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PREFACE

With the wide availability of high-bandwidth, low-latency network connectivity the Inter-
net has enabled the delivery of rich services such as social networking, content delivery,
and e-commerce at unprecedented scales. This technological trend has led to the devel-
opment of cloud computing, a paradigm that harnesses the massive capacities of data
centers to support the delivery of online services in a cost-effective manner. The National
Institute of Standards and Technology (NIST) provided a relatively complete and widely
accepted definition of cloud computing as follows: “cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction.” NIST further defined five essential characteristics as follows: (1)
on-demand self-service, which states that a consumer can acquire resources based on ser-
vice demand; (2) broad network access, which states that cloud services can be accessed
remotely from heterogeneous client platforms (e.g., mobile phones); (3) resource pool-
ing, where resources are pooled and shared by consumers in a multitenant fashion; (4)
rapid elasticity, which states that cloud resources can be rapidly provisioned and released
with minimal human involvement; (5) measured service, which states that resources are
controlled (and possibly priced) by leveraging a metering capability (e.g., pay per use)
that is appropriate to the type of the service.

These characteristics provide a relatively accurate picture of how cloud computing
systems should look like. Furthermore, in a cloud computing environment, the tradi-
tional role of service providers is divided into two: cloud providers who own the physical
data centers and lease resources (e.g., virtual machines) to service providers; and ser-
vice providers who use resources leased from cloud providers to execute applications.
By leveraging the economies of scale of data centers, cloud computing can provide sig-
nificant reduction in operational expenditure. At the same time, it also supports new
applications such as big data analytics (e.g., MapReduce) that process massive volumes
of data in a scalable and efficient fashion. The rise of cloud computing has made a
profound impact on the development of the IT industry in recent years. While large com-
panies like Google, Amazon, Facebook, and Microsoft have developed their own cloud
platforms and technologies, many small companies are also embracing cloud computing
by leveraging open-source software and deploying services in public clouds.

This wide adoption of cloud computing is largely driven by successful deployment
of a number of enabling technologies currently subject to extensive research including

xiii
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data center virtualization, cloud networking, data storage and management, MapReduce
programming model, resource management, energy management, security, and privacy.

Data Center Virtualization—One of the main characteristics of cloud computing is
that the infrastructure (e.g., data centers) is often shared by multiple tenants (e.g., service
providers) running applications with different resource requirements and performance
objectives. Hence, there is an emerging trend toward virtualizing physical infrastruc-
tures, that is virtualizing not only servers but also data center networks. Similar to server
virtualization, network virtualization aims at creating multiple virtual networks on top of
a shared physical network, allowing each tenant to implement and manage his virtual net-
work independently from the others. This raises the question regarding how virtualized
data center resources should be allocated and managed by each tenant.

Cloud Networking—to ensure predictable performance over the cloud, it is of utmost
importance to design efficient networks that are able to provide guaranteed performance
and to scale with the ever-growing traffic volumes in the cloud. Therefore, extensive
research work is needed on designing new data center network architectures that enhance
performance, fault tolerance, and scalability. Furthermore, the advent of software-defined
networking (SDN) technology brings new opportunities to redesign cloud networks.
Thanks to the programmability offered by this technology it is now possible to dynam-
ically adapt the configuration of the network based on the workload in order to achieve
potential cloud providers’ objectives in terms of performance, utilization, survivability,
and energy efficiency

Data Storage and Management—As mentioned previously one of the key driving
forces for cloud computing is the need to process large volumes of data in a scalable
and efficient manner. As cloud data centers typically consist of commodity servers with
limited storage and processing capacities, it is necessary to develop distributed storage
systems that support efficient retrieval of desired data. At the same time, as failures are
common in commodity machine-based data centers, the distributed storage system must
also be resilient to failures. This usually implies each file block must be replicated on
multiple machines. This raises challenges regarding how the distributed storage system
should be designed to achieve availability and high performance, while ensuring file
replicas remain consistent over time.

MapReduce Programming Model—Cloud computing has become the most
cost-effective technology for hosting Internet-scale applications. Companies like Google
and Facebook generate enormous volumes of data on a daily basis that need to be pro-
cessed in a timely manner. To meet this requirement, cloud providers use computational
models such as MapReduce. However, despite its success, the adoption of MapReduce
has implications on the management of cloud workload and cluster resources, which
is still largely unstudied. In particular, many challenges pertaining to MapReduce job
scheduling, task and data placement, resource allocation, and sharing require further
exploration.

Resource Management—Resource management has always been a central theme of
cloud computing. Given the large variety of applications running in the cloud, it is a chal-
lenging problem to determine how each application should be scheduled and managed in
a scalable and dynamic manner. The scheduling of individual application component can
be formulated as a variant of the multidimensional vector bin-packing problem, which
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is NP-hard in the general case. Furthermore, different applications may have different
scheduling needs. Therefore, finding a scheduling scheme that satisfy diverse application
scheduling requirement is a challenging problem.

Energy Management—Data centers consume tremendous amount of energy not only
for powering up the servers and network devices but also for cooling down these com-
ponents to prevent overheating conditions. It has been reported that energy cost accounts
for 15% of the average data center operation expenditure. At the same time, such large
energy consumption also raises environmental concerns regarding the carbon emissions
for energy generation. As a result, improving data center energy efficiency has become
a primary challenge for today’s data center operators.

Security and Privacy—Security is another major concern of cloud computing. While
security is not a critical concern in many private clouds, it is often a key barrier to the
adoption of cloud computing in public clouds. Specifically, since service providers typ-
ically do not have access to the physical security system of data centers, they must
rely on cloud providers to achieve full data security. The cloud provider, in this con-
text, must provide solutions to achieve the following objectives: (1) confidentiality for
secure data access and transfer and (2) auditability for attesting whether security setting
of applications has been tampered or not.

Despite the wide adoption of cloud computing in the industry the current cloud tech-
nologies are still far from unleashing their full potential. In fact, cloud computing was
known as a buzzword for several years and many IT companies were uncertain about how
to make successful investment in cloud computing. With the recent adoption in indus-
try and academia, cloud computing is evolving rapidly with advancements in almost all
aspects, ranging from data center architectural design, scheduling and resource manage-
ment, server and network virtualization, data storage, programming frameworks, energy
management, pricing, and service connectivity to security and privacy

The goal of this book is to provide a general introduction to cloud services, network-
ing, and management. We first provide an overview of cloud computing, describing its
key driving forces, characteristics, and enabling technologies. Then we focus on the dif-
ferent characteristics of cloud computing systems and key research challenges that are
covered in the subsequent fourteen chapters of this book. Specifically, the chapters delve
into several topics related to cloud services, networking, and management including
virtualization and SDN technologies, intra- and interdata center network architectures,
resource, performance and energy management in the cloud, survivability, fault tolerance
and security mobile cloud computing, and cloud applications notably big data, scientific,
and multimedia applications. We hope that the readers find this journey through Cloud
Services, Networking, and Management inspirational and informative.

Nelson L. S. da Fonseca
Raouf Boutaba
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1
CLOUD ARCHITECTURES,

NETWORKS, SERVICES, AND
MANAGEMENT

Raouf Boutaba1 and Nelson L. S. da Fonseca2

1D.R. Cheriton School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada

2Institute of Computing, State University of Campinas, Campinas,
São Paulo, Brazil

1.1 INTRODUCTION

With the wide availability of high-bandwidth, low-latency network connectivity, the
Internet has enabled the delivery of rich services such as social networking, content
delivery, and e-commerce at unprecedented scales. This technological trend has led to
the development of cloud computing, a paradigm that harnesses the massive capacities
of data centers to support the delivery of online services in a cost-effective manner. In
a cloud computing environment, the traditional role of service providers is divided into
two: cloud providers who own the physical data center and lease resources (e.g., vir-
tual machines or VMs) to service providers; and service providers who use resources
leased by cloud providers to execute applications. By leveraging the economies-of-scale
of data centers, cloud computing can provide significant reduction in operational expen-
diture. At the same time, it also supports new applications such as big-data analytics
(e.g., MapReduce [1]) that process massive volumes of data in a scalable and efficient
fashion. The rise of cloud computing has made a profound impact on the development of
the IT industry in recent years. While large companies like Google, Amazon, Facebook,

Cloud Services, Networking, and Management, First Edition.
Edited by Nelson L. S. da Fonseca and Raouf Boutaba.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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and Microsoft have developed their own cloud platforms and technologies, many small
companies are also embracing cloud computing by leveraging open-source software and
deploying services in public clouds.

However, despite the wide adoption of cloud computing in the industry, the cur-
rent cloud technologies are still far from unleashing their full potential. In fact, cloud
computing was known as a buzzword for several years, and many IT companies were
uncertain about how to make successful investment in cloud computing. Fortunately, with
the significant attraction from both industry and academia, cloud computing is evolving
rapidly, with advancements in almost all aspects, ranging from data center architectural
design, scheduling and resource management, server and network virtualization, data
storage, programming frameworks, energy management, pricing, service connectivity to
security, and privacy.

The goal of this chapter is to provide a general introduction to cloud networking,
services, and management. We first provide an overview of cloud computing, describing
its key driving forces, characteristics and enabling technologies. Then, we focus on the
different characteristics of cloud computing systems and key research challenges that are
covered in the subsequent 14 chapters of this book. Specifically, the chapters delve into
several topics related to cloud services, networking and management including virtual-
ization and software-defined network technologies, intra- and inter- data center network
architectures, resource, performance and energy management in the cloud, survivability,
fault tolerance and security, mobile cloud computing, and cloud applications notably big
data, scientific, and multimedia applications.

1.2 PART I: INTRODUCTION TO CLOUD COMPUTING

1.2.1 What Is Cloud Computing?

Despite being widely used in different contexts, a precise definition of cloud computing
is rather elusive. In the past, there were dozens of attempts trying to provide an accurate
yet concise definition of cloud computing [2]. However, most of the proposed definitions
only focus on particular aspects of cloud computing, such as the business model and
technology (e.g., virtualization) used in cloud environments. Due to lack of consensus on
how to define cloud computing, for years cloud computing was considered a buzz word or
a marketing hype in order to get businesses to invest more in their IT infrastructures. The
National Institute of Standards and Technology (NIST) provided a relatively standard
and widely accepted definition of cloud computing as follows: “cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction.” [3]

NIST further defined five essential characteristics, three service models, and four
deployment models, for cloud computing. The five essential characteristics include the
following:

1. On-demand self-service, which states that a consumer (e.g., a service provider)
can acquire resources based on service demand;
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2. Broad network access, which states that cloud services can be accessed remotely
from heterogeneous client platforms (e.g., mobile phones);

3. Resource pooling, where resources are pooled and shared by consumers in a
multi-tenant fashion;

4. Rapid elasticity, which states that cloud resources can be rapidly provisioned and
released with minimal human involvement;

5. Measured service, which states that resources are controlled (and possibly priced)
by leveraging a metering capability (e.g., pay-per-use) that is appropriate to the
type of the service.

These characteristics provide a relatively accurate picture of what cloud computing
systems should look like. It should be mentioned that not every cloud computing system
exhibits all five characteristics listed earlier. For example, in a private cloud, where the
service provider owns the physical data center, the metering capability may not be nec-
essary because there is no need to limit resource usage of the service unless it is reaching
data center capacity limits. However, despite the definition and aforementioned char-
acteristics, cloud computing can still be realized in a large number of ways, and hence
one may argue the definition is still not precise enough. Today, cloud computing com-
monly refers to a computing model where services are hosted using resources in data
centers and delivered to end users over the Internet. In our opinion, since cloud comput-
ing technologies are still evolving, finding the precise definition of cloud computing at
the current moment may not be the right approach. Perhaps once the technologies have
reached maturity, the true definition will naturally emerge.

1.2.2 Why Cloud Computing?

In this section, we present the motivation behind the development of cloud computing.
We will also compare cloud computing with other parallel and distributed computing
models and highlight their differences.

1.2.2.1 Key Driving Forces. There are several driving forces behind the success
of cloud computing. The increasing demand for large-scale computation and big data
analytics and economics are the most important ones. But other factors such as easy
access to computation and storage, flexibility in resource allocations, and scalability play
important roles.

Large-scale computation and big data: Recent years have witnessed the rise of
Internet-scale applications. These applications range from social networks (e.g., face-
book, twitter), video applications (e.g., Netflix, youtube), enterprise applications (e.g.,
SalesForce, Microsoft CRM) to personal applications (e.g., iCloud, Dropbox). These
applications are commonly accessed by large numbers of users over the Internet. They
are extremely large scale and resource intensive. Furthermore, they often have high per-
formance requirements such as response time. Supporting these applications requires
extremely large-scale infrastructures. For instance, Google has hundreds of compute
clusters deployed worldwide with hundreds of thousands of servers. Another salient
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characteristic is that these applications also require access to huge volumes of data. For
instance, Facebook stores tens of petabytes of data and processes over a hundred ter-
abytes per day. Scientific applications (e.g., brain image processing, astrophysics, ocean
monitoring, and DNA analysis) are more and more deployed in the cloud. Cloud comput-
ing emerged in this context as a computing model designed for running large applications
in a scalable and cost-efficient manner by harnessing massive resource capacities in data
centers and by sharing the data center resources among applications in an on-demand
fashion.

Economics: To support large-scale computation, cloud providers rely on inexpensive
commodity hardware offering better scalability and performance/price ratio than super-
computers. By deploying a very large number of commodity machines, they leverage
economies of scale bringing per unit cost down and allowing for incremental growth.
On the other hand, cloud customers such as small and medium enterprises, which out-
source their IT infrastructure to the cloud, avoid upfront infrastructure investment cost
and instead benefit from a pay-as-you-go pricing and billing model. They can deploy their
services in the cloud and make them quickly available to their own customers resulting
in short time to market. They can start small and scale up and down their infrastructure
based on their customers demand and pay based on usage.

Scalability: By harnessing huge computing and storage capabilities, cloud comput-
ing gives customers the illusion of infinite resources on demand. Customers can start
small and scale up and down resources as needed.

Flexibility: Cloud computing is highly flexible. It allows customers to specify their
resource requirements in terms of CPU cores, memory, storage, and networking capa-
bilities. Customers are also offered the flexibility to customize the resources in terms of
operating systems and possibly network stacks.

Easy access: Cloud resources are accessible from any device connected to the Inter-
net. These devices can be traditional workstations and servers or less traditional devices
such as smart phones, sensors, and appliances. Applications running in the cloud can be
deployed or accessed from anywhere at anytime.

1.2.2.2 Relationship with Other Computing Models. Cloud computing is
not a completely new concept and has many similarities with existing distributed and
parallel computing models such as Grid computing and Cluster computing. But cloud
computing also has some distinguishing properties that explain why existing models are
not used and justify the need for a new one. These can be explained according to two
dimensions: scale and service-orientation. Both parallel computing and cloud, computing
are used to solve large-scale problems often by subdividing these problems into smaller
parts and carrying out the calculations concurrently on different processors. In the cloud,
this is achieved using computational models such as MapReduce. However, while paral-
lel computing relies on expensive supercomputers and massively parallel multi-processor
machines, cloud computing uses cheap, easily replaceable commodity hardware. Grid
computing uses supercomputers but can also use commodity hardware, all accessible
through open, general-purpose protocols and interfaces, and distributed management
and job scheduling middleware. Cloud computing differs from Grid computing in that
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it provides high bandwidth between machines, that is more suitable for I/O-intensive
applications such as log analysis, Web crawling, and big-data analytics. Cloud comput-
ing also differs from Grid computing in that resource management and job scheduling
is centralized under a single administrative authority (cloud provider) and, unless this
evolves differently in the future, provides no standard application programming inter-
faces (APIs). But perhaps the most distinguishing feature of cloud computing compared
to previous computing models is its extensive reliance on virtualization technologies to
allow for efficient sharing of resources while guaranteeing isolation between multiple
cloud tenants. Regarding the second dimension, unlike other computing models designed
for supporting applications and are mainly application-oriented, cloud computing exten-
sively leverages service orientation providing everything (infrastructure, development
platforms, software, and applications) as a service.

1.2.3 Architecture

Generally speaking, the architecture of a cloud computing environment can be divided
into four layers: the hardware/datacenter layer, the infrastructure layer, the platform layer,
and the application layer, as shown in Figure 1.1. We describe each of them in detail in
the text that follows:

The hardware layer: This layer is responsible for managing the physical resources
of the cloud, including physical servers, routers, and switches, and power, and cool-
ing systems. In practice, the hardware layer is typically implemented in data centers.
A data center usually contains thousands of servers that are organized in racks and
interconnected through switches, routers, or other fabrics. Typical issues at hardware
layer include hardware configuration, fault-tolerance, traffic management, and power
and cooling resource management.

Resources managed at each layer

Business applications,

web services, multimedia

Examples:
End users

Software as a

service (SaaS)

Platform as a

service (PaaS)

Infrastructure

as a service (IaaS)

Google Apps,

Facebook, YouTube

Saleforce.com

Microsoft Azure,

Google AppEngine,

Amazon SimpleDB/S3

Amazon EC2,
GoGrid

Flexiscale

Data centers

Application

Platforms

Software framework (Java/Python/.Net)

storage (DB/file)

Computation (VM) storage (block)

Infrastructure

CPU, memory, disk, bandwidth

Hardware

Figure 1.1. Typical architecture in a cloud computing environment.
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The infrastructure layer: Also known as the virtualization layer, the infrastructure
layer creates a pool of storage and computing resources by partitioning the physical
resources using virtualization technologies such as Xen [4], KVM [5], and VMware [6].
The infrastructure layer is an essential component of cloud computing, since many
key features, such as dynamic resource assignment, are only made available through
virtualization technologies.

The platform layer: Built on top of the infrastructure layer, the platform layer con-
sists of operating systems and application frameworks. The purpose of the platform layer
is to minimize the burden of deploying applications directly into VM containers. For
example, Google App Engine operates at the platform layer to provide API support for
implementing storage, database, and business logic of typical Web applications.

The application layer: At the highest level of the hierarchy, the application layer
consists of the actual cloud applications. Different from traditional applications, cloud
applications can leverage the automatic-scaling feature to achieve better performance,
availability, and lower operating cost. Compared to traditional service hosting envi-
ronments such as dedicated server farms, the architecture of cloud computing is more
modular. Each layer is loosely coupled with the layers above and below, allowing each
layer to evolve separately. This is similar to the design of the protocol stack model for
network protocols. The architectural modularity allows cloud computing to support a
wide range of application requirements while reducing management and maintenance
overhead.

1.2.4 Cloud Services

Cloud computing employs a service-driven business model. In other words, hardware and
platform-level resources are provided as services on an on-demand basis. Conceptually,
every layer of the architecture described in the previous section can be implemented as a
service to the layer above. Conversely, every layer can be perceived as a customer of the
layer below. However, in practice, clouds offer services that can be grouped into three
categories: software as a service (SaaS), platform as a service (PaaS), and infrastructure
as a service (IaaS).

1. Infrastructure as a service: IaaS refers to on-demand provisioning of infrastruc-
tural resources, usually in terms of VMs. The cloud owner who offers IaaS is
called an IaaS provider.

2. Platform as a service: PaaS refers to providing platform layer resources, includ-
ing operating system support and software development frameworks.

3. Software as a service: SaaS refers to providing on-demand applications over the
Internet.

The business model of cloud computing is depicted in Figure 1.2. According to the
layered architecture of cloud computing, it is entirely possible that a PaaS provider runs
its cloud on top of an IaaS providers cloud. However, in the current practice, IaaS and
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End user

Web interface

Utility computing

Service provider (SaaS)

Infrastructure provider (IaaS, PaaS)

Figure 1.2. Cloud computing business model.

PaaS providers are often parts of the same organization (e.g., Google). This is why PaaS
and IaaS providers are often called cloud providers [7].

1.2.4.1 Type of Clouds. There are many issues to consider when moving an
enterprise application to the cloud environment. For example, some enterprises are
mostly interested in lowering operation cost, while others may prefer high reliability
and security. Accordingly, there are different types of clouds, each with its own benefits
and drawbacks:

• Public clouds: A cloud in which cloud providers offer their resources as services
to the general public. Public clouds offer several key benefits to service providers,
including no initial capital investment on infrastructure and shifting of risks to
cloud providers. However, current public cloud services still lack fine-grained con-
trol over data, network and security settings, which hampers their effectiveness in
many business scenarios.

• Private clouds: Also known as internal clouds, private clouds are designed for
exclusive use by a single organization. A private cloud may be built and managed
by the organization or by external providers. A private cloud offers the highest
degree of control over performance, reliability, and security. However, they are
often criticized for being similar to traditional proprietary server farms and do not
provide benefits such as no up-front capital costs.

• Hybrid clouds: A hybrid cloud is a combination of public and private cloud models
that tries to address the limitations of each approach. In a hybrid cloud, part of
the service infrastructure runs in private clouds while the remaining part runs in
public clouds. Hybrid clouds offer more flexibility than both public and private
clouds. Specifically, they provide tighter control and security over application data
compared to public clouds, while still facilitating on-demand service expansion
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and contraction. On the down side, designing a hybrid cloud requires carefully
determining the best split between public and private cloud components.

• Community clouds: A community cloud refers to a cloud infrastructure that is
shared between multiple organizations that have common interests or concerns.
Community clouds are a specific type of cloud that relies on the common inter-
est and limited participants to achieve efficient, reliable, and secure design of the
cloud infrastructure.

Private cloud has always been the most popular type of cloud. Indeed, the develop-
ment of cloud computing was largely due to the need of building data centers for hosting
large-scale online services owned by large private companies, such as Amazon and
Google. Subsequently, realizing the cloud infrastructure can be leased to other compa-
nies for profits, these companies have developed public cloud services. This development
has also led to the creation of hybrid clouds and Community clouds, which represent dif-
ferent alternatives to share cloud resources among service providers. In the future, it is
believed that private cloud will remain to be the dominant cloud computing model. This is
because as online services continue to grow in scale and complexity, it becomes increas-
ingly beneficial to build private cloud infrastructure to host these services. In this case,
private clouds not only provide better performance and manageability than public clouds
but also reduced operation cost. As the initial capital investment on a private cloud can
be amortized across large number of machines over many years, in the long-term private
cloud typically has lower operational cost compared to public clouds.

1.2.4.2 SME’s Survey on Cloud Computing. The European Network and
Information Security Agency (ENISA) has conducted a survey on the adaption of the
cloud computing model by small to medium enterprises (SMEs). The survey provides
an excellent overview of the benefits and limitations of today’s cloud technologies. In
particular, the survey has found that the main reason for adopting cloud computing is
to reduce total capital expenditure on software and hardware resources. Furthermore,
most of the enterprises prefer a mixture of cloud computing models (public cloud, pri-
vate cloud), which comes with no surprise as each type of cloud has own benefits and
limitations. Regarding the type of cloud services, it seems that IaaS, PaaS, and SaaS all
received similar scores, even though SaaS is slightly in favor compared to the other two.
Last, it seems that data availability, privacy, and confidentiality are the main concerns of
all the surveyed enterprises. As a result, it is not surprising to see that most of the enter-
prises prefer to have a disaster recovery plan when considering migration to the cloud.
Based on these observations, cloud providers should focus more on improving the secu-
rity and reliability aspect of cloud infrastructures, as they represent the main obstacles
for adopting the cloud computing model by today’s enterprises.

1.2.5 Enabling Technologies

The success of cloud computing is largely driven by successful deployment of its
enabling technologies. In this section, we provide an overview of cloud enabling
technologies and describe how they contribute to the development of cloud computing.
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1.2.5.1 Data Center Virtualization. One of the main characteristics of cloud
computing is that the infrastructure (e.g., data centers) is often shared by multiple ten-
ants (e.g., service providers) running applications with different resource requirements
and performance objectives. This raises the question regarding how data center resources
should be allocated and managed by each service provider. A naive solution that has been
implemented in the early days is to allocate dedicated servers for each application. While
this “bare-metal” strategy certainly worked in many scenarios, it also introduced many
inefficiencies. In particular, if the server resource is not fully utilized by the application
running on the server, the resource is wasted as no other application has the right to
acquire the resource for its own execution. Motivated by this observation, the industry
has adopted virtualization in today’s cloud data centers. Generally speaking, virtualiza-
tion aims at partitioning physical resources into virtual resources that can be allocated to
applications in a flexible manner. For instance, server virtualization is a technology that
partitions the physical machine into multiple VMs, each capable of running applications
just like a physical machine. By separating logical resources from the underlying physi-
cal resources, server virtualization enables flexible assignment of workloads to physical
machines. This not only allows workload running on multiple VMs to be consolidated on
a single physical machine, but also enables a technique called VM migration, which is the
process of dynamically moving a VM from one physical machine to another. Today, vir-
tualization technologies have been widely used by cloud providers such as Amazon EC2,
Rackspace, and GoGrid. By consolidating workload using fewer machines, server virtu-
alization can deliver higher resource utilization and lower energy consumption compared
to allocating dedicated servers for each application.

Another type of data center virtualization that has been largely overlooked in the
past is network virtualization. Cloud applications today are becoming increasingly data-
intensive. As a result, there is a pressing need to determine how data center networks
should be shared by multiple tenants with diverse performance, security and man-
ageability requirements. Motivated by these limitations, there is an emerging trend
towards virtualizing data center networks in addition to server virtualization. Simi-
lar to server virtualization, network virtualization aims at creating multiple VNs on
top of a shared physical network substrate allowing each VN to be implemented and
managed independently. By separating logical networks from the underlying physical
network, it is possible to implement network resource guarantee and introduce cus-
tomized network protocols, security, and management policies. Combining with server
virtualization, a fully virtualized data centers support the allocation in the form of vir-
tual infrastructures or VIs (also known as virtual data centers (VDC)), which consist
of VMs inter-connected by virtual networks. The scheduling and management of VIs
have been studied extensively in recent years. Commercial cloud providers are also
pushing towards this direction. For example, the Amazon Virtual Private Cloud (VPC)
already provides limited features to support network virtualization in addition to server
virtualization.

1.2.5.2 Cloud Networking. To ensure predictable performance over the cloud,
it is of utmost importance to design efficient networks that are able to provide guaranteed
performance and to scale with the ever-growing traffic volumes in the cloud. Traditional
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data center network architectures suffer from many limitations that may hinder the per-
formance of large-scale cloud services. For instance, the widely-used tree-like topology
does not provide multiple paths between the nodes, and hence limits the scalability of
the network and the ability to mitigate node and link congestion and failures. More-
over, current technologies like Ethernet and VLANs are not well suited to support cloud
computing requirements like multi-tenancy or performance isolation between different
tenants/applications. In recent years, several research works have focused on designing
new data center network architectures to overcome these limitations and enhance per-
formance, fault tolerance and scalability (e.g., VL2 [38], Portland [9], NetLord [10]).
Furthermore, the advent of software-defined networking (SDN) technology brings new
opportunities to redesign cloud networks [11]. Thanks to the programmability offered
by this technology, it is now possible to dynamically adapt the configuration of the net-
work based on the workload. It also makes it easy to implement policy-based network
management schemes in order to achieve potential cloud providers’ objectives in terms
of performance, utilization, survivability, and energy efficiency.

1.2.5.3 Data Storage and Management. As mentioned previously, one of
the key driving forces for cloud computing is the need to process large volumes of data
in a scalable and efficient manner. As cloud data centers typically consist of commod-
ity servers with limited storage and processing capacities, it is necessary to develop
distributed storage systems that support efficient retrieval of desired data. At the same
time, as failures are common in commodity machine-based data centers, the distributed
storage system must also be resilient to failures. This usually implies each file block
must be replicated on multiple machines. This raises challenges regarding how the dis-
tributed storage system should be designed to achieve availability and high performance,
while ensuring file replicas remain consistent over time. Unfortunately, the famous CAP
theorem [12] states that simultaneously achieving all three objectives (consistency, avail-
ability, and robustness to network failures) is not a viable task. As result, recently many
file systems such Google File System [13], Amazon Dynamo [14], Cassandra [15] are
trying to explore various trade-offs among the three objectives based on applications’
needs. For example, Amazon Dynamo adopts an eventual consistency model that allow
replicas to be temporary out-of-sync. By sacrificing consistency, Dynamo is able to
achieve significant improvement in server response time. It is evident that these stor-
age systems provide the foundations for building large-scale data-intensive applications
that are commonly found in today’s cloud data centers.

1.2.5.4 MapReduce Programming Model. Cloud computing has become
the most cost-effective technology for hosting Internet-scale applications. Companies
like Google and Facebook generate enormous volumes of data on a daily basis that need
to be processed in a timely manner. To meet this requirement, cloud providers use com-
putational models such as MapReduce [1] and Dryad [16]. In these models, a job spawns
many small tasks that can be executed concurrently on multiple machines, resulting in
significant reduction in job completion time. Furthermore, to cope with software and
hardware exceptions frequent in large-scale clusters, these models provide built-in fault
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tolerance features that automatically restart failed tasks when exceptions occur. As a
result, these computational models are very attractive not only for running data-intensive
jobs but also for computation-intensive applications. The MapReduce model, in par-
ticular, is largely used nowadays in cloud infrastructures for supporting a wide range
of applications and has been adapted to several computing and cluster environments.
Despite this success, the adoption of MapReduce has implications on the management of
cloud workload and cluster resources, which is still largely unstudied. In particular, many
challenges pertaining to MapReduce job scheduling, task and data placement, resource
allocation, and sharing are yet to be addressed.

1.2.5.5 Resource Management. Resource management has always been a
central theme of cloud computing. Given the large variety of applications running in the
cloud, it is a challenging problem to determine how each application should be scheduled
and managed in a scalable and dynamic manner. The scheduling of individual application
component can be formulated as a variant of the multi-dimensional vector bin-packing
problem, which is already NP-hard in the general case. Furthermore, different applica-
tions may have different scheduling needs. For example, individual tasks of a single
MapReduce job can be scheduled independently over time, whereas the servers of a
three-tier Web application must be scheduled simultaneously to ensure service availabil-
ity. Therefore, finding a scheduling scheme that satisfy diverse application scheduling
requirement is a challenging problem. The recent work on multi-framework scheduling
(e.g., MESOS [17]) provides a platform to allow various scheduling frameworks, such
as MapReduce, Spark, and MPI to coexist in a single cloud infrastructure. The work on
distributed schedulers (e.g., Omega [18] and Sparrow [19]) also aim at improving the
scalability of schedulers by having multiple schedulers perform scheduling in parallel.
These technologies will provide the functionality to support a wide range of workload in
the cloud data center environments.

1.2.5.6 Energy Management. Data centers consume tremendous amount of
energy, not only for powering up the servers and network devices, but also for cool-
ing down these components to prevent overheating conditions. It has been reported that
energy cost accounts for 15% of the average data center operation expenditure. At the
same time, such large energy consumption also raises environmental concerns regarding
the carbon emissions for energy generation. As a result, improving data center energy
efficiency has become a primary concern for today’s data center operators. A widely
used metric for measuring energy efficiency of data centers is power usage effectiveness
(PUE), which is computed as the ratio between the computer infrastructure usage and the
total data center power usage. Even though none of the existing data centers can achieve
the ideal PUE value of 1.0, many cloud data centers today have become very energy
efficient with PUE less than 1.1.

There are many techniques for improving data center energy efficiency. At the infras-
tructure level, many cloud providers leverage nearby renewable energy source (i.e., solar
and wind) to reduce energy cost and carbon footprint. At the same time, it is also pos-
sible to leverage environmental conditions (e.g., low temperature conditions) to reduce
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cooling cost. For example, Facebook recently announced the construction of a cloud data
center in Sweden, right on the edge of the arctic circle, mainly due to the low air temper-
ature that can reduce cooling cost. The Net-Zero Energy Data Center developed by HP
labs leverages locally generated renewable energy and workload demand management
techniques to significantly reduce the energy required to operate data centers. We believe
the rapid development of cloud energy management techniques will continue to push the
data center energy efficiency towards the ideal PUE value of 1.0.

1.2.5.7 Security and Privacy. Security is another major concern of cloud com-
puting. While security is not a critical concern in many private clouds, it is often a key
barrier to the adoption of cloud computing in public clouds. Specifically, since service
providers typically do not have access to the physical security system of data centers,
they must rely on cloud providers to achieve full data security. The cloud provider, in this
context, must achieve the following objectives: (1) confidentiality, for secure data access
and transfer, and (2) auditability, for attesting whether security setting of applications
has been tampered or not. Confidentiality is usually achieved using cryptographic proto-
cols, whereas auditability can be achieved using remote attestation techniques. Remote
attestation typically requires a trusted platform module (TPM) to generate nonforgeable
system summary (i.e., system state encrypted using TPM private key) as the proof of
system security. However, in a virtualized environment like the clouds, VMs can dynam-
ically migrate from one location to another, hence directly using remote attestation is not
sufficient. In this case, it is critical to build trust mechanisms at every architectural layer
of the cloud. First, the hardware layer must be trusted using hardware TPM. Second, the
virtualization platform must be trusted using secure VM monitors. VM migration should
only be allowed if both source and destination servers are trusted. Recent work has been
devoted to designing efficient protocols for trust establishment and management.

1.3 PART II: RESEARCH CHALLENGES—THE CHAPTERS IN THIS
BOOK

This book covers the fundamentals of cloud services, networking and management and
focuses on most prominent research challenges that have drawn the attention of the
IT community in the past few years. Each of the 14 chapters of this book provides an
overview of some of the key architectures, features, and technologies of cloud services,
networking and management systems and highlights state-of-the-art solutions and pos-
sible research gaps. The chapters of the book are written by knowledgeable authors that
were carefully selected based on their expertise in the field. Each chapter went through
a rigorous review process, including external reviewers, the book editors Raouf Boutaba
and Nelson Fonseca, and the series editors Tom Plevyak and Veli Sahin. In the following,
we briefly describe the topics covered by the different chapters of this book.

1.3.1 Virtualization in the Cloud

Virtualization is one of the key enabling technologies that made cloud computing model
a reality. Initially, virtualization technologies have allowed to partition a physical server
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into multiple isolated environments called VMs that may eventually host different operat-
ing systems and be used by different users or applications. As cloud computing evolved,
virtualization technologies have matured and have been extended to consider not only
the partitioning of servers but also the partitioning of the networking resources (e.g.,
links, switches and routers). Hence, it is now possible to provide each cloud user with
a VI encompassing VMs, virtual links, and virtual routers and switches. In this context,
several challenges arise especially regarding the management of the resulting virtualized
environment where different types of resources are shared among multiple users.

In this chapter, the authors outline the main characteristics of these virtualized
infrastructures and shed light on the different management operations that need to be
implemented in such environments. They then summarize the ongoing efforts towards
defining open standard interfaces to support virtualization and interoperability in the
cloud. Finally, the chapter provides a brief overview of the main open-source cloud
management platforms that have recently emerged.

1.3.2 VM Migration

One of the powerful features brought by virtualization is the ability to easily migrate VMs
within the same data center or even between geographically distributed data centers.
This feature provides an unprecedented flexibility to network and data center opera-
tors allowing them to perform several management tasks like dynamically optimizing
resource allocations, improving fault tolerance, consolidating workloads, avoiding server
overload, and scheduling maintenance activities. Despite all these benefits, VM migra-
tion induces several costs, including higher utilization of computing and networking
resources, inevitable service downtime, security risks, and more complex management
challenges. As a result, a large number of migration techniques have been recently pro-
posed in the literature in order to minimize these costs and make VM migration a more
effective and secure tool in the hand of cloud providers.

This chapter starts by providing an overview of VM migration techniques. It then
presents, XenFlow, a tool based on Xen and OpenFlow, and allowing to deploy, isolate
and migrate VIs. Finally, the authors discuss potential security threats that can arise when
using VM migration.

1.3.3 Data Center Networks and Relevant Standards

Today’s cloud data centers are housing hundreds of thousands of machines that con-
tinuously need to exchange tremendous amounts of data with stringent performance
requirements in terms of bandwidth, delay, jitter, and loss rate. In this context, the data
center network plays a central role to ensure a reliable and efficient communication
between machines, and thereby guarantee continuous operation of the data center and
effective delivery of the cloud services. A data center network architecture is typically
defined by the network topology (i.e., the way equipment are inter-connected) as well
as the adopted switching, routing, and addressing schemes and protocols (e.g., Ethernet
and IP).
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Traditional data center network architectures suffer from several limitations and are
not able to satisfy new application requirements spawned by cloud computing model in
terms of scalability, multitenancy and performance isolation. For instance, the widely
used tree-like topology does not provide multiple paths between the nodes, and hence
limits the ability to survive node and link failures. Also, current switches have limited
forwarding table sizes, making it difficult for traditional data center networks to handle
the large number of VMs that may exist in virtualized cloud environments. Another issue
is with the performance isolation between tenants as there is no bandwidth allocation
mechanism in place to ensure predictable network performance for each of them.

In order to cope with these limitations, a lot of attention has been devoted in the past
few years to study the performance of existing architectures and to design better solu-
tions. This chapter dwells on these solutions covering data center network architectures,
topologies, routing protocols and addressing schemes that have been recently proposed
in the literature.

1.3.4 Interdata Center Networks

In recent years, cloud providers have largely relied on large-scale cloud infrastructures to
support Internet-scale applications efficiently. Typically, these infrastructures are com-
posed of several geographically distributed data centers connected through a backbone
network (i.e., an inter-data center network). In this context, a key challenge facing cloud
providers is to build cost-effective backbone networks while taking into account sev-
eral considerations and requirements including scalability, energy efficiency, resilience,
and reliability. To address this challenge, many factors should be considered. The scal-
ability requirement is due to the fact that the volume of data exchanged between data
centers is growing exponentially with the ever-increasing demand in cloud environments.
The energy efficiency requirement concerns how to minimize the energy consumption of
the infrastructure. Such a requirement is not only crucial to make the infrastructure more
green and environmental-friendly but also essential to cut down operational expenses.
Finally, the resilience of the interdata center network requirement is fundamental to
maintain a continuous and reliable cloud services.

This chapter investigates the different possible alternatives to design and manage
cost-efficient cloud backbones. It then presents mathematical formulations and heuristic
solutions that could be adopted to achieve desired objectives in terms of energy effi-
ciency, resilience and reliability. Finally, the authors discuss open issues and key research
directions related to this topic.

1.3.5 OpenFlow and SDN for Clouds

The past few years have witnessed the rise of SDN, a technology that makes it possi-
ble to dynamically configure and program networking elements. Combined with cloud
computing technologies, SDN enables the design of highly dynamic, efficient, and cost-
effective shared application platforms that can support the rapid deployment of Internet
applications and services.
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This chapter discusses the challenges faced to integrate SDN technology in cloud
application platforms. It first provides a brief overview of the fundamental concepts of
SDN including OpenFlow technology and tools like Open vSwitch. It also introduces the
cloud platform OpenStack with a focus on its Networking Service (i.e., Neutron project),
and shows how cloud computing environments can benefit from SDN technology to
provide guaranteed networking resources within a data center and to interconnect data
centers. The authors also review major open source efforts that attempt to integrate SDN
technology in cloud management platforms (e.g., OpenDaylight open source project) and
discuss the notion of software-defined infrastructure (SDI).

1.3.6 Mobile Cloud Computing

Mobile cloud computing has recently emerged as a new paradigm that combines cloud
computing with mobile network technology with the goal of putting the scalability
and limitless resources of the cloud into the hands of mobile service and application
providers. However, despite of its potential benefits, the growth of mobile cloud com-
puting in recent years was hampered by several technical challenges and risks. These
challenges and risks are mainly due to the inherent limitations of mobile devices such
as the scarcity of resources, the limited energy supply, the intermittent connectivity in
wireless networks, security risks, and legal/environmental risks.

This chapter starts by providing an overview of mobile cloud computing application
models and frameworks. It also defines risk management and identifies and analyzes
prevalent risk factors found in mobile cloud computing environments. The authors also
present an analysis of mobile cloud frameworks from a risk management perspective
and discusses the effectiveness of traditional risk approaches to address mobile cloud
computing risks.

1.3.7 Resource Management and Scheduling

Resource allocation and scheduling are two crucial functions in cloud computing envi-
ronments. Generally speaking, cloud providers are responsible for allocating resources
(e.g., VMs) with the goal of satisfying the promised service-level agreement (SLA) while
increasing their profit. This can be achieved by reducing operational costs (e.g., energy
costs) and sharing resources among the different users. At the opposite side, cloud users
are responsible for application scheduling that aims at mapping tasks from applications
submitted by users to computational resources in the system. The goals of scheduling
include maximizing the usage of the leased resources, and minimizing costs by dynami-
cally adjusting the leased resources to the demand while maintaining the required quality
of service.

Resource allocation and scheduling are both vital to cloud users and providers, but
they both have their own specifics, challenges and potentially conflicting objectives.
This chapter starts by a review of the different cloud types and service models and then
discusses the typical objectives of cloud providers and their clients. The chapter pro-
vides also mathematical formulations to the problems, VM allocation, and application
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scheduling. It surveys some of the existing solutions and discusses their strengths and
weaknesses. Finally, it points out the key research directions pertaining to resource
management in cloud environments.

1.3.8 Autonomic Performance Management for Multi-Clouds

The growing popularity of the cloud computing model have led to the emergence of
multiclouds or clouds of clouds where multiple cloud systems are federated together
to further improve and enhance cloud services. Multiclouds have several benefits that
range from improving availability, to reducing lock-in, and optimizing costs beyond what
can be achieved within a single cloud. At the same time, multi-clouds bring new chal-
lenges in terms of the design, development, deployment, monitoring, and management
of multi-tier applications able to capitalize on the advantages of such distributed infras-
tructures. As a matter of fact, the responsibility for addressing these challenges is shared
among cloud providers and cloud users depending on the type of service (i.e., IaaS, PaaS,
and SaaS) and SLAs. For instance, from an IaaS cloud provider’s perspective, manage-
ment focuses mainly on maintaining the infrastructure, allocating resources requested
by clients and ensuring their high availability. By contrast, cloud users are responsible
for implementing, deploying and monitoring applications running on top of resources
that are eventually leased from several providers. In this context, a compelling challenge
that is currently attracting a lot of attention is how to develop sophisticated tools that
simplify the process of deploying, managing, monitoring, and maintaining large-scale
applications over multi-clouds.

This chapter focuses on this particular challenge and provides a detailed overview
of the design and implementation of XCAMP, the X-Cloud Application Management
Platform that allows to automate application deployment and management in multitier
clouds. It also highlights key research challenges that require further investigation in the
context of performance management and monitoring in distributed cloud environments.

1.3.9 Energy Management

Cloud computing environments mainly consist of data centers where thousands of
servers and other systems (e.g, power distribution and cooling equipment) are consuming
tremendous amounts of energy. Recent reports have revealed that energy costs repre-
sent more than 12% of the total data center operational expenditures, which translates
into millions of dollars. More importantly, high energy consumption is usually syn-
onymous of high carbon footprint, raising serious environmental concerns and pushing
governments to put in place more stringent regulations to protect the environment. Con-
sequently, reducing energy consumption has become one of the key challenges facing
today’s data center managers. Recently, a large body of work has been dedicated to inves-
tigate possible techniques to achieve more energy-efficient and environment-friendly
infrastructures. Many solutions have been proposed including dynamic capacity provi-
sioning and optimal usage of renewable sources of energy (e.g., wind power and solar).
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This chapter further details the trends in energy management solutions in cloud data
centers. It first surveys energy-aware resource scheduling and allocation schemes aiming
at improving energy efficiency, and then provides a detailed description of GreenCloud,
an energy-aware cloud data center simulator.

1.3.10 Survivability and Fault Tolerance in the Cloud

Despite the success of cloud computing, its widespread and full-scale adoption have been
hampered by the lack of strict guarantees on the reliability and availability of the offered
resources and services. Indeed, outages, failures and service disruption can be fatal for
many businesses. Not only they incur significant revenue loss—as much as hundreds of
thousands of dollars per minute for some services—but they may also hurt the business
reputation in the long term and impact on customers’ loyalty and satisfaction. Unfortu-
nately, major cloud providers like Amazon EC2, Google, and Rackspace are not yet able
to satisfy the high availability and reliability levels required for such critical services.

Consequently, a growing body of work has attempted to address this problem and to
propose solutions to improve the reliability of cloud services and eventually provide more
stringent guarantees to cloud users. This chapter provides a comprehensive literature
survey on this particular topic. It first lays out cloud computing and survivability-related
concepts, and then covers recent studies that analyzed and characterized the types of
failures found in cloud environments. Subsequently, the authors survey and compare the
solutions put forward to enhance cloud services’ fault-tolerance and to guarantee high
availability of cloud resources.

1.3.11 Cloud Security

Security has always been a key issue for cloud-based services and several solutions have
been proposed to protect the cloud from malicious attacks. In particular, intrusion detec-
tion systems (IDS) and intrusion prevention systems (IPS) have been widely deployed
to improve cloud security and have been recently empowered with new technologies
like SDN to further enhance their effectiveness. For instance, the SDN technology has
been leveraged to dynamically reconfigure the cloud network and services and better
protect them from malicious traffic. In this context, this chapter introduces FlowIPS, an
OpenFlow-based IPS solution for intrusion prevention in cloud environments. FlowIPS
implements SDN-based control functions based on Open vSwitch (OVS) and pro-
vides novel Network Reconfiguration (NR) features by programming POX controllers.
Finally, the chapter presents the performance evaluation of FlowIPS that demonstrates
its efficiency compared to traditional IPS solutions.

1.3.12 Big Data on Clouds

Big data has emerged as a new term that describes all challenges related to the manipu-
lation of large amounts of data including data collection, storage, processing, analysis,
and visualization.
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This chapter articulates some of the success enablers for deploying Big Data on
Clouds (BDOC). It starts by providing some historical perspectives and by describing
emerging Internet services and applications. It then describes some legal issues related
to big data on clouds. In particular, it highlights emerging hybrid big data manage-
ment roles, the development and operations (DevOps), and Site Reliability Engineering
(SRE). Finally, the chapter discusses science, technology, engineering, and mathemat-
ics (STEM) talent cultivation and engagement, as an enabler to technical succession and
future success for global enterprises of big data on clouds.

1.3.13 Scientific Applications on Clouds

In order to cope with the requirements of scientific applications, cloud providers have
recently proposed new coordination and management tools and services (e.g., Amazon
Simple WorkFlow or SWF) in order to automate and streamline task processes executed
by the cloud applications. Such services allow to specify the dependencies between the
tasks, their order of execution and make it possible to track their progress and the current
state of each of them. In this context, a compelling challenge is to ensure the compatibil-
ity between existing workflow systems and to provide the possibility to reuse scientific
legacy code.

This chapter presents a software engineering solution that allows the scientific work-
flow community to use Amazon cloud via a single front-end converter. In particular, it
describes a wrapper service for executing legacy code using Amazon SWF. The chap-
ter also describes the experimental results demonstrating that the automatically SWF
application generated by the wrapper provides a performance comparable to the native
manually optimized workflow.

1.3.14 Interactive Multimedia Applications on Clouds

The booming popularity of cloud computing has led to the emergence of a large array
of new applications such as social networking, gaming, live streaming, TV broadcast-
ing, and content delivery. For instance, cloud gaming allows direct on-demand access to
games whose content is stored in the cloud and streamed directly to end users through
thin clients. As a result, less powerful game consoles or computers are needed as most
of the processing is carried out in the hosting cloud, leveraging its seemingly unlimited
resources. Another prominent cloud application is the Massive user-generated content
(UGC) live streaming that allows each simple Internet user to become a TV or con-
tent provider. A similar application that has become extremely popular is time-shifting
on-demand TV as many services like catch-up TV (i.e., the content of a TV channel is
recorded for many days and can be requested on demand) and TV surfing (i.e., the pos-
sibility of pausing, forwarding or rewinding of a video stream) have recently became
widely demanded. Naturally, the cloud is the ideal platform to host such services as
it provides the processing and storage capacity required to ensure a high quality of
service. However, several challenges are not addressed yet especially because of the
stringent performance requirements (e.g., delay) of such multimedia applications and
the increasing amounts of traffic they generate.



“9780471697558c01” — 2015/3/20 — 11:03 — page 21 — #19

REFERENCES 21

This chapter discusses the deployment of these applications over the cloud. It starts
by laying out content delivery models in general, and then provides a detailed study of the
performance of three prominent multimedia cloud applications, namely cloud gaming,
massive user-generated content live streaming and time-shifting on-Demand TV.

1.4 CONCLUSION

Editing and preparing a book on such an important topic is a challenging task requiring
a lot of effort and time. As the editors of this book, we are grateful to many individu-
als who contributed to its successful completion. We would like to thank the chapters’
authors for their high-quality contributions, the reviewers for their insightful comments
and feedback, and the book series editors for their support and guidance. Finally, we hope
that the reader finds the topics and the discussions presented in this book informative,
interesting, and inspiring and pave the way for designing new cloud platforms able to
meet the requirements of future Internet applications and services.
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2.1 THE NEED FOR VIRTUALIZATION MANAGEMENT
IN THE CLOUD

Cloud infrastructures are aggregates of computing, storage, and networking resources
deployed along centralized or distributed data centers devoted to support companies’
applications or, in the case of services being offered through the Internet, to support cloud
customers’ applications. Companies such as Google, Amazon, Facebook, and Microsoft
rely on cloud infrastructures to support various services such as Web search, e-mail,
social networking, and e-commerce. By leasing physical infrastructure to external cus-
tomers, cloud providers encourage the development of novel services and, at the same
time, generate revenue to cover deployment and operation costs of clouds. Cloud resource
sharing is then critical for the cloud computing model.

To allow multiple customers, cloud providers rely on virtualization technologies
to build virtual infrastructures (VIs) comprising logical instances of physical resources
(e.g., servers, network, and storage). The provisioning of VIs must consider requirements
of both cloud providers and customers. While the main objective of cloud providers is
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to generate revenue by accommodating a large number of VIs, customers, in their turn,
have specific needs, such as storage capacity, high availability, processing power (usually
represented by the number of leased virtual machines or VMs), guaranteed bandwidth
among VMs, and load balancing. Inefficiencies in the provisioning process can lead
to negative consequences for cloud providers, including customer defection, financial
penalties when service-level agreements (SLAs) are not satisfied, and low utilization
of the physical infrastructure. In summary, management of physical and VIs is vital to
enabling proper cloud resource sharing.

Current cloud provisioning systems allow customers to select among different
resource configurations (e.g., CPU, memory, and disk) to build a VI. Customers are the
main responsible for choosing the resources that will better fit their application’s needs.
The cloud provider, in turn, either (a) allocates resources for the VI on physical data cen-
ters, or (b) rejects the allocation if there are not enough resources to satisfy the customers’
requirements. Cloud providers run allocation algorithms to find the best way to map VIs
onto the physical substrate according to well-defined objectives, such as minimizing the
allocation cost, reducing energy consumption, or maximizing residual capacity of the
infrastructure. Mapping virtual to physical resources is commonly referred to as embed-
ding and has been extensively studied in the context of network virtualization [1–3].

Embedding is an example of a network virtualization aspect that needs to be prop-
erly managed. Choosing the appropriate embedding algorithm, and deciding when it
should be triggered (e.g., when new VI requests arrive or when on-the-fly optimiza-
tions of the physical substrate are needed) is a management activity that needs to be
consciously performed by the cloud management operator or team. Other virtualization
management aspects encompass operations such as: monitoring, to detect abusing appli-
cations/customers; configuration, to tune VI and physical substrate; and discovery, to
identify collaborating VIs that would be better placed closer to one another. In addition to
management operations, virtualization management requires understanding of the diver-
sity of target elements because both VI and physical substrate are quite heterogeneous
in regard to the resources they use/offer. That impacts the management operations them-
selves, since, for example, monitoring and configuring a physical server can be quite
different than monitoring and configuring network devices and traffic. Operations and
target elements are thus two important dimensions of cloud virtualization management.

In this chapter, we cover the management of virtualization in the cloud. Our observa-
tions primarily take the perspective of cloud providers who need to manage their substrate
and hosted VIs to guarantee that the services offered to customers are operating prop-
erly. Virtualization management is a quite new discipline because virtualization itself, at
least as it has been employed these days, is also quite recent. Management is achieved by
borrowing techniques from other areas, such as network management and parallel pro-
cessing. We concentrate our discussion on the two management dimensions mentioned
before, i.e., management operations and target elements. Although other dimensions
do exist, we will focus on the operations and elements because they are the essential
dimensions a cloud manager needs to take into account in the first place.

The remaining of this chapter is organized as follows. In Section 2.2, we review
some basic concepts of virtualization in cloud computing environments. In Section 2.3,
we describe the main elements of a virtualized cloud environment. In Section 2.4, we list
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the main virtualization-related operations that need to be supported by a cloud platform.
In Section 2.5, we review some of the most important efforts towards the definition of
open standard interfaces to support virtualization and interoperability in the cloud. In
Section 2.6, we list some of the most important efforts currently targeted to build tools
and systems for virtualization and cloud resource management. Finally, in Section 2.7, we
list key challenges that can guide future developments in the virtualization management
and also mention some ongoing research in the field.

2.2 BASIC CONCEPTS

Clouds can be public, private, or hybrid. Public clouds offer resources to any interested
tenant (e.g., Amazon EC2 and Windows Azure). Private clouds usually belong to a single
organization and only the members of that organization have access to the resources.
Hybrid clouds are combinations of different types of cloud. For example, a private cloud
that needs to temporarily extend its capacity can borrow resources from a public cloud,
thus forming a hybrid cloud.

Cloud services are organized according to three basic business models. In infras-
tructure as a service (IaaS), cloud providers offer logical instances of physical resources,
such as VMs, virtual storage, and virtual links to interested tenants. In platform as a
service (PaaS), tenants can request a computing platform including an operating sys-
tem and a development environment. The software as a service (SaaS) model offers
end-applications (e.g., Google Drive and Dropbox) to customers. Other models, such as
network as a service (NaaS) are also possible in the cloud, but are not found so frequently
in the literature [4].

Virtualization is the key technology to enable cloud computing. Virtualization
abstracts the internal details of physical resources and enables resource sharing. Using
virtualization, a physical resource (e.g., server, router, link) can be shared among different
users or applications. The core of cloud computing environments is based on virtual-
ized data centers, which are facilities consisting of computing servers, storage, network
devices, cooling, and power systems.

Virtualization can be accomplished by different technologies according to the target
element. Server virtualization, for example, relies on a layer of software called hyper-
visor, also known as VM monitor. The hypervisor is the component responsible for
actually creating, removing, copying, migrating, and running VMs. Virtual links, in turn,
can be created by configuring Ethernet VLANs between the physical nodes hosting the
virtual ones. Multiprotocol label switching (MPLS) label switched paths (LSPs) and
generic routing encapsulation (GRE) tunnels are other candidates to establish virtual
links.

Participants in the cloud comprise two main roles: the cloud provider, also known
as infrastructure provider, owns the physical resources that can be leased to one or more
tenants, also known as service providers, who build VIs composed of virtual instances
of computing, storage, and networking resources. A VI can be also referred to as a cloud
slice. After the instantiation of a VI, tenants can deploy a variety of applications that will
rely on these virtual resources.
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A cloud platform is a software that allows tenants to request and instantiate VIs.
Tenants can specify the amount of resources to build their VIs and the specific charac-
teristics of each resource, such as CPU and memory for computing, disk size for storage,
and bandwidth capacity for links. The cloud platform then interacts with the underlying
virtualization software (hypervisor) to create and configure the VI. In order to facilitate
resource management and allow interoperability, cloud platforms offer specific interfaces
for applications running in VIs. Such interfaces define operations that can be executed
in the cloud platform.

2.3 VIRTUALIZED ELEMENTS

As stated in previous sections, virtualization plays a key role in modern cloud comput-
ing environments by improving resource utilization and reducing costs. Typical elements
that can be virtualized in a cloud computing environment include computing and stor-
age. Recently, virtualization has been extended also to the networking domain and can
overcome limitations of current cloud environments such as poor isolation and increased
security risks [5]. In this section, we describe the main elements that can be virtualized
in a cloud computing environment.

2.3.1 Computing

The virtualization of computing resources (e.g., CPU and memory) is achieved by server
virtualization technologies (e.g., VMWare, Xen, and QEMU) that allow multiple vir-
tual machines (VMs) to be consolidated in a single physical one. The benefits of server
virtualization for cloud computing include performance isolation, improved application
performance, and enhanced security.

Cloud computing providers deploy their infrastructure in data centers compris-
ing several virtualized servers interconnected by a network. In the IaaS model, VMs
are instantiated and allocated to customers (i.e., tenants) on-demand. Server virtualiza-
tion adds flexibility to the cloud because VMs can be dynamically created, terminated,
copied, and migrated to different locations without affecting existing tenants. In addition,
the capacity of a VM (i.e., CPU, memory, and disk) can be adjusted to reflect changes in
tenants’ requirements without hardware changes.

Cloud operators have flexibility to decide where to allocate VMs in the physical
servers considering diverse criteria such as cost, energy consumption, and performance.
In this regard, several VM allocation schemes have been proposed in the literature that
leverage VM flexibility to optimize resource utilization [6–8, 10–12, 20].

2.3.2 Storage

Storage virtualization consists of grouping multiple (possibly heterogeneous) storage
devices that are seen as a single virtual storage space. There are two main abstractions to
represent storage virtualization in clouds: virtual volumes and virtual data objects. The
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virtualization of storage devices as virtual volumes is important in this context because it
simplifies the task of assigning disks to VMs. Furthermore, many implementations also
include the notion of virtual volume pools, which represent different sources of available
virtualizable storage spaces to allocate virtual volumes from (e.g., separate local physical
volumes or a remote Network File System or NFS). On the other hand, cloud storage of
virtual data objects enables scalable and redundant creation and retrieval of data objects
directly into/from the cloud. This abstraction is also often accompanied by the concept
of containers, which in general serve to create a hierarchical structure of data objects
similar to files and folders on any operating system.

Storage virtualization for both volumes and data objects is of utmost importance
to enable the elasticity property of cloud computing. For example, VMs can have their
disk space adjusted dynamically to support changes in cloud application requirements.
Such adjustment is too complex and dynamic to be performed manually and, by virtu-
alizing storage, cloud providers offer a uniform view to their users and reduce the need
for manual provisioning. Also, with storage virtualization, cloud users do not need to
know exactly where their data are stored. The details of which disks and partitions con-
tain which objects or volumes are transparent to users, which also facilitates storage
management for cloud providers.

2.3.3 Networking

Cloud infrastructures rely on local and wide area networks to connect the physical
resources (i.e., servers, switches, and routers) of their data centers. Such networks are
still based on the current IP architecture that has a number of problems. These problems
are mainly related to the lack of isolation, which can allow that one VI or application
interferes with another, resulting in poor performance or, even worse, in security prob-
lems. Another issue is the limited support for innovation, which hinders the development
of new architectures that could suit better cloud applications.

To overcome the limitations of current network architectures, virtualization can also
be extend to the cloud networks. ISP network virtualization has been a hot topic of inves-
tigation in recent years [13, 14] and is now being considered in other contexts, such as
cloud networking. Similar to virtualized ISP networks, in virtualized cloud networks,
multiple virtual networks (VNs) share a physical network and run isolated protocol
stacks. A VN is part of a VI that comprises VN nodes (i.e., switches and routers) and
virtual links.

The advantages of virtualization of cloud networks include network performance
isolation, improved security, and the possibility to introduce new protocols and address-
ing schemes without disrupting production services. Figure 2.1 shows how virtualization
can be tackled in cloud network infrastructures. In the substrate layer, physical nodes
and links from different network administrative domains serve as a substrate for the
deployment of VNs. Physical nodes, at the core of the physical networks, represent net-
work devices (e.g., switches and routers) that internally run virtual (or logical) routers
instantiated to serve VNs’ routing necessities.

In the virtualization layer, virtual nodes and links are created on the top of the sub-
strate and combined to build VNs. A VN can use resources from different sources,
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Virtualization layer

Substrate layer

Physical link Virtual link

Physical node Virtual node (first level) Virtual node (second level)

Figure 2.1. Virtualized cloud network infrastructure.

including resources from other VNs, which in this case results in a hierarchy of VNs.
VNs can also be entirely placed into a single physical node (e.g., physical end-host).
In this case, since virtual links are not running on top of any physical counterpart, iso-
lation, and performance guarantees should be offered, for example, through memory
isolation and scheduling mechanisms. In another setup, VNs can spread across differ-
ent adjacent physical infrastructures (i.e., different administrative domains). In this case,
network operators, at the substrate layer, must cooperate to provide a consistent view of
the underlying infrastructure used by networks from the virtualization layer.

2.3.4 Management

The management of cloud infrastructures plays a key role to allow cloud providers to effi-
ciently use the resources and increase revenue. At the virtual level, each VI can operate
its own management protocols, resource allocation schemes, and monitoring tools. For
example, one tenant can use Simple Network Management Protocol (SNMP) to manage
his/her VIs, while other can use NETCONF or Web services.

Different resource allocation schemes tailored for specific cloud applications define
how virtual resources are mapped in the data center. Adaptive, application-driven
resource provisioning allows multiple tenants and a large diversity of applications to
efficiently share a cloud infrastructure.

Monitoring is another management aspect that can be virtualized. Once a new VI is
created, a set of monitoring tools need to be configured [15] in order to start monitoring
the computing resources that form the VI. The set of monitoring tool configurations and
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the corresponding monitored metrics is referred to as a monitoring slice. Every VI is
coupled with a monitoring slice [16]. To monitor the computing resources that form VIs,
cloud operators generally use in their monitoring slices tools with native support to cloud
platforms.

2.4 VIRTUALIZATION OPERATIONS

Virtualization operations are structured according to the components described in the
previous section: computing, storage, networking, and management. A non-exhaustive
list of the main virtualization operations derived from existing cloud platforms
[9, 17–19, 21] is described next.

• Computing (Virtual Machines)

° Create/Remove: defines/undefines the internal representation of a VM with its
specified characteristics (e.g., CPU, memory, and guest image).

° Deploy/Undeploy: defines/undefines a VM within the hypervisor of a node of
the cloud infrastructure, including the transfer/removal of the image file.

° Start/Stop/Suspend/Resume: basic operations to handle the state of the guest
operating system.

° Migrate: undefines a VM in one node and defines it on another. The destination
node needs to be specified.

° Modify: modifies the attributes of a VM.

° Snapshot: creates a snapshot of a VM.

° Restore: restores a VM from a snapshot.

° List: lists currently deployed VMs.
• Computing (Images)

° Create/Remove: defines/undefines a guest operating system image at the main
repository of the platform, including the transfer/removal of the file.

• Storage (Virtual Volumes)

° Create/Remove: allocates/deletes chunks of storage on nodes.

° Attach Volume to VM: attaches a volume file to a given VM.
• Storage (Virtual Volume Pools)

° Create/Remove: defines/undefines a pool for storing virtual volumes (typically
a local or remote/NFS directory).

° Add Volume: adds a virtual volume to a volume pool.
• Storage (Virtual Data Objects)

° Create/Remove: allocates/deletes storage for data objects on nodes.

° Upload/Download: transfers the actual data in and out of the cloud environment.

° Stream: sends the content out to the general public, sometimes even adopting
massive scale distribution employing concepts of Content Delivery Networks
(CDNs).
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• Storage (Virtual Containers)

° Create/Remove: defines/undefines a container for storing data objects.

° Add Data Object: adds a virtual data object to a container.
• Networking (Virtual Links)

° Create/Remove: defines/undefines the internal representation of a virtual link
that connects point-to-point virtual interfaces of two virtual devices (i.e., VMs
or virtual routers).

° Establish/Disable: establishes/disables the virtual link within the network,
enabling/disabling traffic to flow between the connected devices.

° Configure: configures additional parameters of a virtual link (e.g., bandwidth).
• Networking (Virtual Routers)

° Create/Remove: defines/undefines the internal representation of a virtual router
that has multiple virtual ports to interconnect multiple virtual interfaces of
virtual devices.

° Deploy/Undeploy: deploys/undeploys the virtual router into a node of the
infrastructure.

° Add/Edit/Remove Routes: defines/modifies/undefines routes for a virtual router.
• Management (Virtual Devices)

° Monitor/Unmonitor: deploys/undeploys the monitoring infrastructure required
to monitor a given virtual device.

° Get Monitoring Information: fetches monitoring information within the moni-
toring system for a given virtual device.

• Management (Events)

° Create/Remove: defines/undefines the internal representation of an event that
belongs to a specific slice or operates in global scope.

° Deploy/Undeploy: deploys/undeploys the event on the monitoring infrastructure
to be triggered on demand.

• Management (Physical)

° Discover Resources: this is actually a collection of operations to discover
nodes and network topology available on the infrastructure. This collection also
retrieves information about resource allocation on these physical elements.

° Get Monitoring Information: fetches monitoring information within the moni-
toring system for a given physical device (e.g., node or switch).

2.5 INTERFACES FOR VIRTUALIZATION MANAGEMENT

Today, there are many heterogeneous cloud platforms that support the provisioning of
virtualized infrastructures under a plethora of different specifications and technologies.
Each cloud provider chooses the platform that suits it better or designs its own platforms
to provide differentiated services to its tenants. The problem with this heterogeneity is
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that it hinders interoperability and causes vendor lock-in for tenants. In order to allow the
remote management of virtual elements, many platforms already offer specific interfaces
(e.g., Amazon EC2/S3, Elastic Hosts, Flexiscale, Rackspace Cloud Servers, and VMware
vSphere) to communicate with external applications.

To cope with this variety of technologies and support the development of platform-
agnostic cloud applications, some proposals use basically two different approaches: (1)
employing proxy-style APIs in order to communicate with multiple providers using a
set of technology-specific adapters and (2) creating standardized generic interfaces to be
implemented by cloud platforms. The first approach has a drawback of introducing an
additional layer of software in cloud systems, which results in overhead and increased
latency. Nevertheless, there are libraries and tools that are widely employed, such as
Apache Deltacloud and Libcloud, which are further discussed in the next section. The
second approach, on the other hand, represents a more elegant solution to the problem
by proposing some sort of lingua franca to communicate among cloud systems. The
problem with standardization is to make participants to agree onto the same standard
[22]. Ideally, a standardized interface should be open and extensible to allow widespread
adoption by cloud management platforms and application developers. In this section,
we review some of the most important efforts towards the definition of open standard
interfaces to support virtualization and interoperability in the cloud.

2.5.1 Open Cloud Computing Interface

The Open Cloud Computing Interface (OCCI) [23] introduces a set of open, commu-
nity-driven specifications to deal with cloud service resource management [24]. OCCI
is supported by the Open Grid Forum and was originally conceived to create a remote
management API for IaaS platforms allowing interoperability for common tasks, such as
deployment, scaling, and monitoring virtual resources. Besides the definition of an open
application programming interface (API), this specification also introduces a RESTful
Protocol for exchanging management information and actions. The current release of
OCCI is not anymore focused only in IaaS and includes other cloud business models,
such as PaaS and SaaS.

The current version of the specification1 is designed to be modular and extensible,
thus it is split in three complementary documents. The OCCI Core document (GFD.183)
describes the formal definition of the OCCI Core Model. This document also describes
how the core model can be interacted with renderings (including associated behav-
iors) and expanded through extensions. The second document is OCCI Infrastructure
(GFD.184), which contains the definition of the OCCI infrastructure extension for the
IaaS domain. This document also defines additional resource types, their attributes, and
actions that each resource type can perform. The third document, OCCI HTTP Render-
ing (GFD.185), defines means of interacting with the OCCI Core Model through the
RESTful OCCI API. Moreover, this document defines how the OCCI Core Model can
be communicated and serialized over HTTP.

1As of the ending of 2013, the current version of OCCI is v1.1 (release date April 7, 2011)
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The OCCI Infrastructure document describes the modeling of virtual resources in
IaaS as three basic element types: (1) compute that are information processing resources,
(2) storage that are intended to handle information recording, and (3) network repre-
senting L2 networking elements (e.g., virtual switches). Also, there is an abstraction for
creation of links between resources. Links can be of two types: i.e., Network Interface
or Storage Link, depending on the type of resource they connect. It is also possible to
use this specification to define Infrastructure Templates, which are predefined virtual
resource specifications (e.g., small, medium, and large VM configurations). Moreover,
the OCCI HTTP Rendering document complements these definitions by specifying man-
agement operations, such as creating, retrieving, updating, and deleting virtual resources.
The document also details general requirements for the transmission of information over
HTTP, such as security and authentication.

OCCI is currently implemented in many popular cloud management platforms, such
as OpenStack, OpenNebula, and Eucalyptus. There are also base implementations in
programming languages, such as rOCCI in Ruby and jclouds in Java, and automated
compliance tests with doyouspeakOCCI. One particular effort aims to improve the inter-
cloud networking standardization by proposing an extension to OCCI, called Open Cloud
Networking Interface (OCNI) [25]. There is also a reference implementation of OCNI
called pyOCNI, written as a Python framework including JSON serialization for resource
representation.

2.5.2 Open Virtualization Format

The Open Virtualization Format (OVF) [26], currently in version 2.0.1, was introduced
late in 2008 within the Virtualization Management initiative of the Distributed Man-
agement Task Force (DMTF), aiming to provide an open and extensible standard for
packaging and distribution of software to be run in VMs. Its main virtue is to allow
portability of virtual appliances onto multiple platforms through so-called OVF Pack-
ages, which may contain one or more virtual systems. The OVF standard is not tied to
any particular hypervisor or processor architecture. Nevertheless, it is easily extensible
through the specification of vendor-specific metadata included in OVF Packages.

OVF Packages are a core concept of the OVF specification, which consist of sev-
eral files placed into one directory describing the structure of the packed virtual systems.
An OVF Package includes one OVF Descriptor, which is an XML document containing
metadata about the package contents, such as product details, virtual hardware require-
ments, and licensing. The OVF Package may also include certificates, disk image files,
or ISO images to be attached to virtual systems.

Within an OVF Package, an Envelope Element describes all metadata for the VMs
included in the package. Among this metadata, a detailed Virtual Hardware Descrip-
tion (based on CIM classes) can specify all types of virtual hardware resources required
by a virtual system. This specification can be abstract or incomplete, allowing the vir-
tualization platform to decide how to better satisfy the resource requirements, as long
as the required virtual devices are deployed. Moreover, OVF Environment information
can be added to define how the guest software and the deployment platform interact.
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This environment allows the guest software to access information about the deployment
platform, such as the values specified for the properties defined in the OVF Descriptor.

This standard is present in many hypervisor implementations and has shown to be
very useful for migrating virtual systems information among many hypervisors or plat-
forms, since it allows precise description of VMs and virtual hardware requirements.
However, it is not within the objectives of OVF to provide detailed specification for com-
plete VIs (i.e., detailing interconnections, communication requirements, and network
elements).

2.5.3 Cloud Infrastructure Management Interface

The Cloud Infrastructure Management Interface (CIMI) [27] standard is another DMTF
proposal within the context of the Cloud Management initiative. This standard defines
a model and a protocol for managing interactions between cloud IaaS providers and
tenants. CIMI’s main objective is to provide tenants with access to basic management
operations on IaaS resources (VMs, storage, and networking), facilitating portability
between different cloud implementations that support this standard. CIMI also specifies a
RESTful protocol over HTTP using both JSON or XML formats to represent information
and transmit management operations.

The model defined in CIMI includes basic types of virtualized resources, where
Machine Resources are used to represent VMs, Volume Resources for storage, and Net-
work Resources for VN devices and ports. Besides, CIMI also defines a Cloud Entry
Point type of resource, which represents a catalog of virtual resources that can be queried
by a tenant. A System Resource in this standard gathers one or more Network, Volume,
or Machine Resources, and can be operated as a single resource. Finally, a Monitoring
Resource is also defined to track progress of operations, metering, and monitoring of
other virtual resources.

The protocol relies on basic HTTP operations (i.e., PUT, GET, DELETE, HEAD,
and POST) and uses either JSON or XML to transmit the message body. To manipulate
virtual resources, there are four basic create, read, update, and delete (CRUD) opera-
tions. It is also possible to extend the protocol by creating or customizing operations to
manipulate the state of each particular resource. Moreover, the CIMI specification can
also be integrated with OVF, in which case VMs represented as OVF Packages can be
used to create Machine Resources or System Resources.

Today, implementations of the CIMI standard are not so commonly found as OCCI
or OVF are. One specific implementation that is worth noting is found within the Apache
Deltacloud2 project, which exposes a CIMI REST API to communicate with external
applications supporting manipulation of Machine and Volume Resources abstractions.

2.5.4 Cloud Data Management Interface

The Cloud Data Management Interface (CDMI) [28] is a standard specifically targeted
to define an interface to access cloud storage and to manage data objects. CDMI is

2 http://deltacloud.apache.org/cimi-rest.html
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comparable to Amazon’s S3 [29], with the fundamental difference that it is conceived
by the Storage Networking Industry Association (SNIA) to be an open standard targeted
for future ANSI and ISO certification. This standard also includes a RESTful API run-
ning over HTTP to allow accessing capabilities of cloud storage systems, allocating and
managing storage containers and data objects, handling users and group access rights,
among other operations.

The CDMI standard defines a JSON serializable interface to manage data stored in
clouds based on several abstractions. Data objects are fundamental storage components
analogous to files within a file system, which include metadata and value (contents).
Container objects are intended to represent grouping of data, analogous to directories in
regular file systems; this abstraction links together zero or more Data objects. Domain
objects represent the concept of administrative ownership of data stored within cloud
systems. This abstraction is very useful to facilitate billing, to restrict management oper-
ations to groups of objects, and to represent hierarchies of ownership. Queue objects
provide first-in, first-out access to store or retrieve data from the cloud system. Queu-
ing provides a simple mechanism for controlling concurrency when reading and writing
Data objects in a reliable way. To facilitate interoperability, this standard also includes
mechanisms for exporting data to other network storage platforms, such as iSCSI, NFS,
and WebDAV.

Regarding implementations, CDMI is also not so commonly deployed in most pop-
ular cloud management platforms. SNIA’s Cloud Storage Technical Working Group
(TWG) provides a Reference Implementation for the standard, which is currently a work-
ing draft and provides support only for version 1.0 of the specification. Some independent
projects, such as CDMI add-on for OpenStack Swift and the CDMI-Serve in Python,
have implemented basic support for the CDMI standard but do not present much recent
activity.

Besides all the aforementioned efforts to create new standardized interfaces for
virtual resource management in cloud environments, other approaches, protocols, and
methods have been studied and may be of interest in particular situations [30]. Moreover,
many organizations, such as OASIS, ETSI, ITU, NIST, and ISO, are currently engaged
with their cloud and virtualization related working groups on developing standards and
recommendations. We recommend the interested reader to look at DMTF’s maintained
wiki page Cloud-Standards.org3 to keep track of future standardization initiatives.

2.6 TOOLS AND SYSTEMS

In this section, we list some of the most important efforts currently targeted to build tools
and systems for virtualization and cloud resource management. Initially, we describe
open source cloud management platforms, which are in fact complete solutions to deploy
and operate private, public, or hybrid clouds. Afterwards, we discuss some tools and

3http://cloud-standards.org/
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libraries to perform specific operations for virtual resource management and cloud
integration.

2.6.1 Open Source Cloud Management Platforms

2.6.1.1 Eucalyptus. Eucalyptus started as a research project in the Computer
Science Department at the University of California, Santa Barbara, in 2007, within a
project called Virtual Grid Application Development Software Project (VGrADS) funded
by the National Science Foundation. This is one of the first open source initiatives to build
cloud management platforms that allow users to deploy their own private clouds [18].
Currently, Eucalyptus is in version 3.4 and comprises full integration with Amazon Web
Services (AWS)—including EC2, S3, Elastic Block Store (EBS), Identity and Access
Management (IAM), Auto Scaling, Elastic Load Balancing (ELB), and CloudWatch—
enabling both private and hybrid cloud deployments.

Eucalyptus architecture is based on four high-level components: (1) Node Controller
executes at hosts and is responsible for controlling the execution of VM instances; (2)
Cluster Controller works as a front-end at the cluster-level (i.e., Availability Zone) man-
aging VM execution and scheduling on Node Controllers, controls cluster-level SLAs,
and also manages VNs; (3) Storage Controller exists both at cluster-level and at cloud-
level (Walrus) and implements a put/get SaaS solution based on Amazon’s S3 interface,
providing a mechanism for storing and accessing VM images and user data; and (4) Cloud
Controller is the entry-point into the cloud for users and administrators, it implements an
EC2-compatible interface and coordinates other components to perform high-level tasks,
such as authentication, accounting, reporting, and quota management.

For networking, Eucalyptus offers four operating modes: (1) Managed, in which the
platform manages layers 2 and 3 VM isolation, employing a built-in DHCP service. This
mode requires a switch to forward a configurable range of VLAN-tagged packets; (2)
Managed (no VLAN), in which only layer 3 VM isolation is possible; (3) Static, where
there is no VM isolation, employs a built-in DHCP service for static IP assignment; and
(4) System, where there is also no VM isolation and, in this case, no automatic address
handling since Eucalyptus will rely on an existing external DHCP service. In version
4.0, released in April 2014, Eucalyptus has introduced new functionality for networking
support through a new Edge Networking Mode.

The main technical characteristics of the Eucalyptus platform as the following:

• Programming Language: Written mostly in C and Java
• Compatibility/Interoperability: Fully integrated with AWS
• Supported Hypervisors: vSphere, ESXi, KVM, any AWS-compatible clouds
• Identity Management: Role-Based Access Control mechanisms with Microsoft

Active Directory or LDAP systems
• Resource Usage Control: resource quotas for users and groups
• Networking: Basic support with four operating modes
• Monitoring: CloudWatch
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• Version/Release: 3.4.1 (Released on December 16, 2013)
• License: GPL v3.0

2.6.1.2 OpenNebula. In its early days OpenNebula was a research project at
the Universidad Complutense de Madrid. The first version of the platform was released
under an open source license in 2008 within the European Union’s Seventh Framework
Programme (FP7) project called RESERVOIR—Resources and Services Virtualization
without Barriers (2008–2011). Nowadays, OpenNebula (version 4.4 Retina released
December 3, 2013) is a feature-rich platform used mostly for the deployment of pri-
vate clouds, but is also capable of interfacing with other systems to work as hybrid or
public cloud environment.

OpenNebula is conceptually organized in a three-layered architecture [31]. At the
top, the Tools layer comprises higher level functions, such as cloud-level VM scheduling,
providing CLI and GUI access for both users and administrators, managing and sup-
porting multi-tier services, elasticity and admission control, and exposing interfaces to
external clouds through AWS and OCCI. At the Core layer, vital functions are performed,
such as accounting, authorization, and authentication, as well as resource management
for computing, storage, networking, and VM images. Also at this layer, the platform
implements resource monitoring by retrieving information available from hypervisors to
gather updated status of VMs and manages federations, enabling access to remote cloud
infrastructures, which can be either partner infrastructures governed by a similar platform
or public cloud providers. At the bottom, the Drivers layer implements infrastructure and
cloud drivers to provide an abstraction to communicate with the underlying devices or
to enable access to remote cloud providers.

OpenNebula allows administrators to set up multiple zones and create federated VIs
considering different federation paradigms (e.g., cloud aggregation, bursting, or bro-
kering), in which case each zone operates their network configurations independently.
From the user’s viewpoint, setting up a network in the OpenNebula platform is restricted
to the creation of a DHCP IP range that will be automatically configured in each VM.
The administrator can change the way VMs connect to the physical ports of the host
machine using one of many options, that is, VLAN 802.1Q to allow isolation, EBtables
and Open vSwitch to permit implementation of traffic filtering, and VMware VLANs,
which isolate VMs running over VMware hypervisor. It is also possible to deploy Vir-
tual Routers from OpenNebula’s Marketplace to work as an actual router, DHCP, or DNS
server.

The main technical characteristics of the OpenNebula platform as the following:

• Programming Language: C++ (Integration APIs in Ruby, JAVA, and Python)
• Compatibility/Interoperability: AWS, OCCI, and XML-RPC API
• Supported Hypervisors: KVM, Xen, and VMWare
• Identity Management: Sunstone, EC2, OCCI, SSH, x509 certificates, and LDAP
• Resource Usage Control: resource quotas for users and groups
• Networking: IP/DHPC ranges customizable by users, many options for adminis-

trator require manual configuration
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• Monitoring: Internal, gathers information from hypervisors
• Version/Release: 3.4.1 (Released on December 3, 2013)
• License: Apache v2.0

2.6.1.3 OpenStack. OpenStack started as a joint project between Rackspace
Hosting and NASA around mid 2010, aiming to provide a cloud-software solution to
run over commodity hardware [19]. Right after the first official release (beginning of
2011), OpenStack was quickly adopted and packed within many Linux distributions,
such as Ubuntu, Debian, and Red Hat. Today, it is the cloud management platform with
the most active community counting on more than 13,000 registered people from over
130 countries. OpenStack is currently developed in nine parallel core projects (plus four
incubated) all coordinated by the OpenStack Foundation, which is embodied by 9,500
individuals and 850 different organizations.

The OpenStack architecture consists of a myriad of interconnected components,
each one developed under a separate project, to deliver a complete cloud infrastructure
management solution. Initially, only two components were present, Compute (Nova) and
Object Storage (Swift), which respectively provide functionality for handling VMs and a
scalable redundant object storage system. Adopting an incremental approach, incubated/
community projects were gradually included in the core architecture, such as Dashboard
(Horizon) to provide administration GUI access, Identity Service (Keystone) to support
a central directory of users mapped to services, and Image Service (Glance) to allow
discovery, registration, and delivery of disk and server images. The current release of
OpenStack (Havana) includes advanced network configuration with Neutron, persistent
block-level storage with Cinder, a single point of contact for billing systems through
Ceilometer, and a service to orchestrate multiple composite cloud applications via Heat.

As for networking, a community project called Quantum started in April 2011 and
was targeted to further develop the networking support of OpenStack by employing VN
overlays in a Connectivity as a Service perspective. From release Folsom on, Quantum
was added as a core project and renamed Neutron. Currently, this component lets admin-
istrators to employ from basic networking configuration of IP addresses, allowing both
dedicated static address assignment and DHCP, to complex configuration with software-
defined networking (SDN) technology like OpenFlow. Moreover, Neutron allows the
addition of plug-ins to introduce more complex functionality to the platform, such as
quality of service, intrusion detection systems, load balancing, firewalls, and virtual
private networks.

• Programming Language: Python
• Compatibility/Interoperability: Nova and Swift are feature-wise compatible to

EC2 and S3 (applications need to be adapted though), OCCI support (under
development)

• Supported Hypervisors: QEMU/KVM over libvirt (fully supported), VMware and
XenAPI (partially supported), many others at nonstable development stages

• Identity Management: Local database, EC2/S3, RBAC, token-based, SSL, x509
or PKI certificates, and LDAP
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• Resource Usage Control: configurable quotas per user (tenant) defined by each
project

• Networking: several options via Neutron component, extensible with plug-ins
• Monitoring: simple customizable dashboard relies on information provided by

other components
• Version/Release: Havana (Released on October 17, 2013)
• License: Apache v2.0

2.6.1.4 CloudStack. CloudStack started as a project from a startup company
called VMOps in 2008, later renamed Cloud.com, and was first released as open source
in mid 2010. After Cloud.com was acquired by Citrix, CloudStack was relicensed to
Apache 2.0 and incubated by the Apache Software Foundation in April 2012. Ever since,
the project has developed a powerful cloud platform to orchestrate resources in highly
distributed environments for both private and public cloud deployments [21].

CloudStack deployments are organized into two basic building blocks, a Manage-
ment Server and a Cloud Infrastructure. The Management Server is a central point of
configuration for the cloud (these servers might be clustered for reliability reasons). It
provides a Web user interface and API access, manages the assignment of guest VMs to
hosts, allocates public and private IP addresses to particular accounts, manages images,
among other tasks. A Cloud infrastructure comprises distributed Zones (typically, data
centers) hierarchically organized into Pods, Clusters, Hosts, Primary and Secondary Stor-
age. A CloudStack Cloud Infrastructure may also optionally include Regions (perhaps
geographically distributed), to aggregate multiple Zones, and each Region is controlled
by a different set of Management Servers, turning the platform into a highly distributed
and reliable system. Moreover, a separate Python tool called CloudMonkey is available
to provide CLI and shell environments for interacting with CloudStack-based clouds.

CloudStack offers two types of networking configurations: (1) Basic, which is an
AWS-style networking providing a single network where guest isolation can be achieved
through layer 3 means, such as security groups and (2) Advanced, where more sophis-
ticated network topologies can be created. CloudStack also offers a variety of NaaS
features, such as creation of VPNs, firewalls, and load balancers. Moreover, this tool
provides the ability to create a Virtual Private Cloud, which is a private, isolated part of
CloudStack that can have its own VN topology. VMs in this VN can have any private
addresses since they are completely isolated from others.

• Programming Language: Mostly Java
• Compatibility/Interoperability: CloudStack REST API (XML or JSON)
• Supported Hypervisors: XenServer/XCP, KVM, and/or VMware ESXi with

vSphere
• Identity Management: Internal or LDAP
• Resource Usage Control: Usage server separately installed provides records for

billing, resource limits per project
• Networking: two operating modes, several networking as a service options in

advanced configurations
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• Monitoring: some performance indicators available through the API are displayed
to users and administrators

• Version/Release: 4.2.0 (Released on October 1, 2013)
• License: Apache v2.0

2.6.2 Specific Tools and Libraries

The following describes some tools and libraries mainly designed to deal with the diver-
sity of technologies involved in cloud virtualization. Unlike cloud platforms, these tools
do not intend to offer a complete solution for cloud providers. Nevertheless, they play a
key role in integration and allow applications to be written in a more generic manner in
terms of virtual resource management.

2.6.2.1 Libcloud. Libcloud is a client Python library for interacting with the
most popular cloud management platforms [32]. This library originally started being
developed within Cloudkick (extinct cloud monitoring software project, now part of
Rackspace) and today is an independent free software project licensed under the Apache
License 2.0. The main idea behind Libcloud is to create a programming environment
to facilitate developers on the task of building products that can be ported across a wide
range of cloud environments. Therefore, much of the library is about providing a long list
of drivers to communicate with different cloud platforms. Currently, Libcloud supports
more than 26 different providers, including Amazon’s AWS, OpenStack, OpenNebula,
and Eucalyptus, just to mention a few.

Moreover, this library also provides a unified Python API, offering a set of com-
mon operations to be mapped to the appropriate calls to the remote cloud system. These
operations are divided into four abstractions: (1) Compute, which enables operations
for handling VMs (e.g., list/create/reboot/destroy VMs) and its extension Block Stor-
age to manage volumes attached to VMs (e.g., create/destroy volumes, attach volume
to VM); (2) Load Balancer, which includes operations for the management of load bal-
ancers as a service (e.g., create/list members, attach/detach member or compute node)
and is available in some providers; (3) Object Storage, which offers operations for creat-
ing an environment for handling data objects in a cloud (list/create/delete containers or
objects, upload/download/stream object) and its extension for CDNs to assist providers
that support these operations (e.g., enable CDN container or object, get CDN container
or object URL); and (4) Domain Name System (DNS), which allows management oper-
ations for DNS as a service (e.g., list zones or records, create/update zone or record) in
providers that support it, such as Rackspace Cloud DNS.

2.6.2.2 Deltacloud. Deltacloud follows a very similar philosophy as compared
to Libcloud. It is also an Apache Software Foundation project—left incubation in
October 2011 and is now a top-level project—and is similarly targeted to provide an inter-
mediary layer to let applications communicate with several different cloud management
platforms. Nevertheless, instead of providing a programming environment through a spe-
cific programming language, Deltacloud enables management of resources in different
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clouds by the use of one of three supported RESTful APIs [33]: (1) Deltacloud classic,
(2) DMTF CIMI, (3) Amazon’s EC2.

Deltacloud implements drivers for more than 20 different providers and offers sev-
eral operations divided into two main abstractions: (1) Compute Driver, which includes
operations for managing VMs, such as create/start/stop/reboot/destroy VM instances, list
all/get details about hardware profiles, realms, images, and VM instances; and (2) Stor-
age Driver, providing operations similar to Amazon S3 to manage data objects stored in
clouds, such as create/update/delete buckets (analogous to folders), create/update/delete
blobs (analogous to data files), and read/write blobs data and attributes.

2.6.2.3 Libvirt. Libvirt is a toolkit for interacting with multiple virtualization
providers/hypervisors to manage virtual compute, storage, and networking resources.
It is a free collection of software available under GNU LGPL and is not particularly
targeted to cloud systems. Nevertheless, Libvirt has shown to be very useful to handle
low level virtualization operations and is actually used under the hood by cloud platforms
like OpenStack to interface with some hypervisors. Libvirt supports several hypervisors
(e.g., KVM/QEMU, Xen, VirtualBox, and VMware), creation of VNs (e.g., bridging
or NAT), and storage on IDE, SCSI, and USB disks and LVM, iSCSI, and NFS file
systems. It also provides remote management using TLS encryption, x509 certificates,
and authentication through Kerberos or SASL.

Libvirt provides a C/C++ API with bindings to several other languages, such as
Python, Java, PHP, Ruby, and C#. This API includes operations for managing virtual
resources as well as retrieving information and capabilities from physical hosts and
hypervisors. Virtual resource management operations are divided into three abstractions:
(1) Domains, which are common VM-related operations, such as create, start, stop, and
migrate; (2) Storage, for managing block storage volumes or pools; and (3) Network,
which includes operations such as, creating bridges, connecting VMs to these bridges,
enabling NAT and DHCP. Note that network operations are all performed within the
scope of a single physical host, that is, it is not possible to connect two VMs in separate
hosts to the same bridged network, for example.

2.7 CHALLENGES

Because virtualization management in the cloud is still in its infant days, important
challenges are in place. In this section, we list key challenges that can guide future devel-
opments in the virtualization management area. We also mention some ongoing research
in the field.

2.7.1 Scalability

Although the benefits of virtualization enables the cloud model, from the manage-
ment perspective, virtualization impacts the scalability of management solutions. The
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transition from the traditional management of physical infrastructures to virtual one is not
smooth in terms of scale because few physical devices can host a much larger number of
virtual device, each one requiring management actions. The number of management ele-
ments immediately explodes because such number not only duplicates but is proportional
to the number of virtual devices each physical one supports. Traditional management
applications have not been conceived to support a so drastic increase in the number of
elements, and as a consequence, such solutions do not scale.

Novel management approaches need to be considered, or traditional approaches
need to be adapted (if possible) to the cloud context and scale. The problem is also exacer-
bated because the managed environments (i.e., clouds) are much more dynamic, having
new elements created very quickly, while older elements can be destroyed frequently
too. Virtual servers can go up and down (even forever) quite fast, which is unusual for
traditional management solutions. Adaptation is then required not only because of the
new scales of cloud environments but also because they are much more dynamic than
traditional IT infrastructures. Very distributed solutions have to be investigated, like the
usage of peer-to-peer for management [34]. Autonomic management also becomes an
alternative, in order to reduce human intervention as much as possible [35].

2.7.2 Monitoring

Monitoring is a permanent challenging task in the cloud because of the large number
of resources in production cloud data centers. Centralized monitoring approaches suffer
from low scalability and resilience. Cooperative monitoring [36] and gossiping [37] aim
to overcome these limitations by enabling distributed and robust monitoring solutions for
large scale environments. The goal is to minimize the negative impact of management
traffic on the performance of the cloud. At the same time, finding a scalable solution for
aggregating relevant monitoring information without hurting accuracy is a challenge that
needs to be tackled by monitoring tools designed specifically for cloud data centers.

Usually, monitoring generates more management data than other activities. With
virtualization in the cloud, and the aforementioned scalability issues, the overwhelm-
ing amount of monitoring data can hinder proper observation of the cloud environment.
As such, monitoring considering big data techniques may be a possible path to follow.
Compressing of data structures [38], for example, can be convenient to find a reasonable
balance between amount of data and analysis precision.

2.7.3 Management Views

Since cloud computing creates an environment with different actors with particular man-
agement roles, such different actors need different management views. Operators of a
cloud infrastructure need to have a broader, possibly complete view of the physical infras-
tructure, but should be prevented of accessing management information that are solely
related to a tenant application, because of privacy issues. Cloud tenants also need to have
access to management information related to their rented VI, but must also be isolated
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from accessing management information of both other tenants and physical infrastructure
operator.

Different management views are already supported in traditional solutions, but in
the case of cloud environments, trust relationships between cloud provider and tenants
become more apparent. Since the management software runs in the cloud itself, tenants
accessing their management view need to trust the cloud provider assuming that sensi-
tive information is not available to the cloud operator. Tenants can also employ their own
management system operating at his/her local IT infrastructure. In this case, manage-
ment interfaces and protocols that connect the tenant management solution and remote
managed virtual elements need to be present.

2.7.4 Energy Efficiency

Efficient energy management aims to reduce the operational cost of cloud infrastructures.
A challenge in optimal energy consumption is to design energy-proportional data center
architectures, where energy consumption is determined by server and network utilization
[39, 40]. ElasticTree [39], for example, attempts to achieve energy proportionality by
dynamically powering off switches and links. In this respect, cloud network virtualization
can further contribute to reduce power consumption through network consolidation (e.g.,
through VN migration [41]).

Minimizing energy consumption, however, usually comes with the price of perfor-
mance degradation. Energy efficiency and performance is often conflicting, represent-
ing a tradeoff. Thus, designing energy-proportional data center architectures factoring
in cloud virtualization, and finding good balance between energy consumption and
performance are interesting research questions.

2.7.5 Fault Management

Detection and handling of failures are requirements of any cloud, especially because in
cloud environments failures of a single physical resource can potentially affect multiple
customers’ virtual resources. Because failures also tend to propagate, the damage caused
by a faulty cloud physical device impacts much more severely the cloud business. In
additional, the lack of faults in physical devices is not always a synonym that there is not
faulty virtual devices. As such, the traditional fault management needs to be expanded
to consider faulty virtual devices too.

Most existing architectures rely on reactive failure handing approaches. One draw-
back is the potentially long response time, which can negatively impact application
performance. Ideally, fault management should be implemented in a proactive manner,
where the management system predicts the occurrence of failures and acts before they
occur. In practice, proactive fault management is often ensured by means of redundancy,
for example, provisioning backup paths. As such, offering high reliability without incur-
ring excessive costs or energy consumption is a problem requiring further exploration.
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2.7.6 Security

Security issues are challenging in the context of cloud virtualization because of the
complex interactions between tenants and cloud providers. Although the virtualization
of both servers and networks can improve security (e.g., limiting information leak-
age, avoiding the existence of side channels, and minimizing performance interference
attacks), today’s virtualization technologies are still in their infancy in terms of secu-
rity. In particular, various vulnerabilities in server virtualization technologies, such as
VMWare [42], Xen [43], and Microsoft Virtual PC and Virtual Server [44] have been
revealed in the literature. Similar vulnerabilities are likely to occur in programmable
network components too. Thus, not only network virtualization techniques give no guar-
anteed protection from existing attacks and threats to physical and VNs, but also lead to
new security vulnerabilities. For example, an attack against a VM may lead to an attack
against a hypervisor of a physical server hosting the VM, subsequent attacks against
other VMs hosted on that server, and eventually, all VNs sharing that server [45]. This
raises the issue of designing secure virtualization architectures immune to these security
vulnerabilities.

In addition to mitigating security vulnerabilities related to virtualization technolo-
gies, there is a need to provide monitoring and auditing infrastructures, in order to detect
malicious activities from both tenants and cloud providers. It is known that data center
network traffic exhibits different characteristics than the traffic of traditional data net-
works [46]. Thus, appropriate mechanisms may be required to detect network anomalies.
On the other hand, auditability in cloud virtualization should be mutual between tenants
and cloud providers to prevent malicious behaviors from either party. However, there is
often an overhead associated with such infrastructures, especially in large-scale clouds.
In Ref. [47], the authors showed that it is a challenge to audit Web services in cloud
environments without deteriorating application performance. Much work remains to be
done on designing scalable and efficient mechanisms for monitoring and auditing cloud
virtualization.

2.7.7 Cloud Federations

The federation of virtualized infrastructures from multiple cloud providers enables
access to larger scale infrastructures. This is already happening with virtualized net-
work testbeds, allowing researchers to conduct realistic network experiments at large
scale, which would not have been possible otherwise. ProtoGENI [48] is an example of
federation that allows cooperation among multiple organizations. However, guarantee-
ing predictable performance for participating entities through SLA enforcement has not
been properly addressed by current solutions and remains an open issue.

Cloud federations cannot be considered a wide reality in the cloud marketplace.
Competition possibly prevents cloud providers to cooperate among one another in feder-
ated environments, but the lack of proper technologies devoted to materialize federations
of clouds certainly does not improve the current situation either. As in other areas, solu-
tions to federate different resources already exist, but an integrated, global solution to
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support federating heterogeneous resources between heterogeneous cloud providers also
needs further investigation.

2.7.8 Standard Management Protocols and Information Models

The VR-MIB module [49] described a set of SNMP management variables for the man-
agement of physical routers with virtualization support. However, it did not progress
in the IETF standardization track. More recently, the VMM-MIB module [50] is pro-
gressing, but it is limited to manage virtualization of servers (network devices are not
explicitly considered); VMM-MIB is also devoted mainly for monitoring, and configura-
tion is weakly supported. In general, the situation of SNMP-based management solutions
for cloud environments are still weak.

Other existing management protocols are considered. NETCONF [51], for example,
would be more appropriate for configuration aspects, while NetFlow/IPFIX [52] could be
expanded for virtual router monitoring. The WS-Management [53] suite, in turn, is more
appropriate for server management. A myriad of proprietary solutions is also present in
the market, but the large diversity of management interfaces and protocols forces cloud
operators to deal with too many different technologies. Although a protocol that fits every
need is unlikely to exist or be largely accepted/adopted, there is a clear lack in this area
today, which represents an interesting opportunity for research and standardization.
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3.1 INTRODUCTION

Cloud computing is experiencing an extraordinary growth [1–5]. Besides, virtualiza-
tion technologies are widely adopted by companies to manage flexible computing
environments and to run isolated virtual environments for each customer [6]. Virtual-
ization also provides the means to accomplish efficient allocation of resources and to
improve management, reducing operating costs, improving application performance and
increasing reliability. Virtualization logically slices physical resources into virtual envi-
ronments, which have the illusion of accessing the entire available physical resource.
Hence, the physical machine resources are shared between multiple VMs, which run
their own isolated environment with an operating system and applications. By decoupling
VMs from their underlying physical realization, virtualization allows flexible allocation
of VMs over physical resources. To this end, virtualization introduces a new manage-
ment primitive: VM migration [7]. VM migration is the relocation of virtual machines
over the underlying physical machines, even if the VM is still running.
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The VM migration primitive enhances user mobility, load balancing, fault manage-
ment, and system management [8]. The migration that occurs without the interruption of
services running is called live migration.

Virtual machine migration is similar to the process migration, but it migrates a com-
plete operating system and its applications. Process migration moves a running process
from one machine to another. Process migration is very difficult, or even impossible
to accomplish, because processes are strongly bound to operating systems, by means of
open sockets, pointers, file descriptors and other resources [8]. Unlike process migration,
VM migration moves the entire operating system along with all the running processes.
Migrating an entire operating system with its applications is a more manageable proce-
dure, and is facilitated by the hypervisor, which exposes an interface between physical
machine and the VM operating system. The details of what is happening inside the VM
can be ignored during migration. The VM migration also has challenges inherent secu-
rity to transfer the state of a VM across physical machines and to establish a trustworthy
computing environment on the destination physical machine.

In the context of virtualization, it is necessary to ensure that virtual environments
are secure and trustworthy. Thus, the hypervisor, which is a software layer responsi-
ble for creating the hardware abstraction to the virtual environment, must implement
a trusted computing base (TCB) [9, 10]. Indeed, the TCB is divided into two parts:
the hypervisor and an administrative domain, see (Figure 3.1). The hypervisor controls
the hardware directly and executes at the highest privilege level of the processor. The
administrative domain is a privileged VM that controls and monitors other VMs. The
administrative domain have privileges to start and stop VMs, to run guest VM config-
uration, to use and to monitor physical resources, and to run I/O operation directly on
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Figure 3.1. General Xen-based virtualization architecture. The hachured areas, administra-

tive domain and hypervisor, indicate the most sensitive software modules because they run

on highest privilege level.
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the physical devices for the virtualized domains. This common architecture for virtu-
alized systems creates, however, security challenges, such as lack of privacy of guest
VMs. Administrative domain runs in a privileged level to inspect the state of guest VMs,
such as the contents of its registers into memory and vCPUs. This privilege can be
usurped by attacks on the software stack in the administrative domain and by malicious
system administrators [11]. Therefore, it is necessary to establish a trusted computing
base (TCB) on the hypervisor and on the administrative domain to ensure the security of
virtualized environments.

Specific relevance is given to a hybrid virtualization system based on Xen and Open-
Flow platforms, called XenFlow [12], which focuses on router virtualization, especially
on the virtual router migration without packet losses. XenFlow provides migration of vir-
tual topologies over the physical realization, performing both migration of virtual routers
to another physical host and remapping virtual links on one or more physical links. This
feature allows to extent virtual-router migration when compared to the other proposals
in literature [13–15], because routes are remapped to any destination physical node by
means of OpenFlow network.

This chapter presents the major VM migration techniques. This work highlights
the benefits, costs and challenges for the realization of the live migration of VMs. We
highlight I/O virtualization techniques and discuss how to migrate VM even if they
directly access I/O devices or use I/O virtualization techniques. The chapter sets out the
main security requirements to be ensured during the migration of virtual environments.
Then, we examine various schemes of VM migration and discuss research directions
in virtualization security. The ultimate goal is to provide a deep understanding of the
developments and the future directions regarding virtualized environments migration
primitive.

The rest of this chapter is organized as follows. Section 3.2 sets a background for
understanding VM migration and its challenges. Virtual network migration is explained
on Section 3.3, in which we also present a proposal for migrating virtual routers without
packet losses. The main security requirements and proposals for virtualized environments
are identified on Section 3.4. Future research directions and open challenges are dis-
cussed in Section 3.5. Section 3.6 concludes this chapter.

3.2 VM MIGRATION

The procedure of migrating the operating system and applications from a physical
machine to another physical machine is an important feature in a virtualized environ-
ment. VM migrations encompass four main resource transferring: processor, memory,
network, and storage [15]. During the migration process, the VM is paused on source
host and is resumed on the destination host only when all resources have already been
migrated and configured into the new host. The VM stays offline during a period of time,
called downtime, which corresponds to time when the VM is paused until its resumption
at the destination. The downtime period varies according to the resources available to the
VM, to the workload submitted to VM, and to the migration technique: offline or live
migration.
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3.2.1 Offline and Live Migration

Offline migration transfers the VM to destination physical host while the VM is off.
The offline migration introduces a great delay in services of VM, but it is the easiest
to accomplish because it does not require the VM state preservation. As the VM is off,
there is no network connections to preserve, and it is neither necessary to transfer the
processor state nor the RAM content. The offline migration procedure just comprises
shutting down and restarting the VM into another location.

The storage migration, or disk migration, is accomplished by standard data transfer
tools and is the only network traffic generated. It takes a long time and a lot of network
bandwidth to transfer a whole disk. As a matter of fact, VM migration is usually accom-
plished within a LAN with a network-attached storage (NAS) device that allows a VM
to access its disk from anywhere in the network, which makes unnecessary to migrate
the disk.

Live migration transfers the VM while it still runs. The live migration should not
cause a perceptible downtime to the VM user. Assuming the source and destination phys-
ical machines in the same LAN with a NAS, live migration only should transfer the state
of the processor, the state of the memory and network connections.

The processor live migration consists of creating a virtual CPU (vCPU) for the VM at
the destination and copying the vCPU state from source to destination physical machines.
Nevertheless, this task becomes complex when the source and the destination host pro-
cessors are different. Migrations between different processors of the same manufacturer
require the same instruction sets to work properly. In these cases, as a consequence, it is
necessary to limit the instruction set of the virtual CPU to a common instructions set of
both processors. This operation is called CPU mask.

The network live migration procedure should maintain the Internet Protocol (IP)
address of the source VM to preserve all open transmission control protocol (TCP)
connections. To keep the same IP address at the destination, it is very simple when the
source and destination physical machines are in the same local area network (LAN).
In this case, the destination physical machine generates gratuitous Address Resolution
Protocol (ARP) replies to advertise the new physical location of the VM, that is, only
the advertisement of the medium access control (MAC) address of the migrated VM is
required. Otherwise, when the source and destination machines are not in the same LAN,
network redirection mechanisms would be required due to the localization semantic of
the IP address.

Live memory migration is the transfer of memory contents from the source to the
destination host taking into account memory changes during the migration procedure,
called retransmission of dirty pages. Venkat [16] divided the memory migration into
three phases:

1. Push phase: While the source VM is running, its memory pages are transferred to
the destination VM. If a page is modified after being transferred, it is necessary
to resend this page to avoid failures.

2. Stop-and-copy phase: As the name suggests, the source VM is stopped, then the
memory pages are transferred.
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3. Pull phase: The destination VM is started and generates a page fault when it
tries to access a page that was not copied yet. This fault requests the page to be
transferred from the source to the destination.

Two live migration strategies [16]: pre-copy and post-copy, only use a combination of
two of the above-mentioned phases.

The pre-copy live migration strategy applies the phases: push and stop-and-copy.
First, an empty VM is created at the destination physical host and the migrating VM
memory pages are copied to the VM at destination physical machine, while the VM
still runs on the source host. During this process, the running VM rewrite the memory
pages which are resent to destination host. This push phase ends when one of the two
conditions are reached: (1) The number of dirty pages per iteration are small enough to
cause a short downtime period and (2) The push phase reaches a maximum number of
iterations. After the push phase, it comes the stop-and-copy phase, in which the VM is
suspended at the source host, the remaining dirty pages are transferred to the destination
host, and the VM is resumed on the destination host. The downtime varies according the
workload from tens or hundreds of milliseconds to a few seconds [15]. It is important to
notice that determining when to stop the push phase and start the stop-and-copy phase
is not trivial. Stopping the push phase too soon can result in longer downtime, as more
data will be transferred after suspending the VM. On the other hand, stopping too late
results in longer total migration time and network bandwidth occupation, as more time
will be spent re-sending dirty pages. Therefore, there is a trade-off between total migra-
tion time and downtime. The pre-copy procedure requires the verification of memory
pages to send them to the destination through the network. These CPU and bandwidth
consumption should be monitored to minimize service degradation. Xen uses pre-copy
as its live migration strategy [14].

The post-copy live migration strategy use the phase stop-and-copy first and then the
pull phase. First, the VM is suspended at the source and few VM execution states are
transferred to the destination host, namely CPU registers and non-paged memory. The
VM is resumed at the destination despite the absence of many memory pages, which still
are at the source host. The source host begins to send the remaining memory pages. The
destination host generates faulty memory accesses when the VM tries to access memory
pages that were not transferred yet. These faulty memory accesses are sent back to the
source host, which prioritizes the requested memory pages to send. This process can
degrade memory intensive application performance, but cause minimal downtime. There
are some ways of handling page fetching in order to increase performance, such as the
following:

• Active pushing: the pages are proactively pushed from the source to the destination.
Page faults are handled with priority over noncritical pages.

• Pre-paging: an estimation of memory access pattern is generated to allow the
active pushing of the pages that are most likely to generate faults.

Table 3.1 compares offline and live migrations.
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3.2.2 I/O Virtualization and Migration of Pass-Through Devices

Input/Output (I/O) virtualization of network devices is challenging because current net-
work interface controllers are unable to distinguish which specific VM is writing to or
reading from the shared memory space. Therefore, a controller or a hypervisor must
redirect (multiplexing or demultiplexing) data to/from specific memory area in an admin-
istrative domain from/to different VM shared memory areas. This procedure negatively
impacts the performance, since it introduces extra memory copies, it centralizes the
interruption handling at administrative domain processing time slice, and it demands
execution of software instructions for multiplexing data in administrative domain, such
as virtual bridges, as shown in Figure 3.2a. Thus, a technique to improve I/O device per-
formance is the use of pass-through technologies to avoid the centralization and memory
copies by providing direct I/O procedures to/from the virtual domain from/to the physical
device. Although the pass-through technology improves I/O virtualization performance,
the pass-through device belongs to a single VM and cannot be shared by other VMs, as
shown in Figure 3.2b.

The main technique to provide direct I/O virtualization is single root I/O virtu-
alization (SR-IOV) for Peripheral Component Interconnect Express (PCIe) [17]. The
specification SR-IOV stands for how PCIe devices can share a single root I/O device
with multiple VMs. Indeed, a SR-IOV enabled hardware provides several PCIe virtual
functions to the hypervisor, which can be assigned directly to VMs as pass-through
devices, as shown in Figure 3.3a. Besides SR-IOV, Intel also proposes VM Device
Queues (VMDq) [4] for network I/O virtualization. VMDq technology enabled network
device has separated queues for VMs. The network interface classifies received packets
to the queue of a VM and fairly sends packets of all queues in round robin manner. As
VMDq applies a paravirtualized device driver, it uses shared pages to avoid packet copy-
ing between the virtual network interface in the VM and the physical network queue. The

Administrative
domain

Virtual switch
Classificate and

copy packets to

shared memory

Native

drivers

Net

Iface 1

Net

Iface 2

I/O operations Hypervisor

Virtual

Iface 1

Virtual

Iface 2

Paravirtualized

drivers

Hardware

Domain U

(a)

Native

driver
Native

driver

Net

Iface 1

Net

Iface 2

Hypervisor
Direct IO

Virtual

Iface 1

Virtual

Iface 2

Hardware

Domain U

(b)

Figure 3.2. I/O virtualization modes. (a) Network I/O virtualization with paravirtualized drivers.

Administrative domain centralizes all I/O operations. (b) Direct I/O network virtualization.

A network interface card is directly connected to virtual machine.
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Administrative
domain
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Iface 1
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drivers

Queue 1 Queue 1
Net

Iface 1

I/O operations

Virtual
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Hypervisor
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Figure 3.3. Hardware-assisted network I/O virtualization modes. (a) Network I/O virtualization

with SR-IOV. Virtual machines directly access NIC virtual functions. (b) Network I/O virtualization

with VMDq. Virtual machines access device queues through a paravirtualized driver.

VM benefits from faster classification and a paravirtualized device driver, while SR-IOV
technology exposes a unique device interface to the VM. The implementation of VMDq
paravirtualized driver assures better performance than paravirtualized network drivers.
Besides, VMDq paravirtualized driver support live migration in a similar way than when
using common paravirtualized drivers [4], illustrated in Figure 3.3b.

VMWare and Intel propose Network Plug-In Architecture (NPA/NPIA) [4] to live
migrate pass-through devices. The proposal creates a new driver for VM, which allows
the online switching between SR-IOV and paravirtualized devices. This technology
designs two new software modules: a kernel shell and a plug-in for the VM. Kernel shell
acts as an intermediate layer to manage pass-through devices, which implements a device
driver for the SR-IOV device. Plug-in, in its turns, implements virtual functions of the
device, as a device driver, but interfaces with kernel shell instead of directly controlling
the device, exposing a virtualized network interface card to the virtual domain. The kernel
shell provides a hardware abstraction layer and the plug-in implements hardware com-
munication through the kernel shell. Plug-in may be plugged or unplugged on the fly. To
reduce migration downtime, while performing plugging/unplugging actions, the hyper-
visor employs an emulated network interface. This technology trivially supports live
migration because a virtual network interface can be unplugged while running the VM.
On the other hand, a drawback of the this approach is the need for rewriting all the
network device drivers, which may limit its adoption [4].

Pass-through I/O virtualization technology improves virtualized device performance
by making a tight coupling between the VM and the hardware device. Thus, VM live
migration becomes more difficult because pass-through devices are totally controlled
by VM and the hypervisor does not access the internal states of the device. Indeed,
in pass-through I/O virtualization the hypervisor does not interfere into the communi-
cation between the physical device and the VM. Therefore, the internal states of the
physical device must be migrated with VM, in order to accomplish a successful live VM
migration [4].



“9780471697558c03” — 2015/3/20 — 11:06 — page 57 — #9

VM MIGRATION 57

A way to migrate VM with pass-through devices is to let user stop everything using
a pass-through device, and then migrate and restore the VM into the destination physical
host. Although this method works, it is not generic enough to fit all operating systems, it
involves a greater downtime, it needs to be inside the VM, and it needs a lot of interven-
tion of the user [18]. A generic solution to suspend the VM before migrating is Advanced
Configuration and Power Interface (ACPI)1 S3 [18]. Sleep state S3 stands for the sleep or
suspend state of a machine, in which the operating system freezes all process, suspends
all I/O devices, and then goes to the sleep state, but the RAM remains powered. It is
worth noting that in sleep state all context is lost, except for the system volatile memory.
The major drawback of this approach is that whole system is affected, inducing a long
service downtime besides disabling the target device.

Migration of a pass-through I/O device may also be accomplished by the PCI hot-
plug mechanism [18]. Migrating a VM using PCI hotplug work as follows. Before live
migrating, in the source host, the entity responsible for the migration triggers an event
of hot unplugging the virtual PCI pass-through device against the guest VM. Then, the
migrating VM responds to the hot unplugging event, and stops using the device after
unloading its driver. Without running any pass-through device, the VM can be safely
live migrated to the destination host. After the live migration, in the destination host, it
triggers an event of hot plugging a virtual PCI pass-through device against the VM. Even-
tually, the guest VM loads the appropriate driver and starts using the new pass-through
device. As the guest reinitializes a new device, that has nothing to do with the old one, it
should reconfigure it as the previous one.

CompSC proposes a live migration mechanism for VM using pass-through I/O vir-
tualization [4]. The key idea of CompSC is to change as less as possible the code of
drivers and prevent the hypervisor to have any specific knowledge about the migratig
device. The hypervisor examines the list of registers of the network device and saves
them into the sharedpt memory area. The hypervisor does not know the list of regis-
ters a priori. For this reason, the hypervisor gets this list of registers also from the shared
memory area, where the device driver places it during the boot process. The device driver
completes the state transferring between hosts. Every time before the driver releases a
read lock, it stores enough information about the latest operations or set of operations
to achieve a successful resume. In the resume procedure, the device triggers the target
hardware using the same saved state information. The proposal also provides a layer of
self-emulation, which can be placed in the hypervisor or in the device driver. Placing
the self-emulation layer in hypervisor, the hypervisor intercepts all accesses to emulated
registers and returns the correct value. A layer of self-emulation in the driver processes
the fetched value and corrects it after the access. A layer of self-emulation in hypervisor
requires only the list of emulated registers and requires few code changes to the driver, but
the performance degrades due to interception of I/O operations. A layer of self-emulation
in device driver requires less overhead, but produces more code changes [4]. Table 3.2
summarizes the migration proposals of main pass-through I/O virtualization techniques.

1Advanced Configuration and Power Interface (ACPI) specification is an open standard for device configura-
tion and power management by the operating system. This standard replaces some other standards bringing
power management under the control of the operating system instead of BIOS control as stated by the replaced
standards.
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3.3 VIRTUAL NETWORK MIGRATION WITHOUT PACKET LOSS

Network virtualization is the technique that decouples network functions from their phys-
ical substrate, enabling virtual networks to run logically separated and over the a physical
network topology [19]. The logical separation enables virtual network migration, which
allows online physical topology changes avoiding reconfiguration, traffic disruption and
long convergence delays [13]. The virtual network migration consists of migrating the
virtual network element, also called virtual router, to another physical location, without
packet losses or losing connectivity. The key idea to avoid packet losses is the separation
of control and data planes, the former responsible for performing control operations, such
as running routing protocols and defining QoS parameters, and the latter responsible for
the packet forwarding [13, 14]. As the virtual router should always forward the traffic,
the data plane is copied to the physical host while the virtual router migrates. After the
migration, the data plane in source host is deactivated, so the virtual router completely
runs in the new location.

Both Wang et al. and Pisa et al. use plane separation paradigm to migrate virtual
routers without packet losses [13, 14]. They assume an external mechanism for link
migrations to preserve neighborhood after migration, such as maintaining the same set of
neighbors or tunneling. Pisa et al. assume all physical routers connect to the same local
area network (LAN) to facilitate link migration [14]. On the other hand, flow migration
on the OpenFlow platform is easy. Pisa et al. present an algorithm that is based on the
redefinition of a flow path in the OpenFlow network [14]. This proposal has zero packet
losses and low overhead of network control messages. Although, this migration proposal
is limited to OpenFlow switched networks, and it is not applicable to router virtualization
systems.

Mattos and Duarte present XenFlow [12], a hybrid network virtualization system
based on plane separation paradigm with Xen and OpenFlow platforms [20, 21] to both
migrate virtual routers and virtual links. VM act as the routers control plane running
routing protocols, and data planes of all virtual routers run centrally in the Xen adminis-
trative domain Domain 0. Physical machines have an OpenFlow switch to connect Xen
VMs to the physical network, and each Xen VM acts as generator of rules to these
switches. The remapping of the virtual topologies is orchestrated by a network con-
troller capable of acting on the OpenFlow switches and of triggering the migration of
VMs on any network node. Figure 3.4 presents this architecture. The architecture allows
to migrate virtual routers beyond a local area network, because routes are remapped to
any destination physical node by means of OpenFlow network. However, the architec-
ture forces all virtual networks to share the same data plane, violating the requirement of
isolation between virtual environments. Thus, XenFlow isolates virtual networks by two
mechanisms: Address space isolation among virtual networks, which ensures VMs only
access VMs that belong to the same virtual network; and virtual network resources shar-
ing isolation, which prevents virtual networks against using resources of other virtual
networks [22]. The system also offers quality of service through mapping parameters
of service-level agreements, defined as control plane directives, to parameters of the
data plane. It controls the basic resources of virtual networks: processing, memory, and
bandwidth, as those are the resources that can be locally controlled [23].
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The XenFlow routing function is performed by a flow table dynamically controlled
by POX, an OpenFlow network controller [24]. Migration of virtual routers, shown in
Figure 3.5, consists of three steps: migration of control plane, reconstruction of data
plane, and migration of virtual links. The control plane is migrated between two physi-
cal network nodes through the live-migration mechanism of conventional Xen VMs [15].
Then, the reconstruction of data plane is performed as follows. The virtual router sends
all routes to the Domain 0. When the virtual router detects a connection disruption
caused by the migration, it reconnects to the Domain 0 in new physical host and sends
all information about the routing and ARP tables. Upon receiving such information,
Domain 0 reconfigures the data plane according to the control plane of the migrated
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virtual router. After migration of the control plane and reconstruction of the data plane,
links are migrated. The links migration occurs in the OpenFlow switches instantiated in
Domain 0 and other OpenFlow hardware switches. Link migration creates a switched
path between the neighbors of the migrated virtual router to the physical host of vir-
tual router after migration. The migrated virtual router sends an ARP reply packet with
a predefined destination MAC address (AA:AA:AA:AA:AA:AA), which the network
controller captures and reconfigures the paths. This procedure updates the location of
a virtual router after the migration procedure, hence, the source physical host forward
packets until the migration is complete, which results in a migration primitive of virtual
routers without packet loss or interruption of packet-forwarding services.

XenFlow ensures the virtual router migration without packet loss, but the new
path in the underlying substrate may introduce a greater or a smaller delay when com-
pared to the original path. XenFlow does not control delay in forwarding nodes and
also the new path may comprise non-XenFlow nodes. Therefore, during virtual net-
work migration, packets may be out of order or may be received after a bigger delay
of the new path. We assume that this is not a constrain because transport protocols are
resilient to delay variation, as currently occurs due to changes in routing path or network
congestion.

3.4 SECURITY OF VIRTUAL ENVIRONMENTS

There are several vulnerabilities that are disclosed in the current implementation of live
migration of well know hypervisors, such as Xen and VMWare [25]. The biggest issue
is that transferred data is not encrypted during migration procedure. Kernel memory,
application state, sensitive data such as passwords and keys, and other migration data are
transferred clearly, resulting in no confidentiality. Other vulnerabilities are: no guarantees
that the VM is migrating to a trusted destination platform, no authentication and no autho-
rization of operations, no integrity guarantees of VM data, and bugs in the hypervisor and
migration module code that introduce security vulnerabilities. In this section, we argue
about the main security issues of machine virtualization, and we expose the main security
requirements for a secure virtualization platform. We focus on securing VM migration,
but we also highlight security issues that affect cloud computing environment based on
machine virtualization.

3.4.1 Requirements for a Secure Virtual Environment

A secure virtualization environment must ensure that processor, RAM, storage, and
network, the main resources of a VM, are invulnerable against other VMs or against
infrastructure attacks. Therefore, we establish six security requirements that summarize
the needs of a secure virtualization environment. We also highlight that a secure live
migration should provide confidentiality, to guarantee that any VM data are not accessed
by others while they are transferred from one host to another, and auditability, to secure
that sensitive data have not been exposed or damaged [26]. The six secure virtualization
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requirements are following: availability and isolation; integrity; confidentiality; access
control, authentication, and authorization; nonrepudiation; and replay resistance.

Availability and isolation stands for the fact that any VM should be neither capable to
access nor interfere other VMs. Even though several VMs share the same infrastructure,
one VM is not able to access other VMs data or change computing results [1]. Thus, a
secure hypervisor ensures strong isolation between running VMs, running each VM into
a protected domain [27]. It is worth noting that isolation is achieved with confidentiality,
integrity, and protection against denial of service.

Integrity aims that a virtual environment must provide the means to verify and prove
the integrity and, therefore, it must be possible to identify if its processing, memory, and
storage were modified. Attacks against integrity intend to modify information from vir-
tual environments or to modify running programs in a virtual environment. The migration
process should also be protected against integrity violation, because it clearly exposes
the VM memory through the network to attacks, such as man in the middle attack [28].
In addition, a hardware module can run cryptographic functions to perform integrity
verification and attestation. Attestation cryptographically ensures that a computing envi-
ronment is trustworthy and the running application are not compromised [27]. Attestation
may also assure that a remote environment is trustworthy because it has the same crypto-
graphic signature of an integer environment. Attestation is also important to assure that
after a VM migration, the destination machine is trustworthy and the migrated VM keeps
its integrity as its cryptographic signature remains the same of the one before migration.

VM atomicity ensures that only one instance of the VM runs at a time [10]. There-
fore, VM migration should neither add new VMs nor eliminate anyone. Thus, after
successful migration, the system removes the VM instance in source host, and in case
of migration failure, the system removes the VM instance in target host. The atomicity
is crucial to ensure the integrity of the infrastructure for disaster recovery and to avoid
generating duplicated copy of the same VM.

Confidentiality ensures that an attacker should not be able to intercept, to access or
to modify the content of data transfer during the migration of a virtual machine. There-
fore, system may use secure communication channel to transfer data between peer hosts.
Moreover, the peers of the secure communication channel should be able to negotiate
unique cryptographic keys and ensure that they are known only by the peers [10].

Access control, authentication, and authorization define that the system must ensure
that a VM migration is performed between two secure authenticated platforms, which
both are authorized to perform the migration, and there is no one else between them (man
in the middle). Authentication ensures the true identity of an entity, hence, other secu-
rity requirements depend on successful authentication. Authentication is a key feature
because other security requirements depend on the authentication such as authorization,
to distinguish legitimate and authorized from illegitimate participants based on authen-
tication. Authorization ensures that only authorized entities perform operations such as
VM migration. Besides, the VM should be neither migrated to unauthorized host nor
from one [29].

Non-repudiation stands for the peers involved in migration cannot deny the migra-
tion participation [10]. The system must guarantee the provision of conclusive evidences
of the migration event and peers participation, even when peers do not cooperate.
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Replay resistance aims that an attacker cannot reproduce the migration procedure
without being detected. Hence, all migration packets are unique and lose validity after
migration.

3.4.2 Vulnerabilities

In a virtual environment, multiple VMs running on top of the same physical machine
increase the efficiency of the system, but it also introduces software on sensitive areas
of the system, which increases vulnerabilities. These vulnerabilities can be exploited by
malicious users to obtain sensitive information, such as passwords and encryption keys,
or perform other types of attacks such as denial of service.

In internal attacks, the system administrator performs attacks on the VMs. In this
case, the system is completely vulnerable, because the administrator is authenticated and
authorized to perform actions, neither cryptographic nor integrity techniques prevent the
attacks. A malicious user who gains super-user privileges, via flaws in the authentication
and authorization modules, performs an internal attack.

In other attacks, the attacker exploits the flaws of the virtualization system source
code to inject malicious code and modify the system modules. This attack is possible due
to the complexity of virtualization systems that end up having security flaws [2].

The attack can also be originated from an infected VM (or a legitimate machine
with a malicious user) targeting other VMs sharing the same system. This type of attack
requires that the attacker and the target VM are in the same physical machine. Due to
the sharing of resources (e.g., CPU data cache), the attacker can steal cryptographic
keys using techniques such as covert channel. This attack is facilitated when the net-
work infrastructure indirectly allows the user to map the virtual networks and verify
co-residence with the target VM [1]. These procedures are facilitated when static IPs
are used for virtual networks, associating them with the physical IPs, but it can also be
checked with IP common tools, such as traceroute.

The side channel attack is any attack that information, obtained to break the system,
relies on information leaked by the hardware that are obtained by physical measurements
as a “side” or an alternative channel [30]. The attack only concerns the implementation
of a cryptosystem, rather than cryptanalysis of the math of the algorithm or brute force.
Examples of physical measurements used to build a side channel can be: time took for
performing different computations [31], varying power consumption [32], or leaked elec-
tromagnetic radiation provided by the hardware during computations, and even sound
produced by the hardware. Therefore, assuming side attacks, the weakness of the security
system is not the algorithm but its implementation. Brumley and Boneh [33] have shown
that they succeeded to extract private keys from an OpenSSL-based Web server running
on a machine in the local network. They run a timing attack in which an attacker machine
measures the decryption queries response time of an OpenSSL server, in order to extract
the private key stored on the server. They successfully performed the attack between two
VMs, then, their results invalidate the announced isolation provided by the hypervisor.
As mentioned before, side channel attacks only concern the crypto algorithm implemen-
tation and, thus, a virtualized system does not interfere on the weakness or strengthen of
an implementation. Otherwise, virtualization is a shared operating hardware environment
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and actions of one VM may cause effects in another VM. Therefore, a virtualized system
should not facilitate the access to physical measurements and should fully isolate one
virtual environment from another virtual environment to prevent side channels attacks.

Covert channel is a type of security attack that creates and conveys information
through a hidden communication channel, which is able to transfer information between
processes that violate the security policy. A covert channel is not a legitimate channel and,
therefore, it depends upon an ingenious mechanism, which is a program scheme to hide
the way used to transfer the information from the source to the destination and requires
access to the file system. Hence, different from side channel attack, covert channel are
illegitimate communication channel built on already compromised systems. Covert chan-
nel requires viral infection of the system or a programming effort accomplished by the
administrator or other authorized user of the system. Covert channels are usually difficult
to detect and low detectability, the capacity to stay hidden, is often the assumed mea-
surement of effectiveness of a covert channel attack. The usual hardware-based security
mechanisms that underlie ultra-high-assurance secure operating systems cannot detect
or control covert channels because they do not employ legitimate data transfer mecha-
nisms of the computer system such as read and write. Thus, the covert channel must not
interfere into legitimate operations to not be detected by security systems.

Intruders have limited options to get the data out of secured systems with Intrusion
Detection Systems, Packet Anomaly Detection systems, and firewalls [34]. In this sce-
nario, the intruder creates a covert channel. The communication media often used are
ordinary actions unnoticed by administrator and legitimate users such as use of header-
or payload-embedded information, altering a store location, performing operations that
modify the real response time, using of packet inter-arrival times, and so on. Adding data
to the payload section of Ping packets or encoding data in the unused fields of packet
headers. A covert channel attack, which is the most difficult to detect, is to use inter-
packet delay times to encode data. This means that the intruder does not necessarily
have to create new traffic because he encodes the data by modulating the time between
packets of regular legitimate communication. Data exfiltration can be an indication that
a computer has been compromised even when other intrusion detection schemes have
failed to detect a successful attack.

During the process of live migration, vulnerabilities may be exploited by attackers.
Such vulnerabilities include authorization, integrity, and isolation failures.

Inappropriate access control policy: If access control policies are not defined prop-
erly or the module responsible for regulating them does not act effectively, an attacker
can acquire undue control of systems to perform internal attacks. When the attacker con-
trols the migration operation, the attacker can cause a denial of service by migrating
multiple VMs to one physical machine to overload the communication link and the phys-
ical machine itself. The attacker may also migrate a malicious VM to a target physical
machine, or migrating a target VM to a malicious physical machine. In both cases, after
migration, the attacker gains full control of the target machine (physical or virtual).

Unprotected channel transmission: If the migration channel does not guarantee the
confidentiality of the data, an attacker can steal or modify sensitive information, such
as passwords and encryption keys. Attacks can be done passively (sniffing) or actively
(man-in-the-middle) using techniques such as ARP spoofing, DNS poisoning and route
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hijacking. Active attacks are usually more problematic since they violate integrity, and
may include modifications in the authentication services of the VM (sshd/login) and
manipulation of kernel memory.

Loopholes in the migration module: The contemporary virtualization software such
as Xen, VMware and KVM, have an extensive and complex code base, which tend to
have bugs. Perez-Botero et al. identified 59 vulnerabilities in Xen and 38 in KVM until
July 15, 2012, according to reports of CVE security vulnerability database [35]. These
results confirm the existence of vulnerabilities, which an attacker can exploit to obstruct
or access VMs.

3.4.3 Isolation, Access Control, and Availability

Several proposals aim to improve virtualization isolation, QoS provisioning, and virtual
topologies migration. Besides, some proposals use software-defined networking (SDN)
to manage network migrations. There are proposals for developing security applications
on OpenFlow network infrastructures, as there are others that seek to ensure the security
of the infrastructure itself [36].

NetLord [37] introduces a software agent on each physical server, which encap-
sulates packets of VMs with a new IP header. The new IP header whose semantics of
addresses of layers 2 and 3 are overloaded to indicate to which virtual network the frames
belong to. Similarly, VL2 [38] encapsulates IP packets of a virtual network with another
IP header. In this case, the semantics of the IP addresses indicate both the virtual network
and the localization of the physical host.

Distributed Overlay Virtual Ethernet (DOVE) [39] is a proposal of network virtual-
ization that provides address space isolation by using a network identifier field of the
envelop DOVE header, creating an overlay network. Address space isolation is also
achieved using Virtnal extended Local Area Network (VXLAN), encapsulation [73].
VXLAN also adds to each Ethernet frame an outer Ethernet header, followed by an
external IP, UDP, and VXLAN headers. Network Virtualization Generic Routing Encap-
sulation (NVGRE) [41] also encapsulates to allow multi-tenancy in public or private
clouds. Both VXLAN and NVGRE use 24 bits to identify the virtual network that a frame
belongs to. Nevertheless, these proposals create an overlay network that interconnects the
nodes of the virtual network.

Houidi et al. propose an adaptive system that provides resources on demand for vir-
tual networks [42]. It provides more resources for virtual networks as soon it detects
service degradation or after a resource failure. The system uses a distributed multi-agent
mechanism in physical infrastructure to negotiate requests, to fit the resources to the net-
work needs, and to synchronize supplier nodes and virtual networks. Another proposal,
OpenFlow Management Infrastructure (OMNI) [43] provides QoS to OpenFlow net-
works [21]. OMNI manages all flows of the network and define QoS parameters to each
one. Besides, OMNI migrates flows to different paths without any packet losses. Kim
et al. map QoS parameters of the virtual networks with different workloads on resources
available on OpenFlow switches, such as queues and rate limiters [44]. The proposal’s
main goal is to provide QoS to scenarios in which the physical infrastructure belongs
to a cloud multi-tenant provider. Nevertheless, the control of QoS parameters and QoS
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mapping are centralized on the OpenFlow controller node. McIlroy and Sventek provide
QoS to virtual networks with a new router architecture [45]. The router comprises multi-
ple VMs, called Routelets. Each Routelet is isolated from others and their resources are
limited and guaranteed. Routelets that route QoS sensitive flows have access priority to
substrate resources. Nevertheless, packet forwarding is performed by VMs, which limits
the forwarding performance of Routelets.

Wang et al. propose a load balancer based on programming low cost OpenFlow
switches to multiplex requests among different server replicas [46]. The proposed solu-
tion weightily fragments the IP address space of clients between server replicas. Thus,
according to the client IP, it identifies the replica that serves a client. The proposal, how-
ever, does not guarantee the reservation of resources, nor QoS of flows. Hao et al. present
the infrastructure Virtually Clustered Open Router (VICTOR) which is based on creating
a cluster of datacenters via a virtualized network infrastructure [47]. The central idea of
this approach is to use the OpenFlow as the basic network infrastructure of datacenters
to allow moving a virtual machine from one physical location to another, as it is possi-
ble to reconfigure network paths. This proposal optimizes the datacenter network usage
performing server migrations, but it does not guarantee QoS of each flow, and also does
not isolate the use of resources from different virtualized servers.

3.5 FUTURE DIRECTIONS

The most important performance goal in VM live migration is a short VM downtime.
Current migration approaches apply a combination of push and stop-and-copy strategies
for VM live migration. The combined push and stop-and-copy strategy reduces the VM
downtime at the cost of increasing the total migration time and network traffic due to
migration. When transferring the VM storage during migration, total migration time
is also affected. Therefore, a main research topic is to decrease the total downtime,
keeping memory and storage consistence and reducing network bandwidth. Downtime
directly impacts on the virtualization performance and compromises the deployment of
VM migration on different scenarios.

Virtual Network Migration is another research topic. When moving a VM, its net-
work connections should follow accordingly. VM migration between different Local
Area Networks demands mechanisms for IP address migration or for networks traffic
redirection. Migration within the same datacenter can also present performance problems
when datacenters are globally distributed in a wide geographical area. Current research
efforts focus on tunneling network traffic between source and destination host [22]. In
this direction, there are proposal, such as NVGRE [41], VXLAN [73], and DOVE (Dis-
tributed Overlay Virtual Ethernet) [39], that creates tunnels to maintain virtual network
connectivity even in scenarios that sites are separated by a WAN. Moreover, NetLord [37]
and VL2 [38] change IP semantics for isolating and creating virtual networks within a
datacenter. Other proposals for handling VM mobility across the Internet is to use Loca-
tor/Identifier Separation Protocol (LISP) [48, 49]. LISP uses two IP headers, one for the
locator and other for identifier of the host. LISP maintains a globally reachable service
that maps locator into identifier, and vice versa, in order to ensure the correct location of
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VM no matter where it is hosted. After the VM migration, only the locator is changed,
and all services remain online and reachable. Future trends also point to OpenFlow [21]
as a possible approach for managing virtual network. Nevertheless, all aforementioned
approaches require adaptations or more sophisticated deployments to be fully functional.
To achieve a seamless network migration, we believe that new standards should take place
to define a common way to migrate virtual network.

Storage is an important resource to virtualized servers, because it must be always
available and present high performance. When migrating a VM, its storage should be
also available at migration destination. Therefore, both source and destination sites share
the storage service, or all VM storage must be sent over the network to destination host.
EMC2, one of the world’s leader storage provider enterprise, provides a storage facil-
ity focused on a distributed federation of data, which allows data to be accessed among
locations over synchronous distances. The EMC2 distributed storage service is called
VPLEX.2 Moreover, Ceph is an open source project that aims to provide a distributed
and redundant file system [50]. We agree that there are several initiatives for provid-
ing distributed storage service that are a step ahead for an available file system for VM
migration. Nevertheless, these initiatives are new and immature. The proprietary ones
have a higher maturity grade, but still are expensive and demand large infrastructure.
Providing a distributed and available storage service, that requires low investment into
infrastructure and is backward compatible, is a key research area.

Automated migration is also a key research topic, because the VMs allocation into
physical servers is a np-hard problem. This scenario is aggravated considering big data-
centers and multiple datacenters in a cloud provider’s environment, due to the size and
unmanageability of the scenario. There are proposed heuristics [51]-based optimization
and others based on system modeling [52, 53], aiming to better use physical resources.
An important factor to be considered in the use of optimization algorithms is the con-
vergence time of the algorithm, which will directly interfere into the dynamics of the
system. Proposals for optimization of use of physical resources are complementary to
automatic migration systems and can be used to manage migrations. Trends show that a
key research theme is matching the tradeoff between optimizing physical resource usage
and limiting the number of migrations into the network.

A major research topic that arises is securing VM migration. Our studies show that
there is no proposal that achieves a complete secure live migration primitive. Security
must be deployed all long the development of a virtualization system. It must be present
since the hypervisor, which should be reliable, trustworthy, and should provide secure
virtualized environment, till the migration procedure, which should authenticate peers,
check the trust of the foreign peer, and ensure a confidential channel between peers for
transferring the VM. Security must also be ensured for all resources used by a VM.
Isolation is a key challenge for network virtualization, as availability is another key
challenge for storage virtualization. Confidentiality is an open topic while virtualizing
memory. Trust warranting is a trend of research, in which we identified some works
proposing protocols and new approaches [54]. We believe that providing security for

2http://www.emc.com/campaign/global/vplex/index.htm.
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virtualized environments is a hot research topic, in which the proposals still are initial
and immature. Therefore, trends show that new security mechanisms should be proposed
for guaranteeing a securer virtualizing system.

3.6 CONCLUSION

VM migration is one of the most useful primitive introduced by virtualization technique.
VM migration stands for the relocation of virtual computing environments over the phys-
ical infrastructure. The main idea of the migration primitive is to remap virtual resources
into physical resources without disrupting the function of the virtual resources. We con-
sider Virtual Machine Migration of particular interest for cloud computing environments
and for network virtualization approaches. We claim that migration is a powerful tool
for fitting computer capacity to dynamic workloads, facilitating user mobility, improv-
ing energy savings, and managing failures. In a network virtualization scenario, VM
migration plays the whole of flexibly changing network topologies without constrain-
ing the physical realization of the virtual topology. Nevertheless, VM migration is both
challenging in its realization and in its security guarantees.

In this chapter, we explained that live migration is the key migration mechanism
of most of current hypervisor. We identified that the key resource to migrate is the VM
memory, as it is constantly updated during the migration process. We also discussed
how to migrate storage service of VMs through WANs. Moreover, we present a network
virtualization approach, called XenFlow, which focuses on migrating virtual networks,
without losing packets or disrupting network services. Besides the technical difficulties
of migrating a VM, while it is running, we also highlighted how to assure that a VM
migration occurs in a secure environment.
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4.1 OVERVIEW

Datacenters are the core of cloud computing, and their network is an essential component
to allow distributed applications to run efficiently and predictably [1]. However, not
all datacenters provide cloud computing. In fact, there are two main types of datacen-
ters: production and cloud. Production datacenters are often shared by one tenant or
among multiple (possibly competing) groups, services, and applications, but with low
rate of arrival and departure. They run data analytics jobs with relatively little varia-
tion in demands, and their size varies from hundreds of servers to tens of thousands of
servers. Cloud datacenters, in contrast, have high rate of tenant arrival and departure
(churn) [2], run both user-facing applications and inward computation, require elasticity
(since application demands are highly variable), and consist of tens to hundreds of thou-
sands of physical servers [3]. Moreover, clouds can comprise several datacenters spread
around the world. As an example, Google, Microsoft, and Amazon (three of the biggest
players in the market) have datacenters in four continents; and each company has over
900,000 servers.

Cloud Services, Networking, and Management, First Edition.
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This chapter presents an in-depth study of datacenter networks (DCNs), relevant
standards, and operation. Our goal here is three-fold: (i) provide a detailed view of the
networking infrastructure connecting the set of servers of the datacenter via high-speed
links and commodity off-the-shelf (COTS) switches [4]; (ii) discuss the addressing and
routing mechanisms employed in this kind of network; and (iii) show how the nature of
traffic may impact DCNs and affect design decisions.

Providers typically have three main goals when designing a DCN [5]: scalability,
fault tolerance, and agility. First, the infrastructure must scale to a large number of
servers (and preferably allow incremental expansion with commodity equipment and lit-
tle effort). Second, a DCN should be fault tolerant against failures of both computing and
network resources. Third, a DCN ideally needs to be agile enough to assign any virtual
machine or, in short, VM (which is part of a service or application) to any server [6].
As a matter of fact, DCNs should ensure that computations are not bottlenecked on
communication [7].

Currently, providers attempt to meet these goals by implementing the network
as a multi-rooted tree [1], using LAN technology for VM addressing and two main
strategies for routing: equal-cost multipath (ECMP) and valiant load balancing (VLB).
The shared nature of DCNs among a myriad of applications and tenants and high
scalability requirements, however, introduce several challenges for architecture design,
protocols and strategies employed inside the network. Furthermore, the type of traffic
in DCNs is significantly different from traditional networks [8]. Therefore, we also sur-
vey recent proposals in the literature to address the limitations of technologies used in
today’s DCNs.

We structure this chapter as follows. First, we begin by examining the typical
multi-rooted tree topology used in current datacenters and discuss its benefits and
drawbacks. Then, we take a look at novel topologies proposed in the literature, and
how network expansion can be performed in a cost-efficient way for providers. After
addressing the structure of the network, we look into the traffic characteristics of these
high-performance, dynamic networks and discuss proposals for traffic management on
top of existing topologies. Based on the aspects discussed so far, we present layer-2 and
layer-3 routing, its requirements and strategies typically employed to perform such task.
We also examine existing mechanisms used for VM addressing in the cloud platform
and novel proposals to increase flexibility and isolation for tenants. Finally, we discuss
the most relevant open research challenges and close this chapter with a brief summary
of DCNs.

4.2 TOPOLOGIES

In this section, we present an overview of datacenter topologies. The topology describes
how devices (routers, switches and servers) are interconnected. More formally, this is
represented as a graph, in which switches, routers and servers are the nodes, and links
are the edges.
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4.2.1 Typical Topology

Figure 4.1 shows a canonical three-tiered multi-rooted tree-like physical topology, which
is implemented in current datacenters [1, 9]. The three tiers are: (1) the access (edge)
layer, comprising the top-of-rack (ToR) switches that connect servers mounted on every
rack; (2) the aggregation (distribution) layer, consisting of devices that interconnect ToR
switches in the access layer; and (3) the core layer, formed by routers that interconnect
switches in the aggregation layer. Furthermore, every ToR switch may be connected to
multiple aggregation switches for redundancy (usually 1+1 redundancy) and every aggre-
gation switch is connected to multiple core switches. Typically, a three-tiered network is
implemented in datacenters with more than 8000 servers [4]. In smaller datacenters, the
core and aggregation layers are collapsed into one tier, resulting in a two-tiered datacenter
topology (flat layer-2 topology) [9].

This multitiered topology has a significant amount of oversubscription, where
servers attached to ToR switches have significantly more (possibly an order of mag-
nitude) provisioned bandwidth between one another than they do with hosts in other
racks [3]. Providers employ this technique in order to reduce costs and improve resource
utilization, which are key properties to help them achieve economies of scale.

This topology, however, presents some drawbacks. First, the limited bisection band-
width1 constrains server-to-server capacity, and resources eventually get fragmented
(limiting agility) [11, 12]. Second, multiple paths are poorly exploited (e.g., only a single
path is used within a layer-2 domain by spanning tree protocol), which may poten-
tially cause congestion on some links even though other paths exist in the network and
have available capacity. Third, the rigid structure hinders incremental expansion [13].

Core

Aggregation

Access (ToR)

Servers

Figure 4.1. A canonical three-tiered tree-like datacenter network topology.

1The bisection bandwidth of the network is the worst-case segmentation (i.e., with minimum bandwidth) of
the network in two equally-sized partitions [10].
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Fourth, the topology is inherently failure-prone due to the use of many links, switches
and servers [14]. To address these limitations, novel network architectures have been
recently proposed; they can be organized in three classes [15]: switch-oriented, hybrid
switch/server and server-only topologies.

4.2.2 Switch-Oriented Topologies

These proposals use commodity switches to perform routing functions, and follow a clos-
based design or leverage runtime reconfigurable optical devices. A clos network [16]
consists of multiple layers of switches; each switch in a layer is connected to all switches
in the previous and next layers, which provides path diversity and graceful bandwidth
degradation in case of failures. Two proposals follow the Clos design: VL2 [6] and
Fat-Tree [4]. VL2, shown in Figure 4.2a, is an architecture for large-scale datacenters and
provides multiple uniform paths between servers and full bisection bandwidth (i.e., it is
non-oversubscribed). Fat-Tree, in turn, is a folded Clos topology. The topology, shown
in Figure 4.2b, is organized in a non-oversubscribed k-ary tree-like structure, consisting
of k-port switches. There are k two-layer pods with k/2 switches. Each k/2 switch in the
lower layer is connected to k/2 servers, and the remaining ports are connected to k/2
aggregation switches. Each of the (k/2)2k-port core switches has one port connected to
each of k pods. In general, a fat-tree built with k-port switches supports k3/4 hosts. Despite
the high capacity offered (agility is guaranteed), these architectures increase wiring costs
(because of the number of links).

Optical switching architecture (OSA) [17], in turn, uses runtime reconfigurable opti-
cal devices to dynamically change physical topology and one-hop link capacities (within
10 milliseconds). It employs hop-by-hop stitching of multiple optical links to provide
all-to-all connectivity for the highly dynamic and variable network demands of cloud
applications. This method is shown in the example of Figure 4.3. Suppose that demands
change from the left table to the right table in the figure (with a new highlighted entry).
The topology must be adapted to the new traffic pattern, otherwise there will be at least
one congested link. One possible approach is to increase capacity of link F–G (by reduc-
ing capacity of links F–D and G–C), so congestion can be avoided. Despite the flexibility
achieved, OSA suffers from scalability issues, since it is designed to connect only a few

Layer 1

(a)

Layer 2

Layer 3

Servers

Core

(b)

Aggregation

Access (ToR)

Servers

Pod 0 Pod 1 Pod 3Pod 2

Figure 4.2. Clos-based topologies. (a) VL2 and (b) Fat-tree.
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Figure 4.3. OSA adapts according to demands (adapted from Ref. [17]).

thousands of servers in a container, and latency-sensitive flows may be affected by link
reconfiguration delays.

4.2.3 Hybrid Switch/Server Topologies

These architectures shift complexity from network devices to servers, i.e., servers per-
form routing, while low-end mini-switches interconnect a fixed number of hosts. They
can also provide higher fault-tolerance, richer connectivity and improve innovation,
because hosts are easier to customize than commodity switches. Two example topologies
are DCell [5] and BCube [18], which can arguably scale up to millions of servers.

DCell [5] is a recursively built structure that forms a fully connected graph using
only commodity switches (as opposed to high-end switches of traditional DCNs). DCell
aims to scale out to millions of servers with few recursion levels (it can hold 3.2 million
servers with only four levels and six hosts per cell). A DCell network is built as follows.
A level-0 DCell (DCell0) comprises servers connected to a n-port commodity switch.
DCell1 is formed with n + 1 DCell0; each DCell0 is connected to all other DCell0 with
one bidirectional link. In general, a level-k DCell is constructed with n + 1 DCellk−1 in the
same manner as DCell1. Figure 4.4a shows an example of a two-level DCell topology. In
this example, a commodity switch is connected with four servers (n = 4) and, therefore,
a DCell1 is constructed with 5 DCell0. The set of DCell0 is interconnected in the following
way: each server is represented by the tuple (a1, a0), where a1 and a0 are level 1 and 0
identifiers, respectively; and a link is created between servers identified by the tuples
(i, j − 1) and (j, i), for every i and every j > i.

Similarly to DCell, BCube [18] is a recursively built structure that is easy to design
and upgrade. Additionally, BCube provides low latency and graceful degradation of
bandwidth upon link and switch failure. In this structure, clusters (a set of servers inter-
connected by a switch) are interconnected by commodity switches in a hypercube-based
topology. More specifically, BCube is constructed as follows: BCube0 (level-0 BCube)
consists of n servers connected by a n-port switch; BCube1 is constructed from n BCube0

and n n-port switches; and BCubek is constructed from n BCubek−1 and nk n-port
switches. Each server is represented by the tuple (x1, x2), where x1 is the cluster num-
ber and x2 is the server number inside the cluster. Each switch, in turn, is represented by
a tuple (y1, y2), where y1 is the level number and y2 is the switch number inside the level.
Links are created by connecting the level-k port of the i-th server in the j-th BCubek−1

to the j-th port of the i-th level-k switch. An example of two-level BCube with n = 4
(4-port switches) is shown in Figure 4.4b.
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Figure 4.4. Hybrid switch/server topologies. (a) Two-level DCell and (b) two-level BCube.

Despite the benefits, DCell and BCube require a high number of NIC ports at
end-hosts — causing some overhead at servers — and increase wiring costs. In par-
ticular, DCell results in non-uniform multiple paths between hosts, and level-0 links are
typically more utilized than other links (creating bottlenecks). BCube, in turn, provides
uniform multiple paths, but uses more switches and links than DCell [18].

4.2.4 Server-Only Topology

In this kind of topology, the network comprises only servers that perform all network
functions. An example of architecture is CamCube [19], which is inspired in Content
Addressable Network (CAN) [20] overlays and uses a 3D torus (k-ary 3-cube) topol-
ogy with k servers along each axis. Each server is connected directly to 6 other servers,
and the edge servers are wrapped. Figure 4.5 shows a 3-ary CamCube topology, result-
ing in 27 servers. The three most positive aspects of CamCube are (1) providing robust
fault-tolerance guarantees (unlikely to partition even with 50% of server or link failures);
(2) improving innovation with key-based server-to-server routing (content is hashed to a
location in space defined by a server); and (3) allowing each application to define spe-
cific routing techniques. However, it does not hide topology from applications, has higher
network diameter O( 3

√
N) (increasing latency and traffic in the network) and hinders

network expansion.

4.2.5 Summary of Topologies

Table 4.1 summarizes the benefits and limitations of these topologies by taking four
properties into account: scalability, resiliency, agility and cost. The typical DCN topol-
ogy has limited scalability (even though it can support hundreds of thousands of servers),
as COTS switches have restricted memory size and need to maintain an entry in their For-
warding Information Base (FIB) for each VM. Furthermore, it presents low resiliency,
since it provides only 1+1 redundancy, and its oversubscribed nature hinders agility.
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Figure 4.5. Example of 3-ary CamCube topology (adapted from Ref. [21]).

TABLE 4.1. Comparison among datacenter network topologies

Proposal
Properties

Scalability Resiliency Agility Cost

Typical DCN Low Low No Low
Fat-Tree High Average Yes Average
VL2 High High Yes High
OSA Low High No High
DCell Huge High No High
BCube Huge High Yes High
CamCube Low High No Average

Despite the drawbacks, it can be implemented with only commodity switches, resulting
in lower costs.

Fat-Tree and VL2 are both instances of a Clos topology with high scalability and full
bisection bandwidth (guaranteed agility). Fat-Tree achieves average resiliency, as ToR
switches are connected only to a subset of aggregation devices, and has average overall
costs (mostly because of increased wiring). VL2 scales through packet encapsulation,
maintaining forwarding state only for switches in the network, achieves high resiliency
by providing multiple shortest paths and by relying on a distributed lookup entity for
handling address queries. As a downside, its deployment has increased costs (due to
wiring, significant amount of exclusive resources for running the lookup system and the
need of switch support for IP-in-IP encapsulation).
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OSA was designed taking flexibility into account in order to improve resiliency (i.e.,
by using runtime reconfigurable optical devices to dynamically change physical topology
and one-hop link capacities). However, it has low scalability (up to a few thousands of
servers), no agility (as dynamically changing link capacities may result in congested
links) and higher costs (devices should support optical reconfiguration).

DCell and BCube aim at scaling to millions of servers while ensuring high resiliency
(rich connectivities between end-hosts). In contrast to BCube, DCell does not provide
agility, as the set set of non-uniform multiple paths may be bottlenecked by links at
level-0. Finally, their deployment costs may be significant, since they require a lot of
wiring and more powerful servers in order to efficiently perform routing.

CamCube, in turn, is unlikely to partition even with 50% of server or link failures,
thus achieving high resiliency. Its drawback, however, is related to scalability and agility;
both properties can be hindered because of high network diameter, which indicates that,
on average, more resources are needed for communication between VMs hosted by dif-
ferent servers. CamCube also has average deployment costs, mainly due to wiring and
the need of powerful servers (to perform network functions).

As we can see, there is no perfect topology, since each proposal focus on specific
aspects. Ultimately, providers are cost-driven: they choose the topology with the lowest
costs, even if it cannot achieve all properties desired for a datacenter network running
heterogenous applications from many tenants.

4.3 NETWORK EXPANSION

A key challenge concerning datacenter networks is dealing with the harmful effects that
their ever-growing demand causes on scalability and performance. Because current DCN
topologies are restricted to 1+1 redundancy and suffer from oversubscription, they can
become underprovisioned quite fast. The lack of available bandwidth, in turn, may cause
resource fragmentation (since it limits VM placement) [11] and reduce server utilization
(as computations often depend on the data received from the network) [2]. In conse-
quence, the DCN can loose its ability to accommodate more tenants (or offer elasticity
to the current ones); even worse, applications using the network may start performing
poorly, as they often rely on strict network guarantees2.

These fundamental shortcomings have stimulated the development of novel DCN
architectures (seen in Section 4.2) that provide large amounts of (or full) bisection band-
width for up to millions of servers. Despite achieving high bisection bandwidth, their
deployment is hindered by the assumption of homogeneous sets of switches (with the
same number of ports). For example, consider a Fat-Tree topology, where the entire
structure is defined by the number of ports in switches. These homogeneous switches
limit the structure in two ways: full bisection bandwidth can only be achieved with

2For example, user-facing applications, such as Web services, require low-latency for communication with
users, while inward computation (e.g., Map-Reduce) requires reliability and bisection bandwidth in the intra-
cloud network.
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specific numbers of servers (e.g., 8,192 and 27,648) and incremental upgrade may require
replacing every switch in the network [13].

In fact, most physical datacenter designs are unique; hence, expansions and upgrades
must be custom-designed and network performance (including bisection bandwidth, end-
to-end latency and reliability) must be maximized while minimizing provider costs [11,
12]. Furthermore, organizations need to be able to incrementally expand their networks
to meet the growing demands of tenants [13]. These facts have motivated recent studies
[7, 11–13] to develop techniques to expand current DCNs to boost bisection bandwidth
and reliability with heterogeneous sets of devices (i.e., without replacing every router
and switch in the network). They are discussed next.

4.3.1 Legup

Focused on tree-like networks, Legup [12] is a system that aims at maximizing network
performance at the design of network upgrades and expansions. It utilizes a linear model
that combines three metrics (agility, reliability and flexibility), while being subject to
the cloud provider’s budget and physical constraints. In an attempt to reduce costs, the
authors of Legup develop the Theory of Heterogeneous Clos Networks to allow modern
and legacy equipment to coexist in the network. Figure 4.6 depicts an overview of the
system. Legup assumes an existing set of racks and, therefore, only needs to determine
aggregation and core levels of the network (more precisely, the set of devices, how they
interconnect, and how they connect to ToR switches). It employs a branch and bound
optimization algorithm to explore the solution space only for aggregation switches, as
core switches in a heterogeneous Clos network are restricted by aggregation ones. Given
a set of aggregation switches in each step of the algorithm, Legup performs three actions.
First, it computes the minimum cost for mapping aggregation switches to racks. Second,
it finds the minimum cost distribution of core switches to connect to the set of aggregation
switches. Third, the candidate solution is bounded to check its optimality and feasibil-
ity (by verifying if any constraint is violated, including provider’s budget and physical
restrictions).

Branch and bound algorithm

Bounding

function
Feasibility check

Mapping of

aggregation
switches

Core switch

selection

DCN design
DCN design,
switch types

and physical details

Figure 4.6. Legup’s overview (adapted from Ref. [12]).
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Figure 4.7. Comparison between (a) Fat-Tree and (b) Jellyfish with identical equipment

(adapted from Ref. [13]).

4.3.2 Rewire

Recent advancements in routing protocols may allow DCNs to shift from a rigid tree to
a generic structure [11, 22–25]. Based on this observation, Rewire [11] is a framework
that performs DCN expansion on arbitrary topologies. It has the goal of maximizing net-
work performance (i.e., finding maximum bisection bandwidth and minimum end-to-end
latency), while minimizing costs and satisfying user-defined constraints. In particular,
Rewire adopts a different definition of latency: while other studies model it by the
worst-case hop-count in the network, Rewire also considers the speed of links and the
processing time at switches (because unoptimized switches can add an order of mag-
nitude more processing delay). Rewire uses simulated annealing (SA) [26] to search
through candidate solutions and implements an approximation algorithm to efficiently
compute their bisection bandwidth. The simulated annealing, however, does not take
the addition of switches into account; it only optimizes the network for a given set of
switches. Moreover, the process assumes uniform queuing delays for all switch ports,
which is necessary because Rewire does not possess knowledge of network load.

4.3.3 Jellyfish

End-to-end throughput of a network is quantitatively proved to depend on two fac-
tors: (1) the capacity of the network and (2) the average path length (i.e., throughput is
inversely proportional to the capacity consumed to deliver each byte) [13]. Furthermore,
as noted earlier, rigid DCN structures hinder incremental expansion. Consequently, a
degree-bounded3 random graph topology among ToR switches, called Jellyfish [13], is
introduced, with the goal of providing high bandwidth and flexibility. It supports device
heterogeneity, different degrees of oversubscription and easy incremental expansion (by
naturally allowing the addition of heterogeneous devices). Figure 4.7 shows a comparison

3Degree-bounded, in this context, means that the number of connections per node is limited by the number of
ports in switches.
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of Fat-Tree and Jellyfish with identical equipment and same diameter (i.e., 6). Each ring
in the figure contains servers reachable within the number of hops in the labels. We see
that Jellyfish can reach more servers in fewer hops, because some links are not use-
ful from a path-length perspective in a Fat-Tree (e.g., links marked with “x”). Despite
its benefits, Jellyfish’s random design brings up some challenges, such as routing and
the physical layout. Routing, in particular, is a critical feature needed, because it allows
the use of the topology’s high capacity. However, results show that the commonly used
ECMP does not utilize the entire capacity of Jellyfish, and the authors propose the use
of k-shortest paths and MultiPath TCP [25] to improve throughput and fairness.

4.3.4 Random Graph-Based Topologies

Singla et al. [7] analyze the throughput achieved by random graphs for topologies with
both homogeneous and heterogeneous switches, while taking optimization into account.
They obtain the following results: random graphs achieve throughput close to the optimal
upper-bound under uniform traffic patterns for homogeneous switches, and heteroge-
neous networks with distinct connectivity arrangements can provide nearly identical high
throughput. Then, the acquired knowledge is used as a building block for designing large-
scale random networks with heterogeneous switches. In particular, they utilize the VL2
deployed in Microsoft’s datacenters as a case study, showing that its throughput can be
significantly improved (up to 43%) by only rewiring the same devices.

4.4 TRAFFIC

Proposals of topologies for datacenter networks presented in Sections 4.2 and 4.3 share
a common goal: provide high bisection bandwidth for tenants and their applications. It is
intuitive that a higher bisection bandwidth will benefit tenants, since the communication
between VMs will be less prone to interference. Nonetheless, it is unclear how strong is
the impact of the bisection bandwidth. This section addresses this question by surveying
several recent measurement studies of DCNs. Then, it reviews proposals for dealing with
related limitations. More specifically, it discusses traffic patterns—highlighting their
properties and implications for both providers and tenants—and shows how literature
is using such information to help designing and managing DCNs.

Traffic can be divided in two broad categories: north/south and east/west communi-
cation. North/south traffic (also known as extra-cloud) corresponds to the communication
between a source and a destination host where one of the ends is located outside the cloud
platform. By contrast, east/west traffic (also known as intra-cloud) is the communication
in which both ends are located inside the cloud. These types of traffic usually depend
on the kind and mix of applications: user-facing applications (e.g., web services) typ-
ically exchange data with users and, thus, generate north/south communication, while
inward computation (i.e., MapReduce) requires coordination among its VMs, generat-
ing east/west communication. Studies [27] indicate that north/south and east-west traffic
correspond to around 25% and 75% of traffic volume, respectively. They also point that
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both are increasing in absolute terms, but east/west is growing on a larger scale [27].
Towards understanding traffic characteristics and how it influences the proposal of novel
mechanisms, we first discuss traffic properties defined by measurement studies in the lit-
erature [9, 28–30] and, then, examine traffic management and its most relevant proposals
for large-scale cloud datacenters.

4.4.1 Properties

Traffic in the cloud network is characterized by flows; each flow is identified by
sequences of packets from a source to a destination node (i.e., a flow is defined by a
set packet header fields, such as source and destination addresses and ports and transport
protocol). Typically, a bimodal flow classification scheme is employed, using elephant
and mice classes. Elephant flows comprise a large number of packets injected in the net-
work over a short amount of time, are usually long-lived and exhibit bursty behavior. In
comparison, mice flows have a small number of packets and are short-lived [3]. Several
measurement studies [9, 28–31] were conducted to characterize network traffic and its
flows. We summarize their findings as follows:

• Traffic asymmetry. Requests from users to cloud services are abundant, but small
in most occasions. Cloud services, however, process these requests and typically
send responses that are comparatively larger.

• Nature of traffic. Network traffic is highly volatile and bursty, with links run-
ning close to their capacity at several times during a day. Traffic demands change
quickly, with some transient spikes and other longer ones (possibly requiring
more than half the full-duplex bisection bandwidth) [32]. Moreover, traffic is
unpredictable at long time scales (e.g., 100 seconds or more). However, it can
be predictable on shorter timescales (at 1 or 2 seconds). Despite the predictabil-
ity over small timescales, it is difficult for traditional schemes, such as statistical
multiplexing, to make a reliable estimate of bandwidth demands for VMs [33].

• General traffic location and exchange. Most traffic generated by servers (on aver-
age 80%) stays within racks. Server pairs from the same rack and from different
racks exchange data with a probability of only 11% and 0.5%, respectively. Prob-
abilities for intra- and extra-rack communication are as follows: servers either talk
with fewer than 25% or to almost all servers of the same rack; and servers com-
municate with less than 10% or do not communicate with servers located outside
its rack.

• Intra- and inter-application communication. Most volume of traffic (55%) repre-
sents data exchange between different applications. However, the communication
matrix between them is sparse; only 2% of application pairs exchange data, with
the top 5% of pairs accounting for 99% of inter-application traffic volume. Conse-
quently, communicating applications form several highly connected components,
with few applications connected to hundreds of other applications in star-like
topologies. In comparison, intra-application communication represents 45% of the
total traffic, with 18% of applications generating 99% of this traffic volume.
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• Flow size, duration, and number. Mice flows represent around 99% of the total
number of flows in the network. They usually have less than 10 kilobytes and last
only a few hundreds of milliseconds. Elephant flows, in turn, represent only 1%
of the number of flows, but account for more than half of the total traffic volume.
They may have tens of megabytes and last for several seconds. With respect to
flow duration, flows of up to 10 seconds represent 80% of flows, while flows of
200 seconds are less than 0.1% (and contribute to less than 20% of the total traffic
volume). Further, flows of 25 seconds or less account for more than 50% of bytes.
Finally, it has been estimated that a typical rack has around 10,000 active flows
per second, which means that a network comprising 100,000 servers can have over
25,000,000 active flows.

• Flow arrival patterns. Arrival patterns can be characterized by heavy-tailed dis-
tributions with a positive skew. They best fit a log-normal curve having ON and
OFF periods (at both 15 and 100 milliseconds granularities). In particular, inter
arrival times at both servers and ToR switches have periodic modes spaced apart by
approximately 15 milliseconds, and the tail of these distributions is long (servers
may experience flows spaced apart by 10 seconds).

• Link utilization. Utilization is, on average, low in all layers but the core; in fact,
in the core, a subset of links (up to 25% of all core links) often experience high
utilization. In general, link utilization varies according to temporal patterns (time
of day, day of week and month of year), but variations can be an order of magnitude
higher at core links than at aggregation and access links. Due to these variations
and the bursty nature of traffic, highly utilized links can happen quite often; 86%
and 15% of links may experience congestion lasting at least 10 and 100 seconds,
respectively, while longer periods of congestion tend to be localized to a small set
of links.

• Hot spots. They are usually located at core links and can appear quite frequently,
but the number of hot spots never exceeds 25% of core links.

• Packet losses. Losses occur frequently even at underutilized links. Given the bursty
nature of traffic, an underutilized network (e.g., with mean load of 10%) can expe-
rience lots of packet drops. Measurement studies found that packet losses occur
usually at links with low average utilization (but with traffic bursts that go beyond
100% of link capacity); more specifically, such behavior happens at links of the
aggregation layer and not at links of the access and core layers. Ideally, topologies
with full bisection bandwidth (i.e., a Fat-Tree) should experience no loss, but the
employed routing mechanisms cannot utilize the full capacity provided by the set
of multiple paths and, consequently, there is some packet loss in such networks as
well [28].

4.4.2 Traffic Management

Other set of papers [34–37] demonstrate that available bandwidth for VMs inside the
datacenter can vary by a factor of five or more in the worst-case scenario. Such variability
results in poor and unpredictable network performance and reduced overall application
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performance [1, 38, 39], since VMs usually depend on the data received from the network
to execute the subsequent computation.

The lack of bandwidth guarantees is related to two main factors. First, the canonical
cloud topology is typically oversubscribed, with more bandwidth available in leaf nodes
than in the core. When periods of traffic bursts happen, the lack of bandwidth up the
tree (i.e., at aggregation and core layers) results in contention and, therefore, packet dis-
cards at congested links (leading to subsequent retransmissions). Since the duration of
the timeout period is typically one or two orders of magnitude more than the round-trip
time, latency is increased, becoming a significant source of performance variability [3].
Second, TCP congestion control does not provide robust isolation among flows. Conse-
quently, elephant flows can cause contention in congested links shared with mice flows,
leading to discarded packets from the smaller flows [2].

Recent proposals address this issue either by employing proportional sharing or by
providing bandwidth guarantees. Most of them use the hose model [40] for network
virtualization and take advantage of rate-limiting at hypervisors [41], VM placement [42]
or virtual network embedding [43] in order to increase their robustness.

Proportional sharing. Seawall [2] and NetShare [44] allocate bandwidth at
flow-level based on weights assigned to entities (i.e., VMs or services running inside
these VMs) that generate traffic in the network. While both assign weights based on
administrator specified policies, NetShare also supports automatic weight assignment.
Both schemes are work-conserving (i.e., available bandwidth can be used by any flow
that needs more bandwidth), provide max–min fair sharing and achieve high utilization
through statistical multiplexing. However, as bandwidth allocation is performed per flow,
such methods may introduce substantial management overhead in large datacenter net-
works (with over 10,000 flows per rack per second [9]). FairCloud [45] takes a different
approach and proposes three allocation policies to explore the trade-off among network
proportionality, minimum guarantees and high utilization. Unlike Seawall and NetShare,
FairCloud does not allocate bandwidth along congested links at flow-level, but in pro-
portion to the number of VMs of each tenant. Despite the benefits, FairCloud requires
customized hardware in switches and is designed specifically for tree-like topologies.

Bandwidth guarantees. SecondNet [46], Gatekeeper [47], Oktopus [1], Proteus [48],
and Hadrian [49] provide minimum bandwidth guarantees by isolating applications in
virtual networks. In particular, SecondNet is a virtualization architecture that distributes
the virtual-to-physical mapping, routing and bandwidth reservation state in server hyper-
visors. Gatekeeper configures each VM virtual NIC with both minimum and maximum
bandwidth rates, which allows the network to be shared in a work-conserving man-
ner. Oktopus maps tenants’ virtual network requests (with or without oversubscription)
onto the physical infrastructure and enforces these mappings in hypervisors. Proteus
is built based on the observation that allocating the peak bandwidth requirements for
applications leads to underutilization of resources. Hence, it quantifies the temporal
bandwidth demands of applications and allocates each one of them in a different virtual
network. Hadrian extends previous schemes by also taking inter-tenant communication
into account and allocating applications according to a hierarchical hose model (i.e., per
VM minimum bandwidth for intra-application communication and per tenant minimum
guarantees for inter-tenant traffic). By contrast, a group of related proposals attempt to
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provide some level bandwidth sharing among applications of distinct tenants [50–52].
The approach introduced by Marcon et al. [51] groups applications in virtual networks,
taking mutually trusting relationships between tenants into account when allocating each
application. It provides work-conserving network sharing, but assumes that trust relation-
ships are determined in advance. ElasticSwitch [52] assumes there exists an allocation
method in the cloud platform and focuses on providing minimum bandwidth guarantees
with a work-conserving sharing mechanism (when there is spare capacity in the net-
work). Nevertheless, it requires two extra management layers for defining the amount of
bandwidth for each flow, which may add overhead. Finally, EyeQ [50] leverages high
bisection bandwidth of DCNs to support minimum and maximum bandwidth rates for
VMs. Therefore, it provides work-conserving sharing, but depends on the core of the net-
work to be congestion-free. None of these approaches can be readily deployed, as they
demand modifications in hypervisor source code.

4.5 ROUTING

Datacenter networks often require specially tailored routing protocols, with different
requirements from traditional enterprise networks. While the latter presents only a
handful of paths between hosts and predictable communication patterns, DCNs require
multiple paths to achieve horizontal scaling of hosts with unpredictable traffic matri-
ces [4, 6]. In fact, datacenter topologies (i.e., the ones discussed in Section 4.2) typically
present path diversity, in which multiple paths exist between servers (hosts) in the net-
work. Furthermore, many cloud applications (ranging from Web search to MapReduce)
require substantial (possibly full bisection) bandwidth [53]. Thus, routing protocols must
enable the network to deliver high bandwidth by using all possible paths in the structure.
We organize the discussion according to the layer involved, starting with the network
layer.

4.5.1 Layer 3

To take advantage of the multiple paths available between a source and its destination,
providers usually employ two techniques: ECMP [54] and VLB [6, 55, 56]. Both strate-
gies use distinct paths for different flows. ECMP attempts to load balance traffic in the
network and utilize all paths which have the same cost (calculated by the routing pro-
tocol) by uniformly spreading traffic among them using flow hashing. VLB randomly
selects an intermediate router (occasionally, a L3 switch) to forward the incoming flow
to its destination.

Recent studies in the literature [46, 53, 57, 58] propose other routing techniques for
DCNs. As a matter of fact, the static flow-to-path mapping performed by ECMP does
not take flow size and network utilization into account [59]. This may result in saturating
commodity switch L3 buffers and degrading overall network performance [53]. There-
fore, a system called Hedera [53] is introduced to allow dynamic flow scheduling for
general multi-rooted trees with extensive path diversity. Hedera is designed to maximize
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Figure 4.8. PSSR overview (adapted from Ref. [46]).

network utilization with low scheduling overhead of active flows. In general, the sys-
tem performs the following steps: (1) detects large flows at ToR switches; (2) estimates
network demands of these large flows (with a novel algorithm that considers bandwidth
consumption according to a max–min fair resource allocation); (3) invokes a placement
algorithm to compute paths for them; and (4) installs the set of new paths on switches.

Hedera uses a central OpenFlow controller4 [60] with a global view of the network
to query devices, obtain flow statistics and install new paths on devices after computing
their routes. With information collected from switches, Hedera treats the flow-to-path
mapping as an optimization problem and uses a simulated annealing metaheuristic to
efficiently look for feasible solutions close to the optimal one in the search space. SA
reduces the search space by allowing only a single core switch to be used for each des-
tination. Overall, the system delivers close to optimal performance and up to four times
more bandwidth than ECMP.

Port-switching based source routing (PSSR) [46] is proposed for the SecondNet
architecture with arbitrary topologies and commodity switches. PSSR uses source rout-
ing, which requires that every node in the network knows the complete path to reach
a destination. It takes advantage of the fact that a datacenter is administered by a sin-
gle entity (i.e., the intra-cloud topology is known in advance) and represents a path as a
sequence of output ports in switches, which is stored in the packet header. More specif-
ically, the hypervisor of the source VM inserts the routing path in the packet header,
commodity switches perform the routing process with PSSR and the destination hyper-
visor removes PSSR information from the packet header and delivers the packet to the
destination VM. PSSR also introduces the use of virtual ports, because servers may have
multiple neighbors via a single physical port (e.g., in DCell and BCube topologies). The
process performed by a switch is shown in Figure 4.8. Switches read the pointer field in
the packet header to get the exact next output port number (step 1), verify the next port
number in the lookup virtual-port table (step 2), get the physical port number (step 3)
and, in step 4, update the pointer field and forward the packet. This routing method intro-
duces some overhead (since routing information must be included in the packet header),
but, according to the authors, can be easily implemented on commodity switches using
Multi-Protocol Label Switching (MPLS) [61].

4We will not focus our discussion in OpenFlow in this chapter. It is discussed in Chapter 6.
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Bounded Congestion Multicast Scheduling (BCMS) [57], introduced to efficiently
route flows in Fat-trees under the hose traffic model, aims at achieving bounded con-
gestion and high network utilization. By using multicast, it can reduce traffic, thus
minimizing performance interference and increasing application throughput [62]. BCMS
is an online multicast scheduling algorithm that leverages OpenFlow to (1) collect band-
width demands of incoming flows; (2) monitor network load; (3) compute routing paths
for each flow; and (4) configure switches (i.e., installing appropriate rules to route flows).
The algorithm has three main steps, as follows. First, it checks the conditions of uplinks
out of source ToR switches (as flows are initially routed towards core switches). Second,
it carefully selects a subset of core switches in order to avoid congestion. Third, it further
improves traffic load balance by allowing ToR switches to connect to core switches with
most residual bandwidth. Despite its advantages, BCMS relies on a centralized controller,
which may not scale to large datacenters under highly dynamic traffic patterns such as
the cloud.

Like BCMS, Code-Oriented eXplicit multicast (COXcast) [58] also focuses on rout-
ing application flows through the use of multicasting techniques (as a means of improving
network resource sharing and reducing traffic). COXcast uses source routing, so all infor-
mation regarding destinations are added to the packet header. More specifically, the
forwarding information is encoded into an identifier in the packet header and, at each
network device, is resolved into an output port bitmap by a node-specific key. COXcast
can support a large number of multicast groups, but it adds some overhead to packets
(since all information regarding routing must be stored in the packet).

4.5.2 Layer 2

In the Spanning Tree Protocol (STP) [63], all switches agree on a subset of links to be
used among them, which forms a spanning tree and ensures a loop-free network. Despite
being typically employed in Ethernet networks, it does not scale, since it cannot use
the high-capacity provided by topologies with rich connectivities (i.e., Fat-Trees [24]),
limiting application network performance [64]. Therefore, only a single path is used
between hosts, creating bottlenecks and reducing overall network utilization.

STP’s shortcomings are addressed by other protocols, including Multiple Spanning
Tree Protocol (MSTP) [65], Transparent Interconnect of Lots of Links (TRILL) [22]
and Link Aggregation Control Protocol (LACP) [66]. MSTP was proposed in an attempt
to use the path diversity available in DCNs more efficiently. It is an extension of STP
to allow switches to create various spanning trees over a single topology. Therefore,
different Virtual LANs (VLANs) [67] can utilize different spanning trees, enabling the
use of more links in the network than with a single spanning tree. Despite its objective,
implementations only allow up to 16 different spanning trees, which may not be sufficient
to fully utilize the high-capacity available in DCNs [68].

TRILL is a link-state routing protocol implemented on top of layer-2 technologies,
but bellow layer-3, and is designed specifically to address limitations of STP. It discovers
and calculates shortest paths between TRILL devices (called routing bridges or, in short,
RBridges), which enables shortest path multihop routing in order to use all available paths
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in networks with rich connectivities. RBridges run Intermediate System to Intermediate
System (IS-IS) routing protocol (RFC 1195) and handle frames in the following manner:
the first RBridge (ingress node) encapsulates the incoming frame with a TRILL header
(outer MAC header) that specifies the last TRILL node as the destination (egress node),
which will decapsulate the frame.

Link Aggregation Control Protocol (LACP) is another layer-2 protocol used in
DCNs. It transparently aggregates multiple physical links into one logical link known
as Link Aggregation Group (LAG). LAGs only handle outgoing flows; they have no
control over incoming traffic. They provide flow-level load balancing among links in the
group by hashing packet header fields. LACP can dynamically add or remove links in
LAGs, but requires that both ends of a link run the protocol.

There are also some recent studies that propose novel strategies for routing frames
in DCNs, namely Smart Path Assignment in Networks (SPAIN) [24] and Portland [64].
SPAIN [24] focuses on providing efficient multipath forwarding using COTS switches
over arbitrary topologies. It has three components: (1) path computation; (2) path setup;
and (3) path selection. The first two components run on a centralized controller with
global network visibility. The controller first pre-computes a set of paths to exploit the
rich connectivities in the DCN topology, in order to use all available capacity of the
physical infrastructure and to support fast failover. After the path computation phase,
the controller combines these multiple paths into a set of trees, with each tree belonging
to a distinct VLAN. Then, these VLANs are installed on switches. The third compo-
nent (path selection) runs at end-hosts for each new flow; it selects paths for flows with
the goals of spreading load across the pre-computed routes (by the path setup compo-
nent) and minimizing network bottlenecks. With this configuration, end-hosts can select
different VLANs for communication (i.e., different flows between the same source and
destination can use distinct VLANs for routing). To provide these functionalities, how-
ever, SPAIN requires some modification to end-hosts, adding an algorithm to choose
among pre-installed paths for each flow.

PortLand [64] is designed and built based on the observation that Ethernet/IP proto-
cols may have some inherent limitations when designing large-scale arbitrary topologies,
such as limited support for VM migration, difficult management and inflexible commu-
nication. It is a layer-2 routing and forwarding protocol with plug-and-play support for
multi-rooted Fat-Tree topologies. PortLand uses a logically centralized controller (called
fabric manager) with global visibility and maintains soft state about network config-
uration. It assigns unique hierarchical Pseudo MAC (PMAC) addresses for each VM
to provide efficient, provably loop-free frame forwarding; VMs, however, do not have
the knowledge of their PMAC and believe they use their Actual MAC (AMAC). The
mapping between PMAC and AMAC and the subsequent frame header rewriting is per-
formed by edge (ToR) switches. PMACs are structured as pod.position.port.vmid, where
each field respectively corresponds to the pod number of the edge switch, its position
inside the pod, the port number in which the physical server is connected to and the
identifier of the VM inside the server. With PMACs, PortLand transparently provides
location-independent addresses for VMs and requires no modification in commodity
switches. However, it has two main shortcomings (1) it requires a Fat-Tree topology
(instead of the traditional multi-rooted oversubscribed tree) and (2) at least half of the
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ToR switch ports should be connected to servers (which, in fact, is a limitation of
Fat-Trees) [69].

4.6 ADDRESSING

Each server (or, more specifically, each VM) must be represented by a unique canoni-
cal address that enables the routing protocol to determine paths in the network. Cloud
providers typically employ LAN technologies for addressing VMs in datacenters, which
means there is a single address space to be sliced among tenants and their applications.
Consequently, tenants have neither flexibility in designing their application layer-2 and
layer-3 addresses nor network isolation from other applications.

Some isolation is achieved by the use of VLANs, usually one VLAN per tenant.
However, VLANs are ill-suited for datacenters for four main reasons [51, 70–72]: (1) they
do not provide flexibility for tenants to design their layer-2 and layer-3 address spaces;
(2) they use the spanning tree protocol, which cannot utilize the high-capacity available
in DCN topologies (as discussed in the previous section); (3) they have poor scalabil-
ity, since no more than 4094 VLANs can be created, and this is insufficient for large
datacenters; and iv) they do not provide location-independent addresses for tenants to
design their own address spaces (independently of other tenants) and for performing
seamless VM migration. Therefore, providers need to use other mechanisms to allow
address space flexibility, isolation and location independence for tenants while multi-
plexing them in the same physical infrastructure. We structure the discussion in three
main topics: emerging technologies, separation of name and locator and full address
space virtualization.

4.6.1 Emerging Technologies

Some technologies employed in DCNs are: Virtual eXtensible Local Area Network
(VXLAN) [73], Amazon Virtual Private Cloud (VPC) [74] and Microsoft Hyper-V [75].
VXLAN [73] is an Internet draft being developed to address scalability and multipath
usage in DCNs when providing logical isolation among tenants. VXLAN works by cre-
ating overlay (virtual layer-2) networks on top of the actual layer-2 or on top of UDP/IP.
In fact, using MAC-in-UDP encapsulation abstracts VM location (VMs can only view
the virtual layer-2) and, therefore, enables a VXLAN network to be composed of nodes
within distinct domains (DCNs), increasing flexibility for tenants using multi-datacenter
cloud platforms. VXLAN adds a 24-bit segment ID field in the packet header (allowing
up to 16 million different logical networks), uses ECMP to distribute load along mul-
tiple paths and requires Internet Group Management Protocol (IGMP) for forwarding
frames to unknown destinations, or multicast and broadcast addresses. Despite the bene-
fits, VXLAN header adds 50 bytes to the frame size, and multicast and network hardware
may limit the usable number of overlay networks in some deployments.

Amazon VPC [74] provides full IP address space virtualization, allowing tenants to
design layer-3 logical isolated virtual networks. However, it does not virtualize layer-2,
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which does not allow tenants to send multicast and broadcast frames [71]. Microsoft
Hyper-V [75] is a hypervisor-based system that provides virtual networks for tenants to
design their own address spaces; Hyper-V enables IP overlapping in different virtual net-
works without using VLANs. Furthermore, Hyper-V switches are software-based layer-2
network switches with capabilities to connect VMs among themselves, with other virtual
networks and with the physical network. Hyper-V, nonetheless, tends to consume more
resources than other hypervisors with the same load [76].

4.6.2 Separation of Name and Locator

VL2 [6] and Crossroads [70] focus on providing location independence for VMs, so that
providers can easily grow or shrink allocations and migrate VMs inside or across datacen-
ters. VL2 [6] uses two types of addresses: location-specific addresses (LAs), which are
the actual addresses in the network, used for routing; and application-specific addresses
(AAs), permanent address assigned to VMs that remain the same even after migrations.
VL2 uses a directory system to enforce isolation among applications (through access
control policies) and to perform the mapping between names and locators; each server
with an AA is associated with the LA from the ToR it is connected to. Figure 4.9 depicts
how address translation in VL2 is performed: the source hypervisor encapsulates the
AA address with the LA address of the destination ToR for each packet sent; packets
are forwarded in the network through shortest paths calculated by the routing protocol,
using both ECMP and VLB; when packets arrive at the destination ToR switch, LAs
are removed (packets are decapsulated) and original packets are sent to the correct VMs
using AAs. To provide location-independent addresses, VL2 requires that hypervisors
run a shim layer (VL2 agent) and that switches support IP-over-IP.

Crossroads [70], in turn, is a network fabric developed to provide layer agnos-
tic and seamless VM migration inside and across DCNs. It takes advantage of
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the Software-Defined Networking (SDN) paradigm [77] and extends an OpenFlow
controller to allow VM location-independence without modifications to layer-2 and
layer-3 network infrastructure. In Crossroads, each VM possess two addresses: a
PMAC and a Pseudo IP (PIP), both with location and topological information
embedded in them. The first one ensures that traffic originated from one dat-
acenter and en route to a second datacenter (to which the VM was migrated)
can be maintained at layer-2, while the second guarantees that all traffic des-
tined to a migrated VM can be routed across layer-3 domains. Despite its ben-
efits, Crossroads introduces some network overhead, as nodes must be identi-
fied by two more addresses (PMAC and PIP) in addition to the existing MAC
and IP.

4.6.3 Full Address Space Virtualization

Cloud datacenters typically provide limited support for multi-tenancy, since tenants
should be able to design their own address spaces (similar to a private environment) [71].
Consequently, a multi-tenant virtual datacenter architecture to enable specific-tailored
layer-2 and layer-3 address spaces for tenants, called NetLord [71], is proposed. At hyper-
visors, NetLord runs an agent that performs Ethernet+IP (L2+L3) encapsulation over
tenants’ layer-2 frames and transfers them through the network using SPAIN [24] for
multipathing, exploring features of both layers. More specifically, the process of encap-
sulating/decapsulating is shown in Figure 4.10 and occurs in three steps, as follows: (1)
the agent at the source hypervisor creates L2 and L3 headers (with source IP being a
tenant-assigned MAC address space identifier, illustrated as MAC_AS_ID) in order to
direct frames through the L2 network to the correct edge switch; (2) the edge switch
forwards the packet to the correct server based on the IP destination address in the vir-
tualized layer-3 header; (3) the hypervisor at the destination server removes the virtual
L2 and L3 headers and uses the IP destination address to deliver the original packet
from the source VM to the correct VM. NetLord can be run on commodity switches and
scale the network to hundreds of thousands of VMs. However, it requires an agent run-
ning on hypervisors (which may add some overhead) and support for IP forwarding on
commodity edge (ToR) switches.
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4.7 RESEARCH CHALLENGES

In this section, we analyze and discuss open research challenges and future directions
regarding datacenter networks. As previously mentioned, DCNs (i) present some dis-
tinct requirements from traditional networks (e.g., high scalability and resiliency); (ii)
have significantly different (often more complex) traffic patterns; and (iii) may not be
fully utilized, because of limitations in current deployed mechanisms and protocols (for
instance, ECMP). Such aspects introduce some challenges, which are discussed next.

4.7.1 Heterogeneous and Optimal DCN Design

Presently, many Internet services and applications rely on large-scale datacenters to
provide availability while scaling in and out according to incoming demands. This is
essential in order to offer low response time for users, without incurring excessive costs
for owners. Therefore, datacenter providers must build infrastructures to support large
and dynamic numbers of applications and guarantee quality of service (QoS) for ten-
ants. In this context, the network is an essential component of the whole infrastructure,
as it represents a significant fraction of investment and contributes to future revenues
by allowing efficient use of datacenter resources [15]. According to Zhang et al. [78],
network requirements include (i) scalability, so that a large number of servers can be
accommodated (while allowing incremental expansion); (ii) high server-to-server capac-
ity, to enable intensive communication between any pair of servers (i.e., at full speed of
their NICs); (iii) agility, so applications can use any available server when they need
more resources (and not only servers located near their current VMs); (iv) uniform net-
work utilization to avoid bottlenecks; and (v) fault tolerance to cope with server, switch
and link failures. In fact, guaranteeing such requirements is a difficult challenge. Look-
ing at these challenges from the providers viewpoint make them even more difficult to
address and overcome, since reducing the cost of building and maintaining the network
is seen as a key enabler for maximizing profits [15].

As discussed in Section 4.2, several topologies (e.g., Refs. [4–6, 17, 18]) have been
proposed to achieve the desired requirements, with varying costs. Nonetheless, they
(i) focus on homogeneous networks (all devices with the same capabilities); and (ii) do
not provide theoretical foundations regarding optimality. Singla et al. [7], in turn, take
an initial step towards addressing heterogeneity and optimality, as they (i) measure the
upper-bound on network throughput for homogeneous topologies with uniform traffic
patterns; and (ii) show an initial analysis of possible gains with heterogeneous networks.
Despite this fact, a lot remains to be investigated in order to enable the development of
more efficient, robust large-scale networks with heterogeneous sets of devices. In sum-
mary, very little is known about heterogeneous DCN design, even though current DCNs
are typically composed of heterogenous equipment.

4.7.2 Efficient and Incremental Expansion

Providers need to be constantly expanding their datacenter infrastructures to accommo-
date ever-growing demands. For instance, Facebook has been expanding its datacenters
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for some years [79–82]. This expansion is crucial for business, as the increase of demand
may negatively impact scalability and performance (e.g., by creating bottlenecks in the
network). When the whole infrastructure is upgraded, the network must be expanded
accordingly, with a careful design plan, in order to allow efficient utilization of resources
and to avoid fragmentation. To address this challenge, some proposals in the litera-
ture [7, 11–13] have been introduced to enlarge current DCNs without replacing legacy
hardware. They aim at maximizing high bisection bandwidth and reliability. However,
they often make strong assumptions (e.g., Legup [12] is designed for tree-like net-
works, and Jellyfish [13] requires new mechanisms for routing). Given the importance
of datacenters nowadays (as home of hundreds of thousands of services and applica-
tions), the need for efficient and effective expansion of large-scale networks is a key
challenge for improving provider profit, QoS offered to tenant applications and quality
of experience (QoE) provided for users of these applications.

4.7.3 Network Sharing and Performance Guarantees

Datacenters host applications with diverse and complex traffic patterns and different
performance requirements. Such applications range from user-facing ones (i.e., Web
services and online gaming) that require low latency communication to inward com-
putation (e.g., scientific computing) that need high network throughput. To gain better
understanding of the environment, studies [1, 9, 30, 49, 83] conducted measurements
and concluded that available bandwidth for VMs inside the cloud platform can vary by
a factor of five or more during a predefined period of time. They demonstrate that such
variability ends up impacting overall application execution time (resulting in poor and
unpredictable performance). Several strategies (including Refs. [2, 47, 48, 52, 84]) have
been proposed to address this issue. Nonetheless, they have one or more of the following
shortcomings: (i) require complex mechanisms, which, in practice, cannot be deployed;
(ii) focus on network sharing among VMs (or applications) in a homogeneous infras-
tructure (which simplifies the problem [85]); (iii) perform static bandwidth reservations
(resulting in underutilization of resources); or (iv) provide proportional sharing (no strict
guarantees). In fact, there is an inherent trade-off between providing strict guarantees
(desired by tenants) and enabling work-conserving sharing in the network (desired by
providers to improve utilization), which may be exacerbated in a heterogenous network.
We believe this challenge requires further investigation, since such high-performance
networks ideally need simple and efficient mechanisms to allow fair bandwidth sharing
among running applications in a heterogeneous environment.

4.7.4 Address Flexibility for Tenants

While network performance guarantees require quantitative performance isolation,
address flexibility needs qualitative isolation [71]. Cloud DCNs, however, typically pro-
vide limited support for multi-tenancy, as they have a single address space divided
among applications (according to their needs and number of VMs). Thereby, tenants
have no flexibility in choosing layer-2 and layer-3 addresses for applications. Note that,
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ideally, tenants should be able to design their own address spaces (i.e., they should have
similar flexibility to a private environment), since already developed applications may
necessitate a specific set of addresses to correctly operate without source code mod-
ification. Some proposals in the literature [6, 70, 71] seek to address this challenge
either by identifying end-hosts with two addresses or by fully virtualizing layer-2 and
layer-3. Despite adding flexibility for tenants, they introduce some overhead (e.g., hyper-
visors need a shim layer to manage addresses, or switches must support IP-over-IP) and
require resources specifically used for address translation (in the case of VL2). This is
an important open challenge, as the lack of address flexibility may hinder the migration
of applications to the cloud platform.

4.7.5 Mechanisms for Load Balancing Across Multiple Paths

DCNs usually present path diversity (i.e., multiple paths between servers) to achieve
horizontal scaling for unpredictable traffic matrices (generated from a large number of
heterogeneous applications) [6]. Their topologies can present two types of multiple paths
between hosts: uniform and non-uniform ones. ECMP is the standard technique used for
splitting traffic across equal-cost (uniform) paths. Nonetheless, it cannot fully utilize
the available capacity in these multiple paths [59]. Non-uniform multiple paths, in turn,
complicate the problem, as mechanisms must take more factors into account (i.e., path
latency and current load). There are some proposals in the literature [46, 53, 57, 58]
to address this issue, but they either cannot achieve the desired response times (e.g.,
Hedera) [86] or are developed for specific architectures (e.g., PSSR for SecondNet).
Chiesa et al. [87] have taken an initial approach towards analyzing ECMP and propose
algorithms for improving its performance. Nevertheless, further investigation is required
for routing traffic across both uniform and non-uniform parallel paths, considering not
only tree-based topologies, but also newer proposals such as random graphs [7, 13]. This
investigation should lead to novel mechanisms and protocols that better utilize available
capacity in DCNs (e.g., eliminating bottlenecks at level-0 links in DCell).

4.8 SUMMARY

In this chapter, we have presented basic foundations of datacenter networks and rele-
vant standards, as well as recent proposals in the literature that address limitations of
current mechanisms. We began by studying network topologies in Section 4.2. First, we
examined the typical topology utilized in today’s datacenters, which consists of a multi-
rooted tree with path diversity. This topology is employed by providers to allow rich
connectivity with reduced operational costs. One of its drawbacks, however, is the lack
of full bisection bandwidth, which is the main motivation for proposing novel topologies.
We used a three-class taxonomy to organize the state-of-the-art datacenter topologies:
switch-oriented, hybrid switch/server and server-only topologies. The distinct charac-
teristic is the use of switches and/or servers: switches only (Fat-Tree, VL2 and OSA),
switches and servers (DCell and BCube) and only servers (CamCube) to perform packet
routing and forwarding in the network.
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These topologies, however, usually present rigid structures, which hinders incre-
mental network expansion (a desirable property for the ever-growing cloud datacenters).
Therefore, we took a look at network expansion strategies (Legup, Rewire and Jellyfish)
in Section 4.3. All of these strategies have the goal of improving bisection bandwidth to
increase agility (the ability to assign any VM of any application to any server). Further-
more, the design of novel topologies and expansion strategies must consider the nature
of traffic in DCNs. In Section 4.4, we summarized recent measurement studies about
traffic and discussed some proposals that deal with traffic management on top of a DCN
topology.

Then, we discussed routing and addressing in Sections 4.5 and 4.6, respectively.
Routing was divided in two categories: layer-3 and layer-2. While layer-3 routing typi-
cally employs ECMP and VLB to utilize the high-capacity available in DCNs through the
set of multiple paths, layer-2 routing uses the spanning tree protocol. Despite the bene-
fits, these schemes cannot efficiently take advantage of multiple paths. Consequently,
we briefly examined proposals that deal with this issue (Hedera, PSSR, SPAIN and
Portland). Addressing, in turn, is performed by using LAN technologies, which does
not provide robust isolation and flexibility for tenants. Towards solving these issues, we
examined the proposal of a new standard (VXLAN) and commercial solutions developed
by Amazon (VPC) and Microsoft (Hyper-V). Furthermore, we discussed proposals in the
literature that aim at separating name and locator (VL2 and Crossroads) and at allowing
full address space virtualization (NetLord).

Finally, we analyzed open research challenges regarding datacenter networks: (i) the
need to design more efficient DCNs with heterogeneous sets of devices, while con-
sidering optimality; (ii) strategies for incrementally expanding networks with general
topologies; (iii) network schemes with strict guarantees and predictability for tenants,
while allowing work-conserving sharing to increase utilization; (iv) address flexibil-
ity to make the migration of applications to the cloud easier; and (v) mechanisms
for load balancing traffic across different multiple parallel paths (using all available
capacity).

Having covered the operation and research challenges of intra-datacenter networks,
the next three chapters inside the networking and communications part discuss the fol-
lowing subjects: inter-datacenter networks, an important topic related to cloud platforms
composed of several datacenters (e.g., Amazon EC2); the emerging paradigm of SDN, its
practical implementation (OpenFlow) and how these can be applied to intra- and inter-
datacenter networks to provide fine-grained resource management; and mobile cloud
computing, which seeks to enhance capabilities of resource-constrained mobile devices
using cloud resources.

REFERENCES

1. Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards predictable
datacenter networks. In ACM SIGCOMM, 2011.

2. Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas Saha. Sharing
the data center network. In USENIX NSDI, 2011.



“9780471697558c04” — 2015/3/20 — 11:09 — page 100 — #26

100 DATACENTER NETWORKS AND RELEVANT STANDARDS

3. Dennis Abts and Bob Felderman. A guided tour of data-center networking. Communication
of the ACM, 55(6):44–51, 2012.

4. Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data
center network architecture. In ACM SIGCOMM, 2008.

5. Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu Lu. Dcell:
A scalable and fault-tolerant network structure for data centers. In ACM SIGCOMM, 2008.

6. Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim,
Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. VL2: A scalable and
flexible data center network. In ACM SIGCOMM, 2009.

7. Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla. High throughput data center topology
design. In USENIX NSDI, 2014.

8. Jian Guo, Fangming Liu, Xiaomeng Huang, John C.S. Lui, Mi Hu, Qiao Gao, and Hai Jin.
On efficient bandwidth allocation for traffic variability in datacenters. In IEEE INFOCOM,
2014a.

9. Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteristics of
data centers in the wild. In ACM IMC, 2010.

10. Nathan Farrington, Erik Rubow, and Amin Vahdat. Data Center Switch Architecture in the
Age of Merchant Silicon. In IEEE HOTI, 2009.

11. Andrew R. Curtis, Tommy Carpenter, Mustafa Elsheikh, Alejandro Lopez-Ortiz, and
S. Keshav. Rewire: An optimization-based framework for unstructured data center network
design. In IEEE INFOCOM, 2012.

12. Andrew R. Curtis, S. Keshav, and Alejandro Lopez-Ortiz. Legup: Using heterogeneity to
reduce the cost of data center network upgrades. In ACM Co-NEXT, 2010.

13. Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish: Networking
data centers randomly. In USENIX NSDI, 2012.

14. Yang Liu and Jogesh Muppala. Fault-tolerance characteristics of data center network topolo-
gies using fault regions. In IEEE/IFIP DSN, 2013.

15. Lucian Popa, Sylvia Ratnasamy, Gianluca Iannaccone, Arvind Krishnamurthy, and Ion Stoica.
A cost comparison of datacenter network architectures. In ACM Co-NEXT, 2010.

16. Charles Clos. A Study of non-blocking switching networks. BellSystem Technical Journal,
32:406–424, 1953.

17. Kai Chen, Ankit Singlay, Atul Singhz, Kishore Ramachandranz, Lei Xuz, Yueping Zhangz,
Xitao Wen, and Yan Chen. Osa: An optical switching architecture for data center networks
with unprecedented flexibility. In USENIX NSDI, 2012.

18. Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian,
Yongguang Zhang, and Songwu Lu. BCube: A high performance, server-centric network
architecture for modular data centers. In ACM SIGCOMM, 2009.

19. Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and Austin Donnelly.
Symbiotic routing in future data centers. In ACM SIGCOMM, 2010.

20. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable
content-addressable network. In ACM SIGCOMM, 2001.

21. Paolo Costa, Thomas Zahn, Ant Rowstron, Greg O’Shea, and Simon Schubert. Why should
we integrate services, servers, and networking in a data center? In ACM WREN, 2009.

22. Transparent Interconnection of Lots of Links (TRILL): RFCs 5556 and 6325, 2013. Available
at: http://tools.ietf.org/rfc/index. Accessed November 20, 2014.



“9780471697558c04” — 2015/3/20 — 11:09 — page 101 — #27

REFERENCES 101

23. Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in seattle: A scalable
ethernet architecture for large enterprises. In ACM SIGCOMM, 2008.

24. Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares, and Jeffrey C. Mogul.
SPAIN: COTS data-center Ethernet for multipathing over arbitrary topologies. In USENIX
NSDI, 2010.

25. Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design, implementa-
tion and evaluation of congestion control for multipath tcp. In USENIX NSDI, 2011.

26. Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

27. Renato Recio. The coming decade of data center networking discontinuities. ICNC, August
2012. keynote speaker.

28. Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. MicroTE: Fine grained
traffic engineering for data centers. In ACM CoNEXT, 2011.

29. Peter Bodík, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A. Maltz,
and Ion Stoica. Surviving failures in bandwidth-constrained datacenters. In ACM SIGCOMM,
2012.

30. Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie Chaiken.
The nature of data center traffic: Measurements & analysis. In ACM IMC, 2009.

31. Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability of data center
networks with traffic-aware virtual machine placement. In IEEE INFOCOM, 2010.

32. Chi H. Liu, Andreas Kind, and Tiancheng Liu. Summarizing data center network traf-
fic by partitioned conservative update. IEEE Communications Letters, 17(11):2168–2171,
2013.

33. Meng Wang, Xiaoqiao Meng, and Li Zhang. Consolidating virtual machines with dynamic
bandwidth demand in data centers. In IEEE INFOCOM, 2011.

34. Alexandrm-Dorin Giurgiu. Network performance in virtual infrastrucures, February
2010. Available at: http://staff.science.uva.nl/~delaat/sne-2009-2010/p29/presentation.pdf.
Accessed November 20, 2014.

35. Dave Mangot. Measuring EC2 system performance, May 2009. Availabel at: http://bit.ly/
48Wui. Accessed November 20, 2014.

36. Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measurements in the
cloud: Observing, analyzing, and reducing variance. Proceedings of the VLDB Endowment,
3(1–2):460–471, 2010.

37. Guohui Wang and T. S. Eugene Ng. The impact of virtualization on network performance of
amazon ec2 data center. In IEEE INFOCOM, 2010.

38. Haiying Shen and Zhuozhao Li. New bandwidth sharing and pricing policies to achieve A
win-win situation for cloud provider and tenants. In IEEE INFOCOM. 2014.

39. Eitan Zahavi, Isaac Keslassy, and Avinoam Kolodny. Distributed adaptive routing con-
vergence to non-blocking DCN routing assignments. IEEE Journal on Selected Areas in
Communications, 32(1):88–101, 2014.

40. Nick G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ramakrishnan, and
Jacobus E. van der Merive. A flexible model for resource management in virtual private
networks. In ACM SIGCOMM, 1999.

41. Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum, and Alex C.
Snoeren. Cloud control with distributed rate limiting. In ACM SIGCOMM, 2007.



“9780471697558c04” — 2015/3/20 — 11:09 — page 102 — #28

102 DATACENTER NETWORKS AND RELEVANT STANDARDS

42. Joe W. Jiang, Tian Lan, Sangtae Ha, Minghua Chen, and Mung Chiang. Joint VM placement
and routing for data center traffic engineering. In IEEE INFOCOM, 2012.

43. Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual network embed-
ding: Substrate support for path splitting and migration. SIGCOMM Compuer. Communication
Review, 38:17–29, 2008.

44. Vinh The Lam, Sivasankar Radhakrishnan, Rong Pan, Amin Vahdat, and George Varghese.
Netshare and stochastic netshare: Predictable bandwidth allocation for data centers. ACM
SIGCOMM CCR, 42(3), 2012.

45. Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Ion Stoica. FairCloud: Sharing the network in cloud computing. In ACM
SIGCOMM, 2012.

46. Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng Sun, Wenfei
Wu, and Yongguang Zhang. SecondNet: A data center network virtualization architecture with
bandwidth guarantees. In ACM CoNEXT, 2010.

47. Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dorgival Guedes.
Gatekeeper: Supporting bandwidth guarantees for multi-tenant datacenter networks. In
USENIX WIOV, 2011.

48. Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Kompella. The only constant is change:
Incorporating time-varying network reservations in data centers. In ACM SIGCOMM, 2012.

49. Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim, Dinan Gunawardena, and
Greg O’Shea. Chatty tenants and the cloud network sharing problem. In USENIX NSDI,
2013a.

50. Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
Changhoon Kim, and Albert Greenberg. EyeQ: Practical network performance isolation at
the edge. In USENIX NSDI, 2013.

51. Daniel Stefani Marcon, Rodrigo Ruas Oliveira, Miguel Cardoso Neves, Luciana Salete Buriol,
Luciano Paschoal Gaspary, and Marinho Pilla Barcellos. Trust-based Grouping for Cloud
Datacenters: Improving security in shared infrastructures. In IFIP Networking, 2013.

52. Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul, Yoshio Turner, and
Jose Renato Santos. ElasticSwitch: Practical work-conserving bandwidth guarantees for cloud
computing. In ACM SIGCOMM, 2013.

53. Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and
Amin Vahdat. Hedera: dynamic flow scheduling for data center networks. In USENIX NSDI,
2010.

54. C. Hopps. Analysis of an equal-cost multi-path algorithm, 2000. RFC 2992.

55. Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta.
Towards a next generation data center architecture: Scalability and commoditization. In ACM
PRESTO, 2008.

56. Leslie G. Valiant and Gordon J. Brebner. Universal schemes for parallel communication. In
ACM STOC, 1981.

57. Zhiyang Guo, Jun Duan, and Yuanyuan Yang. On-line multicast scheduling with bounded con-
gestion in Fat-Tree data center networks. IEEE Journal on Selected Areas in Communications,
32(1):102–115, 2014b.

58. Wen-Kang Jia. A scalable multicast source routing architecture for data center networks. IEEE
Journal on Selected Areas in Communications, 32(1):116–123, 2014.



“9780471697558c04” — 2015/3/20 — 11:09 — page 103 — #29

REFERENCES 103

59. Sivasankar Radhakrishnan, Malveeka Tewari, Rishi Kapoor, George Porter, and Amin Vahdat.
Dahu: Commodity switches for direct connect data center networks. In ACM/IEEE ANCS,
2013.

60. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation in campus
networks. SIGCOMM Computer Communication Review, 38:69–74, 2008.

61. E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture, 2001.
RFC 3031.

62. Dan Li, Mingwer Xu, Ying Liu, Xia Xie, Yong Cui, Jingyi Wang, and Gihai Chen. Reli-
able multicast in data center networks., 2014. IEEE Transactions Computers, 63: 2011-2024,
2014.

63. 802.1D - MAC Bridges, 2013. Available at: http://www.ieee802.org/1/pages/802.1D.html.
Accessed November 20, 2014.

64. Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri,
Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat. PortLand: A scalable
fault-tolerant layer 2 data center network fabric. In ACM SIGCOMM, 2009.

65. 802.1s - Multiple Spanning Trees, 2013. Available at: http://www.ieee802.org/1/pages/802.
1s.html. Accessed November 20, 2014.

66. 802.1ax - Link Aggregation Task Force, 2013. Available at: http://ieee802.org/3/axay/.
Accessed November 20, 2014.

67. 802.1Q - Virtual LANs, 2013. Available at: http://www.ieee802.org/1/pages/802.1Q.html.
Accessed November 20, 2014.

68. Understanding Multiple Spanning Tree Protocol (802.1s), 2007. Available at: http://www.
cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfc.shtml.
Accessed November 20, 2014.

69. Md. Faizal Bari, Raonf Boutaba, Rafael Esteves, Lisandro Z. Granville, Maxim Podlesny,
Md. Golam Rabbani, Qi Zhang, and Mohamed F. Zhani. Data center network virtualization:
A survey. IEEE Communications Surveys Tutorials, 15(2):909–928, 2013.

70. Vijay Mann, Ailkumar Vishnoi, Kalapriya Kannan, and Shivkumar Kalyanaraman. Cross-
Roads: Seamless VM mobility across data centers through software defined networking. In
IEEE/IFIP NOMS, 2012.

71. Jayaram Mudigonda, Praveen Yalagandula, Jeff Mogul, Bryan Stiekes, and Yanick Pouffary.
NetLord: A scalable multi-tenant network architecture for virtualized datacenters. In ACM
SIGCOMM, 2011.

72. Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter. PAST: Scalable ethernet
for data centers. In ACM CoNEXT, 2012.

73. VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Net-
works, 2013. Available at: http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-02.
Accessed November 20, 2014.

74. Amazon Virtual Private Cloud, 2013. Available at: http://aws.amazon.com/vpc/. Accessed
November 20, 2014.

75. Microsoft Hyper-V Server 2012, 2013a. Available at: http://www.microsoft.com/en-us/
server-cloud/hyper-v-server/. Accessed November 20, 2014.

76. Hyper-V Architecture and Feature Overview, 2013b. Available at: http://msdn.microsoft.com/
en-us/library/dd722833(v=bts.10).aspx. Accessed November 20, 2014.



“9780471697558c04” — 2015/3/20 — 11:09 — page 104 — #30

104 DATACENTER NETWORKS AND RELEVANT STANDARDS

77. Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu,
Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al. Onix: A distributed
control platform for large-scale production networks. In USENIX OSDI, 2010.

78. Yan Zhang and Nirwan Ansari. On architecture design, congestion notification, tcp incast and
power consumption in data centers. Communications Surveys Tutorials, IEEE, 15(1):39–64,
2013.

79. Facebook to Expand Prineville Data Center, 2010. Available at: https://www.facebook.
com/notes/prineville-data-center/facebook-to-expand-prineville-data-center /411605058132.
Accessed November 20, 2014.

80. Tad Andersen. Facebook’s Iowa expansion plan goes before council, 2014. Avail-
able at: http://www.kcci.com/news/facebook-just-announced-new-expansion-plan-in-iowa/
25694956#!0sfWy. Accessed November 20, 2014.

81. David Cohen. Facebook eyes expansion of oregon data center, 2012. Available at: http://
allfacebook.com/prineville-oregon-data-center-expansion_b97206. Accessed November 20,
2014.

82. John Rath. Facebook Considering Asian Expansion With Data Center in Korea, 2013.
Available at: http://www.datacenterknowledge.com/archives/2013/12/31/asian-expansion-
has-facebook-looking-at-korea/. Accessed November 20, 2014.

83. Ryan Shea, Feng Wang, Haiyang Wang, and Jiangchuan Liu. A deep investigation into
network performance in virtual machine based cloud environment. In IEEE INFOCOM. 2014.

84. Katrina LaCurts, Shuo Deng, Ameesh Goyal, and Hari Balakrishnan. Choreo: Network-aware
task placement for cloud applications. In ACM IMC, 2013.

85. Fei Xu, Fangming Liu, Hai Jin, and A.V. Vasilakos. Managing performance overhead of virtual
machines in cloud computing: A survey, state of the art, and future directions. Proceedings of
the IEEE, 102(1):11–31, 2014.

86. Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma,
and Sujata Banerjee. Devoflow: Scaling flow management for high-performance networks.
In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pp. 254–265,
New York, 2011. ACM. Available at: http://doi.acm.org/10.1145/2018436.2018466. Accessed
November 20, 2014.

87. Marco Chiesa, Guy Kindler, and Michael Schapira. Traffic engineering with equal-cost-
multiPath: an algorithmic perspective. In IEEE INFOCOM, 2014.



“9780471697558c05” — 2015/3/20 — 11:13 — page 105 — #1

5
INTER-DATA-CENTER

NETWORKS WITH MINIMUM
OPERATIONAL COSTS

B. Kantarci1 and H. T. Mouftah2

1Department of Electrical and Computer Engineering, Clarkson University,
Potsdam, New York, USA

2School of Information Technology and Engineering, University of Ottawa,
Ottawa, Ontario, Canada

5.1 INTRODUCTION

Cloud computing enables users to receive infrastructure/platform/software as a service
(XaaS) via a shared pool of resources based on the pay-as-you-go fashion [1]. Automated
service provisioning, virtual machine migration, data security, reliability, and energy
management have been pointed as the challenges faced by cloud providers [2], whereas
energy management and reliability appear as two important issues that impact the opera-
tional expenditures (Opex) of the operators. As data centers are the main hosts of physical
resources, they play the key role in the delivery of cloud services. Hence, interconnec-
tion of data centers over a backbone network is one of the major challenges affecting the
performance of the cloud system, as well as the Opex of the service providers.

As illustrated in Figure 5.1, inter-data-center (IDC) networks are considered to be
accommodated within the public telecom network that consists of heterogeneous net-
work segments such as wireless backhaul networks, wireline local area networks (LANs),
wireless sensor networks (WSNs), wireline Multiprotocol Label Switching (MPLS)
networks, legacy IP networks, and so on [3]. In the Cloud era, the volume of the traffic

Cloud Services, Networking, and Management, First Edition.
Edited by Nelson L. S. da Fonseca and Raouf Boutaba.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

105



“9780471697558c05” — 2015/3/20 — 11:13 — page 106 — #2

106 INTER-DATA-CENTER NETWORKS WITH MINIMUM OPERATIONAL COSTS

Network control
and 

management

Data
center

Data

center

Wireline
MPLS

Wireless
sensor
network

High
capacity

optical
transport
network

Wireline
O-CDMA

Lan

Produced by
microsoft visio

IP

network

Wireless
access

network

Figure 5.1. Heterogeneous inter-data-center network [3].

between data centers increases tremendously due to on-demand accessing to shared pool
of resources by large number of users. This phenomenon increases the capacity demands
of the IDC networks introducing challenges related to capacity scaling and operational
expenses [4]. Furthermore, virtual machine migration within and between the data cen-
ters or massive arrival of new cloud resource requests can lead to frequent reconfiguration
of the network between the servers in data centers, as well as the network interconnecting
the data centers [5]. High bandwidth and low energy cost are reported as the two cru-
cial requirements of IDC networks which make optical networks the leading transport
technology [6, 7].

Optical IDC networks call for intelligent design schemes by considering content
replicas, as well as the location and number of data centers in order to ensure survivability
against failures [8, 9]. Furthermore, energy-efficient design of the IDC network is crucial
to minimize the operational expenses of the network and data center providers as high
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energy consumption leads to increased the electric bills. Here, energy-efficiency denotes
power saving design and planning of the network, as well as reducing the nonrenewable
energy consumption in powering the data centers and the inter-data-center network [10].

Virtualization of the network is a key concern in network design as connectivity can
be guaranteed to the cloud customers by offering network as a service (NaaS) [11]. In
the same study, Baroncelli et al. define virtualization as mapping the cloud services with
the corresponding end addresses where cloud requests are submitted. Besides virtualiza-
tion, communication mode is another factor which affects Opex of the network and data
center operators. In conventional networks, unicast and multicast communication modes
are used. However, in a virtualized cloud environment, requests can be routed toward
virtual resources based on anycast or manycast paradigm. In an IDC network consisting
of N nodes, anycast is denoted by <s, d ∈ D> where s and d denote source and desti-
nation addresses, respectively, whereas D is the set of candidate destination addresses.
Thus, reaching at any of the candidate destination addresses is sufficient to provision
the corresponding request. On the other hand, manycast is denoted by <s,D′ ⊆ D>
where reaching at a subset of the candidate destinations is sufficient to provision a sub-
mitted request. Anycast and manycast communication modes provide the flexibility of
allocating resources in different data centers; hence energy efficiency and resilience can
be ensured by adopting these communication modes [12–14].

As mentioned earlier, energy efficiency impacts the electric bills of the operators;
therefore design schemes considering electricity prices based on location and time are
also emergent. According to recent research results, electricity price-aware design of
the inter-data-center network can enable Opex savings if and only if electricity price-
aware inter-data-center workload migration is enabled along with provisioning the
demands in the data centers where electricity prices are low at the time of provisioning
[15, 16].

An IDC network design with the objective of energy efficiency (or minimum electric
bills) is different from an energy-efficient transport network design due to the difference
between energy consumption levels of the network components and data centers. The
most power hungry components of the transport networks are reported to be the IP router
ports, while the power consumption of a cloud data center is at least ten to hundred times
of that of a corporate data center. An IP router port consumes around 1 kW [17], whereas
the total power consumption of a cloud data center can reach up to multi-mega-watts
(MMW). Recent research reports that 61.4 MMW of total energy consumption of US
data centers (according to the report in 2006 [18]) has dramatically increased by the end
of 2013 [19].

Indeed, when designing a virtual IDC network, resilience is at the expenses of energy
savings as reported in Ref. [20]. Therefore, in order to address this trade-off, there has
been proposals such as the resilient virtual infrastructure design under 1:1 protection for
lightpaths and virtual servers [20] and IDC workload migration-enabling virtual network
design schemes [21].

This chapter provides a reference on the design methods for operational cost-
efficient design of a cloud backbone through demand profile-based network
virtualization where the data centers are located at the core nodes of a transport net-
work. Addressing energy-efficiency in a cloud backbone helps reducing the Opex of the
network and data center operators. Another factor that affects the Opex of the operators
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is the downtime of cloud services that can be denoted by resiliency, availability, and/or
reliability. This chapter considers two major components of the operational costs of an
IDC network: (1) electric bills of the operators, (2) Downtime penalties due to service
unavailability, i.e., outage. Therefore, the design methods that aim at cutting the electric
bills of the operators, as well as the methods that aim at reducing the outage probability,
are covered in the following sections. Furthermore, the approaches that jointly consider
these challenges and overcome the related challenges are studied, as well. At the end of
the chapter, a brief summary of the studied schemes is complemented by a comprehen-
sive comparison in terms of various aspects of Opex and other performance parameters
affecting it.

In Section 5.2, we introduce IDC network virtualization and a generic virtualiza-
tion scheme. Section 5.3 introduces virtual IDC network design with the objective of
minimum electric bills by presenting mixed integer linear programming (MILP)-based
optimization and heuristic solutions. Section 5.4 introduces IDC network design with the
objective of minimum downtime penalties. As mentioned earlier, there exists a trade-off
between these two Opex elements. Therefore, Section 5.5 presents a solution to address
this trade-off. The chapter is summarized along with discussions for open issues and
challenges in Section 5.6.

5.2 INTER-DATA-CENTER NETWORK VIRTUALIZATION

In the cloud dominated era, virtualization and infrastructure as a service (IaaS) enables
providing several portions of the physical infrastructure as a service by different oper-
ators where infrastructure denotes computing and storage resources in data centers, as
well as the communication infrastructure interconnecting the data centers [22]. Further-
more, by taking advantage of transparent optical devices, virtualization of an optical
network enables bypassing IP routers that are the most power hungry components in the
backbone [17].

Figure 5.2 presents a minimalist illustration of virtualization of an IDC network.
Each data center is associated with a backbone node where backbone nodes are inter-
connected via fiber links. If a lightpath can be established between two nodes, the two
backbone nodes with the allocated resources in the associated data centers are said to
be virtually linked. Thus, in the virtual infrastructure, a virtual node is denoted by the
virtualized resources of a data center and its associated backbone node.

In the literature, planning of the virtual infrastructure denotes mapping the virtual
network onto the physical topology. The physical infrastructure is considered to be the
set of data centers, optical backbone nodes, and fiber links interconnecting them, whereas
the virtual infrastructure is a subset of the physical infrastructure consisting of a set of
virtualized data center resources and fiber channels [23].

The objective of network virtualization can be various such as energy minimiza-
tion, cost minimization, reliability maximization, and so on. In this section, we present
a previously proposed energy-minimized design of an inter-data-center network [13]
which adopts the multihop optical bypass-based virtualization technique in an IP over
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Figure 5.2. Minimalist illustration of inter-data-center network backbone virtualization.

WDM network [17]. In Ref. [13], the authors have proposed an energy efficient design
of the IDC network backbone through MILP formulations, as well as heuristics. These
schemes have been extended to address both inter and IDC network provisioning with the
objective of energy efficiency [24]. However, since the scope of this chapter is limited
to IDC network design, we refer the interested reader to the corresponding reference.
In the next sections, the corresponding formulation will serve as a benchmark for the
Opex-minimized design schemes.

For the sake of simplicity, let us assume that a single virtual infrastructure is mapped
onto the physical infrastructure. Furthermore, the following assumptions hold in the
design of the virtual infrastructure:

• Three types of demands are assumed in the network, namely downstream data cen-
ter demands, upstream data center demands, and regular demands. An upstream
demand is submitted from a backbone node, and it is destined to any or a num-
ber of data centers. A downstream data center demand originates from a few data
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centers and destined to a certain backbone node where they are aggregated and
delivered to the corresponding end users. A regular demand denotes a nondata
center unicast flow between two backbone nodes.

• Intensities of all types of demands in a certain time interval are forecasted in
advance. Thus, virtualization of the backbone is performed in advance of the
occurrence of the corresponding demand profile so that the virtualization objective
can be met.

• For an incoming upstream demand of any size, the overhead of allocating
resources in a given data center is known in terms of utilization, power consump-
tion, and power usage efficiency.

5.2.1 Mathematical Formulation

In the formulation, the physical infrastructure is denoted by a directed graph G whereas
the virtual infrastructure is also represented by a directed graph denoted by G′. Given
an upstream data center demand originating at a source node, s, the set of data centers
that are capable of provisioning the corresponding demand is denoted by D. Routing the
demand towards any data center out of D is referred as anycast, whereas routing toward
a subset of the eligible data centers is named as manycast. Thus, a manycast demand
can be denoted by the tuple <s,D′ ⊆ D>. Here, if |D′| = 1, the communication mode
becomes equivalent to anycast while in case of D′ = D, it becomes identical to multicast
communication. In this design scheme, upstream data center demands are assumed to be
provisioned based on the manycast communication mode.

Table 5.1 illustrates the notation used in explaining the virtualization framework
in Ref. [13]. Mathematical formulation of the model is presented in Equation 5.1 and
5.2. Equation 5.1 presents the objective of the virtualization, which is minimized energy
consumption throughout the IDC network. As seen in the equation, the total power con-
sumption in the network is the sum of the power consumptions at each node location.
Power consumption at each node location is a function of the power consumption of the
associated data center (summation term 1), the active IP router ports (summation term-2)
and transponders in the directed wavelength channels along with the erbium-doped fiber
amplifiers (EDFAs) in the directed fiber links (summation term 3). The number of active
IP ports is calculated by the number of outgoing virtual lightpaths at the corresponding
node. Besides, in the third summation term, the number of EDFAs on a physical link, Sij

is set at �Lfij/Δspan�+ 1 where Δspan is the fiber span length.

min
∑
i∈Nv

(
DCi +

∑
j∈Nv

i

Pr · Cij +
∑
j∈N

p
i

(Pt · Wij + Sij · Pedfa · fij)

)
(5.1)

Before proceeding with the details, it is worthwhile to provide information on the
power consumption of a data center. Based on the assumptions summarized earlier, the
prospective power consumption of data center-d (DCd) is a function of current pro-
cessing and cooling power consumption in the corresponding data center and the total
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TABLE 5.1. The notation used in the virtualization scheme

Notation Explanation

Pi Power consumption at node i
DCi Power consumption of the data center i
Pr Power consumption of an IP router port
Cij Number of lightpaths in the virtual link ij
Nv

i (Np
i ) Set of neighbors of node i in the virtual (physical) topology

Pt Power consumption of a transponder
Pedfa Power consumption of an EDFA
Smn Number of EDFAs in the physical link mn
Wij Number of wavelengths in the physical link ij
fij Number of fibers in the physical link ij
ΩDOWN

ds Downstream demand from data center s to node d
ΩUP

s Upstream traffic (job submission) to data centers from to node s
γds

ijdown
Binary variable is one if there is downstream traffic from data center s to node d

traversing the virtual link-ij.
λsd

ij Regular traffic demand traversing the virtual link ij and destined from node s
to node d

Λsd Regular traffic demand from node s to node d
Υsd

up Possible demand from node s to data center d
γsd

ijup Binary variable is one if there is traffic from node s to data center d traversing the
virtual link ij

Ds
max Maximum number of destinations for the upstream traffic from node s

Ds
min Minimum number of destinations for the upstream traffic from node s

Wmn
ij Number of wavelength channels on the virtual link ij traversing the physical link mn

DCcool
d Cooling power consumed at data center d

DCproc
d Processing power consumed at data center d

Θs,d Power consumption overhead introduced to data center d by the job submitted by
node s

Li,j Shortest distance from node i to node j
Lfm,n Fiber length between node m to node n

additional power consumption overhead of the demands submitted from other locations
and provisioned in data center-d. Equation 5.2 formulates this expression.

DCd = DCcool
d + DCproc

d +
∑
s∈V

∑
i �=d

Θs,d · γsd
idup

, ∀d ∈ V (5.2)

Three subsets of constraints form the constraint set of the design model. Virtualiza-
tion is mainly based on a typical routing and fiber and wavelength assignment (RFWA)
in an optical network. Therefore, flow conservation constraints dominate the rest of
the constraint set. In the virtual topology, single-hop routing is performed in the IP
layer while multihop routing in the physical topology is handled by the optical layer.
Hence, flow conservation constraints for both layers have to be formulated separately.
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Besides, capacity constraints and manycast constraints for upstream data center traffic
are needed. It is worthwhile to note that this chapter only presents the constraints related
to the upstream data center (i.e., manycast) demands. Downstream data center demands
can also be considered as multiple unicast demands such as the regular demands. For
detailed information on the formulation of unicast the constraints, the reader is referred
to Refs. [13, 17].

Flow conservation constraints in the IP layer: An upstream data center demand
requires to be provisioned in at least (Ds

min) and at most (Ds
max) data centers. A backbone

node must initiate manycast traffic whose size is less than the demand size for maxi-
mum number of destination data centers and greater than the demand size for minimum
number of destination data centers as shown in Equation 5.3. Manycast communica-
tion mode requires a “light-tree” in the network [25]. Thus, the total demand size on
the first branches of the light-tree is the size of the manycast demand. Furthermore, an
upstream data center demand has to arrive at sufficient number of destinations by mod-
ifying Equation 5.3 appropriately. Besides, flow conservation at the intermediate nodes
has to be met, that is, incoming and outgoing traffic volumes for a given type of demand
at an intermediate node have to be equal.

Ds
min · ΩUP

s ≤
∑
d∈V

∑
j∈V

Υsd
up · γsd

sjup
−

∑
d∈V

∑
j∈V

Υsd
up · γsd

jsup
≤ Ds

max · ΩUP
s , ∀(s) ∈ V (5.3)

Flow conservation constraint in the optical layer: In the optical layer, source node of
a virtual link does not have any incoming wavelength channels as formulated in Equation
5.4, while the destination node of a virtual link does not have any outgoing wavelength
channels. Besides, a virtual link does not contain any loops.

Wij
mn − Wij

nm =

⎧⎨
⎩

−Cij m = i
Cij m = j
0 else

⎫⎬
⎭ , ∀m, n, i, j ∈ V (5.4)

Capacity constraints: Total channel capacity of the fibers from node−m to node−n
sets the upper bound for the number of lightpaths traversing a physical link-mn as shown
in Equation 5.5.

∑
i∈V

∑
j∈V

Wij
nm − W · fmn ≤ 0, ∀m, n ∈ V (5.5)

Furthermore, a virtual link must have sufficient capacity to accommodate the regular
traffic, downstream DC traffic and the upstream DC traffic traversing it as shown in
Equation 5.6, where C denotes the wavelength channel capacity.

∑
s∈V

∑
d∈V

λsd
ij +Υsd

up · γsd
ijup

+Υds
down · γds

ijdown
≤ C · Cij, ∀i, j,∈ V (5.6)

Manycast constraints: Equation 5.7 ensures that each DC upstream demand reaches
to sufficient number of destinations. Furthermore, at most one virtual link can be utilized
prior to reaching at a destination as shown in Equation 5.8. To be able to distribute the



“9780471697558c05” — 2015/3/20 — 11:13 — page 113 — #9

INTER-DATA-CENTER NETWORK VIRTUALIZATION 113

traffic over the branches of the light-tree, backbone nodes in the optical domain have to
be multicast capable. Thus, an upstream data center demand can be accommodated by
the same virtual links up to node-j where the demand is split into multiple virtual links.
Equation 5.8 formulates this constraint.

Ds
min ≤

∑
i

∑
i �=d

Υsd
up · γsd

idup
≤ Ds

max · ΩUP
s , ∀s ∈ V (5.7)

∑
i �=d

γsd
idup

≤ 1, ∀s, d ∈ V (5.8)

∑
d∈V

γsd
ijup

≤ 1, ∀s, i, j ∈ V (5.9)

5.2.2 Heuristic Solution for Inter-Data-Center Network
Virtualization

In Ref. [13], the authors have proposed a heuristic to solve the aforementioned MILP
solution. The heuristic adopts the energy-efficient virtualization of an IP over WDM net-
work [17], and introduces data center demands, as well as data center utilization and
power consumption constraints. The heuristic is named as Power Minimized Provision-
ing (PoMiP). Figure 5.3 illustrates a generic flowchart for virtualization steps of an IDC
network. The algorithm starts with a set of demands that are sorted in decreasing order.
Starting from each demand, the algorithm aims at routing the demand over virtual topol-
ogy, G′. If the demand can be routed over the virtual topology, the remaining virtual
link capacities are updated, and the algorithm proceeds with the next non-provisioned
demand. If the demand cannot be routed over the virtual topology; a new virtual link
is added between source and destination nodes, which is later routed over the physical
topology. The capacity of the newly added virtual link is also updated accordingly.

Here, as seen in the figure, there are three distinguishing functions of the heuristic
as follows: (1) Virtual link cost (ϕv

ij) assignment, (2) Physical link cost (ϕphy
mn ) assignment,

(3) Selection of destination data centers.
Equation 5.10 formulates the virtual link cost assignment. The heuristic aims at

selecting the virtual links with higher remaining capacity and lower physical link costs.

ϕv
ij =

⎧⎪⎪⎨
⎪⎪⎩

∑
link−mn∈link−ij

ϕphy
mn

C′
ij

C′
ij > 0

∞ else

⎫⎪⎪⎬
⎪⎪⎭

(5.10)

Physical link cost assignment is formulated in Equation 5.11. As the power con-
sumption of IP routers are avoided in the optical domain, power consumption of EDFAs
(Pedfa) as a function of the distance between the two nodes forming the link, power
consumption of the transponders as a function of the number of active wavelengths in
the physical link are the factors that contribute the power consumption in a physical
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Pop the first
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Pop first data center in dc∙

Set virtual link costs (φv)∙

Figure 5.3. Generic virtualization steps for an inter-data-center network.

link. Thus, according to Equation 5.11, the heuristic aims at selecting the least power
consuming links on a physical path.

ϕphy
mn =

{
Pedfa · Smn + Pt · Wmn Wmn > 0

∞ else

}
(5.11)

Since PoMiP aims at minimum power consumption throughout the network, for an
upstream data center demand initiated at the backbone node s, it ranks and sorts the data
centers with respect to their prospective power consumption in increasing order, and
selects the first Ds

min of them as the destinations. Thus, the heuristic maps the manycast
flow provisioning problem onto multiple unicast flows provisioning problem.

Given a physical network of N backbone nodes and their associated data centers, for
any demand, if a virtual path is found on the virtual topology, runtime of the algorithm
is bounded above by O(N2) which is the complexity of a typical shortest path routing
algorithm. If the demand cannot be routed over the virtual topology, newly added virtual
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link is routed over the virtual topology within O(N2). Furthermore, searching for a fiber
and a lightpath throughout the physical path requires O(F · W) runtime on each link,
where F is the number of fibers per link and W is the number of transponders (i.e.,
wavelengths) per node. Since fiber and wavelength search will be performed on each link
with wavelength continuity constraint, fiber, and and wavelength search throughout the
path can be repeated by (N − 1)2 times. Therefore, runtime complexity of the algorithm
is O(N2 ·F ·W). Since N ≥ F and N ≥ W, it can be said that the heuristic runs in O(N4)
in the worst case.

5.3 IDC NETWORK DESIGN WITH MINIMUM ELECTRIC BILLS

Energy-efficient design of the IDC network reduces the Opex of the operators as they are
charged due to electricity consumption. Therefore, Opex of the operators can be further
reduced if energy-efficient design is consolidated with electricity price-awareness. Fur-
thermore, taking advantage of demand response (DR) component in smart grids can help
reducing Opex of the operators while keeping the power consumption fairly distributed
among the network. It is worthwhile to note that DR denotes regulating power consump-
tion through generation of varying price tariffs Three approaches, namely time-of-use
(ToU) pricing, real time pricing (RTP), and critical peak Pricing (CPP) are the most
popular approaches among existing time varying tariffs. Since smart grid and dynamic
pricing is a new concept, customers are not willing to join RTP-based pricing tariffs as
they are used to being charged by flat rates. Moreover, elasticity of RTP tariffs requires
rapid adaptation of customers. Based on the analysis in [26], this chapter considers ToU
pricing despite several benefits of RTP.

In Ref. [15], the authors have analyzed the impact of ToU-aware virtualization of
the inter-data-center network where the network is virtualized based on the forecasted
demand profile and the ToU rates in a certain timeslot with the objective of mini-
mum electric bills for data center and network operators. In the corresponding study,
the authors report that ToU-awareness enables reduction in the electric bills of the net-
work and data center operators while introducing longer provisioning delays for the user
demands that are submitted to the data centers. In Ref. [16], the authors have shown
that ToU-aware IDC network virtualization is beneficial as long as IDC workload shar-
ing is enabled during virtualization. To this end, the authors have proposed ToU-aware
Provisioning (ToUP) which adopts and extends the virtualization scheme in Section 5.2.

Since data centers are the most power hungry components of an IDC network, sig-
nificant reduction of the Opex by cutting the electric bills can be possible by enabling
workload sharing between data centers. Therefore, ToUP re-defines the distinguishing
functions of the virtualization heuristic in order to meet its objective. Furthermore, in
addition to the three demand types, it also accommodates the fourth demand type, namely
the IDC demands. Distinguishing functions of the heuristics are re-defined as follows:

Virtual link cost assignment: Equation 5.12 formulates the virtual link cost assign-
ment at time, T . As seen in the equation, if there are sufficient remaining lightpaths on
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a virtual link, its cost is set at the total cost of physical links forming the corresponding
virtual link.

ϕv
ij(T) =

⎧⎨
⎩

∑
link−mn∈link−ij

ϕphy
mn (T) C′

ij > 0

∞ else

⎫⎬
⎭ (5.12)

Physical link cost assignment: Besides, cost of the physical link mn is set at its contri-
bution to the electric bill per unit time. Thus, the product of the ToU price at the location
of the destination end node of the physical link mn (Pricen(T)) and the total energy con-
sumption on the corresponding link per unit time is the unit contribution to the electric
bill of the network operator.

ϕphy
mn (T) =

⎧⎨
⎩

Pricen(T) ·
[

Lfmn · (Pedfa · Smn + Pt · Wmn)

]
Wmn > 0

∞ else

⎫⎬
⎭ (5.13)

Data center subset selection for upstream data center demands: For an upstream
data center demand, ToUP computes the prospective contribution of the corresponding
demand to the electric bill of each data center in the network. As mentioned before,
it is assumed that the network virtualization manager knows the power consumption
and resource utilization overhead of an upstream data center demand on any data cen-
ter. Therefore, contribution of an upstream data center demand to the electric bill of the
data center operator is calculated by the product of the prospective energy consumption
in the data center and the ToU rate at the time of virtualization at the location of the
corresponding data center as seen in Equation 5.14.

Ri(T) = Pricei(T) ·
∑
j �=i

Θs,i · γsi
jiup

∀i, s ∈ V (5.14)

IDC workload sharing: As mentioned before, ToUP enables accompanying backbone
network virtualization IDC workload migration so that workloads are hosted in those
data centers that experience lower ToU prices during the corresponding period. Here, a
new workload-data center mapping is aimed to be obtained. To this end, in [16], the
authors have proposed a simulated annealing-based procedure which is presented in
Algorithm 5.1.

Algorithm 5.1

Inter-Data-Center Workload Migration Algorithm {
Begin
Sort demands in decreasing order
Opxtemp ←

∑
i Oi

dc use Map to calculate
Mapii ← 100, TempMapii ← 100, ∀i
Ocurrent ← Opxtemp
while (converge = FALSE)
{

TempMapij ← Mapij, ∀i, j
randrow ← Select a random row in Map

candidates ← Count (Υrandrow,d
IDC > 0)
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if(Count(Maprandrow,i > 0)>0)
{

TempMaprandrow,randrow ← κMIN
Remainder ← 1 − κMIN

}
else
{
randcol ← Select a random column in TempMap
if((randcol) is on the diagonal)

{
TempMaprandrow,randrow ← κMIN
Remainder ← 1 − κMIN

}
else
{

Remainder ← TempMaprandrow,randcol
TempMaprandrow,randcol ← 0

}
}

dest1, dest2 ← Candidate destinations out of candidates
sharedest1 ←Migration to dest1; sharedest1 ∈ [0,Remainder]
sharedest2 ←Migration to dest2; sharedest2 ∈ [0,Remainder − sharedest1]
TempMap[randrow][dest1] increment by sharedest1
TempMap[randrow][dest2] increment by sharedest2
TempMap[randrow][randrow] increment by Remainder − (sharedest1 + sharedest2)
Opxtemp ←

∑
i Oi

dc use TempMap to calculate

F ← e(Ocurrent−Opxtemp)/(100·B·tcool)

if((F ≥ 1))
Map[i][j] ← TempMap[i][j], Ocurrent ← Opxtemp
else if(F < 1)

Map[i][j] ← TempMap[i][j], Ocurrent ← Opxtemp with prob. F
T ← T · tcool
if(T ≤ Tground OR change in Ocurrent � 1)

converge ← true
}

End
}

Before proceeding with the details of the algorithm, it is worthwhile to see Table 5.2
for the notation, as well as the settings. The algorithm aims at obtaining a new data
center-workload mapping matrix, Map, and in each annealing iteration it uses a tempo-
rary mapping matrix, TempMap. Each data center is assumed to migrate a certain portion
of its workload to at most DCmax data centers which is set at two in the pseudocode for the
sake of simplicity. By the term Opex, the algorithm denotes the total electric bills of the
data center operators. Initially, Map is set at 100 · I where I is the identity matrix. Thus,
each data center hosts 100% of its original workload. Until the algorithm converges, the
following iteration steps are repeated: TempMap is set equal to Map, and a random row
of Map denoting the source data center is selected along with a random column which
denotes a candidate destination data center. If the candidate destination data center is the
data center itself, the algorithm sets the value of the corresponding cell at κMIN , other-
wise it is set at zero. Then, the remainder of the workload is aimed at being distributed
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TABLE 5.2. The notation used in inter-data-center workload migration algorithm

Notation Explanation

Map: Workload distribution matrix
TempMap: A temporary workload distribution matrix
DCs: Candidate DCs set to share the workload of the data center s
Υsd

IDC: Possible workload migration demand from data center s to data center d
Opxtemp(Ocurrent): Temporary (current) Opex
T,B: Annealing temperature, Boltzman constant
tcool: Cooling rate of the system
dc: List of destination data centers
κMIN : Lower bound for the workload percentage not to be migrated

among two of the rest of the data centers. The new workload-data center mapping is
stored in TempMap, which is used to calculate the possible electric bill contribution of
the new workload distribution (Opxtemp). The newly computed workload distribution
map is accepted by running a function (i.e., F in the peseudocode) of the current actual
Opex (Ocurrent), newly computed Opex (Opxtemp), Boltzman constant and the cooling
rate of the system. If F is greater than or equal to one, the workload that is stored in
TempMap is accepted and assigned to Map. Otherwise, it is accepted with a probability
of F.

At the end of each iteration, the system temperature is cooled by the cooling rate,
tcool. If the system temperature is equal to or less than the previously defined ground
temperature, or if the change in current Opex is significantly low, the annealing system
is said to have converged. At this point, the algorithm stops and accepts the new workload
distribution among the data centers.

In Ref. [16], the authors evaluated the performance of ToUP under a medium-scale
cloud system located in the 14-node NSFNET backbone where each backbone node is
associated with a data center which is initially loaded between 0.1 and 0.7. Backbone net-
work [13] is considered to be an IP over WDM network with 16 40 Gbps-wavelengths per
fiber in which EDFAs are placed at every 80 km. Four time zones are assumed with the
demand profile in Figure 5.4a, whereas the ToU rates have been synthetically derived
for each location as shown in Figure 5.4b. It is worthwhile to note that the NSFNET
topology four different time zones exist, namely the Eastern Standard Time (EST), Cen-
tral Standard Time (CST), Mountain Standard Time (MST), and Pacific Standard time
(PST) zones. An entire day is partitioned into eight equal timeslots. Network equipments,
namely an EDFA, a transponder and an IP router port are assumed to consume 8, 73, and
1000 W, respectively [17]. Besides, workload placement in a data center utilizes mini-
mizing heat recirculation [27], and a data center is assumed to consume 168 kW (100 kW)
of idle IT (cooling) power and 319.2 kW (280 kW) of full utilization IT (cooling) power.
An upstream data center demand is assumed to increase the data workload between 0.025
and 0.2. In the IDC workload distribution algorithm, the Boltzman constant is set at 0.01,
whereas the cooling rate is 0.95. The ground temperature and the minimum temperature
change are considered to be 0.005 and 0.001, respectively.
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Figure 5.4. (a) Demand profile in different time zones. (b) ToU rates in different locations of
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Figure 5.5. (a) Opex savings in the inter-data-center network. (b) Opex of the network

equipment.

In Figure 5.5, performance evaluation of ToUP is presented in comparison to delay
and power-minimized provisioning (DePoMiP) which has previously been proposed
in [13]. Furthermore, ToUP is also evaluated by disabling IDC migration (κMIN = 1).
Figure 5.5a illustrates overall Opex savings in the IDC network with respect to delay-
minimized provisioning (DeMiP) where DeMiP aims at virtualization of the backbone
network with shortest lightpaths for unicast demands and shortest light-trees for upstream
data center demands. It is clearly seen that ToUP is outperformed by DePoMiP if IDC
workload migration is disabled. Furthermore, enabling IDC workload migration intro-
duces more Opex savings when compared to DePoMiP. Thus, lower κMIN values leads
to higher Opex savings in the entire cloud system. However, as seen in Figure 5.5b,
the smaller the κMIN , the higher the Opex of the network operator. Therefore, limiting the
allowable IDC workload migration seems to be viable. As the authors report in Ref. [16],
under such a scenario, enforcing around 30% of the workload to be hosted in the original
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data center leads to the best compromise between the Opex of the data center and the
network operators.

5.4 INTER-DATA-CENTER NETWORK DESIGN WITH MINIMUM
DOWNTIME PENALTIES

Besides energy efficiency and electricity bills, another type of significant operational
expenses are the downtime penalties. Outage of network and/or computing resources
in data centers can occur due to component failure. Therefore, resilient design of IDC
network design with the objective of minimum outage probability is required to reduce
Opex. In Ref. [8] the content placement along with path and content protection in an
optical IDC network have been addressed via ILP formulations and heuristics. Similarly,
in [9], locations of data centers are determined via ILP formulations based on anycast
communication mode with the objective of maximum resilience. In Ref. [28], the authors
have proposed network virtualization-aware IDC network over an elastic optical net-
work (EON) backbone. Although the proposed architecture is transparent to the transport
technology, the authors have adopted the elastic optical networking technology based
on the report of the recent research. Recent research reports that energy consumption,
bandwidth utilization, and deployment cost are enhanced by elastic optical networks in
comparison to the conventional wavelength switched optical transport networks [29].

An outage denotes unavailability of the IDC network, and it can occur due to either
network component failure or a failure in the data center. Therefore, a resilient design
scheme should jointly consider the availability of network components as well as the
availability of data centers. The outage probability of a virtual link (ν�ij) can be formu-
lated by Equation 5.15 where Oi

IP, aedfa, arcvr, and arcvr denote the outage probability of
an IP router, availability of an EDFA, availability of a transceiver and the availability of
a receiver, respectively. Besides, Smn, represents the number of EDFAs deployed in the
physical link mn (ρ�mn).

Oij
ν� = Oi

IP + Oj
IP +

∑
m∈G

∑
n∈G,ρ�mn∈ν�ij

Smn · (1 − aedfa) + (1 − atran) + (1 − arcvr) (5.15)

Thus, a virtual link ij is said to be out of service if one of the following conditions
holds:

• IP routers at the source/destination nodes of the link fails.
• An EDFA along the physical path forming the virtual link ij fails.
• Transmitter at node i fails.
• Receiver at node j fails.

Once the outage probability of the virtual link is formulated, outage probability of a
virtual path (VP) can be formulated as the sum of outage probabilities of the virtual links
forming the path. If a data center is located at the end of the path, its outage probability
is also added to the outage probability of the virtual path.
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Outage probability of an upstream data center demand submitted at node s can be
formulated as shown in Equation 5.16 by simply assuming that the workload is repli-
cated in two data centers where Ds

list, γ
sd
ijwp, and Oc

dc denote the list of selected data centers
by node-s, a binary variable to denote if data center-d utilizes the virtual link ij and the
outage probability of data center c, respectively. In order to ensure resilience of a given
upstream data center demand; at least one lightpath toward the destination node and its
corresponding data center must be available (first summation term). In the first sum-
mation term, duplicates of outage probability of the virtual links and the data centers
can occur, which are eliminated by the second summation term. Since the entire sum-
mation leads to the availability of the corresponding demand, one’s complement of the
summation is equal to the outage probability.

Os
US = 1 −

[ ∑
d∈Ds

list

(
(1 − Osd

νP) · (1 − Od
dc)

)

−
∑

d,c∈DC

∑
i∈G′

∑
j∈G′

(
(1 − Oij

ν�) · γsd
ijwp · γsc

ijwp · (1 − Oc
dc) · (1 − Od

dc)

)]
(5.16)

5.4.1 Minimum Outage Probability in Cloud

In Ref. [28], the authors have proposed an IDC virtual network design scheme, namely
minimum outage probability in cloud (MOPIC). MOPIC computes virtual paths to the
data centers in DCs, and DCmin data centers are selected where the outage probability
of the data centers and that of the corresponding virtual paths lead to minimum outage
probability.

While routing the virtual links over the physical topology, MOPIC assigns the outage
probability of each physical link as the link cost, thus, a virtual link is aimed to be routed
over the most resilient lightpath in the physical topology.

5.4.2 Resource Saving Minimum Outage Probability In Cloud

Resilience requires additional resource usage will introduce additional energy consump-
tion. Therefore, an efficient design scheme is expected to make a compromise between
resource usage and resilience. To this end, resource saving minimum outage probability
in cloud (RS-MOPIC) has been proposed. Although computing resource usage cannot be
reduced, some savings in network resource usage is possible. Reducing the length of the
path traversed from source node to the destination data center can enable resource sav-
ing. In the virtualization algorithm in Figure 5.1, virtual link cost assignment is done as
follows. Each virtual link ij is assigned the product of its outage probability and the num-
ber of hops in its physical topology mapping. The same principle holds in determining
the destination data centers. Thus, virtual paths to each data center in DCs is searched
by using the virtual link cost assignment as mentioned above, and selects DCmin data
centers leading to the DCmin-minimum outage probabilities for the corresponding work-
load placement. Similarly, while routing the virtual link ij over the physical topology,
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each physical link-mn on the physical topology is assigned the product of its outage
probability and the number of nodes traversed by node n to node j.

Performance of MOPIC and RS-MOPIC has been evaluated by using a benchmark
approach called minimum resource provisioning in cloud (MRPIC). MRPIC mainly aims
at designing the virtual network with minimum network resource usage. To this end, it
sets the virtual link cost at the number of physical links forming the corresponding link
while routing a demand over the virtual topology. In order to map a virtual link on the
physical topology, MRPIC sets the cost of a physical link at the number of hops to the
destination node of the corresponding virtual link. Similarly, while for the upstream data
center demands DCmin data centers out of DCs are selected based on the locality principle.

In a medium-scale simulation scenario under the 24-node US National Backbone
topology [17], the demand profile in Figure 5.4 is considered where each 3 h times-
lot is denoted by Di. Fiber links interconnecting the data centers are assumed to have
1000 GHz spectrum capacity with a data rate/bandwidth ratio of 2 bps/Hz. Besides,
1 GHz subcarriers are assumed with a guard band of 10 Ghz whereas the transponder
capacity is assumed to be equal to the capacity of 50 subcarriers. DCmin is set at two for
the sake of simplicity. It is assumed that the outage probability of a router port is 10−6.
Further assumptions on the outage probabilities of the optical network components such
as transceivers and EDFAs are taken from Ref. [30]. Besides, four-tier data centers are
considered with respect to their availability values such as Tier 1, Tier 2, Tier 3, and Tier 4
with the availability levels of 99.67%, 99.74%, 99.98%, and 99.995%, respectively [31].

In Figure 5.6a, RS-MOPIC and MOPIC are compared to the benchmark scheme,
MRPIC in terms of outage probability of the upstream data center demands. Introduc-
ing outage probability awareness to RSA and destination data center selection process
reduces the outage probability of upstream data center demands dramatically. The outage
probability under MRPIC is always at the level of 10−6 whereas the outage probability
of an upstream data center demand is reduced to the level of 10−7 under MOPIC and
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channels in the virtual inter-data-center network.
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RS-MOPIC. Furthermore, joint awareness of resource consumption and outage probabil-
ity does not degrade resilience of the demands as RS-MOPIC introduces similar outage
probability with MOPIC. Moreover, under heavy demand profiles (e.g., D6 and D8), RS-
MOPIC slightly reduces the outage probability of MOPIC by selecting shorter physical
lightpaths for virtual topology mapping. The upper half of the figure shows the outage
probability under anycast-based MOPIC. Instead of placing the workload on multiple
data centers, provisioning on a single data center increases the outage probability up
to 10−4.

Besides, in Figure 5.6b, number of active channels are presented as the resource con-
sumption of the evaluated schemes. Indeed, anycast-based implementation of MRPIC
(DCmin = 1) introduces the least resource consumption due to utilizing less net-
work resources by 13% and 35% based on the demand profile. Resource consumption
awareness incorporated in outage probability-aware provisioning increases the resource
consumption of MRPIC by 3.5%–12% depending on the demand profile whereas pure
outage probability-aware design of the virtual IDC network increases channel utiliza-
tion by 10%–25%. Thus, RS-MOPIC is more viable to be adopted in order to make a
compromise between resilience and resource overhead.

5.5 OVERCOMING ENERGY VERSUS RESILIENCE TRADE-OFF

Although RS-MOPIC improves MOPIC in terms of resource consumption, it is not
power-aware; hence, energy-efficient improvement over MOPIC is required in order
to ensure low Opex for the operators. To this end, in [21], the authors have proposed
resilient provisioning with minimum power consumption in cloud (RPMPC) which aims
at making a compromise between power consumption and outage probability. RPMPC
improves MOPIC in the following four ways:

(1) For upstream data center demands, RPMPC selects 
DCmin/2� data centers out
of Ds based on minimum power consumption, whereas the rest are selected based
on those leading to minimum outage probability (see Eq. 5.16).

(2) While routing over virtual topology, RPMPC uses a two-piece function as shown
in Equation 5.17. Thus, the first summation term formulates the total physical
link cost forming the corresponding virtual link whereas the second term formu-
lates the outage probability of the virtual link. In the second piece of the cost
assignment function M denotes a large number to avoid the dominance of the
first piece, that is, power consumption.

ϕv
ij =

⎧⎨
⎩

(∑
ρ�mn∈v�ij ϕphy

mn

)
+

(
M · Oij

ν�

)
Aij > 0

∞ else

⎫⎬
⎭ (5.17)

(3) In order to route a virtual link over the physical topology, RPMPC uses power
consumption and the outage probability of the corresponding physical link as
formulated in Equation 5.18. It is worthwhile to note that since the backbone is
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considered to be an elastic optical network, power consumption of the transpon-
ders is formulated by the term Pt · Wmn +

∑
λk∈Λmn

Pc
t · Rmn

k as Pt is the fixed
power consumption and Pc

t is the bandwidth-variable power consumption of a
transponder, respectively, whereas Rmn

k is the current bitrate on the correspond-
ing transponder. It is worthwhile to note that selection of IP over elastic optical
network as the transport medium is to enable transmission in finer granularity
and flexibility in spectrum allocation [32]. However, the proposed framework is
adaptable to any optical transport technology. Due to limited space, the reader is
referred to Ref. [33] for the details of the transmission medium.

ϕphy
mn =

{
Pedfa · Smn + Pt · Wmn +

∑
λk∈Λmn

Pc
t · Rmn

k + M · Omn
ρ� Wmn > 0

∞ else

}

(5.18)

(4) RPMPC enables IDC workload sharing in order to ensure energy savings and
lower outage probability. To this end, it adopts the IDC workload distribu-
tion algorithm in Algorithm 5.1, and modifies it to meet both objectives. The
only difference between the workload distribution algorithm of RPMPC and
Algorithm 5.1 is the calculation of the temporary Opex (Opxtemp). The new
temporary Opex calculation is performed by running Equation 5.19. Thus, the
temporary Opex function consists of two pieces where the first piece denotes the
power consumption overhead of the migrated workload on the destination data
centers (i.e., �(Map[s][i] ·Υsi

IDC) and the second piece is the outage probability of
the demands destined to the selected alternate data centers. In the equation, �(·)
denotes a function which returns the additional cooling and processing power for
a data center due to workload migration whereas Υsd

IDC is the possible workload
migration demand from data center s to data center d.

Opxtemp ←
∑

i

[
�(Map[s][i] ·Υsi

IDC) + M · (Oid
νP + Oi

dc)

]
(5.19)

In Ref. [21], the authors have evaluated the performance of RPMPC under the same
simulation settings in Section 5.4, and compared its performance to MOPIC and PoMiP
in terms of power consumption and outage probability. In Figure 5.7a, it is clearly seen
that power consumption under RPMPC is similar to that under PoMiP. Furthermore, by
the employment of RPMPC, up to 6.7% enhancement can be introduced to MOPIC which
is purely outage probability-aware. Besides, in Figure 5.7b where MOPIC demonstrates
the best performance in terms of outage probability, RPMPC improves the outage proba-
bility under PoMiP dramatically. Therefore, the trade-off between resilience and energy
efficiency can be addressed by RPMPC to ensure significant Opex savings.

5.6 SUMMARY AND DISCUSSIONS

With the advent of cloud computing, users are rapidly receiving XaaS via a shared pool
of resources based on the pay-as-you-go fashion. Data centers, as the hosts of physical
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Figure 5.7. (a) Power consumption of the inter-data-center network under RPMPC, MOPIC,

and POMIP, (b) Outage probability of upstream data center demands under RPMPC, MOPIC,

and POMIP.

servers, play the key role in the delivery of cloud services. Therefore, interconnection of
data centers over a backbone network is one of the major challenges affecting the per-
formance of the cloud system, as well as the Opex of the service providers. This chapter
has introduced recent design approaches for operational cost-efficient design of an vir-
tual IDC network design. We have focused on energy efficiency (and electric bills) and
outage probability which can be also denoted by resiliency, availability, and/or reliability
to help reducing the Opex of the the network and computing services. A generic virtual
IDC design framework has been introduced which forms a basis for all of the schemes
studied in this chapter. Then, it has been followed by the PoMiP which aims at mini-
mum power consumption throughout the network, ToU-aware provisioning which aims
at minimum electric bills for network and data center operators, MOPIC which aims
at minimum downtime for network as well as computing services, and RPMPC which
aims at meeting both objectives. All schemes have been discussed with pros and cons
in terms of energy consumption and resilience which has also introduced the trade-off
between these two factors affecting the Opex. The chapter has been concluded by intro-
ducing the benefits of RPMPC which adopts MOPIC and PoMiP to address this trade-off.
In Table 5.3, these schemes have been summarized with a comparison with respect to
backbone network technology, energy efficiency, resilience, electricity price awareness,
workload migration, and resource usage.

This area of research has still open issues and challenges to be addressed by the
researchers working in this field. Extension of RPMPC by considering the presence of
differentiated SLAs in the cloud backbone is an immediate research direction. Further-
more, the impact of the intra-data-center network on the performance of the proposed
policies needs further study. Future work should also investigate the impact of using
different routing and spectrum/wavelength assignment schemes on the performance
of the proposed frameworks in terms of energy efficiency, outage probability, as well
as resource utilization. Last but not least, communication overhead between the IDC
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TABLE 5.3. Summary of the virtual inter-data-center network design schemes studied in
this chapter

Scheme Backbone Energy Resilience Electricity Workload Resource
network Efficiency Price Migration Usage

PoMiP [13] IP/WDM
√ × × × ×

DePoMiP [13] IP/WDM
√ × × × √

ToUP [16] IP/WDM
√ × √ √ √

MOPIC [28] EON × √ × × ×
RSMOPIC [28] EON × √ × × √

RPMPC [21] EON
√ √ × √ √

network and the smart grid communication network prior to virtualization needs to be
studied and addressed by future research.
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6.1 INTRODUCTION

Application platforms consist of the software and infrastructure (personal and sensor
devices, wireless and wired access networks, Internet, and computing clouds) that are
involved in the delivery of content and applications. Application platforms have been
evolving to provide unprecedented flexibility, scalability and economies of scale. This
evolution is expected to continue driven by applications that address mobility, social
networking, big data, and smart infrastructures.

Service-oriented computing and virtualization are key notions in application plat-
forms. Service-oriented computing uses services to support the rapid creation of large-
scale interoperable distributed applications. Applications comprise services that can be
accessed through networks. Service-oriented computing and virtualization together pro-
vide a foundation for resource management. A virtual resource reveals only the attributes
that are relevant to the service or capability offered by the resource, and it hides imple-
mentation details. Virtualization therefore simplifies resource management and allows
operation over infrastructures consisting of heterogeneous resources.

Cloud Services, Networking, and Management, First Edition.
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Virtual machines (VMs) play a central role in cloud computing [1], and virtual net-
works (VNs) play a key role in the debate over the design of the Future Internet and in
software-defined networks (SDN) [2, 3]. In combination, cloud computing and SDN can
enable highly dynamic, efficient, and cost-effective shared application platforms that can
support the rapid deployment of applications for a multiplicity of application providers.

In this chapter we discuss the interdependencies between cloud computing and SDN
in application platforms, and we provide a sample of major open source efforts that
address these interdependencies. First, we consider the basic use case of web browsing to
introduce the basic issues in the interplay between cloud computing and SDN. Section 6.3
discusses the features and advantages of SDN and its most influential example, Open-
Flow. Section 6.4 discusses cloud computing and introduces OpenStack focusing on the
Networking Service provided by its Neutron project. Section 6.5 examines challenges
and issues in combining SDN and cloud computing, and we highlight the important role
of Open vSwitch in providing network connectivity to VMs. Section 6.6 introduces the
OpenDaylight open-source project. Section 6.7 shows how SDN and cloud computing
come together, and introduces the notion software-defined infrastructures. This chapter
is focused on providing an integrated view of SDN and cloud computing. We conclude in
Section 6.8 a brief discussion of research trends and challenges in SDN for cloud comput-
ing. At the end of the chapter, we provide references to various surveys and introductory
articles on specifics of SDN or cloud computing.

6.2 SDN, CLOUD COMPUTING, AND VIRTUALIZATION
CHALLENGES

Figure 6.1 depicts a scenario in which an end user wishes to access Web content through
a handheld device. In a traditional, un-virtualized Internet service model, the request
for accessing an HTML page is first received by the wireless access point. The access
point forwards the request to a Web server through an access network and an Internet
gateway and then a firewall across the Internet. Depending on the current load condition,
the request may be forwarded by a load balancer to one of several dedicated application
servers, which in turn may access a shared database (e.g., SQL) server.

While this un-virtualized model is simple and straightforward to implement, it also
has several limitations. First, when the service demand is low the application servers
may become underutilized, leading to resource wastage. On the other hand, when service

Internet

Access point
Router /

Gateway
Web server Load balancer App. serversFirewall

Figure 6.1. Physical infrastructure for web browsing use case.
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Internet

Data center

Figure 6.2. Virtual infrastructure for Web browsing use case.

demand is high, it is also difficult to scale up the service, as this requires attaching another
physical server. If the demand surge is temporary, the attached server may subsequently
become underutilized. Furthermore, it is difficult to provide quality-of-service (QoS)
guarantees in this model, as the “best-effort” packet delivery implies customers can expe-
rience long response times and insufficient throughput when the underlying network is
busy.

Motivated by these limitations, there is a trend toward building virtualized infrastruc-
ture for end-to-end service delivery. Infrastructure virtualization aims at having multiple
virtual infrastructures share the same physical infrastructure. In a nutshell, a virtual
infrastructure consists of VMs that are interconnected by an underlying VN, which may
consist of virtual routers, virtual switches as well as virtual links that interconnect them.

For the Web browsing use case, a virtualized infrastructure is depicted in Figure 6.2.
The Web content provider first specifies the topology and resource requirement of
its Web content delivery service as a virtual infrastructure as shown in Figure 6.2.
The firewall, load balancer, and all the servers are implemented by VMs, whereas
routers and wireless access points are represented as virtual routers and virtual wire-
less access points. This virtual infrastructure is then embedded in the physical network
infrastructure, where VMs are placed in data centers, and virtual routers and virtual
switches are mapped to physical routers and switches or to software implementa-
tions of these. The notion of a flow is central to the virtualization of a network.
The flows of packets in a VN are identified by specific values in their header fields
that allow routers and switches to identify them and treat them as prescribed by
their VN.

This model is beneficial for several reasons. First, by isolating VNs from each other,
it is possible to achieve better QoS as network performance variability is limited. Second,
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by separating logical service infrastructures from the underlying physical network
infrastructure, it is possible to improve resource utilization by consolidating multiple
VMs on a single physical machine, or multiple virtual links on a single physical link. Vir-
tualization also enables the scaling (up or down) and migration of virtual resources (e.g.,
VMs and VNs) to achieve better resource efficiency, by adapting to demand variation.
For example, when demand increases, it is desirable to increase the CPU and memory
allocation of a VM that hosts an application server. If the physical machine currently
hosting the VM does not have sufficient resources, the VM can be migrated to another
physical machine.

The creation of VNs is at the core of the above model. The benefits of the above
model require an environment where multiple independent tenants are each allotted their
own dedicated virtual infrastructure; but in fact, they share the same physical infras-
tructure, ideally completely oblivious of the presence of other tenants. From a tenant
perspective, the virtual computing and networking infrastructure should behave as a
physical infrastructure. In particular, a tenant requires control over connectivity, band-
width and QoS, MAC and IP addresses, node number, and node location and mobility.
Each tenant may also bring requirements for security, load balancing, caching, and
application performance.

On the other hand, the infrastructure provider should be able to handle large numbers
of tenants, while meeting their specific requirements for security, isolation, network con-
trol, and availability. In cases where a tenant requires presence in multiple geographic
sites, a provider may be called upon to extend its VNs across multiple data centers or
even to federate with other providers. In short, the provider needs controllers to man-
age its own network connectivity and resources while providing tenants with their own
specific connectivity and networking needs.

SDN is an emerging concept for the control and management of network infrastruc-
ture that enables programmability of the network. SDN is therefore a prime candidate to
address the multiplicity of challenges for creating VNs in application platforms.

6.3 SOFTWARE-DEFINED NETWORKING

6.3.1 What Is SDN?

SDN is an emerging concept that has grown from efforts to define network architectures
that are flexible, evolvable and can avoid the ossification pitfalls of the current Internet
[2]. The early experience with OpenFlow in particular influenced the current view on
SDN [3, 4]. We refer the reader to Ref. [5] for a recent survey of SDN and programmable
networks.

SDN separates the control of network functionality from the forwarding func-
tionality in packet-forwarding devices as shown in Figure 6.3. A logically centralized
network controller is responsible for the decision on how traffic from a given flow is
handled. The decision of the controller is then programmed into the packet-forwarding
device.
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Other
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Figure 6.3. SDN layered architecture (from Ref. [5]).

Proceeding bottom up in Figure 6.3 we have the following layers:

1. Packet-forwarding devices: These devices execute the actual forwarding behav-
ior on flows of packets. These devices can consist of actual physical switches
designed to provide programmability or software-implemented switches or
routers.

2. Southbound interface: This interface provides the means for network controllers
to communicate and control the packet-forwarding devices. For example, Open-
Flow provides a protocol for this interface.

3. Network controller: The controller provides network services to higher layers
by programming the packet-forwarding devices. The network controller is posi-
tioned to make optimal decisions on resource allocations because it has a global
view of the state of the overall network resources. A number of open source and
proprietary network controllers are available.

4. Northbound interface: This interface provides the means for applications and
high-level services to access the services provided by the network controller. In
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general, the vendors of network controllers prefer to differentiate their service
offerings, and so the northbound interface has not been open or standardized.
However the OpenDaylight project (discussed in the following text) has been
working on the development of open northbound interfaces.

5. Applications and high-level services use the services of the network controller
to provide more complex functionality. For example, an application could pro-
vide the virtual machines and virtual network to support a virtual tenant. The
application would invoke the services of the network controller in creating and
managing its virtual networks. Other example applications could orchestrate or
chain multiple services together to provide security, load balancing, caching, and
so on.

SDN provides the foundation for flexible and customizable networking. The network
controller provides the capability to define specific treatments for given traffic flows by
installing rules in the network forwarding devices. The centralization of control in the
network controller and the northbound interface allow novel applications to define the
operation of the network in software. This also opens the way for faster and adaptive
configuration of the network.

In the context of this chapter, the data center SDN provides the means for supporting
network virtualization and automated migration of VMs. It also provides the means to
achieve bandwidth optimization, as well as higher utilization of servers and higher energy
efficiency. Across data centers, SDN VN capabilities can support rapid provisioning and
migration of cloud services across private and public clouds in support of large-scale
geographically distributed applications.

We note that the layered view in Figure 6.3 is limited in scope to the networking
infrastructure, and the Application level provides an indication of the broader cloud com-
puting context within which networking must take place. In Sections 6.4 and 6.5, we will
see how SDN fits within this context in general and within OpenStack in particular.

6.3.2 OpenFlow

OpenFlow was originally presented as an approach to allow experimentation in new net-
work protocols on campus networks [3] although its roots are in the Ethane project to
enable highly flexible and secure enterprise networking [6]. OpenFlow separates the net-
work control and packet forwarding, a concept first widely deployed in MPLS [7]. It has
two basic elements as shown in Figure 6.4: (1) defining packet forwarding behavior by
allowing a controller to set flow tables that associate an action with each flow in an Open-
Flow switch and (2) defining an open secure protocol that enables a network controller
to exchange commands and packets with an OpenFlow switch. This is essentially the
SDN southbound interface in Figure 6.3. The notion of an open management interface
was introduced in Ref. [9].

The Open Networking Foundation was formed to provide specifications to cover the
components and basic functions of the OpenFlow switch and the OpenFlow protocol to
manage the switch from a remote controller [8]. OpenFlow Switch Specification 1.0.0
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Figure 6.4. OpenFlow switch and controller (from Ref. [9]).

TABLE 6.1. Components of a flow entry in a flow table

Match fields Priority Counters Instructions Timeouts Cookie

was released in December 2009. The latest release was 1.4.0 on October 2013. In the
following, we summarize the OpenFlow specification as described in Ref. [8].

The OpenFlow switch consists of one or more flow tables and a group table that
are used to perform packet lookups and forwarding. The OpenFlow protocol enables the
controller to manage the OpenFlow switch. The controller can add, update, and delete
flow entries in the flow tables. As shown in Table 6.1 each entry consists of match fields,
counters, and instructions that are applied to matching packets. The match fields consist
of ingress port and packet headers and possibly metadata specified by previous flow
tables. The required match fields in OpenFlow version 1.4.0 are ingress port, Ethernet
destination and source addresses with arbitrary bitmasks, Ethernet type, IPv4 and IPv6
protocol number, IPv4 source and destination addresses with subnet masks or arbitrary
bitmasks, IPv6 source and destination addresses with subnet marks or arbitrary bitmasks,
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Figure 6.5. Matching of packets against tables (from Ref. [9]).

TCP and UDP source and destination port numbers. Additional optional match fields
include switch physical input port, metadata between tables, VLAN ID and priority, IP
DSCP and ECN, SCTP, ICMP, ARP, and MPLS and Ethernet PBB. Altogether, the match
fields enable a very rich set of packet classifications spanning from physical port and
through layers 2–4.

Within each table, entries are matched to packets in priority order so that the first
matching entry is used. As shown in Figure 6.5, an arriving packet is first matched against
the first table, and if an entry is matched, the instructions in the entry are performed.
If a packet is not matched, then the table-miss flow entry is consulted to determine the
appropriate action. This could include dropping the packet, forwarding it to the controller
using the OpenFlow channel, or continuing to the next table.

The instructions in a flow entry can include actions such as packet forwarding, packet
modification, and group table processing. The instructions may also modify the pipeline
processing by directing packets, and associated metadata, to subsequent tables for addi-
tional processing. An arriving packet begins with an empty action set and this set is
updated each time a match to a table entry is identified. The table pipeline processing ends
when a table entry does not specify another table. At this point, the action set is executed.

In OpenFlow, a port is the network interface where packets pass between OpenFlow
processing and the rest of the network. Packets that arrive on an ingress port are processed
by the OpenFlow pipeline and may be forwarded to an output port. OpenFlow ports
can be physical ports (e.g., Ethernet interface), logical ports that do not correspond to a
hardware interface (e.g., tunnel), or reserved ports that specify generic forwarding actions
(e.g., send to controller, or flooding).

The group table in Figure 6.4 contains group entries, and each entry contains a list of
action buckets that are applied to packets sent to the group. The group abstraction allows
flow entries to point to common output actions in a switch. For example, a group of type
“all” enables the controller to implement flooding.

There are three ways to remove flow entries from tables. First, the controller can
request removal of an entry. Second, the switch has a flow-expiry mechanism that
removes an entry after either a hard timeout expires or after the entry has not been
matched for some specified period of time. Third, a switch may evict table entries when it
needs to recover resources, when eviction is enabled. If a flag is set, the switch is required
to notify the controller that the entry has been removed.
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TABLE 6.2. Meter entry in meter table; Meter band in meter entry

Meter Identifier Meter-Bands Counters

Band Type Rate Counters Type Specific Arguments

OpenFlow uses per-flow meters to implement QoS. A meter is a switch element that
is used to measure and control the rate of packets. Flow entries can specify a meter in its
instruction set. A meter measures and controls the aggregate rate of all flows entries to
which it is attached. A meter table consists of flow entries as in Table 6.2. Each meter
has a 32-bit identifier. The meter counter is updated each time a packet is processed by
a meter. The meter bands specify rate bands and corresponding packet processing. The
meter applies the meter band with the highest configured rate that is lower than the current
measured packet rate. For example, rate limiting can be applied if the band type is “drop.”

OpenFlow provides required and optional counters associated with flow tables, flow
entries, ports, queues, groups, group buckets, meters, and meter bands. Counters are
unsigned integers that may measure counts, such as bytes or packets, and durations such
as seconds or nanoseconds. In combination, these counters can measure rates.

The OpenFlow channel in Figure 6.4 is the interface that allows the controller to
configure and manage the switch, to send packets out the switch, and to receive notifi-
cations from the switch. The channel usually operates over TCP and uses transport layer
security (TLS).

The OpenFlow protocol has three message types. The controller uses controller-to-
switch messages to manage and monitor the switch state. For example, the Modify-State
message is used to add, delete, and modify entries in the flow and group tables, and
the Packet-Out message is used by the controller to send packets out of the switch. The
switch uses asynchronous messages to update the controller. Thus, the Packet-In message
is used to transfer control of a packet to the controller, for example, after a table-miss
event. The Flow-Removed message is used to notify the controller that a flow entry has
been removed. Symmetric messages are used by the switch or by the controller without
solicitation, for example, to start the switch-controller connection (“Hello”) or to monitor
liveness in the connection (“Echo”).

Altogether, the OpenFlow specifications allow the customization of the forwarding
and treatment of classified traffic flows across the network. Indeed, OpenFlow can exer-
cise tight control over which packets are admitted into the network. For example, table
entries can be configured so that packets can traverse the network only after associated
table entries have been established by the controller. Any flow without such entries are
forwarded by the switch to the controller after a table miss, and the controller then decides
whether to accept the flow.

The interest in OpenFlow has led to the availability of switches and routers that
support the specification. OpenFlow is influencing the design of packet-processing
chips with advanced parsing and classification capabilities. OpenFlow has also influ-
enced the development of software-based switches. We will discuss these switches after
introducing OpenStack cloud computing.
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6.4 OVERVIEW OF CLOUD COMPUTING AND OPENSTACK

Cloud computing is a computational approach in which software is hosted in large data
centers and where software is provided as a service [1]. The key technology in cloud
computing is the VM that provides an abstraction of a physical host machine as shown
in Figure 6.6. The VM is enabled by the introduction of a hypervisor that intercepts
the instructions between the OS and hardware and manages the sharing of the hardware
among multiple VMs. Cloud computing provides a computing utility which provides
the illusion of infinite resources through the on-demand sharing of computing resources.
A major advantage of cloud computing is its flexible billing model that provides access
to computing without upfront cost. Cloud computing has revolutionized the delivery of
applications and its tremendous potential impact has stimulated the development of an
open source platform.

OpenStack is a project developing an open source cloud computing platform to pro-
vide infrastructure as a service (IaaS). OpenStack offers a set of interrelated services,
each through an application programming interface (API) [10]:

• Dashboard (Horizon project): A Web-based portal to interact with OpenStack ser-
vices, such as launching an instance, assigning IP addresses and configuring access
control.

• Compute (Nova project): Manages lifecycle of compute instances: spawning,
scheduling, and decommissioning of VMs on demand.

• Networking (Neutron project): Enables network connectivity for other OpenStack
services, such as OpenStack Compute. Provides API for users to define networks
and attachments. Supports plug-ins for networking vendors and technologies.

• Object Storage (Swift project): Stores and retrieves arbitrary unstructured data
objects via a RESTful, HTTP-based API.
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Hardware
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Traditional stack Virtualized stack

App App

App

OS

Hypervisor

OS OS

App App

Figure 6.6. Virtual machines.
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• Block Storage (Cinder project): Provides persistent block storage to running
instances.

• Identity service (Keystone project): Provides an authentication and authorization
service for other OpenStack services.

• Image Service (Glance project): Stores and retrieves VM disk images, and it is
used by OpenStack Compute during instance provisioning.

• Telemetry (Ceilometer project): Monitors and meters the OpenStack cloud for
billing, benchmarking, scalability, and statistical purposes.

• Orchestration (Heat project): Orchestrates multiple composite cloud applications.
• Database Service (Trove project): Provides scalable and reliable Cloud database-

as-a-service functionality for both relational and nonrelational database engines.

Figure 6.7 shows the conceptual architecture of the OpenStack projects. End users can
interact with OpenStack through the dashboard, command-line interfaces and APIs.
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Figure 6.7. Conceptual architecture of OpenStack (from Ref. [10]).
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The Identity service (Keystone) is used to authenticate services. The individual services
interact through public APIs.

We focus on the Nova compute service and the Neutron networking service. Nova
and neutron use a message queue as a central hub for passing messages. A message-
oriented middleware, such as RabbitMQ, is used. Asynchronous calls are used for request
response and a call-back is triggered once a response is received. The nova-api pro-
vides an interface for interaction with the cloud infrastructure. It supports the OpenStack
Compute API as well as the Amazon EC2 API. The API server communicates with the
relevant components through the Message Queue. The nova-scheduler process takes a
VM instance request and decides the compute server it should run on. The nova-compute
process (Compute worker) deals with instance management life cycle; it creates and
terminates VM instances through hypervisor APIs. The nova-compute process requests
networking tasks from the Neutron networking service.

Nova compute is designed for use by multiple tenants in a shared system. Each ten-
ant has an individual VN, and volumes, instances, images, keys, and users. A user can
specify the tenant by a tenant ID. Tenant resource limits are set by quotas on: Number
of volumes that may be launched; number of processor cores and RAM that can be allo-
cated; floating IP addresses assigned to any instance; and fixed IP addresses assigned to
the same instance when it launches.

The Neutron networking service provides a VN service with connectivity between
interface devices managed by OpenStack services, typically compute. Just as the Nova
Compute API provides a virtual server abstraction, the Neutron API provides a VN
abstraction that allows a user to create and attach interfaces to networks. The Neutron
server accepts API requests and directs these to the appropriate OpenStack plug-in and
agents that plug and unplug ports, create networks and subnets, and provide IP address-
ing. OpenStack networking has a plug-in architecture that allows it to support a variety
of vendor and networking technologies.

In Neutron networking, three types of network resources are identified:

• Network: An isolated layer 2 segment, analogous to a VLAN in a physical network.
• Subnet: A block of IPv4 or IPv6 addresses and associated configuration state.
• Port: A connection point for attaching a single device, for example, a NIC for a

virtual server, to a VN. Includes associated network configuration, for example,
associated MAC and IP addressing.

Users access Neutron networking to configure network topologies and to then instruct
the other OpenStack services to attach virtual devices to these networks. Tenants can
create their own private networks with their own IP addressing schemes.

The typical data center deployment, shown in Figure 6.8, includes a cloud con-
troller host, a network gateway host and a number of hypervisors for hosting VMs. The
deployment includes the following physical networks:

• Management Network: Internal communication between OpenStack components.
• Data Network: Inter-VM communications; IP addressing as per plug-in used.
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Figure 6.8. Typical physical data center networks in OpenStack (from Ref. [10]).

• External Network: VM access to Internet; user on Internet can reach IP addresses
in external network.

• API Network: Exposes OpenStack APIs to tenants; IP addresses reachable from
Internet.

Figure 6.9 shows the possible tenant and provider networks. Tenant networks pro-
vide connectivity and need to be isolated from other tenants. Neutron networking
supports several tenant network types:

• Flat: All instances are on the same network, which can also be shared with the
hosts. There is no VLAN tagging or other network segregation.

• Local: All instances reside on the local compute host and are isolated from external
networks.

• VLAN: Users create multiple provider or tenant networks using VLAN IDs (802.1Q
tagged) that correspond to VLANs present in the physical network. Instances can
communicate with each other, as well as with dedicated servers, firewalls, load
balancers, and other networking infrastructure on the same layer 2 VLAN.

• VXLAN (Virtual Extensible LAN) and GRE (Generic Routing Encapsulation):
These network overlays support private communication between instances.

Provider networks use an existing physical network in the data center. These networks
may be shared among tenants. By allowing tenant networks to select their IP addresses,
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Figure 6.9. Tenant and provider networks (from Ref. [10]).

it becomes possible to migrate applications between user data centers and public data
centers as required by demand or fault conditions.

6.5 SDN FOR CLOUD COMPUTING

Figure 6.9 shows that VMs require a new layer of access network inside the compute
node. As shown in Figure 6.10 each VM now has one of more virtual interfaces (VIFs)
that connect it to virtual switches that are in turn connected to physical interfaces (PIFs).
Network connectivity is now required to interconnect VMs in the same host as well as in
other hosts. Linux bridging is available to provide this connectivity, but it does not ade-
quately meet new requirements that arise with VMs [11]. The migration of applications
imposes new network mobility requirements. The deployment of tens of VMs in a host
and hundreds of thousands of VMs in a data center poses new scalability challenges. The
sharing of computing resources among multiple tenants introduces new security risks and
heightened requirements for isolation. The combination of these requirements can be met
by extending SDN into the networks that connect VMs, as done for example, by Open
vSwitch.

6.5.1 Open vSwitch

The Open vSwitch (OVS) is a software-based virtual switch to provide intra- and
inter-VM connectivity while also providing an external interface for the control of
configuration state and forwarding behavior [11]. This allows OpenFlow capabilities for
fine-grained control of flows to be leveraged and integrated across a multilayer network
for connecting VMs. Support can then be provided for QoS, tunneling, and filtering that
in turn can be used to provide isolation, security, and network mobility.
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The virtualization environment that supports VMs can provide the new virtual
switches with useful information, for example, the MAC addresses for the virtual inter-
faces, the movement of VMs, and the joining to multicast groups. Better coordination
between the virtual computing and networking is possible because the same information
that is used by the hypervisor and management layer to power VMs on/off, to migrate
hosts, and to control access can also be used to manage the VN.

Open vSwitch uses Ethernet switching for VM networking with VLAN, RSPAN
(Remote Switched Port Analyzer) to analyze traffic, and Access Control Lists. It also
provides port bonding, GRE and IPsec tunneling, and per-VM policing.

Figure 6.11 shows the architecture of the Open vSwitch. The Open vSwitch software
resides within the hypervisor. The switch has a “fast path” module in the kernel that
implements the speed-critical forwarding engine and the counters for table entries. The
switch has a “slow path” in user space that implements forwarding logic, and remote
visibility and configuration interfaces, including OpenFlow. Thus Open vSwitch allows
the forwarding path to be manipulated by writing to the forwarding table and specifying
how packets are handled (forwarded, dropped, encapsulated) based on header fields.



“9780471697558c06” — 2015/3/20 — 13:56 — page 144 — #16

144 OPENFLOW AND SDN FOR CLOUDS

The Open vSwitch local management interface allows the virtualization layer to
manage the creation of switches and the connectivity of virtual and physical interfaces.
The rule-based forwarding provided by the flow tables allows network configuration
state and forwarding to be associated with specific flows, for example, a VM or group
of VMs. This enables a global management process not only to have visibility of local
state in the virtual switch but also to migrate the associated network configuration state
corresponding to a group of VMs that is moved between servers.

In multitenant settings, it is desirable for VMs from different tenants to share the
same physical server while providing strong isolation. On the other hand, it is also nec-
essary to provide connectivity between VMs that belong to the same tenant but that reside
in different hosts. Open vSwitch provides the capability to create virtual private networks
to connect VMs from the same tenant while providing isolation from other tenants. Open
vSwitch allows a tenant to be assigned a VLAN ID in small-scale deployments.

Connectivity in larger scale deployments is handled by Open vSwitch through the
use of GRE tunnels. In GRE, an Ethernet frame is encapsulated inside an IP datagram,
which is routed from the originating subnet to the destination subnet [12]. A GRE tunnel
is established between any two servers that have a VM belonging to the same tenant.
The MAC-to-IP mapping required for the tunnel is downloaded into the Open vSwitch
table entries using OpenFlow. This approach has the advantage that no state concerning
the tunnels needs to be maintained in the physical network. OpenFlow does not have
a tunnel-provisioning message, so the Open vSwitch Database Management Protocol
(OVSDB) was developed to construct the mesh of GRE tunnels between servers that
have VMs from the same tenant.

VXLAN is an alternative tunneling method to GRE. VXLAN creates tunnels by
encapsulating Ethernet frames on top of UDP and IP. The approach provides 24-bit tags
to overcome the VLAN scale limitations. The reader should refer to Ref. [12] for more
discussion on SDN networking issues for cloud computing.

6.5.2 Meeting Networking Requirements

We have seen that SDN provides many powerful techniques for realizing network virtu-
alization: (i) resource allocation and bandwidth provisioning, (ii) resource isolation and
addressing, and (iii) support for tenant-specific communication and routing protocols.
We have seen that SDN-enabled components such as Open vSwitch (OVS) support the
creation of virtual switches and interfaces within VM hypervisors, or in OVS-enabled
switches. Meanwhile, SDN frameworks such as Openflow provide simple and efficient
means to provision virtual links.

As for resource isolation, Openflow includes the capability to limit bandwidth
usage and there are numerous proposals [13] on achieving rate limiting at differ-
ent levels, including flow, ingress, and slice limiting. Thus, we anticipate that future
Openflow-enabled switches will have the capability to provide guaranteed bandwidth
for individual VNs. Even though address isolation is often implemented using tunnel-
ing, recent proposals use address translation supported by OpenFlow to achieve address
isolation. Finally, supporting tenant-specific routing protocols can be achieved using a
variety of software components, for example, using FlowVisor.
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6.5.3 Inter-Data Center Networking

New challenges arise when a tenant network is deployed or migrated across different data
centers [14, 15]. The VN needs to handle the addressing schemes and forwarding fabric of
the data centers. The connectivity between the data centers may be shared with the public
Internet and some means of allocating resources for the tenant networks is required. In
addition, the live migration of VMs can impose special performance requirements on the
inter-data center network.

An SDN approach to providing inter-data center connectivity is attractive for several
reasons. First, it allows the extension of the network abstraction that is already in use in
the individual data center. Second, the isolation techniques from intra-data center SDN
can be extended. Third, the management approach of OpenFlow can be applied. An SDN
approach is proposed in Ref. [15] for providing VNs on demand on loosely coupled
data centers. The approach involves dynamically organizing Virtual Private LAN Service
(VPLS) paths to extend VNs across data centers. In Ref. [16], an SDN abstraction and
API is used to extend OpenStack VN into the WAN. This approach improves over IPSec
and SSL VPNs by building on WAN services that can support QoS. The application of
SDN in optical transport networks has begun to receive attention. For example, Ref. [17]
presents an Open Transport Switch for bursting data between data centers using optical
transport networks.

6.6 COMBINING OPENFLOW AND OPENSTACK WITH
OPENDAYLIGHT

Given the large number of technologies that can implement network virtualization at var-
ious levels, it becomes increasingly important to design frameworks in the management
plane to ensure these technologies can work seamlessly to achieve management includ-
ing consistency, efficiency, performance, reliability, and security. These frameworks need
to provide various functionalities including monitoring, scheduling, resource alloca-
tion, dynamic adaptation, and policy enforcement. For example, OpenDaylight [18] is
a framework that provides functionalities for managing VNs in the context of SDN.

6.6.1 OpenDaylight Overview

OpenDaylight is an open-source project that is developing a modular, pluggable, and
flexible controller platform. The controller exposes open northbound APIs to appli-
cations. These applications can then use the controller to gather network intelligence,
perform analytics, and then orchestrate new rules using the controller.

As shown in Figure 6.12, the controller platform consists of dynamically plug-
gable modules that perform required network tasks. Base network services address basic
management functions of network devices. The topology manager builds the network
topology, and the Stats manager collects statistics. The Switch manager handles south-
bound device information, and the Forwarding Rules manager (FRM) installs flows
on southbound devices. The host tracker tracks connected hosts and the ARP handler
handles ARP messages. Other network services can be added to the controller platform.
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Figure 6.12 shows the Virtualization edition of OpenDaylight, which targets data
centers. This edition includes the OVSDB protocol southbound to configure Open
vSwitches in VNs. In particular, the Neutron bundle of the Virtualization edition supports
VXLAN and GRE tunnels for OpenStack and CloudStack deployments.

The Virtualization edition also supports Virtual Tenant Network (VTN) service.
VTN provides multitenant VN on an SDN controller. VTN allows users to design and
deploy a network without requiring knowledge of the physical network. VTN maps the
desired network to the underlying physical network. Figure 6.13 shows the architecture
of the VTN application. The VTN coordinator is an application that allows a user to use
the VTN Virtualization. The coordinator interacts with one or more VTN Managers to
implement the user configuration.

Figures 6.7 and 6.12 in combination show how cloud computing and SDN interact
in the deployment of virtual computing and networking resources. In Figure 6.7, the
user may initiate the deployment of an application that requires support from a set of
VMs with connectivity requirements. Figure 6.12 shows how the Neutron networking
service in OpenStack can invoke the services of OpenFlow to provide the desired network
connectivity.

In a typical scenario, a service provider (i.e., a tenant) submits a virtual infrastruc-
ture request. The request describes the topology of the virtual infrastructure, and provides
resource requirement of each virtual node (i.e., VMs, virtual switches, routers, and fire-
walls) as well as bandwidth requirement for each virtual link. This request is sent to a
scheduler that makes decisions regarding how each virtual node and link is mapped to
physical resources.
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The scheduling of virtual infrastructure is also known as the VN embedding problem
[19], whose goal is to improve the acceptance rate of virtual infrastructure requests while
minimizing operational costs such as energy. Once the scheduling decision is made, the
scheduler allocates appropriate physical resources according to the scheduling decision.
This is done by scheduling VMs and other virtual resources, creating appropriate virtual
switch and routers and installing forwarding policies in Openflow-enabled switches.

In Figure 6.14, we use OpenDaylight as an example to illustrate this process. A ten-
ant submits its virtual infrastructure request to OpenStack, which in turn, uses Nova
to schedule corresponding VMs in the data center. It also delegates OpenDaylight to
schedule the VN. To do so, the scheduling request is first sent to OpenDaylight manager
through its REST API. OpenDaylight solves the VN embedding problem and contacts the
underlying components such as OpenFlow controllers, OpenvSwitch database (OVSDB)
to create VN components and install forwarding rules in Openflow switches. Once the
VN is created, the VN topology information is then stored in the Topology Manager,
and information of the VN components (e.g., virtual switches) is stored in the switch
manager. Once the virtual infrastructure is scheduled, a stats manager will continuously
monitor the status of the virtual infrastructure through the service abstraction layer. Based
on the operating conditions, the allocation of each virtual infrastructure may need to be
changed over time. For example, the tenant may want to scale up or down the virtual
infrastructure at run-time to cope with demand fluctuation.
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6.7 SOFTWARE-DEFINED INFRASTRUCTURES

Throughout this chapter, we have assumed that the resources consist of computing and
networking resources. However, in slightly different contexts, for example, in virtualiz-
ing the wireless and wireless access networks in Figure 6.14, additional resources could
include programmable hardware and other sharable high-performance resources. In the
SAVI project [20, 21], we address the more general setting where the Software-Defined
Infrastructure (SDI) includes heterogeneous virtualized resources that are managed in
integrated fashion along with computing and networking. In addition to cloud and net-
work controllers, these SDIs may require controllers for these additional resources, for
example, programmable hardware resources [22].

Figure 6.15 show the architecture for the SAVI SDI resource management system
(RMS). The SDI manager has overall control of resources of different types, for exam-
ple, A, B, and C. The external entities request virtual resources from the SDI resource
management system through open interfaces. The SDI RMS executes coordinated and
integrated resource management for the heterogeneous resources through an SDI man-
ager and a topology manager. The SDI manager performs its management functions
based on the resource information provided by the topology manager. Resource-specific
controllers (e.g., OpenStack or OpenFlow controllers) are responsible for managing
resources of a given type. Each resource controller accepts the high-level user descrip-
tions and manages the resources of a given type. The topology manager maintains a
global view of the resources, their relationships, as well as monitoring and measurement
data. It enables the SDI manager to perform state-aware resource management.

SAVI is exploring the deployment of applications in a multitier cloud that includes
massive core data centers, smart edge nodes, and access networks. SAVI has designed a
node cluster that provides virtualized and physical computing and networking resources,
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system

SDI manager Topology manager
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Resource A

Converged heterogeneous

resources

Physical
resource
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resource
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Figure 6.15. SAVI SDI resource management system.
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including heterogeneous resources such as Intel Xeon servers, storage, OpenFlow
switches, GPUs, NetFPGAs, Altera DE5-Net FPGAs, and ATOM servers. SAVI has
implemented the Janus SDI Resource Management System to manage the heterogeneous
resources provided by a SAVI node. Janus builds on top OpenStack and OpenFlow. A
Canadian test bed has been deployed with nodes in the following universities: Victoria
(British Columbia); Calgary and Alberta; Carleton, Toronto, York, Waterloo in Ontario;
and McGill in Quebec. The SAVI test bed is supporting research on large-scale appli-
cations, multitier cloud computing, architecture of the smart edge, virtualized wireless
access, and management of SDI.

6.8 RESEARCH TRENDS AND CHALLENGES

We began this chapter with a discussion of application platforms to provide a holistic
view of the broad range of requirements that must be met by future SDN and computing
clouds. While great progress has been made in advancing SDN and clouds, here we
reiterate several major challenges that remain to be addressed: Orchestration, adaptive
resource management, content distribution, and scalability.

Methods for the orchestration of the resources to support distributed applications are
in a relatively early stage of development. Methods are needed for the automated deter-
mination and allocation of the computing and networking resources for applications. The
Heat project in OpenStack is striving to meet this need by developing an orchestration
engine for launching cloud applications [23]. A Heat template is used to describe the
infrastructure resources required by an application. The Network Functions Virtualiza-
tion (NFV) concept is being developed to virtualize network node functions that can
serve as building blocks to create communication services [24]. Clearly, orchestration is
a key element in NFV.

The automated scaling of resources allocated to support an application is essential
to achieving the economies of scale that derive from cloud computing and virtualiza-
tion. Methods are required for the measurement and monitoring of demand and available
resources and for the autoscaling of resources. To be implemented, the rich literature in
adaptive resource management requires a platform for measurement and monitoring and
automated resource management. The Ceilometer project in OpenStack is developing
an infrastructure to collect measurements within OpenStack to support monitoring and
metering [25]. The SAVI project discussed above is exploring the use of Ceilometer in
converged virtualized computing and networking infrastructures.

The collection and distribution of content represents a major driver of current IT
infrastructure. The growth in video services and the emergence of Big Data applications
necessitate an exploration of the virtualization and management of storage resources.
The churn in demand for specific content requires striking a balance between content
that is stored remotely in a few sites and content stored broadly in local sites. Various
information-centric architectures need to be explored in the context of the multitier cloud
infrastructures that are emerging to support application platforms. The huge volumes of
content that need to be transferred also motivate the investigation of the optical transport
technologies in these new architectures.
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The scalability of management systems will be challenged by the continuous growth
in application platforms and associated resources. The volume of messaging consumed
by management and data collection must be kept to reasonable levels while providing the
responsiveness, effectiveness, and reliability required of the management system. This
requires further research in management system architectures.

6.9 CONCLUDING REMARKS

The potential benefits of service-oriented computing and the virtualization of resources
have spurred intense activity in the advancement of cloud computing and SDN. In this
chapter, we have provided an integrated view of how cloud computing and SDN, and
specifically OpenFlow, OpenStack, Open vSwitch, and OpenDaylight come together. We
have also introduced the SAVI project which explores the notion of SDI that encompasses
both cloud computing and SDN to support large-scale applications.
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7.1 INTRODUCTION

Cloud computing opened the doors for a paradigm shift for the ways in which systems are
deployed and used. It has made possible utility computing with infinite scalability and
universal availability of systems [1]. Mobile cloud computing (MCC) has taken this to a
step further by enabling the users to carry on their tasks irrespective of their movement
and location [2, 3]. Despite the increasing popularity and usage of MCC, there are certain
issues inherent with it that still haunt the mobile cloud community, making it difficult to
utilize the full potential of the clouds. These issues or “risks” span the whole structure and
life cycle of mobile clouds and could be as varied as security, operations, performance,
and end users.

This chapter aims at exploring MCC further and to highlight the risks related to
mobile clouds, in addition to the risks normally associated with system development.
While we briefly present practical solutions for most of these issues via some standard
method or approaches, suitable for the respective issues, the aim is to point out the need
for systematic risk analysis and management frameworks for such applications.

Cloud Services, Networking, and Management, First Edition.
Edited by Nelson L. S. da Fonseca and Raouf Boutaba.
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7.1.1 Significance/Motivation

Cloud computing mainly focuses on how to best manage the computing, storage, and
communication resources shared by multiple users virtually; whereas MCC works by
applying cloud computing solutions using resources available in mobile environment. It
allows the execution of mobile applications, data storage, and processing on external/
remote resources rather than on the mobile device itself, while allowing free move-
ment of the user/mobile device. MCC requires functional collaboration between different
mobile devices. It requires the mobile devices to be aware of “presence,” “status,” and
the “context” of other portable devices within their network, so as to provide the best
possible ad hoc communication environment [2].

The complexity and dynamism of a mobile cloud system poses many risks. At sys-
tem level, these include the risks of connectivity, limited resources, security, and limited
power supply. As the system complexity increases, both the technical and nontechnical
risks increase, and so is the need to manage these risks. The ad hoc nature and mobil-
ity [2] in MCC environments means that the development of these system need more
rigorous and specialized risk management to deal with all the risks. This can further
burden the developers of MCC frameworks and applications. In addition to the complex-
ity of mobile cloud infrastructure, they also have to deal with the risks at framework/
application level including but not limited to efficient job distribution, virtualization and
scalability, and so on.

In the current scenario, from our review so far, we conclude there is no available
formal risk management process in place to deal with the risks of MCC. As with any
development and deployment activity, an effective risk management is integral to the
success of any MCC system; it’s a critical element while designing MCC systems. How-
ever, the literature review shows that the current work on mobile cloud systems focuses
more on cost and resource savings, and there has been little progress toward the devel-
opment of mobile cloud “aware” risk management methodologies. There is a need to
make the mobile cloud developers and users realize the importance of an effective and
efficient risk management in place. Risk management not only protect the organizations
from various risks but also plays a critical role in enabling mobile cloud providers to
achieve their goals by improved decision making through up-to-date risk reporting and
also to help meet end users’ quality-of-service requirements. An efficient risk manage-
ment process can also protect the providers from risks of cost overuns during the whole
system life cycle, and can also improve customer satisfaction/confidence in a delivered
system.

The organization of this paper is as follows: Section 7.2 provides an overview of the
MCC domain and provides a discussion on different selected mobile cloud frameworks
and their categorization. Section 7.3 defines risk management and presents an analysis of
risk factors currently prevalent in the MCC domain. An illustration of how these risks can
affect an application is also presented in this section. Section 7.4 presents an analysis of
mobile cloud frameworks (surveyed in Section 7.2) from a risk management perspective
and also discusses the effectiveness of traditional risk approaches in dealing with MCC
risks. Section 7.5 summarizes the review and concludes.
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7.2 MOBILE CLOUD COMPUTING

Cloud computing refers to the provisioning of computing capabilities as a “service”
(instead of product) to users via Internet and Web technologies. Cloud computing has
been defined by different authors in various words. Some see it only as an enhance-
ment to multiple existing technologies, whereas some others are very enthusiastic about
the potential of cloud computing. A simple definition of cloud is presented in François
Ragnet and Conlee [4] as “a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.” Vaquero et al. [5] has provided a
comprehensive comparison of different cloud definitions prevailing in the literature to
clarify what cloud computing really is. Based on their explanation, the cloud computing
concept can be summarized as a large pool of easily usable, accessible, and dynami-
cally scalable virtualized resources, offered as pay-per-use model, allowing for optimum
resource utilization.

Basic cloud computing is an amalgam of various technologies all put together to
change the ways in which IT infrastructures are built. The cloud is different from other
older technologies (i.e., Internet, grid/distributed computing) in a sense that with clouds
the users can use service when they need it and for as long as they need it. Cloud comput-
ing works on a mechanism of “utility-based services” where you pay only for duration
and amount/type of services used. Also, unlike these technologies, cloud computing
provides architectural, domain and platform independence.

The key characteristics of any cloud infrastructure are “abstraction” and “virtual-
ization.” Cloud computing must be able to allow the users to use computing services
on shared resources virtually, in a dynamically scalable way, without having knowledge
about location of, or the hardware and software resources involved, database design, and
storage infrastructure. With cloud computing, the users can enjoy much needed elastic-
ity (scalability), resource sharing/pooling, on-demand service access on utility basis, and
broader network access and availability. Abstraction and virtualization are provided by
individual cloud vendors at different levels, with some allowing total flexibility and some
others offering somewhat restricted control to the users.

Cloud computing can be seen from two perspectives: (1) the way the clouds are
deployed and (2) the services that are delivered by the cloud platform [6, 7]. Cloud
can be deployed as either: public cloud—where the cloud infrastructure is available to
general public and the cloud provider and consumer usually belong to different organisa-
tions; private cloud—where cloud infrastructure is limited to a private group (or a single
organization); or hybrid cloud—which combines services of public and private clouds.

The services offered by cloud can be categorized in three different ways that is
(1) platform as a service (PaaS), (2) software as service (SaaS), or (3) infrastructure
as service (IaaS), which are self-explanatory for the type of services they offer [5–7].
In Huang et al. [8], the authors have discussed yet another approach for mobile cloud
service models that classifies mobile cloud in three models, that is, mobile as service
consumer (MaaSC), mobile as service provider (MaasP), and mobile as service broker
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(MAASB). The authors advocate using a more user-centric approach for ensuring mobile
cloud design principles.

Mobile cloud computing is an enhancement of cloud computing in which the capa-
bilities of cloud computing are realized using mobile communication infrastructure [9].
Basic MCC is based on same techniques as that of mobile networks. A mobile cloud
differs from simple cloud computing in the same manner as mobile networks differ from
wireless networks.

The popularity of mobile applications has increased dramatically in past decade,
allowing users to use applications plus mobility. Mobile applications provide much
needed freedom to the users as it enables them to use these applications whenever
they need and wherever they need. Such applications span all walks of life including
but not limited to entertainment, gaming, learning, healthcare, and commerce. Despite
the ease of use and popularity, mobile users still suffer from the issues such as limited
power supplies, limited storage space, and limited computing resources on their mobile
device [10, 11]. Answer to this problem would be to export all the complex processing
and storage to some external server or “cloud” instead of mobile device itself. Cloud
computing provides one such solution.

MCC is formally defined as a “model for transparent elastic augmentation of
mobile device capabilities via ubiquitous wireless access to cloud storage and comput-
ing resources, with context-aware dynamic adjusting of offloading in respect to change
in operating conditions, while preserving available sensing and interactivity capabilities
of mobile devices” [12].

In more general terms, MCC refers to the usage of cloud computing on mobile
devices, independent of the movement of user. All the storage and complicated process-
ing is done external to the mobile device, thereby saving tremendously on computing
resources and power supply for mobile device. The added benefit a mobile cloud presents
is mobility; however, a mobile cloud cannot be fully advantageous, if it doesn’t cater for
the other functionality aspects associated with conventional clouds, that is, adaptability,
scalability, and availability. The primary aim of MCC is to merge the advanced com-
puting and communications technologies, to provide users with a seamless computing
environment.

MCC provide users with a number of benefits including sharing the resources and
applications without investing huge amounts of money on specialized hardware and soft-
ware. Also, as most of the complex processing is done externally, the users can enjoy
cost reductions for computing power as well [13]. Instead of using a remote cloud for
processing, an ideal mobile cloud scenario could make use of a “local” cloud made up
of surrounding mobile devices. This would also eliminate the dependence of device on
remote servers, and possibly reduce data transfer latency.

As with any other wireless mobile networks, MCC faces challenges as well.
A primary challenge for any mobile cloud environment is providing constant network
availability, irrespective of user movement, which can be difficult or impossible at times.
However, the emerging technologies are addressing this problem intensively with some
systems providing “caching” facilities for mobile applications so that users can continue
work seamlessly, even if connection is disrupted momentarily.
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At present, most mobile cloud applications depend on remote servers for processing
and storage, exposing the users still to the risk of loosing precious resources over con-
nectivity with remote servers. This remote connectivity also presents the issues of the
bandwidth, time delays, costly data services, and context ignorance. Mobile cloud users
often need information services relevant to their recent/current contexts (like location
and time). An ideal mobile cloud scenario should be capable of utilizing the resources
from a more local cloud and accessible mobile devices, if this is better, instead of relying
on remote servers [13, 14]. A temporary local mobile cloud made up of eligible mobile
devices present in the surroundings at the same time can solve the problems of bandwidth,
costs, and time delays, while ensuring more context aware solutions for users [12, 15].
Technology currently in use for mobile and sensor-based networks can be utilized for
development and deployment of this local mobile cloud setting.

7.2.1 Types of Mobile Clouds

The mobile cloud setup can be seen in three different ways. More or less similar
categorization is also proposed in Fernando et al. [16]:

1. Client server: In this approach, a mobile device works as a thin client for a remote
server, where the processing for mobile applications is done on remote servers.
All the public clouds like Amazon’s EC2, Microsoft Azure Platform, or Google
AppEngine can be examples of such client-server cloud models [6].

2. Peer to peer: In this approach, all the eligible mobile devices can act as resource
servers for other eligible mobile devices within the surroundings. All these mobile
devices make up a local cloud, thus eliminating the need to connect to remote
servers. This is the ideal scenario, ensuring highest level of mobility [12, 14, 17].

3. Hybrid approach: As with other wired and wireless networks, a hybrid approach
comprises the features of both client server and peer-to-peer approaches. This
approach works by enabling a mobile device to act as a client for a local cloud,
which in turn connects to a remote server. However, as a mobile device might not
connect to a remote server directly, it can bypass the remote connectivity issues.
Kovachev’s mobile community cloud [15] can be an example of such a hybrid
approach.

7.2.2 Mobile Cloud Application Models and Frameworks:
A Brief Overview

There are various existing MCC frameworks and application models, each trying to pro-
vide solutions for or improve some of prevalent MCC concerns [16, 18, 19]. Here, we
present a brief overview of the current approaches in MCC and provide an analysis for a
subset of these methodologies, from the risk management perspective. We discuss three
aspects of MCC: mobile cloud architectures, communication mechanisms or connec-
tion protocols, and inherent risk management strategies within MCC frameworks. These
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aspects are useful and significant for analysing the current approaches from the risk
perspective, as the most common risk contributors can be the underlying structure and
technology itself.

7.2.2.1 Mobile Cloud Architectures. An MCC architecture refers to the dif-
ferent approaches used by multiple frameworks for their respective job distribution and
processing. Various approaches have been used in literature to distribute the jobs effec-
tively between mobile device and clouds dynamically; however, we will restrict ourselves
to the approaches adopted by the frameworks surveyed in this review.

The MCC frameworks and concepts surveyed in this chapter can be categorized into
two groups:

1. that use application partitioning/client server such as Hyrax, Spectra, Chroma,
Alfredo, CMCVR, Cuckoo, and MWSMF;

2. that use VM technology such as Cloudlets, CloneClouds, MAUI, and MobiCloud.

The first category is directly related to previously discussed client-server and peer-to-peer
mobile cloud types. An interesting observation, however, is that, in some situations the
virtualization can be mapped on to the “Hybrid” mobile cloud type as it sometimes incor-
porates the characteristics of client-server or peer-to-peer technologies. Moreover, some
frameworks such as MAUI incorporate the characteristics of both categories collectively.

The MCC frameworks and concepts belonging to each category are discussed in the
following sections.

Application Partitioning/Client Server This category comprises the frame-
works that use client-server approach for task offloading. Frameworks belonging to this
category work by a mechanism of application partitioning in which the task is divided
for processing between mobile device and remote server. In most cases, the criterion for
this division is embedded in the code; however, in a few other cases, it can be decided at
runtime.

Apache Hadoop is one such software framework that supports distributed applica-
tions and data-intensive processing across large sets of independent computers, and is
capable of dynamic scalability for up to thousands of machines in minimal time [20].
It’s claimed to be capable of automatic failure detection and handling through Hadoop’s
NameNode and Hadoop Distributed File System (HDFS); the task failures are handled
through node-replication mechanisms. Hadoop is a free implementation of MapRe-
duce [21]. Its significance is eminent from the fact that many of the current MCC
frameworks and models are based on Hadoop and MapReduce.

One such platform based on Hadoop is Hyrax [22], which supports cloud computing
on Android smartphones. Hyrax works by utilizing a resource pool of multiple mobile
devices present in the surroundings. Hyrax designers have discussed how such a mobile
cloud could be formed, enabling applications to utilize computational resources of all
the mobile devices (making up cloud) collectively. The key processes in any Hadoop
implementation are NameNode, JobTracker, DataNode, and TaskTracker. A Hadoop
clusters works via master node and slave or worker node (that works as DataNode and
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TaskTracker). Distributed processing is supported through Hadoop’s MapReduce imple-
mentation where a job is divided into independent activities and processed separately.
The Reduce functions processes the outputs from each of these tasks and produces the
results collectively that are then stored in HDFS. The fault tolerance is provided in Hyrax
via the fault tolerance mechanisms of Hadoop.

Another framework that uses application partitioning via a client-server technique
is proposed in Jan et al. [23]. It discusses the Alfredo framework for distributed pro-
cessing of applications between mobile devices and remote servers. In Alfredo, the
application presentation layer or UI remains at the mobile device, but the data process-
ing is done on servers. Alfredo framework is based on R-OSGi which is a middleware
platform allowing applications to be distributed in multiple modules. R-OSGi is itself
an extension of the OSGi model, allowing apps to run on multiple virtual machines
instead of on one machine. When a device requests some application, the application’s
details and relevant services information is sent to client’s (mobile device) “renderer”
which in turn generates the UI accordingly. The services are run in one of two ways:
either on client side, or in server in which case an ad hoc proxy is created for the client
to access these services on the server. They have not discussed any risk management
specifically.

The Spectra framework presented by Flinn et al. [24] is also a client-server archi-
tecture where the mobile device offloads its processing to a server via communication
protocols. One major drawback of this approach is that the services have to be prein-
stalled over servers. Spectra is not suitable for very fast response applications, rather it
targets apps that can afford 1–2 s of delays. Spectra works by matching resource pool
with service requests to predict if the applications should execute locally or should be
offloaded to remote servers, for maximum efficiency. As with MAUI [25], for Spectra,
the developers need to specify which modules can be potential offloading candidates or
which components can benefit from offloading.

Another framework based on application partitioning techniques, much like MAUI
and Spectra, is Chroma [26] that involves offloading individual RPCs to the cloud (or
remote servers). Because of coarse-grained execution, less offloading overheads are
involved. Chroma is a tactic-based remote execution system where the “tactics” are the
useful partitions of the system and these tactics vary in the amount of resources used and
quality of apps. Like Spectra, it responds very quickly to the changing resource needs
and in Chroma too, the developers have to manually specify the methods for offloading.
It is also similar to Spectra in resource monitoring and predictions. However, like Spectra
and Alfredo, there isn’t much discussion on risk management or fault handling.

The work by Satish et al. [27] has also proposed a client-server architecture based
on the Mobile Web Services Mediation Framework (MWSMF) for Mobile Enterprises
which consist of Mobile Hosts acting as service providers for client devices. Whenever
a mobile device requests some services, these mobile hosts provide seamless integra-
tion of requesting nodes with the enterprise. The focus of this framework is to provide
proper quality-of-service and discovery mechanisms for successful adoption of mobile
web services into enterprise environments. MWSMF uses Enterprise Service Bus (EBS)
technology to act as intermediary between the web service clients and the Mobile Hosts
within the Mobile Enterprise.
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The virtual mobile computing (VMC) framework is presented in Huerta-Canepa
and Lee [28]. Like Hyrax, VMC is also based on Hadoop and supports virtual MCC.
Mobile device “location’ is the basic aspect in this framework and much like conventional
MCC, it relies on neighbouring mobile devices. Because of this, the framework requires
continuous (and fast) discovery and selection of suitable mobile devices for computation
offloading. Distribution of tasks is carried out via Hadoop. VMC framework doesn’t
currently support risk management.

Another client-server based “Cuckoo” framework is presented by Roelof et al. [29]
for computation offloading and targets the Android platform. The Cuckoo Resource
Manager is responsible for identifying, selecting, and registering remote resources for
offloading. The authors have also presented the evaluation of this framework on real-life
applications.

Further frameworks based on application partitioning are proposed in Luo [30] and
Zhang et al. [31]. The Cloud-Mobile Convergence for Virtual Reality (CMCVR) frame-
work [30] allows user-friendly convergence of mobile devices to cloud resources. Like a
few others, this framework also works by using a mechanism of task partitioning; how-
ever, the unique attribute is “scanning tree” which is a data structure for managing cluster
nodes at multiple levels. This framework targets mainly media applications and the main
focus is dynamic provisioning of context-aware multimedia services and rendering com-
parable to virtual environments for mobile users. The framework proposed by Zhang
et al. [31] works by partitioning a single application into elastic components that can be
executed dynamically. The elastic applications consist of one or more “weblets” (appli-
cation partitions/components) that function independently but communicate with each
other. These weblets are platform independent. The application weblets and resource
demands are monitored continuously by the “elasticity manager” which then uses this
information for decision making for where and how to launch the weblets. However,
unlike CMCVR, the authors of Weblets framework have also proposed the authentication
and communication mechanisms for elastic applications.

VM Based The frameworks belonging to this category work by offloading the tasks
to a server having preinstalled image of VM of the mobile device that initiated the task.
Because of virtualization, such offloading is usually seamless but slower.

A cloudlet-based framework concept is proposed by Satyanarayanan et al. [14]. The
“cloudlets” approach presented by authors tries to overcome the latency issues by mak-
ing use of a local cloudlet that is connected to the Internet and comprising nearby mobile
devices. This technique reduces the latency and ensures speedy response. Instead of con-
necting to a distant server for application processing over the Internet, this approach
uses the local cloudlet and enables the mobile device to perform all processing at just
one-hop latency. If for any reason the local cloudlet is unable to carry out the required
processing and computations, the mobile device can go into a safe/failure mode and
use the distant cloud’s services for the time being. The cloudlets are designed to keep
only cached copies of data unlike clouds. The authors have also discussed the various
scenarios where such a cloudlet can be deployed in different ways. To enable simple
(self-)management without compromising application diversity and potential, “transient
cloudlet customization using hardware VM technology” is applied where the guest
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device’s software environment is hidden from that of cloudlet’s software infrastructure.
The cloudlet customizes each job and later cleans itself up after each operation. Like
the cloudlet framework, the CloneCloud framework proposed in Chun and Maniatis [32]
also addresses the challenges of mobile devices limitations via an “augmented execution”
technique. In this approach, the execution is offloaded to the cloud containing/running
the “clone” or replica of mobile devices’ (smartphone’s) software. Depending on the
complexity of tasks, either full or partial execution is offloaded to the cloned cloud. It
gives the illusion of increased computational power to the users. The authors have also
discussed the categories of CloneClouds for possible augmented executions. However,
though they have slightly touched upon the concerns relevant to each framework, but both
these frameworks have failed to address the potential risks, and hence, risk avoidance and
management.

MAUI framework [25] can be considered as an improvement in CloneCloud and
cloudlet frameworks as unlike these, MAUI combines virtual machine migration with
code partitioning. This approach allows the required flexibility but within necessary lim-
its of control. The developers annotate which methods to offload while programming;
however, the decision to offload the methods is made at run-time on the basis of parame-
ters like profiling information, connectivity, bandwidth, and latency. Unlike many other
frameworks, the decision making for offloading is done at the single method level instead
of complete modules. This approach can be prone to risks as in some situations as the sin-
gle method-based decisions cannot represent the whole picture, and an effective decision
making should consider more than just one method at a time.

Mobicloud [33] is a mobile cloud framework that treats mobile devices as service
nodes to improve ad hoc networking operations, and increases the capability of cloud
computing for securing mobile ad hoc networking (MANET) applications. This frame-
work is also based on virtual machine technology where every mobile node is treated as
a virtualized component and mirrored in cloud as one on more extended semishadow
images (ESSI). These ESSIs are not necessarily the same as virtual images and can
be either exact clones or partial clones. MobiCloud provides intermediary services for
access management, security isolations, and risk assessment and intrusion detection for
MANETs. In short, it works to provide security service architecture in multiple security
domains. They have also presented virtual trusted and provisioning domain (VTaPD) to
enable isolated information flow and access controls across multiple virtual domains.
However, again we see a lack of potential risks discussion.

7.2.2.2 Communication Protocols. Three types of common network proto-
cols in MCC are Wi-Fi, Bluetooth, and 3G/4G. These terms refer to the way the mobile
devices can connect to the Internet, and to each other. Each of these communication pro-
tocols have their own benefits and drawbacks, and this subcategorization can be useful in
understanding whether if/how the use of some specific communication protocol within
a framework can possibly contribute toward the risk of using a relevant framework.

Wi-Fi Most of the frameworks discussed earlier such as Hyrax, Alfredo, Spectra,
Chroma, VMC, Cuckoo, Cloudlets, CloneCloud, MAUI, and MobiCloud have suggested
Wi-Fi as a communication mechanism. Although Wi-Fi provides improved performance
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in terms of reliability and increased bandwidth and data rates, the frameworks using
Wi-Fi as their embedded communication protocol should be comparatively more prone
to risks of security threats and interference due to external objects. Also, the Wi-Fi con-
nectivity is dependent on the availability of hotspots, unlike 3G which can be connected
from anywhere. Related to Wi-Fi, is also Wi-Fi Direct for mobile to mobile communica-
tion which has higher bandwidth than Bluetooth and a much longer range, tens of metres
or more, compared to the often noted 10 metres of classic Bluetooth. Wi-Fi can also be
used for tethering purposes.

3G/4G 3G/4G provides users with more consistent networking conditions and bet-
ter security; nevertheless, it takes its toll in terms of slower data transfers, increased
battery drainage, and higher costs. For MCC, it provides users with advantages of connec-
tivity from anywhere, anytime; however, its battery consumption rates and the response
times make it a secondary choice for mobile cloud developers. The frameworks cur-
rently employing this approach have generally suggested using this in conjunction with
Wi-Fi for optimum access and connectivity. None of the frameworks have used 3G/4G
as their primary communication medium, but some of the frameworks like MAUI and
CloneClouds have used this in their experiments to compare performances of different
approaches.

Bluetooth Despite the advantages of Bluetooth, like ease-of-use and no-cost
wireless access, Bluetooth is not a very popular medium for widespread Internet con-
nectivity because of lower ranges and potentially more susceptible to interference. With
an exception of Alfredo, none of the surveyed frameworks have utilized Bluetooth exclu-
sively and the only mention we find is within the Cuckoo framework as it uses Ibis
middleware which can be run with any of the above discussed communication proto-
cols. Bluetooth low energy (BLE) is more energy efficient than Classic Bluetooth, and
generally more energy efficient than Wi-Fi-based protocols though with lower bandwidth
and range than Wi-Fi protocols.

7.2.2.3 Risk Management Strategies. An interesting thing to note is that
with an exception of Zhang et al. [31], none of the frameworks have discussed the
risks associated with their use. However, we see some mentions of fault tolerance and
risks in Hyrax and MobiCloud, respectively. Hyrax framework implies fault tolerance
implementation as it’s based on Hadoop and uses the same fault tolerance mechanism to
recover from failures. However, no explicit mention of relevant risks and risk manage-
ment is given. Similarly, the MobiCloud framework has proposed using context-aware
information for aiding risk assessment and intrusion detection. Despite this, no thorough
discussions of risks and risk management have been provided and little attempt has been
made to generalise these beyond the scenarios described.

7.2.3 Discussion

As stated earlier, except for the framework proposed by Zhang et al. [31], none of the
frameworks have discussed the risks associated with the use of that particular framework.
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To analyse each framework for inherent risks, we have tried to identify the risks asso-
ciated with each aforementioned aspect, as all frameworks belonging to same category
share, on most part, similar risks.

7.3 RISKS IN MCC

This section first explores the risk management concept in general and provides an insight
into the “risk” and “risk management” definitions and the basic steps in any risk man-
agement methodology. Then, we present a survey of risks inherent in cloud and MCC
domains. Identification of MCC risk factors is needed to fully understand what types of
risks are being faced in the MCC domain and what is the pattern and intensity of these
risks, at present. Recognizing the loopholes in current MCC technologies and analyz-
ing the identified risks for their causes and solutions, could be a key starting point to
explore the possibilities of a risk management system that would be able to deal with
these risks.

7.3.1 Risk Management

Risk can be defined as the “possibility” of something happening that can affect the out-
come negatively; it’s measured in terms of “probability” and “impact” [34, 35] and
usually derived by formula: RE = P(O)× L(O)

where RE is risk exposure, P(O) is probability of negative outcome, and L(O) is the
loss or impact of that negative outcome [36].

This formula can be taken as a standard risk calculation device, as the similar formu-
las are being used in other domains as well for calculating respective risks, for example,
finance, insurance, and health. The presentation of these formulas could be slightly dif-
ferent in different domains, but the basic logic is similar, comprising two basic elements:
probability and impact [37–39].

Risk management is the process of managing risks in a given system with the aid of
formal processes, methods and tools, for example, providing a disciplined environment
for continuously analyzing the risk factors, calculating the relative importance of each
risk item and designing strategies to deal with these risks. Any risk management sys-
tem usually comprises these basic activities: (i) risk identification, (ii) risk analysis, (iii)
treatment, and (iv) monitoring and control.

Risk identification refers to identifying the risk factors, that is, proactively diagnos-
ing what could potentially go wrong. Risk analysis includes calculating the likelihood
and impact of identified risk factors and its prioritization, whereas risk treatment refers
to exploring the possible treatment options for prioritized risk factors and detecting best
treatment solutions. Monitoring and control, on the other hand, is a continuous activity
carried out throughout the risk cycle; it involves overall risk planning and monitoring for
any change in status or priority of identified factors and to keep a look-out for any new
risks surfacing. Such proactive decision making reduces the system’s exposure to risks
and minimizes the potential loss from these risks. A formal risk management process
provides an auditable system for risk mitigation and contingency [40].
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As with any new technology, cloud computing also has some associated risks that
need to be managed for successful and efficient utilization of clouds. The complexity
of cloud infrastructure poses many serious risks, and there is an ever-increasing need
for managing these risks effectively and proactively. Shipley [41] holds the view that at
present cloud computing is implemented without any proper risk management. The same
is true for MCC. In MCC, the intricacy of the system makes it further risk prone.

In the previous section, we have surveyed and analyzed a sample of mobile cloud
frameworks and models. In this section, we will be discussing the multiple risk factors
that have been identified so far within cloud and MCC domains. The analysis of frame-
works on the basis of their ability to deal with prevalent risks will then be presented in
the following sections. We will also be categorizing these risk factors according to the
nature of individual risk items. This section has been divided into two parts: the first part
will present the risks that are common to both cloud and MCC domains. The second part
will present the risks specific to MCC area.

7.3.2 Risks in Cloud Computing (Inherited by Mobile Clouds)

Despite the benefits of cloud computing and its potential to improve efficiency and pro-
ductivity, there’s some reluctance to its usage. It’s because of the fact that it’s a relatively
newer technology and there’s no formal mechanism or standards for managing the risks
associated with cloud usage. Many of the identified risk factors (Sections 7.3.2.1–7.3.2.3)
are common to both cloud computing and MCC systems. This is because the basic
attributes of both domains are similar; as MCC itself is based on the fundamentals of
cloud computing technology, so in addition to the basic characteristics, MCC inherits
the risks of the cloud computing domain as well. This phenomenon makes it important
to explore the risks in the cloud computing domain as well to have coverage of possible
risk factors that can affect MCC systems.

There are a number of sources in the literature that discuss the different types of
cloud computing risks. These risks factors are classified into three categories: security
risks—including all the risks related to the security aspect of cloud computing networks
and data, performance risks—including the risks related purely to performance attributes
of a cloud infrastructure, and legal/environmental risks—including risks related to legis-
lation and the operational environment of cloud providers and users. The risk factors are
represented in separate tables according to their categorization. Sections 7.3.2.1–7.3.2.3
represent the risks common to both the cloud computing and MCC systems, whereas
Section 7.3.3 discusses the risks specific to MCC.

7.3.2.1 Security Risks. The typical characteristics of cloud environments such
as abstraction, virtualization, shared resources, and ad hoc nature make it very difficult
to implement proper security and safety mechanisms. Also, with cloud the users usually
having no knowledge or control over these mechanisms makes the situation even worse.
As with any other network, “security and privacy” is one of the biggest risk factor that
needs proper consideration and management. This category comprises the risks related
to security and privacy aspects of the infrastructure from both the user and provider’s
perspective; this includes the risks to communication networks itself and the data.



“9780471697558c07” — 2015/3/20 — 16:21 — page 165 — #13

RISKS IN MCC 165

• Unauthorized access: As most of the data storage and processing is done exter-
nally, it’s difficult to implement physical and logical controls over access rights
which bring with it the risk of unauthorized access. This issue is inherent in all
remote and distributed systems, but the abstraction and virtualization of resources
in cloud environments makes it even more difficult to deal with [1, 33, 41–49].

• Security defects in technology itself : Failure to implement security controls that
are essential to protect customers’ assets is yet another risk factor that needs to
be managed properly. At present, the cloud providers tend to keep their functional
procedures and policies a secret, and so there’s no way of knowing the level of
security provided to its users by the vendor [41, 50].

• Security defects in Web services: Cloud applications are usually provided as ser-
vices over the web. However, unlike other Web-based applications, the cloud
applications are not user specific, and hence present serious vulnerability issues.
Potential loopholes in security of Web services pose a potential risk for cloud
computing. Moreover, the attackers can also use the weakness of web application
security for gaining access to other users’ data as well [50].

• Leak of customers’ information: The risk of losing customer’s private information
(i.e., passwords and profile information) to unwanted attackers is yet another risk
shared equally by the cloud vendors and users [41, 51].

• Leak of proprietary information: This risk of losing confidential proprietary infor-
mation is very serious, especially if the organisations involved are government
or other national agencies. A survey given by Shipley shows that percentage of
commercial organisations reluctant to use cloud computing for fear of losing pro-
prietary information is 28%. Understandably, this percentage will be much higher
for security critical organizations [41, 45, 50].

• Data location: In case of clouds, the cloud users are never sure of the exact location
of their data storage. This makes data location an important security issue. Some
of the authors perceive data location as major performance and legislative risks as
well [1, 42, 43, 47, 48, 50].

• Physical location of the system: As with data, the physical location of the system
infrastructure (e.g., servers) is not made public by cloud providers. Being unaware
of the location of your system can sometimes become a security issue [1].

• Data segregation/isolation: Cloud computing is based on the notion of shared
resources; multiple users’ data can be stored on the same servers, making data
segregation one of the biggest risk factor faced by cloud users. It makes the sys-
tem prone to the risks such as unwanted access to one user’s data by another [33,
42, 43, 47, 50–52].

• Data recovery: Failure to recover the data and services properly after some disas-
ter can be a problem. It’s different from “faulty backup” risk factor as sometimes,
despite proper backup mechanisms, data are lost due to other legislative or envi-
ronmental reasons. For example, consider a scenario where many cloud providers
(primary) themselves rely on cloud services of other bigger providers (secondary).
In such cases, if the intermediate primary cloud provider goes out of business, it
might not be possible for its users to retrieve their data as they were not the direct
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customers of the secondary cloud provider and hence have no access rights on the
data hosted by the secondary cloud provider, even though they are the owners of
that data. Such legislative gaps can result in data losses. Similarly, if the secondary
service provider goes down, it can also cause the service to become unavailable,
creating risks for data recovery [42, 43, 48].

• Weaknesses of browsers: Cloud computing uses Web-based browsers for service
provisioning. The weaknesses of browsers is one of the security risks associated
with clouds as any attacker can use these weaknesses to get access to confidential
data [43].

• Data security: Failure to have an effective data security model in place can be
disastrous to any cloud vendor or users. Sharing of resources, unawareness of
data location, and malicious attacks to the infrastructure from inside or outside the
cloud provider organisation all contribute to the risk of data security. In addition
to usual network-related security issues, abstraction and virtualization of cloud
infrastructure make the data even more vulnerable [13, 50, 51, 53].

• Network security: Network security is an important risk factor because if the net-
work is compromised, the whole of the cloud infrastructure will be compromised.
Networks can be attacked in many ways (e.g., spoofing and sniffing), and any
loophole in network security can bring the whole cloud to risk [50, 54].

• Data integrity: This refers to the accuracy of data that is managed by the clouds.
Issues of shared storage can affect data integrity adversely, making it more risk
prone [45, 49, 50].

• Faulty backup mechanisms: Faulty data backups and backup procedures can cause
problems. The cloud is typically a pay-as-you-go service which makes backup
more risk prone as it has to keep up with ever changing user environment con-
tinuously. Any minor loophole can be disastrous to the security of the system
data [13, 50].

• Insecure/incomplete data deletion: Cloud computing is utility-based service, and
every time a user leaves the system, the cloud infrastructure should be able to
delete that user’s relevant data and reallocate resources to other users. However,
the failure to delete the leaving user’s data properly or completely is a risk that can
give rise to unauthorized access of one user’s data to other [51].

• Natural disasters: It’s a risk as natural disasters can cause interruption to cloud
service availability, for example, Amazon EC2 June 2009 incident. It is often
uncontrollable, but there should be proper risk management planning to deal with
such situations [43].

• Malicious insider: Cloud service providers usually place multiple users’ data in
one place. This can be very risky as any malicious insider can just attack one single
location to gain access to thousands of customers/users’ data. The situation will
be even worse if the customer is an organization as by attacking a single point, a
hacker can access complete organizations’ information [43, 52].

Most of these risk factors are similar to those in general communication networks and
applications risks. This is mainly because the cloud infrastructure is itself based on
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Web and wireless network technology and all the inherent risks of those domains, are
propagated to cloud infrastructures as well. However, owing to the scalable and flexible
nature of clouds, these risks are further magnified in the cloud computing domain. Some
of these risk factors may be common to other categories as well; it’s because different
authors have slightly different perspectives regarding these risks, with some considering
a factor as security risk and others may perceive it as performance or legislation risk (e.g.,
for some “data location” is a security risk while others perceive it as legislative or perfor-
mance risk). To cover all different perspectives, we have stated these factors sometimes
in multiple risk categories, with each representing the related school of thought.

7.3.2.2 Performance Risks. This category represents the risks related purely
to performance attributes of cloud infrastructure. This comprises the risks of reliabil-
ity, usability, and efficiency, which can directly affect the performance (i.e., quality and
effective execution) of the system. Application or system performance is perhaps the
most important risk, every cloud provider and user should consider. This is the only risk
that is mutually dependent on all other risk factors (or most of it). Occurrence of any risk
factor is a risk to effective performance of system and application.

• Features and general maturity of technology: Although getting increasingly pop-
ular, MCC is still in its early stages and needs maturity in terms of processes and
functionality. For the same reason, the mobile cloud-based services/applications
are also still in their premature stages. This immaturity of MCC technology and
services is comparatively more risk prone than other traditional computing plat-
forms. Any weaknesses or loopholes in technology are a major risk to both the
providers and customers equally [41, 43, 50].

• Data location: In MCC, the data isn’t located on the same premises as the organi-
sation itself. Also, the location of data isn’t known to the users. In such case, there
is always the risk that data access and also the transfer and processing would be
more complex and more time consuming, than if it’s located locally [43, 50].

• Data segregation/isolation: Besides being a security and privacy issue, data iso-
lation is a risk to application performance as well. If the data isn’t properly
isolated, there is a risk that user application is unable to access required data
efficiently, resulting in delayed processing, and so its performance would be
degraded [33, 42, 43, 50, 51].

• Portability: Application running on one platform may not give the same perfor-
mance on other platforms. A basic aspect of a mobile cloud system is that it might
be made up of or used from multiple heterogeneous mobile devices, and hence
various different platforms. Also as MCC is still in its early stages, there aren’t
any standards for data formats or interfaces, which makes portability a risk to the
performance of MCC services and applications [45, 55].

• Data availability: It’s a real-time performance risk, for example, if required data
aren’t available when user need them [1, 33, 45, 47, 50].

• Service availability: Timely and continuous availability of mobile cloud services is
an important risk factor that needs much consideration and proper risk planning.
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Any disruption to the infrastructure can cause the cloud to become unavailable
[1, 13, 45, 47, 51, 53].

• Reliability: Risks of service downtimes, faults, and failures [13, 45].
• Resource exhaustion: In the mobile cloud environment, resources are at risk of

exhaustion. The reason is that in clouds, there are usually more users per applica-
tion and more applications per server. The scalability aspect of the cloud further
contributes to this risk; any problems in service mechanisms (i.e., inappropriate
modelling of resource usage or inadequate resource provisioning) can also lead
to resource or memory exhaustion which in turn can substantially degrade system
performance [51].

• Complexity: Elasticity, abstraction, sharing of resources and its ad hoc nature
make cloud computing a complex infrastructure. There would be more users per
application, and the servers might be hosting more applications/server. Increased
complexity of this infrastructure makes it more susceptible to risks that affect the
efficient performance of the system.

• Network constraints: Wireless and mobile networks are comparatively more prone
to risks of disconnections, limited bandwidth, and high latency. Any attempt to
improve these figures will put a strain on power resources [11].

Some of the factors cited here are similar to those of security risks. As mentioned earlier,
this is because different authors can perceive a single risk item in multiple ways, accord-
ing to their own values. Some of the factors like portability and reliability are included
in the performance risk category as these factors can directly affect the performance of
a cloud computing infrastructure.

7.3.2.3 Legislative/Organizational Risks. These are the risks related to leg-
islation, business organisation, and the operational environment of cloud providers
and users.

• Vendor lock-in: Due to lack of standards it’s difficult to switch from one provider
to other; or worse, to move it back in-house (e.g., in case of price increase or poor
service quality) [41, 48, 51, 53, 56].

• Business viability of provider: If the cloud provider goes out of business or ter-
minates cloud services, it’s a big risk for customers as they are exposed to loss of
service, loss of investment, and this can lead to loss of their own customers and
users [1, 41, 42, 51, 56].

• Unpredictable costs: Cloud services are usually pay as you go, and even a slight
change in costs by provider can affect the total costs of usage tremendously. The
risk of unpredictable costs can be managed via thorough negotiation before getting
into contracts [41, 56].

• Regulatory compliance: As the users’ data are located elsewhere, there is a risk
of regulatory compliance between cloud providers and customers. As the users
are not managing their own data and services, there’s a risk that their own data
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won’t be compliant with their organizational policies and standards. Moreover, the
certifications (current and future) will also be potentially put to risk with migration
to the cloud [42, 43, 45, 47, 51].

• Data location (risks of changing jurisdictions): As the users are unaware of
locations where their data are stored or handled, they usually have no control
over their own data. Loss of governance is a business risk that needs consider-
ation [41–43, 47, 50, 51]. Some other authors have presented the more or less
similar concept as “Data-access risks” due to changing jurisdictions. It’s very
much possible that customers’ data are located in some other legal jurisdiction,
making it difficult to apply one’s own state laws or regulations on data; for exam-
ple, some states have restriction on certain types of data and if your data are located
on servers in that area, it could become a problem [45]. Moreover, the data loca-
tion can also present the risks of “auditing,” due to changing jurisdictions. Data
stored in other countries or jurisdictions will be subject to the laws and conventions
of the hosting country which can be a risk for data auditing. Also, if someone has
claims against the cloud service providers, it could become a risk too with multi-
ple state laws involved regarding data and service. This data storage over multiple
jurisdictions and inherent risks of ignorance about other states’ laws makes it a
very risky legal activity [48, 51].

• Investigative support: Investigating inappropriate or illegal activity may be impos-
sible in cloud computing, because logging and data for multiple customers may be
co-located and may also be spread across an ever-changing set of hosts and data
centers. This makes it very risk susceptible [42, 45, 48, 53].

• Lack of organizational learning: Your staff isn’t managing your technology/data,
and there is a risk that cloud customers won’t be able to train their own staff for
their own data and services [56].

• Business risks from co-tenant activities: Cloud resources are shared between
multiple customers and that means there is a risk that some malicious activ-
ity by one customer can affect other customers as well who are sharing same
resources, which can, in turn, be a huge risk to the reputation of innocent tenant
organizations [51].

• Licensing risks: The ad hoc nature of the cloud makes it difficult to audit licencing
compliances [51]

This category of risks is very important owing to the remote processing and remote
storage characteristics of cloud computing. In cloud computing, the location of servers
and data is usually unknown, and this means that some or all of the users’ data could
be in some place that is outside of their own jurisdiction. This poses many risks to
already fragile cloud computing environments. Such risks can be as extreme as loss of
control over data or in the worst case, loss of data completely in matters of changed
jurisdiction or disputes with providers. Moreover, the auditing or any legal disputes
could also be complicated in cloud computing systems because of the aforementioned
reasons.
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7.3.3 Further Risks in MCC

As discussed earlier, MCC poses some additional risks to conventional cloud comput-
ing. The following segment presents the risk factors that primarily relate to the MCC
environment:

• Resource limitation of mobile devices: Mobile devices are at risk of resource
exhaustion if mobile cloud application development fails to consider this fac-
tor; this risk is even greater with smaller mobile device environments and
sensors [10, 11].

• Application mobility: An application may have to continuously switch between
device and cloud (or different local clouds), every time the mobile environment
changes. If not managed properly at development and later levels, it can cause
interruptions as well as put tremendous constraint on mobile device resources as
well [12].

• Device mobility: This presents the risks of connectivity to correct base stations and
with other mobile devices in the cloud [10, 11].

• Portability: A mobile cloud is made up of varied mobile devices hence posing a
risk for portability, that is, an application running on one device platform may not
be suitable for other devices [11, 12].

• Metering risk: In a mobile cloud environment, a single user will be connecting and
disconnecting multiple times, thus bringing the efficient “metering of services” to
higher risk levels [57, 58].

• Context-awareness: The cloud services need to be aware of a user’s current context
and adapt to it automatically. Failure of these services to self-adapt is a risk to
efficient and effective MCC [11, 12].

• Physical risks: Portable devices are more prone to physical risks like damage, and
theft than desktop PCs or standalone machines [11].

7.3.4 Discussion

A fact worth noticing here is that most of the literature has covered what we can call
“system-level” risks. These mostly include the risk factors prevalent in high-level cloud
systems and communications networks. The low-level risks at mobile cloud application
development or frameworks level have not been effectively discussed.

Furthermore, irrespective of the huge lists of risks prevailing in MCC, relatively
little attention has been given to managing these risks in comparison to other issues like
saving on resources or saving on costs of mobile devices. This is in contrary to other
matured IT systems and technologies. In addition to identifying the risks, it’s crucial to
devise strategies to appropriately manage and mitigate these risks. A better way would
be to deploy a proper risk management process in place before moving into the cloud so
as to proactively identify, monitor, assess and manage the risks in order to avoid them or
mitigate them.
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Figure 7.1. ECG data analysis software as service [59].

A detailed analysis of the current situation in MCC from the risk perspective is given
in the following sections.

7.3.5 An Illustration of Risks for a Real-Life Application

To see that how these risks can affect any application, we have taken an example of
a mobile cloud-based e-health application proposed in Pandey et al. [59].1 They have
designed a scalable real-time health monitoring and analysis system and have used an
electrocardiogram (ECG) analysis system prototype as their case study. This prototype
system collects patient data (e.g., pulse and heart beat rates) through an ECG sensor
device attached to a patient’s body. This sensor device transmits the data to the patient’s
mobile device via Bluetooth without manual intervention. A client software on a mobile
device then transfers the data to an ECG analysis Web-service hosted on a cloud comput-
ing stack, either using Wi-Fi or mobile device’s 3G network (Fig. 7.1). They have used
the Aneka cloud computing platform and Amazon’s S3 storage services. The software
then analyses the patient’s data, generates results and appends the latest findings to the
patient’s medical record. Depending on analysis, the data could be sent to patients, doc-
tors, or emergency services as needed. When we use this application for demonstrating
the inherent risks and their consequences, we see that its impacts could be disastrous

1Note that this is not a critique on ECG analysis prototype as understandably, risk is not their research focus.
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(that can even cost a precious human life) if no proper risk management is implemented.
It’s a time-critical application that requires extreme levels of reliability for the results
that are being generated and needs to be always up to date with the latest findings. An
overview of how different risks can impact the application and users is given in Table 7.1.

TABLE 7.1. Overview of risk factors in mobile clouds

Risk category Risk subcategory Risk factors ECG analysis
application potential
vulnerabilities
(data= patient data,
service=ECG analysis
software service)

Security and
privacy risks

Network security
risks

• unauthorized access
• security defects in

technology
• security defects in Web

services
• weakness of browsers
• network security
• physical location of

system infrastructure

Conformity (because of
manipulation), sabotage
(malware, virus, worm),
data integrity, service
availability, credibility

Data security and
privacy risks

• leak of customer
information

• leak of proprietary
information

• data location
• data segregation/isolation
• data recovery
• data security
• data integrity
• insecure/incomplete data

deletion
• faulty backup mechanism

Privacy, conformity,
sabotage, identity theft,
customer confidence,
business loss/competitive
edge, espionage, wrong
diagnosis, record mix up,
data integrity, data loss

Others • natural disaster
• malicious insider

Performance
risks

Availability and
reliability risks

• data location
• data segregation/isolation
• data availability
• service availability
• reliability

Faulty data collection,
wrong analysis,
prolonged response
times, correct and
efficient data availability,
loss of business, life
threat
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TABLE 7.1. (Continued)

Service and
application
usability
risks

• features and general
maturity of technology

• complexity
• portability
• resource exhaustion

Misdiagnosis, ease of use,
time critical, mobile
device limitations,
compatibility for
different devices,
compatibility of device
to SaaS, robustness, and
load balancing

Legal/environmental
risks

Organisational/
business
risks

• vendor lock in
• business viability of

provider
• unpredictable costs
• data location
• investigative support
• lack of organisational

learning
• business risks from

co-tenant activities

Varied costs due to
different usage patterns,
lack of organizational
expertise (software
malfunction can go
unnoticed, wrong use of
application, cloud
dependence), regulatory
compliance (less options
for legal support)

Environmental
risks

• natural disaster Data and service
availability, life risks

Different legal
jurisdictions

• data access risks due to
changing jurisdictions

• auditing risks due to
changing jurisdictions

• licensing risks

Reduced support for legal
auditing, ignorance
about other countries
laws, different laws
within different
jurisdictions

Mobile cloud
computing risks

• Resource limitation
risks

Performance,
incompatibilities,
erroneous or slow
response, memory
exhaustion, application
crash, limited power,
Bluetooth connectivity
issues, ECG monitoring
device and mobile phone
compatibility, patient’s
3G plan limitations

Mobility risks
(between
device and
cloud)

• application mobility
• device mobility

Patients won’t be static,
networking conditions
different for different
geographical locations,
networking conditions
different for different
users within same
geographical regions

(Continued)
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TABLE 7.1. (Continued)

• Portability risks (between
multiple devices)

Hugely varied mobile
devices (of patients)

• Metering risk Usage patterns and
frequency different for
different patients

• Context-awareness Patient’s location can
impact data collection (if
s/he at home or gym)

• Physical risks Patient can damage/loose
the monitoring device or
mobile phone

7.3.5.1 Security and Privacy Risks. The authors have tried to reduce the risks
of security breaches to the application data by implementing encryption mechanisms
which are expected to minimize the risks of unauthorized access to the data. For that
purpose, they have suggested using a third-partyp key infrastructure which will make it
difficult for attackers to access the confidential data. When it comes to privacy and leak of
information, we see that though being an important aspect, it’s not as critical as reliability
and efficiency in this scenario. However, any loop holes in security can sabotage the
overall reliability and efficiency of the whole setup. Risk factors like unauthorized access,
security defects in technology, Web-services or networks, or malicious insider might
mean attackers can access patient’s personal information, misuse it, or even manipulate
it. In this particular case, it could mean the integrity of patients record is at risk and
any tampering or mishandling can lead to false alarms for emergencies or no alarms
when needed. In case of alarming results for a patient’s ECG analysis, the patient needs
immediate medical assistance; however any meddling in patient’s data can lead to his/her
death. Also, in case if the patient’s ECG is normal, a false alarm can be sent to emergency
services that could have huge financial impacts and the availability of emergency services
for genuine cases can also be endangered.

In addition to the risks of unauthorized access, there are certain other risk factors
that can meddle with the efficient processing as well and can’t possibly be handled by
encryption mechanisms only. Risk factors like faulty backups, data integrity, and inse-
cure/incomplete data deletion can pose a risk to the availability of patient’s medical
history and records for doctors. Any weaknesses in backup and data recovery procedures
can mean longer times for patient diagnosis or even loss of medical records. The risks to
data integrity can be very grave in such time critical applications when a human life is
at risk. The privacy risk from insecure/incomplete data deletion can be of less impact in
this case unless attacked by malicious attackers.

7.3.5.2 Performance Risks. For a time critical application like this, application
and system performance is an aspect that needs to be critically assessed for risks. The
only quality-of service-(QoS) parameter the authors have selected is shorter response
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times. To ensure fast responses, the authors have implemented dynamic scalable runtime
(DSR) module that continuously monitors the average response time and if it’s above a
threshold value, the DSR assigns more resources until response time decreases. How-
ever, besides short response times, any degradation in other performance attributes (e.g.,
reliability, efficiency, and availability) can also lead to consequences ranging from erro-
neous or unavailability of patient records, to the possible loss of human life. Also, as
this application intends to target a huge population of cardiac patients worldwide, any
defects in robustness or load-handling will be a risk to efficient performance. Despite
being increasingly popular and evaluated, MCC systems and cloud based e-health appli-
cations like this still need maturity in terms of features of technology. Any weakness in
technology or feature-sets can be a risk to QoS, and hence customer satisfaction, and
business objectives as well. For example, in this particular scenario the target population
is cardiac patients, which on most part, comprises people above the ages of 55 years,2

and it will be much more difficult for these people to get accustomed to complex applica-
tions and features than younger people. If patients don’t find the application easy to use
or of good quality or cost effective, they might misuse the device or may be hesitant in
using it; a fact that could have serious implications on ROI. Also, each error contributes
to increased dissatisfaction in customers (in this case, doctors and patients) and can be a
risk to patient health as well.

Data isolation and segregation from the security perspective is a risk to privacy and
loss of confidential patient information and records. However within the performance
perspective, faulty data deletion or improper data isolation can cause a mix-up of patients’
records and can result in wrong diagnosis for the respective patients. Data location on
other hand can affect timely availability of patient data but its probability is very low.

As this application targets wide patient population, the mobile devices involved
could be hugely varied, which poses a risk of application portability for multiple devices.
The analysis software is hosted by cloud services, but the client software resides on
mobile devices itself, and so it should be extensively evaluated for processing efficiency
for multiple devices and mobile platform. Any problems with portability could mean a
percentage of patients being unable to use this application.3 Also, the compatibility of
mobile devices with cloud services should also be risk free for otherwise the use of this
application will be limited to a subset of patients only.

Data availability, service availability, and reliability risk factors are extremely crit-
ical owing to the nature of this application and for reasons discussed earlier. Any error
in these aspects can be life-threatening for some patients with heart risk. Application
crashes and downtimes can be very dangerous. For entertainment applications, we can
tolerate some risk but in applications like this ECG monitoring and analysis system, such
risks are intolerable and should be managed very carefully. Also, resource exhaustion on
the mobile can directly affect availability and it’s a possibility in this scenario.

2Can be less than 55 years as well, but major percentages belong to age category over 55 years http://www.
worldheartfailure.org/index.php?item=75, http://www.rosscountyhealth.com/brochures/MensHeart.pdf
3 Age of patients is already a risk factor with respect to smartphone usage, as elderly find smartphones much
too complex for their comfort level.
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7.3.5.3 Legal/Environmental Risks. Most of the legislative risks don’t have
direct noticeable impacts in this application; however, unpredictable costs, lack of orga-
nization learning, and licensing risks are applicable. The ECG data analysis is provided
as a service to users who can pay on per-analysis basis. However this software service is
itself dependent on cloud based storage provided by Amazon. As there’s flexibility for
patients to use this application with different frequencies, depending on health condition
and doctor’s recommendations, keeping tracks and auditing licensing compliances will
be very complex. Also, because of similar reasons (different frequency and usage pat-
terns), the costs won’t be fixed and can be unpredictable making it difficult for both the
patients and doctors to keep track of their relevant costs. Similarly, the lack or organisa-
tional learning can create cloud dependence for a long time and also it will be difficult
for employees to gain expertise on technology usage and analysis.

7.3.5.4 Mobile-Specific Risks. Like any other mobile application, resource
limitation of mobile devices is a risk that can affect the performance of the ECG appli-
cation negatively. Considering the target user population (i.e., cardiac patient and people
with heart risks worldwide), it’s safe to assume that a large number of different types
of mobile devices will be used. In addition to general issues of possible incompatibil-
ities, limited power resources, and limited memory, there could be some devices with
comparatively slower response times due to reasons like memory exhaustion (because
of large data files stored on a patients mobile OR if a patient owns a mobile phone with
lesser memory capacity). Also, some mobile devices face Bluetooth connectivity issues
(e.g., iPhone connectivity with Nokia and Sony Ericson mobile devices via Bluetooth
might not be reliable, and some Nokia devices might have connectivity issues with other
devices like HP notebooks). Asking every patient to buy a compatible smartphone isn’t
an attractive option; likewise, usage of an application shouldn’t be restricted to own-
ers of specific mobile devices. It can be fatal if application developers fail to cater to
this problem. Another aspect that needs consideration is device mobility. As the patients
won’t be static to one geographical location (a single patient can be frequent traveller),
so the devices connectivity to cloud and availability of services accordingly is very risk
prone. Also, context-awareness needs to be considered in analysis as for this particular
application; it can tamper with the results falsely. For example, consider a scenario if the
patient decides to check his/her ECG after a workout at gym or elsewhere, his/her heart
and pulse rate would be very different from his/her normal rates. If the analysis software
fails to recognize this, it can generate false alarms and hence a wrong diagnosis. Cases
like this can negatively affect users’ confidence in the system and can eventually lead to
application failure.

7.3.6 Understanding Risks with Near-to-Life Scenarios

Let’s consider an example to see that how ever-changing mobile environments can
effect overall risk situation of a mobile cloud system. To understand these risks and
their impacts better, let’s consider some scenarios briefly. Consider an elderly heart
patient John as a user of the above mentioned ECG analysis app. He must wear the
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heart-rate-monitor all the time (preferably) so that his condition could be monitored by
his doctors. Now consider this person John in following scenarios:

Scenario 1: John is working in a well-developed city that has many offerings in
terms of security and mobile and network services at better speeds.

Scenario 2: John is travelling to his home village that’s not very well developed, and
hence offers fewer options for network and mobile services.

Scenario 3: John goes to a third-world country for an official assignment for 2 years.
The crime rates in that country are noticeably higher than his own country. The
quality of mobile devices isn’t very good and the most commonly used mobile
devices are different from those in X’s home country.

As mentioned earlier, to calculate risk we need to determine the probability and
impact of that risk in the given mobile cloud instance. Now let’s consider the effect of
these seemingly innocent scenarios on a few risk factor values (Table 7.2).

In Samad et al. [60], these risks and calculations are discussed in detail with exam-
ples and its highlighted that how the current context is important in assessing risks in
mobile cloud systems and how any slightest change in context parameters can influence
the whole risk picture.

7.4 RISK MANAGEMENT FOR MCC

This section analyzes the MCC from risk perspective. We have surveyed multiple MCC
frameworks and also identified the risk factors currently prevalent in this domain. We
have also demonstrated using a real life application that how different risk factors can
affect application processing. This section provides an analysis of the surveyed frame-
works from a risk perspective and discusses a current situation in the MCC domain
regarding risk management.

7.4.1 Analysis of MCC Frameworks from the Risk Perspective

As mentioned previously, four of the frameworks have been selected for in-depth analysis
in this research for better understanding of current situation. These are (1) hyrax, (2)
Cloudlet, (3) Clonecloud, and (4) Amazon’s EC2 for mobiles. This selection is solely
on basis of (our assumption of) most widely used commercially and popularity among
research community.

The Hyrax framework is designed for computations that need only the data on mobile
devices and usually requires no interaction with traditional servers for large scale com-
putations. The system is targeted at multimedia and sensor data that doesn’t need to be
changed frequently. The authors of this framework claim to provide scalability, fault tol-
erance, privacy, and hardware interoperability. However, the Hyrax architecture lacks in
energy efficiency, reduced efficiency for CPU and memory usage, and is not suitable
for slow networking conditions. From the framework’s analysis, we can see that where it
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considers the security and privacy risks, it hasn’t considered several risks for performance
and availability of the system when and where needed.

The Cloudlet framework, on other hand, tends to improve the performance (fast
responses) and overcomes slow networking issues. It lacks in mechanisms dealing with
security and privacy risks and focuses on most part in improving the performance and deal-
ing with resource limitations of mobile devices. As the mobile devices are not directly
connected to a major remote cloud, so it can be assumed that in some situations certain
risks won’t be a major problem at higher levels. However, at cloudlet level, these privacy
and security risks will pose some serious threats and if not dealt with properly, can be
very damaging for business owners and users. This is because the cloudlet infrastructure
is fundamentally based on a “self-management” concept and the basic criterion of this
frameworkis tomakethingseasierandself-manageablewithminimalmanual intervention.
As a result there is a potentially bigger risk factor as compared to when the infrastructure
management was done by domain experts with more technical knowledge of security and
safety procedures are required. Moreover, even if the users are not directly connected to
remote cloud server, any failures or weaknesses at cloudlet level can jeopardize the whole
system and can even pose risks to the whole cloud infrastructure to which that cloudlet
is connected by passing on the failure instances to the main infrastructure.

Some cloud service providers offer users with the option for different availability
zones with each having a separate infrastructure. Different zones can be insulated from
each other and users can host their applications on more than one geographical location
to ensure higher availability. In case of failures, one backs up the other. However, there
is a possibility that weaknesses of this system as a network glitch can cause the servers
to start automatic back up, causing complete server congestion and a possible downtime
of several hours. It’s a risk that can affect availability and performance of application
usage. In case of time critical applications, the risk is manifold. This further raises various
questions regarding the loop holes in their risk contingency and management.

One thing worth noting is that with an exception of Hyrax, the rest of the frame-
works are more concerned about saving costs and resources related to mobile computing
(understandable given their research foci). Not much focus has been put on the risks that
could arise by using that particular framework or risks that can occur by processing apps
over that framework. For example, some of frameworks have talked about dividing jobs
between mobile devices and cloud servers; however, there is no mention of what risks
could be associated by such division of jobs, how those risks can be dealt with and what
risks users can face if they run their applications based on that framework.

One of the questions we planned to answer via this analysis was what kind of appli-
cations will be supported by each framework so that it can be analyzed what type and
what level of risk management shall be applied to each of these frameworks. Figure 7.2
discusses the rationale behind this risk hierarchy diagrammatically—sources of risk can
be at the application-specific level, framework level, or underlying system level. One
assumption that each of these frameworks have made is that the applications will be sta-
ble for longer times without any need for frequent/immediate updates and modifications.
Apart from that, it can be assumed that these frameworks are targeting a range of applica-
tions as there is no mention of any specific set of apps that will be most suitable for each
framework. This factor can be positive in a sense that now we can assume that a single
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Risk hierarchy

We can perceive the risks in mobile cloud computing
domain, at three levels. 

1. Level 1 (top level) represents the general risks

within mobile cloud computing domain itself, e.g.,
system losses, security breaches, and failures, etc.
Level 2 (middle level) represents risks specific to
the mobile cloud computing frameworks and

application models connected to the central/main
cloud computing system. This level comprises the
risks associated with the use of any particular
framework, e.g., risks associated with use of Hyrax

OR risks associated with use of CloneCloud, etc.
Level 3 (low level) represents the risks that can 
arise due to running a particular application on
some particular framework.

2.

3.

Framework A Framework B Framework n

App A2 App An App B1 App B2 App Bn App n1 App n2App A1

Mobile cloud

system

Figure 7.2. Risk hierarchy.
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risk management process can be applied to all of these frameworks; but the major dis-
advantage of this practice would be that if there are any risks specific to some particular
framework, they might be left unattended and can prove to be fatal later on. For example,
the Hyrax framework is not suitable for applications requiring immediate responses, and
likewise CloneCloud and Cloudlets don’t provide much in terms of data security and
privacy. So, it can be assumed the time critical applications shouldn’t be run on Hyrax
without due consideration to risk and contingency measures. Similarly, for security crit-
ical applications Cloudlets and CloneCloud may not be the best choice in terms of risks
involved.

Considering this situation prevailing in MCC world, there is a need for a formal risk
management process that

1. is general enough to be applicable to all frameworks/categories as an extended
module, and

2. explicit enough to allow catering to framework specific risks.

Table 7.3 provides a tabular analysis of these frameworks at a glance. The column “appli-
cations supported” represents what applications are used as references or examples in
these frameworks as there are no mentions of targeted/supported applications by authors
of these frameworks.

7.4.2 Effectiveness of Traditional Risk Management Approaches
in Managing Mobile Cloud Risks

A number of approaches have been proposed in literature for managing risks of soft-
ware development at many levels. However, most of these processes focus on traditional
development environment only. These approaches may not be customized to respond to
the challenges of application development for distributed, remote processing cloud envi-
ronments. Our survey of the MCC frameworks has also highlighted a fact that there isn’t
a formal risk management process in place to deal with risks associated with the use of
these frameworks or the applications based on these framework.

In order to make the MCC environment more effective and efficient, we need to
devise a mechanism to deal with related risks. Such a risk management process can be
made to work at two levels: framework level and application level. Also the MCC risk
management process should be able to cope with ad hoc nature of MCC environment.
We need a risk management methodology that can be appended to any framework and
it will work equally effectively in all mobile cloud domains/environments. For this pur-
pose, the most suitable risk management process can be selected and modified to work
in dynamic and robust environments to match with cloud computing requirements. In
absence of any such process, a specialized risk management process can be designed
based on the strengths of existing traditional processes as starting point. For designing
such a process, we need to explore mobile computing, grid computing and distributed
computing settings individually too see how each of these domains deal with respec-
tive development risks. This information, along with the analysis of surveyed mobile
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TABLE 7.3. Framework analysis

Framework Category Features Applications
supported

Inherent
risk man-
agement

Hyrax Application
partition-
ing/Client
server

• Used primarily for
computations that
involve data on mobile
devices, not for generic
distributed computation

• Do not expect to replace
or effectively collaborate
with traditional servers
for generic large-scale
computation

• Sufficient space to store
multimedia data and
sensor logs

System is targeted at
multimedia and sensor
data, which can be
considered historical
records that do not
need to be changed

None

Pros: scalability, fault
tolerance, privacy,
hardware interoperability

Risks: no energy efficiency,
less effective for CPU
and memory usage, can’t
cope with slow n/w
conditions

Cloudlets VM-based • Location-based services,
fast interactive response,
rapid customization of
infrastructure, peak
bandwidth load issue
solved

• Deal with resource
poverty via nearby
resource rich cloudlet

• Cloud solves mobile
resource poverty and
cloudlets solve latency
issues

• Assumption that devices
making up cloudlet
won’t be moving during
request processing

Local business systems,
multimedia apps,
human cognition
applications
(voice/face
recognition)

None

(Continued)
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TABLE 7.3. (Continued)

CloneCloud VM-based • Four augmentation
categories

• Assumption that
applications won’t
change much over time

• Assumption that
requesting devices would
remain within range of
clone running server
during request
processing

Designed to cater for
wide range of apps

None

Amazon EC2 Client/server • Flexibility for users to
create as many
“instances” (virtual
servers) as needed

• Four “availability zones’
for fault tolerance

• Most widely used
commercially

Supports all kinds of
application via
multiple Web service
components like S3,
EBS, SimpleDB,
RDS, CF

Multiple
zones to
handle
failures

cloud frameworks and the identified risk factors, can then be used to design a (preferably
automated) risk management framework for MCC.

7.4.3 Related Work for Risk Management in Cloud Computing

When it comes to risk management in cloud computing, we see that most of the con-
tributions are limited to the security and privacy issues in clouds. Many authors have
highlighted the security issues in clouds and suggested numerous approaches in dealing
with those security issues, each suggesting a solution depending on their cloud usage scope
and domain [61–66]. Brender and Markov [48] have also highlighted the risks in cloud
computing but their focus is on the adaptability of clouds by different companies, based
on their analysis of few Swiss companies of different sizes. NIST has also provided some
securityandprivacyguidelines forclouds inWayneandGrance [47].Thesesolutions range
from different authorization and access control mechanisms to audits conducted by third
parties to ensure security. However, most of these suggestions/proposals are discursive in
nature with none providing complete solutions to the problem.

An important contribution has been made by Saripalli and Walters [67] in which
they have proposed a model for quantitatively assessing security risks in cloud plat-
forms. In the literature we also see some more advanced intrusion detection and security
frameworks like [65, 66] but as mentioned previously, they have not been implemented
yet (to the author’s knowledge) and they are mostly proposed as a guidelineframework
that requires cloud computing users to follow some certain steps to achieve security.
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Ko et al. [66] have proposed a framework “TrustCloud” for accountability in clouds.
They have defined four components of trust in clouds as security, privacy, accountabil-
ity and auditability. Another classification of trust is given as preventative and detection
security measures taken to enhance confidence. The detection framework proposed by
them consists of five layers and usually revolves around maintaining logs for account-
ability at different layers. Similarly, Zhang et al. [62] have proposed an information
security risk framework focusing on data security issues. The framework proposed by
them is qualitative in nature and very basic with no actual strategies to deal with the
risks or threats identified. Like a process outline, it defines only the steps that need to
be taken for mitigating risks. On slightly different lines, the authors in Houmansadr
et al. [65] have proposed a cloud based intrusion detection framework for mobile
devices. This framework however doesn’t deal directly with cloud/mobile cloud security
issues.

There is also some work being done in privacy issues in cloud computing explicitly.
Authors like Pearson et al. [68] have specifically focused on privacy issues as a separate
entity from “security” in the cloud computing domain. The suggestion for privacy issues
range from encryption of data to personalization or preference classification, to prevent
misuse or theft of private data.

In summary, we see a lot of work in cloud computing related to security and privacy
issues, but there is less work in dealing comprehensively with the range of aspects of
cloud computing risks like performance, connectivity, and mobility. These issues and
their solutions are mentioned implicitly in some of the work but not explicitly, and hence
no concrete work to deal with or mitigate these risks. Also, most of the work we see in
regards to risk management and mitigation is theoretical or discursive in nature. Another
important point highlighted by the literature analysis is that though we see work in cloud
computing regarding security and privacy issues, we don’t see much work being done
in MCC in the same areas. Also, as discussed earlier, being proactive in MCC domain
needs the system to be efficiently context-aware. Some authors such as La et al. [69] and
Papakos et al. [70] have suggested at using context awareness in cloud domains, but their
focus is not on using this information for risk management.

7.5 CONCLUSIONS

As MCC is still in its early stages, it still needs some maturity in terms of processes,
technical and nontechnical aspects and auditing. This immaturity along with the intri-
cacy of mobile cloud system introduces many risks. At system level, these include the
risks of connectivity, limited resources, security, and limited power supply. Moreover, as
the system complexity increases, both the technical and nontechnical risks increase and
so is the need to manage these risks. The ad hoc nature and mobility in MCC environ-
ments means that the development of these system need more rigorous and specialized
risk management to deal with all the risks. This further burdens the developers of MCC
frameworks and applications. In addition to the complexity of mobile cloud infrastruc-
ture, they also have to deal with the risks at framework/application level including but
not limited to efficient job distribution, virtualization, scalability, and so on.
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We make the following observations and notes on interesting future trends:

• Our analysis highlighted the fact that most of the current frameworks and applica-
tions tend to focus on savings costs and resources, but not much attention is given
to managing the risks. We have also highlighted the reasons that why risk man-
agement is important and why it should be incorporated in MCC frameworks and
applications. No one can deny the importance of identifying, and hence treating
the risks at earlier stages instead of when it has already become a problem. Being
proactive in managing risks can save mobile cloud providers and users from many
negative outcomes like service disruptions, financial losses, data losses, loss of
customer satisfaction and confidence and at worst, lost of lives.

• An ideal MCC risk management system should be able to assess continuously
(and automatically) what can go wrong, identify risk areas, implement treatment
solutions for identified factors, and in case of contingency failure, ensure safe sys-
tem closure. Such an ideal system can also make use of historical data of previous
incidents and risk management records from past incidents. Also, the ideal risk
management system shouldn’t focus on just the service providers; rather, it should
also take into consideration the other stakeholders as well, such as customers and
users.

• While we have focused on risk, there is a range of issues surrounding risk so that
it is a complex and multifaceted concern, including security, trust and privacy, not
just system reliability and performance. We have only provided a broad overview
but there remains future work in studying complex issues of risks in specific
MCC applications, in those that involve remote cloud servers and those that
use a collection of surrounding devices, the so-called mobile computing crowd.
Emerging mechanisms such as homomorphic encryption4 provides a partial solu-
tion to protect data computed with remotely, but its applicability in the mobile
cloud environment needs further exploration.

• There is emerging a much larger range of mobile devices, from the Google Glass to
watch computers as well as smart jackets and smart shoes, each of which could par-
ticipate in a resource pool to provide local cloud-like services or utilise the greater
Cloud. An approach that considers the range of devices on multiple users working
together in a risk-managed manner could be an interesting avenue of work.

• With the rapid growth in crowdsourcing and crowdsensing, crowd-sourced clouds
become interesting together with their human-related risks—while SETI@home
has been around for a long time, mobile versions of that and variants of the idea
for different applications have emerged (e.g., BOINC5).

• Modern mobile computing development is not only resulting in a range of wear-
able and mobile devices of different forms, but the Internet of Things has emerged
with everyday objects forming potential resource providers, participating in future

4http://www.infoworld.com/t/encryption/ibms-homomorphic-encryption-could-revolutionize-security-233323
5http://boinc.berkeley.edu/
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resource clouds. Interesting developments include vehicular clouds (e.g., initiated
by Gerla [71]), and the increasing uptake of drones for non-military uses—one can
even consider fly-in/fly-out cloud servers where mobile computing infrastructure
can be flown into a disaster stricken zone to provide computing services for a time,
a situation where perhaps need outweighs the risks.
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8.1 INTRODUCTION

Cloud computing has entered our lives and is dramatically changing the way people
consume information. It provides platforms enabling the operation of a large variety
of individually owned terminal devices. There are about 1.5 billion computers [1] and
6 billion mobile phones [2] in the world today. Next-generation user devices, such as
Google glasses [3], offer not only constant readiness for operation, but also constant
information consumption. In such an environment, computing, information storage, and
communication become a utility, and cloud computing is one effective way of offer-
ing easier manageability, improved security, and a significant reduction in operational
costs [4].

Cloud Services, Networking, and Management, First Edition.
Edited by Nelson L. S. da Fonseca and Raouf Boutaba.
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Cloud computing relies on the data center industry, with over 500 thousand data
centers deployed worldwide [5]. The operation of such widely distributed data centers,
however, requires a considerable amount of energy, which accounts for a large slice of
the total operational costs [6, 7]. Interactive Data Corporation (IDC) [8] reported that, in
2000, on average the power required by a single rack was 1 kW, although in 2008, this had
soared to 7.4 kW. The Gartner group has estimated that energy consumption accounts for
up to 10% of the current data center operational expenses (OPEX), and with this estimate
possibly rising to 50% in the next few years [9]. The cost of energy for running servers
may already be greater than the cost of the hardware itself [10, 11]. In 2010, data centers
consumed about 1.5% of the world’s electricity [12], with this percentage rising to 2%
for the United States of America. This consumption accounts for more than 50 million
metric of tons of CO2 emissions annually.

Energy efficiency has never been a goal in the information technology (IT) indus-
try. Since the 1980s, the only target has been to deliver more and faster; this has been
traditionally achieved by packing more into a smaller space, and running processors at
a higher frequency. This consumes more power, which generates more heat, and then
requires an accompanying cooling system that costs in the range of $2–$5 million per
year for corporate data centers [9]. These cooling systems may even require more power
than that consumed by the IT equipment itself [13, 14].

Moreover, in order to ensure reliability, computing, storage, power distribution
and cooling infrastructures tends to be over provisioned. To measure this ineffi-
ciency, the Green Grid Consortium [15] has developed two metrics: the power usage
effectiveness (PUE) and data center infrastructure efficiency (DCIE) [16], which mea-
sures the proportion of power delivered to the IT equipment relative to the total
power consumed by the data center facility. PUE is the ratio of total amount of
energy used by a computer data center facility to the energy delivered to comput-
ing equipment while DCIE is the percentage value derived, by dividing information
technology equipment power by total facility power. Currently, roughly 40% of the
total energy consumed is related to that consumed by IT equipment [17]. The con-
sumption accounts approximately, while the power distribution system accounts the
other 15%.

There are two main alternatives for reducing the energy consumption of data cen-
ters: (1) shutting down devices or (2) scaling down performance. The former alternative,
commonly referred to as dynamic Power Management (DPM) results in greatest savings,
since the average workload often remains below 30% in cloud computing systems [18].
The latter corresponds to dynamic voltage and frequency scaling (DVFS) technology,
which can adjust the performance of the hardware and consumption of power to match
the corresponding characteristics of the workload.

In summary, energy efficiency is one of the most important parameters in modern
cloud computing data centers in determining operational costs and capital investment,
along with the performance and carbon footprint of the industry. The rest of the chapter
is organized as follows: Section 8.2 discusses the role of communication systems in cloud
computing. Section 8.3 presents energy efficient resource allocation and scheduling
solutions. Finally, Section 8.4 concludes the chapter.
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8.2 ENERGY CONSUMPTION IN DATA CENTERS: COMPONENTS
AND MODELS

This section introduces the energy consumption of computing and communication
devices, emphasizing how efficient energy consumption can be achieved, especially in
communication networks.

8.2.1 Energy Consumption of Computing Servers and Switches

Computing servers account for the major portion of energy consumption of data centers.
The power consumption of a computing server is proportional to the utilization of the
CPU utilization. Although an idle server still consumes around two-thirds of the peak-
load consumption just to keep memory, disks, and I/O resources running [19, 20]. The
remaining one-third increases almost linearly with an increase in the load of the CPU
[6, 20]:

Ps(l) = Pfixed +
(Ppeak − Pfixed)

2
(1 + l − e− 1

a ), (8.1)

where Pfixed is idle power consumption, Ppeak is the power consumed at peak load, l is a
server load, and a is the level of utilization at which the server attains power consumption
which varies linearly [0.2, 0.5].

There are two main approaches for reducing energy consumption in computing
servers: (1) DVFS [21] and (2) DPM [22]. The former scheme adjusts the CPU power
(consequently the level of performance) according to the load offered. The power in
a chip decreases proportionally to V2f , where V is a voltage, and f is the operating
frequency. The scope of this DVFS optimization is limited to the CPUs, so that the com-
puting server components, such as buses, memory, and disks, continue to function at the
original operating frequency. On the other hand, the DPM scheme can power down com-
puting servers but including all of their components, which makes it much more efficient;
but if a power up (or down) is required, considerably more energy must be consumed in
comparison to the DVFS scheme. Frequency downshifts can be expressed as follows
(Eq. 8.1):

Ps(l) = Pfixed +
(Ppeak − Pfixed)

2
(1 + l3 − e− l3

a ). (8.2)

Figure 8.1 plots the power consumption of computing server.
Network switches form the basis of the interconnection fabric used to deliver job

requests to the computing servers for execution. The energy consumption of a switch
depends on various factor: (i) type of switch, (ii) number of ports, (iii) port transmission
rates, and (iv) employed cabling solutions; these can be expressed as follows [23]:

Pswitch = Pchassis + nc × Plinecard +
R∑

r=1

nr
p × pr

p × ur
p, (8.3)

where Pchassis is the power related to the switch chassis, Plinecard is the power consumed
by a single line card, nc is the number of line cards plugged into the switch, Pr

p is the
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Figure 8.1. Computing server power consumption.

power consumed by a port running at rate r, nr
p is the number of ports operating at rate r

and ur
p ∈ [0, 1] is a port utilization, which can be defined as follows:

up =
1
T

t+T∫
t

Bp(t)
Cp

dt =
1

T ∗ Cp

t+T∫
t

Bp(t)dt (8.4)

where Bp(t) is an instantaneous throughput at the port’s link at the time t, Cp, is the link
capacity, and T is the time interval between measurements.

8.2.2 Energy Efficiency

In an ideal data center, all the power would be delivered to the IT equipment execut-
ing user requests. This energy would then be divided between the communication and
the computing hardware. Several studies have mistakenly considered the communica-
tion network as overhead, required only to deliver the tasks to the computing servers.
However, as will be discussed later in this section, communications is at the heart of
task execution, and the characteristics of the communication network such as bandwidth
capacity, transmission delay, delay jitter, buffering, loss ratio, and performance of
communication protocols, all greatly influence the quality of task execution.

Mahadevan et el. [23] present power benchmarking of the most common networking
switches. With current network switch technology, the difference in power consumption
between peak consumption and idle state is less than 8%; turning off an unused port
saves only 1–2 W [24]. The power consumption of a switch comprises three components:
(1) power consumed by the switch base hardware (the chassis), (2) power consumed by
active line cards, and (3) power consumed by active transceivers. Only the last component
scales with the transmission rate, or the presence of the forwarded traffic, while the for-
mer two components remain constant, even when the switch is idle. This phenomenon is
known as energy proportionality, and describes how energy consumption increases with
an increase in workload [24].
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Making network equipment energy proportional is one of the main challenges faced
by the research community. Depending on the data center load level, the communication
network can consume between 30 and 50% of the total power used by the IT equip-
ment [21, 26] with 30% being typical for highly loaded data centers, whereas 50%
is common for average load levels of 10–50% [27]. As with computing servers, most
solutions for energy-efficient communication equipment depend on downgrading the
operating frequency (or transmission rate) or powering down the entire device or its
components in order to conserve energy. One solution, first studied by Shang et al. [25]
and Benini et al. [28] in 2003, proposed a power-aware interconnection network uti-
lized dynamic voltage scaling (DVS) links [25], and this, DVS technology was later
combined with dynamic network shutdown (DNS) to further optimize energy consump-
tion [29]. Refs. [30–34] review the challenges and some of the most important solutions
for optimization of energy consumption and the use of resources.

The design of these power-aware networks when on/off links are employed is chal-
lenging. There are issues with connectivity, adaptive routing, and potential network
deadlocks [35]. Because a network always remains connected, such challenges are not
faced when using DVS links. Some recent proposals combined traffic engineering with
link shutdown functionality [36], but most of these approaches are reactive and may per-
form poorly in the event of unfavorable traffic patterns. A proactive approach is necessary
for on/off procedures. A number of studies have demonstrated that simple optimiza-
tion of the data center architecture and energy-aware scheduling can lead to significant
energy savings of up to 75% based on traffic management and workload consolidation
techniques [21].

8.2.3 Communication Networks

Communication systems have rarely been extensively considered in cloud computing
research. Most of the cloud computing techniques evolved from the fields of cluster and
grid computing which are both designed to execute large computationally intensive jobs,
commonly referred as high-performance computing (HPC) [37]. However, cloud com-
puting is fundamentally different: Clouds satisfy the computing and storage of millions
of users at the same time, yet each individual user request is relatively small. These users
commonly need merely to read an email, retrieve an HTML page, or watch an online
video. Such tasks require only limited computation to be performed, yet their perfor-
mance is determined by the successful completion of the communication requests but
communications involves more than just the data center network; the data path from the
data center to the user also constitute an integral part for satisfying a communication
request. Typical delays for processing users’ requests, such as search, social networks,
and video streaming, are less than a few milliseconds, and we sometimes even measured
on the level of microsecond. Depending on the user location, these delays are as large as
100 milliseconds for intercontinental links and up to 200 milliseconds if satellite links
are involved [38]. As a result, a failure to consider the communication characteristics
on an end-to-end basis can mislead the design and operational optimization of modern
cloud computing systems.

Optimization of cloud computing systems and cloud applications will not only
significantly reduce energy consumption inside data centers, but also globally, in the
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wide-area network. The world hosts around 1.5 billion Internet users [1] and 6 billion
mobile phone users [2], and all of them are potential customers for cloud computing
applications. On an average, there are 14 hops between a cloud provider and end users on
the Internet [39, 40]. This means that there are 13 routers involved in forwarding the user
traffic, each consuming from tens of watts to kilowatts [23]. According to Nordman [41],
Internet-connected equipment accounts for almost 10% of the total energy consumed in
the United States. Obviously, optimization of the flow of communication between the
data center providers and end users can make a significant difference. For example, a
widespread adoption of the new Energy-Efficient Ethernet standard IEEE 802.3az [42]
can result in savings of €1 billion [43].

At the cloud user end, energy is becoming an even greater concern: More and more
cloud users use mobile equipment (smart phones, laptops, tablet PCs) to access cloud
services. The only efficient way for these battery-powered devices to save power is to
power off most of the main components, including the central processor, transceivers and
memory, while also configuring sleeping cycles appropriately [44]. The aim is to decrease
request processing time so that user terminals will consume less battery power. Smaller
volumes of traffic arranged in bursts will permit longer sleeping times for the transceivers,
and faster replies to the cloud service requests will reduce the drain on batteries.

8.3 ENERGY EFFICIENT SYSTEM-LEVEL OPTIMIZATION
OF DATA CENTERS

8.3.1 Scheduling

This section addresses issues related to scheduling, load balancing, data replication, vir-
tual machine placement, and networking that can be capitalized on to reduce the energy
consumption in data centers.

Job scheduling is at the heart of the successful power management in data cen-
ters. Most of the existing approaches focus exclusively on the distribution of jobs
between computing servers [45], the targeting of energy efficiency [46], or thermal
awareness [47]. Only a few approaches consider the characteristics of the data center
network [48–50], such as DPM-like power management [18].

Since energy savings result from such DPM-like power management procedures
[18], job schedulers tend to adopt a policy of workload consolidation maximizing the
load on the operational computing servers and increasing the number of idle servers that
can be put into the “sleep” mode. Such a scheduling policy works well in systems that can
be treated as a homogenous pool of computing servers, but data center network topologies
require special policies. For example, the most widely used data center architecture [51],
fat-tree architecture presented in Figure 8.2, blindly concentrates scheduling and may end
up grouping all of the highly loaded computing servers on a few racks, yet this creates a
bottleneck for network traffic at a rack or aggregation switch.

Moreover, on a rack level, all servers are usually connected using Gigabit Ethernet
(GE) interfaces. A typical rack hosts up to 48 servers, but has only 2 links of
10GE connecting them to the aggregation network. This corresponds to a mismatch
of 48GE/20GE= 2.4 between the incoming and the outgoing bandwidth capacities.
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Figure 8.2. Three-tier data center architecture.

Implementation in a data center with cloud applications requiring communication means
that the scheduler should tradeoff workload concentration with the load balancing of
network traffic.

Any of the data center switches may become congested in either the uplink or down-
link direction or both. In the downlink direction, congestion occurs when the capacity
of individual ingress links surpasses that of egress links. In the uplink direction, the
mismatch in bandwidth is primarily due to the bandwidth oversubscription ratio, which
occurs when the combined capacity of server ports overcomes a switch aggregate uplink
capacity.

Congestion (or hotspots) may severely affect the ability of a data center network
to transport data. The Data Center Bridging Task Group (IEEE 802.1) [52] specifies
layer-2 solutions for congestion control in IEEE 802.1Qau standard. This standard intro-
duces a feedback loop between data center switches to signal the presence of congestion.
Such feedback allows overloaded switches to backpressure heavy senders by notifying
them when congestion occurs. Such technique can avoid some of the congestion-related
losses and keep the data center network utilization high. However, it does not address the
problem adequately since as it is more efficient to assign data-intensive jobs to different
computing servers so that those jobs can avoid sharing common communication paths.
To benefit from such spatial separation in the three-tiered architecture (Fig. 8.2), these
jobs must be distributed among the computing servers in proportion to job communica-
tion requirements. However, such approach contradict the objectives of energy-efficient
scheduling, which tries to concentrate all of the active workloads on a minimum set of
servers and involve a minimum number of communication resources.

Another energy-efficient approach would be the DENS methodology, which takes
the potential communication needs of the components of the data center into considera-
tion along with the load level to minimize the total energy consumption when selecting
the best-fit computing resource for job execution. Communicational potential is defined
as the amount of end-to-end bandwidth provided to individual servers or group of servers
by the data center architecture. Contrary to traditional scheduling solutions that model
data centers as a homogeneous pool of computing servers [45], the DENS methodology
develops a hierarchical model consistent with the state of the art of topology of data cen-
ters. For a three-tier data center (see Fig. 8.2), DENS metric M is defined as a weighted
combination of server-level (fs), rack-level (fr), and module-level (fm) functions:

M = α · fs + β · fr + γ · fm (8.5)
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where α, β, and γ are weighted coefficients that define the impact of the corresponding
components (servers, racks, and/or modules) on the metric behavior. Higher α values
favor the selection of highly loaded servers in lightly loaded racks. Higher β values will
give priority to computationally loaded racks with low network traffic activity. Higher γ
values favor the selection of loaded modules.

The selection of computing servers combines the server load LS(l) and the commu-
nication potential Qr(q) corresponding to the fair share of the uplink resources on the top
of the rack ToR switch. This relationship is given as follows:

fS(l, q) = LS(l) ·
Qr(q)ϕ

δr

(8.6)

where LS(l) is a factor depending on the load of the individual servers l, Qr(q) defines the
load at the rack uplink by analyzing the congestion level in the switch’s outgoing queue
q, δr is a bandwidth over provisioning factor at the rack switch, and ϕ is a coefficient
defining the proportion between LS(l) and Qr(q) in the metric. Given that both LS(l) and
Qr(q) must be within the range [0, 1] higher ϕ values will decrease the importance of
the traffic-related component Qr(q).

The fact that the energy consumption of an idle server consumes merely two-third
of that at peak consumption [19] suggests that an energy-efficient scheduler must con-
solidate data center jobs on the minimum possible set of computing servers. On the other
hand, keeping servers constantly running at peak loads may decrease hardware reliabil-
ity and consequently affect job execution deadlines [53]. These issues are addressed with
DENS load factor, the sum of two sigmoid functions:

LS(l) =
1

1 + e−10(l− 1
2 )

− 1

1 + e−
10
ε (l−(1− 1

ε ))
(8.7)

The first component in Equation (8.8) defines the shape of the main sigmoid, while
the second serves to encourage convergence toward the maximum server load value
(see Fig. 8.3). The parameter ε defines the size and the inclination of this falling
slope and he server load l is within the range [0,1].

Figure 8.4 presents the combined server load and queue-size-related components.
The bell-shaped function obtained favors the selection of servers with a load level above
average located in racks with little or no congestion.

8.3.2 Load Balancing

Enabling the sleep mode in idle computing servers and network hardware is the most effi-
cient method of avoiding unnecessary power consumption. Consequently, load balancing
becomes the key enabler for saving energy.

However, changes in the power mode introduce considerable delays. Moreover, the
inability of instantaneous wake up of a sleeping server means that a pool of idle servers
must be available to be able to accommodate incoming loads in the short term and pre-
vent quality-of-service (QoS) degradation. It should be remembered that data centers
are required to provide a specific level of quality of service, defined as service-level
agreements (SLAs), even at peak loads. Therefore, they tend to over provision com-
puting and communication resources. In fact, on average, data center are functioning
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Figure 8.4. Server selection according to load and communication potential.

at only 30% of their capacity. The load in data centers is highly correlated with region
and time of the day since more users are active during the daytime hours; the number
of users during the day is almost double that at night. Moreover, user arrival rate is not
constant, but can spike due to the crowd effect. Most of the time almost 70% of data
center servers, switches, and links remain idle, although during peak periods, this usage
can reach 90%. However, idle servers still need to run OS software, maintain virtual
machines, and power on both peripheral devices and memory. As a result, even when
being idle, servers still consume around two-thirds of the peak power consumption. In
switches, this ratio is even higher with the energy consumed being shared by the switch
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chassis, the line cards, and the transceiver ports. Moreover, various Ethernet standards
require the uninterrupted transmission of synchronization symbols in the physical layer
to guarantee the synchronization required prevents the downscaling of the consumption
of energy, even when no user traffic is transmitted.

An energy-efficient scheduler for cloud computing applications with traffic load
balancing can be designed to optimize energy consumption of cloud computing data
centers, like e-STAB proposed in Ref. [54]. One of these is the e-STAB scheduler, which
gives equal treatment to communicational demands and computing requirements of jobs.
Specifically, e-STAB aims at (i) balancing the communication flows produced by jobs
and (ii) consolidating jobs using a minimum of computing servers. Since network traffic
can be highly dynamic and often difficult to predict [55], the e-STAB scheduler ana-
lyzes both load on the network links and occupancy of outgoing queues at the network
switches. This queuing analysis helps prevent a buildup of network congestion. This
scheduler is already involved in various transport-layer protocols [56] estimating buffer
occupancy of the network switches and can react before congestion-related losses occur.

The e-STAB scheduling policy involves the execution of the following two steps for
each incoming cloud computing data center job:

Step 1: Select a group of servers S connected to the data center network with the
highest available bandwidth, if at least one of the servers in S can accommodate the
computational demands of the scheduled job. The available bandwidth is defined
as the unused capacity of the link or a set of links connecting the group of servers
S to the rest of the data center network.

Step 2: Within the selected group of servers, S, select a computing server with
the least available computing capacity, but sufficient to satisfy the computational
demands of the scheduled task.

One of the main goals of the e-STAB scheduler is to achieve load-balanced net-
work traffic as well as to prevent network congestion. A helpful measure is the available
bandwidth per computing node within the data center. However, such a measure does not
capture the dynamics of the system, such as sudden increase in the transmission rate of
cloud applications.

To provide a more precise measure of network congestion, e-STAB adjusts scales
the available bandwidth to the component related to the size of the bottleneck queue (see
Fig. 8.5). This favors empty queues or queues with minimum occupancy and penalizes
highly loaded queues that are on the threshold of buffer overflow (or on the threshold of
losing packets).

By using the available bandwidth with the component Q(t) metric, the available
per-server bandwidth can be computed for modules and individual racks as follows:

Frj(t) =
1
T

t+T∫
t

(
(Crj − λrj(t)) · e−(ρ·qrj(t)/Qrj·max)ϕ

Srj

)
dt (8.8)
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Figure 8.5. Queue-size related component of the STAB scheduler.
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Figure 8.6. Selection of racks and modules by the STAB scheduler.

where Qrj(t) is the weight associated with occupancy levels of the queues, qrj(t) is the
size of the queue at time t, and Qrj ·max is the maximum size of the queues allowed at
the rack j.

Figure 8.6 presents the evolution of Frj(t) with respect to different values of the
network traffic and buffer occupancy. The function is insensitive to the level of utilization
of the network links for highly loaded queues, while for lightly loaded queues, the links
with the lighter load are preferred to the heavily used ones.

Having selected a proper module and a rack based on their traffic load and congestion
state indicated by the queue occupancy, we must select a computing server for the job
execution. To do so, we must analyze energy consumption profile of the servers.
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Figure 8.7. Selection of computing servers by the STAB scheduler.

Once the energy consumption of a server is known, it is possible to derive a metric
to be used by the e-STAB scheduler for server selection, as follows:

FSk(t) =
1
T

t+T∫
t

(
1

1 + e−
10
ε
(
lk(t)− ε

2

)
)
− 1

2

(
1 − Pidle

Ppeak

)(
1 + lk(t)

3 − e
−
(

lk(t)
τ

)3
)

dt,

(8.9)

where lk(t) is the instantaneous load of server k at time t and T is an averaging interval.
While the second summand under the integral in Equation (8.9) is a reverse normalized
version of Equation (8.2), the first summand is a sigmoid designed to penalize selection
of idle servers for job execution. The parameter ε corresponds to the CPU load of an idle
server required to keep the operating system and virtual machines running. Figure 8.7
presents a chart for FSk(t).

Balancing the load in federated data centers has also been proposed to reduce energy
consumption. In Ref. [57], the authors propose an algorithm to migrate virtual machines
to data centers, which use renewable energy. They consider a cloud computing scenario
with many data centers, some of them powered by brown (non-renewable) energy sources
and others with access to green (renewable) energy. They propose an algorithm to decide
on a set of long-lived VM’s to be migrated to data centers with access to green energy, tak-
ing into consideration both the data center network topology and the energy consumption.
They also consider the impact of migration and the use renewable energy availability to
enhance their strategy. They show that the brown energy can be replaced by green energy
with a low increase in overall the consumption.

A comprehensive work on load balancing in distributed data centers is presented in
Ref. [58]. Using an optimization modeling, the authors present distributed algorithms
for achieving optimal geographical load balancing. They also present a study about the
effect of green and brown energy, highlighting its potential benefits.

In Ref. [59], the authors propose an approach to relocate workload in distributed data
centers. The algorithm is based on electricity prices in cities where the centers are located



“9780471697558c08” — 2015/3/20 — 11:59 — page 205 — #13

ENERGY EFFICIENT SYSTEM-LEVEL OPTIMIZATION OF DATA CENTERS 205

and in the cost of migration. The solution was modelled as an optimization problem.
Using traces of social network applications and real cost of electricity in different regions
of the United States, the authors manage to reduce the average electricity cost. This work
does not take into account the energy consumption of data center network, modelling
only the overall load of the data center.

The authors of Ref. [60] propose a framework called stochastic power reduction
scheme (SAVE) for geographically distributed data centers. The approach was designed
for delay tolerant workloads, such as MapReduce jobs, and two different techniques are
used for achieving energy savings: switching off the unused hosts, and DVSF. The pro-
posed solution was modeled as an optimization problem in which each data center is
represented as a set of physical hosts. Jobs can be executed either in the data center
to which they were submitted or in another data center in case the cost of the energy
consumed will be lower.

8.3.3 Data Replication

The performance of cloud computing applications, such as gaming, voice and video
conferencing, online office, storage, backup, and social networking, depends largely
on the availability and efficiency of high-performance communication resources. For
better reliability and low latency service provisioning, data resources can be brought
closer (replicated) to the physical infrastructure, where the cloud applications are run-
ning. A large number of replication strategies for data centers have been proposed in
the literature [61–65]. These strategies optimize system bandwidth and data availabil-
ity between geographically distributed data centers. However, none of them focuses on
energy efficiency and replication techniques inside data centers.

In Ref. [61], an energy efficient data replication scheme have been proposed for
data center storage. Under utilized storage servers can be turned off to minimize energy
consumption, although one of the replica servers must be kept for each data object to
guarantee availability. In Ref. [62], dynamic data replication in a cluster of data grids
is proposed. This approach creates a policy maker, which is responsible for the replica
management. It periodically collects information from the cluster heads,with significance
determined by a set of weights selected according to the age of the reading. The pol-
icy maker further determines the popularity of a file based on the access frequency. To
achieve load balancing, the number of replicas for a file is computed in relation to the
access frequency of all other files in the system. This solution follows a centralized design
approach, however, leaving it vulnerable to a single point of failure.

Other proposals have concentrated on replication strategies between multiple data
centers. In Ref. [63], power consumption in the backbone network is minimized by lin-
ear programming to determine the optimal points of replication on the basis of data
center traffic demands and the popularity of data objects. This relation of the traffic
load to power consumption at aggregation ports is linear and, consequently, optimization
approaches that consider the traffic demand can bring significant power savings.

Another proposal for replication is designed to conserve energy by replicating data
closer to consumers to minimize delays. The optimal location for replicas of each data
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object is determined by periodically processing a log of recent data accesses. The replica
site is then determined by employing a weighted k-means clustering of user locations
and deploying the replica closer to the centroid of each cluster. Migration will take place
from one site to another if the gain in quality of service from migration is higher than a
predefined threshold.

Another approach is cost-based data replication [65]. This approach analyzes fail-
ures in data storage and the probability of data loss probability, which are directly related
to each other, and builds a reliability model. Time points for replica creation are then
determined from the data storage reliability function.

The approach presented in Ref. [66] is different from all the others replication
approaches discussed earlier due to (i) the scope of the data replication, which is imple-
mented both within a single data center and between geographically distributed data
centers and (ii) the optimization target, which takes into account system energy consump-
tion, network bandwidth and communication delay to define the replication strategy to
be employed.

Large-scale cloud computing systems comprise data centers geographically dis-
tributed around the globe (see Fig. 8.8). The central database (Central DB) is located in
the wide-area network and hosts all the data required by the cloud applications. To speed
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Figure 8.8. Replication in cloud computing data centers. All database requests produced by the

cloud applications running on computing servers are first directed to the rack-level database
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to the Central DB.
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up database access and reduce access latency, each data center hosts a local database,
called a data center database (Data center DB), which is used to replicate the most fre-
quently used data items from the central database. Moreover, each rack hosts at least
one server capable of running a local rack-level database (Rack DB), which is used for
subsequent replication from the data center database.

When data are requested, the information about requesting server, rack, and data
center is stored. Moreover, the statistics showing the number of accesses and updates are
maintained for each data item. The access rate (or popularity) is measured as the number
of access events per period of time. While accessing data items, cloud applications can
also modify them. Such modifications must be sent back to the database so that all replica
sites will be updated.

A module located at the central database, the replica manager, periodically analyzes
data access statistics to identify what items are the most suitable for replication and at
which replication sites. The availability of these access and update statistics makes it
possible to project data center bandwidth usage and energy consumption.

Figure 8.9 presents the requirements of downlink bandwidth. Since it is proportional
to both the size of a data item and the rate of update, the bandwidth consumption grows
rapidly and easily overtakes the corresponding capacities of the core, aggregation and
access segments of the data center network requiring replication.

Figure 8.10 reports the trade-off between data center energy consumption, including
the consumption of both the servers and network switches, and the downlink residual
bandwidth. For all replication scenarios, the core layer reaches saturation first since it is
the smallest of the data center network segments and has capacity of only 320 GB/s. The
residual bandwidth for all network segments generally decreases with increase in load,
except for the gateway link, for which the available bandwidth remains constant for both
Data center DB and Rack DB replication scenarios, since data queries are processed at the
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Figure 8.10. Energy and residual bandwidth for (a) Central DB, (b) Data center DB, and (c) Rack

DB replication scenarios.

replica databases and only data updates are routed from the Central DB to the Data center
DB. The benefit of Rack DB replication is two-fold: on the one hand network, traffic can
be restricted to the access network, which has lower nominal power consumption and
higher network capacity, while on the other hand, data access becomes localized, thus
improving performance of cloud applications.

8.3.4 Placement of Virtual Machines

Virtualization represents a key technology for efficient operation of cloud data centers.
Energy consumption virtualized data centers can be reduced by appropriate decision on
which physical server a virtual machines should be placed. Virtual machine consolidation
strategies try to use the lowest possible number of physical machines to host a certain
number of virtual machines. Some proposed strategies are described next.

In Ref. [67], the authors developed a strategy for traditional three-tier data center
architectures which takes into consideration the energy consumption of both servers and
network switches. The proposed strategy analyzes the load of each network switch to
avoid overloading them. It tries to compromise load balancing of data center network traf-
fic and consolidation of virtual machines. Such compromise is important to the operation
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of data centers running jobs that impose low computational load but produce heavy traffic
streams.

The problem of virtual machine placement has been addressed by different formu-
lations of the bin-packing problem. The proposal in Ref. [46] employs a variation of
the best fit decreasing algorithm. Although, in this case, only the energy consumption
of servers is considered, results showed potential energy savings without a significant
number of violation of service level agreements. In Ref. [68], a heuristic is proposed to
achieve server utilization close to an optimal level determined by the computation of the
Euclidean distance of the allocation state. A first fit decreasing strategy was employed in
Ref. [69] for data centers processing Web search and MapReduce applications. The con-
solidation approach is based on the analysis of CPU usage, and favors the placement of
correlated virtual machines in distinct physical servers, to avoid overloading the servers.

The formulation of virtual machine problem presented in [70] includes active cool-
ing control besides the traditional approaches such as DPM and DVFS. This work also
does not take into account the contribution of network switches to the energy con-
sumption of a data center and it shown that active cooling control result in small, but
relevant, gains.

The work in Ref. [71] promotes energy reduction by consolidating network flows
instead of virtual machines; only the consumption of network switches are considered.
Correlated flows are analyzed and assigned to network paths in a greedy way. This
approach employs link rate adaptation and shutting down of switches with low utilization.
Results derived using simulations based on real traces of Wikipedia traffic demonstrated
that this approach can in fact reduce energy consumption.

8.3.5 Communications Infrastructure

The energy efficiency of a data center also depends on the underlying communication
infrastructure. Indeed, at the average load level of a data center, the communication net-
work consumes between 30 and 50% of the total power used by the IT equipment; this
in turn represents roughly 40% of the total energy budget.

Moreover, an analysis of the distribution of data traffic in clouds suggests that the
majority of the traffic is transferred within the data center itself (around 75%), with
rest being split between communication with users (18%) and data center to data center
exchanges (7%) [72].

Based on these facts, it is clear the need to develop energy efficient solutions for
communication technologies and architectures to interconnect the servers in data cen-
ters. Since high speed and high capacity are required, the most suitable communication
technology for cloud data centers is optical. In the remainder of this section, some pos-
sible architectures addressing energy efficient solutions for internal communications in
data centers are presented.

Optical interconnection networks are a novel alternative technology to provide high
bandwidth, low latency and reduced power consumption. Up until recently, such optical
technology has been used only for point-to-point links to connect the electrical switches
(fiber optics) thus reducing noise and leaving smaller footprints. However, since the
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switches operate in the electrical domain, power hungry electrical-to-optical (E/O) and
optical-to-electrical (O/E) transceivers are required.

New modules connecting the silicon chip directly with optical fibers have been
developed, thus enabling switching to be performed in the optical domain.

Optical interconnections can be based on circuit switching or packet switching, each
generating different trade-off in terms of energy versus performance. Solely in terms of
energy efficiency, optical circuit switching represents the most efficient solution, but
it leads to high reconfiguration times due to the nature of circuit switching. On the
other side, packet switching, although less energy efficient, potentially the source of
greater latency, achieves better performance, since its reconfiguration time is lower and
its scalability higher.

One recent alternative is the usage of optical OFDM. Optical OFDM distributes the
data on a large number of low data rate subcarriers, and can thus provide fine-granularity
capacity to connections by the elastic allocation of subcarriers according to connection
demands.

The use of optical OFDM as a bandwidth-variable and highly spectrum-efficient
modulation format can provide scalable and flexible sub- and super-wavelength gran-
ularity, compared to the conventional, fixed-bandwidth fixed-grid WDM network.
However, this new concept poses new challenges for the routing and wavelength
assignment algorithms. Indeed, traditional algorithms for routing and wavelength
assignment will no longer be directly applicable for such new kinds of communication
infrastructure.

8.4 CONCLUSIONS AND OPEN CHALLENGES

Costs and operating expenses have become a growing concern in the cloud computing
industry, with energy consumption accounting for a large percentage of the operational
expenses in the data centers used as backend computing infrastructure. This chapter
emphasizes the role of communications and network awareness of this consumption and
presents suggested solutions for energy efficient resource allocation in clouds.

The challenge of energy efficiency will largely determine the future of cloud com-
puting systems, at present experiencing unprecedented growth. Most of the existing
energy-efficient and performance optimization solutions in the IT domain focus on
computing, with communications-related processes relegated to a secondary role or
unaccounted for. In reality, however, communications are at the heart of cloud systems,
and network characteristics, such as bandwidth capacity, transmission delay, delay jit-
ter, buffering, loss rate and performance of communication protocols, often determine
the quality of task execution. However, most current research is restricted to processes
inside data centers, yet the models must also account for communication dynamics in the
wide-area network, and at the user end.

Open research challenges are essentially related to improving the energy scalability
of cloud computing. The previous sections have underlined the need for the joint opti-
mization of computing and communication while maintaining an appropriate balance
between performance and energy consumption for the overall architecture.
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The following specific research challenges have been identified:

• Integration of novel and more efficient energy consumption models for the
different components of the cloud computing architecture. As the concept of
energy-proportional computing is emerging in the design of computing hardware
and software infrastructures, it is also becoming relevant in the design of commu-
nication equipment. These emerging models will drive the need for improved and
innovative approaches for the joint optimization and balancing of performance and
energy consumption in cloud computing.

• The concept of Mobile Cloud, deriving from the clear trend toward user mobil-
ity (and the “always on” paradigm) and the availability of ever more powerful
devices in the hands of the cloud services’ users are shaping the possibility of
even more pervasive usage of the cloud computing infrastructure. Users’ request
for 24/7 availability of cloud services even in sparsely “covered” areas, will lead to
a redefinition or least an evolution, of the cloud architecture, which will involve the
need for efficient dissemination of both information and services across the Inter-
net, whether in data centers, on users devices, or somewhere in between. This is
sure to have an impact on the way data are replicated and services are provided.
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9.1 INTRODUCTION

Organizations are transitioning from private data centers to infrastructure-as-a-service
(IaaS)-style resource management where resources are acquired on-demand from a large
pool, managed internally (i.e., a private cloud), or by a third-party supplier (i.e., a public
cloud). Interest is growing in creating a single computational fabric across a set of cloud
providers, a multicloud [1–4]. Multiclouds are a natural evolution of cloud computing;
also called the intercloud [5, 6], or clouds-of-clouds, in which multiple cloud systems
(typically IaaS) are composed together to add value to users. For example, a private
and public cloud can be combined to address data privacy concerns while still enjoy-
ing some public cloud benefits (i.e., hybrid clouds, or public/private cloud overlays [7]).
Multiple public clouds can be federated to improve availability [1], reduce lock-in, and
optimize costs [8] beyond what can be achieved with a single cloud provider.

Cloud Services, Networking, and Management, First Edition.
Edited by Nelson L. S. da Fonseca and Raouf Boutaba.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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As this transition to multicloud progresses, there are several critical differences that
affect application management: (i) Every application is sandboxed from every other
application. (ii) For an individual application, the potential for resource contention is
effectively zero. (iii) Resources can be acquired on-demand according to a pay-as-you-
go pricing model. These differences permit applications to be more easily managed on a
per-application basis, rather than managing the entire IT infrastructure of an organization
as a whole. This results in a shift of responsibility from established practices. A set of
cloud providers (or, for private clouds, the IT operations teams) manages the physical
infrastructure and provides virtualized containers (for IaaS, virtual machines or VMs) to
clients who wish to deploy applications. The client assumes responsibility for both the
functional and nonfunctional quality of a deployed application; increasingly, the client
is the development team, a scenario referred to as devops1 and/or noops.2,3,4 Devops
relies on automation for cost-efficient management of software systems. We provide
more details about this transition in Section 9.2.

These changes in operational context (i.e., private datacenter versus multicloud)
motivate an evolution in the approach to management of applications. If developers are
expected to manage nonfunctional aspects of their applications, there is value in sup-
porting best-practices with regard to the design and implementation of management logic
and infrastructural support, while simultaneously incorporating established management
best-practices into the overall approach. Additionally, the developer should be shielded
from the complexity of acquiring and releasing resources in the context of the multicloud.
Finally, they should be able to harness their own domain-specific languages (DSLs) and
intimate knowledge of the application in support of management objectives instead of
being prescribed a particular approach.

We introduce the X-Cloud5 Application Management Platform (XCAMP), a plat-
form to enable whomever has assumed responsibility for automating management—
application developers, researchers, operations teams, and so on—to focus on how best
to manage their application’s runtime behavior (i.e., its management logic) rather than
focusing on the minutiae of running on a multicloud. In the classic MAPE-k model of
autonomic systems [9], XCAMP implements and integrates both the Monitoring and
Execution stages while placing the onus for Analysing and Planning on the user. The
management logic (i.e., operational policies guiding the runtime behaviour of the man-
aged application) is specified in the language of the user’s choice using their preferred
environment and according to the methodology of their choice. In Section 9.3 we posi-
tion our work in relation to the state of the art. We then describe the architecture of this
platform and the challenges in managing the complexity of the multicloud in Section 9.4.

1http://devopsdays.org
2http://blogs.forrester.com/mike_gualtieri/11-02-07-i_dont_want_devops_i_want_noops
3In devops, developers collaborate with the operations team to build and manage services while in noops it is
only the developers who do this.
4In situations where there is no operations team devops is equivalent to noops. For the remainder of this chapter,
we will simply refer to devops.
5The X is pronounced “cross.”
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The main contribution of this chapter is the creation, definition, implementation, and
evaluation of a novel approach to application management on multi-clouds that confers
autonomic properties on applications at runtime and that embraces devops-style manage-
ment and facilitates experimentation with diverse autonomic management approaches
(e.g., model-based, rules/threshold driven, classic control, etc.) while abstracting away
many of the low-level cloud programming details and nuisances. An important use case
for XCAMP will be as the management framework for the SAVI6 testbed7 to streamline
the life-cycle management of applications on a novel cloud architecture and to simplify
the process of deploying runtime management, facilitating research on this two-tier cloud
system by noncloud experts and students. XCAMP has already been presented in a hands-
on tutorial at the SAVI Annual General Meeting (2013) in Toronto, Canada to a group of
approximately 75 project members (i.e., students, researchers, and industrial participants).

To demonstrate the effectiveness of our framework we have implemented a proto-
type. We use this implementation to demonstrate the feasibility of our approach with an
experiment demonstrating the autonomic cloud bursting of a legacy application.8 Addi-
tionally, we have run XCAMP on a two-tier cloud architecture and we present a case
study in which we diagnosed the root cause of a performance bottleneck observed on
the SAVI testbed. Finally, an experiment measuring the throughput of our implementa-
tion, ensuring it is practical for managing large systems, is presented. The experiments
(described in Section 9.5) effectively demonstrate the capabilities of our approach. Based
on our implementation experience, we describe (Section 9.7) several ongoing challenges
for management in the multicloud.

We close the chapter (Section 9.8) by offering concluding remarks.

9.2 BACKGROUND CONCEPTS

Historically, a company owned a set of dedicated resources (e.g., a private data center)
upon which their business applications were run. Typically, there were many such appli-
cations and how these applications behaved in relation to each other was of paramount
importance. Specifically, issues of ownership and access were critical (i.e., could appli-
cation A run on machine Z between 5 and 8 PM EST). Further, an IT operations team
was responsible for ensuring both the security and operations of the physical infrastruc-
ture and also with ensuring the effective functioning and security of all applications,
including those developed in-house. Most applications ran on bare metal (i.e., servers)
and a ceiling existed on total available resources that was relatively constant (unless

6Smart applications on virtual infrastructure (SAVI) is a national research project in Canada:
http://savinetwork.ca.
7The proposed architecture, implemented by the testbed, introduces a novel architecture (i.e., two tier cloud)
where virtualized resources exist close to end-users (i.e., the smart edge), allowing applications to access
either low-latency resources near end-users, or standard public cloud data centers (i.e., the core).
8That is, acquiring additional resources from a public cloud when a private cloud does not have sufficient
resources to handle its workload [10].
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machine upgrades were performed or new resources were added to the data center’s foot-
print). Extensive work on management frameworks and methodologies supports these
processes.

As described in the introduction, cloud computing is fast removing many of the
standard management barriers that once defined the IT landscape. For example, the
requirements to carefully plan for capacity is being eclipsed by the ability to program-
matically launch VM using a pay-as-you-go model (i.e., the IaaS cloud) as required.
The responsibility of managing the physical infrastructure has been separated from the
responsibility for managing applications. This affords significant flexibility, allowing
for the fine-tuned management of resource acquisition and release, and dynamic config-
uration of managed applications. This new-found infrastructural flexibility has allowed
developers (or, has allowed managers to push developers) to focus on business-level con-
siderations and effective operational strategies (e.g., devops) as an alternative to focusing
on highly optimized and tuned code design. The adoption of cloud computing by medium
and large enterprises is expected to accelerate as a growing number of suppliers build
additional datacenters, as virtualization technologies continue to improve, and as faster
networking links provide high-speed connectivity.

While this development of technologies supporting the cloud continues to accel-
erate, the challenge of how best to manage applications deployed to the cloud remains
unresolved. For example, in 2013 the Amazon.com website went down for longer than 20
minutes.9 One popular approach to the management of applications (including those on
clouds) is referred to as autonomic computing [9]. Autonomic computing was introduced
as a way of dealing with the increasing complexity of systems. It is based on the con-
cept of the autonomic nervous system, which in humans is responsible for the constant
beating of the heart among other things. The outwardly observable behavior of an auto-
nomic application (i.e., one managed using this approach) is that of self-optimization,
self-configuration, self-healing, and self-protection (i.e., self-*) behavior. This approach
involves a key management component: the autonomic manager.

The autonomic manager is responsible for adjusting the behaviour of an applica-
tion in response to both runtime and management policy constraints. More precisely, an
autonomic manager’s function can be decomposed into a loop composed of four main
phases: monitoring, analysing, planning, and execution (i.e., the MAPE-k loop). In the
monitoring phase, the autonomic manager monitors the performance of the application
(and possibly the environment, etc.). In the analysis phase, the autonomic manager anal-
yses this data to build up an understanding about what possible strategies to apply to
improve the application’s state. In the planning phase, the autonomic manager selects a
strategy from among the possible strategies. In the execution phase, the chosen strategy
is implemented.

A key characteristic of autonomic computing is automation. This is also true
for devops. Devops and related approaches are used by major industry trend-setters

9http://venturebeat.com/2013/08/19/amazon-website-down
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(e.g., Amazon10 and Netflix11). Complementary to devops is the process referred to as
continuous deployment in which the release cycle is shortened from months to days
(or even less). For example, Amazon.com deploys a release every 11.6 s [11]. Although
traditional applications are faster to develop and deploy and easier to manage in clouds,
autonomic applications are still difficult to design, implement, and deploy, and still
require substantial knowledge and resources. A goal of this work is to make development
and deployment of autonomic applications easier. XCAMP mechanisms for automating
the life-cycle (i.e., deploy, manage, and undeploy) of not only the application, but also
the management logic responsible for autonomically managing it.

The first step in cloud adoption is often transitioning an on-site datacenter
into a private cloud. However, private clouds, while providing many of the bene-
fits of a general cloud (i.e., on-demand resources) lack many of the economies of
scale inherent in public clouds such as massive scale and freedom from equipment
storage/maintenance/personnel costs, and so on. As a result, both hybrid public–private
clouds and cross-provider deployments are becoming more common. It is well known
that one of the biggest challenges of constructing both hybrid clouds and/or the multi-
cloud is the bridging together of multiple infrastructures. Difficulties include but are not
limited to abstracting away the details of the various provider-specific syntaxes [12],
unifying/normalizing the various pricing models [13], providing seamless monitoring
across potentially quite disparate provider domains [14], ensuring data ownership, pri-
vacy, locality, security, and so on. This motivates the need for abstraction of the low-level
operations on the multicloud, a need XCAMP is designed to meet.

9.3 RELATED WORK

The notion of on-demand systems existed well before the advent of cloud computing
[15, 16]. Noticing the scale and increasing complexity of systems, IBM introduced the
notion of autonomic computing [9] that popularized the notion of a MAPE-k loop and
self-* functionality. The concept of autonomics has also been considered by [17, 18].
These concepts can be understood as precursors and/or progenitors in one way or another
of the current notion of the cloud.

Managing resources in this emerging cloud environment is a significant challenge;
Jennings and Stadler enumerate key aspects of this challenge, including: “the scale of
modern data centers; the heterogeneity of resource types and their interdependencies;
the variability and unpredictability of the load; as well as the range of objectives of the
different actors in a cloud ecosystem” [19]. As the cloud has begun to take shape, several
tool-kits and frameworks have been introduced as possible approaches to addressing the
challenge of managing resources while extending the cloud’s capabilities. Some well-
known examples of these include Reservoir [20], OPTIMIS [21], Aneka [22], and VDC

10http://aws.amazon.com
11http://www.netflix.com



“9780471697558c09” — 2015/3/20 — 12:00 — page 222 — #6

222 PERFORMANCE MANAGEMENT AND MONITORING

Planner [23]. Often, these approaches include notions of federation, multicloud, hybrid
cloud, and so on. However, they are all devised from a more traditional perspective in
which a deployment must be carefully designed and optimized in advance so that it may
negotiate a correct SLA to ensure its requirements are met. Where these frameworks
are forward-looking and require complex architectural components we chose instead
to focus on the cloud as it is presently available. This design choice allows us to help
bring new users to the cloud and facilitates experimentation with various approaches
to the design and implementation of management logic (e.g., model-based, rules and/or
threshold driven, and classic control). Our focus was on facilitating management of appli-
cations by the developers not on how to manage the cloud from the perspective of an
infrastructure provider.

An important aspect of facilitating a multicloud involves the notion of a bro-
ker [8, 24]. A broker acts to facilitate resource acquisition and release on behalf of a
client application in response to their dynamic requirements at runtime. While in some
cases, as demonstrated in this chapter, the management logic suffices to determine from
where to obtain and/or release resources to; in other scenarios in which multiple potential
competing providers exist, a broker provides a logical component to obtain/release the
best selection of resources as required. Therefore, we envision future integration between
managers and brokers. The broker will be responsible for resource acquisition/release,
while the manager will be responsible for application management tasks.

9.4 X-CLOUD APPLICATION MANAGEMENT PLATFORM

The design of X-Cloud Application Management Platform (XCAMP) is based on the
MAPE-k [9] loop, with framework components and developer-specified components
working in collaboration to perform MAPE-k-based management of an application. The
monitoring and executing portions of the loop are performed by framework components,
while the analysis and planning portions are done by developer-specified management
logic. This separation of concerns guides runtime operations and is presented graphi-
cally in Figure 9.1a. XCAMP was designed to work at multicloud scale (i.e., massive
application deployments of thousands of nodes) and is able to support multiple appli-
cation deployments simultaneously. XCAMP leverages a stream processor paradigm to
achieve scalability, fault tolerance, and reliability, and to provide a useful abstraction
of streams (long sequences of records) to transfer metrics, key performance indicators
(KPI)s, and in general knowledge among the components, with each new tuple processed
in transit by the various components. The following sections will provide an overview of
the XCAMP architecture in terms of the MAPE-k loop and then delve more deeply into
its components and the abstraction features of the platform. First, two usage scenarios
will illustrate the use of the XCAMP platform, one focusing on the impact on a single
application, and the other from the perspective of a service provider.

9.4.1 Usage Scenarios

In this section we introduce two illustrative usage scenarios for XCAMP.
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Figure 9.1. Conceptual overviews of XCAMP: the components with red, dashed borders are

provided by the developer/deployer, components with solid lines are provided by the plat-

form. Dashed lines with arrows represent the flows of data; solid lines represent relationships.

Solid squares indicate VMIs and their color indicates the provider from which they have been

acquired. Inner blue rectangles indicate the management agent on the VMI. Arrows denote

monitoring data and execution command flows. To simplify the presentation we focus on a

single application deployment. However, as was described in the Usage Scenarios, XCAMP is

highly scalable and designed to handle multiple application deployments at the same time.

(a) High-level architecture view. (b) High-level deployed application view. (c) A detailed look at

the components implementing MAPE-k.
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9.4.1.1 Scenario 1, Hybrid Clouds. Company A would like to deploy an appli-
cation to their private cloud. However, they are constrained by a lack of resources to
support it during peak periods of demand. They wish to create a hybrid cloud, using pub-
lic cloud resources when private resources are exhausted, with resources being added
and removed autonomically based on demand.

• Preparation: After deploying XCAMP to their private cloud12, they would reg-
ister both their private cloud and Amazon Elastic Compute Cloud (EC2)13 with
the platform. Next, they would create a deployment document that describes the
layout of their application on cloud resources (i.e., this includes describing nodes,
images, services, and communication links between services). They would capture
their desired autonomic behavior in rules (e.g., one rule might be when resource
utilization in the web-tier exceeds 60%, add a node to the private cloud, unless
resources are exhausted, then add a node to the public cloud). The rules use the
terminology defined in their deployment document (e.g., web-tier), and can refer-
ence any metric captured by XCAMP. This set of rules is called Management Logic
throughout this chapter, and represents the management policies to be enforced,
as implemented by an application capable of accepting monitored metric values
at a specified URL, making management decisions based on this stream of met-
rics, and returning actions to effect change in the deployed application as needed.
This Web-based Application is implemented in whatever language the developer
prefers, and is deployed automatically by XCAMP into an appropriate container
(e.g. Apache Tomcat).

• Deployment: The administrator then submits their deployment documents together
with application and Management Logic to the system along with any additional
automation scripts (i.e., to setup a database). XCAMP automatically instantiate
cloud resources and dynamically builds the application according to the given
descriptions. Upon instantiation, the platform automatically begins capturing met-
rics from all configured resources, and feeding this stream of metrics to the
Management Logic’s defined URL.

• Runtime Management: As the Management Logic receives metrics from XCAMP,
it returns (as-needed) actions that are realized by XCAMP. In this scenario, the
company would author their Management Logic application to detect increases in
demand (as reflected by increases in utilization) and in response add application
servers first on the private cloud, then on Amazon EC2 when private resources
are exhausted. XCAMP handles the process of adding resources, including cre-
ating instances (of the specific image) from the correct cloud provider (private
cloud, EC2), dynamically installing the correct packages, instantiating the cor-
rect services, and connecting these new nodes within the application environment
topology (i.e., adding them to the front end load balancer and pointing them to

12An automated installation using from 1 to 5 VMs
13http://aws.amazon.com/ec2/
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the database). Similarly, as demand recedes, these resources can be automatically
released and decommissioned.

9.4.1.2 Scenario 2, Edge-Core Clouds. The SAVI two-tier cloud is made of
edge nodes, close to the end user, and core nodes, located in a big data center. The
architecture is meant to support low latency and high bandwidth applications. SAVI
administrators want to provide a management service to the users of a testbed implement-
ing this SAVI cloud architecture. The XCAMP platform must enable users to deploy and
manage their applications while accommodating a broad range of practical experience
(from novice to expert) with regard to deploying and/or managing applications on the
SAVI cloud.

• Preparation: The administrators must deploy XCAMP to their two-tier cloud
architecture, then provide the XCAMP front-end URL to their users. Administra-
tors can decide where to place the initial deployment, on the edge or core nodes,
and then author a deployment descriptor.

• Deployment: SAVI researchers submit their jobs (i.e., the application and Man-
agement Logic) through the Web interface or RESTful API. XCAMP deploys
the application on the edge and core nodes provisioning at the same time the
connectivity among components.

• Runtime Management: XCAMP ensures all monitored details about a user’s
deployed application environment is collected and routed to the user’s Manage-
ment Logic, and accepts all commands issued in response, translating them to
low-level actions and executing these actions. The management logic can act on
application components on edge or core nodes. Typical actions include scaling
out/in on edge and core nodes, live migration of VMs for load balancing, and so
on. A key design pattern of XCAMP is its utilization of stream-processing that
facilitates its ability to scale to massive size and support large number of nodes
while collecting massive numbers of measurements about runtime performance
and external monitored details. The entire SAVI testbed shares this single platform,
avoiding duplication which results in high utilization efficiency.

9.4.2 MAPE-k Loop View

The key XCAMP components and their position in the MAPE-k loop are presented
in Figure 9.1c. In this section, we will describe these various components and their
contributions to the management of a deployed application on the multicloud.

The Information Aggregation Service is the main interface for gathering information
about the deployed applications, environment, and from external sources (e.g., Twitter,
CloudyMetrics [13], CloudHarmony,14 and others). Collected information is streamed
to the Notification Engine which is used to forward an augmented stream of metrics to

14http://cloudharmony.com/
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the various Management Logic components. In one path, data traverse the Abstraction
Engine. Given information from the knowledge store that describes all existing deployed
applications, each metric is translated to a more abstract form based on the terminology
defined in the deployment document (e.g., an IP address is translated to a unique identifier
that is marked as belonging to web-tier).

In a second path, data traverses the Plugin Engine (optionally first passing through
the abstraction engine) where additional processing is applied to the data stream. For
example, aggregation may be applied to individual server metrics constructing tier-
specific information (e.g., mean CPU utilization per cluster) or the archive of metrics
hosted by the Information Aggregation Service may be queried to produce metric trends.
The platform provides several plugins (e.g., calculating the cost of a deployment based on
information from CloudyMetrics); the user may add their own. Information that leaves
the plugin engine is specific to a given application, either using information from the
abstraction engine or from the user-supplied plugins.

The Management Logic represents developer-specified management directives (e.g.,
management policies [25]) designed to guide the runtime behavior of the application.
The XCAMP framework does not place any restriction on how the Management Logic
is expressed/implemented; it is run within a sandboxed container, on its own VM. The

1 public class ManagerServletEx extends HttpServlet{
2 ...
3 public void doGet(HttpServletRequest request , HttpServletResponse res) {
4 ...
5 if (LOAD_ONE.equals(request.getParameter(METRIC_NAME)))
6 updateMetricValue(request.getParameter(SOURCE), LOAD_ONE ,

toDouble(request.getParameter(VALUE)));
7 ...
8 if ((caculatedMeanLoadForAppTier appTierScaleDownTheshold) &&

(getSizeOfPublicFootprint() MIN_PUBLIC_SIZE)) {
9 elasticScaleFootprint(PUBLIC_CONTAINER , size_public - SCALING_INCREMENT);
10 return;
11 ...
12 }
13 ...
14 public class ActionGenerator {
15 ...
16 public void elasticScaleFootprint(String tierName ,int finalFootprintSize) {
17 .....
18 JSONMessage msg = new generateJSONMessage(SCALE_FOOTPRINT , tierName ,

finalFootprintSize);
19 sendJSONResponse(msg);
20 }
21 ...
22 }

<
>

Figure 9.2. Sample code (with exception handling omitted to simplify readability) for the cloud

bursting Management Logic implementation is presented. This Management Logic is imple-

mented as a Java servlet. The doGet method is called from the monitoring components of the

XCAMP platform with updates about all relevant monitored metrics and the response is either

empty or carries an action to be performed by the XCAMP Execution Engine. On line five an

update about load_one is processed for a particular node in which the metric METRIC_NAME

for the node SOURCE of the application topology is updated with the value VALUE. The man-

agement rule presented on line eight is one of the four rules used to implement the elastic

bursting strategy and can be stated informally as follows: IF the mean load for the application

server tier is less than a threshold and the size of the application server tier on the public cloud

is greater than MIN_PUBLIC_SIZE THEN scale down the public footprint of the application server

tier by SCALING_INCREMENT. The ActionGenerator class on line 14 is used to generate and send

JSON messages to indicate what action the execution action should take (e.g., line 18).
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Management Logic represents a combination of both the Analyze and Plan components
of the MAPE-K loop. It offers a URL to which metrics are submitted, and responds with
JSON-formatted actions that are passed to the Execution phase. Each developer uses
best practices for filtering requests for their chosen platform (e.g., Java EE Filters) to
decide which metrics reach the Web application logic. A Management Logic component
is responsible for managing its own data store if required. A partial excerpt from a Java-
based implementation of Management Logic is presented in Figure 9.2.

The Execution Engine and the Deployment Service implement the Execution com-
ponent of the MAPE-k loop. The Execution Engine accepts requests for changes from
the Management Logic and converts this into high-level workflow statements. These
statements are forwarded to the Deployment Service, which executes a set of lower level
workflows to implement the requested changes to the application’s deployment and/or
configuration. For example, the Management Logic might request an additional resource
be added to its web-tier; the Execution Engine translates this request to a parameterized
call to the deployment service which creates and provisions the node and re-configures
the load balancer. The components collaboratively maintain a knowledge base of sys-
tem state through the Knowledge Store component that stores data about the historical,
current, and predicted future state of the system.

9.4.3 Deployment View

The process of application deployment requires that the developer submit a declara-
tive deployment document [26] that describes the application pattern to deploy [27],
a deployable version of their application (e.g., a WAR file), and a Management Logic
Web application (e.g., a WAR file). The submission component (not shown) passes this
information to the deployment service, which deploys the application in accordance with
the deployment document (using user-supplied credentials) and registers the deploy-
ment in the Knowledge Store. The Management Logic application is deployed, and is
automatically registered with XCAMP to receive pertinent information for its associated
application. The deployer may specify external data sources from which information
should also be retrieved. Application-level metrics are submitted to the Information
Aggregation Service and will be available to the Management Logic.

The result is the automatic collection and pushing of well-formatted, high-level,
abstract, consistent metrics to the Management Logic. Using whatever approach and
methodology the developer prefers—ad hoc Java code, a Web interface wrapper to
an existing management system, and so on the analysis and planning steps are com-
pleted. If actions are required, a JSON message is passed to the Execution Engine,
where it is de-abstracted and passed to the deployment service to modify the running
deployment.

Once an application is deployed using XCAMP, its structure will be similar to those
of the applications presented in Figure 9.1b. Functionally, an application deployment
represents a complex graph of an application in which nodes are VMIs running on the
various cloud providers and edges represent communication channels between these
nodes. XCAMP deploys a management agent to each VMI in an application. This agent
is responsible for transmitting collected monitored data to the Information Aggregation
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Service and for modifying configuration settings of the installed application stack, the
operating system, and/or altering the set of installed applications on the VMI in response
to commands from the deployment service.

To facilitate operations, XCAMP communicates directly with the various cloud
provider APIs (e.g., AWS and Openstack), which allows it to perform operations like
adding and removing instances, and to collect metrics from the provider when available.
XCAMP also monitors data from sources other than cloud resources and further passes it
to the Management Logic; for example, data from Twitter, CloudyMetrics, or CloudHar-
mony can be passed to Management Logic to assist in decision making. For example,
should there be a failure of a region in AWS, XCAMP will receive this status update.
This data can be utilized by the Management Logic in order to make decisions about
where to deploy nodes of the application. This might include transposing [1] application
servers to alternative cloud providers on the fly or simply to avoid launching new VMIs
in affected regions.

9.4.4 Information Abstraction in XCAMP

A key contribution of XCAMP is the abstraction of low-level details that differ among
various cloud providers, and a common metrics format. To illustrate how we hide com-
plexity in XCAMP from the management logic, consider the following example of
adding an instance to a deployed application.

After the Management Logic determines that an instance must be added to the appli-
cation server tier of a deployed application, it sends a JSON-formatted message to the
Execution Engine saying There should be five servers similar to Web server A in cluster
my-web-tier. The Execution Engine translates this declarative request for resources into a
high-level workflow, which is passed to the Deployment Service with associated informa-
tion (e.g., which application deployment to modify). The Deployment Service translates
this into a low-level workflow as follows. First, the Deployment Service determines
upon which cloud provider Cluster my-web-tier is running. This allows it to connect
to the correct cloud provider. It then requests two instances of the same configuration
as web server A (determined by the deployment document, e.g., m1.large) and deploys
the management agents on both instances. The management agents are then instructed to
deploy an identical software stack with the same configuration as Web server A. After the
instances are fully configured and ready, the agent will begin streaming monitored data
to the Information Aggregation Service, which will ultimately inform the Management
Logic of the successful addition of resources to the deployed application.

9.4.5 Management Logic

Much work has been done in the domain of distributed systems management (see, e.g.,
the proceedings of IEEE/IFIP NOMS, IFIP/IEEE IM, and CNSM). Policy-based man-
agement [25, 28, 29] represents an approach to management in which management
actions are decoupled from management logic and in which the management logic
is interpreted at runtime. This affords a flexible management paradigm in which as
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management logic changes, policies may be altered thus facilitating the design of elegant
autonomic systems. Often, a policy specification language [30–32] is used to encapsu-
late the rules that govern the behavior of the system. While we embrace the need for
specification languages, especially in the context of large distributed systems and net-
work management, we feel that their utility is tightly coupled to the actor who is tasked
with using them and the specific environment in which they are used. In devops, we
feel freedom should be given to the developers to do it their way and to take advan-
tage of all the intimate details that they possess with regards to the inner workings
of the application that they are managing. Unlike in traditional management situations
where system administrators, operations teams and/or business people require a mecha-
nism for automating the control of their systems that is semantically clear to them and
does not place much emphasis on programming capabilities. Developers have an entire
arsenal of tools, libraries, and methodologies for ensuring that a system is functionally
correct. These can be embraced to ensure the nonfunctional requirements of a system
are being met as well. Due to their experience with programming languages (and likely
lack of experience with DSLs like policy specification languages), use of programming
languages may be a preferred approach for specifying management logic. Further, our
proposed approach does not in any way preclude the use of an existing policy specifica-
tion language/PBM solution, which could be readily employed as the Management Logic
component.

9.5 IMPLEMENTATION

To demonstrate the feasibility of our approach, we authored a proof-of-concept imple-
mentation of XCAMP. We leveraged existing libraries and frameworks where possible
to allow us to focus on the abstraction task.

Monitoring components are built on the Misure [14] extensible, distributed, and
scalable monitoring system. Due to its central importance in XCAMP we provide a
brief overview of it in Section 9.5.1. The Information Aggregation Service, Abstraction
Engine, Plugin Engine, and Notification Engine were written as elements that used the
stream-processing paradigm central to Misure to communicate and scale horizontally.

Execution is provided by the Execution Engine, which like the other engines is built
on Misure; and by the deployment service, for which we used a customized version of the
pattern-based deployment service15 (PDS) [26] developed by our team. Similar to Misure
the PDS plays an important role in XCAMP and so we elaborate on it in Section 9.5.2.
The Execution Engine connects to the deployment service via a RESTful API.

Analysis and Planning is provided by Management Logic applications, one per
deployed application, running in a Java EE container (Tomcat) on a dedicated VMI. The
responsibility for authoring the Management Logic application rests with the application
developer/deployer; they submit WAR files for deployment. Any container is adequate

15https://github.com/ceraslabs/pattern-deployer; the customizations have been pulled into the master version.
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for this purpose; others could be added with a straightforward extension to the current
implementation.

9.5.1 Misure

In previous work, we defined a set of requirements for monitoring in heterogeneous
federated clouds [14], defined a suitable architecture built on stream-processing, and
implemented a prototype solution. Based on an enhanced publish–subscribe pattern,
the design and implementation allow for the gathering of metrics at any level (sys-
tem, application, etc.) from disparate sources like Ganglia [33], SNMP sources, Amazon
Cloudwatch, and various Web APIs. These streams of metrics are transformed (aggre-
gated, annotated, split, etc.) in transit, and published to interested users as live streams
(push-type). Metrics are also persisted to long-term storage which can be queried via
an API (poll type). The prototype was evaluated on pubic clouds and found effective at
handling metrics at scale with low infrastructure cost.

The core abstraction underlying Misure is stream processing, in the family of
complex event processing [34]; as an abstract concept, it refers to the generation, manip-
ulation, aggregation, splitting, and transformation of data organized in a long sequence
of records. One example is Storm,16 a Twitter open-source project, on which Misure is
built. Storm is billed as a “distributed, scalable, reliable, and fault-tolerant stream pro-
cessing system,” and can be used for stream processing, continuous computation, and
distributed RPC.17

One of the key features of Storm is the effort to manage the complexity of dis-
tributed computation on realtime data entirely behind the scenes. This includes guaran-
teed message processing; aggressive resource management (garbage collecting defunct
processes); fault detection and task reassignment after failure, efficient, and scalable
message transmission; streams that consist of any data (serialization occurs behind the
scenes); and local development environments for debugging. Storm also allows com-
ponents to be implemented using many programming languages. Storm is parallel and
distributed; there is no central router and no intermediate queue. It is designed to scale
horizontally, and has been deployed at scale processing large Twitter data sets.

9.5.2 Pattern-Based Deployment Service

The pattern-based deployment service, PDS [26], emerged out of the need to sim-
plify the process of deploying complex multitier applications to cloud environments
and further to adapt them at runtime (i.e., dynamically add/remove nodes to an exist-
ing application topology). Specifically, the notion of describing declaratively what you
want versus how to achieve it appealed to us. Further, the use of patterns is quite pow-
erful in they allow for simplification, re-use and sharing. The PDS hides the low-level

16https://github.com/nathanmarz/storm
17https://blog.twitter.com/2011/storm-coming-more-details-and-plans-release
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<topology id="scale">
<instance_templates>

<template id="openstack_small_vm">
<cloud>OpenStack</cloud>
<instance_type>2</instance_type>
<key_pair_id>mark</key_pair_id>
<image_id>50</image_id>
<ssh_user>root</ssh_user>

</template>
</instance_templates>
<container num_of_copies="4" id="web_host_container">

<node id="web_host">
<use_template name="openstack_small_vm"/>
<service name="web_server">

<database_connection node="data_host"/>
<war_file>

<file_name>petstore.war</file_name>
<datasource>jdbc/pet</datasource>

</war_file>
</service>
</node>
</container>
<node id="data_host">

<use_template name="openstack_small_vm"/>
<service name="database_server">

<script>petstore.sql</script>
<service/>

</node>
<node id="web_balancer">

<use_template name="openstack_small_vm"/>
<service name="web_balancer">

<member node="web_host"/>
</service>

</node>
</topology>

Figure 9.3. A sample deployment document written in an XML-based DSL. This particular doc-

ument describes a deployment on six nodes in total (i.e., one Web balancer, four Web hosts,

and one database server.

details about how to deploy services to any cloud provider, making it quite useful in
the context of multicloud. Specifically, the PDS facilitates application topologies to be
described, deployed, and adapted across multiple cloud providers. The PDS has been
used successfully on EC2 and Openstack and has support for all Fog18 compliant cloud
providers. Further, the PDS has been open-sourced and is available for download and
contributions.19

With PDS, a user describes the “pattern” of their application in an XML-based
domain-specific language (DSL). This DSL is quite easy to understand and com-
prises several key elements that can be grouped as functional elements (e.g., Topol-
ogy, Node, and Service) and syntactic sugar (e.g., instance_templates, Container, and
num_of_copies). A sample deployment document written in this XML-based DSL is
presented in Figure 9.3.

18http://fog.io/about/provider_documentation.html
19https://github.com/ceraslabs/pattern-deployer
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9.6 EXPERIMENTS AND A CASE STUDY

Using our implementation, we performed two experiments (Sections 9.6.1–9.6.3). In the
first, we demonstrated the process of implementing Management Logic and using it
to manage an application facing changing workloads; in the second, we showed early
performance results demonstrating that a Management Logic component can handle
millions of metrics. We also used this implementation in a case study demonstrating
how researchers running on an experimental testbed can more easily perform complex
experiments repeatedly to obtain meaningful results (Section 9.6.4).

9.6.1 Experimental Setup

Experiment 1: For the managed application, we used a sample Java EE web applica-
tion that accepts requests; connects to a database (mysql) to perform selects, inserts, or
updates; and returns a response. We defined a declarative deployment document (see
Section 9.4.1) with a database server, a load balancer, and a cluster of web application
servers initialized to a single instance running in the private cloud and no instances in
the public cloud.

We authored the application’s Management Logic, see Figure 9.2 for an excerpt
of this code, as a second Java EE Web application, implementing the RESTful interface
defined by the platform to receive new metrics and information about resources deployed.
The Management Logic collected the 1-min load averages20 for each web application
server, calculated an average, and requested additional resources when a configurable
threshold was surpassed. Resources were released when the average fell beneath a second
configurable threshold. Given the limited capacity of private clouds, after two instances
are running on the private cloud, the manager requests resources from the public cloud.
To limit churn, a refractory period was introduced (as a configurable parameter that could
be changed on the fly through the RESTful interface): 10 min between adding nodes, and
5 min between removing nodes. Aside from features to allow run-time configuration of
various parameters, the Management Logic consisted of 65 source lines of code.21

The PDS was deployed to an Amazon EC2 m1.small instance. We created a deploy-
ment package including the Web application WAR, its Management Logic WAR, and the
various keys and credentials required to provision instances on the clouds in our topol-
ogy, and submitted this package to the PDS. The Management Logic ran on a t1.micro
instance; Web application servers were deployed to a local Openstack installation run-
ning on a dedicated IBM Bladecenter in a university data center, with a 100 Mbps uplink.
An openstack.small instance was defined with 2 GB of RAM and one virtual CPU. The
public cloud deployment; if necessary; was to m1.small instances on Amazon EC2.

20Load average refers to the number of processes ready for CPU time on average over some period of time,
1 min in this case.
21Clearly, there is substantial room to improve this algorithm; the focus is on the enabling platform and not
the adaptive scaling algorithm employed.
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The XCAMP implementation ran on a four-core cluster in Amazon EC2. Ganglia22

monitors acquired the metrics from each machine and passed them to the Information
Aggregation Service.

Finally, an Apache JMeter23 test plan was used to generate load. The workload was
two-thirds read requests (e.g., browse catalog), one-sixth write requests (e.g., checkout),
and one-sixth update requests (e.g., modify user profile). The design was to peak work-
load at 120 simultaneous threads sending requests as quickly as possible, launching in 4
groups of 30 threads, each ramping up over a 5-min period. The first group launched at
start time t minutes; the second at t+10, the third at t+25, and the fourth at t+33. Peak
workload was maintained until t + 90, when the fourth group was terminated, followed
by the second group at t+100, and the final two groups at t+120. This plan was executed
by an m3.xlarge (quad-core) instance in Amazon EC2.

Experiment 2: Using the same implementation and components, we examined the
performance of the Management Logic when run on three different instance sizes in
Amazon EC2 (t1.micro, m1.small, and m1.medium) to assess the scalability of this
approach. We created simulated metrics and submitted them via the RESTful API as
quickly as the service could handle them for a 1-h period. The mix of metrics was pro-
portional to reality, with many requests being irrelevant to the actual decision-making.
Our primary question was whether it would be necessary to autonomically scale the
Management Logic Container as a cluster for large topologies.

9.6.2 Results

Experiment 1: Figure 9.4 illustrates what happened during the experiment, showing
the addition and removal of instances, the size of the workload, the average load over all
deployed resources, the average response time, and the total throughput. The deployment
began with a single private instance. This was sufficient for the first workload group;24

but shortly after adding the second workload group, the autonomic manager detected
load average greater than 1.0 (Fig. 9.4a). A private cloud instance was requested (light
red band). There are brief spikes in response time (up to 4 seconds) when the node is
added to the balancer manager and when the node is first enabled and receives its first
requests which are not shown due to the smoothing (for readability). The two private
instances are sufficient to handle 60 workload threads, but not 90 where a third instance
is required. This instance is requested from Amazon EC2 (light orange band).

As the experiment continues, workload continues to increase and the load average
remains high. Amazon m1.small instances are substantially smaller than openstack.small
instances; a total of five are required (added as soon as possible given the refractory
period) to meet the generated workload. After the activation of the final public instance,
load average settles at around 1 and remains there, providing stable response time and

22http://ganglia.sourceforge.net
23http://jmeter.apache.org
24Note that instances running on this Openstack installation using KVM use a virtual CPU and report load
averages differently, counting processes waiting in a queue and NOT running processes.
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Figure 9.4. Measurements from the scaling experiment, first adding private instances then

bursting to the public cloud. The stacked graphs show the instance counts, with the blue line

representing throughput (smoothed to be more readable). (a) One-minute load average, aver-

aged over all active instances. (b) Average response time over a 1 seconds window, smoothed

using splines to improve readability. Sharp spikes (peaking at 4 seconds, not shown) are due to

load balancer restarts when adding a new node, and an initial period of slow response times

for new nodes.

maximum throughput. Once the workload decreases, the additional instances are grad-
ually removed—first the public instances, then the private instance (at the end of the
experiment).

Experiment 2: Figure 9.5 presents the results of the scaling, showing the total
throughput and average response time achieved by the three instances running the
straightforward bursting adaptation policy. A gradual ramp-up was included in the load
generation. The t1.micro instance is specified for only periodic or bursting workloads,
not for sustained load; this is evident in the results as performance varies dramatically.
There are several drops in throughput, due to either other running tasks competing for
resources or the variation inherent in the public cloud [35] which is most noticeable with
smaller single instance sizes. The t1.micro response time results make it difficult to see
corresponding degradation in response time.
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time; peaks (not shown) at 800 milliseconds.

9.6.3 Discussion

Experiment 1: We demonstrated the ability to use a standard Java EE Web application
with a simple adaptation policy written in a programming language familiar to the orig-
inal application developer using the common RESTful API pattern. There is room to
improve the Management Logic; for example, to better handle the time required for a
new instance to become active and handle requests.

While designing the Management Logic, we considered several metrics as the basis
for adaptation. We have been aware of the limitations of existing monitoring tools on
public clouds for some time, but our trials with CPU utilization metrics and load aver-
ages demonstrated the unreliability of these numbers. The individual metrics for each of
the seven instances launched in Experiment 1 varied per cloud. The load averages from
OpenStack were zero even when the machine was clearly loaded; it was only when over-
loaded that they would produce higher load averages, which resulted in slower reactions
from the Management Logic. The data from EC2 had higher peaks, particularly during
bootstrapping. More notably, despite high load averages, they rarely exceeded 20% CPU
utilization (Fig. 9.6b).

In contrast with 1-minute load averages (Fig. 9.6a), the 15-min load average offers
a better understanding of the overall trend of the system. Figure 9.6c shows this load
average for each instance. All of the managed instances trended toward a load average of
1.0, the target set by our Management Logic. Much of the difficulty in achieving this load
average on EC2 instances hinged on load incurred during bootstrapping. This indicates
that launching from machine images with the required software pre-installed is important
to effective adaptive management.

Experiment 2: The performance numbers measured indicate an m1.small instance
running our Management Logic could process over 270,000 metrics per minute;
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Figure 9.6. Performance measurements from instances involved in the autonomic scaling

experiment. (a) One-minute load average (peaks reaching 15–20, 30 for public_2, not shown).

(b) CPU Utilization, for user and system processes. (c) 15-minute load average.

collecting the standard 18 Ganglia core metrics once per minute suggests an ability
to manage 15,000 active instances. This indicates there is currently no need to auto-
nomically scale a cluster of containers. There is no strict bound on complexity for
alternative Management Logic applications, and so this need may arise in the future if
computation-intensive planning and analysis is performed. The scalability of Misure has
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been discussed previously [14]; it is similarly capable of handling thousands and even
millions of metrics.

9.6.4 Case Study

One of the goals of XCAMP is to make systems management painless for developers.
This case study illustrates this ability in action. It was noted that in practice, when sev-
eral SAVI users deployed applications simultaneously using XCAMP, they observed a
major degradation in performance of the SAVI testbed.25 We used XCAMP as the plat-
form for a series of experiments to explore this phenomenon to contribute to the ongoing
improvement of the testbed.

Initial exploratory runs: Using XCAMP’s deployment service, we deployed a three-
node Java EE application to the SAVI testbed (note that all three nodes are deployed
simultaneously by default). Once deployed, we dynamically added an additional node
to the application topology. Once the scale out operation had completed we removed
this additional node by scaling down. Finally, we undeployed the application. We kept
measurements of how long each stage of this process took. We conducted variations of
this experiment with various numbers of simultaneous application deployments (1, 2, 5,
and 10), each deploying three-node Java EE applications (for between 3–30 VM instantia-
tions). Each experiment configuration was run three times. The mean timing results (with
standard deviations) are presented in Figure 9.7a. We observed that the Deploy stage is
the slowest of the four and that it was most impacted by the number of concurrent users;
scale-out, which is like deploy but with one instance instead of three, was also impacted.

Examining the deployment stage: We decided to explore the Deploy stage more care-
fully by examining the two phases: downloading required files from the PDS on the
internal network, versus downloading and installing software packages from an external
package repository. We also performed the same experiments on Amazon EC2 in order
to use the results as a comparator. Figure 9.7c shows a linear increase in download time
as the number of concurrent users increases for both EC2 and the SAVI testbed. How-
ever, software installation on EC2 appears to be constant no matter how many concurrent
users there are while on the SAVI testbed a dramatic increase is observed as the number
of concurrent users increases. We hypothesized it might be the network and/or a disk IO-
related problem. The network-bottleneck hypothesis is that additional concurrent users
are creating traffic on the network, causing congestion or bandwidth-cap related issues.
The IO-bottleneck hypothesis is the increased number of VMs running on a single phys-
ical host and performing random read-writes overextends disk resources. We know from
observation that CPU and memory utilization are not excessive, so we did not create
additional resource-contention hypotheses.

Evaluating hypotheses: To confirm or reject each hypothesis, we designed a final
experiment. We created a full image containing all required packages for the applica-
tion. We compared the time required to deploy this image, versus the time required to

25The testbed implements a two-tier cloud extending OpenStack, with a single core and seven edges distributed
across Canada.
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Figure 9.7. Various experiment results for the case study exploring performance of the SAVI

two-tier cloud testbed. (a) Temporal breakdown of deploying and scaling an application on

the SAVI testbed. (b) Comparing the performance of bootstrapping a node versus using a node

with all software pre-installed on the SAVI testbed. (c) A breakdown of performance for two

phases of the Deployment stage on the SAVI testbed and Amazon EC2: downloading files from

the PDS, and installing software packages.

deploy a standard Ubuntu image and bootstrap it (i.e., download and install all required
software packages from a central repository). A complete image has similar bandwidth
requirements, but can be written to disk with sequential writes (versus random read-
write) thus reducing IO load. If deploying the full image is faster than bootstrapping,
we would regard the IO-bottleneck hypothesis as confirmed. The results are presented in
Figure 9.7b. Notice that the full image outperforms the standard image, suggesting the
presence of an IO-bottleneck.

Using XCAMP in this case study allowed us to easily run and monitor a variety of
experiment configurations, systematically and repeatedly, to collect and present evidence
of system performance issues in the SAVI testbed.

9.7 CHALLENGES IN MANAGEMENT ON HETEROGENEOUS
CLOUDS

Based on our experience designing, implementing, and testing a multicloud adaptive
system, we offer the following reflections on the particular challenges that apply to
adaptively managing heterogeneous clouds.
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Heterogeneous monitoring systems: Many cloud providers offer monitoring services
to provide information about the performance of provisioned resources; these systems
vary significantly, and typically require relatively detailed information to query (e.g.,
instance IDs for Amazon EC2). The state of monitoring in private clouds is even more
varied, with various solutions deployed based on each organization’s whim. Existing
cloud abstraction layers largely disregard monitoring, focusing instead on acquiring
resources.

Rapid reaction: Automated management requires current and accurate monitoring
data. The ability of an aggregating monitoring service to meet this requirement depends
on the timeliness of metrics received from third-party monitoring systems being aggre-
gated. The automated manager can be run on the public cloud, which introduces more
delays outside of the control of the monitoring system. It remains an open question how
to best ensure timely decisions are made.

Inaccuracy in traditional monitoring techniques: It is generally understood that vir-
tualized resources offer more variable performance than bare-metal resources, and the
variance in the performance of Amazon EC2 instances has been benchmarked [35].
However, it is less understood that standard monitoring techniques will report inaccurate
information that can mislead adaptive managers.

In a public cloud environment, the desire to sell fractions of a CPU’s processing
power have removed the meaning of many of these standard metrics. For example, Ama-
zon EC2 configures instances using a measure called elastic compute units (ECUs),
which they document as a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor. One
ECU is approximately 40% of a single core of a Intel Xeon CPU E5430 @ 2.66 GHz,
a common processor in the first-generation Amazon infrastructure. The default instance
size, small, is 1 ECU; the hypervisor enforces this 1 ECU limit. However, Xen’s par-
avirtual mode offers limited ability to abstract the processor for performance reasons, so
instances and Linux kernels running on instances perceive a full core available to them.
Xen enforces the limits by refusing access to the CPU if the allotted quota has been
used, which the Linux kernel reports as steal. The exact time spent in steal may vary
over time, and in any case can only be measured when the system is operating at capac-
ity. An idle machine will report 100% idle time, giving no indication of the actual limits
on the CPU. It is not trivial to calculate the actual load on a machine reporting 20% user
and 80% idle.

9.8 CONCLUSION

This chapter introduced a framework for managing the life-cycle of applications in
multicloud environments and for conferring autonomic properties on them at runtime.
The framework allows the specification of the Management Logic, its deployment and
instantiation, and its execution alongside the managed application. The Management
Logic runs in a container that is seamlessly connected to XCAMP’s monitoring and
execution engines. XCAMP provides application developers with effortless access to
monitoring sensors, third-party data sources and actuators (i.e., the monitoring and exe-
cuting stages of the MAPE-k loop) from across the multicloud, while placing control of
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both the analysis and planning stages in their hands and allowing them to express their
management policies in their own vernacular and harnessing all their personal expertise.

We validated XCAMP in multiple ways. First, we demonstrated the ability to elas-
tically cloud burst a legacy Java EE application from a private cloud to a public cloud
and reported our findings and our experience in automating applications in multicloud
environments. Additionally, we demonstrated a capability of the XCAMP framework
to facilitate the diagnosis of a bottleneck on the SAVI (i.e., two-tier cloud) testbed. We
demonstrated, through experimentation, the capabilities of our design to scale to large
size and for our autonomic manager (i.e., Management Logic) to process massive num-
bers of metric updates per minute. Finally, we presented a hands-on tutorial to a group
of approximately 75 SAVI members at the 2013 Annual General Meeting in Toronto,
Canada and received positive feedback from the participants.

The XCAMP platform will provide a useful middleware upon which to base much
future research for both the SAVI project and other areas of multicloud research. By
allowing developers to harness their vast skill sets, different approaches to manage-
ment can be considered with ease and this is a critical benefit we provided through the
introduction of XCAMP.
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10.1 INTRODUCTION

As computer networks have evolved, processing demands have migrated from local com-
puting devices to distributed computing environments. In this context, the capacity of
distributed processing has also progressed from job-based computing to the more user-
friendly service-oriented computing. This paradigm shift has been accompanied by an
evolution of distributed system architectures: job-oriented cluster computing gives rise
to through job- and service-oriented grid computing, and then to service-oriented utility
computing, now known as cloud computing [1].

Cloud computing is currently being offered and used by many companies [2]. For
example, the Amazon Web Services (AWS – http://aws.amazon.com/) offers various
services for database, e-Commerce, storage, and processing power. Google Applications1

also offers a variety of applications as services, including Google Application Engine
(GAE),2 which allows application development to be performed directly in the cloud

1http://www.google.com/apps/
2http://code.google.com/appengine/
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through Google’s application programming interfaces (APIs). Other examples are
Microsoft Azure, Salesforce.com, Globus Nimbus, and Eucalyptus [3].

It has been estimated3 that spending on public cloud services represented a mar-
ket of US$132 billion in 2013, and that it would exceed US$244 billion by 2017. In
such a competitive market, resource management is crucial for seizing a significant mar-
ket share. A service-oriented distributed environment demands quality of service (QoS),
which must be accompanied by cost reduction for both service provider and users. This
raises new challenges which must be addressed [4, 5].

In the next section, basic concepts related to the management of cloud computing
are introduced, followed by a discussion on types of application that can be allocated
to cloud resources, as well as formalization of the cloud system and a description of
the problems of both application scheduling and virtual machine (VM) allocation. After
that, resource management and resource allocation in clouds are discussed, with a focus
on infrastructure providers, followed by an overview of techniques for the scheduling of
tasks of applications and the allocation of VMs. Challenges and future perspectives are
presented at the end of the chapter.

10.2 BASIC CONCEPTS

Clouds are capable of offering usually virtualized computing resources as dynamically
scalable services to users over the Internet, without any need to worry about the technical
aspects of resource management. According to the National Institute of Standards and
Technology (NIST), cloud computing can be defined as follows [6]:

Cloud computing is a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.

Cloud providers add resource management layers over computing clusters and grids
to make their infrastructure available as computing services to users, who ideally require
minimal management effort and knowledge to use such infrastructure [7]. These man-
agement layers conceal the physical infrastructure from the user through the adoption
of a series of automatic resource management actions. In this section, we introduce an
overview of the terminology of cloud computing as utilized in this chapter as well as of
some problems in cloud management and resource allocation.

10.2.1 Cloud Service Models

Resource management in clouds must consider the type of computing resources to be
offered as a service. Clouds are usually classified by the service offered; the most
common are software as a service (SaaS), platform as a service (PaaS), and infrastructure

3https://www.gartner.com/doc/2598217
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Figure 10.1. Management stack for different cloud service levels.

as a service (IaaS). In the SaaS model, the consumer simply utilizes an application pro-
vided by the cloud provider, having control neither over the application development nor
the host on which the application is run. Popular examples of this model include Google
Apps and Salesforce.com. The PaaS model makes available a framework in which con-
sumers can develop and deploy their own applications in the cloud. Examples of clouds
that offer this model are Google App Engine and Amazon Web Services. In the Infras-
tructure as a Service model (IaaS), a cloud provider offers computing resources and
administrative privileges for users, usually as VMs running on the provider infrastructure,
so that the users can control their computing environment, including software devel-
opment and deployment. The Amazon Elastic Compute Cloud (Amazon EC2), Globus
Nimbus, and the Eucalyptus are examples of this model. Other models also exist, such
as network as a service (NaaS)4 and database as a service (DbaaS) [8].

The levels of the management stack involved in the three types of service can be seen in
Figure 10.1. In traditional systems, the client is responsible for managing every layer in the
stack, from hardware configuration, including operating system management and appli-
cation deployment. For the IaaS service model, the provider is responsible for managing
only the lower layers in the stack, including hardware and software for networking, stor-
age, and processing, as well as virtualization technologies to share these resources among
cloud clients. However, the clients are responsible for managing the operating system and
its softwares (libraries, middleware), as well as data/databases and applications.

A PaaS provider must perform all the management performed by IaaS providers, as
well as managing the operating system, libraries, software, and middleware, thus offer-
ing to the client a development platform over a self-managed execution environment. In
SaaS, however, users have no responsability in managing any layer in the hardware/soft-
ware stack. They can utilize the software provided and change the software configuration,
but cannot change the software nor manage the infrastructure. This makes SaaS easy to
use, but harder to customize than PaaS- or IaaS-based cloud services.

A cloud provider itself can also be a client of another provider offering different type
of services. Figure 10.2 illustrates a scenario in which an SaaS (or PaaS) provider relies

4http://www.scaledb.com/
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on other IaaS providers to serve its customers. In this case, more than one level of service-
level agreements (SLAs) are necessary: one between clients and the SaaS provider, and
another between the SaaS provider and IaaS providers. Clearly, arrangements between
providers on more than two service levels are possible, as in the case of various types of
business.

Management problems involving different levels of SLAs must be dealt with, includ-
ing the dependencies of the upper layers on the services of lower layers. In order to offer
a service level guarantee to the user, the cloud provider must receive guarantees from
its lower level providers. Moreover, the cloud provider (the SaaS in Figure 10.2) must
consider its margin of profit when pricing its services, which depends on the agreement
it has with other providers.

10.2.2 Cloud Types

Cloud computing can be classified according to access policy. The classification pre-
sented here is generally associated with IaaS, although it can be extended to SaaS and
PaaS. Depending on the access to cloud resources, an IaaS provider is classified as public,
private, or hybrid:

• Public cloud offers virtualized computational resources as services to any user
who can access that service through the Internet; resources are provided in a
pay-per-use basis. Public IaaS cloud offers certain advantages because it has
computational capacity on demand, while avoiding upfront investment in process-
ing/storage pools for handling eventual peaks in demand. On the other hand, it
does not offer controlled access to physical machines and communication chan-
nels, which can results in a compromise of the security of critical applications or
sensitive data.
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• Private cloud is more of a virtualized cluster or computational grid which offers a
more transparent interface to the user. Usually restricted to a single organization,
it can provide fine-tuned performance as well as flexibility. Although it does not
completely avoid upfront investment, it can be implemented over an existing com-
putational infrastructure and prevent further capital investment. Moreover, it offers
better access control to computer resources, thus improving security, which could
be critical for the data security of an organization.

• Hybrid cloud combines public and private clouds. This type of cloud allows users
and organizations to keep using their private resources, yet provides access to
extended computational capacity when necessary using public cloud resources on
a pay-per-use basis. The flexibility in meeting demands for computational capac-
ity known as elasticity is fundamental in reducing costs during increased demands
in comparison to fully in-house computing infrastructures.

10.2.3 SLAs and Charging Models

The offering of cloud services is based on SLAs on a pay-per-use basis. In PaaS and SaaS,
the charge to users is often based on a variety of criteria such as predefined quantity of
hours of use of storage space and number of I/O requests. The IaaS model, however, is
often more flexible, allowing users to choose the types of resources as well as the model
of charging.

Depending on the SLA established between users and cloud providers, different
management systems will be necessary. In SaaS and PaaS, management should be able
to automatically increase or decrease computing power for a user according to his/her
demands. Monitoring entities, however, are essential to achieve automatic elasticity with-
out compromising QoS. Moreover, the ability to increase/decrease computing power
involves deploying and/or resizing VMs to cope with demands.

In IaaS, on the other hand, elasticity involves client choice: It is the client who
decides the capacity and number of VMs to be leased. Commonly leased examples of
VMs features include: CPU cores/speed, amount of RAM, amount of storage and access
speed, and network bandwidth. In this case, management entities are necessary to han-
dle VM allocation. They must act according to client demands for different VM types,
allocating these requests to physical machines on the basis of the policies defined by the
provider.

Actual VM allocation may depend on the model of charging selected by the client.
On-demand VM leasing establishes a price per hour or minute of use, and the user is
charged for each VM from its deployment to release. A reserved model provides a pre-
defined price for access to VMs on demand. The spot model, on the other hand, works
as a market, with VM prices varying with demand. In this case, the user offers a price
he/she is willing to pay for a type of VM, and it can be used as long as the actual price
remains lower than the initial offer. If demands on the provider increase, however, the
price can increase, and the provider has the right to deny access to VMs which, at least
momentarily, cost more on the market.
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10.2.4 Resource Allocation and Scheduling

The perspective of cloud providers and their clients are potentially conflicting in regard
to computing resources. On the one hand, the clients want to receive a high QoS for the
minimum payment, whereas cloud providers want to charge as much as possible.

Cloud clients who have their own computing resources are interested in making
the best utilization of their “free” resources, utilizing the public cloud resources only
when necessary. They want to maximize the utilization of local resources while mini-
mizing the monetary costs for the use of the public cloud, although they are unwilling
to sacrifice QoS. In hybrid clouds, the users must schedule applications, with the sched-
uler choosing how to schedule the application jobs on both private and public cloud
resources on the basis of information of various kinds of processing capacity of the pri-
vate and public cloud resources, job computing requirements, public cloud costs, and data
transfer costs.

Cloud providers, on the other hand, must allocate VMs in a way that respects SLAs,
yet reduces costs so they can make a profit. This cost reduction comes from shar-
ing resources among users and maximizing resource utilization. Thus, fewer physical
machines are needed; moreover, power consumption can be reduced by turning off idle
physical machines. When the demand increases, the cloud management system must
decide if new physical machines will need to be turned on to cope with the new VM
requests.

Resource allocation and scheduling are vital to both cloud users and providers, but
each has its own specifics. Different management entities and allocation algorithms are
necessary to make the best use of the cloud from both perspectives.

10.3 APPLICATIONS

Large hardware and networking capacities have leveraged a whole new set of applica-
tions, many of which can benefit from cloud computing. To explore private and public
cloud resources to the full extent when running applications, computing resources must
be efficiently used and resource allocation and scheduling play a fundamental role in
this efficiency. In particular, application scheduling should be able to decide on which
resource each application (or part) should be run, given the demands of the applications
and resource capacities [9–12].

The decisions made by the scheduler have a direct impact on the QoS of the applica-
tion. Taking application characteristics into consideration when allocating resources can
lead to a variety of approaches to the problem. These characteristics include cost of the
computation of jobs, data transfer between jobs, and data source localization, all which
can be accounted in the scheduler objective function and have important influence on the
decision-making process.

One conceptual difference arising from service-oriented computing is the invocation
of services instead of job dispatching. Service invocation assumes an already deployed
code with an interface to be called, and which will remain running after results are deliv-
ered so that service can be called again with different parameters. Job dispatching, on
the other hand, involves code that is to be transferred, run, and finished with the results
delivered to the user or to another application. This conceptual difference leads to certain
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distinct management needs, such as a service repository to control where each service
is already running and service deployment to transfer and deploy services across the
resources. In this chapter, we adopt the term task to refer to a job or a service invo-
cation, regardless of whether the service is already running or must be transferred and
deployed.

A user can submit different applications to run in the cloud. The simplest application
is a single task that must be run and results returned to the user. Such a single task may
or may not have parallel codes; but if it does, they can run on separate processors or
cores in the same machine. The user can also submit parallel tasks that can be run in
separate machines, commonly called bag-of-tasks (BoTs), because they can be run with
no communication with the other tasks. For example, parameter sweep applications are
independent tasks that can often be parallelized with no constraints, and job running
several times but with different input parameters.

Data transfers can have a strong impact on the running time of applications. These
can take place between different tasks, between a task and a data source, and between a
task and a user. When the tasks of an application are dependent data transfers between
these tasks are precedence-constrained by such transfers, forming a workflow. The topo-
logical ordering of workflows with dependent tasks that can be represented by a directed
acyclic graph (DAG) G = (V,E) with n nodes (or tasks), where ta ∈ V is a work-
flow task with an associated computation cost (weight) wta ∈ R

+, ea,b ∈ E represents a
dependency between ta and tb with an associated communication cost of ca,b ∈ R

+.
Various scientific workflows can be represented by DAGs, these include Montage

(Fig. 10.3a; from Ref. [13]); AIRSN (Fig. 10.3b; from Ref. [14]); CSTEM (Fig. 10.3d;
from Ref. [15]); LIGO (Fig. 10.3c; from Ref. [16]); and Chimera [17].

Variations in application types can also be found in the literature, including mixes
of independent and dependent tasks as in campaign scheduling [18], where one level
of independent tasks must finish running before the next level can start, similarly to
a concatenation of fork-join DAGs. In this type of application, the join task may not
even be a computer task, but rather a human-dependent one, such as setting up a new
experiment based on the results of the previous campaign. Other DAG-related varia-
tions include applications where the DAG can change itself during execution, due to the
presence of conditional tasks or loops in the DAG specifications, which can generate a
different number of tasks as a function of input parameters.

Different applications demand different scheduling algorithms and management
approaches in the cloud. Various such approaches to scheduling applications in clouds
are detailed in this chapter.

10.4 PROBLEM DEFINITION

This section contains a formalization of the system model, the scheduling problem, and
the VM allocation problem in cloud computing are formalized. The two problems must
be dealt in the resource management of clouds.

Figure 10.4 illustrates how entities that solve these problems act in resource alloca-
tion. Scheduling output can direct applications to VMs in four different states: (1) VMs
that are already allocated and running in the private cloud, (2) unallocated VMs in the
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Figure 10.3. Examples of DAGs representing workflow applications. (a) Montage; (b) AIRSN;
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private cloud, (3) allocated VMs in the public cloud, and (4) unallocated VMs in the pub-
lic cloud. Tasks scheduled to run on already deployed VMs (either in private or public
clouds) do not have to interact with the VM allocator, as their VMs are already running
on a given server. If, on the other hand, the scheduler decides that new, unallocated VMs
are necessary, it must determine which physical machines can be used for these VMs
in order to guarantee QoS. Thus, each submission is scheduled independently, and the
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scheduler sends the resource allocator a list of VMs to be created. The resource allocator
then maps these requests to the cloud infrastructure.

10.4.1 Infrastructure

Let I = {i1, . . . , im} be the set of m IaaS providers available to the users. Each cloud
provider i has a set Mi = {mi

1,mi
2, . . . ,mi

ni
} of physical machines in the system. Each

mi
k ∈ Mi is a 4-tuple mi

k = {ci
k, pi

k, qi
k, di

k}, where ci
k ∈ N

+ is the number of processing
cores, pi

k ∈ M
+ the processing capacity of each core, qi

k ∈ N
+ is the amount of memory,

and the 2-tuple di
k = {di

k,a, di
k,s} represents the amount of disk storage, di

k,a, and data
access speed, di

k,s. Physical machines in the IaaS i are connected by a set of links Li,
where li

h,j ∈ Li, with 1 ≤ h ≤ ni; 1 ≤ j ≤ ni, is the bandwidth in the link between the
resources mi

h and mi
j.

10.4.2 Service-Level Agreements

In IaaS, VMs are offered in accordance to SLA, which provides features of the VM to
be leased. The cloud provider usually defines a set of VM types and SLAs, and the user
chooses from these options the number of VMs and their types. The definition of an SLA
depends on the underlying hardware in the data center. In other words, the VM types
offered by provider i to cloud users rely on Mi and Li. Let Si = {si

1, . . . , si
o} be the set

of SLAs offered by IaaS provider i. Each si
j ∈ Si is a 7-tuple si

j = {ci
j, pi

j, qi
j, di

j , li
j, pi

j, oi
j}

offering different VM QoS for the number of processing cores ci
j, the processing capacity

of each core (pi
j), the amount of memory (qi

j), disk storage space and data access speed
(di

j = {di
j,a, di

j,s}), the bandwidth of the link (li
j), as well as price pi

j, and model for charging
oi

j. The lefthand side of Figure 10.5 illustrates the relation between provider infrastructure
and SLA in the context of scheduling.
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10.4.3 Scheduling

The scheduling problem is commonly defined as a 3-tuple α | β | γ; α describes the
execution environment, and has a single entry; β provides details about the proces-
sor characteristics and constraints; and γ describes the objective to be minimized; it
frequently has a single entry [19]. In this chapter, we are interested in the following prob-
lem [19]: α = Rm are nonrelated machines running in parallel. There are m machines in
parallel, and machine i can process task t at a speed of vi,t. Note that given two tasks t1

and t2 and two resources ri
1 and ri

2, vri
1,t1

> vri
2,t2

�=⇒ vri
1,t2

> vri
2,t1

, that is, the running
speeds of different tasks on different resources are unrelated.

Let T = {t1, t2, . . . , tn} be the set of tasks submitted by the users for execution. The
scheduler receives as input the application, T , and the set of SLAs available for each
cloud provider, S = ∪i∈ISi. The scheduler is a noninjective and nonsurjective function
Fs : T → S . The scheduler defines a multiset Rvm over S , that is, Rvm = (S, μ) where
μ: S → N>0. The multiset Rvm establishes the number of SLAs needed for each type
(i.e., the number and type of VMs to be used in the application schedule). Moreover, the
scheduler output includes information about the task sequencing on each VM type. This
information as a whole defines both the number and type of VMs needed as well as the
queue of tasks for each VM. The righthand side of Figure 10.5 provides an example of
scheduler output.

10.4.4 VM Allocation

VM allocation is of paramount importance for the best utilization of physical machines.
This allocation must comply with the provider objectives as well as fulfilling QoS
requirements specified in the SLAs.
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A VM allocation algorithm of a provider i receives as input the set of VMs, Rvm,
to be instantiated and the set of physical machines Mi available in the data center. Let
Ui = {ui

1, ui
2, . . . , ui

ni
} represent the utilization in the datacenter, where the 3-tuple ui

k =

{uci

k , uqi

k , udi

k,s} contains the number of resources currently allocated to existing VMs in

resource ik, namely number of cores (uci

k ), amount of memory (uqi

k ), and disk storage
space (udi

k,s). The VM allocation algorithm produces a mapping of each VM from Rvm to
a physical machine from Mi.

10.4.5 Optimization Techniques

To optimize the desired objective function, the scheduler and the VM allocator utilize
information about the current state of the system to guide the decision on tasks and VMs
should run. Information includes processing power, amount of volatile or nonvolatile
memory, and bandwidth. The weight of each of these bits of information depends on the
application or the objective function, as well as on the types of resources available in the
system.

Scheduling in general is an NP-Complete problem [19]; therefore, no algorithm
that optimally and deterministically solves the problem in polynomial time is known.
Some techniques attempting to approximate the optimal solution with polynomial time
complexity have been proposed. A few of the more common techniques and the type of
solutions provided are listed below:

• Heuristics: can produce solutions with low complexity and fast execution time;
however, they ocassionally produce solutions that differ significantly from the
optimal one.

• Metaheuristics: can obtain good quality solutions, but they take longer to run.
Execution time depends on the stopping condition (e.g., number of iterations)
imposed by the programmer/configuration. Moreover, they do not guarantee
bounds on the quality of the solution, and local optima are commonly taken as
the final solution.

• In Linear programming, the execution time and solution quality depend on the
relaxation of constraints and a reduction in the number of variables in the problem.
Heuristics can be adopted to reduce the search space, thus reducing the problem
size so that solutions can be found more rapidly.

• Approximation algorithms with low complexity and reasonable approximation
for generic problems are hard to obtain and involve tools for obtaining tight
bounds [20] to the exact solution. Approximation algorithms provide solutions that
guarantee quality bounds at some distance from the optimum. The more generic
the problem specification is, the harder it is to obtain a satisfactory approximation.

Numerous heuristics have been proposed in the literature for scheduling and resource
allocation. An overview of some of these approaches for resource allocation and
scheduling in clouds is presented next.
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10.5 RESOURCE MANAGEMENT AND SCHEDULING IN CLOUDS

In this section, we describe general solutions for scheduling and resource allocation in
clouds. The aim is not to present a complete survey of these problems, but to provide an
overview of existing approaches that can be extended to the cloud context.

10.5.1 Scheduling

As described previously, a scheduler maps tasks from the application submitted by the
user to computational resources in the system. Scheduling in clouds has one important
difference from scheduling in physical machines: the algorithm must consider the ability
of the system to “create” computer resources as needed, given the elasticity provided by
the cloud. In this section, we examine some well-known algorithms, and discuss how
they could be adapted to function in the cloud.

10.5.1.1 Independent Tasks. There are a handful of algorithms to schedule
independent tasks in distributed computing systems. Two traditional straightforward
approaches for the scheduling a set of tasks T = {t1, t2, . . .} are available: the ran-
dom and round-robin algorithms. Both work in a first-come first-served (FCFS) basis,
with the first task arriving, t1, being the first to be scheduled. They are more suitable
for homogeneous systems. Let Rvm be the set of VMs already rented (i.e., SLAs already
established). For each task in ti ∈ T , i = 1, 2, . . ., a scheduler random (T ,Rvm) randomly
takes a resource rj ∈ Rvm and sends ti to rj’s queue. A scheduler round-robin (T ,Rvm),
on the other hand, first transforms the Rvm into a circular queue, it then takes one task
from the incoming queue and sends it to execution on the next rj from the circular queue.
No information about the duration of tasks or the capacity of resources is needed for this
type of scheduling. Moreover, knowledge about the tasks queue length is not necessary,
since the number of tasks existing in the queue is not taken into account in scheduling
decisions.

From the client’s point of view, both random and round-robin algorithms are directly
applicable to scheduling in IaaS clouds over a set of already instantiated VMs. In order
to take advantage of the elasticity of the cloud, both would need support from an elas-
ticity management entity that decides when to lease new VMs (or release existing ones),
dynamically changing Rvm without the interference of the schedulers. Such an entity
could, for example, be invoked when the length of queues for resources execution sur-
passes a certain threshold. After that, one possible action would be to reschedule queued
tasks using the same algorithm, or to fill new VM queues up to the size of previously
existing VMs before resuming the original scheduling algorithm.

Algorithm 1 illustrates the utilization of a cloud management entity along with ran-
dom or round-robin schedulers. Figure 10.6 shows an example scenario: five tasks to
be scheduled using a random or round-robin algorithm, where three VMs are already
rented through SLAs established with IaaS providers. Assume that tasks 1, 2, and 3
are scheduled to the first, second, and third VMs available, respectively. After that, an
attempt is made to allocate task 4 on VM1, but the maximum threshold for the queue
(i.e., turnaround time for task 4) is exceeded. Therefore, the elasticity manager is called
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Algorithm 1 Random and round-robin adaptation for clouds
1: scheduler Fs = random OR round-robin
2: while T �= ∅ do
3: t = first task in T
4: select r from Rvm following scheduler policy
5: if queue(r) > thresholdmax OR queue(r) < thresholdmin then
6: Call elasticity management entity to determine new Rvm from S
7: Reschedule queued tasks
8: end if
9: end while

Set of tasks

54321

Queue(r) > threshold

New VM

SLAs

and
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models

- 2 type 1 VMs from IaaS 1
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Figure 10.6. Example scenario for Algorithm 1. Task 4 exceeds the resource queue threshold,

triggering a call to the elasticity manager to acquire a new VM.

to add a new VM to the pool, establishing a new SLA with an IaaS provider. As a con-
sequence, task 4 can be scheduled to this new VM and will finish before the threshold
is reached, and task 5 can also benefit from this new VM set. From this point on, a new
VM will be added if new tasks arrive and the threshold is again exceeded.

The round-robin algorithm can be also adapted for use in heterogeneous systems.
If relative performance among machines can be established, round-robin algorithm can
assign a performance value to each machine, and assign a number of tasks proportional
to this value, and advance in the circular queue. Moreover, both random and round-robin
algorithms can process BoTs as well as sequences of incoming tasks over time (i.e., in an
“online scheduling”, in which the whole set of tasks is not known beforehand). For online
scheduling, another common approach is to schedule the incoming task to the machine
that currently has the shortest queue, in accordance with a specific load-balancing
policy.

When tasks running time can be estimated, heuristics can utilize this informa-
tion jointly with an estimation of machine performance to improve the decision taken.
Two of the most well-known scheduling heuristics for BoT are the min–min and
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max–min algorithms [21]. Min–min first selects the task which can be completed in the
shortest time and schedules it to the machine that can finish it at this earliest time. This
is repeated until all tasks have been scheduled. Similarly, max–min selects first the task
that takes longest to run, and schedules it on the machine that can finish it most quickly.
Another well-known algorithm is suffrage [22], which establishes a value for a task that
is the difference between its minimum completion time and its possible second minimum
completion time. Tasks with the maximum suffrage are scheduled first. As with random
and round-robin algorithms, these heuristics can also be adapted following an approach
similar to that adopted in Algorithm 1. Several other heuristics exist and can be adopted
by the elastic management entity in clouds. A comparison of eleven heuristics for the
scheduling independent tasks can be found in Ref. [23].

10.5.1.2 Elasticity Management Entity. Elasticity provided by the use of
cloud resources increases and decreases the capacity available to cope with current
demands, as shown in Figure 10.7. The available computing power must be as close
as possible to the demand, considering the QoS requirements involved in providing the
resource. In this way, the elasticity management entity avoids both over provisioning in
low-demand periods and under provisioning upon peak demand, consequently reducing
costs.

The elasticity entity must be oriented by an objective function, which can either be
incorporated into a monitoring system that invokes the elasticity entity, or invoked by
the scheduler itself whenever more resources are necessary. In the first case, the mon-
itoring system must detect when the current system load is above the desired capacity
for handling the incoming workload and invoke a decision-maker in the elasticity entity
to decide which is the best type of VM to be leased at that time. In the second case,
the scheduler output computes the number and types of VM needed to cope with the
current workload submitted. In both cases, the elasticity entity is responsible for instan-
tiating the necessary VMs in the corresponding IaaS provider and preparing them to
run tasks.

Figure 10.8 illustrates the interactions and components of the elasticity manage-
ment entity. Such a decision to request more resources will be supported by information
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Figure 10.7. Desired elasticity versus demand in comparison to underprovisioning and over-

provisioning.
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Figure 10.8. Elasticity manager and its interactions in the management system.

maintained in a repository containing data about all resources currently available
(leased), including load and performance, as well as those which can be made available
(SLAs offered by IaaS providers). Objective functions commonly found in the literature
include the minimization of the application makespan and minimization of monetary
costs [5, 10, 24].

The elasticity manager must also be able to act over multiple IaaS providers in order
to manage VMs. Different providers have different management interfaces, which can
lead to a cloud lock-in problem if a single interface is utilized by the elasticity manager.
To avoid this problem, standardization efforts, such as the multicloud toolkit of Apache
JClouds5 can be utilized.

10.5.1.3 Dependent Tasks. Dependent tasks, as in directed acyclic graphs
(DAGs) and workflows, present a topological order which must be respected by the
schedule. Moreover, data transfer costs between tasks must be considered when scat-
tering them to the available resources. As a consequence, algorithms for independent
task scheduling are not directly applicable for the scheduling of dependent tasks, unless
some prior selection of tasks is carried out.

Schedulers for independent tasks can be utilized for DAGs if a ready task selec-
tion is performed. A ready task has all predecessors already scheduled. Therefore, by
construction, a set of ready tasks in a DAG is composed of independent tasks. At any
moment, an independent task scheduler can take a task from the ready set and sched-
ule it without violating precedences. By doing so, the scheduling of dependent tasks
is transformed into a sequence of the scheduling of independent tasks, as illustrated in
Algorithm 2.

5http://jclouds.apache.org/
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Algorithm 2 Dependent task scheduling using algorithms for independent task
scheduling

1: schedulerFs = independent task scheduler (e.g., Algorithm 1 with random or round-
robin)

2: G = DAG to be scheduled
3: while there exist a not scheduled task ta ∈ G do
4: T = set of tasks in G with all predecessors already scheduled
5: Call scheduler (T ,Rvm)
6: end while
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Figure 10.9. Example scenario for Algorithm 2. Ready tasks are selected to be scheduled inde-

pendently using the same technique from Algorithm 1. Tasks 4 and 6 trigger the elasticity

manager in this example.

Figure 10.9 shows an example of a scenario for Algorithm 2. The DAG is broken
into sets of independent tasks with the first comprising all the tasks at the first level of
the DAG. These tasks are sent to the scheduler as independent tasks, and then scheduled.
The next set of independent tasks is not, however, necessarily composed of all tasks at the
second level of the DAG, since a subset of the tasks at the first level can finish earlier, and
if so a new set of independent ready tasks can be immediately computed and scheduled.
The DAG is scheduled as a set of independent tasks, thus the elasticity manager can act
in the same way as in the example in Figure 10.6.

The approach presented in Algorithm 2 is used by HTCondor DAGMan.6 The main
drawback of this approach is that tasks are scheduled regardless of their dependencies,
since these are not considered during resource selection, even if the scheduler consid-
ers resources performance and task duration (e.g., min–min, max–min, and suffrage).
In systems such as hybrid clouds and multiple IaaS providers, which resources can
be geographically distant, application characteristics (e.g., high edge density and high

6http://research.cs.wisc.edu/htcondor/dagman/dagman.html
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communication-to-computation ratio (CCR) can make data transfer times a dominant
part of the application makespan. If data transfer times are disregarded during scheduling,
the results can slow down the application rather than speeding it up.

Special DAG scheduling algorithms have been proposed to consider communica-
tion delays during the execution of an application. One technique commonly used for
the scheduling of dependent tasks is list scheduling, in which tasks are first prioritized in
a list according to an objective function, and then taken in order of priority for schedul-
ing. This prioritization often takes dependencies and running times of tasks into account,
resulting in higher priorities for tasks on longer paths in the DAG. One well-known exam-
ple of a scheduling list for DAGs is the Heterogeneous earliest finish time (HEFT) [25].
HEFT considers heterogeneous tasks in heterogeneous nonrelated systems, and has been
reported to provide good results [26–28]. Moreover, HEFT has been modified by other
authors [29, 30].

HEFT and similar algorithms are usually focused on the single objective of
makespan minimization. With the emergence of utility computing and clouds, a variety
of budget-oriented scheduling algorithms have been proposed, including heuristics [31]
and meta-heuristics [12]. Makespan minimization may not always be the main issue in
scheduling, such as when an application must run within a certain timeframe, although
speed is not necessary an issue. By setting a maximum finish time for the application,
that is a deadline, the user can control his needs for results coming from applications
being run. In clouds, there is usually a trade-off between cost and makespan: the user
pays more for a faster resource to run applications.

Running applications with deadline constraints in clouds (e.g., hybrid clouds and/or
multiple IaaS providers) requires a scheduler that is both makespan- and cost-aware,
transforming the scheduling problem into a cost minimization within a maximum
makespan. The hybrid cloud optimization cost (HCOC) algorithm [24] approaches this
problem by scheduling the DAG on the private cloud resources (“costless” resources)
by use of a DAG scheduling algorithm (e.g., HEFT [25] or PCH [32]), and then itera-
tively selecting tasks to be run in public clouds while the deadline is obeyed. The DAG
scheduling algorithm utilized is typically a list scheduling and tasks to be sent to public
clouds are iteratively selected based on their priorities. A generalization of this approach
is presented in Algorithm 3.

Figure 10.10 presents an example of scenario for Algorithm 3. First, the DAG is
scheduled on the costless resources, and a deadline violation is detected. Task 1 is the
highest priority task, and it is rescheduled during the first iteration of the algorithm.
Then, assuming the deadline is not satisfied with this first iteration, in the second iter-
ation task 3, which is the task with the second highest priority in this hypothetical list
scheduling, is also added to the set T . The final schedule is achieved with tasks 1 and 3
on VM3 from a public cloud provider. The elasticity manager is invoked after the dead-
line is satisfied in the scheduling, and only after that the VM3 leased through the IaaS
provider interface. Moreover, after task 3 finishes at VM3, it transfers the necessary data
to its successor (task 6), and then VM3 can be released.

Lines 8 and 10 in Algorithm 3 can vary depending on the scheduler and policies uti-
lized. Different algorithms use different prioritization schemes in line 3, and the sequence
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Algorithm 3 Dependent task scheduling in clouds with deadline constraints
1: schedulerFs = dependent task scheduler (e.g., HEFT, PCH)
2: G = DAG to be scheduled
3: Rc = costless VMs available (e.g., in private cloud or grid)
4: Schedule G in Rc using scheduler
5: T = ∅ //stores tasks to reschedule; initially empty
6: while makespanG ≥ deadlineG do
7: Rvm = Rc

8: tp = task from G with highest priority in the list scheduling
9: T = T ∪ {tp}

10: Rpub = select VMs from public cloud according to a resource selection policy
considering the set T of tasks to be rescheduled

11: Rvm = Rc ∪ Rpub

12: reschedule tasks in T to Rvm using scheduler
13: end while
14: Call elasticity management entity to allocate/setup the necessary VMs from Rvm to

compose the hybrid cloud
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Figure 10.10. Example scenario for Algorithm 3. Tasks 1 and 3 are rescheduled to the VM3 in

a public cloud provider.

of tasks rescheduled can be different. In line 8, the resource selection policy can be
adapted according to the application and/or system characteristics. For example, HCOC,
utilizes a multicore-aware policy to select new VMs to be leased according to the number
of parallel tasks being rescheduled. This multicore-awareness also takes into account the
processor performance and prices to reduce application running costs.

Yu et al. [33] have also proposed a deadline-driven cost-minimization algorithm.
The Deadline-Markov decision process (MDP) algorithm breaks the DAG into parti-
tions, assigning a maximum finish time for each partition (subdeadlines) according to
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the deadline given by the user. Based on this, each partition is scheduled to the resource
which results in both lowest cost and lowest estimated finishing time.

10.5.2 VM Allocation

While cloud clients focus on scheduling applications, providers focus on client requests
for VM allocation. Thus, IaaS cloud providers (both public and private) are concerned
with the characteristics of the VMs requested by the client (expressed by an SLA),
and then allocating such a VM to the available physical machines (e.g., a datacenter),
according to a pre-defined objective. Allocation is important in orchestrating VMs in the
computational infrastructure [34].

Objective functions for VM allocation commonly include maximization of the
utilization of physical machines [35, 36], reducing power consumption [36, 37], and min-
imization of network traffic [38], as well as increasing security [39]. Allocation decisions
should also consider the QoS requirements in accordance with the SLAs established with
the cloud clients [40]. To achieve this, the cloud provider can allocate a VM to a selected
physical machine, but it can also try to migrate VMs already allocated if this would
significantly improve the achievement of objectives. Therefore, the cloud management
system must be able to detect when VM migrations are necessary. Such a necessity can
arise when users deallocate VMs and leave physical resources partially allocated. Real-
locating VMs can improve resource utilization and allow physical machines to be turned
off to reduce power consumption.

A general view of VM allocation is presented in Algorithm 4. The algorithm receives
a set of VMs to be allocated (Rvm), a set of physical machines available (M), and the
current utilization of physical machines (U ). The algorithm allocates all VMs to physical
machines by first selecting a VM to be allocated, and then selecting a physical machine
that can run this VM. This selection is based on the VM characteristics (according to the
SLA), and the characteristics of the physical machine, as well as on the resources cur-
rently unallocated in physical machines (i.e., utilization U ). This algorithm also serves
as a basis for resource reallocation when a need is detected by monitoring the amount of
unallocated resources of physical machines. In this case, the set of VMs to be allocated,
Rvm, would comprise all VMs currently allocated.

Other algorithms that follow the reasoning of Algorithm 4 can work for different
objective functions. Beloglazov and Buyya focus on energy efficient allocation [37]; they

Algorithm 4 Virtual machine allocation overview
1: Rvm = set of VMs to be allocated to the physical machines M
2: U = current utilization of physical machines in M
3: while there are not allocated VMs in Rvm do
4: VM = virtual machine from Rvm //selected according to a heuristic
5: r = select_machine (VM, M, U ) //selected according to an objective function
6: Update ur: information about resources already allocated to VMs in machine r
7: end while
8: Turn off idle physical machines
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propose heuristics that consolidate virtual machines by constantly calling a VM realloca-
tion algorithm, using live migration to switch off underutilized hosts. On the other hand,
physical machines with high utilization can also trigger VM migration in order to avoid
SLA violations.

VM migration can be triggered as a result of the monitoring of three situations:
(1) users switching VM off, (2) users switching VMs on, and (3) monitoring physical
machine utilization. The first two cases are covered, respectively, by periodically calling
the VM reallocation algorithm when the number of unallocated resources in physical
machines surpasses a threshold and there are a sufficiently large number of unallocated
resources distributed over the physical machines to handle the new VM requests. In the
first situation, reallocating VMs will probably lead to switching off physical machines,
while in the second, the reallocation can avoid the turning on of new physical machines
to cope with demands. The third situation requires the use of a more sophisticated mech-
anism to detect hotspots of utilization in VMs to decide whether it is possible to avoid
overconsolidation [41]. Overconsolidation means that the amount of resources allocated
to VMs on a host exceeds the physical resources available in that host. Thus, if the
applications running in all VMs use all the resources available in the VMs, performance
bottlenecks can be created and SLAs will potentially be violated.

10.6 CHALLENGES AND PERSPECTIVES

Cloud computing resource management can be partially handled by adapting techniques
developed for other distributed systems such as grids and clusters. Some new man-
agement problems arise from handling any type of data coming from the omnipresent
computing devices connected to the Internet. Here, we discuss some of the challenges
and perspectives during cloud computing management for the next few years.

10.6.1 Scheduler and VM Allocation Cooperation

Currently, resource allocation involves in two separate phases: application scheduling
and VM allocation. These two phases are often treated as independent of each other since
a client is uninformed about the underlying physical system to be used for an applica-
tion, and the cloud provider has no knowledge about the application requirements when
allocating VMs. One way to improve QoS, as well as resource utilization is to connect
application scheduling (client) with VM allocation (provider). By feeding the VM allo-
cator with information about application requirements, VM allocation algorithms could
consider the computational/networking demands of applications in each VM, thus being
able to allocate VMs better to physical machines. This need for cooperation may result
in privacy issues and challenges, although these could be resolved in different ways,
depending on the relationship between client and provider.

10.6.2 Big Data

In the era of Big Data, large datasets are constantly generated and often accessed and pro-
cessed to summarize information. One challenge in this scenario is when/where to move
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these large datasets to achieve faster application execution/response time and reduce
costs. This involves making decisions about where application (or parts of applications)
will be executed, depending on input/output data size and frequency of use. Some tasks
may involve large datasets that are often utilized; in this case, it may be better to leave
this data ready for use in the cloud to prevent incurring costs for transferring the data, to
potentially even higher than those of running the task. In other cases, it may be worth-
while to remove the task output from the public cloud and regenerate it. This depends
on the data size, computational demand for its generation and how often this data is uti-
lized, as well as the cost of storage of the data in the cloud. Scheduling algorithms that
consider data transfer times, data transfer costs, and storage costs in this context will be
challenging yet necessary.

10.6.3 Greeness

A current concern in cloud computing is energy consumption. This can be reduced in
cloud data centers by energy-efficient hardware design, but data center management
efforts can also play a role. Two main aspects of energy-aware data center manage-
ment are VM consolidation and green networking. VM consolidation allows physical
machines to be turned off while not in use, while green networking techniques allow the
switching off of network equipment, at least or partially, or reduction of power consump-
tion by reducing port operating speeds. Both VM consolidation and green networking
involve decisions to improve utilization and reduce network usage during allocation.
Both profiling or cooperation between VM allocation and schedulers can help to achieve
a greener usage of the cloud infrastructure.

10.6.4 Scheduling Multiple Workflows

The problem of scheduling a single workflow on clouds has been studied extensively
[12, 42–45]. Nevertheless, the scheduler must also handle the concurrent execution of
multiple workflows this issue has yet been barely considered [46–48]. When multiple
workflows share the same execution environment, they compete for the same set of com-
putational resources. In such a situation, there may be conflicts which must be dealt with
to guarantee the efficiency of the workflow management system as a whole. For exam-
ple, it is important that the execution of a workflow fulfil the objective function of that,
but also that the agreed upon QoS be guaranteed. Therefore, besides coping with dataset
management for each workflow, a scheduling algorithm should consider fairness in the
sharing of resources as equally as possible among workflows. Moreover, datasets uti-
lized/generated by one workflow may be reutilized by other workflows to be run within
a limited timeframe. The decision on when to maintain or remove such datasets from the
cloud will have an impact on workflow execution time and costs.

10.6.5 Hybrid Clouds and Uncertainty

Hybrid cloud management by itself is a challenge, as discussed in this chapter. One
complicating factor is the uncertainty present in the public communication channels
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traversing the Internet and interconnecting the hybrid cloud components. A decision to
compose a hybrid cloud is based on current computing demands, while the distribu-
tion of applications in that cloud must take into account data transfers to/from public
clouds. Estimation of data transfer time is strongly related to the available bandwidth,
which cannot be precisely predicted for the application execution horizon. Often, band-
width is inaccurate, as is the bandwidth availability predicted. The uncontrollable and
unpredictable of bandwidth variation in public Internet channels makes the application
execution times in hybrid clouds prone to variation. These uncertainties in the estima-
tion of bandwidth availability in communication channels must be considered by an
application scheduler when deciding whether to lease VMs from public clouds to run
applications, specially dependent tasks and applications involving large data sets.

10.7 CONCLUSION

Resource management and scheduling in cloud computing can be seen from two per-
spectives: viewpoint of the client and that of the provider. While the client is focused
on running his/her applications with the best possible QoS and lower costs, the provider
is willing to provide these services for the client with the agreed on QoS. Application
scheduling and management by the cloud user involve resource management, with the
user responsible for keeping track of the resources leased and current demands to deter-
mine if new machines must be leased to maintain QoS or if the currently leased machines
can be released to reduce costs. VM management also encourages cost reduction by
maximizing the utilization of physical infrastructure. The intrinsic conflict in these two
objectives brings independent challenges to both entities. Cooperation between the two
parties can, however, result in a gain–gain scenario, where application information could
be explored by VM allocation to improve QoS while reducing costs.

In this chapter, we have provided an overview of aspects and requirements in
resource management and application scheduling. We have discussed how these two
frameworks can be handled in the cloud computing context and presented a summarizing
promising research topics. Both a cloud computing model and a resource management
model were presented along with VM allocation and scheduling issues. Moreover, we
have discussed how existing resource allocation approaches can be extended to incorpo-
rate the elasticity intrinsic to cloud computing. A brief discussion of challenging aspects
facing further developments in cloud computing research is also presented.
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Security is one of the highest concerns with cloud-based services. Intrusion detection
and prevention systems (IDPS) have been widely deployed to enhance cloud security.
The use of software-defined networking (SDN) approaches to enhance system secu-
rity in a virtualized cloud networking environment has been recently presented [1, 2].
These approaches incorporate IDS/IPS agents in cloud servers by reconfiguring the cloud
networking environment on-the-fly to counter malicious attacks. However, the perfor-
mance and feasibility studies have not been well investigated. In this chapter, we provide
a comprehensive study on the existing cloud security solutions and analyze its chal-
lenges and trend. Then we present an OpenFlow-based IDPS solution, called FlowIPS,
that focuses on the intrusion prevention in the cloud virtual networking environment.
FlowIPS is a software-based approach that implements SDN-based control functions
based on Open vSwitch (OVS). FlowIPS provides network reconfiguration (NR) features
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by programming POX controllers to enable the FlowIPS mitigation approaches. Finally,
the performance evaluation of FlowIPS demonstrates the feasibility of the proposed
solution, which is more efficient compared to traditional IPS approaches.

11.1 INTRODUCTION

11.1.1 Cloud Network Security Issues

Cloud computing technologies have been widely adopted today due to its resource
provisioning capabilities, such as scalability, high availability, efficiency, and so on.
However, security is one of the critical issues [3] that have not been fully addressed.
Attackers may compromise vulnerable virtual machines (VMs) to form botnets, and then
deploy distributed denial-of-service (DDoS) attacks or send spams, which have become a
major security concern of using cloud services. We highlight four critical cloud network
security issues:

1. Abuse and Nefarious Use of Cloud Computing: IaaS providers offer their cus-
tomers the illusion of unlimited compute, network, and storage capacity. By
abusing the relative anonymity behind these registration and usage models, spam-
mers, malicious code authors, and other criminals have been able to conduct their
activities with relative impunity. Platform-as-a service (PaaS) providers have tra-
ditionally suffered most from this type of attacks; however, recent evidence shows
that hackers have begun to target infrastructure-as-a service (IaaS) vendors as
well [4]. Future areas of concern include password and key cracking, launching
dynamic attack points, hosting malicious data, botnet command and control, and
so on.

2. Malicious Insiders: The threat of a malicious insider is well known to most
organizations. In traditional computer networking systems, security protection
is usually deployed at the edge of the system, for example, the firewall system.
However, an attacker can break the firewall or DMZ and get access into the inter-
nal network, these attack consequences can be very servere. Since all resources
in the same domain is trusted among each other by default, insider attacks can
cause more damage than outsider attacks.

3. Data Integrate: Storage is one of the most important and common scenarios in
clouds. Therefore, compromising stored data, for example, deletion or alteration
of records without a backup of the original content, becomes another critical secu-
rity issue in clouds. The authentication and authorization of the data must securely
guarantee that unauthorized or unauthenticated parties must be prevented from
gaining access to privacy data. The threat of data compromise increases in the
cloud, due to the number of and interactions between risks and challenges that
are either unique to cloud, or more dangerous because of the architectural or
operational characteristics of the cloud environment.

4. Virtualization Hijacking: One of the significant characteristics of the cloud
computing is the virutalization, which enables better resources utilization and
fine-grained resource isolation. IaaS vendors provide their services by sharing
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the physical infrastructure in a scalable fashion. However, the underlying
components building up the infrastructure (e.g., CPU and GPU) were not ded-
icated designed to deliver strong isolation capability in a multi-tenant environ-
ment. To address this issues, hypervisor is designed and introduced to fill the gap
between the physical infrastructure and guest operating system. However, the
existing hypervisor is not flawless and can still be compromised in that it enables
users to gain access to inappropriate level of control to guest OS. A defense in
depth strategy is recommended, and should include compute, storage, and net-
work security enforcement and monitoring. Strong compartmentalization should
also be employed to guarantee that individual customers do not impact the oper-
ations of other tenants running on the same cloud service provider. Customers
should not have access to any other tenant’s actual or residual data, network
traffic, and so on.

11.1.2 Cloud Security Approach Design Challenges

Here, we describe two major design requirements that should be considered to establish
a secure cloud networking environment:

1. Robust Network Architecture Design: Before building the cloud system, a robust
security system design is highly desired. The following criteria should be fol-
lowed when designing the cloud network architecture:

• Network isolation should be provided for multiple purposes. For example, data
networks should be separated from the management network because it is not
secure to make users have privilege to access the cloud management network.
Moreover, different networks needs to be separated from each other physically
by using different network devices, e.g., switch, or virtually by deploying the
network virtualization technology, such as VLAN, GRE tunnel, and so on.

• The system should allocate sufficient resources based on the usage of system
components. For example, storage network usually should be allocated with
more bandwidth than management network because only control messages are
sent over management network while Gigabit-sized VM images may be trans-
mitted over the storage network. Besides network resources, host resources
should be also considered. For example, the rabbitMQ, that is, the message
queuing system, should be allocated with better resources due to its higher pro-
cessing workload than other servers, otherwise, it will become the bottleneck
and introduce vulnerability for the whole system.

• They system should be enabled with high availability (HA), for example, redun-
dant or backup, to avoid the single point (link) failure. The HA can be reflected
in either network or host perspective. It is recommended to enable the HA for
the services that especially can be directly accessed by users.

The challenge of building a robust network architecture is that there cannot
be a perfect system design, which means, system architect or administrator can
only design a near perfect system and always have other security solutions to
prevent the system from being impact by any possible malicious behavior.



“9780471697558c11” — 2015/3/20 — 12:02 — page 272 — #4

272 CLOUD SECURITY

2. Intrusion Detection and Prevention System (IDS/IPS): An intuitive solution
to address the cloud security issues is to deploy an IDPS (IDS/IPS), for
example, Snort [5], Suricata [6], and so on. Detecting and alerting natures of
IDS solutions demand the human-in-the-loop to inspect the generated security
alerts, which cannot respond to attacks in a prompt fashion. Recently, the SDN
technologies provide a programmable networking environment, which enables
the IPS to become a key research area in the cloud automated defensive mech-
anism. In general, the IPS can be constructed based on IDS. For instance, Snort
can be configured as inline mode and work with a common firewall system, for
example, Iptables, to implement the IPS in the cloud networking environment [7].
However, there are several issues in the Snort+Iptables based IPS system, and our
presented solutions target at addressing these issues:

• Latency: The IPS detection engine usually uses a buffer to queue incoming
packets for inspection purpose, and a packet will be dropped when the incom-
ing packets exceeds the buffer’s capacity. This mechanism ensures the IPS for
packets inspection and possible blocking actions on each network packet. IPS
usually consumes more cloud system resources compared to IDS, and it also
increases the packet delivery delay due to the packets inspection procedure.

• Resource Consumption: Enabling new services in the system will consume
more resources and downgrade the system performance. For the service that
is highly interactive with all the network traffic generated in the cloud virtual
networking system, resources utilization becomes very critical since the secu-
rity services availability depends on it. Under the same hardware resources, the
one with better processing capability, for example, detection rate, has better
resources consumption performance.

• Network Reconfigurations: Programmable virtual networking system in the
cloud environment provides the IPS a flexible way to reconfigure the virtual
networking system and provide a secure traffic inspection and control. How
to incorporate the deep-packet inspection (DPI) with fine-grained traffic con-
trol in the cloud virtual networking environment to reduce the intrusiveness to
normal traffic is a key research challenge.

11.1.3 Arrangement of the Book Chapter

In the rest of this book, chapter is organized as follows. Section 11.2 discusses the techni-
cal background of the SDN (i.e., OpenFlow) and intrusion detection system. Section 11.3
presents the existing solutions of the cloud security. Section 11.4 disscusses the trans-
formation from the existing cloud security solutions to the next-generation SDN-based
solutions. The FlowIPS design and process flow are presented in Section 11.5. The
FlowIPS is compared with traditional Snort/Iptables IPS from principle perspective in
Section 11.6. NR is proposed based on the proposed architecture in Section 11.7. The
thorough evaluation is conducted in Section 11.8. Finally, the future work is discussed
in Section 11.9 and this book chapter is concluded in Section 11.10.
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11.2 TECHNICAL BACKGROUND

In this part, we will discuss the technical background of the SDN and IDPS that will be
utilized in the proposed SDN-based cloud security solutions.

11.2.1 Software Defined Networking

SDN is a new concept to evolve traditional networking technologies by separating the
control plane and data plane. OpenFlow is the most representative protocol implementing
the SDN concept to manage SDN enabled devices, and defines standard control interfaces
implement packet-forwarding rules in OpenFlow switch (OFS)’s flow tables, which can
handle data packets in line rate. As shown in Figure 11.1, OpenFlow introduces a central-
ized and separate controller and defines standard interfaces to the controller for installing
the packet-forwarding rules in the flow table, which can rapidly handle incoming packets.
In the OpenFlow architecture, a controller executes all control tasks of the switches and
is also used for deploying new networking frameworks, such as new packet forwarding
protocols or optimized cross-layer packet-switching algorithms. When a packet arrives
at an OFS, the switch processes the packet in the following three steps:

1. It checks the header fields of the packets and attempts to match any entry in the
local flow table. If there is no any matching entry in the flow table, the packet
will be sent to the controller for further processing, for example, installing a flow
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Figure 11.1. OpenFlow architecture.
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table rule for forward this traffic flow in the future. There can be multiple flow
control rules in the controller. It follows a best matching procedure to pick the
best rule.

2. It then updates the byte and packet counting information associated with the rules
for statistic logging purposes.

3. Once a matching rule is decided, the OFS takes the action based on the corre-
sponding flow table entry, for example, forward to a specific port, or drop.

OFS separates the control plane and data plane by virtualizing the network control as
a network OS layer. The network controller is considered as the software engine to deploy
the control functions that can be implemented through automatic control algorithms.
With these features, dynamic NR can be implemented in the cloud virtual network-
ing environment. There are several OFS controllers available following the OpenFlow
standard, such as NOX/POX [8]. Both OVS and OFS are OpenFlow protocol enabled
switches. OVS is implemented as a software OFS in the cloud environment, where OVS
is usually implemented in the privilege domain of a cloud server, for example, Domain
0 of XenServer [9] and the host domain of KVM [10]; while we use OFS to represent
physical OFS.

11.2.2 Intrusion Detection and Prevention System

Snort is a multi-mode packet analysis IDS/IPS tool, which basically consists of sniffer,
packet logger, and data analysis tools. In its detection engine, rules form signature to
judge if the detected behavior is a malicious behavior or not. It has both host and network-
based detection engines, and it has a wide range of detection capabilities including stealth
scans, OS fingerprinting, buffer overflows, back doors, and so on. Network Intrusion
Detection System (NIDS) mode has been widely used and focuses only on detection;
thus, the action to be taken when the rules are matched are usually log or alert, without
disabling the ongoing attacks. The combination of Snort and Iptables is the most common
way to implement the Snort IPS mode that is also known as inline mode [11]. The IPS
mode is different from IDS mode in that the IPS can prevent the attacks from happening in
addition to intrusion detection. As mentioned in Section 11.1, one of the main challenges
of IPS is the performance issue since Snort serves as a traffic proxy and every packet
needs to wait until Snort tells if it is safe to pass or block. In Section 11.8, we will be
discussing the performance issues of snort under IDS mode and IPS mode.

11.3 EXISTING SOLUTIONS

The related and representative security solutions are discussed in the following way:
we first discuss the traditional security solution for general attacks in cloud environ-
ment, and then investigate the general SDN-based security solutions. We then investigate
the solutions addressing the security issues of SDN itself. At last, we discuss current
SDN-enabled IDS/IPS solutions that is highly related to the proposed SDN-based IPS in
this book chapter.
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11.3.1 Traditional Non-SDN Solutions

IDS and IPS are traditional efforts to monitor and secure cloud computing system. As
an efficient security appliance, IDS can utilize signature-based, statistical-based, and
stateful protocol analysis method to achieve its detection capability. Furthermore, IPS
can respond detected threats by triggering variety prevention actions to tackle mali-
cious activities. In Ref. [12], the authors introduce an effective management model to
optimally distribute different NIDS and NIPS across the whole network. This work dif-
fers from single-vantage viewpoint NIDS/NIPS placement, it is a scalable solution for
network-wide deployment.

A stateful intrusion detection system is introduced in Ref. [13]. This paper applies
a slicing mechanism to divide overall traffic into subsets of manageable size and each
subset contains enough evidences to detect a specific attack. As a distributed network
detection system, after the system is configured, it is not easy to reconfigure and migrate
the detection sensors for users on demand.

In Ref. [14], the authors propose a Host-based intrusion detection system that
deploys IDS to each host in the cloud computing environment. This design enables
behavior-based technique to detect unknown attacks and knowledge-based one to iden-
tify known attacks. However the data are captured from system logs, services, and node
messages, this system cannot detect any intrusion which running on the VM. To apply
VM compatible IDS, another architecture is provided in Ref. [15]. It extends the capa-
bility of typical IDS to incorporate VM-based detection approach to the system. The
provided IDS management can detect, configure, recover the VMs, and prevent VMs
from visualization layer threats. However, this is not a lightweight solution, and multiple
IDSs instances are needed to build this system.

FireCol [16] is a dedicated flooding DDoS attacks detection solution implemented
in traditional network system. In this design, IPSs are distributed in the network to form a
virtual protection rings with selected traffic exchange to detect and defend DDoS attacks.
This collaborative system addresses the hardly detection problem and single IDS/IPS
crashing problem under overwhelming traffic. However, this method is not a lightweight
solution such as [17], and the flexibility and dynamism is limited in this system and the
deployment and management is complicated.

In Ref. [18], the authors propose a dynamic resource allocation strategy to counter
DDoS attacks against individual cloud customers. When a DDoS attack occurs, they
employ the idle resources of the cloud to clone sufficient intrusion prevention servers for
the victim in order to quickly filter out attack packets and guarantee the quality of the
service for benign users simultaneously. However, this paper focused on how to allocated
idle resource for IPS but did not discuss how the IPS prevent the DDoS attack.

Similar to the FireCol, [19] presents a multiple layers game-theoretic framework for
DDoS attack and defense evaluation. An innovative point in this work is the strategic
thinking of attacker’s perspective benefit the defense decision maker in this interaction
between attacks and defenses. However, this framework is not suitable for deploying
dynamic network threats countermeasure and has no real-time security solution for real-
time attacks.

Packet marking technique is widely used for IP traceback even tracing back the
source of attacks is extremely difficult. In Ref. [20], the authors present a marking
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mechanisms for DDoS traceback, which injects a unique mark to each packet for traffic
identification. As a probabilistic packet marking (PPM) method, it has a potential that
leads attackers to inject marked Packet and spoofed the traffic. Reference [21] is another
important traceback method by using deterministic packet marking (DPM). The victim
could track the packets from the router which splits the IP address into two segments.
Differ from previous methods, in Ref. [22], the authors present an independent method
to traceback attacker based on entropy variations. However, most of these works do not
handle the IP spoofing very well and packet modification is needed to implement these
methods.

11.3.2 SDN-Based Security Solutions

OpenFlow-enabled solutions provide the programming capabilities with high flexibility
and scalability, which have been largely deployed to enable new services or enhance the
agility for networking systems [23–25]. Combining the OpenFlow with other opensource
packages creates new networking service opportunities. QuagFlow [26] integrates the
Quagga opensource routing suite with OpenFlow to provide a centralized control over
the physical OFS and Quagga router in VM. However, using OpenFlow as a way for
security purpose, especially in cloud environment, is still in an early stage. SDN has
been researched to establish monitoring system [27–29] due to its centralized abstract
architecture and its statistics capability. OpenSafe [28] is a network monitoring system
that allows administrators to easily collect usage statistics of networking and detect mali-
cious activities by leveraging programmable network fabric. It uses OpenFlow technique
to enable some manipulations of traffic, such as selective rules matching and arbitrary
flows directing, to achieve its goal. Furthermore, ALARMS is designed as a policy lan-
guage to articulate paths of switches for easily network management. OpenNetMon [29]
is another approach for network monitoring application based on OpenFlow platform.
This work is implemented to monitor per-flow metrics to deliver fine-grained input for
traffic engineering. Benefiting from the OpenFlow interfaces that enable statistic query
from controller, the authors proposed an accurate way to measure per-flow throughput,
delay and packet loss metrics. In Ref. [27], the authors proposed a new framework to
address the detection problem by manipulating network flows to security nodes for inves-
tigation . This flow-based detection mechanism guarantees all necessary traffic packets
are inspected by security nodes. For dynamism purpose, provided services could be
easily deployed by users through a simple script language. However, all three aforemen-
tioned studies [27–29] do not further discuss the countermeasure for intrusion malicious
activities but only provide the monitoring service.

FortNox [30] is a Security Enforcement Kernel to address the conflict of rule to
secure OpenFlow network. Different rules are inserted by various OpenFlow applica-
tions can generate rule conflict, which has potential to allow malicious packets bypass
the strict system security policy. FortNox applies a rule reduction algorithm to detect
conflicts and resolves a conflict by assigning authorization roles with different privi-
lege for the candidate flow rule. This kernel overcomes the potential vulnerability of
OpenFlow rules installment and enables an enforceable flow constraint to enhance SDN
security. The authors another research, Fresco, [31] implements an OpenFlow Security
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Application Development Framework based on Security Enforcement Kernel. It encap-
sulates the network security mitigation in the framework and provide an APIs to enable
legacy application to trigger FRESCO module. However, this work does not have
the capability to defend and protect network assets independently because predefined
policies are needed to drive this system.

CONA [32] is a content-oriented networking architecture build on NetFPGA-
OpenFlow platform. In this design, hosts request contents and agents deliver the
requested contents while the hosts can not. Under the content-aware supervision, sys-
tem can perform prevention by: (1) collecting suspect flows information from others
agents for analysis, and (2) applying rate limit to each of relevant agents to slow down
the overwhelming malicious traffic.

11.3.3 Security Issues of SDN

With the emerging of SDN, researchers start to concern the security of SDN itself. In
Ref. [33], a replication mechanism is brought up to handle the weakness of centralized
controlled network architecture, which is that one single point of failure could lead a
downgrade of network resilient for the whole system. CPRecovery component is able
to update the flow entry in secondary controller dynamically and secondary controller
can take control the switch automatically when primary controller is down due to over-
whelming traffic or DDoS attack. This work could be considered as a solution for DDoS
attack; however, simple replication mechanism hardly promise that all the secondary con-
trollers are able to tolerate high pressure attack even more backups could be deployed in
this system.

AvantGuard [34] is an SDN extension, which enhances the security and resilience
of OpenFlow itself. To address the two bottlenecks, scalability, and responsiveness
challenge, in OpenFlow, this paper introduces two new modules: connection migration
module and actuating trigger module. The former component is efficient to filter incom-
plete TCP connection by establishing a handshake session before packets arriving the
controller. TCP connections are maintained by migration connection module to avoid
the threats of TCP saturation attack. Actuating trigger module enables the data plane
report network status and active a specific flow rule based on predefined traffic condi-
tions. This research improved the robustness of SDN system and provided additional data
plane information to control plane to acquire higher security performance.

11.3.4 SDN-Based Intrusion Detection and Prevention System

As we discussed before, IDS and IPS are critical security appliance to protect cloud
computing network. When we apply SDN to the cloud system, the decoupled switch
with separated control plane and data plane, creates a network OS layer to allow pro-
grammable interface and open network control. This feature leads a flexibility and
dynamic NR, which can efficiently and effectively control the network and enable secu-
rity manipulation for higher level guards. However, only a small number of works are
done to implement SDN-based IDS and even fewer works on SDN-based IPS.
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L-IDS [35] is a learning intrusion detection system to provide a network service
for mobile devices protection. It is able to detect and respond to malicious attack with
the deployment of existing security system. It is more like a network service that can
transparently configured for end-host mobility and enable already known countermea-
sures to mitigate detected threats. The authors do not provide a comprehensive solution
for detected attack and more evaluations are needed to figure the most efficient response
action for threats.

In a recent work [2], the authors present an SDN-based IDS/IPS solution to deploy
attack graph to dynamically generate appropriate countermeasures to enable the IDS/IPS
in the cloud environment. The originality and contribution of this work mainly comes
from using the attack graph theory to generate a vulnerability graph and achieve the
optimal decision result on selecting the countermeasure. SnortFlow [1] is another recent
work that focuses on the design of OpenFlow-based IPS with preliminary results.

Improving the accuracy and efficiency of NIDS is another important research that
has attracted many researchers in this area. For example, selective packet discarding is
proposed in Ref. [36]. They built up the prototype by using Snort to improve the accuracy
of NIDS. In Ref. [37], the authors show good throughput performance of IDS/IPS by
proposing a string matching architecture.

In Ref. [38], the authors propose a mechanism called OpenFlow Random Host
Mutation (OFRHM) in which the OpenFlow controller frequently assigns each host
a random virtual IP that is translated to/from the real IP of the host. This mecha-
nism can effectively defend against stealthy scanning, worm propagation, and other
scanning-based attack.

We believe the dynamic and adaptive capability of the SDN framework could benefit
the development of IDPS. This area is worth to be well explored for SDN-enabled cloud
system to build suitable and on demand IDS/IPS system. Thus, we have been setting our
research target on establishing the SDN-based IDPS in cloud environment. This research
outcome includes design and implementation of a full lifecycle SDN-based intrusion
detection and prevention system in cloud virtual networking environment.

11.4 TRANSFORMING TO THE NEW IDPS CLOUD SECURITY
SOLUTIONS

11.4.1 Limitations of Existing Solutions

After investigating the traditional cloud security solutions and SDN-based one, we find
the existing solutions still have limitations in the following aspects:

• The detection solutions cannot efficiently detect and monitor the traffic. The most
common way for detecting the traffic is to configure the SPAN port mirror, which
means that all the traffic need to be duplicated and forwarded to a port in which an
IDS is directly attached. Doubling the ongoing traffic definitely downgrades the
performance such as delay, available bandwidth, and so on.

• The prevention solutions are not sufficiently flexible. The most common way to
prevent the attack traffic is to drop it. However, all detection engine has false
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positive and false negative (FN), which means drooping actions on all suspect
traffic may kill the good traffic. Other prevention solutions, for example, OFRHM
[38], is not performed in a reactive way. It proactively performs the moving target
defense to prevent the malicious traffic, which does not work for the malicious
insider case.

• The comprehensive cloud security solutions including both detection and preven-
tion can be hardly found.

11.4.2 New IDS/IPS in Cloud Virtual Networking Environments

A straightforward approach to implement the IDS/IPS is to deploy existing solutions
such as Snort-based IDS/IPS solutions without changes in clouds. In Ref. [11], Rafeeq
discusses an approach on how to implement the Snort and Iptables-based IPS in clouds. In
[7], the authors classify the types of traditional IPS based on desktop, host, and network,
where the network-based IPS usually involves security inspections such as DPI.

SDN-based security approaches in a cloud virtual networking environment have
been considered as the trend for future virtual networking security solutions [39]. In our
recent work [2, 40], we present an SDN-based IDS/IPS solution using attack graph tech-
niques to guide the cloud security management system to dynamically generate appro-
priate countermeasures to enable the IDS/IPS services. SnortFlow [1] is another recent
work focusing on the design and evaluation of OpenFlow-[41] based IPS in the cloud
environment. These existing solutions demonstrated that Snort can be used to detect
intrusions in clouds; however, there are still a few important issues that current work has
not addressed and can be regarded as the guidance for designing future IDPS solutions:

• Will SDN-based IDS/IPS has better performance than traditional snort-based IPS?
• How to establish an efficient software-based SDN solution in the cloud virtual

networking?
• How to design the SDN-based IDS/IPS networking architecture that provides a

dynamic defensive mechanism for clouds?

To address the aforementioned enumerated issues, we proposed a high-level archi-
tecture to realize the IPS by integrating Snort and OpenFlow [41] components in Ref. [1].
By utilizing the power of SDN OpenFlow, the cloud networking environment can be
dynamically reconfigured based on the detected attacks in realtime. Our prototyping
is established based on the Open Virtual Switch (OVS) and Xen-based [42] cloud
environment. The evaluation results show that the proposed system is feasible in the
cloud environment and provides valuable guidance for re-designing FlowIPS and further
conducting thorough evaluations.

11.5 FLOWIPS: DESIGN AND IMPLEMENTATION

FlowIPS provides several salient features to advance the security research and devel-
opment for cloud computing. It presents a new design of IDS/IPS based on SDN
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approaches, that is, using programmable OVS. It supports a dynamic defensive mech-
anism supporting programmable NR.

In the rest of this section, we present the designed architecture and components of
the proposed FlowIPS, and the processing flow. The architecture and components are
presented in Figure 11.2.

11.5.1 System Components

Cloud Cluster hosts cloud resources and the proposed FlowIPS. A cloud cluster contains
one or multiple cloud servers with major cloud-based OS installed. All major cloud-
based OS with SDN feature enabled, such as OpenStack, CloudStack, Xenserver, KVM,
and so on, can be compatible with our proposed system. In this work, we demonstrate
and establish the system based on Xenserver that is an efficient parallel virtualization
solution. There are two types of domains in Xen-based cloud: Dom 0 and Dom U. Dom 0
is the management domain that belongs to the cloud administrative domain. We introduce
one Dom U dedicated for administrative purpose to place controller and log component;
while all other Dom Us are for hosting VMs for users. Dom U resources are managed by
Dom 0 and must go through Dom 0 to access the hardware.

Open vSwitch (OVS) is a software implementation of the OFS. OVS is usually
implemented in the management domain or privilege domain of cloud servers. In our
established prototype, OVS is natively implemented in the Dom 0 of XenServer cloud
system. Inter-VM communication within the same physical server is controlled by the
OVS without exposing the traffic out of the physical box. Each Dom 0 in Xenserver
runs a userspace daemon (flow path) as well as a kernel space module (fast path). In
userspace, there are two modules; they are ovsdb-server and ovs-switchd. The module
ovsdb-server is the log-based database that holds switch-level configuration; while the
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module ovs-switchd is the core OVS component that supports multiple independent
datapaths (bridges). In Figure 11.2, the ovs-switchd module is able to communicate with
the ovsdb-server module through the management protocol. They communicate with
the controller through OpenFlow protocol, and with the kernel module through netlink
protocol. In the kernel space, the kernel module handles packet switching, lookup and
forwarding, tunnel encapsulation and decapsulation. Every virtual interface (VIF) on each
VM has a corresponding virtual interface/port on OVS, and different VIFs connecting to
the same bridge can be regarded on the same switch. For example, VIF 1.0 (the virtual
port of eth0 on VM from Dom 1) has the layer 2 connection with VIF 2.0 (the virtual port
of eth0 on VM from Dom 2). OVS forwards packets based on the entries in flow table.

Snort is a multi-mode packet analysis IDS/IPS tool, and it has better performance
compared to many other products [43]. It has several components such as sniffer, packet
logger, and data analysis tools. In its detection engine, rules form attack signatures to
judge if the detected behavior is a malicious behavior or not. It has both host- and
network-based detection engines; and it also has a wide range of detection capabilities
including stealth scans, OS fingerprinting, buffer overflows, back doors, and so on. To
establish the IPS in the cloud environment, the first step is to interface the detection
engine Snort to the cloud networks management component, that is, OVS. In a cloud
server, Snort can be implemented in Dom 0 (privilege domain) or Dom U (unprivileged
domain) based on Xen virtualization techniques. In this architecture, we deploy the Snort
in Dom 0, which makes it easily sniff the traffic through the software bridge in OVS. All
the logging information generated from the Snort is output into a CSV file so that the con-
troller can access in real time. The Snort component can be simply replaced with other
IDS solutions, for example, Suricata, because the mitigation and detection is decoupled,
which is different from the traditional IPS solution (e.g., Snort+Iptables). The perfor-
mance evaluation of Snort and Suricata in the cloud is discussed in Ref. [43], the overall
performance of Snort is better than Suricata, which is also the reason why we choose
Snort as the candidate for the detection engine in this implementation.

Controller is the component providing a centralized view and control over the cloud
virtual networks. The controller contains three major components, FlowIPS daemon,
alert interpreter, and rules generator. FlowIPS daemon is mainly for collecting alerts gen-
erated from Snort agents deployed in Dom 0. Alert interpreter takes care of parsing the
alert and targets the suspect traffic. Then, the parsed and filtered information is passed to
rules generator who is in charge of the rules to be configured on OpenFlow-enabled soft-
ware or hardware switches. A database is used to store the generated rules and switches’
original states for future operations like resuming functions, and so on.

11.5.2 FlowIPS Processing Flow

The processing flow of the FlowIPS is illustrated in Figure 11.3. The network traffic is
generated from the cloud resources, that is, VMs. All network traffic must be generated
from the VIFs that are attached to virtual bridges in OVS. The virtual bridge can be
regarded as the virtual switch, which means all VIFs connecting to the same bridge are
on the same network. The Snort agent in Dom 0 has the advantage of directly detecting
through the bridge. When any traffic matching the Snort rules is alerted into the log file,
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the FlowIPS daemon will fetch the alert information from the CSV log file in real time.
Then, the alert interpreter will parse the alert information to get the current network
security situation. Finally, the rules generator will generate the OpenFlow flow table
rule entries and push them to the OVS to update its flow table. Therefore, the following
suspect traffic with respect to flow table entries in the OVS can be swiftly handled with
a deployed countermeasure.

11.6 FLOWIPS VS SNORT/IPTABLES IPS

Motivated by the limitation of the representative traditional IPS, for example, Snort/
Iptables IPS, FlowIPS is designed to take advantages of SDN to provide security coun-
termeasures to increase the flexibility and efficiency. This section mainly discusses the
comparison between the proposed FlowIPS and the Snort/Iptables IPS focusing on the
FlowIPS working mechanism and new capabilities.

Tractional IPS system is not specially designed for cloud virtual networking environ-
ment, but for a general network environment. The major difference between the general
network environment and cloud virtual networking environment is that the latter one
usually has difference network domains, that is, management network domain and user
network domain. Those two domains are at difference layers, and therefore have dif-
ference efficiency. User network is on top of the management network, which means
the lower layer can be expected with better efficiency. Thus, we design the FlowIPS
especially for cloud virtual networking environment and take advantages of OVS in
management domain in order to achieve better performance.
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The compared two IPS solutions are different in terms of the working mechanism
and operation levels. Figure 11.4 indicates the scenario on how the Iptables IPS (light
lines) and FlowIPS (dark lines) detect and prevent attacks. The number beside each
line represents the sequence of the packet flow. Solids lines and dotted lines represent
the data traffic and control traffic, respectively. For Snort/Iptables IPS, Snort needs to be
configured as inline mode and recompiled with Iptables. Besides detection engines, one
of most important components of the Iptables is the NFQUEUE, which is an Iptables
and Ip6tables target delegating the decision on packets to a userspace software. It issues
a verdict on a detected packet. Snort/Iptables IPS can not be placed in the Dom 0 of
Xenserver because Snort/Iptables IPS is a higher level proxy-based solution comparing
with the OVS-based IPS solution, which means that it needs to be placed in the middle
of two or more communication end virtual hosts. Thus, Snort/Iptables IPS needs to be
placed at the same level with all VMs at Dom U. Moreover, it is noted that OVS in Dom
0 is the same as network stack in OS kernel level, which means that OpenFlow feature is
not enabled when the flow table is empty. As shown in Figure 11.4, when attacking pack-
ets generated from attacker’s virtual interface, all the packets need to be passed through
Dom 0 before being forwarded to the destination (line 1). When Snort detects any sus-
pect traffic, it needs to inform the NFQUEUE to take the actions defined in the rules.
The Iptables IPS needs to consult the controller who sends out control messages to issue
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command (lines 2 and 3). Finally, the suspect packet is handled at the kernel space at
Dom U and will be either forwarded to victim or dropped (line 4).

Unlike the Snort/Iptables IPS, FlowIPS deploys both the detection engine and the
packet processing module in Dom 0. This is an efficient approach especially when han-
dling large amount of traffic. When packets arrive at Dom 0 (line 1), Snort detection
engine is able to sniff the bridges, and only few traffic between OVS at Dom 0 and the
controller at Dom U is generated (lines 2 and 3). After the controller update the flow table,
all traffic with the same pattern will be processed at OVS fast path in Dom 0 (line 4).
From the Figure 11.4, it is also obvious that packets in Snort/Iptables IPS scenario need
to be forwarded in and out the Dom 0 twice, while the FlowIPS only needs once to fulfill
the same task. Thus, due to the IPS working mechanism, FlowIPS should significantly
outperformance any other Dom U IPS solution especially in cloud virtual networking
environment, which will be proved in Section 11.8.

11.7 NETWORK RECONFIGURATION

NR is a means to reconfigure the network characteristics including topology, packet
header, QoS parameters, and so on. With the SDN concept enabled in the cloud vir-
tual networking environment, NR can be applied to construct the IPS system. Major NR
actions are summarized in Table 11.1, including the following actions:

• Traffic Redirection (TR) can redirect the traffic to a secure appliance (e.g., DPI
unit, Honeypot) by rewriting the packet header. TR is usually implemented by
using MAC/IP address rewriting. Controller can push entry to flow table which
can take packet header rewriting action on matching packets.

• QoS Adjustment (QA) is a very efficient way to handle flood type of attacks. OVS is
able to adjust the QoS parameters of any attached VIF. After lower the TX/RX rate,
suspect attack traffic will generate less impact on the network and hosts nearby.
Sometimes, QA can be configured to work with other NR like traffic isolation.

• Traffic Isolation (TI) is different from the TR in that TI provides an isolated virtual
networking channel separated from others, for example, separated virtual bridges,

TABLE 11.1. Network
reconfiguration actions

No. Countermeasure

1 Traffic redirection
2 QoS adjustment
3 Traffic isolation
4 Filtering
5 Block switch port
6 Quarantine
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isolated ports or GRE tunnel. Malicious traffic will be only impact any host on its
isolated virtual channel and will not impact other normal traffic.

• Filtering is similar with the filter in Iptables, but they are different in that filtering
in NR will handled packets at OVS kernel space and will not forwarded to a remote
controller. MAC/IP address change is a very straightforward way to prevent the
victim from being attacked by the malicious traffic. The default IPS action, that
is, drop, can be also regarded as a filtering rule that drop the matching packets.

• Blocking switch port actions can be set up in the flow table as filtering rules.
Some attacks are performed by exploring a certain port, especially a public service
port. By blocking those ports, the attack can be prevented as the attacking path is
disconnected.

• Quarantine is a comprehensive approach to do the isolation in cloud virtual
networking environment. It works similarly with TI, but it isolates the suspect
network resources (not just the suspect traffic). Another difference between the
normal traffic isolation and quarantine is that more flexible self-defined policies
can be applied in quarantine mode. Quarantine can be also regarded as the superset
of many NR set. For example, the system can quarantine suspect network targets
(VMs) with only ingree permission and without egree permission. Thus, such VM
can only receive traffic but can not generate traffic to the network.

11.7.1 Representative NR Actions

Before introducing the NR actions, the default action taken by the IPS is blocking or
dropping the malicious traffic, which can be regarded as filtering function we described
in Table 11.1. Since NIDS incurs FP and FN when judging the network packets, decisions
such as dropping packets may incurs high FP or FN. In this section, we present two
representative NR actions besides the default IPS action, TR and QoS adjustment (QA).
The reason why we exclude the traffic isolation, block switch port, is because they can
be performed with similar ways, for example, rewrite packet header. And quarantine is
a comprehensive solution that can be performed by combining several individual action.
Thus, we only discuss the default NR, that is, dropping, and other two NR actions, which
are displayed in Figure 11.5.

11.7.1.1 Traffic Redirection. There are three ways to implement the TR based
on OVS in a cloud environment: MAC address rewriting, IP address rewriting, and
OVS port rewriting. When detection engine detects any suspect packet, the controller
firstly pushes the OpenFlow entry (i.e., matching packet header fields and correspond-
ing actions) to OVS to update the flow table. IP and MAC addresses changes are done
by flow table when certain packets are matching specific entries. Then corresponding
actions will be taken for matching packets. Actions can be set as changing on any header
field of the flow table, for example, source IP, destination IP, source MAC, destination
MAC. TR mostly depends on the destination address (DA) field. When destination IP
or MAC address is changed, the OVS will forward the packet to the changed destina-
tion address in the packet header. This NR function is especially useful when dealing
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with the suspect packets, which cannot be determined as malicious. Suspicious packets
are expected not to forward to a possible victim but a detection site for further check-
ing, for example, applying DPI or sending to a honeypot. As shown in Figure 11.5, the
block represents the corresponding flow table fields that TR may change. Moreover, IP
and MAC field rewriting can be combined with other NR function to implement many
network function, for example, NAT.

Beside the MAC and IP address change, there is another way to realize the TR, port
rewriting. This method is also natively enabled by the OVS architecture. As shown in
Figure 11.2, each bridge created in an OVS can be regarded as a virtual switch. All VM
VIFs are connected to virtual bridges through virtual port (i.e., virtual interface). Thus,
by forwarding any packet to the virtual port, the VM VIF that connects to that virtual port
will be able to receive the forwarding packets. Through this mechanism, FlowIPS is also
able to set any virtual port as the output port of any packet to implement the TR function
without changing the packet header. One of benefits of using port rewriting is that any
packet header will not be changed while TR is being realized, which is efficient and
useful to some components (e.g., security appliance) when collecting original network
data for further learning.

11.7.1.2 QoS Adjustment. QA is a desired feature when dealing with flood
type of attack, for example, DoS and DDoS. When one or multiple victims are under
stress from receiving a huge amount of traffic from one or multiple sources that can not
be confidently determined as attackers, it is always expected to slow down the current
extremely fast flow and to determine if the traffic is malicious or not after further inspec-
tion. In general, there are two ways to implement the QA, reset the QoS parameters on
either VIF or port on OVS. Setting the QoS limitation on VIF or OVS port has different
applied scenarios. When setting the QoS limitation on VIF, it is necessary to first locate
the packet source, for example, the attacker. Thus, the number of suspect attackers would
better not be large. On the other hand, when there is a DDoS attack on the network, the
attack source may be a large set, which means it is infeasible and impractical to locate
all zombie attackers and adjust their VIFs. To solve this issue, we introduce a smart way
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to implement the QoS for such situation, by limiting the incoming port on OVS. When
any packet arrived at OVS, it must have an event port also called in port, as shown on
the flow table in Figure 11.5. We can limit the QoS of that incoming port so that any
arriving packet exceeding the QoS limit will be dropped without further process, which
significantly enhances the performance of QA. Also, attacker may deploy IP spoofing
technology to modify the source IP address of attacking packets to avoid being traced
back. Thus, an intuitive approach is to modify QoS parameters. It is also possible to inte-
grate the QA with TI, for example, forward the packet into a VLAN with specified QoS
limitation. Here, we do not discuss the the QoS model used by FlowIPS, and we only
investigate in the capability provided by FlowIPS.

11.7.2 NR Selection Policy

In Figure 11.3, there is a component in FlowIPS controller called rules generator. The
rules generator is designed to choose NR and generate the corresponding OpenFlow rules
based on the detection engine’s alerts. The rules can be generated based on different
algorithms that are not our focus here. Based on two representative NRs we mentioned
above and one default drop action, we summarize the IPS action selection policy in
Table 11.2.

Degree of confidence (DoC) represents the degree of how confident the detection
engine believes the traffic is a malicious one. Since one of the biggest challenges of NIDS
is to reduce the FN and FP, it is impossible for a detection engine to detect attacks with
100% accuracy. When the traffic is suspected and the detection engine can not draw the
conclusion that it is definitely the malicious traffic, it is wise to choose the appropriate NR
to mitigate the potential attack consequence. In this article, the cost means the resources
consumption in the system when taking countermeasure actions. Various countermeasure
actions consume different amount of resources due to the frequent OpenFlow operations,
for example, updating flow table, taking OpenFlow actions. In practice, certain types of
NR can be establish automatically to respond to a particular attack scenario.

In general, a packet dropping action is the default NR for whitelist-based counter-
measure approaches, and it has the lowest cost since the packet match the entry in flow
table can be established easily. This countermeasure usually implies high DoC to prevent
attackers from introducing malicious traffic into the cloud system.

TR is appropriate for the traffic with medium DoC. When FlowIPS detects possible
attacking traffic with a medium DoC, the traffic can be redirected to a secure appli-
ance, for example, DPI proxy or Honeypot for further inspection and learning. After
the FlowIPS inspects the traffic, the traffic can be possibly forwarded to the original

TABLE 11.2. FlowIPS actions selection guidance

Major actions DoC Cost Preferred scenario

Drop High Low Any determined malicious traffic
TR Medium Medium Attacking traffic requiring further inspection
QA Low Medium Attacks with overwhelmed traffic, e.g., DoS
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destination or take other actions, for example, drop. Using TR, the suspect traffic will
not be forwarded to the original destination until a further process is done. Since TR
needs to use packet header or OVS port rewriting technology for every single suspect
packet matching the flow table entry, it costs more resource than simply drop action.

QA has two ways as we mentioned earlier, VIF-based QA and virtual port-based QA.
We are mainly focusing on the virtual port-based QA since it can be applied to a broad
range of scenarios. QA is preferred to be taken for traffic with lower DoC than TR since
the malicious packets with lower DoC can be sent to the original destination. Packets
with low DoC can not be determined as malicious. Thus, such traffic does not need to be
dropped or redirected. QA incurs similar overhead compared to the TR approach since all
the packets need to be handled by the OVS. QA is a good approach to mitigate resource
consumption attacks, such as DDoS attacks.

11.8 PERFORMANCE COMPARISON

After implementing the FlowIPS described in Figure 11.2, we present a comparison of
the performance of proposed FlowIPS and one traditional IPS candidate, that is, Iptables-
based IPS. For fair comparison, FlowIPS deploys just the default NR action (drop)
since Snort/Iptables IPS does not have additional NR capabilities besides drop. All the
implementation and evaluation is conducted on a Dell R510 Server with two Intel Xeon
Quad-core processors and 32 GB Memory total.

Figure 11.6 evaluates the IPS forwarding capability under overwhelmed workload.
The IPS itself is set as the proxy of two virtual end hosts. We use hacking tools [44] to
initiate the DoS attack toward the IPS target at a fixed rate of 150,000 packets per second
as the interference source. For demonstration purpose, we choose two major DoS attacks
as candidates, which are ping of death (PoD) and SYN flood attack. To measure the IPS
health traffic forwarding capability, a VM sends packets to another one via IPS at various
rate, i.e., packets per second. In traditional IPS solution, DoS packets are first captured
by the IPS detection engine that further matches the rules and takes drop action on the
packets. In the FlowIPS approach, the OVS fulfills the same task as Iptables does but also
handles packets in a different and more efficient mechanism. After Snort finds packets
matching an attack’s signature, the controller is able to be aware of the current threats
in real time by parsing CSV log file and then pushes corresponding flow entries into
the flow table. After flow table is updated, the malicious traffic can be handled by the
OVS fast path that can dramatically increase the system performance. From Figure 11.6,
FlowIPS under both type of attacks has almost 100% forwarding rate, which means that
all normal traffic can be properly forwarded even the FlowIPS is under the significant
stress. For Snort/Iptables IPS it has about 70% and 40% success forwarding rate under
SYN flood and PoD attacks, respectively. The reason why IPS SYNFlood has better
performance over IPS PoD is because the PoD attack packets are averagely bigger than
SYNFlood ones and therefore consume more resource from the IPS than the SYNFlood
scenario.

In Figure 11.7, we evaluate the alert generation capacity of both IPS and FlowIPS
under flood interference. This metrics also states how IPS can process the attacking
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packets from security perspective. To evaluate this performance, we generate two dif-
ferent types of attacks, which are DoS flooding attack acting as the interference source
and ICMP flood attack acting as an potential threat to be tested. This evaluation mainly
indicates whether IPS and FlowIPS can generate alert under high workload stress or
interference. The figure shows the successful alert generation rate of ICMP attack under
DoS attack interference. It suggests that alert generation of traditional IPS is impacted
by DoS interference and most resources of IPS system are used to handle DoS attack
therefore the performance of alert generation rate decreases as the ICMP attack speed
increases. When the speed of the ICMP attack reaches to 15,000 packets per second, IPS
can only generate 13.72% alerts of total ICMP attack. On the other hand, FlowIPS is
able to efficiently avoid interference from DoS flooding attack due to OVS capability, so
it can successfully alert all the threats which are sent at the speed of 15,000 packets per
second. When the speed of the ICMP attack reaches to 30,000 packets per second, the
performance of FlowIPS start decreasing, and when the speed of ICMP attack increases
to 300,000 packets per second, Snort agent in FlowIPS is not able to capture packets and
launch alerts because the snort detection engine itself almost reached its threshold.

Thus, the evaluation of the proposed IPS validates the analysis mentioned in
Section 11.6. The FlowIPS has better network and security performance, especially in
cloud virtual networking environment.

11.9 OPEN ISSUES AND FUTURE WORK

Even though the evaluation results in previous section show expected results. There are
still several issues that FlowIPS cannot address. First of all, the intrusion detection sys-
tem deployed in this system is a signature-based detection engine, which means that the
detection capability is limited. Some attack behaviors that do not fall into any signa-
ture pattern, for example, DDoS attack, are not able to be efficiently detected by using
the signature based introduction detection system. Secondly, the current IDS is planted
in the management domain of the cloud virtual networking environment and different
detection engines are logically disconnected from each other. This is also an critical
issue because some distributed and collaborative attacks, e.g., DDoS attack, will also
escape from the detection engines without appropriate sychronization among distributed
detection engines. Last, how to interpret the alert and generate the prevention strategy
efficiently is also one of the top concerns to improve the proposed system.

Therefore, based on the previous open issues, the future work of FlowIPS involves
the following three aspects: (1) Signature- and anomaly-based detection: Beside the sig-
nature based detection engine, it is expected to incorporate the anomaly-based detection
as well. Thus, the majority of malicious behaviors will be efficiently captured. (2) Syn-
chronization: Currently, there is only one Snort detection agent in the system. We are
going to introduce more detection engine placed in different servers and collect alerts
from all of them, which further help to generate the NR rules by correlating some alerts.
(3) Algorithms: optimized algorithms are required in alert interpreter module, rules gen-
erator, and snort agent partition to increase the efficiency of proposed FlowIPS without
breaking down the detected vulnerable service.
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11.10 CONCLUSION

In this chapter, we summarize the issues and design challenges of cloud network security
and comprehensively study the existing work of cloud security. Then, we propose an
OpenFlow-based IPS called FlowIPS in the cloud virtual networking environment. It
inherits the intrusion detection capability from Snort and flexible NR from OpenFlow.
FlowIPS is firstly compared with traditional IPS from principle perspective and then
through real-world evaluation. NR actions are also designed and developed based on
OVS and POX controller in cloud virtual networking environment. The evaluation results
show the performance difference between the proposed FlowIPS and Iptable/Snort IPS,
and therefore validate the superior of proposed solution.
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12.1 INTRODUCTION

In recent years, cloud computing has emerged as a successful model to offer computing
resources in an on-demand manner for large-scale Internet services and applications.
However, despite the success of cloud computing, many companies are still reluctant to
embrace the cloud, mainly because of the lack of hard guarantees on the survivability and
reliability of the offered services. As a result, cloud providers are urged to put in place
strategies to deal with failures, mitigate their impact, and improve the fault tolerance of
their infrastructures in order to ensure high availability of services.

Recent reports and studies have highlighted the devastating impact of failures and
service outages on any enterprise in terms of profitability, reputation, and even viability.
During the last couple of years, service outages have affected millions of online cus-
tomers around the world [1]. Although the root causes of such outages may differ (e.g.,
software bugs, hardware failures, unexpected demand, human mistakes, denial of service
attacks, and misconfiguration), the consequences can be disastrous for many businesses.
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Obviously, the impact of service downtime varies considerably with the application and
the business [2]. For some critical applications, the cost of downtime can run between
$84,000 and $108,000 per hour [3].

Even for less-critical services, recurrent outages can damage the company’s reputa-
tion. Although it may not be possible to directly assess monetary loss due to reputation
impairment, there is no doubt that it impacts customer’s loyalty, which in the long term
affects the revenue and even viability of an enterprise. In North America alone, IT down-
time cost businesses more than 26 billion dollars in revenue in 2010 [2]. As more and
more critical services run on the cloud, ensuring high availability and reliability of the
cloud resources has become a vital challenge in cloud computing environments.

This chapter provides a comprehensive study of fundamental concepts and tech-
niques related to survivability and reliability in cloud computing environments. It first
lays out key concepts of the cloud computing model and concepts related to survivabil-
ity, and then it presents an overview of the outcomes of recent analyses of failures in
the cloud. Finally, it reviews and discusses existing techniques aimed at improving fault
tolerance and availability of cloud services. The ultimate goal is to develop a compre-
hensive understanding of state-of-the-art solutions for improving cloud survivability and
reliability, and to provide insights into the critical challenges to be addressed in the future.

12.2 BACKGROUND

In this section, we first provide a brief overview of the cloud computing paradigm. We
then review the fundamental concepts related to fault tolerance and survivability. These
concepts have been well studied in the computer industry, and they can be easily applied
to the systems that make up cloud computing environments.

12.2.1 Cloud Computing Fundamentals

In recent years, cloud computing has arisen as a cost-effective platform for hosting
large-scale Internet services and applications. In typical cloud environments, the main
stakeholders are: the cloud provider (CP), service providers (SPs), and end users. The
cloud provider owns the physical infrastructure and leverages virtualization technology
to partition the available resources and lease them to multiple service providers [4]. Each
SP then uses the leased resources to deploy its services and applications and offer them
to end users through the Internet.

Currently, CPs like Google Compute Engine [5] and Amazon EC2 [6] only offer
computing and storage resources (i.e., virtual machines) without any guarantees on net-
work performance. The lack of such guarantees results in variable and unpredictable
performance and also several potential security risks as applications can impact each
other [7].

To address these issues, recent research proposals have advocated offering both com-
puting and networking resources in the form of virtual data centers (VDCs) (also known
as virtual infrastructures) [7–9]. Basically, a VDC is made up of virtual machines (VMs)
and virtual switches connected through virtual links. Virtual machines and switches are
characterized by their capacity in terms of processing, memory, and disk size, whereas



“9780471697558c12” — 2015/3/20 — 12:03 — page 297 — #3

BACKGROUND 297

virtual links provide guaranteed bandwidth and eventually bounded propagation delay.
From the cloud provider’s perspective, VDCs are a means to ensure better performance
isolation between different user services. In addition, as the resource requirement of each
VDC is provided by SPs, CPs are able to take more informed management decisions and
develop fine-grained resource allocation schemes. At the same time, SPs’ benefit from
using VDCs by taking full advantage of the cloud computing model (particularly, in terms
of costs) with assured guarantees in terms of the computing and networking resources
allocated for their applications and services, as well as greater security, thanks to better
isolations between VDCs.

One of the key challenges faced by cloud providers is the VDC embedding (also
known as mapping) problem, which aims at allocating computing and networking
resources to the VMs and virtual links with the goal of achieving several objectives:

1. Maximize the revenue generated from the embedding of VDCs.

2. Minimize VDC request queuing delay, which is the time an SP has to wait before
its requested VDC is allocated.

3. Minimize the energy consumed by the physical infrastructure, which is usually
achieved by consolidating VMs in a minimal number of servers.

4. Provide guarantees on (or at least maximize) the availability of the resources
allocated to VDCs.

Existing VDC embedding schemes typically attempt to achieve simultaneously more
than one of these objectives, which may sometimes conflict with each other. In this chap-
ter, we focus mainly on the schemes that have targeted at least the fourth objective, which
is related to VDC fault tolerance and availability.

12.2.2 Survivability-Related Concepts

In the following, we provide the definition of the basic terms related to survivability and
fault-tolerance.

• Fault tolerance: Fault tolerance is the property of a system that is able to operate
correctly despite the presence of hardware or software failures. Generally speak-
ing, fault tolerance is achieved through creating backups that take the place of
failed components, and thereby ensure the continuity of the service.

• Reliability: Reliability is the conditional probability that a system remains opera-
tional for a stated interval of time given that the system was operating flawlessly.
Generally speaking, there are two widely used metrics that can capture the reliabil-
ity of a system: namely, the mean time between failures (MTBFs) and the failure
rate. The MTBF is the mean up time between failures of a system, and the failure
rate is the expected number of failures per a given time period

• Availability: Availability of a system is defined as the percentage of time for which
the system in question is operational. It can also be seen as the probability that
the system is up at any given time. Specifically, the availability An̄ ∈ [0, 1] of a
physical device n̄ is given by
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TABLE 12.1. Availability vs. daily and monthly downtimes

System Tolerable Tolerable
availability (%) daily downtime monthly downtime

95 1 h:12 min 1 day 12 h 31 min
99 14 min:2 s 7 h:18 min:17 s
99.9 1 min:26 s 43 min 49 s
99.99 8.6 s 4 min:23 s
99.999 0.9 s 26.3 s
99.9999 0.1 s 2.6 s

An̄ =
MTBFn̄

MTBFn̄ + MTTRn̄

(12.1)

where MTBFn̄ and MTTRn̄ represent the MTBFs and the mean time to repair for
the device n̄, respectively. Both MTBFn̄ and MTTRn̄ can be computed based on the
historical records of failure events. Table 12.1 provides the tolerable daily down-
time associated with some availability value. It is worth noting that the availability
is usually expressed in 9s. For instance, five 9s means an availability of 99.999%.
The 9s are a logarithmic measures; that is, a system with five 9s availability is 10s
times more available than another one with four 9s.

• Fault domain: A fault domain is a set of devices that share a single point of fail-
ure [10]. For instance, servers connected to the same top-of-rack switch belong
to the same fault domain. It is also worth noting that a device may belong
simultaneously to multiple fault domains.

12.3 FAILURE CHARACTERIZATION IN CLOUD ENVIRONMENTS

In this section, we briefly review recent works on failure characterization in cloud
environments, and then summarize the main outcomes of these studies.

Wu et al. [11] proposed NetPilot, an automated failure mitigation system. NetPilot
deals automatically with failures in large-scale data centers without human intervention.
The system is built based on the analysis and characterization of failures reported in
production data centers over a period of 6 months. The authors identified three main
causes of failures: software failures, which account for 21% of the total number of fail-
ures; hardware failures, which represent 18% of the total failures; and misconfiguration,
which is the main cause of failure with 38% of the total number of failures. The study
reported also that simple failure mitigation operations are very effective in cutting down
failure repair times. However, some failures may require a high repair time, and thus may
lead to significant service downtimes. These results are in line with the ones reported in
Ref. [12] that revealed that 95% of network failures can be repaired within 10 min, and
only 0.09% of the failures may need more than 10 days to be repaired. This shows that
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repair times and failure impact on services may vary significantly depending on the type
of failure.

Vishwanath et al. [13] analyzed the failures of more than 100,000 servers running in
multiple data centers owned by Microsoft. The authors analyzed the logs collected over
14 months. Their main finding was that server failures are mainly caused by hard disk,
memory, and raid controller failures. The study revealed that hard disk failures account
for 78% of the total failures. It also reported that there is a high correlation between the
number of disk drives in the server and the number of server failures. Finally, they found
that failures are recurrent: devices that have experienced failures are more likely to fail
again in the near future. This shows that device failure rates have a skewed distribution.

Gill et al. [14] performed a characterization of failures which occurred in several
Microsoft data centers. In their study, they first identified networking devices that were
more prone to failure. Then, they assessed the impact of failures on application per-
formance and evaluated the effectiveness of network redundancy. They reported that
75% of networking equipment was top-of-rack switches, 15% were core and aggrega-
tion switches, and 10% were load balancers (LBs). They noticed that the failure rates
of the equipment varied significantly with the type and the model (LBs, servers, top-of-
rack switches, aggregation switches, routers). In particular, LBs had the highest failure
probability (20%) during a 1-year period. Switches have much lower failure probability
at less than 5%. Furthermore, the failure rates of different devices were unevenly dis-
tributed; for instance, the number of failures across LBs was highly variable. Some LB
devices experienced more than 400 failures during 1 year. Finally, failure traces show
that correlated failures were extremely rare.

Based on the observations of the aforementioned studies, we can summarize the
main characteristics of failures in data centers as follows. The duration of failures is
extremely variable [12, 15]. Indeed, some failures can last for seconds, whereas others
last for days. Data center equipment exhibit high heterogeneity in terms of failure rates
and availability. This suggests that such heterogeneity should be taken into account when
designing and deploying fault-tolerance mechanisms.

12.4 AVAILABILITY-AWARE RESOURCE ALLOCATION SCHEMES

In the following, we provide a survey of the most representative proposals that have
addressed the VDC embedding problem while taking into consideration VDC require-
ments in terms of resources and availability.

12.4.1 Survivable Mapping

Xu et al. [16] proposed a survivable VDC (termed “virtual infrastructure” in the paper)
embedding scheme that allocates resources not only to VDCs but also to backup VMs and
virtual links with the goal of minimizing total consumed resources. The authors defined
basic requirements to ensure that backup VMs can take over in case of failures. These
requirements are translated into placement constraints that have to be considered while
mapping the resources. For instance, the first constraint is that each VM and its backup
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should be placed in two different machines. The second constraint is that there must be
sufficient available bandwidth for each backup VM to communicate with other VMs so
that it can replace the failed VM without any impact on service performance. However,
the proposed scheme does not consider the availability of the physical machines and
assumes that the number of backups is known beforehand (a backup VM and a backup
virtual link for each VM and virtual link, respectively). Finally, this approach does not
consider cases where switches fail resulting in the disconnection of a set of servers at the
same time. Hence, it only allows mitigating failures that occur at the servers.

12.4.2 ORP

Yeow et al. [17] studied the problem of allocating resources to VDCs (termed virtual
infrastructures in the paper) in a physical infrastructure such that the desired availability
for each VDC is guaranteed. Figure 12.1 provides an example of a virtual data center and
shows how this VDC is mapped to a physical data center. It also shows backup nodes
and links that are provisioned in order to achieve a desired availability.

The first challenge addressed by the authors was how to estimate the availability of
a VDC. Hence, they developed a formula to compute the availability of a VDC based
on the provisioned number of backups and the availability of physical machines hosting
the VDC. The study makes two main assumptions: (1) the data center is homogenous,
that is, all physical devices have same availability and failure probability; and (2) node
failures are independent. Hence, the availability of a VDC that includes K backup virtual
nodes is given by

AVDC =
K∑

i=0

(
N + K

i

)
Ai (1 − A)N+K−i (12.2)

where N is the number of virtual nodes comprising the VDC, and A is the availability
of the physical nodes hosting the VDC components. This formula allows the estimation
of the number of backup nodes required to achieve a desired availability. The authors
then proposed an opportunistic redundancy pooling (ORP) mechanism allowing multi-
ple VDCs to share backups. The idea is to estimate the number of shared backups based
on Equation 12.2 simply by setting the variable N to the sum of the number of nodes of
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Figure 12.1. VDC embedding [18]. (a) Example of a virtual data center (star topology).

(b) Example of embedding a virtual data center into a physical infrastructure.
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multiple VDCs. This approach can reduce the amount of allocated backups by up
to 31.25%. Finally, the authors adapted the multicommodity flow technique used in
Ref. [19] to formulate the node and link joint resource allocation problem while
considering sharing backup resources among multiple VDCs.

Although this work presents many advantages, its application to real-world environ-
ments is limited. Indeed, machine failure rates and availability are highly heterogeneous
in production data centers [20]. Furthermore, the approach does not consider the avail-
ability of networking elements (e.g., switches and routers) in the computation of VDC
availability.

12.4.3 VENICE

Zhang et al. [20] put forward an aVailability-aware EmbeddiNg framework In Cloud
Environments (VENICE). They first presented a technique to compute the availability of
an embedded VDC that considers the heterogeneity of the physical devices in terms of
failure rate and availability. They then proposed an embedding that uses the availability
computation technique to achieve the desired availability for the hosted VDCs.

In their work, the authors considered that each VDC is hosting a multi-tier service
application (e.g., a three-tier Web application, as shown in Fig. 12.2a). Each tier contains
a set of VM replicas that communicate with the VMs of the following tier. The authors
presented a technique to compute the availability of a particular VDC mapping based on
the availability of the underlying physical devices. The key idea behind this technique is
to compute the VDC availability by considering all possible failure scenarios. Specifi-
cally, a failure scenario is a specific configuration in which some physical components
have failed. Figure 12.2b shows an example of 3 failure scenarios (s1, s2, and s3) that
could affect the VDC drawn in Figure 12.2b. Hence, VENICE first identifies all possible
failure scenarios that could impact the operation of the VDC, computes the availability

VDC

Physical

data center

Mapping of virtual components to physical components

Web server

App servers Databases

Tier
Si: Failure scenario i

(b)(a)

n
6

n
7

l
4

l
7l

3

l
3

l
5

l
6

l
7

l
4

n
5

n
5

S1

S2 S3

n
6

n
7

n
1

n
1

n
1

n
3

n
3

n
2

n
2

n
4

n
5

n
4

n
5

n
2

n
2

n
3

n
3

n
4

n
4

l
5 l

2

l
2

l
5

l
6

Figure 12.2. VDC embedding [20]. (a) Embedding of a VDC running a three-tier web applica-

tion. (b) Example of three failure scenarios.



“9780471697558c12” — 2015/3/20 — 12:03 — page 302 — #8

302 SURVIVABILITY AND FAULT TOLERANCE IN THE CLOUD

of the VDC under each of them and finally estimates the overall VDC availability using
conditional probability. More formally, define N̄ as the set of physical components and
si(n̄) ∈ {0, 1} as a boolean variable indicating whether or not the device n̄ is down. Let
si = (si(n̄))n̄∈N̄ denote a failure scenario that involves k simultaneous physical failures,
and S = (si)i∈|S| denote the set of all possible failure scenarios. The availability A

si
VDC of

a particular VDC under failure scenario si ∈ S is computed as follows:

Asi
VDC =

∏
n̄∈N̄:si(n̄)=1

(1 − An̄)
∏

n̄∈N̄:si(n̄)=0

An̄ (12.3)

The overall availability of the VDC is then computed as follows:

AVDC =

|S|∑
i=1

P(si)A
si
VDC (12.4)

where P(si) is the probability that failure scenario si occurs.
Using this technique, the authors addressed the availability-aware VDC embedding

problem where each service provider specifies not only the resource requirements of the
VDC but also its desired availability. VENICE tries then to achieve the desired VDC
availability by carefully placing the VDC components. The goal of the VDC allocation
algorithm is to maximize the total revenue of the cloud provider while minimizing the
penalty incurred due to service unavailability. Unfortunately, neither the proposed avail-
ability computation technique nor the embedding scheme consider the case where backup
nodes and links are provisioned.

12.4.4 Hi-VI

Rabbani et al. [18] proposed a high-availability virtual infrastructure management frame-
work (Hi-VI). The Hi-VI framework dynamically provisions backup resources (i.e.,
virtual nodes and virtual links) for each VDC in order to achieve the desired availabil-
ity for the VDCs. The originality of this approach is that it takes into consideration the
heterogeneity of data center computing and networking equipments. Hence, it considers
the case where equipments have different failure rates and availabilities.

The authors derived a formula to compute the availability of a particular VDC. The
formula uses the availability of the physical equipment hosting the VDC components
and also considers the number of provisioned backup nodes and links. However, two
simplifying assumptions were made: (1) VDCs have a star topology, that is, each VDC
comprises a set of VMs connected to a single virtual switch; and (2) equipment does
not fail simultaneously, that is, only a single physical failure may occur at a time. The
intuition behind the proposed formula is that since there are K backups, it is possible to
replace up to K failed VMs. In other words, the availability of a VDC with K backups is
given by the probability of having fewer than K failures. Mathematically, the availability
of a particular VDC as denoted by AVDC is written as:

AVDC =

( ∏
n̄:yn̄=1

yn̄An̄

)
+

K∑
k=1

( ∑
n̄:gn̄=k

(
(1 − An̄)

∏
t̄∈N̄\{n̄}:ȳt=1

ȳtAt̄

))
(12.5)
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where An̄ is the availability of a physical component n̄ ∈ N̄, K is the number of backup
VMs (which is equal to the number of backup virtual links), and yn̄ is a boolean variable
that takes 1 if the physical node n̄ ∈ N̄ either hosts one of the VMs of the VDC or is used
as an intermediate node to embed a virtual link. The variable gn̄ is the number of VMs
mapped to physical machine n̄. The first term of the equation is the probability that all
virtual nodes are operational (that is, all physical nodes hosting the VDC are available),
whereas the second term represents the probability that a single physical node failure
occurs, incurring less or equal than K virtual node failures.

Using the availability formula (Eq. 12.5), the authors proposed a VDC embedding
algorithm that jointly allocates computing and networking resources for VDCs and the
virtual backup nodes and links. The idea is to first embed the VDC and then gradually
add new backups in high availability nodes until the desired availability is achieved. If it
is not possible to meet the desired availability, the VDC is simply rejected. The ultimate
goal of the algorithm is to ensure all embedded VDCs satisfy the desired availability
while minimizing the number of backups and the number of servers used to host the
virtual resources.

12.4.5 WCS

Bodik et al. [10] studied resource allocation in data centers that achieve the best trade-
off between fault tolerance and bandwidth usage. Indeed, when VMs of the same VDC
(termed “service” in the paper) are spread across the data center, they are less likely to
be affected by the same failure (e.g., top-of-rack failures) but they consume significant
bandwidth in the data center network, as they are far from each other (Fig. 12.3).
Conversely, when these VMs are placed close to each other, they consume less band-
width, but a single failure (e.g., at the top-of-rack level) may simultaneously affect
many VMs.

Based on this observation, the authors proposed an allocation scheme that mitigates
failure impact on the virtual data center while minimizing bandwidth usage in the data
center network. They hence put forward a new metric named the worst-case survival
(WCS) to measure the fault-tolerance of a particular VDC. The WCS of a VDC is defined
as the number of its VMs that remain available during a single worst-case failure divided
by the total number of its VMs.

Physical server

Virtual machine

Virtual link

Physical link

Physical switch

Virtual switch

(a) (b)

Figure 12.3. Tradeoff between fault tolerance and bandwidth usage [10]. (a) Allocation opti-

mized for bandwidth but with low fault-tolerance. (b) Allocation optimized for fault-tolerance:

more bandwidth is consumed.
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The proposed resource allocation scheme includes two basic operations: (1) band-
width minimization and (2) fault-tolerance optimization. The bandwidth minimization
is performed only once, at the initial allocation of the VDC. It consists of applying
the K-way min-cut to split VMs of the same VDC into partitions such that their inter
communication bandwidth is minimized. These partitions are initially placed into dif-
ferent racks in the data center. The fault-tolerance optimization is then accomplished
by gradually spreading out the VMs one by one across multiple fault domains in order
to maximize the VDC worst-case survival while ensuring that bandwidth consumption
remains low.

This solution has several limitations. First, it does not consider the availability of the
underlying physical components. Also, it considers only the worst-case failure, which
occurs mainly in aggregation switches. Hence, it ignores other types of failures that may
happen, for example in top-of-rack switches or servers. Finally, the paper assumes that
a physical machine only hosts one VM of the same VDC. Consequently, large VDCs
will be mapped onto a large number of distinct servers, and hence will lead not only
to a high number of used physical machines but also to high bandwidth usage in the
data center.

12.4.6 SVNE

Rahman et al. [21] were the first to introduce and study the problem of survivable vir-
tual network embedding (SVNE). The problem relates to protecting a virtual network
(equivalent to a VDC but deployed over an ISP network rather than a data center), and
more specifically virtual links, against physical link failures. As a virtual link between
two nodes maps onto a path (set of connected physical links), the authors considered
two types of virtual link protection and restoration mechanisms. The first mechanism is
called link protection and restoration and basically aims at protecting the virtual link by
protecting each physical link comprised in its associated path. Hence, a backup detour
is provided for each physical link in the path. The second mechanism is the path protec-
tion and restoration mechanism, which requires the provision of a backup path for each
primary path associated to a virtual link. Of course, it is mandatory that the primary and
backup paths have disjoint links.

Figure 12.4 shows an example of a virtual link embedded into a physical network.
The continuous line shows the primary path to which the virtual link is mapped. The
dashed lines represent the protection of each physical link when the link protection and
restoration mechanism is used. Finally, when the path protection and restoration mecha-
nism is adopted, the dotted line represents the allocated protection path, which is disjoint
from the primary path (i.e., initial embedding).

The authors mathematically formulated the SVNE problem as an integer linear pro-
gram and proposed two heuristic solutions: a proactive solution and a reactive one. The
first one addresses failures by proactively provisioning backup resources for potential
failures in the future. The main drawback of this approach is that it may result in wasting
up to 50% of physical network resources. The second solution addresses this drawback by
reactively handling failures. Hence, it determines the backup path when a failure occurs.
The advantage of such approach is the use of fewer resources for backups and hence
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Figure 12.4. Link and path protection of a virtual link.

more virtual networks can be embedded in the physical infrastructure. The main limita-
tion of the proposed solutions is that they assume that only a single failure may occur
at a time.

12.4.7 Discussion

Generally speaking, these proposals can be classified into (1) availability-aware
resource placement schemes, which attempt to improve VDC availability by care-
fully selecting the physical nodes hosting the virtual data center; and (2) redundancy
provisioning techniques that allocate backup resources in order to achieve the desired
availability.

Table 12.2 compares different features of the surveyed schemes. For each, the table
provides the following information:

1. What type of backup resources are provisioned (i.e., virtual nodes, virtual links,
or both);

2. Whether or not the backup resources are shared among different VDCs;

3. Whether or not the scheme provides a technique to estimate the number of virtual
links/nodes provisioned as backups;

4. Whether or not the scheme provides a technique to compute the availability of
a VDC;

5. Whether the technique to compute the VDC availability takes into consideration
the heterogeneity of the equipment in terms of availability and failure rates;

6. Whether the scheme makes the assumption that one physical server can only host
one VM from the same VDC.
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TABLE 12.2. Comparison of survivable embedding schemes

Proposal Backup Shared Estimate the Computing Heterogeneity VM col-
resources or not # of backups avail. location

Sur. Map. [16] Nodes No No No N/A Yes
ORP [17] Nodes & Links Yes Yes Yes No No
SVNE [21] Links No N/A No N/A N/A
WCS [10] Nodes No No No N/A No
Hi-VI [18] Nodes & Links No Yes Yes Yes Yes
VENICE [20] No No N/A Yes Yes Yes

Based on the surveyed works presented earlier, we can make the following
observations:

• Most of the existing proposals did not take into account the availability of the
physical devices (e.g., Refs. [10, 16]). Furthermore, many of them have assumed
that the cluster is homogenous, that is, all devices have the same availabilities
and failure rates (e.g., Ref. [17]), whereas in practice, cloud computing environ-
ments are extremely heterogeneous. Indeed, physical devices have different types,
capacities, failure rates, MTBFs, availability, and reliability. As a result, propos-
als overlooking this heterogeneity have limited applicability in real-world cloud
environments.

• Some proposals (e.g., Refs. [17, 22]) make the assumption that one physical node
is able to host only one virtual component from the same VDC. This assumption
does not hold in practice, since the main benefit of virtualization is the possibility
that multiple virtual components share the same physical device. In addition, such
an assumption has an impact on the way resources are allocated. For instance,
in order to satisfy this assumption, for a VDC containing 1000 VMs, the VMs
should be placed into 1000 physical nodes even when it is possible to consolidate
them into 500 machines. The resulting allocation is hence suboptimal, as it leads
to the usage of a higher number of servers in addition to the consumption of more
bandwidth between the VMs (as they are scattered across 1000 machines rather
than 500). Consequently, an effective solution should allow multiple VMs from
the same VDC to share a single host whenever possible.

• Some other proposals (e.g., Ref. [17]) do not consider the availability of the net-
working devices (e.g., physical routers and switches) and middleboxes. However,
recent studies [14] have revealed that these devices, and in particular top-of-
rack switches and LBs, are more prone to failure than other types of equipment.
Consequently, it is necessary to take into consideration the availability of such
components in the VDC availability computation.

• Finally, all the proposals, without exception, assumed that only a single failure
could occur at a given time. Although according to some studies [14], it might be
reasonable to make such an assumption, it is still not realistic as simultaneous and
correlated failures may occur in practice. In this case, many challenges remain
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unsolved like computing the availability of a virtual data center, estimating the
number of backup nodes and links required to achieve a desired availability, and
also deciding the placement of these backups.

12.5 CONCLUSION

Despite the widespread adoption of cloud computing, failures and service outages loom
as major concerns, pressing cloud providers to put in place strategies to deal with failures,
mitigate their impact and improve the fault tolerance of their infrastructures in order to
provide more stronger guarantees on the availability of their resources.

This chapter provided a comprehensive study of cloud survivability and reliability
concepts and solutions, including an overview of recent studies of failures in production
environments and a survey of the relevant solutions proposed to improve the availability
of virtual data centers in the cloud. We discussed the main features of each of the solutions
and highlighted their advantages and limitations.

We believe that there are still a lot of challenges to overcome in order to offer highly
reliable and available cloud services. Specifically, more work should be dedicated to
studying failure characteristics, and particularly the correlation between failures. There
is also a pressing need to develop more sophisticated solutions for improving the surviv-
ability and fault tolerance of cloud services, taking into account the heterogeneity of the
cloud infrastructures as well as scenarios where multiple failures occur simultaneously.
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13.1 INTRODUCTION

Today, scientific applications require an ever-increasing number of resources to deliver
results for growing problem sizes in a reasonable amount of time. In the past 20 years,
while the largest projects were able to afford expensive supercomputers, the smaller ones
were forced to opt for cheaper resources such as commodity clusters or, more challenging
to build, computational Grids. To program such large-scale distributed heterogeneous
infrastructures, scientific workflows emerged as an attractive paradigm by allowing the
programmers to focus on the composition of existing legacy code fragments to create
larger and more powerful applications. Therefore, numerous efforts have been spent on
researching and developing integrated programming and computing environments [1] to
support the workflow lifecycle and meet scientists’ needs.

Nowadays, Cloud computing proposes an alternative such that resources are no
longer owned by the application scientists, but leased from large specialized data centers
on-demand and in a cost-effective fashion according to temporal needs. This separa-
tion frees research institutions from the permanent costs of over-provisioning, opera-
tion, maintenance, and depreciation of resources. Existing workflow systems cannot
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© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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senselessly take advantage of this new infrastructure without appropriate middleware
support that often requires nontrivial extensions to the scheduling, enactment, resource
management, and other runtime execution services. At the same time, existing Cloud
providers such as Amazon recognized the importance of workflows to science and
engineering and started to provide highly tuned solutions integrated into their native
platforms [2] such as the Amazon Simple Workflow (SWF) service. Other platforms like
OpenStack or CloudStack do not offer advanced services for workflows and require
the used of external workflow engines for such executions. However, existing work-
flow systems [1] cannot immediately take advantage of this advanced support because
of different, incompatible languages, interfaces and communication protocols. Another
downside of SWF is that it requires applications to be written in Java and to implement
specific interfaces, which is problematic for scientific workflows based on the composi-
tion of legacy code fragments. Using SWF requires scientists to learn a new development
and execution platform in addition to the one they already regularly use but is very simple
to get used to compared to most other scientific workflow environments.

To address this heterogeneity in workflow systems and underlying computing infras-
tructures, the SHIWA European project (http://www.shiwa-workflow.eu/) researched
and developed the Interoperable Workflow Intermediate Representation (IWIR) [3]
that enables fine-grained interoperability between workflow systems via transparent
translation of workflows applications programmed in different languages. IWIR is a
generic and system-neutral workflow representation able to sufficiently describe the
large majority of existing workflow constructs. The common representation reduces the
complexity of porting n workflow systems on m computing platforms from O(m · m)
to O(n + m). Additionally, it enables the integration of new workflow systems and
new computing platforms with constant O(1) complexity by implementing IWIR
importers/exporters. This ensures not only interoperability across workflow systems
but also enables workflows to be executed on new external foreign (or nonnative)
computing infrastructures. IWIR provides additional tools and libraries to ease the
development of language translators, and is currently supported by five major work-
flow systems: ASKALON (AGWL language) [4], Moteur (GWENDIA language) [5],
WS-PGRADE (gUSE language) [6], Pegasus [7], and Triana (DAX representation) [8]
(see Fig. 13.1).

In this chapter, we take advantage of IWIR and present a scalable software engi-
neering solution that provides existing scientific workflows access to the Amazon

IWIR

IWIR Converter 1

IWIR Converter 2

IWIR Converter 3

IWIR Converter 4

AGWL

gUSE

GWENDIA

DAX

ASKALON

WS-PGRADE

MOTEUR

Triana

Java (Amazon SWF)

Figure 13.1. SHIWA fine-grained interoperability.
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Elastic Compute Cloud (EC2) infrastructure. By designing and implementing one single
IWIR-to-SWF converter, we automatically allow all IWIR-compliant workflow systems
to benefit from the SWF features and to access the EC2 infrastructure with native perfor-
mance. We present a method for automatically converting a scientific workflow specified
in IWIR into Amazon SWF, and a supporting architecture for reusing and executing
existing legacy code on EC2. We illustrate the integration and the advantages of our
architecture with the help of a real-world scientific workflow originally programmed in
the ASKALON integrated development and computing environment.

The chapter is organized as follows. We discuss related work in Section 13.3.
Section 13.4 introduces the IWIR workflow model, followed by an introduction to
Amazon SWF in Section 13.5. Section 13.6 introduces our pilot workflow application
used for validation. Section 13.7 describes the conversion process of an IWIR workflow
into an Amazon SWF workflow. Section 13.8 presents experimental results from porting
our pilot application to SWF. Section 13.10 concludes the chapter.

13.2 BACKGROUND INFORMATION

Nowadays, scientific computing is an important part of research in most academic dis-
ciplines. Problems are getting more and more complex and finding solutions requires
an ever-increasing amount of computation. Simulations for weather, earthquake, nuclear
research, and material science are just a few examples of areas where there one can
never have enough computation capacity available to make a realistic simulation without
lots of model simplifications. Therefore, computer scientists are trying to find solutions
to make scientific computing faster, easier, and more reliable on the available set of
resources. Most applications developed by non-computer scientists are often hart to scale
onto clusters or super computers and need support from the computer science community
to scale them to nowadays clusters.

By introduction of cloud computing, a new resource type was added as possible
platform to execute scientific applications. As this new technology is slowly adapted by
computer scientists, it can be assumed that other fields of research that are relying on par-
allel computing for solving their problems have a even higher learning curve to include
this new technologies into their everyday tool set. This gap between new technologies
and need for computing needs to be closed by tools developed by computer scientists to
allow easier adaptation of clouds for scientific computing.

13.3 RELATED WORK

Since the advent of Cloud computing, the scientific community showed interest in
bringing scientific workflows on this new infrastructure. This trend increased with the
availability of commercial Clouds featuring nearly the same performance as traditional
Grid parallel computers [9]. There exist two major approaches in this community effort:
pure Cloud and hybrid combining Grid and Cloud infrastructure.

FutureGrid [10] provides a Cloud test-bed that allows scientists explore the fea-
tures of Cloud computing and experiment without charging real costs, as commercial
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providers do. [11] shows a proof-of-concept astrophysics workflow called Montage using
the Pegasus Grid workflow system adapted for Clouds. The work in Ref. [12] shows a
meteorological workflow executed in combined Grid and Cloud infrastructures using
the ASKALON environment. In Ref. [13] the Pegasus Workflow Management Sys-
tem is used to execute a astrophysics workflow across multiple clouds and show how
challanging this task still is. A hybrid approach for extending clusters with additional
Cloud resources during peak usage for better throughput, transparent to the end-users
is presented in Ref. [14]. [15] presents a similar approach using the Torque job man-
ager. The work in Ref. [16] presents a workflow engine purposely developed for Clouds
and extended Cloud federations. The Megha workflow system [17] provides a portal for
submitting workflows to combined Grid and Cloud resources.

A drawback of all these efforts is that they provide custom non-interoperable solu-
tions that isolate scientists on specific workflow system and Cloud infrastructures. In this
chapter, we show how the IWIR-based approach opens the Amazon EC2 infrastructure
and its SWF workflow system to the scientific community through one single IWIR-to-
SWF translator. The idea of a single intermediate language has been explored in other
domains, for example, by the UNiversal Computer Oriented Language (UNCOL) [18]
proposed in 1958 by Conway as a solution for making compiler development economi-
cally viable. Following the UNCOL idea, the Architecture Neutral Distribution Format
(ANDF) is a technology defined by the Open Software Foundation allowing common
“shrink wrapped” binary programs be distributed for use on Unix systems running on
different hardware platforms. Unfortunately, ANDF was never widely adopted either.
IWIR is the first effort to investigate this idea on scientific workflows in distributed Grid
and Cloud computing infrastructures.

13.4 IWIR WORKFLOW MODEL

In IWIR, a workflow application is represented by a composite activity A = (I,O,G)
consisting of n input ports I =

⋃n
i=1 {Ii}, m output ports O =

⋃m
i=1 {Oi}, and a

directed acyclic graph (DAG) G = (A,D), consisting of k activities A =
⋃k

i=1 {Ai},
interconnected through data flow dependencies:

D = {(Ai,Aj, (Oim, Ijn)) | (Ai,Aj) ∈ A × A ∧ (Oim, Ijn) ∈ Oi × Ij}, where (Oim, Ijn)
represents a data transfer from the output port Oim of activity Ai to the input port Ijn of
activity Aj. A data flow dependency between two activities implies a control flow prece-
dence too. A pure control flow dependency between Ai and Aj has Dij = (Ai,Aj, ∅). We
use pred (Ai) = {Ak| (Ak,Ai, (Okm, iin)) ∈ D ∨ (Ak,Ai, ∅) ∈ D} to denote the set of pre-
decessors of activity Ai (i.e. activities to be completed before starting Ai). Figure 13.2
shows an detailed example of such a DAG and its components.

Compared to business workflows, the main difference to the scientific workflows we
are focusing on is the high computational requirments of the activities and not buissnes
processes in general.

There are two categories of activities in IWIR: atomic and composite. An atomic
activity, represented by A = (I,O, ∅), is characterized by an activity type, uniquely
defined by a name and a signature. For example, activity names are PrepareLM,
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Figure 13.2. Example of a DAG with four activities.

LinearModel, PostProcessSingle and PostprocessFinal for our pilot
workflow introduced in Figure 13.5 and Section 13.6. The signatures of LinearModel
and PostProcessSingle are shown in lines 8 and 19 of Listing 13.1. A composite
activity, represented by A = (I,O,G), where G �= ∅, can be of four kinds: condi-
tional (if), sequential loop (while, for, forEach), parallel loop (parallelFor,
parallelForEach), and sub-workflow (or DAG, added for modularity reasons).

13.5 AMAZON SWF BACKGROUND

Amazon SWF provides a high-level method for implementing workflow applications
and for coordinating their synchronous and asynchronous task executions on multiple
systems, which can be cloud-based, on-premises, or both. The architecture of Amazon
SWF is displayed in Figure 13.3. SWF implements a work-stealing approach consisting
of three parts: decider, task queues, and activity workers.

The decider implements the logic of the workflow. Unlike schedulers in scientific
workflow systems, the decider only decides which activity to execute next based on the
history of already executed tasks, and not where to execute it. However, one still has
limited control by using several task queues where the decider puts the activities to be
executed next.

The task queues hosted by Amazon are identified by their name and can be accessed
via an HTTP API. There are two types of tasks. First, decision tasks are generated by
Amazon SWF and executed by the decider every time a state change exists (e.g., start
of workflow instance or activity task termination). The result of a decision task is usu-
ally a set of activity tasks that can be executed next. Second, activity tasks are executed
by the activity workers and represent the individual pieces of work which comprise the
workflow.

The activity workers, as shown in Figure 13.4, execute the individual workflow activ-
ities. The decider and the activity workers actively listen to one or more task queues
and, when a task is received, execute the corresponding code and report back the execu-
tion status to Amazon SWF. All input values of an activity are contained in the task
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request received from the task queue. Unlike traditional workflow systems, Amazon
SWF provides no means to transfer files or prepare the execution environment. If an activ-
ity requires some input or produces some output files, it has to transfer them by itself.
For Amazon SWF, workflow activities are simply remote asynchronous procedure calls.

Developing a workflow with Amazon SWF requires the following steps: (1) develop
a decider implementing the logical workflow coordination, (2) develop activity work-
ers implementing the individual activities, (3) register the workflow at Amazon SWF,
(4) start the decider and activity workers and let them listen to the SWF endpoint, and
(5) start the workflow.

AWS Flow Framework allows the development of Amazon SWF workflows via the
AWS SDK for Java by specifying its coordination steps as a sequential Java program,
where the workflow activities are represented as function calls. Functions represent-
ing activities and functions used to handle or manipulate data produced or consumed
by activities need to have the @Asynchronous annotation (called in the following
asynchronous functions), and their input arguments and return values need to be of type
Promise. A Promise object acts as a handle to the actual data that will be available as
soon as the corresponding asynchronous function has been executed. When used as input
argument, a Promise object can also be used to represent data dependencies between
several asynchronous functions. An asynchronous function, having a Promise object
produced by another asynchronous function as input, will only be executed when the
actual data referenced by the Promise object is available.

Amazon SWF executes a workflow application through repeated invocations of the
decider program, which is executed every time a state change occurs (signaled via a
decider task), and a history of all decider executions is recorded. To intercept all calls to
asynchronous functions in the decider program, AWS uses AspectJ, a Java implementa-
tion of aspect-oriented programming [19]. An asynchronous function is instantiated only
once during the entire workflow execution, and its return value is saved into the execu-
tion history. In every subsequent decider execution, the same function is not re-executed,
but its result extracted from the execution history and returned as Promise object.
An asynchronous function that has not been executed yet is put into a queue, and a
Promise object with no actual data is returned. This data will be instantiated as soon
as the corresponding asynchronous function has produced it. Before the decider fin-
ishes its execution, it examines all asynchronous functions in the queue, executes those
whose dependencies are satisfied, and records their results in the execution history. The
workflow execution finishes if there are no more nonexecuted asynchronous functions.

13.6 RAINCLOUD WORKFLOW

We introduce in this section the RainCloud workflow used in this chapter for illustrating
and validating our approach. Raincloud is a meteorological workflow for investigating
and simulating precipitations in mountainous regions using a simple numerical lin-
ear model of orographic precipitations [20]. The workflow has been developed in the
ASKALON environment by the Institute of Meteorology of the University of Innsbruck
to analyze certain meteorological phenomena by extending the linear model theory. The
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LinearModel

LinearModel

PrepareLM
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Figure 13.5. Simplified view of the RainCloud workflow.

workflow is also is used by the Tyrolean avalanche service (Tiroler Lawinenwarndienst)
for their daily issued avalanche bulletin. We choose this applications as it is used on a
daily baisis by scientists.

Figure 13.5 shows a simplified architecture of the RainCloud workflow. The first
activity PrepareLM prepares and partitions the data for the linear model. Each partition
is then processed in a parallel loop iteration by a pipeline of two activities: Lin-
earModel and PostprocessSingle, the last one being optional. The number of
parallel loop iterations can be configured by setting the appropriate input parameter. The
last activity collects the output data and produces the final result. Listing 13.1 shows
the specification of the parallelForEach loop in IWIR. Inside this loop, we first
have the atomic activity linearModel (line 8), followed by an if-construct (line 14)
containing the atomic activity postProcessSingle (line 19).

Listing 13.1 RainCloud’s parallelForEach loop in IWIR
1 . . .
2 < p ara l l e lForEach name=" Para l l e lForEach_1 ">
3 < i n p u t P o r t s >< i n p u t P o r t name="isPPS" type =" boolean " / >
4 <loopElements ><
5 loopElement name="PLMTars" type =" c o l l e c t i o n / f i l e " / >
6 < / loopElements >< / i n p u t P o r t s >
7 <body>
8 < task name=" l inearModel " t a s k t y p e =" l inearModel ">
9 < i n p u t P o r t s >< i n p u t P o r t name="PLMTar" type =" f i l e " / >

10 < / i n p u t P o r t s >
11 < outputPor t s >< outputPort name="LMTar" type =" f i l e " / >
12 < outputPort name=" o u t f i l e " type =" f i l e " / >< / outputPor t s >
13 < / task >
14 < i f name=" Decis ionNode_1 ">
15 < i n p u t P o r t s >< i n p u t P o r t name="LMTar" type =" f i l e " / >
16 < inputPor t name="isPPS" type =" boolean " / >< / i n p u t P o r t s >
17 < c o n d i t i o n >isPPS = t r u e < / c o n d i t i o n >
18 <then>
19 < task name=" p o s t P r o c e s s S i n g l e " t a s k t y p e =" p o s t P r o c e s s S i n g l e ">
20 < i n p u t P o r t s >< i n p u t P o r t name="LMTar" type =" f i l e " / >
21 < / i n p u t P o r t s >
22 < outputPor t s >< outputPort name="PPSTar" type =" f i l e " / >
23 < / outputPor t s >
24 < / task >
25 < / then>
26 < outputPor t s >< outputPort name=" P P S l i s t T a r s " type =" f i l e " / >< / outputPor t s >
27 < l i n k s >
28 < l i n k from=" Decis ionNode_1 /LMTar" to =" p o s t P r o c e s s S i n g l e /LMTar" / >
29 . . .
30 < / l i n k s >
31 < / i f >
32 < / body>
33 < outputPor t s >
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34 < outputPort name=" P P S l i s t T a r s " type =" c o l l e c t i o n / f i l e " / >
35 < outputPort name=" o u t f i l e s " type =" c o l l e c t i o n / f i l e " / >
36 < / outputPor t s >
37 < l i n k s >
38 < l i n k from=" Para l l e lForEach_1 / PLMTars" to =" l inearModel / PLMTar" / >
39 . . .
40 < / l i n k s >
41 < / para l l e lForEach >
42 . . .

13.7 IWIR-TO-SWF CONVERSION

Figure 13.6 shows the architecture of our IWIR-to-SWF conversion solution, consist-
ing of four parts: the decider, Amazon SWF, the legacy code execution service on each
worker node, and the file storage. With Amazon SWF, the decider and workflow activi-
ties are individual Java programs, purposely designed for Amazon SWF. The goal of this
chapter is to present a method for translating scientific workflows from the interoperable
IWIR representation to Amazon SWF with as little effort for the programmer as pos-
sible. While the abstract workflow coordination can be automatically translated into an
SWF decider Java program, there is no practical way to automatically convert the legacy
code implementing the concrete workflow activities into an SWF-compatible Java pro-
gram. To still achieve this goal with minimal programmer involvement, we implemented
an execution service that interfaces with Amazon SWF and acts as a Java wrapper for
existing legacy code.

The only requirement imposed by Amazon SWF on the worker nodes is an outgoing
HTTP connection to Amazon SWF. This makes Amazon SWF easy to set up with no
need of firewall reconfiguration. Technically, direct file transfers between worker nodes
are possible, but this requires a corresponding service running on the worker nodes and
the firewall to be reconfigured accordingly. As we did not want to loose the advantage of
an easy setup, we decided to use an intermediate file storage for the file transfers, so that
there is no need for incoming connections on the worker nodes. Currently, we support

Decider (sheduler)

1. Put task into queue

Amazon SWF (task queues)

2. Fetch task from queue

7. Report execution status

3. Prepare environment

5. Execute legacy code

Worker node
4./6. Transfer files

Filestorage

Figure 13.6. Architecture of a generated Amazon SWF workflow.
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only Amazon S3 as an intermediate file storage, but other file storage technologies can
be easily added as extensions.

13.7.1 Decider Generation

As presented in Section 13.4, an IWIR workflow is constructed from a top-level DAG
activity that explicitly describes the data flow between its activities. Control flow con-
structs such as loops and conditionals are represented by composite activities. To convert
an IWIR workflow into an Amazon SWF decider, we have to transform the data flow-
driven IWIR DAGs and the semantics of the composite activity types into a control
flow-driven Java program. Moreover, we also have to take care that the concepts of the
AWS Flow Framework, namely asynchronous functions and semantics of the returned
Promise objects, are correctly applied.

The basic principle of the conversion is that every atomic or composite activity is
represented by its own activity function in the Java program. Listing 13.2 shows the gen-
eration process of the decider. The first step is the generation of a function representing
the start of the workflow (line 3). The signature of this function represents the input and
output ports of the workflow (line 10). In the function body, the top-level activity func-
tion is called with the appropriate input arguments (line 11). Afterwards, the results of
the top-level activity function are presented to the user in an appropriate way (line 13).
Every activity encountered during the conversion process with no activity function cre-
ated yet is put into a queue (e.g., in line 12). After the workflow entry function has been
generated, the algorithm iterates through this queue (line 4) and generates an activity
function for each queue element (line 6).

Listing 13.2 SWF decider generation algorithm
Input: Scientific workflow: A = (I, O, G)
Output: SWF decider (Java program)
1: function GenDecider(A = (I, O, G))
2: Queue ← ∅
3: GenWfStart(A, Queue)
4: while Queue �= ∅ do
5: A ← Pop(Queue)
6: GenActivityFunction(A, Queue)
7: end while
8: end function
9: function GenWfStart(A, Queue)

Input: A = (I, O, G)
10: GenWfStartProlog(I, O)
11: GenActivityFuntionCall(A, Queue)
12: Put(Queue, A)
13: GenWfStartEpilog(O)
14: end function

13.7.2 Activity Function Generation

Listing 13.3 shows the generation of an activity function representing a workflow activity.
The function signature of an activity function corresponds to the input and output ports,
while the function body implements its semantic behavior, including any associated
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DAG. For atomic activities, we only have to generate the function signature with the
Activity annotation and an empty function body (lines 9–10). The AWS Flow Frame-
work will then automatically generate function stubs, which allow us to communicate
with the SWF task queue. For composite activities, we need to additionally generate,
besides the function signature, a function body implementing the activity behavior (lines
4–6). In the following text, we describe in detail how the activity functions are generated.
To facilitate understanding, we divided the code generation of the composite activity
function bodies in three logical sections: (1) activity semantics, (2) DAG control flow,
and (3) DAG data flow. However, these steps are not distinct, but interleaved with each
other (e.g., the function call in line 5 generates not only the control flow but also the
data flow).

Listing 13.3 Activity function generation algorithm
Input: Workflow activity: A = (I, O, G)
Output: Activity function (in Java)
1: function GenActivityFunction(A, Queue)

Input: A = (I, O, G)
2: if G �= ∅ then � Composite activity
3: N ← GetActivityName(A)
4: GenFunctionProlog(N, A)
5: GenDAGControlFlow(G, Queue)
6: GenFunctionEpilog(A)
7: else � Atomic activity
8: N ← GetActivityTypeName(N, I, O)
9: GenFunctionSignature(N, I, O)

10: GenEmptyFunctionBody()
11: end if
12: end function

13.7.2.1 Function Signature. The first step in generating an activity function
is the function signature. The arguments of the activity function represent the input ports
and the return value the output ports of the associated workflow activity. However, this
representation has some inadequateness. In a workflow representation, the input and out-
put ports of an activity are usually identified by their names, and the number of output
ports is not limited. By contrast, the arguments of a Java function are identified by their
order and the return argument is restricted to one. Moreover, returning values by call by
reference does not work in an SWF program because the activity functions are executed
asynchronously from the rest of the program (see Section 13.5). In practice, the first inad-
equateness can be neglected when generating the decider by consistently maintaining the
same parameter order. However, this may pose a problem for the legacy wrapper service,
as changes in the order of the input arguments cannot be automatically distributed to this
service. To address this problem, we implemented a wrapper class for the input argu-
ments of atomic activity functions with a field for the name of the input port and a field
for the actual value. The legacy wrapper service can then assign the input values to the
correct input port by looking at the name field. To address the second inadequateness, we
implemented another wrapper class that stores several output values into an array that is
returned by the activity functions.
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For example, Listing 13.4 shows a function signature representing the atomic activ-
itylinearModel of RainCloud. Because the activity has more than one output port, the
corresponding function returns an object of type PortWrapperArray encapsulating
the output values. All input values have the type PortWrapper because the function
represents an atomic activity and, therefore, needs to interface with the legacy wrapper
service. The AWS Flow framework automatically generates a stub function for inter-
facing with the task queues declared as asynchronous and returning a Promise
object.

Listing 13.4 Function signature of the atomic linearModel activity
1 @Activ i ty ( name=" R a i n C l o u d A c t i v i t i e s . l inearModel " )
2 p u b l i c PortWrapperArray l inearModel ( PortWrapper PLMTar )

Listing 13.5 contains another example of a function signature representing the
composite activity ParallelForEach_1.

Listing 13.5 Function signature of the ParallelForEach_1 activity
1 @Asynchronous
2 p r i v a t e Promise para l l e lForEach_1 ( Promise <Boolean > isPPS , Promise < S t r i n g [ ] >

PLMTars ) ;

13.7.2.2 Activity Semantics. The next step is the generation of code that
implements the semantics of the three types of composite activities: (1) container,
(2) conditional, and (3) loop. Container activities only contain other activities without
additional semantics. Conditional activities consist of an if-else construct and
separate activity function control flows for the two branches. The conditional expres-
sion may contain input port values that can be easily referenced by specifying the
appropriate function argument. Loop activities are the hardest to implement because
of the several IWIR loop flavors: while, for, forEach, parallelFor, and
parallelForEach. We exploited the asynchronous function invocation feature of
SWF to implement parallel loops as simple sequential loops in the decider program.
Because activity functions are executed asynchronously, the decider does not wait for
an activity function to finish before starting the next loop iteration. To force sequen-
tial execution of activity functions inside a nonparallel loop, we have to introduce
artificial dependencies between activity functions called in different iterations using
Promise-objects.

Listing 13.6 shows an example of a function body representing the composite
activity ParallelForEach_1 of RainCloud. The number of loop iterations is first
calculated in line 3. Lines 5–10 represent the actual for loop, whereas lines 12–13 deal
with the construction of the return value.

Listing 13.6 ParallelForEach_1 activity semantics
1 p r i v a t e Promise para l l e lForEach_1 ( . . . ) {
2 / / Get number of e lements .
3 i n t maxIter = PLMTars . g e t ( ) . l e n g t h ;
4 / / I t e r a t e over the g iven array .
5 f o r ( i n t i = 0 ; i < maxIter ; i ++) {
6 / / Get current e lement
7 Promise < Str ing > p = Promise . asPromise ( PLMTars . g e t ( ) [ i ] ;
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8 / / A c t i v i t y f u n c t i o n c o n t r o l f low goes here
9 . . .

10 }
11 / / Bui ld re turn va lue .
12 Promise [ ] r e t v a l = new Promise [ 2 ] ;
13 re turn Promise . asPromise ( r e t v a l ) ;
14 }

13.7.2.3 DAG Control Flow. The workflow activities of a given DAG are
sorted according to their topological order that preserves the original data flow. In the
topological order, a workflow activity can only be executed after all its predecessors
have been completed and produced the required input data. As a workflow may consist
of several DAGs, we calculate the topological order for each DAG independently.

For example, RainCloud’s ParallelForEach_1 loop calls the activity
linear-Model whose results are fed into the activity PostProcessSingle,
depending on the value of the input parameter isPPS. Listing 13.7 shows the equiv-
alent Java activity with calls to the contained activity functions in lines 6 and 8. The if
statement, which determines whether PostProcessSingle should be executed, is
represented by the decisionNode_1 function in line 8, with the missing parameter
added in the data flow step (Listing 13.8, line 14).

Listing 13.7 Control flow inside ParallelForEach_1 activity
1 p r i v a t e Promise para l l e lForEach_1 ( . . . ) {
2 i n t maxIter = PLMTars . g e t ( ) . l e n g t h ;
3 f o r ( i n t i = 0 ; i < maxIter ; i ++) {
4 Promise < Str ing > currEl = Promise . asPromise ( PLMTars . g e t ( ) [ i ] ;
5 / / Ca l l to atomic a c t i v i t y "LinearModel"
6 a c t i v i t y C l i e n t . l inearModel ( currEl ) ;
7 / / Ca l l to composi te i f−a c t i v i t y
8 dec i s ionNode_1 ( . . . , isPPS ) ;
9 }

10 Promise [ ] r e t v a l = new Promise [ 2 ] ;
11 re turn Promise . asPromise ( r e t v a l ) ;
12 }

13.7.2.4 Data Flow. The last step in generating the body of an activity func-
tion is to introduce variables that model the data flow between the enclosed activity
functions. To ease the variable handling, we use the single static assignment technique
employed in compiler construction, which requires every variable be written once and
not reused afterwards. Every value returned by an activity function is assigned to its own
unique variable and passed as input to each activity function with a connected input port.
The main idea is that the implementation of an activity function does not need to know
how the preceding activity functions produced and stored their output values. This is
also reflected in the activity function signatures (see Section 13.7.2.1) which only con-
sists of the input arguments from the original workflow specification. Activity functions
returning more than one value return a wrapper object (see Section 13.7.2). The individ-
ual values contained in this wrapper object need to be extracted before they are fed to
a subsequent activity function. Unfortunately, Promise objects can only be accessed
inside asynchronous functions, otherwise an exception will be thrown. To address this



“9780471697558c13” — 2015/3/20 — 12:15 — page 324 — #14

324 SCIENTIFIC APPLICATIONS ON CLOUDS

problem, we implemented several asynchronous helper functions for data manipulation
and conversion.

Listing 13.8 presents the data flow of the activity function representing the com-
posite activity ParallelForEach_1. First, an array for holding the results of each
loop iteration is created for each activity in lines 4 and 6. The activities’ output ports are
directly connected to a corresponding output port of the surrounding composite activity.
Then, the return value of each activity function is stored in its own variable in lines 10
and 14. Since the activity linearModel returns a wrapper object, we have to convert
it (line 12) before using the actual return values (lines 14 and 16). At the end of each loop
iteration, the values produced in the iteration are stored into the corresponding variables
(lines 16 and 18). At the end of the function body, we construct the return object and
convert the variables into a more suitable form (lines 22 and 24).

Listing 13.8 Data flow within the ParallelForEach_1 composite activity
1 p r i v a t e Promise para l l e lForEach_1 ( . . . ) {
2 i n t maxIter = PLMTars . g e t ( ) . l e n g t h ;
3 / / Holds output v a l u e s o f l inearModel a c t i v i t y
4 Promise [ ] out1 = new Promise [ maxIter ] ;
5 / / Holds output v a l u e s o f dec i s ionNode_1 a c t i v i t y
6 Promise [ ] out2 = new Promise [ maxIter ] ;
7 f o r ( i n t i = 0 ; i < maxIter ; i ++) {
8 Promise < Str ing > p = Promise . asPromise ( PLMTars . g e t ( ) [ i ] ;
9 / / Save l inearModel re turn value o f in lmo1

10 Promise <PortWrapperArray > lmo1 = a c t i v i t y C l i e n t . l inearModel ( p ) ;
11 / / Convert lmo1 in a format f o r f u r t h e r p r o c e s s i n g
12 Promise [ ] lmo2 = U t i l s . convertPWA2Pa ( lmo1 , 2 ) ;
13 / / Input f i r s t va lue s t o r e d in lmo2 ; save return value i n t o dno1
14 Promise dno1 = dec i s ionNode_1 ( lmo2 [ 0 ] , isPPS ) ;
15 / / S tore l inearModel re turn va lue in a c o l l e c t i o n
16 out1 [ i ] = lmo2 [ 1 ] ;
17 / / S tore i f re turn va lue in a c o l l e c t i o n
18 out2 [ i ] = dno1 ;
19 }
20 Promise [ ] r e t v a l = new Promise [ 2 ] ;
21 / / Convert c o l l e c t i o n to a s u i t a b l e re turn format
22 r e t v a l [ 0 ] = U t i l s . convertAoP ( out1 ) ;
23 / / Convert c o l l e c t i o n to a s u i t a b l e re turn format
24 r e t v a l [ 1 ] = U t i l s . convertAoP ( out2 ) ;
25 / / Return the output v a l u e s
26 re turn Promise . asPromise ( r e t v a l ) ;
27 }

13.8 EXPERIMENTS

The goal of our experiments is to compare the performance of the RainCloud workflow
in three configurations: automatically generated SWF workflow (using the technique
described in Section 13.7), manually optimized SWF workflow, and original ASKALON
version executed using the ASKALON middleware. To be able to interface with the
EC2 infrastructure, we pragmatically extended the ASKALON middleware services such
as security with Amazon credentials, information service with virtual machine image
manipulation, and enactment engine with SSH-based job submission [21].
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13.8.1 Setup

We run the experiments on 16 Amazon instances of type m1.medium. For the SWF
workflow, we used S3 as intermediate file storage. We executed the SWF decider and
the ASKALON scheduler on a dedicated host with an Intel i7-2600K quad-core proces-
sor running at 3.4 GHz and 8 GB of memory, outside of Amazon EC2. For ASKALON
we used a just-in-time scheduler that maps the next ready activities on the machines
delivering the earliest completion time, because it mostly resembles the SWF opera-
tion. This simple approach does not benefit from several optimizations normally used in
workflow executions but the goal of this analysis was not to compare the features of the
ASKALON worflow system with Amazon SWF. We executed the RainCloud workflow
in two scenarios: noncongested with 16 parallel loop iterations and two problem sizes
(small and large) and congested with 64 parallel loop iterations and a small problem size.
The small problem size corresponds to a 18 × 18 simulation grid and the large one to a
36 × 36 grid. For each scenario and workflow version, we calculated the two metrics:
average total execution time and cumulative execution time of all workflow activities
plus the scheduling time. To get an understanding on the amount of overhead present
in a workflow execution, we further split its cumulative execution time into process-
ing time (performing actual computation), scheduling time, waiting time (in an engine
internal queue) due to insufficient free resources, queuing time due to middleware and
external load latencies, and file transfer time.

13.8.2 Results

Figure 13.7 shows the total execution times for the three workflow versions with 16 par-
allel iterations and small and large problem sizes in the non-congested scenario. The
manually written SWF workflow is only marginally faster than the automatically gen-
erated version. We expected this result because the two versions only differ in the
implementation of the decider, whose overhead is negligible compared to the total work-
flow execution time. Surprisingly, the ASKALON version suffers from significantly
higher execution times due to the much higher overhead for transferring files between
the worker nodes, as shown in Figure 13.8a. We found out that this overhead is caused
by the Java CoG Kit [22] employed by ASKALON as a black-box library for interfacing
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with Grids (through Globus plugin) and Clouds (through SSH plugin), which uses an
ASKALON middleware machine outside Amazon EC2 as an intermediary for trans-
ferring files between two remote machines. In the following text, we disregard the file
transfer times to make the experiments more comparable.

The other reasons for ASKALON’s performance losses are the scheduling and
queuing overheads shown in Figure 13.8b. The scheduling overhead in ASKALON is
approximately three times higher than in SWF because it is tuned for highly heteroge-
neous and distributed Grid infrastructures, as opposed to Clouds that tend to be more
homogeneous and located within one data center. Because of this, the ASKALON Grid
scheduler needs to interact with a resource manager for discovering the available shared
resources which is not a requirement in static Clouds owned by a single organization.
Moreover, the ASKALON scheduler also needs to evaluate the external load generated
by scientists sharing a specific Grid resource, not required for dedicated Cloud resources.
Finally, the ASKALON scheduler is also responsible for preparing the remote execu-
tion environments (and directories) through multiple SSH connections, not required for
SWF that delegates the setup of the environment to the locally running legacy wrapper
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service. A more generic execution approach has more features resulting in overheads
than a specialized platform dependent one.

Also, the workflow activities wait three times longer in the queue of ASKALON
compared with SWF. The average overhead per workflow activity without file transfer
is approximately 4–5 s for SWF and around 15 s for ASKALON, which is compara-
ble for scientific workflows with long running activities. The queuing time is larger
for ASKALON than for SWF because of the higher middleware stack required by
ASKALON for supporting a broader range of heterogeneous infrastructures (i.e., clus-
ters, Grids, and Clouds), as opposed to SWF tuned for running in the native EC2
infrastructure only. In addition, ASKALON actively pushes workflow activities to
be executed onto the worker nodes which introduces higher overhead than the pull
approach used by Amazon SWF where the worker nodes actively fetch tasks from a task
queue.

Figure 13.9 shows the total execution times in the congested scenario. The SWF
version performs slightly better for 64 parallel loop iterations than for 16; how-
ever, this improvement due to load imbalance on the 16 iteration parallel loop and
coarse-grain activity sizes is still within the standard deviation. Using 64 iterations
produces a finer grained parallelization and smaller activity sizes that enable a bet-
ter schedule with smaller load imbalance overhead. The ASKALON version with 64
parallel iterations performs worse than with 16, but this is again within the standard
deviation.

Figure 13.10 shows the cumulative execution time for 64 parallel loop iterations. As
expected, the waiting times in the internal engine queue are extremely high because there
are four times as many workflow activities ready to execute than worker nodes. Again,
the queuing time of ASKALON is larger than of SWF because of the higher middle-
ware stack and the batch-mode access to resources. The average overhead per workflow
activity without the file transfer and waiting overheads is 17 s for SWF and 40 s for
ASKALON, which is an increase by a factor of 3.4 for SWF and 2.7 for ASKALON com-
pared to the previous scenario. The slight increase in execution time of the ASKALON
version in the congested scenario is mainly caused by file transfer overheads.
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13.8.3 Discussion

To conclude, ASKALON has been designed to support a variety of heterogeneous and
distributed computing environments, including Globus, gLite, EC2, and GroudSim-
based [23]. This heterogeneity in the supported infrastructures is achieved through a
modular architecture consisting of several layers and comprising complex services such
as enactment engine, scheduling, file transfers, and resource management. Although we
paid high attention at tuning the ASKALON overheads when building the Cloud plugins,
we exhibit a performance drop due to the higher middleware stack compared to SWF,
tuned for working with the local, simpler, and more homogeneous EC2 infrastructure.
For this reason, SWF features a much simpler architecture where the decider only decides
which workflow activities can be executed next and not on which resources. The tasks
of preparing the execution environment and transferring local files from S3 need to be
manually implemented by the programmer incurring a lower execution overhead, at the
cost of a higher programming effort. Workflows consisting of numerous relatively short
activities will mostly suffer from the larger ASKALON middleware overheads.

13.9 OPEN CHALLENGES

The approach shown in this chapter represents one possible solution for using cloud
resources for scientific computing utilizing the workflow paradigm. Not all applications
can utilize this approach to efficiently use the available resource pool. There are still
open challenges for different types of scientific applications that are not covered with
the shown solution:

Big Data: Some scientific domains rely on enormous amounts of data to be pro-
cessed. The challenge for this applications is to transfer this data into the cloud
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for processing as transferring the processing power from the cloud to the data is
technically not possible [24, 25]. For this class of application, a faster Internet
connection will be needed; but when looking at physics experiments (like ATLAS
from CERN), this fastest possible transfer speed might still be to low.

Security: Most scientific applications are self-written, open source or free to use.
When utilizing commercial software there might be problems with licensing them
to leased cloud hardware. Additionally the input data and results might also be
restricted in their distribution (i.e., medical studies). To allow such applications
to utilize cloud resources without violating copyrights or laws is still an open
challenge [26, 27].

Super computing: Some applications are build for massive parallel architectures
commonly only available in supercomputers. Cloud providers might have shown
in demo applications that it is possible to build a setup that is fast enough to reach
the TOP500 [28] speed wise but that is far away from a regular use case any sci-
entist can deploy on the cloud everyday. For those applications the only solution
is still having access to a supercomputer.

13.10 CONCLUSION

In this chapter, we proposed a method for automatic porting of scientific workflows to
Amazon SWF, able to exploit the native performance of the EC2 infrastructure. The
solution is based on the SHIWA fine-grained interoperability technology for translating
workflows written across different languages and workflow systems through the com-
mon IWIR representation. This scalable software engineering solution enables five
major workflow systems currently supporting the IWIR representation access the EC2
infrastructure through the SWF service: ASKALON, MOTEUR, Pegasis, Triana, and
WS-PGRADE.

We presented in this chapter the difficulties we encountered in translating an data
flow-oriented ASLALON workflow into a control flow-oriented SWF decider program.
The method is based on an algorithm that automatically generates the SWF decider Java
program and the underlying activity functions in four phases: function signature, activity
semantics, DAG control flow, and data flow generation.

We presented experimental results for porting an original real-world ASKALON
workflow to the EC2 infrastructure in two configurations: conversion to a Java SWF
decider or execution through the ASKALON middleware connected to EC2 via an SSH
plugin. The results demonstrate that the SHIWA fine-grained interoperability solution
that translates an ASKALON workflow into an SWF version through the common IWIR
representation is a promising alternative for porting workflows to a new infrastruc-
ture and able to exploit its native performance. Amazon SWF represents an attractive
environment for running traditional workflow applications, especially those consisting
of numerous relatively short activities affected by large middleware overheads when
executed in traditional ways. This is demonstrated by the performance of the automati-
cally generated SWF workflow, which is similar to the manually optimized version. By
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contrast, porting existing Grid workflow middleware environments such as ASKALON
to the Cloud, although effective, have performance drawbacks compared to the trans-
lated SWF version. The reasons of performance losses lie in the high middleware stack
required for supporting a wider range of distributed and heterogeneous cluster, Grid,
and Cloud computing infrastructures and a more generic scheduling and execution
approach.

A downside of SWF is its proprietary implementation hosted by a commercial ven-
dor who charges costs and may abandon this service anytime if it is lacking success.
Another difference to clusters and Grids is the pull-based assignment of tasks to an
unknown number of activity workers that requires different scheduling methods.
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14.1 INTRODUCTION

In less than 10 years, services over Internet have switched from static Web pages to
interactive multimedia applications. To deal with the demand for more interactivity and
more multimedia content, service providers have been forced to upgrade their infrastruc-
ture to offer their service. In the meantime, the benefits of virtualizing the infrastructure
and of delegating the delivery to external companies have prevailed over the traditional
architecture where the service provider owns a set of servers and delivers the content by
itself. What is now referred to as the cloud is the combination of multiple actors tied by
commercial agreements and orchestrated by the service provider.

In this chapter, we will focus on the service providers that offer massive, interactive,
multimedia services. These service providers face challenging scalability and response
time issues. We will describe the solutions that have been recently developed to address
these issues. In particular, we will pay a close attention to three representative services:

1. Cloud Gaming: On-demand gaming, also known as cloud gaming, is a new video
gaming application/platform. Instead of requiring end users to have sufficiently
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powerful computers to play games, on-demand gaming performs the intensive
game computation, including the game graphics generation, remotely with the
resulting output streamed as a video back to the end users. For game developers,
shifting from traditional gaming platforms to cloud gaming means a better control
on the delivery and easier software development and upgrade. On their side, end
users benefit from platform independence, for example, to play computationally
intensive games on portable devices that do not have the required hardware, and
also to be able to play at any time on any available device including smart TVs
and smartphones.

2. Massive User-Generated Content (UGC) Live Streaming: Anybody can become a
TV provider. This promise, which has been floating in the air for almost 10 years,
has led to a considerable effort from the research community [1]. The popular-
ity of UGC live streaming aggregators has however not grown as fast as some
expected. Yet, the past couple of years have seen a surge of interest for such
services, pushed by new usages, including crowdsourced journalism [2] and
e-sport [3]. The major actors of the area have been forced to take some measures
to cope with traffic explosion. Typically, Twitch.tv, gaming branch of justin.tv,
announced a significant increase in the delay,1 while the new live service from
YouTube was only offered to a subset of users.2

3. Time-shifting On-Demand TV: In time-shifted TV, a program broadcasted from
a given time t is made available at any time from t to t + δ where δ can be
potentially infinite. The popularity of TV services based on time-shifted stream-
ing has dramatically risen [4]: nPVR (a personal video recorder located in the
network), catch-up TV (the broadcaster records a channel for a shifting num-
ber of days, and proposes the content on demand), TV surfing (using pause,
forward or rewind commands), and start-over (the ability to jump to the begin-
ning of a live TV program). Today, to enjoy catch-up TV requires a digital video
recorder (DVR) connected to the Internet. However, TV broadcasters need to
protect advertisement revenue, whereas a DVR viewer can decide to fast forward
through commercials. By controlling the TV stream, not only the broadcasters
may guarantee that commercials are played, but they can also adapt them to the
actual time at which the viewer watches the program. This calls for a cloud-based
time-shifted TV service.

These three services make use of the same basic infrastructure components to offer
their services in the best conditions. We will first describe in a generic way these delivery
components. Then, we will study each of these services in an iterative manner with the
ambition to reveal some of the unique characteristics of these services and the solutions
that have been deployed so far.

1Twitch: The Official Blog http://is.gd/PdqlZI
2YouTube Live Introduction http://is.gd/Aw0yAx
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14.2 DELIVERY MODELS FOR INTERACTIVE
MULTIMEDIA SERVICES

14.2.1 Background

The interactive response time is defined as the elapsed time between when an action of the
user is captured by the system and when the result of this trigger can be perceived by the
user. For example in cloud gaming, which is one of the most demanding services on this
aspect, the work in Ref. [5] demonstrates that a latency around 100 milliseconds is highly
recommended for dynamic, action games, while response time of 150 milliseconds is
required for slower paced games.

The overall interactive response time T of an application includes several types of
delays, are defined as follows:

T = tclient +

tnetwork︷ ︸︸ ︷
taccess + tisp + ttransit + tprovider +tserver

14.2.1.1 Hardware Latency. We define tclient as the playout delay, which is the
time spent by the client to (1) send action information (e.g., in cloud gaming, initiating
character movement in a game) and (2) receive and play the video. Only the client’s
hardware is responsible for tclient, but the software that runs at the client side is commonly
provided by the service provider.

Additionally, we define tserver as the processing delay, which refers to the time spent
by the server to process the incoming information from the client, to generate the cor-
responding video information, and to transmit the information back to the client. The
service provider is mainly responsible for the processing delay.

Both playout and processing delays can be reduced with hardware changes and
software development by the service provider.

14.2.1.2 Network Latency. The remaining contribution of total latency comes
from the network. We further divide the network latency into four components: taccess,
tisp, ttransit, and tprovider.

First, taccess, is the data transmission time between the client’s device and the first
Internet-connected router. Three quarters of end users who are equipped with a DSL con-
nection experience a taccess greater than 10 milliseconds when the network is idle [6], and
the average access delay exceeds 40 milliseconds on a loaded link [7]. The behaviour of
different network access technologies can greatly vary, as the latency of the access net-
work can differ by a factor of 3 between different Internet Service Providers (ISPs) [7].
Additionally, the home network configuration and the number of concurrent active com-
puters per network access can double access link latency [8]. Finally, when the network
connection is through cellular networks, some other parameters can affect the delay,
including the technologies at the base station and the underlying network protocol (the
“generation” of the network).

The second component of network delay is tisp, which corresponds to the transmis-
sion time between the access router and the peering point connecting the ISP network
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to the next hop transit network. During this phase, data travel exclusively within the ISP
network. Although ISP networks are generally fast and reliable, major ISPs have reported
congestion due to the traffic generated by new multimedia services [9].

The third component is ttransit, which is defined as the delay from the first peering
point to the front-end server of the service provider. The ISP and provider are responsible
for ttransit; however, the networks along the path are often owned by third-party network
providers. Nonetheless, the ISP and the cloud provider is responsible for good network
connectivity for their clients.

The fourth component, tprovider, is defined as the transmission delay between the
front-end server of the service provider and the hosting server for the client. The provider
is responsible for tprovider. This delay is however rarely significant. Network latencies
between two servers in modern datacenters are typically below 1 milliseconds [10].

14.2.2 Introducing Delivery Models

Service provides have several options to build their “delivery cloud.” Here is a short
introduction to them.

14.2.2.1 Data Center. The most common way to deliver content is to use a data-
center (DC), which is basically a large set of servers [11]. The DC can be either owned or
rented by the service provider. In the former case, the infrastructure is almost exclusively
paid at the construction, however it has some fixed capacity limitations. In the latter
case, the infrastructure can scale up and down on demand but the service provider has
to deal with another actor (DC provider). Although DCs are attractive, easy-to-manage
infrastructures, they do not enable low response time for a large population of users
because they are located in one location (or few locations if the service provider deals
with several DC). That is, the aforementioned network latency is too high for a vast
fraction of the population because tisp and ttransit are large. Moreover, the monetary cost to
transfer data is higher because the traffic should cross several networks until the content
eventually reaches the users.

14.2.2.2 Peer to Peer. The challenge of delivering multimedia content on a
large scale is essentially a problem related to the reservation of physical resources. To
address this problem, the scientific community has advocated for years for a peer-to-
peer (P2P)-based infrastructure, where users themselves contribute to the delivery by
forwarding the content they received. A lot of algorithms have been designed to improve
the delivery performances [1]. However, various constraints have limited the deployment
of P2P systems for commercial purpose. First, firewalls and network address translator
(NAT) still prevent many direct connection between users [12]. Second, P2P require
users to install a program on their computers. Such a “technical,” security-sensitive
requirement can prevent users from using the service. Moreover, despite some new
browser-based technologies (e.g., WebRTC), a P2P software depends on the configu-
ration of the computer of end users, which is a cause of many development difficulties.
Third, the service provider has a low control on the Quality of experience (QoE) of users
since it does not directly control the performances. Last, the complexity of P2P sys-
tem can increase the delay. Many initiatives have aimed at ensuring that peers connect
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preferentially with the other peers that are located in the same network [13], which make
ttransit null. However, a peer usually get data from multiple other peers. Even if the direct
connection between two peers is short, aggregating data multiple from multiple peers
requires synchronisation and buffering, which cause extra delay.

14.2.2.3 Content Delivery Network. In the recent years, content delivery net-
works (CDNs) have emerged as the privileged way for large-scale content delivery. CDN
comprises three types of communication devices: a relatively small number of sources,
which directly receive the content from the service producer, a medium-sized network of
reflectors, and a large number of edge servers, which are deployed directly in the access
networks, close to the users. The proximity between the end-users and the edge-servers
makes that network latency is small.

For a decade, the CDN providers have met the demand of two families of players
in the value chain of content delivery: service providers (because large-scale Internet
services have to be distributed for redundancy, scalability, and low-latency reasons) and
network operators (because minimizing inter domain traffic while still fulfilling their own
users’ requests is a business objective). CDNs have thus emerged as a new category of
market players with a dual-sided business. They provide caching capacities “as a service”
to network operators, and they provide a distributed hosting capacity to service providers.
The CDN providers provide both scalability and flexibility, they deal with distribution
complexities, and they manage multiple operator referencing—all of these services at a
unique selling point.

The Works in Refs. such as [14, 15] confirm that edge-servers are not only used
for serving static content. As studied in Ref. [1], current CDN infrastructure has the
ability to serve millions of end users and is well-positioned to deliver game content and
software [16]. However, CDN edge servers are generally built from commodity hardware
that have relative weak computational capabilities and often lack GPUs.

14.2.3 Composing Hybrid Delivery Models

At the time this chapter was written, there was no clear consensus about the best solutions
to deploy. Typically for video streaming, we observe that the main actors made different
choices. To name a few:

• Google uses multiple DCs distributed over the globe to delivery their services,
including YouTube [17].

• NetFlix uses a composition of multiple CDNs on its delivery chain [18].
• A composition of P2P assisted by CDN to improve viewers QoE was deployed on

LiveSky [19].
• Justin.tv, one of the biggest live streaming service, uses private DC assisted by

CDN [20].

A recent trend is to build hybrid delivery models that compose several of the
aforementioned models. We depict in Figure 14.1 and list hereafter some frequent
compositions, each one with its own pros and cons.
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Figure 14.1. Hybrid delivery models compositions. (a) CDN-P2P, (b) Multi-CDN, (c) Multi-DC,

and (d) DC-CDN.

14.2.3.1 CDN P2P. Such a composition is managed by either the service
provider, as shown in Ref. [21] or the CDN provider, as shown in Ref. [22]. The CDN
offers some guarantee on the QoE by offering a minimum amount of resources and by
reducing the first response time. The CDN also allows users behind NAT to be properly
served. On its side, the P2P system assists the CDN in case of traffic peak. The more users
to be served by the system, the more resources in the system. The potential problem with
such composition is that service providers want to control all parts of the delivery chain.
Indeed, most profits come from a clear understanding of the demand from end users and
a capacity to adapt the delivered content to every user (e.g., embedded advertisement).
Another potential problem comes from the lack of guarantee of QoS. Finally CDN-P2P
compositions suffer from the same drawback as P2P one, including the requirement of
installing a software on users’ computer.

14.2.3.2 Multi-CDN. The service provider is commonly the main manager of
this composition. A typical example of such a composition has been thoroughly studied
in Ref. [18]. The main idea is that the service provider relies on several CDNs to deliver
the content. For each user, the service provider decides the CDN in charge of serving
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this user. The advantage in this composition is the possibility to achieve the best QoE for
the viewers with the lowest cost from the multiple prices applied by each CDN. Another
advantage is that the delivery is more robust since a downtime from one CDN provider
can be mitigated by using another CDN. However, this delivery is only based on third-
party actors, which means that even the consolidated background traffic is dealt in a
pay-as-you-go way. Therefore, the overall price can be high.

14.2.3.3 Multi-DCs. Service providers that want to provide features beyond the
basic delivery of the same content are interested in hosting the service in their own servers
in a DC. However, response time requirements force service providers to deploy multiple
DCs in order to serve the whole population with low response time [23]. In that case, it
becomes crucial to manage the traffic such that the load is well balanced among the
different DCs [24] and to manage the sharing of content over the multiple DCs [25]. The
advantage is a lower cost rate per GBps than multi-CDN, the total control of the delivery
chain, and a relatively low response time since every end-users should have a DC nearby
(so ttransit is reduced). The cons include substantial high cost for the initial deployment
for multiple DCs.

14.2.3.4 DC CDN. In order to mitigate the disadvantages of the aforementioned
models, it is frequent that video service providers deploy hybrid DC-CDN composi-
tions [20]. DC-CDN hybrid composition is expected to combine the main advantages of
both delivery solutions at a minimum cost. The high prices paid for CDN are minimized
by using the CDN resources only when DC is out of capacity, normally at traffic peaks.
The DC is dimensioned so that the consolidated background traffic (or valleys of usage) is
dealt by the DC. In the cloud computing context, such composition is often called hybrid
cloud where conventional DCs and cloud solutions are deployed together to aim the same
combined advantage [26]. Various studies have indicated that it is not trivial to outsource
tasks from the internal DCs to the external delivery infrastructure [27], typically due to
security [28], QoS [29], and economic [27] reasons.

14.3 CLOUD GAMING

As said in Section 14.1, cloud gaming is a new paradigm that has the potential to change
the video game industry. Attractive for both end-users and developers, cloud gaming
faces two main technical challenges: latency and the need for servers with expensive,
specialized hardware that cannot simultaneously serve multiple gaming sessions. By
offloading computation to a remote host, cloud gaming suffers from

• encoding latency, that is, the time to compress the video output
• network latency, which is the delay in sending the user input and video output back

and forth between the end user and the cloud.

Past studies [30–32] have found that players begin to notice a delay of
100 milliseconds [5]. Although the video encoding latency will likely fall with faster
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encoders, at least 20 milliseconds of this latency should be attributed to playout and
processing delay [33]. It means that 80 milliseconds is the threshold above which net-
work latency begins to appreciably affect user experience, among which a significant
portion of network latency is unavoidable as it is bounded by the speed of light in fiber.
Because of this strict latency requirement, servers are restricted to serving end users that
are located in the same vicinity. This explains the inaptitude of a DC-only solution for
cloud gaming. Even multi-DC hybrid solutions are inefficient for cloud gaming when
the number of DC is too small. To validate this statement, we perform a large-scale mea-
surement study consisting of latency measurements from PlanetLab and Amazon EC2
to more than 2,500 end users. These results are originally presented in Ref. [34].

In the following, we study the effectiveness of various infrastructures to offer on-
demand gaming services. We focus on the network latency since the other latencies,
especially the generation of game videos, have been studied in previous work [30, 35].
We evaluate in particular a multi-DC solution and a hybrid CDN-DC solution, which has
been originally proposed in Ref. [36].

14.3.1 Measurement Settings

To determine the ability of today’s cloud to provide the cloud gaming service, we conduct
two measurement experiments to evaluate the performance and latency of cloud gaming
services on existing cloud infrastructures in the United States. First, we perform a mea-
surement campaign on the Amazon EC2 infrastructure during May 2012. Although EC2
is one of today’s largest commercial clouds, our measurements show that it has some
performance limitations. Second, we use PlanetLab [37] nodes to serve as additional
DCs in order to estimate the behavior of a larger, more geographically diverse cloud
infrastructure.

In our model, a DC (either Amazon EC2 or PlanetLab) is able to host all games and
to serve all end-users that are within its latency range as it has a significant amount of
storage and computational resources. This model is based on public information avail-
able regarding the peak number of concurrent end users using on-demand gaming today
(less than 1800 [38]) and the size of modern cloud DCs (hundreds of thousands of
servers [39]).

As emphasized in previous network measurement papers [6, 7], it is challenging to
determine a representative population of real clients in large-scale measurement experi-
ments. For our measurements, we use a set of 2,504 IP addresses, which were collected
from 12 different BitTorrent3 swarms. These BitTorrent clients were participating in pop-
ular movie downloads. Although 2,504 IP addresses represent a fraction of the total
population in the United States, these IP addresses likely represent home users who
are using their machines for entertainment purposes. Therefore, we believe that these
users are a reasonable cross-section of those who use their computers for entertainment
purposes, which includes gaming. We refer to this selected users as the population.

We choose BitTorrent as the platform for our measurement experiments since,
in our beliefs, it provides a realistic representation of end users and their geographic

3http://www.bittorrent.com/
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distribution. We use the GeoIP service to restrict our clients to the United States, which
is the focus of this measurement study. Moreover, it allows us to determine the approxi-
mate geographical locations of our end users, which are used as a parameter for many of
our measurement experiments. After determining the clients, we use TCP measurement
probe messages to determine latency between servers and clients. Note that we mea-
sure the round-trip time from the initial TCP handshake, which is more reliable than a
traditional ICM ping message and less sensitive to network conditions.

14.3.2 Measurement of a State-of-the-Art Multi-DC
Infrastructure

The Amazon EC2 cloud offers three DC in the United States to its customers. We obtain
a virtual machine instance in each of the three DCs. Every 30 min, over a single day, we
measure the latency between each DC to all of the 2,504 clients. We use the median value
from ten measurements to represent the latency between an end-host to a PlanetLab node
or EC2. Figure 14.2 depicts the ratio of covered end users that have at least one network
connection to one of the three DCs for a given latency target. Two observations can be
made from the graph shown in Figure 14.2:

• More than one-quarter of the population cannot play games from an EC2-powered
cloud gaming platform. The thin, vertical gray line in Figure 14.2 represents the
80 milliseconds threshold network latency yielding a 70% coverage.

• Almost 10% of the potential clients are essentially unreachable. In our study,
unreachable clients are clients that have a network latency over 160 milliseconds,
which renders them incapable of using an on-demand gaming service. Although
we filter out the IP addresses that experienced highly variable latency results, we
still observe that a significant proportion of the clients have a network latency
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over 160 milliseconds. This result confirms the measurements made by previous
work, which identified that home gateways can introduce a significant delay on
data transmission [7].

14.3.2.1 Effects of a Larger Cloud Infrastructure. An alternative to deploy-
ing a small number of large DCs is to instead use a large number of smaller DCs. The main
providers have claimed to possess up to a dozen DCs within the United States [40, 41] in
order to improve their population coverage. A large DC is generally more cost-efficient
than a small DC; therefore, cloud providers should carefully determine if it is economi-
cally beneficial to build a new DC. In the following, we investigate the gain in population
coverage when new DCs are added into the existing EC2 infrastructure.

We create a simulator that uses our collected BitTorrent latencies in order to deter-
mine how many users are able to meet the latency requirement for gaming. We use 44
geographically diverse PlanetLab [37] nodes in the United States as possible locations
for installing DCs. We consider a cloud provider that can choose from the 44 locations
to deploy a k-DC cloud infrastructure. We determine latencies between clients and Plan-
etLab nodes using the result of our measurement campaign. Afterwards, we determine
the end user coverage when using PlanetLab nodes as additional DCs.

We design two strategies for deciding the location of DCs:

• Latency-based strategy: the cloud provider wants to build a dedicated cloud infras-
tructure for interactive multimedia services. The network latency is the only
driving criteria for the choice of the DC locations. For a given number k, the cloud
provider places k DCs such that the number of covered end users is maximal.

• Region-based strategy: the cloud provider tries to distribute DCs over an area. We
divide the United States into four regions as set forth by the US Census Bureau:
Northeast, Midwest, South, and West. Every DC is associated with its region. In
every region, the cloud provider chooses random DC locations. For a given total
number of DCs k, either � k

4
� or � k

4
� DCs are randomly picked in every region.

For cloud providers, the main concern is to determine the minimum number of DCs
required to cover a significant portion of the target population. Figure 14.3 depicts the
ratio of covered users as a function of the response time target for two targets network
latencies: 80 and 40 milliseconds. The former 80 milliseconds network latency target
come from previous works [5, 31, 42], which indicate that 100 milliseconds is the latency
threshold that is required for realism and acceptable gameplay for action games. Because
at least 20 milliseconds can be attributed to playout and processing delay [33], network
latency can account for up to 80 milliseconds of the total latency. We select 40 millisec-
onds as a stricter requirement for games that require a significant amount of processing
or multiplayer coordination.

We observe that a large number of DCs are required if one wants to cover a
significant proportion of the population. Typically, a cloud provider, which gives pri-
ority to latency, reaches a coverage ratio of 0.85 with 10 DCs for a target latency of
80 milliseconds. Using the region-based strategy requires nine DCs to reach a 0.8 ratio.
In all cases, a 0.9 coverage ratio with a 80 milliseconds response time is not achiev-
able without a significant increase in the number of DCs (around 20 DCs). For more
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demanding games that have a lower latency requirement (e.g., 40 milliseconds), we find
that cloud provides exceedingly low coverage. Even if 20 DCs are deployed, less than
half of the population would have a response time of 40 milliseconds. Overall, the gains
in coverage are not significant with regard to the extra cost due to the increase in the
number of DCs.

We then focus on the performance of two typical cloud infrastructures: a 5- and
20-DC infrastructure. We assume a region-based location strategy since it is a realistic
trade-off between cost and performance. We present the ratio of covered populations for
both infrastructures in Figure 14.4.

We observe that there can be significant performance gaps between a 5 and 20-DC
deployment. Moreover, five DCs do not guarantee reliably good performance, despite
the expectation that a region-based location strategy provides good coverage. Typically,
a well-chosen 5-DC deployment can achieve 80% coverage for 80 milliseconds. How-
ever, a poorly chosen 5-DC deployment can result in a disastrous 0.6 coverage ratio. By
contrast, a 20-DC deployment exhibits insignificant variances in the coverage ratio.
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14.3.3 Hybrid DC-CDN Infrastructure

Since the multi-DC hybrid solution has some significant shortcomings. We explore
in the following the potential of a hybrid DC-CDN infrastructure to meet the latency
requirements of on-demand gaming end users. More details can be found in [36].

14.3.3.1 Experimental Settings. Out of the 2,504 IP addresses collected in
our measurement study, unless otherwise specified, we select 1,500 of these IP addresses
to serve as on-demand gaming end users. Of the remaining IP addresses, we select 300
of them to represent edge servers.

Client-to-client latency is determined as follows. Our simulator requires a latency
matrix between all of our collected BitTorrent clients. A BitTorrent client may be used
to represent either an edge server or an end-user. Since we do not have control of our
collected BitTorrent clients, we estimate client-to-client latency by mapping a Client C1

to its closest PlanetLab node, P. Suppose we wish to determine the latency between
Client C1 and C2. This latency is the sum of P’s latency to C2 and a fuzzing factor that
is between 0 and 15 milliseconds. We assume that client C1 is located relatively near its
closest PlanetLab node P; thus, the additional 0–15 milliseconds accounts for the latency
between C1 and P. Furthermore, an edge server may only serve an end user if it hosts the
end user’s demanded game.

We evaluate the effectiveness of a deployment or configuration by the number of
end users that it is able to serve. In all of our experiments, we only model active users,
and they are statically matched to either a datacenter or an available edge-server that has
the requested game and meets the user’s latency requirement. For our experiments, an
edge server can only serve one end user at a time. An end user is served (or satisfied) if
one of the following conditions are true:

• Its latency to a DC is less than its required latency.
• It is matched to an edge server that is within its latency requirement and hosts its

requested game.

An end user may be unmatched if a DC cannot meet its latency requirement and all
suitable edge servers are matched to other end users.

14.3.3.2 Determining the Size of the Augmented Infrastructure. We
now focus on the 80 milliseconds target response time (for reasons that are described in
Section 14.3.2.1), and we consider the factors that affect the performance when additional
servers are added to the existing cloud infrastructure. Upon closer inspection, we are able
determine whether clients are covered/served by EC2 or not. The EC2-uncovered clients
can then also be differentiated between those who may be covered by a edge-server and
those who are unreachable for a given response time.

In this experiment, each edge server hosts one game, and there is only one game
in the system. Furthermore, we restrict edge-servers to serve a single user as opposed
to many users. Figure 14.5 shows that approximately 10% of end users are unable to
meet the 80 milliseconds latency target using EC2 or be served by edge servers. These



“9780471697558c14” — 2015/3/20 — 12:16 — page 345 — #13

UGC LIVE STREAMING 345

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

R
a

ti
o

 o
f 
s
e

rv
e

d
 u

s
e

rs
 a

m
o

n
g

 E
C

2
 u

n
re

a
c
h

a
b

le

Number of smart edges

500 Clients

1,000 Clients

2,000 Clients

Unreachable clients

Figure 14.5. Ratio of served end users among the EC2-uncovered end users. Each edge-server

can host one game, and there is only one game in the system. One edge-server can serve up

to one on-demand gaming end user. The gray area indicates the percentage of end users that

cannot be served by both edge-servers and EC2 datacenters.

end users exhibit excessive delay to all edge servers and datacenters, which is likely due
to nonnetwork delays that are outside of our system’s control. Therefore, the system’s
performance with respect to the ratio of covered end users is limited by this ceiling.

The results of our measurement study point to a hybrid DC-CDN infrastructure that
combines existing DCs with CDN servers. Because CDN servers are in closer prox-
imity to end users, they are able to provide lower latency for end users than distantly
located cloud DCs. In addition, a hybrid DC-CDN infrastructure is more attractive than a
multi-CDN because DC, which are less costly than CDN, can serve a significant fraction
of users. Therefore, DC-CDN is attractive for such demanding interactive, multimedia
service.

Yet, there are still many challenges that need to be addressed. One challenge is to
determine the selection of edge servers that maximizes user coverage. Unfortunately,
this is an instance of the facility location problem which is NP-hard. Furthermore, since
edge servers cannot host an infinite number of games, due to physical limitations and
cost considerations, another challenge is to strategically place games on edge servers in
order to achieve a maximal matching between end users and edge servers. Solutions to
these challenges are especially required in case of a growth of the number of concurrent
gamers.

14.4 UGC LIVE STREAMING

Over-the-top (OTT) TV channels mimic regular TV channels, but instead of using tra-
ditional mass communication medium (e.g., broadcast, satellite and cable) they use the
Internet to deliver live video stream to their audience. A key consequence of the devel-
opment of OTT TV services is that anybody can be a TV provider. Crowdsourced news



“9780471697558c14” — 2015/3/20 — 12:16 — page 346 — #14

346 INTERACTIVE MULTIMEDIA APPLICATIONS ON CLOUDS

channel [2] and e-sport channels [3] are examples of the emerging usages that are enabled
by TV delivery over an open medium. The user became an important source of content
providing to the services continuously massive amount of information. The vast majority
of works related to the delivery of live streams, both with P2P (see Ref. [1] for a survey)
and CDN (see Refs. [43–45] for recent works).

The behaviors of contributors to video sharing platforms like YouTube has been
extensively studied since [46]. For example, a study presented in Ref. [47] estimates that
in May 2011 there was a total of roughly 500 millions YouTube videos, a minimum total
storage needed for these videos was around 5 petabytes (PBs) and the network capacity
to run YouTube ranged from 17 to 46 PBs/day. To the best of our knowledge, there is
no similar measurements for UGC live streaming. A characterization of professional
players broadcasting in twitch.tv (a branch of justin.tv exclusively for gamecasting) is
presented in Ref. [3]. Another work [48] focusing on gamecasting community is about
XFire, a social network for gamers featuring live video sharing. Live video sharing is
also explored in Ref. [49], where authors analyzed 28 days of data from two channels
associated with a popular Brazilian TV program aired in 2002. A study over a free-to-
use P2P live streaming system, namely Zattoo, with provider side traces pointed out
that it served over 3 million registered users across eight European countries with peaks
of 60, 000 simultaneously users on a single channel [50]. During China 2008 Olympic
Games, data were collected from the largest Chinese CDN [51], showing that the live
nature of such events results in differences on access patterns compared to video on
demand (VoD) and other UGC systems. However, none of these works has analyzed the
behavior of contributors nor estimated the size of the delivery networks.

To understand the behavior of UGC live video-streaming services, we performed an
extensive study over real traces of a major live streaming service, namely justin.tv.

14.4.1 Analysis of justin.tv UGC Live Streaming System

Justin.tv offers a free platform for publishing user-generated live video content. In the
following, we distinguish uploaders and viewers. The uploaders are registered users that
have been captured broadcasting one live video at least once during the months of our
study. An uploader is the generator of only one given channel (a live video stream), so
we will interchangeably use the terms channel and uploader hereafter. A channel can be
either online at a given time, which means that it can be viewed by viewers, or offline
when the user in charge is not uploading video on this channel. A channel can alter-
natively switch from offline to online and vice versa during our analysis. Viewers can
subscribe to a channel so that they are notified every time the channel switches on.

We use justin.tv REST API with a set of synchronized computers to collect a global
view of the justin.tv system every 5 min. We fetch information about the global popularity
(total number of viewers in the system), total number of streams, channel’s popularity
(number of viewers by channel), and channel’s metadata every five minutes. From the
collected data, we target the months of August and November 2012. Supported by the
results of our measurement campaign, we give two messages: A large and international
population and Uploaders guarantee a 24/7 TV-like service.
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Figure 14.6. Each of five regions fraction of viewers and uploaders.

14.4.1.1 A Large and International Population. First we emphasize that
justin.tv is (1) an international service, and (2) a service that is fueled by a large popu-
lation of uploaders. We first use our data traces to get the origin of uploaders, which we
associate to five regions (Africa, Americas, Oceania, Europe, and Asia). The origin of
the viewers is not provided by justin.tv API, so we collected the estimated viewers infor-
mation from Google Ad Planner service, which includes geolocalization data. Likewise,
the viewers were grouped into five regions.

Our main observation in Figure 14.6 is that the viewers distribution conforms to
the distribution of Internet users [52–54]. It is important to note that previous work
related to P2P UGC live video systems (e.g., Ref. [55]) does not highlight such well-
balanced distribution of viewers. We can also notice that in both months there is an
over-representation of uploaders located in Americas. We suspect that uploaders do not
pay full attention to their profile settings, the default country being America.

We then want to show how vast is the population of uploaders. We analyze both entire
periods to measure the number of distinct channels that had been online. In average, there
are around 2,000 simultaneous online channels. In August, we find that around 200,000
distinct uploaders have started channels during this one month period and almost 240,000
for the same period analyzed in November. This number demonstrates the massiveness
of UGC live streaming system in comparison with traditional IPTV systems.

14.4.1.2 Uploaders Guarantee a 24/7 TV-like Service. Our second mes-
sage is that justin.tv is an always-on service, thanks to its contributors. We have to recall
that justin.tv differs from other UGC services like VoD in the sense that the service
depends on the activity of uploaders at every time. There is a critical need of online
channels. Fortunately, justin.tv has loyal uploaders, who manage to be more consis-
tently active (here online) than on other typical UGC platforms. It thus guarantees service
continuity.

We measure the number of online channels over the whole month, and then we com-
pute the average numbers per hour of a day (respectively per day of a week), thus we
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measure diurnal (respectively weekly) patterns. We normalize the results so that the peak
of the number of online channels is equal to 1. We show our results in Figure 14.7.

To demonstrate the continuity of the live service over any time of the day we explored
the diurnal pattern of concurrent online channels. The diurnal pattern has a traditional
shape (daylight), but the main important point to note is that this pattern is low in compar-
ison with other platforms. We draw with thin lines the same lowest popularity in a scale
to 1 for two other UGC platforms: YouTube (discussed in Ref. [56] and [57]) and blog-
posts ( [58] described it in 2009). It is noteworthy that justin.tv lowest global popularity
in a day is more than 0.65 of its peak (noted 0.65:1), which means that there are many
online channels all along the day. On YouTube, the number of uploaded videos is signif-
icantly less important at some day time than other (nearly 0.37:1). If justin.tv followed
the same pattern as YouTube, there would be some day time without enough channels to
guarantee a large enough choice of channels. Finally, blogposts have a gigantic diurnal
pattern according to Ref. [58] (around 0.05:1).

The same observation holds for weekdays. The difference between its lowest and
peak global popularity is not significant on justin.tv for the month of August (0.92:1)
and rather interesting for the month of November (0.83:1). In other words, there are
online channels all along the week. These results are comparable with YouTube (0.84:1)
and outperform blogposts (0.06:1).

14.4.2 Motivations for a Hybrid DC-CDN Delivery

We now discuss a selection of insights to justify the usage of a hybrid DC-CDN delivery
model in the case of UGC live streaming systems. First, it is well known that a small num-
ber of contributors of UGC systems represents the vast majority of the global popularity
of these platforms. Such distribution simplifies the management of CDN infrastructures.
The provider is also interested in delegating to the CDN the channels with the highest
resolution, which can throttle the limited bandwidth capacity of DCs. Finally, channels
that are stable over time are easier to manage in CDN, with less configuration of edge
servers. We are interested in measuring such facts for justin.tv.

14.4.2.1 Most of the Traffic Comes from a Tiny Proportion of
Uploaders. This is our main observation, and it is important to understand that these
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TABLE 14.1. Number of channels for top categories

Top

10 20 30 40 50

Aug. # channels 559 1086 1499 1830 2166
Nov. # channels 458 922 1342 1670 1985

special uploaders are not online simultaneously. They have alternatively been online and
offline; but at every time, the subset of online channels out of this tiny subset of uploaders
represents most of the traffic.

Every 5 minutes, we collect the k most popular channels. To simplify, we focus here
on values of k in {10, 20, 50}. Please recall that there are around 2,000 simultaneous
online channels, so these top channels represent a small fraction of all uploaders. Overall,
for each month, we gathered more than 8,500 different lists (one new list every five
minutes) of top-k channels.

We show that a small number of distinct channels occurs in these top-channel lists
over the whole months. In Table 14.1, we give the number of different channels (# chan-
nels) having at least one occurrence in these lists over the whole months. Only 559
uploaders (0.3% of monthly total) have occurred in the top-10 channels in August. It
means that 559 uploaders have occupied the over 85,000 “spots” that were available in
the month. This result is even stronger in November for which the number of distinct
uploaders is only 458 (0.2% of monthly total) although the overall number of distinct
channels is larger than in August, as discussed in Section 14.4.1.1.

We then measure the popularity of these channels and calculate the footprint of top
channels on the overall traffic of justin.tv by collecting the bitrates given in the API. We
can thus extrapolate the total bandwidth in justin.tv system. This information is depicted
in Figure 14.8. First, as can be expected, the popularity of top channels decreases fast.
The gap between top-10 and top-20 channels is around 10% of the overall traffic, and
also small between top-20 and top-50 channels. Second, the peak of global popularity
of justin.tv can be exclusively credited to the top-10 channels. We see a direct correla-
tion between peak of overall popularity and peak in top-10 channels. A third remarkable
observation is that November peak accounted for 1 Tbps of uplinked data. Such enor-
mous bandwidth makes the case for interfacing justin.tv with CDN. A fourth remark is
regarding the usage of a hybrid DC-CDN model on this scenario. For example, with a
DC provisioned with 100 Gbps of bandwidth capacity, all the peak traffic would have
been sent to CDN and the DC capacity would have being almost fully used almost every
other time of the month.

14.4.2.2 The Most Popular Channels are in the Highest Resolutions.
Another noteworthy observation is that the ratio of traffic generated by the aforemen-
tioned top channels is bigger than for the ratio of viewers. During peaks, almost 98% of
traffic comes from the very small subset of top channels that are online, while viewers
account at most 70%. The reason for such difference between the ratio of viewers and
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the ratio of traffic for top channels is revealed in Figure 14.9. We associate each range
of bitrates with a determined video quality, based on the values of YouTube LiveStream
Guide and what we get from the API. As can be noted, videos with better quality are more
popular (720p being the resolution for which videos are the most popular) although these
resolutions represent a small portion of total streams.

Overall, these observations are significant in the perspective of integrating justin.tv
into a hybrid CDN-DC architecture. CDN are efficient to handle a small number of very
popular content. Based on our findings, we claim that it is easy to integrate justin.tv into
a CDN. Since a relatively small number of uploaders (around one thousand) can (at least)
halve the burden on DCs, justin.tv platform should focus on these uploaders and ensure
that they get handled by the CDN as soon as they switch on their channels.

14.4.2.3 The Number of Simultaneously Online Popular Channels is
Stable. In the scenario where a CDN manages top-k channels, a question is the number
of uploaders that are simultaneously online at a given time. As previously said, CDN
knows how to manage a small number of channels. We measure the number of online
channels out of the overall population of top-k channels, every 5 minutes. We present in
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Figure 14.10 the results, where the average number every hour over all days in the month
is given in the first graphic of Figure 14.10, while the evolution during the month is given
in the second one.

The number of simultaneously online uploaders out of the population of CDN-
friendly uploaders is both stable and small. Typically for the set of thousand uploaders
that occurred at least once in the top-20 channels, the number of online channels is
between 100 and 130 for the month of August, which is a range that a CDN can han-
dle without problem. To conclude, we claim that justin.tv platform can easily interface
with a hybrid DC-CDN model because a small and stable population of uploaders is
responsible of the traffic peaks.

14.5 TIME-SHIFTING VIDEO STREAMING

As stated in Section 14.1, time-shifted TV is a core element of a number of potential killer
apps of the connected TV. We emphasize below some of the most critical differences
between VoD services and time-shifted TV services:

• Time-shifted services allow end users to time-shift a program that is still on air
(typically via the popular pausing feature of Personal DVR). Studies have shown
that most time-shifted requests are for the ongoing TV program [59], so delivery
models that do not consider simultaneous ingestion and delivery of content do not
meet the demand from the end users. Typically, catch-up TV services, where every
program is proposed separately after it has been fully broadcast and recorded, do
not provide the interactivity expected by most users.

• The length of a TV stream is several orders of magnitude longer than a typical
movie in VoD. While a movie can be considered as one unique object, the stream
of a time-shifted video is a series of portions, which are not uniformly popular. The
popularity of video portions in a time-shifted streaming system is complex because
it depends on multiple parameters including the popularity of the TV program
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associated with a given portion and also the time at which the portion has been
broadcasted. Moreover, the popularity of a given portion varies with time ; it usu-
ally tends to decrease with time but sometimes events that were unnoticed at the
broadcasting time can become popular later due to, for example, social networks.

• The volatility of viewers is more important than in VoD. In Ref. [60], a peak has
been identified at the beginning of each program, where many clients start stream-
ing the content, while the spikes of departure occur at the end of the program.
More than half of the population quits during the first 10 min of a program in
average, and goes to another position in the history [61]. In a same session, a user
of time-shifted TV systems (hereafter called shifter) is interested in several distinct
portions, which can be far from each other in the stream history.

The characteristics of time-shifted streaming services make the delivery especially
challenging. In particular, DC-based solutions have some serious weaknesses because
current servers do not meet all the requirements. First, conventional disk-based VoD
servers cannot massively ingest content, and keep pace with the changing viewing habits
of subscribers, because they have not been designed for concurrent read and write
operations. Second, client-server delivery systems are not cost-efficient in the case of
applications where clients require distinct portions of a stream. They can indeed not use
group communication techniques such as multicast protocols. As a matter of facts, cur-
rent time-shifted services managed by TV broadcasters are restricted to a time delay
ranging from 1 to 3 hours, despite only 40% of shifters watch their program less than
three hours after the live program [59].

Due to lack of space, we will not enter here into the details of the different propos-
als for delivering time-shifted streams. The most complete overview of the literature is
in [62]. Previous work has highlighted the problems met by time-shifted systems based
on a DC infrastructure [63–65]. New server implementations are described in [65]. Cache
replication and placement schemes are extensively studied by the authors of [63]. Such
a solution corresponds to a hybrid CDN-DC infrastructure. A different option is to opt
for DC-based solutions such as Ref. [64]. When several clients share the same optical
Internet access, a patching technique is used to handle several concurrent requests so that
the server requirement is reduced.

The delivery model that appears to be the most attractive is a hybrid P2P-DC solu-
tion. In such architecture, the main motivation is that the most popular video portions at a
given time are usually the video portions that just aired a few minutes ago. The idea is thus
to cache these fresh downloaded portions in the viewers’ computer or home gateway—
this is the P2P part—while the older and less popular video portions are stored in the
DC using cost-effective storage systems—this is the DC part. Hybrid P2P-DC solutions
have been the topic of several papers [66–69].

In Table 14.2, we summarized the results of simulations that we conducted on a
set of synthetic traces from [68]. These results indicate the percentage of video portions
that are served by either the P2P delivery models or the DC. As can be seen, results can
differ a lot among the presented solutions. The DC is used when either the portion is not
available in the P2P system (typically because it has not been stored in the user computer)
or the P2P system does not have enough capacity to serve the users.
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TABLE 14.2. Ratio of video portions from P2P vs. DC

from P2P from DC

missing portion in P2P not enough capacity in P2P

PACUS [68] 75.2% 0.1% 24.7%
Turntable [67] 78.5% 0% 21.5%
P2TSS-Rand [66] 11.2% 23% 65.8%
P2TSS-Live [66] 2.8% 22.8% 74.4%

14.6 OPEN CHALLENGES

The management of interactive multimedia service is still considered a challenging task.
The solutions that have been described throughout this chapter fix some of the most
prevailing challenges and allow today’s services to be used all over the world. But there
are still some open challenges, which will require a significant effort from the scientific
community in the next years. We would like to highlight three topics, which, in our
opinion, will matter in the near future.

• Economics of networks: Behind the services that everybody enjoys everyday, there
is a complex value chain where multiple actors interact to provide components of
the service (to name some of the most important actors, the CDN provider, the
ISP, the transit network operator and the content producer). For a given service,
each actor should be profitable (its revenues should exceed the cost of the infras-
tructure it provides for the said service) and aims to maximize their profits. In
the case of multimedia services, it is frequent that a decision taken by one actor
has implications on the context of another actor. Such an interplay between actors
makes the design of services even harder. To study the behavior of rationale actors
and the consequences of their actions on the global system, scientists use theo-
retical models combining game theory and discrete optimization [70]. The recent
disputes between major Internet actors (for example Netflix and Comcast4) have
highlighted the complexity of wide-scale multimedia services and the stress these
services impose on the infrastructure. Despite the relative youth of network eco-
nomics as a scientific domain, we believe that future works related to CDN and
content provider should take into account the economical drivers for these actors.

• Virtualization for Intensive Multimedia Tasks: Multimedia services have a high
demand for specialized resources, for example, Graphics Processing Unit (GPU).
The migration from private DCs (with dedicated hardware) to the cloud (with vir-
tual machines, shared resources, and standard hardware) is a long, still ongoing
journey. The elasticity of DCs has the potential to convince service providers to
migrate their most intensive tasks but some of these tasks are difficult to migrate

4http://blog.streamingmedia.com/2014/02/heres-comcast-netflix-deal-structured-numbers.html
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because the commoditized hardware cannot accomodate the requirements of spe-
cialized software (e.g. a game engine requires GPU), and because these software
have been designed to maximize the utilization of hardware although DC man-
agement requires smart resource sharing. Among the advanced solutions, the
development of virtual DC is expected to offer well-configured computing infras-
tructure in shared data-center [71]. Virtual DCs are however still in their infancy.
More generally, although some vendors claim that some tasks can now be run in
the cloud (see the Amazon Elastic Transcoding offer), we believe that scientists
dealing with system and network management will find in the next years a lot of
open problems related to the hosting of multimedia software services in shared
hardware resources.

• Improvement of Adaptive Streaming. Dynamic adaptive streaming technologies
have been recently adopted by a majority of streaming vendors and service
providers. The standardization efforts at MPEG has allowed various key advance-
ments in the technologies, but they also reveal the multiple open problems that still
need proper solutions. We emphasize three topics. First the work related to Server
and network-assisted DASH Operations (SAND) at MPEG is key for those who
call for a better integration of network operators in the adaptive process. Today’s
solutions are only based on the client side. As it has been shown in various papers
(e.g., Ref. [72]), a client-only adaptive systems has serious weaknesses. A bet-
ter collaboration between every actor in the chain would be beneficial, while the
technology must keep its current simplicity, which is part of the reasons for its
widespread adoption. The second important topic is the implementation of low-
latency live streaming. Some papers (e.g. Ref. [73]) have started studying live
adaptive streaming more carefully with the goal of offering the same level of adap-
tivity as for regular stored video although the stream is generated on the fly. Finally,
a third topic which requires extra-attention is the pre-delivery phase in multime-
dia services. The decision of how to encode the stream that has to be delivered
(the number of representations, the bit-rates, the resolutions) is typically criti-
cal because the whole delivery infrastructure has to address the consequences of
these decisions. Preliminary works have studied some of the problems in a formal
way [74], but much more has to be done.

14.7 CONCLUSION

Interactive multimedia services have become a key component of the Internet. In this
chapter, we highlighted three of them: cloud gaming, UGC live streaming and time-
shifted TV. These services are however extremely challenging to implement, deploy and
manage. The delivery infrastructure, which is referred to as the cloud, is far more complex
than for typical static websites.

One of the main messages we conveyed in this chapter is that hybrid delivery
architecture feature attractive characteristics to address the challenges of interactive
multimedia services. Their management is however difficult. Moreover, there is no
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“one-fits-all” solution. We exhibited in this chapter that, for each service, a different
hybrid architecture is the most appropriate.

The management of hybrid architectures is a tremendously promising research area.
In particular, recent works have shown that cost savings by an order of magnitude can
be achieved by the implementation of smart hybrid architecture instead of a more con-
ventional DC-only or CDN-only infrastructure. A lot of opportunities exist typically in
exploring content delivery with optimization approaches, in applying data analysis tech-
niques to large-scale services, and in leveraging new multimedia technologies to improve
the QoE of mobile users.
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BIG DATA ON CLOUDS (BDOC)
Joseph Betser and Myron Hecht

The Aerospace Corporation, El Segundo, CA, USA

15.1 INTRODUCTION

Big data is the term for a collection of data sets so large and complex that it becomes dif-
ficult to process using on-hand database management tools or traditional data processing
applications. The challenges include capture, curation, storage, search, sharing, trans-
fer, analysis, and visualization [1]. This chapter focuses on big data on clouds (BDOC).
In fact, an excellent overview of the state-of-the-art and research challenges for the
management of cloud computing enterprises is presented in Ref. [2]. Indeed, the main
thesis of that paper is that heterogeneity and scale are the driving forces of many of
the research challenges for the management of cloud computing systems. BDOC further
exacerbate both the scale and heterogeneity of the resulting enterprises. It is the thesis of
this chapter that hybrid management, involving disciplined and innovative site reliability
Engineering (SRE), is the enabling operations paradigm by which to successfully tackle
these growing, emerging challenges. By hybrid management we mean a combination of
an increasing level of automated, autonomic management, and fully engaged dynamic
human SRE organizations. The SREs provide operations oversight, as well as develop
increased automation and insight, in order to afford yet greater scale, heterogeneity,
overall enterprise capability, and business performance.

Cloud Services, Networking, and Management, First Edition.
Edited by Nelson L. S. da Fonseca and Raouf Boutaba.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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The business appetite for big data continues to grow as cloud computing continues
to emerge as the dynamic vessel by which to supply the ever-growing demand for ubiq-
uitous online and mobile services. Social networks, technical computing, ever-growing
global communities, and heterogeneous enterprises are the key drivers for ever-growing
cloud computing systems. The successful management of these challenging global net-
works and computing resources is important to successful business performance and high
quality-of-service delivery across the globe. This chapter articulates some of the success
enablers for deploying BDOC, in the context of some historical perspectives and emerg-
ing global services. We consider cloud and mobile applications, complex heterogeneous
enterprises, and discuss big data availability for several commercial providers. In addi-
tion, we offer some legal insights for successful deployment of BDOC. In particular, we
highlight the emergence of emerging hybrid BDOC management roles, the development
and operations (DevOps), and SRE. Last, we highlight science, technology, engineering,
and mathematics (STEM) talent cultivation and engagement, as an enabler to technical
succession and future success for global enterprises of BDOC.

15.2 HISTORICAL PERSPECTIVE AND STATE OF THE ART

This section covers the historical perspective and then discusses some existing solutions
to some technical challenges presented by BDOC.

Cloud computing evolved over time, as connectivity of computer networks steadily
increased in the advent of the Internet. The Internet itself started as an Advanced Research
Projects Agency (ARPA, currently known as DARPA) research project which sought to
connect computer systems, and thus achieve greater availability in 1969 [3] at University
of California, Los Angeles (UCLA). The greatest invention that propelled the Internet
from a research, e-mail, and ftp infrastructure to an everyday utility was the Mosaic [4]
Web browser, which was created at the University of Illinois in 1993. This enabled a
plethora of new applications based on the higher connectivity and easier access via the
web browser. In fact, Zhang et al. [2] argue very well that most of the technologies that
enable cloud computing are not new. It is the heterogeneity and scale of today’s growing
enterprises that call for innovative research for successful management of BDOC.

15.2.1 From Application Service Provider to Cloud Computing

One of the initial services that emerged was the use of the Application Service Provider
(ASP) business model. This model used the Web browser as the primary user inter-
face, and the service provider would run the application on a server. The initial level
of sophistication of these client-server architectures was low to moderate, and some of
these applications are reviewed next.

15.2.1.1 E-mail, Search, and E-Commerce. E-mail is a service that existed
in research environments from the 1970s, but did not become a common household tech-
nology until the 1990s. As simple as e-mail appears today, it took considerable efforts of
the Internet Engineering Task Force [5], in order to achieve the necessary communication
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protocol standardization that enabled various platforms and operating systems to be able
to seamlessly interoperate using (Simple Mail Transfer Protocol (SMTP). The Internet
governance model of rough consensus and running code [6] speaks volumes in terms of
achieving interoperability over the Internet, as well as over BDOC. Things have to work
and work properly for the end user, or the user will go elsewhere by a click of the mouse.

Search: Once Internet browsers became available, one of the earlier services offered
was Internet search. Some of the early companies (AltaVista, etc.) are no longer in busi-
ness in this very competitive space. It is now dominated by Google, Bing, and Yahoo,
which together own over 90% of the search market [7]. Battelle gives an excellent review
of the evolution of the search market. Updated information can be found at Battelle’s
media blog [8].

Once search engines gained considerable capability, e-commerce was born. With the
instant ability to identify merchandise items of interest with a click of a mouse, brick and
mortar stores became obsolete, and an increasing volume of business moved to the cyber
domain. In December 2013, both UPS and FedEx were overwhelmed with the volume of
packages being shipped, and experienced significant delays during holiday deliveries!

Overall, these emerging trends, boosted by affordable increasing computational
power, as well as by network bandwidth availability, brought about the concept of “The
world is flat” [9].

15.2.1.2 Grid Computing, and Open Grid, Global Grid. Grid computing
addresses loosely coupled computers, typically owned by different research organiza-
tions, which collaborate on various computing tasks. The management of such grids is
looser, and grid computing middleware provides the interface for these tasks. Most of
the computing performed by such grids is scientific and technical computing.

The Open/Global Grid Forum [10] is the global forum that provides for the inter-
national collaboration among the researchers and scientists, in order to provide the
interoperable middleware that enables grid computing.

15.2.1.3 Openstack. Openstack [11] is the virtual organization that promotes
the open standardization of cloud technologies. Since BDOC requires all components
to interoperate efficiently for high-performance computing, it is critically important to
maintain open interfaces, so that technologies developed by global collaborators could
be well integrated and interoperate smoothly.

15.2.1.4 Apple iCloud, Yahoo, Google, Amazon, and DropBox. These
commercial cloud service providers (CSPs) provide commercial cloud services to the
global consumer community. This is a fiercely competitor marketplace, and there are
other entrants into this space with perhaps less name recognition, but novel capabilities
and unique price performance. It is anticipated that considerable consolidation will con-
tinue to take place going forward. It is important to note that the cloud providers who also
offer content and other associated services are in a stronger position than pure storage
providers and/or computing providers. For example, Apple provides access to i-tunes
and many apps, and Google provides Gmail, Maps, Docs, News, and dozens of other
popular apps.
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15.2.2 State of the Art and Available Technical Solutions

This subsection presents some recent technical capabilities that are available to the
BDOC enterprise management community. These contributions are described herewith,
and some of them are referenced throughout the chapter. It should be noted that one
of the challenges of BDOC is the heterogeneous nature of the hardware, software, user
demands, and geographically distributed nature of both the cloud components and user
community. In fact, a very good overview of cloud computing is presented in Ref. [2].
Some important areas identified for promising research include: Automated service pro-
visioning, virtual machine (VM) migration, server consolidation, energy management,
traffic management and analysis, software frameworks, storage technologies and data
management, and novel cloud architectures. The discussion is based on the classical
cloud architecture of physical layer, infrastructure-as-a-service (IaaS) layer, platform-
as-a-service (PaaS) layer, and finally the software-as-a-service (SaaS) layer that runs the
APP that the end user interacts with.

In this chapter, we chose to focus on service availability, data security, business con-
siderations, SRE, and STEM talent considerations. For completeness, we mention here
some recent research.

15.2.2.1 Performance Enhancement—Rhea: Automatic Filtering for
Unstructured Cloud Storage. Microsoft Research developed performance enhance-
ments in order to expedite filtering of BDOC storage [12]. This technique helps co-locate
data and processing whenever possible, thus enhancing performance. They have shown
that this technology can expedite searches and reduce cost by 2x–13x.

15.2.2.2 Dynamic Service Placement in Geographically Distributed
Clouds. This chapter provides performance enhancement by developing dynamic algo-
rithms using game theory and control techniques in order to enhance performance [13].
They clearly demonstrate that such global optimizations work far better than local
optimizations of the subsystems.

15.2.2.3 MemC3: Compact and Concurrent MemCache with Dumber
Caching and Smarter Hashing. This chapter authored by Carnegie Mellon and
Intel develops caching and Cuckoo hashing schemes that enhance performance for read-
mostly workloads [14]. This is an example of a specific strategy to enhance performance
under a specific load pattern.

Additional references that are specific to the areas discussed in the forthcoming
sections are embedded within those sections.

15.3 CLOUDS—SUPPLY AND DEMAND OF BIG DATA

The explosive growth in the prevalence of CSPs is driven by the plethora of online ser-
vices, as well as by the growing communities that consume these services. This section
reviews some of these trend-setting phenomena.
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15.3.1 Social Networks

Social networks started their explosive commercial growth in the early 2000s with com-
panies such as Facebook, Twitter, Google+, Tmblr, and others. These social networks
grew in break neck speed, and Facebook in 2014 is offering service to over a billion
users worldwide. This kind of scale and heterogeneity are unprecedented, and in fact
connect some 18% of the world population on many types of servers and edge devices.
Other social networks are growing rapidly, and the infrastructure needed to support them
is indeed BDOC based.

15.3.2 Communities

Online communities exist in many areas. Some of the communities are social network
based, others are based on professional activities and interests, and still others are based
on hobbies, travel, and so on. Online communication is continually taking over the
papyrus based communication since 1993. The most up-to-date professional publica-
tions are online publications. The same is true for many other types of information and
expertise for many communities of interest.

15.3.3 New Business Models

The online communities that continue to expand present a business audience to many
innovative companies. This new audience is used for advertisement and marketing cam-
paigns. The business models for these e-business campaigns is quite novel, and is rapidly
taking market share from traditional advertisement media such as TV, radio, and news-
papers. The TV advertising market is $70B versus $50B of the online advertising Market
[15]. Hence, we are quickly approaching the tipping point where online advertisement
will take over TV advertisement. This trend is similar to other e-commerce trends, in that
the internet business engagement is quickly overtaking the brick-and-mortar traditional
commerce. This will be discussed in further detail in the next section.

Additional details can also be found in Architecting the Enterprise via Big Data
Analytics [16].

15.4 EMERGING BUSINESS APPLICATIONS

Cloud computing and the Internet have completely revolutionized the business world.
The instant access to people, information, computing, and network resources indeed
make our world “flat.” BDOC computing is the enabling resource that makes all this
possible. This section will examine a number of dimensions of these emerging business
models of BDOC and the successful management of these global resources.

15.4.1 Growing Global Enterprises

When one examines the global resources of some of the CSPs, it becomes clear that these
enterprises exhibit an unprecedented scale, size, heterogeneity, and scope of operations.
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Google has cloud data center facilities in places such as Finland, Oklahoma, Oregon,
and South Carolina, to name only a few of the cloud hosting locations. Since these are
energy consuming behemoth, it makes sense to place them near energy sources, such as
hydro-electric and geo-thermal locations. On the other hand, most of the talent manag-
ing this vast cloud is located where talent is concentrated, that is, near universities and
major metropolitan centers, where Google has technical engineering offices. This will
be discussed further within the “Site Reliability Engineers” section.

15.4.2 Technical Computing

Technical computing is not as big as business computing, but did spearhead the develop-
ment of the BDOC technologies that now enable vast business enterprises. Technical
computing is mostly focused on scientific and technical tasks of high computational
complexity. Examples include high energy physics, oil field exploration and simula-
tion, aerodynamic simulation, jet engine simulation, traffic simulation for transportation
system, discrete event simulation for networks and communication switches, electro-
magnetic field simulation, finite element structures analyses, finite difference fluid flow
simulations, and so on. Overall, even though the sophistication of these technical disci-
plines is high, the scope of these activities is relatively small. They are done mostly by
specific organizations using super computers or clusters, and the level of cloud comput-
ing utilization is not high. To their credit, many of these technical and research activities
are crucial for the invention and development of novel technologies, including BDOC
computing. Since the scope of business activities on BDOCS computing is considerably
larger, we focus our discussion on business applications.

15.4.3 Online Advertising

As indicated earlier, online advertising is the foundational business model and driving
force of many of the innovative companies that experience very high growth. Companies
such as Google, Facebook, Twitter, Tumbler, and others generate most of their revenue
stream from targeted advertisement, which in turn generates sales for the advertisers
and customers of the BDOC companies. The loss of any production application for any
of these companies result in immediate and substantial revenue loss, as well as service
interruption for the customers and users, which reduces satisfaction, and in extreme cases
can cause users and customers to shift their interest and investment of both time and
money to competitive online services.

15.4.3.1 E-Commerce. Some companies are dedicated to online commerce or
e-commerce. Examples that come to mind are Amazon, e-Bay, Google, and others.
In addition to these companies, which are exclusively online companies, many brick
and mortar companies establish successful online presence. Such companies include
Walmart, Fry’s, Best Buy, and others. Related infrastructure companies include ship-
ping companies like FedEx and UPS, and other companies involved in supply chain
management. The better the integration of the supply chain management companies and
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the e-commerce companies, the better the service, delivery speed, and ultimate customer
experience. Some fulfillment centers of the e-commerce companies are collocated with
shipping hubs of the shipping companies in order to expedite service. In addition the
BDOC enterprise systems of these collaborators enjoy considerable interoperability, such
that customers can track packages from the e-commerce companies, and the companies
are better able to predict in at the time of sale the delivery times of their shippers.

15.4.4 Mobile Services

Mobile is big and growing bigger fast. In addition to the convenience of online access
availability 24 hours a day, 7 day a week (24/7), mobile access can readily provide geo-
location of the mobile device, hence the location of the end user. This information is
extremely useful to the BDOC providers, as they can fine tune advertisement placement
for optimal sales and service capture. This dynamic capability makes the BDOC ASP
more nimble and at the same time more complex to design, develop, and operate. On
the positive side, the SRE team supporting this BDOC ASP, can use mobile devices to
support the smooth operation of the applications (APPs).

15.4.5 Site Reliability Engineers

SREs are the professionals who work together with the development team in making sure
that the BDOC app is up and running at all times. It is a novel BDOC APP management
approach to have such strong collaboration among the development teams and the SRE
teams. Google is one of the pioneers to take this new approach [17], but other application
service providers soon followed. This is driven by the notion that the huge scale of BDOC
ASP requires very high reliability.

It is critically important to develop software that will automate as much as possible
of the site reliability engineering capability. In a sense, the successful SRE strives to
“automate the human out of manual tasks.” Achieving this enables the humans to focus
on the creative aspects of system reliability engineering, by building intelligent tools that
will fix the system automatically as much as possible, or issue an alert/trouble ticket to a
human SRE. In those exceptional cases, the SRE works the issues. If necessary, the SRE
engages the development teams. In all cases, a post mortem is written, in order to trace
all outages to root causes. Ultimately, it is the role of the SRE and the developers to fix
the root cause.

It is important to notice that the SRE operates at a high abstraction and semantic level
of the actual app or service. Unlike the traditional network operations center (NOC) that
deals with links, packets, and nodes, the SRE is focused at the level of the BDOC APP.
Attention might need to address lower level layers such as IaaS, PaaS, and SaaS, but
the end user or the customers do not care about anything else, as long as their transpar-
ent service or APPs are up. Hence, that is the focus of the SRE team. The SRE teams
specialize in specific APPs, and continually strive to improve their reliability and qual-
ity of service. As the scale and heterogeneity of the BDOC enterprise grow, more and
more of the enterprise management services are automated. This allows the enterprise to
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continually grow is scope, heterogeneity, and capability. It is the role of the SRE team
and the DevOps team and the development team to work together on improving overall
performance for the APPs that they are responsible for. Overall, the concept of “Site”
for the SRE does not mean a physical location or any of the layers above it. It means
the actually web enabled service that supports the APP, whether mobile or wired. It is
all about providing quality service to the customer, and a growing revenue stream to the
service provider.

With that in mind, the next section will examine BDOC ASP service availability,
and the following section will examine legal aspects associated with BDOC ASP apps
and services. We will then return to the role of the SRE, and offer strategies to grow the
SRE team availability and capabilities.

15.5 CLOUD AND SERVICE AVAILABILITY

Public cloud big data platform offerings [18] provide compelling pricing, outsourcing
of support resources, and no capital budgeting. Thus, they are likely to be the dominant
platform for big data computing. In this construct, the availability of a big data cloud
resident application is dependent on (i) uptime under normal circumstances, which we
call operational availability, and (ii) disaster tolerance. The following subsections discuss
each of these topics.

15.5.1 Operational Availability

The operational availability of the big data cloud application is dependent on

a. the likelihood that computing resources will be available upon demand,

b. the availability of communication networks for the transfer of data and results to
and from the cloud application,

c. the probability of the platform and infrastructure resources of the CSP being
operational throughout the data analysis operation,

d. The probability of successful operation of the big data application itself.

Operational availability requires that all of these conditions be met. This can be repre-
sented mathematically as follows:

Aop = AaAbAcAd (15.1)

where Aop is the operational availability and the terms on the right-hand side correspond
to the four points listed earlier. For the purposes of quantitative prediction, availabilities
Aa, Ab, and Ac are determined by the service-level agreements (SLAs) of the platform
and Internet service providers. However, a method for computing Aa based on stochastic
Petri nets (SPNs) was documented by Khazaei et al. [19]; a model for computing Ac was
described by Longo et al. [20] Both models were developed from the perspective of the
service provider rather than the data owner.
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One availability issue of big data implementations on cloud computing arises from
network bottlenecks for which several solutions such as Camdoops [20] and FlowComb
[21] have been proposed. A second can arise from high workloads imposed by a large
number of users for which one reported effective solution is a large-scale implementa-
tions of memcached at Facebook [22]. Another arises from the actual size of the store
data which, by virtue of its volume, adds to the likelihood of failure. An example of an
approach to address this problem is Scalus for HBase [23]. Other failure causes in cloud
computing platforms are no different than for other computing systems: hardware fail-
ures, software programming errors, data errors, network errors, system power failures,
application protocol errors, procedural errors, and redundancy management. Architec-
tures and system management practices for maintaining uptimes are well known and
documented elsewhere [24].

Performing large-scale computation is difficult. To work with this volume of data
requires distributing parts of the problem to multiple machines to handle in parallel
using approaches such as MapReduce. A MapReduce program consists of four func-
tions: map, reduce, combiner, and partition. The input data are split into chunks and,
assuming with approximately single chunks stored per server. Usually, a chunk is no
larger than 64 Mbytes is used to increase parallelism and improve performance if tasks
need be rerun [25]. As the number of number of machines used in cooperation with one
another increases, the probability of failures rises. Big data platforms will handle such
failures in various mechanisms. The following description for Hadoop is illustrative [1].

The failure detection and recovery scheme of Hadoop is based on three entities:
tasks, the tasktracker (which monitors tasks), and the jobtracker (which monitors jobs).
When the jobtracker is notified of a task attempt that has failed (by the tasktracker’s
heartbeat call or a runtime exception), it will reschedule execution of the task. The job-
tracker will try to avoid rescheduling the task on a tasktracker where it has previously
failed. Furthermore, if a task fails four times (or more), it will not be retried further. This
value is configurable: the maximum number of attempts to run a task is controlled by the
mapred.map.max.attempts property for map tasks and mapred.reduce.max.attempts for
reduce tasks. By default, if any task fails four times (or whatever the maximum number
of attempts is configured to), the whole job fails.

Child tasks failures are detected either through the absence of heartbeats or runtime
exceptions. If a child task throws a runtime exception (either due to user code in the map
or a reduce task exception), the child JVM reports the error back to its parent tasktracker,
before it exits. The error ultimately makes it into the user logs. The tasktracker marks
the task attempt as failed, freeing up a slot to run another task. In Streaming tasks, if
the Streaming process exits with a nonzero exit code, it is marked as failed. Another
failure mode is the sudden exit of the child JVM—perhaps there is a JVM bug that causes
the JVM to exit for a particular set of circumstances exposed by the MapReduce user
code. In this case, the tasktracker notices that the process has exited and marks the attempt
as failed.

Hanging tasks failures are detected by means of a failure of a progress update for
a while and proceed to mark the task as failed. If a tasktracker has not received updates
after an expiration period, the child JVM process is killed. The timeout period is normally
10 minutes and can be configured on a per-job basis (or a cluster basis) by setting the
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mapred.task.timeout property to a value in milliseconds. Setting the timeout to a value
of zero disables the timeout. This measure should be avoided because the hanging slot
will not be freed; and over time, there may be cluster slowdown as a result.

The maximum percentage of tasks that are allowed to fail without triggering job
failure can be set for the job. Map tasks and reduce tasks are controlled independently,
using the mapred.max.map.failures.percent and mapred.max.reduce.failures.percent
properties.

A task attempt may also be killed, because it is a speculative duplicate or because
the tasktracker it was running on failed, and the jobtracker marked all the task attempts
running on it as killed. Killed task attempts do not count against the number of attempts
to run the task (as set by mapred.map.max.attempts and mapred.reduce.max.attempts),
since it wasn’t the tasks fault that an attempt was killed. Users may also kill jobs or fail
task attempts using the Web UI or the command line.

If a tasktracker fails by crashing, or running very slowly, it will stop sending
heartbeats to the jobtracker (or send them very infrequently). The jobtracker detect
a tasktracker failure through a timeout (default is 10 minutes, configured via the
mapred.tasktracker.expiry.interval property, in milliseconds) and remove it from its pool
of tasktrackers to schedule tasks on. The jobtracker arranges for map tasks that were run
and completed successfully on that tasktracker to be rerun if they belong to incomplete
jobs, since their intermediate output residing on the failed tasktracker’s local file system
may not be accessible to the reduce task. Any tasks in progress are also rescheduled.
A tasktracker can also be blacklisted by the jobtracker, even if the tasktracker has not
failed. A tasktracker is blacklisted if the number of tasks that have failed on it is signifi-
cantly higher than the average task failure rate on the cluster. Blacklisted tasktrackers can
be restarted to remove them from the jobtrackers blacklist. Failure of the jobtracker is the
most serious failure mode. Currently, Hadoop has no mechanism for dealing with failure
of the jobtracker—it is a single point of failure—so in this case the job fails. However,
this failure mode has a low chance of occurring, since the chance of a particular machine
failing is low.

15.5.2 Disaster Tolerance

Disaster tolerance, also referred to as business continuity, addresses measures to resume
operations after damage from “force majeure” events such as fire, flood, atmospheric
electrical discharge, solar induced geomagnetic storm, wind, earthquake, tsunami, explo-
sion, nuclear accident, volcanic activity, biological hazard, civil unrest, mudslide, and
tectonic activity. These events are generally out of scope of the availability considera-
tions described earlier—replication or restart will not be effective if the physical building
housing the cloud data center is flooded.

A necessary condition for disaster tolerance is a partial or complete replication of the
data and system resources in an alternate geographical location that is sufficiently distant
that it is unlikely to be affected by the event which damaged or destroyed the primary
location. Disaster tolerance requires planning. Such planning includes procedures for
establishing organizational contacts for the purposes of decision-making, activating the
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remote site (if it is not already activated), transferring the most recent data (if possible and
if not already at the remote site), and changing IP addresses at the appropriate routers.

The value of business continuity depends on the impact of the loss of the analy-
sis function to the enterprise. For example, disruption of continuously running big data
operations which are business critical (e.g., fraud detection, information system log mon-
itoring, click stream monitoring, or weather prediction) can have a high organizational
impact and justify the expenditure of considerable expenditures.

The key performance metrics in business continuity are the time needed to recover
and resume and the amount of tolerable degradation in service once operations are
resumed at the alternate location—the higher the value of either metric, the greater the
cost. The business case for business continuity measures is that the cost of these mea-
sures (both initial nonrecurring and recurring) are less than the expected value of the
damage or impact of the loss of the operations. This condition can be summarized by the
following equation:

∑
j

[Cj(tr) + NPV [Rj(tr)]] ≤
∑

i

piNPV [Di(tr)] (15.2)

where Cj is the capital (nonrecurring) cost of the jth continuity measure, tr is the resump-
tion time associated with that capability, NPV is the net present value function; Rj is
the recurring cost of the jth continuity measure over the time period under considera-
tion, pi is the probability of the ith disaster of business continuity loss event (cumulative
for the entire time period under consideration), and Di is economic value of the damage
or impact to the enterprise associated with the ith disaster of business continuity loss
event—which is a function of tr, the resumption time

The assumptions of this equation are as follows:

1. Transition from the primary to alternate data center occurs with 100% success.

2. Downtime associated with this transition has insignificant cost (or in the alterna-
tive, that it occurs in 0 time).

A more complete model that relaxes these assumptions has been created [26].
The left-hand side of this equation (recurring and nonrecurring costs of business

continuity measures) includes not only the costs of the primary resources necessary for
resumption but also dependencies such as processes, applications, business partners, and
third party service providers. In many cases, the left-hand side might simply be the cost of
creating additional replicas in other geographically diverse data centers and establishing
a periodic data update procedure.

The right-hand side (expected value of the loss) includes both the probability of
the event and the economic impact of the loss. The probability of disruptive events is
dependent on the geographic location of the CSP and the physical measures it under-
takes to protect the facility. These probabilities can be reduced by avoiding locations
subject to high probability environmental risks, implementing strong security measures,
and housing centers in structures most able to withstand flood, earthquake, winds, and
other environmental forces. The economic value of the impacts resulting from planned
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or unplanned disruptions depend on the duration of the disruption and may also vary
over time (e.g., credit card fraud detection during peak shopping seasons). If the alterna-
tive site offers less than a full-service capability, the value of the loss of functionality in
degraded must needs to also be considered.

Next we discuss a number of security issues that affect BDOC.

15.6 BDOC SECURITY ISSUES

The importance of data security is related to the consequences of loss of integrity, avail-
ability, or confidentiality of the data. For example, Hadoop provides no security model,
nor safeguards against maliciously inserted data; it cannot detect a man-in-the-middle
attack between nodes [27]. If the data used in or result from the big data application are
sensitive, cloud computing should be approached carefully with due consideration to that
sensitivity. The cloud used in the big data deployment might be entirely under the control
of the customer, utilize the platform of the cloud provider, or use a cloud implementa-
tion of a service entirely. Thus, any of the three NIST models of cloud services: IaaS,
PaaS, or SaaS) might apply. The implementation might reside on an organizations own
cloud (internal cloud), a cloud provided by a third-party provider (external cloud), or a
combined cloud (hybrid cloud).

If the cloud is entirely under organizational control (a private cloud), security con-
cerns, assurance processes, and practices are defined by general IT security guidelines
and standards [28, 29] as well as domain specific standards [30–32]. However, public
cloud big data platform offerings [18] provide compelling pricing, outsourcing of support
resources, and no capital budgeting. Thus, they are likely to be the dominant platform for
big data computing. Thus, we will assume for the remainder of this section that there are
two separate organizational entities: the customer, also known as the tenant, that owns the
big data and associated analytical applications and VM templates, and the CSP, which
provides the hardware and software platform upon which the customer’s applications
run. A public Internet network cloud is used to move data to the CSP and return results
to the big data owner.

The “outsourcing” of the computing platform to a multitenant cloud provider from
the resource owned and controlled by a data owner represents a significant paradigm shift
from the conventional norms of an organizational data center to an infrastructure without
an organizationally controlled security perimeter thereby more open to exploitation by
potential adversaries.

15.6.1 Threats and Vulnerabilities

The security challenges of big data on a multitenant CSP are formidable. General classes
of vulnerabilities in the cloud computing platforms used in big data processing include
the following [33, 34].

• Session riding and hijacking: Web application technologies must overcome the
problem that, by design, the HTTP protocol is a stateless protocol, whereas Web
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applications require some notion of session state. Many techniques implement
session handling and are vulnerable to session riding and session hijacking [29].

• Erosion of encryption algorithms: Encryption is currently relied upon as the pri-
mary defense against data breaches [35]. However, technical advances as well
as faster processors are rendering an increasing number of cryptographic mecha-
nisms less secure as novel methods of breaking them are discovered. In addition,
flaws exist in cryptographic algorithm implementations, which can turn strong
encryption into weak encryption (or sometimes no encryption at all). For exam-
ple, cryptographic vulnerabilities might exist if the abstraction layer between
the hardware and OS kernel has flawed mechanisms for tapping that entropy
source for random number generation, or having several VM environment son the
same host might exhaust the available entropy, leading to weak random number
generation [29].

• Limited system monitoring: CSPs offer limited system monitoring for the purposes
of performance and availability monitoring, but do not provide the complete traffic
n network monitoring, logging, and intrusion detection that is often used in internal
information system installations [27].

• Configuration management and control: One of the most common vulnerabilities
in IT systems is incomplete change and configuration management and resultant
outdated and incomplete system documentation and organizational policies for
configuration management and control (including system documentation) may
be in place for the internal IT system, but they may be difficult or impossible
to enforce on the external CSP.

• Inability to sanitize storage media: Policies for disk reformatting, degaussing, or
even destruction that might be in place to prevent malware propagation or to mit-
igate data spillage cannot be readily applied or enforced in public clouds, where
the hardware is under the control of the service provider [27, 29].

Cloud-based big data installations have all the weaknesses of standard IT installations.
In addition, there are unique weaknesses including the following:

• Breaching tenant boundaries: an attacker might successfully escape from the
boundaries on which public clouds rely to separate tenants including VMs [36],
big data services, data base management systems, and communication infrastruc-
tures [37]. In 1 year, VMware had released 14 security advisories [38]. IBM found
that that more than 50% of the 80 VM vulnerabilities it found in 2010 could
compromise the administrative VM or lead to hypervisor escapes [39].

• Vulnerability to disaffected insiders: Disaffected insiders are not unique to cloud
computing; they are a threat to any organization. However, the damage they can
cause is can do is—even if they are unable to defeat the account control and access
privileges of the infrastructure itself. For example, In February 2011, a terminated
IT administrator at a pharmaceutical company used a service account to create
an unauthorized installation of VMware vSphere to delete 88 virtual servers [40].
While this incident involved a private cloud, it could also affect a public cloud
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and could result in the loss of massive amounts of data or the deletion of machine
images that contain specific configuration, encryption key, or other information
that could be difficult to replace.

• User authentication defects: Many widely used authentication mechanisms are
weak. For example, usernames and passwords can be compromised by insecure
user behavior (weak passwords, reused passwords) or the inherent limitations of
one-factor authentication—even encryption is used for the remote login process.
Use of multifactor authentication and role-based access by means of LDAP or
Active Directory can be complicated by the need to maintain multiple account files
in different servers because the organizational private directory servers cannot be
integrated into the public cloud infrastructure.

• Configuration stability of VM environments: Cloud elasticity and metering as well
as live migration help organizations harness the power of virtualization and make
the processing environment extremely dynamic.

• Propagation of flawed or vulnerable VM templates: Vulnerable VM template
images cause OS or application vulnerabilities to spread over many systems. An
attacker might be able to analyze configuration, patch level, and code in detail
using administrative rights by renting a virtual server as a service customer,
and thereby gaining knowledge helpful in attacking other customers images.
Other attacks can use side channels from a co-resident VM [18, 41]. The use of
others specialized big data implementations because of purported superior prop-
erties might be taken from an untrustworthy source and have been manipulated
so as to provide back-door access for an attacker. Data leakage by VM repli-
cation is a vulnerability that’s also rooted in the use of cloning for providing
on-demand service. Cloning leads to data leakage problems regarding machine
secrets: certain elements of an OS—such as host keys and cryptographic salt
values—are meant to be private to a single host. Cloning can violate this privacy
assumption [29].

• Presence of large amounts of unencrypted data: Big data that needs to be decrypted
for processing by a framework such as Hadoop is exposed as the analysis is being
done, and then the results are transferred back in to some traditional data ware-
house or business intelligence framework. A capable attacker would probably not
move or destroy thousands of terabytes of data to avoid detection. However, such
data would be attractive to an attacker might be looking for patterns that match a
credit card number or a Social Security number regardless of size [42].

15.6.2 Mitigation Approaches

Mitigating the risks and addressing the threats defined above involves various approaches
and tasks including the following:

• security planning
• ensuring network security and interoperability
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• addressing the unique security strengths and weaknesses of VM infrastructures in
cloud computing

• ensuring tenant separation
• identity and access management

These measures are discussed in the following subsections.

15.6.2.1 Security Planning and Risk Assessment for Big Data Process-
ing on Cloud Computing Platforms. Planning is necessary to address these and
other threats and to maximize the security of the computing environment. Risk assess-
ment is necessary to weigh the cost of implementing this security versus the sensitivity
of the data. Factors influencing planning include organizational policies (including com-
mitments to conformance to specific security standards), contractual commitments on
confidentiality and non-disclosure, and legal requirements with respect to privacy and
security. These should be documented in an Information Security Management Plan
(or an equivalent document). Among the aspects of the plan that affect use of big data
platforms on clouds are the following [43]:

◦ Risk management

◦ Security policy

◦ Organization of information security and incident response

◦ Information asset management

◦ Communications and operations management

◦ Access control

◦ Information systems acquisition, development, and maintenance.

The products of such planning would include specific requirements and conformance
criteria, contractual requirements on the service providers, design and configuration
measures to be undertaken by the cloud users, and processes and procedures.

15.6.2.2 Ensuring Networking Communications Security and Interop-
erability. The CSP and the data owner share responsibility for security of big data
while it is being transferred from the data owner to the cloud. The CSP also has addi-
tional responsibilities to monitor and safeguard its network perimeter and to prevent the
introduction of rogue devices into its facility. The following are relevant practices and
procedures:

1. Standardized network protocols: The CSP should provide secure (e.g., nonclear
text and authenticated) standardized network protocols for the import and export
of data and to manage the service. Documentation for the data owners describing
the protocols should be sufficient to enable the data owner organization to be able
to create and configure network links of adequate circuitry.
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2. Network and system monitoring: The CSP network environments and virtual
instances should be designed and configured to control (and restrict if necessary)
network traffic, reviewed at planned intervals, supported by documented business
justification for use of all services, protocols, and ports allowed, including ratio-
nale or compensating controls implemented for those protocols considered to be
insecure.

3. Response to attacks: The cloud service provide should have the capability to
detect attacks (e.g., deep packet analysis, anomalous ingress or egress traffic pat-
terns) and defend the perimeter (e.g., traffic throttling, and packet black-holing)
for detection and timely response to network-based attacks MAC (e.g., spoofing
and ARP poisoning, and distributed denial-of-service or DDoS attacks)

4. Documentation: Network architecture diagrams must clearly identify high-risk
environments and data flows that may have legal, statutory, and regulatory
compliance impacts.

5. Configuration of boundary devices: Policies and procedures shall be estab-
lished, and supporting business processes and technical measures implemented,
to protect environments, including the following:

◦ Perimeter firewalls implemented and configured to restrict unauthorized
traffic,

◦ Security settings enabled with strong encryption for authentication and trans-
mission, replacing vendor default settings (e.g., encryption keys, passwords,
and SNMP community strings),

◦ User access to network devices restricted to authorized personnel,

◦ The capability to detect the presence of unauthorized (rogue) network devices
for a timely disconnect from the network.

15.6.2.3 Addressing VM Security. The VM infrastructure within a cloud
installation consists of are executable software and as such, provide an additional attack
surface. There are additional infrastructure and management layers to protect as well as
the hypervisor itself. Virtual systems aren’t unique and are just as vulnerable as any other
system running code. If it runs code, someone can compromise it. The NIST’s Guide
to Security for Full Virtualization Technologies provides vendor-agnostic guidance on
securing virtual environments [44]. The CSP is responsible for configuration, monitor-
ing, and control of the virtual infrastructure. However, depending on the sensitivity of
the data, the responsibility for ensuring that the safeguards are appropriate to the risk is
the responsibility of the data owner. The following are specific requirements generated
by the Cloud Service Alliance [34].

1. The CSP shall inform data owner (tenant) of policies, procedures, support-
ing business processes and technical measures implemented, for timely detec-
tion of vulnerabilities within organizationally-owned or managed (physical
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and virtual) applications and infrastructure network and system components,
applying a risk-based model for prioritizing remediation through change-
controlled, vender-supplied patches, configuration changes, or secure software
development for the organization’s own software.

2. The provider should use well-known virtualization platforms and standard virtu-
alization formats (e.g., OVF) to help ensure interoperability. Customized changes
made to any hypervisor should be available for data owner (tenant) review.

3. The provider should ensure the integrity of all virtual machine images. Any
changes made to virtual machine images must be logged and an alert rose regard-
less of their running state (e.g., dormant, off, or running). The results of a change
or move of an image and the subsequent validation of the image’s integrity should
be reported immediately to data owners.

4. Each operating system should be hardened to provide only necessary ports,
protocols, and services to meet business needs.

5. Virtual machines should include antivirus, file integrity monitoring, and logging
as part of their baseline operating build standard or template.

15.6.2.4 Ensuring Tenant Separation. Segregation of tenants in data centers
owned or managed by CSP is a concern affecting (physical and virtual) applications,
and infrastructure system and network components. These should be designed, devel-
oped deployed and configured such that provider and data owner (tenant) user access is
appropriately segmented from other tenant users, based on the following considerations:

• Established policies and procedures
• Isolation of business critical assets and/or sensitive user data and sessions that

mandate stronger internal controls and high levels of assurance
• Compliance with legal, statutory and regulatory compliance obligations

15.6.2.5 Identity and Access Management. Identity and access manage-
ment is a joint concern between the CSP and the big data user. The data owner is
responsible for the identity and access management of its cloud users (or attackers
who have misappropriated its credentials) whereas the CSP is responsible for regulat-
ing access of its own staff as well as other tenants to system infrastructure, monitoring,
and configuration resources as well as to log data that could be misused by an attacker.

Policies, procedures, supporting business processes, and technical measures must
be established and documented for ensuring appropriate identity, entitlement, and access
management for (i) data owner (tenant) users to their data and applications and (ii) service
provider staff to its owned or managed (physical and virtual) application interfaces and
infrastructure network and systems components. These policies, procedures, processes,
and measures should address the following [34]:

• Roles and responsibilities for provisioning and de-provisioning user account
entitlements following the rule of least privilege based on job function;
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• Criteria for higher levels of assurance and multifactor authentication secrets (e.g.,
management interfaces, key generation, remote access, segregation of duties,
emergency access, large-scale provisioning or geographically distributed deploy-
ments, and personnel redundancy for critical systems);

• Access segmentation to sessions and data in multitenant architectures by any third
party (e.g., provider and/or other customer (tenant));

• Identity trust verification and service-to-service application (API) and information
processing interoperability (e.g., single sign on (SSO) and federation);

• Account credential lifecycle management from instantiation through revocation;
• Account credential and/or identity store minimization or re-use when feasible;
• Authentication, authorization, and accounting (AAA) rules for access to data

and sessions (e.g., encryption and strong/multifactor, time-limited, nonshared
authentication secrets);

• Permissions and supporting capabilities for customer (tenant) controls over AAA
rules for access to data and sessions;

• Adherence to applicable legal, statutory, or regulatory compliance requirements;
• Access to, and use of, audit tools that interact with the organization’s information

systems shall be appropriately segmented and restricted to prevent compromise
and misuse of log data;

• User access to diagnostic and configuration ports shall be restricted to authorized
individuals and applications;

• Management of identity information about every person who accesses IT infras-
tructure and to determine their level of access;

• Control access to network resources based on user identity;
• Control of user access based on defined segregation of duties to address business

risks associated with a user-role conflict of interest.

15.6.2.6 Data Security. Defenses such as data encryption and access control
are essential because (i) systems that collect sensitive data such as consumer informa-
tion are attractive targets; (ii) they may be required contractual terms and laws; and
(iii) release of such data may significantly damage the organization. Policies and pro-
cedures business processes and technical measures should be defined and implemented
for the following:

• Use of encryption protocols for protection of sensitive data in storage and in trans-
mission. These measures have to balance the need for security against the overhead
of decryption and re-encryption as the data are processed in frameworks such as
Hadoop.

• Key management and usage. Keys should not be stored at the CSP, but maintained
by the cloud consumer or trusted key management provider. Key management
and key usage should be separated, but the extent of this separation requires the
balance between throughput and security.
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• Access control, input, and output integrity routines (i.e., reconciliation and edit
checks) to detect manual or systematic processing errors, corruption of data, or
misuse.

• Labeling, handling, and the security of data and objects which contain data. Mech-
anisms for label inheritance shall be implemented for objects that act as aggregate
containers for data.

• Data exchanged between one or more system interfaces—particularly when
affected by legal, statutory and regulatory compliance obligations

15.6.3 Incident Response

Incident response in the event of a breach of a big data application and store on a remote
cloud provider’s platform is more complicated than a breach of a single organization
because of organizational boundaries (and resultant non-aligned interests, contractual
issues, and segregated system management structures. These must be planned for in
advance and documented in an incident response plan. Such plans vary by industry and by
circumstance. A general example is available from the American Bar Association [45].

Issues that must be addressed are as follows:

• Points of contact in both the CSP and the data owner for applicable regulation
authorities, national and local law enforcement, and other legal jurisdictional
authorities for compliance issues and to be prepared for a forensic investigation
requiring rapid engagement with law enforcement.

• Policies, procedures, business processes and technical measures to triage security-
related events and ensure timely and thorough incident management. Coordination
between the data owner and the CSP to agree on the priority and severity of
breaches is necessary—particularly if the breach affects multiple tenants at the
CSP site.

• Coordination on follow-up actions and investigations after an information security
incident requires legal action, including preservation of evidence, documenting
chains of custody, and other actions needed to support potential legal action subject
to the relevant jurisdiction

The next section will cover legal aspects of BDOC.

15.7 BDOC LEGAL ISSUES

The information in this section is for informational purposes only and not for the purpose
of providing legal advice. You should contact your attorney to obtain advice with respect
to any particular issue of problem.

The two central legal issues are (1) management of the risks and liabilities of the
data owner for the data it relegates to the CSP which relate to privacy and governance
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and (2) the contractual terms and provisions (including the SLA) between the service
provider and the data owner. The following subsections discuss these issues.

15.7.1 Privacy and Governance

The privacy of data is a large concern and one that increases in the context of big data.
Perhaps the most obvious example is location data [46], but others include health, brows-
ing, or purchasing activity [47]. Big data privacy and governance concerns fall primarily
on the data owner but affect the relationship with the CSP. As such, there are both inter-
nal organizational issues and supplier contractual issues that need to be considered. This
section focuses on the legal responsibilities and potential liabilities of the data owner.

The data owner should evaluate its data and assess its risk of massive amounts of
data in order to determine its approach to moving data onto cloud platforms. The general
approach to this task is to

• Enumerate its legal, statutory, and regulatory compliance obligations associated
with (and mapped to) sites where its data are stored. Examples of such data include
consumer data that would be affected by state privacy breach laws, health data that
would be affected by Federal HIPAA privacy regulations, or credit card data whose
storage and security requirements are affected by the Payment Card Industry Data
Security Specification (PCI DSS). Some of these obligations will affect whether
data organization can allow its data to be processed externally, others may affect
its contractual requirements with the CSP.

• Classify its data and objects containing data shall be based on data type, juris-
diction of origin, jurisdiction domiciled, context, legal constraints, contractual
constraints, value, sensitivity, criticality to the organization, third-party obligation
for retention, and prevention of unauthorized disclosure or misuse.

The data owner establish policies and procedures together with records of performance
and compliance to assert a defense against claims of negligence and non-conformance
by governmental agencies, contracting parties, or individuals affected by data breaches.

With this insight, the data owner can establish information security requirements for
the prospective service providers. Compliance with security baseline requirements must
be reassessed at least annually unless an alternate frequency has been established and
established and authorized based on business need higher levels of assurance are required
for protection, retention, and lifecycle management of audit logs and other evidence of
statutory or regulatory compliance obligations.

15.7.2 Considerations for Contracting with a CSP

The most common form of a contracting with a CSP is an agreement with a standard
set of terms and conditions that is nonnegotiable. These terms and conditions in general
promise a best effort level of service and security but offer no guarantees (other than a
de minimus refund or discount) and disclaim responsibility from legal consequences and
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damages from both outages and data breaches. The benefit of these “take it or leave it”
arrangements is low cost of use; and if the legal risks and liabilities of outages or data
breaches are low, the terms are quite appropriate. However, for applications where these
risks are significant, a negotiated contract with terms and conditions tailored to the needs
of the data owner are appropriate. This section discusses the consideration that goes into
a discussion of what the considerations are from the perspective of the data owner.

15.7.2.1 General Contractual Terms. Contractual agreements between pro-
viders and customers (tenants) should specify at least the following mutually agreed-
upon provisions and terms:

• Parties: contract must specify the following:

° Service providers (there may be more than one, depending on if the analytical
service provider is distinct from the infrastructure platform service provider),

° The service consumer—in this case, the data owner,

° Third parties—the task of these third parties may vary from measuring service
parameters to taking actions on violations as delegated by either the service
provider or service consumer.

• Scope of business relationship and services offered (e.g., customer (tenant) data
acquisition, exchange and usage, feature sets and functionality, personnel and
infrastructure network and systems components for service delivery and support,
roles and responsibilities of provider and customer (tenant) and any subcontracted
or outsourced business relationships, physical geographical location of hosted
services, and any known regulatory compliance considerations).

• Expiration of the business relationship and disposition of the data owner (tenant)
data at the end of the agreement.

• Customer (tenant) service-to-service application (API) and data interoperabil-
ity and portability requirements for application development and information
exchange, usage, and integrity persistence.

• Policies, procedures, and terms for service-to-service application (API) and infor-
mation processing interoperability, and portability for application development
and information exchange, usage, and integrity persistence.

• Configuration management and control of IT infrastructure network and sys-
tems components including change management policies and procedures prior to
deployment, provisioning, or use and authorization prior to relocation or transfer
of hardware, software, or data.

• File formats for structured and unstructured data between the data owner and the
cloud service provider.

15.7.2.2 Service-Level Agreements. SLAs nearly always specify levels of
availability (with availability frequently being defined in terms of response times); in
some cases they may specify security services, and liabilities for security breaches. These
issues are discussed in Section 15.7.2.4.
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SLAs define technical and legal responsibilities of the data owner and the service
provider. These responsibilities depend on the cloud service model (IaaS, PaaS, or SaaS)
and the cloud deployment model (private, hybrid, or public). If the big data platform is a
private cloud, then SLA enforcement is an internal organizational matter. If the deploy-
ment model is hybrid or public, then the SLA assumes legal significance and is subject
to the interpretation and enforcement of the judiciary. The less responsibility and control
the data owner has, the more it relies on the provider and the more critical the terms of
the SLA between those two parties becomes. The greater the complexity of the inter-
action between systems owned by the third party provider and those owned by the data
owner, the greater the need to explicitly assign responsibilities and specify liabilities for
breaches.

In the case of SaaS, the SLA must address service levels, security, governance,
compliance, and liability, expectations of the service and provider are contractually stip-
ulated; managed to; and enforced by the SLA. In the case of PaaS or IaaS, it is the
responsibility of the consumer’s system administrators to effectively manage the same,
with some offset expected by the provider for securing the underlying platform and
infrastructure components to ensure basic service availability and security. It should be
clear in either case that one can assign/transfer responsibility by the SLA. To a limited
extent, accountability, can also be transferred to the service provider (e.g., by means of
indemnification clauses)—if the service provider is willing to accept. However, govern-
mental laws particularly with respect to breaches of privacy may make it impossible for
the data owner to completely transfer liability to the service provider.

At a minimum, the following items, taken Web SLA (WSLA) framework [48],
should be defined in an SLA:

1. SLA parameters: SLA parameters metrics define how service parameters can be
measured. These include the following:

◦ Resource metrics are retrieved directly from the provider resources. In the case
of the big data cloud, these could include, data bandwidth, transaction count,
uptime, RAM, infrastructure resources (processing capacity, platform middle-
ware, storage capacity) resources, middleware resources (including Lucene,
Solr, Hadoop, and HBase), and other required resources.

◦ Composite metrics represents a combination of several resource metrics, cal-
culated according to a specific algorithm. For example, transactions per hour
combines the raw resource metrics of transaction count and uptime. Compos-
ite metrics may be necessary to characterize higher level big data metrics such
as velocity, volume, and variety.

◦ Business metrics that relate SLA parameters to financial terms specific to a
service customer. These include the cost of the services.

2. Service-level objectives (SLOs): WSLA, these are a set of formal expressions in
the form of an if-then structure. The antecedent (if) contains conditions and the
nine consequent (then) contains actions. An action represents what a party has
agreed to perform when the conditions are met. In the context of a plain language
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legal document, these conditions would include the cost of service (when metrics
are met) and the consequences of not meeting those metrics.

3. Data recording and analysis requirements to establish conformance with avail-
ability and performance parameters

4. Terms specifying the penalties or monetary damages for outages. In standard
SLAs from service providers such as Amazon, the maximum liability for out-
ages is refunds or additional time at low cost, and liability for damages due to the
consequences of security breaches and cyber attacks are specifically excluded.

15.7.2.3 Disaster Tolerance and Business Continuity. General considera-
tions disaster tolerance were identified in Section 15.5.2 including the basis for deciding
on the locations and extent of the standby resources. An SLA for the standby resources
should be established. In addition, the requirements for standby datacenter security,
readiness, and monitoring should be established. The requirements placed on the CSP
should be consistent with the business continuity/disaster tolerance plan. The terms
should cover utilities services and environmental conditions (e.g., water, power, tem-
perature and humidity controls, telecommunications, and internet connectivity). Terms
should be described the extent and how they are secured, monitored, maintained, and
tested (e.g., inspection intervals, and power backups at the remote site, and failover
testing.)

15.7.2.4 Information Security Requirements. The level of security and pri-
vacy controls and supplying the evidence of their implementation and effectiveness is
usually established by the terms and conditions of the contract or SLA with the CSP
[49]. The terms and condition must be consistent with the information security manage-
ment plan (see Section 15.6.2.1) and require coordination between both the contractor
negotiators and the data owner’s information security experts.

The legal consequences of data breaches resulting in the release of data are the same
as for conventionally structured and stored data. Liability, notification requirements, and
penalties for releases of data items that constitute Personally Identifiable Information
(PII) and health related information are often governed by national, provincial or state
statutes [50, 51]. Additional consequences may result from industry agreements such as
the Payment Card Industry Data Security Standard (PCI-DSS) [52] as well as specific
non-disclosure agreements between the data set owner and third parties

The specific information security measures should be consistent with the risk of
loss of integrity, confidentiality, or availability of the data at the remote site. Too few
provisions would shift the liability to the data owner from the service provider; too much
might make the cloud implementation cost prohibitive.

The following terms and provisions from the Cloud Service Alliance should be
considered for the inclusion in the information security clauses of negotiated contracts
between service providers and data owners:

• Provider and data owner (tenant) primary points of contact for the duration of the
business relationship;
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• References to detailed supporting and relevant business processes and technical
measures implemented to enable effectively governance, risk management, assur-
ance and legal, statutory and regulatory compliance obligations by all impacted
business relationships;

• Responsibility for disposition of the data upon termination of the business rela-
tionship and treatment of customer (tenant) data impacted;

• Notification and/or pre-authorization of any system configuration or procedural
changes in CSP resources;

• Timely notification of a security incident (or confirmed breach) to all customers
(tenants) and other business relationships impacted (i.e., up- and down-stream
impacted supply chain);

• Assessment and independent verification of compliance with agreement provi-
sions and/or terms (e.g., industry-acceptable certification, attestation audit report,
or equivalent forms of assurance), without posing an unacceptable business risk
of exposure to the organization being assessed;

• Review of the risk management and governance processes of their partners to
ensure that practices are consistent and aligned to account for risks inherited from
other members of that partner’s cloud supply chain;

• Oversight of third-party service provider information security programs, service
definitions, and delivery-level agreements included in third-party contracts.

• Efforts in support of follow-up actions concerning a person or organization after
an information security incident. These may include forensic procedures for gath-
ering evidence suitable for admission to legal proceedings, including chain of
custody and preservation. Upon notification, customers (tenants) and/or other
external business relationships impacted by a security breach shall be given the
opportunity to participate as is legally permissible in the forensic investigation.

15.8 ENABLING FUTURE SUCCESS—STEM CULTIVATION
AND OUTREACH

This section presents the STEM management strategy that enables the proper execution
of the BDOC attributes discussed in this chapter. Combining business needs, availability
and reliability, heterogeneous issues, legal issues, security issues, and scaling issues. It
is the SRE organization, which is charged with the management of vast and complex
BDOC enterprises.

Clearly, the successful execution of BDOC ASP depends on very capable and robust
technical professionals for both the development, as well as for the ongoing SRE func-
tion, and for the technical understanding of the legal aspects associated with SLAs and
all other aspects of BDOC enterprise.

This section addresses the supply of talent in the areas of STEM. These skills
are absolutely critical to the successful execution of BDOC management activities.
This applies to both the development as well as to the operations of such BDOC ASP
enterprises.
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15.8.1 Criticality of Creating and Growing a STEM Pipeline
and Engagement Ideas

There has been a continuing shortage in the supply of STEM talent in the United States
over recent years. In 2013 the computer science (CS) field had some 50,000 undergradu-
ate degrees awarded annually, against the growing demand of over 100,000 CS jobs in the
United States alone. While this is wonderful for those graduates who obtain CS degrees,
it exacerbates the challenges that the BDOC ASP industry is facing. In 2014 LinkedIn
showed hundreds of job openings in the SRE category alone. This includes openings at
Facebook, VMWare, Google, SalesForce, A9, Microsoft, Tmblr, Akamai, BestBuy and
many others.

15.8.2 Computer Science, Networking, and Computer
Engineering

SREs or DevOps are the fastest growing job type at this time [53]. This is astounding,
given that this kind of job title did not even exist in 2009. Hence, the pace of change in
the landscape teaches us that the most important part of STEM education, is to teach our
students to become life-long learners, so that they can continually build on the technical
foundations that we educate them.

Even though the United States has been battling declining in STEM interest at the
K-12 levels, it appears that the job prospects for positions such as SRE and DevOps are
pushing an increase in both enrollment and graduation rates in STEM and in particu-
lar in CS. Some of this work is done by industry sponsored capstone projects as has
been very successful at Harvey Mudd College since the 1960s for Engineering, and from
the 1990s in Computer Science [54]. Similar capstone programs are being created by
accreditation requirements promulgated by the Accreditation Board for Engineering and
Technology (ABET) 2020 study [55] and its member Computer Science Accreditation
Board (CSAB), founded in 1985.

The following section will address some of the open-research areas. A major chal-
lenge entails the management of SRE talent growth, and the associated STEM education,
which drives the SRE talent supply.

15.9 OPEN CHALLENGES AND FUTURE DIRECTIONS

This section discusses some of the open challenges and new directions of BDOC which
include workforce issues, privacy and security, resource utilization, and integration with
the Internet of things.

15.9.1 SRE and DevOps Professions

Going forward, we face some exciting challenges, which will afford the community an
opportunity to acquire a deeper technical understanding in a number of areas. Further-
more, the community stands to benefit from developing new approaches and enabling
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new technologies and solutions in order to address these emerging challenges. One
growth area for which there has been only limited work to date, is the emerging pro-
fession of DevOps and SRE professionals, in the context of the entire BDOC enterprise
that is being managed.

This topic is not always viewed as a “hard” technical topic that technologists study,
but rather a “soft” personnel topic. However, organizational management experts cor-
rectly point out that “the soft stuff is the hard stuff”. Solving these challenges, within the
context of the United States, will not be easy. In fact, it is a daunting challenge, in that the
societal views of technologists is not high, and “geeks” are not considered “cool” by their
peers during the most critical and formidable years of K-12 education. The late astronaut
Sally Ride served on a research team that determined that “We lose the boys away from
STEM in 8th grade, and we lose the girls in 5th grade” [56]. This hostile environment
to technology during the early educational experience of the K-12 of children educated
in the United States creates a cascading effect that results in an insufficient supply of
STEM-capable students at the college level. Even if college students realize that becom-
ing an engineer or computer scientist affords great job opportunities, they simply lack
the STEM background in order to compete within the college level STEM curriculum.

While this is the most critical challenge that is the most crucial to address, there are
additional challenges is building the SRE and DevOps workforce, that can be addressed,
provided that the STEM talent supply issue is improved. Running a strong SRE orga-
nization requires considerable management talent, as well as a strong mentoring and
training culture. This culture is a strong team culture, in which seasoned SREs teach
incoming SREs the tradecraft. These positions include both operational responsibilities,
as well as development activities. The development activities look to address the scale of
BDOC enterprises. The only way to do that effectively is to develop the methodologies
and automation technologies that will “automate the human manager out of the man-
ual operational activities.” Since the SRE position is rather new, it has not been studied
adequately by the research community. This delicate balance needs to be studied further.
Trade-offs between the benefits of automation and the cost of developing automated alert
and troubleshooting systems must be better understood. The organizational challenges
of creating and leading strong SRE organizations must be quantified and further studied.
The focus of SRE teams on specific applications represents a semantically higher level
of responsibility, in contrast with traditional management of networks and other lower
stack layer semimanual operations.

The complexity associated with the technical challenges associated with availabil-
ity, reliability, legal issues, and the emerging business models demands nothing less
than a very adaptable SRE workforce, which is schooled in these complex areas. The
operational responsibility of the SRE team encompasses multiple emerging disciplines
and applications. It is anticipated that these challenges will continue to present multiple
research challenges, which will be mutually beneficial to all stakeholders.

While the highest leverage would be achieved by major contributions to the STEM
supply, and by achieving SRE organizational enhancements, the following subsections
and the “Conclusions” section offer more traditional research areas that would contribute
to BDOC management solutions going forward.
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15.9.2 Information Assurance (Confidentiality, Integrity,
and Availability)

This is a fertile area for future research. When many users are involved, the consequences
of data breaches (i.e., the 2013 Target Data Breach) are substantial. Disaster response and
transaction verification offer considerable research opportunities. For intelligent highway
outages, the loss of integrity of the data from the sensors feeding the cloud-resident appli-
cations and from the cloud resident applications to the users can be particularly serious.
In many cases, a portion of the data path from the sensors to the cloud will include wire-
less links. New methods for rapid authentication for a large number of users (possibly
hundreds of thousands simultaneously), ensuring data integrity (including overcoming
“man-in-the-middle” attacks) over wireless communications for high volume traffic are
also necessary.

15.9.3 More Efficient Use of Cloud Resources

While not all cloud–resident databases may reach the level of exabytes or petabytes in the
immediate future, the trend is certainly in that direction. Research is necessary in order
to more efficiently utilize storage and develop algorithms to reduce the costs of data
collection, integration and transformation, data analyses (searches and queries), storage,
and disposal. Specific design issues include the following:

• Tailoring DBMSs for cloud computing including the tradeoffs between atomicity,
consistency, isolation, and durability (ACID) in traditional SQL databases and less
rigorous basically available soft-state and eventually consistent (BASE) models.

• Data access: whether to have data repositories located closer the user than the
provider.

• Consistency of replicated data: If data are moved closer to the users, then repli-
cation will be necessary. Along with the replication comes issues of currency,
consistency, and completeness.

• Deployment of BDOC installations including the use of staging for data collection
processing.

15.9.4 Big Data and the Internet of Things

Information gathering, processing, and computing of massive amounts of data generated
from and delivered to highly distributed devices (e.g., sensors and actuators) create new
challenges, especially for interoperability of services and data. These requirements will
impact the underlying cloud infrastructure requiring efficient management of very large
sets of globally distributed nonstructured or semistructured data that could be produced
at very high rates (i.e., big data). A multicloud service platform supported by broadband
networks needs to handle all these challenges and appear to the application environment
as one uniform platform.
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15.10 CONCLUSIONS

This chapter reviewed BDOC from a number of perspectives. A historical perspective
was provided as to the evolution of computing Web services, and how the current prevail-
ing information architecture is the result of a steady process of increase in connectivity,
mobility, and adoption of applications such as those offered by Google, Facebook, and
Amazon. We discussed a number of BDOC enterprise management challenges such
as SRE/DevOp training, availability and reliability, legal and security aspects, and the
STEM educational challenges that must be addressed. Further work is recommended
in each of these areas, in order to accommodate further growth and enable future
capabilities, especially in the mobile space.

It is anticipated that other promising research areas for BDOC would continue
to include [2] automated service provisioning, VM migration, server consolidation,
energy management, traffic management and analysis, software frameworks, storage
technologies and data management, and novel cloud architectures.

It is clear that BDOC is the wave of the future, and that these applications will
continue to further benefit the user communities and many other stakeholders.
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