution is the
Poisson distribution with probability generating function Pk (z) = ¢*“~!) being of
the form (2.4.18) with y = 1.

The fourth reason is the representation of a discrete random variable L, with
values in the set No = {0, 1,2,...} and distribution belonging to the class of dis-
crete stable distributions, as a Poisson random sum of random variables following
the Sibuya distribution. The representation is implemented in the following way.
Since the distribution of the random variable L belongs to the class of discrete stable
distributions then the probability generating function of the random variable L has
the form

Pz) =9 >0 0<y<1. (2.4.19)

The probability generating function (2.4.18) is of the form (2.4.19) with ¢ = A7.

We consider the discrete random variable E which follows the Poisson distri-
bution with probability generating function Pz(z) = ¢““~!) and the sequence of
independent random variables {X;, e = 1,2,...}.

The random variable E is independent of the sequence {X;,¢=1,2,...} of
random variables distributed as the random variable X which follows the Sibuya
distribution with probability generating function Px(z) =1 — (1 —z)".

Since the probability generating function Py (z) = e “('~9" has the form Py (z) =
¢1=(1=9"~1] then the random variable L has the form of a Poisson random sum of
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random variables following the Sibuya distribution, or equivalently the random
variable L has the form L = X; + X, + - - - + XE.

The fifth reason is the construction of important mixed distributions with the use
of the class of discrete stable distributions.

2.5 Total Risk Severity

The discrete random variable N with values in the set No = {0,1,2,...} and
probability generating function Py(z) is independent of the sequence of continuous,
positive, independent, and identically distributed random variables {X,,n =
1,2,...}.

The random variables of the above sequence are equally distributed with the
random variable X which has characteristic function ¢y (u).

If the random variable N represents the frequency of a risk and the random
variable X,, represents the severity of the nth risk occurrence then the random sum
L =X; + X, + -+ + Xy represents the total risk severity. The study of the total risk
severity is based on the characteristic function ¢, (u) since it is not possible the
evaluation of the distribution function F(¢) and the evaluation of the probability
density function f; ().

The characteristic function ¢, (u) is evaluated in the following way. We have
that ¢, (u) = E(e™") or equivalently

or(u) = E(E(e"|N)). (2.5.1)

From (2.5.1) it follows that

o (u E(e"|N =n) P(N =n)
n=0
or equivalently
or(u) = E(e"¥ XN = n) PN = n). (2.5.2)

n=0

From (2.5.2) it follows that

g

@ (u) =) E(e" .- "™ |N =n) P(N =n). (2.5.3)

Il
=}

n

The independence of the random variable N from the sequence of random
variables {X,,n =1,2,...} implies the independence of the random variables
N.Xi, ..., X,
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Hence the random variables N, ™1 ... ¢™* are independent and the random
variables ¢™X1, ... ¢ are also independent. It is easily seen that (2.5.3) has the
form

> . .
o (1) = E(e").. .E(e™")P(N = n). (2.5.4)
n=0

Since

ox(u) = E(ei“x”), n=172,...

then (2.5.4) has the form
o) = > @y (W)P(N = n). (25.5)

From (2.5.5) it follows that the characteristic function of the total risk severity
has the form

¢ (u) = Py(dx(u)). (2.5.6)

The characteristic function (2.5.6), the theorem of inversion of characteristic
functions, and the Fast Fourier Transform algorithm make possible the study of the
probabilistic behavior of the total risk severity. This behavior is important for
making decisions in the areas of risk control and risk financing operations.

The mean value of the total risk severity E(L) can be used in risk classification
operations. The mean value of the total risk severity can be evaluated in the
following way. From (2.5.6) we get that

@1 () = @ )Py (@x (u)). (2.5.7)

Hence (2.5.7) implies that

?1.(0) = px(0)P (¢x(0)). (2.5.8)

E(L) = E(X)E(N). (2.5.9)

A special case of the total risk severity, with significant practical interest, is the
following.

We suppose that the frequency of a risk follows the Bernoulli distribution with
probability function P(N = n) = p"q' ™", n =0, 1.
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The probability generating function of the random variable N is Py(z) = g + pz.

The mean value of the random variable N is E(N) = p.

We suppose that the severity of a risk is a continuous and positive random
variable X with characteristic function ¢y (1) and mean value E(X).

The total severity of risk is the random variable

0, N=0
L‘{x N=1.

The characteristic function of the total risk severity L is ¢, (u) = g + poy(u).

From (2.5.9) we get that the mean value of the total severity L is E(L) = pE(X).

An extension of the random sum L = X; + X, + - -- + Xy as a model of total
risk severity is the following. Let N be a discrete random variable with values in the
set No = {0,1,2,...} and probability generating function Py(z).

Let {V,,n=1,2,...} be a sequence of discrete and independent random vari-
ables, distributed as the random variable V with values in the set No = {0, 1,2,...}
and probability generating function Py(z).

We suppose that the random variable N is independent of the sequence of
random variables {V,,n =1,2,...} and we set K = V| + Vo + -+ - + Vy.

Let {X.,k =1,2,...} be a sequence of continuous, positive and independent
random variables, distributed as the random variable X with characteristic function
ox(u), and we set L=X; +Xo + - - - + Xk.

An interpretation of the random variable L = X; + X, + - - - + Xk in the area of
stochastic models of total risk frequency is the following.

We suppose that the random variable N denotes the frequency of a risk and the
random variable V,, denotes the number of different damages due to the nth risk
occurrence. The random variable K = V| + V5 + - - - 4+ Vy denotes the number of
different damages due to the N risk occurrences. The random variable X,. denotes
the size of the xth damage. Hence the random variable L = X; + X, + - - - + Xk
denotes the total severity of risk.

The following result establishes sufficient conditions for the evaluation of the
characteristic function ¢; (1) of the random variable L = X; + X, + - - - + Xk.

Theorem 2.5.1 Let N be a discrete random variable with values in the set
No ={0,1,2,...} and probability generating function Py(z).

Let {V,,n=1,2,...} be a sequence of discrete and independent random
variables, distributed as the random variable V with values in the set
No ={0,1,2,...}, and probability generating function Py(z).

We set

K=Vi+Vy+---+Vy.

Let {X,x =1,2,...} be a sequence of continuous, positive, and independent
random variables distributed as the random variable X with characteristic function

Px(u).
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We set

L=X+X,+ -+ Xk.

If N, {Vo,n=1,2,...} and {X,.,k =1,2,...} are independent then the
characteristic function of the random variable L=X +X,+---+Xg is
¢ (u) = Pn(Pv(x(u))).

Proof We have ¢, (1) = E(e™L) or equivalently

oL(u) = E(E(e"|K)).

(2.5.10)
From (2.5.10) we get that
E(e"|K = k)P(K = k)
k=0
or equivalently we get that
or(u) = ZE(ei”(X‘+"'+XK)|K = ;c) P(K = k). (2.5.11)
k=0
From (2.5.11) it follows that
o, (1) = ZE(e"”<X1+"'+X~)|K - x) P(K = K). (2.5.12)
k=0
Since K = V; + V, + -+ - 4+ Vy then (2.5.12) has the form
o8
ZE( u(Xi++X,) +V2+~~-+VN:K)P(V1+V2+~~+VN:K).
k=0
(2.5.13)

We shall prove that the random variables A =X; +X, +---+ X, and

K =V, + V,+ -4 Vy are independent. If ¢ ,(u) is the characteristic function of
the random variable 4 = X; + X, + -

-+ 4 X, then we get that ¢ ,(u) = E(e™*) or
equivalently we get that

0 (1) = E(ei"(ler"‘*X")). (2.5.14)
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From (2.5.14) it follows that

o (u) = E(ei”X‘+"‘+i”Xh). (2.5.15)

Since the random variables of the sequence {X,,x = 1,2,...} are independent

then the random variables X , ..., X, are independent. The independence of the

above random variables implies the independence of the random variables
X L e,

Hence (2.5.15) has the form
@ 4(u) = E(e"). . .E(e""). (2.5.16)

Since the random variables of the sequence {X,,x = 1,2,...} are equally dis-
tributed with the random variable X having characteristic function @y(u) then
(2.5.16) has the form ¢ (1) = @%(u).

Let ¢@g(&) be the characteristic function of the random variable
K=Vi+Vo+.-- 4+ Vy.

The independence of {V,,n =1,2,...}, N and {X,,x =1,2,...} implies the
independence of {V,,n=1,2,...} and N.

Since the random variables of the sequence {V,,n = 1,2,...} are independent
and equally distributed with the random variable V and since the random variable N
has probability generating function Py(z) then from (2.5.6) it follows that the
characteristic function of the random variable K = V| + V, + - - - 4+ Vy is @ (&) =
Py (@y(&)) where ¢y (&) is the characteristic function of the random variable V.

The proof of the independence of the random variables 4 = X; + X, + - - - + X,
and K=V, 4+ V,+---+Vy requires the establishment of the relationship
Pax(u, &) = @ (u)pg (&) where @, ¢ (u, &) is the characteristic function of the
vector (A4, K).

We have ¢, (u,&) = E(e"T<K) or equivalently we have ¢, (u,&) =

E(E(EiuA+iéK|N)).
Hence
N u(Xi+Xo -+ X ) HiEK _
ok, &) = ZE( IN = )P(N_ n). (2.5.17)
n=0

From (2.5.17) it follows that

00
o, I( ZE( u(X1+Xa 44X ) +HE(Vi+Vat+Vy) |N )P(N — n)
n=0
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or equivalently it follows that

M8

Pk, &) = ( U XA XK HE VI V4 V) |y = )P(N =n). (2.5.18)

n=0

From (2.5.18) it follows that

Pk, &) =) E(M.. eV "IN = n)P(N = n). (2.5.19)
=0

n

The independence of {V,,n =1,2,...}, N and {X,,x = 1,2,...} implies the
independence of the random variables Vy, ..., V,, Xi, ..., X, N.
The independence of the above random variables implies the independence of

the random variables 1 | ... eVr, X1 X< N,
Hence (2.5.19) has the form
0 . e .
4 x( E(e"X. . "Xe V1. e V")P(N = n). (2.5.20)
n=0
The independence of the random variables e™1, ... ™ o<V elcVi N
implies the independence of the random variables e”‘xl, et eV iV,
Hence (2.5.20) has the form
©0 s s
E(e"™).. .E("*)E(e""").. .E(e"")P(N = n). (2.5.21)
n=0

Since the random variables of the sequence {X,,x = 1,2,...} are equally dis-
tributed with the random variable X having characteristic function @y () and the
random variables of the sequence {V,,n = 1,2,...} are equally distributed with the
random variable V with characteristic function ¢ (1) then (2.5.21) has the form

01k, &) = Q5 () Y @} (E)P(N = n)
n=0
or equivalently the form
(p/l,l((uv ) = ox(u)Pn(py(£)). (2.5.22)

Hence (2.5.22) has the form ¢ 4 (1, &) = ¢ 4(u)@g (&), which means that the
random variables A =X;+Xp+---+ X, and K=V +V,+---+Vy are
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independent. The independence of the above random variables implies that (2.5.13)
has the form

o0
QDL(M) _ ZE(eiu(XHr..,JrX;‘))P(Vl + Vot V= K)
k=0

or equivalently the form

o0

oL(u) = QxWP(Vi+ Vo -+ Vy = x). (2.5.23)
k=0

Since the random variables of the sequence {V,,n = 1,2,...} are equally dis-
tributed with the random variable V having probability generating function Py(z)
and Py(z) is the probability generating function of the random variable N.

Then from the form (2.5.6), for probability generating functions, it follows that
the probability generating function of the random sum K =V, + V, +--- 4+ Vy is
Pk (z) = Py(Py(z)).

Since
Pk(z) = iz"P(K = k)
ey}
or equivalently
Pu(Po(@) = S EP(YL 4+ Voot Vy = 8)
k=0

then (2.5.23) implies that the characteristic function of the random sum
L:X1+X2++XK WlthK:V1+V2++VN IS

¢r(u) = Py(Pv(ox(u))). (2.5.24)

The consideration of special cases of the probability generating function (2.5.24)
when the random variable N follows the Poisson distribution is very important
because the Poisson distribution is the most usual distribution of risk frequency.

We suppose that the random variable N follows the Poisson distribution with
probability generating function

Py(z) = &Y (2.5.25)
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and the random variable V follows the Poisson distribution with probability
generating

Py(z) = "D (2.5.26)

then from (2.5.24), (2.5.25) and (2.5.26) it follows that the probability generating
function Pg(z) = Py(Py(z)) of the random sum K = V; + V5 + - -+ + Vi has the
form

Px(z) = exp [,1(@9&*1) - 1)} (2.5.27)

Hence the random sum K = V| + V, 4 --- + Vy follows the Neyman type A
distribution. We suppose that the random variable X follows the exponential dis-
tribution with characteristic function

u

oxlu) =t (2.5.28)

From (2.5.24), (2.5.27) and (2.5.28) it follows that the characteristic function of
the random sum L = X; 4+ X; + - - - + Xk has the form

o (u) = exp{i[go(ﬁfl) _ 1] }

If the random variable N follows the Poisson distribution with probability
generating function

Py(z) = €D (2.5.29)

and the random variable V follows the binomial distribution with probability
generating function

Py(z) = (pz+q)" (2.5.30)

then from (2.5.24), (2.5.29) and (2.5.30) it follows that the probability generating
function Pg(z) = Py(Py(z)) of the random sum K = V; + V, + - -+ + Vy has the
form

Px(z) = exp{[(pz + ¢)"—1]}. (2.5.31)

Hence the random sum K = V| + V, + - - - + Vy follows the Poisson — binomial
distribution. We suppose that the random variable X follows the uniform distri-
bution with characteristic function



2.5 Total Risk Severity 73

ox() =——. (2.5.32)

From (2.5.24), (2.5.31) and (2.5.32) it follows that the characteristic function of
the random sum L = X; + X; + - - - + Xk has the form

o, () = exp{ﬂ,ermi; Ly q)m—q }

If the random variable N follows the Poisson distribution with probability
generating function

Py(z) = "<V (2.5.33)

and the random variable V follows the geometric type II distribution with proba-
bility generating function

Z
Py(z) =1 b - (2.5.34)

then from (2.5.33) and (2.5.34) it follows that the probability generating function
Px(z) = Py(Py(z)) of the random sum K = V| + V, + - - - + Vy has the form

Px(z) = exp{){l P 1} } (2.5.35)

Hence the random sum K = V| + V, 4 ---+ Vy follows the Polya-Aeppli
distribution. We suppose that the random variable X follows the exponential
distribution with characteristic function

oy () = ﬂfiu. (2.5.36)

From (2.5.24), (2.5.35) and (2.5.36) it follows that the characteristic function of
the random sum L = X; + X; + - - - + Xk has the form

sz )

We suppose that the random variable N follows the Poisson distribution with
probability generating function

Py(z) = &Y (2.5.37)



74 2 Stochastic Models of Risk Management Concepts

and the random variable V has the form V = II + 1, where I is a random variable
following the Poisson distribution with probability generating function
Pri(z) = %),

The probability generating function of the random variable V is

Py(z) = ze" V. (2.5.38)

From (2.5.24), (2.5.37) and (2.5.38) it follows that the probability generating
function Pg(z) = Py(Py(z)) of the random sum K = V; + V5 + - -+ + Vi has the
form

Pi(z) = exp{ 2]z’ — 1] }. (2.5.39)

Hence the random sum K = V| + V, + - - - + Vy follows the Thomas distribu-
tion. We suppose that the random variable X follows the gamma distribution with
characteristic function

Py (u) = (u - m) (2.5.40)

From (2.5.24), (2.5.39) and (2.5.40) it follows that the characteristic function of
the random sum L = X; 4+ X; + - - - + Xk has the form

out) = exp{ i (21 ) el )] L

We suppose that the random variable N follows the Poisson distribution with
probability generating function

Py(z) = &V (2.5.41)

and the random variable V follows the renewal distribution corresponding to the
distribution of the random variable D, which follows the Poisson distribution with
probability generating function Pp(z) = ¢"@=1)_ The probability generating func-
tion of the random variable V is

1— 60(171)

From (2.5.41) and (2.5.42) it follows that the probability generating function
Pk (z) = Py(Py(z)) of the random sum K = V; 4+ V, + - - - + Vi has the form

Pe(e) = exp{z[lezf—(’_‘;)” -1} (25.43)
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Hence the random sum K = V; + V, + - -- + Vy follows the Neyman type B
distribution. We suppose that the random X follows the uniform distribution with
characteristic function

et —1
ox(u) = o (2.5.44)

From (2.5.24), (2.5.43) and (2.5.44) it follows that the characteristic function of
the random sum L = X; 4+ X; + - - - + Xk has the form

EC )
(pL(M) = exp A m— 1

iu

2.6 Recovery Time of a Partially Damaged System

We consider the occurrence time of a risk as the time point 0. The occurrence of the
risk interrupts N operations of a system, where N is a discrete random variable with
values in the set N = {1,2,...} and probability generating function Py(z).

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are distributed as the random variable X with distribution function
F X (X) .

The sequence of random variables {X,,n=1,2,...} is independent of the
random variable N.

If the random variable X,, denotes the time required for the recovery of the
nth interrupted operation of the system then the random variable
T = max(X;,X;, ..., Xy) denotes the time required for the recovery of the system.

The evaluation of the distribution function Fr(z) of the random variable
T = max(X;, X, ..., Xy) is particularly important for the study of the behavior of
the system after the occurrence of the risk. Since Fr(¢) = P(T < t) or equivalently

Fr(1) = Plmax(X,, X, ..., Xy) < 1] (2.6.1)

then (2.6.1) implies that

Fr(r) = iP[max(Xl,Xz, .. Xy) <IN =n]P(N = n)

n=1
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or equivalently

Fr(r) = iP[max(Xl,Xz, .. X)) < 1IN = nP(N = n). (2.6.2)

n=1

Since the event [max(Xj,Xs,...,X,) <N =n] implies the event
X1 <1,X, <t,...,X, <N =n) then (2.6.2) has the form

Fr(t) =Y P(X; <t,X, < t,...,X, < t][N =n)P(N = n). (2.6.3)

n=1

The independence of the random variable N from the sequence of continuous,
positive, independent, and identically distributed random variables {X,,,n = 1,2, ...}
means the independence of the random variables N, X1, Xz, . . ., X,.

Hence (2.6.3) has the form

Fr() = iP(XI <1,Xs <t,.... Xy < )P(N = n). (2.6.4)

n=1

Since the random variables of the sequence {X,,n = 1,2,...} are independent
then (2.6.4) has the form

o0

Fr(t) =Y _P(X; < )P(X, < 1)...P(X, < t)P(N =n). (2.6.5)

Moreover, the assumption that the random variables of the sequence
{Xu,n=1,2,...} are distributed as the random variable X having distribution
function Fy(x) then (2.6.5) has the form

Fr(t) =) Fy(t)P(N = n). (2.6.6)
From (2.6.6) it follows that the distribution function of the random variable

T = max(X1,X,,...,Xy) is
Fr(t) = Py(Fx(t)), t > 0. (2.6.7)

An interesting special case of (2.6.7) arises if the random variables of the sequence
{Xy,n =1,2,...} follow the exponential distribution with distribution function

Fx(x)=1—e"™ x>0,p>0 (2.6.8)
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and the random variable N follows the Sibuya distribution with probability gen-
erating function

Pyvz)=1-(1-2),0<y<1. (2.6.9)

From (2.6.7), (2.6.8) and (2.6.9) it follows that the distribution function of the
random variable 7 = max(X;,X,,...,Xy) has the form Fr(r)=1-[1 — (1—
e *))", t > 0 or equivalently the form Fr(t) =1 —e 7' ¢t > 0.

Hence, in this special case, the random variable T = max(Xj, Xz, ..., Xy) fol-
lows the exponential distribution with parameter py.

Another special case of (2.6.7) arises if the random variables of the sequence
{X,,n=1,2,...} follow the uniform distribution with distribution function

Fx(x)=x,0<x <1, (2.6.10)

and the random variable N follows the geometric type II distribution with proba-
bility generating function

_ P
1—gqz

Py(2) (2.6.11)

From (2.6.7), (2.6.10) and (2.6.11) it follows that the distribution function of the
random variable T = max(X;, Xy, ..., Xy) has the form Fr(z) = lf—’qt, 0<r<l.

The present section is based on the assumption that the risk occurrence, inter-
rupting N operations of a system, is realized at given time point called time point 0.
This assumption does not agree with the random character of risk management. In
practice, the time point O is a sufficiently small and closed time interval where a risk
occurs with probability 1. Consequently, any point of such an interval can be
considered as the occurrence time point of a risk and the random variable
T = max(X,Xaz,...,Xy) can the be interpreted as a stochastic model for the
recovery time of a partially damaged system.

The distribution function Fr(z) = Py(Fx(¢f)) of the random variable
T = max(X;,X,, ..., Xy) provides probabilistic information which makes the time
interval [0, T] particularly important for the implementation of the risk management
principles and operations.

2.7 Time of First Damage of a System Threatened
by a Random Number of Risks

The discrete random variable N with values in the set N = {1, 2, ...} and probability
generating function Py(z) is independent of the sequence of continuous, positive,
independent, and identically distributed random variables {X,,,n = 1,2,...}.
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The random variables of the above sequence are distributed as the random
variable X having distribution function Fy(x).

If the random variable N denotes the number of risks threatening a system at the
time point 0 and the random variable X,, denotes the occurrence time of the nth risk
then the random variable 7 = min(X;, X,, .. ., Xy) denotes the time of the first risk
occurrence. The consideration of a system under a random number N of inde-
pendent competing risks means the use of the random variable 7 = min(X],
X, ..., Xy) as a fundamental stochastic model for investigating the evolution of this
system.

The evaluation of the distribution function Fr(f) of the random variable
T = min(X1, Xz, . . ., Xy) is very important for the consideration of a system under a
random number of independent competing risks. We have Fr(t) = P(T <1t) or
equivalently

Fr(7) = Plmin(X1, X5, ..., Xy) < 1. (2.7.1)

Since the event [min(X;,X,,...,Xy) > #] is the complement of the event
[min(Xy,Xz,...,Xy) <17 then (2.7.1) implies that Fgr(f) =1 — P[min(X,
Xz, ..., Xy) > 1] or equivalently

Fr(f)=1— iP(min(Xl,Xz, .o Xy) > t|N = n)P(N = n). (2.7.2)

n=1

From (2.7.2) it follows that

Fr(f)=1- iP(min(Xl,Xz, ..X,) > 1|N = n)P(N = n). (2.7.3)

n=1

Since the event [min(X;,X,,...,X,) > #|N =n] implies the event
(X1 > t,X, > t,...,X, > t|N =n) then (2.7.3) has the form

Fr(t)=1=) P(X; > ,X3 > 1,....X, > tIN=n)P(N=n).  (274)

n=1

The independence of the random variable N and the sequence of continuous,
positive, independent, and identically distributed random variables {X,,,n =1,2,...}
means the independence of the random variables N, X1, Xz, . . ., X,,.

Hence (2.7.4) has the form

Fr()=1-) P(X; > t,X; > t,....X, > H)P(N = n). (2.7.5)

n=1
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Since the random variables of the sequence {X,,,n = 1,2,...} are independent

o0
then (2.7.5) has the form Fr(t)=1- > P(X; > t)P(X; > 1)...P(X, > 1)
n=1

P(N = n) or equivalently the form

Fe() =13 (1= P(Xy < 0][1 — P(Xs < 1)]...[1 - P(X, < 1) < (N = n).

n=1

(2.7.6)

Moreover, the assumption that the random variables of the sequence
{Xy,n=1,2,...} are distributed as the random variable X having distribution
function Fy(x) implies that (2.7.6) has the form

[1 — Fx(0)]"P(N = n). (2.7.7)

n=1

From (2.7.7) it follows that the distribution function of the random variable
T = min(X;, X5, ..., Xy) has the form

Fr(1) =1—Py(1 — Fx(1)), t > 0. (2.7.8)

An interesting special case of (2.7.8) arises if the random variables of the
sequence {X,,n=1,2,...} follow the beta distribution with parameters o, 1 or
equivalently the distribution function of the random variables of the above sequence
has the form

Fx(x) =x*, 0<x<1 (2.7.9)

and the random variable N follows the Sibuya distribution with probability gen-
erating function

Py(z)=1—-(1-2),0<y<1. (2.7.10)

From (2.7.8), (2.7.9) and (2.7.10) it follows that the distribution function of the
random variable T = min(X;,X,,...,Xy) has the form Fr(r)=1-—
{1 —[1 —(1—17)]"} or equivalently the form Fr(z) = 7,0 <t < 1.

Hence, in this case, the random variable 7 = min(X;, X5, ..., Xy) follows the
beta distribution with parameters oy, 1.
The role of the random variable 7 = min(Xy, Xy, .. ., Xy) in the consideration of

a system under a random number N of independent and competing risks becomes
very important if the occurrence of one of these risks implies the destruction of the
system. In this case the random variable T = min(X;, X, ..., Xy) denotes the life
time of the system.
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2.8 Time of First Major Damage

We consider the sequence of continuous, positive, independent, and identically
distributed random variables {C,,n =1,2,...}. The random variables of the
sequence are distributed as the random variable C having characteristic function

oc(u). (2.8.1)

The random variable C,,n = 1,2, ... denotes the time between the (n — 1)th
and the nth occurrence of a risk

We consider the sequence of continuous, positive, independent, and identically
distributed random variables {X,,n =1,2,...}.

The random variables of the sequence are distributed as the random variable X
having distribution function

Fx(x). (2.8.2)

The random variable X,, denotes the size of the damage from the nth occurrence
of the risk.

Let 6 be a positive real number. If X,, > 0 then the damage due to the nth
occurrence of the risk is considered as major one. If p is the probability of the event
that the damage due to the nth occurrence of the risk is a major one then
p = P(X, > 0) or equivalently p = 1 — P(X,, < 6).

Hence (2.8.2) implies that p = 1 — Fx(0).

Let N be a random variable denoting the number of risk occurrences required to
get the first major damage. The random variable N follows the geometric type II
distribution with probability function P(N =n) =pg"', g=1-p, n=1,2,...
and probability generating function

Pu(2) =1 fzqz- (2.8.3)

Moreover, the random variable N is independent of the sequence of continuous,
positive, independent, and identically distributed random variables
{Ch,n=1,2,...}.

The random sum Y = C; 4+ C; + - - - + Cy denotes the occurrence time of the
first major damage. From Sect. (2.5), (2.8.1), and (2.8.3) it follows that the char-
acteristic function of the random sum Y =C; + C, + --- + Cy is

__pocl) (2.8.4)

P =T et
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A special case of the characteristic function ¢ () arises if the random variables
of the sequence {C,,n =1,2,...} follow the exponential distribution with char-
acteristic function

U
= 0. 2.8.5
pelw) =t > (28.5)

From (2.8.4) and (2.8.5) it follows that ¢ (1) = ;= where v = pp.

Hence, in this case, the random sum Y = C; + C, + --- + Cy follows the
exponential distribution with parameter v = ppu.

The time Y = C; + C, + - - - 4+ Cy, of the first major damage from the occur-
rence of a risk, is particularly significant in practice if the realization of the first
major damage implies the destruction of the organization threatened by the risk. In
that case the random sum Y = C; 4+ C, + - - - + Cy denotes the life time of the
organization. A direct consequence of that case is the recognition of the importance
of the random sum Y = C; + C; + - - - + Cy and the corresponding characteristic
_ _poc(u)
T 1—qoc(u)
describing the behavior and evolution of an organization. The form of the char-
acteristic function ¢ (u) reflects the difficulty of investigating of such stochastic
models. The presence of the time value of money in stochastic models, having as a
constituent element the random sum Y = C; + C; + - - - 4+ Cy, and describing the
evolution of a system, is of significant practical importance.

function ¢y («)

in the formulation and investigation of stochastic models

2.9 Number of Ongoing Risk Occurrences

A risk occurrence is considered as an ongoing one, at a given time point, if the risk
cause is active at that time point. The present section concentrates on the estab-
lishment of an application of a result of service systems theory for evaluating the
distribution of the random variable denoting the ongoing occurrences of a risk. The
presentation of that application is based on the concept of ordered sample of
continuous, independent, and identically distributed random variables, and a
property of the homogeneous Poisson process.

Let Ci,C,,...,C, be random variables. The random variables L, L,,...,L, is
an ordered random sample corresponding to the random variables Cy, Cy, ..., C, if
the random variable L.,k = 1,2,...,n denotes the xth smallest value among
Ci,Cy, ..., Cy.

We suppose that the random variables Cy, C,, ..., C, are continuous, indepen-
dent, and identically distributed. Moreover, we suppose that the random variables
Cy,C,,...,C, are equally distributed with the random variable C having proba-
bility generating function f¢(c).
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In this case the joint probability density function of the ordered random sample
Ly,L,,..., L, has the form

le,Lz,A..,L,l (ll,lg, sy ln) = n!fC(ll)fc(lz). . .fc(ln). (291)

We consider the homogeneous Poisson process {N(¢),z > 0} with
E(N(t)) = At

The following theorem establishes the property of homogeneous Poisson process
{N(¢),t > 0} which constitutes the structural element of the present section.

Theorem 2.9.1 Ler {N(t),t > 0} be a homogeneous Poisson process with
E(N(t)) = M and W,k = 1,2, ... a random variable denoting the waiting time for
the occurrence of the xth event of the homogeneous Poisson process {N(t),t > 0}.

If g(wi,wa,...,w,|N(t) = n) is the joint probability density function of the
random variable Wy, Wy, ..., W, when N(t) = n then g(wy,wa,...,w,|N () = n) =
LO<w  <wy <...<w, <"

t” i}

Proof We  consider the time  points  #1,f, ..., 5, hel satisfying
H<thy<...<ty <ty and t =t,;.
Moreover, we consider the positive real numbers hy,h,,..., h, satisfying
h+h <ty ...ty +h, <ty
We have
P{t Wy <t1+hyy.. 0ty < W, <1, +1]|(N@) =n)} =
P{tn < Wi <t1+hiyety < W, <, +hJ, (N(t) = n)} (2.9.2)
P(N(t) = n) '

Since the event {[ry < W <1+ hy,... 1, < W, <1, + h], (N(t) =

n)} is
equivalent to the event {[N(#y +h;) —N(n)=1,...,N(t, +h,) — N(z,) = 1],
(N(t) =n)} then (2.9.2) implies that

P{[IISWI §t1+h17~~7tn§WnStn+hn]|(N(t) }’l)}:

P{N(ty + h)) = N(#) = 1,...,N(ty + hy) — N(t,) = 1], N() =n)}  (2:9:3)
P(N(t) = n) '

Since  the event  {[N(r+h)—N(t)=1,... ,N(t,+h,) —N(t,) =
1],(N(¢) = n)} is equivalent to the event {[N(ry +h)—N(t) =1,...,N(t,+
hy) — N(t,) = 1,0 no events elsewhere in [0,1]]} then (2.9.3) implies that
P{[tl <W < +h17"~,[n <W, <1 +hn“(N([) :}’l)} =

P{[N(ti +hi) —N(t;) =1,...,N(t, + hy) — N(t,) = 1, no events elsewhere in [0,1]]}
P(N(1) = n) '

(2.9.4)

Since the process {N(r),t > 0} is a homogeneous Poisson process with
E(N(t)) = At then (2.9.4) implies that
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P{ty Wy <ti4hy,.. oty < W, <t,+h]|(N(t) =n)}
Jhye= | emMimhi—=hy)

et (21)"

n!

or equivalently
|
P{ltt S Wy S ti+hi,.ty < Wy < 1y + hy]|(N() = n)} :’;—hlh (2.9.5)

From (2.9.5) it follows that

P{fh < Wi <ti+hi,.. oty <W, <ty +h]|(N(t) =n)}  nl
=—.  (29.6)
hh...h, ™

Hence the joint probability generating function of the random variables
Wi, Wa,...,W, given that N(t) = n is

gwi,wa, .., wy|N(2) =n) =

i S Wi sttty < Wa S 6+ ha|(N() =)}
hi. . .hy

B —0,... hy —0 (2.9.7)

From (2.9.6) and (2.9.7) it follows that g(wi,ws,...,wy|N(t) =n)=

2 or equivalently

o

lim
h;—0, hy—0,..., h,—0

glwi,wa, .. owy|N(1) = n) == (2.9.8)

From Theorem 2.9.1 and (2.9.8) we get the following conclusion. If N(¢) = n,
that is n events of the homogeneous Poisson process have occurred in the time
interval [0, 7] and the continuous, independent, positive, and identically distributed
random variables V|, V,, ..., V, represent the unordered occurrence times of these
events then the random variables Wy, W,, ..., W, is the ordered sample of the
random variables Vi, V,, ..., V.

From (2.9.1) and Theorem 2.9.1 it follows that the random variables
Vi, Va, ..., V, are equally distributed with the random variable V' which follows
the uniform distribution with probability density function fy(v) =1, 0 <v <.

The following result constitutes an application in risk management of a result of
service systems theory. O

Theorem 2.9.2 Let {N(t),t > 0} be a homogeneous Poisson process with
E(N(1)) = A

We suppose that the random variable N(t) denotes the frequency of a risk in the
time interval [0,1] and {Y,,n =1,2,...} is a sequence of continuous, positive,
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independent, and identically distributed random variables. The random variables
of the sequence represent the durations of the risk occurrences. Moreover, these
random variables are equally distributed with the random variable Y having
distribution function Fy(y).

If the random variable T1(t) denotes the number of the ongoing risk occurrences
at the time point t then the probability generating function of the random variable
II(7) is Pry(z) = e where

Proof We have Pr,(z) = E(z""")) or equivalently
Pry(2) = E(E (ZH([) |N(z))) . (2.9.9)

From (2.9.9) it follows that

Pry(z) = f:E(z“m IN(1) = n)P(N(z) =n). (2.9.10)
=0

=

Since

then (2.9.10) has the form

Pry(z) = iE(zH(’) IN() = n) o P (2.9.11)

|
n=0 n

We suppose that v is the time point of a risk occurrence where 0 < v < ¢.

Since the continuous and positive random variable Y denotes the duration of the
risk occurrence arising at the time point v then the probability of the event that this
risk occurrence will be an ongoing one at the time point 7 is P(Y > 7 —v).

Since P(Y > t—v) =1—P(Y < t—v) and Fy(y) is the distribution function
of the random variable Y then

P(Y > t—v)=1—Fy(t—v). (2.9.12)

If N = n, that is n risk occurrences arise in the time interval [0, 7], then Theorem
2.9.1 implies that the unordered time points of the n risk occurrences in the time
interval [0, 7] are continuous, independent random variables Vi, V,, ..., V, equally
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distributed with the random variable V which follows the uniform distribution with
probability density function fy(v) =1, 0 <v <.

Hence the probability of the event that a risk occurrence arising in the time
interval [0,7] is ongoing at the time point 7 independently of the other risk occur-
rences in the time interval [0, #], according to (2.9.12), has the form

t

1—Fy(t—

P:/iy( v)dv
t

0

or equivalently the form

t

t
1—-F
p:/ Y(y)dy.
0

In this case if N(¢) = n, that is n risk occurrences arise in the time interval [0, 7]
then the random variable TI(7)|N(¢) =n, which denotes the number of risk
occurrences in the time interval [0, 7] and which risk occurrences are ongoing at the
time point ¢, follows the binomial distribution with parameters n and p.

Hence the probability generating function of the random variable I(7)|N(¢) = nis

E(ZOING) = n) = (pz+q)' (2.9.13)

where g =1 —p.
From (2.9.11) and (2.9.13) it follows that the probability generating function
Pri()(z) of the random variable I1(z) has the form

o n i (A1)
Pry(2) = Z(PZ‘HI) e AtT

n=0

or equivalently the form

Priy(z) = e i M. (2.9.14)

|
prd n:

From (2.9.14) it follows that Pr)(z) = e MMt or  equivalently
Priy(z) = "0,

Hence the random variable I1(#) follows the Poisson distribution with parameter
Apt.

Since the random variable T1(¢) denotes the number of the occurrences of a risk
in the time interval [0, 7] and which occurrences are ongoing at the time point 7 then
this random variable can be used in formulating stochastic models for describing
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operations suitable for financing damages due to the occurrences of that risk. The
constituent elements of the contribution of the present section are the following two.
The first constituent element is the introduction of the concept of ongoing risk
occurrence. The second element is the application of a significant result of service
systems theory in modeling the concept of the number of ongoing occurrences of a
risk. That application provides risk managers with the ability to get a holistic
consideration of the number of ongoing occurrences of a risk. The fundamental
assumption of the proposed application is that the frequency of the risk in the time
interval [0, 7] is represented by a homogeneous Poisson {N(¢),¢ > 0}.

This assumption does not restrict the significance of the proposed application
since the homogeneous Poisson process is considered as a very efficient model of
the frequency of a risk in the time interval [0, #].

The conclusion that the number of ongoing occurrences of a risk at a given time
point ¢ is represented by the random variable I1(7) following the Poisson distri-
bution with parameter Apt can be considered as a very good reason for modeling the
number of ongoing risk occurrences at a random time point. U

2.10 Multiplicative Models of Risk Severity

The purpose of the present section is the formulation and investigation of a
stochastic multiplicative model for the description and investigation of risk severity.
The model is based on the product of two continuous, positive, and independent
random variables.

We suppose that the duration of a risk is represented by the continuous, and
positive random variable S with distribution function Fs(s), probability density
function fs(s), and characteristic function ¢g(u).

We suppose that U is a continuous and positive random variable with distri-
bution function Fy(v), probability density function f;(v), and characteristic func-
tion ¢ (u).

The random variable U denotes the damage, per unit of time, due to the
occurrence of a risk. We suppose that the random variable § is independent of the
random variable U.

The random variable X = SU represents the severity of risk. The independence
of random variables S, U permits the evaluation of the distribution function Fx(x),
the evaluation of the probability density function fy(x), and the evaluation of the
characteristic function ¢y (u) of the random variable X = SU.

We have Fx(x) = P(X < x) or equivalently Fx(x) = P(SU < x).

Hence

Fy(x) = / P(SU < x|U = v)fu(v)dv
0
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or equivalently
Fx(x) = / P(vS < x|U = v)fy(v)dv. (2.10.1)
0

Since the random variable S is independent of the random variable U then
(2.10.1) has the form

Fx(x) = /P(US < x)fy(v)dv
0
or equivalently the form
Fx(x) :/P<S < )—C)fU(u)du. (2.10.2)
0

Since
rls=2) ()
) )
then (2.10.2) implies that the distribution function Fx(x) of the random variable
X=S8Uis
o0
Fx(x) = / Fs (%‘)fU(u)dv. (2.10.3)
0
It is obvious that the following formula is also valid

Fx(x) = ]o Fu G) fs(s)ds. (2.10.4)
0

From (2.10.3) and (2.10.4) it follows that the probability density function of the
random variable X = SU has the form

fx(x) = /oc%fs ()—;)fy(v)dv
0
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or equivalently the form
r 1, /x
) = [ <o )fs()ds.
0

If ¢y(u) is the characteristic function of the random variable X = SU then
¢x(u) = E(e™X) or equivalently ¢y (u) = E(e™V).

Hence
wﬂ@z/E@MW:®U@@
0
or equivalently
ox(u) = / E(e"S|U = v)fy(v)dv. (2.10.5)
0

Since the random variable S is independent of the random variable U then
(2.10.5) has the form

ox(u) = / E(e")fy(v)dv. (2.10.6)
0

Since E(e™S) = ¢g(uv) then (2.10.6) implies that the characteristic function ¢y (u)
of the random variable X = SU is

oo

wﬂ@=/¢wmu@@ (2.10.7)

0

It is obvious that the following formula is also valid

oo

ox(u) = / b (us)fs(s)ds

0

The consideration of special cases of the distribution of the stochastic model
X = SU, with use of the corresponding characteristic function @y (u), is very sig-
nificant for the practical applications of the stochastic model X = SU in the
description and analysis of concepts and operations of risk management.
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Special cases of the distribution of the stochastic model X = SU, having prob-
ability distribution functions with unique mode a the point 0, are of particular
practical importance.

The probability density function fi;(IT) of the continuous random variable IT is
said unimodal at the point O if this probability density function has a unique
maximum at the point 0. The establishment of the property of unimodality at the
point 0 for the probability density function fx(x) of risk severity X = SU is based
on a result of Khintchine and a result of Medgyessy. The result of Khintchine states
that the probability density function frj(w) is unimodal at the point O if the corre-
sponding characteristic function ¢;(«) has the form

on(u) = / 0(y)dy (2.10.8)
0

where @ (u) is the characteristic function of a continuous random variable D.

The result of Medgyessy states that if the continuous random variable IT has
probability generating function frj(m) which is unimodal at the point 0 and B is a
continuous random variable independent of the random variable I1 then the random
variable I1B has a probability density function with a unique mode at the point 0.

If the random variable U follows the uniform distribution with probability
density function fi;(v) = 1, 0 < v < 1 then (2.10.7) implies that the characteristic
function of risk severity X = SU has the form

px(u) = [ @s(uv)dv. (2.10.9)
/

From (2.10.8) and (2.10.9) it follows that the probability density function

of risk severity X = SU is unimodal at the point 0.

If the continuous and positive random variable S has probability density function
fs(s) with unique mode at the point 0 or the continuous and positive random
variable U has probability density function fy(v) with unique mode at the point 0
then the result of Medgyessy implies that the random variable X = SU has prob-
ability density function

v

i) = [ 4 E)utian
0
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or equivalently probability density function

Z%fu ;

which has a unique mode at the point 0. The existence of a unique mode at the point
0 for the probability density function fy(x) of the random variable X = SU implies
that the event the size of the damage, due to an occurrence of the risk, to be in an
area right to the point 0 has a significant probability. That means that the organi-
zation threatened by the risk can select the retention of the risk instead of the
transfer of the risk.

Significant theoretical and practical interest has the special case of the stochastic
multiplicative model X = SU if the continuous and positive random variable S
follows the exponential distribution with characteristic function

Pslu) =—F—. (2.10.10)

w—iu

From (2.10.7) and (2.10.10) it follows that the characteristic function of the
stochastic multiplicative model X = SU has the form

o0

ox) = [ L ool

0

Since the probability density function fs(s) = ue™* has a unique mode at the
point O then the probability density function

o0

ﬁ@:/&%@@@

L
0

corresponding to the characteristic function
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belong to the class of infinitely divisible characteristic functions having important
applications to stochastic processes.

From a theoretical and practical point of view, it is of particular interest to
investigate properties of the probability density function fy(v) of the random var-
iable U which are transferred to the probability density function

o0

Fel) = / o

0

of the random variable X = SU.

An interpretation of the stochastic multiplicative model X = SU in the area of
fundamental risk control operations is the following.

If the continuous and positive random variable U takes values in the interval
(0, 1) then the random variable U can be considered as a coefficient describing the
impact of a risk control operation. In this case the presence of the random variable
U and the presence of the random variable S in the stochastic multiplicative model
X = SU permit the interpretation of the random variable X as the consequence of
the application of a risk control operation. This interpretation of the stochastic
multiplicative model X = SU in the area of fundamental risk control operations
requires the consideration of the continuous and positive random variable S as a
positive component of the concept of risk.

Since the random variable S is continuous and positive then this random variable
can represent the severity or the duration of a risk. Hence the stochastic multipli-
cative model X = SU can be used for the description and analysis of risk severity
and risk duration reduction operations. Such applications of the stochastic multi-
plicative model X = SU constitute the main purpose of the third chapter of the
present work.

Particular practical interest has the stochastic multiplicative model X = SU with
the continuous and positive random variable S having the form of a random sum. In
this case the investigation of the stochastic multiplicative model X = SU is based
on the corresponding characteristic function @y (u).

2.11 Riskiness

We consider a risk with frequency denoted by the discrete random variable N taking
values in the set Ng = {0, 1,2, ...}, severity denoted by the continuous and posi-
tive random variable X, and duration denoted by the continuous and positive ran-
dom variable S.

The continuous and positive random variable R = NXS is said riskiness of the risk
or simply riskiness. Since riskiness R = NXS is proportional to risk frequency N, risk
severity X, and risk duration S then riskiness can be used as a model for describing
the aversion of a person for a risk with frequency N, severity X, and duration S.
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The distribution function Fg(r), the probability density function fz(r), and the
characteristic function ¢g(u) of riskiness R = NXS are the analytical tools imple-
menting the theoretical and practical applicability of that concept.

The present section concentrates on the implementation of two purposes. The first
purpose is the evaluation of the characteristic function @g(u) of riskiness R = NXS.

The choice for evaluating the characteristic function ¢g(u) is based on the
important applications of the results of the theory of characteristic functions. The
evaluation of the characteristic function ¢g(u) of riskiness R = NXS is based on the
independence of the random variables N, X, S.

The second purpose is the establishment of the unimodality at the point O of the
probability density function of riskiness R = NXS by making use of the indepen-
dence of the random variables N, X, S, the unimodality at the point O of the
probability density function of the random variable X or equivalently the unimo-
dality at the point O of the probability density function of the random variable S, the
integral representation of a characteristic function corresponding to a probability
density function with unique mode at the point O, and the probability density
function of the product of two independent and continuous random variables one of
which has a probability density function with unique mode at the point 0.

The significance of the purposes of the present section is based on the presence
of the fundamental quantitative components of risk, that is risk frequency N, risk
severity X, and risk duration S in the definition of riskiness R = NXS.

The present section makes quite clear that the characteristic function @g(u)
constitutes a strong analytical tool for investigating the probabilistic behavior of
riskiness. The establishment of a sufficient condition for evaluating the character-
istic function of riskiness is provided by the following theorem.

Theorem 2.11.1 We suppose that N is a discrete random variable with values in
the set Ng = {0, 1,2, ...} and probability function P(N = n) = p,, n=0,1,2,...,
X is a continuous and positive random variable with probability density function
Sfx(x) and characteristic function ¢x(u), and S is a continuous and positive random
variable with probability density function fs(s) and characteristic function @g(u). If
the random variables N, X, S are independent then the characteristic function of
the random variable R = NXS has the form

o) = py / ox (nus)fs(s)ds
n=0 0

or equivalently the form

o0
og( /(pS (nux)fy (x)dx.
0

Proof The independence of the random variables N, X, S implies the independence
of the random variables X, S.
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We consider the random variable XS with characteristic function @yg(u).
We have @y(u) = E(E(e™*5]S)) or equivalently

Pxs(u /E ("3]S = s)fs(s)ds. (2.11.1)
0
From (2.11.1) it follows that
Pys(u /E (e"™X|S = 5)fs(s)ds. (2.11.2)
0

Since the random variable X is independent of the random variable S then
(2.11.2) implies that

Pys(u / E(e"*)fs(s)ds. (2.11.3)
0
Since
E(e") = ¢y (us) (2.11.4)

then (2.11.3) and (2.11.4) imply that the characteristic function of the random
variable XS is

Oxs(W) = [ ox(us)fs(s)ds. (2.11.5)

It is easily seen that (2.11.5) has the equivalent form

oxs() = | pluxlf(x)ax. (2.11.6)

The characteristic function ¢yg(u) in (2.11.5) or (2.11.6) of the random variable
XS and the proof of independence of the random variable N and the random
variable XS are required for the evaluation of the characteristic function @g(u) of
riskiness R = NXS.

Let @y (&) be the characteristic function of the random variable N, @y () be the
characteristic function of the random variable XS and @y ys(¢, u) be the charac-
teristic function of the vector (N, XS) of random variables N, XS.
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The proof of independence of the random variables N, XS requires the proof of
the relationship

Py xs(Eu) = oy () pxs(u). (2.11.7)
We have
Py xs(&u) = E(e*MH55).
or equivalently
oy xs(& u) = E(E(e“VT¥55)). (2.11.8)

From (2.11.8) it follows that

oo

(pNXS f u /E ch+iuXS|S _ S) s(S)dS
0
or equivalently
P xs(Esu) /E NI S = §)fs(s)ds. (2.11.9)

0

From (2.11.9) and the independence of the random variables N, X, S. It follows
that

oy xs(Esu) /E lgNH'”X )fs(s)ds. (2.11.10)
0

Since the independence of the random variables N, X, S implies the independence
of the random variables N, X then the random variables €V, ¢X are also inde-
pendent. Hence (2.11.10) has the form

oo

(PNXS (& u) /E ICN mx)fs(s)ds

0

or equivalently the form

Pnxs(Eu) = E(eN) / E(e™X)fs(s)ds. (2.11.11)
0
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Since @y (&) = E(e“N) and ¢y (us) = E(e™X) then (2.11.11) implies that
P xs(&su) /Q’x us)fs(s) (2.11.12)
0

From (2.11.5) it follows that the characteristic function of the random variable XS is

ot [ axt any
0

From (2.11.12) and (2.11.13) it follows that (2.11.7) is valid that is
onxs(&u) = on(E)@xs(u). Hence the random variables N, XS are independent.

The characteristic function @y¢(#) of the random variable XS, the probability
function P(N =n) =p,, n=0,1,2,... of the random variable N and the inde-
pendence of the random variables N, XS permit the evaluation of the characteristic
function @g(u) of the random variable R = NXS in the following way. We have
¢r(u) = E(e""*5) or equivalently

or(u) = E(E("™5|N)). (2.11.14)

From (2.11.14) it follows that
0 .
=Y E("S|N =n)P(N =n)
n=0

or equivalently

=) E("|N =n)p,. (2.11.15)
=0

n

Since the random variable N is independent of the random variable XS then
(2.11.15) has the form

[o.¢]
or(u E(e"™5)p (2.11.16)
=0

n

Since @yg(u) = E(e™*S) or equivalently

Pxs(u ox (us)fs(s
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then @ys(nu) = E(e™*S) or equivalently

o0

wxs0uo:=t/"¢x<nus>scﬂak. (2.11.17)

0

From (2.11.16) and (2.11.17) it follows that the characteristic function @g(u) of
riskiness R = NXS has the form

= " x (nus)fs(s)ds
2;7!¢< (s)

Since (2.11.6) has the form

o0
Pxs(u / @ (ux)fx(x
0

then for the characteristic function ¢@g(u) of riskiness R = NXS is also valid the
formula

Zm/%mﬁﬁx

n=0

From a theoretical and a practical point of view it is completely understood that
the evaluation of the characteristic function ¢g(u) of riskiness R = NXS, if the
random variables N, X, S are independent, is a very important factor for the
probabilistic description, investigation, and solution of problems related with
operations of analysis, measurement, evaluation, communication, control, and
financing of risks.

The riskiness R = NXS has particular practical interest if risk frequency N fol-
lows the Bernoulli distribution. In this case the characteristic function of riskiness
has the form

mam:q+pjwﬂmm®w. (2.11.18)
0

The significance of Bernoulli distribution in the probabilistic consideration of
risk frequency makes necessary the evaluation of some special cases of (2.11.18).
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We suppose that risk severity X follows the uniform distribution with charac-
teristic function

iu

and risk duration S follows the beta distribution with probability density function
fs(s) =25, 0<s < 1.

In this case (2.11.18) implies that the characteristic function of riskiness has the
form

ius __

e
= 2 d
Pr(u) = q+ p/ - sds
0
or equivalently the form
14 iu — e

pr(u) =q+2p

We suppose that risk severity X follows the exponential distribution with
characteristic function

u
px() =——, u >0
Ww—iu

and risk duration S follows the uniform distribution with probability density
function fs(s) =1, 0 <s < 1.
The characteristic function of riskiness has the form

1
0

or equivalently the form

K K
= =1 :
Pr() =q+p- Og(# )

1273

We suppose that risk severity X follows the gamma distribution with charac-
teristic function

2
u
ox(u) (M_iu> s B
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and risk duration follows S follows the uniform distribution with probability density

function fs(s) =1, 0 <s < 1
In this case (2.11.18) implies that the characteristic function of riskiness has the

form
1
)= [ (125)
— ius
0

or equivalently the form

Pr(u) =atr

We suppose that risk severity X follows the renewal distribution corresponding
to the gamma distribution with parameters p and 2. The characteristic function of
the random variable X is

oy (1) = 'u[<,ufiu>2—11 /Ziu. (2.11.19)

From (2.11.19) it follows that

W=t ()l s
u) == = .
Px 2\pu—iu 2u—iu

Moreover, we suppose that risk duration S follows the uniform distribution with
probability density function fs(s) =1, 0 <s < L.
In this case we have that

- g )/1 ( ms) / d (2.11.20)

From (2.11.20) it follows that

p U P U H
= = ——1 .
or() q+2(u—iu) +2iu Og(,u—iu)

The establishment of a sufficient condition for the unimodality at the point 0 of
the probability density function fz(r) of riskiness R = NXS is based on the integral
representation of the characteristic function of a probability density function with
unique mode at the point 0 and the unimodality at the point O of the probability
density function of a continuous random variable which is the product of two
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continuous independent random variables, one of which has a probability density
function with unique mode at the point 0.

The existence of a unique mode at the point O for the probability density function
fr(r) of riskiness R = NXS substantially facilitates decision making for operations
treating a risk of which the frequency is represented by the discrete random variable
N with values in the set No = {0, 1,2,...}, the severity is represented by the
continuous and positive random variable X and the duration is represented by the
continuous and positive random variable S.

The unimodality at the point O of the probability density function fz(r) of
riskiness R = NXS can be used for the study of very complex risks related with the
evolution of modern organizations. U

Theorem 2.11.2 We suppose that N is a discrete random variable with values in the
set No = {0, 1,2,...}, and probability function P(N =n) =p,, n=0,1,2,..., X
is a continuous and positive random variable with probability density function fx (x)
and characteristic function @x(u), and S is a continuous and positive random
variable with probability density function fs(s) and characteristic function @g(u).

If the random variables N, X, S are independent and the probability density
Sunction fx(x) is unimodal at the point 0 or the probability density function fs(s) is
unimodal at the point 0 then the probability density function fr(r) of the random
variable R = NXS is unimodal at the point 0.

Proof We suppose that the continuous and positive random variable X has prob-
ability density function fx(x) which is unimodal at the point 0. Since the inde-
pendence of the random variables N, X, S implies the independence of the random
variables X, S then the random variable XS has probability density function which is
unimodal at the point 0. Hence the characteristic function

Pxs(u / ox (us)fs(s) (2.11.21)
0

of the random variable XS has the form

1
Oxs(u / op(u (2.11.22)
0

where ¢ (u) is the characteristic function of a continuous and positive random
variable H.
We consider the sequence of continuous and positive random variables

{nXS,n=0,1,2,...}. (2.11.23)
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From (2.11.21) and (2.11.22) it is obvious that the corresponding sequence of
characteristic functions of the sequence (2.11.23) is

/ ox (nus)fs(s)ds,n =0,1,2,... (2.11.24)
0
or equivalently
1
/@H(nuy)dy,n =0,1,2,... 5. (2.11.25)
0

From the independence of the random variables N, X, S and Theorem 2.11.1 it
follows that the characteristic function of the random variable R = NXS is

op(u) = ipn/ oy (nus)fs(s)ds. (2.11.26)
n=0 0

From (2.11.24), (2.11.25) and (2.11.26) it follows that

1
Pr(1) = pu | ou(nuy)dy
/

n=0

or equivalently

Pg(u) = / (ipnqoﬂ(nuy)>dy- (2.11.27)
0 n=0

We consider the sequence of continuous and positive random variables
{nH,n=0,1,2,...}. (2.11.28)
It is obvious that the corresponding sequence of characteristic functions of the

sequence (2.11.28) is {¢y(nu),n =0,1,2,...}.
We consider the function

ou() =3 Py ()
n=0
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which is a discrete mixture of the characteristic functions of the sequence
{py(nu),n =0,1,2,...} with mixing probability function p,,n=0,1,2,...
which belongs to the random variable N.

Hence the function

py(u) = ipnwy(nu) (2.11.29)
n=0

is the characteristic function of a continuous and positive random variable V.
From (2.11.27) and (2.11.29) it follows that

1
pr(u) = / @y (uy)dy. (2.11.30)
0

Hence (2.10.8) and (2.11.30) imply that the random variable R = NXS has
probability density function fz(r) which is unimodal at the point 0.

It is obvious that if the assumption of unimodality at the point O for the prob-
ability density function fx(x) of the random variable X is replaced by the
assumption of unimodality at the point O for the probability density function fs(s) of
the random variable S then the random variable R = NXS has probability density
function fz(r) which is also unimodal at the point 0.

The unimodality at the point O of the probability density function fz(r) means
that the probability of the event for the riskiness R = NXS to be in an area right to
the point O is significant.

The independence of the random variables N, X, S implies that the mean value
of the riskiness R = NXS is E(R) = E(N)E(X)E(S). In the case of independence of
the random variables N, X, S the evaluation of the mean value of riskiness R =
NXS is based on the characteristic function

pr(u) = an/ @y (nus)fs(s)ds (2.11.31)
n=0 0
of riskiness R = NXS.
From (2.11.31) we get that

Pr(u) = inpn/ @'y (nus)sfs(s)ds. (2.11.32)
n=0

0
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Moreover, from (2.11.32) it follows that

o0

P4(0) = > npuy(0) / fs(s)ds
n=0 0

or equivalently E(R) = E(N)E(X)E(S). If the probabilistic information for the
independent random variables N, X, S are provided by the mean values E(N),
E(X), E(S) then the mean value of riskiness E(R) = E(N)E(X)E(S) is a very
useful analytical tool for the development and application of risk classification
operations. U

2.12 Total Risk Severity and Asset Liquidation

Let N be a discrete random variable with values in the set Ny and probability
generating function Py(z). Let {X,,n =1,2,...} be a sequence of continuous,
positive, independent, and identically distributed random variables. The random
variables of the sequence {X,,,n = 1,2,...} are equally distributed with the random
variable X having characteristic function @y ().

Weset T =X; +Xo+ -+ Xy.

Let {C,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Ch,n=1,2,...} are equally distributed with the random variable C having
characteristic function ¢ (¢).

Weset L=C,+C,+---+ Cy.

We consider the vector (T,L).

The purpose of the present section is the establishment of properties and
applications in risk management of the above vector.

The following result establishes sufficient conditions for the evaluation of the
characteristic function ¢ (u, &) of the vector (7, L).

Theorem 2.12.1 Let {X,,n=1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence {X,,n = 1,2, ...} are equally distributed with the random variable
X having characteristic function

oy (). (2.12.1)

We consider the discrete random variable N with values in the set Ny =
{0,1,2,...} and probability generating function

Py (z) (2.12.2)

and we set T =X; +Xo + - + Xy.
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Let {Cy,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Cu,n=1,2,...} are equally distributed with the random variable C having
characteristic function

Pc(E)- (2.12.3)

WesetL=C1+Cy+ -+ Cy.If{X,,n=1,2,...}, Nand {C,,n = 1,2,...}
are independent then the characteristic function of the vector (T,L) is
(PT,L(”7 &) = Pn(ox(u)ec(E)).

Proof We have @7 (u, &) = E(e"F) or equivalently we have
oro(u, &) = E(E(¢"TTHN)). (2.12.4)

From (2.12.4) it follows that

or(u,&) = iE(ei“T*"‘fL|N =n)P(N =n). (2.12.5)
n=0

It is easily seen that (2.12.5) implies that

(pT,L(u7 g) _ ZE(eiu(X1+...+XN>+if(C1+<4.+CN)|N = n)P(N = n) (2126)
n=0

From (2.12.6) we get that

NgE

(pT,L(ua é) — E(eiu(xl+"‘+X">+ié<cl+‘“+c’l)|N — n)P(N = n) (2127)

Il
=

n

Moreover (2.12.7) implies that

E(eiuX|+~~+iuX,,+i§“C|+~-+i:fC,, |N — n)P(N — l’l) (2128)

NgE

(PT,L(uv ¢) =

3
i
o

From (2.12.8) it follows that

orp(u,&) =Y E(e" . e "N =n)P(N = n). (2.12.9)

1M

n

From the assumption that {X,,n=1,2,...}, N and {C,,n=1,2,...} are
independent it follows the independence of the random variables Xi,..., X, N,
Cy,..., C,
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The independence of the above random variables implies the independence of
the random variables X1, ... ¢ . N, <C1 .. &6
Hence (2.12.9) has the form

orp(u, &) = E E(e".. "¢ &) P(N = n). (2.12.10)

Moreover, the independence of the random variables

evXi e N, ¢<Cr ... ¢“Cr implies the independence of the random
variables X1 .. X l€C1  elcCh

Hence (2.12.10) has the form
oro(,8) =Y E(e").. E(e")E(¢").. E(¢““)P(N =n). (2.12.11)
n=0

Since the random variables of the sequence {X,,n = 1,2,...} are equally dis-
tributed with the random variable X and the random variables of the sequence
{Cy,n =1,2,...} are equally distributed with the random variable C then (2.12.1),
(2.12.3) and (2.12.11) imply that

oro(u:&) =Y P (W)@ (EPIN = n). (2.12.12)

From (2.12.2) and (2.12.12) it follows that the characteristic function of the vector
(T,L)is

o7, (u, &) = Pn(ox () pc(<)).

An interpretation of the vector (T,L), where T=X;+X,+---+ Xy and
L=C;+ Cy+ -+ Cy, in risk management is the following.

We consider a firm under conditions of risk and asset liquidation in a given time
interval. We suppose that the random variable N denotes the frequency of risk in
that time interval. The random variable X,, denotes the economic loss due to the nth
occurrence of risk. Hence the random variable T = X; 4+ X, + - - - + Xy denotes the
risk severity in the given time interval. We suppose that the random variable C,
denotes the income of the firm from asset liquidation at the time of the nth
occurrence of the risk. Hence the random variable L = C; + C, + - - - + Cy denotes
the total income of the firm from asset liquidation in the given time interval. In this
case the vector (T,L) constitutes a strong analytical tool for investigating the
evolution of the firm under conditions of risk and asset liquidation in a given time
interval. The independence for {X,,n=1,2,...} N and {C,,n=1,2,...} is a
sufficient condition for evaluating the characteristic function ¢ ;(u,¢&) =
Py (px(w)oc(8)) of the vector (T,L).

In this case the applicability of the above vector is substantially extended. [
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2.13 Total Risk Severity and Total Income

Let {X,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Xy,n=1,2,...} are equally distributed with the random variable X having
characteristic function @y (u).

We consider the discrete random variable N with values in the set Ny =
{0,1,2,...} and probability generating function Py(z).

Weset T =X +Xo+--- 4+ Xy.

Let {Cy,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Cs,s =1,2,...} are equally distributed with the random variable C having
characteristic function ¢ (¢).

We consider the discrete random variable S with values in the set Ny =
{0,1,2,...} and probability generating function Pgs(z) and we set
L=C +C+---+Cs.

We consider the vector (T,L).

The purpose of the present section is the establishment of properties and
applications in risk management of the above vector.

The following theorem establishes sufficient conditions for the evaluation of the
characteristic function of the vector (7, L).

Theorem 2.13.1 Ler {X,,n=1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence {X,,n = 1,2, ...} are equally distributed with the random variable
X having characteristic function

ox(u). (2.13.1)

We consider the discrete random variable N with values in the set Ny =
{0,1,2,...} and probability generating function

Py(2) (2.13.2)

and we set T =X +Xo + - + Xy.

Let {Cs,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Cs,s =1,2,...} are equally distributed with the random variable C having
characteristic function

Pc(&). (2.13.3)
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We consider the discrete random variable S with values in the set Ny =
{0,1,2,...} and probability generating function

Ps(z) (2.13.4)

and we set L=C; +Cy + - -- + Cs.

If {X,,n=1,2,...}, N, {Cs,s=1,2,...} and S are independent then the
random variables T=X,+Xp+---+Xy and L=C+Cy+---+ Cs are
independent and @7 (u, &) = Py(@x(u)P(¢c(E))) is the characteristic function of
the vector (T,L).

Proof The independence of {X,,n =1,2,...}, N, {C;,s = 1,2,...} and S implies
the independence of {X,,n=1,2,...} and N, and the independence of
{Cs,s=1,2,...} and S.

Hence (2.13.1) and (2.13.2) imply that the characteristic function of the random
variable T = X; + Xo + --- + Xy 18

@r(u) = Py(@x(u)) (2.13.5)

and (2.13.3), (2.13.4) imply that the characteristic function of the random variable
L=C+C+---+Cysis

@ (¢) = Ps(oc(E)). (2.13.6)

Let @71 (u, &) be the characteristic function of the vector (7, L).
The establishment of the independence of the random variables 7' = X; + X, +
-+ Xyand L = C| + Cy + - - - + Cg requires the establishment of the relationship

;PT,L(”a &) = or(w)eL(&).

We have ¢ (u, &) = E(e"HL) or equivalently
or(u,&) = E(E(&"" N, S)). (2.13.7)

From (2.13.7) it follows that

or.( Z

n=0 s

E luT+i§L|N — n’S — S)P(N — n’S = S)

MS

I
o

or equivalently

(PTL u, ) = ZZE( u(Xy++Xy)+ig(Ci+-+Cs) IN=n,8 = )P(NZI’!,SZS).
n=0 s=0
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From (2.13.8) it follows that

o0
@7 (u Z

n=0 s

NgE

E( u(Xy+4X,) +HE(Cr+-+Cy) |N_}’l S—S)P(N:I’l,S:S).

Il
=}

(2.13.9)

Moreover, (2.13.9) implies that

(PT,L(uv ) =

E(ei”X'. . .ei“X", &0 oG

=n,S=s5)P(N=n,S=5).

3
i
=
©
i
=

gk
M

(2.13.10)

The independence of {X,,,n = 1,2,...}, N, {C,,s = 1,2,...} and S implies the
independence of the random variables X1, ..., X,, N, Ci,...,C, S.

The independence of the above random variables implies the independence of
the random variables X1, .. ¢ N ¢C1 oGS

Hence (2.13.10) has the form

oo o0

or(u, &) = Z ZE(ei”X‘. Mg .eiéCS)P(N =nS=ys). (2.13.11)
n=0 s=0
The independence of the random variables ™!, ..., ¢ N ¢C1 . <G §
implies the independence of the random variables e”‘Xl, . .,e’”X", ’QCI, o, €6,
and the independence of the random variables N, S.
Hence (2.13.11) has the form
orp(u, &) = E(e").. .E(e"*)E(e“)...E("“)P(N = n)P(S = s)
n=0 s=0
or equivalently the form
or(u,&) = ZE (€").. E(e"*)P(N =n) Y E().. .E(e°“)P(S =35).
n=0 s=0
(2.13.12)

Since the random variables of the sequence {X,,n = 1,2,...} are equally dis-
tributed with the random variable X having characteristic function ¢y (#) and the
random variables of the sequence {C;,s = 1,2,...} are equally distributed with the
random variable C having characteristic function ¢ (&) then (2.13.12) has the form

o7 (u Z o (u =n) i @%(E)P(S = 3). (2.13.13)
5s=0
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From (2.13.1), (2.13.2), (2.13.3),(2.13.4) and (2.13.13) it follows that
(/’T,L(“, &) = Pn(@x(u))Ps(pc(£))- (2.13.14)

Moreover (2.13.5), (2.13.6) and (2.13.14) imply that ¢, (u, &) = @r(u) @, ().

Hence the random variables T = X; + X, +---+Xyand L=C, + Cy + - - - +
Cs are independent and the characteristic function of the vector (7,L) is
Pr(u, ) = Py(ox(u))Ps(9c(E))-

The interpretation of the vector (7, L) as the concept of a quantitative component
of risk is the following.

We consider a firm under the occurrences of a risk and the creation of incomes in
a given time interval. We suppose that the random variable N denotes the frequency
of risk in that time interval and the random variable X,, denotes the economic loss
due to the nth occurrence of risk. Hence the random variable T = X; + X, + - -- +
X denotes the total risk severity in the given time interval. We suppose that the
random variable S denotes the number of incomes created by the firm in the same
time interval and the random variable C; denotes the size of the sth income created
by the production activities of the firm. Hence the random variable L = C; + C, +
-+ 4 Cs denotes the total income created by the firm in that time interval. In this
case, the vector (T,L), where T=X;+X,+ - +Xyand L=C, +Co+---+
Cs constitutes a strong analytical tool for investigating the behavior of the firm under the
occurrences of a risk and the creation of incomes in a given time interval. The inde-
pendence of {X,,n =1,2,...}, N, {Cs,s = 1,2,...} and S is a sufficient condition
for evaluating the characteristic function ¢, (1, &) = Py(@x(u))Ps(@c(&)) of the
vector (T, L).

In this case the applicability of the above vector is substantially extended. [

2.14 Recovery Time of a Partially Damaged System
and Release Time of a Backup System

Let N be a discrete random variable with values in the set N = {1,2,...} and
probability generating function Py(z).

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable X having distribution
function Fy(x).

We set T = max(Xy, X, ..., Xy)-

Let {C,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable C having distribution function Fc¢(c).

We set L = max(Cy, C, . ..,Cy).

We consider the vector (T, L).
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The purpose of the present section is the establishment of properties and
applications in risk management of the vector (T, L).

The following result establishes sufficient conditions for evaluating the distri-
bution function Fr,(z,¢) of the vector (T, L).

Theorem 2.14.1 Let N be a discrete random variable with values in the set N =
{1,2,...} and probability generating function

Py(2). (2.14.1)

We suppose that {X,,n=1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. Moreover, we suppose
that the random variables of the sequence are equally distributed with the random
variable X having distribution function

Fy(x) (2.14.2)

and we set T = max(X;, Xz, ..., Xy).

Let {Cy,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. Moreover, we suppose that the random
variables of the sequence are equally distributed with the random variable C
having distribution function

Fe(c) (2.14.3)

and we set L =max(Cy, Ca,...,Cy).

We consider the vector (T,L). If N, {X,,n=1,2,...} and {C,,n=1,2,...}
are independent then the distribution function Frp(t,£) of the vector (T,L) is
Frp(t,4) = Py(Fx(t)Fc(()).

Proof We have Frp(t,£) = P(T < t,L < {) or equivalently
Fro(t,0) =Y P(T < t,L < (I[N =n)P(N =n). (2.14.4)

n=1

From (2.14.4) it follows that

Frp(t,0) = iP[max(Xl,Xg, .. Xy) < t,max(Cy, Cy,...,Cy) < LN = n]P(N = n).
n=1
(2.14.5)
Hence (2.14.5) implies that
Frp(t,0) = iP[maX(Xl, couXy) < t,max(Cy,...,Cy) < LN =n]P(N = n).
n=1

(2.14.6)
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From (2.14.6) it follows that

Fro(t,0) =Y P(X; <t,...X, <t,C; < L,...,C, <IN =n)P(N =n).

n=1

(2.14.7)

The independence of N, {X,,n=1,2,...} and {C,,n = 1,2,...} implies the
independence of the random variables N, Xi,...,X,, Ci,...,C,.
Hence (2.14.7) has the form

o0

Fro(t,0) =) P(X; <t,...,X, <1,C; < L,...,C, < P(N =n). (2.14.8)
n=1
From the independence of the random variables N, Xi,...,X,, Ci,...,C,. It
follows the independence of the random variables X, ..., X,, Cy,...,C,.

The independence of the above random variables implies that (2.14.8) has the
form

Fro(t,0) = ip(x1 <1)...P(X, < )P(C, < {)...P(C, < £)P(N = n).

(2.14.9)

Since the random variables of the sequence {X,,n = 1,2,...} are equally dis-
tributed with the random variable X and the random variables of the sequence
{Cn,n =1,2,...} are equally distributed with the random variable C then (2.14.2),
(2.14.3) and (2.14.9) imply that

Fro(t,0) = i FL(1)FL(OP(N = n). (2.14.10)

n=1

From (2.14.1) and (2.14.10) it follows that the distribution function Fr 1 (,¢) of
the vector (7, L) has the form Fr . (z,¢) = Py(Fx(t)Fc(£)).

An interpretation of the vector (T,L), where T = max(X;,Xa,...,Xy) and
L = max(Cy,Cy,...,Cy), in risk management is the following.

We suppose that the occurrence of a risk, at the time point O, interrupts N opera-
tions of a system. This system is called system I. The random variable X,, denotes the
time required for the recovery of the nth interrupted operation of system I. Hence the
random variable T = max(X;, X, . . ., Xy) denotes the time required for the recovery
of system I. We suppose that the N operations of system I, which are interrupted by the
occurrence of risk at the time point 0, are undertaken by another system which is
called system II. The random variable C, denotes the available time of system II for
undertaking the nth interrupted operation of system II. Hence the random variable
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L =max(Cy, Cy,...,Cy) denotes the release time of system II from the undertaking
of the N interrupted operations of system II. In this case the vector (T, L) is partic-
ularly useful for investigating the behavior of system L.

The independence of N, {X,,n=1,2,...} and {C,,n =1,2,...} permits the
evaluation of the distribution function Fr(t,¢) = Py(Fx(t)Fc({)) of the vector
(T,L).

In this case the the practical applicability of the above vector in risk management
is substantially extended.

The interpretation of the random variable L = max(Cy, C,, ..., Cy) as the release
time of system II from the undertaking of the N interrupted operations of system I
means that the consideration of system II and the corresponding vector (7,L)
facilitates the development and implementation of risk treatment operations. U

2.15 Vector of Recovery Times of Two Partially Damaged
Systems

Let {X,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Xu,n=1,2,...} are equally distributed with the random variable X having
distribution function Fy(x).

We consider the discrete random variable N with values in the set N =
{1,2,...} and probability generating function Py(z), and we set T = max(Xj,
Xay .. XN)-

Let {Cy,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Cs,s =1,2,...} are equally distributed with the random variable C having
distribution function Fc¢(c).

We consider the discrete random variable S with values in the set N = {1,2,...}
and probability generating function Ps(z), and we set L = max(Cy, Cy,. .., Cs).

We consider the vector (T, L).

The purpose of the present section is the establishment properties and applica-
tions in risk management of the above vector.

The following result establishes sufficient conditions for evaluating the distri-
bution function of the vector (7, L)

Theorem 2.15.1 Let {X,,n=1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variable. The random variables of
the sequence {X,,n = 1,2,...} are equally distributed with the random variable X
having distribution function

Fx(x). (2.15.1)
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We consider the discrete random variable N with values in the set N =
{1,2,...} and probability generating function

Py(z) (2.15.2)

and we set T = max(X;, Xz, ..., Xy).

Let {Cs,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The sequence of the random variables
{Cs,s = 1,2,...} are equally distributed with the random variable C having dis-
tribution function

Fel(o). (2.15.3)

We consider the discrete random variable S with values in the set N =
{1,2,...} and probability generating function

Ps(2) (2.15.4)

and we set L = max(Cy, C,...,Cs).

If {X,,n=1,2,...}, N, {Cs,s =1,2,...} and S are independent then T =
max(X;,Xa,...,Xy) and L=max(C,,C,,...,Cs) are independent and
Frp(t,0) = Py(Fx(1))Ps(Fc(£)) is the distribution function of the vector (T, L).
Proof The assumption that {X,,n=1,2,...}, N, {C;,s =1,2,...} and S are
independent implies that {X,,n =1,2,...} and N are independent and also that

{Cs,s =1,2,...} and S are independent. Hence (2.15.1) and (2.15.2) imply that the
distribution function of the random variable T = max(X;,Xs, ..., Xy) is

Fr(t) = Py(Fx(1)) (2.15.5)
and (2.15.3), (2.15.4) imlply that the distribution function of the random variable
L =max(Cy,Cy,...,Cs) is

FL(0) = Ps(Fc(0)). (2.15.6)

Let Fr(t,¢) be the distribution function of the vector (T,L).

The proof of the independence of the random variables 7 = max(X;, Xz, . .., Xy)
and L= max(Cy,C,,...,Cs) requires the establishment of the relationship
FT7L(Z‘, E) = FT([)FL(K) Since

Fro(t,0) =P(T < t,L < ¥). (2.15.7)

We get that

Fro(t,0) = ZZP (T <t,L</UN=n,S=s5P(N=nS=s). (2.158)

n=1 s=1
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From (2.15.8) it follows that
Frp(t,0) =
>3 P(max(Xy, ..., Xy) < t,max(Cy,...,Cs) <N =n,S=s)P(N=n,S=5s)
n=1s=1
or equivalently

> > P(max(Xy, ..., X,) < t,max(Cy,...,C;) <N =n,S=s)P(N=n,S=s).

n=1s=1

From (2.15.9) it follows that

—~
~

7£)

L =
PX; <t,...X, <t,C; < {,...,C; <UN=n,S=s)P(N=n,S =5).

Mz 3
K

n=1s=1

(2.15.10)

From the fact that {X,,,n = 1,2,...}, N, {C,,s = 1,2,...} and S are independent it
follows the independence of the random variables X, ..., X,, N, Cy,...,C, S.
Hence (2.15.10) has the form

Fro(t,0) = ZZP(Xl <t,..,X, <1,C; <U,....,Ci <OP(N =n,8=5s).

n=1 s=1

(2.15.11)

The independence of the random variables X1, ..., X,,, N, Cy,...,Cs, Simplies
the independence of the random variables Xi,...,X,, Ci,...,C; and the inde-
pendence of the random variables N, S.

Hence (2.15.11) has the form

n=1 s=1

(2.15.12)

Since the random variables of the sequence {X,,n = 1,2,...} are equally dis-
tributed with the random variable X having distribution function Fx(x) and the
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random variables of the sequence {C;,s = 1,2,...} are equally distributed with the
random variable C having distribution function F¢(c) then (2.15.12) has the form

00

s=1

or equivalently the form

P(T <t,L<{)=> Fy(t)P(N=n)) FL(()P(S=s). (2.15.13)
n=1 s=1
From (2.15.13) it follows that
FTA’L(I,E) = PN(F)((Z‘))Ps(Fc(E)) (21514)
Moreover (2.15.5), (2.15.6), (2.15.7) and (2.15.14) imply that Fr,(t,¢) =
FT(I)FL(g)
Hence the random variables T = max(X,Xa,...,Xy) and L = max(Cy, Cy,

..., Cs) are independent and the distribution function of the random vector (7, L) is
FT7L(I, 6) = PN(Fx(l))Ps(Fc(f))

An interpretation of the vector (T, L) where T = max(X;,X>,...,Xy) and L =
max(Cy, C,, ..., Cs) in risk management is the following.

We consider two systems. The occurrence of a risk, at the time point 0, interrupts
N operations of the first system and S operations of the second system. The random
variable X, denotes the time required for the recovery of the nth interrupted
operation of the first system. Hence the random variable T = max(X;, X, . .., Xy)
denotes the time required for the recovery of the first system. The random variable
C; denotes the time required for the recovery of the sth interrupted operation of the
second system. Hence the random variable L = max(Cy, Cs,...,Cs) denotes the
time required for the recovery of the second system. In this case the vector (7, L) is
particularly useful for investigating the evolution of the pair of two systems.
The independence of {X,,n =1,2,...}, N, {C;,s =1,2,...}, and S permits the
evaluation of the distribution function Fry(t,¢) = Py(Fx(t))Ps(Fc(£)) of the
vector (T, L).

In this case the practical applicability in risk management of the above vector is
substantially extended.

It is obvious that the results of the present section for the vector (7, L) can be
extended for vectors of many dimensions. O
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2.16 Recovery Time of a Partially Damaged System Under
a Random Number of Competing Risks

Let {X,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Xy,n=1,2,...} are equally distributed with the random variable X having dis-
tribution function Fy(x).

We consider the discrete random variable N with values in the set N =
{1,2,...} and probability generating function Py(z), and set T = max(X|,
X2y .. XN).

Let {Cs,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Cs,s =1,2,...} are equally distributed with the random variable C having dis-
tribution function F¢(c).

We consider the discrete random variable S with values in the set N = {1,2,...}
and probability generating function Ps(z), and set L = min(Cy, C,, ..., Cs).

We consider the vector (T,L).

The purpose of the present section is the establishment of properties and
applications in risk management of the above vector.

The following result establishes sufficient conditions for evaluating the distri-
bution function of the vector (T, L).

Theorem 2.16.1 Ler {X,,n=1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence {X,,n = 1,2,...} are equally distributed with the random variable
X having distribution function

Fx(x). (2.16.1)

We consider the discrete random variable N with values in the set N =
{1,2,...} and probability generating function

Py(2) (2.16.2)

and we set T = max(X;,Xp, ..., Xy).

Let {Cs,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Cs,s =1,2,...} are equally distributed with the random variable C having
distribution function

Fe(c). (2.16.3)
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We consider the discrete random variable S with values in the set N =
{1,2,...} and probability generating function

Ps(z) (2.16.4)

and set L = min(Cy, Cy, . .., Cs).

If {X,,n=1,2,...}, N, {Cs,s=1,2,...}, and S are independent then the
random variables T = max(X(,Xp,...,Xy) and L= min(Cy,C,,...,Cs) are
independentvon and Fr 1 (t,4) = Py(Fx(t))(1 — Ps(1 — Fc({))) is the distribution
function of the vector (T, L).

Proof The independence of {X,,n=1,2,...}, N, {C,,s = 1,2,...} and S implies
the independence of {X,,n=1,2,...} and N and the independence of
{Cs,s =1,2,...} and S.

Hence (2.16.1) and (2.16.2) imply that the distribution function of the random

variable T = max(X1, X, ..., Xy) is

Fr(r) = Py(Fx(1)) (2.16.5)

and (2.16.3), (2.16.4) imply that the distribution function of the random variable
L= min(Cl,Cz, ooy Cs) is

FL(f) = 1 — Pg(1 — Fe(0)). (2.16.6)

Let Fr(z,£) be the distribution function of the vector (T,L).

The establishment of independence of the random variables T = max(Xj,
Xa,..,Xy) and L=min(C;,C,...,Cs) requires the establishment of the
relationship Fr (¢, 0) = Fr(t)FL(£).

We have

Frp(t,0) =P(T < t,L < {). (2.16.7)
Since P(T <) =P(T <t,L <{¢)+P(T <t L > {) then we get
PT<t,L<t)=P(T<t)—P(T<t,L>1{). (2.16.8)
From (2.16.8) it follows that
P(T <t,L<0)=P(T <1

[o¢]
ZPT<tL > (I[N =n,S=s)P(N =n,S =)

s=1

ﬁMx

(2.16.9)
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Moreover (2.16.5), (2.16.7) and (2.16.9) imply that

Frp(1,£) = Py(Fx(1))
— Z ZP[maX(Xl,Xz,...,XN) < l‘,mil’l(ChCQ,...,Cs) > €|N—n S—S]P( =n S:S)
n=1s=1

From (2.16.10) it follows that

(t,£) = Pn(Fx(1))

o0
> Plmax(Xy,Xa, ..., X,) < t,min(Cy, Ca,...,C5) > LN =n,S =s]P(N =n,S = ).
1s=1

Fr,

t~

Mx

n

(2.16.11)

From (2.16.11) it follows that

Frp(t,£) = Py(Fx(1))
-3 3PXi <t,..,X <t,C; > £,....,C; > 4N =n,S=5s]P(N =n,S =5).
n=1s=1

The independence of {X,,n =1,2,...}, N, {Cs,s = 1,2,...} and S implies the
independence of the random variables X;,...,X,, N, Cy,...,Cy, S.
Hence (2.16.12) has the form

Frp(t,£) = Py(Fx(t))

oo o0

=Y Y PXi<t,.. X <1,Cp > £,...,C; > OP(N=n,S =5).
(2.16.13)

The independence of the random variables Xy, ..., X,, N, Ci,...,C,, S implies
the independence of the random variables X, ...,X,, Cy,...,C, and the indepen-
dence of the random variables N, S.

Hence (2.16.13) has the form

FTL(ta f) =
Py(Fx(t)) —

8
M2

P(X; < 1)...P(X, < )P(C; > 0)...P(C;, > O)P(N = n)P(S = 5)

ls

n

From (2.16.14) it follows that

FrﬂL(l‘, 6) =
Pu(Fx()) = 3 P(X, < 1)...P(Xy < )P(N = n) 3" P(Cy > £)...P(C; > )P(S = s).

n=1 s=1

(2.16.15)
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Since the random variables of the sequence {X,,n = 1,2,...} are equally dis-
tributed with the random variable X having distribution function Fx(x) and the
random variables of the sequence {C;,s = 1,2,...} are equally distributed with the
random variable C having distribution function F¢(c) then (2.16.15) has the form

8} o]

Fro(t,€) = Py(Fx(1)) = > Fy(1) [1 — Fe(O)'P(S = 5)
or equivalently the form
FT,L(ta g) = PN(Fx([)) — PN(Fx(t))Ps(l — Fc(g)) (21616)

From (2.16.16) it follows that
FT,L(I,E) = PN(Fx(l))[l —Ps(l — Fc(g))} (21617)

Moreover (2.16.5), (2.16.6) and (2.16.17) imply that Fr(z,¢) = Fr(t)FL({).
Hence the random variable T = max(X;, X, ..., Xy) is independent of the random
variable L = min(Cy, Cy, ...,Cs) and the distribution function Fr.(¢,¢) of the
vector (T,L) is Frp(t,€) = Py(Fx(1))[1 — Ps(1 — Fc(0))]..

An interpretation of the vector (7,L), where T = max(X;,Xa,...,Xy) and
L =min(Cy, C;,...,Cs), as a concept of risk management is the following. A risk
occurs at the time point 0. The occurrence of risk interrupts N operations of a
system. The random variable X,, denotes the time required for the recovery of the
nth interrupted operation of the system. Hence the random variable T =
max (X1, X, ..., Xy) denotes the time required for the recovery of the system. The
random variable T = max(X;,Xa,...,Xy) is a fundamental stochastic model for
describing and analyzing the recovery process of a system. Moreover S risks
threaten the system at the time point 0. The random variable C; denotes the
occurrence time of the sth risk. Hence the random variable L = min(Cy, Cy, . . ., Cs)
denotes the minimum of the risk occurrence times. The consideration of a system
under a random number S of independent competing risks means the use of the
random variable L = min(Cy, C,,...,Cs) as a fundamental stochastic model for
describing and analyzing the evolution of that system. Hence the vector (7, L) can
be considered as a strong analytical tool for investigating the behaviour of a system
which has experienced the occurrence of a risk and then the system recovers under a
random number of independent competing risks. U
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2.17 Considering a System Under a Random Number
of Competing Risks

Let N be a discrete random variable with values in the set N ={1,2,...} and
probability generating function Py(z). We suppose that {X,,n=1,2,...} is a
sequence of continuous, positive, independent, and identically distributed random
variables. The random variables of the sequence are equally distributed with the
random variable X having distribution function Fx(x) and we set
T= min(Xl,Xz, .. .7XN).

Let {C,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable C having distribution function F¢(c)
and we set L = min(C}, Ca, ..., Cy).We consider the vector (7, L).

The purpose of the present section is the establishment properties and applica-
tions in risk management of the vector (T, L).

The following result establishes sufficient conditions for evaluating the distri-
bution function of the vector (T, L).

Theorem 2.17.1 Let N be a discrete random variable with values in the set N =
{1,2,...} and probability generating function

Py(2). (2.17.1)

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables random variables. We
also suppose that the random variables of the sequence are equally distributed with
the random variable X having distribution function

Fx(x) (2.17.2)

and we set T = min(X;,X,, ..., Xy).

Let {Cy,n =1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable random variables C having distri-
bution function

Fe(e) (2.17.3)

and we set L = min(Cy,Cy,...,Cy).

We consider the vector (T, L).

If N, {X,,n=1,2,...} and {Cy,n=1,2,...} are independent then the dis-
tribution function Fr ((t,0) of the vector (T,L) is

Frp(t,0) =1—Py(1 — Fx(t)) — Pn(1 — Fc(£)) + Pn[(1 — Fx(2))(1 — Fc(£))]-
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Proof The independence of N, {X,,n=1,2,...} and {C,,n=1,2,...} implies
the independence of N and {X,,n=1,2,...} and the independence of N and
{Ch,n=1,2,...}.
Hence (2.17.1) and (2.17.2) imply that the distribution function of the random
variable T = min(X1, Xz, ..., Xy) is
Fr(t) =1 — Py(1 — Fx(1)) (2.17.4)

and (2.17.1), (2.17.3) imply that the distribution function of the random variable
L= min(Cl,Cg, RN CN) is

Fr(¢) =1—Py(1 = Fc(¥)). (2.17.5)
Let Fr (2, ) be the distribution function of the vector (7, L).We have
Frp(t,0) =P(T <t,L</). (2.17.6)
Since
PT<t)=P(T<t,L<O+PT<t,L>¥
or equivalently
P(T <t,L<{)=P(T<t)—P(T <t,L>1) (2.17.7)
and
P(L>0)=P(T>t,L>0)+P(T <tL>1{)
or equivalently
P(T <t,L>¢)=P(L >0 —P(T>tL>{) (2.17.8)
then from (2.17.7) and (2.17.8) we get that
P(T<t,L<0)=P(T<t)—P(L>{)+PT>tL>). (2.17.9)
From (2.17.4), (2.17.5), (2.17.6) and (2.17.9) it follows that

FT"L(Z‘, é) =1 —PN(I —Fx(t)) —PN(I —Fc(f))
+ ZP[min(Xl,...,XN) > t,min(Cl,...,CN) > /|N :n]P(N:n)

n=1
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Hence

FT‘L(Z, E) =1- PN(I — Fx(t)) —PN(I — Fc(g))
+ 3 Pmin(Xy, ..., X,) > £, min(Cy,...,Cy) > (N = n]P(N = n).

n=1
(2.17.10)
From (2.17.10) it follows that
Frp(t,0) = 1 — Py(1 — Fx(t)) — Py(1 — Fc(¢))
FS P 2t Xy 2 HC 2 . Co 2 N = m)P(N = n). (21711)

n=1

The independence of N, {X,,n=1,2,...} and {C,,n=1,2,...} implies the
independence of the random variables N, X, ..., X,, Cy,...,C,. Hence (2.17.11)
has the form

FTL(I é)—l—PN(l—Fx( )) PN(l—Fc(g))

+ZP X1 >t,.. X, C1>4,...,C,>0)P(N=n). (2.17.12)

Since the independence of the random variables N, Xi,...,X,, Ci,...,C,
implies the independence of the random variables Xi,...,X,, Ci,...,C, then
(2.17.12) has the form

FT’L(Z‘,K) =1- PN(I — Fx( )) — PN(I — Fc(g))
+ZP X, >1)...P(X, >1)P(C, >{)...P(C,>()P(N = n).
Since the random variables of the sequence {X,,n = 1,2,...} are equally dis-
tributed with the random variable X having distribution function Fx(x) and the

random variables of the sequence {C,,n = 1,2,...} are equally distributed with the
random variable C having distribution function F¢(c) then (2.17.12) has the form

FTL(t é)—l—PN(l—Fx( )) PN(l—F(;(E))
+Z 1 — Fx(1))"(1 = Fe(£))"P(N = n)

or equivalently

Frp(t,f) =1—Py(1 — Fx(t)) — Py(1 — Fc(£)) — Py[(1 — Fx(2))(1 — Fc(£))].

An interpretation of the vector (7,L), where T = min(X;,X>,...,Xy) and
L =min(Cy, C;,...,Cy), in risk management is the following.
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We consider a firm at the time point 0. The random variable N denotes the
number of risk threatening the firm. The random variable X, denotes the occurrence
time of the nth risk. Hence the random variable T = min(X;, X, ..., Xy) denotes
the minimum risk occurrence time. The random variable C, denotes the severity of
the nth risk. Hence the random variable L = min(Cy, C;,...,Cy) denotes the
minimum severity of risks. The vector (T, L) is a strong analytical tool for inves-
tigating the evolution of the firm under a random number N of independent com-
peting risks. The independence of N, {X,,n=1,2,...} and {C,,n=1,2,...}
permits the evaluation of the distribution function

Frp(t,0) =1 —Py(1 — Fx(t)) — Pn(1 — Fc(£)) + Py[(1 = Fx(2))(1 — Fc(£))]

of the vector (7, L).

In this case the practical applicability in risk management of the above random
vector is substantially extended. If the N risks threatening the firm at the time point
0 are catastrophic then the random variable T = min(X;, X, ..., Xy), the random
variable L = min(Cy, C,,. .., Cy), the vector (T, L), and the corresponding distri-
bution function

Frp(t,£) =1 —Py(1 — Fx(t)) — Pn(1 — Fc(£)) + Py[(1 = Fx(2))(1 — Fc(£))]

constitute structural factors for investigating the evolution of the firm. U

2.18 Pair of Systems Under Competing Risks

Let {X,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Xy,n=1,2,...} are equally distributed with the random variable X having dis-
tribution function Fx(x).

We consider the discrete random variable N with values in the set N =
{1,2,...} and probability generating function Py(z), and we set
T = min(Xl,Xz, - -7XN)~

Let {Cy,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Cys,s = 1,2,...} are equally distributed with the random variable C having dis-
tribution function F¢(c). We consider the discrete random variable S with values in
the set N=1{1,2,...} and probability generating function Ps(z), and we set
L= min(Cl y Cz, vy Cs)

We consider the vector (T,L).

The purpose of the present section is the establishment of properties and
applications in risk management of the above vector.

The following result establishes sufficient conditions for evaluating the distri-
bution function of the vector (T,L).
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Theorem 2.18.1 Let {X,,n=1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence {X,,n = 1,2, ...} are equally distributed with the random variable
X having distribution function

Fx(x). (2.18.1)

We consider the discrete random variable N with values in the set N =
{1,2,...} and probability generating function

Py(2) (2.18.2)

and we set T = min(Xy, X, ..., Xn). Let {Cs,s = 1,2,...} be a sequence of con-
tinuous, positive, independent, and identically distributed random variables. The
random variables of the sequence {Cy,s = 1,2,...} are equally distributed with
the random variable C having distribution function

Fc(c). (2.18.3)

We consider the discrete random variable S with values in the set
N ={1,2,...}, and probability generating function

Ps(z) (2.18.4)

and we set L = min(Cy,Cy, .. .,Cs).

If {X,,n=1,2,...}, N, {Cs,s=1,2,...} and S are independent then the
random variables T = min(X{,Xp,...,Xy) and L= min(C,,C,,...,Cs) are
independent and

Frp(t,€) = [1 = Py(1 = Fx(0))][1 = Ps(1 — Fc(0))]

is the distribution function of the vector (T,L).

Proof The independence of {X,,n =1,2,...}, N, {C;,s = 1,2,...} and S implies
the independence of {X,,n=1,2,...} and N, and the independence of
{Cs,s=1,2,...} and S.

Hence (2.18.1) and (2.18.2) imply that the distribution function of the random
variable T = min(X;, Xa, ..., Xy) is

Fr(f) = 1 — Py(1 — Fx(1)) (2.18.5)

and (2.18.3), (2.18.4) imply that the distribution function of the random variable
L= IIlil’l(ChCz7 caey Cs) is

FL(f) = 1 — Pg(1 — Fe(0)). (2.18.6)

Let Fr . (t,£) be the distribution function of the vector (T, L).
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The establishment of the independence of the random variables T =
min(X;, Xp,...,Xy) and L = min(Cy, Cs, . . ., Cs) requires the establishment of the
relationship Fr . (t,¢) = Fr(t)FL(¢). We have

Frp(t,0) =P(T < t,L < {). (2.18.7)
Since
PT<t)=PT<t,L<U)+P(T<tL>{
or equivalently
PT<t L) =P(T<t)—P(T<tL>{ (2.18.8)
and
P(L>0)=P(T >t,L>0)+P(T<tL>/)
or equivalently
P(T<t,L>{)=P(L>0)—PT>tL>/) (2.18.9)
then (2.18.8) and (2.18.9) imply that
P(T<t,L< ) =P(T<t)—P(L>0+PT>tL>7{ (2.18.10)
From (2.18.5), (2.18.6), (2.18.7) and (2.18.10) it follows that
Frp(t,f) =1 — Py(1 — Fx(t)) — Ps(1 — Fc(¢)) + P(T > t,L > ¢) (2.18.11)
Moreover (2.18.11) implies that
Fro(e,£) =1 = Py(1 = Fx(r)) = Ps(1 = Fe(£))

+3 > Pmin(Xy,...,Xy) > t,min(Cy,...,Cs) > {[N =n,S =s|]P(N =n,S = ).

n=1 s=1

Hence

FT,L(t,é) =1- PN(l — Fx([)) — Ps(l — Fc(e))
£33 Pmin(Xi,.. . X,) > 6,min(Cry... C) > (N = n,S = s|P(N = n,S = ).

n=1 s=1

(2.18.12)
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From (2.18.12) it follows

Frp(t,0) =1 — Py(1 — Fx(r)) — Ps(1 — Fc(¢))

+> > PXi>t,..,X,>1,C; > (,...,C; > UIN=n,S=s5)P(N =n,S =5).
n=1 s=1

(2.18.13)

The independence of {X,,n =1,2,...}, N, {C,,s = 1,2,...} and S implies the
independence of the random variables Xy, ..., X,, N, Cy,...,C,, S and the inde-
pendence of the random variables N, S.

Hence (2.18.13) has the form

Frp(t,0) = 1 - PN(l — Fx(1)) — Ps(1 — Fc(£))
+ z zp(xl S Xy > 1G> L Cy > OP(N = )P(s — 5). (2:18:14)

n=1 s

Since the independence of the random variables Xi,....X,, N, Cy,...,Cs, S
implies the independence of the random variables Xi,...,X,, Ci,...,Cs, then
(2.18.14) has the form

FT,L(t7€) = 1 — PN(I . Fx(t)) o Ps(l o Fc(é))
ns zp(xl > 1).. P(X, > P(C1 < 0)...P(Cy > O)P(N = n)P(S = ).

n=1 s=
or equivalently the form

FT_’L(I,Z) =1- PN(l — Fx(l)) *Ps(l *Fc(f))
F S P(X, > 1).. P(X, > O)P(N = n)

n=1 s

Mg

P(Cy > {)...P(Cy > O)P(S = ).
1

(2.18.15)

Since the random variables of the sequence {X,,n = 1,2,...} are equally dis-
tributed with the random variable X having distribution function Fx(x) and the
random variables of the sequence {C;, s = 1,2,. ..} are equally distributed with the
random variable C having distribution function Fc(c) then (2.18.15) has the form

FrﬂL(l‘7 Z) =
1= Py(1 = Fx(1)) = Ps(1 = Fc(0)) + 32 (1 = Fx(1))"P(N = n)

n=1 K

M8

(1 =Fc(0))’P(S =5).

or equivalently

FrvL(l,e) =1- PN(I — Fx(l)) — Ps(l — Fc(g)) +PN(1 — Fx(l))Ps(l — Fc(g))
(2.18.16)
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From (2.18.16) it follows that
Frp(t,€) = [1 = Py(1 — Fx(1)][1 — Ps(1 — Fc())] (2.18.17)

Moreover (2.18.5), (2.18.6) and (2.18.17) imply that Fr . (t,£) = Fr(¢)FL(¢).

Hence the random variable T = min(X;, X, ..., Xy) is independent of the ran-
dom variable L = min(C}, C», . . ., Cs) and the distribution function Fr £(z, £) of the
vector (T, L) is

Fro(t,0) = [L = Py(1 = Fx(t))] [1 = Ps(1 — Fc(0))]

An interpretation of the vector (7,L), with T = min(X;,Xa,...,Xy) and L =
min(Cy, Cy, ..., Cs) in risk management is the following.

We consider two systems at the time point 0. The random variable N denotes the
number of risks threatening the first system and the random variable S denotes the
number of systems threatening the second system. The random variable X,, denotes
the occurrence time of the nth risk threatening the first system. Hence the random
variable T = min(Xy, Xy, . . ., Xy) denotes the minimum risk occurrence time for the
first system. The random variable C; denotes the occurrence time of the sth risk
threatening the second system. Hence the random variable L = min(Cy, Cy, . . ., Cs)
denotes the minimum risk occurrence time for the second system. The vector (T, L)
is a strong analytical tool for investigating the evolution of the above mentioned
systems. The independence of {X,,n=1,2,...}, N, {C;,s=1,2,...} and S
permits the evaluation of the distribution function

Fro(t,0) = [I = Py(1 = Fx(t))] [1 = Ps(1 — Fc(0))]

of the vector (7T, L).
In this case the applicability of the above vector in risk management is sub-
stantially extended. O

2.19 Time of First Major Damage and Asset Liquidation

Let N be a discrete random variable with values in the set N = {1,2,...}.We
suppose that the random variable N follows the geometric type II distribution with
probability generating function Py(z) = 15—22 and {C,,n=1,2,...} is a sequence
of continuous, positive, independent, and identically distributed random variables.
The random variables of the sequence are equally distributed with the random
variable C having characteristic function ¢ (u). Weset Y = C; + C, + -+ - + Cy.
Let {II,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable IT having characteristic function
o (&) and we set V =1T1I; + I, + - - - 4+ I1y. We consider the vector (¥, V).
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The purpose of the present section is the establishment of properties and
applications in risk management of the vector (Y, V). The following result estab-
lishes sufficient conditions for evaluating the characteristic function @y v (u, &) of
the vector (Y, V).

Theorem 2.19.1 Let N be a discrete random variable with values in the set
N = {1,2,...}. We suppose that the random variable N follows the geometric type
Il distribution with probability ~ generating  function —Py(z) = & Zqz and
{Cn,n=1,2,...} is a sequence of continuous, positive, independent, and identi-
cally distributed random variables. The random variables of the sequence are
equally distributed with the random variable C having characteristic function
@c(u). We set Y =C, + Cy + -+ + Cy.

Let {I1,,n = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable 11 having characteristic function
o(&) and we set V=11 +Ip+---+1y. If N, {C,,n=1,2,...} and
{I1,,,n =1,2,...} are independent then the characteristic function of the vector
(Y,V)is

Pyv(u, &) = 1 —qocu)en(E)

Proof The proof of Theorem 2.19.1 follows from the proof of Theorem 2.12.1. An
interpretation of vector (Y,V), where Y=C +Cy+---+Cy and
V=11, + I + - - - + Iy, in risk management is the following.

A firm faces a risk. We suppose that {X,,,n =1,2,...} is a sequence of con-
tinuous, positive, independent, and identically distributed random variables. The
random variables of the sequence are equally distributed with the random variable
X having distribution function

Fx(x). (2.19.1)

The random variable X,, denotes the size of the damage due to the nth occurrence
of the risk threatening the firm.

Let 0 be a positive real number. If X;, > 0 then the damage due to the nth risk
occurrence is considered as a major one. If p is the probability of the event “the
damage due the nth risk occurrence is major”, then p = P(X,, > 0) or equivalently
p=1-PX, <0).

Hence (2.19.1) implies that p = 1 — Fx(0). If the random variable N denotes the
number of risk occurrences required for the first appearance of a major damage then
the random variable N follows the geometric type II distribution with probability
generating function Py(z) = 1*..

We consider the sequence of random variables {C,,n = 1,2,...} and we sup-
pose that the random variable C,, denotes the time between the nth and the (n — 1)th



128 2 Stochastic Models of Risk Management Concepts

risk occurrence. Hence the random variable Y = C; + C, + - - - + Cy denotes the
time of the first appearance of a major damage.

We consider the sequence of random variables {Il,,n=1,2,...} and we
suppose that the random variable I, denotes the income of the firm from asset
liquidation at the time point of the nth risk occurrence. Hence the random variable
V =11, +II; + - - - + Iy denotes the total income of the firm from asset liqui-
dation in the time interval [0, Y].

In this case the vector (Y,V) is a strong analytic tool for investigating the
evolution of the firm under conditions of the first appearance of a major damage
Y=C;+ Cy+---+ Cy and the total income V = I1; + Il, + - - - + Ily obtained
by asset liquidation until the time point ¥ = C; 4+ C; + --- + Cy.

The independence for N, {C,,n = 1,2,...} and {IT,,n = 1,2,...} permits the
evaluation of the characteristic function

o p@c(”)@]’l(é)
Pyy(u, &) = 1 — gpc(u)pn ()

of the vector (Y, V).
In this case the practical applicability of the above vector in risk management is
substantially extended. O

2.20 Time of First Major Damage and Loan Portfolio

Let {C,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable C having characteristic function
Pc(u).

We suppose that N is a discrete random variable with values in the set N =
{1,2,...} and the random variable N follows the geometric type II distribution with
probability generating function Py(z) = lf—zqz and weset Y =C; + Cy +--- + Cy.

Let {IT;,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable IT having characteristic function
P ($).

We suppose that S is a discrete random variable with values in the set Ny =
{0,1,2,...} and probability generating function Pgs(z) and we set
V=II +1I, + -+ Ils.

We consider the vector (Y, V).

The purpose of the present section is the establishment of properties and
applications in risk management of the vector (¥, V).
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The following result establishes sufficient conditions for evaluating the charac-
teristic function ¢y y,(u, &) of the vector (Y, V).

Theorem 2.20.1 Let {C,,n=1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable C.

We suppose that N is a discrete random variable with values in the set
N ={1,2,...} and the random variable N follows the geometric type II distri-
bution with probability generating function Py(z) = l—Z};z and we set
Y=C+C+---+Cn.

Let {I1;,s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable 11 having characteristic function
o (). We suppose that S is a discrete random variable with values in the set
No={0,1,2,...} and probability generating function Ps(z) and we set
V=IL+IL+ -+ 5. If {Ch,n=1,2,...}, N, {Il;,s = 1,2,...}, and S are
independent then the random variables Y = C1 +Cy+---+ Cy and V =11 +
Il + - - - 4+ Iy are independent and

Pyy(u, &) = M

= 1= o) Ps(on(€))

is the characteristic function of the vector (Y, V).

Proof The proof of Theorem 2.20.1 follows from the proof of Theorem 2.13.1. An
interpretation of the vector (Y,V), where Y=C +Cy+---+Cy and
V =11, + Il + - - - + I, in risk management is the following.

A bank faces a risk. We suppose that {X,,,n = 1,2,...} is a sequence of con-
tinuous, positive, independent, and identically distributed random variables. The
random variables of the sequence are equally distributed with the random variable
X having distribution function

Fx(x) (2.20.1)

The random variable X, denotes the damage due to the nth occurrence of the risk
threatening the bank.

Let 0 be a positive real number. If X,, > 6 then the damage due to the nth risk
occurrence is considered as major one. If p is the probability of the event “the
damage due to the nth risk occurrence is major”, then p = P(X,, > 0) or equiva-
lently p =1 — P(X, < 0).

Hence (2.20.1) implies that p = 1 — Fx(0).

If the random variable N denotes the number of risk occurrences required for the
first appearance of a major damage then the random variable N follows the

geometric type II distribution with probability generating function Py(z) = 1{—;
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We consider the sequence of random variables {C,,n = 1,2, ...} and we sup-
pose that the random variable C, denotes the time between the nth and the (n — 1)th
risk occurrence. Hence the random variable Y = C; + C, + - - - + Cy denotes the
time of the first appearance of a major damage. We consider the discrete random
variable S denoting the number of loans in the portfolio of loans of the bank at the
time point ¥ = C; 4+ Cy + - - - + Cy.

We consider the sequence of random variables {Il,s = 1,2,...} and we sup-
pose that the random variable I1; denotes the size of the sth loan of the portfolio of
loans of the bank at the time point ¥ = C; + C, + - - - 4+ Cy. Hence the random
variable V = I1; 4+ I, + - - - 4+ I denotes the total size of the portfolio of loans of
the bank at the time point ¥ = C; + C; + - - - + Cy. In this case the vector (¥, V) is
a strong analytical tool for investigating the evolution of the bank under the time of
the first appearance of a major damage ¥ = C; 4+ C, + - - - + Cy and the total size
of the portfolio of loans of the bank at the time point ¥ = C| + C, + --- + Cy.

The independence for N, {C,,n=1,2,...}, S and {I,,s = 1,2,...} permits
the evaluation of the characteristic function

poc(u)

1= qgoc(u) Ps(on (<))

(Py,v(uy ¢) =

of the vector (Y, V).
In this case the practical applicability in risk management of the above vector is
substantially extended. O



Chapter 3
Stochastic Models of Risk Management
Operations

Abstract This chapter is devoted to the implementation of two purposes. The
formulation and investigation of stochastic models for the fundamental risk treat-
ment operations are the two purposes. Risk control operations and risk financing
operations constitute the two categories of fundamental risk treatment operations.
This chapter consists of two parts. The first part concentrates on stochastic mod-
eling of risk reduction operations, risk duration reduction operations, and risk
frequency reduction operations which are the main risk control operations. The
second part concentrates on stochastic modeling of risk financing operations.
The stochastic modeling of the cost for treatment of ongoing risk occurrences, and
the reserve of risk financing constitute the main theoretical and practical contri-
bution of the second part of this chapter. In theory and practice, risk treatment is
implemented by combining stochastic models of risk control operations with sto-
chastic models of risk financing operations.

3.1 Introduction

The purpose of the present chapter is the formulation and investigation of stochastic
models for the fundamental risk treatment operations. Risk management literature
recognizes two categories of fundamental risk treatment operations. The first cat-
egory includes the risk control operations and the second category includes the risk
financing operations. In practice, risk treatment is frequently implemented by
combining risk control and risk financing operations. The first part of the present
chapter concentrates on stochastic modeling of risk severity reduction operations,
risk duration reduction operations, and risk frequency reduction operations. Sto-
chastic multiplicative models incorporating two continuous, positive, and inde-
pendent random variables are used for describing and analyzing risk severity
reduction operations and risk duration reduction operations. The concepts and
stochastic models of operations of deleting risk occurrences with constant proba-
bility, operations of deleting risk occurrences with random probability, and
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operations of uniform risk frequency reduction constitute the main contribution of
the first part of the present chapter. The first part of this chapter includes the
formulation and investigation of a stochastic multiplicative model for describing
and analyzing the cost of operations of deleting risk occurrences with constant
probability. The second part concentrates on the concepts and models of risk
financing operations. The stochastic modeling of the cost for treatment of ongoing
risk occurrences, the impacts of risks and the reserve of risk financing constitute the
contribution of the second part of the present chapter.

The complexity of stochastic models of risk control operations and stochastic
models of risk financing operations is significant because these models use as
structural elements the stochastic models of the fundamental concepts of risk
management. The complexity of such models does not create particular difficulties
in risk analysts, risk managers, and risk experts.

The investigation and application of stochastic models for risk control operations
and risk financing operations are strongly supported by the powerful results of the
theory of characteristic functions. These results permit the establishment of
important properties for the probability distributions of such stochastic models.
Moreover, these results make characteristic functions very useful analytical tools of
risk management.

3.2 Models of Risk Severity Reduction Operations

We consider a risk with severity represented by the continuous and positive random
variable X having distribution function Fy(x), probability density function fx(x),
and characteristic function @y (u).

An operation of reducing the severity X of a risk is a process which is applied to
the conditions and the cause of that risk. The consequence of that process is the
representation of the severity of the risk with a continuous and positive random
variable Y such that P (Y <X) = L.

Since the random variable Y denotes the severity of risk after applying a risk
severity reduction operation then this random variable is a function of the random
variable X which denotes the severity of risk before applying the risk severity
reduction operation. The formulation of that function between the random variable
Y and the random variable X is called stochastic modeling of the risk severity
reduction operation. The result of the stochastic modeling of the risk frequency
reduction operation is the stochastic model denoting the severity of risk Y after
applying the risk severity reduction operation. This model is called stochastic model
of a risk severity reduction operation. A large class of such stochastic models is the
class of stochastic multiplicative models of the form Y = XU where U is a con-
tinuous random variable with values in the interval (0, 1), distribution function
Fy(v), probability density function fi;(v) and characteristic function ¢, (u).
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Moreover, the random variable U is independent of the random variable X. The
evaluation of the distribution function Fy(y), the evaluation of the probability
density function fy(y) and the evaluation of the characteristic function ¢y (u) of the
stochastic model Y = XU are necessary for the investigation and applications of
this model. Following Sect. 2.10 we get the formulas

1

) = [ Fe )t av (3.2.1)
0
70 = [ ), (322)
0
1
o2 = [ oxtuwnotv) v (323)
0

and the formulas

Py(u) = / oy (ux)fx(x) dx.
0

Particular theoretical and practical interest can be recognized in the two fol-
lowing special cases of the stochastic model ¥ = XU.

The first special case of the above model arises if the random variable U follows
the beta distribution with probability density function

fo(w) =a"!, O0<v<l, a>0. (3.2.4)

From (3.2.1), (3.2.2), (3.2.3) and (3.2.4) we get the formula

Fy(y) :a/lFx(%)u"_ldv
0
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for the distribution function, the formula

1
1
a/ffx “1dv
)
0

for the probability density function, and the formula

1

oy (u /(pX u)o~ dv
0

for the characteristic function of the stochastic multiplicative model ¥ = XU.
The above formulas correspond in the class of a-unimodal probability distributions.
The following result provides an interesting interpretation of the class of a-

unimodal probability distributions in the area of risk severity reduction operations.

Theorem 3.2.1 Let X be a continuous and positive random variable with char-
acteristic function @x(u), Y a continuous and positive random variable with dif-
ferentiable characteristic function ¢y (u) and U a random variable following the
beta distribution with probability density function

fo) =a® !, O0<v<l, a>0.

We suppose that the random variables X, Y, U are independent. The charac-
teristic function @y (u) of the random variable Y has the form

oyl = exp | a [ 2=y

y
0

if, and only if, Y 2 (X + Y)U where < means equality in distribution.

Proof The characteristic function of the random variable L = (X + Y)U is
oL(u) =E (em(ﬂy)U ) : (3.2.5)
From (3.2.5) we get that
o, (u) = E<E(eiu(X+Y)U |U))

or equivalently
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1
{/E XNV = )“*du (3.2.6)
0

Moreover (3.2.6) implies that
1
— a/E(eiul>(X+Y)|U _ D) a— ldl)
0

or equivalently

1
o (u) = a/E(ei“”x "YU = v)v*dv. (3.2.7)
0

Since the random variables X, Y, U are independent then the random variables

e™X ™Y 1] are also independent. Hence (3.2.7) has the form

1

a/E X ezuUY v L. (328)
0

The independence of the random variables X, Y, U imply the independence of
the random variables X, Y and this conclusion implies the independence of the
random variables X oMY

Hence (3.2.8) has the form

1
o (u) = a/E(e"”“X)E(ei“”Y)v“’ldv. (3.2.9)
0
Since ¢y (u) = E(e™X) and ¢y (u) = E(e™) then (3.2.9) has the form
1
a/q)x (uv) @y (uv)v*~dv. (3.2.10)
0

If we introduce the characteristic function ¢y (u) and the characteristic function
¢ (1), in (3.2.10), to the relationship

Y £(X+Y)U

then we get the integral equation
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1

Py(u) = a/(px(uv)goy(uv)v“’ldu.
0

From (3.2.11) it follows that

u

or0) =5 [ 0,000y 0 ds

and (3.2.12) it follows that

u

Woy(u) = a / 0, () oy (¥ dy.
0

If we differentiate (3.2.13) then we get the differential equation

_ doy(u
au* 1@}/(”) +u %() = apy(u)Qy(u)u

a—1

which satisfies the conditions ¢ (0) = 1 and @y (0) = 1.
If u # 0 then the differential equation (3.2.14) has the form

d¢c;,bfu) — a(pX(ulj — l(/)y(u)

From (3.2.15) we get that

for every y such that @y (y) # 0.
Hence

or equivalently

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)
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Conversely, we suppose that (3.2.16) is valid. We have

u u u

ox(y) —1 a ox(w) — 1 a
exp a/%dy /@x(y)eXP a/%dy ¥y

T
0 0 0

or equivalently

u uv

1
-1 -1
exp a/Mdy :a/gox(uv) exp a/wdy v~ L.
y y
0

0 0
(3.2.17)

The independence of the random variables X, Y, U and (3.2.17) imply that

Y £(X+Y)U.
If the random variable X has a finite mean then the characteristic function

u

—1
py(u) =exp| a / ox) 1 dy
y
0

belongs to a self-decomposable probability distribution. Since the self-decomposable
probability distributions are unimodal then the above result is of particular practical
interest.

An interpretation of the above theoretical result in the area of risk frequency
reduction operations is the following. We consider two independent risks of the
same kind. We suppose that the continuous and positive random variable X denotes
the severity of one risk and the random variable Y denotes the severity of the other
risk. Moreover, the same risk severity reduction operation is applied to these risks.
The same kind of risks and the application of the same risk severity reduction
operation permit the consideration of the two risks as a whole. We suppose that the
random variable U with probability density function

fu) =a® !, O0<v<l, a>0,

denotes the impact of the application of the risk severity reduction operation to the
total severity X + Y of the two risks. Hence the random variable (X + Y)U denotes
the total severity of the two risks after the application of the risk severity reduction
operation. We suppose that the random variables X, Y, U are independent. The
equality in distribution of the random variables ¥ and (X + Y)U implies that the
characteristic function ¢y (u) of the random variable ¥ has the form
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u

q -1
¢y(u) =exp| a / LOy) dy
0

and conversely the consideration of the characteristic function

u

orli —exp | a [ 2= 1g,

0

as characteristic function of the random variable Y implies the equality in distri-
bution of the random variables ¥ and (X + Y)U.

The practical significance of the above result is supported by the assumption that
the existence of a finite mean for the random variable X implies the consideration of
the characteristic function

u

py(u) = exp a/(pX(yy)_ldy

0

as characteristic function of a self-decomposable probability distribution. In this case
the above result establishes a relationship between the class of self-decomposable
distributions and the class of a-unimodal probability distributions. This means that
the class of self-decomposable probability distributions can be used for the inves-
tigation of stochastic multiplicative models of risk severity reduction operations.

If a<1 then the random variable U has probability density function f(v) =
av*~!,0<v <1 which is unimodal at the point 0. Under the assumption a <1 the
result of Medgyessy implies that the probability density function

fr(y) = a/l
0

of the stochastic model ¥ = XU has a unique mode at the point 0.
The second special case of the model Y = XU arises if the random variable U
follows the beta distribution with probability density function

S | =

fx (%) v Ldv

fu) =v(1—=v)"", O0<v<l, v>0. (3.2.18)

From (3.2.1), (3.2.2), (3.2.3) and (3.2.18) we get the formula

1
Fy(y) = V/FX (%)(1 —v)"dv
0
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for the distribution function, the formula

fr(y) = V/%fx(%)(l — )" '

for the probability density function and the formula

1

v/qox un) (1 —v)"dv
0

for the characteristic function of the stochastic model ¥ = XU.

The above formulas correspond to the class of v-unimodal probability
distributions.

If v > 1 then the random variable U has probability density function

ful)=v(1—v)"", o<v<l

which is unimodal at the point 0. If v > 1 then the result of Medgyessy implies that
the probability density function
1
1
=y / - fx =) (1 —v)" Ldv
) v
0

of the stochastic model ¥ = XU has a unique mode at the point 0.
If a =1 or v=1 then it easily follows the formula

for the probability density function and the formula
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Py (u) = /l Px (uv)dv
0

for the characteristic function of the stochastic model Y = XU.
If a=1 or v=1 the result of Khintchine implies that the probability density
function

1
fr(y) = /%fx(%)dv
0

of the stochastic model Y = XU has a unique mode at the point 0.

The existence of a unique mode at the point O for the probability density function
fr(y) of the random variable Y, which denotes the severity of a risk after the
application of a risk severity reduction operation, has theoretical and practical
importance for risk control operations. The theoretical importance of the unimo-
dality at the point O of the probability density function fy(y) for the risk control
operations is the significant probability of the event “the risk severity Y, after the
application of a risk severity reduction operation, to be in an area right to the point
0. The practical significance of unimodality at the point O of the probability density
function fy () for the risk control operations is the effectiveness of the risk severity
reduction operation which transforms the random variable X into the random
variable Y.

The contribution of the present section consists of introducing a class of sto-
chastic multiplicative models of the form ¥ = XU for the description and analysis
of risk severity reduction operations. The main advantage of this class is the
inclusion of stochastic models, related with the study of the property of unimodality
at the point 0 of probability density functions, in this class. The presence of the
continuous random variable U, with values in the interval (0, 1), in the stochastic
multiplicative models of the form ¥ = XU is a structural factor in introducing a
unique mode at the point O for the probability density function fy(y) of the random
variable Y.

The interpretation of the random variable U as a coefficient of the effectiveness
of a risk severity reduction operation and the consideration of the random variable
U as a structural factor in introducing a unique mode at the point O for the prob-
ability density function fy(y) of the stochastic model ¥ = XU result in the con-
clusion that stochastic models based on the product of two independent and positive
random variables, one of which takes values in the interval (0, 1), constitute strong
analytical tools for investigating effective risk severity reduction operations. [
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3.3 Models of Risk Duration Reduction Operations

We consider a risk with duration denoted by the continuous and positive random
variable S having distribution function Fs(s), probability density function fs(s), and
characteristic function ¢g(u).

An operation reducing the duration S of a risk is a process which is applied to the
conditions and the cause of a risk. The consequence of that process is the repre-
sentation of the risk duration with a continuous and positive random variable Y such
that P(Y <S) = 1.

Since the random variable Y denotes the duration of risk after applying a risk
duration reduction operation then this random variable is a function of the random
variable S which denotes the duration of risk before applying the risk duration
reduction operation. The formulation of the function between the random variable Y
and the random variable S is called stochastic modeling of the risk duration
reduction operation. The result of stochastic modeling of the risk duration reduction
operation is the stochastic model denoting the risk duration Y after applying the risk
duration reduction operation. This model is called stochastic model of a risk
duration reduction operation. A large class of such stochastic models is the class of
stochastic multiplicative models of the form Y = SU where U is a continuous
random variable with values in the interval (0, 1), distribution function Fy(v),
probability density function f;(v), and characteristic function ¢, (u).

Moreover, the random variable U is independent of the random variable S.

The evaluation of the distribution function Fy(y), probability density function
fr(»), and characteristic function ¢ () of the stochastic model Y = SU are required
for the investigation and the applications of that model. Following Sect. 2.10 we get
the formulas

1
Fy(y) :/FS<X)fU(U)dU, (3.3.1)
0
1 L
Kr() = [ —fs(=)fu(v)dv, (3.3.2)
y O/U s( ) U

1
oy () = / @5 (uv)fy ()dv (33.3)
0

and the formulas
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Particular theoretical and practical interest can be recognized in the two fol-
lowing special cases of the stochastic model ¥ = SU.

The first special case is the model which arises if the random variable U follows
the beta distribution with probability density function

fov) =a*!, O<v<l, a>0. (3.3.4)

From (3.3.1), (3.3.2), (3.3.3) and (3.3.4) we get the formula

I
Fy(y) = a/F5(§>U“’1dU
0

for the distribution function, the formula

for the probability density function and the formula

1
oy(u) = a/(ps(uv)v“_'dv (3.3.5)
0

for the characteristic function of the stochastic multiplicative model ¥ = SU. The
above formulas correspond to the class of a-unimodal probability distributions.

If a<1 then the random variable U has probability density function fy(v) =
av*"!,0<v<1 which is unimodal at the point 0. If a<1 then the result of
Medgyessy implies that the probability density function
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1
1 _
a/;fs— "ldv
0

of the stochastic model ¥ = SU has a unique mode at the point 0. If @ = 1 then it

easily follows the formula
1
= / F Ky (X> dv
v
0

for the distribution function, the formula

1

1
/st dv
0

for the probability distribution function and the formula

i
:/(ps(uv dv
0

for the characteristic function of the stochastic model ¥ = SU.
If @ = 1 the result of Khintchine implies that the probability density function

1
1

/—fs dv
)

0

of the stochastic model ¥ = SU has a unique mode at the point 0.

The consideration of the special case of the characteristic function (3.3.5), with
the random variable S following the gamma distribution, is of particular practical
interest since the gamma distribution is a common distribution of time. We suppose
that the random variable S, which represents the duration of risk before applying the
risk duration reduction operation, follows the gamma distribution with character-
istic function

ps(u) =( f )aH. (3.3.6)

From (3.3.5) and (3.3.6) it follows that the characteristic function of the random
variable Y, representing the duration of risk after applying the risk duration
reduction operation, has the form
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! m a+1
Py (u) :a/ <—U> v Ldv
U —iu
0

or equivalently the form

ort) = (L)

Hence the random variable Y follows the gamma distribution with parameters p, o.

The consideration of the special case of the characteristic function (3.3.5) with
the random variable S following the exponential distribution and a = 1 is of par-
ticular practical interest since the exponential distribution is the most common
distribution of time and the standard uniform has many applications in stochastic
modeling of operations of multiplicative reduction of random factors.

We suppose that the random variable S follows the exponential distribution with
characteristic function

ps(u) = (3.3.7)

and a = 1.
From (3.3.5) and (3.3.7) it follows that the characteristic function of the random
variable Y has the form

W — iuv

goy(u):/l B
0

or equivalently the form

@y (u) =ﬁlog( . ) (3.3.8)

iu W—iu

The characteristic function (3.3.8) belongs to the class of infinitely divisible
characteristic functions and the corresponding probability density function

1
0= [ et
0

has a unique mode at the point 0. Since it is not possible the analytic evaluation of
the probability density function
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1
fr(y) = / %e’“ "dv
0

and the analytic evaluation of the distribution function

(1 — e”‘%> dv

then the investigation of risk duration Y = SU is based on the characteristic

function
u u
¢y<u>—.—10g( )
iu u—iu

The use of the characteristic function

oy () = f;log( # )

i w—iu

Fy(y) =

o _

for the investigation of risk duration ¥ = SU is implemented by two methods. The
first method is based on the inversion theorem for characteristic functions and the
algorithm called Fast Fourier Transform. This method provides an analytic
approximation of the distribution function

(1 — e’”%> dv

and an analytic approximation of the probability density function

Fy(y) =

o _

1
fr(y) = / %e*“%dv
0

of the model Y = SU.
The second method is the establishment of properties for the characteristic

function
0 0
or(1) :.—10g( )
iu u—iu

which imply properties for the distribution function
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1
/ lfe “v
0

and properties for the probability density function

1
0/
This method provides a partial description of the probabilistic behaviour of the

model Y = SU.
The integral representation

e Midv.

C\‘:

1
U
= d
@y (u) /#_ 4D v
0

of the characteristic function

H H
=—1
@y (u) PR (ﬂ — iu>

of the model Y = SU implies the property of unimodality at the point O and the
property of infinite divisibility of the probability density function

d e Midy.

Il
o~\_

These properties provide significant information for the behaviour of the prob-
ability density function

v

1
) = [ Heran
0

at the tails of its domain. The establishment of the characteristic function

py(u) = ul g( um>
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as a member of a class of transformed infinitely divisible characteristic functions is
of particular theoretical and practical interest for the risk duration reduction oper-
ations. This establishment is based on the following result of Abate and Whitt.

Let V be a continuous and positive random variable with characteristic function
¢y (u) and finite mean m, then

1

05() = - —1og oy (u) (3:3.9)
is the characteristic function of a continuous and positive random variable B with
probability density function fz(f) which is unimodal at the point O if, and only if,
the random variable V is infinitely divisible. The formula (3.3.9) can be considered
as transformation which converts the characteristic function ¢ () of a continuous,
positive, and infinitely divisible random variable with finite mean m into the
characteristic function @g(u) of a random variable B with probability density
function fz(f) having unique mode at the point 0.

Theorem 3.3.1 Let S be a continuous, positive, and infinitely divisible random
variable with characteristic function @g(u) and finite mean 0.
Let Y be a continuous and positive random variable with characteristic function

1
Py (u) = 0, 108 Ps(u).

If U is a random variable following the uniform distribution with probability
density function fy(v) = 1,0<v <1 and the random variable U is independent of
the random variable S then

u
n—iu

ps(u) =
with p :% if, and only if, Y L SU where the symbol L means equality in
distribution.

Proof The assumption that the random variable S is independent of the random
variable U, following the standard uniform distribution, implies that the charac-
teristic function of the random variable SU is

osu(u) = / ps(uv)dv.
0

If we use the characteristic function

1
(PY(M) = @loz‘% QDS(M)
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and the characteristic function
1
osul) = [ gslun)as
0
in the relationship Y £ SU then we get the integral equation

1
1
@log(ps(u) :/(ps(uv)dv. (3.3.10)
0

From (3.3.10) it follows the integral equation

u

1 1
o log os(u) = ;/ @s(y)dy
0
or equivalently the integral equation
log pg(u) = iO/ @s(y)dy. (3.3.11)
0
Moreover (3.3.11) implies that
d d [
—logpg(u) = i0— [ @g(y)dy. (3.3.12)
du du
0

From (3.3.12) we get the differential equation

d
40s01) _ 902 () (3.3.13)
du
which satisfies the condition ¢4(0) = 1.
Hence (3.3.13) implies that

u d u

/ ‘pj(y) - /h?dy. (3.3.14)

;o5 )

From (3.3.14) we get that
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1

ot
or equivalently we get that
1
os(u) = T (3.3.15)
If 0= i then (3.3.15) has the form
og(u) = Mfiu. (3.3.16)

Conversely, we suppose that (3.3.16) is valid. Since the random variable S with
characteristic function

_ _H
ps(u) = " — iu
is infinitely divisible with mean ;7 then
oy(u) = Llog (3.3.17)

iu ~u—iu

is the characteristic function of a random variable Y with probability density
function fy(y) which has a unique mode at the point 0. From (3.3.17) we get that

1
ﬁlog( ”_>:/ . (3.3.18)
iu u— iu U — iuv
0

Let U be a random variable which follows the uniform distribution with proba-
bility density function f;;(v) = 1,0 <v < I and independent of the random variable S.
If we use the random variable Y and the random variable SU in (3.3.18) then we

get that Y < su.

The second special case of the stochastic multiplicative model ¥ = SU arises if
the random variable U follows the beta distribution with probability density
function

fu)=v(1—=v)""" 0<v<l, v>0. (3.3.19)

From (3.3.1), (3.3.2), (3.3.3) and (3.3.19) we get the formula
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= v/FSG)(l — )" dv
0

for the distribution function, the formula

1

fry) = V/%fs(g)(l —0)" v

0

for the probability distribution function, and the formula

1
v/(ps uv) ) v (3.3.20)
0

for the characteristic function of the stochastic multiplicative model ¥ = SU.

The above formulas correspond to the class of v-unimodal probability
distributions.

If v > 1 then the random variable U has probability density function

fu)=v(1—v)"", 0<v<l,

which is unimodal at the point 0. If v > 1 then the result of Medgyessy implies that
the probability density function

v(y) = V/lfs(%)(l — )"y

of the stochastic model ¥ = SU has a unique mode at the point 0. For v = 1 then it
easily follows the formula

for the probability density function and the formula
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1

~ [ ostwar

0

for the characteristic function of the stochastic model Y = SU.
If v = 1 the result of Khintchine implies that the probability density function

1
0/fs

of the stochastic model ¥ = SU has a unique mode at the point O.

An interesting special case of the characteristic function (3.3.20) is the follow-
ing. If the random variable S follows the gamma distribution with characteristic
function

< | =

and v = 2 then the characteristic function (3.3.20) has the form

20/1< mv) (1= v)dv. (3.3.21)

From (3.3.21) it follows that

1
2
M H
=— [ (1—-v)d . 3.3.22
“) lu/( ) (,u—im)) ( )
0
A factorial integration of (3.3.22) implies that
Wop [ n )
=——+— —— ) db. 3.3.23
(1) i * iu/ <u — i1w> v ( )
0

Integrating (3.3.23) we get that

S LN
or() = iu+iu<uiu)

or equivalently we get that
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u
u—iu

Py (u) =

In this case the random variable Y follows the exponential distribution with
parameter p. U

3.4 Operations of Deleting Risk Occurrences with Constant
Probability

We consider a risk with frequency represented by the discrete random variable N
taking values in the set No = {0, 1,2,...}, having probability function

P(N=n)=p,, n=0,12 .. (3.4.1)

and probability generating function Py(z).

An operation of reducing the frequency N of a risk is a process which is applied
to the conditions and the cause of a risk. The consequence of that process is the
representation of the risk frequency with a discrete random variable Y taking values
in the set No = {0, 1,2, ...} and satisfying the relationship P(Y <N) = 1.

Since the random variable Y denotes the frequency of risk after applying a risk
frequency reduction operation then this random variable is a function of the random
variable N which denotes the frequency of risk before applying the risk frequency
reduction operation. The formulation of the function between the random variable Y
and the random variable N is called stochastic modeling of the risk frequency
reduction operation. The result of stochastic modeling of the risk frequency
reduction operation is the stochastic model denoting the risk frequency Y after
applying the risk frequency reduction operation. This model is called a stochastic
model of a risk frequency reduction operation. The purpose of the present section is
the formulation of a random sum for the description and investigation of a risk
frequency reduction operation. We suppose that in the risk with frequency N is
applied the following operation of reducing the frequency N.

According to this operation each risk occurrence is retained with probability w
and deleted with probability 1 — w.

The retention—deletion of a risk occurrence is independent of the retention—
deletion of any other risk occurrence. We consider the sequence of independent and
identically distributed random variables {L,,n = 1,2,...}.

The random variables of the above sequence are equally distributed with the
random variable L which follows the Bernoulli distribution with probability
function
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I=1

W’
”L:”:{1—w =0

The random variable N is independent of the sequence {L,,n = 1,2,...}.
If the random variable Y denotes the risk frequency after applying the risk
frequency reduction operation then we get that

Y=L +L+ -+ Ln. (3.4.2)
The probability generating function Py(z) of the random sum
Y=L +L+ - +Ly

is required for investigating the impact of the risk frequency reduction operation.
The following result concentrates on the evaluation of the probability generating
function Py (z).

Theorem 3.4.1 Let N be a discrete random variable with values in the set Ny =
{0,1,2,...}, probability function

P(N=n)=p,, n=0,1,2,...

and probability generating function Py(z).

Let {L,,n=1,2,...} be a sequence of independent and identically distributed
random variables. The random variables of the sequence {L,,n =1,2,...} are
equally distributed with the random variable L which follows the Bernoulli dis-
tribution with probability function

=1

W7
HL:D:{I—W 1=0

We suppose that the random variable N is independent of the sequence
{Ly,n=1,2,...} and we set

Y=Li+L+ -+ Ly
The probability generating function of the random sum
Y=L +L+ - +Ly
is
Py(z) = Py(1 —w + wz).

Proof The probability generating function of the random variable L is
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1
-1
Pr(z) = Zwl(l - w)1 Z
=0
or equivalently

Pz)=1—w+wz. (3.4.3)

The evaluation of the probability generating function Py(z) is implemented as
follows. We have

or equivalently
Py(z) = E(E(Z"|N)). (3.4.4)
From (3.4.2) and (3.4.4) it follows that
o0
Py(z) =Y E(Z"TIN = n)P(N = n)
n=0

or equivalently

o0

Py(z) = Y E("* ™ |N =n)P(N =n). (3.4.5)
n=0

Moreover, (3.4.5) implies that

Py(z) = iE(zL‘. ..Z"|N =n)P(N =n). (3.4.6)
n=0

The independence of the random variable N and sequence of random variables

{L,,n=1,2,...} means the independence of the random variables N, Ly, ..., L,.
Hence we get the independence of the random variables N,z" ...z and the
independence of the random variables 7", . .., 7l

It is easily seen that (3.4.6) has the form

Py(z) = iE(le). ..E(z")P(N =n). (3.4.7)

n=0

Since
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then (3.4.3) implies that
E(Z")=1-w+wz (3.4.8)

From (3.4.1), (3.4.7) and (3.4.8) it follows that

Py(z) = Z (1 —w+wz)'p,. (3.4.9)
n=0
Hence (3.4.9) implies that the probability generating function of the random sum
Y=L +L+---+Ly
has the form

Py(z) = Py(1 — w4+ wz). (3.4.10)

Some special cases of (3.4.10) are the following. We suppose that the random
variable N follows the Poisson distribution with probability generating function

Py(z) = 7Y, (3.4.11)
From (3.4.10) and (3.4.11) we get that
Py(z) = H-w+we)
or equivalently we get that
Py(z) = ™G0,
Hence the random variable Y follows the Poisson distribution with parameter
iW.We suppose that the random variable N follows the stable distribution with
probability generating function

Py(z) =e "9 >0, 0<y<l. (3.4.12)

From (3.4.10) and (3.4.12) it follows that
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Py(z) = e Cll=(1=wtwa)]’
or equivalently
Py(z) = e (172
Hence the random variable Y follows the stable distribution with parameters cw”, y.

We suppose that the random variable N follows the uniform distribution with
probability generating function

Py(z) = : (3.4.13)

From (3.4.10) and (3.4.13) we get that

= (1—w+wz)"
P& = AT T o)

or equivalently we get that

I—(1—w+wg)"

Pr(z) = nw(l — z)

Hence the random variable Y follows the renewal distribution corresponding to
the random variable A which follows the binomial distribution with probability
generating function

PA(z) = (1 —w+wz)".

We suppose that the random variable N follows the renewal distribution cor-
responding to the random variable H which follows the Poisson distribution with
probability generating function

Py(z) = /Y
The probability generating function of the random variable N has the form

1 — A=)

PN(Z) :71(1 —Z) .

(3.4.14)

From (3.4.10) and (3.4.14) we get that
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1— e/l(lwarwzfl)
A= (1 =w+wz)]

Py(Z) =

or equivalently we get that

1— eiw(zfl)

Py(z) =—F7——.
r(@) w(1—2z)
Hence the random variable Y follows the renewal distribution corresponding to
the random variable I which follows the Poisson distribution with probability
generating function

Pi(z) = M),
The use of the random sum
Y=L +L,+ - +Ly

as a stochastic model of a risk frequency reduction operation supports the role of
random sums in describing and investigating fundamental risk management oper-
ations. O

3.5 Operations of Deleting Risk Occurrences with Random
Probability

Let N be a discrete random variable with values in the set No = {0, 1,2,...} and
probability generating function Py(z).

We suppose that the random variable N denotes the frequency of a risk and a risk
frequency reduction operation is applied to that risk. According to this risk fre-
quency reduction operation a risk occurrence is retained with probability W or
deleted with probability 1 — W where W is a continuous and positive random
variable with probability density function fiy(w),0<w<1.

The deletion—retention of a risk occurrence is independent of the deletion—
retention of any other risk occurrence.

Let V be a discrete random variable denoting the risk frequency after applying
the risk frequency reduction operation. It is obvious that the random variable V
takes values in the set Nop = {0,1,2,...}, and the random variable N with the
random variable V satisfy the relationship P(V <N) = 1.

The purpose of the present section is the evaluation of the probability generating
function Py (z) of the random variable V which denotes the frequency of risk after
applying the risk frequency reduction operation.
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Theorem 3.5.1 Let N be a discrete random variable with values in the set Ny =
{0,1,2,...} and probability generating function Py(z).

We suppose that the random variable N denotes the risk frequency and a risk
frequency reduction operation is applied to that risk. According to this risk fre-
quency reduction operation a risk occurrence is retained with probability W or
deleted with probability 1 — W where W is a continuous, positive random variable
independent of the frequency of risk with probability density function
fw(W),O<W<1.

The retention—deletion of a risk occurrence is independent of the retention—
deletion of any other risk occurrence.

Let V be a discrete random variable denoting the frequency of risk after
applying the risk frequency reduction operation. The random variable V takes
values in the set No = {0,1,2,...} and

Py(z) = /PN(I — w4+ wz)fw (w)dw
0

is the probability generating function of the random variable V.

Proof We suppose that W = w.

In this case the random variable V|W = w denotes the frequency of risk after
applying the above risk frequency reduction operation which retains a risk occur-
rence with probability w.

From Sect. 3.4 it follows that the random variable V|W = w is equally dis-
tributed with the random variable

Y=L +Ly+ - +Ly

where {L,, n=1,2,...} is a sequence of independent random variables equally
distributed with the random variable L which follows the Bernoulli distribution with
probability function

w, =1
P(L:l):{1—w 1=0.

The sequence of random variables {L,,n =1,2,...} is independent of the
random variable N.

For the probability generating function Py (z) of the random variable V

we get

or equivalently we get
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Py(z) = E(E(z"|W)). (3.5.1)
From (3.5.1) we get
1
/E (2 |W = w)fw(w)dw (3.5.2)
0

Since the random variable V|W = w has the same distribution with the random
sum

Y=L +Ly+ -+ Ly,
then we get
E(Z'|W=w) =E(Z)
or equivalently we get
E(Z'|W =w) = Py(2). (3.5.3)
From (3.4.10) we get
Py(z) = Py(1 — w+ wz). (3.5.4)

Hence (3.5.2), (3.5.3) and (3.5.4) imply that the probability generating function
Py (z) of the random variable V has the form

1
= /PN(l — w4 wz)fw(w)dw. (3.5.5)
0

A special case of the probability generating function (3.5.5) is the following. We
suppose that the random variable W follows the beta distribution with probability
density function

fww) =aw” !, 0<w<l, a>0. (3.5.6)
From (3.5.5) and (3.5.6) it follows that the probability generating function Py (z)

of the random variable V has the following form

I
=a / Py(1 —w +wz)w* Ldw. (3.5.7)
0
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If we set
y=1—-w+wz
then the probability generating function (3.5.7) has the form

PUa) = i [ PV =)y (358)

z

The discrete random variable V with values in the set No = {0,1,2,...} and
probability generating function of the form (3.5.8) is called «-monotone. Some
examples of a-monotone variables are the following.

We suppose that the random variable N follows the Bernoulli distribution with
probability generating function

Py(z) =pz+q (3.5.9)

and probability function

, n=1
P(N:n):{z o

From (3.5.8) and (3.5.9) it follows that the probability generating function of the
random variable V has the form

P = e [ v+ 1=y

or equivalently the form

ap aq+1
P =
V(@) a+lz+a+l’

which belongs to the Bernoulli distribution with probability function

ap v=1
PV =v) = {
aq+1’ v=0.

We suppose that the random variable N follows the Sibuya distribution with
probability generating function
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Py(z)=1—(1—-2)", 0<y<lL. (3.5.10)

From (3.5.8) and (3.5.10) it follows that the probability generating function of
the random variable V has the form

e UIE IR

Pv(Z) =

or equivalently the form

Y a
+
a+y a-+vy

Py(z) = [ =(1=2)]

which is a mixture of the probability generating function P(z) = 1 of the random
variable I with probability function P(I =0) = 1 and the probability generating
function

Piz) =1—(1-2)

of the random variable J which follows the Sibuya distribution with parameter 7.
We suppose that the random variable N follows the negative binomial distri-
bution with probability generating function

PN(Z):< L )Hl. (3.5.11)

1—gz

From (3.5.8) and (3.5.11) it follows that the probability generating function of
the random variable V has the form

Py(2) = 1_Z/< ) (1-)ay

or equivalently the form

Pl = (1 fLIZ)a

which follows the negative binomial distribution with parameters p, a
We suppose that the random variable N follows the Poisson distribution with
probability generating function
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Py(z) = /1. (3.5.12)

From (3.5.8) with @ = 1 and (3.5.12) it follows that the probability generating
function of the random variable V has the form

1

1
Py(2) :_Z/eﬂ,(y—l)dy

Z
or equivalently the form

1— e/ﬁ(zfl)
MO =Ty

which is the probability generating function of the renewal distribution corre-
sponding to the random variable IT which follows the Poisson distribution with
probability generating function

Pr(z) = D,

The class of az-monotone random variables for a = 1 has particular theoretical
and practical significance since this class is related to the class of integral part
models. These models have important applications in the description and analysis
of operations for treating risks with at least one occurrence into a given time
interval. O

3.6 Integral Part Models of Risk Frequency Reduction
Operations

Let N be a discrete random variable with values in the set N = {1,2,...}, prob-
ability function

P(N=n)=p,, n=1,2 (3.6.1)

and probability generating function Py (z).
We consider the random variable U which follows the uniform distribution with
probability density function

fulv)=1, O<v<l. (3.6.2)

We suppose that the random variable N is independent of the random variable U
and we set Y = [UN] where [UN] denotes the integral part of the product UN.
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The random variable Y = [UN] is a stochastic model of particular theoretical and
practical significance.

Since P(Y <N) = 1 then the stochastic model of integral part Y = [UN] can be
interpreted in the area of risk frequency reduction operations in the following way.
We suppose that the random variable N denotes the frequency of a risk, then the
random variable Y denotes the frequency of the risk after applying a risk frequency
reduction operation. The purpose of the present section is the evaluation of the
probability function

PY=y)=¢qy, y=0,12..,

the probability generating function Py(z), and the establishment of properties and
applications in the area of risk frequency reduction operations of the stochastic
model Y = [UN].

The following result concentrates on the evaluation of the probability function

PY=y)=¢q, y=012,...

and the evaluation of the probability generating function Py(z) of the stochastic
model Y = [UN].

Theorem 3.6.1 Let N be a discrete random variable with values in the set
N ={1,2,...}, probability function

P(N=n)=p,, n=0,1,2,...

and probability generating function Py(z).
We consider the random variable U which follows the uniform distribution with
probability density function

fulv)=1, O<v<l. (3.6.3)
We suppose that the random variable N is independent of the random variable

U and we set Y = [UN] where [UN)] is the integral part of the product UN.
The stochastic model Y = [UN| has probability function

PY=y)=qy= an

n=y-+1

and probability generating function
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Proof The evaluation of the probability function
PY=y)=¢q, y=012,...
of the random variable ¥ = [UN] is implemented by the following way. We have
P(Y =y) = P([UN] = y)

or equivalently we have

P(Y=y) = i P([UN] = y|N =n)P(N = n). (3.6.4)

n=y+1

From (3.6.1) and (3.6.4) it follows that

o0

P(Y =y)= Y _ P([UN] =yIN =n)p,. (3.6.5)

n=y+1

Since the event ([UN]=y|N=mn) 1is equivalent to the event
(ySUN<y+ 1|N = n) then (3.6.5) implies that

P(Y=y)= Y P(y<SUN<y+I1|N=n)p,. (3.6.6)
n=y+1

Hence (3.6.6) implies that

- y y+1
P(Y=y)= > P N SU<——IN=n)p,

n=y+1 N~
and
P(Y=y)= ) p( <U<|Nn)pn (3.6.7)
n
n=y+1

Since the random variable U is independent of the random variable N then
(3.6.7) has the form

P(Y =y) = i (n <U< y“)pn. (3.6.8)

n=y+1 n

From (3.6.2) or (3.6.3) and (3.6.8) it follows that



3.6 Integral Part Models of Risk Frequency Reduction Operations 165

P(Y=y)= i (y: ! —%)pn.

n=y+1

Hence the probability function of the random variable ¥ = [UN] is

P(Y=))=gq, = Zp" y=0,1,2,... (3.6.9)
n=y+1

From (3.6.9) it follows that
PY=y)=q,>PY=y+1)=¢qy1, y=0,12... (3.6.10)
and (3.6.10) implies that the probability function
PY=y)=¢q, y=0,12...
of the random variable ¥ = [UN] has a unique mode at the point 0. Hence risk
avoidance is the most probable event after applying the risk frequency reduction
operation.

The evaluation of the probability generating function Py(z) of the random
variable Y = [UN] is implemented by the following way. We have

or equivalently we have
=> 2P(Y =y). (3.6.11)

From (3.6.9) and (3.6.11) it follows that
() = Zzy< > p”) (3.6.12)
y=0 n=y+1
Hence (3.6.12) implies that
00 p n—1
Pr(x) =) (Z zy>. (3.6.13)
n=1 y=0

From (3.6.13) it follows that
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o0 pn .
P = —(1 . 3.6.14
v(2) n;”( +z4+-+2"7) ( )
Hence (3.6.14) implies that

= pn I*Z
Py(e)=) "
n=1

l1—z

n

It is easily seen that

Py(z) = ian/w"—ldw. (3.6.15)

Py(z) = 7%”” —dw. (3.6.16)

Moreover (3.6.16) implies

1
1 I &
P =— — " dw. .6.17
/@) l_z/<W;pnw> w (3.6.17)
Z

Since

PN(Z) = anzn
n=1

is the probability generating function of the random variable N then (3.6.17) implies
that the probability generating function of the random variable Y = [UN] is

1

Pr(z) = %_Z / PNT(W) iw. (3.6.18)

The consideration of special cases of the probability distribution of the stochastic
model of integral part ¥ = [UN] is of particular practical interest. The use of the
probability generating function (3.6.18) is important in considering such cases.
Some special cases of (3.6.18) are the following.
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We suppose that the random variable N, denoting the frequency of risk before
applying the risk frequency reduction operation, follows the geometric type II
distribution with probability generating function

pz

Py(z) = —qz

(3.6.19)

From (3.6.18) and (3.6.19) it follows that the probability generating function of
the random variable ¥ = [UN], which denotes the frequency of risk after applying
the risk frequency reduction operation, has the form

1 1 w
Py(2) :—/—~p—dw
or equivalently the form

Py(z)Blog< P )/(zl). (3.6.20)

q l—gz

The probability generating function (3.6.20) belongs to the renewal distribution
corresponding to the probability distribution of the random variable A which fol-
lows the logarithmic distribution with probability generating function

log(1 — gz)
PA(Z) = W

We suppose that the random variable N has the form N = B 4 1 where B is a
random variable following the Poisson distribution with probability generating
function

PB(Z) _ e/l(z—l)
The probability generating function of the random variable N is
Py(z) = ze"&D, (3.6.21)

From (3.6.18) and (3.6.21) it follows that the probability generating function of
the random variable ¥ = [UN] has the form

or equivalently the form
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1— el(zfl)

PY(Z) :m

(3.6.22)

The probability generating function (3.6.22) belongs to the renewal distribution
corresponding to the probability distribution of the random variable B which fol-
lows the Poisson distribution with probability generating function

Pp(z) = "1,

We suppose that the random variable N follows the uniform distribution with
probability generating function

Py(z) = H (3.6.23)

From (3.6.18) and (3.6.23) it follows that the probability generating function of
the random variable ¥ = [UN] has the form

1

1 (1—
/—W de
—zJ w n(l—w)

or equivalently the form

(3.6.24)

The probability generating function (3.6.24) belongs to the distribution which is
a uniform mixture of uniform distributions.

We suppose that the random variable N follows the degenerate distribution with
probability function P(N = n) = 1 and probability generating function

Py(z) = 7" (3.6.25)

From (3.6.18) and (3.6.25) it follows that the probability generating function of
the random variable ¥ = [UN] has the form

or equivalently the form
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Py(Z) = . (3626)

The probability generating function (3.6.26) belongs to the uniform distribution.

We suppose that the random variable N has the form N = H 4+ 1 where H is a
random variable following the Sibuya distribution with probability generating
function

Py(z) =1—(1—-2), 0<yp<lL
The probability generating function of the random variable N has the form
Py(z) =71 — (1 —2)"]. (3.6.27)

From (3.6.18) and (3.6.27) it follows that the probability generating function of
the random variable ¥ = [UN] has the form

Py(z) = I iZ/%.W[I — (1 —w)"]dw

or equivalently the form

Py(z) = y%ﬁv%“ — (=2 (3.6.28)

The probability generating function (3.6.28) is a mixture of the probability
generating function Pi(z) = 1 of the random variable I with probability function
P(I =0) =1 and the probability generating function

Py(zg) =1-(1-2)

of the random variable J which follows the Sibuya distribution with parameters 7.

The following result provides an interesting interpretation of the class of discrete
self-decomposable probability distributions in the area of risk frequency reduction
operations. O

Theorem 3.6.2 Let N be a discrete random variable with values in the set N =
{1,2,...} and probability generating function Py(z), C a discrete random variable
with values in the set Nog = {0, 1,2,...}, probability generating function Pc(z) and
U a random variable following the uniform distribution with probability density
Sunction fy(v) = 1,0<v<1.

We suppose that the random variables N, C, U are independent. The probability
generating function Pc(z) of the random variable C has the form
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1

Pc(z) = exp f/%ﬁiw)dw

z
if, and only if,

CLUWN+C+1)]
where the symbol £ means equality in distribution.
Proof We consider the random variable

O=[UN+C+1)]

The evaluation of the probability generating function Pr(z) requires the proof of
independence of the random variables U and L =N 4 C + 1.
Let

o (1) (3.6.29)

be the characteristic function of the random variable U, ¢, (&) the characteristic
function of the random variable L = N + C + 1, and ¢ ;(u, {) the characteristic
function of the vector (U, L). The establishment of the relationship

QDU,L(”a €)= py(u)eL(&) (3.6.30)

is required for the proof of the independence of the random variables U, L. The
characteristic function of the random variable L =N 4+ C + 1 is

0,(¢) = E<ei§(N+C+l))
or equivalently
@L(&) = E°E(e™N - ££C). (3.6.31)
The independence of the random variables N, C, U implies the independence of
the random variables N, C.

Hence the random variables ¢V, ¢*“C are independent. Since

on(8) = E(eY) (3.6.32)

is the characteristic function of the random variable N and
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@c(&) = E("°) (3.6.33)
is the characteristic function of the random variable C then (3.6.31) has the form

or(&) = eiéﬁDN(f)(ﬂc(f)- (3.6.34)

From (3.6.30) and (3.6.34) it follows the establishment of the relationship

(pU,L(ua §) = (PU(M)(PN(é)(pC(é)eli

is required for the proof of the independence of the random variables U and
L=N+C+1.
We have

Oy L, &) = EMUHEVECED),
Hence
(pU"L(m f) _ E(E(eiuU+iz:N+ic’c+ié|C))

or equivalently

NgE

Py (U, &) =) E(eMUHNTCH C = ) P(C = ¢). (3.6.35)

i
(=]

From (3.6.35) we get that

Py (u, &) =Y E(eMVHNTHE 0 = ¢)P(C = ¢) (3.6.36)
=0

C:

The independence of the random variables N, C, U implies the independence of
the random variables ¢V, ¢V, C.
Hence (3.6.36) has the form

QDUL ZE in ng lgc lf)P(C: C). (3637)
y=0

The independence of the random variables ¢V, ¢V, C implies the indepen-

dence of the random variables ¢V, ¢V,
Hence (3.6.37) has the form
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o sy . sy .
(pU,L(Ua é) — Z ezC,E(emU)E(eZCN)E(elfc)P(C _ C). (3638)
y=0

From (3.6.29), (3.6.32), (3.6.33) and (3.6.38) it follows that

Py L(v:8) = oy () pn(E)pc(E)e”.

Hence the random variables U and L =N+ C+ 1 are independent. The
probability generating function of the random variable L =N+ C + 1 is

Pr(z) = zPNn(2)Pc(2)- (3.6.39)

From (3.6.18) and (3.6.39) it follows that the probability generating function of
the random variable IT = [U(N 4 C + 1)] has the form

1

Pr(z) = %_Z Py(w)Pc(w)dw. (3.6.40)

If we use the probability generating function Pc(z) and the probability gener-
ating function

in the relationship

CL[UN+C+1)]

then we get the integral equation

Pc(Z) = %_Z/PN(W)PC(W)‘{W- (3641)
From (3.6.41) it follows that
1
(1= 2)Pe(z) = / Pyy(w)Pe(w)dw. (3.6.42)

Z

If we differentiate (3.6.42) then we get the differential equation
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ch (Z)
dz

(1—-72) — Pc(z) = —Pn(2)Pc(z) (3.6.43)

which satisfies the conditions Pc(z) = 1 and Py(z) = 1.
If z # 1 then the differential equation (3.6.43) has the form

dpc(Z) _ 1-— PN(Z)

Pc(2). .6.44
dz 1—2 c(z) (3.6.44)
From (3.6.44) we get that
1 J 1 .
P —P
/ cw) _ / W) (3.6.45)
Pc(w) l—w
Zz Z

Hence (3.6.45) implies that

1

1—-P
logPC(z)z—/%m(;v)dw, 0<z<1,
Z

or equivalently

I
1-P
Pc(z) = exp —/%viw)dw . 7 <L (3.6.46)

Z

Conversely, we suppose that (3.6.46) is valid. We have

1 1

1
1-P 1 1-P
exp —/wdw :—/PN(w)exp —/17]\;()))@ dw.

1—w 1—z
Z Z w

(3.6.47)

From the independence of the random variables U, L = N + C + 1 and (3.6.47)
it follows that

CLUN+C+1).

The probability generating function
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1

re(e) =exo| - [

z

1—PN(W)
1—w

dw

belongs to a self-decomposable probability distribution. Since the discrete self-
decomposable probability distributions are unimodal then the above result is of
particular practical interest. Moreover, the probability generating function

1

Pe@) =exp| - [

Z

1 7PN(W)

d
1—w v

is the probability generating function of the stochastic integral part model

CLUN+C+1)

Hence (3.6.10) implies that the probability function P(C = ¢) = g.,¢ =0, 1,2,
which corresponds to the probability generating function

1

Pc(z) = exp —/

e

1-— PN(W)

d
1—w "

satisfies the relationship
P(C=c¢)=¢qg.>P(C=c+1)=qci

or equivalently the probability function P(C = ¢) = g.,c = 0, 1,2, is unimodal at
the point 0. Since the random variable Y denotes the frequency of risk after
applying a risk frequency reduction operation then the unimodality at the point O of
the probability function P(C = ¢) = ¢., ¢ = 0, 1,2, means that risk avoidance is the
most probable event after applying that risk frequency reduction operation.

The consideration of special cases of the probability generating function (3.6.46)
of the stochastic integral part model

CLIUN+C+1)]

supports the role of that model in practical applications.
We suppose that the random variable N follows the Sibuya distribution with
probability generating function

Py(z)=1—(1—-2)", 0<y<lL. (3.6.48)
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From (3.6.46) and (3.6.48) we get the probability generating function

1

Pc(z) = exp —/

z

L-[1-(1—w)]

d
1—w "

or equivalently the probability generating function
1 y
Pele) =exp| -1 (1|

which belongs to the class of stable probability distributions.
We suppose that the random variable N follows the geometric type II distribu-
tion with probability generating function

4
Py() =+ b - (3.6.49)

From (3.6.46) and (3.6.49) we get the probability generating function
1 ()
S G L7 9

Pe(@) =exp |- [

Z

or equivalently the probability generating function

. (1 fqz) lg

which belongs to the negative binomial distribution with parameters p, é

The interpretation of the above theoretical result in the area of risk frequency
reduction operations is implemented by the following way. We consider two
independent risks of the same kind. We assume that the discrete random variable N
with values in the set N = {1,2,...} denotes the frequency of one risk and the
random variable C + 1 denotes the frequency of the other risk, where C is a discrete
random variable with values in the set No = {0, 1,2,...}.

A risk frequency reduction operation is applied to these risks. The kind of risks
and the way of applying the risk frequency reduction operation permit the entire
consideration of these risks. We suppose that the random variable U, having
probability density function fy(v) = 1,0 <v <1, denotes the impact of applying the
risk frequency reduction operation to the total frequency N + C + 1 of the two
risks. Hence the random variable [U(N + C + 1)] denotes the total frequency of the
two risks after applying the risk frequency reduction operation. We suppose that
the random variables N, C, U are independent. The equality in distribution of the



176 3 Stochastic Models of Risk Management Operations

random variables C and [U(N + C + 1)] implies that the probability generating
function P¢(z) of the random variable C has the form

1

Pe@ =exp| - [

Z

I—PN(W)dW 7
1—w

and conversely the consideration of the probability generating function

1

Pe(z) = exp | — /

Z

1 —PN(W)

d
1—w v

as probability generating function of the random variable C implies the equality in
distribution of the random variable C and the random variable [U(N + C + 1)].

The class of discrete renewal distributions and a characterization of discrete
distributions having a unique mode at the point O will be used for establishing of a
result with applications in stochastic modeling of risk frequency reduction
operations.

Let X be a discrete random variable with values in the set No = {0, 1,2,...},
probability generating function Px(z), and finite mean d.

The discrete random variable R with values in the set No = {0, 1,2,...}, and
following the renewal distribution corresponding to the distribution of the random
variable X, has probability generating function

1-— Px(Z)
PR(Z) = m

The formula of the probability generating function of the random variable R
which follows the renewal distribution corresponding to the distribution of the
random variable X is valid even if the set of values of the random variable X is
N={1,2,...}.

The following result has been established by Medgyessy.

Let A be a discrete random variable with values in the set Ng = {0, 1,2, ...} and
probability generating function P4(z).

The probability function of the random variable A has a unique mode at the point
0 if, and only if, the probability generating function P,(z) of the random variable A
has the form

Pa(z) = lnzlP_xyS)

where Py(z) is the probability generating function of a uniquely defined random
variable W with value in the set N = {1,2,...} and 1 = 1/P4(0).
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If the discrete random variable X has probability generating function Px(z),
finite mean d, and values in the set N = {1,2,...} or the set Ny = {0,1,2,...}
then the random variable ¥ with values in the set Ng = {0,1,2,...} and which
follows the renewal distribution corresponding to the distribution of the random
variable X has probability generating function

Pr(z) = ldzliP_X(ZZ))

which is a transformation of the probability generating function Px(z).
Hence the investigation of properties, preserved under this transformation, is of
particular theoretical and practical interest. O

Theorem 3.6.3 Let K be a discrete random variable with values in the set
No ={0,1,2,...}, probability generating function Pk(z) and finite mean m, S be a
discrete random variable following the renewal distribution corresponding to the
distribution of the random variable K, T be a discrete random variable with values
in the set Ng = {0, 1,2, ...}, and probability generating function Pr(z), and U be a
random variable following the uniform distribution with probability density func-
tion fy(v) = 1,0<v<]1.

If the random variables K, T, U are independent then the probability distri-
bution of the random variable K is self-decomposable if, and only if,

SLIUT+K+1)

and the probability function of the random variable T is unimodal at the point 0,

d e o
where the symbol = means equality in distribution.

Proof Since the random variable S follows the renewal distribution corresponding
to the distribution of the random variable K then the probability generating function
of the random variable S is

i) = e,

(3.6.50)
From Theorem 3.6.2 it follows that the random variable U is independent of the
random variable T + K + 1.
Hence (3.6.40) implies that the probability generating function of the random
variable E = [U(T + K + 1)] has the form

Pr(z) = —/PT(W)PK(W)dW. (3.6.51)
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If we use the probability generating function in (3.6.50), or equivalently the
probability generating function

i) = e,

and the probability generating function in (3.6.51), or equivalently the probability
generating function

PE(Z) = 1;_2 PT(W)PK(W)dW

in the assumption of equality in distribution then we get the integral equation

lmzlpf (zz)) 1 iz / Pr(w)Pr(w)dw. (3.6.52)

4

From (3.6.52) it follows that

1 —Px(z) =m / Pr(w)Py (w)dw. (3.6.53)

Z
If we differentiate (3.6.53) then we get the differential equation

dPk(z)
dz

= mPT(Z)P[((Z). (3654)

which satisfies the conditions Px(1) = 1 and Pr(1) = L.
The differential equation (3.6.54) has the form

dPr(z) _ mPr(2)Px(2). (3.6.55)
dz
From (3.6.55) it follows that
1 1
/ CZK((V:V)) =m / Pr(w)dw (3.6.56)

Hence (3.6.56) implies that
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1
log Pk(z) = fm/PT(w)dw, 0<z<1
Z

or equivalently

1
Pk(z) =exp| —m / Pr(w)dw | . (3.6.57)

4

Since the probability function of the random variable T has a unique mode at the
point O then the probability generating function Pr(z) of the random variable T has
the form

o 1 — Pv(Z)

Pr(z) = o0—2) (3.6.58)

where Py(z) is the probability generating function of a uniquely defined random

variable with values in the set N = {1,2,...} and
1

Pr(0)

p= (3.6.59)

From (3.6.57), (3.6.58), and (3.6.59) it follows that the probability generating
Pk (z) of the random variable K has the form

1

Pk(z) = exp —a/

Z

1-p
L=Pv(w),, (3.6.60)
1—w

where ¢ = m/p

From (3.6.60) it follows that the distribution of the random variable K is self-
decomposable. Conversely, we suppose that the distribution of the random variable
K is self-decomposable. Hence the probability generating function of the random
variable K has the form

1
1-P
Pk (z) = exp —a/liv(wj)dw , 7l <1 (3.6.61)
—w

Z

where Py (z) is the probability generating function of a uniquely defined random
variable V with values in the set N = {1,2,...} and ¢ > 0.

Since the random variable K has finite mean m then (3.6.61) implies that the
random variable V' has finite mean 2.
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—m
We set p =7

The random variable S, which follows the renewal distribution corresponding to
the distribution of the random variable K, has probability generating function

1
1 —exp <—af—l_lpvv(vw)dw>
Z
= . 3.6.62
) m(1 — z) ( )

The probability generating function (3.6.62) has the form

Ps(z

1 1
1—-Py(y)
l—z/ l—w exp a/ T dy | dw (3.6.63)
where
1-— Pv(Z)
Pr(z) =——= 3.6.64
o) = s (3.6.64)

is the probability generating function of the random variable 7 with probability
function having a unique mode at the point 0. Since the random variable U is
independent of the random variable 74 K 4 1 then (3.6.18) implies that the
probability generating function of the random variable E = [U(T + K + 1)] is

1
1 1—-P
Pg(z) =1 Pr(w)exp —J/Tvy(y)dy dw. (3.6.65)

Z w

From (3.6.63), (3.6.64) and (3.6.65) it follows that

SLIU(T+K+1).

The interpretation of the above theoretical result in the area of risk reduction
operations is implemented by the following way. We consider two independent risks
of the same kind. We suppose that the discrete random variable T with values in the
setNo = {0, 1,2,. ..} denotes the frequency of a risk and the random variable K + 1
denotes the frequency of another risk, where K is a discrete random variable with
values in the set No = {0,1,2,...} and finite mean. A risk frequency reduction
operation is applied to these risks. The kind of risks and the way of applying the risk
frequency reduction operation permit the entire consideration of these risks. We
suppose that the random variable U with probability density function
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fulv)=1, O<v<l

represents the impact of the risk frequency reduction operation on the total fre-
quency T + K + 1 of the two risks. Hence the random variable [U(T + K + 1)]
denotes the total frequency of the two risks after applying the risk frequency
reduction operation. We suppose that the random variables K, T, U are indepen-
dent. The random variable S follows the renewal distribution corresponding to the
distribution of the random variable K.

The unimodality at the point O of the probability function of the random variable
T and the equality in distribution of the random variables S and [U(T + K + 1)],
imply that the distribution of the random variable K is self-decomposable. Con-
versely, the selfdecomposability of the distribution of the random variable K
implies the equality in distribution of the random variables S and [U(T + K + 1)]
with the random variable 7 having probability function which is unimodal at the
point 0.

The contribution of the above result consists of establishing a fundamental
relationship between the class of discrete renewal distributions and the class of
discrete self-decomposable distributions. The establishment of that relationship is
based on the use of a stochastic integral part model. That implies the consideration of
the class of discrete renewal distributions and the class of discrete self-decomposable
distributions as strong analytical tools of stochastic modeling activities in the area of
risk frequency reduction operations. O

3.7 Cost of an Operation of Deleting Risk Occurrences
with Constant Probability

We consider an organization facing a risk at the time point 0. We suppose that
{X,,n=1,2,...} is a sequence of continuous, positive, independent, and identi-
cally distributed random variables. The random variables of the sequence are
equally distributed with the random variable X which has characteristic function

oy (). (3.7.1)

The random variable X,,,n = 1,2, ... denotes the time between the (n — 1)th and
the nth risk occurrence. A risk frequency reduction operation is applied to the risk.
According to this operation, a risk occurrence is retained with probability p and
deleted with probability 1 — p.

The retention—deletion of a risk occurrence is independent of the retention—
deletion of any other risk occurrence. Let N be a random variable denoting the
number of risk occurrences required to get the first retained risk occurrence. The
random variable N follows the geometric type II distribution with probability
function
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P(N=n)=pq"', n=12,... (3.7.2)
and probability generating function

__rz
1—gqz

Py(z) (3.7.3)

The sequence of continuous, positive, independent, and identically distributed
random variables {X,,,n = 1,2,...} is independent of the random variable N.
The random sum

T=X, +Xo+ - +Xy

denotes the time of the first retained risk occurrence. From (2.8.4), (3.7.1) and (3.7.3)
it follows that the characteristic function of the random sum

Tr=Xi+Xo+ - +Xy
is

- pox(u)

= (3.7.4)

or(u

Let W be a continuous and positive random variable with probability density
function fiy(w), w > 0.

We suppose that the random variable W denotes the cost per unit of time for
applying the risk frequency reduction operation. Hence the random variable

V=X +X+ -+ Xy)W

denotes the cost for applying the risk frequency reduction operation up to the time
of the first retained risk occurrence. The purpose of the present section is the
establishment of properties and applications in the discipline of risk management of
the stochastic model

V=(X+Xs 4+ Xy)W.

The following result establishes sufficient conditions for the evaluation of the
characteristic function of the stochastic model

V=X +Xo4 -+ Xy)W.

Theorem 3.7.1 Let N be a discrete random variable with values in the set N =
{1,2,...} following the geometric type II distribution with probability function
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P(N=n)=pq"', n=12,... (3.7.5)
and probability generating function

pz
1—qz’

Py(z) = (3.7.6)

We suppose that {X,,, n = 1,2,...} is a sequence of continuous, positive, and
independent random variables. The random variables of the sequence are equally
distributed with the random variable X having characteristic function

ox(u) (3.7.7)
and we set
T=X1+Xp+ -+ Xy.

Let W be a continuous and positive random variable with probability density
Sunction fiy(w),w > 0 and we set

V= (X1 +X, 4+ Xy)W. (3.7.8)

IfN, W and {X,,n = 1,2,...} are independent then the characteristic function
of the stochastic model

V=X +X24 - +Xy)W
is

/ Pox () W(w)dw.
1 — gox(uw)
0

Proof From the assumption that N, W and {X,,,n = 1,2,...} are independent, we
get the independence of N and {X,,n=1,2,...}.

From (2.8.4), (3.7.6) and (3.7.7) it follows that the characteristic function of the
random sum

T=X +X,+ - +Xy

orlu) =1_ qox(u)’
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Let ¢y (&) be the characteristic function of the random variable W and
@rw(u, &) the characteristic function of the vector (T, W).

We shall prove that the assumption of independence of N, W and
{Xu,n=1,2,...} implies the relationship

_Poxll) Pw(&)

qDTA,W(u’ 5) = 1— C]<Px(14)

or equivalently the relationship
Prw(u, &) = or(u)pw(<). (3.7.9)

The establishment of the relationship (3.7.9) implies the independence of the
random sum

r=Xi+Xo+- - +Xu

and the random variable W.
The independence of the random variables

T=X+Xo+ - +Xy

and W makes possible the evaluation of the characteristic function of the stochastic
model

V=X +X24 - +Xy)W
from the probability generating function

)24

Py(z) = gz

of the random variable N, the characteristic function @y () of the random variable
X and the probability density function fiy(w) of the random variable W.
The proof of the relationship @7y (1, &) = @r(u)@y (&) is implemented by the

following way.
We have

orwu, &) = E(eiuT+i5W)
or equivalently
@T,W(u, &)= E(E(eiuT+ig“W|N))' 510

From (3.7.10) it follows that
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o0

(an(u7 é) = ZE(eiu(Xl+"'+XN)+iéW|N _ n)P(N _ I’l)

n=1
or equivalently

orwu, &) = ZE(eiuX1+A.<+iuX,l+i§W|N _ n)P(N —n). (3.7.11)

n=1

Moreover (3.7.5) and (3.7.11) imply that

o0

Praw(, &) =Y E(eM Wy — ) pgr=t (3.7.12)

n=1

From the assumption that N, W and {X,,n = 1,2,...} are independent it fol-
lows the independence of the random variables N, W, X|,.. ., X,,n=1,2,....
The independence of the above random variables implies that the random

variables N, eV e™%1 .. ¢"X» are independent. Hence (3.7.12) implies that
orw(u, &) = ZE(eil‘Xl. . ei"X”eiéw)pqn’l. (3.7.13)
n=1
Moreover, the independence of the random variables N, &% | e™X1 X0 pn =
1,2, ... implies the independence of the random variables eV e™Xi .. "X p =
1,2,... .
Hence (3.7.13) has the form
(pT,W(ua (;:) — Z E(eiqu)- N E(eian)E(eiCW)pqn—l
n=1
or equivalently the form
orw(u, &) =E(e") Z E(e")...E(e"*)pg"". (3.7.14)

n=1

Since @y (&) = E(¢“V) is the characteristic function of the random variable W
and the random variables of the sequence {X,,,n = 1,2,...} are equally distributed
with the random variable X having characteristic function ¢y (u) then (3.7.14) has
the form

Qrw(, &) = oy (&) oy (u)pg"™"
n=1
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or equivalently the form

o0

orw(u, &) = (Pw(f)(Px(u)PZ(CI@x(u))n_l~ (3.7.15)

n=1

From (3.7.2), (3.7.4) and (3.7.15) we get that

o (.8) = 2 g (0

or equivalently we get that
(PT,W(uv &) = or(w)ow(8). (3.7.16)
From (3.7.16) we conclude that the random sum
T=X+X+ - -+Xy
is independent of the random variable W.

If ¢y (u) is the characteristic function of the random variable in (3.7.8) V=T W
or equivalently the random variable

V=X +Xo+ -+ Xy)W
then we have
py(u) = E(elw)
or equivalently we have
oy (u) = E(E(e"|W)). (3.7.17)

Since f(w) is the probability density function of the random variable W then
(3.7.17) implies that

oy(u) = / E(ei”V|W = w) w(w)dw
0
or equivalently

oy() = [ E("™|W =w)fw(w)dw. (3.7.18)
/
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Hence (3.7.18) implies that
= / E(e™T|W = w)fw(w)dw. (3.7.19)
0

Since the random variable
Tr=Xi+Xo+- - +Xv

is independent of the random variable W then (3.7.19) implies that

oy(u) = / E(" ") fw(w)dw. (3.7.20)
0
Since
pr(uw) = E(eiuwr)
and
~ pox(uw)
) = T )

then (3.7.20) implies that the characteristic function ¢y (u) of the random variable
V = TW or equivalently the random variable

V=X +Xo+- - +Xy)W

pox(uw)
dw. (3.7.21)
/1 uw) W(W)

; qox(

If the random variables of the sequence {X,,n=1,2,...} follow the expo-
nential distribution with characteristic function

u
n—iu

Py (u) =

and the random variable W follows the uniform distribution with probability den-
sity function
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fw(W) =1
then (3.7.21) implies that the characteristic function ¢y () of the random variable
V=X +Xo4 -+ Xy)W

has the form

or equivalently the form

The random variable
V=X +X2+ - +Xy)W,

denoting the cost of applying the risk frequency reduction operation up to the first
retained risk occurrence, is very significant for selecting this operation. The random
variable J, denoting the economic benefit of applying this operation, is also very
significant for selecting the operation. The formulation of the random variable J is
implemented by the following way.

Let {C,,n=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence are
equally distributed with the random variable C having characteristic function
Pc(u).

The random variable C,,n = 1,2, ... denotes the size of damage due to the nth
risk occurrence.

We consider the discrete random variable K denoting the number of deleted risk
occurrences up to the first retained risk occurrence. The random variable K follows
the geometric type I distribution with probability generating function

__PD
1—qz

Pk (2)

The random variable K is independent of the sequence {C,,n = 1,2,...}.
Hence the random variable J, denoting the economic benefit of applying the risk
frequency reduction operation up to the first retained risk occurrence, has the form
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J=Ci+Cy+-+Ck

3.8 Capital of Treatment of Ongoing Risk Occurrences

Let {N(7),>0} be a homogeneous Poisson process with E(N(t)) = Az.

We suppose that the random variable N(#) denotes the frequency of a risk in the
time interval [0, 7] and {Y,,n =1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence {Y,,n = 1,2,...} denote the durations of the occurrences of the risk
in the time interval [0, 7] and these random variables are equally distributed with
the random variable Y having distribution function Fy(y).

If the random variable I1(#) denotes the number of risk occurrences in the time
interval [0, ] which are ongoing at the time point ¢ then Theorem 2.9.2 implies
that the random variable II(z) follows the Poisson distribution with probability
generating function

Pry(z) = e#7 (3.8.1)

where

t
1—-F
p:/ Y()’)dy_
y
0

We consider the sequence of continuous, positive, independent, and identically
distributed random variables {X,, 7 =1,2,...}.

The random variables of the sequence {X,,® = 1,2,...} are equally distributed
with the random variable X having characteristic function

oy (). (3.8.2)

The random variable X, denotes the capital employed for treating, at the time
point 7, the mth risk occurrence arising in the time interval [0, ¢] and which is
ongoing at the time point .

The random variable I1(z) is independent of the sequence {X,, 7 =1,2,...}.

The random sum

H=X+Xo+ -+ Xng
denotes the capital employed for treating, at the time point ¢, the occurrences of the

risk in the time interval [0, f] and which are ongoing at the time point ¢.
The investigation of the random sum
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H=X +Xo+ -+ Xn

is implemented by the use of the corresponding characteristic function qon@(u).

From (2.5.6), (3.8.1) and (3.8.2) it follows that the characteristic function of the
random sum

H=X+Xo+ -+ Xng

Qy(u) = Pox=1, (3.8.3)

Special cases of the characteristic function (3.8.3) are the following.
We suppose that the random variable X follows the uniform distribution with
characteristic function

et — 1
= . 3.84
o) = (3.8.4

From (3.8.3) and (3.8.4) it follows that the characteristic function of the random
sum

H=X+Xo+ -+ Xng

(i) = exp {lpt (e"‘iu L 1)}

We suppose that the random variable X follows the exponential distribution with
characteristic function

has the form

_
wﬂw—#_m. (3.8.5)

From (3.8.3) and (3.8.5) it follows that the characteristic function of the random
sum

H=X1+X2+"'+Xn(l)

o) = exp [Apz(ﬂfm - 1)]

has the form
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From a theoretical point of view the characteristic function
opu) = e P1(ox()=1)
of the random sum
H=X+Xo+ -+ Xng

consists a very strong tool for investigating the class of infinitely divisible proba-
bility distributions. This class includes the class of stable probability distributions
and the class of self-decomposable probability distributions. These classes have
many important applications in various areas of probability theory. Moreover, these
classes are particularly useful in formulating stochastic models for processes and
systems arising in significant practical disciplines. From a practical point of view
the characteristic function

o (u) = P ext=1)
consists a fundamental factor for the applications of the random sum
H=X+X;+ -+ Xnq

in various practical disciplines. These applications are based on the theoretical
properties of the probability distribution of the random sum

H=X+Xo+ -+ Xng

The establishment of properties of the above random sum is implemented by the
use of the corresponding characteristic function

o(u) = e P1ox(w)—1)

The contribution of the present section consists of the introduction of the concept
of the random sum

H=X1+X2+"'+XH(,)

This random sum can be considered as a structural element for treatment of a risk
which is ongoing at the given time point ?.

The probabilistic information which is included in the corresponding charac-
teristic function
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oy () = P! ex=1)

supports the development of a proactive risk management program facilitating the
treatment of a given risk. Such a program incorporates the formulation of a random
sum of the form

H=X+Xo+ -+ Xngq

for every risk threatening an organization in the time interval [0, f].

The formulations of these random sums are possible if the risks threatening an
organization satisfy the conditions of the present section. In this case the capital
employed for treating, at the time point ¢ of the risk occurrences arising in the time
interval [0, 7] and which are ongoing at this time point ¢, is represented by a sum of
random sums of the form

H=X+Xo+ -+ Xngq

If the risks threatening an organization are independent then the characteristic
function of the capital of treating all the ongoing risk occurrences at the time point ¢
is a product of characteristic functions of the form

o) = Pilox()=1)

3.9 Binomial Random Sums in Modeling Risk Control
Operations

The occurrences of different risks threatening an activity make very difficult the
implementation of the purposes of the activity. An investment is an activity having as
main purpose the creation of income of a given size. The difficulties of implementing
that purpose are due to the occurrences of some risks threatening the investment. Itis a
common financial practice the use of the market value of an investment for financing
other investments. The present section concentrates on the formulation of a random
sum for the investigation of such financial practices. We consider a set including n
similar and independent investments and the finite sequence of continuous, positive,
independent, and identically distributed random variables {X,,x = 1,2,...,n}.

The random variables of the above sequence are equally distributed with the
random variable X having distribution function Fx(x).

The random variable X,k = 1,2,...,n denotes the income generated by the
kth, x = 1,2,...,n investment in the time interval [0, #].

We consider the positive real number c. If the income X,.,x = 1,2,...,n gen-
erated by the xth, k = 1,2, ..., n investment in the time interval [0, #] is smaller than
the positive real number c, or equivalently the event (Xx <c),x = 1,2,...,n occurs
then the investment xth, k = 1,2, ..., n is removed from the set of investments. The
probability of the event (Xx <c¢) is p = P(Xx <c) or equivalently p = Fx(c).
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Let N be a discrete random variable denoting the number of investments which
will be removed from the set of investments at the end of the time interval [0, #].

Since the investments of the set are independent then the discrete random var-
iable N follows the binomial distribution with probability function

P(N =x) = (Z);yk‘q"—'c, k=0,1,2,...,n

and probability generating function

Py(z) = (pz+4q)". (3.9.1)

We consider the finite sequence of continuous, positive, independent, and
identically distributed random variables {V,.,x = 1,2,...,n}.

The random variables of the above sequence are equally distributed with the
random variable V having characteristic function

Py (u). (3.9.2)

The random variable V., k = 1,2, ..., n denotes the market value of the xth, x =
1,2,...,n investment at the end of the time interval [0, #].

The random variable N is independent of the sequence of continuous, positive,
independent, and identically distributed random variables {V,.,x = 1,2,...,n}.

The binomial random sum

Y=Vi+Vo+---+Vy
denotes the total market value of the investments which will be removed from the

set of investments at the end of the time interval [0, 7].
Moreover, the binomial random sum

Y=Vi+ Vot + Vy

is a stochastic model with very useful applications in investment decision making.
From Sect. 2.5, (3.9.1) and (3.9.2) it follows that the characteristic function ¢y (u)
of the random sum

Y=vi+Vva+---+Vy
has the form
oy () = (poy(u) + )"
The establishment of properties of the random sum
Y=Vi+Vy+---+ Vy,

with practical and theoretical interest, can be implemented by the use of the
characteristic function
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Py(u) = (poy(u) +q)".

Moreover, the establishment of sufficient conditions for embedding the char-
acteristic function

Py () = (poy(u) +q)"

in significant classes of characteristic functions is particularly useful for investi-
gating the probabilistic behavior of the binomial random sum

Y=Vi+Vo+---4+Vy.
A very important element of formulating the binomial random sum
Y=Vi4+V,4+---+Vy

is the selection of the point ¢ of the time interval [0, #].

The selection of the time point # mainly depends on two factors. The first factor
is the financial strategy of the firm having the set of the n similar and independent
investments. The second factor is the set of risks threatening the set of the n similar
and independent investments.

Since the random variable V.., kx = 1,2,...,n denotes the market value of the
kth,x = 1,2,...,n investment at the end of the time interval [0, 7] then the time
point ¢ is smaller than the duration of every investment of the set containing n
similar and independent investments.

The mathematical structure of the binomial random sum

Y=vi+Vva+---+Vy

makes possible the financing of new investments by incorporating the total market
value of a set of random and binomially distributed number of investments, with the
income of an investment of that set in the time interval [0, 7] to be smaller than the
positive real number c.

Since the occurrences of some risks can make an investment to generate income
smaller than the positive real number c in the time interval [0, f] then the binomial
random sum

Y=Vi+Vo+---+Vy
and the corresponding characteristic function
@y(u) = (poy(u) + q)"

can be considered as analytical tools of risk management with interesting practical
applications.
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Other applications of the binomial random sum
Y=Vi+Vo+---4+Vy

in the area of risk financing operations can be established by providing the random
variables of the finite sequence {V,,x = 1,2,...,n} with additional interpretations
in various areas of the discipline of risk management.

3.10 Modeling Risk Financing Operations

The purpose of the present section is the formulation and investigation of a sto-
chastic model for the description and analysis of an activity for financing a risk
faced by a firm.

We consider a sequence of successive and equal time intervals. Let
{Xu,n=1,2,...} be a sequence of independent and equally distributed random
variables. The random variables of the sequence are equally distributed with the
random variable X which follows the Bernoulli distribution with probability
function

(3.10.1)

The random variable {X,,,n = 1,2,...} denotes the frequency of the risk in the
nth time interval. The organization saves the amount 1 in the beginning of every
time interval in order to create a reserve for financing the impacts of risk occur-
rences. If the risk does not occur in the nth time interval then the firm spends the
reserve which has been created until the beginning of the nth time interval. If the
risk occurs in the nth time interval then the firm maintains the reserve which has
been created until the beginning of this time interval. We consider the sequence of
random variables {Y,,n =1,2,...}.

The random variable Y,,n = 1,2, ... denotes the reserve until the beginning of
the nth time interval. In the beginning of the first time interval the reserve is Yy = 1.

From the definition of the random variable X,,,n = 1,2, ..., the definition of the
random variable Y,,,n = 1,2, ... and the description of the process of creating the
reserve for financing the damages due to the occurrences of the risk we get that

Y,=14+X,Y, 1, n=12,... (3.10.2)

The investigation of the stochastic model (3.10.2) can be implemented by the use
of the corresponding characteristic function ¢y (u).

The following result concentrates on the evaluation of the characteristic function
@y, (u) and the characteristic function lim,_. @y (u).
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Theorem 3.10.1 Ler {X,,n = 1,2,...} be a sequence of independent and identi-
cally distributed random variables. The random variables of the sequence are
equally distributed with the random variable X following the Bernoulli distribution

with probability function

0, x=0
o, x=1.

We consider the sequence of random variables {Y,,n =1,2,...} with Yy =1
and

Yo=1+XYp1, n=12 ...

If @y, (u) is the characteristic function of the random variable Y, then

n
oy, (I/l) — Q™ E COm—]et(m—l)u + Conez(n+l)u
m=1

or equivalently

) a)neinu -1 .
oy, (M) — Pt P + wnez(n+l)u
and
) Heiu
Nm oy, @) = T e’

Proof The evaluation of the characteristic function ¢y (u) of the random variable
Y, will be implemented by mathematical induction.
We have ¢y (1) = E(¢"") or equivalently

@y, (u) = E(E(e""]X,)). (3.10.3)

From (3.10.3) it follows that
1 .
@y, (u) = ZE(e’”Y” X, = x)P(X, = x)
x=0

or equivalently
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1
ZE( u(H Xt |y = x)P(Xn =x). (3.10.4)

x=0

From (3.10.4) we get that
1
ZE iu luX Y 1|Xn _ X)P(Xn _ X)
x=0
or equivalently we get that
= "> E(e" (X, = x)P(X, = x). (3.10.5)
x=0

Since the random variable Y,_; is independent of the random variable X,, then
(3.10.5) has the form

1
em E iuxy, 1 n =x 3.10.6
> E(
x=0

From (3.10.1) and (3.10.6) it follows that
@y (u) = €" (0 + wE(e""1)). (3.10.7)

Since @y (u) = E(e"1) is the characteristic function of the random variable
Y,_1 then (3.10.7) has the form

oy (u) = " (0+ vy (1)). (3.10.8)

The relationship (3.10.8) will be used to prove by induction that the charac-
teristic function of the random Y,, has the form

= 0e™ Z " Leltm=u 4 gyttt (3.10.9)

If n = 1 then (3.10.9) has the form
@y, (u) = " (0 + we™). (3.10.10)

For n =1 then (3.10.2) has the form Y; = 1 + X, since Yy = 1.
The characteristic function of the random variable Y; = 1 + X| is
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oy, (1) = E(eiu(1+X|))
or equivalently
oy, (1) = e"E("). (3.10.11)
From (3.10.1) and (3.10.11) it follows that
@y, (1) = " (0 + we"). (3.10.12)
Moreover (3.10.10) and (3.10.12) imply that (3.10.9) is valid for n = 1. We

suppose that (3.10.9) is valid for n = k.
Hence

K
(/)YK(M) — Qeiu Zwmflei(mfl)u + (/L)Kei(K+1>u. (31013>
m=1

From (3.10.8) if n = x + 1 we get that
Py, () = €" (0 + oy, (). (3.10.14)

From (3.10.13) and (3.10.14) it follows that

fett Z wmflei(mfl)u + wlcei(;c+l)u‘| }

m=1

Py,., (u) = ei”{e + w

or equivalently
) K+1 ) )
Py, () = 0" " ellm e 4 gl (3.10.15)

m=1

From (3.10.15) it follows that (3.10.9) is valid for n = k + 1. Hence the char-

acteristic function of the random variable Y,,n = 1,2, ... has the form
QDY,, (M) _ Heiu Z wm—lei(m—l)u + Qnei(n-ﬁ-l)u. (31016)
m=1

The limiting behaviour of the sequence {Y,,n = 1,2,...} is of particular the-
oretical and practical interest.
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From (3.10.16) it follows

@y, (u) &W%§C?+wémm (3.10.17)
Since
e" = cosu +isinu
and |e™| = 1 then from (3.10.17) it follows that
lim ¢y (u) = —Qem lim (co”e"”’ — 1) + lim "
n—oo " we — 1 n—oo n—00
or equivalently
gg%%W=T%%ﬁ- (3.10.18)

From (3.10.18) it follows that the sequence of random variables
{Yn,n =1,2,...} converges to the random variable Y following the geometric type
II distribution with probability function

P(Y=y)=0"" y=1,2,...

The theoretical and practical distribution of the present section consists of
interpreting the role of the stochastic model

Y,=1+X,Y,\, n=12,...

in the area of theoretical and practical applications of risk financing
operations. O

3.11 Time of First Retained Risk Occurrence and Total
Cost of Deleting Risk Occurrences

Let N be a discrete random variable with values in the set N = {1, 2, ...} following
the geometric type II distribution with probability generating function

__prz
1 —qz’

Py(z)

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
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the sequence are equally distributed with the random variable X having charac-
teristic function @y (u) and we set

T=X + X+ +X.

We suppose that {C,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable C having charac-
teristic function ¢(¢) and we set

L=Ci+Cy+ - +Cy.

We consider the vector (T, L). The purpose of the present section is the estab-
lishment of properties and applications in the discipline of risk management of the
vector (T, L).

The following result establishes sufficient and necessary conditions for the
evaluation of the characteristic function ¢ ;(u, &) of the vector (T, L).

Theorem 3.11.1 Let N be a discrete random variable with values in the set N =
{1,2,...} following the geometric type Il distribution with probability generating
function

_m
l—qz'

PN (Z)

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable X having char-
acteristic function @y (u) and we set

T=X +Xo+ - +Xy.

We suppose that {C,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable C having char-
acteristic function ¢ (&) and we set

L=C +Cy+-- +Cy.

IfN, {X,,n=1,2,...} and {C,,n = 1,2,...} are independent then the char-
acteristic function of the vector (T,L) is

— pox(u)ec(é)
Ll ) = T o Wee(®)

Proof The proof of Theorem 3.11.1 follows from the proof of Theorem 2.12.1.
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An interpretation of the vector (T, L), where
T=X1+Xo+ -+ Xy
and
L=C+Cy+---+ Cy,

in the discipline of risk management is the following.

We consider the sequence {X, ,n = 1,2,...} of continuous, positive, indepen-
dent, and identically distributed random variables, and we suppose that the random
variable X,, denotes the time between the nth and the (n — 1)th occurrence of a risk.
A risk frequency reduction operation is applied to the risk. This operation retains
with probability p and deletes with probability g = 1 — p a risk occurrence. The
retention—deletion of a risk occurrence is independent of the retention—deletion of
any other risk occurrence. Let N be a random variable denoting the number of the
risk occurrences until the first retained risk occurrence. The random variable N
follows the geometric type II distribution with probability generating function

24

Py(z) = =g

Hence the random variable
T=Xi+Xo+ - +Xy

denotes the time of the first retained risk occurrence. We consider the sequence
{Cy,n =1,2,...} of continuous, positive, independent, and identically distributed
random variables, and we suppose that the random variable C, denotes the cost of
applying the risk frequency reduction operation to the nth risk occurrence. Hence
the random variable

L=C+C+---+Cy

denotes the total cost of applying the risk frequency reduction operation until the
first retained risk occurrence. The random variable

Tr=Xi+Xo+ -+ X,
the random variable
L=Ci+C+---+Cy,

and the vector (7, L) are strong analytical tools for investigating and applying risk
frequency reduction operations.
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The independence of N, {X,,n =1,2,...} and {C,,n =1,2,...} permits the
evaluation of the characteristic function

_ _poxmecls)
pro(u, &) = 1 — gox(u)pc()

of the vector (7, L).
That characteristic function supports the practical applications of the above
random sum in risk management. O

3.12 Occurrence Time and Total Severity of First Retained
Risk Occurrence

Let N be a discrete random variable with values in the set N ={1,2,...} and
following the geometric type II distribution with probability generating function

__prz
l—qz'

PN (Z)

We consider the sequence {X,,n = 1,2,...} of continuous, positive, indepen-
dent, and identically distributed random variables. The random variables of the
sequence are equally distributed with the random variable X having characteristic
function ¢y (1) and we set

T=X +Xo+ - +Xy.

Let S be a discrete random variable with values in the set Ng = {0,1,2,...} and
probability generating function Pg(z).

We consider the sequence {Cy,s = 1,2, ...} of continuous, positive, and inde-
pendent random variables. The random variables of the sequence are equally dis-
tributed with the random variable C having characteristic function ¢ (&) and we set

L=Ci+C++Cs.

We consider the vector (T, L). The purpose of the present section is the estab-
lishment of properties and applications in the discipline of risk management of the
above vector.

The following result establishes sufficient conditions for evaluating the charac-
teristic function ¢7 1 (u, &) of the vector (T, L).

Theorem 3.12.1 Let N be a discrete random variable with values in the set N =
{1,2,...} and following the geometric type Il distribution with probability gen-
erating function
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pz

PN(Z) = I _qz.

We consider the sequence {X,,n =1,2,...} of continuous, positive, indepen-
dent, and identically distributed random variables. The random variables of the
sequence are equally distributed with the random variable X having characteristic
Sunction @y (u) and we set

T=X +X+ - +Xy.

Let S be a discrete random variable with values in the set Ng = {0, 1,2, ...} and
probability generating function Pg(z).

We consider the sequence {Cs,s = 1,2,...} of continuous, positive, indepen-
dent, and identically distributed random variables. The random variables of the
sequence are equally distributed with the random variable C having characteristic
Sunction @(&) and we set

L=C+Cy+ -+ Cs.

If N, {X,,n=1,2,...,} S and {Cy,s =1,2,...} are independent then the
characteristic function of the vector (T,L) is

01068 = T2 Py D),

Proof The proof of Theorem 3.12.1 follows from the proof of Theorem 2.13.1.
An interpretation of the vector (T, L), where

T=Xi+Xo+ - +Xy
and
L=C+C+---+Cs

in the discipline of risk management is the following.

We consider the sequence {X,,n = 1,2,...} of continuous, positive, indepen-
dent, and identically distributed random variables, and we suppose that the random
variable X,, denotes the time between the nth and the (n — 1)th occurrence of a risk.
A risk frequency reduction operation is applied to the risk. This operation retains
with probability p and deletes with probability g = 1 — p a risk occurrence. The
retention—deletion of a risk occurrence is independent of retention—deletion of any
other risk occurrence. Let N be a random variable denoting the number of risk
occurrences until the first retained risk occurrence. The random variable N follows
the geometric type II distribution with probability generating function
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pz

PN(Z) = I _qz.

Hence the random variable
T=X1+X,+---+Xy

denotes the time of the first retained risk occurrence. We suppose that the random
variable S denotes the number of different damages due to the first retained risk
occurrence at the time point

Tr=Xi+Xs+--+Xn.

We consider the sequence {Cy,s = 1,2,...} of continuous, positive, indepen-
dent, and identically distributed random variables, and we suppose that the random
variable Cs denotes the size of the sth damage due to the first retained risk
occurrence. Hence the random variable

L=C+C+-+Cs

denotes the total size of the damage due the first retained risk occurrence at the time
point

T=X+Xo+ -+ Xy
The random variable
T=Xi+Xo+ -+ Xu,
the random variable
L=C+C+---+Cs

and the vector (7', L) are strong analytical tools for investigating and applying risk
frequency reduction operations.

The independence of N, {X,,,n = 1,2,...,} Sand {Cs,s = 1,2,...} permits the
evaluation of the characteristic function

o108 =12 Py )

of the vector (7, L). That characteristic function supports the practical applications
of the above random sum in risk management.

The probability distribution of the random vector (7, L) supports the investi-
gation and selection of combinations of risk control and risk financing operations.
Since the independence of N, {X,,n=1,2,...}, S and {C,,s = 1,2,...} implies
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the independence of N, {X,,n=1,2,...} and the independence of S,
{Cs,s =1,2,...}, then the characteristic function of the random variable

T=Xi+Xo+ -+ Xy
is

_ pox(u)
orlu) = 1- q(PX(“)

and the characteristic function of the random variable
L=C+C+ -+Cs
is
@.(S) = Ps(9c(€))-

Hence the characteristic function

(/7T‘L(u7 ) = %PS((/’C(@)7

the characteristic function

_ pox(u)
orln) == qox (i)

and the characteristic function
¢(&) = Ps(oc(<))

satisfy the relationship

(PT,L(uv &) = or(u) e (&)

Consequently, the random variables

T=X+X+ - +Xy
and

L=C+C+--+Cs

are independent. U
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3.13 Free of Risk Occurrences Time Interval and Total
Benefit of Applying a Risk Frequency Reduction
Operation

Let N be a discrete random random variable with values in the set N = {1,2,...}
and following the geometric type II distribution with probability generating
function

pz

PN(Z) = I _qz.

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable X having charac-
teristic function ¢y (1) and we set

T=X +Xo+ - +Xy.

We consider the discrete random variable K with values in the set Ny =
{0,1,2,...} and following the geometric type I distribution with probability gen-
erating function

p

PK(Z) = 1 e

and we set
Y=X+Xo+ -+ Xg.

We suppose that {C,,k =1,2,...} is a sequence of continuous, positive,
independent and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable C having charac-
teristic function ¢ (&) and we set

V=C+C 4+ Cx.

We consider the vector (Y,V). The purpose of the present section is the
establishment of properties and applications in risk management of the vector
(Y,V).

The following result establishes sufficient conditions for evaluating the charac-
teristic function ¢y y(u, £) of the vector (Y, V).

Theorem 3.13.1 Let N be a discrete random variable with values in the set N =
{1,2,...} and following the geometric type I distribution with probability gen-
erating function
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pz

PN(Z) = I _qz.

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable X having char-
acteristic function @y (u) and we set

T=X +X+ - +Xy.

We consider the discrete random variable K with values in the set Ny =
{0,1,2,...} and following the geometric type I distribution with probability gen-
erating function

and we set
Y=X+X+--+Xx.

We consider the sequence {C.,kx=1,2,...} of continuous, positive, and
independent random variables. The random variables of the sequence are equally
distributed with the random variable C having characteristic function ¢-(&) and
we set

V=Ci+C+-+Ck.

IfK, {X,,n=1,2,...} and {C,ikk = 1,2,...} are independent then the char-
acteristic function of the vector (Y, V) is

p

Orv( ) = T W@

Proof The proof of Theorem 3.13.1 follows from the proof of Theorem 2.12.1.
An interpretation of the vector (Y, V), where
Y=X1+X+---+Xg
and
V=C+ G+ +C,

in the discipline of risk management is the following.
We consider the sequence {X,,n = 1,2,...} of continuous, positive, indepen-
dent, and identically distributed random variables and we suppose that the random
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variable X,, denotes the time between the nth and the (n — 1)th risk occurrence. A
risk frequency reduction operation is applied to the risk. That operation retains with
probability p and deletes with probability ¢ = 1 — p a risk occurrence. The reten-
tion—deletion of a risk occurrence is independent of the retention—deletion of any
other risk occurrence. Let N be a random variable denoting the number of risk
occurrences until the first retained risk occurrence. The random variable N follows
the geometric type II distribution with probability generating function

pz

PN(Z) = I _qz.

Hence the random variable
Tr=Xi+Xo+- - +Xn

denotes the time of the first retained risk occurrence.

Let K be the random variable denoting the number of deleted risk occurrences
until the first retained risk occurrence. The random variable K follows the geometric
type I distribution with probability generating function

__P
1—gqz

P[( (Z)

Hence the random variable
Y=X+Xo+---+Xg

denotes the time required for the number of deleted risk occurrences until the first
risk occurrence. That means that the time interval

[0, Xy + X+ + Xk

does not contain retained risk occurrences. We consider the sequence
{C«,x =1,2,...} of continuous, positive, independent, and identically distributed
random variables, and the random variable C,. denotes the size of damage due to
the « the risk occurrence. Since the time interval

0, Xi + X+ - + Xk
does not contain retained risk occurrences then the random variable
V=C+GC+---+Cg

denotes the benefit due to the application of the risk frequency reduction operation
in the time interval
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0, X; +X; + -+ Xk]
The random variable
Y=X+Xo+ -+ Xk,
the random variable
V=C+C+---+Ck

and the vector (Y, V) are strong analytical tools for investigating and applying risk
frequency reduction operations.

The independence of K, {X,,n=1,2,...} and {C,k = 1,2,...} permits the
evaluation of the characteristic function

p

vy &) =T @

of the vector (Y, V).
That characteristic function supports the practical applications of the above
vector in risk management. O

3.14 Free of Risk Occurrences Time Interval and Loan
Portfolio

Let N be a discrete random variable with values in the set N = {1,2,...} and

following the geometric type II distribution with probability generating function

__Prz
1 —gqz

PN(Z)

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable X having charac-
teristic function @y (u) and we set

T=X+Xo+ - +Xn

We consider the discrete random variable K with values in the set Ny =
{0,1,2,...} and following the geometric type I distribution with probability gen-
erating function
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p

P[((Z) = 1 -

and set
Y=X+X+ -+ Xg.

We suppose that S is a discrete random variable with values in the set Ny =
{0,1,2,...} having probability generating function Ps(z) and we consider the
sequence {Cy,s = 1,2,...} of continuous, positive, independent, and identically
distributed random variables. The random variables of the sequence are equally
distributed with the random variable C having characteristic function ¢(¢) and we
set

V=C+C+---+Cs.

We consider the vector (Y,V). The purpose of the present section is the
establishment of properties and applications in risk management of the vector
(Y,v).

The following result establishes sufficient conditions for evaluating the charac-
teristic function ¢y (1, &) of the vector (Y, V).

Theorem 3.14.1 Let N be a discrete random variable with values in the set N =
{1,2,...} and following the geometric type I distribution with probability gen-
erating function

__pz
l—qz'

PN(Z)

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable X having char-
acteristic function ¢y (u) and we set

T=X +X + - +Xy.

We consider the discrete random variable K with values in the set Ny =
{0,1,2,...} and following the geometric type I distribution with probability gen-
erating function

and we set
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Y=X +X,+ + Xk

We consider the discrete random variable S with value in the set Ny =
{0,1,2,...} and probability generating function Ps(z) and let {Cy,s =1,2,...}
be a sequence of continuous, positive, independent, and identically distributed
random variables. The random variables of the sequence are equally distributed
with the random variable C having characteristic function ¢-(&) and we set

V=Ci+C+ - +Cs.

If K, {Xy,n=1,2,...}, S and {Cs,s =1,2,...} are independent then the
characteristic function of the vector (Y, V) is

p

WPS((PC(@)-

qDYﬁV(u7 é) =

Proof The proof of Theorem 3.14.1 follows from the proof of the Theorem 2.13.1.
An interpretation of the vector (Y, V), where

Y=Xi+Xo+ - +Xx

and

V=Ci+C+---+Cs

in risk management is the following.

A bank faces a risk at the time point 0. We consider the sequence
{Xyu,n=1,2,...} of continuous, positive, independent, and identically distributed
random variables, and we suppose that the random variable X,, denotes the time
between the nth and the (n — 1)th risk occurrence. A risk frequency reduction
operation is applied to the risk. That operation retains with probability p and deletes
with probability ¢ = 1 —p a risk occurrence. The retention—deletion of a risk
occurrence is independent of the retention—deletion of any other risk occurrence.
Let N be a random variable denoting the number of risk occurrences until the first
retained risk occurrence. The random variable N follows the geometric type II
distribution with probability generating function

) Z4

Hence the random variable

T=X +X,+ - +Xy
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denotes the time of the first retained risk occurrence. Let K be a random variable
denoting the number of deleted risk occurrences until the first retained risk
occurrence. The random variable K follows the geometric type I distribution with
probability generating function

Hence the random variable
Y=X;+X+ - +Xg

denotes the time required for the deleted risk occurrences until the first retained risk
occurrence. Consequently the random interval

0,X1 + X + - + Xg]
does not contain retained risk occurrences. We consider the discrete random vari-
able S and we suppose that the above random variable denotes the number of loans
that the bank provides in the time interval

0,X) + X5 + -+ Xk .

We suppose that the random variable C; denotes the size of the sth loan that the
bank provides in the time interval

0,X +Xo+ -+ Xk].
Hence the random variable
V=C+G+--+Cs
denotes the size of the portfolio of loans that the bank creates in the time interval
0,X; + X +--- + Xk |.
The random variable
Y=Xi+Xo+--+Xx,

the random variable
V=C+C+---+Csg,
and the vector (Y, V) constitute strong analytical tools for formulating and inves-

tigating portfolio of loans in a time interval which is free of risk occurrences and
which has a random length.
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The independence of K, {X,,,n=1,2,...} Sand {C;,s = 1,2,...} permits the
evaluation of the characteristic function

p

= T(PX(“)PS(QDC(&))

QDY,V(”, <)

of the random vector (Y, V).

That characteristic function supports the practical and theoretical applications of
the above vector in risk management.

Since the independence of K, {X,,n=1,2,...}, S and {C;,s =1,2,...}
implies the independence of K, {X,,n=1,2,...} and the independence of S,
{Cys,s = 1,2,...}, then the characteristic function of the random variable

Y=Xi+X+---+Xg
is

___pr
1 — qox(u)

@y (1)
and the characteristic function of the random variable
V=C+C+---+Cs
is
@v(&) = Ps(¢c(S))-

Hence the characteristic function

p

Qyy(u,&) = ————Ps(oc(E)),
,8) = s Pi(oe(€)
the characteristic function
14
QylU) =—""—"-—,
r(u) 1 — gy (u)

and the characteristic function

Pv(&) = Ps(oc(€))

satisfy the relationship
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QDY,V(”, &) = oy(u)ey(&).
Consequently, the random variables
Y=Xi+X+---+Xg
and
V=C+GC+--+Cs

are independent O

3.15 Cost of Deleting Occurrences of a Risk with Constant
Probability and Total Severity of First Retained Risk
Occurrence

Let N be a discrete random variable with values in the set N = {1,2,...} and
following the geometric type II distribution with probability function

P(N=n)=pq"', n=1.2,...
and probability generating function

pz

PN(Z) = 1 —CIZ'

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable X having charac-
teristic function ¢y () and we set

T=X, +X + - +Xy.

Let W be a continuous and positive random variable with probability density
function fiy(w), w > 0 and we set

V=X +X+ -+ Xy)W

or equivalently V =TW.

Let S be a discrete random variable with values in the set Nop = {0, 1,2, ...} and
probability generating function Ps(z).

We suppose that {C,,s =1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. We suppose that the
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random variables of the sequence are equally distributed with the random variable
C having characteristic function ¢ (&) and we set

L=C+C+-+Cs.

We consider the vector (V,L). The purpose of the present section is the
establishment of properties and applications in risk management of the vector
(V,L).

The following result establishes sufficient conditions for evaluating the charac-
teristic function ¢y, ; (u, &) of the vector (V,L).

Theorem 3.15.1 Let N be a discrete random variable with values in the set N =
{1,2,...} and following the geometric type II distribution with probability function

P(N=n)=pqg"', n=1,2,... (3.15.1)
and probability generating function

__prz
1—gqz

Py(2) (3.15.2)

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable X having charac-
teristic function

ox(u) (3.15.3)
and we set
T=X+Xo+" -+ Xy
Let W be a continuous and positive random variable with probability function
Sfwlw), w>0 (3.15.4)
and we set
V=Xi+X2+ - +Xy0)W

or equivalently V. = TW. Let S be a discrete random variable with values in the set
No ={0,1,2,...} and probability generating function

Ps(Z). (3155)
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We suppose that {Cs,s = 1,2,...} is a sequence of continuous, positive, inde-
pendent, and identically distributed random variables. The random variables of the
sequence are equally distributed with the random variable C having characteristic
function

¢c(8) (3.15.6)

and we set
L=C+C+--+Cs.

We consider the vector (V,L).
IfN, {X,,n=1,2,...} W, Sand {Cs,s =1,2,...} are independent then the
characteristic function of the vector (V,L) is

peald) = [ POy )i Piloel@)
0

Proof The independence of N {X,,n=1,2,...}, W, § and {Cs,s =1,2,...}
implies the independence of N, {X,,n = 1,2,...} and the independence of S and
{Cs,s =1,2,...}.

Hence (2.5.6), (3.15.1), (3.15.2) and (3.15.3) imply that the characteristic
function of the random sum

T=X +Xo+ - +Xy

pox(u)

T—coo(d) 20 () (3.15.7)

or(u) =

and (2.5.6), (3.15.5), (3.15.6) imply that the characteristic function of the random
sum

L=C+C+-+Cs
is
@ (&) = Ps(pc(€)). (3.15.8)

From (3.15.4) it follows that the characteristic function of the random variable W
is
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o0

v) :/eiqﬂ‘vfw(w)dw.

0
We consider the random variables
T=X+Xo+ -+ X,

L=C+C+-+Cs

217

(3.15.9)

and W and we shall prove that these random variables are independent. Let

@r.w(u, &,19) be the characteristic function of the vector (T,L, W).

The proof of independence of the random variables
T=X1+Xo+ -+ Xy,
L=C+C+---+Cs
and W requires the proof of the relationship
(/)T.L,W(ua &, 0) = or(u)L (&) ow ().
We have
Orw (e, & 0) = E(eiuTJriq'LJriﬂW)

or equivalently

orow(u, &,09) = E<€iu(X'+X2+‘“+XN)+if(C|+Cz+~~+Cv)+i19W>.

From (3.15.10) we get that

NgE
NgE

(/)T,L,W(uv 5779) =

I
Il
Q

or equivalently we get that

E(eiu(X1+...+XN)+icf(C1+>--+C.g)+i19W‘N —nS— s)P(N

(3.15.10)

=nS=5s)

o0 o0
Qrw(u,&,0) = ZZE< Uit X HEC -+ CHIW |y — g )P(N —nS=s).

—
©~

n= =0

From (3.15.11) it follows that
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o0 00

q’T,L,W(”: 5719) _ ZZE(eiUXI' ) .eian .eiug’Cl_ ) .eiuéCY+i19W|N =n, S = S)P(N =n, S = S)
(3.15.12)

The independence of N, {X,,n =1,2,...}, W, S and {C;,s = 1,2, ...} implies
the independence of the random variables N, Xi, ..., X,,, W, S, Cy, ..., C,; and the
independence of the random variables N, S.

Hence (3.15.12) has the form

Prow(, &) =D > E(e". e """V )P(N — n)P(S — ).

n=1 s=o

(3.15.13)

The independence of the random variables N, X, ..., X,, W, S, Ci, ..., Cs
implies the independence of the random variables X1, ..., X,,, W, Cy, ..., C.

Hence the random variables ™!, ..., ™ W ¢i<Ci ¢i<C are indepen-
dent and (3.15.13) has the form
(tDTLW( ¢ _ u9W ZE le E ’”X”)P(N=n)ZE(e’EC‘)...E(ei‘fc“)P(S:s),
n=1 s=0

(3.15.14)

Since the random variables of the sequence {X,,n = 1,2,...} are equally dis-
tributed with the random variable X having characteristic function ¢y (u), the
random variables of the sequence {C;,s = 1,2,...} are equally distributed with the
random variable C having characteristic function ¢(¢), and the random variable W
has characteristic function ¢y, (6) then (3.15.14) has the form

OrLw(,&0) = ow(0) Y k(PN =n))_ ¢e(OP(S=s)
n=1 s=0
or equivalently the form
o1 60) = TP (el (0). (3.15.15)

From (3.15.7), (3.15.8), (3.15.9) and (3.15.15) it follows that

(PTA,L,W(”a ¢, 0) = or(u)e,(S)ow (V).

Hence the random variables
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Tr=Xi+Xo+ - +Xuy,
L=C+C+---+Cs

and W are independent. The evaluation of the characteristic function ¢y ; (u, &) of
the vector (V, L), where

V=X +Xs+ -+ Xy)W
and
L=C+C+--+Cs,

is implemented in the following way.
We have

oy (U, &) = E(eiuVHéL)

y

or equivalently
oy (1, &) = E(eiu(x+1x2+.4.+xN)W+ig“(cl+CZ+...+CS)). (3.15.16)
From (3.15.16) we get that

oy (U, &) = E(E(eiu(xl+x2+---+xN)w+i§(cl+c2+.4.+cs)) |W)

Hence

oy, &)= [ E (ei”(x‘*Xz*”'””)w”i(c' FOt ) | = w) fw(w)dw. (3.15.17)

From (3.15.17) it follows that

(pv.’L(% f) _ /E(eiu(x+1X2+M+XN)w+i5(C1+Cz+m+Cs)|W — w)fw(w)dw. (3.15.18)
0

Since the random variables

T=X+Xo+ -+ Xy,
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L=C+GC+---+Cs
and W are independent then the random variables
wl = (X1 +X+ -+ Xn)w,
L=C+C+---+Cs

and W are independent. Hence (3.15.18) has the form
q’VL(u, é) — / E(eiu(Xl+X2+~4.+XN)W+i§(C1+C2+...+Cs))fW(W)dW. (31519)
0

The independence of the random variables wT, L and W implies the indepen-
dence of the random variables

T=X+Xo+ - +Xuy,
L=Ci+Cy+---+Cs.

Hence (3.15.19) has the form

(pVL u, f /E u(X+1 X2+ +Xy)w )E(ei5<c+‘C2+"'+CS))fw(w)dw. (31520)
0

From (3.15.20) it follows that

(pV,L(u’ é) — ( iE(C+Cot-- +Cs /E u(X+1 X2+ +XN)W)fw(W)dW. (31521)
0

Since (3.15.8) implies that the random variable
L=C+C+-+Cs
has characteristic function

@1(¢) = Ps(oc(£)),

then (3.15.21) has the form
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o0

Oval8) = Psloc(®) [ B(&H (e, (31522)

Since (3.15.7) implies that the random variable
T=X+Xo+ - +Xy
has characteristic function

pox(u)
or\u) =—"—""+=
rl) == qox(u)
then the random variable
wl = (Xi + X +--- + Xy)w

has characteristic function

pox(uw)

T o]’ (3.15.23)

Pr(uw) =

From (3.15.22) and (3.15.23) it follows that the characteristic function of the
vector (V,L) is

pox(u
oyr(u, &) = / " uw)f w)dw - Ps(pc(8)). (3.15.24)
0

Since (3.7.21) implies that

/ pox(u
1 — gy (uw
0
is the characteristic function of the random variable
V=X +Xo+ -+ X)W
then (3.15.24) implies that the random variable
V=X +Xo+ -+ X)W

is independent of the random variable
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L=C+C+---+C,.
An interpretation of the vector (V,L), where
V=Xi+Xo+ - +X0W
and
L=C+C+-+Cs

in risk management is the following.

We consider an organization facing a risk at the time point 0. We suppose that
{X,,n=1,2,...} is a sequence of continuous, positive, independent, and identi-
cally distributed random variables. The random variables of the sequence are
equally distributed with the random variable X having characteristic function
ox(u).

The random variable X,,,n = 1,2, ... denotes the time between the nth and the
(n — D)th occurrence of a risk. A risk frequency reduction operation is applied to the
risk. According to that operation a risk occurrence is retained with probability p and
deleted with probability g =1 — p.

The retention—deletion of a risk occurrence is independent of the retention—
deletion of any other risk occurrence. Let N be a random variable denoting the
number of risk occurrences until the first retained risk occurrence. The random
variable N follows the geometric type II distribution with probability function

P(N=n)=pq"', n=12,...
and probability generating function

I
1—gqz

PN(Z)

The sequence of continuous, positive, independent, and identically distributed
random variables {X,,,n = 1,2,...} is independent of the random variable N.
The random sum

T=X +X,+ - +Xy

denotes the time of the first retained risk occurrence.

Let W be a continuous and positive random variable with probability density
function fiy (w).

We suppose that the random variable W denotes the cost per unit of time for
applying the risk frequency reduction operation. Hence the random variable
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V=X +Xo+ - +Xy)W

denotes the cost of applying the risk frequency reduction operation until the first
retained risk occurrence. We suppose that the random variable S denotes the
number of different damages due to the first retained risk occurrence at the time
point

T=X +Xo+ - +Xy.

The random variable S has probability generating function Pg(z). We consider
the sequence {Cs,s =1,2,...} of continuous, positive, independent, and identi-
cally distributed random variables. The random variables of the sequence
{Cs,s =1,2,...} are equally distributed with the random variable C having
characteristic function ¢ (¢).

We suppose that the random variable C, denotes the size of the sth damage due
to the first retained risk occurrence at the time point

T=X1+Xo+ -+ Xn.
Hence the random variable
L=Ci+C+---+Cs

denotes the total size of the damage due to the first retained risk occurrence at the
time point

T=X+Xo+- -+ Xy.
The random variable

T=X1+Xo+ -+ Xy,

the random variable W, the random variable
V=X+X24 - +Xy)W,

the random variable

L=C+C+--+Cs
and the vector (V, L) are strong analytical tools for investigating and applying risk
frequency reduction operations.

The independence of N, {X,,,n = 1,2,...}, W, Sand {C;,s = 1,2,...} implies
the evaluation of the characteristic function



224 3 Stochastic Models of Risk Management Operations

pox(u
@v,L(Maf) / 1—61%( o w)dw - Ps(pc(E))

of the vector (V,L).

That characteristic function supports the practical applications in risk manage-
ment of the vector (V,L).

The above form of the characteristic function ¢y ;(u, &) establishes the inde-

pendence of the random variable
V=X +Xo+--+Xy)W
and the random variable
L=C+C+ -+

Hence the vector (V, L) is of particular interest in risk management. O

3.16 Convoluting Cost of Deleting Risk Occurrences
with Constant Probability and Total Severity of First
Retained Risk Occurrence

Let N be a discrete random variable with values in the set N = {1,2,...} and
following the geometric type II distribution with probability generating function

pz
1—gqz

Py(z) =

We suppose that {X,,n =1,2,...} is a sequence of continuous, positive, and
independent random variables. The random variables of the sequence are equally
distributed with the random variable X having characteristic function ¢y (1) and we
set

=X +Xo+ - +Xn

Let W be a continuous and positive random variable with probability density
function fiy(w), w > 0 and we set

V=X +Xo+- - +Xy)W

or equivalently we set V. =TW.
Let S be a discrete random variable with values in the set Ng = {0,1,2,...} and
probability generating function Pg(z).
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We suppose that {C;,s =1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable C having charac-
teristic function ¢ (u) and we set

L=Ci+Cy+---+Cs.
We consider the random variable
Y=Xi+Xo+ - +Xy)W+C +C+---+Cs

or equivalently the random variable Y = V + L.

The purpose of the present section is the establishment of properties and
applications in risk management of the random variable Y = V + L.

The following result establishes sufficient conditions for evaluating the charac-
teristic function @y (u) of the random variable ¥ = V + L.

Theorem 3.16.1 Let N be a discrete random variable with values in the set N =
{1,2,...} following the geometric type II distribution with probability generating
function

I
1 —gqz

PN(Z)

We suppose that {X,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable X having char-
acteristic function @y (u) and we set

T=X +X+ - +Xy.

Let W be a continuous and positive random variable with probability density
Sunction fiy(w), w > 0 and we set

V=X +X24 - +Xy)W

or equivalently we set V.=TW.

Let S be a discrete random variable with values in the set Ny = {0, 1,2, ...} and
probability generating function Pg(z).

We suppose that {Cs,s = 1,2,...} is a sequence of continuous, positive, inde-
pendent, and identically distributed random variables. The random variables of the
above sequence are equally distributed with the random variable C having char-
acteristic function ¢ (u) and we set
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L=C+C+ - +Cs.
We consider the random variable
Y=Xi+X%+ - +Xy)W+Ci+Co+---+Cs
or equivalently the random variable Y =V + L. If N, {X,,n=1,2,...}, W, §

and {Cs,s =1,2,...} are independent then the characteristic function of the
random variable Y =V + T is

PPx
w)dw - P,
0= [P gyt Peloc).
0

Proof From Theorem 3.15.1 it follows that the random variables
V=X +X24 - +Xy)W
and
L=C+C+-+GCs
are independent, the random variable
V=X +X+ - +XyW

has characteristic function

oo

1 — gy (uw) —q(pX uw
0

and the random variable
L=C+C+---+Cs
has characteristic function
@r(u) = Ps(pc(u)).

If @y () is the characteristic function of the random variable Y = V + L then

o) = E(£407)

or equivalently
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QDy(u) _ E<eiuV)E(eiuL)'

Hence the characteristic function of the random variable Y = V + L is

0 = [ TR )i PiCoc(n).
0

An interpretation of the stochastic model ¥ = V + L where
V=Xi+Xo+ - +Xy0)W
and
L=C +Cy+---+Cs,

in the discipline of risk management is the following.

We consider an organization facing a risk at the time point 0. We suppose that
{X,,n=1,2,...} is a sequence of continuous, positive, independent, and identi-
cally distributed random variables. The random variables of the above sequence are
equally distributed with the random variable X having characteristic function
ox (u).

The random variable X,,,n = 1,2, ... denotes the time between the (n — 1)th and
the nth risk occurrence. A risk frequency reduction operation is applied to the risk.
According to that operation, a risk occurrence is retained with probability p and
deleted with probability g =1 — p.

The retention—deletion of a risk occurrence is independent of the retention—
deletion of any other risk occurrence. Let N be a random variable denoting the
number of risk occurrences until the first retained risk occurrence. The random
variable N follows the geometric type II distribution with probability generating
function

Pz

PN(Z) = I _qz.

The sequence of continuous, positive, independent, and identically distributed
random variables {X,,n = 1,2,...} is independent of the random variable N.
The random sum

Tr=X+Xo+ - +Xy

denotes the time of the first retained risk occurrence.
Let W be a continuous and positive random variable with probability density
function fiy (w). We suppose that the random variable W denotes the cost per unit of
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time for applying the risk frequency reduction operation. Hence the random
variable

V=Xi+X2+ - +X0W

denotes the cost of applying the risk frequency reduction operation until the first
retained risk occurrence. We suppose that the random variable S denotes the
number of different damages due to the first retained risk occurrence at the time
point

T=X +Xo+ - +Xy.

The random variable S has probability generating function Pg(z).

We consider the sequence {Cy,s =1,2,...} of continuous, positive, indepen-
dent, and identically distributed random variables. The random variables of the
sequence {C;,s =1,2,...} are equally distributed with the random variable C
having characteristic function ¢ (u).

We suppose that the random variable Cg denotes the size of the sth damage due
to the first retained risk occurrence at the time point

T=X+X+ -+ Xy.
Hence the random variable
L=C+C+-+C

denotes the total size of the damage due to the first retained risk occurrence at the
time point

T=X+Xo+-+Xn.
The random variable
T=Xi+Xo+ -+ Xy,
the random variable W, the random variable
V=X +Xo+ -+ Xy)W,
the random variable
L=C+Cy+ -+ Cs,

and the random variable Y = V + L are strong analytical tools for investigating and
applying risk frequency reduction operations.
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The independence of N, {X,,,n = 1,2,...}, W, Sand {C;,s = 1,2,...} implies
the evaluation of the characteristic function

e¢]
pox(uw)
0 = [ L ) - Py(oclu)
0

of the random variable Y = V + L, where
V=X +X+ - +Xy)W

and

L=C+C+---+Cs

The presence of the random sums

Tr=X1+Xo+ - +Xn
and

L=Ci+C+-+Cs

in the stochastic model Y = V + L supports the practical applications in the dis-
cipline of risk management of that model. O



Chapter 4

Stochastic Discounting Modeling

for Concepts and Operations of Risk
Management

Abstract This chapter concentrates on the formulation, investigation, and
applications in real world situations of stochastic discounting models describing
fundamental concepts and operations of risk management. The incorporation of
important concepts of probability theory in stochastic discounting models makes
such stochastic models powerful analytical tools for strategic thinking and strategic
decision making. More precisely, the presence of a sum, minimum, and maximum
of a random number of continuous, positive, independent, and identically distrib-
uted random variables in the mathematical structure of a stochastic model
substantially supports the applicability of such a stochastic model in describing,
analyzing, selecting, and implementing fundamental risk management operations.
In addition, the extremely strong results of the theory of characteristic functions
facilitate the use of stochastic discounting models in risk management operations.

4.1 Introduction

The purpose of the present chapter is the formulation, investigation, and practical
applications of stochastic discounting models for the fundamental concepts and
operations of risk management. More precisely, the chapter concentrates on sto-
chastic models of present value of simple cash flows and stochastic models of
present value of continuous and uniform cash flows. These stochastic models
substantially support the practical applications of the fundamental concepts and
operations of risk management. The concept of sum of a random number of con-
tinuous, positive, independent, and identically distributed random variables, the
concept of minimum of a random number of continuous, positive, independent, and
identically distributed random variables, and the concept of maximum of a random
number of continuous, positive, independent, and identically distributed random
variables are the structural elements of the stochastic discounting models formu-
lated, investigated, and interpreted by the sections of the present chapter. The
presence of the above very important concepts of probability theory in stochastic
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discounting models of risk management operations makes these models very strong
analytical tools in decision making under conditions of risk. The introduction of the
concepts of sum, minimum, and maximum of a random number of continuous,
positive, independent, and identically distributed random variables in stochastic
discounting models of simple and continuous cash flows constitutes the first part of
the theoretical contribution of this chapter. The establishment of sufficient condi-
tions for evaluating the probability distribution of such stochastic models consti-
tutes the second part of the theoretical contribution of this chapter. The practical
contribution of this chapter consists of establishing applications of such stochastic
models in risk management. From a theoretical and practical point of view the
chapter extends the interest in formulating and investigating stochastic discounting
models for simple and continuous cash flows in risk management. More precisely,
this chapter proposes and investigates stochastic discounting models of simple and
continuous cash flows which make clear the theoretical and practical importance of
the fundamental concepts and operations of risk management. The recognition of
the theoretical and practical significance of the fundamental concepts and opera-
tions of risk management is based on the concepts of sum, minimum, and maximum
of a random number of continuous, positive, independent, and identically distrib-
uted random variables. These important concepts of probability theory are partic-
ularly useful in formulating stochastic discounting models incorporating concepts
and operations of risk management.

4.2 Present Value of a Single Cash Flow and Proactive Risk
Management Decision Making

Let X be a continuous and positive random variable with characteristic function
¢@x(u) and V be a continuous and positive random variable with characteristic
function ¢y, ().

We suppose that 7" is a continuous and positive random variable with distribution
function Fr(¢) and r is a positive real number.

We suppose that N is a discrete random variable following the Bernoulli dis-
tribution with probability function

P(N=n)=p"¢"™", n=0,1.

The purpose of the present section is the establishment of properties and
applications in risk management of the above stochastic model.
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An interpretation of the model

X, N=1
Y‘{WW)N:O

in the area of stochastic discounting of single cash flows is the following.

We suppose that the random variable X denotes a cash flow at the time point O
and the random variable V denotes a cash flow at the time point 7.

The positive real number » denotes the force of interest and the random variable
Ve~'T denotes the present value at the time point O of the cash flow V corresponding
at the time point 7.

Hence the stochastic model

X, N
v= { Ve'T, N=

denotes the Bernoulli random sum of the above present values at the time point 0.
The following result establishes conditions for evaluating the characteristic
function ¢y (u) of the stochastic model

X, N
Y‘{w”,Nz

Theorem 4.2.1 Let X be a continuous and positive random variable with char-
acteristic function @x(u) and V be a continuous and positive random variable with
characteristic function @y (u).

We suppose that T is a continuous and positive random variable with distri-
bution function Fr(t), r is a positive real number, and N is a discrete random
variable following the Bernoulli distribution with probability function

(e B

S -

P(N=n)=p"¢"™", n=0,1.

If the random variables X, V, T, N are independent then the characteristic
function of the stochastic model

X, N=1
Y{w”,No

is

<mW%wwﬂw+quﬂm@dP—m(—%%wﬂ.
0
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Proof The independence of the random variables X, V, T, N implies the inde-
pendence of the random variables V, T.

We consider the random variable W = e~

The independence of the random variables V, T implies the independence of the
random variables V, W.

If Fr(z) is the distribution function of the random variable T then

T

1
FW(W)zl—FT<—;logw), O<w<l, (4.2.1)

is the distribution function of the random variable W = ¢~'7.

If @y (u) is the characteristic function of the random variable VW then we get
that

Py (u) = E(e"")
or equivalently

oy (u) = E(E(e"""|W)). (42.2)

From (4.2.2) it follows that
1
Qyw(u) = /E(ei”VW\W = w) dFy(w)
0
or equivalently

oyw(u) = [ E(e™V|W =w) dFy(w). (4.2.3)

S—_ _

From (4.2.1) and (4.2.3) it follows that

Pyw(u) = /E(ei”WVW =w)d {1 — Fr <— %log w)] : (4.2.4)

Since the random variable V is independent of the random variable W then
(4.2.4) has the form

1

Py () :/E(ei”wv)d{l —FT(—%logwﬂ. (4.2.5)
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Since ¢y (u) is the characteristic function of the random variable V then (4.2.5)
implies that the characteristic function of the random variable VW is

1

oo () = / (pv(uw)d{l —FT(—%logw)} (4.2.6)

0

Let @y (u) be the characteristic function of the random variable X, ¢y, (&) the
characteristic function of the random variable VW, ¢, (0) the characteristic function
of the random variable N and @y vy y(u, &, 0) the characteristic function of the
vector (X, VW,N).

The establishment of the relationship

(PX,VW,N(“a &, 0) = ox(u)pyw () oy (0)

implies the independence of the random variables X, VW, N.
We have

(pX,VW,N(ua f, 0) — E(eiuX+i§VW+i6N)
or equivalently
Pxywn (i, &, 0) = E(E(e" TN W), (4.2.7)

From (4.2.7) it follows that
1
(pX.,VW‘N<u7 67 0) = /E(eiux+i§VW+i9N|W — W) de(W> (428)
0
Hence (4.2.1) and (4.2.8) imply that
1 1
Oxyw (U, &, 0) = / E(eMXHOVHON |y = 1) d[l — Fr (——log wﬂ . (4.2.9)
’ r
0

Since the random variables X, V, T, N are independent then the random vari-
ables X, V, W, N are also independent. The independence of the above random
variables implies the independence of the random variables X, wV, W, N.

Hence (4.2.9) has the form

1
. . . 1
Ox yw (1, &, 0) = /E(el“XﬂGW”'WV) d{l Fr<logw)]. (4.2.10)
B r
0
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The independence of the random variables X, wV, W, N implies the indepen-

dence of the random variables ¢™X, €WV ¢i0N
Hence (4.2.10) has the form

1

1
Oxvw (i, &, 0) = E(e") 1()N /E zng {1 —Fr (——logw>]. (4.2.11)
VW, ,

0

From (4.2.6) and (4.2.11) it follows that
oxvwn (U, &, 0) = ox U)oy ($) oy (0). (4.2.12)

Moreover (4.2.12) implies that the random variables X, WV, N are independent.
If ¢y (u) is the characteristic function of the stochastic model

X, N=1
Y_{Ve_’T, N=0

then we get

or equivalently
@y(u) = E(E(e"Y|N)). (4.2.13)

From (4.2.13) it follows that

1
u) =Y E("|N=n)P(N =n). (4.2.14)

n=0
Hence (4.2.14) implies that
@y(u) = pE(e"Y|N = 1) + gE(""|N = 0). (4.2.15)
From (4.2.15) we get that
oy () = pE(e"™|N = 1) + ¢E (g"“V€’”|N - 0). (4.2.16)
The independence of the random variables

X, Vel = VW,N
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implies the independence of the random variables X, N and the independence of the
random variables

Ve 'l = VW,N.

Hence (4.2.16) has the form
oy (1) = pE(e"™) + qE (e"“Vf”T). (4.2.17)

Since @y (u) is the characteristic function of the random variable X and

O/(Pv [I—FT(—llogw>}

is the characteristic function of the random variable
VW = Ve 'l

then (4.2.17) implies that the characteristic function of the stochastic model

X, N=1
Y{Ve’T, N=0

is

@y (u) = pox(u +q/l<pv {1—FT<——logw)}
0

The evaluation of the characteristic function ¢y (u) substantially supports the
practical applications of the corresponding stochastic model in risk management.
An interpretation of the stochastic model

in risk management is the following.

We consider an organization facing a risk at the time point 0. The first choice of
the organization is the avoidance of risk by paying an amount X at the time point 0.
The second choice of the organization is the retention of risk. The second choice of
the organization implies that the organization will pay an amount V, which denotes
the severity of risk at the time point 7 of occurrence of that risk. Hence the
stochastic model
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X, N=1
Y_{VerT, N=0

denotes the present value at the time point 0 of the cost of the choice for the
treatment of that risk.

The following result concentrates on the investigation of the characteristic
function @y (u) of a special case of the stochastic model

y_{X N=1
Ve, N=0.

O

Theorem 4.2.2 Let X be a continuous and positive random variable with differ-
entiable characteristic function @y (u) and V be a continuous and positive random
variable with differentiable characteristic function ¢y (u).

We suppose that T is a continuous and positive random variable following the
exponential distribution with distribution function

Fr()=1—¢e" >0, u>0,
and r is a positive real number.
We suppose that N is a discrete random variable following the Bernoulli dis-
tribution with probability function

P(N=n)=p"¢"™", n=0,1.

If X, V, T, N are independent then the characteristic function of the stochastic
model
is
1
or(0) = pox(u) + qap [ oxonw .
0

where a = p/r if, and only, if the random variables Y,V are equally distributed.

Proof From Theorem 4.2.1 it follows that the characteristic function of the sto-
chastic model
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X, N
Y= { Ve, N=

O»—

@y(u) = pox(u +q/lgov {1 —FT<—llogw)} (4.2.18)
0

Since the distribution function of the random variable T is

Fr)=1—¢e*, >0, u>0,

then the distribution function of the random variable W = ¢~'7 is

Fy(w)=w' 0<w<l,

where a = pu/r.
Hence (4.2.18) has the form

1
Py(u) = pox(u) + qa/(pv(uw)w“‘ldw
0

or equivalently the form

u

or() = pox(u) + 4% [ ovouwa. (42.19)
0

If the random variables Y, V are equally distributed then we get that
@y () = @y(u). (4.2.20)

From (4.2.19) and (4.2.20) it follows that

u

a —
@y (u) :pwx(u)+q;/<py(w)w“ Ldw. (4.2.21)
0

If we multiply both sides of the integral equation (4.2.21) by u then we get the
integral equation

u

gy (1) = i gx(1) + ga [ gy (wh* . (4222)
0
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The characteristic functions ¢y (1) and @y () are differentiable. If we differen-
tiate the integral equation (4.2.22) we get the differential equation

doy(u doy(u
aua—l(pY(u) +ua (/)Y( ) _ apua—lqox(u) +pua @X( )_~_qa(py<u)ua—l-
du du
(4.2.23)
If u # 0 then the differential equation (4.2.23) implies that
u doy(u) u doy(u)
- - - . 4.2.24
o) + 1O — ) 1 S (42.24)
The differential equation (4.2.24) implies the differential equation
u doy(u)\ - ap A9x (1)
((py(u) + e #) apu?™! = apy (W)u "' + pu p#. (4.2.25)
From (4.2.25) it follows that
y doy(y ap— ap— a
/(q)y(Y) +%~$)apy” ‘dy:ap/q)x(y)y’ tdy +p/y”d<px(y)~
0 0 0
(4.2.26)
Hence (4.2.26) implies that
ap / Py(V)y"dy + / YPdey(y) = ap / Px(V)y" " 'dy +p / YPdpx(y).
0 0 0 0
(4.2.27)
From (4.2.27) it follows that
ap / Py (V)Y dy + u® gy (u) — ap / Py (V)Y dy =
. o (4.2.28)
ap / Px (V)Y dy + pu® gy (u) — ap? / Px(V)y" " dy.
0 0

Hence (4.2.28) implies that
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u

Uy (1) = pu oy () + ap(1 — p) / ox (Y)Y dy.
0

or equivalently

u

Wy () = pu gy () + qap / ox(»)y L dy (42.29)
0

If u # 0 then (4.2.29) implies that

u

ap ap—
or(0) = poy () + gL / ox () dy

uw
0

or equivalently

1

oy () = pox() + gap / ox (ww) W .
0

The inverse is obvious.
The characteristic function

1

@y (u) = pox(u) + qap / @x (uw)w ™ dw
0

is a mixture of the characteristic function ¢y (u) and the characteristic function

1

ap / Oy (uw)w® Law
0

which belongs to a ap-unimodal distribution. If the characteristic function @y (u)
belongs to a ap-unimodal distribution then it easily follows that the characteristic
function

1

@y (u) = pox(u +qap/qox w dw
0

or equivalently the characteristic function
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u
a

4 ap—
or(0) = pox(u) + a2 [ ox(s)ylay
0

belongs to ap-unimodal distribution. O

4.3 Present Value of Total Risk Severity

Let V be a continuous and positive random variable with characteristic function
Py (u).

We suppose that {C,,n=1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable C having charac-
teristic function ¢@(u) and N is a discrete random variable with values in the set
No ={0,1,2,...} and probability generating function Py(z).

Weset L=C+C,+---+ Cy.

Let U be a continuous and positive random variable with characteristic function
Py (u).

We suppose that T is a continuous and positive random variable with distri-
bution function Fr(z) and r is a positive real number.

We consider the stochastic model

Y=V+(Ci+Co+-+Cy+U)e .

The purpose of the present section is the establishment of properties and
applications in risk management of the stochastic model

Y=V4+(Ci+Co+---+Cy+U)e .

An interpretation of the above model in the area of continuous discounting of
simple cash flows is the following.

We suppose that the random variable V denotes a cash flow at the time point 0.
Moreover, each random variable of the sequence {C,l, n=1,2,.. } denotes a cash
flow at the time point 7.

In addition, the random variable U denotes a cash flow at the time point 7.

We suppose that the positive real number r denotes force of interest. In this case
the stochastic model

Y=V+(Ci+C+-+Cy+U)e "

denotes the sum of the cash flow V, corresponding at the time point 0, and the
present value at the time point O of the cash flow C; + C; +--- + Cy + U, cor-
responding at the time point 7.
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The following result establishes sufficient conditions for evaluating the charac-
teristic function ¢y (u). of the stochastic model

Y=V+(Ci+Co+-+Cy+U)e .

Theorem 4.3.1 Let V be a continuous and positive random variable with char-
acteristic function @y (u).

We suppose that {C,,, n=12,.. } is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable C having char-
acteristic function ¢ (u) and N is a discrete random variable with values in the set
No ={0,1,2,...} and probability generating function Py(z).

We set L=Cy{+Cy+---+ Cy.

Let U be a continuous and positive random variable with characteristic function
oy (u). We suppose that T is a continuous and positive random variable with
distribution function Fr(t) and r is a positive real number.

We consider the stochastic model

Y=V+(Ci+C+-+Cy+U)e .

Ifv, {C,,_, n=12.. .}, N, U and T are independent then the characteristic
function of the stochastic model

Y=V+(Ci+C+ - +Cy+U) "

is
1 1
oy(Y) = @y (u /(pU uw)Py(@e(uw))d {1 —Fr <—;log wﬂ
0

Proof The independence of V, {C, n=1,2,...}, N, U and T implies the inde-
pendence of {C,,‘ n=12.. } and N.

Hence (2.5.6) implies that the characteristic function of the random sum L =
Ci+Co+---+Cyis

¢r(u) = Py(oc(u)).

Let @y (1, &, 0, ) be the characteristic function of the vector (V,L,U,T).
The establishment of the relationship

QDV,L,U,T(M, ¢, 0,0) = @y(u)o (&) ey (V) or(w)

implies the independence of the random variables V, L, U, T.
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We have

(PVLUT(u é 0 (1)) :E(eiuV-&-iéL-‘ri(-)Uﬁ—in)
LU, y 6y Uy

or equivalently
oy o, &, 0,0) = E(E(eMHEH0UOT N ), (4.3.1)

From (4.3.1) we get the formula
qDVL UT u, f 0 w ZE 1uV+i£L+iHU+ia)T|N — I’Z)P(N — Vl)
n=0
or equivalently the formula

00
(pV,L,UT é 6 CO _ ZE( iuV+il(Cy+- +CN)+10U+sz|N )P(N _ n)
n=0

which can be written in the form

(/)V,L,U,T(u7 ¢,0,0) =

gk

E(eiuv+icf(c,+»~+C,,)+i9U+in|N _ n) P(N =n). (43.2)

i
o

n

Hence (4.3.2) has the form

ovruru, & 0,0) = ZE ”‘Ve’fc‘...e’fc"e’HUei‘”T\N =n)P(N=n). (43.3)
n=0

The independence of V, {C,,n=1,2,...}, N, U and T implies the indepen-
dence of the random variables V, Cy,...,C,,N,U,T.

The independence of the above random variables implies the independence of
the random variables e ¢<C1 ... &/<Cr N, &'V T,

Hence (4.3.3) has the form

o0
eyLuru & 0,m) E ”’Velgc‘...e’gc"eleUe””T)P(N =n). (4.3.4)

n=0
Since the independence of the random variables ™", ¢'C1 .. . e/<Cr N ¢V ¢i@T
implies the independence of the random variables e™V, e/Ct, .. .,e"c" e el

then (4.3.4) has the form
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(pV,L,U,T(u? f, 97 a)) = E(eiuV) 19U th ZE lCCl E lgC,,)P(N — I’l)
n=0
(4.3.5)

Since the random variables of the sequence {C,,{r n=12.. } are equally dis-
tributed with the random variable C having characteristic function ¢(u) then
(4.3.5) has the form

(pV,LﬁU.T(ua ¢,0,0) = @y (u)Pyn(@c(S)) oy (V) pr(w)
or equivalently the form
QDV‘L,U,T(Ma £,0,0) = oy (u)o (&) oy (¥)or(w).

Hence the random variables V, L, U, T are independent. Let ¢y (u) be the
characteristic function of the stochastic model

Y=V+(Ci+C+-+Cy+Ue "

and Fy (w) be the distribution function of the random variable W = ¢~'T.

We have
1
Fyw)=1—Fr( —=logw ), O0O<w<l. (4.3.6)
r

The independence of the random variables V, L, U, T implies the independence
of the random variables V, L, U, W.
Hence

oy () = E(eiu[v+(c,+~-+cN+U>W]>
or equivalently
oy(u) = E(E (ei”[v+(cl+"‘+CN+U>W] \W)) : (4.3.7)

From (4.3.7) it follows that

1
/E ulV+(Cr+- +CN+U>W]‘W_W)dF (w). (4.3.8)
0

From (4.3.6) and (4.3.8) it follows that
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1

1
/E iu[V+(Ci+-+Cy+U W]|W )d|:1 — FT(—log W>:| . (439)
r

0

Since the random variables V, L, U, W are independent then the random vari-
ables V, wL, wU, W are also independent. Hence (4.3.9) has the form

1

1
/E U[V+(Crt-- +cN+U)w])d [1 —Fy (_ ~log w)} , (4.3.10)
r

0

The independence of the random variables V, wL, wU, W implies the inde-
pendence of the random variables V, wL, wU.
Hence (4.3.10) has the form

1
oy () = /E(eiuV)E(eiu(ClJn..JﬁCN)w)E(eiuWU)d [1 —Fr <— %log w)] . (43.11)
0

From (4.3.11) it follows that the characteristic function of the stochastic model

Y=V+(Ci+Co+---+Cy+U)e "

1

/(PU uw) Py ( q)c(uw))d{l — Fr (—ilogw)}

0

An interpretation of the stochastic model
Y=V+(Ci+C+ -+Cy+U)e "

in risk management is the following.

We suppose that a risk occurs at the time point 0. The random variable V denotes
the size of the damage due to the occurrence of risk. Moreover, we suppose that
another risk occurs at the time point 7.

The continuous and positive random U denotes the size of the damage due to the
risk occurrence at the time point 7.

In addition, the discrete random variable N denotes the number of different
damages due to the risk occurrence at the above random time point and the random
variable X,, denotes the size of the nth damage. Hence the random variable
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Ci+C+--+Cv+U

denotes the total size of the damage due to the risk occurring at the time point 7 and
the random variable

(Ci+Co+--+Cy+U)e "

denotes the present value at the time point O of that total damage. The stochastic
model

Y=V+(Ci+C+ -+ Cy+U)e""

denotes the sum of the damage due to the risk occurring at the time point O and the
present value of the damage due the risk occurring at the time point 7.

The following result concentrates on the investigation of the characteristic
function ¢y (1) which corresponds to a special case of the stochastic model

Y=V+4+(Ci+C+--+Cy+U)e .
O

Theorem 4.3.2 Let V be a continuous and positive random variable with char-
acteristic function ¢, (1) and finite mean value.

We suppose that {Cn, n=12,.. } is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable C having char-
acteristic function ¢ (u) and finite mean. Let N be a discrete random variable with
values in the set No = {0,1,2,...}, probability generating function Py(z) and
finite mean. We set L= C{ 4+ C, + --- + Cy.

Let U be a continuous and positive random variable with characteristic function
oy (u) and finite mean. We suppose that T is a continuous and positive random
variable following the exponential distribution with distribution function

Fr)=1—¢e* >0 u>0

and r is positive real number.
We consider the stochastic model

Y=V4+(Ci+Co+---+Cy+U)e .

Ifv,{C,, n=1,2,...}, N, U and T are independent then the characteristic
function of the stochastic model

Y=V+(Ci+C+-+Cy+ U™
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is

Py (u) = @y (u) exp a/ (pV(y)PN(;,i)C(y)) — ldy |

where a = u/r, if, and only, if the random variables Y, U are equally distributed.

Proof From Theorem 4.3.1 it follows that the characteristic function of the sto-
chastic model

Y=V+(Ci+C+-+Cy+ U "
is

1

/(pU (uw)Py (pc(uw))d[l —FT<—%log wﬂ (4.3.12)

0
Since the distribution function of the random variable T is
Fr)=1—¢e*, t>0, u>0.
then the distribution function of the random variable W = ¢~'7 is

Fw(w)=w" 0<w<l,

where a = pi/r.
Hence (4.3.12) has the form

1
oy ( a/(pU (uw)Pn(@c(uw)) wildw
0

or equivalently the form

u

or0) = oy(0) 5 [ outmPrloctm v, (43.13)

0
If the random variables Y, U are equally distributed then we get that
Py (u) = py(u). (4.3.14)

From (4.3.13) and (4.3.14) it follows that
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u

or0) = 0y(0) 5 [ orO)P(oclo)w . (43.15)
0

If we multiply both sides of the integral equation (4.3.15) by #Zu)’ with u such
that ¢y (1) # 0 then we get the integral equation

u

a(pY(u) =qa w w Wafl W
e / 0y () Px (i ()W . (43.16)

If we differentiate the integral equation (4.3.16) we get the differential equation

yi! Py (u) 4y 1 .d(/’y(”) Y Py (u) .d(pv(u)
ey(u)  py(u)  du oy (u)  du

a—1

= apy(u)Py(@c(u))u

a

(4.3.17)

If u # 0O then the differential equation (4.3.17) has the form

Py (1) u .dfﬂy(u) —u oy (u) .d(pv(u) — soulu .
“ovw) " pule)  du o2(u)  du @y ()Pn(@c(u)).  (4.3.18)

Moreover, if we multiply both sides of the differential equation (4.3.18) by
¢y (u) then we get the differential equation

_d</’Y(“> —u Py (u) .d(Pv(u)

di Yovt) du -~ dovier@Py(ecu). (4.3.19)

apy(u) +u

If we divide both sides of the differential equation (4.3.19) by ¢, (#) where u
such that ¢y (1) # 0 then we get the differential equation

u _dﬁl’y(”)_ u .dﬁDV(”)
Py (u) du oy (u) du

= apy(u)Py(pc(u)). (4.3.20)
From the differential equation (4.3.20) it follows the differential equation

u _d(PY(”)_ u 'd(pV(u):a y o
oy) du oyu)  du (@v(u)Py(@c(u) —1). (4.3.21)

If u # O then the differential equation (4.3.21) has the form

1 doy(w) 1 dey(u) a(Pv(“)PN<(PC(W)) - 1. (4.3.22)

py(u)  du py(u)  du u




250 4 Stochastic Discounting Modeling for Concepts and Operations ...

If we integrate both sides of the differential equation (4.3.22) then we get that

u u u

doy(y)  [dov(y) _ [ ov)Pr(ec(y) — 1
/fpy(y) /(pv(y) - / y dy. (4.3.23)

0

From (4.3.23) it follows that

u

oy (y)Pn(op -1
log ¢y (1) — log ¢y (u) :a/ v(Y) N(yc( ) &
0
or equivalently
u P B 1
log @y (1) — log ¢y (1) = log exp a/(/’v()’) N (@c()) o). 432
y

0

From (4.3.24) it follows that

u

Pr() _ 1o axo [ o [ PrO)PN(0c(Y)) — 1
og g2 15 =g o o | ) “
or equivalently
Z:EZ; = exp a/(pv(y)PN(;f)C(y)) B ldy (4325>

0

with u such that ¢y (u) # 0.
From (4.3.25) it follows that

u

9y(u) = oy (u)exp | a / ovPyloc) 1,

0

The inverse is obvious.
Since the function

u

Pp(u) = exp a/ (pv<y)PN<$C(y)) _ ldy

0
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is the characteristic function of a self decomposable distribution and we suppose
that the characteristic function ¢y (1) belongs to a selfdecomposable distribution
then we conclude that the characteristic function

u

9y (u) = py(u)exp | a / wv@)PN(;oc(y)) 1

0

belongs to a selfdecomposable distribution. Hence the probability density function
corresponding to the characteristic function

u

oy (W) = gy () exp| a / Py
0

()Pn(pc(y)) — 1dy
y

is unimodal. O

4.4 Recovery Time of a Partially Damaged System
and Present Value of a Single Cash Flow

Let {CS‘ s=1,2,.. } a be a sequence of continuous, positive, independent, and
identically distributed random variables. We consider the discrete random variable
S with values in the set No = {1,2,...} and probability generating function Ps(z).

We consider the random variable L = C; + C, + - - - + Cs.

Let {Xn’ n=172,.. } be a sequence of continuous, positive, independent, and
identically distributed random variables. We consider the discrete random variable N
with values in the set N = {0, 1,2, ...} and probability generating function Py(z).

We consider the random variable T = max(X1,X,, ..., Xy) and the stochastic
model

Y=L T

where r is a positive real number. The purpose of the present section is the
investigation and the applications in risk management of the above stochastic
model. An interpretation in the area of continuous discounting of that model is the
following.

We suppose that each random variable of the sequence {Xn,n = 1,2,...}
denotes time, each random variable of the sequence {Cs, s=1,2,.. } denotes a
cash flow and the positive real number r denotes force of interest. In this case, the
stochastic model



252 4 Stochastic Discounting Modeling for Concepts and Operations ...

Y=Le '

denotes the present value at the time point O of the cash flow L =C; + C, +
-+ + Cy corresponding at the time point T = max(X;, X, . .., Xy).

The following result establishes sufficient conditions for evaluating the charac-
teristic function of the stochastic model

Y=L T,

Theorem 4.4.1 Let {Cs~ s = 1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence {CS, s=1,2,.. } are equally distributed with the random variable
C having characteristic function

oc(u). (44.1)

We consider the discrete random variable S with values in the set Ny =
{0,1,2,...} and probability generating function

Ps(z) (4.4.2)

and we set L=C, +Cy, +---+ Cs.

Let {X,,, n=12,.. } is a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{X,,,n = 1,2,...} are equally distributed with the random variable X having
distribution function

Fx(x). (4.4.3)

We consider the discrete random variable N with values in the set N =
{1,2,...} and probability generating function

Py (z) (4.4.4)
and we set T = max(X;,Xp,...,Xy).
We consider the stochastic model
Y=Le'T

where r is a positive real number. If{C& s=1,2,.. .}, S, {X,,ﬁ n=1,2,.. } and N
are independent then the characteristic function of the stochastic model



4.4 Recovery Time of a Partially Damaged System ... 253

Y=Le '

is

oy(0) = / Ps<<pc<uw>>d[1 py (a(—}logw))].
/

Proof We consider the random variable L = C, + C, + - - - + Cs.

The independence of {CS’ s=1,2,.. } S, {X,L n=12.. } and N implies the
independence of S and {C, s =1,2,...}.

From (2.5.6), (4.4.1), and (4.4.2) it follows that the characteristic function of the
random variable L=C, + Cy + --- + Cs is

@r(u) = Ps(pc(u)).

Let ¢;(¢) be the characteristic function of the random variable T =
max (X, X,...,Xy) and @ r(u,&) be the characteristic function of the vector
(L, T) of random variables L = C; + C, + --- + Cs and T = max(X;, X, ..., Xy).

The independence of the random variable L = C; + C; 4 --- 4+ Cs and the
random variable T = max(X;,X>,...,Xy) is required for evaluating the charac-
teristic function @y (u) of the stochastic model

Y=Le .
The establishment of the relationship
QDL,T(“, &) = o (w)or(8) (4.45)
implies the independence of the random variables L = C; + C, + --- + Cs and

T = max(Xl,Xz, . .,XN).
We have

QDL,T(”, ¢) = E(emHiéT)
or equivalently we have
Prr(u, &) = E(E<eiuL+iéT|S))' (4.4.6)

From (4.4.6) it follows that


http://dx.doi.org/10.1007/978-3-319-14256-2_2

254 4 Stochastic Discounting Modeling for Concepts and Operations ...

Prr(u. &) =D E(" TS = 5)P(S =35). (4.4.7)
s=0
Hence (4.4.7) implies that

(pLT u, 5 Z (eiu(C|+-u+Cs)+inT‘S _ S)P(SZ S)

“
(=]

or equivalently

oLr(u, &) = ZE<eiucl+...+iuq+ich|S = 5)P(S =s). (4.4.8)
s=0
From (4.4.8) it follows that
orr(u,&) = ZE(@”‘C‘ et = 5)P(S =s). (4.4.9)

Il
=}

s

We shall show that the random variables S, Cy, ..., C;, T are independent. The
random variables of the sequence {C, s = 1,2, ...} are equally distributed with the
random variable C having distribution function F¢/(c).

The independence of {Cs’ s=1,2,.. .}, S, {X,L n=172,.. } and N implies the
independence of N and {Xn_ n=12,.. }

Hence (2.6.7), (4.4.3) and (4.4.4) imply that the distribution function Fr(z) of the

random variable T = max(X;,Xp, ..., Xy) is
We consider the vector (S, Cy,...,C,T) of random variables S, Cy,..., C;, T
and let Fs ¢, .c.r(s,ci1,...,c5 1) be the distribution function of that vector. Let
Fs(s) be the distribution function of the random variable S.
The proof of independence of the random variables S, Cy, . . ., C;, T requires the

proof of the relationship

FS,CI.,..,CS,T(S; Cly. ..y Cy, [) = FS(S)FCI (Cl). . .FCA (CS)FT(I)
or equivalently the proof of the relationship

Fsc,. .c.r(s,c1,... ¢, 1) = Fs(s)Fc(cy). . .Fe(es)Fr(t).
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We have

P(S<s, Ci<cy,..,Cs<c;) =P(S<s,C1 <cyy...,Cs<c, T<t)
+ P(S<s,Ci<ci,..,Cs<cs, T >1).
(4.4.11)

From (4.4.11) it follows that

P(S<s,Ci<cyy...,Ci<c¢,T>1)=P(S<s, C1 <cy,...,Cs<cy)
- P(SSS7 lecl,...,CSSCS,T<l‘).

Since the random variable S is independent of the sequence of random variables
{C& s=1,2,.. } then the random variables S, Cy, ..., C; are independent. Hence

P(S<s,Ci<cy,...,Ci<cs) =P(S<s)P(Ci1 <cy)...P(Cs<cy)
or equivalently we get
P(S<s, C1<cy,...,Cs<c;) = Fs(s)Fc,(c1). . .Fc,(cs)- (4.4.13)
From (4.4.13) it follows that
P(S<s, Ci<cy,...,Cs<c5) = Fs(s)Fc(cr). . .Fe(cs). (4.4.14)
Moreover (4.4.12) and (4.4.14) imply that

P(SSS7 C] SC],.. .7CXSC3,T > [) :Fs(S)Fc(Cl). . .Fc(CS)
— P(SSS, C SCl,...,CSSCS,TSI).
(4.4.15)

Hence (4.4.15) implies that

P(SSS7 C SCl,...7CSSCS,T > l) iFs(S)Fc(Cl)...Fc(CS)
o0
— > P(S<s, Ci<ey,...,Ci<e,, T<tN = n)P(N = n).

n=1

(4.4.16)

From (4.4.16) it follows that
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P(S<s,Ci1<cy,...,Cs<c, T >1t) =F(s)Fc(cy). . .Fel(cy)

n=1

max(Xi, ..., Xy) <#|N = n]P(N = n).

From (4.4.17) we get that
P(S<s,Ci<cyy...,Cs<cs, T >1t) =F(s)Fc(cy). . .Fel(cy)

- Y P[s<s,Ci <y, C<ay,

n=1
max(Xy,...,X,) <t|N =n]P(N = n).
(4.4.18)

Hence (4.4.18) implies that
P(S<s,Ci<cy,...,Cs<cs,T > 1) =F(s)Fc(c1).. .Fe(cy)

00
- ZP(SSS7C1§617"'7CSSCS)

n=1
X, <t,...,X, <t[N =n)P(N = n).
(4.4.19)

Since N, {an = 1,2,...}7 S, {C& s = 1,2,...} are independent then the
random variables N, S, Cy,...,Cs, X1, ..., X, are independent. Hence (4.4.19) has
the form

P(S<s,Ci<ci,...,C<c,,T > 1) =Fs(s)Fc(c1). . .Fe(cy)
o0

- Y P(S<s,Ci <., G <y,

(4.4.20)
The independence of the random variables N, S, Cy, .. ., C;, X1, . . ., X, implies the
independence the independence of the random variables S, Cy, ..., C, X1, . . ., X;.

Hence (4.4.20) has the form
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P(Sgs, Ci<cp,..,C<c, T > l) :Fs(S)FC(Cl)' . 'FC(Cs)
- iP(S <s)P(Cy <cy)...P(Cs<cy)
n=1
X P(X; <t)...P(X, <t)P(N =n)
or equivalently (4.4.20) has the form

P(S<s,Ci<c1,...,Cs<cs,T > 1) =F(s)F(c1)...Fe(cy)

From (4.4.21) it follows that

P(S<s,Ci<cy,...,Ci<cs,T > 1) =F(s)F.(c1)...Fe(cy)

Hence (4.4.22) implies that

P(S<s,Ci<c1,...,C;<c5,T > 1) =Fs(s)Fc(c1)...Fe(cs)
— Fy($)Fc(c1). .. Fe(cs)Pn(Fx(2)).

From (4.4.10) and (4.4.23) we get that

P(S<s,Ci<cyy...,Ci<c5,T > 1) =Fs(s)Fc(cy). . .Fe(cy)
— Fy(s)F.(c1). . .Fo(cs)Fr(2)

or equivalently we get that
P(S<s,Ci<cy,...,Cs<cs,T > 1) = F(s)Fc(c1)...Fe(cs)(1 — Fr(z)). (4.4.24)

Since

P(SSS,C]gCl,...,CSSCS) :P(SSS,CI§c1,...,CS§cX,T§t)
+ P(S<s,C1<cy,...,Ci<cs, T >1)

then (4.4.24) implies that
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P(SSS7C1§C17"'7CS§C,Y7TSI) :P(SSS,CISCI,--.,CSSCS)
— Fy(s)Fc(ct). . .Fe(cs)(1 — Fr(z)).
(4.4.25)

The independence of the random variables S, Cy, ..., C; implies that
P(S<s,C1<cy,y...,Cs<c¢5) =P(S<s)P(Cy <cy)...P(Cs<cy). (4.4.26)
From (4.4.26) we get that
P(S<s,Ci<cy,...,Ci<c;) = Fs(s)Fe(cy). . .Felcy) (4.4.27)
Moreover (4.4.25) and (4.4.27) imply that

P(S<s,Ci<cy,...,Cs<cs, T<t) =F(s)Fc(c1). . .Fe(cy)
— Fy(s)F.(c1)- . Fe(cs)(1 — Fr(r)).
(4.4.28)

Hence (4.4.28) implies that
P(S<s,Ci<cyy...,Ci<c, T<t) = F(s)F.(c1)...Fe(cs)Fr(t). (4.4.29)
Since
P(§<s,Ci<cy,...,Ci<c, T<t)=Fsc,. cr(sc1,....C51)
then (4.4.29) implies that
Fsc,..cr(s,c1,... ¢, 1) = Fs(s)Fe(c1). . .Fees)Fr(t)
or equivalently implies that
Fsc,..cr(s,ct,....cs,t) = Fs(s)Fe (c1). . .Fe,(cs)Fr(t).

Hence the random variables S, Cy,...,Cs, T are independent. That implies the

independence of the random variables S, ¢ €1, ... "G (T,
Hence (4.4.9) has the form

o0
opr(u, &) = ZE(ei“C‘. 'S T)P(S = 5).
s=0
Since the independence of the random variables S, ™', ..., %, T implies
the independence of the random variables ¢™C'. . .e™C¢™“T then we get that
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orr(u, &) = E(¢"V).. E(")E(T)P(S = ). (4.4.30)
s=0

Since the random variables of the sequence {C& s=1,2,.. } are equally dis-
tributed with the random variable C having characteristic function ¢(u) and

or(&) = E(eiér)

is the characteristic function of the random variable 7 = max(X;, X, . . ., Xy) then
(4.4.30) has the form

o0

orr(,8) = or(&) D ot =5). (4.4.31)
5=0
From (4.4.31) it follows that
@L,T(uv &) = @r(&)Ps(pc(u)). (4.4.32)

Since

¢r(u) = Ps(c(u))

is the characteristic function of the random sum L= C;+ C, + --- + Cs then
(4.4.32) has the form

@L,T(“a &) = o (w)or (&)

Hence (4.4.5) implies the independence of the random variables L = C; 4+ C, +
R CS and T = max(Xl,Xg, .. -7XN>-
We consider the random variable W = e
The independence of the random variables L=C; 4+ C, +---+ Cs and T =
max (X, Xz, ...,Xy) implies the independence of the random variables L =
Ci+Cy+ -+ Cs and W = exp[—r max(X;, Xz, ..., Xy)].
The evaluation of the characteristic function ¢y (u) of the stochastic model

—rT

Y=LT

or equivalently ¥ = LW requires the evaluation of the distribution function Fy (w)
of the random variable W = e~'T.
From (4.4.10) we get that

Fr(t) = Py(Fx(1))

is the distribution function of the random variable T = max(X;, Xa, ..., Xy).
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We have

or equivalently we have
Fy(w) =P(e" <w). (4.4.33)
From (4.4.33) it follows that
Fyw(w) = P(—rT < log w)

or equivalently
1
Fw(w) = P(T > — ;log w). (4.4.34)
From (4.4.34) it follows that
1
Fy(w)=1-— P<T< ——log w). (4.4.35)
r
Since
P(T<t)=Fr(r)
and

Fr(t) = Py(Fx(1))

then (4.4.35) implies that the distribution function Fy (w) of the random variable
W=e"Tis

1
Fy(w) = 1—PN<FX(——10g w>), O<w<l. (4.4.36)
r
The evaluation of the characteristic function ¢y (u) of the stochastic model

Y=Le T

or equivalently the stochastic model ¥ = LW is implemented by the following way.
We have

(Py(u) — E(eiuLW)

or equivalently we have
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@y(u) = E(E(e"™|W)). (4.4.37)

From (4.4.37) we get that
1
= / E(e"™Y|W = w)dFy(w). (4.4.38)
0
Hence (4.4.38) implies that

oy(u) = [ E("™V|W = w)dFy(w).

o _

Since the independence of the random variables L = C; + C, + - - - + Cs and
T = max(Xi, X, ..., Xy) implies the independence of the random variables L =
Ci+Cy+ -+ Cs and W = exp[—rmax (X, Xz, . .., Xy)] then we get that

1

/ E(e"")dFyw(w). (4.4.39)
0

Since the characteristic function of the random variable L = C; + C, + - - + Cs
is

¢ (u) = Ps(¢c(u)) (4.4.40)

and (4.4.36) implies that the random variable W = exp[—r max(Xy, Xz, ..., Xn)]
has distribution function

1
Fy(w) =1 PN<FX<;10gw)>, O<w<l (4.4.41)

then (4.4.39), (4.4.40) and (4.4.41) imply that the characteristic function of the
stochastic model

is

vt~ [ roctonnai—m(m(~hog ) )] s
0
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For embedding the characteristic function (4.4.42) in the class of characteristic
functions corresponding to a-unimodal distributions we make use of the following
way.

We suppose that the random variable X follows the exponential distribution with
distribution function

FX(x) =1 767,“3

and the random variable N follows the Sibuya distribution with probability gen-
erating function

Pvz)=1-(1-2), 0<y<l1

and we set @ = py/r, then (4.4.42) implies that the characteristic function of the
stochastic model

Y=L T

has the form
1

oy(u) = a/PS((pC(uw)) wlaw (4.4.43)
0

and the characteristic function in (4.4.43) corresponds to probability distribution
which is a-unimodal.
An application of the stochastic model

Y=Le ',

where L=C; +C, +---+ Cs and T = max(X;,Xa,...,Xy), in banking is the
following.

We suppose that the random variable N denotes the number of operations of a bank
which are interrupted due to the occurrence of a risk at the time point 0. The random
variable X, n = 1,2, ... denotes the time required for the recovery of the nth inter-
rupted operation of the bank. Hence the random variable T = max(X;, Xp, ..., Xy)
denotes the time point of recovery of the bank. Moreover we suppose that the random
variable S denotes the number of loans in the portfolio of loans of the bank at the time
point 7 = max(Xj, Xa, . . ., Xy) and the random variable Cy denotes the size of the sth
loan. Hence the random variable L = C; + C, + - - - + Cs denotes the size of the
portfolio of loans of the bank at the time point 7 = max(X;, Xz, ..., Xy).

In this case the stochastic model

Y=Le'T
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denotes the present value at the time point O of the size L = C; + C, 4 - - - + Cg of
the portfolio of loans of the bank at the time point T = max(X;,X>,...,Xy) of
recovery of the bank. Another application of the stochastic model

Y=LT

in banking arises if we use a different interpretation for the random sum
L=Ci+C+---+Cs.

We suppose that the random variable S denotes the number of investments in the
portfolio of investments of the bank at the time point T = max(Xj, X, ...,Xy) of
recovery of the bank and the random variable Cs denotes the market value of the sth
investment of the portfolio of investments of the bank. Hence the random variable
L= C;+ C; + - -- + Cy denotes the market value of the portfolio of investments of
the bank at the time point 7 = max(Xy, Xz, ..., Xy).

In this case the stochastic model

Y=L T

denotes the present value at the time point 0 of the market value L = C; + C, +
-+ 4 Cs of the portfolio of investments of the bank corresponding at the time point
T = max(X;,X,, ..., Xy) of recovery of the bank.

An application of the stochastic model

Y=Le'T

in the area of ongoing risk occurrences is the following.

We suppose that the random variable N denotes the number of ongoing
occurrences of a risk at the time point 0. The random variable X, denotes the time
required for completing the duration of the nth risk occurrence which is ongoing at
the time point 0. Hence the random variable 7 = max(Xj, Xz, ..., Xy) denotes the
time required for completing the durations of the N risk occurrences which are
ongoing at the time point 0. Moreover, we suppose that the firm facing the risk, of
which N occurrences are ongoing at the time point 0, creates a portfolio of inde-
pendent investments at the time point T = max(X;, X, ..., Xy) of completing the
durations of the N risk occurrences which are ongoing at the time point 0. The
random variable S denotes the number of investments of the portfolio that the firm
creates at the time point 7 = max(X;, X, . . ., Xy). The random variable C, denotes
the cost of the sth investment at the time point T = max(X;, Xz, . .., Xy).

Hence the random variable L = Cy + C, + - - - + Cs denotes the cost of the
portfolio of investments at the time point 7 = max(X;, Xz, . . ., Xy).

In this case the stochastic model

Y=Le T
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denotes the present value at the time point O of the cost L = C; + C, 4 - - - + Cg of
the portfolio of investments of the firm corresponding at the time point T =
max(Xy,Xp,...,Xy) of completing the durations of the N risk occurrences which
are ongoing at the time point 0.

Another application of the stochastic model

Y=Le "

in the area of ongoing risk occurrences arises if the random sum L = C; + C, +
-+ + Cy is interpreted by the following way.

We suppose that the random variable S denotes the number of banks partici-
pating in the share capital of the firm at the time point 7 = max(X;, X,, ..., Xy) of
completing the durations of the N risk occurrences which are ongoing at the time
point 0. The random variable C; denotes the size of the share capital of the firm that
belongs to the sth bank at the time point 7 = max(X;, Xa, ..., Xy)-

Hence the random variable L = C; + C, + - - - + Cs denotes the size of the share
capital of the firm that belongs to the S banks at the time point
T = max(Xl,Xz, .. .7XN).

In this case the stochastic model

Y=Le "

denotes the present value at the time point O of the size L = C; + C, 4 - - - + Cg of
the share capital of the firm that belongs to the S banks at the time point T =
max (X, Xa,...,Xy) of completing the durations of the N risk occurrences which
are ongoing at the point 0.

An interesting modification of the stochastic model

Y=Le T,

where L=C; +Cy+---+ Cs and T = max(X;, Xz, ...,Xy) is implemented by
the following way.

Let N be a discrete random variable with values in the set N = {1,2,...} and
probability generating function Py/(z).

We suppose that {X,L n=12,.. } is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable X having distribution
function Fy(x) and we set T = max(X;, X, ..., Xy).

Let IT be a continuous and positive random variable with characteristic function
o (u), and U be a continuous and positive random variable with characteristic
function ¢, (u).
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We consider the positive real number r and we set
V = U + Mexp[—rmax(X;, Xz, ..., Xy)]
or equivalently
V=U+Te""

The establishment of properties and applications in risk management of the
stochastic model

V=U+He""

is of particular practical and theoretical interest. An interpretation in the area of
continuous discounting of that model is the following.

We suppose that each random variable of the sequence {an = 1,2,...}
denotes time, the random variable I1 denotes a cash flow, the random variable U
denotes a cash flow and the positive real number » denotes force of interest. In this
case the stochastic model

Y=U+TIe""

denotes the sum of the cash flow U corresponding to the time point 0 and the
present value at the time point O of the cash flow IT corresponding to the time point
T= l‘IlaX(Xl,Xz, .. .,XN).

The following result establishes sufficient conditions for evaluating the charac-
teristic function ¢y (u) of the stochastic model

V=U+TIle"".
O

Theorem 4.4.2 Let N be a discrete random variable with values in the set N =
{1,2,...} and probability generating function Py(z).

We suppose that {X,,, n=12,.. } is a sequence of continuous, positive,
independent, and identically distributed random variables. The sequence of random
variables are equally distributed with the random variable X having distribution
Sunction Fx(x) and we set T = max(X1,Xa,...,Xy).

Let 11 be a continuous and positive random variable with characteristic function
o () and U be a continuous and positive random variable with characteristic

Sunction @ (u).
We consider the positive real number r and we set

V=U+Tle'".
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If N, {ann =1,2,.. .}, Il and U are independent then the characteristic
function of the stochastic model V.= U + Ile™'T is

Pv (1) = 9y ) / qm(uw)d[l Py <Fx (—ilog w))}
/

Proof The independence of N, {Xn, n=12,.. .}, IT and U implies the indepen-
dence of the random variable N and the sequence of the random variables
{Xp,n=1,2,...}.

Hence the random variable 7 = max(X;, X, ..., Xy) has distribution function

Fr(t) = Py(Fx(t))

and the random variable W = e~'T has distribution function

1
Fw(W):l—PN(Fx(—;IOgW>), O<w<l.

Let Fy(v) be the distribution function of the random variable U, Frj(n) be the
distribution function of the random variable II,

Fr(t) = Py(Fx(t))

be the distribution function of the random variable T = max(Xy, X>,...,Xy) and
Fynr(v,m,t) be the distribution function of the vector (U, I1,T).
The establishment of the relationship

FU,H,T(”» T, f) = FU(U)FH(TC)FT(I)

implies the independence of the random variables U, I, T.
We have

Fynr(v,m,t) =P(U<v, 1<7, T<t)

or equivalently

Fynr(v,mt)=> P(U<v, I<m, T<t|N =n)P(N =n). (4.4.44)

n=1

From (4.4.44) it follows that
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Fynr(v,m,t)=> P(U<v, I<m, max(Xy,...,Xy) <t|N =n)P(N = n).

n=1

Hence (4.4.45) implies that

Funr(v,m,1) = > P(U<v, T <m, max(Xy, ..., X,) <fN = n)P(N = n).

n=1

From (4.4.46) it follows that

FU7HAT(D77Z7I) = ZP(USUa Hgﬂf, Xl StaaXnSt|N:n)P(N:n)

n=1

(4.4.47)

Since the independence of N, {X, n=1,2,...}, Il and U implies the inde-
pendence of the random variables N, Xy, ..., X, I, U then (4.4.47) has the form

Fynr(v,mi)=> PU<v, I<m X;<t,... X, <OP(N=n). (44.48)
n=1
Since the independence of the random variables N, X1, ..., X,, I1, U implies the

independence of the random variables X1, ..., X,, I1, U then (4.4.48) has the form

Fynr(v, 1) = i P(U<v)P(TI<m)P(X, <1)...P(X, <1)P(N = n)

n=1

or equivalently the form
Fyunz(v,m,t) = Fy(v)Fu(n) Y | Fi()P(N = n). (4.4.49)
n=1
From (4.4.49) we get that
FU,l'[.T(U7 T, t) = FU(U)F]'[(R')PN(F)((I))

or equivalently we get that

Fynr(v,m,1) = Fy(v)Fr(n)Fr(7). (4.4.50)
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Hence (4.4.50) implies that the random variables U, 11, T are independent. The
independence of these random variables implies the independence of the random
variables U, TI, W = e '7.

Moreover, the independence of the random variables U, I, W = e~
the independence of the random variables I1, W.

If @y (u) is the characteristic function of the random variable TIW then we get
that

T implies

Pruw (1) = E(e"M)
or equivalently
onw () = E(E(e"™|W)). (4.4.51)

From (4.4.51) we get that

1

Prw (u /E mnW|W = W)dFW(W)
0

or equivalently

1

Orow (u /E (e"™|W =w)d [1 — Py (FX (- %log w))} . (4.4.52)

0

Since the random variables I, W are independent then (4.4.52) has the form

1

o) = [ onto (5~ i) )]

0
If @y (u) is the characteristic function of the stochastic model
V=U+Te""
or equivalently the stochastic model
V=U+1IW

then we get that

oy(u) =E (e"”<”*“W>) : (4.4.53)
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Hence (4.4.53) implies that
oy (u) = E(E (e"”<U+“W> \W)). (4.4.54)

From (4.4.54) it follows that

oy (u) = / E( U TIW = v )dFy (w), (4.4.55)
0

and (4.4.55) implies that

1

oy(u) = / E(ef"<U+“W>|W = w)d[l — Py (FX (—%logw>>]. (4.4.56)

0

Hence (4.4.56) implies that

oy (u) = / E(e0 MW = )d [1 Py (F (—}10g W))} 445
0

Since the random variables U, II, W = e~'T are independent then (4.4.57) has
the form

/E (et g [1 — Py (FX (- %log w) )] . (4.4.58)

0

Since the independence of the random variables U, II, W = e~'T implies the
independence of the random variables U, II then (4.4.58) has the form

1

/E ) ’”Wn)d{l — Py (FX (—ilogw))]. (4.4.59)

0

From (4.4.59) it follows that

1

oy e /E Ly |:1_PN<FX<_%1OgW)>:|' (4.4.60)

0
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Since

QDU(M) — E(eiuU)

is the characteristic function of the random variable U and
on(u) = E(emn)

is the characteristic function of the random variable IT then (4.4.60) implies that the
characteristic function of the stochastic model

V=U+Te 7T,

where T = max(X;,Xo, ..., Xy), is

ov() = oy (w) / q)n(uw)d[l Py (FX<‘%1°gW>>}
0

or equivalently
oy () = oy () ey (u).
An application of the stochastic model
V=U+TIle "7,

where T = max(Xy, Xy, ..., Xy), in risk management is the following.

We suppose that the random variable N denotes the number of ongoing
occurrences of a risk at the time moment 0. The random variable X,, denotes the
time required for completing the duration of the nth risk occurrence which is
ongoing at the time point 0. Hence the random variable 7 = max(X;, Xz, ..., Xy)
denotes the time required for completing the durations of the N occurrences of the
risk which are ongoing at the time point 0. Moreover we suppose that the firm
facing a risk, of which N occurrences are ongoing at the time point 0, liquidates an
investment at the time point 7 = max(X;, Xa, ..., Xy) of completing the durations
of the N occurrences of the risk which are ongoing at the time point 0. The random
variable IT denotes the price of liquidation of the investment at the time point
T = max(Xl,Xg, .- .,XN).

The random variable ITe~’7 denotes the present value at the time point O of the
price of liquidation IT of the investment at the time point 7 = max(X;, Xz, ..., Xy).

If the random variable U denotes the cash reserve of the firm at the time point 0
then the stochastic model
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V=U+TIle""

denotes the total cash reserve of the firm at the time point 0.
Another application of the stochastic model

V=U+Te'T

in the area of ongoing risk occurrences is the following. We suppose that the
random variable U denotes the size of a loan that the firm undertakes at the time
point O and the random variable IT denotes the size of another loan that the firm
undertakes at the time point T = max (X1, X, . .., Xy).

The random variable ITe~’7 denotes the present value at the time point 0 of the
size Il of the loan that the firm undertakes at the time point
T = max(Xl,XQ, . .,XN).

Hence the stochastic model

V=U+Te'"

denotes the total loan obligation of the firm at the time point 0.
The following result concentrates on the investigation of the characteristic
function ¢y, (u) of a particular case of the stochastic model

V=U+TIIle"".
O

Theorem 4.4.3 Let N be a discrete random variable with values in the set N =
{1,2,...} following the Sibuya distribution with probability generating function
PN(z) =1- (1 —z)y, 0<y<I.

We suppose that {X,L n=12.. } is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable X following the
exponential distribution with distribution function

Fx(x)=1—¢" x>0 pu>0
and we set T = max (X, Xz, ..., Xy).
Let I1 be a continuous and positive random variable with characteristic function

o (u) and finite mean. Let U be a continuous and positive random variable with
characteristic function @, (u) and finite mean. We consider the stochastic model

V=U+TIle'T,

where r > 0.
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We suppose that N, {X,L n=172,.. .}, Il and U are independent. The char-
acteristic function of the stochastic model

V=U+Te'T
is
oy(y) —1
(PV(”) = (PU(”) exXp a/%dy )
0

where a = wy/r, if, and, only, if the random variables V, 11 are equally distributed.

Proof From Theorem 4.4.2 it follows that the characteristic function of the sto-
chastic model

V=U+TIIle"'T

vt = 2 [ atomas— (e Lrgn)) |- s
!

Since the probability generating function of the random variable N is
Py(z)=1—(1-2)
and the distribution function of the random variable X is
Fx(x)=1—¢" x>0 pu>0
then the distribution function of the random variable T = max(X;, Xz, ..., Xy) is
Fr)=1—¢e*" >0 uy>0
and the distribution function of the random variable W = e~'7 is

Fw(w) =w", O0<w<l,

where a = py/r.



4.4 Recovery Time of a Partially Damaged System ... 273

Hence (4.4.61) has the form

oy (u) = QDU(M)a/qon(uw)wa’ldw
0

or equivalently the form

u

/ Pr(w)w' ™ dw. (4.4.62)
0

ov() = pu(w) =

If the random variables V, I are equally distributed vor then we get that
ov(u) = on(u). (4.4.63)

From (4.4.62) and (4.4.63) we get that

u

ov) = o) 5 [ oy a. (4.4.64)
0

If we multiply both sides of the integral equation (4.4.64) by

u
, @y(u) #0
Py (u) v
then we get the integral equation
u o) = a/ Py (W)W Law. (4.4.65)
Py (u) ;

If we differentiate the integral equation (4.4.65) then we get the differential
equation
ya- ! @y (u) u _d(PV(”) e Py (u) .d(PU(”)
oyu)  @y(u)  du oy(u)  du

a = apy(uw)u'~'.  (4.4.66)

If u # O then the differential equation (4.4.66) has the form

Py (u) u_ doy() upy(w) doy) _
(PU(M)+G<PU(M) du agl(u)  du Py (u). (4.4.67)

Moreover, the differential equation (4.4.67) can be written in the form



274 4 Stochastic Discounting Modeling for Concepts and Operations ...

1 ) d(PV(M) . 1 ) ngU(u) _ anU(u) -1
oy(u)  du oy(u)  du » (4.4.68)

for u such that ¢y (u) # 0.
If we integrate both sides of (4.4.68) then we get that

u u u

doy(y)  [deu(y) _ [ eu() =1
/ ov(y) / Py (y) 0/ v (4.4.69)

0 0

From (4.4.69) we get that

u

log @y (u) —log ¢y (u) = a / Mdy

y
0

or equivalently

o) _ ool -1
Oggou(u)_ / ) dy (4.4.70)

with u such that ¢ (u) # 0.
From (4.4.70) we get that

—1
1quov(u):]og exp a/(ﬂu(y) dy
Py(u)

or equivalently

Hence

The inverse is obvious.
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4.5 Recovery Time of a Partially Damaged System
and Present Value of a Continuous Uniform Cash Flow

Let {C&s = 1,2,...} be a sequence of continuous, positive, independent and
identically distributed random variables. We consider the discrete random variable S
with values in the set No = {0, 1,2, ...} and probability generating function Ps(z).

We suppose that the random variable S is independent of the sequence of
continuous, positive, independent, and identically distributed random variables
{Cs,s: 1,2,...} andset L=C,+Cy+ -+ Cs.

Let {Xn, n=12,.. } be a sequence of continuous, positive, independent, and
identically distributed random variables. We consider the discrete random variable
N with values in the set N = {1,2,...} and probability generating function Py(z).

We suppose that the random variable N is independent of the sequence of
continuous, positive, independent, and identically distributed random variables
{X,,n=1,2,...} and we set T = max(X;,Xs,...,Xy).

We consider the stochastic model

1— e—rT
Y=L———,
,
where r is a positive real number. The purpose of the present section is the
investigation and applications in risk management of the above stochastic model.
An interpretation in the area of continuous discounting of that model is the
following.

We suppose that each random variable of the sequence {Xn,n = 1,2,...}
denotes time, each random variable of the sequence {CA,, s=1,2,.. } denotes a
cash flow and the positive real number r denotes force of interest. In this case the
stochastic model
1— efrT

Y=L
’

denotes the present value at the time point O of the continuous uniform cash flow
with rate of payment L=C;+Cy+---+Cs and duration 7 = max
(X17X25 e '7XN)'
The following result establishes sufficient conditions for evaluating the charac-
teristic function of the model
1— efrT
Y=L—
-
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Theorem 4.5.1 Let {Cs’ s = 1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence {CS, s=1,2,.. } are equally distributed with the random variable
C having characteristic function ¢ (u).

We consider the discrete random variable S with values in the set Ny =
{0,1,2,...}, probability  generating  function Ps(z) and we set
L=C +Cy+---+Cs.

Let {Xn, n=12,.. } be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{X,Ln = 1,2,...} are equally distributed with the random variable X having
distribution function Fx(x).

We consider the discrete random variable N with values in the set
N={1,2,...}, probability generating function Py(z) and we set
T = max(X;, X, ..., Xy).

We consider the stochastic model

l_efrT
Y=L——
r

where r is positive real number. If{Cs’ s=1,2,.. } S, {Xn n=12,.. } and N
are independent then the characteristic function of the stochastic model

Y= Lﬂ
is
o) = O]/rpswc(uw))dm (Fe(~1ox1 =) )

or equivalently

1

/PS (pc(uw/r) )dPN<FX (——log(l - )))

0

Proof We consider the random variable L = C; 4+ C, + - - - + Cs and the random
variable T = max(X;,X,, ..., Xy).

From Theorem 4.4.1 it follows that the random variables L = C; + C, + -+ - +
Cs, T = max(X;, Xy, ..., Xy) are independent,
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@ (1) = Ps(pc(u))

is the characteristic function of the random variable L = C, + C;, + - -- + Cg and

Fr(t) = Py(Fx(t))

is the distribution function of the random variable T = max(X;, Xa, ..., Xy).
The independence of the random variables L=C, +C, +---+ Cs and T =
max(Xy,X,...,Xy) implies the independence of the random variables

L=C +C+ -+ Cs, W={l —exp[—rmax(X,Xs, ..., Xn)]}/r.
The evaluation of the characteristic function of the stochastic model

l_efrT
Y=L———
r

or equivalently the stochastic model Y = LW requires the evaluation of the dis-
tribution function Fy (w) of the random variable

l_e—rT
W=

We have

or equivalently we have

Fiw(w) :P(Lﬂ §w>. (4.5.1)

From (4.5.1) it follows that
Fy(w)=P(1—e " <rw)
or equivalently it follows that
Fy(w) =P(—e " <rw—1). (45.2)
Hence (4.5.2) implies that
Fy(w)=P(e">1—rw)

or equivalently
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Fw(w) = P(—rT > log(1l — rw)). (4.5.3)

From (4.5.3) it follows that
1
Fw(w) :P(Tg ——log(1 —rw)) (4.5.4)
r

Since
P(T <1) = Py(Fx(1))

then (4.5.4) implies that the distribution function Fy (w) of the random variable

1— —rT
w=-_°%_
r

Fy(w) = Py (Fx (—%logu - rw)>>~

The independence of the random variables L, W and the distribution function
Fw(w) permit the evaluation of the characteristic function ¢y (u) of the stochastic
model

is

1— —rT
y—1-—_°
r

in the following way.
We have

1) = E()
or equivalently we have
oy (1) = E(E(|W)). 453)
From (4.5.5) it follows that

1/r
oy(u) = / E(e""|W = w)dFy(w)
0
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or equivalently

1/r

py(u) = / E(e"" W = w)dFy(w). (4.5.6)
0

The independence of the random variables L, W implies that (4.5.6) has the form

1/r
oy(u) = / E(e"™")dFy(w). (4.5.7)

0
Since
o (u) = E(eiuL)

then (4.5.7) has the form

or) = [ oufam)dw(). (4.538)

Since

and

() = 2 (e (- L1ogt1 = ) )

then (4.5.8) has the form

1/r

vt = [ Pitocton)apy(Fe(~Tiogt1 =) ) ). (45.9)

0

From (4.5.9) it follows that

1

/PS oc("),))dPy (FX (—llog(l - w))>. (4.5.10)

0
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For embedding the characteristic function (4.5.10) in the class of characteristic
functions corresponding to v-unimodal probability distributions we work as
follows.

We suppose that the random variable X follows the exponential distribution with
distribution function

FX(X) =1 _e_wv

the random variable N follows the Sibuya distribution with probability generating
function

Py(z) =1-(1-2)

and we set v = uy/r then (4.5.10) implies that the characteristic function of the
stochastic model

l_efrT
Y=L——
r

is
1

r(u) = v / Ps(0c () (1 = w)"dw

and that characteristic function corresponds to a v-unimodal probability distribution.
An application of the stochastic model
1— efrT
Y=L—
-

where L=C; + C;+ -+ Cys and T = max(X;,Xa,...,Xy) in industrial activi-
ties is the following.

We suppose that the random variable N denotes the number of production lines
of an industrial firm which are interrupted due to the occurrence of a risk at the time
0. The random variable X, denotes the time required for recovery of the nth
interrupted production line of the industrial firm. Hence the random variable T =
max(Xy,Xa,...,Xy) denotes the recovery time point of the industrial firm. More-
over, we suppose that the random variable S denotes the number of different lost
incomes of the industrial firm at every time point of the interval [0,7] with T =
max(Xy,Xp, ..., Xy), due to the partial production activity of the industrial firm in
the time interval [0, 7).

The random variable C; denotes the size of the sth lost income at every time
point of the interval [0, T].
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Hence the random variable L = C; 4+ C, + - - - + Cs denotes the total size of
different lost incomes of the industrial firm at every time point of the interval [0, T].
In this case the stochastic model
1— efrT
Y=L——
-

denotes the present value at the time point O of the total size of different lost
incomes of the industrial firm in the time interval [0, T].
Another application of the stochastic model
1— efrT
Y=L—
-
in the area of industrial activities arises if the random sum L = C; + C, + - - - + Cs
is interpreted by the following way. We suppose that the random variable S denotes
the number of different expenses of the firm at any time point of the interval [0, T],
with T = max(X;,X>,...,Xy), which are implemented for the recovery of the
production activity. The random variable C; denotes the size of the sth expense
corresponding at any time point of the interval [0, T].
Hence the random variable L = C| + C, + - - - + Cs denotes the total size of
different expenses of the firm at any time point of the interval [0, T].
In this case the stochastic model
—rT
Y = Li
r

denotes the present value at the time point O of the total size of different expenses of
the firm in the time interval [0, T].
An application of the stochastic model
1— efrT
Y=L—
-

in the area of ongoing risk occurrences is the following. We suppose that the
random variable N denotes the number of ongoing occurrences of a risk at the time
point 0. The random variable X,, denotes the time required for completing of the nth
occurrence of the risk which is ongoing at the time point 0. Hence the random
variable T = max(X;,Xa,...,Xy) denotes the time required for completing the
durations of the N occurrences of the risk which are ongoing at the time point 0.
Moreover, we suppose that the random variable S denotes the number of lost
incomes of the firm at any time point of the interval [0,7], with T =
max (X, X, ..., Xy), due to the N risk occurrences which are ongoing at the time
point 0 and which risk occurrences are completed in the time interval [0, 7.
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The random variable C; denotes the size of the sth lost income at any time point
of the interval [0, T1.

Hence the random variable L = C; + C, + - - - + Cs denotes the total size of
different lost incomes of the firm at any time point of the interval [0, T].

In this case the stochastic model

1 — efrT
Y=L——
,
denotes the present value at the time point O of the total size of different lost
incomes of the firm in the time interval [0, T].

An application of the stochastic model

—rT
Y = Li
r
in the area of ongoing risk occurrences arises if the random sum L = C; + C, +
-+ Cy is interpreted in the following way. We suppose that that the random
variable S denotes the number of different expenses of the firm at any time point of
the interval [0,7], with 7 = max(X;,Xs,...,Xy), for treating of the N risk
occurrences which are ongoing at the time point 0. The random variable C; denotes
the size of the sth expense which is realized at any time point of the interval [0, T].
Hence the random variable L = C; + C, + - - - + Cs denotes the total size of
different expenses of the firm at any time point of the interval [0, 7.
In this case the stochastic model
1— efrT
L——

Y =
r

denotes the present value at the time point O of the total size of different expenses in
the time interval [0, 7). O

4.6 Time of First Damage for a System Threatened
by a Random Number of Risks and Present Value
of a Single Cash Flow

Let {C,s=1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. We consider the discrete random variable
S with values in the set No = {0,1,2,...} and probability generating function
Ps(z). we suppose that the random variable S is independent of the sequence of
continuous, positive, independent, and identically distributed random variables
{C,s=1,2,...} and we set L=C; + C;+ -+ Cs.
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Let {Xn, n=12,.. } be a sequence of continuous, positive, independent, and
identically distributed random variables. We consider the discrete random variable
N with values in the set N = {1,2,...} and probability generating function Py(z).

We suppose that the random variable N is independent of the sequence of
continuous, positive, independent, and identically distributed random variables
{an =1,2,.. } and we set T = min(X,X,, ..., Xy).

We consider the stochastic model

Y=1Le'T

where r is positive real number. The purpose of the present section is the inves-
tigation and applications in risk management of the above stochastic model. An
interpretation in the area of continuous discounting of that model is the following.

We suppose that each random variable of the sequence {Xn, n=12.. }
denotes time and each random variable of the sequence {Cs, s=1,2,.. } denotes a
cash flow and the positive real number r denotes force of interest. In this case the
stochastic model

Y=1Le'T

denotes the present value at the time point O of the cash flow L =C; + C, +
-+ 4 Cs corresponding at the time point 7 = min(X1, Xz, . . ., Xy).

The following result establishes sufficient conditions for evaluating the charac-
teristic function of the stochastic model

Y=Le T,

Theorem 4.6.1 Let {Csﬁ s=1,2,.. } be a sequence of continuous, positive,
independent, and identically distributed random variables The random variables of
the sequence {CS_, s=1,2,.. } are equally distributed with the random variable C
having characteristic function

oc(u). (4.6.1)

We consider the discrete random variable S with values in the set Ny =
{0,1,2,...} and probability generating function

Ps(z) (4.6.2)

and we set L=C{ 4+ Cy + --- + Cs.

Let {Xn’ n=12,.. } it be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Xnyn = 1,2,...} are equally distributed with the random variable X having
distribution function
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Fx(x). (4.6.3)

We consider the discrete random variable N with values in the set N =
{1,2,...} and probability generating function

Py(2) (4.6.4)

and we set T = min(X;, X5, ..., Xy).
We consider the stochastic model

Y=1Le'T

where r is a positive real number. If{CL s=1,2,.. .}, S, {X,,_ n=1,2,.. } and N
are independent then the characteristic function of the stochastic model

Y=Le T
s

1

1
/PS oc(uw dPN( FX(——logw))
r

0

Proof We consider the random variable L= C; + C, + - - - + Cs.

The independence of {C, s =1,2,...}, S, {X,,n=1,2,...} and N implies the
independence of S and {C, s =1,2,...}.

Hence (2.5.6), (4.6.1) and (4.6.2) it follows that the characteristic function of the
random variable L = C; + C, + - - - + Cg is

@r(u) = Ps(pc(u)).

Let ¢r(¢) be the characteristic function of the random variable T =
min(Xy, X, ..., Xy) and ¢, r(u, ) is the characteristic function of the vector (L, T)
of the random variables L = C; + C; + - - + Cs and T = min(X;, X, . . ., Xy).

The independence of the random variables L=C; 4+ C, +---+ Cs and T =
min(X;, Xz, ..., Xy) is required for evaluating the characteristic function ¢ (u) of
the stochastic model

Y =LeT.

The establishment of the relationship
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QDL,T(“a ¢) = o (w)or() (4.6.5)
implies the independence of the random variables L =C; + C, +--- 4+ Cs and

T = min(Xl,Xz, .. -7XN)-
We have

qoLA,T(”a é) — E(eiuLJriéT)
or equivalently
opr(u, &) = E(E(eT]S)). (4.6.6)

From (4.6.6) it follows that

o0

orr(u E(e"-H<T|S = 5)P(S = 5). (4.6.7)
s=0
Hence (4.6.7) implies that
o8]
orr(u ZE( u(Crr+Cotr+ C)FET | g )P(S =)
s=0
or equivalently
Qrr(, &) =Y E(MTTHOTET S — g)P(S = 5). (4.6.8)
s=0
From (4.6.8) implies that
Qrr(u,&) =) E(e"C.. "% TS = 5)P(S = ). (4.6.9)
s=0

We shall prove that the random variables S, Cy, ..., C,, T are independent. The
random variables of the sequence {C&, s=1,2,.. } are equally distributed with the
random variable C having characteristic function F¢(c).

The independence of {CS, s=1,2,.. } S, {X,,_, n=12.. } and N implies the
independence of N, {X, n=1,2,...}.

Hence (2.7.8), (4.6.3) and (4.6.4) imply that the distribution function Fr(z) of the
random variable T = min(Xy, X, ..., Xy) is
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Fr(r) = 1 — Py(1 — Fx()). (4.6.10)

We consider the vector (S,Cy, ..., Cs,T) of random variables S, Cy, ..., Cs, T
and Fsc, .1 (s, Cl.. . Cs, t) be the distribution function of that vector. Let Fi(s)
be the distribution function of the random variable S.

The proof of independence of the random variables S, Cy, ..., Cy, T requires the
proof of the relationship

Fse,...cot (s, Cle - Cs, t) = Fs(s)Fc, (c1). . .Fc,(cs)Fr(t)
or equivalently the proof of the relationship
FS’C““,C“T(S, Cl. .., Cs, t) = Fs(s)Fc(cy). . .Fe(es)Fr(t)
We have

P(S<s,Ci<cy,...,Cs<c¢;) =P(S<s,C1<cy,...,Ci<c5, T<¥)
+ P(S<s,C1<cyy...,Co<cg, T >1).
(4.6.11)

From (4.6.11) it follows that

P(S<s,Ci<ci,..,Ci<c¢;T<t)=P(§<s,C1<cy,...,Cs<cy)
— P(S<s,C1<cy,...,Cs<cy, T >1).
(4.6.12)

Since the random variable S is independent of the sequence of the random
variables {CS, s=1,2,.. } then the random variables S, Cy, ..., Cs, are indepen-
dent. Hence we get that

P(S<s,Ci<cyy...,Ci<c;) =P(S<s)P(Cy <cy)...P(Cs<cy)
or equivalently we get that
P(S<s,Ci<cyy...,Cs<c5) = Fs(s)Fc,(c1). . .Fc,(cs). (4.6.13)
From (4.6.13) it follows that
P(S<s,Ci<ci,...,Ci<cs) = Fs(s)Fc(c1). . .Fel(cy). (4.6.14)

Moreover (4.6.12) and (4.6.14) imply that
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P(SSS,C] <cy,.. .7CS§CX,TSI) :Fs(S)Fc(Cl). . .Fc(CX)
— P(S<s,Cr<er, . Ce, T > ),
(4.6.15)

Hence (4.6.15) implies that
P(SSS,C] Scla .. '7CS§CS7TSI) :FS(S)FC(CI). . 'FC(CS)
- Y P(S<s,Ci<ay,.., G <y,

n=1

T > 1[N = n)P(N = n).

(4.6.16)
From (4.6.16) it follows that
P(S<s,Ci<cyy...,Ci<c;, T<t) =Fs(s)Fc(c1)...Fclc)
— iP(SSS, Ci<cy,...,Ci<cy,
n=1
min(Xy,...,Xy) > )N = n)P(N = n).
(4.6.17)
From (4.6.17) we get that
P(S<s,Ci<cyy...,Cs<c;,T<t) =Fs(s)Fc(cy)...Fclcy)
- iP[SSS,Cl <cyy. .., Cs<cy,
n=1
min(Xy,...,X,) > t|N = n|P(N = n)
(4.6.18)

Hence (4.6.18) implies that
P(SSS, Ci <cy,y..,Ci<c,, TL t) :Fs(S)Fc(Cl). . .Fc(Cs)

e8]
- Y P(S<s,Ci<er,.. G <y,

n=1
X >t,...,X,>t|N=n)P(N =n).
(4.6.19)
Since N, {X,,n=1,2,...}, Sand {C; s=1,2,...} are independent then the

random variables N, S, Cy, ..., C,, Xi, ..., X, are independent. Hence (4.6.19) has
the form
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P(SSS, Cl §C17. ..,CSSCX,TSZ‘) :Fs(S)Fc(Cl). . .Fc(Cx)
— Y P(S<s,Ci<ar,.., G <y,
n=1
X >t,...,X, >1)P(N =n).
(4.6.20)

The independence of random variables N, S, Cy, ..., Cs, X1, ..., X,, implies the
independence of the random variables S, Cy, ..., Cs, X1, ..., X,
Hence (4.6.20) has the form
P(SS s,Ci1<cyy...,Co<c, T l) :Fs(S)Fc(Cl). . .Fc(CS)
= Y P(S<s)P(Cr<cr).. .P(C<cy)
n=1
x P(X, >1)...P(X, > t)P(N =n)
or equivalently the form

P(S<s,Ci<cyy...,Cs<c;,T<t) =Fs(s
— P

~

Fc(C
S

1). . .Fc(Cs)
$)P(C1 <c1)...P(Cs<cy)

—~

IN

[M]¢

P(X; >1)...P(X, > t)P(N = n).

3
Il

(4.6.21)
From (4.6.21) it follows that

P(SSS, Cl SCl7 coey CS SCS, TSI) :Fs(S)Fc(Cl). . .Fc(CS) — Fs(S)Fc(Cl)‘ . ‘Fc(CS)
0

x> (1= Fx(1))"P(N = n).

n=1
(4.6.22)
Hence (4.6.22) implies that

P(SSS7 C <cy,.. .,Cs <cy, TS[) :Fs(S)Fc(Cl). . .Fc(Cs)
— Fs(S)Fc(Cl). . .Fc(CS)PN(I — Fx(l)).
(4.6.23)

From (4.6.23) it follows that
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P(S<s,Ci<ci,...,Ci<c,, T <t) =Fs(s)Fc(cr). . .Fe(e)[l — Py(1 — Fx(1))].
(4.6.24)

Moreover (4.6.10) and (4.6.24) imply that
P(S<s5,Ci<cy,y...,Cs<c;,T<t) = Fs(s)Fc(c1)...Fc(cs)Fr(t) (4.6.25)
Since
P(S<s,Ci<cyy...,Cs<c¢;, T<t) = FS_CI,._,_,C_”T(S, €1, Cy, l)
then (4.6.25) has the form
Fse,,..cor (s, Cl. .., Cs, t) = Fs(s)Fc(cy). . .Fe(es)Fr().

Hence the random variables S, Cy, ..., C,, T are independent. That implies the

independence of the random variables S, €', ..., ¢, €T,
Hence (4.6.9) has the form

o0

orr(u,é) = E( emer .ei”C‘eiiT)P(S =5). (4.6.26)
s=0
Since the independence of the random variables S, ¢™C', ..., ¢S, T implies
the independence of the random variables ¢!, ..., ™", ¢*T then (4.6.26) has the
form
Qrr(u,&) = E(e").. . E(¢"C)E(eT)P(S =5). (4.6.27)
s=0

Since the random variables of the sequence {Cs, s=1,2,.. } are equally dis-
tributed with the random variable C having characteristic function ¢ («) and

QDT(@ _ E(eiiT)
is the characteristic function of the random variable T = min(X;, X2, ..., Xy) then
(4.6.27) has the form
@rr(u, &) = or(¢) Z Pc(u)P(S =s). (4.6.28)

From (4.6.28) it follows that
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§0L,T(”a ¢) = @r(&)Ps(pc(u)). (4.6.29)

Since

pr(u) = Ps(c(u))

then (4.6.29) has the form
(/’L,T(uv &) = or(w)or(&).

Hence (4.6.5) implies the independence of the random variables L = C; 4+ C, +
s+ CS and T = min(Xl,Xz, .. -7XN)-
We consider the random variable W = e~
The independence of the random variables L=C;+C, +---+ Cs and T =
min(X;, Xz, ..., Xy) implies the independence of the random variables L = C; +
Cy+ -+ Cs and W = exp[—rmin(Xy, Xz, ..., Xn)]
The evaluation of the characteristic function ¢y (u) of the stochastic model

T

Y=Le "
or equivalently the stochastic model Y = LW requires the evaluation of the dis-
tribution function of the random variable W = e~'T.
From (4.6.10) we get that
Fr(t) =1—Py(1 — Fx(1))

is the distribution function of the random variable T = min(X;, X5, . . ., Xy).

We have

or equivalently we have
Fy(w) =P(e" <w). (4.6.30)
From (4.6.30) it follows that
Fw(w) = P(—rT < logw)

or equivalently

Fy(w) = P<T > - %log w) . (4.6.31)
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From (4.6.31) it follows that

Fy(w)=1- P(T < - ;log w) . (4.6.32)

Since
P(T<1) = Fr(1)
and
Fr(t) = 1= Py(1 = Fx(1)

then (4.6.32) implies that the distribution function Fy (w) of the random variable
W=e"Tis

Fy(w) _PN<1 —FX(—ilogw>), O<w<l. (4.6.33)
The evaluation of the characteristic function ¢y (u) of the stochastic model
Y="Le "
or equivalently the stochastic model Y = LW is implemented as follows. We have
oy (1) = E("V)
or equivalently we have
@y(u) = E(E(e"™|W)). (4.6.34)

From (4.6.34) it follows that

1
oy (u) = / E(e"Y|W = w)dFy(w). (4.6.35)
0
Hence (4.6.35) implies that
1
oy(u) = / E(e""|W = w)dFy(w). (4.6.36)
0

Since the independence of the random variables L = C; + C, + - - - + Cs and
T = min(X;, X5, ..., Xy) implies the independence of the random variables L =
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Ci+Cy+ -+ Cs and W = exp[—rmin(X;, X, ..., Xy)] then (4.6.36) implies
that

1

/ E(e"")dFw(w). (4.6.37)
0

Since the characteristic function of the random variable L = C; + C, 4+ - - - + Cs
is

¢r(u) = Ps(c(u)) (4.6.38)

and (4.6.33) implies that the distribution function of the random variable W = exp|
—rmin(X1, Xz, . .., Xy)] is

Fy(w) = PN<1 — Fy <—%10gw>> (4.6.39)

then (4.6.37), (4.6.38) and (4.6.39) imply that the characteristic function of the
stochastic model

Y=1Le'T
is

1

1
/PS @c(uw))dPy (1 — Fy <——logw>> (4.6.40)

0

For embedding the characteristic function (4.6.40) in the class of characteristic
functions corresponding to g-unimodal probability distributions we work as
follows.

We suppose that the random variable X follows the exponential distribution with
distribution function

FX(x) =1 _e_yxa

the random variable N follows the degenerate distribution with probability gener-
ating function

Py(z) =7,

and we set a = un/r, then (4.6.40) implies that the characteristic function of the
stochastic model
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Y=L
has the form
1
oy(u) = a/PS(q)C(uw))w”’ldw (4.6.41)
0

which means that the characteristic (4.6.41) corresponds to a-unimodal probability
distribution.

An application of the stochastic model

Y=Le T,
where L=C;+C,+ -+ Cs and T = min(X;,X,,...,Xy) in considering an
organization under conditions of competing risks is the following.

We suppose that the random variable N denotes the number of risks threatening
an organization at the time point 0 and the random variable X, denotes the
occurrence time of the nth risk then the random variable 7' = min(X;, X5, . . ., Xy)
denotes the minimum time of occurrence of a risk. We suppose that the random
variable S denotes the number of different damages due to the risk occurring at the
time point 7 = min(X,, X,, . . ., Xy) and the random variable C; denotes the size of
the sth damage of that risk then the random variable L = C; + Cy + --- + Cg
denotes the total size of the S damages due to the risk occurring at the time point
T = I’IliIl(Xl,Xz, .. .,XN).

Hence the stochastic model

Y=1Le T

denotes the present value at the time point O of the total size L=C; + Cy +--- +
Cs of the S damages due to the risk occurring at the time point
T = min(Xl,Xz, .. -7XN)-

From the fact that one risk occurs in the time interval [0, 7] and the occurrence of
that risk arises at the time point 7 = min(X;, Xa, . .., Xy) we get that the stochastic
model

Y=1Le T

is particularly useful for developing and implementing a plan for financing the
damage L=C; + C,+ ---+ Cs due to the risk occurring at the time point
T = I’IliIl(Xl,Xz, .. .,XN).

Two forms of such a financing plan are the following.

The first form of the financing plan can be creation of a reserve of size
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Y=Le "

at the time point 0 which is continuously compounded in the time interval [0, T]
with force of interest 7.

The second form of the financing plan can be the creation of a continuous
uniform cash flow starting at the time O with force of interest r, duration 7 = min
(X1,X2,...,Xy) and future value L=C; + C, + --- + Cs.

Another application of the stochastic model

Y=Le T

in considering an organization under conditions of competing risks arises if the
random sum L = C; + Cy +---+ Cg is interpreted in the following way. We
suppose that the random variable N denotes the number of risks threatening an
organization at the time point O and the random variable X,, denotes the occurrence
time of the nth risk then the random variable 7 = min(Xj, X,, ..., Xy) denotes the
minimum time of occurrence of a risk. We suppose that the random variable S
denotes the number of banks participating in the share capital of the organization at
the time point 7 = min(X;, Xz, ..., Xy).

The random variable C, denotes the size of the share capital of the organization
belonging to the sth bank at the time point 7 = min(X;, X, . . ., Xy).

Hence the random variable L = C; 4+ C, + - - - + Cs denotes the size of the share
capital of the organization belonging to the S banks at the time point
T = min(Xl,Xz, o .,XN).

In this case the stochastic

Y=1Le T

denotes the present value at the time point O of the size L = C; + C, 4 - - - + Cg of
the share capital of the organization belonging to the S banks at the time point
T = min(Xl,Xg, .. -7XN)-

The presence of the random variables L=C;+Cy+ -+ Cs and T =
min(X;, X, ..., Xy) in the stochastic model

Y=1Le T

makes the above application of that stochastic model particularly useful for
investigating the capital structure of an organization under conditions of competing
risks.
An application of the stochastic model
Y=Le T,
where L=C; +Cy+---+ Cs and T = min(X;,X,...,Xy) in banking is the
following.
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We suppose that the random variable N denotes the number of loans in the
portfolio of loans of a bank at the time point 0 and the random variable X,, denotes
the expiration time point of the nth loan then the random variable T =
min(X;, X, . . ., Xy) denotes the minimum expiration time point for the loans of the
portfolio of loans of the bank. We suppose that the bank participates in the share
capital of the S firms at the time point 7 = min(X1, X5, ..., Xy).

The random variable C; denotes the size of the share capital of the sth firm which
belongs to the bank at the time point 7 = min(X;, Xp, . .., Xy).

Hence the random variable L = C; + C, + - - - + Cs denotes the size of the share
capital of the S firms which belongs to the bank at the time point 7 = min
(X1, Xa,...,Xy)

In this case the stochastic model

Y=Le T

denotes the present value at the time point O of the size L = C; + C; 4 - - - + Cg of
the share capital of the S firms which belongs to the bank at the time point
T = min(Xl,Xz, .. .7XN).

Another application of the stochastic model

Y=Le "

in banking arises if the random sum L = C; 4+ C, + - - - + Cg is interpreted in the
following way. We suppose that the random variable N denotes the number of loans
in the portfolio of loans of a bank at the time point O and the random variable X,
denotes the expiration time point of the nth loan then the random variable T =
min(X;, Xz, . .., Xy) denotes the minimum expiration time point for the loans of the
portfolio of loans of the bank. We suppose that the random variable S denotes the
number of time deposits in the bank at the time point T = min(X;, X, ..., Xy).

The random variable C; denotes the size of the sth time deposit at the time point
T = IIliIl(Xl,Xz, .. .,XN).

Hence the random variable L = C; + C, + - - - + Cs denotes the size of the S
time deposits in the bank at the time point 7 = min(X;, X», ..., Xn).

In this case the stochastic model

Y=Le T

denotes the present value at the time point O of the size L = C; + C, 4 - - + Cs of
the S time deposits in the bank at the time point 7 = min(X;, Xz, . . ., Xy).
An application of the stochastic model

Y=1Le T

where L= C; 4+ C; +--- + Cs and T = min(X, Xz, . . ., Xy) in industrial activities
is the following.
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We suppose that the random variable N denotes the number of orders that an
industrial firm implements at the time point O and the random variable X,, denotes
the time required for completing the implementation of the nth order then the
random variable T = min(X;, X, ..., Xy) denotes the minimum time required for
completing the implementation of some order. We suppose that the random variable
S denotes the number of investments in the portfolio of investments of the industrial
firm at the time point 7 = min(X;, X5, . . ., Xy)-

The random variable C; denotes the market value of the sth investment in the
portfolio of investments of the industrial firm at the time point 7 = min
(X1,X2, ..., Xn).

Hence the random variable L = C; + C, + - - - + Cg denotes the market value of
the sth investments in the portfolio of investments of the industrial firm at the time
point 7 = min(X;,Xs, .. ., Xy).

In this case the stochastic model

Y=1Le'T

denotes the present value at the time point O of the market value L = C; + C, +
-+ - 4 Cy of the sth investments in the portfolio of investments of the industrial firm
at the time point T = min(X;, X5, ..., Xy).

Another application of the stochastic model

Y=Le T

in industrial activities arises if the random sum L = C; + C, + --- + Cyg is inter-
preted as follows. We suppose that the random variable N denotes the number of
orders that an industrial firm implements at the time point O and the random variable
X, denotes the time required for completing the implementation of the nth order
then the random variable T = min(X;,X,,...,Xy) denotes the minimum time
required for completing the implementation of some order.

We suppose that the random variable S denotes the number of loans in the
portfolio of loans of the industrial firm at the time point 7 = min(X;, Xa, ..., Xy).

The random variable C, denotes the size of the sth loan in the portfolio of loans
of the industrial firm at the time point 7 = min(X;, X5, . . ., Xy).

Hence the random variable L = C; 4+ C, + - - - + Cyg denotes the size of the S of
loans in the portfolio of loans of the industrial firm at the time point
T= min(Xl,Xz, .. .7XN).

In this case the stochastic model

Y=Le "

denotes the present value at the time point O of the size L = C; + C, 4 - - - + Cg of
the S loans of the loan portfolio of the industrial firm at the minimum required time
for completing the implementation of the order T = min(X;, X, ..., Xy).

An interesting modification of the stochastic model
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Y=Le "

where L=C;+Cy+---+Cs and T =min(X;,X5,...,Xy) is obtained as
follows.

Let N be a discrete random variable with values in the set N = {1,2,...} and
probability generating function Py(z).

We suppose that {Xn, n=12,.. } be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables of
the sequence are equally distributed with the random variable X having distribution
function Fy(x) and we set T = min(X;, X, . .., Xy).

Let IT be a continuous and positive random variable with characteristic function
or(#) and U be a continuous and positive random variable with characteristic
function ¢, (u).

We consider the positive real number r and we set

V = U + Hexp[—rmin(X, Xz, . . ., Xy)]
or equivalently
V=U+Ie"".

The establishment of properties and applications in risk management of the
stochastic model

V=U~+Te""

is of particular practical and theoretical interest. An interpretation in the area of
continuous discounting of the above stochastic model is the following.

We suppose that any random variable of the sequence {Xn, n=12,.. }
denotes time and the random variable IT denotes a cash flow, the random variable U
denotes a cash flow and the positive real number r denotes force of interest. In this
case the stochastic model

V=U+Te""

denotes the sum of the cash flow U corresponding at the time point O and the
present value at the time point O of the cash flow II corresponding at the time point
T = min(Xl,Xz, . -7XN)-

The following result establishes sufficient conditions for evaluating the charac-
teristic function @y (1) of the stochastic model

V=U+TIe"T.
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Theorem 4.6.2 Let N be a discrete random variable with values in the set N =
{1,2,...} and probability generating function Py(z).

We suppose that {X,,_,n = 1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable X having dis-
tribution function Fx(x) and we set T = min(X1,X,, ..., Xy).

Let I1 be continuous and positive random variable with characteristic function
on(u) and U be continuous and positive random variable with characteristic

Sunction @y (u).
We consider the positive real number r and we set

V=U+TIle"".

If N, {X,,,n =1,2,.. .}, Il and U are independent then the characteristic
function of the stochastic model

V=U+He""

is

ov(w) = oy () / <pH<uw)dPN(1 - Fx(}log w))
0

Proof The independence of N, {Xn, n=12,.. .}, IT and U implies the indepen-
dence of the random variable N and the sequence of random variables
{X,n=1,2,...}.

Hence the random variable 7 = min(Xy, X5, ..., Xy) has distribution function

FT(t) =1 7PN(1 7Fx(l‘))

and the random variable W = e~’T has distribution function

1
FVV(M/’):P1\7<1—F)((—;10gw>)7 O<w<l.

Let Fy(v) be the distribution function of the random variable U, Fr(n) the
distribution function of the random variable I1,

FT(Z) =1 —PN(I — Fx(t))

the distribution function of the random variable 7 = min(X;,X>,...,Xy) and
Fymnr(v,m,t) the distribution function of the vector (U, I1, T).
The establishment of the relationship
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FU,]'[,T(D, T, [) = FU(U)FH(TE)FT([)

implies the independence of the random variables U, I, T.
We have

Fynr(v,m,t) =P(U<v,II<n,T<1) (4.6.42)
and
PU<»,MI<7n)=PU<v,[I<a,T<t)+ P(U<0v,II<7, T >1). (4.6.43)
From (4.6.43) it follows that
PU<», 1<, T<t)=PU<0,1I<7) — P(U<0,II<7, T >1¢). (4.6.44)

Hence (4.6.42) and (4.6.44) imply that

o0

Fynr(v,m,1) = P(U<v,TI<n) =Y P(U<v,I<m,T >IN =n)P(N = n).
n=1
(4.6.45)
Moreover (4.6.45) implies that
Fynr(,mnt)=PU<v,II<m)— PU<v, 1<,
) =SSR S o
min(Xy, Xz, ...,X,) > t{|N =n)P(N = n).
Hence (4.6.46) implies that
Fynr(,mt)=PU<v, Il <7)— P(U<v, Il <m,
o 0,70) =P -3 e

X, >t,..,X, >tIN=n)P(N =n).

The independence of N, {Xn, n=12,.. } IT and U implies the independence
of N, Xy, ..., X,,, I, U.
Hence (4.6.47) has the form

00

(4.6.48)
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The independence of the random variables N, Xi, ..., X,, II, U implies the
independence of the random variables X, ..., X,,, I1, U and the independence of the
random variables U, II.

Hence (4.6.48) has the form

Fynr(v,m,t) =P(U <v)P(Il <) ZP (U <v)P(I <)
X P(X, > 1)...P(X, > t)P(N = n)

or equivalently the form

o0

Fynr(v,m,t) = Fy(v)Fn(n) — Fy(v)Fr(n) Z (1 — Fx(1))"P(N = n).

n=1

(4.6.49)
From (4.6.49) implies that
Fynr(v,m,t) = Fy(v)Frn(n)(1 — Py(1 — Fx(1)))
or equivalently
Fynr(v,m,t) = Fy(v)Fu(n)Fr(t). (4.6.50)

Hence (4.6.50) implies that the random variables U, I1, T are independent. The
independence of the above random variables implies the independence of the
random variables U, TT, W = e~'T,

The independence of the random variables U, IT, W = ¢~'T implies the inde-
pendence of the random variables IT, W.

If @y (u) is the characteristic function of the random variablei ITW then we get
that

Prw (1) = E(eiunw)
or equivalently we get that
onw(u) = E(e"M™|W). (4.6.51)

From (4.6.51) we get that

1

O (u /E ’”HW|W = W)dFW(W)
0

or equivalently we get that
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1

1
_— /E ("MW = w)dPN<1 — Fy <;10g w>) (4.6.52)

0

Since the random variables I, W are independent then (4.6.52) has the form

1

1
O (u /(pn uw dPN(lFX<rlogw)).

0

If ¢y (u) is the characteristic function of the stochastic model
V=U+He""

or equivalently the stochastic model

V=U+T1IW
then we get that
oy (1) = E(eiu<U+”W>) : (4.6.53)
Hence (4.6.53) implies that
oy () = E(E (ef"<U+“W>) |W). (4.6.54)
From (4.6.54) it follows that
1
/ E u(USTIW) |y — W)dFW( ) (4.6.55)
0
and (4.6.55) implies that
1 1
- / E(eMVH VW = w)dPy (1 — Fx ( ~log w) ) : (4.6.56)
r
0

Hence (4.6.56) implies that

1
I 1
- et i (1 (o). ey
r
0
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Since the random variables U, I, W = e~'T are independent then (4.6.57) has
the form

Py(u) = /l E(ei"U+i“W“)dPN<1 — Fy (—%logw)). (4.6.58)
0

Since the independence of the random variables U, II, W = e’ implies the
independence of the random variables U, I then (4.6.58) has the form

1

1
/E lLlU zuwl_I)dPN (1 _ FX ( ,log W) > . (4659)
r

0

From (4.6.59) it follows that

1
1
QDV zuU /E tuwH dPN<1FX<_10gW>> (4660)
0

Since
oy(u) = E(e")
is the characteristic function of the random variable U and
on(u) = E(e"")

is the characteristic function of the random variable IT then (4.6.60) implies that the
characteristic function of the stochastic model

V=U+TIle'T,

where T = min(Xy, Xz, ..., Xy), is

1

Oy /q)n uw dPN(l—FX(——logw>>

0
or equivalently
@y (1) = @y(u)prw(u).

An application of the stochastic model
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V=U+TleT,

where T = min(X;, X5, ..., Xy), in risk management is the following. We suppose
that the random variable N denotes the number of risks threatening a firm at the
time point 0 and the random variable X,, denotes the occurrence time of the nth risk
then the random variable T = min(X;,X,,...,Xy) denotes the minimum risk
occurrence time. We suppose that the random variable U denotes the size of a loan
that the firm undertakes at the time point O and the random variable IT denotes the
size of another loan that the firm wundertakes at the time point
T = min(Xl,Xg, .. .,XN).

The random variable ITe ™7 denotes the present value of the size IT of the loan
that the firm undertakes at the time point 7 = min(Xy, X, . . ., Xy).

Hence the stochastic model

V=U+Te'T

denotes the total loan obligation of the firm at the time point 0. The following result
concentrates on the establishment of the characteristic function @y (1) of a special
case of the stochastic model

V=U+TIle"".
O

Theorem 4.6.3 Let N be a discrete random variable following the degenerate
distribution with probability generating function

Py(z) = 7"

We suppose that {X,,ﬁn = 1,2,...} is a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence are equally distributed with the random variable X following the
exponential distribution with distribution function

Fy(x)=1—e", x>0 u>0

and we set T = min(X;, Xz, ..., Xy).

Let I1 be a continuous and positive random variable with characteristic function
o (1) and finite mean. Let U be a continuous and positive random variable with
characteristic function ¢ (u) and finite mean. We consider the stochastic model

V=U+Tle'T

where r > 0.
We suppose that N, {Xn, n=12,.. .}, Il and U are independent. The char-
acteristic function of the stochastic model
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V=U+TIle""
s
u

- Wexo | a oy(y) —1
ov (1) = oy (u) exp O/—y a |,

where a = nu/r if, and only, ifVil_I.

Proof From Theorem 4.6.2 it follows that the characteristic function of the sto-
chastic model

V=U+Tle'T

00 (1) = oy (1) / o (uw)dPy (1 _Fy (—%log w) ) . (4.6.61)
0

Since the probability generating function of the random variable N is

Py(z) =7"

and the distribution function of the random variable X is
Fx(x)=1—¢", x>0 u>0
then the distribution function of the random variable 7 = min(X;, Xz, ..., Xy) is
Fr(t)=1—¢&™
and the distribution function of the random variable W = e~'7 is
Fy(w) =w 0O<w<l

where

a=nu/r.

Hence (4.6.61) has the form

o (1) = py(w)a / ora(w)w
0
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or equivalently the form

u

ov0) = o) [ oo . (4.6.62)

0

We suppose that the random variables V, I1 are equally distributed then we get
that

oy (u) = on(u). (4.6.63)

From (4.6.2) and (4.6.63) it follows that

u

/ Py(w)w aw. (4.6.64)
0

oy () = oy(u) =

Theorem 4.4.3 implies that the solution of the integral equation (4.6.64) is

u

ov) = oytuesp | a [ 280 =gy
0

The inverse is obvious. O

4.7 Time of First Damage for a System Threatened
by a Random Number of Risks and Present Value
of a Continuous Uniform Cash Flow

Let {C&s = 1,2,...} be a sequence of continuous, positive, independent, and
identically distributed random variables. We consider the discrete random variable
S with values in the set No = {0,1,2,...} and probability generating function
P S(Z).

We suppose that the random variable S is independent of the sequence of
continuous, positive, independent, and identically distributed random variables
{Cis=1,2,...} and we set L=C; 4+ C;+ -+ Cs.

Let {Xn, n=12,.. } be a sequence of continuous, positive, independent, and
identically distributed random variables. We consider the discrete random variable
N with values in the set N = {1,2,...} and probability generating function Py(z).

We suppose that the random variable N is independent of the sequence of
continuous, positive, independent, and identically distributed random variables
{X,L n=172,.. } and we set T = min(X;,X,, ..., Xy).
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We consider the stochastic model

—T
Y = Li
r

where r is positive real number. The purpose of the present section is the inves-
tigation and applications in risk management of the above stochastic model. An
interpretation in the area of continuous discounting of that model is the following.

We suppose that each random variable of the sequence {Xn, n=12.. }
denotes time and each random variable of the sequence {C57 s=1,2,.. } denotes
cash flow and the positive real number r denotes force of interest. In this case the
stochastic model

1— efrT
Y=L——
-
denotes the present value at the time point O of the continuous uniform cash flow
with rate of payment L=Ci+Cy+---+Cg and duration
T = min(Xth, .. -7XN)-
The following result establishes sufficient conditions for evaluating the charac-
teristic function of the stochastic model
—rT
Y — Li
r

Theorem 4.7.1 Let {Csﬁs = 1,2,...} be a sequence of continuous, positive,
independent, and identically distributed random variables. The random variables
of the sequence {Cs, s=1,2,.. } are equally distributed with the random variable
C having characteristic function ¢q(u).

We consider the discrete random variable S with values in the set
No=1{0,1,2,...}, probability generating function Ps(z) and we set
L=C+C+--+Cs.

Let {Xn, n=12.. } be a sequence of continuous, positive, independent, and
identically distributed random variables. The random variables of the sequence
{Xnyn = 1,2,...} are equally distributed with the random variable X having
distribution function Fx(x).

We consider the discrete random variable N with values in the set
N={1,2,...}, probability generating function Py(z) and we set
T = IIliIl(Xl,Xg, .. .7XN).

We consider the stochastic model

—rT
Y=L—



4.7 Time of First Damage for a System Threatened by a Random Number ... 307

where r is a positive real number. If{C& s=1,2,.. .}, S, {Xn., n=12,.. } and N
are independent then the characteristic function of the stochastic model

1— e—rT

is

or equivalently

1

/PS oc (™) {1 —PN<1 —FX<—ilog(1 —w)>>}

0

Proof We consider the random variable L = C; 4+ C; + - - - + Cs and the random
variable T = min(X;, X5, .. ., Xy).

From Theorem 4.6.1 it follows that the random variables L = C; + C, + -+ - +
Cs, T = min(X;, X5, ..., Xy) are independent where

¢r(u) = Ps(pc(u))

is the characteristic function of the random variable L = C; + C, + - - - + Cs and
Fr(t) =1 — Py(1 — Fx(1)) is the distribution function of the random variable
T = rl’lil’l(}(h}(g7 .. -7XN)-

The independence of the random variables L=C, +C, +---+ Cs and T =
min(X;,X,,...,Xy) implies the independence of the random variables
L=C+Cy+---+Cs,

W = {1 — exp[—rmin(X1, X2, ..., Xy)|} /7.

The evaluation of the characteristic function of the stochastic model

l_efrT
Y=L
r

or equivalently of the stochastic model Y = LW requires the evaluation of the
distribution function Fy (w) of the random variables

l_e—rT
W=——!
r
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Hence (4.7.2) implies that

or equivalently

then (4.7.4) implies that the distribution function Fy (w) of the random

is

Fy(w) =P >1—rw)

Fw(w) = P(—=rT > log(l —rw)).

From (4.7.3) it follows that

Since

Fun) = (< ~ g1 = ).

P(TS;) =1 —PN(l —FX(I))

l_efrT
W=———
r

Fot =1 (11 L ) ).

(4.7.1)

(4.7.2)

(4.7.3)

(4.7.4)
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The independence of the random variables L, W and the distribution function
Fw(w) permit the evaluation of the characteristic function ¢y () of the stochastic
model

1— efrT

r

Y=L

in the following way.
We have

oy(u) = E(eiuLW)
or equivalently
oy(u) = E(E(e"V|W)). (4.7.5)

From (4.7.5) it follows that

1/r
oy(u) = / E(ei”LW|W = w)dFW(w)
0

or equivalently

1/r

py(u) = / E(e" W = w)dFy(w). (4.7.6)
0

The independence of the random variables L, W implies that (4.7.6) has the form

1/r

oy(u) = [ E(e™)dFw(w). (4.7.7)
/

Since
op(u) = E(eiuL)

then (4.7.7) has the form

1/r
or0) = [ oufam)dri (). (4.738)
0
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Since

@r(u) = Ps(pc(u))

Fw(w) =1 —PN(l —FX(—}I,IOg(l —”W))>

then (4.7.8) has the form

and

orlu) = /Pswc(uw))d[l ~oy(1= (- Sogn =) )| @79

0

From (4.7.9) it follows that

1

/PS oc (™) [1 —PN(I — Fy (—%log(l —w))ﬂ. (4.7.10)

0

For embedding the characteristic function (4.7.10) in the class of characteristic
functions corresponding to v-unimodal probability distributions we work as
follows.

We suppose that the random variable X follows the exponential distribution with
distribution function

Fx(x)=1—e",

the random variable N follows the degenerate distribution with probability gener-
ating function Py(z) =z" and we set v = un/r, then (4.7.10) implies that the
characteristic function of the stochastic model

l_efrT
Y=L
r

has the form

|

oy (u) = V/PS((/)C(”W/,.))(I —w)" law (4.7.11)

0

and the characteristic function (4.7.11) corresponds to a v-unimodal probability
distribution.
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An application of the stochastic model

—rT
Y = Li’
;
where L=C;+C,+ -+ Cs and T = min(X;, X, ...,Xy)in the area of con-
sidering an organization under conditions of competing risks is the following.

We suppose that the random variable N denotes the number of risks threatening
an organization at the time point 0 and the random variable X,, denotes the time of
the occurrence of the nth risk, the random variable 7 = min(X;, X»,, Xy) denotes
the minimum risk occurrence time. We suppose that the random variable S denotes
the number of different incomes that the organization creates at any time point of
the interval [0, T].

The random variable C, denotes the size of the sth income that the organization
creates at any time point of the interval [0, T].

Hence the random variable L = C; 4+ C; + - - - + Cs denotes the total size of
different incomes that the organization creates at any time point of the above
interval. The stochastic model

—rT
Y = Li
r

denotes the present value, at the time point 0, of the total size of different incomes
that the organization creates in the interval [0, T].
Another application of the stochastic model
T

1—e"
Y=L—+—

3

-
where L=C; +C, + -+ Csand T = min(X;, Xy, ..., Xy), in considering a firm
under conditions of competing risks arises if we interpret the random sum L =
Ci 4+ Cy + - - - + Cs in the following way. We suppose that the random variable S
denotes the number of different cash flows that firm saves at any time point of the
interval [0, T).

The random variable C; denotes the size of the sth cash flow that the firm saves
at any time point of the time interval [0, 7.

The random variable L = C; + C, + - - - + Cs denotes the total size of different
cash flows that the firm saves at any time point of the time interval [0, T].

Hence the stochastic model

—rT

r
denotes the present value, at the time point 0, of the total size of different cash flows
that the firm saves in the time interval [0, T. d
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