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Preface 

This introductory biostatistics textbook encourages readers to consider 
the full context of the problem being examined. The context includes what 
the data actually represent, why and how the data were collected, whether 
or not one can generalize from the sample to the target population, and 
what problems occur when the data are incomplete due to people refusing 
to participate in the study or due to the researcher failing to obtain all the 
relevant data from some sample subjects. Although many introductory 
biostatistical textbooks do a very good job in presenting statistical tests and 
estimators, they are limited in their presentations of the context. In addi­
tion, most textbooks do not emphasize the relevance of biostatistics to 
people's lives and well being. We have written this textbook to address 
these deficiencies and to provide a good introduction to statistical meth­
ods. We address the context as well as the importance of research design, 
particularly in controlling for confounding variables and in dealing with 
reversion to the mean. We focus on these issues in Chapters 1 to 3 and 
Chapter 8 and raise them again in examples and exercises throughout the 
book. 
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This textbook also differs from the other texts in that it uses real data 
for most of the exercises and examples in the book. For example, real data 
on the relation between prenatal care and birthweight, instead of data from 
tossing dice or dealing cards, are used in the definition of probability and 
in the demonstration of the rules of probability. We then show how these 
rules are applied to the life table, a major tool used by health analysts. 
Another major difference between this and other texts is Chapter 12 on the 
analysis of the follow-up life table. The follow-up life table can be used to 
summarize survival data and is one of the more important tools used in 
clinical trials. 

We also include material on tolerance and prediction intervals, topics 
generally ignored in other texts. We demonstrate in which situations these 
intervals should be used and how they provide different information than 
that provided by confidence intervals. Two other topics, usually not men­
tioned in other introductory texts, introduced here are multiple regression 
and logistic regression, two of the more useful methods of analysis in 
statistics and epidemiology. 

We do not assume that the reader has prior knowledge of statistical 
methods, but we do assume that the reader is not rendered unconscious by 
the sight of a formula. In dealing with a formula, we first try to explain the 
concept underlying the formula. We then show how the formula is a trans­
lation of the concept into something that can be measured. The emphasis is 
on when and how to apply the formula, not on its derivation. We also 
show how the calculation can be quickly performed using a statistical pack­
age. The package shown in the text is MINITAB. Comparable commands 
for two other packages, Stata and SAS, are shown in the Appendix. 

The textbook is designed for a two-quarter course for graduate stu­
dents and for a two-semester course for undergraduate students. If used 
for a one-semester course, possible deletions include sections on the fol­
lowing topics: the geometric mean, the life table, the Poisson distribution, 
the distribution-free approach to intervals, the confidence interval and test 
of hypothesis for the correlation coefficient, the Kruskal-Wallis test, the 
trend test for r by 2 contingency tables, the two-way ANOVA and the 
linear model representation of the ANOVA. 

We wish to acknowledge especially useful suggestions and comments 
provided by Joel A. Harrison and Mary Forthofer. Others who made valu­
able contributions include Herbert Gautschi, Irene Easling, Anna Baron, 
Mary Grace Kovar, and the students at the University of Texas School of 
Public Health Satellite Program in El Paso who reviewed parts or all of the 
text. Any problems in the text are the responsibility of the authors, not of 
the reviewers. 



Introduction 

mmiostatistics is the application of statistical methods to the biological and 
life sciences. Statistical methods include procedures for: (1) collecting data, 
(2) presenting and summarizing data, and (3) drawing inferences from 
sample data to a population. These methods are particularly useful in 
studies involving humans because the processes under investigation are 
often very complex. Because of this complexity, a large number of mea­
surements on the study subjects are usually made to aid the discovery 
process; however, this complexity and abundance of data often mask the 
underlying processes. It is in these situations that the systematic methods 
found in Statistics help create order out of the seeming chaos. Some areas 
of application are: 

1. A collection of vital statistics, for example, mortality rates, used to 
inform about and to monitor the health status of the population. 

2. Clinical trials to determine whether or not a new hypertension 
medication performs better than the standard treatment for mild 
to moderate essential hypertension. 

1 



1 INTRODUCTION 

3. Surveys to estimate the proportion of low-income women of child-
bearing age with iron-deficiency anemia. 

4. Studies to examine whether or not exposure to electromagnetic 
fields is a risk factor for leukemia. 

Biostatistics aids administrators, legislators, and researchers in answer­
ing questions. The questions of interest are explicit in examples 2 and 4 
above: Is the new drug more effective than the standard and is exposure to 
the electromagnetic field a risk factor? In examples 1 and 3 the values or 
estimates obtained are measurements at a point in time which could be 
used with measures at other time points to determine whether or not a 
policy change, for example, a 10 percent increase in Medicaid funding in 
each state, had an effect. 

I. DATA: THE KEY COMPONENT OF A STUDY 

In this textbook, much of the material relates to methods to be used in the 
analysis of data. It is necessary to become familiar with these methods and 
their use as this knowledge will enable one to: (1) better understand re­
ports of studies, and (2) better design and carry out studies. Readers, 
however, must not let the large number of methods of analysis and the 
associated calculations presented in this book overwhelm them. More im­
portant than the methods used in the analysis is the use of the correct 
study design and the correct definition and measurement of the study 
variables. The key to a good study is good datai The following examples dem­
onstrate the importance of the data. 

Sometimes because of an incomplete understanding of the data or of 
possible problems with the data, the conclusion from a study may be 
problematic. For example, consider a study to examine whether or not 
circumcision status is associated with cancer of the cervix. One issue the 
researcher must decide is how to determine the circumcision status. The easiest 
way is to ask the male if he had been circumcised; however, Lilienfeld and 
Graham (1) found that 34 percent of 192 consecutive male patients they 
studied gave incorrect answers about their circumcision status. Most of the 
incorrect responses were due to the men not knowing they had been 
circumcised. Hence the use of a direct question instead of an examination 
may lead to an incorrect conclusion about the relation between circumci­
sion status and cancer of the cervix. 

In the preceding example, reliance on the study subject's memory or 
knowledge could be a mistake. Yaffe and Shapiro (2) provide another 
example of potential problems when the study subjects' responses are 
used. They examined the accuracy of subjects' reports of health care utili­
zation and expenditures for 7 months compared with that shown in their 
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medical and insurance records for two geographical areas. In the Baltimore 
area, which provided data from approximately 375 households, subjects 
reported only 73 percent of the identified physician office visits and only 54 
percent of the clinic visits. The results for Washington County, Maryland, 
based on about 315 households, showed 84 percent accuracy for physician 
office visits but only 39 percent accuracy for clinic visits. Hence the re­
ported utilization of health services by subjects can greatly underestimate 
the actual utilization and, perhaps more importantly, the accuracy can vary 
by type of utilization and by population subgroups. 

An example of how a wrong conclusion could be reached because of a 
failure to understand how data are collected comes from Norris and Ship­
ley (3). Figure 1.1 shows the infant mortality rates, calculated convention­
ally as the ratio of the number of infant deaths to the number of live births 
during the same period multiplied by 1000, for different racial groups in 
California and the United States in 1967. 

Norris and Shipley questioned the accuracy of the rate for American 
Indians in California because it was much lower than the corresponding 
American Indian rate in the U.S., and even lower than the rates of the 
Chinese- and Japanese-Americans in California. Therefore they used a 
cohort method to recalculate the infant mortality rates. The cohort rate is 
based on following all the children that were born in California during a 
year and observing how many of those infants died before they reached 1 
year of age. Some deaths were missed, for example, infants that died out of 
California, but it was estimated that almost 97 percent of the infant deaths 
of the cohort were captured in the California death records. 

Infant deaths gg> California ■ United States 
per 1000 -"--'"- ^m 

live births 

40 

35 

30 

25 

20 

15 

10 

5 

38 

3 0 ^ -31-

16 16 

§?io 1 
White African American Chinese Japanese Other 

American Indian 

Infant mortality rates per 1000 live births by race for California and the United States in 1967. 
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Norris and Shipley used 3 years of data in their reexamination of the 
infant mortality to provide better stability for the rates. Figure 1.2 shows 
the conventional and the cohort rates for the 1965-1967 period by race. The 
use of data from 3 years has not changed the conventional rates much. The 
conventional rate for American Indians in California is still much lower 
than the rate for American Indians in the U.S., although now it is slightly 
above the Chinese- and Japanese-American rates. The cohort rate for 
American Indians, however, is now much closer to the corresponding rate 
found in the United States. The rates for the Chinese- and Japanese-Ameri­
cans and other races have also increased substantially when the cohort 
method of calculation is used. What is the explanation for this discrepancy 
in results between these methods of calculating infant mortality rates? 

Norris and Shipley attributed much of the difference to how the birth 
and death certificates, used in the conventional method, were completed. 
They found that the birth certificate is typically filled out by hospital staff 
who deal mostly with the mother; hence, the birth certificate usually re­
flects the race of the mother. The funeral director is responsible for com­
pleting the death record and usually deals with the father who may be of a 
different racial group than the mother. Hence, the racial identification of an 
infant can vary between the birth and death records—a mismatch of the 
numerator (death) and the denominator (birth) in the calculation of the 
infant death rate. The cohort method is not affected by this possible differ­
ence because it uses only the child's race from the birth certificate. 
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Beginning with the 1989 data year, the National Center for Health 
Statistics (NCHS) (4, page 53) uses primarily the race of the mother taken 
from the birth certificate in tabulating data on births. This change should 
remove the problem caused by having parents from two racial groups in 
the use of the conventional method of calculating infant mortality rates. 

As can be seen, data rarely speak clearly and usually require an inter­
preter. The interpreter—someone like Norris and Shipley in the earlier 
example—is someone who is familiar with the subject matter, who under­
stands what the data are supposed to represent, and who knows how the 
data were collected. 

II. REPLICATION: PART OF THE SCIENTIFIC METHOD 

Even though most of the examples and problems in this book refer to the 
analysis of data from a single study, the reader must remember that one 
study rarely tells the complete story. 

Statistical analysis of data may demonstrate that there is. a high proba­
bility of an association between two variables; however, a single study rarely 
provides proof that such an association exists. Results must be replicated by 
additional studies that eliminate other factors that could have accounted 
for the relationship observed between the study variables. For example, 
many studies have examined the role of cigarette smoking in lung cancer 
and other diseases. Proponents of smoking argue that these studies do not 
prove that smoking is the cause of lung cancer; however, through the large 
number of studies, which almost always have found an association be­
tween smoking and lung cancer in a wide variety of situations, it has 
become clear that smoking greatly increases the risk of developing lung 
cancer. 

Another example of the use of replication is provided by the Food and 
Drug Administration (FDA). The FDA requires a pharmaceutical company 
to present data from a number of drug trials before it considers the drug. 
The FDA believes that a single trial does not provide sufficient evidence of 
the drug's efficacy and safety. 

III. CONTENTS 

The following chapters continue the theme of combining substantive 
knowledge with statistical methods. Where possible, we also demonstrate 
how the figures and calculations being considered can be created or per­
formed on the computer. We believe the computer can be an asset as it 
removes the burden of the calculations and provides more time for the 
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student to deal with the big picture, that is, the concepts. The computer 
also provides the capability to experiment, that is, to try different analyses 
on a set of data. 

Chapters 2, 3, and 8 deal with data and data collection methods. Chap­
ter 2 discusses types of data, methods for collecting data, and possible 
problems with these methods. Chapter 3 covers procedures for collecting 
observational data via sample surveys, and Chapter 8 discusses the collec­
tion of data from designed experiments. 

The basic descriptive tools for presenting and summarizing data em­
ployed in biostatistics are introduced in Chapter 4. These tools include 
both numerical and graphical methods and they provide the first step in 
the attempt to understand the data. 

Chapter 5 provides an introduction to probability with illustrations of 
its use in life tables. In Chapter 6, several probability distributions are 
introduced and applications of these distributions provided. 

The remaining chapters deal with the third component of statistical 
methods, inference to a population from information about a sample. 
Chapter 7 presents point and interval estimation of parameters in the pop­
ulation based on the sample data. Chapter 9 presents the concept of hy­
pothesis testing and the related terminology. Chapters 10, 11, and 12 dem­
onstrate the use of procedures that make few assumptions about the data 
in the testing of hypotheses. Chapter 10 deals with continuous data, and 
Chapter 11 focuses on methods for examining the relationship between 
two and three discrete (or categorical) variables. In Chapter 12 some of the 
procedures introduced in Chapters 10 and 11 are extended and used in the 
analysis of survival data. 

Chapter 13 demonstrates the use of a particular distribution, the nor­
mal distribution, in testing hypotheses about means from one and two 
populations. Chapter 14 presents one-way and two-way analyses of vari­
ance, extensions of the material in Chapter 13. These methods of analysis 
examine the relationship between a continuous response variable and one 
or more discrete predictor variables. The linear model and its use are also 
introduced in Chapter 14. Chapter 15 shows the use of the linear model in 
simple and multiple regression analyses, methods for examining the rela­
tionship between a continuous response variable and one or more continu­
ous predictor variables. It also introduces logistic regression analysis, a 
method for examining the relation between a response variable with two 
outcomes and one or more predictive variables. 

Following these chapters are several appendices. Appendix A presents 
SAS and Stata statements, either of which can be used in place of the 
MINITAB statements shown in the test. Appendix B contains several sta­
tistical tables that are referenced in the text. Appendix C lists major sources 
of health data. Appendix D presents solutions to selected exercises. 
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EXERCISES 

1.1. Provide an example from your area of interest in which data collection 
is problematic or data are misused and discuss the nature of the prob­
lem. 

1.2. Since 1972 the National Institute on Drug Abuse has periodically con­
ducted surveys in the homes of adolescents on their use of cigarettes, 
alcohol, and marijuana. In the early surveys, respondents answered 
the questions aloud. Since 1979 private answer sheets were provided 
for the alcohol questions. Why do you think the agency made this 
change? What effect, if any, do you think this change might have had 
on the proportion of adolescents who reported consuming alcohol 
during the last month? Would you believe the reported values for the 
early surveys? 

1.3. The infant mortality rate for Pennsylvania for the period 1983-1985 
was 10.9 per 1000 live births compared with a rate of 12.5 for Louisi­
ana. Is it appropriate to conclude that Pennsylvania had a better rec­
ord than Louisiana relative to infant mortality? What other variable(s) 
might be important to consider here? The infant mortality rate was 9.4 
for whites and 20.9 for African Americans in Pennsylvania. This is 
contrasted with rates of 9.1 and 18.1 for whites and African-Ameri­
cans, respectively, in Louisiana [rates from (5, Table 15)]. Hence the 
race-specific rates were lower in Louisiana than in Pennsylvania, yet 
the overall rate was higher in Louisiana. Explain how this situation 
could arise. 

REFERENCES 
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Data and Numbers 

^appropriate use of statistical procedures requires that we understand 
the data and the process that generated them. This chapter focuses on 
data, specifically: (1) the linkage between numbers and phenomena, (2) 
types of variables, (3) data reliability and validity, and (4) ways data quality 
can be compromised. 

I. DATA: NUMERICAL REPRESENTATION 

Any record, descriptive account, or symbolic representation of an attrib­
ute, event, or process may constitute a data point. Data are usually mea­
sured on a numerical scale or classified into categories that are numerically 
coded. Three examples are: 

1. Blood pressure (diastolic) is measured for all middle and high 
school students in a school district to learn what percentage of 
students have a diastolic blood pressure reading greater than 
90 mm Hg (data = blood pressure reading). 

9 
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2. All employees of a large company are asked to report their 
weight every month to evaluate the effects of a weight control 
program (data = self-reported weight measurement). 

3. The question "Have you ever driven a car while intoxicated?" 
was asked of all licensed drivers in a large university to build the 
case for an educational program [data = yes (coded as 1) or no 
(coded as 0)]. 

We try to understand the real world, for example, blood pressure, 
weight, and the prevalence of drunken driving, through data recorded as 
or converted to numbers. This numerical representation and the under­
standing of the reality, however, do not occur automatically. It is easy for 
problems to occur in the conceptualization and measurement processes, 
which make the data irrelevant or imprecise. Referring to the earlier exam­
ples, blood pressure may be measured inaccurately by inexperienced 
school teachers, those employees who do not measure their weight regu­
larly each month may report inaccurate values, and some drivers may be 
hesitant to report drunken driving. Therefore, we must not draw any 
conclusions from the data before we ascertain whether or not any problems 
exist in the data and, if so, their possible effects. Guarding against misuse 
of data is as important as learning how to make effective use of data. 
Repeated exposure to misuses of data may lead people to distrust data 
altogether. Even a century ago, Bernard Shaw (1) described people's atti­
tudes toward statistical data as follows: 

The man in the s t reet . . . All he knows is that "you can prove anything by figures/' 
though he forgets this the moment figures are used to prove anything he wants to 
believe. 

The situation is certainly far worse today as we are constantly exposed to 
numbers purported to be important in advertisements, news reporting, 
and election campaigns. We need to learn to use numbers carefully and to 
examine critically the meaning of the numbers to distinguish fact from 
fiction. 

II. OBSERVATIONS AND VARIABLES 

In statistics, we observe or measure characteristics, called variables, of study 
subjects, called observational units. For each study subject, the numerical 
values assigned to the variables are called observations. For example, in a 
study of hypertension among school children, the investigator measures 
systolic and diastolic blood pressures for each pupil; systolic and diastolic 
blood pressure are the variables, the blood pressure readings are the observations, 
and the pupils are the observational units. We usually observe more than one 
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variable on each unit, for example, in a study of hypertension among 500 
schoolchildren, we may record the pupil's age, height, and weight in addi­
tion to the two kinds of blood pressure readings. In this case we have a 
data set of 500 students with observations recorded on each of five vari­
ables for each student or observational unit. 

III. SCALES USED WITH VARIABLES 

Four scales are used with variables: nominal, ordinal, interval, and ratio. 
The scales are defined in terms of the information conveyed by the numeri­
cal values assigned to the variable. The distinction between the scales is not 
of crucial importance. These scale types have frequently been used in the 
literature, and we are presenting them to be sure that the reader under­
stands the terms. 

In some cases the numbers are simply indicators of a category. For 
example, when considering gender, 1 may be used to indicate that the 
person is female and 2 to indicate that the person is male. When the 
numbers merely indicate to which category a person belongs, a nominal 
scale is being used. Hence gender is measured on a nominal scale. It makes 
no difference what numerical values are used to represent females and 
males. 

In other cases the numbers represent an ordering or ranking of the 
observational units on some variable. For example, from a worker's job 
description or work location, it may be possible to estimate the exposure to 
asbestos in the workplace, with 1 representing low, 2 representing me­
dium, and 3 representing high exposure. In this case, the exposure to 
asbestos variable is measured on the ordinal scale. Values of 10, 50, and 100 
could have been used instead of 1, 2, and 3 for representing the categories 
of low, medium, and high. The only requirement is that the order is main­
tained. 

Other variables are measured on a scale of equal units, for example, 
temperature in degrees Celsius (interval scale) or height in centimeters (ratio 
scale). There is a subtle distinction between interval and ratio scales, and it 
is that a ratio scale has a zero value, which means there is none of the 
quantity being measured. For example, zero height means there is no 
height, but zero degrees Celsius does not mean there is no heat. When a 
variable is measured on a ratio scale, the ratio of two numbers is meaning­
ful. For example, a boy 140 centimeters (cm) tall is 70 cm taller and also 
twice as tall as a boy 70 cm tall. In contrast, temperature in degrees Celsius 
is an interval variable, but not a ratio variable because an oven at 300 
degrees is not twice as hot as one at 150 degrees. This distinction between 
interval and ratio scales is of little importance in statistics and both are 
measured on a scale continuously marked off in units. 
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These different scales give rise to three types of data: nominal (categor­
ical), ordinal (ordered) data, and continuous (interval or ratio) data. The 
scale used often depends more on the method of measurement or the use 
made of it than on the property measured. The same property can be 
measured on different scales; for example, age can be measured in years 
(ratio scale); placed into young, middle-aged, and elderly age groups (ordi­
nal scale); or classified as economically productive (ages 16 to 64) and 
dependent (under 16 and over 64) age groups (nominal scale). It is possible 
to convert a higher-level scale (ratio or interval) into a lower-level scale 
(ordinal and nominal scales), but not to convert from a lower level to a 
higher level. One final point is that all recorded measurements themselves 
are discrete. Age, for example, can be measured in years, months, or even 
hours, but it is still measured in discrete steps. It is possible to talk about a 
continuous variable, yet actual measurements are limited by the measuring 
instruments. 

IV. RELIABILITY AND VALIDITY 

Data are collected by direct observation or measurement and from re­
sponses to questions. For example, height, weight, and blood pressure of 
schoolchildren are directly measured in a health examination. The investi­
gator is concerned about accurate measurement. The measurement of 
height and weight sounds easy, but the measurement process must be well 
defined and used consistently. For example, height is to be measured 
without shoes and weight measured before a meal. Therefore, to under­
stand any measurement we need to know the operational definition, that 
is, the actual procedures used in the measurement. In measuring blood 
pressure, the investigator must specify what instrument is to be used, how 
much training will be given to the measurers, at what time of the day the 
blood pressure should be measured, in what position it will be measured 
(sitting or standing), and how many times it should be measured for each 
pupil. 

There are two issues in specifying operational definitions: reliability 
and validity. 
Reliability requires that the operational definition should be sufficiently 

precise so that all persons using the procedure or repeated use of the 
procedure by the same person will have the same or approximately the 
same results. If the procedures for measuring height and weight of 
students are reliable, then the values measured by two observers, say, 
the teacher and the nurse, will be the same. If the person reading the 
blood pressure is hard of hearing, the diastolic blood pressure values, 
recorded at the point of complete cessation of the Korotkoff sounds or, 
if no cessation, at the point of muffling, may not be reliable. 
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Validity is concerned with the appropriateness of the operational defini­
tion, that is, whether or not the procedure measures what it is sup­
posed to measure. For example, if a biased scale is used, the measured 
weight is not valid, even though the repeated measurements give the 
same results. Another example of a measurement that may not be valid 
is the blood pressure reading obtained when the wrong size cuff is 
used. In addition, the person reading the blood pressures may have a 
digit preference which also threatens validity. The data shown in Fig­
ure 2.1 from Forthofer (2) suggest that there may have been a digit 
preference in the blood pressure data for children and adolescents in 
the second National Health and Nutrition Examination Survey 
(NHANES II). This survey, conducted by the NCHS in 1976-1980, 
provides representative health and nutrition data for the noninstitu-
tionalized U.S. population. In this survey, the blood pressure values 
ending in zero have a much greater frequency of occurrence than the 
other values. 
The reliability and validity issues are not only of concern for data 

obtained from measurements, but also for data obtained from question­
naires. In fact, the concern may be greater because of the larger number of 
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Forthofer (2). 
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ways that problems threatening data accuracy can be introduced with 
questionnaires (3-5). One problem is that the question may be misinter­
preted, and thus a wrong or irrelevant response may be elicited. For exam­
ple, in a mail survey, a question used the phrase "place of death" instead 
of instructing the respondent to provide the county and state where a 
relative had died. One person responded that the deceased died in bed. 
Such problems can be avoided or greatly reduced if careful thought goes 
into the design of questionnaires and into the preparation of instructions 
for the interviewers and the respondents. Even when there are no obvious 
faults in the question, however, a different phrasing may elicit a different 
response. For example, age can be ascertained by asking age at the last 
birthday or date of birth. It is known that the question about the date of 
birth tends to obtain the more accurate age. 

Another problem often encountered is that many people are uncomfor­
table in appearing to be out of step with society. As a result, these people 
may provide a socially acceptable but false answer about their feelings on 
an issue. A similar problem is that many people are reluctant to provide 
accurate information regarding personal matters, and often the respondent 
refuses to answer or intentionally distorts the response. Some issues are 
particularly sensitive, for example, questions about whether a woman has 
had an abortion or whether a person has attempted suicide. The re­
sponses, if any are obtained, to these sensitive questions are of question­
able accuracy. The following section addresses one way of obtaining data 
on sensitive issues that should be accurate. 

V. RANDOMIZED RESPONSE TECHNIQUE 

There is a statistical technique that allows investigators to ask sensitive 
questions, for example, about drug use or driving under the influence of 
alcohol, in a way that should elicit an honest response. It is designed to 
protect the privacy of individuals and yet provide valid information. This 
technique is called randomized response (6,7) and has been used in sur­
veys about abortions, drinking and driving, drug use, and cheating on 
examinations. 

In this technique, a sensitive question is paired with a nonthreatening 
question and the respondent is told to answer only one of the questions. 
The respondent uses a chance mechanism, for example, the toss of a coin, 
to determine which question is to be answered and only the respondent 
knows which question was answered. The interviewer records the re­
sponse without knowing which question was answered. It appears that 
these answers are of little value, but the following example demonstrates 
that they can be of use. 

In the drinking and driving situation, the sensitive question is, "Have 
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you driven a car while intoxicated during the last 6 months?" This question 
is paired with an unrelated, nonthreatening question such as, "Were you 
born in either September or October?" Each respondent is asked to toss a 
coin and not to reveal the outcome; those with heads are asked to answer 
the sensitive question and those with tails to answer the nonthreatening 
question. The interviewer records the yes or no response without knowing 
which question is being answered. Because only the respondent knows 
which question has been answered, there is less reason to answer dishon­
estly. 

Suppose 36 people were questioned and 12 gave yes answers. At first 
glance, this information does not seem very useful because .we do not 
know which question was answered; however, Figure 2.2 shows how we 
can use this information to estimate the proportion of the respondents who 
had been driving while intoxicated during the past 6 months. 

As a fair coin was tossed by each respondent, we expect that half the 
respondents answered the drunk driving question and half answered the 
birthday question. We also expect that one-sixth (2 of 12 months) of those 
who answered the birthday question will give a yes response. Hence the 
number of yes responses from the birthday question should be 3 [(36/2) x 

Chance Mechanism Used to Choose 
between Birthday and Drunk 
Driving Question (Coin Toss) 

36 People Questioned 
and 12 Answered Yes 

/ 
Expect 18 People 

Answered Birthday 
Question 

\ 
Expect 18 People 
Answered Drunk 
Driving Question 

Expect 1/6 of 18 
to Answer Yes to 
Birthday (Sept or 
Oct) Question 

- 3 Yes Answers 

Since 3 Yes Answers 
Are Expected from 
Birthday Question, 
Means 9 Yes (12-3) 
Are to Drunk Driving 

9 of 18 or 50% Are 
Estimated to be 
Drunk Drivers 

Use of randomized response information. 
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(1/6)]; the expected number of yes responses to the drinking and driving 
question is 9 (the 12 yes answers minus the 3 yes answers from the birth­
day question). Then the estimated proportion of drunk drivers is 50 per­
cent (9/18). 

There is no way of proving that the respondents answered honestly, 
but they are more likely to tell the truth when the randomized response 
method was used rather than the conventional direct question. Note that 
the data gathered by the randomized response technique cannot be used 
without understanding the process by which the data were obtained. Indi­
vidual responses are not informative but the aggregated responses can 
provide useful information at the group level. Of course, we need to in­
clude a sufficiently large number of respondents in the survey to make the 
estimate reliable. 

VI. COMMON DATA PROBLEMS 

Examination of data can sometimes provide evidence of poor quality. Some 
clues to poor quality include many missing values, impossible or unlikely 
values, inconsistencies, irregular patterns, and suspicious regularity. Data 
with too many missing values will be less useful in the analysis and may 
indicate that something went wrong with the data collection process. 
Sometimes data contain extreme values that are seemingly unreasonable. 
For example, a person's age of 120 would be suspicious and 200 would be 
impossible. Missing values are often coded as 99 or 999 in the data file and 
these may be mistakenly interpreted as valid ages. The detection of numer­
ous extreme ages in a data set would cast doubt on the process by which 
the data were collected and recorded and, hence, on all other observations, 
even if they appear reasonable. 

Inconsistencies are often present in the data set. For example, a college 
graduate's age of 15 may appear inconsistent with the usual progress in 
school, but it is difficult to attribute this to an error. Some inconsistencies 
are obvious errors. An example can be found in the history of the U.S. 
population census. In an attempt to study community mental health, 
Edward Jarvis (1803-1884) discovered that there were numerous inconsis­
tencies in the 1840 population census reports; for example, in many towns 
in the North, the numbers of African-American "insane and idiots" were 
larger than the total numbers of African-Americans in those towns. He 
published the results in medical journals and demanded that the federal 
government take remedial action. This demand led to a series of statistical 
reforms in the 1850 population census (8). 

A careful inspection of data sometimes reveals irregular patterns. For 
example, ages reported in the 1945 census of Turkey have a much greater 
frequency of multiples of 5 than numbers ending in 4 or 6 and more even-



VI. COMMON DATA PROBLEMS 17 

numbered ages than odd-numbered ages (9), as shown in Figure 2.3. This 
tendency of digit preference in age reporting is quite common. Even in the 
U.S. census we can find a slight clumping or heaping at age 65 when most 
of the social benefit programs for the elderly begin. The same phenomenon 
of digit preference is often found in laboratory measurements, as was 
shown above with the blood pressure measurements in NHANES II. 

Large and consistent differences in the values of a variable may indi­
cate that there was a change in the measurement process that should be 
investigated. An example of large differences is found in data used in the 
Report of the Second Task Force on Blood Pressure Control in Children, 
1987 (10). Systolic blood pressure values for 5-year-old boys averaged 103.5 
mm Hg in a Pittsburgh study compared with 85.6 mm Hg in a Houston 
study. These averages were based on 61 and 181 boys aged 5 in the Pitts­
burgh and Houston studies, respectively. Hence these differences were 
not due to small sample sizes. Similar differences were seen for 5-year-old 
girls and for 3- and 4-year-old boys and girls as well. There are large 
differences between other studies also used by this task force, but the 
differences are smaller for older children. These incredibly large differ­
ences between the Pittsburgh and Houston studies were likely due to a 
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2 DATA AND NUMBERS 

difference in the measurement process. In the Houston study, the children 
were at the clinic at least 30 minutes before the blood pressure was mea­
sured, whereas they had a much shorter wait in the Pittsburgh study. 
Because the measurement processes differed, the values obtained do not 
reflect the same variable across these two studies. The use of data from 
these two studies without any adjustment for the difference in the mea­
surement process is questionable. 

The use of data from laboratories is another area in which it is crucial to 
monitor constantly the measurement process, that is, the equipment and 
the personnel who use the equipment. In large multicenter trials that use 
different laboratories, or even a single laboratory, referent samples are 
routinely sent to the laboratories to determine if the measurement pro­
cesses are under control. This enables any problems to be detected quickly 
and prevents subjects from being either unduly alarmed or wrongly com­
forted. It also prevents false values from being entered into the data set. 

The Centers for Disease Control (CDC) has an interlaboratory pro­
gram, and data from it demonstrate the need for monitoring. The CDC 
distributes samples to about 100 laboratories throughout the United States. 
The April 1980 results of measuring lead concentration in blood are shown 
in Figure 2.4 (11). According to the author of the article, the best estimate of 
the blood lead concentration in the distributed sample was 41 micrograms 
per deciliter (^g/dl) but the average reported by all participating laborato­
ries was 44 jug/dl. The large variability from the value of 41 shown in Figure 
2.4 is a reason for concern, particularly because the usual value in human 
blood lies between 15 and 20 /xg/dl. 

Distribution of measurements of blood lead concentration by separate laboratories, Centers 
for Disease Control. 
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Of course the lack of inconsistencies and irregularities does not mean 
that there are no problems with the data. Too much consistency and regu­
larity sometimes are grounds for a special inquiry into the causes: Scientific 
frauds have been uncovered in some investigations in which the investiga­
tor discarded data that did not conform with theory. Abbe Gregor Mendel, 
the 19th-century monk who pioneered modern gene theory by breeding 
and crossbreeding pea plants, came up with such perfect results that later 
investigators concluded he probably tailored his data to fit predetermined 
theories. Another possible fabrication of data in science is the case of Sir. 
Cyril Burt, a British pioneer of applied psychology. In his frequently cited 
studies of intelligence and its relation to heredity, he reported the same 
correlation in three studies of twins with different sample sizes (0.771 for 
twins reared apart and 0.944 for twins reared together). The consistency of 
his results eventually raised concern as it is highly unlikely that the exact 
same correlations would be found in studies of humans with different 
sample sizes. Science historians generally agree that his analyses were 
creations of his imagination with little or no data to support them (12). 

VII. CONCLUDING REMARKS 

Data are a numerical representation of a phenomenon. By assigning nu­
merical values to occurrences of the phenomenon, we are thus able to 
describe and analyze it. The assignment of the numerical values requires 
an understanding of the phenomenon and careful measurement. In the 
measurement process, some unexpected problems may be introduced and 
the data then contain the intended numerical facts as well as the unin­
tended fictions. Therefore we cannot use data blindly. The meaning of data 
and its implications have been explored in a number of examples in this 
chapter. In the next chapter, we consider some ways data are obtained. 

EXERCISES 

2.1. Identify the scale used for each of the following variables: 
a. Calories consumed during the day 
b. Marital status 
c. Perceived health status reported as poor, fair, good, or excellent 
d. Blood type 
e. IQ score 

2.2. A person's level of education can be measured in several ways. It 
could be recorded as years of education or it could be treated as an 
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ordinal variable, for example, less than high school, high school grad­
uate, and so on. Is it always better to use years of education than the 
ordinal variable measurement of education? Explain your answer. 

2.3. In a health interview survey, a large number of questions are asked. 
For the following items, discuss: (1) how the variable should be de­
fined operationally, (2) whether nonresponse is likely to be high or 
low, and (3) whether reliability is likely to be high or low. Explain your 
answers. 
a. Weight 
b. Height 
c. Family income 
d. Unemployment 
e. Number of stays in mental hospitals 

2.4. The pulse is usually reported as the number of heartbeats per minute, 
but the actual measurement can be done in several different ways, for 
example: 
a. Count for 60 seconds 
b. Count for 30 seconds and multiply the count by 2 
c. Count for 20 seconds and multiply the count by 3 
d. Count for 15 seconds and multiply the count by 4 
Which procedure would you recommend to be used in clinics, consid­
ering accuracy and practicality? 

2.5. The first U.S. census was taken in 1790 under the direction of Thomas 
Jefferson. The task of counting the people was given to 16 federal 
marshals who in turn hired enumerators to complete the task in 9 
months. In October of 1791, all of the census reports had been turned 
in except the one from South Carolina, which was not received until 
March 3, 1792. As can be expected, the marshals encountered many 
obstacles and the counting was incomplete. The first census revealed 
a population of 3,929,326. This result was viewed as an undercount as 
is indicated in the following excerpt from a letter written by Jefferson: 

I enclose you also a copy of our census, written in black ink, so far as we have 
actual returns, and supplied by conjecture in red ink, where we have no 
returns; but the conjectures are known to be very near the truth. Making very 
small allowance for omissions, which we know to have been very great, we 
are certainly above four millions, (13) 

Discuss what types of obstacles they might have encountered and 
what might have led Jefferson to believe there was an undercounting 
of the people. 

2.6. The NCHS matched a sample of death certificates in 1960 with the 
1960 population census records to assess the quality of data and re­
ported the following results (14): 



REFERENCES 2 1 

Percentage Agreement and Disagreement in Age Reporting, 
1960 

Agreement 
Disagreement 

1-year difference 
2+-year difference 

Male 

74.5% 

16.6 
8.9-

White 
Female 

67.9% 

18.8 
13.3 

Nonwhite 
Male 

44.7% 

20.8 
34.5 

Female 

36.9% 

20.2 
42.9 

Total 

68.8% 

17.8 
13.4 

Do you think that age reported in the death certificate is more accurate 
than that reported in the census? How do you explain the differential 
agreement by gender and race? How do you think these disagree­
ments affect the age-specific death rates calculated by single years and 
those computed by 5-year age groups? 

2.7. Discuss possible reasons for the digit preference in the 1945 popula­
tion census of Turkey that is shown in Figure 2.3. Why was the digit 
preference problem more prominent among females than among 
males? How would you improve the quality of age reporting in census 
or surveys? How do you think the digit preference affects the age-
specific rates calculated by single years of age and those computed by 
5-year age groups? 
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Sampling 

I n meeting a set of data we must first check the credentials of the data, 
that is, what the data represent and how the data were collected. In Chap­
ter 2 we discussed the linkage between concepts and numbers, that is, 
what the data represent. As far as data collection is concerned, two basic 
methods are used to obtain data, the sample survey and the designed 
experiment. In this chapter we examine the sample survey; in Chapter 8, 
we consider the designed experiment. 

I. WHAT AND WHY SAMPLING 

Sampling means selecting a few units from all the possible observational 
units in the population. The idea of sampling is not new to us because we 
all use some form of sampling in our daily life. For example, in buying fruit 
from the produce section, we examine (sample) several pieces of the fruit 
before deciding whether or not to make a purchase. If we examine only the 
fruit at the top of the basket, we sometimes make a wrong decision about 

23 
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the quality of the fruit. It turns out that certain sampling methods tend to 
cause fewer wrong decisions (introduce less bias) than others. 

For practical purposes, any data set is a sample. Even if a complete 
census is attempted, there are missing observations. This means that we 
must pay attention to the intended as well as the unintended sampling 
when evaluating a sample. This also suggests that we cannot evaluate a 
sample by looking at the sample itself, but we need to know what sampling 
method was used and how well it was executed. We are interested in the 
process of selection as well as the sample obtained. 

Sampling is used extensively today for many reasons. In many situa­
tions a sample produces information about the population more accurate 
than that provided by a census. Two reasons for obtaining more accurate 
information from a sample are the following. As was mentioned in Chapter 
2, a census often turns out to be incomplete and the impact of the missing 
information is most often unknown. Additionally, in obtaining a sample, 
fewer interviewers are required and it is likely that they will be better 
trained than the huge team of interviewers required to perform a census. 

Even more pragmatically, collecting data from a sample is cheaper and 
faster than attempting a complete census. In addition, in many situations a 
census is impractical or even impossible. The following three examples 
illustrate situations in which sampling was used and reasons for the use of 
samples. 

1. Even in the U.S. population census, many data items are collected 
from a sample of households. In the 1990 census, for example, only a few 
basic demographic data items—gender, age, race, and marital status— 
were asked of each individual in all households in the short form of the 
questionnaire. Many questions about socioeconomic characteristics such as 
education, income, and occupation are included in the long form, which 
was distributed to about 17 percent of U.S. households. In small towns, a 
larger proportion of households received the long form to ensure reliable 
estimates. Conversely, in large cities, proportionately fewer households 
received the long form. Use of sampling not only reduced the cost of the 
census, but also shortened the data collection burden and time. 

2. Pharmaceutical companies routinely sample a small fraction of their 
products to examine the quality and the chemical contents. On the basis of 
this examination, a decision is made whether to accept the entire lot and 
ship it or reject the lot and change the manufacturing process. In this case 
the sample is destroyed to check the quality; a company cannot afford to 
inspect the entire lot. 

3. Health departments of large urban areas monitor ambient air qual­
ity. As the health department cannot afford to monitor the air everywhere 
in its coverage area, a sample of sites are selected and the values of several 
different pollutants are continuously recorded. 
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II. SAMPLING AND SELECTION BIAS 

A smart shopper is conscious of the possible variability in the quality of 
fruit between the top and bottom of the fruit basket. The smart shopper 
looks at pieces of fruit throughout the basket, even though it is more 
convenient to look at the pieces on top, before making a purchase. In the 
same way, a researcher is aware of the possible variability among observa­
tional units in the population. A good researcher takes steps to ensure that 
the process for selecting units from the population deals with this possible 
variability. The failure to do so means that the selected sample may not 
adequately represent the population. 

Selecting a sample of units because of convenience also poses a prob­
lem for a researcher just as it did for the shopper. The opinions of people 
interviewed during lunch time on downtown street corners, although con­
venient to obtain, usually are not representative of the residents of the city. 
Those who never go to the center of the city during lunch time are not 
represented in the sample and they may have different opinions from 
those who go to the city center. 

Before performing any sampling, it is important to define clearly the 
population of interest. Similarly, when we are given a set of data, we need 
to know what group the sample represents, that is, from what population 
the data were collected. The definition of population is often implicit and 
assumed to be known, but we should ask what the population was before 
using the data or accepting the information. When we read an election 
poll, we should know whether the population was all adults or all regis­
tered voters to interpret the results appropriately. In practice, the popula­
tion is defined by specifying the sampling frame, the list of units from which 
the sample was selected. Ideally, the sampling frame should include all 
units of the defined population. But, as we shall see, it is often difficult to 
obtain the sampling frame and we need to rely on a variety of alternative 
approaches. 

The failure to include all units contained in the defined population in 
the sampling frame leads to selecting a biased sample. A biased sample is 
not representative of the population. The average of a variable obtained 
from a biased sample is likely to be consistently different from the corre­
sponding value in the population. Selection bias is the consistent divergence 
of a sample value (statistic) from the corresponding population value (pa­
rameter) because of an improper selection process. Even with a complete 
sampling frame, selection bias can occur if proper selection rules were not 
followed. Two basic sources of selection bias are the use of an incomplete 
sampling frame and the use of improper selection procedures. The follow­
ing example illustrates the importance of the sampling frame. 

In the 1936 presidential election, the Literary Digest confidently pre­
dicted that the Republican nominee, Alfred M. Landon, would defeat the 
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Democratic incumbent, Franklin D. Roosevelt (1). This prediction was 
based on 2.3 million returns out of 10 million survey ballots mailed to the 
magazine's subscribers, telephone customers, and persons on other mail­
ing lists. The prediction was wrong and there were several causes of this 
mistake. One of the key causes was the use of an incomplete sampling 
frame of eligible voters, which resulted in a biased sample. The Literary 
Digest's mailing list overrepresented people with high incomes. A second 
problem was the low response rate of 23 percent, which meant there was 
the possibility of a large nom•espouse bias, a type of selection bias. When 
there is nonresponse, it means that the respondents were self-selected and 
hence might not adequately represent the sampling frame. 

The Report of the Second Task Force on Blood Pressure Control in 
Children provides another example of the possibility of selection bias in 
data (2). This task force used existing data from several studies, only one of 
which could be considered representative of the U.S. noninstitutionalized 
population. In this convenience sample, more than 70 percent of the data 
came from Texas, Louisiana, and South Carolina, with little data from the 
Northeast or West. Data from England were also used for newborns and 
children up to 3 years of age. The representativeness of these data for use 
in the creation of blood pressure standards for U.S. children is question­
able. Unlike the Literary Digest survey, in which the errors in the sampling 
were shown to lead to the wrong conclusion, it is not clear that the blood 
pressure standards are wrong. All we can point to is the use of conve­
nience sampling and, with it, the likely introduction of selection bias by the 
Second Task Force. 

Telephone surveys may provide another example of failure of the sam­
pling frame to include all members of the target population. If the target 
population is all the resident households in a geographical area, a survey 
conducted using the telephone will miss a portion of the resident house­
holds. Even though more than 90 percent of the households in the United 
States have telephones, the percentage varies with race and socioeconomic 
status. The telephone directory was used frequently in the past as the 
sampling frame, but it excluded households without telephones as well as 
households with unlisted numbers. A technique called random digit dialing 
(RDD) has been developed to deal with the unlisted number problem in an 
efficient manner (3). As the name implies, telephone numbers are basically 
selected at random from the prefixes—the first 3 digits—thought to con­
tain residential numbers, not from a telephone directory. But the concern 
about the possible selection bias resulting from missing households with­
out telephones and people who do not have a stable place of residence 
remains. 

To avoid or minimize selection bias, every sample needs to be selected 
on the basis of a carefully drawn sample design. The design defines the 
population the sample is supposed to represent, identifies the sampling 
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frame from which the sample is to be selected, and specifies the procedural 
rules for selecting units. The sample data are then evaluated based on the 
sample design and the way the design was actually executed. The next 
section introduces the key to modern sampling methods, the introduction 
of randomness into the sample selection process. 

III. IMPORTANCE OF PROBABILITY SAMPLING 

We are familiar with the use of a random mechanism to remove possible 
biases. For example, to start a football game, a coin toss—a random mecha­
nism—is used to decide which team receives the opening kickoff. A ran­
dom or chance mechanism is also used to select a sample in an attempt to 
remove biases. Any sample selected using a random mechanism that 
results in known chances of selection of the observational units is called a 
random or probability sample. This definition requires only that the chances 
of selection are known. It does not require that the chances of the observa­
tional units being selected into the sample are equal. 

Knowledge of the chance of selection is the basis for the statistical 
inference from the sample to the population. A sample selected with un­
known chances of selection cannot be linked appropriately to the popula­
tion from which the sample was drawn. This point will become clearer 
when we study probability in Chapter 5 and probability distributions in 
Chapter 6. 

IV. SIMPLE RANDOM SAMPLING 

The simplest probability sample is a simple random sample (SRS). In a SRS, 
each unit in the sampling frame has the same chance of being included in 
the sample as any other unit. Use of a SRS removes the possibility of any 
bias, conscious or unconscious, on the part of the researcher in selecting 
the sample from the sampling frame. 

One method of drawing a SRS is to place numbered slips of paper in an 
urn, mix them up thoroughly, and then have a neutral party pick out the 
slips. This is basically the method the Selective Service officials attempted 
to use in the 1970 draft lottery. Figure 3.1 shows the lottery results (4). It 
appears that the process did not work as intended as the months at the end 
of the year, which were put into the container last and were not mixed 
thoroughly, have much smaller lottery numbers than the earlier months. 
The unreliability of this traditional method of selecting a SRS has also been 
demonstrated empirically. Problems often result because it is difficult to 
mix the slips thoroughly enough to approximate a random selection. 



3 SAMPLING 

240 -| 

220 

200 -I 

180 

160 -I 

140 -

120 -

226 

149 

122 
/ 

o -I 

I 
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 
J F M A M J J A S O N D 
a e a p a u u u e c o e 
n b r r y n l g p t v c 

Average lottery number by month from the 1970 draft lottery. 

A better method of selecting a SRS is to use a random number table or 
random numbers generated by a computer. If the population is relatively 
small, we can number all units sequentially. Next we locate a starting point 
in the random number table, Table Bl in Appendix B. We then begin 
reading random numbers in some systematic fashion, for example, across a 
row or down a column or diagonally, but the direction of reading should be 
decided ahead of the time. The units in the sampling frame whose unique 
numbers match the random numbers that have been read are selected into 
the sample. 

For example, suppose that we have 50 students in a classroom and 
they are sequentially labeled from 00 to 49 by row, starting at the left end of 
the first row. We wish to select a SRS of 10 students. We decide to use the 
upper left-hand corner of the table as our starting point and we go across 
the row. By reading the two-digit numbers from the first row of the ran­
dom digit table, the following 10 numbers are obtained: 

17, 17, 47, 59, 08, 43, 30, 67, 70, 61. 

As four numbers are greater than 49, they cannot be used and we must 
draw additional numbers until we have 10 random numbers smaller than 
50. In addition, the number 17 occurred twice. If we were to use the value 
of the variable of interest for student 18 twice, the sample would be called a 
sample with replacement. As there is no good practical reason for including 
the same element twice in the sample, we should draw another number 
that has not been selected previously. A sample that does not allow dupli­
cate selections is called a sample without replacement. We usually sample 
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without replacement, but this distinction is moot when selecting a sample 
from large populations because the chance of selecting a unit more than 
once would be very small. The next five valid numbers are 07, 44, 48, 36, 
and 47. The students whose labels match the 10 valid numbers drawn are 
selected as the sample. 

Another way of dealing with this problem of drawing invalid numbers 
is to subtract 50 from values greater than or equal to 50 in the first set of 10 
random numbers. For example, 59, 67, 70, and 61 become 09, 17, 20, and 
11. We now select the students with labels 09, 17, 20, and 11. This proce­
dure is based on the premise that each student is represented by two 
numbers differing by 50 in value. For example, the first student will be 
selected if either 00 or 50 were read; the second would be selected if either 
01 or 51 were read and so on, until the last student would be selected if 49 
or 99 were read. Note that even with the subtraction of 50, we again have 
another 17. We would still have to draw other random numbers until we 
had 10 distinct values. 

In using this second procedure (subtracting 50), each unit (student) in 
the sampling frame had the same number (two) of labels associated with it. 
If there are 30 students in a class, we can label them in three cycles, 1 
through 30, 31 through 60, and 61 through 90, but we cannot assign 91 
through 99 and 00 to any student. If we assigned these last 10 values to 
some of the students, some students would have 3 labels associated with 
them whereas other students would have 4 labels. The students would 
have unequal chances of being selected. By not using the last 10 values, 
each student has 3 labels (numbers). The first student is assigned the 
numbers 01, 31, and 61; the second student is assigned the numbers 02, 32, 
and 62 and so on for the other students. 

Let us take another sample of 10 students from the original group of 50 
students. We now are going to use two-digit numbers from the beginning 
of the third row. The set of 10 numbers are the following: 

24, 04, 13, 38, 00, 09, 97(47), 63(13), 67(17), 85(35). 
The value 50 was subtracted from numbers greater than 49 and the values 
in parentheses are the result of the subtraction and they indicate which 
students are to be selected. Because the fourteenth student is selected 
twice, that is, the number 13 appears twice, additional numbers have to be 
selected until there are 10 distinct values. 

In this example, we used two-digit random numbers because we could 
not provide distinct labels for all 50 students with only a single digit. The 
number of digits to be used is dependent on the size of the population 
under consideration. For example, when we have 570 units in the popula­
tion, we need to use three digits. A population which contains 7870 units 
would require four digit random numbers. 
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V. COMPLEX SAMPLING DESIGNS 

The idea of simple random sampling is essential in statistical thinking and 
most methods of analysis assume that the data were collected using a SRS; 
however, when we attempt to use a SRS in the collection of data, we often 
encounter difficulties. Suppose we wanted a SRS of 500 adults from a large 
city. First, a sampling frame is not readily available. Developing a list of all 
adults in the city is very costly and should be considered impractical. Even 
though we are able to select a SRS of 500 adults from a reasonably complete 
list, it would be expensive to send interviewers to sample persons scattered 
all over the city. A solution to these practical difficulties is to sample people 
based on geographical areas, for example, census tracts. Most survey agen­
cies and researchers use a multistage sample design in this situation. First, a 
random sample of census tracts is selected, then blocks within each se­
lected tract are randomly selected. Within the selected blocks a list of 
households can be prepared and a sample of households can be selected 
systematically from the list, say, every third household. Finally, within 
each of the selected households, an adult may be randomly chosen. 

In the above sampling design, elementary units (individuals) in the 
population are grouped into clusters, for example, groups of households, of 
blocks and of tracts that usually are close together. The clusters are then 
sampled, which reduces the travel time and cost of the sampling. 

In addition to the use of clusters, stratification is often used in complex 
sample designs. In a stratified random sample design, the units in the sam­
pling frame are first divided into groups, called strata and a separate SRS is 
taken in each stratum to form the total sample. The strata are formed to 
keep similar units together, for example, a female stratum and a male 
stratum. In this design, units need not have equal chances of being se­
lected and some strata may be deliberately oversampled. For example, in 
NHANES I, the elderly, persons in poverty areas, and women of childbear-
ing age were oversampled to provide sufficient numbers of these groups 
for in-depth analysis (5). If a SRS had been used, it is likely that too few 
people in these groups would have been selected to allow any in-depth 
analysis. 

Another advantage of stratification is that it can reduce the variability 
of sample statistics over that of a SRS, thus reducing the sample size 
required for analysis. This reduction in variability occurs when the units in 
a stratum are similar, but there is variation across strata. Another way of 
saying this is that the reduction occurs when the variable used to form the 
strata is related to the variable being measured. Let us consider a small 
example that illustrates this point. 

In this example, we wish to estimate the average weight of persons in 
the population. The population contains six persons, three females and 
three males. The weights of the females in the population are 110, 120, and 
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130 pounds and the weights of the males are 160,170, and 180 pounds. We 
form our estimate of the population average weight by taking a sample of 
size 2 without replacement. 

If we use a SRS, the smallest possible estimate is 115 pounds [= (110 + 
120)/2] and the largest possible estimate is 175 [= (170 + 180)/2]. As an 
alternative, we could use a stratified random sample where the strata are 
formed on the basis of gender. If one person is randomly selected from 
each stratum, the smallest estimate is 135 pounds [= (110 + 160)/2] and the 
largest estimate is 155 pounds [= (130 + 180)/2]. The estimates from the 
stratified sample approach have less variation, that is, have greater preci­
sion, than those from the SRS approach. 

A stratified random sample is often taken in the early stages in multi­
stage sampling. For instance, in the earlier example of multistage sam­
pling, the list of census tracts at the first stage of sampling could have been 
stratified by the degree of minority population concentration or by the 
median years of education in the tract. A separate SRS from each stratum 
could have then been selected. Similarly, stratification can be applied at the 
block and household levels. 

The sample design can be more complicated than illustrated in earlier 
examples. The additional complications are introduced for a variety of 
reasons, for example, to control costs, to save time, to take known sources 
of variation into account, and to improve precision of sample estimates. In 
these more complex sample designs, the selection probabilities are un­
equal; the sampling unit may be a cluster of households, not a person, and 
hence persons in the sample are related to other persons by virtue of 
belonging to the same cluster. The data collected from these more complex 
sample designs require different analyses than data from a SRS; however, 
it is beyond the scope of this textbook to deal with the more complicated 
analysis of data from these complex designs. Books on the analysis of data 
from a complex survey are available (6,7), although it is best to consult a 
statistician when dealing with data from a complex sample. 

VI. PROBLEMS CAUSED BY UNINTENDED SAMPLING 

In analyzing data it is imperative to understand the sample design as well 
as how the design was actually executed in the field. Deviations from the 
intended sample design are reflected in the data. Even in a well-designed 
survey, it is usually not possible to collect data from all the units sampled 
because there is almost always some nonresponse. Hence, the respon­
dents, a subset of the sampled persons, are self-selected from the sampled 
persons through some procedure that is usually unknown to the designer 
of the study. As the respondents are no longer a random sample of the 
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study population, there is concern that the data may be unusable because 
of nonresponse bias. 

If the percentage of nonresponse is small, say, less than 5 to 10 percent, 
there is usually little concern because the bias, if any, is also likely to be 
small. If the nonresponse is on the order of 20 to 30 percent, the possibility 
of a substantial bias exists. For example, assume that we wish to estimate 
the proportion of people without health insurance in our community. We 
select a SRS and find that 20 percent of the respondents were without 
health insurance. However, one-fourth of those selected to be in the sam­
ple did not respond. If we knew the proportion of those without health 
insurance among the nonrespondents, it would be easy to combine this 
value with that of the respondents to obtain the total sample estimate. The 
proportions of those without health insurance among the respondents and 
nonrespondents would be weighted by the corresponding proportion of 
respondents and nonrespondents in the sample. 

For example, if none of these nonrespondents had health insurance, 
the total sample estimate would be 40 percent [= (20% * 0.75) + (100% * 
0.25)], twice as large as the rate for the respondents only. If all of the 
nonrespondents had health insurance, then the total sample estimate be­
comes 15 percent [= (20% * 0.75) + (0% * 0.25)]. Hence, although 20 
percent of the respondents were without health insurance, the total sample 
estimate can range from 15 to 40 percent when one-fourth of the sample are 
nonrespondents. 

For nonresponse bias to occur, the nonrespondents must differ from 
the respondents with respect to the variable of interest. In the example, it 
may be that many of the nonrespondents were unemployed homeless 
whereas few of the respondents were unemployed or homeless. In this 
case, the respondents and nonrespondents would likely differ with respect 
to health insurance coverage. If they do differ, there would be a large 
nonresponse bias. With larger percentages of nonresponse, the likelihood 
of a substantial nonresponse bias is very high and this makes the use of the 
data questionable. Unfortunately, many large surveys have a high percent­
age of nonresponse or do not mention the level of nonresponse. Data from 
these surveys are problematic. 

An example of a survey with poor response is the Nationwide Food 
Consumption Survey conducted in 1987-1988 for the U.S. Department of 
Agriculture. This survey, conducted once per decade, was to be the basis 
for policy decisions regarding food assistance programs; however, only 
about one-third of the persons who were in the sample participated and, 
hence, the sample may not be representative of the U.S. population. An 
independent expert panel and the General Accounting Office of the U.S. 
Congress have concluded that information from this survey may be un­
usable (8). 

There is no easy solution to the nonresponse problem. The best ap-
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proach is a preventive one, that is, to exert every effort to obtain a high 
response rate. Even if you are unable to contact the sample person, per­
haps a neighbor or family member can provide some basic demographic 
data about the person. If a sample person refuses to participate, again try 
to obtain some basic data about the person. If possible, try to obtain some 
information about the main topic of interest in the survey. The basic demo­
graphic data can be used to compare the respondents and nonrespon-
dents. If there are no differences between the two groups on the demo­
graphic variables, that does not necessarily guarantee the absence of 
nonresponse bias. It does, however, eliminate the demographic variables 
as a cause of the potential nonresponse bias. If there is a difference, it may 
be possible to take those differences into account and create an adjusted 
estimator. The following calculations show one of many possible adjust­
ment methods. 

Suppose we found that there was a difference in the gender distribu­
tion between the respondents and nonrespondents. Sixty percent of the 
respondent group were females and 40 percent were males, whereas 30 
percent of the nonrespondent group were females and 70 percent were 
males. If there were no difference in the proportions of females and males 
with health insurance, this difference in the gender distribution between 
the respondents and nonrespondents would be no problem. For this exam­
ple, however, assume there was a difference. In the respondent group, 30 
percent of the females were without health insurance compared with only 
5 percent of the males. Figure 3.2 displays these percentages and the calcu­
lations involved in creating an adjusted rate. 

The corresponding percentages with health insurance are unknown for 
the nonrespondent group. If, however, we assume that the female and 
male respondents' percentages with health insurance hold in the nonre­
spondent group, we can obtain an adjusted rate. The percentage of those 
without health insurance in the nonrespondent group under this assump­
tion is found by weighting the proportions of females and males without 
health insurance by their proportions in the nonrespondent group, that is, 
(30% * 0.3) 4- (70% * 0.05), which is 12.5 percent. We then use this value for 
the proportion of nonrespondents without health insurance and combine it 
with the proportion of respondents without health insurance to obtain a 
sex-adjusted estimate of the proportion of our community without health 
insurance. This adjusted estimate is 18.1 percent [= (757c * 0.20) + 
(25% * 0.125)]. 

The adjusted rate does not differ much from the rate for the respon­
dents only; however, this adjusted rate was based on the assumption that 
the proportions of females and males without health insurance were the 
same for respondents and nonrespondents. If this assumption is false, 
which we cannot easily check, then this adjusted estimate is incorrect. 
Whatever method of adjustment is employed, an assumption similar to the 
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Population 

/ 
Respondents 
75% of Pop 
20% w/o HI 
/ 

Females 
60% 
1 

30% W/O 
Health 
Insur. 

\ 
Males 
40% 
1 

5% w/o 
Health 
Insur. 

\ 
Nonrespondents 

25% of Pop 
Unk. % w/o HI 

/ \ 
Females 

30% 
Males 
70% 

Unknown % w/o Health 
Insurance; assume 30% 
& 5% as respondents 

Proportion without Health 
Insurance for Respondents = 0.60*0.3 + 0.40*0.05 0.20 

Proportion without Health = 0.30*0.3 + 0.70*0.05 = 0.125 
Insurance for Nonrespondents 

= 0.75*0.2 + 0.25*0.125 = 0.181 Proportion without Health 
Insurance in Sample 
Display of the percentages for the health insurance example and calculation of the adjusted 
rate. 

above must be made at some stage in the adjustment process (9). It is better 
to prevent nonresponse from occurring or to keep its rate of occurrence 
small. 

The discussion so far has focused on unit nonresponse, that is, the obser­
vational unit did not participate in the survey. There is also item nonre­
sponse, in which the sample person did not provide the requested informa­
tion for some of the items in the survey. Just as there are no easy answers 
to unit nonresponse, item nonresponse or missing data also is a source of 
difficulty for the data analyst. Again if the percentage of item nonresponse 
is small, say less than 5 to 10 percent, it probably will not have much of an 
effect on the data analysis. In this case, the observations with the missing 
values may be deleted from the analysis. As the percentage of missing data 
increases, there is increasing concern about the representativeness of the 
sample persons remaining in the analysis. Because of the concern about 
the representativeness of the sample persons remaining, statisticians have 
developed methods for imputing or creating values for the missing data (9). 
By imputing values, it is no longer necessary to delete the sample persons 
with the missing data from the analysis. The imputation methods range 
from the very simple to the complex, depending on the amount of auxiliary 
data available. 
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As an example, suppose that in a survey to estimate the per capita 
expenditure for health care, we decided to substitute the respondents' 
sample average for those with a missing value on this variable. That is a 
reasonable imputation. If, however, we know the age of the sample per­
sons, as age is highly related to health care expenditures, a better imputa­
tion would be to use the average expenditure from respondents in the 
same age group. There are other variables that could be used with age that 
would be even better than using age alone, for example, the combination 
of age and health insurance status. The sample mean from the respondents 
in the same age and health insurance group should be an even better 
estimate of the missing value than the mean from the age group or the 
overall mean. In using any imputation method, we must remember that 
the number of observations is really the number of sample persons with no 
missing data for the analysis performed, not the number of sample per­
sons. 

Other more complicated procedures are also available; however, none 
of these procedures guarantee that the value substituted for the missing 
data is correct. It is possible that the use of imputation procedures can lead 
to wrong conclusions being drawn from the data. Again, the best proce­
dure for dealing with missing data is preventive, that is, make every effort 
to avoid missing data in the data collection process. 

VII. CONCLUDING REMARKS 

In this chapter we saw how to collect data using sample surveys and 
examined the principle of randomness related to the design of samples. We 
also presented some practical issues that cause more complicated sample 
designs to be used. Regardless of the complexity of the sample design, as 
long as we know the selection probability, we can infer from the sample to 
the population. The topic of probability is considered in detail in Chapter 5. 
In the next chapter, we consider ways to describe the sample data. 

EXERCISES 

3.1. Choose the most appropriate response from the choices listed after 
each question. 
a. To determine whether a given set of data is a random sample from 

a defined population, one must 
analyze the data 
know the procedure used to select the sample 
use a mathematical proof 
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b. A simple random sample is a sample chosen in such a way that 
every unit in the population has a(n) chance of being se­
lected into the sample. 

equal 
unequal 
known 

c. In the random number table, Appendix Table Bl, about percent 
of numbers are 9 or 2. 

_ 2 0 
_ 1 0 

unknown 
d. Sampling with replacement from a large population gives virtually 

the same result as sampling without replacement. 
true 
false 

e. In a stratified random sample, the selection probability for each 
element within a stratum is 

equal 
unequal 
unknown 

f. A probability sample is a sample chosen in such a way that each 
possible sample has a(n) chance of being selected. 

equal 
unequal 
known 
unknown 

3.2. If a population has 2000 members in it, how would you use Table Bl to 
select a simple random sample of size 25? Assume that the 2000 mem­
bers in the population have been assigned numbers from 0 to 1999. 
Beginning with the first row in Table Bl, select the 25 subjects for the 
sample. 

3.3. In the following situations, do you consider the selected sample to be 
a simple random sample? Provide your reasoning for the answer. 
a. A college administrator wishes to investigate students' attitudes 

concerning the college's health services program. A 10 percent ran­
dom sample is to be selected by distributing questionnaires to stu­
dents whose student ID number ends with a 5. 

b. A medical researcher randomly selected five letters from the alpha­
bet and abstracted data from the charts of patients whose surnames 
start with any of those five letters. 

3.4. In NHANES II, 27 percent of the target sample did not undergo the 
health examination. In the examined sample, the weighted estimate of 
the percentage overweight was 25.7 percent [from Table 71 in NCHS 
(10)]. 
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a. Assuming that these data were collected via a SRS, what is the 
range for the percentage overweight in the target sample? 

b. Should any portion of the population be excluded in the measure­
ment of overweight? 

3.5. Discuss how sampling can be used in the following situations by 
defining: (1) the population, (2) the unit from which data will be 
obtained, (3) the unit to be used in sampling, and (4) the sample 
selection procedure. 
a. A student is interested in estimating the total number of words in 

this book. 
b. A city planner is interested in estimating the proportion of passen­

ger cars that have only one occupant during rush hours. 
c. A county public health officer is interested in estimating the pro­

portion of dogs that have been vaccinated against rabies. 
3.6. For each of the following situations discuss whether or not random 

sampling is used appropriately and why the use of random sampling 
is important. 
a. A doctor selected every 20th file from medical charts arranged al­

phabetically to estimate the percentage of patients who have not 
had any clinic visits during the past 24 months. 

b. A city public health veterinarian randomly selected 50 of 500 street 
corners and designated a resident at each corner to count the num­
ber of stray dogs for 1 week. He multiplied the number of stray 
dogs counted at the 50 corners by 10 as an estimate of the number 
of stray dogs in the city. 

c. A hospital administrator reported to the board of directors that his 
extensive conversations with two randomly selected technicians 
revealed no evidence of support for a walkout by hospital techni­
cians this year. 

3.7. An epidemiologist wishes to estimate the average length of hospital-
ization for cancer patients discharged from the hospitals in her region 
of the country. There are 500 hospitals, with the number of beds 
ranging from 30 to 1200 in the region. 
a. Discuss what difficulties the researcher might encounter in draw­

ing a simple random sample. 
b. Offer suggestions for drawing a random sample. 

3.8. Discuss the advantages and disadvantages of the following sampling 
frames for a survey of the immunization levels of preschool children. 
a. Telephone directory 
b. List of children in kindergarten 
c. List of registered voters 

3.9. Discuss the interpretation of the following surveys: 
a. A mail survey was conducted of 1000 U.S. executives and plant 



3 SAMPLING 

managers. After a month, 112 responses had been received. The 
report of the survey results stated that Japan, Germany, and South 
Korea were viewed as being better competitors than the United 
States in the world economy. Also, one-third of the managers did 
not believe their own operations were making competitive im­
provements. 

b. A weekly magazine reported that most American workers are satis­
fied with the amount of paid vacation they are allowed to take. This 
conclusion was based on the results of a telephone poll of 522 full-
time employees (margin of error is plus or minus 4 percent; "not 
sure" omitted). The question asked was, "Should you have more 
time off or is the amount of vacation you have fair?" 

More time off 33% 
Current amount fair 62% 
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Descriptive Tools 

I his chapter focuses on the summarization of data that were obtained 
from a simple random sampling process. Numerical and pictorial proce­
dures are useful in the summarization of data. Both sets of tools are intro­
duced in this chapter along with computer procedures based on the MINI-
TAB package. Appendix A contains the comparable statements for SAS 
and Stata, two other statistical software packages. 

I. USE OF THE COMPUTER: MINITAB 

A dietary data set selected from a larger study by McPherson et al. (1) is 
introduced here to illustrate the use of various descriptive tools. Students 
in grades 5 through 8 in two suburban Houston schools were requested to 
keep food records for three randomly selected days, two weekdays and 
one weekend day, during a 2-week period. Calories, protein, total fat, and 
vitamin A consumed on the first day are shown in Table 4.1 for the 33 boys 
who participated in the study. These data will be explored by using various 
descriptive tools. 
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Before considering the descriptive tools, we introduce MINITAB, a 
computer package for statistical analysis, which facilitates the description 
of the data. The MINITAB statements in each section provide examples, 
not detailed instructions, of the commands. In-depth instructions are avail­
able in the "MINITAB User Guide" (2) and the online MINITAB Help 
commands. The MINITAB Quick Reference Card (3) provides an overview 
of commands. The first step is to enter data into the MINITAB worksheet. 
Three ways of entering the data in Table 4.1 are shown in Boxes 4.1 and 
4.2. 

The first method of data entry uses the SET command to enter the values of calories 
into a column, denoted by the letter c followed by a number. We entered every­
thing to the right of the >'s in the following: 
MTB > s e t c l 
DATA> 1823 2007 1053 4322 1753 2685 2340 3532 2842 2074 1505 
DATA> 2330 2436 3076 1843 2301 2546 1292 3049 3277 2039 2000 
DATA> 1781 2748 2348 2773 2310 2594 1898 2400 2011 1645 1723 
DATA> end 
There is a space between each caloric value and a carriage return at the end of each 
of these lines. The word end in the last line indicates that all of the data for cl had 
been entered. It is useful to label the column by using the NAME command (lim­
ited to eight characters). 
MTB > name cl 'calories' 
The READ command is another way of entering data from the keyboard. It is useful 
when there are several columns of data to be entered, whereas the SET command is 
more appropriate when there are only a few columns of data to enter. The first 
three rows of the day of the week, grade, protein, total fat, and vitamin A data are 
entered to demonstrate the use of the READ command. The values of these five 
variables are stored in columns c2, c3, c4, c5, and c6. 
MTB > read c2-c6 
DATA> 3 8 83 63 4876 
DATA> 4 8 64 62 6220 
DATA> 4 8 23 33 964 
DATA> end 

3 ROWS READ 
It is useful to examine whether or not we have entered the data correctly. This can 
be done by looking at what we have entered or by using the PRINT command, 
which shows what values are in the columns. 
MTB > print c2-c6 
ROW C2 C3 C4 C5 C6 

1 3 8 83 63 4876 
2 4 8 64 62 6220 
3 4 8 23 33 964 



42 4 DESCRIPTIVE TOOLS 

The second value (row) in c6 is supposed to be 6202, not 6220. This can be corrected 
by reentering c6 or by using the LET command as shown now: 

MTB > l e t c6(2)= 6202 
In c6(2), the 2 in the parentheses indicates that we are referring to the second 
element (row) in c6 and we are setting its value to 6202. We can use the PRINT 
command to see if we have been successful in making the correction. 
MTB > print c6 
C6 4876 6202 964 

(The correction was made.) 

We can also read data from a file that has already been created instead of entering 
the data at the keyboard. This method also uses the READ command followed by 
the name of the file containing the data in single quotes and the column numbers in 
which the data will be stored. 
MTB > read 'bookch4.dat' cl-c6 

33 ROWS READ 
ROW Cl C2 C3 C4 
1 4876 1823 63 83 
2 6202 2007 62 64 
3 964 1053 33 23 
4 6761 4322 202 128 

The order of the data in these six columns is different from that shown in Table 4.1. 
That poses no problem as we simply label the columns to reflect their contents. 

MTB > name c l ' v i t A' c2 ' c a l o r i e s ' c3 ' t o t f a t ' 

MTB > name c4 ' p r o t e i n ' c5 "day' c6 ' g r a d e ' 

II. TABULAR AND GRAPHICAL PRESENTATION 

One- and two-way frequency tables and several types of figures—line 
graph, bar chart, histogram, stem-and-leaf plot, scatter plot, and box 
plot—that aid in the description of data are introduced in this and subse­
quent sections. 

A. Frequency Tables 

A one-way frequency table shows the results of the tabulation of the observa­
tions at each level of a variable. For example, Table 4.2 shows the frequen­
cies of the days of the week when the first measurements were made for 

C5 C6 
3 8 
4 8 
4 8 
5 8 
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Frequency of Days of the Week of the First Measurement 

Day 

1 (Sunday) 
2 (Monday) 
3 (Tuesday) 
4 (Wednesday) 
5 (Thursday) 
6 (Friday) 
7 (Saturday) 

Total 

Number of 

5 
5 
9 
3 
3 
4 
4 

33 

boys Percentage 

15.2 
15.2 
27.3 

9.1 
9.1 

12.1 
12.1 

100.1 

the 33 boys from Table 4.1. Over one-quarter of the observations were 
made on Tuesday followed by Sunday and Monday with five observations 
each. Note that the total number of boys is 33 as it must be. The sum of the 
percents should be 100.0, although a small allowance is made for round­
ing. Note also that the title of the table contains sufficient information to 
allow the reader to understand the table. 

Two-way frequency tables, formed by the crosstabulation of two variables, 
are usually more interesting than one-way tables because they show the 
relationship between the variables. The variables can be nominal, ordinal, 
or continuous. Usually when continuous variables are used, their values 
are grouped into categories. Table 4.3 shows the relationship between day 
of the week and caloric intake where caloric intake has been grouped into 
below 2500 calories and 2500 calories and above. The value of 2500 calories 
was chosen because it is approximately the average intake of boys ages 12 
to 15. Day 5, Thursday, appears to be different than the other days as it is 
the only day with a majority of its values greater than or equal to 2500 

Crosstabulation of Day of the Week and Caloric Intake with Row 
Percentages in Parentheses 

Day of week 

1 
2 
3 
4 
5 
6 
7 

<2500 

4 
3 
6 
2 
1 
3 
3 

Calories 

(80%) 
(60%) 
(67%) 
(67%) 
(33%) 
(75%) 
(75%) 

>2500 

1 
2 
3 
1 
2 
1 
1 

(20%) 
(40%) 
(33%) 
(33%) 
(67%) 
(25%) 
(25%) 

Total 

5 
5 
9 
3 
3 
4 
4 

Total 22 (67%) 11 (33%) 33 
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calories. However, there are so few observations for most of the levels of 
the day variable that the difference between day 5 and the other days may 
be due to sampling variation; that is, this difference may be an artifact of 
the sample that was selected. 

One way of reducing the number of levels with only a few observations 
is to combine levels. For example, a natural grouping is weekdays, combin­
ing Monday through Friday, and weekends, combining Saturday and Sun-

The frequencies in Table 4.2 can be easily obtained by using the following com­
mand. 
MTB > 
ROWS: 

1 
2 
3 
4 
5 
6 
7 
ALL 

table i 
C5 
COUNT 

5 
5 
9 
3 
3 
4 
4 
33 

Before creating Table 4.3, we require one additional step. In Table 4.3, we had 
categorized the calories into below 2500 and greater than or equal to 2500 calories. 
We use the CODE command in MINITAB to accomplish this recoding. 

MTB > code (1000:2499) 0 (2500:4500) 1 c2 c7 
This statement assigns a value of 0 in column c7 for boys who consumed from 1000 
to 2499 calories on their first recording day and a value of 1 in c7 for boys who 
consumed 2500 calories or more. The ranges shown are from 1000 to 2499 and from 
2500 to 4500 because no boy had a value less than 1000 or greater than 4500. The 
caloric values come from column c2 and the recoded values are stored in c7. Now 
the two-way table can be created. 
MTB > 
ROWS: 

1 
2 
3 
4 
5 
6 
7 
ALL 
CELL 

tabi 
C5 

.e c5 c7 
COLUMNS : 

0 
4 
3 
6 
2 
1 
3 
3 
22 

CONTENTS — 

1 
1 
2 
3 
1 
2 
1 
1 
11 

C7 
ALL 
5 
5 
9 
3 
3 
4 
4 
33 

COUNT 
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Health Expenditures as a Percentage of Gross Domestic Product 
over Time 

Year 

1960 
1965 
1970 
1975 
1980 
1985 
1987 

Great Britain 

3.9 
4.1 
4.5 
5.5 
5.8 
6.0 
6.1 

United States 

5.2 
6.0 
7.4 
8.4 
9.2 

10.6 
11.2 

West Germany 

4.7 
5.1 
5.5 
7.8 
7.9 
8.2 
8.2 

Source: Table 104 in "Health, United States, 1990" (4). 

day. There are more observations for the weekday and weekend categories 
and, if there are differences now, they are more likely to be real. In forming 
the groups, we should not allow the data to guide us. We should use our 
knowledge of the subject matter, and not use the data, in selecting the 
categorization. If we use the data to guide us, it is easy to obtain apparent 
differences that are not real but only artifacts of the data. Box 4.3 shows 
how to create tables from the data we already entered. 

Other data besides frequencies can be presented in tabular format. For 
example, Table 4.4 shows the health expenditures of three nations as a 
percentage of gross domestic product (GDP) over time. Health expendi­
tures as a percentage of GDP are increasing much more rapidly in the 
United States than in either Great Britain or West Germany. 

A line graph shows the value of a variable over time. The values of the 
variable are given on the vertical axis; the horizontal axis is the time vari­
able. Figure 4.1 shows three line graphs for the data shown in Table 4.4. 

These line graphs also show the rapid increase in health expenditures 
in the United States compared with those of two other countries with 
national health plans. The trends are immediately clear in the line graphs, 
whereas one has to study Table 4.4 before the same trends are recognized. 

It is possible to give different impressions about the data by shortening 
or lengthening the horizontal and vertical axes or by including only a 
portion of an axis. In creating and studying line graphs, one must be aware 
of the scales used for the horizontal and vertical axes. For example, with 
numbers that are extremely variable over time, a logarithmic transforma­
tion (discussed later) of the variable on the vertical axis is frequently used 
to allow the line graph to fit on a page. 

It is also possible to represent different variables in the same figure as 
Figure 4.2 shows. The right vertical axis is used for lead emissions and the 
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Line graph: Health expenditures as percentage of GDP. M, Great Britain; + , United States; *, 
West Germany. Source: Table 104 in "Health, United States, 1990" (4). 

left vertical axis for sulfur oxides emissions. Both pollutants are decreasing, 
but the decrease in lead emissions is quite dramatic, from approximately 
200 x 103 metric tons in 1970 to only about 8 x 103 metric tons in 1988. 
During this same period, sulfur oxides emissions decreased from about 
28 x 106 to about 21 x 106 metric tons. The decrease in the lead emissions is 
partially related to the use of unleaded gasoline, which was introduced 
during the 1970s. 

Box 4.4 shows how to create plots and Box 4.5 shows the result. 
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Line graphs of sulfur oxides and lead emissions in the United States. 
lead. Source: Table 64 in "Health, United States, 1990" (4). 

Sulfur oxides; +, 



MINITAB has a number of commands for creating plots. For example, the com­
mand PLOT is used to create a single line graph, whereas the command MPLOT 
can be used to create multiple line graphs in a figure. MINITAB also has high-
resolution graphics available for a number of its plotting commands. To invoke the 
high-resolution graphics, add the letter G in front of the command, for example, 
GPLOT or GMPLOT instead of PLOT or MPLOT. When PLOT or MPLOT is 
used, the points are shown, but no connecting lines are drawn. When GPLOT or 
GMPLOT is used, MINITAB draws the line(s) connecting the points. 

The following shows the use of MINITAB in the creation of the line graphs in 
Figure 4.1. The first group of statements shows the data entry. The values of the 
percentage of GDP are entered in columns c8 to clO; ell contains the years. The 
second group of statements creates three lines in a single graph,' using the MPLOT 
command. The commands of height and width allow the user to indicate how 
many lines should be used for the figure (height) and how many columns wide the 
figure should be (width). The MPLOT command ends with a semicolon, indicating 
that a subcommand will follow. Several subcommands, closed by semicolons, are 
used to provide details about what is contained in the figure. There is a period at 
the end of the last subcommand; the period tells MINITAB that all the information 
for the command has now been entered. 
MTB > set c8 
DATA> 3.9 4.1 4.5 5.5 5.8 6.0 6.1 
DATA> set c9 
DATA> 5.2 6.0 7.4 8.4 9.2 10.6 11.2 
DATA> set clO 
DATA> 4.7 5.1 5.5 7.8 7.9 8.2 8.2 
DATA> set ell 
DATA> 60 65 70 75 80 85 87 
DATA> end 
MTB > height 35 
MTB > width 55 
MTB > mplot c8 ell, c9 ell, clO ell; 
SUBO t i t l e = ' H e a l t h Expendi tures as % of GDP. over Time' ; 
SUBO footnote='A=Great B r i t , B=U.S. and C=West Germ'; 
SUBO y l a b e l = ' % of GDP'; 
SUBO x l a b e l = ' Y e a r ' . 

The plot is shown in Box 4.5. In this plot the points must be connected by hand to 
produce the line graphs. The following MINITAB statements create a high-resolu­
tion graph with three lines connecting the points in the previous graph. 
MTB> gmplot c8 ell, c9 ell, clO ell; 
SUBO lines c8 ell; 
SUBO lines c9 ell; 
SUBO lines clO ell; 
SUBO footnote 'A=Great Brit, B=U.S., and C=West Germ'; 
SUBO ylabel '% of GDP' ; 
SUBO xlabel 'Year' . 
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Health Expenditures as % of GDP over Time (A = Great Britain, B = United States, 
C = West Germany) 
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C. Bar Charts 

A bar chart provides a picture of data that could also often be reasonably 
presented in a tabular format. Bar charts can be created for nominal, ordi­
nal, or continuous data, although they are most frequently used with nom­
inal data. If used with continuous data, the chart could be called a histogram 
(see below) instead of a bar chart. The bar chart can show the number or 
proportion of people by levels of a nominal or ordinal variable. For exam­
ple, the numbers of people enrolled in health maintenance organizations 
(HMOs) in the United States by year (ordinal variable) are shown in Figure 
4.3. 

This bar chart makes it very clear that there has been explosive growth 
in HMO enrollment, particularly between 1982 and 1986. The actual enroll­
ments by year are 7.45, 10.81, 25.73, and 33.03 million. The numbers also 
document this growth, but it is more dramatic in the visual presentation. 

In bar charts, the length of the bar shows the number of observations 
or the value of the variable of interest for the levels of the nominal or 
ordinal variable. The widths of the bar are the same for all the levels of the 
nominal or ordinal variable; the width has no meaning. The levels of the 
nominal or ordinal variable are usually separated by several spaces which 
makes it easier to view the data. The bars are usually presented vertically 
but they could also be horizontal. 

More complicated data can also be presented in bar chart format. Fig­
ure 4.4 shows death rates for selected causes for persons 45 to 64 years of 
age by race/ethnicity (the nominal variable) in the United States in 1988. 
This bar chart, a segmented bar chart, presents a large amount of informa­
tion that is quickly understandable. African-Americans have the highest 
mortality rates in this age group and they also have the highest rates of 
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EMI Bar chart of the number of persons (in millions) enrolled in health maintenance organizations 
by year. Source: Table 126 in "Health, United States, 1990" (4). 
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Mortality rates for persons aged 45 to 64 for selected causes by race/ethnicity in the United 
States in 1988.11 111 I, Injuries; E i, cerebrovascular disease;^β^βι, heart disease;κ// / ι , 
malignant neop lasms ;mm, all other causes. Source: Figure 9 in "Health, United States, 
1990" (4). 

mortality from heart disease and malignant neoplasms. Asians and Pacific 
Islanders have the lowest mortality rates for this age group. 

Figure 4.5, a three-dimensional bar chart, shows infant mortality rates 
by race and year for Harris County, Texas, during the period 1980-1986. 
Levels of one nominal variable (race) and one ordinal variable (year) are 
used in the creation of this bar chart. From this figure it is clear that the 

1980 1981 1982 1983 1984 1985 1986 

Infant mortality rates by race for Harris County, Texas, by year. Source: Figure B-19 in Harris 
County Health Department (5). 
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infant mortality rates for whites and Hispanics are decreasing over time, 
whereas the rate for African-Americans is remaining almost constant. It is 
also easy to see that the rate for African-Americans is considerably higher 
than that of the other two groups. 

These last two figures demonstrate that bar charts can be quite effective 
in presenting information on several variables. 

As was mentioned earlier, a histogram is similar to a bar chart but is used 
with interval/ratio variables. The values of the variable are grouped into 
intervals which are usually of equal width. Rectangles are drawn above 
each interval and the area of the rectangle represents the number of obser­
vations in that interval. If all the intervals are of equal width, then the 
height of the interval, as well as its area, represents the frequency of the 
interval. In contrast to bar charts, there are no spaces between the rectan­
gles unless there are no observations in some interval. 

We demonstrate the creation of a histogram for the data in Table 4.5 
which contains systolic blood pressure values that could be seen in typical 
12-year-old U.S. boys. 

Before creating the histogram, however, we create a one-way table 
which will facilitate the creation of the histogram. Table 4.6 gives the fre­
quency of each blood pressure value. Note that a large proportion of the 
blood pressure values appear to end in zero: 43 of the 100 observations end 
in zero. All the values are also even numbers, with the exception of 11 
values that end with a 5. This suggests that the persons who recorded the 
blood pressure values may have had a preference for numbers ending in 0 
or 5. This type of finding is not unusual in blood pressure studies or in the 
reporting of age, as was seen in Chapter 2. In spite of this possible digit 

Systolic Blood Pressure Cmm Hg) Values for 100 Typical 12-Year-Old 
U.S. Boys 

130 
112 
120 
130 
110 
80 
105 
116 

100 
110 
118 
120 
126 
102 
80 
108 

125 
110 
84 
108 
95 
116 
116 
108 

92 
100 
115 
104 
100 
102 
106 
100 

98 
128 
102 
106 
100 
90 
100 
105 

108 
122 
100 
114 
94 
116 
95 
110 

104 
110 
112 
96 
102 
110 
105 
90 

100 
120 
104 
112 
95 
128 
90 
95 

100 
108 
100 
114 
140 
140 
108 
125 

102 
94 
120 
100 
124 
90 
88 

120 
130 
110 
112 
98 
104 
105 

110 
110 
110 
80 
110 
130 
112 

100 
104 
106 
100 
90 
104 
134 
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preference, we are going to create some histograms based on these values. 
The histogram provides a visual summarization of the values shown in 
Tables 4.5 and 4.6. 

Three questions must be answered before we can draw the histogram 
for these data: 

1. How many intervals should there be? 
2. How large should the intervals be? 
3. Where should the intervals be located? 

Tarter and Kronmal (6) discuss these three questions in some depth. There 
are no hard and fast answers to these questions; only guidelines are pro­
vided. 

The number of intervals is related to the number of observations. Gen­
erally 5 to 15 intervals would be used, with a smaller number of intervals 
used for smaller sample sizes. There is a trade-off between many small 
intervals, which allow for greater detail with few observations in any cate­
gory, and a few large intervals, with little detail and many observations in 
the categories. 

Once the number of intervals, call this number k, is decided, the size of 
the intervals can be determined. One way of choosing the interval size is to 
calculate the difference between the maximum and minimum observed 
values and divide this difference by k - 1. This is a reasonable approach 
unless there are some relatively large or small values. In this case, exclude 
these unusual values from the difference calculation. This approach will 
yield larger first and last intervals but the other intervals will be the same 
size. 

The location of the intervals is also arbitrary. Most researchers either 
begin the interval with a round number or have the midpoint of the inter­
val be a round number. 

Frequency of Individual Systolic Blood Pressures Cmm Hg] 

Value 

80 
84 
88 
90 
92 
94 
95 
96 
98 
100 

Frequency 

3 
1 
1 
5 
1 
2 
4 
1 
2 
13 

Value 

102 
104 
105 
106 
108 
110 
112 
114 
115 
116 

Frequency 

5 
6 
4 
3 
6 
11 
5 
2 
1 
4 

Value 

118 
120 
122 
124 
125 
126 
128 
130 
134 
140 

Frequency 

1 
5 
1 
1 
2 
1 
2 
4 
1 
2 
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Let us create several histograms for these 100 systolic blood pressure 
values to see the effect of our choices. First we try 11 intervals. As the 
maximum and minimum observed values are 140 and 80, respectively, the 
difference is 60. Dividing 60 by 10 yields 6 as the interval size. As in Figure 
4.6, we could choose the lower boundary of the first interval to be the 
minimum observed value (80 mm Hg), a most reasonable choice for these 
data, or the minimum value could be located in the first interval as in 
Figure 4.7. These two figures look different although they have the same 
number of intervals and the intervals are of the same size. The starting 
points of the first interval cause the difference in appearance. 

Figure 4.8 shows the effect of using 10 intervals instead of 11. An 
interval of size 7 (60 divided by 9 is approximately 7) and a starting value of 
73.5 are used. 

The histograms in Figures 4.6, 4.7, and 4.8 use the same data but give 
different impressions about the data. We see that the shapes of the histo­
grams are dissimilar because of the decisions we made; however, the histo­
grams say basically the same thing about the distribution of the sample 
data even though their shapes are different. All three histograms show that 
the blood pressures are tightly clustered, with most of the values between 
approximately 98 and 114, and that there are a few small values around 80 
and a few large values around 140. The lesson of these histograms is not to 
become enamored of the shape of the histogram but to look at what the 
histogram is saying about the data. 
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Histogram of 100 systolic blood pressure values using 11 intervals of size 6 starting at 80. 
Interval boundaries are at the bottom of the figure. 



4 DESCRIPTIVE TOOLS 

25 

o 
m 

E 

20 

15 

10 

24 24 

12 

75 81 87 93 99 105 111 117 123 

Systolic Blood Pressure (mm Hg) 
129 135 141 

Histogram of 100 systolic blood pressure values using 11 intervals of size 6 starting at 75. 
Interval boundaries are at the bottom of the figure. 
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Histogram of 100 systolic blood pressure values using 10 intervals of size 7 starting at 73.5. 
Interval midpoints are at the bottom of the figure. 



II. TABULAR AND GRAPHICAL PRESENTATION 55 

O 
CÛ 

Φ 
E 
z 

25 

20 

15 

10 

16 

Φ 
8 

24 24 

12 

75 81 87 99 105 111 117 123 129 135 141 
Systolic Blood Pressure (mm Hg) 

An incorrect histogram of the 100 systolic blood pressures. Interval boundaries are at the 
bottom of the figure. 
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Q A correct histogram of the 100 systolic blood pressures. Interval boundaries are at the bottom 
of the figure. 
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The data in Table 4.5 are entered in c8, although not shown here. The following 
shows the MINITAB creation of a histogram shown in Figure 4.8. 

MTB > h i s t c8; 
SUBO increment 7 
SUBO s t a r t 

Histogram 
Midpoint 

77.00 
84.00 
91.00 
98.00 

105.00 
112.00 
119.00 
126.00 
133.00 
140.00 

of 
7 7 . 
C8 

Sount 
3 
1 
9 

20 
24 
19 
11 

6 
5 
2 

N = 100 

*** 
* 
* # * * * * * * * 
M r * * * * * * * * * * * * * * * * * ** 

************************ 
******************* 
*********** 
****** 
***** 
** 

MINITAB plots histograms sideways in contrast to the conventional manner of 
presentation. As is demonstrated in the HISTOGRAM (abbreviated as HIST) state­
ment, there are optional subcommands that can be used to customize the histo­
gram. The size of the interval can be specified; for example, it is of size 7 (because 
INCREMENT was set to 7) in this example. As an additional instruction is still to 
follow, the INCREMENT 7 subcommand is followed by a semicolon. The value of 
the first interval's midpoint is next specified in the START subcommand and it is 
set at 77. Because there are no more subcommands that we wish to specify, START 
77 is followed by a period, indicating the end of the HISTOGRAM command. 

The first column in the output gives the midpoint of the interval and is followed by 
a column showing the number of observations in the interval. The next several 
columns show the histogram using asterisks to represent each value in the interval. 
When we use GHIST instead of HIST, a high-resolution graph can be obtained as 
shown. 

C8 N> 100 

Midpoint 
77 
84 
91 
98 

105 
112 
119 
126 
133 
140 

Count 
3 
1 
9 

20 
24 
19 
11 
6 
5 
2 

0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 
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Before leaving histograms, we must examine unequal size intervals 
and how to deal with them. Suppose that in Figure 4.7 the third and fourth 
intervals were combined, that is, the third interval now extends from 87 to 
99 mm Hg, and all the other intervals remained the same. As was men­
tioned above, the area of the rectangle reflects the frequency of the inter­
val. Therefore, because this interval is twice as wide as the other intervals, 
to have the appropriate area within the rectangle it is necessary to divide its 
height by 2. Figure 4.9 is incorrect because it fails to adjust for the greater 
width of the third interval. Figure 4.10 is more appropriate than Figure 4.9 
because it has taken the greater width into account. Box 4.6 shows how 
MINITAB is used to create the histograms for the systolic blood pressure 
data. 

E. Stem-and-Leaf Plot 

The stem-and-leaf plot looks similar to a histogram except that the stem-and-
leaf plot shows the data values instead of using asterisks or bars to repre­
sent the height of an interval. In the blood pressure example, the stem 
could be the tens units and the leaves then would be the units. We use 
MINITAB to create a stem-and-leaf plot for the systolic blood pressure data 
as shown in Box 4.7. 

MTB > stem c8 
Stem-and-leaf of C8 N = 100 
Leaf Unit = 1.0 

4 8 0004 
5 8 8 
13 9 00000244 
20 9 5555688 
44 10 000000000000022222444444 
(13) 10 5555666888888 
43 11 000000000002222244 
25 11 566668 
19 12 0000024 
12 12 55688 
7 13 00004 
2 13 
2 14 00 
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This looks like a histogram except that we now know the values of all 
the observations. The first column in this output shows a cumulative count 
of all the observations from the top and from the bottom to the interval in 
which the median value is found. The median is the value such that 50 
percent of the values are less than it and 50 percent are greater than it. The 
number of observations in the interval containing the median is shown in 
parentheses. The second column is the stem and the subsequent columns 
contain the leaves. For example, in the first row we read a stem of 8 and 
leaves of 0, 0, 0, and 4. As the stem represents units of 10 in this case and 
the leaf unit is 1, these four numbers are 80, 80, 80, and 84. The second row 
has the same stem and a leaf of 8 and, thus, represents a blood pressure 
value of 88. Note that the first number in the second row is 5, which is the 
cumulative count of observations in the first two rows. In the third row the 
stem is 9 and there are 8 leaves. These blood pressures are 90, 90, 90, 90, 
90, 92, 94, and 94. Because there are 8 values in the third row, the cumula­
tive count is now 13. As the interval from 105 to 109 has 44 observations 
less than it, 43 observations greater than it, and 13 observations in it, the 
median is in this interval and its value is 106. 

Note in Box 4.7 that the interval size of 5 units was used for the 
pressure values. We can choose the interval size as shown in Box 4.8. This 
stem-and-leaf plot still shows the same values as the first stem-and-leaf 
plot but they are grouped differently. 

Another characteristic of the data that can be seen from histograms or 
stem-and-leaf plots is whether or not the data are symmetrically distrib­
uted. Data are symmetrically distributed when the half of the distribution 
above the median matches the distribution below the median. Data could 
also come from a skewed or asymmetric distribution. Data from a skewed 

We can choose the interval size by using the subcommand INCREMENT with the 
STEM command. An inverval of size 10 is used below. 

MTB > s tem c 8 ; 
SUBO i n c r e m e n t 10 . 

S t e m - a n d - l e a f of C8 N = 100 
Leaf U n i t = 1 . 0 

5 8 00048 
20 9 000002445555688 

(37) 10 0000000000000222224444445555666888888 
43 11 000000000002222244566668 
19 12 000002455688 

7 13 00004 
2 14 00 
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distribution typically have extreme values in one end of the distribution 
but no extreme values in the other end of the distribution. When there is a 
long tail to the right, or to the bottom if the histogram is presented side­
ways, data are said to be positively skewed. If there are some extremely small 
values without corresponding extremely large values, the distribution is 
said to be negatively skewed. 

For the blood pressure values shown in MINITAB Box 4.7, the sample 
data appear to be slightly asymmetric as the data above the median are not 
grouped as tightly as those below the median. 

The stem-and-leaf plot in Box 4.9 uses the vitamin A values from Table 
4.1, data that are positively skewed. MINITAB tells us that the leaf unit is 
100 which means that the stem unit is 1000. Hence the two values in the 
first row represent one observation in the 800s and one value in the 900s. 
From Table 4.1 we see the actual values are 820 and 964. The single obser­
vation in the fourth row has a value of three thousand seven hundred and 
something. The actual value is 3747. The median is in the 4000s and there 
are observations as large as 12,000. The distance from the median to the 
larger values is much greater than that to the smallest values. These data 
have a long tail to the right, that is, the vitamin A data are positively 
skewed. This statement is more informative than simply saying that the 
data are asymmetric. 

The stem-and-leaf plot works best with relatively small sample sizes. 
With large sample sizes, having the exact numerical value of every obser­
vation can be overwhelming. 

MTB > stem cl 
Stem-and-leaf of Cl N = 33 
Leaf Unit = 100 

2 
7 
11 
12 
(6) 
15 
12 
9 
9 
5 
3 
2 
2 

0 89 
1 34789 
2 2266 
3 7 
4 223458 
5 278 
6 277 
7 
8 0566 
9 47 
10 4 
11 
12 48 



60 4 DESCRIPTIVE TOOLS 

F. Scatter Plot 
The two-dimensional scatter plot is analogous to the two-way frequency 
table in that it facilitates the examination of the relationship between two 
variables. Unlike the two-way table, the two-dimensional scatter plot is 
most effectively used when the variables are continuous. Just as it is possi­
ble to have higher-dimensional frequency tables, it is possible to have 
higher-dimensional scatter plots, but they become more difficult to com­
prehend. 

One way of pictorially examining the relationship between grams of 
protein and grams of total fat shown in Table 4.1 is to use a scatter plot. It is 
easy to create two-dimensional scatter plots with MINITAB as can be seen 
in Box 4.10. c3 is the column containing the total fat values and c4 contains 
the protein values. Each asterisk represents a boy's protein and total fat 
values. For example, the asterisk in the lower left-hand corner of the plot 
represents the boy in Table 4.1 whose diet included 23 grams (g) of protein 
and 33 g of total fat. The asterisk in the upper right-hand corner represents 
the boy whose food intake contained 172 g of protein and 227 g of total fat. 
Numerical values in the plot represent the frequency of the point. For 
example, the leftmost 2 in the plot refers to two boys whose diets contained 
about 70 g of protein and 80 g of total fat. In this case the exact values were 
69 and 84 for one of the boys and 70 and 78 for the other boy. 

The plot shows that there is a strong tendency for boys with large 
protein values to also have large values of total fat and that small values of 

MTB > plot c3 c4 

210+ 

C3 

140+ 

70+ * 
- * - * * * 

+ + + + + +C4 
30 60 90 120 150 180 

* 
2** 
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protein generally correspond with small values of total fat. The relation­
ship is not perfect as can be seen from the point in the lower right-hand 
corner which corresponds to a boy with a large protein value (157 g) and a 
small total fat value (73 g). It is much easier to see this tendency for a 
positive association between protein and total fat from this scatter plot than 
by looking at the values in Table 4.1. The association is said to be positive 
because boys with large values of protein also tend to have large values of 
total fat and boys with small values of protein also tend to have small total 
fat values. When there is a positive association, the points in the plot tend 
to larger values on the vertical axis as we move from the left to the right in 
the graph. The association would be negative if boys with large values of 
one variable tended to have small values of the other variable and con­
versely. 

Scatter plots are most effective for small to moderate sample sizes. 
When there are thousands of observations, it is often difficult to obtain a 
sense of the relationship. In these cases, it may be useful to calculate the 
sample average of the variable on the vertical axis (C3 in the scatter plot 
above) separately for each value of the variable on the horizontal axis (C4 
above). If there are 20 distinct values of the variable on the horizontal axis, 
call it X, there would be 20 distinct sample means calculated for the vari­
able on the vertical axis, call it Y. Then we plot the sample means of Y 
versus the values of X. This approach can aid the visualization of the 
relationship between Y and X even though it does not use all the available 
information. 

This completes the presentation of the pictorial tools in common use 
with the exception of the box plot, which is shown later in this chapter. The 
following material introduces the more frequently used statistics that aid 
us in describing and summarizing data. 

III. MEASURES OF CENTRAL TENDENCY 

Simple descriptive statistics can be useful in data editing as well as in 
aiding our understanding of the data. The minimum and the maximum 
values of a variable are useful statistics when editing the data. Are the 
observed minimum and maximum observed values reasonable or even 
possible? For the boys shown in Table 4.1, the minimum intake on the first 
day is 1053 calories and the maximum is 4322 calories. These values are 
somewhat unusual given that the average number of calories consumed by 
12- to 15-year-old boys is about 2500, but they are not impossible. The boy 
whose intake was 1053 calories would not show much growth if he were to 
continue with this level of intake, but we all have unusual days. We con­
sider other ways of identifying unusual values in later sections. 
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A. Mean, Median, and Mode 

In terms of describing data, people usually think of the typical or average 
value. For example, the average caloric intake for boys was useful in deter­
mining whether or not the maximum and minimum values were reason­
able. There are three frequently used measures of central tendency: the 
mean, the median, and the mode. 

The sample mean (x) is the sum of all the observed values of a variable 
divided by the number of observations. The median, previously mentioned, 
is defined to be the middle value, that is, the value such that 50 percent of 
the observed values fall above it and 50 percent fall below it. It can also be 
called the 50th percentile, where the ith percentile represents a value such 
that / percent of the observations are less than it. The mode is the most 
frequently occurring value. 

Let us calculate these statistics for the caloric intake variable. The sam­
ple mean is the arithmetic average, that is, 

1823 + 2007 + 1053 + . . . + 1723 _ 76,356 _ . _ . 0 
33 - ~ ^ 3 ~ - 2 3 1 3 · 8 

We can also represent the mean succintly using symbols. We use X as the 
symbol for the variable under study, in this case, the caloric intake of the 
boys based on their first food record. We use x, with subscripts to distin­
guish the boys' caloric intake from one another, to represent the observed 
value of the variable. For example, the first boy's intake is represented by 
X\ and its value is 1823 calories. The second boy's intake is x2 and his intake 
is 2007 calories. In the same way, x3 is 1053, . . . , and x33 is 1723. Then the 
sum of the caloric intakes can be represented by 

33 

Xl + X2 + ' ' ' + X33 = Σ ' * ί · 
! = 1 

The symbol Σ means summation. The value of i beneath Σ gives the 
subscript of the first x to be included in the summation process. The value 
above Σ gives the subscript of the last x to be included in the summation. 
The value of i increases in steps of one from the beginning value to the 
ending value. Thus, all the observations with subscripts ranging from the 
beginning value to the ending value are included in the sum. The formula 
for the sample mean variable, x (pronounced x-bar), is 

n 

X = 

n 
In this case, the sample mean, x, is 2313.8. 

If we have the data for the entire population, not just for a sample of 
observations from the population, the mean is denoted by the Greek letter 
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μ (pronounced mu). Values that come from samples are statistics and val­
ues that come from the population are parameters. For example, the sample 
statistic x is an estimator of the population parameter μ,. The population 
mean is defined as 

N 

Σ χί 

where N is the population size. 
In calculating the median, it is useful to have the data sorted from the 

lowest to the highest value as that assists in finding the middle value. Table 
4.7 shows the sorted caloric intake values for the 33 boys. For a sample of 
size n, the sample median is the value such that half (n/2) of the sample 
values are less than it and nil are greater than it. When the sample size is 
odd, the sample median is the [(n + l)/2]th largest value. For a sample of 
size 33, the median is thus the 17th largest value. The value 17 comes from 
(33 + l)/2. When the sample size is even, there is no observed sample value 
such that one-half of the sample falls below it and one-half falls above it. By 
convention, we use the average of the two middle sample values as the 
median, that is, the average of the (n/2)th and [(n/2) + l]th largest values. 
For these data, the sample median is 2310, the 17th largest value. 

The mode is the most frequently occurring value. When all the values 
occur the same number of times, we usually say that there is no unique 
mode. When two values occur the same number of times and more than 
any other values, the distribution is said to be bimodal. If three values 
occur the same number of times and more than any other value, the distri­
bution could be called trimodal. Usually one would not go beyond trimodal 
in labeling a distribution. 

For these data, none of the values occurs more than once and hence 
there is no unique modal value. This result is not unexpected when dealing 

Sorted Caloric Intakes for 33 Boys 

1053 
1292 
1505 
1645 
1723 
1753 
1781 
1823 
1843 
1898 
2000 

2007 
2011 
2039 
2074 
2301 
2310 
2330 
2340 
2348 
2400 
2436 

2546 
2594 
2685 
2748 
2773 
2842 
3049 
3076 
3277 
3532 
4322 
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with continuous data as it is unlikely that two people have exactly the same 
values of a continuous variable. 

B. Use of the Measures of Central Tendency 

Now that we understand how these three measures of central tendency are 
defined and found, when are they used? Note that in calculating the mean, 
we summed the observations. Hence we can only calculate a mean when 
we can perform arithmetic operations on the data. For example, we cannot 
calculate the mean day for these data because we cannot perform meaning­
ful arithmetic operations on nominal data. Therefore, the mean should be 
used only when we are working with continuous data, although some­
times we find it being used with ordinal data as well. The median does not 
require us to sum observations, and thus it can be used with continuous 
and ordinal data, but it also cannot be used with nominal data. The mode 
can be used with all types of data because it simply says which level of the 
variable occurs most frequently. Day 3, Tuesday, is the modal value for the 
days of the week as it occurs 9 times, more than any other day. 

The mean is affected by extreme values, whereas the median is not. 
Hence, if we are studying a variable such as income which has some 
extremely large values, that is, it is is positively skewed, the mean will 
reflect these large values and move away from the center of the data. The 
median is unaffected, and it remains at the center of the data. For data that 
are symmetrically distributed or approximately so, the mean and median 
will be the same or very close to each other. The calories and vitamin A 
variables demonstrate situations in which the mean is close to the center 
(calories) as well as when it has moved away from the center (vitamin A). 
As was mentioned above, the caloric intake ranged from 1053 to 4322 for 
the 33 observations. The sample mean was 2313.8 and the sample median 
was 2310. These values are very similar as there were no extremely high 
caloric intakes. The corresponding observations for vitamin A show some 
relatively high intakes. Two values are above 12,000 international units 
(IU), and these values have caused the mean of 5326.3 IU to be larger than 
the median of 4535 IU. The median might be the more appropriate measure 
of central tendency in this case because it is unaffected by the two relatively 
large values. 

C. The Geometric Mean 

Another measure of central tendency is used when the numbers reflect 
population counts that are extremely variable. For example, in a laboratory 
setting, the growth in the number of bacteria per area is examined over 
time. The number of microbes per area does not change by the same 
amount from one period to the next, but the change is proportional to the 
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number of microbes that were present during the previous period. An­
other way of saying this is that the growth is multiplicative, not additive. 
The areas under study may also have used different media, and the mi­
crobes may not do well in some of the media, whereas in other media the 
growth is explosive. Hence we may have counts in the hundred or thou­
sands for some cultures and in the millions or billions for other cultures. 

The arithmetic mean would not be close to the center of the values in 
this situation because of the effect of the extremely large values. The me­
dian could be used in this situation; however, another measure that is used 
in these situations is the geometric mean. The sample geometric mean for n 
observations is the nth root of the product of the values, that is, 

Yz = V*i * X2 * · · · *Xn 

Note that because the nth root is used in its calculation, the geometric 
mean cannot be used when a value is negative or zero. 

This definition of the geometric mean is completely analogous to the 
definition of the arithmetic mean. The arithmetic mean is the value such 
that if we add it to itself n - 1 times, it equals the sum of all the observa­
tions. It is found by summing the observations and then dividing the sum 
by n, the sample size. Because in the situation above we are dealing with 
data resulting from a multiplicative process, our measure of central ten­
dency should reflect this. The geometric mean is the value such that if we 
multiply it by itself n — 1 times, it equals the product of all the observa­
tions. It is found by multiplying the observations and then taking the nth 
root of the product. 

When n is 2, there is little difficulty in finding the geometric mean as 
the product of the two observed values is usually not large and we know 
that the second root is the square root. For larger values of n, however, the 
product of the observed values may become very large and we may lose 
some accuracy in calculating it, even when we use a computer. Fortunately 
there is another way of calculating the product of the observations that 
does not cause any accuracy to be lost. 

We can transform the observations to a logarithmic scale. Use of the 
logarithmic scale provides for accurate calculation of the geometric mean. 
After finding the logarithm of the geometric mean, we transform the value 
back to the original scale and have the value of the geometric mean. In this 
section, we use logarithms to the base 10 although other bases could be 
used. 

To understand what we mean by logarithm, consider some positive 
number y. The base 10 logarithm of y is x where x satisfies the relation that 
10* equals y. For example, the base 10 logarithm of 10, often written as 
logio(10), is 1 because 101 is 10. The value of logi0(100) is 2 because 102 

equals 100. The value of logi0(1000) is 3 because 103, equal to 10 * 10 * 10, is 
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1000. Therefore, base 10 logarithms of numbers between 10 and 100 will be 
between 1 and 2, base 10 logarithms of numbers between 100 and 1000 will 
be between 2 and 3, and so on. There are tables as well as keys on calcula­
tors and commands in MINITAB that can be used to find logarithms of 
positive numbers. Figure 4.11 shows a plot of base 10 logarithms of posi­
tive numbers up to 40. 

The logarithms have negative values for numbers between 0 and 1. 
For example, using the definition of logarithms, the base 10 logarithm of 
0.1 (= 1/10 = 10"1) is - 1 . 

A key property of the logarithmic transformation is that the level of the 
mathematical operation performed on the arithmetic scale is reduced a 
level when the logarithmic scale is used. For example, a product on the 
arithmetic scale becomes a sum on the logarithmic scale. Therefore the 
logarithm of the product of n values is 

n 

log(X! * X2 * ' ' * * Xn) = Σ l og */■ 

In addition, taking the nth root of a product on the arithmetic scale be­
comes division by n on the logarithmic scale, that is, finding the mean 
logarithm. In symbols, this is 

n 

Σ l ogio Xi 
V x i * X2 * · · · * Xn = — = lOglO X· 

— I 1 1 1 1 h 

0.0 8.0 16.0 24.0 32.0 40.0 

Positive Numbers 

Plot of base 10 logarithms of positive numbers up to 40. 
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We now have the logarithm of the geometric mean, and to obtain the 
geometric mean, we must take the antilogarithm of the mean logarithm, 
that is, 

Y% = antilog (log10 x) 

Suppose that the number of microbes observed from six different areas 
are 100, 100, 1000, 1000, 10,000, and 1,000,000. The geometric mean is 
found by taking the logarithm of each observation and then finding the 
mean logarithm. The corresponding base 10 logarithms are 2, 2, 3, 3, 4, and 
6 and their mean is 3.33. The geometric mean is the antilog of 3.33, which is 
2154.43. The arithmetic mean of these observations is 168,700, a value 
much larger than the geometric mean and also much larger than five of the 
six values. The usual mean does not provide a good measure of central 
tendency in this case. The value of the median is the average of the two 
middle values, 1000 and 1000, giving a median of 1000 which is of the same 
order of magnitude as the geometric mean. 

The geometric mean has also been used in the estimation of population 
counts, for example, of mosquitos, through the use of capture procedures 
over several time points or areas. These counts can be quite variable by 
time or area; hence, the geometric mean is the preferred measure of central 
tendency in this situation too. 

These are the more common measures of central tendency employed in 
the description of data. The value of the central tendency does not com­
pletely describe the data, however. For example, consider the nine obser­
vations of calories made on day 3: 

1823 2685 2842 2330 2301 1781 2773 2310 1723. 

Suppose that the four smallest observations were decreased by 1000 calo­
ries and the four largest were increased by 1000 calories. The values would 
now be the following: 

823 3685 3842 3330 1301 781 3773 2310 723. 

The means and medians of these two data sets are the same, yet the 
sets are very different. The sample mean of 2285.3 and the sample median 
of 2310 capture the essence of the first data set. In the second data set, 
however, the measures of central tendency are less informative as only one 
value is close to the mean and median. Therefore, some additional charac­
teristics of the data must be used to provide for a more complete summary 
and description of the data and to distinguish between dissimilar data sets. 
The next section deals with this additional characteristic, the variability of 
the data. 
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IV. MEASURES OF VARIABILITY 

The observations in the second set above varied much more than those in 
the first set, but the means were the same. Hence to provide for a more 
complete description of the data, we need to include a measure of its 
variability. A number of measures or values—the range, the interquartile 
range, selected percentiles, the variance, the standard deviation, and the 
coefficient of variation—are used to describe the variability in data. 

A. Range and Percentiles 
The range is defined as the maximum value minus the minimum value. It 
is simple to calculate and it provides some idea of the spread of the data. 
For the first data set above, the range is the difference between 2842 and 
1723, which is 1119. In the second data set the range is found by subtract­
ing 723 from 3842, which yields 3119. The large difference in the two 
ranges points to a difference between the two data sets. Although the 
range can be informative, the range has two major deficiencies: (1) it ig­
nores most of the data since only two observations are used in its defini­
tion; and (2) its value depends indirectly on sample size. The range will 
either remain the same or increase as more observations are added to a 
data set; it cannot decrease. A better measure of variability would use more 
of the information in the data by using more of the data points in its 
definition and would not be dependent on sample size. 

The interquartile range, the difference between the 75th and 25th per­
centiles (also called the third and first quartiles) uses more information 
from the data than does the range. In addition, the interquartile (or semi-
quartile) range can either increase or decrease as the sample size increases. 
The interquartile range is a measure of the spread of the middle 50 percent 
of the values. Finding the value of the interquartile range requires that the 
first and third quartiles be specified and there are several reasonable ways 
of calculating them. We use the following procedure to calculate the 25th 
percentile for a sample of size n: 

1. If (n + l)/4 is an integer, then the 25th percentile is the value of the 
(n + l)/4th smallest observation. 

2. If (n + l)/4 is not an integer, then the 25th percentile is a value 
between two observations. For example, if n is 22, (n + l)/4 is (22 + l)/4 = 
5.75. The 25th percentile then is a value three-fourths of the way between 
the 5th and 6th smallest observations. To find it, we sum the 5th smallest 
observation and 0.75 of the difference between the 6th and 5th smallest 
observations. 

The sample size is 9 for the two data sets above. According to our 
procedure, we first calculate (9 + l)/4, which is 2.5. Hence the 25th percen-
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tile is a value halfway between the second and third smallest observations. 
When the value is halfway between two observations, the above formula 
reduces to the average of the two observations. Therefore, for the first data 
set, the 25th percentile is (1781 + 1823)/2, which is 1802. For the second 
data set, the value is (781 + 823)/2 = 802. The 75th percentile is found in the 
same way except that we use 3*(n + l)/4 in place of (n + l)/4. The 75th 
percentiles are 2729 and 3729 for the first and second data sets, respec­
tively. Hence the interquartile ranges are 2729 - 1802 = 927 and 3729 -
802 = 2927 in the two data sets. These values show that there is relatively 
little difference in caloric intake in the middle 50 percent of boys in the first 
data set, whereas there is a tremendous spread, more than three times as 
large as that in the first data set, in caloric intake in the middle 50 percent of 
the boys in the second set. The interquartile range in the second set sug­
gests that there is tremendous variability in the data and that the measures 
of central tendency are of far less interest than in the first data set. 

The values of five selected percentiles—10th, 25th, 50th, 75th and 
90th—when considered together provide good descriptions of the central 
tendency and the spread of the data. When the sample size is very small, 
however, the calculation of the extreme percentiles is problematic. For 
example, when n is 5, it is difficult to determine how the 10th percentile 
should be calculated. Because of this difficulty and also because of the 
instability of the extreme percentiles for small samples, we calculate them 
only when the sample size is reasonably large, say larger than 30. There­
fore we calculate these percentiles for the caloric intake of all 33 boys in 
Table 4.1 instead of using only the nine observations from day 3. In calcu­
lating the first and ninth deciles (10th and 90th percentiles), we use the 
same idea that was used with the quartiles. 

Table 4.7 shows the sorted caloric intakes. The 50th percentile, the 
median, was already found to be 2310 calories. The 25th percentile is based 
on (n + l)/4, which equals 8.5. Therefore the 25th percentile is the average 
of the 8th and 9th smallest observations. In this case, the 8th and 9th 
smallest values are 1823 and 1843, respectively. Thus the first quartile value 
is 1833 calories. The third quartile, the 75th percentile, is based on 3*(n + 
l)/4, which is 25.5. Therefore the third quartile is the average of the 25th 
and 26th smallest values. 

For these data the third quartile is (2685 + 2748)/2, which is 2716.5 
calories. The first decile, the 10th percentile, is based on (n + 1)/10, which 
is 3.4 for these data. Therefore the first decile is the sum of the third 
smallest value, 1505 calories, plus 0.4 times the difference between the 
fourth and third smallest values. The first decile is then 1505 plus 0.4 
multiplied by 1645-1505, which is 1561 calories. The ninth decile is calcu­
lated in a similar fashion and found to be 3196.6 calories. 

The values of the five percentiles are thus 1561, 1833, 2310, 2716.5, and 
3196.6 calories. These values tell us that an intake of less than 1561 calories 
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is somewhat unusual, with only 10 percent of the sample having an intake 
less than that. Intakes greater than 3197 calories are also somewhat un­
usual, with only 10 percent of the sample having values greater than that. 
The middle 50 percent of the sample have intakes between 1833 and 2717 
calories and 50 percent of the sample have intakes greater than 2310 calo­
ries. These five numbers provide a good summary of the central tendency 
and the variability in the caloric intakes of the sample. Other values, for 
example, the 5th and 95th percentiles or the minimum and maximum, are 
sometimes used in place of the 10th and 90th percentiles. The next measure 
of variability to be discussed is the variance but, before considering it, we 
discuss the box plot because of its relationship to the five percentiles. 

B. Box Plot 
The box plot graphically gives the approximate location of the quartiles, 
including the median, and the extreme values. The box plot can also reveal 
whether or not the data are symmetrically distributed. The figure in Box 
4.11 is a box plot of the vitamin A data from Table 4.1. 

The lower and upper ends (hinges) of the box mark approximate loca­
tions of the first and third quartiles, respectively, and the plus symbol 
gives the approximate location of the median. The first quartile is thus 
approximately 2250IU, the median is approximately 4500IU, and the third 
quartile is about 8000 IU. The dashes (whiskers) indicate how far the data 
extend beyond the hinges. The difference between the upper and lower 
hinges is approximately the interquartile range, about 5750 IU. If any val­
ues are very unusual, they are indicated by either an asterisk or a zero. 
Unusual points are identified in relation to the interquartile range. Values 
from [1.5 to 3 times the interquartile range] less (greater) than the lower 
(upper) hinge are represented by an asterisk. Values more than 3 times the 
interquartile less (greater) than the lower (upper) hinge are represented by 
a zero. There are no very unusual values for the vitamin A data according 
to these criteria. The distance from the median to the third quartile is much 

The vitamin A data from Table 4.4 are entered into cl. 
MTB > boxp cl 

I + I· 

H + + -+ + ^ ci 
0 2500 5000 7500 10,000 12,500 
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greater than the corresponding distance to the first quartile, and the whis­
kers in the upper tail extend much further than the whiskers in the lower 
tail of the distribution. This picture makes it very clear that the vitamin A 
data are very skewed. 

Box 4.12 shows how to create box plots for subgroups. 

The systolic blood pressure data are treated as coming from two groups to demon­
strate the BY subcommand, which is an option of the BOXPLOT statement. The 
first group contains the first 50 values and the second group contains the other set 
of 50 values. This is easily accomplished in MINITAB as the following commands 
show. First a column is created in which 50 ones are followed by 50 twos. This 
column, cl2, is used with the BY subcommand in the BOXPLOT statement as 
shown. 
MTB > set cl2 
DATA> 50(1) 50(2) 
DATA> end 

The number before the parentheses tells how many of the values in the parenthe­
ses are to be created, in this case 50 ones and 50 twos. 

MTB > boxp c8; 
SUBO by c l 2 . 

C12 

I 

-+C8 
84 96 108 120 132 144 

The use of the BY subcommand makes it possible to visually compare two or more 
distributions. The first 50 blood pressure values appear to be more symmetrically 
distributed than the second set, to have less variability and no extreme values, and 
to have a slightly higher median value. 

C. Variance and Standard Deviation 

The variance and its square root, the standard deviation are the two most 
frequently used measures of variability and both use all the data in their 
calculations. The variance measures the variability in the data from the 
mean of the data. The population variance, denoted by σ2, for a population 
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of size N is defined as 

Σ (xi - μ)2 

0 i = l 

For a sample of size n, the sample variance, s2, an estimator of σ2, is defined 
by 

Σ (xi - x)2 

The population variance could be interpreted as the average squared differ­
ence from the population mean and the sample variance has almost the 
same interpretation about the sample mean. 

The variance uses the sum of the squared differences from the mean 
and the sample variance uses n - 1 in its denominator. Why were the 
squared differences chosen for use instead of the differences themselves? 
Perhaps Table 4.8 will clarify this. The sum of calories minus the mean, 
which would be zero except for rounding, must be zero because the posi­
tive differences cancel the negative differences. 

Additionally, why is n - 1 used instead of n in the denominator of the 
sample variance? It can be shown mathematically that the use of n results 
in an estimator of the population variance that on the average slightly 
underestimates it. The following gives some feel for the use of n - 1. 

In the formula for the sample variance, the population mean is esti­
mated by the sample mean. This estimation of the population mean re­
duces the number of independent observations to n — 1 instead of n, as is 
shown next. 

Differences and Squared Differences from the Mean for the Nine 
Observations of Day 3 Caloric Intake 

Calories 

1,823 
2,685 
2,842 
2,330 
2,301 
1,781 
2,773 
2,310 
1,723 

20,568 

Sample 
mean 

2,285.33 
2,285.33 
2,285.33 
2,285.33 
2,285.33 
2,285.33 
2,285.33 
2,285.33 
2,285.33 

20,567.97 

Calories 
— mean 

-462.33 
399.67 
556.67 
44.67 
15.67 

-504.33 
487.67 

24.67 
-562.33 

0.03 

(Calories 
— mean)2 

213,749 
159,736 
309,881 

1,995 
246 

254,349 
237,822 

609 
316,215 

1,494,602 
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For example, you are told that there are three observations and that 
two of the values along with the sample mean are known. Can you find the 
value of the other observation? If you can, this means that there are only 
two independent observations, not three, once the sample mean is calcu­
lated. Suppose that the two values are 6 and 10 and the sample mean is 9. 
As the mean of the three observations is 9, this indicates that the sum of 
the values is 27 and that the unknown value is 27 - (6 + 10), which is 11. In 
this sample of size 3, given knowledge of the sample mean, only two of the 
observations are independent or free to vary. Hence once a parameter, in 
this case the population mean, is estimated from the data, it reduces the 
number of independent observations (degrees of freedom) by one. To account 
for this reduction in the number of independent observations, n — 1 is used 
in the denominator of the sample variance. 

For the nine caloric values in Table 4.8, the nine values from the first of 
the two data sets given above, the value of the sample variance is 1,494,602/ 
(9 - 1), which is 186,825.3. This number is large, but is hard to interpret as 
it is in squared units. Because of this, the square root of the sample vari­
ance, called the sample standard deviation, is also often used as a measure of 
variability. The sample standard deviation, s, on the average slightly un­
derestimates the population standard deviation σ. For these data, the 
value of the standard deviation is Vl86,825.3, which is 432.2. The sample 
variance and standard deviation for the nine values in the second data set 
are 1,937,325.2 and 1391.9, respectively, values much larger than the corre­
sponding statistics for the first nine values. These statistics reflect, as they 
must, the much greater variation in the second data set than in the first 
data set. 

The above calculations showed how the variance changed with non-
constant changes in the data. How does the value of the variance change 
when (1) a constant is added to (subtracted from) all the observations in the 
data set and (2) all the observations are multiplied (divided) by a constant? 

The answer to the first question is that there is no change in the value 
of the variance as can be seen from the following. If all the observations are 
increased by a constant, say by 10 units, the mean is also increased by the 
same amount. Therefore, the constants simply cancel each other out in the 
squared differences, that is, 

[(*, + 10) - (μ + IO)]2 = (xi - μ)2 

and thus there is no change in the sum of the squared differences or in the 
variance. 

When all the observations are multiplied by a constant, the variance is 
multiplied by the square of the constant as can be seen from the following. 
If all the observations are multiplied by a constant, say by 10, the mean is 
also multiplied by the same amount. Therefore in the squared differences 
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we have 
[(Xi * 10) - (μ * IO)]2 = [(*,· - μ) * IO]2 = (jcf - μ)2 * IO2 

and the sum of the squared differences, and thus the variance, is multi­
plied by the constant squared. This means that the standard deviation is 
multiplied by the constant. These two properties will be used in Chapter 6. 

In later chapters, the variance and the standard deviation are shown to 
be the most appropriate measures of variation when the data come from a 
normal distribution, as knowledge of them and the mean is all that is neces­
sary to completely describe the data. The normal distribution is the bell-
shaped distribution often used in the grading of courses; it is the most 
widely used distribution in statistics. The interquartile range and the five 
percentiles are useful statistics for characterizing the variation in data re­
gardless of the distribution from which the data are selected, but they are 
not as informative as the mean and variance are when the data come from a 
normal distribution. 

One last measure of variation is the coefficient of variation, defined as 100 
percent times the ratio of the standard deviation to the mean. In symbols 
this is (σ/μ) * 100 percent, and it is estimated by (s/x) * 100 percent. The 
coefficient of variation is a relative measure of variation, because dividing 
by the mean directly takes the magnitude of the values into account. Large 
values of the coefficient suggest that the data are quite variable. 

The coefficient of variation has several uses. One use is in comparison 
of the precision of different studies. If another experiment has a coefficient 
of variation much smaller than that in your study of the same substance, 
this suggests that there may be room for improvement in your study proce­
dures. Another use is in determination of whether or not there is so much 
variability in the data that the measure of central tendency is of little value. 
For example, the National Center for Health Statistics (NCHS) does not 
publish sample means for variables if the estimated coefficient of variation 
is greater than 30 percent. 

Let us calculate the estimated coefficients of variation for our two sets 
of nine observations. For the first set, s was 432.2, and for the second set, 
1391.9. The sample mean was 2285.3 in both sets which leads to coeffi­
cients of variation of 18.9 percent [= (432.2/2285.3) * 100%] and 60.9 per­
cent in sets 1 and 2, respectively. These values reinforce our feeling that the 
mean provided useful information in the first set, but was of less value in 
describing the data in the second set. 

Box 4.13 shows how to calculate descriptive statistics. 
Box 4.14 shows how to sort data for the calculation of the median and 

other percentiles. The sorted data facilitate the calculation of the percen­
tiles because the data are ordered by size. For example, in the text we 
stated that the first decile (the 10th percentile) of the 33 calorie values is 
found by taking the third smallest calorie value plus 0.4 times the differ-
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TRMEAN 
5127 
2281 
86.24 
83.31 

STDEV 
3364 
668 

42.84 
33.89 

SEMEAN 
586 
116 

7.46 
5.90 

We use the DESCRIBE (or DESC for short) command to calculate the descriptive 
statistics for the data stored in columns and to read the output. 
MTB > desc cl-c4 

MEDIAN 
4535 
2310 
83.00 
84.00 

Ql Q3 
2265 8275 
1833 2717 

65.50 118.00 
63.00 98.50 

Most of the column headings are clear. STDEV stands for standard deviation and 
the first and third quartiles are indicated by Ql and Q3. SEMEAN will be discussed 
later, but it stands for the standard error of the mean and is found by dividing 
STDEV by the square root of N. TRMEAN stands for trimmed mean and it attempts 
to remove the effect of the extreme observations from the calculation of the mean. It 
does this by removing the smallest and largest 5 percent of the values and then 
calculates the mean of the remaining observations. With 33 values, 5 percent of 33 
is 1.65 and this is rounded to 2. Hence the two smallest and two largest values are 
deleted and the mean is calculated on the remaining 29 values. 

vit A 
calories 
tot fat 
protein 

vit A 
calories 
tot fat 
protein 

N 
33 
33 
33 
33 

MIN 
820 
1053 

25.00 
23.00 

MEAN 
5326 
2314 
90.39 
84.85 

MA; 
12812 
4322 

227.00 
172.00 

enee between the third and fourth smallest values. From c9, the third and 
fourth smallest values are easily seen to be 1505 and 1645 and the first 
decile is then 1505 + 0.4 * 140, which equals 1561. 

The coefficient of variation (CV) is not part of the output from Box 4.13 
and thus additional MINITAB commands are required to find its value, as 

The SORT command is used to rearrange the data. In the following, c9 will receive 
the sorted calorie values. 
MTB > sort 'calories' c9 
MTB > print c9 
C9 

1053 1292 1505 1645 1723 1753 1781 1823 1843 1898 2000 
2007 2011 2039 2074 2301 2310 2330 2340 2348 2400 2436 
2546 2594 2685 2748 2773 2842 3049 3076 3277 3532 4322 



76 4 DESCRIPTIVE TOOLS 

is shown in Box 4.15. Thus the CV for calories for these 33 boys is almost 29 
percent, denoting a large variation in these values. 

QU^oomgi 
In the following, kl is the name of the variable that contains the standard deviation 
of the data stored in column c2 and k2 is the name of the variable that contains the 
mean. MINITAB uses the letter k followed by a number to identify a single value. 

MTB > s tdev c2 k l 
ST.DEV. = 667.89 

MTB > mean c2 k2 
MEAN = 2313.8 

The CV is 100 percent times the ratio of kl to k2, and k3 will contain that value. 
MTB > let k3=(kl/k2)*100 
MTB > print k3 
K3 28.8655 

First we enter the data used in the example for calculating the geometric mean. 
MTB > s e t clO 
DATA> 100 100 1000 1000 10000 1000000 
DATA> end 

We next require the logarithms and we use those with 10 as the base; the LET 
command is used again. 
MTB > let cll=logten(cl0) 
MTB > print ell 
Cll 
2.00000 2.00000 3.00000 3.00000 4.00000 6.00000 

The next step is to find the mean of the logarithms and then take the antilogarithm 
of the mean. This value is the geometric mean. 

MTB > mean c l l k4 
MEAN = 3.3333 

MTB > antilog k4 k5 
ANSWER = 2154.43 

Thus the geometric mean is 2154.43 for these data, the same value reported earlier 
in this chapter. 

Box 4.16 illustrates the calculation of the geometric mean. 
As can be seen from this material, MINITAB is easy to use and it can 

greatly reduce the burden of the calculations. Other software could be used 
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instead of MINITAB. Regardless of the software used, you are encouraged 
to use the computer in carrying out the calculations to allow time for 
thinking about what you are analyzing and why. 

V. RATES: CRUDE, SPECIFIC, AND ADJUSTED 

The rates of diseases and vital rates, which include death rates in general, 
infant mortality rates, feto-infant, neonatal, and postneonatal mortality 
rates, and birth rates, are frequently used measures in public health. These 
rates are useful in determining the health status of a population, in moni­
toring the health status over time, in comparing the health status of popu­
lations, and in assessing the impact of policy changes. 

For example, the infant mortality rate is often used in comparing the 
performance of health systems in different countries. In 1988, the United 
States had an infant mortality rate higher than that of 22 other nations. The 
U.S. rate was 10.0 infant deaths under 1 year of age per 1000 live births 
compared with a low rate of 4.8 for Japan. Most of the Western European 
nations and some Pacific Rim nations (Japan, Singapore, and Hong Kong) 
had lower rates than the United States. Canada's health system is often 
touted as a model for the United States because of its lower cost. How does 
Canada's infant mortality rate compare with that of the United States? 
Canada's infant mortality rate in 1988 was 7.2, almost 30 percent lower 
than the U.S. rate. The progress in reducing infant mortality has been most 
impressive as can be seen from the U.S. rate for 1967 of 22.4 shown in 
Figure 1.1 and the 1988 rate of 10.0. 

As can be seen from the following definition, a rate is basically a mean 
multiplied by a constant. A rate is defined as the product of two parts: (1) 
the number of persons who have experienced the event of interest divided 
by the population size; and (2) a standard population size. For example, 
according to the data compiled by the Harris County Health Department, 
there were 15,585 deaths in an estimated population of 2,942,550 in Harris 
County, Texas, in 1986. The corresponding death rate per 100,000 is found 
by taking (15,585/2,942,550) * 100,000, and it equals 529.6 deaths per 
100,000 population. This is considerably lower than the corresponding rate 
for the United States of 873.2 deaths per 100,000. This difference will be 
explored in a later section. 

As is often the case with rates, however, there is a problem in deter­
mining the value of the denominator, that is, the 1986 Harris County 
population. What is meant by the 1986 population size? Is it as of January 
1, July 1, December 31, or some other date? Convention is that the popula­
tion size in the middle of the period (mid-1986) is used. An additional 
problem is that census data were available for 1980 but not for 1986 which 
introduces some uncertainty in the value used. In this case, the Harris 
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County Health Department used an estimate of the 1986 population based 
on projections from the Texas Department of Health. The uncertainty in 
the value of the denominator of the rate should be of little concern given 
the magnitude of the numbers involved in this situation. 

Death rates are usually expressed per 1000 or per 100,000 population. 
As was mentioned above, infant mortality rates are expressed per 1000 live 
births with the exception of feto-infant mortality rates. Feto-infant mortal­
ity rates are based on the number of late fetal deaths plus infant deaths 
under 1 year per 1000 live births plus late fetal deaths. Neonatal mortality 
rates are based on deaths of infants who were less than 28 days old, and 
postneonatal rates are based on deaths of infants between 28 and 365 days 
of age. This split of infant deaths is useful because often the neonatal 
deaths may be the result of genetic factors, whereas the postneonatal 
deaths may have more to do with the environment. The birth rate is de­
fined as 1000 times the ratio of the number of live births to the population 
size. 

Note that as the infant mortality rate example in Chapter 1 showed, the 
children whose deaths are used in the conventional method of calculating 
this rate may have been born in 1987, not 1988. Hence the numerator, the 
number of deaths, comes from both 1987 and 1988 births, whereas the 
denominator is based solely on 1988 births. This should cause no problem 
unless something happened that caused the mortality experience or the 
number of births to differ greatly between the two years. One way of 
dealing with this possibility of a difference between the years is to combine 
several years of data. Often health agencies pool data over 3 years to 
provide protection against the instability of small numbers and to reduce 
the possible, but unlikely, effect of very different birth or mortality experi­
ences across the years. 

A. Crude and Specific Rates 

Rates may be either crude or specific. Crude rates use the total number of 
events in their definition, whereas specific rates apply to subgroups in the 
population. For example, there may be age-, gender-, or race-specific death 
rates. For an age-specific death rate, only the deaths of individuals in the 
specific age group are used in the numerator and the denominator is the 
total number of individuals in the specific age group. Specific rates are used 
because they supply more information and also allow for more appropriate 
comparisons of groups. 

For example, perhaps the difference seen above in the Harris County 
and U.S. death rates for 1986 is related to age. The age-specific rates, 
shown in Table 4.9, provide a better description of the mortality experience 
than the crude rates of 529.6 and 873.2 for Harris County and the United 
States, respectively. This table shows that those less than 25 years old in 
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Age-Specific Mortality Rates per 100,000 for Harris County, Texas, 
and the United States as well as U.S. Deaths and Population 
for 1986 

Age 

0-4 
5-14 

15-24 
25-34 
35-44 
45-54 
55-64 
65-74 
>75 

Total 

Deaths per 
100,000 in 

Harris 
County 

250.2 
19.6 
99.8 

146.8 
218.5 
464.7 

1320.2 
2832.8 
8101.1 

United 
States0 

255.4 
26.0 

102.3 
132.1 
212.9 
504.8 

1255.1 
2801.4 
8470.9 

United States 

Deaths 

46.4 
8.8 

39.9 
56.5 
70.4 

115.2 
279.0 
485.5 

1002.6 

2104.3 

Population 
(in 1000s) 

18,152 
33,860 
39,021 
42,779 
33,070 
22,815 
22,232 
17,332 
11,836 

241,097 

' Rates may not exactly equal the ratio of deaths to popula­
tion because of rounding. 
Sources: "Health, United States, 1990," Tables 1 and 23 (4) 
and "The Health Status of Harris County Residents, 1980-
1986," Tables 3.F and Appendix (5). 

Harris County have lower mortality rates than the corresponding U.S. 
groups, but from then on the results are mixed. Without knowledge of the 
age distributions, it is difficult to conclude whether or not the age variable 
is responsible for the difference in the crude rates. 

As shown above, one problem with the use of specific rates is that they 
are not easily summarized. They do provide more information than the 
crude rate which gives a single value for a population, but sometimes it is 
difficult to draw a conclusion based on the examination of the specific 
rates. However, because of the strong linkage between mortality and age, 
age often must be taken into account in the comparison of two or more 
populations. One way of adjusting for age or other variables while avoid­
ing the problem of many specific rates is to use adjusted rates. 

B. Adjusted Rates 
Adjusted rates are weighted rates as is shown below. There are direct and 
indirect methods of adjustment; the choice of which method to use de­
pends on what data are available. The direct method requires that we have 
the specific rates for each population and a standard population. Table 4.9 
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provides the age-specific death rates for both populations of interest. The 
standard population provides a referent for purposes of comparison. To pro­
vide more stable values, the standard population is usually larger than the 
population(s) under study. The choice of a standard population is subjec­
tive. For example, in comparing the rates between states, often the U.S. 
population would be used as the standard. In comparing counties of a 
state, the state population often would be used as the standard. For com­
paring rates over time, the population at a previous time point could be 
used as the standard. Another alternative might be to pool the populations 
of the areas or times under study and use the pooled population as the 
standard. In performing the age adjustment here, we have decided to use 
the 1986 U.S. population shown in Table 4.9 as the standard. The age-
adjusted rate for Harris County differs from its crude rate, reflecting the 
effect of using the 1986 U.S. age distribution. 

The adjustment process consists of applying the Harris County age-
specific mortality rates to the standard population's age distribution and 
then summing the expected number of deaths over the age categories. 
Another way of saying this is that each age category's mortality rate is 
weighted by that age category's share of the standard population. Table 
4.10 shows the calculation of age-adjusted death rate for Harris County by 
the direct standardization method. Hence the direct age-adjusted death 
rate for Harris County using the United States as the standard population 
is 860.9 deaths per 100,000 population, quite a contrast to the crude rate of 
529.6 and very close to the U.S. rate of 873.2. The difference in crude rates 
between Harris County and the United States can be accounted for by the 

Direct Method of Adjusting the 1986 Harris County Death Rate 
Using 1986 U.S. Population as the Standard 

Age 

0-4 
5-14 

15-24 
25-34 
35-44 

Harris 

Number 

253,776 
469,446 
489,053 
640,813 
444,366 

County Population 

Proportion 

0.0862 
0.1595 
0.1662 
0.2178 
0.1510 

Specific 
rates 
(1) 

250.2 
19.6 
99.8 

146.8 
218.5 

U.S. 
population 
proportion 
(2) 

0.0753 
0.1404 
0.1618 
0.1774 
0.1372 

Expected 
deaths 
per 100,000 
(1) * (2) 

18.84 
2.75 

16.15 
26.04 
29.98 

45-54 275,007 0.0935 464.7 0.0946 43.96 
55-64 190,352 0.0647 1320.2 0.0922 121.72 
65-74 111,870 0.0380 2832.8 0.0719 203.68 
>75 67,867 0.0231 8101.1 0.0491 397.76 

Total 2,294,550 1.0000 0.9999 860.88 
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difference in the age distributions. As shown in Table 4.10, Harris County 
had proportionately far fewer persons over 55 years of age than did the 
United States and this contributed to its much lower crude death rate. 
After adjustment for the age distribution, there was little difference be­
tween the Harris County and U.S. death rates in 1986. 

The indirect method is an alternative to be used when we do not have the 
data required for the direct method or when the specific rates may be 
unstable because they were based on small numbers. The indirect method 
requires the specific rates for the standard population and the age (or, e.g., 
gender or race) distribution for the population to be adjusted. It is more 
likely that these data will be available than the age-specific death rates in 
the population to be adjusted. The first step in calculating the indirect age-
adjusted death rate is to multiply the age-specific death rates of the stan­
dard (U.S.) population by the corresponding age distribution of the popu­
lation to be adjusted (Harris County). Table 4.11 shows this calculation for 
the Harris County data; in this example we ignore the availability of the 
Harris County age-specific death rates. The observed crude death rate for 
Harris County is 529.6 and the expected rate when the U.S. age-specific 
mortality rates are applied is 534.6. The ratio of observed to expected death 
rates, the standardized mortality ratio, is 0.99 which indicates that Harris 
County's death rate is very similar to that of the United States once age is 
taken into account. To find the indirect age-adjusted death rate for Harris 
County, we now multiply the crude rate for the standard population, the 
United States, by the value 0.99. Thus the indirect age-adjusted mortality 
rate for Harris County is 0.99 x 873.2, which equals 864.5 deaths per 
100,000 population. 

The First Step in the Calculation of the 1986 Indirect Age-Adjusted 
Death Rate for Harris County Using the Estimated 1986 U.S. 
Population as the Standard 

Age 

0-4 
5-14 

15-24 
25-34 
35-44 
45-54 
55-64 
65-74 
>75 

Total 

Harris ' County 
age distribution 

0.0862 
0.1595 
0.1662 
0.2178 
0.1510 
0.0935 
0.0647 
0.0380 
0.0231 

1.0000 

¥ U.S. age -specific 
death rates per 100,000 

255.4 
26.0 

102.3 
132.1 
212.9 
504.8 

1255.1 
2801.4 
8470.9 

Expected deaths 
per 100,000 

22.0 
4.1 

17.0 
28.8 
32.1 
47.2 
81.2 

106.5 
195.7 

534.6 
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In this case, both the direct and indirect age-adjusted death rates for 
Harris County are very similar to one another and to the U.S. crude rate. 
The difference in the crude death rates between the United States and 
Harris County disappeared once the age distributions were taken into 
account. 

The calculation of adjusted rates can be easily done with MINITAB. For 
example, the calculation of the indirect adjusted rate above is demon­
strated in Box 4.17. 

Column cl contains the Harris County age distribution, and c2 contains the U.S. age-specific death 
rates. The constant kl contains the crude death rate for Harris County, k2 contains the crude death rate 
for the United States, and k3 contains the standardized mortality ratio. 

1662 .2178 .1510 .0935 .0647 .0380 .0231 

2.3 132.1 212.9 504.8 1255.1 2801.4 8470.9 

MTB > 
DATA> 
DATA> 
DATA> 
DATA> 

MTB 
MTB 

> 
> 

set cl 
.0862 
set 
255. 
end 

c2 
.1595 . 

.4 26.0 10: 

mult c'. 
sum c3 

SUM = 534 
MTB 
MTB 
MTB 
MTB 
K4 

> 
> 
> 
> 

let 
let 
let 

kl= 
k2= 
k4= 

L c2 c3 
k3 
.62 
=529.6 
=873.2 
=(kl/k3 

print k4 
865 .003 

i*k2 

Note that MINITAB's value for the indirect age-adjusted mortality rate 
is 865.003, slightly larger than the value of 864.5 found above. This differ­
ence is due to our use of only two decimal places for the standardized 
mortality rate instead of the more precise value used by MINITAB. 

It is possible to adjust for more than one variable at a time; for example, 
age and gender are often used together. Gender is frequently used because 
the mortality experiences are often quite different for females and males. 

VI. CORRELATION COEFFICIENTS 

Earlier in the chapter, we presented a scatter plot of protein and total fat, 
and we concluded that there was a strong, although imperfect, positive 
association between protein and fat. Although this statement is informa­
tive, it is imprecise. To be more precise, a numerical value that reflects the 
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strength of the association is needed. Correlation coefficients do just that; that 
is, they reflect the strength of association. 

A. Pearson Correlation Coefficient 

The most widely used measure of association between two variables, X 
and Y, is the Pearson correlation coefficient denoted by p (rho) for the popula­
tion and by r for the sample. This measure is named after Karl Pearson, a 
leading British statistician of the late 19th and early 20th century, for his 
role in the development of the formula for the correlation coefficient. 

We want the correlation coefficient to be large, approaching +1 as a 
limit, as the values of the X, Y pair show an increasing tendency to be large 
or small together. When the values of the X, Y pair tend to be opposite in 
magnitude, that is, a large value of X with a small value of Y or vice versa, 
the measure should be large negatively, approaching - 1 as the limit. If 
there is no overall tendency of the values of the X, Y pairs, the measure 
should be close to 0. 

By large or small, we mean in relation to its mean. Because of the above 
requirements for the correlation coefficient, one simple function that may 
be of interest here is the product of x{ - x and yf - y. Let us focus on the 
sign of the differences, temporarily ignoring the magnitude. The possibili­
ties are the following: 

Xi - X 

+ 
-
+ 
— 

yi-y 

+ 
-
-
+ 

Product 

+ 
+ 
-
— 

The product of the differences does what we want; that is, it is positive 
when the X, Y pairs are large or small together and negative when one 
variable is large and the other variable is small. The sum of the products of 
the differences over all the sample pairs should give some indication of 
whether there is a positive, negative, or no association in the data. If all the 
products are positive (negative), the sum will be a large positive (negative) 
value. If there is no overall tendency, the positive terms in the sum will 
tend to cancel out with the negative terms in the sum, driving the value of 
the sum toward zero. 

The value of the sum of the products depends on the magnitude of the 
data. As we want the maximum value of our measure to be 1, we must do 
something to remove the dependence of the measure on the magnitude of 
the values of the variables. If we divide the measure by something reflect­
ing the variability in the X and Y variables, this should remove this depen-
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dence. The actual formula for r, reflecting these ideas, is 

r = 
Σ (*«· - *) * (y* - y) 
i = l 

'Σ(*.-*)2*Σ(#-^)2 

Dividing the numerator and denominator of this formula by n - 1 enables 
us to rewrite the formula in terms of familiar statistics, that is, 

2 (Xi - x) * (y,· - y)l(n - 1) 

In this version, we used the formula for the sample variance, that is, 
$1 = Σ(ΧΪ - x)2/(n - 1). The sample variance can also be expressed as s2 = 
Σ(*ί - x) * (Xi - x)l(n - 1). Hence the sample variance could be said to 
measure how the X variable varies with itself. The numerator looks very 
similar to this, and it measures how the variables X and Y covary. 

The denominator, Vsf*l^, standardizes r so that it varies from - 1 to 
+ 1. For example, if Y = X, then the numerator becomes Σ(χ, - x)2/(n - 1), 
that is, s2

x, which is the same as the denominator and their ratio is +1. 
We can use MINITAB to find r for the protein and total fat data from 

Table 4.1, as shown in Box 4.18. This value shows that protein and total fat 
have a strong positive association with one another. 

MTB > corr c3 c4 
Correlation of C3 and C4 = 0.648 

The following example shows that p is not a general-purpose measure 
of association, but that it measures linear association, that is, the tendency 
of the Xi, y, pairs to lie on a straight line. The values of Y and X are the 
following: 

4 1 0 1 4 
- 2 - 1 0 1 2 

The sample mean of Y is 2 and the sample mean of X is 0. The pieces 
required to calculate r are the following: 

Y X (Y - 2) * (X - 0) = Product (Y - 2)2 (X - 0)2 

Total 

4 
1 
0 
1 
4 
0 

- 2 
- 1 

0 
1 
2 
0 

2 
- 1 
- 2 
- 1 

2 
0 

* 
* 
* 
* 
* 

- 2 
- 1 

0 
1 
2 
0 

- 4 
1 
0 

- 1 
4 
0 

4 
1 
4 
1 
4 

14 

4 
1 
0 
1 
4 

10 
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The estimated Pearson correlation coefficient, r, is then 0/(Vl4 * 10) = 
0. There is no linear association between Y and X. Note, however, that the 
first column (values of Y) and the last column (X2) are the same. Hence 
there is a perfect quadratic (squared) relationship between Y and X that 
was not found by the Pearson correlation coefficient. The scatter plot in 
Box 4.19 graphically shows this relationship. 

Thus, even if r is 0, it does not mean that the two variables are unre­
lated; it means that there is no linear relationship between the two vari­
ables. The use of a scatter plot first, followed by the calculation of r, may 
find the existence of a nonlinear association that could be missed when r 
alone is used. 

MTB > 
DATA> 
DATA> 
DATA> 
DATA> 
MTB > 
4.5+ 

c 

3.0+ 

1.5+ 

0.0+ 

set cl 
4 10 1 
set c2 
-2 -1 0 
end 
plot cl 

* 

+ + + + + C2 
- 1 . 6 0 - 0 . 8 0 0 . 0 0 0 . 8 0 1 . 6 0 

Connecting these points gives the parabola shape associated 
with a quadratic re la t ionship . 

B. Spearman Rank Correlation Coefficient 

The Pearson correlation coefficient was designed to be used with jointly 
normally distributed variables; however, it is used, sometimes incorrectly, 
with all types of data in practice. Instead of using the Pearson correlation 
coefficient with nonnormally distributed variables, it may be better to use a 



8 G 4 DESCRIPTIVE TOOLS 

modification suggested by Spearman, an influential British psychometri-
cian, in 1904. Spearman suggested ranking the values of Y and also ranking 
the values of X. These ranks are then used instead of the actual values of Y 
and X in the formula for the sample Pearson correlation coefficient. The 
result of this calculation is the sample Spearman rank correlation coeffi­
cient, denoted by r$. This calculation is demonstrated in Box 4.20 for the 
protein and total fat data. Hence rs is 0.573, slightly less than the Pearson 
value of 0.648. 

Protein data are in c3 and total fat data in c4. The ranks of c3 and c4 are put into c5 
and c6, respectively. 

MTB > rank c3 c5 
MTB > rank c4 c6 
MTB > corr c5 c6 
Correlation of C5 and C6 = 0.573 

In addition to being used with nonnormal continuous data, the Spear­
man rank correlation coefficient can also be used with ordinal data. When 
ordinal data are used, ties (two or more subjects having exactly the same 
value of a variable) are likely to occur. In the case of ties, the tied observa­
tions receive the same average rank. For example, if three observations of 
X are tied for the third smallest value, the ranks involved are 3, 4, and 5. 
The average of these three ranks is 4, and that is the rank that each of the 
three observations would be assigned. The occurrence of ties causes no 
problem in the calculation of the Spearman correlation coefficient when the 
Pearson formula is used with the ranks. 

VII. CONCLUDING REMARKS 

In this chapter we have presented tables, graphs, and plots as well as a few 
key statistics. The pictures and the statistics together enable one to describe 
single variables and the relationship between two variables for the sample 
data. Although the description of the sample data and the provision of 
estimates of population parameters are important, sometimes we wish to 
go beyond that, for example, to give a range of likely values for the popula­
tion parameters or to determine whether or not it is likely that two popula­
tions under study have the same mean. To do this requires tne use of 
probability distributions, a topic presented in Chapter 6. Before studying 
probability distributions, however, it is useful to understand probability, 
the topic covered in the next chapter. 
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EXERCISES 

4.1. Create a bar chart of the following data on serum cholesterol for non-
Hispanic whites based on Table 11-42 in "Nutrition Monitoring in the 
United States" (7). 

Age 

40-49 
50-59 
60-69 
70-74 
40-49 
50-59 
60-69 
70-74 

N 

572 
575 

1354 
427 
615 
649 

1487 
533 

Mean 
serum 
cholesterol" 
(mg/dl)1 

223.5 
228.9 
226.2 
215.8 
218.5 
243.6 
249.0 
248.3 

a These data are from the Second National 
Health and Nutrition Examination Survey of 
noninstitutionalized persons conducted dur­
ing the period 1976-1980 (8). 

A high value of serum cholesterol is thought to be a risk factor for 
heart disease. The National Cholesterol Education Program (NCEP) 
of the National Institutes of Health in 1987 stated that the recom­
mended value for serum cholesterol is below 200 mg/dl and a value 
between 200 and 240 is considered to be borderline. A value above 
240 may indicate a problem and NCEP recommended that a lipopro-
tein analysis should be performed. On the basis of these data, it 
appears that many non-Hispanic whites, particularly women, have 
serum cholesterol values that are too high. 
a. Give some possible reasons why non-Hispanic white men have 

higher mortality from heart and cerebrovascular diseases when 
it appears from these data that non-Hispanic white women 
should have the higher rates. 

b. Provide a possible explanation why the serum cholesterol val­
ues for older men are lower than those for the younger men 
and the reverse is true for women. 

4.2. Create line graphs for the following expenditures for the Food 
Stamps Program in New York State during the 1980s. 
What, if any, tendencies in the expenditures (both actual and infla­
tion-adjusted) do you see? Which expenditure data do you think 
should be used in describing the New York State Food Stamps Pro­
gram? Explain your choice. 
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Year 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 

Actual expenditures 
(in millions 

745.3 
901.2 
835.7 
930.9 
904.4 
939.4 
926.5 
901.8 
909.1 
964.7 

of dollars) 
Inflation-adjusted 
expenditures'1 

745.3 
814.1 
717.3 
766.8 
709.3 
712.2 
685.3 
638.7 
613.4 
616.4 

a Expenditures adjusted for inflation using the consumer 
price index for the Northeast Region with 1980 as the 
base. 
Source: Table 3.2 in the Division of Nutritional Sciences, 
Cornell University (9). 

4.3. Use line graphs to represent the short-stay hospital occupancy rates 
shown here. 

Hospital Ownership 

Year 

1960 
1970 
1975 
1980 
1985 
1989 

Federal 

82.5 
77.5 
77.6 
77.8 
74.3 
71.0 

Nonprofit 

76.6 
80.1 
77.4 
78.2 
67.2 
68.8 

Proprietary 

65.4 
72.2 
65.9 
65.2 
52.1 
51.7 

State/local 

71.6 
73.2 
69.7 
70.7 
62.8 
64.8 

Source: Table 105 in National Center for Health Statistics (10). 

Discuss the trends, if any, in these data. 
4.4. The following data on hazardous government jobs appeared as a bar 

chart in the USA Snapshots section of USA Today on April 30, 1992. 
The variable shown was the number of assaults suffered by federal 
officers based on 1990 FBI figures. The least number of assaults suf­
fered were by the Internal Revenue Service (3 assaults), the Bureau of 
Indian Affairs (5 assaults), and the Postal Inspectors (6 assaults). The 
most assaults were suffered by the Immigration and Naturalization 
Service with 409, followed by U.S. Attorneys with 269 and the Bu­
reau of Prisons with 185 assaults. What additional information do 
you need to conclude anything about which federal officers have the 
more hazardous (from the perspective of assaults) jobs? 

4.5. A study was performed to determine which of three drugs was more 
effective in the treatment of a health problem. The responses of 
subjects who received each of three drugs (A, B, and C) were pro-
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vided by Cochran (11). The following table shows the pattern of 
response for the 46 subjects; 1 indicates a favorable response and 0 an 
unfavorable response. 

Response to 

A B C Frequency 

1 1 1 6 
1 1 0 16 
1 0 1 2 
1 0 0 4 
0 1 1 2 
0 1 0 4 
0 0 1 6 
0 0 0 6 

Total 46 

a. Give an example of a type of health problem that would be 
appropriate for this study. 

b. Create a two-way frequency table showing the relationship be­
tween drugs A and C. Does it appear that the responses to 
these drugs are related? 

c. Create a bar chart that shows the number of subjects with a 
favorable response by drug. 

4.6. Using the data shown in Table 4.1, calculate the coefficient of varia­
tion for vitamin A. Do you think that any measure of central ten­
dency adequately describes these data? Explain your answer. 

4.7. Lee (12) presented survival times in months from diagnosis for 71 
patients with either acute myeloblastic leukemia (AML) or acute lym-
phoblastic leukemia (ALL). 

AML patients: 
18 31 31 31 36 01 09 39 20 04 45 36 12 08 01 15 24 02 33 29 07 00 01 
02 12 09 01 01 09 05 27 01 13 01 05 01 03 04 01 18 01 02 01 08 03 04 
14 03 13 13 01 

ALL patients: 
16 25 01 22 12 12 74 01 16 09 21 09 64 35 01 07 03 01 01 22 
a. Calculate the sample mean and median for both AML and ALL 

patients separately. Which measure do you believe is more ap­
propriate to use with these data? Explain. 

b. Create box plots, histograms, and stem-and-leaf plots to show 
the distributions of the survival times for AML and ALL pa­
tients. Which type of figure is more informative for these data? 
Which type of patient has the longer survival time after diag­
nosis? 
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c. Give examples of additional variables that are needed to interpret 
appropriately these survival times. 

4.8. Is it possible to calculate the mean occupancy rate for the short-stay 
hospitals in 1960 given the data provided in Exercise 4.3? If it is, 
calculate it. If not, state why it cannot be calculated. 

4.9. Provide an appropriate summarization of the following data on the 
results of inspections of food establishments (e.g., food processing 
plants, food warehouses, and grocery stores) conducted by the Divi­
sion of Food Inspection Services of the New York State Department 
of Agriculture and Markets. 

Approximate number 
Number inspected failed 

Year 

1980 
1982 
1984 
1986 
1988 
1990 

Upstate 

19,599 
17,183 
13,731 
10,915 
13,614 
12,609 

NYC & LIa 

23,676 
22,767 
18,677 
15,948 
15,070 
16,285 

Upstate 

2,548 
3,093 
2,746 
2,292 
3,267 
3,026 

NYC & LI« 

5,209 
6,830 
6,350 
6,379 
6,179 
6,677 

a New York City and Long Island. 
Source: Table 2.5 in the Division of Nutritional Sciences, Cornell 
University (9). 

Do you think that there were more or fewer cases of foodborne 
illness in New York State in 1990 than in 1980? 

4.10. Diagnosis-related groups (DRGs) are used in the payment for the 
health care of Medicare-funded patients. In the creation of the DRGs, 
suppose that the lengths of stay for patients in one of the proposed 
groups were the following: 

1 1 2 2 2 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7 8 8 8 9 9 10 12 13 15 15 17 17 18 
19 19 20 23 26 29 31 34 36 43 49 52 67 96 

Calculate the mean, standard deviation, coefficient of variation, and 
five key percentiles for these data. Are these data skewed? Do the 
patients in this DRG appear to have homogeneous lengths of stay? 
Which measures, if any, should be used in the description of these 
data? Explain your answer. 

4.11. The following data represent bacteria counts measured in water with 
levels of 0, 1, and 3 percent sodium chloride. 
a. Calculate the mean and coefficient of variation for these data. 
b. Calculate the median and geometric mean. 
c. Comment on which measure of central tendency is appropriate 

for these data. 
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Level of 
sodium chloride Count 
(%) (numberImi) 

0 IO7, IO6, IO8, IO9, IO8, IO10 

1 IO4, IO4, IO5, IO6 

3 IO3, IO4, IO4, IO3, IO5 

4.12. In Harris County, Texas, in 1986, there were 24,346. live births to 
whites, 11,365 to African-Americans, 14,849 to Hispanics, and 2093 
to other groups. There were 187 infant deaths among whites, 125 of 
which were to infants less than 28 days old. The corresponding num­
bers were 183 and 121 for African-Americans, 137 and 95 for Hispan­
ics, and 12 and 7 for the other groups. Based ori these numbers, 
calculate the neonatal and postneonatal mortality rates for these four 
groups. Comment on any rate that appears to be unusual. 

4.13. Of the estimated 1,488,939 male residents of Harris County, Texas, in 
1986, there were 8672 deaths. Of the 1,453,611 female residents, 
there were 6913 deaths. The estimated 1986 U.S. population was 
approximately 48.7 percent male and 51.3 percent female. 
a. Calculate the crude death rate and sex-specific death rates for 

Harris County in 1986. 
b. Do you believe that a sex-adjusted death rate will be very different 

from the crude death rate? Provide the reason for your belief. 
c. Calculate a sex-adjusted death rate for Harris County in 1986. 

4.14. The Pearson correlation coefficient between protein and total fat for 
the data in Table 4.1 was 0.648. This suggests a strong linear relation­
ship between these two variables; however, this relationship may be 
reflecting the amount of food consumed (calories). One way of ad­
justing for the calories is to create new variables by dividing the 
protein and total fat variables by the calories consumed. 
a. Create a scatter plot of protein per calories by total fat per calories. 
b. Calculate the Pearson correlation coefficient for the new variables 

protein/calories and total fat/calories. Which measure of correla­
tion do you think best characterizes the strength of the relation­
ship? 

4.15. Data from NHANES II showed that 39.7 percent of persons ages 20 
to 74 had hypertension (systolic blood pressure ^ 140 mm Hg, dias-
tolic blood pressure > 90 mm Hg, or taking blood pressure medica­
tion) and that 30.3 percent had borderline high or high values of 
serum cholesterol. The sources of these percentages are Tables 69 
and 70 in "Health, United States and Prevention Profile, 1991" (10). 
Based on these data, can we correctly conclude that 70 percent 
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(39.7 + 30.3) of the noninstitutionalized U.S. population ages 20 to 74 
had either hypertension or borderline high or high values of serum 
cholesterol? Provide the rationale for your answer. 
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Probability and 
Life Tables 

^ ^ s was mentioned in Chapter 4, we often wish to do more than simply 
describe or summarize the data by graphs or descriptive statistics. For 
example, we may want to determine whether or not two drugs or treat­
ments are equally effective and safe, or whether the age-adjusted death 
rates for two areas are the same. To answer these questions, we require 
knowledge of probability, the topic of this chapter. 

I. A DEFINITION OF PROBABILITY 

We have all encountered the use of probability, for example, in the weather 
forecast. The forecast usually involves an estimate of the probability of 
rain, as in the statement that the probability of rain tomorrow is 20 percent. 
As its use in the weather forecast demonstrates, probability is a numerical 
assessment of the likelihood of the occurrence of an outcome of a random 
variable. In the weather forecast, weather is the random variable and rain 
is one of its possible outcomes. 

93 
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Before considering the numerical assessment of likelihood, we should 
consider random variables. There are both discrete and continuous ran­
dom variables. A discrete (nominal, categorical, or ordinal) random variable is 
a quantity that reflects an attribute or characteristic that takes on different 
values with specified probabilities. A continuous (interval or ratio) random 
variable is a quantity that reflects an attribute or characteristic that falls 
within an interval with specified probabilities. 

Hypertension status is a discrete random variable when the values or 
levels of this variable are defined as its presence (can be defined as systolic 
blood pressure greater than 140 mm Hg, diastolic blood pressure greater 
than 90 mm Hg, or taking antihypertensive medication) or absence. Other 
examples of discrete random variables include racial status, the number of 
children in a family, and type of health insurance. Examples of continuous 
random variables include height, blood pressure, and amount of lead emis­
sions as these are usually measured. 

We define the probability of the occurrence of an outcome or interval of 
a random variable as its relative frequency in an infinite number of trials or 
in a population. A probability is a population parameter. An observed 
proportion (relative frequency) from a sample is a statistic which can be 
used to estimate a probability. We use the data in Table 5.1 to demonstrate 
the calculation of the probability of different racial categories in the United 
States in 1990. As shown in Table 5.1, in the U.S. population census there 
are four major racial groups and a fifth category that combines all other 
races. Hispanics are counted mostly in the White and Other categories. 

The probability of a person selected at random being white was 0.803 
(= 199,686,070/248,709,873), or 80.3 percent. The corresponding probabili­
ties of being African-American, American Indian, Asian, and other were 
0.121 (= 29,986,060/248,709,873), 0.008, 0.029, and 0.039, respectively. 
These five probabilities sum to 1.000, or 100.0 percent, as shown in Table 
5.1 (1). 

As probability is the number of occurrences of an outcome divided by 
the total number of occurrences of all possible outcomes of the variable 

Racial Composition of the 1990 U.S. Population 

Racial category 

White 
African-American 
American Indian, Eskimo, or Aleut 
Asian or Pacific Islander 
Other races 

Total population 

Number 

199,686,070 
29,986,060 

1,959,234 
7,273,662 
9,804,847 

248,709,873 

Percent 

80.3 
12.1 
0.8 
2.9 
3.9 

100.0 

Source: The 1990 Census of Population and Housing, the United 
States, STF1A (1). 



II. RULES FOR CALCULATING PROBABILITIES 95 

under study, this means that a probability cannot be larger than 1.00 or 100 
percent in value. By the same reasoning, a probability cannot be smaller 
than 0.00 or 0 percent in value. Therefore, the only valid values for proba­
bilities range from 0 to 1 or 0 to 100 percent. Additionally, use of the 
relative frequency definition means that the sum of the probabilities of all 
the possible outcomes of a random variable must be 1.00 or 100 percent. If a 
probability falls outside the range 0 to 1, or if the sum of the probabilities of 
all the possible outcomes of a variable do not sum to 1 (with allowance for 
rounding), a mistake has been made. 

For many variables in the health field, the probability of an outcome is 
estimated from a large number of observations and may change over time. 
For example, the probabilities of the different racial groups in the United 
States in 2000 will be different from the 1990 probabilities. As an additional 
example of changing probabilities, the estimates of the age-adjusted proba­
bilities of hypertension among U.S. adult males increased from 0.414 in 
1960-1962 to 0.440 in 1971-1974 to 0.453 in 1976-1980 (2). This change in 
the values of a probability contrasts with the lack of change in the probabil­
ities associated with physical phenomena such as tossing a coin or a pair of 
dice. For example, when a fair coin is tossed, the probability of a head is 
assumed to be 0.5 or 50 percent, and it does not change. 

The listing of the probabilities of all possible outcomes of a discrete 
variable is its probability distribution. For example, the probability distribu­
tion of the racial composition of the U.S. population in 1990 is shown in the 
last column of Table 5.1. More will be said about probability distributions 
and their use in the next chapter. 

II. RULES FOR CALCULATING PROBABILITIES 

A few basic rules govern the calculation of probabilities of compound out­
comes or events. We use the data in Table 5.2 to help us discover these 
rules. Entries in Table 5.2 (3) are the number of live births by birth weight 

H ^ ^ ^ S g E S I Number of Live Births by Trimester of First Prenatal Care and Birth 
Weight for Harris County, Texas, in 1986 [Excluding 1180 Births 
with Unknown Trimester or Birth Weight) 

Birth weight 

<5.5 lb « 2500 g 
5.6-7.7 lb « 2500-
>7.7 lb « 3500 g 

Total 

-3500 g 

First 

2,412 
20,274 
15,250 

37,936 

Trimester prenatal care began 

Second 

754 
5480 
3271 

9505 

Third 

141 
1458 
738 

2337 

No care 

234 
1014 
447 

1695 

Total 

3,541 
28,226 
19,706 

51,473 

Source: "The Health Status of Harris County Residents, 1980-1986," Table l.S (3). 
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and the trimester in which prenatal care was begun for women in Harris 
County, Texas in 1986. For example, the entry in the third row, second 
column, 3271, is the number of live births to women who had begun their 
prenatal care during their second trimester and whose babies' birth 
weights were greater than 7.7 lb. 

for Probabilities 

The data in Table 5.2 can be used to determine whether a relationship 
exists between the timing of the beginning of prenatal care and birth 
weight. Before examining this issue, however, let us calculate a few addi­
tional probabilities. For example, the probability of a woman in Harris 
County in 1986 having a low-birth-weight baby (less than or equal to 5.5 lb) 
was 0.069 (= 3541/51,473). This value is very close to the 1986 value 
of 0.068 for the United States (2). Let us now consider a slightly more com­
plex example. The probability of late prenatal (third trimester) or no 
prenatal care is simply the sum of their individual probabilities, that is, 
2337/51,473 + 1695/51,473, which is 0.078 (= 4032/51,473). This value is 
slightly greater than the corresponding 1986 U.S. value of 0.060 (2). In 
these calculations of probabilities, we are considering births in Harris 
County in 1986 as our population. If the intended population were Texas or 
the United States, then the above values would be sample estimates, that 
is, observed proportions, of the probabilities. A sample consisting of births 
in Harris County should not, however, be used to draw inferences about 
births in Texas or the United States because the Harris County births are 
likely not to be representative of either of these two larger units. 

So far, these probabilities have focused on row or column totals (mar­
ginal totals), not on the numbers in the interior of the table (cell entries). 
Entries in the interior of the table deal with the intersection of outcomes or 
events. For example, the outcome of a woman bearing a live infant weigh­
ing 5.5 lb or less and having begun her prenatal care during the first 
trimester is the intersection of those two individual outcomes. The proba­
bility of this intersection, that is, of these two outcomes occurring together, 
is easily found to be 0.047 (= 2412/51,473). 

Above we found the probability of a baby weighing 5.5 lb or less by 
using the row total of 3541 and dividing it by the grand total of 51,473. Note 
that we can also express this probability in terms of the probability of the 
intersection of a birth weight of 5.5 lb or less with each of the prenatal care 
levels, that is, 

Pr{<5.5 lb} = Pr{<5.5 lb & 1st trim.} + Pr{<5.5 lb & 2nd trim.} 
+ Pr{<5.5 lb & 3rd trim.} 4- Pr{<5.5 lb & no care} 
2412 754 141 234 = 3541 

51,473 51,473 51,473 + 51,473 51,473' 
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This can be expressed in symbols. Let A represent the outcome of a birth 
weight of 5.5 lb or less and Bif i = 1 to 4, represent the four prenatal care 
levels. Then we have 

Pr{A} = Pr{A and B1} + Pr{A and B2} + Pr{A and B3} + Pr{A and B4} 
which, using the summation symbol, is 

Pr{A} = 2 Pr{A and B,·}. 

Suppose now that we want to find, for a woman who had a live birth, 
the probability that either the birth weight was 5.5 lb or less or the woman 
began her prenatal care during the first trimester. It is tempting to add the 
two individual probabilities—of a birth weight of 5.5 lb or less and of 
prenatal care beginning during the first trimester—as we had done above. 
If, however, we added the entries in the first row (birth weights of 5.5 lb or 
less) to those in the first column (prenatal care begun, during the first 
trimester), the entry in the intersection of the first row and column would 
be included twice. Therefore, we have to subtract this intersection from the 
sum of the two individual probabilities to obtain the correct answer. The 
calculation is 

Pr{<5.5 lb or 1st trim.} = Pr{<5.5 lb} + Pr{lst trim.} 
- Pr{<5.5 lb and 1st trim.} 

_ 3541 + 37,936 - 2412 _ __Q 
" 5Ü73 " °·759· 

This can be succinctly stated in symbols. Let A represent the outcome 
of a live birth of 5.5 lb or less and B represent the outcome of the initiation 
of prenatal care during the first trimester. The intersection of these two 
outcomes is represented by A and B. In symbols, the rule is 

Pr{A or B} = Pr{A} + Pr{B} - Pr{A and B}. 

This rule also was used in the earlier example of late or no prenatal care, 
but, in that case, the outcomes were disjoint; that is, there was no overlap 
or intersection. Hence the probability of the intersection was zero. 

As the sum of the probabilities of all possible outcomes is one, if there 
are only two outcomes, say A and not A (represented by A), we also have 
the following relationship: 

Pr{A} = 1 - Pr{X} 

B. Conditional Probabilities 

Suppose we change the wording slightly in the above example. We now 
want to find the probability of a woman bearing a live infant weighing 5.5 
lb or less (event A) conditional on or given that her prenatal care was begun 
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during the first trimester (event B). The word conditional limits our view in 
that we now focus on the 37,936 women who began their prenatal care 
during the first trimester. Thus, the probability of a woman bearing a live 
infant weighing 5.5 lb or less, given that she began her prenatal care during 
the first trimester, is 0.064 (= 2412/37,936). Dividing both the numerator 
and denominator of this calculation by 51,473 (the total number of women) 
does not change the value of 0.064, but it allows us to define this conditional 
probability (the probability of A conditional on the occurrence of B) in terms 
of other probabilities. The numerator divided by the total number of 
women (2412/51,473) is the probability of the intersection of A and B, and 
the denominator divided by the total number of women (37,936/51,473) is 
the probability of B. In symbols, this is expressed as 

where Pr{A | B} represents the probability of A given that B has occurred. 
Conditional probabilities often are of greater interest than the uncondi­

tional probabilities we have been dealing with as will be shown below. 
Before doing that, note that we can use the conditional probability formula 
to find the probability of the intersection, that is, 

Pr{A and B} = Pr{A | B} * Pr{B}. 

Thus, if we know the probability of A conditional on the occurrence of B, 
and we also know the probability of B, we can find the probability of the 
intersection of A and B. Note that we can also express the probability of the 
intersection as 

Pr{A and B} = Pr{B | A} * Pr{A}. 

Table 5.3 repeats the data from Table 5.2 along with three different sets 
of probabilities. The first set of probabilities is conditional on the birth 
weight; that is, it uses the row totals as the denominators in the calcula­
tions. The second set is conditional on the trimester that prenatal care was 
begun; that is, it uses the column totals in the denominator. The third set of 
probabilities is the unconditional set, that is, those based on the total of 
51,473 live births. The probabilities in the Total column are the probabilities 
of the different birth weight categories, that is, the probability distribution 
of the birth weight variable, and those beneath the Total row are the 
probabilities of the different trimester categories, that is, the probability 
distribution of the prenatal care variable. As mentioned above, these prob­
abilities are based on the population of births in Harris County, Texas in 
1986. 

Let us consider the entries in the row 1, column 1 cell. The first two 
entries below the frequency of the cell are conditional probabilities. The 
value 0.681 (= 2412/3541) is the probability based on the row total, that is, 
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Number and Probabilities of Live Births by Trimester of First Prenatal 
Care and Birth Weight for Harris County, Texas, in 1986 (Excluding 
1180 Births with Unknown Trimester or Birth Weight) 

Birth weight 

<5.5 lb - 2500 g 

5.6-7.7 lb « 2500-3500 g 

>7.7 lb ^ 3500 g 

Total 

Re 

C 

u 

R 
C 

u 

R 
C 

u 

R 

Trimester prenatal care 

First 

2,412 
0.681 
0.064 
0.047 

20,274 
0.718 
0.534 
0.394 

15,250 
0.774 
0.402 
0.296 

37,936 
0.737 

Second 

754 
0.213 
0.079 
0.015 

5480 
0.194 
0.577 
0.106 

3271 
0.166 
0.344 
0.064 

9505 
0.185 

Third 

141 
0.040 
0.060 
0.003 

1458 
0.052 
0.624 
0.028 

738 
0.037 
0.316 
0.014 

2337 
0.045 

began 

No care 

234 
0.066 
0.138 
0.005 

1014 
0.036 
0.598 
0.020 

447 
0.023 
0.264 
0.009 

1695 
0.033 

Total 

3,541 

0.069 

28,226 

0.548 

19,706 

0.383 

51,473 
1.000 

a R, row; C, column; and U, unconditional. 

the probability of a woman having begun her prenatal care during the first 
trimester given that the baby's birth weight was 5.5 lb or less. The value 
0.064 (= 2412/37,936) is the probability based on the column total, that is, 
the probability of a birth weight of 5.5 lb or less given that the woman had 
begun her prenatal care during the first trimester. The last value, 0.047 
(= 2412/51,473), is the unconditional probability; it is based on the grand 
total of 51,473 live births. It is the probability of the intersection of a birth 
weight of 5.5 lb or less with prenatal care having been begun during the 
first trimester. 

As Table 5.3 shows, at least three different probabilities, or observed 
proportions if the data are a sample, can be calculated for the entries in the 
two-way table. The choice of which probability (row, column, or uncondi­
tional) to use depends on the purpose of the investigation. In this case, the 
data may have been tabulated to determine whether or not the timing of 
the initiation of the prenatal care had any effect on the birth weight of the 
infant. If this is the purpose of the study, the column-based probabilities 
may be the more appropriate to use and report. The column-based calcula­
tions give the probabilities of the different birth weight categories condi­
tional on when the prenatal care was begun. The row-based calculations 
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give the probability of trimester prenatal care being initiated given the birth 
weight category; however, these row-based probabilities are of no interest 
because birth weight cannot affect the timing of prenatal care. The uncon­
ditional probabilities are less informative in this situation as they also re­
flect the row and column totals. For example, compare the unconditional 
probabilities in the first and third columns in the first row: 0.047 and 0.003. 
Even though we have seen that there is little difference in the correspond­
ing column-based probabilities of 0.064 and 0.060, these unconditional 
values are very different. The value of 0.047 is larger mainly because there 
are 37,936 live births in the first column compared with only 2337 live 
births in the third column. The unconditional probabilities may, however, 
be useful in planning and allocating resources for maternal and child 
health services programs. 

Using the column-based values, women who began their prenatal care 
during the first trimester had a probability of bearing a low-birth-weight 
baby of 0.064. This value is compared to 0.079, the probability of bearing a 
low-birth-weight baby for those who began their prenatal care during their 
second trimester, to 0.060 for those who began their prenatal care during 
the third trimester, and to 0.138 for those who received no prenatal care. 
There is little difference in the probabilities of bearing a low-birth-weight 
baby among women who received prenatal care; however, the probability 
of bearing a low-birth-weight baby is about twice as large for women who 
received no prenatal care compared with women who received prenatal 
care. The effect of prenatal care is most clearly evident in the probability of 
bearing a baby weighing more than 7.7 lb. In this category, the probabili­
ties are 0.402, 0.344, 0.316, and 0.264 for the first, second, third trimesters, 
and no prenatal care, respectively. 

Based on the trend in the probabilities of a birth weight greater than 7.7 
lb, one might conclude that there is an effect of prenatal care. To do so, 
however, is inappropriate without further information. First, although 
these births can be viewed as constituting a population, that is, all the live 
births in Harris County in 1986, they could also be viewed as a sample in 
time, one year selected from many, or in place, one county selected from 
many. From the perspective that these births are a sample, there is sam­
pling variation to be taken into account and this is covered in Chapter 11. 
Second, and more important, these data do not represent a true experi­
ment. Chapter 8 presents more on experiments but, briefly, the women 
were not randomly assigned to the different prenatal care groups, that is, 
to the first, second, or third trimester groups or to the no prenatal care 
group. Thus the women in these groups may differ on variables related to 
birth weight, for example, smoking habits, amount of weight gained, and 
dietary behavior. Without further examination of these other factors, it is 
wrong to conclude that the variation in the probabilities of birth weights is 
due to the time when prenatal care was begun. 
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E* Probabilities of Birth Weight Level Conditional on Trimester of First 
Prenatal Care for Harris County, Texas, in 198B (Excluding 1180 
Births with Unknown Trimester or Birth Weight) 

Birth weight 

<5.5 lb « 2500 g 
5.6-7.7 l b - 2 5 0 0 - 3 5 0 0 g 
>7.7 lb ^ 3500 g 

Total 

First 

0.064 
0.534 
0.402 

1.000 

Trimester prenatal care 1 

Second 

0.079 
0.577 
0.344 

1.000 

Third 

0.060 
0.624 
0.316 

1.000 

began 

No care 

0.138 
0.598 
0.264 

1.000 

Total 

0.069 
0.548 
0.383 

1.000 

C.Independent Events 
Suppose that we were satisfied that there were no additional factors of 
interest in the examination of prenatal care and birth weight. Only the data 
in Table 5.2 were to be used to determine whether or not there was a 
relationship between when prenatal care was initiated and birth weight. 
Table 5.4 shows the column-based probabilities, that is, those conditional 
on which trimester care was begun or whether care was received, and 
these are the probabilities to be used in the study. 

If there is no relationship between the prenatal care variable and the 
birth weight variable, that is, these two variables are independent, what 
values should the column-based probabilities have? If these variables are 
independent, this means that the birth weight probability distribution is the 
same in each of the columns. The last column in Table 5.4 gives the birth 
weight probability distribution, and this is the distribution that will be in 
each of the columns if the birth weight and prenatal care variables are 
independent. Table 5.5 shows the birth weight probability distribution for 
the situation when these two variables are independent. 

Probabilities Conditional on Trimester under the Assumption of 
Independence of Birth Weight Level and Trimester of First Prenatal 
Care for Harris County, Texas, in 1986 [Excluding 1180 Births with 
Unknown Trimester or Birth Weight] 

Birth weight 

<5.5 lb ~ 2500 g 
5.6-7.7 lb * 2500-3500 g 
>7.7 lb ^ 3 5 0 0 g 

First 

0.069 
0.548 
0.383 

Trimester prenatal care 

Second 

0.069 
0.548 
0.383 

Third 

0.069 
0.548 
0.383 

began 

No care 

0.069 
0.548 
0.383 

Total 

0.069 
0.548 
0.383 

Total 1.000 1.000 1.000 1.000 1.000 
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The entries in Table 5.5 are conditional probabilities, for example, of a 
birth weight of 5.5 lb or less (A) given that prenatal care began during the 
first trimester (B) under the assumption of independence. Hence, under 
the assumption of independence of A and B, the probability of A given B is 
equal to the probability of A. In symbols, this is 

Pr{A | B} = Pr{A} 

when A and B are independent. Combining this formula with the formula 
for the probability of the intersection, that is, 

Pr{A and B} = Pr{A | B} * Pr{B} 

yields 

Pr{A and B} = Pr{A} * Pr{B} 

when A and B are independent. 
When considering diseases, it is unlikely that the disease status of one 

person is independent of that of another person for many infectious dis­
eases; however, it is likely that the disease status of one person is indepen­
dent of that of another for many chronic diseases. For example, let π be the 
probability that a person has Alzheimer's disease. One person's Alzheimer 
status should be independent of another's status. Therefore, the probabil­
ity of persons A and B both having Alzheimer's disease is the product of 
the probabilities of either having the disease, that is, Pr{A and B} = π * π. 

Establishing the dependence (a relationship exists) or independence 
(no relationship) of variables is what much of health research is about. For 
example, in the disease context, Is disease status related to some variable? 
If there is a relationship (dependency), the variable is said to be a risk factor 
for the disease. The identification of risk factors leads to strategies for 
preventing or reducing the occurrence of the disease. 

Some additional uses of conditional probabilities and the concept of 
independence are introduced in the next section. 

III. DEFINITIONS FROM EPIDEMIOLOGY 

Many quantities used in epidemiology are defined in terms of probabilities, 
particularly conditional probabilities. Several of these useful quantities are 
defined in this section and used in the next section to illustrate Bayes' rule. 

A. Prevalence and Incidence 

Prevalence of a disease is the probability of having the disease. It is the 
number of people with the disease divided by the number of people in the 
population. The observed proportion of those with the disease in a sample 
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is the sample estimate of prevalence. When the midyear population is used 
for the denominator, it is possible that the numerator contains persons 
not included in the denominator. For example, persons with the disease 
that move into the area in the second half of the year are not counted 
in the denominator, but they are counted in the numerator. When preva­
lence or other quantities use midperiod population values, they are not 
really probabilities or proportions, although this distinction usually is 
unimportant. 

Incidence of a disease is the probability that a person without the dis­
ease will develop the disease during some specified interval of time. It is 
the number of new cases of the disease that occur during the specified time 
interval divided by the number of people in the population who do not 
already have the disease. 

Prevalence provides an idea of the current magnitude of the disease 
problem and incidence informs as to whether the disease problem is get­
ting worse or not. 

Data on AIDS from Harris County excluding Houston will be used to 
demonstrate the calculation of prevalence and incidence. In 1986, the pop­
ulation of Harris County excluding Houston was estimated to be 1,004,947. 
According to Table 8.6 in "The Health Status of Harris County Residents" 
(3), 132 cases of AIDS had been reported to the Harris County Health 
Department by the end of 1986, and of those, 79 were diagnosed in 1986. 
There is no information on the number of individuals who had died from 
AIDS, but we shall assume that 60 percent of those diagnosed prior to 1986 
had died by the end of 1986. Thus, of the 132 reported cases, we are 
assuming that 32 individuals [= 0.60 * (132-79)] had died, leaving 100 
persons with AIDS at the end of 1986. 

The prevalence of AIDS at the end of 1986 then was 0.0000995 (= 100/ 
1,004,947). Prevalence and incidence are often converted to rates, for exam­
ple, the number of cases per 1000 or 100,000 population. In this case, the 
prevalence rate is 9.95 cases per 100,000 population. The incidence is the 
probability of new cases during some period. We shall calculate the inci­
dence for 1986. There were 79 new cases diagnosed in 1986; the eligible 
population is the number of people without the disease. Therefore the 
eligible population is 1,004,947 minus the number of people who had AIDS 
prior to 1986. There were 53 cases diagnosed prior to 1986, and of these, 
some had already died prior to 1986. We shall assume that 30 percent of 
these individuals had died prior to 1986; that is, 16 individuals are assumed 
to have died prior to 1986. Therefore we must subtract 37 (= 53 - 16) from 
1,004,947 in the denominator of the incidence calculation. The 1986 inci­
dence of AIDS in Harris County excluding Houston was 0.0000716 (= 72/ 
1,004,910), or 7.16 cases per 100,000 population. The incidence is almost as 
large as the prevalence, suggesting that the disease problem is worsening. 
In this situation, the subtraction of the number of cases from the denomi-
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nator had little practical importance; however, it must be done and can be 
important in many other situations. 

B. Sensitivity, Specificity, and Predicted Value Positive 
and Negative 

Laboratory test results are part of the diagnostic process for determining if 
a patient has some disease. Unfortunately in many cases, a positive test 
result, that is, the existence of an unusual value, does not guarantee that a 
patient has the disease. Nor does a negative test result, the existence of a 
typical value, guarantee the absence of the disease. To provide some infor­
mation on the accuracy of testing procedures, their developers use two 
conditional probabilities, sensitivity and specificity. 

The sensitivity of a test (symptom) is the probability that there was a 
positive result (the symptom was present) given that the person has the 
disease. The specificity of a test (symptom) is the probability that there was 
a negative result (the symptom was absent) given that the person does not 
have the disease. Note that one minus sensitivity is the false-negative rate 
and one minus specificity is the false-positive rate. Thus, large values of 
sensitivity and specificity imply small false-negative and false-positive 
rates. 

Sensitivity and specificity are probabilities of the test result conditional 
on the disease status. These are values that the developer of the test has 
estimated during extensive testing in hospitals and clinics. As a potential 
patient, however, we are more interested in the probability of disease 
status conditional on the test result. Names given to two conditional proba­
bilities that address the patient's concern are predicted value positive and 
predicted value negative. Predicted value positive is the probability of disease 
given a positive test result, and predicted value negative is the probability of 
no disease given a negative test result. 

These four quantities can be expressed succinctly in symbols. Let T+ 

represent a positive test result and T~ represent a negative result. The 
presence of disease is indicated by D+ and its absence is indicated by D". 
These four quantities can be expressed as conditional probabilities: 

Sensitivity Pr{T+ | D+} 
Specificity Fr{T~ | D^} 
Predicted value positive Pr{D+ | T+} 
Predicted value negative Pr{D~ \ T~} 

All four of these probabilities should be large for a screening test to be 
useful to the screener and to the screenee. Discussions of these and related 
issues are plentiful in the epidemiological literature (4). 

It is possible to estimate these probabilities. One way is to select a large 
sample of the population and subject the sample to a screening or diagnos­
tic test as well as to a standard clinical evaluation. The standard clinical 
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Disease Status by Test Results for a Large Sample from 
the Population 

Disease 
status 

Presence 
Absence 

Total 

Test result 

Positive 

a 
c 

a + c 

Negative 

b 
d 

b + d 

Total 

a + b 
c + d 

a + b + c + d 

evaluation is assumed to provide the true disease status. Then the sample 
persons can be classified into one of the four cells in the 2 x 2 table shown 
below. For example, hypertension status is first screened by the sphygmo-
manometer in the community and by a comprehensive clinical evaluation 
in the clinic; or persons are screened for mental disorders first by the DIS 
(Diagnostic Interview Schedule) and then by a comprehensive psychiatric 
evaluation. The results from a two-stage diagnostic procedure would look 
like Table 5.6. Sensitivity is estimated by al (a + b), specificity is estimated 
by d/(c + d), predicted value positive is estimated by al {a + c), and pre­
dicted value negative is estimated by d/(b + d). Similarly, the false-positive 
rate is estimated by c/(a + c) and the false-negative rate by b/(b + d). 

For many diseases of interest, the prevalence is so low that there would 
be few persons with the disease in the sample. This means that the esti­
mates of sensitivity and the predicted value positive would be problematic. 
Therefore, some alternate sample design must be used to estimate these 
conditional probabilities. When a large number of people are screened by a 
test in a community and a sample of persons with positive test results and 
those with negative test results are subjected to clinical evaluations, the 
predicted value positive and the predicted value negative can be directly 
calculated from the results of clinical evaluations, and sensitivity and speci­
ficity can be indirectly estimated. Conversely, when sensitivity and speci­
ficity are directly estimated by applying the test to persons with the disease 
and persons without the disease in the clinic setting, the predicted value 
positive and the predicted value negative can be indirectly estimated if the 
prevalence rate of disease is known. These indirect estimation procedures 
are explained in the next section. 

IV. BAYES1 THEOREM 

We wish to find the predicted value positive and predicted value negative 
using the known values for disease prevalence, sensitivity and specificity. 
Let us focus on predicted value positive, that is, Pr{D+ | T+}, and see how 
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it can be expressed in terms of sensitivity, Pr{T+ | D+}, specificity, 
Pr{T~ | D"}, and disease prevalence, Pr{D+}. 

We begin with the definition of the predicted value positive, which is 

Recall that the probability of the intersection of D+ and T+ can also be 
expressed as 

Pr{D+ and T+} = Pr{T+ | D+} * Pr{D+}. 

On substitution of this expression for the probability of the intersection in 
(1), we have 

wm-ww;™ (2) 
which shows that predicted value positive can be obtained by dividing the 
product of sensitivity and prevalence by Pr{T+}. 

Recall that the probability of an event can be expressed as the sum of 
the probabilities of the intersection of that event with all possible outcomes 
of another variable, that is, 

Pr{A} = Σ P r M a n d Bil 
i 

By use of the relationship between the probability of the intersection and 
conditional probabilities, this in turn can be reexpressed as 

?r{A} = Σ Pr{A | Bf} * Pr{B,}. 

We use this formula to reexpress the probability of a positive test result. T+ 

is substituted for A, D+ replaces Βχ, and D" replaces B2 in this formula, and 
this gives 

Pr{T+} = Pr{T+ | D+} * Pr{D+} + Pr{T+ | D"} * Pr{D"}. 

The first component in this sum is the product of sensitivity and disease 
prevalence and the second component is the product of (1 - specificity) 
and (1 - disease prevalence). Therefore, predicted value positive (PVP) is 

p v p = Pr{7+ 1 P+} * Pr{P+} 
Pr{T+ | D+} * Pr{D+} + Pr{T+ | D~} * Pr{D"}* 

Predicted value negative (PVN) follows immediately: 

Pr{T- | D-} * Pr{D-} 
PVN = Pr{T" | D-} * Pr{D"} + Pr{T" | D+} * Pr{D+}' 
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These two formulas are special cases of the theorem discovered by Rever­
end Thomas Bayes (1702-1761). In terms of the events A and B,·, Bayes' 
theorem is 

FrftlA}- Pr{A ' Βί}* Pr{Bi} 
Σ Pr{A | B,} * Pr{B,}' 

i 

As an example, consider the use of the count of blood vessels in breast 
tumors. A high density of blood vessels indicates a patient who is at high 
risk of having cancer spread to other organs (5). The use of the count of 
blood vessels appears to be worthwhile in women with very small tumors 
and no lymph node involvement, the node-negative case. Suppose that 
during the development stage of this procedure, its sensitivity was esti­
mated to be 0.85; that is, of the women who had cancer spread to other 
organs, 85 percent had a high count of blood vessels in their breast tumors. 
The specificity of the test was estimated to be 0.90; that is, of the women for 
whom there was no spread of cancer, 90 percent had a low count of blood 
vessels in their tumors. Assume that the prevalence of cancer spread from 
breast cancers is 0.02. Given these assumed values, what is the predicted 
value positive (PVP) of counting the number of blood vessels in the small 
tumors? 

Use the formula from above: 

prevalence x sensitivity 
[prevalence x sensitivity] + [(1 - prevalence) x (1 - specificity)] 

= (0.02 * 0.85)/[(0.02 * 0.85) + (1 - 0.02) * (1 - 0.90)] 

= 0.017/0.115 = 0.148. 
Using the assumed values above for sensitivity, specificity, and preva­
lence, there is approximately a 15 percent chance of having cancer spread 
from a small breast tumor given a high density of blood vessels in the 
tumor. This value may be too low for the test to be useful. If the true values 
for specificity or prevalence are higher than the values assumed above, 
then the PVP will also be higher. For example, if the prevalence is 0.04 
instead of 0.02, then the PVP is 0.262 instead of 0.148. 

V. PROBABILITY IN SAMPLING 

One probability-related issue in sampling alluded to in Chapter 3 is reex-
amined here using conditional probability. Simple random sampling was 
presented as giving all the units in the population the same chance of being 
selected into the sample. The equal probability of selection is clear in sam­
pling with replacement as the total number of units in the population 
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remains constant during the sampling. In sampling without replacement, 
however, once a subject is selected, it is removed from the population, and 
the number of units in the population is decreased by one unit. Does this 
decrease in the denominator as a unit is selected invalidate the equal prob­
ability of selection for subsequent units? The following example addresses 
this matter. 

Suppose that a class has 30 students and a SRS of 5 students is to be 
selected without allowing duplicate selections. The probability of selection 
for the first draw will be 1/30 and that for the student selected second will 
be 1/29, as one student was already selected. This line of thinking seems to 
suggest that random sampling without replacement is not an equal proba­
bility sampling model. Is anything wrong in our thinking? 

We have to realize that the selection probability of 1/29 for the second 
draw is a conditional probability. The student selected in the second draw 
is available for selection only if the student were not selected in the first 
draw. The probability of not being selected in the first draw is 29/30. Thus, 
the event of being selected during the second draw is the intersection of 
the events of not being selected during the first draw (B) and being se­
lected during the second draw (A). Using the rule for the probability of the 
intersection, that is, Pr{A and B} = Pr{A | B} * Pr{B}, the probability of this 
intersection is (1/29) * (29/30), which yields 1/30. The same argument can 
be made for subsequent draws as is shown in Table 5.7. 

The demonstration in Table 5.7 indicates that the probability of being 
selected in any draw is 1/30 and hence the equal probability of selection 
also holds for sampling without replacement. Now we can state that the 
probability for a particular student to be included in the sample will be 
5/30, as the student can be drawn in any one of the five draws. In general, a 
SRS of size n from a population of size N will give a selection probability of 
n/N to each unit of the population, regardless whether sampling is done 
with replacement or without replacement. 

The selection probability in a SRS without replacement can be exam­
ined by considering all possible samples that can be drawn. Consider a 
situation where a SRS of size 3 is drawn without replacement from a 

Calculation of Inclusion Probabilities in Drawing a SRS of 5 from 30 
without Replacement 

Conditional Probability not selected 
Order probability in previous draws Product of 
of draw (1) (2) (1) and (2) 

1 
2 
3 
4 
5 

1/30 
1/29 
1/28 
1/27 
1/26 

1 
29/30 
(29/30)(28/29) = 28/30 
(29/30)(28/29)(27/28) = 27/30 
(29/30)(28/29)(27/28)(26/27) = 26/30 

1/30 
1/30 
1/30 
1/30 
1/30 
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population containing 5 units (labeled as A, B, C, D, and E). There are 10 
possible ways of selecting a sample of 3 as listed below. As we used a 
random selection mechanism, any one of the 10 possible samples is equally 
likely to be chosen with a probability of 1/10. 

Elements in the population 

Sample A B C D E 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

ABC 
ABD 
ABE 
ACD 
ACE 
ADE 
BCD 
BCE 
BDE 
CDE 

From the above configuration, we can easily see that each element of the 
universe is represented in 6 of the 10 possible samples, suggesting that the 
probability of a particular element being selected into any sample will be 
6/10, which is consistent with n/N = 3/5. The statement that each of the 
possible samples is equally likely implies that each unit in the population 
has the same probability of being included in the sample. 

VI. ESTIMATING PROBABILITIES BY SIMULATION 

Our approach to finding probabilities has been to enumerate all possible 
outcomes and to base calculation of probabilities on this enumeration. This 
approach works well with simple phenomena, but it is difficult to use with 
complex events. Another way of assessing probabilities is to simulate the 
random phenomenon by using repeated sampling. With the wide avail­
ability of microcomputers, the simulation approach has become a powerful 
tool to approach many statistical problems. 

For example, consider the following question. How likely is it that two 
students in a class of 30 will share the same birthday? The answer is not 
immediately apparent, but the chance does not appear to be very high. Let 
us find an answer by simulation. First, we assume that the birthdays of 30 
students are independent. Second, any of the 365 dates, ignoring February 
29th, is equally likely to be a student's birthday. This situation is then 
equivalent to selecting a random sample of 30 dates from the 365 days 
using the sampling with replacement procedure. As described in Chapter 
3, we can use the random number table in Appendix B. For example, we 
can read 30 three-digit numbers between 1 and 365 from the table and 
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check to see if any duplicate numbers are selected. We can repeat the 
operation many times and see how many of the trials produced duplicates. 
As this manual simulation would require considerable time, we can use 
MINITAB as shown in Box 5.1. Table 5.8 shows the results of the MINITAB 
simulation. Eight of these ten trials have duplicates, which suggests that 
there is a 80 percent probability of finding at least one common birthday 
among 30 students. Not shown are the results of 10 additional trials in 
which 5 of the 10 had duplicates. Combining these two sets of 10 trials, the 
probability of finding common birthdays among 30 students is estimated to 
be 65 percent [= (8 + 5)/20]. As we increase the number of trials, the 
estimated probability should approach the true value of 70.6 percent. 

Let us consider another example. Population and family planning pro­
gram planners in Asian countries have been dealing with the effects of the 
preference for a son on population growth. If all couples continue to have 
children until they have two sons, what is the average number of children 
they would have? To build a probability model for this situation, we as­
sume that genders of successive children are independent and the chance 
of a son is 1/2. To simulate the number of children a couple has, we select 
single digits from the random number table, considering odd numbers as 
boys and even numbers as girls. Random numbers are read until the sec­
ond odd number is encountered, and the number of values required to 
obtain two odd values is noted. Table 5.9 shows the results for 20 trials 

A set of sequential numbers 1 through 365 is entered into cl and a sample of 30 
numbers are randomly selected with replacement from cl and stored in ell. To 
check for duplicates, the results were sorted in an ascending order. This operation 
is repeated 10 times and the results are stored in cll-c20. The results are printed as 
shown in Table 5.8. 
MTB > set cl 
DATA> 1:365 
DATA> end 
MTB > sample 30 cl ell; 
SUBO replace. 
MTB > sort ell ell 
MTB > sample 30 cl cl2; 
SUBO replace. 
MTB > sort cl2 cl2 

MTB > sample 30 cl c20; 
SUBO replace. 
MTB > sort c20 c20. 
MTB > print cll-c20 



Simulation via MINITAB to Find the Probability of Common Birthdays 
among 30 Students 

Row 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Cll 

4 
10 
21 
47 
48 
64 
65 
78 
93 
95 
101 
115 
154 
165 
167 
185 
193 
220 
232 
242 
257 
282 
284 
285 
288 
299 
309 
346 
347 
357 

C12 

2 
30 
46 
67 
97 
100 
105 
106 
106 
109 
133 
140 
145 
158 
191 
209* 
209* 
220 
223 
229 
241 
249 
268 
286 
317 
323 
335* 
335* 
336 
356 

C13 

3 
10* 
10* 
15 
23 
26 
35 
41 
53 
73 
78 
86 
87 
163 
166 
176 
186 
200 
209 
220 
251 
260 
264 
265 
283 
295 
297 
300 
352 
355 

C14 

44 
52 
72 
85 
106 
116 
120 
123 
132 
143 
151 
180 
181 
188 
208 
231 
248 
249 
255 
259* 
259* 
267 
270 
285 
286 
288 
296 
310 
327 
352 

C15 

8 
21 
24 
76 
91 
100 
113 
124 
143* 
143* 
147 
150 
155 
166 
172 
200 
205 
241 
243 
248 
250 
263 
281 
283 
307 
310 
311 
326 
335 
336 

C16 

3 
4 
22 
23 
27 
42 
57 
64 
72 
104 
107 
119 
132 
152 
167 
210 
229 
230 
233 
236 
253 
307 
321 
326 
327 
334 
336 
343* 
343* 
362 

C17 

7 
47 
48 
54 
80 
82 
93 
119 
123 
137 
138 
140 
162 
179 
185 
191 
199 
203 
213 
232 
238 
252 
259 
267 
272 
287 
295 
308 
313 
363 

C18 

5 
7 
7 
18 
23 
37 
54 
59 
64 
89 
109 
120 
138 
143 
173 
201 
209* 
209* 
215 
223 
224 
231 
239 
259 
274 
335 
342 
352 
357 
358 

C19 

8 
18 
27 
45 
50 
66 
90 
91 
94 
97 
104 
132 
149 
153 
180 
187 
188 
189 
193 
196 
242 
250 
324 
333 
338 
354 
360* 
360* 
360* 
360* 

C20 

12 
19 
31 
48 
65 
80 
82 
103 
116 
169 
175 
182 
193 
195 
208 
217 
247 
249 
261 
262* 
262* 
305 
307 
309 
321 
326 
328 
330 
347 
356 

Simulation of Childbearing until the Second Son Is Born 

Trial Digits 
Number 
of digits Trial Digits 

Number 
of digits 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

19 
2239 
503 
4057 
56287 
13 
96409 
125 
31 
425448285 

2 
4 
3 
4 
5 
2 
5 
3 
2 
9 

Average = 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Total 
= 85/20 = 4.25 

37 
367 
6471 
509 
940001 
927 
277 
544264882425 
3629 
045467 

2 
3 
4 
3 
6 
3 
3 

12 
4 
6 

85 
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(couples). The average number of children based on this very small simula­
tion is estimated to be 4.25 (= 85/20). Additional trials would provide an 
estimate closer to the true value of 4 children. 

VII. PROBABILITY AND THE LIFE TABLE 

Perhaps the oldest probability model that has been applied to a problem 
related to health is the life table. The basic idea was conceived by John 
Graunt (1620-1674) and the first life table, published in 1693, was con­
structed by Edmund Halley (1656-1742). Later Daniel Bernoulli (1700-
1782) extended the model to determine how many years would be added to 
the average life span if small pox were eliminated as a cause of death. Now 
the life table is used in a variety of fields, for example, in life insurance 
calculations, in clinical research, and in the analysis of processes involving 
attrition, aging, and wearing out of industrial products. 

We present the life table here to show an additional application of the 
probability rules described above. Table 5.10 is the abridged life table for 
the total U.S. population in 1990 (6). It is based on information from all 
death certificates filed in the 50 states and the District of Columbia. It is 
called an abridged life table because it uses age groupings instead of single 
years of age. Other types of life tables are available from the National 
Center for Health Statistics. A brief history and sources for life tables for 
the United States can be found in Appendix C. 

One use of the life table is to summarize the life experience of the 
population. A direct way of creating a life table is to follow a large cohort, 
say 100,000 infants born on the same day, until the last member of this 
cohort dies. For each person, the exact length of life can be obtained by 
counting the number of days elapsed from the date of birth. This yields 
100,000 observations of the length of life. The random variable is the length 
of life in years or even in days. We can display the distribution of this 
random variable and calculate the mean, median, first and third quartiles, 
and minimum and maximum. As most people die at older ages, we expect 
that the distribution is skewed to the left and hence the median length of 
life is larger than the mean length of life. The mean length of life is the life 
expectancy. We can tabulate the data using the following age intervals: 0-
1, 1-5, 5-10, 10-15, . . . , 80-85, and 85 or over. All the intervals are the 
same length, 5 years, except for the first two and the last interval. The first 
interval is of a special interest, as quite a few infants die. From this tabula­
tion, we can also calculate the relative frequency distribution by dividing 
the frequencies by 100,000. These relative frequencies give the probability 
of dying in each age interval. This probability distribution can be used to 
answer many practical questions regarding life expectancy. For instance, 
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Abridged Life Table for the Total U.S. Population, 1990 

Age interval 

Period of life 
between two 
exact ages 
stated in years 
(1) 

x to x + n 

0-1 
1-5 
5-10 

10-15 
15-20 
20-25 
25-30 
30-35 
35-40 
40-45 
45-50 
50-55 
55-60 
60-65 
65-70 
70-75 
75-80 
80-85 
s*85 

Proportion 
dying 

Proportion of 
persons alive 
at beginning 
of age interval 
dying during 
interval (2) 

ηβχ 

0.0093 
0.0018 
0.0011 
0.0013 
0.0044 
0.0055 
0.0062 
0.0077 
0.0099 
0.0126 
0.0187 
0.0290 
0.0457 
0.0706 
0.1029 
0.1519 
0.2211 
0.3239 
1.0000 

Of 100,000 born alive 

Number living 
at beginning 
of age interval 
(3) 

h 

100,000 
99,073 
98,890 
98,780 
98,653 
98,223 
97,684 
97,077 
96,334 
95,382 
94,179 
92,420 
89,735 
85,634 
79,590 
71,404 
60,557 
47,168 
31,892 

Number dying 
during age 
interval (4) 

rAx 

927 
183 
110 
127 
430 
539 
607 
743 
952 

1,203 
1,759 
2,685 
4,101 
6,044 
8,186 

10,847 
13,389 
15,276 
31,892 

Stationary population 

In the age 
interval (5) 

n'-'x 

99,210 
395,863 
494,150 
493,654 
492,290 
489,794 
486,901 
483,571 
479,425 
474,117 
466,820 
455,809 
439,012 
413,879 
378,369 
330,846 
270,129 
197,857 
193,523 

In this and all 
subsequent 
age intervals 
(6) 

Tx 

7,535,219 
7,436,009. 
7,040,146 
6,545,996 
6,052,342 
5,560,052 
5,070,258 
4,583,357 
4,099,786 
3,620,361 
3,146,244 
2,679,424 
2,223,615 
1,784,603 
1,370,724 

992,355 
661,509 
391,380 
193,523 

Average 
remaining 
lifetime 

Average 
number of 
years of life 
remaining at 
beginning of 
age interval 
(7) 

ex 

75.4 
75.1 
71.2 
66.3 
61.3 
56.6 
51.9 
47.2 
42.6 
38.0 
33.4 
29.0 
24.8 
20.8 
17.2 
13.9 
10.9 
8.3 
6.1 

Source: National Center for Health Statistics (6). 

what is a 20-year-old person's probability of surviving to the retirement age 
of 65? 

Acquiring such data poses a problem, however. It would take more 
than 100 years to collect. Moreover, information obtained from such data 
may be of some historical interest, but are not useful in answering current 
life expectancy questions, as current life expectancy may be different from 
that of earlier times. To solve this problem, we have to find ways to use 
current mortality information to construct a life table. The logical current 
mortality data for this purpose are the age-specific death rates. For the time 
being, we assume that age-specific death rates measure the probability of 
dying in each age interval. Note that these rates are conditional probabili-
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ties. The death rate for the age group 5 to 10 years is computed on the 
condition that its members survived the previous age intervals. 

As studied in Chapter 4, the age-specific death rate is calculated by 
dividing the number of deaths in a particular age group by the midyear 
population in that age group. This is not exactly a proportion, whereas a 
probability is. Therefore the first step in constructing a life table is to 
convert the age-specific death rates to the form of a probability. One possi­
ble conversion is based on the assumption that the deaths were occurring 
evenly throughout the interval. Under this assumption, we expect that 
one-half of the deaths occurred during the first half of the interval. Thus, 
the number of persons at the beginning of an interval is the sum of the 
midyear population and one-half of the deaths that occurred during the 
interval. Then the conditional probability of dying during the interval is 
the number of deaths divided by the number of persons at the beginning 
of the interval. Actual conversions use more complicated procedures for 
different age groups, but we are not concerned about these details. 

A. The First Four Columns in the Life Table 

With this background, we are now ready to examine Table 5.10. The first 
column shows the age intervals between two exact ages. For instance, 5-10 
indicates the 5-year interval between the fifth and tenth birthdays. This age 
grouping is slightly different from those of under 5, 5-9,10-14, and so on, 
used in the census publications. In the life table, age is considered as a 
continuous variable, whereas in the census, counting of people by age 
(ignoring the fractional year) is emphasized. 

The second column shows the proportion of the persons alive at the 
beginning of the interval who will die before reaching the end of the 
interval. It is labeled as nqx, where the first subscript on the left denotes 
the length of the interval and the second subscript on the right denotes the 
exact age at the beginning of the interval. The first entry in the second 
column, φ, is 0.0093, which is the probability of infants dying during the 
first year of life. The second entry is ^ι, which equals 0.0018. It is the 
conditional probability of dying during the interval between ages 1 and 5 
provided the child survived the first year of life. The rest of the entries in 
this column are conditional probabilities of dying in a given interval for 
those who survived the preceding intervals. These conditional probabili­
ties are estimated from the current age-specific death rates. Note that the 
last entry of column 2 is 1.0000, indicating everybody dies some time after 
age 85. 

Thus we have a series of conditional probabilities of dying. Given these 
conditional probabilities of dying, we can also find the conditional proba­
bilities of surviving. The probability of surviving the first year of life is 

1 - i?o = 1 - 0.0093 = 0.9907. 
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Likewise, the conditional probability of surviving the interval between 
exact ages 1 and 5, provided the infants had survived the first year of life, is 

1 - 401 = 1 - 0.0018 = 0.9982. 

Surviving the first 5 years of life is the intersection of surviving the 0-1 
interval and the 1-5 interval. The probability of this intersection can be 
obtained as the product of the probability of surviving the 0-1 interval and 
the conditional probability of surviving the 1-5 interval given survival 
during the 0-1 interval, that is, 

Pr{surviving the intervals 0-1 and 1-5} = (1 - i0O) * (1 - 40i) 

= (1 - 0.0093) * (1 - 0.0018) = (0.9907) * (0.9982) = 0.9889. 

Similarly, the probability of surviving the first 10 years of life, the first three 
intervals, is 

(1 - tfo) * (1 - 4<7i) * (1 - 5?s). 

Using this approach, we can calculate the survival probabilities from birth 
to the beginning of any subsequent age intervals. These survival probabili­
ties are reflected in the third column, the number alive, lx, at the beginning 
of the interval that begins at x years of age, out of a cohort of 100,000. Note 
that the entries in this column may differ slightly from the product of the 
survival probabilities and 100,000 because, although only four digits to the 
right of the decimal point are shown in the second column, more digits are 
used in the calculations. The first entry in this column, l0/ called the radix, 
is the size of the birth cohort. The second entry, the number alive at the 
beginning of the interval beginning at 1 year of age, l\, is found by taking 
the product of the number alive at the beginning of the previous interval 
and the probability of surviving that interval, that is, 

h = lo * (1 - î o) = k - (k * i0o) = h - ido. 

This quantity, h, is equivalent to taking the number alive at the beginning 
of the previous period minus the number that died during that period, id0-
The numbers that died during each interval are shown in the fourth 
column, which is labeled as ndx. 

The number who died during the 4-year age interval from 1 to 5 is 4di. 
This is found by taking the product of the number alive at the beginning of 
this interval, l\, and the probability of dying during the interval, 40i, that is, 
4di = k * 401. The number alive at the beginning of the interval of 5 to 10 
years of age, Z5/ can be found by subtracting the number who died during 
the previous age interval, 4di, from the number alive at the beginning of the 
previous interval, \\, that is, h = h ~ d\- Repeating this operation yields 
the rest of the entries in the third and fourth columns. The fourth column 
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can also be obtained directly from the third column. For example, 

id0 = k - h* 4̂ i = h - kr etc. 
Note that the last entry in the third column is the same as the last entry 

in the fourth column, because all the survivors at age 85 will die subse­
quently. Note further that the lx value in each row is a cumulative total of 
ndx values in that and all subsequent rows. 

Dividing the entries in the third and fourth columns by 100,000, we 
obtain the probabilities of surviving from birth to the beginning of the 
current interval and dying during the current interval, respectively. Note 
that the entries in the fourth column sum to 100,000, meaning that the 
probability of dying sums to one. As we expected, the distribution is nega­
tively skewed, with the larger probabilities of dying at older ages. 

B. Some Uses of the Life Table 

The last three columns are discussed in a following section. Before doing 
that, we wish to show how the first four columns, particularly the third 
column, can be used to answer some questions regarding life expectancy. 

For example, what is the probability of surviving from one age to a 
subsequent age, say from age 5 to age 20? This is a conditional probability, 
conditional on the survival to age 5. The intersection of the events of 
surviving to age 20 and surviving to age 5 is surviving to age 20. Thus the 
probability of this intersection is the probability of surviving from birth to 
age 20. This is the number alive at the beginning of the interval 20-25 
divided by the number alive at the beginning, that is, hollo- The probability 
of surviving from birth to age 5 is Z5/Z0 · Therefore, the conditional survival 
probability from age 5 to age 20 is found by dividing the probability of the 
intersection by the probability of surviving to age 5, that is, 

©All· M i l · — 
The survival probabilities from any age to an older age can be calculated in 
a similar fashion. 

We know the conditional probability of dying in any single interval; 
however, we may be interested in the probability of dying during a period 
formed by the first two or more consecutive intervals. For example, what is 
the probability of dying during the first 5 years of life? This probability can 
be found by subtracting the probability of surviving the first 5 years from 1, 
that is, 

ι-ιι-ι*)·α-«ι)] = ι-( | · !) = ι - ! 
= 1 

98,890 
100,000 1 - 0.9889 = 0.0111. 
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This is simply 1 minus the ratio of the number alive at the beginning of the 
final interval of interest and 100,000. 

A similar question relates to the probability of dying during a period 
formed by two or more consecutive intervals given that one had already 
survived several intervals. For example, what is the probability that a 30-
year-old person will die between the ages of 50 and 60? This conditional 
probability is found by dividing the probability of the intersection of the 
event of dying between the ages of 50 and 60 and the event surviving until 
30 by the probability of the event of surviving until 30 years of age. The 
intersection of dying between 50 and 60 and surviving until 30 is dying 
between 50 and 60. The probability of dying between 50 and 60 is the 
number of persons dying, /50 minus Z6o, divided by the total number, Z0. The 
probability of surviving until age 30 is simply Z30 divided by Z0. Therefore, 
the probability of dying between 50 and 60 given survival until 30 is 

(^)/fe) -ko - Ito _ 92,420 - 85,634 _ n nMO 
_ k o ~ - 97^77 - 006"· 

Another slightly more complicated question concerns the joint survival 
of persons. Suppose that a 40-year-old person has a 5-year-old child. What 
will be the probability that both the parent and child survive 25 more years 
until the parent's retirement? If we assume that the survival of the parent 
and that of the child are independent, we can calculate the desired proba­
bility by multiplying the individual survival probabilities. Applying the 
rule for the probability of surviving from one age to a subsequent age from 
the first question, this is 

hs ,: to _ 79,590 97,077 _ _ 
Uo k~ 95,382 * 98,890 " ^ 8 3 4 4 * ° ' 9 8 1 7 " ° · 8 1 9 1 · 

The probability that both the parent and the child will die during the 25 
years is 

( l - j1) * ( l - γ) = (1 - 0.8344) * (1 - 0.9817) = 0.0030. 

The probability that the parent will die but the child will survive during the 
25 years is 

1 - ¥) * (¥) = (! - 0.8344) * (0.9817) = 0.1626. 

The probability that the parent will survive but the child will die during the 
25 years is 

fe] * ( l - γ) = (0.8344) * (1 - 0.9817) = 0.0153. 

These four probabilities sum to 1, because those four events represent all 
the possible outcomes in considering the life and death of two persons. 
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C. Expected Values in the Life Table 

The most widely used expected or average value in the life table is the 
mean length of life, which is known as the life expectancy. This is found by 
summing all the ages of deaths and dividing by 100,000. This is the same as 
multiplying the age of death by the probability of death at that age and 
summing over all ages. As we have age groups, not individual ages, we 
can approximate life expectancy by using the midpoints of the age intervals 
shown in column 1. As shown in Box 5.2, these midpoints are multiplied 
by the probabilités of dying in that interval (column 4 divided by 100,000). 
The midpoint for the last open inverval is arbitrarily entered as 92.5, as­
suming that the length of interval is 15 years. The sum of these products 
approximates the life expectancy. The approximate mean turns out to be 
75.8 years, which is slightly larger than 75.4 shown as the first entry of 
column 7 in the life table. 

Column cl contains the midpoints of the age intervals and c2 contains the number 
of deaths during the age interval. 
MTB > set cl 
DATA> .5 3 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 
DATA> 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 92.5 
DATA> set c2 
DATA> 927 183 110 127 430 539 607 743 952 1203 1759 
DATA> 2685 4101 6044 8186 10847 13389 15276 31892 
DATA> end 
MTB > let c3=c2/100000 
MTB > let kl=sum(cl*c3) 
MTB > print kl 
Kl 75.7571 

The quartiles are approximated by interpolation as shown below. To 
find the median, the second quartile, we must find the value such that 50 
percent of the values fall below it. By examining column 3 in the life table, 
we find that 60,557 persons are alive at the beginning of the age interval 
75-80 whereas only 47,168 are alive at the beginning of the interval 80-85. 
As 50,000 is between 60,557 and 47,168, we know that the median is some­
where between 75 and 80 years of age. If we assume that the 13,389 
(= 60,557 - 47,168) deaths are uniformly distributed over this age interval, 
we can find the median by interpolation. We add a proportion of the 5 
years, the length of the interval, to the age at the beginning of the interval, 
75 years. The proportion is the ratio of the difference between 60,557 and 
50,000 to the 13,389 deaths that occurred in the interval. The calculation is 

^ r /60,557 - 50,000\ no „A median = 75 + 5 * ( — ) = 78.94. 
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The corresponding calculations for the first and third quartiles are 

and 

a _ e + 15. (^L^)^,4 31,892 
As expected, the mean is smaller than the median. Perhaps, it is more 
enlightening to know that one-half of a birth cohort will live to age 79 than 
to know that an average length of life is about 75 years. 

The above calculations of the mean and quartiles are based on the 
assumption that deaths were distributed evenly within each interval. This 
assumption is realistic for most intervals but it is not for the intervals at 
both ends of the distribution. For instance, Vital statistics show that more 
deaths occur during the first week of life than in any other week during the 
first year of life. Therefore, the use of the midpoint for the first year of life 
in the calculation of the mean should have inflated the mean slightly, as 
seen above. The last three columns in the life table are based on additional 
information which removes the need to assume that the deaths are distrib­
uted uniformly throughout the interval. 

D. Columns 5, 6, and 7 in the Life Table 

The fifth column of the life table, denoted by nLx, shows the person-years 
lived during each interval. For instance, the first entry in the fifth column is 
99,210, which is the total number of person-years of life contributed by 
100,000 infants during the first year of life. This value consists of 99,073 
years contributed by the infants that survived the full year plus 137 years 
contributed by the 927 infants who died during the year. The value of 137 
years is based on actual mortality data coupled with mathematical smooth­
ing. It cannot be found from the first four columns in the table. The value 
of 137 years is much less than the 400 to 500 years of life expected if the 
deaths had been distributed uniformly during the year. This value also 
suggests that most of the deaths occurred during the first half of the inter­
val. The second entry in the fifth column is much larger than the first entry, 
mainly reflecting that the length of the second interval is greater than the 
length of the first interval. Each person surviving this second interval 
contributed 4 person-years of life. 

In the life table, the fifth column is labeled as the "stationary popula­
tion in the age interval." The label stationary population is based on a model 
of the long-term process of birth and death. If we assume 100,000 infants 
are born every year for 100 years, with each birth cohort subject to the same 
probabilities of dying specified in the second column of the life table, then 
we expect that 100,000 people will be dying at the indicated ages every 
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year. This means that the number of people in each age group will be the 
numbers shown in the fifth column. This hypothetical population will 
maintain the same size, as the number of births is the same as the number 
of deaths and it also keeps the same age distribution. That is, the size and 
structure of population are invariant, and hence this is called a stationary 
population. 

The sixth column of the life table, denoted by Tx, shows cumulative 
totals of nLx values starting from the last age interval. The Tx value in each 
interval indicates the number of person-years remaining in that and all 
subsequent age intervals. For example, the T80 value of 391,380 is the sum 
of 5L80 (= 197,857) and 15L85 (= 193,523). 

The last column of the life table, denoted by ex, shows the life expectan­
cies at various ages, which are calculated by ex = Tx/lx. The first entry in the 
last column is the life expectancy for newborn infants, and all subsequent 
entries are conditional life expectancies. Conditional life expectancies are 
more useful information than the expectancies figured for newborn in­
fants. For instance, those who survived to age 85 are expected to live 6.1 
years more (e85 = 6.1) (the last entry of the last column), whereas newborn 
infants are expected to live 1.93 years beyond age 85 (T$5/l0 = 193,523/ 
100,000 = 1.93). 

On the basis of Tx values, more complicated conditional life expectan­
cies can be calculated. For instance, suppose that a 30-year-old person was 
killed in an industrial accident and had been expected to retire at age 65 if 
still alive. For how many years of unearned income should that person's 
heirs be compensated? The family may request a compensation for 35 
years; however, based on the life table, the company argues for a smaller 
number of years. The total number of years of life remaining during the 
interval from 30 to 65 is T30 minus T65, and there are Z30 persons remaining 
at age 30 to live those years. Therefore, the average number of years of life 
remaining is found by 

Γ30 - T65 _ 4,583,357 - 1,370,724 _ 
h ^ - 97,077 * 33Λ y e a r S · 

Finally, the notion of stationary population can be used to make certain 
inferences for population planning and manpower planning. The birth rate 
of the stationary population can be obtained by dividing 100,000 by the 
total years of life lived by the stationary population, or 

k 100,000 1 Λ / ν ι„ — = — = — = o on To 7,535,219 75.4 

or 13 per 1000 population. The death rate should be the same. But note that 
the birth rate equals the reciprocal of the life expectancy at birth (l/e0). In 
other words, the birth rate (replacement rate) and death rate (attrition rate) 
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are determined entirely by the life expectancy under the stationary popula­
tion assumption. 

VIII. CONCLUDING REMARKS 

Probability has been defined as the relative frequency of an event in an 
infinite number of trials or in a population. Its use has been demonstrated 
in a number of examples and a number of rules for the calculation of 
probabilities have been presented. The use of probabilities and the rules for 
calculating probabilities have been applied to the life table, a basic tool in 
public health research. 

Now that we have an understanding of probability, we shall examine 
particular probability distributions in the next chapter. 

EXERCISES 

5.1. Choose the most appropriate answer. 
a. Which of the following is not a probability model? 

the life table 
a sampling distribution 
the random digit table 

b. If you get 10 straight heads in tossing a fair coin, a tail is on 
the next toss. 

more likely 
less likely 
neither more likely nor less likely 

c. In the U.S. life table, the distribution of the length of life (or age at 
death) is 

skewed to the left 
skewed to the right 
symmetric 

d. A test with high sensitivity is very good at 
screening out patients who do not have the disease 
detecting patients with the disease 
determining the probability of the disease 

e. In the U.S. life table the life expectancy (mean) is the 
median length of life. 

the same as 
greater than 
less than 

f. 4̂ 1 is called a because an infant cannot die in this interval 
unless it survived the first year of life. 
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personal probability 
marginal probability 
conditional probability 

g. In the U.S. life table, the mean length of life for those who died 
during ages 0-1 is 

about 1/2 year 
more than 1/2 year 
less than 1/2 year 

5.2. The following table gives estimates of the probabilities that a ran­
domly chosen adult in the United States falls into each of six gender-
by-education categories [based on relative frequencies from 
NHANESII (7)]. The three education categories used are (1) less than 
12 years, (2) high school graduate, and (3) more than high school 
graduation. 

Gender 

Female 
Male 

Category of education 
1 

0.166 
0.149 

2 3 

0.194 0.164 
0.140 0.187 

a. What is the estimate of the probability that an adult is a high 
school graduate? 

b. What is the estimate of the probability that an adult is a female? 
c. From the NHANES II data, it is also estimated that the proba­

bility that a female is taking a vitamin supplement is 0.426. 
What is the estimate of the probability that the adult is a female 
and taking a vitamin supplement? 

d. From the NHANES II, it is also estimated that the probability of 
adults taking a vitamin supplement is 0.372. What is the estimate 
of the probability that a male is taking a vitamin supplement? 

5.3. Suppose that the failure rate for a brand of smoke detector is 1 in 
2000. For safety, two of these smoke detectors are installed in a 
laboratory. 
a. What is the probability that smoke is not detected in the labora­

tory when smoke is present in the laboratory? 
b. What is the probability that both detectors sound an alarm 

when smoke is present in the laboratory? 
c. What is the probability that one of the detectors sounds the 

alarm and the other fails to sound the alarm when smoke is 
present in the laboratory? 

5.4. Suppose that the probability of conception for a married woman in 
any month is 0.2. What is the probability of conception in 2 months? 
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5.5. A new contraceptive device is said to have only a 1 in 100 chance of 
failure. Assume that the probability of conception for a given month, 
without using any contraceptive, is 20 percent. What is the probabil­
ity of having at least one unwanted pregnancy if a woman were to 
use this device for 10 years? Hint: This would be the complement of 
the probability of avoiding pregnancy for 10 years or 120 months. 
The probability of conception for any month with the use of the new 
contraceptive device would be 0.2 * (l — 0.99). This and related 
issues are examined by Keyfitz (8). 

5.6. In a community, 5500 adults were screened for hypertension by the 
use of a standard sphygmomanometer and 640 were found to have a 
diastolic blood pressure of 90 mm Hg or higher. A random sample of 
100 adults from those with diastolic blood pressure of 90 mm Hg or 
higher and another random sample of 100 adults from those with 
blood pressure less than 90 mm Hg were subjected to more intensive 
clinical evaluation for hypertension, and 73 and 13 of the respective 
samples were confirmed as being hypertensive. 
a. What is an estimate of the probability that an adult having 

blood pressure greater than or equal to 90 at the initial screen­
ing will actually be hypertensive (predicted value positive)? 

b. What is an estimate of the probability that an adult having 
blood pressure less than 90 at the initial screening will not actu­
ally be hypertensive (predicted value negative)? 

c. What is an estimate of the probability that an adult in this com­
munity is truly hypertensive (prevalence rate of hypertension)? 

d. What is an estimate of the probability that a hypertensive per­
son will be found to have blood pressure greater than or equal 
to 90 at the initial screening (sensitivity)? 

e. What is an estimate of the probability that a person without 
hypertension will have blood pressure less than 90 at the initial 
screening (specificity)? 

5.7. How likely is it to find two students in a class of 23 sharing a birth­
day? Simulate using the random number table in Appendix B or 
MINITAB. 

5.8. What is the average number of children per family if every couple 
were to have children until a son is born? Simulate using the random 
number table or MINITAB. 

5.9. Calculate the following probabilities from the 1990 U.S. Abridged 
Life Table. 
a. What is the probability that a 35-year-old person will survive to 

retirement at age 65? 
b. What is the probability that a 20-year-old person will die be­

tween ages 55 and 65? 



124 5 PROBABILITY AND LIFE TABLES 

5.10. Calculate the following expected values from the 1990 U.S. Abridged 
Life Table. 
a. How many years is a newborn expected to live before his fifth 

birthday? 
b. How many years is a 20-year-old person expected to live after 

retirement at age 65? Repeat the calculation for a 60-year-old 
person. How would you explain the difference? 

c. A 35-year-old person is killed in a factory accident. How many 
years would the person have been expected to live before retire­
ment at age 65 if the accident had not occurred? 
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Probability Distributions 

I his chapter introduces three probability distributions: the binomial and 
the Poisson for discrete random variables, and the normal for continuous 
random variables. For a discrete random variable, its probability distribu­
tion is a listing of the probabilities of its possible outcomes or a formula for 
finding the probabilities. For a continuous random variable, its probability 
distribution is usually expressed as a formula that can be used to find the 
probability that the variable will fall in a specified interval. Knowledge of 
the probability distribution (1) allows us to summarize and describe data 
through the use of a few numbers; and (2) helps to place results of experi­
ments in perspective, that is, it allows us to determine whether or not the 
result is consistent with our ideas. We begin the presentation of probability 
distributions with the binomial distribution. 

I. THE BINOMIAL DISTRIBUTION 

As its name suggests, the binomial distribution refers to random variables 
with two outcomes. Three examples of random variables with two out­
comes are (1) hypertension status—a person does or does not have hyper-

125 



126 6 PROBABILITY DISTRIBUTIONS 

tension, (2) exposure to benzene—a worker was or was not exposed to 
benzene in the workplace, and (3) health insurance coverage—a person 
does or does not have health insurance. The random variable of interest in 
the binomial setting is the number of occurrences of the event under study, 
for example, the number of adults in a sample of size n who have hyperten­
sion, or who have been exposed to benzene, or who have health insurance. 
For the binomial distribution to apply, the status of each subject must be 
independent of that of the other subjects. For example, in the hypertension 
question, we are assuming that each person's hypertension status is unaf­
fected by any other person's status. 

We consider a simple example to demonstrate the calculation of bino­
mial probabilities. Suppose that four adults (labeled A, B, C, and D) have 
been randomly selected and asked whether or not they have hypertension. 
The random variable of interest in this example is the number of persons 
who respond yes to the question about hypertension. The possible out­
comes of this variable are 0, 1, 2, 3, and 4. 

The outcomes (0,1, 2, 3, or 4) translate to estimates of the proportion of 
persons who answer yes (0.00, 0.25, 0.50, 0.75, and 1.00, respectively). 
Any of these outcomes could occur when we draw a random sample of 
four adults. As a demonstration, let us draw 10 random samples of size 4 
from a population in which the proportion of adults who answer yes to the 
hypertension question is 0.25. We are using the value of 0.25 instead of the 
value of 0.397 mentioned in Exercise 4.15 because many people are un­
aware that they have hypertension. We can use a random number table in 
performing this demonstration or we can use MINITAB as shown in 
Box 6.1. 

The command to be used is RANDOM, which tells MINITAB to draw samples and 
store the results in a column. We supply the number of samples to be drawn, 10 in 
this example, and a column to receive the results, cl. The subcommand identifies 
the distribution from which the samples are drawn, in this case the binomial. The 
binomial distribution is characterized by two parameters, the sample size and the 
population proportion having the characteristic of interest. In this case, the sample 
size is 4 and the population proportion is 0.25. 

MTB > random 10 c l ; 
SUBO binom 4 . 2 5 . 
MTB > p r i n t c l 

Cl 1 1 0 2 2 1 1 1 1 0 

The printed values represent the number of people who answered yes in each of 
the 10 random samples of size 4. Two samples had zero yes responses, six samples 
had one yes response, and in two samples there were two yes responses. These 
results translate to two estimates having the value of 0.00, six estimates having the 
value of 0.25, and two estimates having the value of 0.50. 
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Hence the sample estimate does not necessarily equal the population pa­
rameter and the estimates can vary considerably. In practice a single sam­
ple is selected, and in making an inference from this one sample to the 
population, this sample-to-sample variability must be taken into account. 
The probability distribution does this. Now let us calculate the binomial 
probability distribution for a sample of size 4. 

Suppose that in the population, the proportion of people that would 
respond yes to this question is π. The probability of each of the outcomes 
can be found in terms of π by listing all the possible outcomes. Table 6.1 
provides this listing. 

As each person is independent of all the other persons, the probability 
of the joint occurrence of any outcome is simply the product of the proba­
bilities associated with each person's outcome. That is, the probability of 
four yes responses is π * π * π * π> which is π4. In the same way, the 
probability of three yes responses is 4 * π3 * (1 - π) as there are four 
occurrences of three yes responses. The probability of two yes responses is 
6 * 7Γ2 * (1 - π)2, the probability of one yes response is 4 * π * (1 - π)3, and 
the probability of zero yes responses is (1 - π)4. If we know the value of π, 
we can calculate the numerical value of these probabilities. 

Suppose π is the previously mentioned value of 0.25. Then the proba­
bility of each outcome is as follows: 

Pr{4 yes responses} = 1 * (0.25)4 * (0.75)° = 0.0039 = Pr{0 no responses} 
Pr{3 yes responses} = 4 * (0.25)3 * (0.75)1 = 0.0469 = Pr{l no response} 

Possible Outcomes and Their Probabilities of Occurrence 

Person 

A 

r 
y 
y 
y 
n 
y 
y 
y 
n 
n 
n 
y 
n 
n 
n 
n 

B 

y 
y 
y 
n 
y 
y 
n 
n 
y 
y 
n 
n 
y 
n 
n 
n 

C 

y 
y 
n 
y 
y 
n 
y 
n 
y 
n 
y 
n 
n 
y 
n 
n 

D 

y 
n 
y 
y 
y 
n 
n 
y 
n 
y 
y 
n 
n 
n 
y 
n 

Probability of occurrence 

77 * 7Γ * 7Γ * 7Γ 

7 Γ * 7 Γ * 7 Γ * ( 1 - π ) 

7 Γ * 7 Γ * ( 1 - 7 Τ ) * 7 Γ 
7 Γ * ( 1 - 7 Γ ) * 7 Γ * 7 Γ 

( 1 - π ) * 7 Γ * 7 Γ * π 
7Γ * 7Γ * (1 — 7Τ) * (1 — 7Τ) 
7Γ * (1 — 7Τ) * 7Γ * (1 — 77") 
π * (1 - 7Τ) * (1 - 7Τ) * 7Γ 
(1 — π) * π * 7Γ * (1 — π) 

(1 — 7Γ) * 7Γ * (1 — 7Τ) * 7Γ 
(1 - 7Τ) * (1 - 7Τ) * π * 7Γ 
ΤΓ * (1 - 7Γ) * (1 - ττ) * (1 -
(1 - π ) * π * (1 - 7Γ) * (1 -
(1 - π) * (1 - ττ) * 7Γ * (1 -

(1 - ΤΓ) * (1 - π) * (1 - ττ) 
(1 - 7Τ) * (1 - 7Τ) * (1 - 7Τ) 

7Γ) 
7Γ) 
7Γ) 

* π 
*(1 -

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

-7Γ) = 

7Γ4 * (1 -
7Γ3 * (1 -
7Γ3 * (1 ~ 

π3 * (1 -
π3 * (1 -
7Γ2 * (1 -
7Γ2 * (1 -
7Γ2 * (1 -
7Γ2 * (1 -

7Γ2 * (1 ~ 
7Γ2 * (1 -
7Γ1 * (1 -

7Γ1 * (1 ~ 
7Γ1 * (1 -

7Γ1 * (1 -
7Γ° * (1 -

π)° 
πΥ 
πΥ 
πΥ 
πΥ 
π)2 

π)2 

π)2 

ττ)2 

7Τ)2 

7Γ)2 

Ϊ Γ ) 3 

π)3 

7Τ)3 

7Γ)3 

7Τ)4 

α y indicates a yes response and n indicates a no response. 
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Pr{2 yes responses} = 6 * (0.25)2 * (0.75)2 = 0.2109 = Pr{2 no responses} 
Pr{l yes response} = 4 * (0.25)1 * (0.75)3 = 0.4219 = Pr{3 no responses} 
Pr{0 yes responses} = 1 * (0.25)° * (0.75)4 = 0.3164 = Pr{4 no responses} 
The sum of these probabilities is one as it must be because these are all the 
possible outcomes. If the probabilities do not sum to one (with allowance 
for rounding), a mistake has been made. Figure 6.1 shows a plot of the 
binomial distribution for n equal to 4 and π equal to 0.25. 

Are these probabilities reasonable? Because the probability of a yes 
response is assumed to be 0.25 in the population, in a sample of size 4, the 
probability of one yes response should be the largest. It is also reasonable 
that the probabilities of zero and two yes responses are the next largest as 
these values are closest to one yes response. The probability of four yes 
responses is the smallest, as is to be expected. Figure 6.1 shows the rapid 
decrease in the probabilities as the number of yes responses moves away 
from the expected response of one. 

In the calculation of the probabilities, several patterns are visible. The 
exponent of the probability of a yes response matches the number of yes 
responses being considered, and the exponent of the probability of a no 
response also matches the number of no responses being considered. The 
sum of the exponents is always the number of persons in the sample. 
These patterns are easy to capture in a formula which eliminates the need 
to enumerate the possible outcomes. The formula may appear compli­
cated, but it is really not all that difficult to use. The formula, also referred 
to as the probability mass function for the binomial distribution, is 

Pr{X = * } = ( ; ) . „ * . < ! - „r- where (χ) = nCx = χ[ . £_ χ) ,, 

σ> 
e 
ι_ 3 υ o 
Ο 
ο 
ή 
2 
0L 

0 . 4 5 

0 . 4 0 

0 . 3 5 

0 . 3 0 

0 . 2 5 

0 . 2 0 

0 . 1 5 

0 . 1 0 

0 . 0 5 

0 . 0 0 

-

-

-

— 

— 

-
-

-

-

-
0 1 2 3 4 

Number of Yes Responses 
Bar chart showing the binomial distribution for n = 4 and π = 0.25. 
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k\ = k * (k - 1) * (k - 2) * ··· * 1, and 0! is defined to be 1. The symbol k\ is 
called k factorial, and nCx is read as n combination x, which gives the num­
ber of ways that x elements can be selected from n elements without regard 
to order. In this formula, n is the number of persons or elements selected 
and x is the value of the random variable which goes from 0 to n. Another 
representation of this formula is 

B(x; n, TT) = (") * ττχ * (1 - π)η~χ = B(n - x; n, I - π) 

where B represents binomial. The equality of B(x; n, TT) and B(n - x; n, 1 -
TT) is a symbolic way of saying that the probability of x yes responses from n 
persons, given that TT is the probability of a yes response, equals the proba­
bility of n - x no responses. 

The hypertension situation can be used to demonstrate the use of the 
formula. To find the probability that X = 3, we have 

Pr{X = 3} = (3) * (0.25)3 * (0.75)1 = ( 3 ^ ^ ) * 0.015625 * 0.75 

= (4 * I * I * 1 ) * 0.01172 = 4 * 0.01172 = 0.0469. 

This is the same value we found by listing all the outcomes and the associ­
ated probabilities. There are easier ways of finding binomial probabilities 
as is shown next. 

There is a recursive relationship between the binomial probabilities 
that makes it easier to find them than to use the binomial formula for each 
different value of X. The relationship is 

Pr{X = x + 1} = (5-=^) * ( ^ ) * Pr{X = x} 

for x ranging from 0 to n - 1. For example, the probability that X equals 1 in 
terms of the probability that X equals 0 is 

Pr{X = 1} = ( | ^ ) * (jJH) * °·3 1 6 4 = 4 * (|) * °·3 1 6 4 = ° · 4 2 1 9 

which is the same value we calculated above. 
A still easier method is to use Appendix Table B2, a table of binomial 

probabilities for n ranging from 2 to 20 and π beginning at 0.01 and ranging 
from 0.05 to 0.50 in steps of 0.05. There is no need to extend the table to 
values of π larger than 0.50 because B(x; n, TT) equals B(n - x; n, 1 - TT). For 
example, if TT were 0.75 and we wanted to find the probability that X = 1 
for n = 4, B(l; 4, 0.75), we find 6(3; 4, 0.25) in Table B2 and read the value 
of 0.0469. These probabilities are the same because when n = 4 and the 
probability of a yes response is 0.75, the occurrence of one yes response is 
the same as the occurrence of three no responses when the probability of a 
no response is 0.25. 
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Another way of obtaining binomial probabilities is to use MINITAB as 
shown in Box 6.2. MINITAB is particularly nice as it does not limit the 
values of π to being a multiple of 0.05 and n can be much larger than 20. 
More will be said about how large n can be in a later section. 

The command that can be used to obtain the probability distribution for the bino­
mial is PDF, an abbreviation for probability density function, which is the name given 
to probability distributions for continuous variables and used by MINITAB for both 
discrete and continuous variables. The PDF command will give the probabilities 
associated with all the values specified after the PDF command or, if none are 
specified, for all possible values of X. A subcommand is required to specify which 
probability distribution is to be found. Because we are working with the binomial, 
we specify it and then provide the values of n and π that we are using. The 
semicolon at the end of the PDF line and the period after the value of π must be 
entered. 
MTB > set cl 
DATA> 0 1 
DATA> end 
MTB > pdf cl; 
SUBO binomial 4 0.25. 

K P( X = K) 
0.00 0.3164 
1.00 0.4219 

MTB > pdf; 
SUBO binom 4 0.25. 

BINOMIAL WITH N = 4 P = 0.250000 
K P( X = K) 
0 0.3164 
1 0.4219 
2 0.2109 
3 0.0469 
4 0.0039 

The probability mass function for the binomial gives Pr{X = x} for x 
ranging from 0 to n. Another function that is used frequently is the cumula­
tive distribution function (cdf). This function gives the probability that X is 
less than or equal to x for all possible values of X. Table 6.2 shows both the 
probability mass function and the cumulative distribution function values 
for the binomial when n is 4 and π is 0.25. The entries in the cumulative 
distribution row are simply the sum of the probabilities in the row above it, 
the probability mass function row, for all values of X less than or equal to 
the value being considered (see Box 6.3 for MINITAB use). Cumulative 
distribution functions all have a general shape shown in Box 6.3. The value 
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Probability Mass CPr{X = x}) and Cumulative (Pr{X < x}) Distribution 
Functions for the Binomial When n = 4 and π = 0.25 

X 

Pr{X = x} 
Pr{X < x} 

0 

0.3164 
0.3164 

1 

0.4219 
0.7383 

2 

0.2109 
0.9492 

3 

0.0469 
0.9961 

4 

0.0039 
1.0000 

of the function starts with a low value and then increases over the range of 
the X variable. The rate of increase in the function is what varies between 
different distributions. All the distributions eventually reach the value of 
one or approach it asymptotically. 

MINITAB produces these values by using the command CDF, the abbreviation for 
cumulative distribution function, command in the same way as the PDF command. 
The following plot shows the cdf for a binomial distribution when n is 4 and π is 
0.25. 
MTB > 
DATA> 
DATA> 
MTB > 
SUBO 
MTB > 

s e t 
0 : 4 
end 
cd f 

c l 

c l c2; 
binom 4 
p l o t 

1 .00+ 
C2 -

, c2 
0 . 
c l 

2 5 . 

0.75+ 

0.50+ 

- * 
0.25+ — + + + + + +C1 

0.00 0.80 1.60 2.40 3.20 4.00 

As seen above, if we know the data follow a binomial distribution, we 
can completely summarize the data through its two parameters, the sam­
ple size and the population proportion or an estimate of it. The sample 
estimate of the population proportion is the number of occurrences of the 
event in the sample divided by the sample size. 
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A. Mean and Variance of the Binomial Distribution 

We can now calculate the mean and variance of the binomial distribution. 
The mean is found by summing the products of each outcome by its proba­
bility of occurrence, that is, 

μ = Σ x * PH* = *}· 
x=0 

This appears to be different from the calculation of the sample mean in 
Chapter 4, but it is really the same because in Chapter 4 all the observations 
had the same probability of occurrence, 1/N. Thus the formula for the 
population mean could be re-expressed as 

5 Xi/N = i Xi; * (1/N) = 2 *f * Prfc}. 
i = l i ' = l / = 1 

The mean of the binomial variable, that is, the mean number of yes 
responses out of n responses, when n is 4 and π is 0.25, is 

(0 * 0.3164) + (1 * 0.4219) + (2 * 0.2109) + (3 * 0.0469) 
+ (4 * 0.0039) = 1.00 = n * 7Γ. 

The expression of the binomial mean as n * π makes sense because, if the 
probability of occurrence of an event is π, then in a sample of size n, we 
would expect n * π occurrences of the event. 

The variance of the binomial variable, the number of yes responses, 
can also be expressed conveniently in terms of π. From Chapter 4, the 
population variance was expressed as 

σ* = Σ (Xi - μ)2/Ν. 
1=1 

In terms of the binomial, the X variable takes on the values from 0 to n, and 
we again replace the N in the divisor by the probability that X is equal to x. 
Thus, the formula becomes 

n 

o-2 = Σ (x - n * π)2 * Pr{X = x} 
x=0 

which, with further algebraic manipulation, simplifies to n * π * (1 — π). 
The variance is then 4 * 0.25 * (1 - 0.25), which is 0.75. 

There is often interest in the variance of the proportion of yes re­
sponses, that is, in the variance of the number of yes responses divided by 
the sample size. This is the variance of the number of yes responses di­
vided by a constant. From Chapter 4, we know that this is the variance of 
the number of yes responses divided by the square of the constant. Thus 
the variance of a proportion is n * π * (1 - π)/η2, which becomes 
7Γ * (1 - π)/η. 
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B. Example: Use of the Binomial Distribution 
Let us consider a larger example now. In 1990, cesarean section (c-section) 
deliveries represented 23.5 percent of all deliveries in the United States, a 
tremendous increase since 1960 when the rate was only 5.5 percent. Con­
cern has been expressed, for example, by the Public Citizen Health Re­
search Group in its June 1992 Health Letter (1), that many unnecessary c-
section deliveries are performed. Public Citizen believes unnecessary 
c-sections waste resources and increase maternal risks without achieving 
sufficient concomitant improvement in maternal and infant health. It is in 
this context that administrators at a local hospital are concerned as they 
believe that their hospital's c-section rate is even higher than the national 
average. Suppose as a first step in determining if this belief is correct, we 
select a random sample of deliveries from the hospital. Of the 62 delivery 
records pulled for 1990, we found 22 c-sections. Does this large proportion 
of c-section deliveries, 35.5 percent (= 22/62), mean that this hospital's rate 
is higher than the national average? The sample proportion of 35.5 percent 
is certainly larger than 23.5 percent, but our question refers to the popula­
tion of deliveries in the hospital in 1990, not the sample. As we saw above, 
we cannot infer immediately from this sample without taking sample-to-
sample variability into account. This is a situation where the binomial 
distribution can be used to address the question about the population 
based on the sample. 

To put the sample rate into perspective, we need to answer the follow­
ing question. How likely is a rate of 35.5 percent or higher in our sample if 
the rate of c-section deliveries is really 23.5 percent? Note that the question 
includes rates higher than 35.5 percent. We must include them because if 
the sum of their probabilities is large, we cannot conclude that a rate of 35.5 
percent is inconsistent with the national rate regardless of how unlikely the 
rate of 35.5 percent is. 

We can use the cdf for the binomial to find the answer to the above 
question. The cdf enables us to find the probability that a variable is less 
than a given value, in this case, less than the result we observed in our 
sample. Then we can subtract that probability from one to find how likely it 
is to obtain a rate as large or larger than our sample rate. The MINITAB 
calculation is shown in Box 6.4. Thus, the probability of 21 or fewer c-
sections out of 62 deliveries, assuming that the national rate of 23.5 percent 

MTB > cdf 2 1 ; 
SUBO binom 62 0 . 2 3 5 . 

K P(X LESS OR = K) 
2 1 . 0 0 0 . 9 7 7 6 
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holds, is 0.9776. This means that the probability of 22 or more c-section 
deliveries is 1 - 0.9776 = 0.0224. The probability of having 22 or more c-
sections is very small. It is unlikely that this hospital's c-section rate is the 
same as the national average; in fact, it appears to be higher. Further 
investigation is required to determine why the rate may be higher. 

C. Shapes of the Binomial Distribution 
The binomial distribution has two parameters, the sample size and the 
population proportion, that affect its appearance. So far we have seen the 
distribution of one binomial (Figure 6.1) which had a sample size of 4 and a 
population proportion of 0.25. Box 6.5 examines the effect of population 
proportion on the shape of the binomial distribution for a sample size of 10; 
the plots are shown in Box 6.6. 

The plots in Box 6.6 would look like bar charts if a perpendicular line 
were drawn from the horizontal axis to the points above each outcome. 

In the first plot with π equal to 0.10, the shape is quite asymmetric, 
with only a few of the outcomes having probabilities very different from 
zero. This plot has a long tail to the right. In the second plot with π equal to 
0.20, the plot is less asymmetric. 

The third binomial distribution, with π equal to 0.50, has a mean of 5 
(= n * 7T). The plot is symmetric about its mean of 5, and it has the familiar 
bell shape. As π is 0.50, it is as likely to have one less occurrence as one 
more occurrence; that is, four occurrences of the event of interest are as 
likely as six occurrences, three as likely as seven, and so on, and the plot 
reflects this. 

Column cl contains the integers from 0 to 10, the possible number of occurrences of 
the event of interest in a binomial situation when n = 10. Columns c2, c3, and c4 
contain the binomial probabilities of each outcome for the population proportions 
of 0.1, 0.2, and 0.5, respectively. 
MTB > set cl 
DATA> 0:10 
DATA> end 
MTB > pdf cl c2; 
SUBO binom 10 .1. 
MTB > pdf cl c3; 
SUBO binom 10 .2. 
MTB > pdf cl c4; 
SUBO binom 10 .5. 
(The binomial probabilities are plotted against the corresponding outcomes in Box 
6.6) 



MTB > p l o t c2 c l 
0 .45+ 

C2 
_ * 

0.30+ 

_ * 
0 . 1 5 + 

_ * 

0 . 0 0 + * * * * * * * 
- + + + + + + Cl 

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 0 

MTB > p l o t c3 c l 

0 .30+ * 

C3 

0 .20+ * 

0 . 1 0 + * 

_ * 

_ + 

0 . 0 0 + * * * * * 
_ - + + + + + + Cl 

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 0 

MTB > p l o t c4 c l 

0 .240+ * 

C4 - * 

0 . 1 6 0 + 

* * 

0.080+ 

+ * 

0 . 0 0 0 + * 
__. + + + + + + Cl 

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 0 



136 6 PROBABILITY DISTRIBUTIONS 

This completes the introduction to the binomial, although we shall say 
more about it later. The next section introduces the Poisson distribution, 
another widely used distribution. 

II. THE POISSON DISTRIBUTION 

The Poisson distribution is named for its discoverer, Siméon-Denis Poisson, 
a French mathematician from the late 18th and early 19th centuries. He is 
said to have once remarked that life is good for only two things: to do 
mathematics and to teach it (2, p. 569). The Poisson distribution is similar 
to the binomial in that it is also used with counts or the number of events. 
The Poisson is particularly useful when the events occur infrequently. It 
has been applied in the epidemiological study of many forms of cancer and 
other rare diseases over time. It has also been applied to the study of the 
number of elements in a small space when a large number of these small 
spaces are spread at random over a much larger space, for example, in the 
study of bacterial colonies on an agar plate. 

Even though the Poisson and binomial distributions both are used with 
counts, the situations for their applications differ. The binomial is used 
when a sample of size n is selected and the numbers of events and non-
events are determined from this sample. The Poisson is used when events 
occur at random in time or space, and the number of these events is noted. 
In the Poisson situation, no sample of size n has been selected. 

The Poisson distribution arises from either of two models. In one 
model, quantities, for example, bacteria, are assumed to be distributed at 
random in some medium with a uniform density of λ (lambda) per unit 
area. The number of bacterial colonies found in a sample area of size A 
follows the Poisson distribution with a parameter μ equal to the product of 
λ and A. 

In terms of the model over time, we assume that the probability of one 
event in a short interval of length t\ is proportional to t\, that is, Pr{exactly 
one event} is approximately λ * t\. Another assumption is that t\ is so short 
that the probability of more than one event during this interval is almost 
zero. We also assume that what happens in one time interval is indepen­
dent of the happenings in another interval. Finally, we assume that λ is 
constant over time. Given these assumptions, the number of occurrences 
of the event in a time interval of length t follows the Poisson distribution 
with parameter μ where μ is the product of λ and t. 

The Poisson probability mass function is 

Pr{X = x} = f=- for x = 0, 1, 2, . . . 
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Calculation of Poisson Probabilities, Pr{X = x} = β_μ * μχ/χ\, for μ = 1 
and 2 

μ = 1 μ=2 

X 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Total 

e-1 

0.3679 
0.3679 
0.3679 
0.3679 
0.3679 
0.3679 
0.3679 
0.3679 

* 

* 
* 
* 
* 
* 
* 
* 
* 

Vlx\ = Pr{X = x} 

III = 0.3679 
1/1 = 0.3679 
1/2 = 0.1839 
1/6 = 0.0613 

1/24 = 0.0153 
1/120 = 0.0031 
1/720 = 0.0005 

1/5040 = 0.0001 

1.0000 

e~2 

0.1353 
0.1353 
0.1353 
0.1353 
0.1353 
0.1353 
0.1353 
0.1353 
0.1353 
0.1353 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

2xlx\ = Pr{X = 

1/1 = 0.1353 
2/1 = 0.2707 
4/2 = 0.2707 
8/6 = 0.1804 

16/24 = 0.0902 
32/120 = 0.0361 
64/720 = 0.0120 

128/5,040 = 0.0034 
256/40,320 = 0.0009 

512/362,880 = 0.0002 

0.9999 

where e is a constant approximately equal to 2.71828 and μ is the parameter 
of the Poisson distribution. Usually μ is unknown and we must estimate it 
from the sample data. Before considering an example, we demonstrate in 
Table 6.3 the use of the probability mass function for the Poisson distribu­
tion to calculate the probabilities when μ = 1 and μ = 2. These probabilities 
are not difficult to calculate, particularly when μ is an integer. There is also 
a recursive relationship between the probability that X = x + 1 and the 
probability that X = x that simplifies the calculations: 

Pr{X = x + 1} = ( ^ Ί ) * Pr{X = x] 

for x beginning at a value of 0. For example, for μ = 2, 

Pr{X = 3} = (2/3) * pr{X = 2} = (2/3) * 0.2707 = 0.1804 

which is the value shown in Table 6.3. 
These probabilities are also found in Appendix Table B3 which gives 

the Poisson probabilities for values of μ beginning at 0.2 and increasing in 
increments of 0.2 up to 2.0, then in increments of 0.5 up to 7, and in 
increments of 1 up to 17. MINITAB can also provide the Poisson probabili­
ties as shown in Boxes 6.7 and 6.8. Note that the Poisson distribution is 
totally determined by specifying the value of its one parameter, μ. The 
plots in Box 6.8 show the shape of the Poisson probability mass and cumu­
lative distribution functions with μ = 2. 

The shape of the Poisson probability mass function with μ equal to 2 
(the top figure in Box 6.8) is similar to the binomial mass function for a 
sample of size 10 and π equal to 0.2 shown above. The cdf (the bottom 
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The following shows the use of the PDF and CDF commands in MINITAB for a 
mean value, μ, of 2.0. Column cl contains the possible outcomes, c2 will contain 
the probability mass function, and c3 will contain the cumulative distribution func­
tion. 
MTB > set cl 
DATA> 0:10 
DATA> end 
MTB > pdf cl c2; 
SUBO poisson 2. 
MTB > cdf cl c3; 
SUBO poisson 2. 
(The Poisson probabilities are printed and plotted in Box 6.8.) 

MTB > print cl c2 c3 
ROW 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Cl 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

MTB > pi 
0. 30 + 

0. 
0, 
0, 
0, 
0, 
0 
0 
0 
0 
0 
0 
ot 

C2 
.135335 
.270671 
.270671 
.180447 
.090224 
.036089 
.012030 
.003437 
.000859 
.000191 
.000038 
c2 cl 

0, 
0, 
0 
0 
0 
0 
0 
0 
0 
0 
0 

C3 
.13534 
.40601 
.67668 
.85712 
.94735 
.98344 
.99547 
.99890 
.99976 
.99995 
.99999 

C2 

0.20 + 

0.10 + 

0.00 + 

0.0 2.0 4.0 6.0 
--+ +C1 
8.0 10.0 
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MTB > p l o t C3 C l 

0 . 9 0 + 

C3 

0 . 6 0 + 

0.30 + 

0 . 0 0 + - + + + + + +C1 
0 . 0 2 . 0 4 . 0 6 .0 8 .0 1 0 . 0 

figure in Box 6.8) has the same general shape as that shown in the binomial 
example above, but the shape is easier to see here as there are more values 
for the X variable shown on the horizontal axis. 

A. Mean and Variance of the Poisson Distribution 

As discussed above, the mean is found by summing the products of each 
outcome by its probability of occurrence. For the Poisson distribution with 
parameter μ = 1 (see Table 6.3), the mean is 

population mean = 2 * * Pr{X = x] 
x=0 

= 0 * 0.3679 + 1 * 0.3679 + 2 * 0.1839 + 3 * 0.0613 
+ 4 * 0.0153 + 5 * 0.0031 + 6 * 0.0005 + 7 * 0.0001 

= 1.0000 = μ. 
The mean of the Poisson distribution is μ,, which is also the parameter of 
the Poisson distribution. It turns out that the variance of the Poisson distri­
bution is also μ. 

B. Example 1 : Finding Poisson Probabilities 

A famous chemist and statistician, W. S. Gösset, worked for the Guinness 
Brewery in Dublin at the turn of the 20th century. Because Gösset did not 
wish the competitor breweries to learn of the potential application of his 
work for a brewery, he published his research under the pseudonym of 
Student. As part of his work, he studied the distribution of yeast cells over 
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Q Observed Frequency of Yeast Cells in 400 Squares 

Frequency 
Proportion 
Poisson probability 

X 

0 

103 
0.258 
0.267 

1 

143 
0.358 
0.352 

2 

98 
0.245 
0.233 

3 

42 
0.105 
0.103 

4 

8 
0.020 
0.034 

5 

4 
0.010 
0.009 

6 

2 
0.005 
0.003 

400 squares of a hemacytometer, an instrument for the counting of cells (3). 
One of the four data sets he obtained is shown in Table 6.4. 

Do these data follow a Poisson distribution? As was mentioned above, 
the Poisson distribution is determined by the mean value, which is un­
known in this case. We can use the sample mean to estimate the popula­
tion mean μ. The sample mean is the sum of all the observations divided 
by the number of observations, in this case 400. The sum of the number of 
cells is 

103*0 + 143*1 + 98*2 + 42*3 + 8*4 + 4 * 5 + 2 * 6 = 529. 
The sample mean is then 529/400 = 1.3225. Thus we can calculate the 
Poisson probabilities using the value of 1.3225 for the mean. As the value 
of 1.3225 for μ is not in Appendix Table B3, we must use some other means 
of obtaining the probabilities. We can calculate them using the recursive 
relationship shown above. We begin by finding the probability of squares 
with zero cells, e-1·3225, which is 0.2665. The other probabilities are found 
from this value. We can also use MINITAB to calculate these probabilities 
as shown in Box 6.9. These values are also shown in Table 6.4 and they 

MTB > pdf ; 
SUBO p o i s s 1 . 3 2 2 5 . 

POISSON WITH MEAN = 1.322 
K 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

P( X = K 
0 . 2 6 6 5 
0 . 3 5 2 4 
0 . 2 3 3 0 
0 . 1 0 2 7 
0 . 0 3 4 0 
0 . 0 0 9 0 
0 .0020 
0 . 0 0 0 4 
0 . 0 0 0 1 
0 . 0 0 0 0 
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agree reasonably well with the actual proportions also shown in the table. 
Based on the visual agreement of the actual and theoretical proportions 
(from the Poisson), we cannot rule out the Poisson distribution as the 
distribution of the cell counts. The Poisson distribution agreed quite well 
for three of the four replications of the 400 cells that Gösset performed. 

One reason for interest in the distribution of data is that knowledge of 
the distribution can be used in future occurrences of this situation. If future 
data do not follow the previously observed distribution, this can alert us to 
a change in the process for generating the data. It could also indicate, for 
example, that the blood cell counts of a patient under study differ from 
those expected in a healthy population or that there are more occurrences 
of some disease than was expected assuming that the disease occurrence 
follows a Poisson distribution with parameter μ. If there are more cases of 
the disease, it may indicate that there is some common source of infection, 
for example, some exposure in the workplace or in the environment. 

A method of visual inspection of whether the data could come from a 
Poisson distribution is the Poissonness plot, presented by Hoaglin (4). The 
rationale for the plot is based on the Poisson probability mass distribution 
formula. If the data could come from a Poisson distribution, then a plot of 
the sum of the natural logarithm of the frequency of x and the natural 
logarithm of x\ against the value of x should be a straight line. We can use 
MINITAB with the data in Table 6.4 to create a Poissonness plot as shown 
in Box 6.10. 

The plot appears to be approximately a straight line with the exception 
of a dip for x = 4. In Table 6.4, we see that the biggest discrepancy between 
the actual and theoretical proportions occurred when x = 4, confirmed by 
the Poissonness plot. 

C. Example 2: Use of the Poisson Distribution 

In 1986, 18 cases of pertussis were reported in Harris County, Texas, from 
its estimated 1986 population of 2,942,550. The reported national rate of 
pertussis was 1.2 cases per 100,000 population (5). Do the Harris County 
data appear to be consistent with the national rate? 

The data are inconsistent if there are too many or too few cases of 
pertussis compared with the national rate. This concern about both too few 
as well as too many adds a complication lacking in the binomial example in 
which we were concerned only about too many occurrences. Our method 
of answering the question is as follows. 

First calculate the pertussis rate in Harris County. If the rate is above 
the national rate, find the probability of at least as many cases occurring as 
were observed. If the rate is below the national rate, find the probability of 
the observed number of cases or fewer occurring. To account for both too 
few and too many in our calculations, we double the calculated probability. 
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Q Q I ^ 
In the following MINITAB statements, the frequencies are entered in cl and values 
of x are entered in c2. Column c3 contains the values of x\, c4 contains the natural 
logarithm of the frequencies, c5 has the natural logarithm of x\ and c6 is the sum of 
c4 and c5. 
MTB > s e t c l 
DATA> 103 143 98 42 8 4 2 
DATA> set c2 
DATA> 0:6 
DATA> set c3 
DATA> 1 1 2 6 24 120 720 
DATA> end 
MTB > let c4=loge(cl) 
MTB > let c5=loge(c3) 
MTB > let c6=c4+c5 
MTB > p l o t c6 c2 

C6 
7 . 0 + 

6 .0+ 

5.0+ * 

+ + + + + +—C2 
0 . 0 1 .2 2 . 4 3 . 6 4 .8 6 . 0 

Is the resultant probability large? If it is large, there is no evidence that the 
data are inconsistent with the national rate. If it is small, it is unlikely that 
the data are consistent with the national rate. 

The rate of pertussis in Harris County was 0.61 cases per 100,000 popu­
lation, less than the national rate. Therefore, we shall calculate the proba­
bility of 18 or fewer cases given the national rate of 1.2 cases per 100,000 
population. The rate of 1.2 per 100,000 is multiplied by 29.4255 (the Harris 
County population of 2,942,550 divided by 100,000) to obtain the Poisson 
parameter for Harris County of 35.31. This value exceeds those listed in 
Table B3. Therefore we can either find the probability of zero cases and use 
the recursive formula shown above or use the computer. Box 6.11 calcu-
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The CDF command provides the probability that the variable is less than or equal to 
a specified value. In this case, we want the probability that a variable following the 
Poisson distribution with a mean of 35.31 is less than or equal to 18. 
MTB > cdf 18; 
SUBO poiss 35.31. 

K P( X LESS OR = K) 
18.00 0.0010 

lates the probability of 18 or fewer cases. The probability of 18 or fewer 
cases is 0.001. Multiplying this value by 2 to account for the upper tail of 
the distribution gives a probability of 0.002, a very small value. It is there­
fore doubtful, as the probability is only 0.002, that the national rate of 
pertussis applies to Harris County. 

This completes the introduction to the binomial and Poisson distribu­
tions. The following section introduces the normal probability distribution 
for continuous random variables. 

III. THE NORMAL DISTRIBUTION 

As was mentioned above, the probability distribution for a continuous 
random variable is usually expressed as a formula which can be used to 
find the probability that the continuous variable is within a specified inter­
val. This differs from the probability distribution of a discrete variable 
which gives the probability of each possible outcome. 

One reason why an interval is used with a continuous variable instead 
of considering each possible outcome is that there is really no interest in 
each distinct outcome. For example, when someone expresses an interest 
in knowing the probability that a male 45 to 54 years old weighs 160 
pounds, exactly 160.000000000. . . pounds is not what is,intended. What 
the person intends is related to the precision of the scale used, and the 
person may actually mean 159.5 to 160.5 pounds. With a less precise scale, 
160 pounds may mean a value between 155 and 165 pounds. Hence the 
probability distribution of continuous random variables focuses on inter­
vals rather than on exact values. 

The probability density function for a continuous random variable X is 
a formula that allows one to find the probability of X being in an interval. 
Just as the probability mass function for a discrete random variable could 
be graphed, the probability density function can also be graphed. Its graph 
is a curve such that the area under the curve sums to one, and the area 
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between two points, X\ and x2, is equal to the probability that the random 
variable X is between X\ and x2. 

The normal distribution is also sometimes referred to as the Gaussian 
distribution after the German mathematician, Carl Gauss (1777-1855). 
Gauss, perhaps the greatest mathematician who ever lived, demonstrated 
the importance of the normal distribution, and today, it is the most widely 
used probability distribution in statistics. The normal distribution is so 
widely used because (1) it occurs naturally in many situations; (2) the 
sample means of many nonnormal distributions tend to follow it; and (3) it 
can serve as a good approximation to some nonnormal distributions. 

The normal probability density function is 

f(x) = —== e-ix-tf'*2, -oo < x < oo 
νΐττσ1 

where μ is the mean and σ is the standard deviation of the normal distribu­
tion, and 7Γ is a constant approximately equal to 3.14159. The normal den­
sity function is bell-shaped as can be seen from the following plots from 
MINITAB. 

Box 6.12 shows the standard normal density function, that is, the nor­
mal pdf with a mean of zero and a standard deviation of one, over the 

Column c2 contains the values from -3.5 to 3.5 in steps of 0.1 and c3 contains the 
pdf values for the standard normal distribution evaluated at the points in c2. When 
no subcommands are given with the PDF or CDF commands, MINITAB defaults to 
the standard normal distribution. 
MTB > set c2 
DATA> -3.5:3.5/.1 
DATA> end 
MTB > pdf c2 c3 
MTB > plot c3 c2 
C3 - *2*2* 

2 2 _ * * 
0.30+ 2 2 

- * * 
* * 

- * * 
- ** ** 

0.15+ * * 
** ** 
** ** 

2 2 
- **2* *2** 

0.00+ 2*2*2** **2*2*2 
+ + + + +—C2 

-3.0 -1.5 0.0 1.5 3.0 
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range of -3.5 to +3.5. The area under the curve is one and the probability 
of X being between any two points is equal to the area under the curve 
between those two points. 

Box 6.13 shows the effect of changing σ on the normal pdf. The area 
under both of these curves again is one, and both curves are bell-shaped. 
The standard normal distribution has smaller variability, evidenced by 
more of the area being closer to zero, as it must because its standard 
deviation is 50 percent of that of the other normal distribution. There is 
more area, or a greater probability of occurrence, under the second curve 
associated with values farther from the mean of zero than under the stan­
dard normal curve. The effect of increasing the standard deviation is to 

The standard normal pdf, its values are in c3, is plotted along with the pdf for a 
normal distribution with μ = 0 and σ = 2 (its pdf is stored in column c4). The pdf s 
are shown over the range from - 7 to 7 in increments of 0.1. Note that the GMPLOT 
command is used to obtain a high-resolution plot as the output from the MPLOT 
command was hard to follow. The plot is shown below. 
MTB > set c2 
DATA> -7:7/.1 
DATA> end 
MTB > pdf c2 c3 
MTB > pdf c2 c4; 
SUBO normal 0 2. 
MTB > gmplot c3 c2, c4 c2 

0.45 4 

C3 

0.30 4-

0.15 

0.00 + 

-4-
-5.0 
A = C 3 

—I »— 
-2.5 0.0 

vs. C2 

1— 
2.5 

B = C4 

-4-
5.0 

vs. C2 C2 
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Column c3 again contains the pdf for the standard normal distribution over the 
range -3.5 to 6.5 in increments of 0.1, and c4 will contain the pdf for a normal 
distribution with a mean of 3 and a standard deviation of 1. 
MTB > set c2 
DATA> -3.5 :6.5/.1 
DATA> end 
MTB > pdf c2 c3 
MTB > pdf c2 c4; 
SUBO normal 3 1. 
MTB > gmplot c3 c2, c4 c2 

0.45 | 

C3 

0.30 + 

0.15 

0.00 

Λ Λ 
A 

A 
A 
A 

A 
A 
A 
A 

A 
A 

A 

A B 
A B 
A B 
A B 
A B 
A B 
A B 
A B 
AB 
2 

B 
B 
B 
B 
B 
B 
B 
B 
B 
B 

-4.0 -2.0 
A=C3 

-H 
0.0 
vs. C2 

2.0 4.0 
B = C4 

6.0 
vs. C2 C2 

flatten the curve of the pdf, with a concomitant increase in the probability 
of more extreme values of X. 

In Box 6.14, statements for graphing two additional normal probability 
density functions are shown and the resultant plots show the effect of 
changing the mean. Increasing the mean by 3 units has simply shifted the 
entire pdf curve 3 units to the right. Hence changing the mean shifts the 
curve to the right or left and changing the standard deviation increases or 
decreases the spread of the distribution. 

A. Transforming Normally Distributed Data to the Standard 
Normal Distribution 

As can be seen from the normal pdf formula and the plots, two parameters, 
the mean and the standard deviation, determine the location and spread of 
the normal curve. Hence there are many normal distributions, just as there 
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are many binomial and Poisson distributions; however, it is not necessary 
to have many pages of normal tables for each different normal distribution 
because all the normal distributions can be transformed to the standard 
normal distribution. Thus only one normal table is needed. 

Consider data from a normal distribution with a mean of μ and a 
standard deviation of σ. We wish to transform these data to the standard 
normal distribution which has a mean of zero and a standard deviation of 
one. The transformation has two steps. The first step is to subtract the 
mean, μ, from all the observations. In symbols, let y,· be equal to xx? — μ. 
Then the mean of Y is μν, which equals 

_ γ Xj - μ _ Σχζ· - N * μ _ N * μ - N * μ 
^ ~ Z N " N ~ N " ° -

The second step is to divide y2 by its standard deviation. As we have 
subtracted a constant from the observations of X, the variance and stan­
dard deviation of Y are the same as those of X as was shown in Chapter 4. 
That is, the standard deviation of Y is also σ. In symbols, let z, be equal to 
yi/σ. What are the mean and standard deviation of Z? The mean is still zero 
but the standard deviation of Z is one. This is due to the second property of 
the variance shown in Chapter 4; that is, when all the observations are 
divided by a constant, the standard deviation is also divided by that con­
stant. Therefore the standard deviation of Z is found by dividing σ, the 
standard deviation of Y, by the constant, σ. The value of this ratio is one. 

Therefore any variable, X, which follows a normal distribution with a 
mean of μ and a standard deviation of σ can be transformed to the stan­
dard normal distribution by subtracting μ from all the observations and 
dividing all the observed deviations by σ. The variable Z, defined as (X -
μ)Ισ, follows the standard normal distribution. A symbol for indicating 
that a variable follows a particular distribution or is "distributed as" is the 
asymptote, ~; for example, Z ~ N(0,1) means that Z follows a normal 
distribution with a mean of zero and a standard deviation of one. The 
observed value of a variable from a standard normal distribution tells how 
many standard deviations that value is from its mean of zero. 

B. Calculation of Normal Probabilities 
The cumulative distribution function of the standard normal distribution, 
denoted by Φ(ζ), represents the probability that the standard normal 
variable Z is less than or equal to the value z, that is, Pr{Z < z}. It is also the 
area under the standard normal curve less than z as is depicted in Figure 
6.2. 

The shaded area represents the probability that a variable, Z, distrib­
uted as a N(0,1) variable, is less than or equal to z. Table B4 presents the 
values of Φ(ζ) for values of z ranging from -3.79 to 3.79 in steps of 0.01. 
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0.45 + 

0.30 

0.15 

0.00 + 

-3.0 -1.5 0.0, 1.5 
z Value 

Depiction of Φ(ζ) for a positive value of z. 

3.0 

The unshaded area in Figure 6.2 represents the probability that Z, a N(0,1) 
variable, is greater than some value z. 

As can be seen from Figure 6.3, the probability that Z is less than or 
equal to a negative z is the same as the probability that Z is greater than the 
corresponding positive z. In symbols, this equivalence is expressed as 
Φ(-ζ) = 1 - Φ(ζ). 

Box 6.15 shows the cumulative distribution function for the standard 

ft 

0.45 

0.30 

0.15 

0.00 

1— 
-3.0 -1.5 0.0 

z Value 
Equivalence of Φ(-ζ) and 1 - Φ(ζ). 

1.5 3.0 
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Column cl contains the values from -3.8 to 3.8 in increments of 0.1 and c2 will 
contain the corresponding values of the cdf over the range -3.8 to 3.8. 
MTB > s e t c l 
DATA> -3.8:3.8/0.1 
DATA> end 
MTB > cdf cl c2 
MTB > plot c2 cl 

C2 
1.05+ 

0.70+ 

0.35+ 

0.00+ 

2*2*2*2*2*2*2 
*2* 

*2 
** ** 

** 
** 

*• 
*2 

*2 
*2*2 

2*2*2*2*2*2 
+ + 

-3.0 -1.5 
-+ 
0.0 

-+1 
1.5 

-+ Cl 
3.0 

normal distribution. The vertical axis gives the values of the probabilities 
corresponding to the values of z shown along the horizontal axis. The 
curve gradually increases from a probability of 0.0 for values of z around 
- 3 , to a probability of 0.5 when z is zero, and on to probabilities close to 1.0 
for z values of 3 or larger. 

Table 6.5 shows the values of the cdf, taken from c2, for z ranging from 
-3.8 to 3.8 in increments of 0.5. When z is -3.8, the value of the cdf is 
0.000072; when z is -3 .3 , the value of the cdf is 0.000483; and, although not 
shown, when z is 0.0, we know that the cdf value is 0.5. 

Values of the Standard Normal cdf for Selected Values of z 
z 

-3.8 
-3.3 
-2.8 
-2.3 
-1.8 
-1.3 
-0.8 
-0.3 

Φ(ζ) 

0.000072 
0.000483 
0.002555 
0.010724 
0.035930 
0.096801 
0.211855 
0.382089 

z 

0.2 
0.7 
1.2 
1.7 
2.2 
2.7 
3.2 
3.7 

Φ(ζ) 

0.579260 
0.758036 
0.884930 
0.955435 
0.986097 
0.996533 
0.999313 
0.999892 
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1 . Example 1 : Probability of Being Greater Than a Value 

Suppose that we wish to find the probability that an adult woman will have 
a diastolic blood pressure value greater than 95 mm Hg given that X, the 
diastolic blood pressure for adult women, follows the N(80,10) distribu­
tion. Because the values in Table B4 are for variables that follow the N(0,1) 
distribution, we first must transform the value of 95 to its corresponding Z 
value. To do this, we subtract the mean of 80 and divide by the standard 
deviation of 10. The value of 95 mm Hg therefore is 

95 - 80 15 
io io 5· 

Thus the value of the Z variable corresponding to 95 mm Hg is 1.5, which 
means that 95 is 1.5 standard deviations above its mean of 80. We now 
want the probability that Z is greater than 1.5. Using Table B4, look for 1.5 
under the z heading and then go across the columns until reaching the .00 
column. The probability of a standard normal variable being less than 1.5 is 
0.9332. Thus the probability of being greater than 1.5 is 0.0668 (= 1 -
0.9332). 

The CDF command in MINITAB can be used to obtain the cumulative 
distribution function values for variables that follow a normal distribution. 
The CDF command provides for a wider coverage of values of z than 
Appendix Table B4 does, and the values do not have to be greater than or 
equal to zero. In MINITAB, we do not have to transform to the standard 
normal distribution as it does that for us. If no distribution is specified, 
MINITAB assumes that we are using the N(0,1) distribution. Box 6.16 
calculates the probability that X was greater than 95 mm Hg where X ~ 
N(80,10). 

MTB > cdf 95; 
SUBO normal 80 10. 

95.0000 0.9332 
As Pr{X > 95} is 1 - Pr{X < 95}, we subtract 0.9332 from 1.0 and obtain 0.0668, 
which is the same value we found above. 

2. Example 2: Calculation of the Value of the i'th Percentile 

Table B4 can be used to answer a slightly different question as well. Sup­
pose that we wish to find the 95th percentile of the diastolic blood pressure 
variable for adult women, that is, the value such that 95 percent of adult 
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women had a diastolic blood pressure less than it. We look in the body of 
the table until we find 0.9500. We find the corresponding value in the z 
column and transform that value to the N(80,10) distribution. 

Examination of Table B4 shows the value of 0.9495 when z is 1.64 and 
of 0.9505 when z is 1.65. There is no value of 0.9500 in the table. As 0.9500 
is exactly halfway between 0.9495 and 0.9505, we use the value of 1.645 for 
the corresponding z. We now must transform this value to the N(80,10) 
distribution. This is easy to do because we know the relation between Z 
andX. 

As Z = (X - μ)Ισ, on multiplication of both sides of the equation by σ, 
we have σ * Z = X - μ,. If we add μ to both sides of the equation, we have 
σ * Z + μ = X. Therefore we must multiply the value of 1.645 by 10, the 
value of σ, and add 80, the value of μ, to it to find the value of the 95th 
percentile. This value is 96.45 (= 16.45 + 80) mm Hg. 

MINITAB can also perform this calculation as shown in Box 6.17. 
The percentiles of the standard normal distribution are used fre­

quently; therefore, a shorthand notation for them has been developed. The 
ith percentile for the standard normal distribution is written as z,·, for exam­
ple, Zo.95 is 1.645. From Table B4, we also see that z0.% is approximately 1.28 
and Zo.975 is 1.96. By the symmetry of the normal distribution, we also know 
that Zo.io is -1.28, z0.05 is -1.645, and z0.025 is -1.96. 

The percentiles in theory could also be obtained from the graph of the 
cdf for the standard normal shown above. For example, if the 90th percen­
tile was desired, find the value of 0.90 on the vertical axis and draw a line 
parallel to the horizontal axis from it to the graph. Next drop a line parallel 
to the vertical axis from that point down to the horizontal axis. The point 
where the line intersects the horizontal axis is the 90th percentile of the 
standard normal distribution. 

The INVCDF (inverse cumulative distribution function) command helps us find the 
percentile values. 
MTB > invcdf 0.95; 
SUBO normal 80 10. 

0.9500 96.4485 
The value of the 95th percentile is 96.4485, which agrees with the value found 
above. We could also use this command to find the percentiles of the standard 
normal distribution. 
MTB > invcdf 0.95 

0.9500 1.6449 
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3. Example 3: Probability Calculation for an Interval 

Suppose that we wished to find the proportion of women whose diastolic 
blood pressure was between 75 and 90 mm Hg. Before attempting to find 
the probabilities numerically, it is useful to make a drawing similar to 
Figure 6.4, which depicts the interval we are discussing, to aid our under­
standing of what is wanted. The figure also provides us with an idea of the 
probability's value. If the numerical value is not consistent with our idea of 
the value, perhaps we misused Appendix Table B4. 

The first step in finding the proportion of women whose diastolic 
blood pressure is in this interval is to convert the values of 75 and 
90 mm Hg to the N(0,1) distribution. The value of 75 is transformed to 
(75 - 80)/10, which is -0.5, and 90 is converted to 1.0. We therefore must 
find the area under the standard normal curve between -0.5 and 1.0. 
Figure 6.5 shows this interval on the standard normal curve. 

Note that the shaded areas in Figures 6.4 and 6.5 represent the same 
proportion of the area under each curve. Even though the Figures 6.4 and 
6.5 look exactly the same, the vertical axes are different. In Figure 6.4, the 
vertical axis goes up to 0.045, whereas it goes up to 0.45 in Figure 6.5. If 
these two curves were plotted on the same graph, the N(80,10) curve 
would be much flatter than the standard normal because of its much 
greater variability. When plotted separately, however, they look the same. 
This same appearance supports the use of the standard normal curve for all 
normal distributions. 

One way of finding the area between -0.5 and 1.0 is to find the area 
under the curve less than or equal to 1.0 and to subtract from it the area 

0.045 

^ 0.030 

0.015 

0.000 
1 1 1 | 1 J _ 

45 60 75 90 105 120 
z Value 

g j Area under the N(80, 10) curve between 75 and 90 mm Hg. 
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0.45 J-

under the curve less than or equal to - 0 . 5 . In symbols, this is 

Pr{-0.5 < Z < 1.0} = Pr{Z < 1.0} - Pr{Z < -0 .5}. 

From Table B4, we find that the area under the standard normal pdf 
curve less than or equal to 1.0 is 0.8413. The probability of a value less than 
or equal to - 0 . 5 is 0.3085. Thus the proportion of women whose diastolic 
blood pressure is between 75 and 90 mm Hg is 0.5328 (= 0.8413 - 0.3085). 
Box 6.18 shows this calculation. 

We can do this calculation by using the CDF command in MINITAB as follows. 
MTB > cdf 90; 
SUBO normal 80 10. 

90.0000 0.8413 

MTB > cdf 75; 
SUBO normal 80 10. 

75.0000 0.3085 
The difference between these two probabilities, 0.8413 and 0.3085, yields the value 
0.5328, the same value as above. 
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C. The Normal Probability Plot 

The normal probability plot provides a way of visually determining 
whether or not data might be normally distributed. This plot is based on 
the cdf of the standard normal distribution. Special graph paper, called 
normal probability paper, is used in the plotting of the points. The vertical 
axis of normal probability paper shows the values of the cdf of the standard 
normal. Table 6.5 showed some of the cdf values corresponding to z values 
of -3.8 to 3.7 in steps of 0.5 and we saw that the increase in value of the cdf 
was not constant per a constant increase in z. The vertical axis reflects this 
with very small changes in values of the cdf initially, then larger changes in 
the cdf values in the middle of plot, followed finally by very small changes 
in the cdf value. Numbers along the horizontal axis are in their natural 
units. 

If a variable X is normally distributed, the plot of its cdf against X 
should be a straight line on normal probability paper. If the plot is not a 
straight line, it suggests that X is not normally distributed. As we do not 
know the distribution of X, we approximate its cdf in the following 
fashion. 

We first sort the observed values of X from lowest to highest. Next we 
assign ranks to the observations from 1 for the lowest to n (the sample size) 
for the highest value. The ranks are divided by n and this gives an estimate 
of the cdf. This sample estimate is often called the empirical distribution 
function. 

The points, determined by the values of the sample estimate of the cdf 
and the corresponding values of x, are plotted on normal probability pa­
per. In practice, the ranks divided by the sample size are not used as the 

Values of Vitamin A and Their Ranks and Transformed Ranks for the 
33 Boys in Table 4.1 

Vitamin A 
(IU) 

820 
964 

1379 
1459 
1704 
1826 
1921 
2246 
2284 
2671 
2687 

Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Transformed 
rank 

0.0188 
0.0489 
0.0789 
0.1090 
0.1391 
0.1692 
0.1992 
0.2293 
0.2594 
0.2895 
0.3195 

Vitamin A 
(IU) 

3747 
4248 
4288 
4315 
4450 
4535 
4876 
5242 
5703 
5874 
6202 

Rank 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Transformed 
rank 

0.3496 
0.3797 
0.4098 
0.4398 
0.4699 
0.5000 
0.5301 
0.5602 
0.5902 
0.6203 
0.6504 

Vitamin A 
(IU) 

6754 
6761 
8034 
8516 
8631 
8675 
9490 
9710 

10451 
12493 
12812 

Rank 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Transformed 
rank 

0.6805 
0.7105 
0.7406 
0.7707 
0.8008 
0.8308 
0.8609 
0.8910 
0.9211 
0.9511 
0.9812 
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estimate of the cdf. Instead, the transformation, (rank - 0.375)/(n + 0.25), 
is frequently used. One reason for this transformation is that the estimate 
of the cdf for the largest observation is now a value less than one, whereas 
the use of the ranks divided by n always results in a sample cdf value of 
one for the largest observation. A value less than one is desirable because it 
is highly unlikely that the selected sample actually contains the largest 
value in the population. 

As an example, consider the vitamin A data for the 33 boys in Table 
4.1. Table 6.6 shows the sorted values, their ranks, and the transformed 
ranks, which are plotted in Figure 6.6. The points in the plot do not appear 
to fall along a straight line. It is therefore doubtful that the vitamin A 
variable follows a normal distribution, a conclusion that we had previously 
reached in the discussion of symmetry in Chapter 4. 

An alternative to normal probability paper is use of the computer as 
demonstrated in Box 6.19. 

Let us now examine data from a normal distribution and see what its 
normality probability plot looks like. The example in Box 6.20 uses data 
from a N(80,10) distribution. The plot looks like a straight line, but there 
are many points with the same normal scores. Box 6.21 shows a different 
plot of the same data, stretching the vertical axis and reducing the number 
of points with the same normal scores. 

The points still appear to fall mostly on a straight line as they should. 
The smallest observed value of X is slightly larger than expected if the data 
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2 * 
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2 

2 * 
2 
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The command NSCORES in MINITAB transforms the data into normal scores in 
the following manner. First, ranks are assigned to the data and then the ranks are 
transformed in a manner similar to that shown above. These transformed ranks 
provide an estimate of the cdf, the proportion of values less than x for the X 
variable. The next step is to find the values of a standard normal variable that 
would have produced these same proportions. These are the normal scores. The 
plot of the normal scores versus the observed values of X should be linear if X is 
normally distributed. The following example uses the vitamin A data in cl. 
MTB > nscores cl c2 
MTB > plot c2 cl 
C2 * 

- * 
1.5+ * 

- ** 
2 

2 * * 
* 2 * 

0.0+ 2 * 
* 3 

2 2 
- ** 
- ** 

-1.5+ * 

+ + + + + +-C1 
0 2500 5000 7500 10000 12500 

This plot looks very similar to the normal probability plot shown above in Figure 
6.6 as it must. They would be almost identical if the same scales had been used in 
the plotting. 

MTB > 
SUBO 
MTB > 

Cl 

random 100 cl; 
normal 80 10. 
desc cl 

N MEAN 
100 80.619 

MEDIAN 
80.447 

TRMEAN 
80.705 

STDEV SEMEAN 
9.443 0.944 

MIN MAX Ql Q3 
Cl 57.797 104.728 74.046 87.260 

MTB > nscores cl c2 
MTB > plot c2 cl 
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were perfectly normally distributed, but this deviation is relatively slight. 
Hence, based on this visual inspection, these data could come from a 
normal distribution. 

It is difficult to determine visually whether or not data follow a normal 
distribution for small sample sizes unless the data deviate substantially 
from a normal distribution. As the sample size increases from 50 to 100, 
one can have more confidence in the visual determination. 

IV. THE CENTRAL LIMIT THEOREM 

As was mentioned above, one of the main reasons for the widespread use 
of the normal distribution is that the sample means of many nonnormal 
distributions tend to follow the normal distribution as the sample size 
increases. The formal statement of this is called the central limit theorem. 
Basically, for random samples of size n from some distribution with mean 
μ and standard deviation σ, the distribution of x, the sample mean, is 
approximately Ν(μ, σ/Vn). This statement applies for any distribution as 
long as μ and σ are defined. The approximation to normality improves as n 
increases. 

The proof of this theorem is beyond the scope of this book and also 
unnecessary for our understanding. We shall, however, demonstrate that 
it holds for a very nonnormal distribution, the Poisson distribution with 
mean one. First, Box 6.22 shows the probability mass function for this 
distribution. As can be seen from the plot in Box 6.22, the Poisson distribu­
tion with a mean of one is very nonnormal in appearance. 

The following demonstration consists of drawing a large number of 
samples, say 100, from this distribution, calculating the mean for each 
sample, and examining the sampling distribution of the sample means. We 
do this for samples of size 5 in Box 6.23 and of size 40 in Boxes 6.24 and 

C2 

1 .6+ 

0.0+ 
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The HEIGHT command is used before the PLOT command to stretch out the plot to 
avoid some of the clumping. The usual plot of 17 lines is increased to 40 lines in the 
following. 
MTB > height 40 
MTB > plot c2 cl 
C2 * 

2.10+ * * - * - * 
- *• 1.40+ 2 2* *2 2* 22 0.70+ 4 *22 5 5* *22 0.00+ 33 23 *32 32 4* -0.70+ 2** 

2* 
2* 

-1.40+ 2 
2 

- * 
- * 
- * 

-2.10+ * 

22 2* 

-2.80+ 
-+ + + + + Cl 
60 70 80 90 100 

The clumping has been reduced. The largest number of points with the same 
normal score value is 6 compared with 13 in the previous graph. 

6.25. As was stated above, the mean of the means should be one and the 
sample estimate is 0.968. The standard deviation of the means is the stan­
dard deviation divided by the square root of the sample size. As the mean 
and variance of this Poisson distribution are both one, the standard devia­
tion of the means should be 1/V5, which is 0.4472. The sample estimate of 
0.4519 is very close. Even for a sample of size 5, the sampling distribution 
of the sample means does not differ substantially from the bell shape. 

Box 6.25 examines the normality of the sample means from Box 6.24. 
The normal scores plot in Box 6.25 as well as the box plot and histogram in 



MTB > set cl 
DATA> 0:8 
DATA> end 
MTB > pdf cl c2; 
SUBO poisson 1. 
MTB > plot c2 cl 
0.36+ 

C2 

0.24+ 

0.12+ 

0.00+ 
— + — 
0.0 -+—· 

1.5 
-+ 
3.0 

-+ 
4.5 6.0 

-+--C1 
7.5 

In the following, 100 random samples of size 5 from the Poisson distribution with a 
mean of 1 are selected and stored in columns cl to c5, respectively. Column c6 will 
contain the means of the 100 samples of size 5. 
MTB > random 100 cl-c5; 
SUBO poisson 1. 
MTB > add cl-c5 c6 
MTB > let c6=c6/5 
MTB > desc c6 

N MEAN MEDIAN TRMEAN STDEV SEMEAN 
C6 100 0.9680 1.0000 0.9644 0.4519 0.0452 

C6 
MIN MAX Ql Q3 

0.0000 2.0000 0.6000 1.2000 

MTB > hist c6 

Histogram 
Midpoint 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

of C6 
Count 

2 
4 
12 
9 
18 
18 
13 
10 
9 
3 
2 

N = 100 

** 
**** 
************ 
********* 
****************** 
****************** 
************* 
********** 
********* 
*** 
** 
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The following shows the distribution of sample means of size 40. 
MTB > random 100 cl-c40; 
SUBO pois 1. 
MTB > add cl-c40 c41 
MTB > let c41 = c41/40 
MTB > desc c41 

C41 

C41 

N 
100 

MIN 
0.7000 

MEAN 
1.0007 

MAX 
1.4500 

MEDIAN 
1.0000 

Ql 
0.9000 

TRMEAN 
0.9983 

Q3 
1.1000 

STDEV 
0.1453 

SEMEAN 
0.0145 

MTB > hist c41 

Histogram 
Midpoint 

0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 

MTB > boxp 

of C41 
Count 

3 
10 
17 
35 
15 
15 
4 
0 
1 

c41 

+ 
0.75 

N 

*** 

= 100 

** * ****** * 
***************** 
*********************************** 
*************** 
*************** 
**** 

* 

-I 
-_+ 
0.90 

+ i 

+ + + 
1.05 1.20 1.35 

* 

+C41 
1.50 

Box 6.24 are used in the examination of the distribution of the 100 sample 
means of size 40. All three graphical methods support the idea that the 
sample mean could be normally distributed as n increases even though the 
variable itself is clearly not normally distributed. 

Besides showing that the central limit theorem holds for one very 
nonnormal distribution, this demonstration also showed the effect of sam­
ple size on the estimate of the population mean. From the DESC com­
mand, we see that the mean of the 100 sample means from samples of size 
40 is 1.0007, which is very close to the population mean of 1.0. The stan­
dard deviation of the sample means is 0.1453. This value is close to the 
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MTB > height 40 
MTB > nscores c41 c42 
MTB > plot c42 c41 

2.80+ 
C42 

2.10+ 
3 

2 1.40+ 2 3 
8 2 0.70+ 5 5 3 

0.00+ 

6 2 0.70+ 4 

1.40+ 

-2.10+ 2 
+ + + + + 

0.75 0.90 1.05 1.20 1.35 1.50 

theoretical value of 0.1581 (= 1/ViÖ) and, in addition, is much smaller than 
the corresponding standard deviation of the means from samples of size 5. 
The sample range also attests to the much smaller variation in the sample 
means from samples of size 40 compared with samples of size 5. The range 
of the 100 sample means from samples of size 40 is 0.75, with the sample 
means ranging from 0.70 to 1.45. The corresponding range based on sam­
ples of size 5 is 2.00, with the sample means ranging from 0.00 to 2.00. This 
example reinforces the idea that the mean from a very small sample may 
not be close to the population mean. 

V. APPROXIMATIONS TO THE BINOMIAL AND 
POISSON DISTRIBUTIONS 

As was mentioned earlier, another reason for the use of the normal distri­
bution is that, under certain conditions, it provides a good approximation 
to some other distributions, in particular, the binomial and Poisson distri-
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butions. This was more important in the past when there was not such a 
widespread availability of computer packages for calculating binomial and 
Poisson probabilities for parameter values far exceeding those shown in 
tables in most textbooks; however, it is still important today as computer 
packages have limitations in their ability to calculate binomial probabilities 
for large sample sizes or for extremely large values of the Poisson parame­
ter. For example, when the binomial proportion is 0.5, MINITAB is unable 
to calculate binomial probabilities for samples larger than 125. In the fol­
lowing sections, we show the use of the normal distribution as an approxi­
mation to the binomial and Poisson distributions. As there are conditions 
when the normal distribution does not provide a good approximation, we 
also show the use of the Poisson distribution to approximate the binomial. 

A. Normal Approximation to the Binomial Distribution 

In the plots of the binomial probability mass functions, we saw that as the 
binomial proportion approached 0.5, the plot began to look like the normal 
distribution. This was true for sample sizes even as small as 10. It is there­
fore not surprising that the normal distribution can sometimes serve as a 
good approximation to the binomial distribution. The following plots of the 
binomial probability mass function for different values of n and π demon­
strate why we used the modifier sometimes in the above sentence. 

In Box 6.26, n * π is less than 5 while n * (1 - π) is greater than 5. The 
plots in Box 6.27 show plots for which both n * π and n * (1 - π) are greater 
than 5. The two plots in Box 6.26 show two skewed distributions. The 
normal approximation would not provide good fits in either of these two 
cases, particularly in the second situation. The first plot in Box 6.27 is 
symmetric, as π is 0.5, and the normal distribution should provide a rea­
sonable approximation here. The second plot in Box 6.27 also uses the 
same proportions of 0.2 and 0.8 as in the first plot in Box 6.26; however, the 
sample size is much larger in the latter plot than in the former plot (50 
versus 20), and the latter plot is beginning to look more like a normal 
distribution with tails in both directions, although the distribution is still 
skewed. 

The central limit theorem provides a rationale why the normal distribu­
tion can provide a good approximation to the binomial. In the binomial 
setting, there are two outcomes, for example, disease and no disease. Let 
us assign the numbers 1 and 0 to the outcomes of disease and no disease, 
respectively. The sum of these numbers over the entire sample is the 
number of diseased persons in the sample. The mean then is simply the 
number of diseased sample persons divided by the sample size. And, 
according to the central limit theorem, the sample mean should approxi­
mately follow a normal distribution as n increases. But, if the sum of values 
divided by a constant approximately follows a normal distribution, the 
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MTB > set cl 
DATA> 0:20 
DATA> end 
MTB > pdf cl c2; 
SUBO binom 20 .2. 
MTB > plot c2 cl 

0.240+ 
C2 

0.160+ 

0.080+ 

0.000+ 
— + — 
0.0 

— + — 
4.0 

- + — 
8.0 

* * 
— + 
12.0 

* * * * * * 
__+ +ci 
16.0 20.0 

MTB > pdf cl c3; 
SUBO binom 20 .05. 
MTB > plot c3 cl 

C3 
0.36+ 

0.24+ 

0.12+ 

0.00+ 
— + — 
0.0 4.0 

-+-— 
8.0 

* * 
— + 
12.0 

— + 
16.0 

—+C1 
20.0 

sum of the values itself also approximately follows a normal distribution. 
The sum of the values in this case is the binomial variable, and hence, it 
also approximately follows the normal distribution. 
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MTB > pdf cl c4; 
SUBO binom 20 .5. 
MTB > plot c4 cl 

0.180+ * 
C4 * * 

0.120+ * 

0.060+ 

- * * 
0.000+ * * * * * * * * * * 

— + + + + + + C 1 
0.0 4.0 8.0 12.0 16.0 20.0 

MTB > 
DATA> 
DATA> 
MTB > 
SUBO 
MTB > 

0. 
C6 

set c5 
0:50 
end 
pdf c5 c6; 
binom 50 .2. 
plot c6 c5 

150+ 
** - * - * 

0.100+ * 

0.050+ 
* * 

0.000+ **** ********************************* 
+ + + + + +—C5 
0 10 20 30 40 50 

Unfortunately, there is no consensus as to when the normal approxi­
mation can be used, that is, when n is large enough for the central limit 
theorem to apply. This issue has been examined in a number of recent 
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articles (6-8). Based on work by Samuels and Lu (8) and on some calcula­
tions we performed, Table 6.7 shows our recommendations for the size of 
the sample required, as a function of π, for the normal distribution to serve 
as a good approximation to the binomial distribution. Use of these sample 
sizes guarantees that the maximum difference between the binomial proba­
bility and its normal approximation is less than or equal to 0.0060 and that 
the average difference is less than 0.0017. 

The mean and variance to be used in the normal approximation to the 
binomial are the mean and variance of the binomial, n * π and n * π * (1 -
7τ), respectively. As we are using a continuous distribution to approximate 
a discrete distribution, we have to take this into account. We do this by 
using an interval to represent the integer. For example, the interval 5.5 to 
6.5 would be used with the continuous variable in place of the discrete 
variable value of 6. This adjustment is called the correction for continuity. 

As an example, we use the normal approximation to the binomial for 
the c-section deliveries example shown above. We wanted to find the 
probability of 22 or more c-section deliveries in a sample of 62 deliveries. 
The values of the binomial mean and variance, assuming that π is 0.235, 
are 14.57 (= 62 * 0.235) and 11.146 (= 62 * 0.235 * 0.765), respectively. The 
standard deviation of the binomial is then 3.339. Finding the probability of 
22 or more c-sections for the discrete binomial variable is approximately 
equivalent to finding the probability that a normal variable with a mean of 
14.57 and a standard deviation of 3.339 is greater than 21.5. 

Before using the normal approximation, we must first check to see if 
the sample size of 62 is large enough. From Table 6.7, we see that because 
the assumed value of π is between 0.20 and 0.25, our sample size is large 
enough. Therefore it is okay to use the normal approximation to the bino­
mial. Figure 6.7 shows the area under the normal curve corresponding to 
values greater than 21.5. 

To find the probability of being greater than 21.5, we convert 21.5 to a 

Sample Size Required for the Normal Distribution to Serve as a Good 
Approximation to the Binomial Distribution as a Function of the 
Binomial Proportion π 

π .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 
n 440 180 100 60 43 32 23 15 11 10 
Difference« .0041 .0048 .0054 .0059 .0059 .0057 .0059 .0060 .0049 .0027 
Mean .0010 .0012 .0013 .0016 .0016 .0016 .0016 .0017 .0016 .0013 

differenceb 

a Maximum difference between binomial probability and normal approximation. 
b Mean of absolute value of difference between binomial probability and normal approxima­

tion for all nonzero probabilities. 
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X X X X * * ^ \Ύ/7+%κ X X X X X X X X X X X X X X 

0.0 8.0 16.0 24.0 32.0 40.0 
Number of C-sections 

Area corresponding to a value of greater than 21.5. 

standard normal value by subtracting the mean and dividing by the stan­
dard deviation. The corresponding z value is 2.075 [= (21.5 - 14.57)/3.339]. 
Looking in Table B4, we find the probability of a standard normal variable 
being less than 2.075 is about 0.9810. Subtracting this value from one gives 
the value of 0.0190, very close to the exact binomial value of 0.0224 found 
above. 

A second example involves marijuana use among high school seniors. 
According to data reported in Table 65 of "Health, United States, 1991" (9), 
14.0 percent of high school seniors admitted that they used marijuana 
during the 30 days previous to a survey conducted in 1990. If this percent­
age applies to all seniors in high school, what is the probability that in a 
survey of 140 seniors, the number reporting use of marijuana will be be­
tween 15 and 25? We want to use the normal approximation to the bino­
mial, but we must first check our sample size with Table 6.7. As a sample of 
size 100 is required for a binomial proportion of 0.15, our sample of 140 for 
an assumed binomial proportion of 0.14 is large enough to use the normal 
approximation. 

The mean of the binomial is 19.6 and the variance is 140 * 0.14 * 0.86, 
which is 16.856. Thus the standard deviation is 4.106. These values are 
used in converting the values of 15 and 25 to z scores. Taking the continuity 
correction into account means that interval is really 14.5 to 25.5. Figure 6.8 
shows this interval. 

We convert 14.5 and 25.5 to z scores by subtracting the mean of 19.6 
and dividing by the standard deviation of 4.106. The z scores are - 1 [= 
[= (14.5-19.6)/4.106] and 1.44 [= (25.5-19.6)/4.106]. To find the probabi of 

0.120 4 

Φ 0.080 
CO > 
LL 
Q 

0.040 

0.000 
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0.105 

0.070 
Q) 

CO > 
LL 
Û 
°~ 0.035 

0.000 

1 1 1 1 1 h 
0.0 8.0 16.0 24.0 32.0 40.0 

Number of marijuana users 

Area corresponding to the interval from 14.5 to 25.5. 

of being between -1.24 and 1.44, we first find the probability of being less 
than 1.44. From that, we subtract the probability of being less than -1.24. 
This subtraction yields the probability of being in the interval. 

These probabilities are found from Table B4 in the following manner. 
First, we read down the z column until we find the value of 1.44. We go 
across to the .00 column and read the value of 0.9251; this is the probability 
of a standard normal value being less than 1.44. The probability of being 
less than -1.24 is 0.1075. Subtracting 0.1075 from 0.9251 yields 0.8176. This 
is the probability that, out of a sample of 140, between 15 and 25 high 
school seniors would admit to using marijuana during the 30 days previous 
to the question being asked. 

B. Poisson Approximation to the Binomial Distribution 

As was pointed out above, sometimes the graphs of the binomial and 
Poisson distributions look similar; for example, the plot of the probability 
mass function for the binomial distribution with a sample size of 10 and π 
equal to 0.2 looks similar to the corresponding Poisson plot with a mean of 
2. This is also a case in which the normal approximation should not be used 
because, for a π of 0.2, n should be at least 60. The similarity of the 
binomial and Poisson plots means that one of these distributions could be 
used to approximate the other under certain conditions. Because the Pois­
son is easier to calculate and has more expansive tables, it is used to 
approximate the binomial. As is shown below, the Poisson approximation 

14.5 25.5 
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complements the normal approximation. The Poisson is used for some of 
the situations when the requirements for the use of the normal approxima­
tion are not satisfied. 

As the mean and variance of the Poisson distribution are equal, plots of 
the probability mass functions of the binomial and Poisson distributions 
will be similar when the mean and variance of the binomial are approxi­
mately equal. The mean of the binomial is n * π and its variance is n * π * 
(1 - π). Thus, these two values are approximately equal when 1 — π is 
close to 1, or when π is close to 0. When π is close to 0, n must be very large 
for the normal approximation to be used. Hence the requirements for use 
of the normal approximation to the binomial are usually not satisfied with 
very small values of π. It is in this situation that the Poisson approximation 
to the binomial can be used. 

The following three plots in Boxes 6.28, 6.29, and 6.30 show the proba­
bility mass functions for the binomial and Poisson distributions for small 
values of π. To use the Poisson approximation, the mean of the binomial is 
also used as the mean of the Poisson distribution. In the three examples, 
the binomial means are 2, 2.5, and 1, and the corresponding variances are 
1.8, 2.375, and 0.9, respectively. Hence the Poisson should provide a good 
approximation in these three examples. 

In all three plots, there is little difference between the binomial and 
Poisson probability mass functions. The value 2 which is plotted indicates 
that both the binomial and Poisson probabilities were plotted at the same 
value. This high level of agreement is also shown in the printouts of the 
probabilities. Of the three situations, the Poisson approximation is the 
poorest for the smallest sample size and the largest value of the binomial 
proportion. For the sample size of 20, the largest difference between the 
binomial probability and its Poisson approximation is about 0.015. The 
agreement between the value of the probabilities and their approximations 
improves as n increases and as π decreases. The plots also show that the 
normal distribution would not be a good approximation to the binomial in 
these cases. 

C. Normal Approximation to the Poisson Distribution 

As the Poisson tables do not show every possible value of the parameter μ, 
and as the tables and computer packages do not provide probabilities for 
extremely large values of μ, it is useful to be ab]p to approximate the 
Poisson distribution. As can be seen from the above plots, the Poisson does 
not look like a normal distribution for small values of μ; however, as the 
two plots in Box 6.31 show, the Poisson does resemble the normal distribu­
tion for large values of μ. The first plot shows the probability mass function 
for the Poisson with a mean of 10 and the second plot shows the probabil­
ity mass function for the Poisson distribution with a mean of 20. 
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In the following, we use the values from 0 to 12 in cl because the probability of 
counts larger than 12 is so close to zero to be of no interest. 
MTB > set cl 
DATA> 0:12 
DATA> end 
MTB > pdf cl c2; 
SUBO binom 20 .1. 
MTB > pdf cl c3; 
SUBO poiss 2. 
MTB > print c2 c3 
ROW 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

0, 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

C2 
,121577 
.270170 
.285180 
.190120 
.089779 
.031921 
. 008867 
.001970 
.000356 
.000053 
.000006 
.000001 
.000000 

0, 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

c; .135335 
.270671 
.270671 
.180447 
.090224 
.036089 
.012030 
.003437 
.000859 
.000191 
.000038 
.000007 
.000001 

MTB > mplot c2 cl, c3 cl 
0.30 + 

2 2 

0.20+ A 
B 

- B 
- A 

0.10+ B 
A 

2 
B 
A 2 2 2 2 2 2 

+ + + + + + -
0.0 2.5 5.0 7.5 10.0 12.5 

0.00 + 

A = C2 vs. Cl B = C3 vs. Cl 
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MTB > 
SUBO 
MTB > 
SUBO 
MTB > 
ROW 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

MTB > 
0.30 + 

-
-

0.20 + 

pdf cl c4 
binom 50 
pdf cl c5 
poiss 2.5 
print c4 ( 

C4 
0.076945 
0.202487 
0.261101 
0.219875 
0.135975 
0.065841 
0.025990 
0.008598 
0.002432 
0.000597 
0.000129 
0.000025 
0.000004 

mplot c4 ( 

2 

2 
2 

.05. 

35 

0 
0 
0. 
0. 
0 
0. 
0 
0 
0 
0 
0 
0 
0 

3l, 

C5 
.082085 
.205213 
.256516 
.213763 
.133602 
.066801 
.027834 
.009941 
.003106 
.000863 
.000216 
.000049 
.000010 

c5 cl 

0.10+ 
- 2 

0.00 + 

+ — 
0.0 2 . 5 

A * C4 v s . Cl 

- - + - -
5.0 

2 2 2 2 2 2 

7 . 5 1 0 . 0 1 2 . 5 

B » C5 v s . Cl 

As can be seen from these plots, the normal distribution should be a 
reasonable approximation to the Poisson distribution for values of μ 
greater than 10. As additional evidence for the use of the normal distribu-
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MTB > 
SUBO 
MTB > 
SUBO 
MTB > 
ROW 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

MTB > 

0.36+ 2 

pdf cl c6; 
binom 100 .01. 
pdf cl c7; 
poiss 1. 
print c6 c7 

C6 
0.366032 
0.369730 
0.184865 
0.060999 
0.014942 
0.002898 
0.000463 
0.000063 
0.000007 
0.000001 
0.000000 
0.000000 
0.000000 

mplot c6 cl, 

2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0, 
0, 
0 
0. 

C7 
.367879 
.367879 
.183940 
.061313 
.015328 
.003066 
.000511 
.000073 
.000009 
.000001 
.000000 
.000000 
.000000 

c7 cl 

0 . 2 4 + 

0.12 + 

0 . 0 0 + 

0 . 0 2 . 5 5 .0 
A = C6 v s . Cl 

7 . 5 10 .0 
B = C7 v s . Cl 

1 2 . 5 

tion as an approximation, consider the plot in Box 6.32 of the normal scores 
for the Poisson distribution with the mean of 10. The normal scores plot 
appears to be a straight line, additional confirmation that the normal distri­
bution provides a good approximation to a Poisson distribution with a 
mean of 10. 



MTB > set cl 
DATA> 0:25 
DATA> end 
MTB > pdf cl c2; 
SUBO poiss 10. 
MTB > plot c2 cl 

0.120+ 

C2 

0.0804 

0.040+ 

0.000+ * * * 
+ + + + + +-C1 
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MTB > set cl 
DATA> 0:40 
DATA> end 
MTB > pdf cl c3; 
SUBO poiss 20. 
MTB > plot c3 cl 

0.090+ 

C3 

0.060+ 

0.030+ 

0.000+ *** *** **** * **** *+* 
—+ + + + + C 1 
0.0 8.0 16.0 24.0 32.0 40.0 
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MTB > random 100 
SUBO poiss 10 
MTB > nscores 
MTB > plot c2 
C2 
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The normal approximation to the Poisson uses the mean and variance 
from the Poisson distribution for the normal mean and variance. We use 
the pertussis example from above to demonstrate the normal approxima­
tion to the Poisson distribution. In the pertussis example, we wanted to 
find the probability of 18 or fewer cases of pertussis, given that the mean of 
the Poisson distribution was 35.31. This value, 35.31, is used for the mean 
of the normal and its square root, 5.942, for the standard deviation of the 
normal. As we are using a continuous distribution to approximate a dis­
crete one, we must use the continuity correction. Therefore, we want to 
find the probability of values less than 18.5. To do this, we convert 18.5 to a 
z value by subtracting the mean of 35.31 and dividing by the standard 
deviation of 5.942. The z value is -2.829. The probability of a Z variable 
being less than -2.829 or -2.83 is found from Table B4 to be 0.0023, close 
to the exact value of 0.001 given above. 

VI. CONCLUDING REMARKS 

Three of the more useful probability distributions—the binomial, the Pois­
son, and the normal—were introduced in this chapter. Examples of their 
use in describing data were provided. The examples also suggested that 
the distributions could be used to examine whether or not the data came 
from population A or some other population. This use is explored in more 
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depth in Chapter 9 on hypothesis testing and in several of the subsequent 
chapters. Another use of these distributions is demonstrated in the next 
chapter on interval estimation. 

EXERCISES 

6.1. Explain why the cumulative distribution function of X either stays 
the same or increases as X increases in value. 

6.2. According to data from NHANES II (9, Table 70), 26.8 percent of 
persons 20 to 74 years of age had high serum cholesterol values 
(>240 mg/dl). 
a. In a sample of 20 persons ages 20 to 74, what is the probability 

that 8 or more persons had high serum cholesterol? Use Table 
B2 to approximate this value first and then provide a more accu­
rate answer. 

b. How many persons out of the 20 would be required to have 
high cholesterol before you would think that the population 
from which your sample was drawn differs from the U.S. popu­
lation of persons ages 20 to 74? 

c. In a sample of 200 persons ages 20 to 74, what is the probability 
that 80 or more persons had high serum cholesterol? 

6.3. Based on reports from state health departments, there were 10.33 
cases of tuberculosis per 100,000 population in the United States in 
1990 (9, Table 50). What is the probability of a health department, in a 
county of 50,000, observing 10 or more cases in 1990 if the U.S. rate 
held in the county? What is the probability of fewer than 3 cases if the 
U.S. rate held in the county? 

6.4. Create a normal probability plot or plot the normal scores for the 33 
caloric intakes shown in Table 4.1. Based on the plot, do you think 
that the caloric intakes could be normally distributed? 

6.5. Assume that systolic blood pressure for 5-year-old boys is normally 
distributed with a mean of 94 mm Hg and a standard deviation of 11 
mm Hg. What is the probability of a 5-year-old boy having a blood 
pressure less than 70 mm Hg? What is the probability that the blood 
pressure of a 5-year-old boy will be between 80 and 100 mm Hg? 

6.6. Less than 10 percent of the U.S. population is hospitalized in a typi­
cal year; however, the per capita hospital expenditure in the United 
States is generally large, for example, in 1990, it was approximately 
$975. Do you think that the expenditure for hospital care (at the 
person level) follows a normal distribution? Explain your answer. 

6.7. In Harris County, Texas, in 1986, there were 173 cases of hepatitis A 
in a population of 2,942,550 (5, p. 8-2). The corresponding rate for the 
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United States was 10.0 per 100,000 population. What is the probabil­
ity of a rate as low as or lower than the Harris County rate if the U.S. 
rate held in Harris County? 

6.8. Approximately 6.5 percent of women ages 30 to 49 were iron defi­
cient based on data from NHANES II (10, Table 11-99). In a sample of 
30 women ages 30 to 49, 6 were found to be iron deficient. Is this 
result so extreme that you would want to investigate why the per­
centage is so high? 

6.9. Based on data from the Hispanic Health and Nutrition Examination 
Survey (HHANES) and reported in "Nutrition Monitoring in the 
United States" (10, Table 11-40), the mean serum cholesterol for Mexi­
can-American men ages 20 to 74 was 203 mg/dl. The standard devia­
tion was approximately 44 mg/dl. Assume that serum cholesterol 
follows a normal distribution. What is the probability that a Mexican-
American man 20 to 74 years old has a serum cholesterol value 
greater than 240 mg/dl? 

6.10. In 1988, 71 percent of 15- to 44-year-old U.S. women who have ever 
been married have used some form of contraception (9, Table 15). 
What is the probability that, in a sample of 200 women in these 
childbearing years, fewer than 120 of them have used some form of 
contraception? 

6.11. In ecology, the frequency distribution of the number of plants of a 
particular species in a square area is of interest. Skellam (11) pre­
sented data on the number of plants of Plantago major present in 
squares of 100 cm2 laid down in grassland. There were 400 squares 
and the numbers of plants in the squares are as follows: 

Plants per square 0 1 2 3 4 5 6 >7 
Frequency 235 81 43 18 9 6 4 4 

Create a Poissonness plot to examine whether or not these data 
follow the Poisson distribution. 

6.12. The Bruce treadmill test is used to assess exercise capacity in children 
and adults. Cumming et al. (12) studied the distribution of Bruce 
treadmill test endurance times in normal children. The mean endur­
ance time for a sample of 36 girls 4 to 5 years old was 9.5 minutes, 
with a standard deviation of 1.86 minutes. If we assume that these 
are the true population mean and standard deviation, and if we also 
assume that the endurance times follow a normal distribution, what 
is the probability of observing a 4-year-old girl with an endurance 
time of less than 7 minutes? The 36 values shown below are based on 
summary statistics from the research by Cumming et al. (12). Do you 
believe that these data are normally distributed? Explain your an­
swer. 
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Hypothetical Endurance Times in Minutes for 36 Girls 4 to 5 
Years of Age: 

5.3 6.5 7.0 7.2 7.5 8.0 8.0 8.0 8.0 8.2 8.5 8.5 
8.8 8.8 8.9 9.0 9.0 9.0 9.0 9.5 9.8 9.8 10.0 10.0 

10.6 10.8 11.0 11.2 11.2 11.3 11.5 11.5 12.2 12.4 12.7 13.3 

6.13. Seventy-nine firefighters were exposed to burning polyvinyl chloride 
(PVC) in a warehouse fire in Plainfield, New Jersey, on March 20, 
1985. A study was conducted in an attempt to determine whether 
there were short- and long-term respiratory effects of the PVC expo­
sure (13). At the long-term follow-up visit 22 months after the expo­
sure, 64 firefighters who had been exposed during the fire and 22 
firefighters who were not exposed reported on the presence of vari­
ous respiratory conditions. Eleven of the PVC-exposecl· firefighters 
had moderate to severe shortness of breath compared with only one 
of the nonexposed firefighters. What is the probability of finding 11 
or more of the 64 exposed firefighters reporting moderate to severe 
shortness of breath if the rate of moderate to severe shortness of 
breath is one case per 22 persons? What are two possible confound­
ing variables in this study that could affect the interpretation of the 
results? 
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Interval Estimation 

I n Chapter 6 we saw that there is variation that occurs when we use a 
sample instead of the entire population. For example, in the presentation 
of the binomial distribution, we saw that the sample estimates of the popu­
lation proportion varied considerably from sample to sample. In this chap­
ter, we present prediction, confidence, and tolerance intervals, quantities 
that allow us to take the variation in sample results into account in describ­
ing the data. These intervals represent specific types of interval estimation, 
the provision of limits that are likely to contain either (1) the population 
parameter of interest or (2) future observations of the variable. Interval 
estimation thus provides more information about the population parame­
ter than the point estimation approach discussed in Chapter 4. In that 
chapter, we provided a single value as the estimate of the population 
parameter without giving any information about the sampling variability of 
the estimator. For example, knowledge of the value of the sample mean, a 
point estimate of the population mean, does not tell us anything about the 
variability of the sample mean. Interval estimation addresses this vari­
ability. 

177 
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I. PREDICTION, CONFIDENCE, AND TOLERANCE INTERVALS 

The material in this and the following section is based on material pre­
sented by Vardeman (1) and Walsh (2). To understand the difference be­
tween these three intervals (prediction, confidence, and tolerance), con­
sider the following. Dairies add vitamin D to milk for the purpose of 
fortification. The recommended amount of vitamin D to be added to a 
quart of milk is 400IU (10 /xg). If a dairy adds too much vitamin D, perhaps 
more than 5000 IU, there is the possibility that a consumer will develop 
hypervitaminosis D, that is, vitamin D toxicity. 

A prediction interval focuses on a single observation of the variable, for 
example, the amount of vitamin D in the next bottle of milk. A confidence 
interval focuses on a population parameter, for example, the mean or me­
dian amount of vitamin D per bottle in a population of bottles of milk. Thus 
the prediction interval is of more interest to the consumer of the next bottle 
of milk, whereas the confidence interval is of more interest to the dairy. A 
tolerance interval provides limits such that there is a high level of confidence 
that a large proportion of values of the variable will fall within them. For 
example, besides being interested in the mean, the dairy owner or a regula­
tory agency also wants to be confident that a large proportion of the bot­
tles' vitamin D contents are within a specified tolerance of the value of 
400 IU. 

We begin our treatment of these intervals with distribution-free in­
tervals. 

II. DISTRIBUTION-FREE INTERVALS 

When the method for forming the different intervals is independent of 
how the data are distributed, the resultant intervals are said to be distribu­
tion free. Distribution-free intervals are based on the rank order of the 
sample values and a notation that captures the rank order is the following. 
The smallest of the x values is indicated by x(i), the second smallest by x(2), 
and so on, to the largest value which is denoted by X(ny The x^ are called 
order statistics as the subscripts show the order of the values. 

We use hypothetical data showing the amount of vitamin D in 30 
bottles of milk selected at random from one dairy. The values are shown in 
rank order in Table 7.1. Based on this sample, x^ equals 289 IU, X(2) is 326 
IU, and so on to x̂ o) which equals 485 IU. 

A. Prediction Interval 
As a consumer of milk, our major concern about vitamin D is that the milk 
does not contain an amount of vitamin D that is toxic to us. We are not too 
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Values of Vitamin D CIUD in a Hypothetical Sample of 30 Bottles 

289 
326 
339 
346 
353 

355 
363 
364 
370 
373 

376 
379 
384 
386 
389 

392 
395 
396 
398 
403 

406 
410 
413 
422 
427 

433 
434 
456 
471 
485 

concerned about there being too little vitamin D in the bottle. Based on the 
hypothetical sample of vitamin D contents in 30 bottles of milk, we can 
form a one-sided prediction interval—our concern focuses on the upper 
limit—for the amount of vitamin D in the bottle of milk that we are going to 
purchase. 

A natural one-sided prediction interval in this case is from 0 to the 
maximum observed value of vitamin D (485 IU) in the sample. The level of 
confidence associated with this interval, from 0 to 485 IU, is 96.8 percent 
(= 30/31). This value can be found from the consideration of the order 
statistics and the real number line. For example, we have the line 

l_l I 2_l 3 I __Ι_30_Ι_31 
0 X(l) X(2) X(3) ' ' ' *(30) 

and there are 31 intervals along this line. The vertical marks indicate the 
location of the order statistics along the line and the numbers above the 
line between the vertical marks indicate the interval numbers. There are 31 
intervals and the next observation can fall into any one of the intervals. Of 
these 31 intervals, 30 have values less than the maximum value. Hence, we 
are 96.8 percent confident that the vitamin D content in the next bottle will 
be between zero and the observed maximum value. 

Note that we used the word confidence instead of probability here. We 
use confidence because we are using the sample data as the basis of esti­
mating the probability distribution of the vitamin D content. If we used the 
probability distribution of the vitamin D content instead of using its sample 
estimate, the empirical distribution function, we would use the word proba­
bility. In repeated sampling, we expect that 96.8 percent of the prediction 
intervals, ranging from zero to the observed maximum in each sample of 
size 30, would contain the next observed vitamin D content. 

The use of the second largest value, x^9), as the upper limit of the 
interval results in a prediction confidence level of 93.5 percent (= 29/31). 
An attraction of this interval is that it provides a slightly shorter interval 
with a maximum of 471 IU, but we are slightly less confident about it. 
Based on either of these intervals, the consumer should not be worried 
about purchasing a bottle that has a value of vitamin D that would cause 
vitamin D poisoning. 
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For a two-sided interval, a natural interval would be from the mini­
mum observed value, XQ), to the maximum observed value, X(30). In this 
case, the two-sided interval is from 289 to 485 IU. The confidence level 
associated with this prediction interval is 93.5 percent (= 29/31). Of the 31 
intervals shown above, there is one below the minimum value and also one 
above the maximum value. Hence there are 29 chances out of 31 that the 
next observed value will fall between the minimum and maximum values. 

With a sample size of 30, it is not possible to have a distribution-free, 
two-sided, 95 percent prediction interval. The smallest sample size that 
attains the 95 percent level is 39. When n is 39, there are 40 intervals, and 
2/40 equals 0.05. This calculation shows that it is easy to determine how 
large a sample is required to satisfy prediction interval requirements. 

B. Confidence Interval 

The dairy wants to know, on average, how much vitamin D is being added 
to the milk. If the interval estimate for the central tendency differs much 
from 400 IU, the dairy may have to change its process for adding vitamin 
D. One way of obtaining the interval estimate is to use a distribution-free 
confidence interval. 

Distribution-free confidence intervals are used to provide information 
about population parameters, for example, the median and other percen-
tiles. There are two approaches to finding confidence intervals for percen-
tiles: (1) the use of order statistics and (2) the use of the normal approxima­
tion to the binomial distribution. The first approach is generally used for 
smaller samples, whereas the second approach is used for larger samples. 

1. Use of Order Statistics and the Binomial Distribution 
The lower and upper limits of the (1 - a) * 100 percent confidence interval 
for the pth percentile of X are the order statistics x^ and X(k), where the 
values of ; and k, j less than k, are to be determined. The limits of the 
confidence interval for the pth percentile of X are the values x(;) and x^k) that 
satisfy the inequality 

Vr{X(j) < pth percentile <*(*)} ^ 1 — a 
and this is equivalently 

Pr{*(;) > pth percentile} + Pr{*(jt) ^ pth percentile} < a. 
If we· require that both terms in the sum be less than or equal to all, from 
the first term, we have 

Pr{at most / - 1 observations < pth percentile} ^ all. 
This situation has two outcomes: an observation is less than the pth 

percentile or it is greater than or equal to the pth percentile. The probability 
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that an observation is less than the pth percentile is p. The variable of 
interest is the number of observations, out of n, that are less than the pth 
percentile. Thus this variable follows a binomial distribution with parame­
ters n and p. Knowing the values of n and p enables us to find the value of; 
because ; must satisfy the inequality 

| ï ï ^h) iP ' ( i -pr^«/2 . 
The inequality used to find the value of k is 

Putting these two inequalities together means that the binomial sum 
from ; to k - 1 must be greater than or equal to 1 - a. Here we have 
dropped the requirement that the sums of the probabilities from 0 to ; - 1 
and from k to n both must be less than a/2. The values of; and k are found 
from the binomial table, Table B2, or by using MINITAB. 

For example, suppose we want to find a 95 percent confidence interval 
for the median, the 50th percentile, for the vitamin D values from the dairy 
used in Table 7.1. The sample estimate of the median is the average of the 
15th and 16th smallest values, that is, 390.5 IU [= (389 + 392)/2]. 

To find the 95 percent confidence interval for the median in the popula­
tion of bottles of milk from the selected dairy, we use the binomial distribu­
tion. As Table B2 does not have values for n larger than 20, we use MINI-
TAB to find the confidence interval as shown in Box 7.1. There may be 
more than one pair of values of; and k that satisfy the requirement that the 
sum of the binomial probabilities from ; to k - 1 is greater than or equal to 
1 - a. To choose from among these pairs, we select the pair whose differ­
ence (k - ;) is the smallest. In the special case of the median, we require 
that k equals n - j + 1; this requirement gives the same number of observa­
tions in both tails of the distribution. 

The sum of the probabilities from ; to k - 1 must be greater than or 
equal to 0.95. Examination of the cumulative probabilities tells us that; is 9 
and k is 21. The sum of the probabilities between 9 and 20 is 0.9572 
(= 0.9786 - 0.0214). If; were 10 and k were 20, the sum of the probabilities 
between 10 and 19 would be 0.9012, less than the required value of 0.95. 
Thus the approximate 95 percent (really closer to 96 percent) confidence 
interval for the median is from 370 IU (= x{9)) to 406 IU (= *(2i)). The use of 
distribution-free intervals does not necessarily provide intervals that are 
symmetric about the sample estimator. For example, the sample median 
value, 390.5 IU, is not in the exact middle of the confidence interval. 

Note that the confidence interval for the median is much narrower 
than the approximate 95 percent prediction interval, from 289 to 485 IU, for 
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The CDF command will be used to help us find the values of ; and k. 
MTB > cdf; 
SUBO binom 30 0 .50. 

BINOMIAL WITH N = 30 
P = 0.500000 

K 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

P( X LESS OR = K 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0002 
0.0007 
0.0026 
0.0081 
0.0214 
0.0494 
0.1002 
0.1808 
0.2923 
0.4278 
0.5722 
0.7077 
0.8192 
0.8998 
0.9506 
0.9786 
0.9919 
0.9974 
0.9993 
0.9998 
1.0000 

a single observation. As we saw in Chapter 4, much less variability is 
associated with a mean or median than with a single observation and this is 
additional confirmation of that. 

As we can observe from the above, the use of distribution-free intervals 
does not provide exactly 95 percent levels. The level of confidence associ­
ated with these intervals is a function of the sample size as well as which 
order statistics are used in the creation of the interval. 

It is also possible to create one-sided confidence intervals for parame­
ters. For example, if the goal were to create an upper one-sided confidence 
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interval for the median, we would find the value of k such that 

gïïor^p,(1-p)""':se 

for a p having the value of 0.50. The upper one-sided confidence interval 
for the median is from 0 to %) where fc's value is found from the above 
inequality. 

2. Use of the Normal Approximation to the Binomial 

For larger sample sizes, the normal approximation to the binomial distribu­
tion can be used to find the values of; and k. The sample size must be large 
enough to satisfy the requirements for the use of the normal approxima­
tion. As p is 0.50, the sample size of 30 bottles from the dairy is large 
enough. 

As above, we want to find the value of; such that the probability of the 
binomial variable, Y, being less than or equal to; - 1 is less than or equal to 
a/2, that is, 

Pr{Y<; - 1}<α/2. 

Use of the continuity correction converts this to 

Pr{Y<; - 0.5} < a/2. 
To convert Y to the standard normal variable, we must subtract n * p, the 
estimate of the mean, and divide by Vn * p * (1 - p), the estimate of the 
standard error. This yields 

P r f Y ~ n*V < ; - 0.5 - n * p ) ^ a 
[Vn * p * (1 - p) Vn * p * (1 - p)J 2 ' 

This can be reexpressed as 

P r i z < / - 0.5 - n * p 1 ^ a 
1 Vn * p * (1 - p)j 2' 

If we change this inequality to an equality, that is, the probability is equal 
to a/2, we can find a unique value for;. The value of the term on the right 
side of the inequality inside the braces is simply za/2 and, hence, we can 
find the value of ; from the equation 

; - 0.5 - n * p = za/2 * Vn * p * (1 - p) 
or 

; = Za/2 * Vn * p * (1 - p) + 0.5 + n * p 
In the above example, p was 0.50, n was 30, and a was 0.05. As the 

value of Zo.025 is -1.96, we have 
; = -1.96 * V30 * 0.50 * 0.50 + 0.5 + 30 * 0.50 
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or; is 10.13. To ensure that the level of the confidence interval is at least 
(1 - a) * 100 percent, we must round down the value of ; to the next 
smaller integer, 10, and we round up the value of k, found below, to the 
next larger integer. 

The value of k is found from the equation 

k = Ζι-α/2 * Vn * p * (1 - p) + 0.5 +" n * p 
which yields a k equal to 20.87, which is rounded to 21. Thus, the 95 
percent confidence interval is from 373IU (= X(i0)) to 406IU (= x(2i)). In this 
case, both the binomial and the normal approximation approaches used 
*(2i) as the upper limit, but the binomial approach used x(9) as the lower 
limit whereas the normal approximation used x(i0). 

C. Tolerance Interval 

As mentioned above, tolerance intervals are of most interest to the dairy or 
to a regulatory agency. The tolerance limits are values such that we have a 
high level of confidence that a large proportion of the bottles have vitamin 
D contents located between the lower and upper tolerance limits. These 
upper and lower limits of the tolerance interval can be used in determining 
whether the process for adding vitamin D is under control. If the limits are 
too wide, the dairy may have to modify its process for adding vitamin D to 
the milk. 

The dairy does not want to add too much vitamin D to the milk because 
of the possible problems for the consumer and the extra cost associated 
with using more vitamin D than required. At the same time, the dairy must 
add enough vitamin D to be in compliance with truth in advertising legisla­
tion. 

As with the prediction interval, it is reasonable to use the smallest and 
largest observed values for the lower and upper limits of the tolerance 
interval, although other values could be used. We also have to specify the 
proportion of the population, p, that we want to include within the toler­
ance interval. Given the tolerance interval limits and the proportion of 
values to be included within it, we can calculate the confidence level, γ, 
associated with the interval. 

In symbols, the tolerance interval limits are the order statistics x(;) and 
X(fc) such that 

Pr{Pr{X < x{k)] - Pr{X < xU)} > p} = y 

The quantity, Pr{X < x(fc)} - Pr{X < x(;)}, is the proportion of the popula­
tion values contained in the tolerance interval for this sample. Let us call 
the above quantity Wkj. In symbols we then have Pr{Wjt; > p} = γ. The 
variable Wkj is either less than p or greater than or equal to p. This is a 
binomial situation and, therefore, we can use the same approach as in the 
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confidence interval section to find the value of y. The value of y can be 
expressed in terms of the binomial summation as 

If we use the minimum, x{i)/ and the maximum, *(n), for the limits, 
k - j - 1 becomes n - 1 - 1 which equals n - 2. It is therefore easy to find 
the value of this summation for i ranging from 0 to n - 2 because that sum 
is equal to 1 minus the binomial sum from n - 1 to n. In symbols, the value 
of y is 

1 - [pn] - W~x (1 - p)l· 

Suppose we want our tolerance interval to contain 95 percent of the 
observations. Let us calculate the confidence level associated with the tol­
erance interval of 289 to 485IU. In this case, n is 30 and p is 0.95. The value 
of y is found by taking 1 - 0.9530 - 30 * (0.95)29 * (1 - 0.95), which equals 
0.4465. There is not a high level of confidence associated with this tolerance 
interval. This confidence level is contrasted with the 0,935 level associated 
with the prediction interval. It is not surprising that the confidence level of 
the prediction interval is much higher than that of the tolerance interval 
because the prediction interval is based on the location of a single future 
value whereas the tolerance interval is based on the location of a large 
proportion of the population values. 

The interval from 289 to 485 IU is the widest interval we can have using 
the sample data as these are the minimum and maximum observed values. 
We can increase our confidence either (1) by decreasing p, the proportion 
of the population to be included in the tolerance interval, or (2) by taking a 
larger sample. 

Let us reduce p to 90 percent. The confidence level for this interval is 
increased to 0.8162, a much more reasonable value. Instead of reducing p, 
let us increase the sample size from 30 to 60. The confidence level associ­
ated with the increased sample size is 0.8084, also a much more reasonable 
value. Table 7.2 shows the sample size required to have 90, 95, and 99 
percent confidence associated with tolerance intervals that have 80, 90, 95, 
and 99 percent coverage of the distribution, based on the use of *(i) and *(„). 

From these calculations and the general formula for calculating y, we 
can see the relationships between p, the values of k and/, n, and y. We can 
investigate the values of these quantities before we have performed the 
study and can modify the proposed study design if we are not satisfied 
with the values of p and y. 

A one-sided tolerance interval is sometimes of interest. Suppose that 
there was interest in the upper one-sided tolerance interval. In this case, 
the tolerance interval ranges from 0 to x(n) and the confidence associated 
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Sample Size Required for the Tolerance Interval to Have the Indicated 
Confidence Level for the Specified Coverage Proportions Based on the 
Use of XCD and χ(Π] 

Coverage 
proportion 

0.80 
0.90 
0.95 
0.99 

I 

90% 

18 
38 
77 

388 

Confidence level 

95% 99% 

22 31 
46 64 
93 130 

473 662 

with this interval is found by taking 1 - p", that is, one minus the binomial 
term calculated for / equal to n. 

III. INTERVALS BASED ON THE NORMAL DISTRIBUTION 

If the data are from a known probability distribution, knowledge of this 
distribution allows more informative (smaller) intervals to be constructed 
for the parameters of interest or for future values. We begin this presenta­
tion by showing how to create confidence intervals for a variety of popula­
tion parameters, assuming that the data come from a normal distribution. 
Following the material on confidence intervals, we show how to use the 
normal distribution in the creation of prediction and tolerance intervals. 
We begin the confidence interval presentation with the population mean 
and follow it with the confidence interval for the population proportion 
which can also be viewed as a mean. 

A. Confidence Interval for the Mean 

In the material above, we saw how to construct a confidence interval for 
the population median. That confidence interval gave information to the 
dairy about the average amount of vitamin D being added to the milk. As 
an alternative to the median, a confidence interval for the mean could have 
been used. To find a confidence interval for the mean, assuming that the 
data follow a specific distribution, we must know the sampling distribution 
of its estimator. We must also specify how confident we wish to be that the 
interval contains the population parameter. The sample mean is the esti­
mator of the population mean, and the sampling distribution of the sample 
mean is easily found. 

Because we are assuming the data follow a normal distribution, the 
sample mean, the average of the sample values, also follows a normal 
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distribution; however, this assumption is not crucial. Even if the data are 
not normally distributed, the central limit theorem states that the sample 
mean, under appropriate conditions, will approximately follow a normal 
distribution. To specify the normal distribution completely, we also have to 
provide the mean and variance of the sample mean. 

1 . Known Variance 

In Chapter 6, we saw that the mean of the sample mean was μ,, the popula­
tion mean, and its variance was σ2Ιη. The standard deviation of the sample 
mean is thus σΙ Vn, and it is called the standard error of the sample mean 
(x). The use of the word error is confusing as no mistake has been made; 
however, it is the traditional term used in this context. The term standard 
error is used instead of standard deviation when we are discussing the 
variation in a sample statistic. The term standard deviation is usually re­
served for discussion of the variation in the sample data themselves. 

We now address the issue of how confident we wish to be that the 
interval contains the population mean (μ,). From the material on the normal 
distribution in Chapter 6, we know that 

Pr{-1.96 < Z < 1.96} = 0.95, 

where Z is the standard normal variable. In terms of the sample mean, 
this is 

Prf-1 .96< * £ <1 .9ό | 0.95. 
[ (σ/Vn) J 

But we want an interval for μ, not for Z. Therefore we must perform some 
algebraic manipulations to convert this to an interval for μ. First we multi­
ply all three terms inside the braces by σ/λ/η. This yields 

P r { - 1 % * fa) < * - μ < 1 % * fa)}= °·95· 
We next subtract x from all the expressions inside the braces and this gives 

Pr[-1.96 * C^\ - x < -μ < 1.96 * C^\ - x\ = 0.95. 

This interval is about — μ; to convert it to an interval about μ, we multiply 
each term in the braces by - 1 . Before doing this, we must be aware of the 
effect of multiplying an inequality by a minus number. For example, we 
know that 3 is less than 4; however, - 3 is greater than - 4 , so the result of 
multiplying both sides of an inequality by - 1 changes the direction of the 
inequality. Therefore, we have 

P r{1 % * fa)+ *> μ > ~1% * fa) + *} = °-95· 
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We reorder the terms to have the smallest of the three quantities to the left, 
that is, 

Pr{* - 1.96 * ( ^ ) < μ < x + 1.96 * ( ^ ) } = 0.95 

or, more generally, 

Pr - Zi-«/2 * ( T 7 = ) < μ< x + Ζι-α/2 * (: \ν~ηΓ " * ^-aa \VÏ 
σ " ■ = ! - « . 

The (1 - a) * 100 percent confidence interval limits for the population 
mean can be expressed as 

The result of these manipulations is an interval for μ in terms of σ, η, 
1.96 (or some other z value), and x. The sample mean, x, is the only one of 
these quantities that varies from sample to sample. Once we draw a sam­
ple, however, the interval is fixed as the sample mean's value, x, is known. 
As the interval will either contain or not contain μ, we no longer talk about 
the probability of the interval containing μ. 

Although we do not talk about the probability of an interval containing 
μ, we do know that in repeated sampling, intervals of the form above will 
contain the parameter, μ, 95 percent of the time. Thus, instead of discuss­
ing the probability of an interval containing μ, we say that we are 95 
percent confident that the interval from x — 1.96 * (σ/νή) to x 4- 1.96 * 
(σ/Vn) will contain μ. Intervals of this type are therefore called confidence 
intervals. This reason for the use of the word confidence is the same as that 
discussed in the distribution-free material above. The limits of the confi­
dence interval usually have the form of the sample estimate plus or minus 
some distribution percentile—in this case, the normal distribution—times 
the standard error of the sample estimate. 

The 95 percent confidence interval for the mean caloric intake for sub­
urban middle school boys in the Houston area can be found based on the 
data shown in Table 4.1. We assume that the standard deviation for this 
population is 700 calories. As the sample mean, x, based on a sample size 
of 33 observations, was found to be 2314 calories, the 95 percent confidence 
interval for the population mean ranges 

from 2314 - 1.96 * ( ^ | ) to 2314 + 1.96 * ( ^ | ) , 

that is, from 2075.2 to 2552.8 calories. 
Box 7.2 illustrates the concept of confidence intervals. It shows the 

results of drawing 50 samples of size 60 from a normal distribution with a 
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mean of 94 and a standard deviation of 11. These values are close to the 
mean and standard deviation of the systolic blood pressure variable for 
5-year-old boys in the United States as reported by the NHLBI Task Force 
on Blood Pressure Control in Children (3). 

In the following demonstration, 4 percent of the intervals did not con­
tain the population mean and 96 percent did. If we draw many more 
samples, the proportion of the intervals containing the mean will be 95 

The command ZINTERVAL, shortened to ZINT, is used to creafe the confidence 
intervals. If no percentage is specified, a 95 percent confidence interval is created 
for the data in the listed columns. The command requires the value of σ and the 
columns containing the data for which the confidence intervals are to be created. 
MTB > random 60 cl-c50; 
SUBO normal 94 11. 
MTB > zint 95 11 cl-c50 
THE ASSUMED SIGMA =11.0 

N MEAN STDEV SE MEAN 95 PERCENT CI. 

Cl 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
C10 
Cll 
C12 
C13 
C14 
C15 
C16 
C17 
C18 
C19 
C20 
C21 
C22 
C23 
C24 
C25 

60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 

94.75 
94.85 
94.71 
94.03 
93.77 
92.54 
93.40 
93.97 
96.33 
93.56 
94.94 
94.66 
94.21 
94.55 
93.57 
95.99 
93.86 
92.02 
95.16 
94.99 
94.65 
92.86 
93.99 
91.44 
96.07 

10 
10 
10 
12 
10 
9 
12 
11 
9 
12 
10 
12 
11 
9 
11 
12 
12 
13 
12 
12 
11 
12 
11 
10 
11 

25 
86 
09 
27 
05 
32 
07 
02 
26 
01 
81 
08 
02 
98 
50 
01 
53 
58 
03 
00 
18 
52 
76 
75 
89 

1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 

( 91 
( 92 
( 91 
( 91 
( 90 
89 

( 90 
91 
93 
90 
92 
91 
91 
91 
90 
93 
91 
89 
92 
92 
91 
90 
91 
88 
93 

96, 
06, 
92, 
24, 
98, 
76, 
62, 
18, 
54, 
78, 
15, 
88, 
42, 
76, 
79, 
20, 
08, 
23, 
38, 
20, 
86, 
07, 
20, 
65, 
28, 

97.54) 
97.63) 
97.50) 
96.82) 
96.56) 
95.33) 
96.19) 
96.75) 
99.12) 
96.35) 
97.73) 
97.45) 
97.00) 
97.34) 
96.36) 
98.78) 
96.65) 
94.81) 
97.95) 
97.78) 
97.43) 
95.64) 
96.78) 
94.22) 
98.86) 
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C26 
C27 
C28 
C29 
C30 
C31 
C32 
C33 
C34 
C35 
C36 
C37 
C38 
C39 
C40 
C41 
C42 
C43 
C44 
C45 
C46 
C47 
C48 
C49 
C50 

N 

60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 

MEAN 

94.61 
92.79 
96.00 
95.99 
93.98 
95.36 
91.10 
93.85 
96.01 
95.20 
95.64 
94.74 
93.52 
92.92 
95.08 
93.88 
95.38 
94.38 
91.55 
95.41 
92.40 
96.00 
95.39 
97.69 
95.01 

STDEV 

11.49 
9.36 
12.19 
11.36 
11.74 
13.08 
8.69 
12.94 
9.63 
8.94 
9.41 
10.31 
10.30 
10.27 
10.07 
10.53 
9.98 
11.65 
10.63 
12.79 
10.57 
11.45 
10.56 
10.89 
10.61 

SE MEAN 95 

1.42 < 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 
1.42 

91 
90 
93 
93 
91 
92 
88 
91 
93 
92 
92 
91 
90 
90 
92 
91 
92 
91 
88 
92 

( 89 
93 
92 
94 

( 92 

PERCENT CI. 

82, 
00, 
22, 
20, 
19, 
57, 
31, 
06, 
22, 
41, 
85, 
95, 
73, 
13, 
30, 
09, 
59, 
59, 
76, 
62, 
62, 
21, 
60, 
90, 
22, 

97.39) 
95.58) 
98.79) 
98.78) 
96.76) 
98.15) 
93.89)* 
96.63) 
98.79) 
97.99) 
98.43) 
97.53) 
96.31) 
95.71) 
97.87) 
96.66) 
98.17) 
97.17) 
94.33) 
98.20) 
95.19) 
98.78) 
98.18) 
100.47)* 
97.79) 

MEAN is the sample mean, STDEV is the sample standard deviation, and SE 
MEAN (standard error of the sample mean) is the population standard deviation 
divided by the square root of n. The lower limit of the 95 PERCENT interval is the 
sample mean minus 1.96 times SE MEAN and the upper limit is the sample mean 
plus 1.96 times SE MEAN. We have marked 2 intervals, out of the 50, that did not 
contain 94, the population mean. 

percent. This is the basis for the statement that we are 95 percent confident 
that the confidence interval, based on our single sample, will contain the 
population mean. 

If we use a different value for the standard normal variable, the level of 
confidence changes accordingly. For example, if we had started with a 
value of 1.645, z0.95, instead of 1.96, 20.975/ the confidence level would be 90 
percent instead of 95 percent. The zo.95 value is used with the 90 percent 
level because we want 5 percent of the values to be in each tail. The lower 
and upper limits for the 90 percent confidence interval for the population 
mean for the data in cl , the first sample of 60 observations, are 92.41 
(= 94.75 - 1.645 * 1.42) and 97.09 (= 94.75 + 1.645 * 1.42), respectively. 
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This interval is narrower than the corresponding 95 percent confidence 
interval of 91.96 to 97.54. This makes sense because, if we wish to be more 
confident that the interval contains the population mean, the interval will 
have to be wider. The 99 percent confidence interval uses Zo.995/ which is 
2.576, and the corresponding interval is 91.09 (= 94.75 -2.576 * 1.42) to 
98.41 (= 94.75 + 2.576 * 1.42). 

The 50 samples shown above had sample means, based on 60 observa­
tions, ranging from a low of 91.1 to a high of 97.7. This is the amount of 
variation in sample means expected if the data came from the same normal 
population with a mean of 94 and a standard deviation of 11. The Second 
National Task Force on Blood Pressure Control in Children had study 
means ranging from 85.6 mm Hg (based on 181 values) to 103.5 mm Hg 
(based on 61 values) (3), far outside the range shown above. These extreme 
values suggest that these data do not come from the same population, and 
this then calls into question the Task Force's combination of the data from 
these diverse studies. 

The size of the confidence interval is also affected by the sample size 
which appears in the σ/λ/η term. As n is in the denominator, increasing n 
decreases the size of the confidence interval. For example, if we doubled 
the sample size from 60 to 120 in the above example, the SE MEAN term 
changes from 1.42 (= 11/V6Ö) to 1.004 (= 11/V60 * 2). Doubling the sam­
ple size reduces the confidence interval to about 71 percent (= 1/V2) of its 
former width. Thus we know more about the location of the population 
mean, because the confidence interval is shorter, as the sample size in­
creases. 

The size of the confidence interval is also a function of the value of σ, 
but to change σ means that we are considering a different population. If, 
however, we are willing to consider homogeneous subgroups of the popu­
lation, the value of the standard deviation for a subgroup should be less 
than that for the entire population. For example, instead of considering the 
blood pressure of 5-year-old boys, we consider the blood pressure of 
5-year-old boys grouped according to height intervals. The standard devia­
tion of systolic blood pressure in the different height subgroups should be 
much less than the overall standard deviation. 

Another factor affecting the size of the confidence interval is whether it 
is a one-sided or two-sided interval. If we are concerned only about higher 
blood pressure values, we could use an upper one-sided confidence inter­
val. The lower limit would be zero, or -<» for a variable that had positive 
and negative values, and the upper limit would be 

This is similar to the two-sided upper limit except for the use of Z\-a instead 
Of Ζι_α/2. 
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a. Sample Size 

One important point about the confidence interval is that its width can be 
calculated before the sample is selected. The width of the 95 percent confi­
dence interval is the upper limit minus the lower limit, that is, 

which simplifies to 

As σ and n are known, the width can be calculated. If the interval is viewed 
as being too wide to be informative, we can change one of the values used, 
the z value, the sample size, or σ, in calculating the width to see if we can 
reduce it to an acceptable value. The two most common ways of reducing 
its size are by decreasing our level of confidence and by increasing the 
sample size; however, there are limits for both of these choices. Most 
researchers prefer to use at least the 95 percent level for the confidence 
interval although the use of the 90 percent level is not uncommon. To drop 
below the 90 percent level is usually unacceptable. Researchers may be able 
to increase the sample size somewhat, but the increase requires additional 
resources which are limited. 

Suppose that we wish to estimate the mean systolic blood pressure of 
girls who are 120 to 130 cm (approximately 4 ft to 4 ft 3 in.) tall. We assume 
that the standard deviation of the systolic blood pressure variable for girls 
in this height group is 7 mm Hg. Given this information, how large a 
sample is required so that the 99 percent confidence interval is no more 
than 6 mm Hg wide? From above, we saw that the width of the confidence 
interval is 

Because we are using the 99 percent level, 1 - a is 0.99 or a is 0.01. Then 
Zi-a/2 is Zi-o.005 or Zo.995/ which is 2.576. Thus, we have 

2 * 2 . 5 7 6 * ( ^ = ) = 6 

and we must solve this equation for n. Multiplying both sides by Vn gives 

2 * 2.576 * 7 = 6 * V~n or \Tn = (2 * 2-f6 * 7) 
6 

and squaring both sides gives 

(2* 2.576 * 7 \ 2 „,.,„ n = ( -6 j = 36.13. 

2 * (a selected z value) * 
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As n must be an integer, the next highest integer value, 37, is taken to be 
the value of n. 

The formula for n, given a specified width, d, for the (1 - a) * 100 
percent confidence interval is 

(2 * zi-«/2 * <r\2 

n = \ d / ' 

So far, we have been assuming that σ is known; however, in practice, 
we seldom know the population standard deviation. Sometimes the litera­
ture or a pilot study provides an estimate of its value which we may use for 
σ. In cases when we have no information about σ, the mçthod shown in 
the following section is used to find the confidence interval for the mean. 

2. Unknown Variance 

When the population variance, σ2, is unknown, it is reasonable to substi­
tute its sample estimator, s2, in the confidence interval calculation. There is 
a problem in doing this though. Although (x - μ)Ι(σΙ\ίη) follows the 
standard normal distribution, (x - μ)Ι(βΙ\η) does not. In the first expres­
sion, there is only one random variable, x, whereas the second expression 
involves the ratio of two random variables, x and s. We need to know the 
probability distribution for this ratio of random variables. 

Fortunately, Gösset, who we encountered in Chapter 6, already dis­
covered the distribution of (x - /i)/(s/Vn). The distribution is called Stu­
dent's ϊ, crediting Student, the pseudonym used by Gösset, or more sim­
ply, the t distribution. For large values of n, sample values of s are very 
close to σ and, hence, the t distribution looks very much like the standard 
normal. For small values of n, however, the sample values of s vary consid­
erably and the t and standard normal distributions have different appear­
ances. Thus the t distribution has one parameter, the number of indepen­
dent observations used in the calculation of s. In Chapter 4, we saw that 
this value was n - 1, and we called this value the degrees of freedom. 
Hence the parameter of the t distribution is the degrees of freedom associ­
ated with the calculation of the standard error. The degrees of freedom is 
shown as a subscript, that is, as td(. For example, a t with 5 degrees of 
freedom is written as t5. 

The MINITAB commands in Box 7.3 allow us to compare the appear­
ance of different t distributions with the standard normal distribution over 
the range -3.8 to 3.8. As we can see from these plots, the t distribution 
with one degree of freedom, the lowest curve, is considerably flatter, that 
is, there is more variability, than the standard normal distribution, the top 
curve in the figure. This is to be expected, as the sample mean divided by 
the sample standard deviation is more variable than the sample mean 
alone. As the degrees of freedom increases, the t distributions become 
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MTB > s e t Cl 
DATA> - 3 . 8 : 3 . 8 / . 1 
DATA> end 
MTB > pdf c l c2 ( s t andard normal p r o b a b i l i t y dens i t y funct ion) 
MTB > pdf c l c3 ; 
SUBO ti. (t distribution with df=l) 
MTB > pdf cl c4; 
SUBO t 5. (t distribution with df=5) 
MTB > gplot; 
SUBO lines c2 cl; 
SUBO lines c3 cl; 
SUBO lines c4 cl. 

C2 

0.45 

0.30 

0.15 4-

0.00 

Standard normal 

-3.0 -1.5 0.0 15 3.0 C1 

closer and closer to the standard normal in appearance. The tendency for 
the t to approach the standard normal distribution as the number of de­
grees of freedom increases can also be seen in Table 7.3, which shows 
selected percentiles for several t distributions and the standard normal 
distribution. A more complete t table is found in Appendix Table B5. 

Now that we know the distribution of (x — μ)/(δ/λ/η), we can form 
confidence intervals for the mean even when the population variance is 
unknown. The form for the confidence interval is similar to that above for 
the mean with known variance except that s replaces σ and the t distribu­
tion is used instead of the standard normal distribution. Therefore, the 
lower and upper limits for the (1 - a) * 100 percent confidence interval for 
the mean when the variance is unknown are x — in-\,\-aii * (s/Vn) and x + 
tn-u-a/2 * (s/Vn), respectively. 

Let us calculate the 90 percent confidence interval for the population 
mean of the systolic blood pressure for 5-year-old boys based on the sam-
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Selected Percentiles for Several t Distributions and the Standard 
Normal Distribution 

Percentile 

Distribution 

h 
h 
ho 
£30 

teo 
É120 

Standard normal 

0.80 

1.376 
0.920 
0.879 
0.854 
0.848 
0.845 
0.842 

0.90 

3.078 
1.476 
1.372 
1.310 
1.296 
1.289 
1.282 

0.95 

6.314 
2.015 
1.813 
1.697 
1.671 
1.658 
1.645 

0.99 

31.821 
3.365 
2.764 
2.457 
2.390 
2.358 
2.326 

pie data in column cl above. A 90 percent [= (1 - a) * 100 percent] 
confidence interval means that a is 0.10. Based on a sample of 60 observa­
tions, the sample mean was 94.75 and the sample standard deviation was 
10.25 mm Hg. Thus we need the 95 th (= 1 - a/2) percentile of a t distribu­
tion with 59 degrees of freedom; however, neither Table 7.3 nor Table B5 
show the percentiles for a t distribution with 59 degrees of freedom. Based 
on the small changes in the t distribution for larger degrees of freedom, 
there should be little error if we use the 95th percentile for a teo distribution. 
Therefore, the lower and upper limits are 

9 4 · 7 5 -L671 * (w) and 9 4 · 7 5 + L671 * (w) 
which are 92.54 and 96.96 mm Hg, respectively. 

If we use MINITAB to find the 95th percentile value for a t59 distribu­
tion, we find its value is 1.6711. Hence, there is little error introduced in 
this example by using the percentiles from a i6o instead of a t59 distribution. 

Corresponding to the ZINTERVAL (ZINT) command in MINITAB is 
the TINTERVAL (TINT) command for finding a confidence interval for the 
mean when the population variance is unknown. The command has the 
same form as the ZINT command; that is, you specify the level of confi­
dence desired and the columns containing the data of interest. For exam­
ple, suppose you wanted a 90 percent confidence interval for the popula­
tion mean based on the sample data in column cl. The command is TINT 
90 cl. 

B. Confidence Interval for a Proportion 

We are frequently exposed to the confidence interval for a proportion. 
Most surveys about opinions or voting intentions today report the margin 
of error. This quantity is simply one-half the width of the 95 percent confi-
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dence interval for the proportion. Finding the confidence interval for a 
proportion, π, can be based on either the binomial or normal distribution. 
The binomial distribution is generally used for smaller samples and it pro­
vides an exact interval, whereas the normal distribution is used with larger 
samples and provides an approximate interval. 

1 . Use of the Binomial Distribution 
Suppose we wish to find a confidence interval for the proportion of restau­
rants that are in violation of local health ordinances. A simple random 
sample of 20 restaurants are selected, and of those, 4 are found to have 
violations. The sample proportion, p, which is equal to 0.20 (= 4/20), is the 
point estimate of π, the population proportion. How can we use this sam­
ple information to create the (1 - a) * 100 percent confidence interval for 
the population proportion? 

This is a binomial situation as there are only two outcomes for a restau­
rant: a restaurant either does or does not have a violation. The binomial 
variable is the number of restaurants with a violation and we have ob­
served its value to be 4 in this sample. 

The limits of the confidence interval for the proportion are those values 
that make this outcome appear to be unusual. Another way of stating this 
is that the lower limit is the proportion for which the probability of 4 or 
more restaurants is equal to all. Correspondingly, the upper limit is the 
proportion for which the probability of 4 or fewer restaurants is equal to 
all. Box 7.4 shows an attempt to find these values by trial and error. 

Table B6 provides two charts that can be used to find the 95 and 99 
percent confidence intervals. The charts eliminate the need for the calcula­
tions shown in Box 7.4. The detail provided by these charts is less than that 
shown above, but the accuracy from the charts should be sufficient for 
most applications. 

Suppose that instead of the 90 percent confidence interval for the pro­
portion of restaurants with violations of the health code, we wanted the 95 
percent interval. We use Table B6a and, because the sample proportion is 
less than 0.50, we read across the bottom until we find the sample propor­
tion value of 0.20. We then move up along the line corresponding to 0.20 
until it intersects the first curve for a sample size of 20. As p is less than 
0.50, we read the value of the lower limit from the left vertical axis; it is 
slightly less than 0.06. To find the upper limit, we continue up the vertical 
line corresponding to 0.20 until we reach the second curve for a sample size 
of 20. We read the upper limit from the left vertical axis and its value is 
slightly less than 0.44. The values from MINITAB are 0.0574 and 0.4364. 

2. Use of the Normal Approximation to the Binomial 

The sample proportion, p, is the binomial variable, x, divided by a con­
stant, the sample size. As the normal distribution was shown in Chapter 6 



Suppose that we wish to find the 90 percent 
confidence interval. This means that a is 0.10 
and all is 0.05. We wish to find the probability 
of being less than or equal to 4 and being greater 
than or equal to 4 for different binomial pro­
portions. We start out with the upper limit. As 
the sample estimate's value is 0.20, we know the 
upper limit must be greater than this, and thus 
we try 0.35. 

Because the value of 0.1182 is greater than 0.05, 
we try a larger value for the proportion. 

MTB > set cl; 
DATA> 4 
DATA> end 
MTB > cdf cl; 
SUBO binom 20 

K P( X 
4.00 

MTB > cdf cl; 
SUBO binom 20 

K P( X 
4.00 

.35. 
LESS 

.40. 
LESS 

OR 
0. 

OR 
0. 

= K) 
1182 

= K) 
0510 

This is very close to the value of 0.05, but we 
can examine a few more values for the pro­
portion in an attempt to get closer to 0.05. 

MTB > cdf cl; 
SUBO binom 20 .41. 

K P( X LESS OR = K) 
4.00 0.0423 

MTB > cdf cl; 
SUBO binom 20 .401. 

K P( X LESS OR = K) 
4.00 0.0500 

The value of the upper limit of the confidence 
interval is thus 0.401. For the lower limit, we 
want the probability of 4 or more restaurants to 
be equal to 0.05 or, equivalently, the probability 
of less than or equal to 3 to be 0.95. Therefore, 
we store the value of 3 in column c2. 

MTB > set c2 
DATA> 3 
DATA> end 
MTB > cdf c2; 
SUBO binom 20 .05. 

K P( X LESS OR = K) 
3.00 0.9841 

Using a proportion of 0.05 gives a probability 
that is too large. Therefore we increase the 
trial proportion. 

MTB > cdf c2; 
SUBO binom 20 .07. 

K P( X LESS OR = K) 
3.00 0.9529 

The value of the lower limit is 0.071 to three 
decimal places. Thus, based on the point 
estimate of 0.20, the 90 percent confidence 
interval for the proportion of restaurants with 
violations of the health code is 0.071 to 0.401. 
Note that this interval is not symmetric about the 
point estimate. 

MTB > cdf c2; 
SUBO binom 20 .071. 

K P( X LESS OR = K) 
3.00 0.9508 

MTB > cdf c2; 
SUBO binom 20 .0713. 

K P( X LESS OR = K) 
3.00 0.9501 
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to be a good approximation to the distribution of x when the sample size is 
large enough, it also serves as a good approximation to the distribution of 
p. The variance of p is expressed in terms of the population proportion, π, 
and it is 77 * (1 - π)Ιη. Because π is unknown, we estimate the variance by 
substituting p for π in the formula. 

The sample proportion can also be viewed as a mean as was discussed 
in Chapter 6. Therefore, the confidence interval for a proportion has the 
same form as that of the mean, and the limits of the interval are 

IP * (i - P) l Λ IP * (i - P) l 
p - Z i - « / 2 * V ~ + 2^ a n d P + Zi-«/2*V n + 2^· 

The l/2n is the continuity correction term required because a continuous 
distribution is used to approximate a discrete distribution. For large values 
of n, the term has little effect and many authors drop it from the presenta­
tion of the confidence interval. 

The local health department is concerned about the protection of chil­
dren against diphtheria, pertussis, and tetanus (DPT). To determine if 
there is a problem in the level of DPT immunization, the health department 
decides to estimate the proportion immunized by drawing a simple ran­
dom sample of 150 children who are 5 years old. If the proportion of 
children in the community who are immunized against DPT is clearly less 
than 75 percent, the health department will mount a campaign to increase 
the immunization level. If the proportion is clearly greater than 75 percent, 
the health department will shift some resources from immunization to 
prenatal care. The department decides to use a 99 percent confidence inter­
val for the proportion to help it reach its decision. 

Based on the sample, 86 families claimed that their child was immu­
nized, and 54 said their child was not immunized. There were 10 children 
for whom immunization status could not be determined. As was men­
tioned in Chapter 3, there are several approaches to dealing with the un­
knowns. As there are only 10 unknowns, we shall ignore them in the 
calculations. Thus, the value of p is 0.614 (= 86/140) which is much lower 
than the target value of 0.75. If all 10 of the children with unknown status 
had been immunized, then p would have been 0.640, not much different 
from the value of 0.614, and still much less than the target value of 0.75. 

The 99 percent confidence interval ranges from 

>P 
,_ .614 * 0.386 1 0.614 - 2.576 * λ T7K + 140 2 * 140 

to 

* yj-0.614 * 0.386 1 
0.614 + 2.576 * \/ rrx + 140 2 * 140 
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or from 0.504 to 0.724. Because the upper limit of the 99 percent confidence 
interval is less than 0.75, the health department decides that it is highly 
unlikely that the proportion of 5-year-old children who are immunized is 
as large as 0.75. Therefore the health department will mount a campaign to 
increase the level of DPT immunization in the community. 

If the issue facing the health department was whether or not to add 
resources to the immunization program, not to shift any resources away 
from the program, a one-sided interval could have been used. The 99 
percent upper one-sided interval uses z0.99 instead of Zo.995 in its calculation 
and it ranges from 0 to 

/0.614 * 0.386 1 
0.614 + 2.326 * yj ^ + j - ^ = 0.713. 

This interval also does not contain 0.75. Therefore resources should be 
added to the immunization program. 

The next section shows how to construct confidence intervals for crude 
and adjusted rates, parameters that are very similar to proportions. 

C. Confidence Intervals for Crude and Adjusted Rates 

In Chapter 4, we presented crude, specific, and direct and indirect ad­
justed rates; however, we did not present any estimate for the variance or 
standard deviation of a rate which is necessary for the calculation of the 
confidence interval. Therefore we begin a discussion of this material with a 
section on how to estimate the variance of a rate. 

Rates are usually based on the entire population. If this is the case, 
there is really no need to calculate their variances or confidence intervals 
for them. However, we often view a population rate in some year as a 
sample in location or time. From this perspective, there is justification for 
calculating variances and confidence intervals. If the value of the rate is 
estimated from a sample, as is often done in epidemiology, then it is 
important to estimate the variance and the corresponding confidence inter­
val for the rate. If the rate is based on the occurrence of a very small 
number of events, for example, deaths, the rate may be unstable and 
should not be used in this case. We shall say more about this later. 

1. Variances of Crude and Adjusted Rates 
The crude rate is calculated as the number of events in the population 
during the year divided by the midyear population. This is not really a 
proportion, but it is very similar to a proportion and we shall treat it as if it 
were a proportion. The variance of a sample proportion, p, is π * (1 - ir)In. 
Thus the variance of a crude rate is approximated by the product of the rate 
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(converted to a decimal value) and one minus the rate divided by the 
population total. 

From the data on rates in Chapter 4, we saw that the crude death rate 
for Harris County, Texas, in 1986 was 529.6 per 100,000. The correspond­
ing estimated 1986 Harris County population was 2,294,550. Thus the esti­
mated standard error, the square root of the variance estimate, for this 
crude death rate is 

/0.005296 * (1 - 0.005296) 
V 2^4^50 = ° · 0 0 0 0 4 7 9 

or 4.8 deaths per 100,000 population. 
The direct method's age-adjusted rate is a sum of the age-specific rates, 

sr/s, in the population under study weighted by the age distribution, w/s, 
in the standard population. In symbols, this is Σ (w?,· * sr,), where w\ is the 
proportion of the standard population and sr, is the age-specific rate in the 
zth age category. The age-specific rate is calculated as the number of events 
in the age category divided by the midyear population in that age category. 
Again, this is not a proportion, but it is very similar to a proportion. We 
approximate the variance of the age-specific rates by treating them as if 
they were proportions. As the w/s are from the standard population which 
is usually very large and stable, we treat the w/s as constants as far as the 
variance calculation is concerned. Because the age-specific rates are inde­
pendent of one another, the variance of the direct method's adjusted rate, that 
is, the variance of this sum, is simply the sum of the individual variances 

var(2 Wi * sr,) = Σ v a r ^ * srf) = ΣΜ}* var(srf) = Σ wj * y——— Lj 

where n,· is the number of persons in the ith age subgroup in the popula­
tion under study. 

Considering the Harris County mortality data as a sample in time, we 
can calculate the approximate variance of the direct method's age-adjusted 
death rate. The data to be used are the Harris County age-specific death 
rates along with the Harris County population totals and the U.S. popula­
tion proportions by age from Table 4.10. Table 7.4 repeats the relevant data 
and shows the calculations. The entries in the last column are all quite 
small, less than 0.00000001; therefore, only their sum is shown. The stan­
dard error of the direct method's age-adjusted mortality rate is 0.00007 
(= square root of variance). The direct method's age-adjusted rate was 
860.9 deaths per 100,000 population, and the standard error of the rate is 7 
deaths per 100,000. The magnitude of the standard error here is not un­
usual, and it shows why the sampling variation of the adjusted rate is often 
ignored in studies involving large samples. 
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Calculation of the Approximate Variance for the Age-Adjusted Death 
Rate by the Direct Method for Harris County in 1986 

Harris county age- Harris county U.S. population 2 { _ . 
Age specific rate population proportion —î ! -
i sr, rii Wi tii 

0-4 
5-14 

15-24 
25-34 
35-44 
45-54 
55-64 
65-74 

>75 

0.002502 
0.000196 
0.000998 
0.001468 
0.002185 
0.004647 
0.013202 
0.028328 
0.081011 

253,776 
469,446 
489,053 
640,813 
444,366 
275,007 
190,352 
111,870 
67,867 

2,942,550 

0.0753 
0.1404 
0.1618 
0.1774 
0.1372 
0.0946 
0.0922 
0.0719 
0.0491 

0.9999 Total 2,942,550 0.9999 4.9 x 10~9 

For the indirect method, the adjusted rate can be viewed as the ob­
served crude rate in the population under study multiplied by a ratio. The 
ratio is the standard population's crude rate divided by the rate obtained 
by weighting the standard population's age-specific rates by the age distri­
bution from the study population. This ratio is viewed as a constant in 
terms of approximating the variance. Hence the approximation of the variance 
of the indirect method's adjusted rate is simply the square of the ratio multi­
plied by the variance of the study population's crude rate. 

Using the data from Chapter 4, the standard population's (the U.S.) 
crude rate was 873.2 deaths per 100,000 population. Combination of the 
standard population's age-specific rates with the study population's 
(Harris County) age distribution yielded 534.6 deaths per 100,000 popula­
tion. The crude rate in Harris County was 529.6 deaths per 100,000 popula­
tion. Thus the approximate variance of the indirect method's age-adjusted 
mortality rate is 

The standard error of the indirect method's age-adjusted death rate is the 
square root of the variance, and it is also 0.00007. 

2. Formation of the Confidence Interval 
To form the confidence interval for a rate, we require knowledge of its 
sampling distribution. As we are treating crude and specific rates as if they 
are proportions, the confidence intervals for these rates will be based on 
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the normal approximation as shown above for the proportion. Therefore, 
the confidence interval for the population crude rate (0) is 

/cr * (1 - cr) /cr * (1 - cr) 
cr - Ζι-α/2 * y] < Θ < cr + ζι-β/2 * y] 

where cr is the value of the crude rate based on the observed sample. 
For example, the 95 percent confidence interval for the 1986 Harris 

County crude death rate is 
0.005296 - 1.96 * 0.0000479 < Θ < 0.005296 + 1.96 * 0.0000479 

or from 0.005202 to 0.005390. Thus the confidence interval for the crude 
death rate is 520.2 to 539.0 deaths per 100,000 population. 

The confidence intervals for the rates from the direct and indirect 
methods of adjustment have the same form as that of the crude rate. For 
example, the 95 percent confidence interval for the direct method's 1986 
age-adjusted mortality rate for Harris County is found by taking 

860.9 ± 1.96 * 7.0 = 860.9 ± 13.7 

and thus the limits are 847.2 to 874.6 deaths per 100,000 population. 

3. Minimum Number of Events Required for a Stable Rate 

As we mentioned above, rates based on a small number of occurrences of 
the event of interest may be unstable. To deal with this instability, a health 
agency for a small area often will combine its mortality data over several 
years. By using the estimated coefficient of variation, the estimated stan­
dard error of the estimate divided by the estimate and multiplied by 100 
percent, we can determine when there are too few events for the crude rate 
to be stable. 

Recall that in Chapter 4, we said that if the coefficient of variation was 
large, the data had too much variability for the measure of central tendency 
to be very informative. Values of the coefficient of variation greater than 30 
percent—others might use slightly larger or smaller values—are often con­
sidered to be large. We use this idea with the crude rate to determine how 
many events are required so that the rate is stable. 

For example, the coefficient of variation for the 1986 crude mortality 
rate of Harris County is 0.904 percent [= (0.0000479/0.005296) * 100 per­
cent]. This rate, less than 1 percent, is very reliable from the coefficient of 
variation perspective. It turns out that the coefficient of variation of the 
crude rate can be approximated by (1/Vrf) * 100 percent where d is the 
number of events. For example, the total number of deaths for Harris 
County in 1986 was 12,152 and (1/V12152) * 100 percent is 0.907 percent, 
essentially the same result as above. 
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Thus we can use the approximation (l/Vd) * 100 percent for the coeffi­
cient of variation. Setting this value equal to large values of the coefficient 
of variation, say 20, 30, and 40 percent, yields 25, 12, and 7 events, respec­
tively. If the crude rate is based on fewer than 7 events, it certainly should 
not be reported. If we require that the coefficient of variation be less than 
20 percent, there must be at least 25 occurrences of the event for the crude 
rate to be reported. 

Besides forming confidence intervals for measures of central tendency 
or location, there is also interest in constructing confidence intervals for 
other population parameters. The following sections show the creation of 
confidence intervals for the population variance and the correlation coeffi­
cient. 

D. Confidence Interval for the Variance 

Besides being useful in describing the data, the variance is also frequently 
used in quality control situations. It is one way of stating how reliable the 
process under study is. For example, in Chapter 2 we presented data on 
the measurement of blood lead levels by different laboratories. We saw 
from that example that great variability in the measurements made by 
laboratories exists, and the variance is one way to characterize that variabil­
ity. Variability within laboratories can be due to different technicians, fail­
ure to calibrate the equipment, and so on. It is critically important that 
measurements of the same sample within a laboratory have variability less 
than or equal to a prespecified small amount. Thus, based on the sample 
variance for a laboratory for measuring blood lead, we wish to determine 
whether or not the laboratory's variance is in compliance with the stan­
dards. The confidence interval for the population variance provides one 
method of doing this. 

To construct the confidence interval for the population variance, we 
need to know the sampling distribution of its estimator, the sample vari­
ance, s2. We can use MINITAB to examine the sampling distribution of s2 

for a few different situations. A reason for using MINITAB here is that it 
has the capability of storing a set of commands and then executing this set 
a number of times. The stored set of commands is called a macro. A macro 
is particularly useful when studying the sampling distribution of a statistic 
as shown in Box 7.5, 

Box 7.6 shows the execution of the macro shown in Box 7.5 
All 200 sample standard deviations are printed, but most have not been 

shown because they themselves are of little interest. The mean of the 
sample variance from the 200 observations is 25.50, very close to the popu­
lation value of 25.00. There is tremendous variability in the sample vari­
ances as they range from 0.01 to 130.28 in value. This large variation is 
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We use the STORE command to store in a file a set of commands that (1) draws a 
sample from a specified distribution, (2) calculates the sample standard deviation 
and variance, and (3) places the standard deviation and variance values in columns 
cl and c2. The EXECUTE 'filename' command then causes the set of commands in 
the file to be executed. 
MTB > store 'samdist' 
ST0RE> noecho 
ST0RE> random kl c3; 
ST0RE> normal 0 k2. 
ST0RE> stdev c3 k3 
ST0RE> let k4=k3*k3 
ST0RE> let k5=k5+l 
ST0RE> let cl(k5)=k3 
ST0RE> let c2(k5)=k4 
ST0RE> end 
MTB > let kl=3 
MTB > let k2=5 
MTB > let k5=0 
The NOECHO statement tells MINITAB not to print each command that it encoun­
ters. The constant kl is the sample size to be drawn; here we have initially specified 
a very small sample of size 3. The constant k2 is the value of the standard deviation 
to be used; in this case we are drawing a sample of size 3 from a normal distribution 
with a mean of 0 and a standard deviation of 5. The constants k3 and k4 are the 
sample standard deviation and variance, respectively. The constant k5 is a counter 
which is initialized to be 0 and increases by 1 every time the 'samdist' set of 
commands is executed. 

expected as each sample variance was based on only three observations. 
As was pointed out in Chapter 4, the average or expected value of the 
sample standard deviation slightly underestimates the population value 
and this is demonstrated here. The sample estimate is 4.42, slightly less 
than the population value of 5. 

The histogram shows that most of the sample variance values are in the 
ranges 0 to 5 and 5 to 15, underestimates of the population value. Large 
proportions of the values are also in the ranges 15 to 25 and 25 to 35. The 
distribution is very asymmetric with a long tail to the right, and it does not 
look like either a normal or a t distribution. 

In Box 7.7 we examine drawing a sample of 21 observations from the 
same normal distribution as above. The reduced variation in the sample 
variance and standard deviation reflect the increase in the sample size from 
3 to 21 observations. The mean of the sample standard deviations is also 
closer to the population value with the increase in the sample size. This 
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The EXECUTE command is used to run the macro that draws 200 samples of size 3. 
MTB > execute ' s a m d i s t ' 200 

ST.DEV. = 10.107 
ST.DEV. = 5.9390 

ST.DEV. = 5.0300 

STDEV SEMEAN 
2.447 0.173 
25.57 1.81 

MTB > desc cl c2 
N 

Cl 200 
C2 200 

MIN 
Cl 0.095 
C2 0.01 

MEAN 
4.421 
25.50 

MAX 
11.414 
130.28 

MEDIAN 
4.474 
20.02 

Qi 
2.631 
6.92 

TRMEAN 
4.328 
22.72 

Q3 
5.870 
34.45 

MTB > hist c2 

Histogram of C2 N = 200 

Midpoint Count 
0 44 

10 43 
20 32 
30 32 
40 16 
50 11 
60 5 
70 3 
80 5 
90 4 

100 2 
110 0 
120 2 ** 
130 1 * 

******************************************** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
**************** 
*********** 
***** 
*** 
***** 
**** 
** 

agrees with our expectations from Chapter 4. The sample variance now 
ranges from 6.9 to 52.4, a much smaller range than from 0.01 to 130.28. The 
histogram no longer shows so many small sample variances and the cate­
gories with the greatest frequencies are 17.5 to 22.5, 22.5 to 27.5, and 27.5 
to 32.5. The distribution is not so asymmetric and the tail to the right is 
much shorter than in the first histogram. 
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MTB > let kl=21 
MTB > let k5=0 
MTB > execute 'samdist' 200 

(We have not shown the standard deviations.) 

MTB > desc cl c2 
N MEAN MEDIAN TRMEAN STDEV SEMEAN 

Cl 200 5.0269 4.9667 5.0085 0.8618 0.0609 
C2 200 26.009 24.668 25.543 8.938 0.632 

MIN MAX Ql Q3 
Cl 2.6297 7.2377 4.4713 5.5296 
C2 6.915 52.385 19.992 30.577 

MTB > hist c2 

Histogram of C2 N = 200 
Midpoint Count 

5 1 * 
10 6 
15 25 
20 49 
25 39 
30 38 
35 21 
40 10 
45 5 
50 6 

****** 
************************* 
************************************************* 
*************************************** 
************************************** 
********************* 
********** 
***** 
****** 

In Box 7.8 we increase the sample size to 61. The sample statistics show 
much less variability in the sample variance and standard deviation, re­
flecting the increase in the sample size from 21 to 61. For example, the 
interquartile range containing the middle 50 percent of the values of the 
sample variances goes from 21.15 to 26.68 for the sample size of 61, com­
pared with 19.99 to 30.58 for an n of 21 and 6.92 to 34.45 for an n of 3. The 
histogram reflects this reduction in variability as well. We can see that the 
sampling distributions for the three sample sizes are very different; that is, 
they depend on the sample size. The distributions, particularly for the 
smaller sample sizes, also are very nonnormal. 

It appears that the distribution of the sample variance does not match 
any of the probability distributions we have encountered so far. Fortu­
nately, when the data come from a normal distribution, the distribution 
of the sample variance is known. The sample variance, multiplied by 
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MTB > let kl=61 
MTB > let k5=0 
MTB > execute 'samdist' 200 (Again the sample standard deviations are not 

shown.) 

MTB > desc 

Cl 
C2 

Cl 
C2 

MTB > hist 

cl 

3.1 
13 

c2 

c2 
N 

200 
200 

MIN 
6778 
.526 

Histogram of C2 
Midpoint Count 

14 1 
16 7 
18 14 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

24 
35 
32 
40 
21 
13 
7 
3 
0 
1 
2 

MEAN 
4.9116 
24.328 

MAX 
6.3761 
40.655 

MEDIAN 
4.9376 
24.380 

Ql 
4.5987 
21.148 

N = 200 
* 
******* 
************** 

TRMEAN 
4.9087 
24.214 

Q3 
5.1656 
26.684 

************************ 

STDEV SEMEAN 
0.4527 0.0320 
4.487 0.317 

*********************************** 
******************************** 
**************************************** 
********************* 
************* 
******* 
*** 

* 
** 

(n - 1)/σ2, follows a chi-square (χ2) distribution. Two eminent 19th-cen­
tury French mathematicians, Laplace and Bienaymé, played important 
roles in the development of the chi-square distribution. Karl Pearson, an 
important British statistician previously encountered in connection with 
the correlation coefficient, popularized the use of the chi-square distribu­
tion in the early 20th century. As we saw above, the distribution of the 
sample variance depends on the sample size, actually on the number of 
independent observations (degrees of freedom) used to calculate s2. There­
fore Table B7 shows percentiles of the chi-square distribution for different 
values of the degrees of freedom parameter. 
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To create a confidence interval for the population variance, we begin 
with the probability statement 

„ f , (n - l)s2 , 1 Λ 
Pr ]XI-I,al2 < —2 < Xn-l,l-«/2J = 1 " «· 

This statement indicates that the confidence interval will be symmetric in 
the sense that the probability of being less than the lower limit is the same 
as that of being greater than the upper limit; however, the confidence limit 
will not be symmetric about s2. This probability statement is in terms of s2 

however, and we want a statement about σ2. To convert it to a statement 
about σ2, we first divide all three terms in the bracket by (n - l)s2. This 
yields 

p / Xw-l,q/2 . J_ . Xn-l/l-ttfli _ 1 _ 
l r l ( n - l)s2 σ2 ( n - l)s2J 

The interval is now about l/σ2, not σ2. Therefore, we next take the recipro­
cal of all three terms which changes the direction of the inequalities. For 
example, we know that 3 is greater than 2, but the reciprocal of 3, which is 
1/3 or 0.333, is less than the reciprocal of 2, which is 1/2 or 0.500. Thus we 
have 

ΡΓί(^>σ2>(ΐ!^] = 1_α. 
^ Xn-l,al2 Χη-1,1-α/2> 

and reversing the directions of the inequalities to have the smallest term on 
the left yields 

^Χη-Ι,Ι-α/2 Χη-Ι,α/2 J 

It is also possible to create one-sided confidence intervals for the popu­
lation variance. For example, the lower one-sided confidence interval for 
the population variance is 

(n - l)s2 , 
^ — < cr2 < oo. 
Xn-l,l-a 

Let us apply this formula to an example. From 1988 to 1991, eight 
persons in Massachusetts were identified as having vitamin D intoxication 
due to receiving large doses of vitamin D3 in fortified milk (4). The problem 
was traced to a local dairy which had tremendous variability in the amount 
of vitamin D added to individual bottles of milk. Homogenized whole milk 
showed the greatest variability based on measurements made in April and 
June 1991, with a low value of less than 40 IU and a high of 232,565 IU of 
vitamin D3 per quart. These values are contrasted with the requirement for 
at least 400 IU (10 /xg) to no more than 500 IU of vitamin D per quart of milk 
in Massachusetts. 
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The Food and Drug Administration (FDA) found poor compliance with 
the requirement for 400 IU of vitamin D per quart of vitamin D-fortified 
milk in a 1988 survey (5). Based on this poor compliance, the FDA urged 
that the problem be corrected; otherwise it would institute a regulatory 
program. Suppose that compliance is defined in terms of the mean and 
standard error of the mean vitamin D concentration in milk. The mean 
concentration should be 400 IU with a variance of less than 1600 IU. To 
determine if a milk producer is in compliance, a simple random sample of 
milk cartons from the producer is selected and the amount of vitamin D in 
the milk is ascertained. It is decided that if the 90 percent loyver one-sided 
confidence interval for the variance contains 1600 IU, the process used by 
the producer to add vitamin D is within the acceptable limits for variability. 
This is an approach for determining compliance that greatly favors the 
producer. 

A random sample of 30 cartons is selected and the sample variance for 
the vitamin D in the milk is found to be 1700 IU. The 90 percent confidence 
interval uses X29,o.90/ where the first subscript is the degrees of freedom 
parameter and the second subscript is the percentile value. The value from 
Table B7 is 39.09. The lower limit is found from (29 * 1700)/39.09, which 
gives the value of 1261.3. As the 90 percent confidence interval does con­
tain 1600 IU, the producer is said be in compliance with the variability 
requirement. To find that a producer is not in compliance requires that the 
sample variance be at least 2156.5. 

A key assumption in calculating the confidence interval for the popula­
tion variance is that the data come from a normal distribution. If the data 
are from a very nonnormal distribution, the use of the above formula for 
calculating the confidence interval can be very misleading. 

To find the confidence interval for the population standard deviation, 
we take the square root of the variance's confidence interval limits. Thus 
the lower limit of the confidence interval for σ in the above example is 
35.5 IU. 

E. Confidence Interval for the Pearson 
Correlation Coefficient 

In Chapter 4, we presented p, the Pearson correlation coefficient, which is 
used in assessing the strength of the linear relationship between two 
jointly normally distributed variables. We presented a formula for finding 
r, the sample Pearson correlation coefficient. We also found the correlation 
between protein and total fat, based on the 33 observations in Table 4.1, to 
be 0.648, suggestive of a strong positive relation. Although this point esti­
mate of p is informative, more information is provided by the interval 
estimate. For example, if the sampling variation of r is so large that the 95 
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percent confidence interval for p contains zero, we would not be impressed 
by the strength of the relationship between total fat and protein. 

It turns out that the sampling distribution of r is not easily character­
ized; however, the father of modern statistics, Ronald Fisher, showed that 
a transformation of r approximately follows a normal distribution. This 
transformation is 

z' = 0.5 * [lo&(l + r) - loge(l - r)], 

and it provides the basis for the confidence interval for p. The mean of z' is 
[loge(l + p) - logg(l - p)] and its standard deviation, σζ>, is 1/V(n - 3). 
Note that for convenience, loge is often written as In and we do that below. 
Thus we can employ the procedures we have used above for finding the 
confidence interval for the transformed value of p, that is, 

z' - Ζι-α/2 * o-z> < 0.5 * [In (1 + p) -In (1 - p)] < z' - Z\-all * σζ>. 

There is one simplification we can make that allows us to have to take 
only one natural logarithm in the calculation instead of finding two natural 
logarithms. In the presentation of the geometric mean in Chapter 4, we 
saw that the sum of logarithms of two terms is the logarithm of the product 
of the terms, that is, 

In %\ + In x2 = In (x\ * x2). 

In the same way, the difference of logarithms of two terms is the logarithm 
of the quotient of the terms, that is, 

In Xi - In x2 = In ( — j . 

Thus we have the relationship 

z' = 0.5 * [In (1 + r) - In (1 - r)] = 0.5 * In \j~^\ · 

Let us apply these formulas for finding the 95 percent confidence inter­
val for the correlation between total fat and protein. As r is 0.648, z' is 

= 0.5 * 1.5437 = 0.77185. 

The standard deviation of z' is 1/V3Ö, which is 0.18257. Thus the interval 
for 0.5 * In [(1 + p)/(l - p)] is 0.77185 - 1.96 * 0.18257 to 0.77185 + 1.96 * 
0.18257, or 0.4140 to 1.1297. 

These calculations are easily performed with MINITAB as shown in 
Box 7.9. 
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MTB > let kl=0.648 
MTB > let k2=(l+kl)/(l-kl] 
MTB > let k3=0.5*loge(k2) 
MTB > print k3 
K3 0.77185 

MTB 
MTB 
MTB 
MTB 
MTB 

K6 
K7 

> 
> 
> 
> 
> 

let k4=l/sqrt(30) 
let k5=1.96*k4 
let k6=k3-k5 
let k7=k3+k5 
print k6 k7 

0.413998 
1.12969 

To find the confidence interval for p, we first perform the inverse 
transformation on twice the lower and upper limits of the interval just 
calculated. The inverse transformation of the natural logarithm, In, is the 
exponential transformation. This means that 

exp (In x) = x. 

After obtaining the exponential of twice a limit, call it a, further manipula­
tion leads to the following equation: 

i. · c a — \ limit for p = ——. r a + 1 

The exponential of twice the lower limit, that is, two times 0.4140, is the 
exponential of 0.8280, which is 2.28874, and this is the value used for a for 
the lower limit. The lower limit for p is then 

2.28874 - 1 
2.28874 + 1 " 

The exponential of twice the upper limit, that is, two times 1.1297, is the 
exponential of 2.2594, which is 9.57734, and this is the value used for a for 
the upper limit. The upper limit for p is then 

9.57734 - 1 
9.57734 + 1 " ° · 8 Π · 

Therefore, the 95 percent confidence for the Pearson correlation coefficient 
between total fat and protein in the population is 0.392 to 0.811. Thus it is 
reasonable to conclude that there is a strong positive association between 
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MTB > let k8=2*k6 
MTB > let k9=2*k7 
MTB > let kl0=exp(k8) 
MTB > let kll=exp(k9) 

(The constants klO and kll are the exponentials of twice the lower and upper 
limits, respectively.) 

MTB > l e t k l 2 = ( k l 0 - l ) / ( k l 0 + l ) 
MTB > l e t k l 3 = ( k l l - l ) / ( k l l + l ) 
MTB > p r i n t k l2 k l3 

K12 0.391862 
K13 0.810913 

total fat and protein in the diet of suburban middle school boys in the 
Houston area. 

These calculations are again easily performed in MINITAB as shown in 
Box 7.10. 

This material also applies to the Spearman correlation coefficient for 
sample sizes greater than or equal to 10. 

So far, all the confidence intervals presented have been for a single 
parameter. The following sections address confidence intervals for the 
comparison of parameters from two populations. 

F. Confidence Interval for the Difference of Two Means 
1. Independent Means 
We often wish to compare the mean from one population with that of 
another population. Examples include the following. Is the mean change in 
blood pressure for men with mild to moderate hypertension the same for 
men taking different doses of an angiotensin-converting enzyme inhibitor? 
Is the mean length of stay in a psychiatric hospital equal for patients with 
the same diagnosis but under the care of two different psychiatrists? Given 
the following, there is an interest in the mean change in air pollution, 
specifically, in carbon monoxide, from 1991 to 1992 for neighboring states 
A and B. There was no change in gasoline formulation in State A, whereas 
on January 1, 1992, State B required that gasoline consist of 10 percent 
ethanol during the November to March period. 

One reason for interest in the confidence interval for the difference of 
two means is that it can be used to address the question of the equality of 
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the two means. If there is no difference in the two population means, the 
confidence interval for their difference is likely to include zero. 

a. Known Variances 

The confidence interval for the difference of two means has the same form 
as that for a single mean, that is, it is the difference of the sample means 
plus or minus some distribution percentile times the standard error of the 
difference of the sample means. Let us convert these words to symbols. 
Suppose that we draw samples of sizes ri\ and n2 from two independent 
populations. All the observations are assumed to be independent of one 
another; that is, the value of one observation does not affect the value of 
any other observation. The unknown population means are μ\ and μ2, the 
sample means are X\ and x2, and the known population variances are σι2 

and σ2
2, respectively. The variances of the sample means are σ^/ηι and σ2

2/ 
n2, respectively. As the means are from two independent populations, the 
standard error of the difference of the sample means is the square root of 
the sum of the variances of the two sample means: 

> rii n2 

The central limit theorem implies that the difference of the sample means 
will approximately follow the normal distribution for reasonable sample 
sizes. This can be expressed as 

z = fa - xi) - (jii - μι) 
y/σΐ/πι + σ2/η2 

Therefore, the (1 - a) * 100 percent confidence interval for the difference of 
population means, μ\ — μ2, ranges 

from [fa - x2) - zi-ati * yj^ + γ) to [fa - x2) - ζλ-αΙ2 * 

Suppose we wish to construct a 95 percent confidence interval for the 
effect of different doses of ramipril, an angiotensin-converting enzyme 
inhibitor, used in treating high blood pressure. A study reported changes 
in diastolic blood pressure using the values at the end of a 4-week run-in 
period as the baseline and measured blood pressure after 2, 4, and 6 weeks 
of treatment (6). We shall form a confidence interval for the difference in 
mean decreases from baseline to 2 weeks after treatment was begun be­
tween doses of 1.25 and 5 mg of ramipril. The sample mean decreases are 
10.6 (xi) and 14.9 mm Hg (x2) for the 1.25- and 5-mg doses, respectively, 
and ni and n2 are both equal to 53. Both σι and σ2 are assumed to be 9 mm 
Hg. The 95 percent confidence interval for μ1 - μ2 is calculated as ranging 
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/ /§ï 81, 
from ((10.6 - 14.9) -1.96 * V53 + 53J 

to ((10.6-14.9)+1.96 = ^ 5 3 + 53), 

or from -7.98 to -0.62. The value of 0 is not contained in this interval. As 
the difference in mean decreases is negative, it appears that the 5-mg dose 
of ramipril is associated with a greater decrease in diastolic blood pressure 
during the first 2 weeks of treatment when considering only these two 
doses. 

b. Unknown but Equal Population Variances 

If the variances are unknown but assumed to be equal, data from both 
samples can be combined to form an estimate of the common population 
variance. Use of the sample estimator of the variance calls for use of the t, 
instead of the normal, distribution in the formation of the confidence inter­
val. The pooled estimator of the common variance, sp

2, is defined as 

Σ (*i/ ~ χύ2 + Σ (χ2ί - Xi)2 

S-2 p m + n2 - 2 
and this can be rewritten as 

, _ (ni - l)si + (n2 " l)ê = foi " l)sf + ("2 ~ l)sj 
Sp (m - 1) + (n2 - 1) ni + n2 - 2 

The pooled estimator is a weighted average of the two sample variances, 
weighted by the respective degrees of freedom associated with the individ­
ual sample variances and divided by sum of the degrees of freedom associ­
ated with each of the two sample variances. 

Now that we have an estimator of σ2, we can use it in estimating the 
standard error of the difference of the sample means, x\ and x2. As we are 
assuming that the population variances for the two groups are the same, 
the standard error of the difference of the sample means is 

V ΠΛ no V M, no Π\ η2 ι Π\ η2 

and its estimator is 

p Vtti n2 

The corresponding t statistic is 

t = (*i - *2) - (Mi - μι) 
Sp Vl/ni + 1/n2 
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and the (1 - a) * 100 percent confidence interval for μι - μ2 ranges from 

( (*1 - *2) - tn-2,l-a/2 Sp yj — + — J to ( (*i - X2) + *η-2,1-«/2 Sp J— + — J 

where n is the sum of U\ and n2. 
Suppose that we wish to calculate the 95 percent confidence interval 

for the difference in the proportion of caloric intake that comes from fat for 
fifth and sixth grade boys compared with seventh and eighth grade boys in 
suburban Houston. The sample data shown in Table 4.1 will be used in the 
calculation. The proportion of calore intake that comes from fat is found by 
converting the grams of fat to calories by multiplying by 9 (9 calories result 
from 1 g of fat) and then dividing by the number of calories consumed. 
Table 7.5 shows these variables. 

The sample mean for the 14 fifth and sixth grade boys is 0.329, com­
pared with 0.353 for the 19 seventh and eighth grade boys. These values of 
percent of intake from fat are slightly above the recommended value of 30 
percent (7, p. 51). The corresponding standard deviations are 0.0895 and 
0.0974, which support the assumption of equal variances. 

Total Fat,a Calories, and the Proportion of Calories from Total Fat for 
the 33 Boys in Table 4.1 

Grades 7 and 8 Grades 5 and 6 

Proportion Proportion 
Total fat 

567 
558 
297 
1818 
747 
927 
657 

2043 
1089 
621 
225 
783 
1035 
1089 
621 
666 
1116 
531 
1089 

Calories 

1823 
2007 
1053 
4322 
1753 
2685 
2340 
3532 
2842 
2074 
1505 
2330 
2436 
3076 
1843 
2301 
2546 
1292 
3049 

from fat 

0.311 
0.278 
0.282 
0.421 
0.426 
0.345 
0.281 
0.578 
0.383 
0.299 
0.150 
0.336 
0.425 
0.354 
0.337 
0.289 
0.438 
0.411 
0.357 

Total fat 

1197 
891 
495 
756 
1107 
792 
819 
738 
738 
882 
612 
252 
702 
387 

Calories 

3277 
2039 
2000 
1781 
2748 
2348 
2773 
2310 
2594 
1898 
2400 
2011 
1645 
1723 

from fat 

0.365 
0.437 
0.248 
0.424 
0.403 
0.337 
0.295 
0.319 
0.285 
0.465 
0.255 
0.125 
0.427 
0.225 

"Total fat has been converted to calories by multiplying the number of grams by 9. 
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The estimate of the pooled standard deviation is therefore 

s = /l3 * 0.08952 + 18 * 0.0974* = 0 0 9 4 
P V 14 + 1 9 - 2 

The estimate of the standard error of the difference of the sample means is 

0.094 * yjl· + -L = 0.033. 

To find the confidence interval, we require £31,0.975. This value is not shown 
in Table B5, but based on the values for 29 and 30 degrees of freedom, an 
approximate value for it is 2.04. Therefore, the lower and upper limits are 

(0.329 - 0.353) - 2.04 * 0.033 and (0.329 - 0.353) + 2.04 * 0.033 

which are -0.092 and 0.044. As zero is contained in the 95 percent confi­
dence interval, there does not appear to be a difference in the mean pro­
portions of calories that come from fat for fifth and sixth grade boys com­
pared with seventh and eighth grade boys in suburban Houston. 

These calculations are easily carried out with MINITAB as shown in 
Box 7.11. 

Recall that column c2 contains the caloric intake and c3 contains the total fat values. 
These data are arranged such that the values for the seventh and eighth graders are 
followed by the values for the fifth and sixth graders. Column c7 is the proportion 
of total calories that come from fat, and c8 is an indicator column that identifies the 
seventh and eighth graders (c8 = 0) and the fifth and sixth graders (c8 = 1). The 
COPY command used here has two columns, for example, c7 and c9. Some or all of 
the data from c7 are copied into c9. If the USE subcommand is specified, only a 
subset of the data in c7 are copied into c9. The subset includes only the values in c7 
for which the corresponding values in c8 are 0. Thus columns c9 and clO contain 
the proportions of total calories that come from fat for these two groups of boys. 
The DESCRIBE command is then used to obtain the sample means and standard 
deviations required for the calculations, and the INVCDF command is used to 
obtain the value of £31,0.975. 
MTB > let c7=9*c3/c2 
MTB > set c8 
DATA> 19(0) 14(1) 
DATA> end 
MTB > copy c7 c9; 
SUB > use c8=0. 
MTB > copy c7 clO; 
SUB > use c8=l. 
MTB > desc c9 clO 
MTB > invcdf 0.975; 
SUBO t 31. 
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c. Unknown and Unequal Population Variances 

If the population variances are different, this poses a problem. There is a 
procedure for obtaining an exact confidence interval for the difference in 
the means when the population variances are unequal, but it is much more 
complex than the other methods in this book (8, pp. 141-146). Because of 
this complexity, most researchers use an approximate approach to the 
problem. The following shows one of the approximate approaches. 

As the population variances are unknown, we again use a f-like statis­
tic. This statistic is 

Vsf/ni + s\in2 

The t distribution with the degrees of freedom shown next can be used to 
obtain the percentiles of the V statistic. The degrees of freedom value, df, is 

H f = (sì/ni + s2
2/n2f 

This value for the degrees of freedom was suggested by Satterthwaite (9). It 
is unlikely to be an integer and it should be rounded to the nearest integer. 

The approximate (1 - a) * 100 percent confidence interval for the 
difference of two independent means when the population variances are 
unknown and unequal is 

(Xl — X2) — £df, l-a/2 S*i-*2 < (Ml ~ M2) < (*1 ~~ Xl) + Ϊάί,1-α12 $ϊλ-χ2 

where the estimate of the standard error of the difference of the two sam­
ple means is 

Sx^ Vni n2 

In Exercise 4.5, we presented survival times from Exercise Table 3.3 in 
Lee (10) on 71 patients who had a diagnosis of either acute myeloblastic 
leukemia (AML) or acute lymphoblastic leukemia (ALL). In one part of the 
exercise, we asked for additional variables that should be considered be­
fore comparing the survival times of these two diagnostic groups of pa­
tients. One such variable is age. Let us examine these two groups to deter­
mine if there appears to be an age difference. If there is a difference, it must 
be taken into account in the interpretation of the data. To examine if there 
is a difference, we find the 99 percent confidence interval for the difference 
of the mean ages of the AML and ALL patients. As we have no knowledge 
about the variation in the ages, we assume that the variances will be differ­
ent. Table 7.6 shows the ages and survival times for these 71 patients. 

The sample mean age for the AML patients, xx, is 49.86, and S\ is 16.51 
based on the sample size, rt\, of 51 patients. The sample mean, x2, for the 20 
ALL patients is 36.65 years, and s2 is 17.85. This is the information needed 
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Ages and Survival Times of the AML and ALL Patients* 

A M L patients: 
Age 

Survival time (months) 

ALL patients: 
Age 

Survival time (months) 

20 25 26 26 27 27 28 28 31 33 33 33 34 
36 37 40 40 43 45 45 45 45 47 48 50 50 
51 52 53 53 56 57 59 59 60 60 61 61 61 
62 63 65 71 71 73 73 74 74 75 77 80 
18 31 31 31 36 01 09 39 20 04 45 36 12 
08 01 15 24 02 33 29 07 00 01 02 12 09 
01 01 09 05 27 01 13 01 05 01 03 04 01 
18 01 02 01 08 03 04 14 03 13 13 01 

18 19 21 22 26 27 28 28 28 28 34 36 37 
47 55 56 59 62 83 19 
16 25 01 22 12 12 74 01 16 09 21 09 64 
35 01 07 03 01 01 22 

flAge and survival times are in the same order. 

to calculate the confidence interval. Let us first calculate the sample esti­
mate of the standard error of the difference of the means: 

K--X2 = V ' 
16.512 17.852

 A ,Λ + ^ = 4.61. 
51 20 

We next calculate the degrees of freedom, df, to be used and we find it 
from 

df = 
(16.512/51 + 17.852/20)2 

(16.512/51)2 

51 - 1 
(17.852/20)2\ 

20 - 1 / 

which equals 32.501, and this is rounded to 33. The 99.5 percentile of the t 
distribution with 33 degrees of freedom is about midway between the 
values of 2.750 (30 degrees of freedom) and 2.724 (35 degrees of freedom) 
in Appendix Table B5. We interpolate and use a value of 2.7344 for the 99.5 
percentile of the t distribution with 33 degrees of freedom. Therefore, the 
99 percent confidence interval for the difference of the mean ages is 

(49.86 - 36.65) - 2.7344 * 4.61 < μι - μ2 

< (49.86 - 36.65) + 2.7344 * 4.61 

or 

0.60 < μι - μ2< 25.82. 

As zero is not contained in this confidence interval, there is an indication of 
a difference in the mean ages. If the survival patterns differ between pa-
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tients with these two diagnoses, it may be due to a difference in the age of 
the patients. 

How large would the confidence interval have been if we had assumed 
that the unknown population variances were equal? Using the approach in 
Section F.l.b., the pooled estimate of variance, sp

2, is 
(51 - 1) * 16.512 + (20 - 1) * 17.852 _ 

51 + 2 0 - 2 - 2 8 5 · 2 6 

The pooled estimate of the standard deviation is thus 16.89, and this leads 
to an estimate of the standard error of the difference of the two means of 

Vè + è = 
16.89 * V5Î + 20 = 4·456· 

Thus the confidence interval, using an approximation of 2.65 to the 99.5 
percentile of the t distribution with 69 degrees of freedom, is 

(49.86 - 36.65) - 2.65 * 4.456 < μι - μ2 < (49.86 - 36.65) + 2.65 * 4.456 
or 

1.20 < μι - μ2< 25.02. 
This interval is slightly narrower than the confidence interval found above; 
however, both intervals lead to the same conclusion about the ages in the 
two diagnosis groups. 

In practice, we usually know little about the magnitude of the popula­
tion variances. This makes it difficult to decide which approach, equal or 
unequal variances, should be used. We recommend that the unequal vari­
ances approach be used in those situations when we have no knowledge 
about the variances and no reason to believe that they are equal. Fortu­
nately, as we saw above, often there is little difference in the results of the 
two approaches. Some textbooks and computer packages recommend that 
we first test to see if the two population variances are equal and then 
decide which procedure to use. Several studies have been conducted re­
cently and conclude that this should not be done (11-13). 

These sections have focused on the situation in which two population 
means are independent of one another, for example, men who have re­
ceived different doses of medication, boys in different classes, and patients 
with different diagnoses. The next section deals with the creation of a 
confidence interval for two dependent means. 

2. Confidence Interval for the Difference of Two Dependent Means 

Dependent means occur in a variety of situations. One example of interest 
comprises a preintervention measurement, some intervention, and a post-
intervention measurement. Another dependent mean situation occurs 
when there is a matching or pairing of subjects with similar characteristics. 
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One subject in the pair receives one type of treatment and the other mem­
ber in the pair receives another type of treatment. Measurements on the 
variable of interest are made on both members of the pair. In both of these 
situations, there is some relationship between the values of the observa­
tions in a pair. For example, the preintervention measurement for a subject 
is likely to be correlated with the postintervention measurement on the 
same subject. If there is a nonzero correlation, this violates the assumption 
of independence of the observations. To deal with this relationship (depen­
dency), we form a new variable which is the difference of the observations 
in the pair. We then analyze the new variable, the difference of the paired 
observations. 

Consider the blood pressure example presented earlier. Suppose that 
we focus on the 1.25-mg dose of ramipril. We have a value of the subject's 
blood pressure at the end of a 4-week run-in period and the corresponding 
value after 2 weeks of treatment for 53 subjects. There are 106 measure­
ments, but only 53 pairs of observations and only 53 differences for analy­
sis. The mean decrease in diastolic blood pressure after 2 weeks of treat­
ment for the 53 subjects is 10.6 mm Hg, and the sample standard deviation 
of the difference is 8.5 mm Hg. The confidence interval for this difference 
has the form of the confidence interval for the mean from a single popula­
tion. If the population variance is known, we use the normal distribution; 
otherwise we use the t distribution. We assumed that the population stan­
dard deviation was 9 mm Hg above and we use that value here. Thus the 
confidence interval will use the normal distribution, that is, 

Xd - Zl-a/2 * i y | j < Vd < *d + Zl-a/2 * ( ^ 

where the subscript d denotes difference. 
Let us calculate the 90 percent confidence interval for the mean de­

crease in diastolic blood pressure. Table B4 shows that the 95th percentile 
of the standard normal is 1.645. Thus the confidence interval is 

10.6 - 1.645 * — _ < μά< 10.6 + 1.645 * 

which gives an interval ranging from 8.57 to 12.63 mm Hg. As zero is not 
contained in the interval, it appears that there is a decrease from the end of 
the run-in period to the end of the first 2 weeks of treatment. 

If we had ignored the relationship between the pre- and postinterven­
tion values and used the approach for independent means, how would 
that have changed things? The mean difference between the pre and post 
values does not change, but the standard error of the mean difference does 
change. We assume that the population variances are known and that σ\, 
for the preintervention value, is 7 mm Hg and σ2 is 8 mm Hg. The stan-
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dard error of the differences, wrongly ignoring the correlation between the 
pre and post measures, is then 

V2 & 
53 + 53 = L 4 6 · 

This is larger than the value of 9/V53 (= 1.236) found above when taking 
the correlation into account. This larger value for the standard error of the 
difference (1.46 versus 1.236) makes the confidence interval larger than it 
would be had the correct method been used. 

This experiment was done to examine the dose-response relationship 
of ramipril. It consisted of a comparison of the changes in the pre- and 
postintervention blood pressure values for three different doses of rami­
pril. If the purpose had been different, for example, to determine whether 
or not the 1.25-mg dose of ramipril has an effect, this type of design may 
not have been the most appropriate. One problem with this type of de­
sign—measurement, treatment, measurement—when used to establish 
the existence of an effect is that we have to assume that nothing else 
relevant to the subjects' blood pressure values occurred during the treat­
ment period. If this assumption is reasonable, then we can attribute the 
decrease to the treatment. If this assumption is questionable, however, 
then it is problematic to attribute the change to the treatment. In this case, 
the patients received a placebo—here, a capsule that looked and tasted 
liked the medication to be taken later—during the 4-week run-in period. 
There was little evidence of a placebo effect, a change that occurs because 
the subject believes that something has been done. A placebo effect, when 
it occurs, is real and may reflect the power of the mind to affect disease 
conditions. This lack of a placebo effect here lends credibility to attributing 
the decrease to the medication, but it is no guarantee. More will be said 
about experimental designs in the next chapter. 

G. Confidence Interval for the Difference of Two Proportions 

In this section, we want to find the (1 - a) * 100 percent confidence interval 
for the difference of two independent proportions, that is, π\ — π2. We 
assume that the sample sizes are large enough so that it is appropriate to 
use the normal distribution as an approximation to the distribution of γ\ — 
p2. In this case, the confidence interval for the difference of the two propor­
tions is approximate. Its form is very similar to that for the difference of 
two independent means when the variances are not equal. 

The variance of the difference of the two independent proportions is 

7Ti * ( 1 — 7Ti) 7T2 * (1 — 7Γ2) 

wi n2 
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As the population proportions are unknown, we substitute the sample 
proportions, γλ and p2, for them in the variance formula. The (1 - a) * 100 
percent confidence interval for m - π2 then is 

<Pi - VÙ - si-* JaJLZLEi + ΈύλΞΕ <πι-η2< (Pl - ρθ 
V ni n2 

V U\ n2 

Because we are considering the difference of two proportions, the continu­
ity correction terms cancel out in taking the difference. 

Holick et al. (5) conducted a study of 13 milk processors in five Eastern 
states. They found that only 12 of 42 randomly selected samples of milk 
they collected contained 80 to 120 percent of the amount of vitamin D 
stated on the label. Suppose that 10 milk processors in the Southwest are 
also studied and that 21 of 50 randomly selected samples of milk contain 80 
to 120 percent of the amount of vitamin D stated on the label. Construct a 
99 percent confidence interval for the difference of proportions of milk that 
contain 80 to 120 percent of the amount of vitamin D stated on the label 
between these Eastern and Southwestern producers. 

As the sample sizes and the proportions are relatively large, the normal 
approximation can be used. The estimate of the standard error of the 
sample difference is 

/(12/42)(1 - 12/42) (21/50)(1 - 21/50) 
V 42 50 

which is 0.0987. The value of z0,995 is found from Table B4 to be 2.576. 
Therefore the 99 percent confidence interval is 

(0.286 - 0.420) - 2.576 * 0.0987 < m - π2 

< (0.286 - 0.420) + 2.576 * 0.0987 

which is 

-0.388 < 7Π - 7T2 < 0.120. 

As zero is contained in the confidence interval, there is little indication of a 
difference in the proportion of milk samples with a vitamin D content 
within the 80 to 120 percent range of the amount stated on the label be­
tween these Eastern and Southwestern milk producers. 
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H. Prediction and Tolerance Intervals Based on the 
Normal Distribution 

As we have seen, knowledge that the data follow a specific distribution can 
be used effectively in the creation of confidence intervals. This knowledge 
can also be used in the formation of prediction and tolerance intervals, and 
this use is shown below. 

1 . Prediction Interval 

The distribution-free method for forming intervals used specific observed 
values of the variable under study. In contrast, the formation of intervals 
based on the normal distribution uses the sample estimates of its parame­
ters, the mean and standard deviation. Assuming that the data follow the 
normal distribution, the prediction interval is formed by taking the sample 
mean plus or minus some value. This form is the same as that used in the 
construction of the confidence interval for the population mean; however, 
we know that the prediction interval will be much wider than the confi­
dence interval because the prediction interval focuses on a single future 
observation. 

The confidence interval for the mean, when the population variance is 
unknown, is 

x±tn-lll-aa{^y 
The estimated standard error of the sample mean, s/Vn, can also be ex­
pressed as V[s2 * (1/n)]. The variance of a future observation is the sum of 
the variance of an observation about the sample mean and the variance of 
the sample mean itself, that is, σ2 + σ2/η. Thus the estimated standard 
error of a future observation is V[s2 * (1 + 1/n)] and the corresponding 
prediction interval is 

X ± tn-l,l-a/2S yj 1 + ~. 

Let us calculate the prediction interval for the systolic blood pressure 
data used above in the calculation of the 90 percent confidence interval for 
the mean. The sample mean was 94.75 mm Hg and the sample standard 
deviation was 10.25 mm Hg based on a sample size of 60. The value of 
£59,0.95 used in the 90 percent confidence interval was 1.671. The value of 
s * V(l + 1/n) is 10.335 [= 10.25 * V(l + 1/60)]. Therefore the prediction 
interval is 

94.75 ± 1.671 * 10.335 
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and the lower and upper limits are 77.48 and 112.02 mm Hg, respectively. 
These values are contrasted with 92.54 and 96.96 mm Hg, limits of the 
confidence interval for the mean. Thus, as expected, the 90 percent predic­
tion interval for a single future observation is much wider than the corre­
sponding 90 percent confidence interval for the mean. 

2. Tolerance Interval 

The tolerance interval is also formed by taking the sample mean plus or 
minus some quantity, k, multiplied by the estimate of the standard devia­
tion. As the derivation of k is beyond the level of this book, we simply use 
its value found in Table B8. In symbols, the (1 - a) * 100 percent tolerance 
interval containing p percent of the population based on a sample of size 
n is 

X ± K,Vtl-a * S. 

Let us use Table B8 to find the 90 percent tolerance interval containing 
95 percent of the systolic blood pressure values in the population based on 
the first sample of 60 observations from above. From Table B8 we find that 
the value of /c6o,o.95,o.9o *s 2.248. Therefore, the tolerance interval is 

94.75 ± 2.248 * 10.25 

which gives limits of 71.71 and 117.79. 
One-sided prediction and tolerance intervals based on the normal dis­

tribution are also easy to construct. 

IV. CONCLUDING REMARKS 

In this chapter, the concept of interval estimation was introduced. We 
presented prediction, confidence, and tolerance intervals and explained 
their applications. We showed how distribution-free intervals and intervals 
based on the normal distribution were calculated. The idea and use of 
confidence intervals discussed in this chapter are explored further to intro­
duce methods of testing statistical hypotheses in Chapter 13. Parentheti­
cally, it is worth pointing out that the idea of confidence interval is often 
expressed as a margin of error in journalistic reporting, which refers to 
one-half of the width of a two-sided confidence interval. 

We also pointed out that characteristics, for example, size, of the inter­
vals could be examined before actually conducting the experiment. If the 
characteristics of the interval are satisfactory, the investigator uses the 
proposed sample size. If the characteristics are unsatisfactory, the design 
of the experiment, the topic of the next chapter, needs to be modified. 

EXERCISES 
7.1. Assume that the AML patients shown in Exercise 4.7 can be consid­

ered a simple random sample of all AML patients. 
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a. Calculate the 95 percent confidence interval for the population 
mean survival time after diagnosis for AML patients. 

b. Interpret this confidence interval so that someone who knows no 
statistics can understand it. 

c. Calculate the approximate 95 percent confidence interval for the 
median survival time. Compare the intervals for the population 
mean and median. 

d. There are two methods for forming the tolerance interval. Use 
both methods to form the approximate 95 percent tolerance inter­
val containing 90 percent of the survival times for the population 
of AML patients. Which method do you think is the more appro­
priate one to use here? Provide your rationale. 

7.2. Calculate a 90 percent confidence interval for the population median 
length of stay based on the data from the patient sample shown in 
Exercise 4.10. Is it appropriate to calculate a confidence interval for 
the population mean based on these data? Support your answer. 

7.3. Find a study from the health literature that uses confidence intervals 
for one of the statistics covered in this chapter. Provide a reference 
for the study and briefly explain how confidence intervals were used. 

7.4. The following table shows the average annual fatality rate per 
100,000 workers based on the 1980-1988 period by state along with 

State 

CT 
MA 
NY 
RI 
NJ 
AZ 
MN 
NH 
OH 
MI 
MO 
MD 
DE 
HI 
PA 
WI 
CA 

Fatality 
rate 

1.9 
2.4 
2.5 
3.3 
3.4 
4.1 
4.3 
4.5 
4.8 
5.3 
5.3 
5.7 
5.8 
6.0 
6.1 
6.3 
6.5 

NSWI 
score* 

65 
73 
76 
59 
80 
40 
64 
56 
55 
63 
42 
46 
40 
25 
55 
58 
81 

State 

SC 
VT 
IL 
NC 
WA 
IN 
ME 
TN 
OK 
AL 
KS 
IA 
CO 
FL 
VA 
GA 
OR 

Fatality 
rate 

6.7 
6.8 
6.9 
7.2 
7.7 
7.8 
7.8 
8.1 
8.7 
9.0 
9.1 
9.2 
9.3 
9.3 
9.9 

10.3 
11.0 

NSWI 
score 

26 
38 
76 
47 
55 
47 
67 
24 
53 
25 
15 
54 
52 
48 
60 
36 
63 

State 

LA 
NE 
NV 
TX 
KY 
NM 
AR 
UT 
ND 
MS 
SD 

wv 
ID 
MT 
WY 
AK 

Fatality 
rate 

11.2 
11.3 
11.5 
11.7 
11.9 
12.0 
12.5 
13.5 
13.8 
14.6 
14.7 
16.2 
17.2 
21.6 
29.5 
33.1 

NSWI 
score 

31 
27 
30 
72 
32 
14 
11 
26 
21 
25 
25 
47 
22 
28 
12 
59 

"Average annual fatality rate per 100,000 workers based on 1980-1988 data. 
^National Safe Workplace Institute Score (116 is the maximum and a higher score is 
better). 
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the state's composite score on a scale created by the National Safe 
Workplace Institute (NSWI). The scale takes into account prevention 
and enforcement activities and compensation paid to the victim. The 
data are taken from the Public Citizen Health Research Group (14). 
During the 1980-1988 period, the National Institute of Occupational 
Safety and Health reported that there were 56,768 deaths in the 
workplace. The above rates are based on that number. The National 
Safety Council reported 105,500 deaths for the same period. Do you 
think that there should be any relationship between the fatality rates 
and the NSWI scores? If you think that there is a nonzero correlation, 
will it be positive or negative? Explain your reasoning. Calculate the 
Pearson correlation coefficient for these data. Is there any reason to 
calculate a confidence interval based on the correlation value you 
calculated? Why or why not? 

7.5. There is some concern today about excessive intakes of vitamins and 
minerals, possibly leading to nutrient toxicity. For example, many 
persons take vitamin and mineral supplements. It is estimated that 35 
percent of the adult U.S. population consumes vitamin C in the form 
of supplements (7, p. 62). Based on survey results, among users of 
vitamin C supplements, the median intake was 333 percent of the 
recommended daily allowance. Suppose that you take a tablet that 
claims to contain 500 mg vitamin C. Which type of interval—predic­
tion, confidence, or tolerance—about the vitamin C content of the 
tablets is of most interest to you? Explain your reasoning. 

7.6. In a test of a laboratory's measurement of serum cholesterol, 15 sam­
ples containing the same known amount (190 mg/dl) of serum choles­
terol are submitted for measurement as part of a larger batch of sam­
ples, one sample each day over a 3-week period. Suppose that the 
following daily values in mg/dl for serum cholesterol for these 15 
samples were reported from the laboratory: 

180 190 197 199 210 187 192 199 214 237 188 197 208 220 239. 

Assume that the variance for the measurement of serum cholesterol is 
supposed to be no larger than 100 mg/dl. Construct the 95 percent 
confidence interval for this laboratory's variance. Does 100 mg/dl fall 
within the confidence interval? What might be an explanation for the 
pattern shown in the reported values? 

7.7. The proportion of persons in the United States without health insur­
ance in 1991 was 14.1 percent, or approximately 35.5 million persons. 
The following data show the percentages of persons without health 
insurance in 1991 by state (15) along with the 1990 population of the 
state (16). The District of Columbia is treated as a state in this presen­
tation. Calculate the sample Pearson correlation coefficient between 
the state population total and its percent without health insurance. 
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How can these counts be viewed as a sample? Calculate a 95 percent 
confidence interval for the Pearson correlation coefficient in the popu­
lation. Does there appear to be a strong linear relationship between 
these two variables? Provide at least one additional variable that may 
be related to the proportion without health insurance in each state and 
provide a rationale for your choice. 

State Population" 

New England 
ME 
NH 
VT 
MA 
RI 
CT 

1.23 
1.11 
0.56 
6.02 
1.00 
3.29 

Mid-Atlantic 
NY 
NJ 
PA 

17.99 
7.73 

11.88 

East North Central 
OH 
IN 
IL 
MI 
WI 

10.85 
5.54 

11.43 
9.30 
4.89 

West North Central 
ND 0.64 
SD 
NE 
KS 
MN 
IA 
MO 

0.70 
1.58 
2.48 
4.38 
2.78 
5.12 

South Atlantic 
DE 
MD 
VA 
wv 
FL 
NC 
sc 
GA 
DC 

0.67 
4.78 
6.19 
1.79 

12.94 
6.63 
3.49 
6.48 
0.61 

Percent without 
health insurance 

11.1 
10.1 
12.7 
10.9 
10.2 
7.5 

12.3 
10.8 
7.8 

10.3 
13.0 
11.5 
9.0 
8.0 

7.6 
9.9 
8.3 

11.4 
9.3 
8.8 

12.2 

13.2 
13.1 
16.3 
15.7 
18.6 
14.9 
13.2 
14.1 
25.7 

State Population 

East South Central 
KY 
TN 
AL 
MS 

3.69 
4.88 
4.04 
2.57 

West South Central 
AR 2.35 
LA 
OK 
TX 

4.22 
3.15 

16.99 

Mountain 
MT 
ID 
WY 
CO 
NM 
AZ 
UT 
NV 

Pacific 
WA 
OR 
CA 
AK 
HI 

0.80 
1.01 
0.45 
3.29 
1.52 
3.67 
1.72 
1.20 

4.87 
2.84 

29.76 
0.55 
1.11 

Percent without 
health insurance 

13.1 
13.4 
17.9 
18.9 

15.7 
20.7 
18.2 
22.1 

12.7 
17.8 
11.3 
10.1 
21.5 
16.9 
13.8 
18.7 

10.4 
14.2 
18.7 
13.2 
7.0 

"Population is expressed in millions. 

7.8. Calculate the mean state proportion of those without health insur­
ance from data in Exercise 7.7. Is this number the same as the overall 
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U.S. percentage? Explain how the state information can be used to 
obtain the overall U.S. percentage of 14.1. 

7.9. Suppose you are planning a simple random sample survey to esti­
mate the mean family out-of-pocket expenditures for health care in 
your community during the last year. In 1990, the approximate per 
capita (not per family) out-of-pocket expenditure was $525 (17, Table 
121). From previous studies in the literature, you think that the pop­
ulation standard deviation for family out-of-pocket expenditures is 
$500. You want the 90 percent confidence interval for the community 
mean family out-of-pocket expenditures to be no wider than $100. 
a. How many families do you require in the sample to satisfy your 

requirement for the width of the confidence interval for the 
mean? 

b. Do you believe that family out-of-pocket expenditures follow the 
normal distribution? Support your answer. 

c. Regardless of your answer, assume that you said that the family 
out-of-pocket expenditures do not follow a normal distribution. 
Discuss why it is still appropriate to use the material based on the 
normal distribution in finding the confidence interval for the pop­
ulation mean. 

d. In the conduct of the survey, how would you overcome reliance 
on a person's memory for out-of-pocket expenditures for health 
care for the past year? 

7.10. In 1979, the Surgeon General's Report on Health Promotion and 
Disease Prevention and its follow-up in 1980 established health ob­
jectives for 1990. One of the objectives was that the proportion of 12-
to 18-year-old adolescents who smoked should be reduced to below 6 
percent (17, p. 85). Suppose that you have monitored progress in 
your community toward this objective. In a survey conducted in 
1983, you found that seventeen of ninety 12- to 18-year-old adoles­
cents admitted that they were smokers. In your 1990 simple random 
sample survey, you found eleven of eighty-five 12- to 18-year-old 
adolescents who admitted that they smoked. 
a. Construct a 95 percent confidence interval for the proportion of 

smokers among 12- to 18-year-old adolescents in your commu­
nity. Is 6 percent contained in the confidence interval? 

b. Construct a 99 percent confidence interval for the difference in the 
proportion of smokers among 12- to 18-year-old adolescents from 
1983 to 1990. Do you believe that there is a difference in the 
proportion of smokers among the 12- to 18-year-old adolescents 
between 1983 and 1990? Explain your answer. 

c. Briefly describe how you would conduct a simple random sample 
of 12- to 18-year-old adolescents in your community. Do you have 
confidence in the response to the question about smoking? Pro-
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vide the rationale for your answer. What is a method that might 
improve the accuracy of the response to the smoking question? 

Construct the 95 percent confidence interval for the difference in the 
population mean survival times between the AML and ALL patients 
shown in Table 7.6. As there appears to be a difference in mean ages 
between the AML and ALL patients, perhaps we should adjust for 
age. One way to do this is to calculate age-specific confidence inter­
vals. For example, calculate the confidence interval for the difference 
in population mean survival times for AML and ALL patients who 
are 40 years old or younger. Is the confidence interval for those 40 
years of age or younger consistent with the confidence interval that 
has ignored the ages? How else might we adjust for the age variable 
in the comparison of the AML and ALL patients? 
Suppose that we wish to investigate the claims of a weight loss clinic. 
We randomly select 20 individuals who have just entered the pro­
gram and we follow them for 6 weeks. The clinic claims that its 
members will lose on the average 10 pounds during the first 6 weeks 
of membership. The beginning weights and the weights after 6 
weeks are shown below. Based on this sample of 20 individuals, is 
the clinic's claim plausible? 

Person 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Beginning 
weight 

147 
163 
198 
261 
233 
227 
158 
154 
162 
249 
246 
218 
143 
129 
154 
166 
278 
228 
173 
135 

Weight 
at 6 wk 

143 
151 
184 
245 
229 
220 
161 
147 
155 
254 
239 
222 
135 
124 
136 
159 
263 
205 
164 
122 

7.13. In a study of aplastic anemia patients, 16 of 41 patients on one treat­
ment achieved complete or partial remission after 3 months of treat-

7.11. 

7.12. 
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ment, compared with 28 of 43 patients on another treatment (18). 
Construct a 99 percent confidence interval on the difference in pro­
portions that achieved complete or partial remission. Does there ap­
pear to be a difference in the population proportions of the patients 
who would achieve complete or partial remission on these two treat­
ments? 

7.14. In 1970, Japanese-American women had a fertility rate (number of 
live births per 1000 women ages 15-44) of 51.2, considerably lower 
than the rate of 87.9 for all U.S. women in this age group. Use the 
following data to calculate an age-adjusted fertility rate for Japanese-
American women and approximate the standard deviation of the 
age-adjusted rate. 

U.S. age-specific Number of Japanese-
Age fertility rate American women 

15-19 69.6 24,964 
20-24 167.8 23,435 
25-29 145.1 22,093 
30-34 73.3 23,055 
35-39 31.7 32,935 
40-44 8.6 34,044 

Source: U.S. Population Census, 1970, P(2)-1G, and 
U.S. Vital Statistics, 1970 (19) 
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Designed Experiments 

I his chapter introduces the designed experiment, one of the two meth­
ods used in statistics for producing data. We previously met the other 
method, the sample survey, in Chapter 3. Designed experiments have 
been used in biostatistics in the evaluation of: (1) the efficacy and safety of 
drugs or medical procedures; (2) the effectiveness and cost of different 
health care delivery systems; and (3) the effect of exposure to possible 
carcinogens. In the following, we present the principles underlying such 
experiments. Limitations of experiments and ethical issues related to ex­
periments, especially when applied to humans, are also raised. 

I. SAMPLE SURVEYS AND EXPERIMENTS 
There are many similarities among as well as some differences between 
sample surveys and experiments. From sample surveys, we learn the char­
acteristics of some population. The sample survey design focuses on the 
sampling of individuals from the population. From experiments, we dis-

233 
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cover the effect of applying a stimulus to subjects. The experimental design 
focuses on the formation of comparison groups that allow conclusions 
about the effect of the stimulus to be drawn. 

As emphasized in Chapter 3, a good survey begins with a carefully 
drawn blueprint or design and the same holds true for an experiment. The 
blueprint or design of an experiment is based on both statistical and sub­
stantive considerations. Chapter 7 provided one example of statistical con­
siderations that should be part of the study design. We saw how the 
analysis of the relationship among sample size, size of the interval, and 
level of confidence associated with the study can be used in the creation of 
the study design before any data are collected. 

An experiment is different from a sample survey in that the experi­
menter actively intervenes with the experimental subjects through the as­
signment of the subjects to groups, whereas the survey researcher pas­
sively observes or records responses of the survey subjects. Experiments 
and surveys often have different goals as well. 

The goal in an experiment is to determine whether or not there is an 
association between the independent or predictor variables and the depen­
dent or response variable. The different groups to which the subjects are 
assigned usually represent the levels of the independent variable. Inde­
pendent and dependent were chosen as names for the variable types be­
cause it was thought that the response variable depended on the levels of 
the predictor variables. To determine whether or not there is an associa­
tion, the experimenter assigns subjects to different levels of one variable, 
for example, to different doses of some medication. The effects of the 
different levels—the different doses—are found by measuring the values 
of an outcome variable, for example, blood pressure. An association exists 
if there is a relationship between the blood pressure values and the dosage 
levels. 

In a survey, the primary goal is to describe the population and a sec­
ondary goal is to investigate the association between variables. In a survey, 
variables are usually not referred to as independent or dependent because 
all the variables can be viewed as being response variables. The survey 
researcher usually has not manipulated the levels of any of the variables as 
the experimenter does. 

Let us consider an example to illustrate the essential points in the 
experimental design. 

II. EXAMPLE OF AN EXPERIMENT 

The Hypertension Detection and Follow-up Program (HDFP) was a com­
munity-based, clinical trial conducted in the early 1970s by the National 
Heart, Lung and Blood Institute (NHLBI) with the cooperation of 14 clinical 
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centers and other supporting groups (1). The purpose of the trial was to 
assess the effectiveness of treating hypertension, a major risk factor for 
several different forms of heart disease. For this trial, it was decided that 
the major outcome variable would be total mortality. 

At the time of designing the HDFP trial, results of a Veterans Adminis­
tration (VA) Cooperative Study were known. This study had already dem­
onstrated the effectiveness of antihypertensive drugs in reducing morbid­
ity and mortality due to hypertension among middle-aged men with 
sustained elevated blood pressure; however, the VA study included only a 
subset of the entire community. Applicability of its findings to those with 
undetected hypertension in the community, to women, and to minority 
persons was uncertain. It was therefore decided to perform a study, the 
HDFP study, in the general community. Instead of including only people 
who knew they had high blood pressure, subjects were recruited by 
screening people in the community. 

In this clinical trial, antihypertensive therapy was the independent or 
predictor variable and mortality rate was the dependent or response vari­
able. To determine the effectiveness of the antihypertensive therapy, a 
comparison group was required. Thus the study was intended to have a 
treatment group, those who received the therapy, and a control group, 
those who did not receive the therapy. This classic experimental design 
could not be used, however. As the antihypertensive therapy was already 
known to be effective, it could not ethically be withheld from the control 
group. Recognizing this, the HDFP investigators decided to compare a 
systematic antihypertensive therapy given to those in the treatment group 
(Stepped Care) with the therapy received from their usual sources of care 
for those in the control group (Regular Care). As a result, no one was 
denied treatment. 

III. COMPARISON GROUPS AND RANDOMIZATION 

A simple experiment may be conducted without any comparison group. 
For example, a newly developed AIDS education course was taught to a 
class of ninth graders in a high school for a semester. The level of knowl­
edge regarding AIDS was tested before and after the course to assess the 
effect of the course on students' knowledge. The difference in test scores 
between the pre- and posttests would be taken as the effect of the instruc­
tional program. It may, however, be inappropriate to attribute the change 
in scores to the instructional program. The change may be entirely or 
partially due to some influence outside the AIDS course, for example, mass 
media coverage of AIDS-related information. Therefore, we.have to realize 
that when this simple experimental design is used, the outside influence, if 
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any, is mixed with the effect of the course and it is not possible to separate 
them. 

Thus in studying the effect of an independent variable on a dependent 
variable, we have to be aware of the possible influence of an extraneous 
variable(s) on the dependent variable. When the effects of the independent 
variable and the extraneous variable cannot be separated, the variables are 
said to be confounded. In observational studies such as sample surveys, all 
variables are confounded with one another and the analytical task is to 
untangle the comingled influence of many variables that are measured at 
the same time. In experimental studies, the effects of extraneous variables 
are separated from the effect of the independent variable by adopting an 
appropriate design. 

The basic tool for separating the influence of extraneous variables from 
that of the independent variable is the use of comparison groups. For 
example, giving the treatment to one of two equivalent groups of subjects 
and withholding it from the other group means that the observed differ­
ence in the outcome variable between the two groups can be attributed to 
the effect of the treatment. In this design, any extraneous variables would 
presumably influence both groups equally and, thus, the difference be­
tween the two groups would not be influenced by the extraneous vari­
ables. The key to the successful use of this design is that the groups being 
compared are really equivalent before the experiment begins. 

Matching is one method that is used in an attempt to make groups 
equivalent. For example, subjects are often matched on age, gender, race, 
and other characteristics and then one member of each matched pair re­
ceives the treatment and the other does not. It is difficult, however, to 
match subjects on many variables; in addition, the researcher may not 
know all the important variables that should be used in the matching 
process. A method for dealing with these difficulties with matching is the 
use of randomization. 

Randomization is the random assignment of subjects to groups. By us­
ing randomization, the researcher is attempting to: (1) eliminate intentional 
or nonintentional selection bias, for example, the assignment of healthier 
subjects to the treatment group and sicker subjects to the control group; (2) 
remove the effect of any extraneous variables. With large samples, the 
random assignment of subjects to groups should cause the distributions of 
the extraneous variables to be equivalent in each group, thus removing 
their effects. 

IV. RANDOM ASSIGNMENT AND SAMPLE SIZE 

One way of randomly assigning subjects to groups is the use of the random 
sampling without replacement procedure. For example, the demonstration 
in Box 8.1 randomly assigns 50 sequentially numbered subjects to two 
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MTB > set cl 
DATA> 1:50 
DATA> end 
MTB > sample 25 cl c2 
Twenty-five observations from cl are randomly selected and placed in c2. 
MTB > s o r t c2 c2 
MTB > p r i n t c2 
C2 

2 4 5 6 11 12 16 
17 18 20 21 25 26 27 
30 31 32 33 35 36 40 
41 44 47 48 

groups. The subjects whose numbers are shown in Box 8.1 are assigned to 
the treatment group and the remaining 25 subjects form the control group. 
In many randomized experiments, subjects are assigned to the groups 
sequentially as soon as subjects are identified, as in the HDFP trial. In that 
case, the above results can be put into the following sequence of letters T 
(treatment group) and C (control group) that can be used to show the 
assignment: 

C T C T T T C C C C 
T T C C C T T T C T 
T C C C T T T C C T 
T T T C T T C C C T 
T C C T C C T T C C 

If one were to assign 60 subjects to three groups, the first random sample 
of 20 will be assigned to the first group, the second random sample of 20 to 
the second group, and the remaining 20 subjects to the third group. 

The random assignment of subjects to groups does not guarantee the 
equivalence of the distributions of the extraneous variables in the groups. 
There must be a sufficiently large number of subjects in each group for 
randomization to have a high probability of causing the distributions of the 
extraneous variables to be similar across groups. As discussed in Chapters 
3 and 7, use of larger random samples decreases the sample-to-sample 
variability and increases our confidence that the sample estimates are 
closer to the population parameters. In the same way, a greater number of 
subjects in the treatment and control groups increases our confidence that 
the two groups are equivalent with respect to all extraneous factors. 

To make this point clearer, consider the following example. A sample 
of 10 adults is taken from the Second National Health and Nutrition Exami-
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nation Survey (NHANES II) data file and 5 of the 10 persons are randomly 
assigned to the treatment group and the other 5 are assigned to the control 
group. The two groups are compared with respect to five characteristics. 
The same procedure is repeated for sample sizes of 40, 60, and 100 and the 
results are shown in Table 8.1. The treatment and control groups are not 
very similar when n is 10. As the sample size increases, the treatment and 
control groups become more similar. When n is 100, the two groups are 
very similar. It appears that at least 30 to 50 persons are needed in each of 
the treatment and control groups for them to be reasonably similar. 

The confidence interval for the difference between two means (propor­
tions) that was discussed in Chapter 7 could also be used to address this 
issue. For example, we can determine the sample size required for the 
width of the confidence interval for the difference between proportions of 
two equal-size groups of subjects to be a small value. Suppose that we 
decide to use a 90 percent confidence level (z = 1.645) and we require the 
width of the confidence interval to be 0.20. We shall assume that the 
sample size will be large enough that the normal distribution approxima­
tion to the binomial can be used. We shall also assume that the proportion 
is 0.50 in the control group and 0.60 in the treatment group. Using these 
assumptions, the value of the sample size is found by 

„ (2 * 1.645 * V0.5 * 0.5 + 0.6 * 0.4\2 

n = 2\ Ö2Ö 1 
which yields a sample size of 266, allocating 133 in each group. This calcu-

Comparison of Treatment and Control Groups for Different 
Group Sizes 

Characteristics0 

Percent male 
Percent black 
Mean years of education 
Mean age 
Percent smokers 

Percent male 
Percent black 
Mean years of education 
Mean age 
Percent smokers 

Treatment 

(«1 = 
60 
0 

12.6 
38.8 
60 

( « i = 
43 
17 
12.7 
39.7 
32 

5) 

30) 

Control 

(n2 = 
20 
20 
11.2 
41.6 
40 

(n2 = 
50 
10 
12.9 
40.2 
35 

5) 

30) 

Treatment 

(*1 = 
60 
5 

12.9 
40.7 
27 

("1 = 
42 
16 
11.7 
42.1 
34 

20) 

50) 

Control 

(n2 = 20) 
35 
20 
13.0 
34.0 
23 

(n2 = 50) 
44 
16 
12.5 
42.5 
34 

"Observations are weighted using the NHANES II sampling weights. 



IV. RANDOM ASSIGNMENT AND SAMPLE SIZE 239 

lation supports the need for large sample sizes in the groups to have 
confidence that randomization will provide equivalent groups. 

In the HDFP clinical trial, more than 10,000 hypertensive persons were 
screened through community surveys and included in the study. These 
subjects were randomly assigned to either the Stepped Care or Regular 
Care group. Because of this random assignment and the large number of 
subjects included in the trial, the Stepped Care and Regular Care groups 
were very similar with respect to many important characteristics at the 
beginning of the trial. Table 8.2 is a demonstration of the similarities. The 
randomization and the sufficiently large sample size also give us confi­
dence that these two groups were equivalent with respect to other charac­
teristics that are not listed in Table 8.2. 

The sample size required for an experiment depends on three factors: 
(1) the amount of variation among the experimental subjects; (2) the magni­
tude of the effect to be detected; and (3) the level of confidence associated 
with the study. When the experimental subjects are similar, a smaller 
sample size can be used than when the subjects differ. For example, a 
laboratory experiment using genetically engineered mice does not require 
as large a sample size as the same experiment using mice trapped in the 
wild. There is less likelihood of extraneous variables existing in the study 
using the genetically engineered mice. Hence a smaller sample should be 
acceptable as there is less need to control for extraneous variables. The fact 

Comparison of Stepped Care and Regular Care Participants by 
Selected Characteristics at Entry to the Hypertension Detection and 
Follow-up Program 

Characteristics Stepped Care Regular Care 

Number of participants 5485 5455 

Mean age 
Percent black men 
Percent black women 
Mean systolic blood pressure (mm Hg) 
Mean diastolic blood pressure (mm Hg) 
Mean pulse (beats/minute) 
Mean serum cholesterol (mg/dl) 
Mean plasma glucose (mg/dl) 
Percent smoking >10 cigarettes/day 
Percent with history of stroke 
Percent with history of myocardial infarction 
Percent with history diabetes 
Percent taking antihypertensive medication 

50.8 
19.4 
24.5 

159.0 
101.1 
81.7 

235.0 
178.5 
25.6 
2.5 
5.1 
6.6 

26.3 

50.8 
19.9 
24.8 

158.5 
101.1 
82.2 

235.4 
178.9 
26.2 
2.5 
5.2 
7.5 

25.7 

Source: Hypertension Detection and Follow-up Program Cooperative Group (1). 
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that the sample size for the experiment depends on the size of the effect to 
be detected is not surprising. Because it should be more difficult to detect a 
small effect of the independent variable than a large effect, the sample size 
must reflect this. This is one of the reasons that the HDFP trial used a large 
sample size. The benefit of being in the Stepped Care group compared 
with the Regular Care group was expected to be small. Thus a large sample 
size was required to detect this small benefit. A smaller sample size would 
have been sufficient had the HDFP trial compared a group receiving medi­
cation with a group that did not receive hypertensive medication. In this 
case, a larger effect would have been expected. The last point concerns the 
relationship between the sample size and the confidence associated with 
the study. As was demonstrated in Chapter 7, the confidence level associ­
ated with a study increases as the sample size increases. 

V. SINGLE- AND DOUBLE-BLIND EXPERIMENTS 

So far we have been concerned with the statistical aspects of the design of 
an experiment. This means the use of comparison groups, the random 
assignment of subjects to the groups, and the need for an adequate num­
ber of subjects in the groups. An additional concern is the possible bias that 
can be introduced in an experiment. Let us consider some possible sources 
of bias and possible ways to avoid them. 

In drug trials, particularly in those involving a placebo, the subjects are 
often blinded; that is, they are not informed whether they have received 
the active medication or a placebo. This is done because knowledge of 
which treatment has been provided may affect the subject's response. For 
example, those assigned to the control group may lose interest, whereas 
those receiving the active medication, because of expectations of a positive 
result, may react more positively. Studies in which the treatment providers 
know, but the subjects are unaware of, the group assignment are called 
single-blind experiments. 

In most drug trials, both the subjects and the treatment providers are 
unaware of the group assignment. The treatment providers are blinded 
because they also have expectations about the reaction to the treatment. 
These expectations may affect how the experimenter measures or inter­
prets the results of the experiment. An experiment in which both the 
subjects and the experimenters are uninformed of the group assignment is 
called a double-blind experiment. 

Let us examine one double-blind, randomized experiment conducted 
by a VA research team (2). They used the experimental design in Figure 8.1 
to determine whether antiplatelet therapies improve saphenous vein graft 
patency after coronary artery bypass grafting. In this design, there are four 
treatment groups (four regimens of drug therapy) and a control group 
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Aspir in 
325 mg 

once 
d a i l y 

(n=154) 

Bypass Surgery P a t i e n t s 
in VA Hosp i ta l s 

Random Assignment: 
Double-Blinded 

Aspir in 
325 mg 
3 t imes 

d a i l y 
(n=155) 

1 Γ 

Aspirin & 
dipyridamole 
325mg & 75mg 
combined 
3 times/day 
(n=162) 

ΊΓ 

|Sul f inpyrazone 
267 mg 
3 times 
daily 
(n=148) 

ΊΓ 

Placebo 
3 times 
daily 
(n=153) 

II I 
Saphenous Vein Graft Patency Measures Observed in All Groups 

(Number of grafts tested): 
(340) (315) (315) (303) (345) 

II II II II I 
Experimental design for Veterans Administration Cooperative Study on Effect of Antiplatelet 
Therapy. 

(placebo). Both the patients and the doctors were blinded, and only the 
designers of the trial, who were not directly involved in patient treatment, 
knew the group assignment. A total of 772 consenting patients were ran­
domized and postoperative treatment was started 6 hours after surgery 
and continued for 1 year. 

As was to be expected, this experiment encountered problems in re­
taining subjects during the course of the experiment. The final analysis was 
based on 502 patients who underwent the late catheterization. These pa­
tients had a total of 1618 grafts. Of the 270 patients not included in the final 
analysis, 154 refused to undergo catheterization, 32 were lost to follow-up, 
31 died during treatment, 42 had medical complications, and data on 11 
patients were not available in the central laboratory (3). Although we may 
expect that these problems are fairly evenly distributed among the groups 
because of the random assignment of subjects, the sample size was re­
duced considerably. This suggests that we need to increase the initial sam­
ple size in anticipation of the loss of some subjects during the experiment. 

Other types of precautions must be taken to avoid potential biases. In 
addition to statistical aspects, the experiment designer must provide de­
tailed procedures for handling experimental subjects, monitoring compli­
ance of all participants, and collecting data. For this purpose a study proto­
col must be developed, and the experimenter is responsible for adherence 
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to the protocol by all participants. Similar to the problem of nonresponse in 
sample surveys, the integrity of experiments is often threatened by unex­
pected happenings such as the loss of subjects during the experiment and 
changes in the experimental environment. Steps must be taken to mini­
mize such threats. 

VI. BLOCKING AND EXTRANEOUS VARIABLES 

Thus far we have considered the simplest randomization, the random 
assignment of subjects to groups without any restriction. This design is 
known as a completely randomized design. The role of this design in 
experimental design is the same as that of the simple random sample 
design in survey sampling. As was mentioned earlier, in completely ran­
domized designs, we attempt to remove the effects of extraneous variables 
by randomization; however, a reasonably large sample size is required 
before we can have confidence in the randomization process. 

Another experimental design for eliminating the effects of extraneous 
variables known or thought to be related to the dependent variable uses 
blocking. Blocking means directly taking these extraneous variables into 
account in the design. For example, in a study of the effects of different 
diets on weight loss, subjects are often blocked or grouped into different 
initial weight categories. Within each block, the subjects are then randomly 
assigned to the different diets. The reason for the blocks based on initial 
weight is that it is thought that weight loss may be related to the initial 
weight. Designs using blocking do not rely entirely on randomization to 
remove the effects of these important extraneous variables. Blocking guar­
antees that each diet has subjects with the same distribution of initial 
weights; randomization cannot guarantee this. Blocking in experiments is 
similar to stratification in sample surveys. The experimental design that 
uses blocks to control the effect of one extraneous variable is called a 
randomized block design. This name indicates that randomization is per­
formed separately within each block. 

Blocking is also used for administrative convenience. The VA Coopera­
tive Study discussed in the previous section had 11 participating hospitals 
located throughout the United States. As the subjects were randomized 
separately at each site, each participating hospital was a block. In this case, 
the blocking was done for administrative convenience while also control­
ling for the variation among hospitals. 

In Chapter 3, we saw that the simple random sample design can be 
modified and extended as required to meet the demands of a wide variety 
of sampling situations. The completely randomized experimental design 
can similarly be expanded to accommodate many different needs in experi­
mentation. The randomized block design is one of the many ways the basic 
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design can be extended. More complex designs deal with more than one 
independent variable or block on more than one extraneous variable. 

VII. LIMITATIONS OF EXPERIMENTS 

The results of an experiment apply to the population from which the exper­
imental subjects were selected. Sometimes this population may be very 
limited; for example, patients may be selected from only one hospital or 
from one clinic within the hospital. In such situations, does this mean that 
we must perform similar experiments in many more hospitals to determine 
if the results can be generalized to a larger population, for example, to all 
patients with the condition being studied? From a statistical perspective, 
the answer is yes; however, if on the basis of substantive reasons, we can 
argue that there is nothing unique about this hospital or clinic that should 
affect the experiment, then it may be possible to generalize the results to 
the larger population of all patients with the condition. This generalization 
is based on substantive reasoning, not on statistical principles. 

For example, the results of the VA Cooperative Study may be valid 
only for male veterans. It certainly would be difficult to generalize the 
results to females without more information. It may be possible to general­
ize the results to all males who are known to have hypertension, but this 
requires careful scrutiny. We must know whether or not the VA medical 
treatment of hypertension is comparable to that received by males in the 
general population. Does the fact that the men served in the military cause 
any difference, compared with those who were not in the military, in the 
effect of the medical intervention? If differences are suspected, then we 
should not generalize beyond the VA system. 

On the other hand, the results of the HDFP should apply more widely, 
as the subjects were screened from random samples of residents in 14 
different communities and then randomly assigned to the comparison 
groups. This use of accepted statistical principles of random sampling from 
the target population and randomization of these subjects to comparison 
groups make it reasonable to generalize the results. 

Another limitation of an experiment stems from its dependency on the 
experimental conditions (4). Often experiments take place in a highly con­
trolled, artificial environment, and the observed results may be con­
founded with these factors. Dr. Lewis Thomas' experience (5, Chapter 9) is 
a case in point. While he was waiting to return home from Guam at the end 
of World War II, he conducted an experiment on several dozen rabbits left 
in a medical science animal house. He tested a mixed vaccine consisting of 
heat-killed streptococci and a homogenate of normal rabbit heart tissue and 
the test produced spectacular and unequivocal results. All the rabbits re­
ceiving the mixture of streptococci and heart tissue became ill and died 
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within 2 weeks. The histologie sections of their hearts showed the most 
violent and diffuse myocarditis he had ever seen. The control rabbits in­
jected with streptococci alone or with heart tissue alone remained healthy 
and showed no cardiac lesions. On returning to the Rockefeller Institute, 
he replicated the experiment using the Rockefeller stock of rabbits. He 
repeated the experiment over and over, but he never saw a single sick 
rabbit. One explanation for the spectacular results of the Guam experiment 
is that there may have been some type of a latent virus in the Guam rabbit 
colony. As Dr. Thomas said, "I had all the controls I needed; I wasn't 
bright enough to realize that Guam itself might be a control." 

As Dr. Thomas's experience shows, we have to be careful not to de­
ceive ourselves and extrapolate beyond our data. The experimental data 
consist of not only the observed difference between the treatment and 
control groups, but also the conditions and circumstances under which the 
experiment was conducted. These include the method of investigation, the 
time and place, the duration of the test, and other conditional factors. For 
example, in interpreting the results of drug trials, there is no statistical 
method by which to extrapolate the safety record of a drug beyond the 
period of the experiment, nor to a higher level of dosage, nor to other types 
of patients. The toxic effect of the medication may manifest itself only after 
a longer exposure, at higher levels of dosage, or for other types of patients. 
Therefore extrapolation of experimental results must be done with great 
care, if at all. Better than extrapolation is a replication of the study for 
different types of subjects under different conditions. 

Implicit in the naming of experimental variables as being dependent 
and independent is the idea of cause and effect; that is, changes in the 
levels of the independent variables cause corresponding changes in the 
dependent variable. It is, however, difficult to demonstrate a cause-and-
effect relationship. It is sometimes possible to demonstrate this in very 
carefully designed experiments; however, in most situations in which sta­
tistics are used, positive results do not mean a cause-and-effect relation­
ship, but only the existence of an association between the dependent and 
independent variables. 

Finally, statistical principles of experimentation can sometimes be in 
conflict with our cultural values and ethical standards. Experimenting, 
especially on human beings, can lead to many problems. If the experiment 
can potentially harm the subjects or impinge on their privacy or individual 
rights, then serious ethical questions arise. The harm can be direct physi­
cal, psychological, or mental damage, or it may be the withholding of 
potential benefits. As was seen in the HDFP study, to avoid withholding 
the benefits of antihypertensive therapy, the study designers used the 
Regular Care group instead of a placebo group as the control group. When 
the potential direct harm is obvious, we cannot subject human beings to an 
experiment. 
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To protect human subjects from potential harm or from an invasion of 
privacy, an informed consent is required for experiments and even for 
interviews in sample surveys. This consent has to be voluntary; however, 
it is not difficult to recognize the possibility for pressuring patients to 
participate in a clinical trial. To prevent undue pressure from being applied 
to patients or other potential study participants, all organizations receiving 
funds from the federal government are required to have an institutional 
review committee (6). It is this committee's task to evaluate the study 
protocol to see if it provides adequate safeguards for the rights of the study 
participants. 

VIII. CONCLUDING REMARKS 

In this chapter we have studied the basic principles of the designed experi­
ment. A requirement of a good experimental design is that it prevents 
extraneous variables from being confounded with the experimental vari­
ables. Randomization and blocking are basic tools for preventing this con­
founding. When these tools are used appropriately, it is possible to analyze 
the data to determine whether or not it is likely that an association exists 
between the dependent variable and the independent variables. The test of 
hypothesis, the topic of the next chapter, is the statistical method for deter­
mining this. Even after performing the experiment appropriately, care 
must be used in interpreting the experimental results. We must not unduly 
extrapolate the findings from our experiment, but recognize that replica­
tion may be necessary for the appropriate generalization to the target pop­
ulation. 

EXERCISES 

8.1. Choose the most appropriate response from the choices listed under 
each question: 
a. Which of the following is not required in an experiment? 

designation of independent and dependent variables 
random selection of the subjects from the population 
use of a control group 
random assignment of the subjects to groups 

b. The main purpose of randomization is to balance between experi­
mental groups the effects of extraneous variables that are 

known to the researchers 
not known to the researcher 
both known and unknown to the researcher 
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c. The experimental groups obtained by randomization may fail to be 
equivalent to each other, especially when 

the sample size is very small 
blocking is not used 
matching is not used 

d. Which, if any, of the following is an inappropriate analogy be­
tween random sampling and randomized experiments? 

simple random sampling-completely randomized experiment 
stratified random sampling-randomized complete block de­
sign 
random selection-random assignment 

e. A randomized experiment is intended to eliminate the effect of the 
independent variable 
confounded extraneous variables 
dependent variable 

f. If the number of subjects randomly assigned to experimental 
groups increases, then the treatment and control groups are likely 
to be 

more similar to each other 
less similar to each other 
neither of the above 

8.2. A middle school principal wants to implement a newly developed 
health education curriculum for 30 classes of seventh graders that are 
taught by six teachers. The available budget for teacher training and 
resource material is, however, sufficient for implementing the new 
course in only half of the classes. A teacher suggests that an experi­
ment can be designed to compare the effectiveness of the new and old 
curricula. 
a. Design an experiment to make this comparison, explaining how 

you would carry out the random assignment of classes and what 
precautions you would take to minimize hidden biases. 

b. How would you select teachers for the new curriculum? 
8.3. To examine the effect of the seat belt laws on traffic accident casual­

ties, the National Highway Traffic Safety Administration compared 
fatalities among those jurisdictions that were covered by seat belt laws 
(Covered Group) with those jurisdictions that were not covered by 
seat belt laws (Other Group). They found that among the Covered 
Group, 24 belt law jurisdictions, fatalities were 6.6 percent lower than 
the number forecasted from past trends. In the Other Group, ob­
served fatalities were 2 percent above the forecasted level (7). 
a. Explain whether or not you attribute the difference between these 

two groups to seat belt laws. 
b. Provide some possible extraneous variables that might have influ­

enced the effect difference and explain why these variables may 
have had an effect. 
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8.4. A large-scale experiment was carried out in 1954 to test the effective­
ness of the Salk poliomyelitis vaccine (8). After considerable debate, 
the randomized placebo (double-blind) design was used in approxi­
mately half of the participating areas and the "observed control" de­
sign was used in the remaining areas. In the latter areas, children in 
the second grade were vaccinated and children in the first and third 
grades were considered as controls (no random assignment was 
used). In both areas, volunteers participated in the study, but polio 
cases were monitored among all children in participating areas. The 
following results were announced on April 12, 1955, at the University 
of Michigan: 

Polio case rate* (per 100,000) 
Study type Study 

Placebo control areas 
Vaccinated 
Placebo 
Not inoculated6 

Observed control areas 
Vaccinated 
Controls 
Not inoculated0 

200,745 
201,229 
338,778 

221,998 
725,173 
123,605 

28 
71 
46 

25 
54 
44 

16 
57 
36 

17 
46 
35 

and group subjects Total Paralytic Nonparalytic Fatal 

12 0 
13 2 
11 0 

8 0 
8 2 
9 0 

"Based on confirmed cases 
bNonvolunteers in the participating areas 
cSecond graders not inoculated 
Source: Francis et al. (8, Tables 2 and 3). 

a. Why was it necessary to use so many subjects in this trial? 
b. What extraneous variables could have been confounded with the 

vaccination in the observed control areas? 

8.5. To test whether or not oat-bran cereal diet lowers serum lipid concen­
trations (as compared with a corn flakes diet), an experiment was 
conducted (9). In this experiment 12 men with undesirably high se­
rum total cholesterol concentrations were randomly assigned to one of 
the two diets on admission to the metabolic ward. After completing 
the first diet for 2 weeks, the subjects were switched to the other diet 
for another 2 weeks. This is a crossover design in which each subject 
received both diets in sequence. Eight subjects were hospitalized in 
the metabolic ward for a continuous 4-week period and the remaining 
subjects were allowed a short leave of absence, ranging from 3 to 14 
days, between diet regiments for family emergencies or holidays. The 
results indicated that compared with the corn flakes diet, the oat-bran 
cereal diet lowered serum total cholesterol and serum LDL cholesterol 
concentrations significantly by 5.4 and 8.5 percent, respectively. 
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a. Discuss how this crossover design is different from the two-group 
comparison design studied in this chapter. What are the advan­
tages of a crossover design? 

b. The nutritional effects of the first diet may persist during the ad­
ministration of the second diet. Is the carryover effect effectively 
controlled in this experiment? 

c. Discuss any other factors that may have been confounded with the 
type of cereal. 

8.6. To determine the efficacy of six different antihyper tensive drugs in 
lowering blood pressure, a large experiment was conducted at 15 
clinics (10). After a washout phase lasting 4 to 8 weeks (using a pla­
cebo without informing the subjects), a total of 1292 male veterans 
whose diastolic blood pressure was between 95 and 109 mm Hg were 
randomly assigned in a double-blind manner to one of the six drugs or 
a placebo. Each medication was prepared in three dose levels (low, 
medium, and high). Average age of the subjects was 59, 48 percent 
were black, and 71 percent were already on antihypertensive treat­
ment at screening. All medications were started at the lowest dose 
and the dose was increased every 2 weeks, as required, until a dia­
stolic blood pressure of less than 90 mm Hg was reached without 
intolerance to the drug on two consecutive visits or until the maximal 
drug dose was reached. The blood pressure measurement during 
treatment was taken as the mean of the blood pressures recorded 
during the last two visits. The following table shows the number of 
subjects assigned, the number that withdrew during the treatment, 
and the results on reduction in diastolic blood pressure: 

Reduction in 
diastolic BP 

perimental 
mp 

Hydrochlorothiazide 
Atenolol 
Captopril 
Clonidine 
Diltiazem 
Prazosin 
Placebo 

Total 

Number 
assigned 

188 
178 
188 
178 
185 
188 
187 

1292 

Number 
withdrawn 

15 
16 
23 
13 
12 
29 
29 

137 

Mean 

10 
12 
10 
12 
14 
11 
5 

Std 

6 
6 
7 
6 
5 
7 
7 

Percent 
success" 

57 
65 
54 
65 
75 
56 
33 

"Proportion of patients reaching the target blood pressure (diastolic blood pressure < 90 
mm Hg). 
Source: Materson et al. (10, Tables 2 and 3, Figure 1). 
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a. Discuss why the patients were not informed about the use of a 
placebo during the initial washout period. 

b. More than 10 percent of the subjects withdrew from the study 
during the treatment and there were more withdrawals in some 
groups than in other groups. Discuss how the withdrawals may 
affect the experimental results. 

c. Discuss how widely you can generalize the results of this experi­
ment. 

8.7. A randomized trial was conducted to test the effects of an educational 
program to reduce the use of psychoactive drugs in nursing homes. 
Six matched pairs of nursing homes were selected for this trial. The 
matching was based on the size of nursing home, type of ownership, 
and level of drug use. Professional staff and aides participated in an 
educational program at one randomly selected nursing home in each 
pair. At baseline, drug use status was determined for all residents of 
the nursing homes (n = 823), and a blinded observer performed 
standardized clinical assessments of the residents who were taking 
psychoactive medications. After the 5-month program, drug use and 
patient clinical status were reassessed and the educational program 
was found to have reduced the use of psychoactive drugs in the nurs­
ing homes (11). 
a. How would you characterize the experimental design used in this 

study? 
b. If the effectiveness of the educational program is related to the 

organizational and leadership types of the nursing home staff, is 
the effect of this confounder effectively controlled in this study? If 
not, how would you modify the experimental design? 

c. Obviously not all the nursing homes that could be matched were 
included in this study. How might this limitation affect the study 
findings? 

d. Discuss to what extent the study findings can be extrapolated to 
nursing homes in other states. 
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Tests of Hypotheses 

I n this chapter, we formally introduce the testing of hypotheses and de­
fine key terms to help us succinctly communicate the ideas of hypothesis 
testing. Hypothesis testing is a way of organizing and presenting evidence 
that helps us reach a decision. For example, the decision may be to proceed 
with the marketing of a new drug for reducing cholesterol. This decision 
was reached because it is unlikely that the greater mean reduction of serum 
cholesterol observed in a sample of patients receiving a new drug, when 
compared with the reduction achieved for a sample of patients who re­
ceived the standard treatment, was due to chance. Or, the decision may be 
for the local health department to allocate more resources to an immuniza­
tion campaign for childhood diseases. This decision was reached because, 
based on the sample proportion immunized, it is unlikely that the propor­
tion of 5-year-old children in the community that have the required immu­
nizations equals the targeted value of 95 percent. 

There are negative outcomes associated with making a wrong decision 
and these have to be weighed carefully. If the decision to market the new 
drug is wrong, that is, it is not an improvement over the standard treat-

251 
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ment, patients may pay more money for no additional benefit or for a 
treatment that does not work. If, however, the decision were not to market 
and the drug was better, patients would lose by not having access to a 
better treatment and the company would lose because it did not realize the 
profit from this drug. If the health department's decision to conduct an 
immunization campaign is wrong, that is, the proportion of 5-year-old 
children immunized in the community is at least 95 percent, scarce re­
sources would be misdirected. Other needy programs would not receive 
additional resources. If, however, the decision were not to conduct the 
campaign when it was needed, there would be increased risk of unneces­
sary disease in preschool children. 

We use the following example to clarify these notions and to lead into 
the definitions used in hypothesis testing. 

I. DEFINITIONS OF TERMS USED IN HYPOTHESIS TESTING 

Suppose two diets are proposed for losing weight. We have 12 pairs of 
individuals, matched on age (±5 years), sex, initial weight (±10 pounds), 
and level of exercise. One member of the pair is assigned at random to diet 
1 and the other member is assigned to diet 2. Individuals remain on their 
diets for 6 weeks and are then reweighed. We wish to determine whether 
or not the diets are equivalent from a weight loss perspective. Table 9.1 
shows how the data, the weight losses for those on diets 1 and 2 and the 
within-pair difference, may be presented. 

There are several ways of analyzing these data. In this chapter, we 
demonstrate a very simple approach and, in later chapters, show other 
approaches. We examine the proportion of pairs in which the person on 
diet 1 had the greater weight loss. If the diets do not differ with respect to 
weight loss, assuming there are no ties in weight loss, the proportion 
should be 0.50. Deviations from 0.50 suggest that there is a difference in 
the diets in terms of weight loss. If there are ties in the weight losses, the 
hypothesis being tested is that the proportion of pairs in which the person 

[ _ Q Q | Weight Losses (Pounds) by Diet for 12 Pairs of Individuals 

Pair 

Diet 1 2 3 4 5 6 7 8 9 10 11 12 

1 X\ X2 X3 *4 *5 *6 X7 *8 x9 *10 X\\ X\i 

2 3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11 3/12 

Difference dx d2 d3 d4 d5 d6 d7 d8 d9 dm dn di2 
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on diet 1 had the greater weight loss is the same as the proportion of pairs 
in which the person on diet 2 had the greater weight loss. Note that we 
have converted the hypothesis in words into something that we can deal 
with analytically. 

A. Null and Alternative Hypotheses 

The hypothesis being tested is called the null hypothesis and is denoted by 
H0. The null hypothesis is that π, the proportion of pairs in the population 
for which persons on diet 1 would show the greater weight loss, is 0.50. 
The alternative hypothesis, denoted by Ha or Hi, to the null hypothesis is 
that π is not equal to 0.50. In symbols, these hypotheses are 

H0: π = 0.50 
Ha: 77 Φ 0.50. 

We either reject or fail to reject the null hypothesis. If we reject the null 
hypothesis, we are expressing a belief that the alternative hypothesis is 
true. If there are ties in the weight losses, the alternative hypothesis is that 
the proportion of pairs in which the person on diet 1 had the greater 
weight loss is not equal to the proportion of pairs in which the person on 
diet 2 had the greater weight loss. 

B. Type I and Type II Errors 

If we reject the null hypothesis in favor of the alternative hypothesis, there 
are two possible outcomes. Either we have correctly rejected the null hy­
pothesis or we have falsely rejected it. Falsely rejecting the null hypothesis 
is called a type I error. In this example, the type I error is claiming that the 
proportion of pairs for which diet 1 showed the greater weight loss is not 
equal to 0.50 when, in fact, it is 0.50. 

If we fail to reject the null hypothesis, again there are two possible 
outcomes. Either we have failed to reject the null hypothesis when it 
should have been rejected or we have correctly failed to reject the null 
hypothesis. Failing to reject the null hypothesis when it should have been 
rejected is called a type II error. The type II error in this example is claiming 
that the proportion of pairs for which diet 1 showed the greater weight loss 
is 0.50 when, in fact, the proportion is different from 0.50. 

Figure 9.1 shows these four possibilities. The probability of a type I 
error is usually labeled a and the probability of a type II error is usually 
labeled β. Ideally we would like to keep both of these probabilities as small 
as possible, although we usually focus more on the type I error and its 
probability. 
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Our Dec is ion 
about the Null 

Hypothesis 

True 

False 

Reality: Null Hypothesis is 

True False 

Good 

Type I E r r o r 

Type I I E r r o r 

Good 

Possibilities associated with a test of hypothesis. 

C. The Test Statistic 
The test statistic, the basis for the test of hypothesis, is the number of pairs 
out of the 12 sample pairs for which those on diet 1 achieved the greater 
weight loss. Equivalently, the observed sample proportion of pairs for 
which those on diet 1 achieved the greater weight loss, p, could be used. 
The test is based on the sign of the difference and, therefore, this particular 
test is called the sign test. Now that we know what hypothesis is to be 
tested and what test statistic is to be used, we must specify the decision 
rule to be used. 

II. DETERMINATION OF THE DECISION RULE 

The decision rule specifies which values of the test statistic (or some func­
tion of it) will cause us to reject the null hypothesis in favor of the alterna­
tive hypothesis. 

The decision rule is based on the probabilities of the type I and II 
errors. The probabilities of type I and type II errors are found from consid­
eration of the distribution of the test statistic. In this example, the test 
statistic follows the binomial distribution. The binomial is used because 
there are only two outcomes: diet 1 is better or diet 2 is better (again 
ignoring the possibility of a tie in weight loss). We begin by assuming that 
the null hypothesis is true, that is, π is 0.50. Because we know that n is 12, 
we know both parameters of the binomial distribution. The probability 
distribution of the possible outcomes is shown in the following table and in 
Figure 9.2. 

Number of times 
diet 1 is better Probability 

Number of times 
diet 1 is better Probability 

0 
1 
2 
3 
4 
5 
6 

0.0002 
0.0030 
0.0161 
0.0537 
0.1208 
0.1934 
0.2256 

7 
8 
9 

10 
11 
12 

0.1934 
0.1208 
0.0537 
0.0161 
0.0030 
0.0002 
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Bar chart showing the binomial probability distribution for n = 12 and π = 0.50. 

What values of the test statistic would cause us to reject the null hy­
pothesis that π is 0.50 in favor of the alternative hypothesis? Large devia­
tions from six pairs for which diet 1 was better, that is, large deviations 
from a 7Γ of 0.50, are suggestive that the diets have different effects. Thus 
either very large or very small values of the test statistic would cause us to 
question the null hypothesis. As we can see from Figure 9.2, it is highly 
unlikely to observe either very large or very small values of the test statistic 
if 7Γ is really 0.50. 

-Sided Tests 
The test we are considering is called a two-sided test because either large or 
small values of the test statistic cause us to question the truth of the null 
hypothesis. A one-sided test occurs when only values in one direction cause 
us to question the null hypothesis. For example, if we were the developers 
of diet 1, we might only be interested in whether diet 1 was better than diet 
2, not whether it was worse than diet 2. If this were the situation, the null 
hypothesis remains that π is equal to 0.50, but the alternative hypothesis 
becomes that π is greater than 0.50. In symbols, this is 

H0: π = 0.50 versus Ha: π > 0.50. 
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In this case, only large values of the test statistic would cause us to reject 
the null hypothesis in favor of the alternative hypothesis. 

Use of a one-sided test makes it easier to detect departures from the 
null hypothesis in the indicated direction, that is, π greater than 0.50; 
however, use of a one-sided test means that if the departure is in the other 
direction, that is, π is less than 0.50, it will be missed. 

B. Calculation of the Probabilities of Type I and Type II Errors 

Suppose that we decide to reject the null hypothesis whenever we observe 
a test statistic of 0 or 12 pairs; that is, the values of 0 and 12 form the 
rejection or critical region. The values from 1 to 11 then form the failure to 
reject or acceptance region. The probability of a type I error, a, is thus the 
probability of observing 0 or 12 pairs in which diet 1 had the greater weight 
loss when π is actually 0.50. From the above probability mass function, we 
see that a is 0.0004. That's great! There is almost no chance of making this 
error and this is almost as small as we can make it. Of course, we could 
decide never to reject the null hypothesis and, then, there would be zero 
probability of a type I error. That is unrealistic, however. 

We are pleased with this decision rule because it has an extremely 
small probability of a type I error. However, what is the value of β, the 
probability of a type II error, associated with this decision rule? To be able 
to calculate β, we have to be more specific about the alternative hypothesis. 
The above alternative hypothesis is quite general in that it only says π is 
not equal to 0.50; however, just as we used a specific value, the value 0.50, 
for π in calculating the probability of a type I error, we must specify a value 
of 77 other than 0.50 to be used in calculating the probability of a type II 
error. We must move from the general alternative to a specific alternative 
hypothesis to be able to calculate a value for β. This means that there is not 
merely one β associated with the decision rule; rather, there is a value of β 
corresponding to each alternative hypothesis. 

What specific value of π should be used in the alternative hypothesis? 
We should have little interest in the alternative that π is 0.51 instead of the 
null hypothesis value of 0.50. The difference between 0.51 and 0.50 is of 
little practical interest. For all practical intent, if π is really 0.51, there is 
little difference in the diets. As the value of π departs more and more from 
0.50, the ability to detect these departures becomes more important. We 
may not all agree at which point 7rjdiffers enough from 0.50 to be impor­
tant. Some may say 0.60 is different enough, whereas others may say that 
π must be at least 0.70 for the difference to be important. Most would 
certainly agree that we should reject the equality of the diets if diet 1 
provides for greater weight loss in 80 percent of the pairs. 

Let us assume that π is really 0.80, not 0.50, and find the value for β. 
The binomial distribution for an n of 12 and a proportion of 0.80 is shown 
next. 
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Number of times Number of times 
Probability 

0.0000 
0.0000 
0.0000 
0.0001 
0.0005 
0.0033 
0.0155 

diet 1 

7 
8 
9 

10 
11 
12 

is better Probability 

0.0532 
0.1328 
0.2363 
0.2834 
0.2062 
0.0687 

Type II error is failing to reject the null hypothesis when it should be 
rejected. As our decision rule is to reject only when we observe a test 
statistic of 0 or 12, we will fail to reject for the values of 1 through 11. The 
probability of 1 through 11 when π is actually 0.80 is 0.9313 (= 1 - 0.0000 -
0.0687). Therefore, use of this decision rule yields an a of 0.0004 and a β of 
0.9313. The probability of the type I error is very small, but the probability 
of the type II error, corresponding to the value of 0.80 for π, is quite large. 

III. RELATIONSHIP OF THE DECISION RULE, a AND β 

If we change our decision rule to reject the null hypothesis more often, we 
will increase a but decrease β, that is, there is an inverse relationship 
between a and β. For example, if we increase the rejection region by 
including values 1 and 11 in addition to 0 and 12, the value of a becomes 
0.0064 (= 0.0002 + 0.0030 + 0.0030 + 0.0002). These probabilities are found 
from the probability distribution based on the value for π of 0.50. The new 
value for β, based on this expansion of the rejection region, and using 0.80 
for 7Γ, is 0.7251 (= 1 - 0.2062 - 0.0687). The probability of a type I error 
remains quite small but the probability of a type II error is still large. 

If the decision rule is to reject for values of the test statistic of 0 to 2 and 
10 to 12, then the value of a is increased to 0.0386 [= 2 * (0.0161 + 0.0030 + 
0.0002)] and the value of β is reduced to 0.4417 (= 1 - 0.0687 - 0.2062 -
0.2834). The probability of a type I error is still reasonable, whereas al­
though the probability of type II error is much smaller than above, it is still 
quite large. A further change in the decision rule to include test statistic 
values of 3 and 9, however, increases the value of a to 0.1460 (= 0.0386 + 
2 * 0.0537), which is now becoming large. 

A. What Are Reasonable Values for a and β? 

There are no absolute values that indicate that the probability of error is too 
large. It is a matter of personal choice, although convention suggests that 
an a greater than 0.10 is unacceptable. Most investigators set a to 0.05, and 
some set it to 0.01. There is less guidance for the choice of β. It again is a 
matter of personal choice; however, the implications of the type II error 
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play a role in how large a ß can be tolerated. A value of 0.20 for ß is used 
frequently in the literature. Investigators often ignore the type II error 
because (1) the hypothesis has been framed such that the type I error is of 
much greater interest than the type II error, or (2) it is often difficult to find 
the value of ß. 

B. Ways to Decrease ß without Increasing a 

We were in a bind when we left the example above. The value of ß was too 
large, and if we tried to reduce it by further enlargement of the rejection 
region, we made a too large. One way of decreasing ß without increasing a 
is to change the alternative hypothesis. 

1. Changing the Alternative Hypothesis 
The specific alternative hypothesis that we had used above in calculating ß 
was that π was equal to 0.80. We selected the value of 0.80 because, if diet 1 
performed better for 80 percent of the pairs, we thought that this indicated 
a really important difference between the diets. If we are willing to change 
what we consider to be a really important difference, we can reduce β. For 
example, by increasing the value of π in the alternative hypothesis from 
0.80 to 0.90, ß will decrease. This means that we no longer consider it to be 
important to detect that π was really 80 percent instead of the hypothe­
sized 50 percent. We focus on the test's ability to detect a really large 
difference, that is, the difference between 0.90 and 0.50, and not worry that 
the test has a small chance of detecting smaller differences. 

The following table shows the probability mass function for the bino­
mial with a sample size of 12 and a proportion of 0.90. 

Number of times Number of times 
Probability 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0004 

diet 1 

7 
8 
9 

10 
11 
12 

is better Probability 

0.0038 
0.0213 
0.0853 
0.2301 
0.3766 
0.2824 

If we again use the rejection region of 0 to 2 and 10 to 12, the probability of 
a type I error is still 0.0386, as that was calculated based on π being 0.50; 
however, β is the probability of not rejecting that π is 0.50 when it is 
actually 0.90. This probability is the sum of the probabilities of the out­
comes 3 through 9 in the above distribution, and that sum is 0.1109. Now 
the values of both a and β are reasonable. 

By changing the alternative hypothesis, we have not changed the value 
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of ß for the alternative of π being 0.80. The β, corresponding to a π of 0.80 
and a rejection region of 0 to 2 and 10 to 12, remains 0.4417. What has 
changed is what we consider to be an important difference. If a lesser 
difference is considered to be important, the probability of the type II error 
for that value of π can be calculated. Table 9.2 shows the values of the type 
II errors for several values of the alternative hypothesis based on a rejection 
region of 0 to 2 and 10 to 12. 

The probability of a type II error decreases as the value of π used in the 
alternative hypothesis moves farther away from its value in the null hy­
pothesis. This makes sense because it should be easier to detect greater 
differences than smaller ones. As this table shows, there is a very high 
chance of failing to detect departures from 0.50 less than 0.30 to 0.35 in 
magnitude. The last column in the table is power, the probability of reject­
ing the null hypothesis when it should be rejected, that is, when the 
alternative hypothesis is true. From the table we can see that power is 1 
minus β. Power is often used in the literature when discussing the proper­
ties of a test statistic instead of using the probability of a type II error. From 
the values in Table 9.2, it is possible to create a power curve, that is, to graph 
the values of power versus the values of π used in the alternative hypothe­
sis. Figure 9.3 shows a portion of the power curve for values of π greater 
than 0.50. Statisticians use power curves to compare different test statis­
tics. 

The above trade-off as a way of reducing β may not be very satisfac­
tory. We still may feel that 80 percent is very different from 50 percent. As 
an alternative, we could increase the sample size instead of changing the 
alternative hypothesis. 

2. Increasing the Sample Size 
None of the calculations shown so far have required the observed sample 
data. All these calculations are preliminary to the actual collection of the 

Probability of Type II Error and Power Values for Specific Alternative 
Hypotheses Based on a Rejection Region of 0 to 2 and 10 to 12 

Alternative 
hypothesis 

π = 0.55 
π = 0.60 
π = 0.65 
7Γ = 0.70 
π = 0.75 
π = 0.80 
π = 0.85 
π = 0.90 
7Γ = 0.95 

Probability of 
type II error 

0.9507 
0.9137 
0.8478 
0.7470 
0.5778 
0.4416 
0.2642 
0.1109 
0.0195 

Power 

0.0493 
0.0863 
0.1522 
0.2530 
0.4222 
0.5584 
0.7358 
0.8891 
0.9805 
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data. Therefore, if the probabilities of errors are too large, we can still 
change the experiment. As mentioned above, increasing the sample size is 
one way of decreasing the error probabilities, but doing this increases the 
resources required to perform the experiment. There is a trade-off between 
the sample size and the error probabilities. 

Suppose we can afford to find and follow 15 pairs instead of the 12 
pairs we initially intended to use. We still use the binomial distribution in 
the calculation of the error probabilities where π remains 0.50, but now n is 
equal to 15. The binomial probability mass function with these parameters 
is shown next. 

Number of times Number of times 
diet 1 is better Probability diet 1 is better Probability 

0 
1 
2 
3 
4 
5 
6 
7 

0.0000 
0.0005 
0.0032 
0.0139 
0.0416 
0.0917 
0.1527 
0.1964 

8 
9 
10 
11 
12 
13 
14 
15 

0.1964 
0.1527 
0.0917 
0.0416 
0.0139 
0.0032 
0.0005 
0.0000 

Let us use a rejection region of 0 to 3 and 12 to 15. If we do this, the 
probability of a type I error is 0.0352 [= 2 * (0.0005 + 0.0032 + 0.0139)]. The 
probability of a type II error, based on the alternative that π is 0.80, uses 
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the binomial distribution with parameters 15 and 0.80 and this probability 
mass function is now shown. 

Number of times Number of times 
diet 1 is better Probability diet 1 is better Probability 

0 
1 
2 
3 
4-
5 
6 
7 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0007 
0.0034 

8 
9 
10 
11 
12 
13 
14 
15 

0.0139 
0.0430 
0.1031 
0.1876 
0.2502 
0.2309 
0.1319 
0.0352 

The probability of failing to reject the null hypothesis when it should 
be rejected, that is, of being in the acceptance region, values 4 to 11, when 
π is 0.80, is 0.3518 (= 0.0001 + 0.0007 + 0.0034 + 0.0139 + 0.0430 + 
0.1031 + 0.1876). The probability of a type I error, 0.0352, is similar to its 
value above, 0.0386, when we considered this same alternative hypothesis. 
The probability of a type II error has decreased from 0.4417 above when n 
was 12 to 0.3518 now for an n of 15. A further increase in the sample size 
can reduce β to a more acceptable level. For example, when n is 20, use of 
values 0 to 5 and 15 to 20 for the rejection region leads to an a of 0.0414 and 
a β of 0.1958. 

IV. CONDUCTING THE TEST 

The procedure used in conducting a test begins with a specification of the 
null and alternative hypotheses. In this example, they are 

H0: 7Γ = 0.50 versus Ha: π Φ 0.50. 
We must decide on the significance level to be used in conducting the test. 
The significance level is the probability of a type I error we are willing to 
accept. We use the conventional significance level of 0.05 in this example. 

Based on the calculations above, we have decided to increase the sam­
ple size to 20. We will reject the null hypothesis if the test statistics value is 
0 to 5 or 15 to 20. Use of this sample size and decision rule keeps the 
probability of a type I error less than 0.05 and also keeps β reasonably small 
when considering large departures from the null hypothesis. With discrete 
data, the probability of a type I error usually does not equal the significance 
level exactly. The decision rule used with discrete data is chosen so that it 
results in the probability of a type I error being as close as possible to and 
less than the desired significance level. The data are collected and shown in 
Table 9.3. 
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H H O U B E I Weight Losses (Pounds) by Diet for 20 Pairs of Individuals 

Pair 

Diet 1 2 3 4 5 6 7 8 9 10 

1 9 4 11 7 - 4 13 6 3 8 10 
2 7 6 9 12 3 8 5 - 1 14 8 
Difference 2 - 2 2 - 5 - 7 5 1 4 - 6 2 

Pair 

Diet 11 12 13 14 15 16 17 18 19 20 

1 8 9 14 11 5 - 3 6 7 13 9 
2 6 8 15 7 7 4 - 2 4 10 5 
Difference 2 1 - 1 4 - 2 - 7 8 3 3 4 

There are 13 pairs for which persons on diet 1 had the greater weight 
loss. As 13 does not fall into the rejection region of 0 to 5 or 15 to 20, we fail 
to reject the null hypothesis in favor of the alternative hypothesis at the 
0.05 significance level. The observed result is not statistically significant. 

A. The p Value 

Another statistic often reported is the p value of the test, the probability of 
a type I error associated with the smallest rejection region which includes 
the observed value of the test statistic. Another way of stating this is that 
the p value is the level at which the observed result would just be statisti­
cally significant. In this example, because we are conducting a two-sided 
test, the smallest rejection region including the observed result of 13 is the 
region 0 to 7 and 13 to 20. Examination of Table B2 for an n of 20 and a π of 
0.50 yields a probability of being in this region of 0.2632 [= 2 * (0.0370 + 
0.0739) + 0.0414]. The value of 0.0414 is the value associated with the 
region 0 to 5 and 15 to 20 and, to that, we have added the probabilities 
associated with the outcomes 6, 7, 13, and 14. The p value is thus 0.2632. 

Some statisticians do not believe in the decision rule approach to test­
ing hypotheses. They believe that the p value provides information regard­
less of whether the hypothesis is rejected. The p value tells how likely the 
observed result is assuming that the null hypothesis is true. For example, 
these statisticians see little difference in p values of 0.05001 and 0.04999, 
although in the first case we would fail to reject the null hypothesis at the 
0.05 significance level, whereas in the second case, we would reject the 
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null hypothesis. For these statisticians, the key information to be obtained 
from the study is that there is roughly 1 chance in 20 that we would have 
obtained the observed result if the null hypothesis were true. Using the p 
value in this way is very reasonable. 

B. Statistical and Practical Significance 
We must not confuse statistical significance with practical significance. For 
example, in the diet study, if we had a large enough sample, a π value of 
0.51 could be significantly different statistically from the null hypothesis 
value of 0.50; however, this finding would be of little use practically. For a 
result to be important, it should be both statistically and practically signifi­
cant. The test determines statistical significance, but the investigator must 
determine whether or not the observed difference is large enough to be 
practically significant. 

V. TESTS OF HYPOTHESES AND CONFIDENCE INTERVALS 

When reporting the results of a study, many researchers have simply indi­
cated whether or not the result was statistically significant and/or given 
only the p value associated with the test statistic. This is useful informa­
tion, but it is more informative to include the confidence interval for the 
parameter as well. For example, in the weight loss experiment, the param­
eter is the proportion of pairs in the population that would show a greater 
weight loss for diet 1. Its sample estimate was 0.65 (= 13/20). Because we 
performed the test of hypothesis at the 0.05 significance level, we shall 
form the 95 percent confidence interval for the population proportion. 

We can use either MINITAB or Table B6a to find the confidence inter­
val. Use of MINITAB gives a 95 percent confidence interval with limits of 
0.408 and 0.846. Based on the confidence interval containing the value of 
0.50, we would say that there is no difference in the likelihood of either diet 
providing the greater weight loss. This result agrees with the result of the 
test of hypothesis. For the parameters that we shall study, the results of the 
confidence interval and the test of the hypothesis agree when the test 
statistic is a continuous variable.1 

1 When the test statistic is a discrete variable, as in the above example, the results usually 
agree. The results may disagree because, although the test was performed at the 0.05 level, 
the actual probability of a type I error may be slightly less than 0.05. In the above example, 
the actual probability of a type I error that we finally used was 0.0414. Hence, use of the 
95.86 percent confidence interval is more appropriate than the 95 percent interval. Use of 
confidence intervals based on the actual probability of a type I error will cause the hypothe­
sis test and confidence intervals to agree in all cases we consider in this book. 
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VI. CONCLUDING REMARKS 

In this chapter we have introduced hypothesis testing and the associated 
terminology. A key point is that the probabilities of errors should be calcu­
lated before the study is performed. By doing this, we can determine 
whether or not the study, as designed, can deliver answers to the question 
of interest with reasonable error levels. 

In the following chapters, we present different tests of hypotheses and 
the appropriate test statistics for performing the tests. In Chapter 10, we 
begin the presentation with tests that are called distribution-free or non-
parametric tests. These names were given because these tests do not re­
quire that the data follow any particular distribution and hence there are no 
parameters that have to be estimated. 

EXERCISES 

9.1. Provide at least one way that the weight loss study in the chapter 
could be compromised. What would you do in an attempt to deal with 
this potential problem? 

9.2. In the diet study with a sample size of 20 pairs, suppose that we used 
a rejection region of 0 to 4 and 16 to 20. The null and alternative 
hypotheses are the same as in the chapter, and we are still interested 
in the specific alternative that π is 0.80. What are the values of a and β 
based on this decision rule? What is the power of the test for this 
specific alternative? We again observed 13 pairs favoring diet 1. What 
is the p value for this result? 

9.3. Suppose that the null and alternative hypotheses in the diet study 
were 

H0: 77 = 0.50 versus Ha: π > 0.50 
Conduct the test at the 0.05 significance level. What is the decision 
rule that you will use? What are the probabilities of type I and type II 
errors for a sample size of 20 pairs and the specific alternative that π is 
0.80? 

9.4. What specific alternative value for π do you think indicates an impor­
tant difference in the diet study? Provide an example of another study 
for which the binomial distribution could be used. What value would 
you use for the specific alternative for π in your study? What is the 
rationale for your choice for π in this new study? 

9.5. Complete Table 9.2 by providing the values of power for π ranging 
from 0.05 to 0.50 in increments of 0.05. Graph the values of the power 
function versus the values of π for π ranging from 0.05 to 0.95. This 
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graph is the power curve of the binomial test using the critical region 
of 0 to 2 and 10 to 12. What is the value of power when π is 0.50? Is 
there a specific name for this value? Describe the shape of the power 
curve. Discuss why the power curve, when the null hypothesis is π is 
equal to 0.50, must have this shape. 

9.6. Construct the 95.86 percent confidence interval for the population 
proportion of pairs that show the greater weight loss for diet 1 based 
on the sample size of 20 and the sample estimate of 0.65. 

9.7. Frickhofen et al. (1) performed a study on the effect of using cyclo-
sporine in addition to antilymphocyte globulin and methylpredniso-
lone in the treatment of aplastic anemia patients. A sample of 43 
patients received the cyclosporine in addition to the other treatment. 
Assume that the use of antilymphocyte globulin and methylpredniso-
lone without cyclosporine results in complete or partial remission in 
40 percent of aplastic anemia patients at the end of 3 months of treat­
ment. We wish to determine if the use of cyclosporine can increase 
significantly the percentage of patients with complete or partial remis­
sion. What are the appropriate null and alternative hypotheses? As­
sume that the test is to be performed at the 0.01 significance level. 
What is the decision rule to be used? What is the probability of a type 
II error based on the sample size of 43 and your decision rule? Twenty-
eight patients achieved complete or partial remission at the end of 3 
months. Is this a statistically significant result at the 0.01 level? What 
is the p value of the test? 
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Nonparametric Tests 

I n this chapter we present several statistics for testing whether or not 
probability distributions have the same medians. The use of these statistics 
does not require that the sample data follow any particular probability 
distribution and, thus, there are no distributional parameters to be esti­
mated. Because of these features, these tests are called distribution-free or 
nonparametric tests. The only requirement of the data is that they come 
from continuous distributions. We begin with the sign test, a test we met in 
the last chapter. 

I. THE SIGN TEST 

The sign test is one of the oldest tests used in statistics. For example, in 
1710 John Arbuthnot, a British physician and collaborator of Jonathan 
Swift, performed what was in effect a sign test on the sex ratio of births 
over an 82-year period (1, pp. 225-226). 

267 
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As we saw in the last chapter, the sign test can be used to compare 
different interventions for matched pairs. Individuals were assigned to a 
pair based on age, sex, weight, and exercise level; then one member within 
the pair was randomly assigned to diet 1 and the other member assigned to 
diet 2. The sign test was used to determine which of the two diets was 
more likely to be associated with the greater weight loss for each pair. 
Another way of stating this null hypothesis is that each difference of 
weight losses has a median of zero. The sign test can also be used with a 
single population, for example, in the comparison of multiple measure­
ments made on the same individual as is shown next. 

One problem often encountered in research designs involving pre- and 
posttest measurements is the reversion or regression toward the mean 
effect (2). Briefly, persons scoring high on one test tend not to score as high 
on a subsequent test, and low scorers on the first test tend to score higher 
on the next test; that is, the test scores tend to revert toward the mean 
score. We wish to see if there is reversion toward the mean in dietary data. 
We consider the caloric intake for the 33 boys we first encountered in 
Chapter 4. 

Table 10.1 shows the caloric intake for the boys for the first two of three 
randomly selected days during a 2-week period. The more extreme—the 
seven highest and seven lowest—day 1 values are shown in bold type. 

A. Descriptive Statistics 

We can examine whether or not there is reversion toward the mean, as 
shown in Box 10.1, for those with the seven highest and those with the 
seven lowest day 1 intakes separately. Based on the descriptive statistics in 

m O ^ Q Q ^ I Two Days of Caloric Intake for 33 Boys Enrolled in Two Middle 
Schools outside of Houston 

ID 

10 
11 
13 
14 
16 
17 
26 
27 
30 
32 
33 

Dayl 

1823 
2007 
1053 
4322 
1753 
2685 
2340 
3532 
2842 
2074 
1505 

Day 2 

1623 
1748 
2484 
2926 
1054 
2304 
3182 
3289 
2849 
3312 
1925 

ID 

39 
40 
41 
44 
46 
47 
50 
51 
101 
105 
107 

Dayl 

2330 
2436 
3076 
1843 
2301 
2546 
1292 
3049 
3277 
2039 
2000 

Day 2 

2339 
2189 
2431 
2907 
4120 
1732 
810 
2573 
2185 
1905 
1797 

ID 

118 
120 
127 
130 
137 
139 
141 
145 
148 
149 
150 

Dayl 

1781 
2748 
2348 
2773 
2310 
2594 
1898 
2400 
2011 
1645 
1723 

Day 2 

1844 
2104 
2122 
3236 
1569 
2867 
1236 
2554 
1566 
2269 
3163 



I. THE SIGN TEST 269 

We use the DESCRIBE command. Column cl contains the 14 extreme day 1 intakes and c2 contains the 
corresponding day 2 intakes. Column c3 contains an indicator that tells whether the day 1 value is a low 
value (c3 = 1) or a high value (c3 = 0). Columns c4 and c5 contain the values for the boys with the seven 
lowest intakes on day 1, and c6 and c7 contain the day 1 and day 2 values for the boys with the highest 
day 1 intakes. 
MTB > se t c l 
DATA> 1053 4322 1753 3532 2842 1505 3076 1292 3049 3277 1781 
DATA> 2773 1645 1723 
DATA> 
DATA> 
DATA> 
DATA> 
DATA> 
DATA> 
MTB > 
SUBO 
MTB > 
SUBO 
MTB > 

C4 
C5 
C6 
C7 

set c2 
2484 2926 1054 
3236 2269 3163 
set c3 
1 0 1 0 0 1 
end 
copy cl c2, 
use c3=l. 
copy cl c2, 
use c3=0. 
desc c4-c7 

N 

7 
7 
7 
7 

3289 2849 1925 

0 1 0 0 1 

c4 

c6 

c5; 

c7; 

MEAN 

1536 
1936 
3267 
2784 

0 1 1 

MEDIAN 

1645 
1925 
3076 
2849 

2431 810 

TRMEAN 

1536 
1936 
3276 
2784 

2573 2185 

STDEV 

273 
814 
531 
411 

1844 

SEMEAN 

103 
307 
201 
155 

(We have not shown the last part of the MINITAB output.) 

Box 10.1, it appears that there could be a reversion toward the mean effect 
here. The seven lowest values had a mean of 1536 calories on the first day 
of intake compared with a mean of 1936 calories on the second day. The 
seven highest values had a mean of 3267 calories on the first day compared 
with a mean of 2784 calories on the second day. However, we wish to go 
beyond a descriptive presentation of the sample in our consideration of the 
question. We wish to test a hypothesis about the population values and we 
show two ways of doing this. 

B. Hypothesis of Interest 

If there is no reversion toward the mean effect here, of the boys with 
extreme day 1 values, the proportion of those whose day 2 values move in 
the direction of the mean should be equal to 0.50 (ignoring the possibility 
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that the day 1 and day 2 values are the same). If there is reversion toward 
the mean, the proportion should be greater than 0.50. The null and alterna­
tive hypotheses are therefore 

H0: 7Γ = 0.50 versus Ha: π > 0.50 

If there are few ties (a subject has same values for day 1 and day 2) in 
the data, convention is that these observation pairs are dropped from the 
data. For example, if one of the 14 boys had the same day 1 and day 2 
values, the sample size for the binomial would then be 13 instead of 14, 
reflecting the deletion of the tied pair. When there are many ties, indicating 
no difference in the day 1 and day 2 values, there is little reason to perform 
the test for the remaining untied pairs. 

C. Population 

As we mentioned in Chapter 4, the population from which this sample is 
drawn consists of middle schools in a northern suburb of Houston. Al­
though the population is limited, perhaps the results from this population 
can be generalized to boys in suburban middle schools throughout the 
United States, not just to those in one suburb of Houston. As was men­
tioned in Chapter 8, this generalization does not flow from statistical prop­
erties because we did not sample from this larger population, but is based 
on substantive considerations. If there are differences in dietary practices 
between the one Houston suburb and others, this generalization to the 
larger population is then questionable. 

D. Conducting the Test 

We conduct the test of hypothesis at the 0.05 level. The test statistic is the 
number of boys with an extreme day 1 value whose day 2 value moves 
toward the mean, which is found to be 10 from the data. The critical region 
for the test can be found from the binomial distribution. For larger sample 
sizes, the normal approximation to the binomial can be used. We could use 
Table B2 or MINITAB, as shown in Box 10.2, to find the probabilities for a 
binomial distribution with parameters 14 and 0.50. We are interested only 
in the upper tail of the binomial distribution; therefore, cl includes only 
values above the expected value of 7. 

Because we wish to perform the test at the 0.05 level, the rejection 
region consists of the values of 11 to 14. If 10 were included in the rejection 
region, the probability of a type I error would exceed the significance level 
of 0.05. Ten of the fourteen boys with an extreme day 1 value had day 2 
values that moved in the direction of the mean. As 10 is not included in the 
rejection region, we fail to reject the null hypothesis in favor of the alterna­
tive at the 0.05 significance level. Although we fail to reject the null hy­
pothesis, the γ value of this result is 0.0898. 
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MTB > s e t c l 
DATA> 8:14 
DATA> end 
MTB > pdf c l ; 
SUBO binom 14 

K 
8.00 
9.00 

10.00 

11.00 
12.00 
13.00 
14.00 

.50. 
P( X = K) 

0.1833 
0.1222 
0.0611 

0.0222 Rejec t ion 
0.0056 
0.0009 Region 
0.0001 

E. Power of the Test 

What is the power of the test; that is, What is the probability of rejecting 
the null hypothesis when it should be rejected? As we saw in Chapter 9, to 
find a value for power, we must provide a specific alternative. Let us work 
with the alternative that π is 0.70. Then the power is easily found from 
MINITAB as shown in Box 10.3. The power is 0.3552 (= 0.1943 + 0.1134 + 
0.0407 + 0.0068), not a large value. 

F. The STEST Command 
It is even easier to perform the sign test using MINITAB as shown in Box 
10.4. Of the 14 pairs, 10 have a positive sign and 4 have a negative sign. 
The test is not statistically significant at the 0.05 level as the p value is 

MTB > pdf c l 
SUBO binom 

K 
8.00 
9.00 

10.00 

11.00 
12.00 
13.00 
14.00 

; 
14 .70. 

P( X = K) 
0.1262 
0.1963 
0.2290 

0.1943 Rejec t ion 
0.1134 
0.0407 Region 
0.0068 
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We use the command STEST. We store the changes toward (+) and away from (-) the mean in column 
cl for the 14 boys with the seven highest and seven lowest calorie intakes on day 1 and then use the 
STEST command. The subcommand alt 1 tells MINITAB that this is a one-sided test and that the 
alternative is greater than. The subcommand alt - 1 also indicates a one-sided test, but the alternative is 
now less than. When there is no subcommand, MINITAB assumes that the test is two-sided. 
MTB > s e t c l 
DATA> 1431 1396 -699 243 - 7 420 645 -482 476 1092 63 -463 624 1440 
DATA> end 
MTB > s t e s t c l ; 
SUBO a l t 1. 

SIGN TEST OF MEDIAN = 0.00000 VERSUS G.T. 0.00000 
N BELOW EQUAL ABOVE P-VALUE MEDIAN 

Cl 14 4 0 10 0.0898 448.0 

greater than 0.05. MINITAB uses the binomial distribution to calculate the 
p value for sample sizes of 50 or less. For larger sample sizes, it uses the 
normal approximation with the continuity correction in the calculation of 
the p value. The median value of the 14 numbers is 448. In this case the 
median is of little interest. 

The sign test is easy to perform as the test statistic is simply a count of 
the occurrences of some event, for example, a move toward the mean or a 
positive difference. The test can also be used with nonnumerical data, for 
example, in situations in which the outcome is that the subject does or does 
not feel better. The simplicity of the test is attractive but, with numeric 
data, in ignoring the magnitude of the values, the sign test does not use all 
the information in the data. The other tests in this chapter use more of the 
available information in the data. 

II. WILCOXON SIGNED RANK TEST 

Another much more recently developed test that can be used to examine 
whether or not there is reversion toward the mean in the above data is the 
Wilcoxon signed rank (WSR) test. An American statistician who worked in 
the chemical industry, Frank Wilcoxon developed this test in 1945. Unlike 
the sign test which can be used with nonnumeric data, the WSR test 
requires that the differences in the paired data come from a continuous 
distribution. 

The data for the 14 boys with an extreme day 1 value are shown in 
Table 10.2. In this table, the differences between the day 1 and day 2 values 
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Day 1 and 2 Caloric Intakes for the 14 Boys with the More Extreme 
Caloric Intakes on Day 1 

Rank Change (+) Change (-) 
toward away from 

ID Day 1 Day 2 the mean the mean + -

13 
12 

699 10 
3 

7 1 
4 

13 
14 
16 
27 
30 
33 
41 
50 
51 
101 
118 
130 
149 
150 

1053 
4322 
1753 
3532 
2842 
1505 
3076 
1292 
3049 
3277 
1̂781 
2773 
1645 
1723 

2484 
2926 
1054 
3289 
2849 
1925 
2431 
810 
2573 
2185 
1844 
3236 
2269 
3163 

1431 
1396 

243 

420 
645 

476 
1092 
63 

624 
1440 

482 

463 

'9 

6 
11 
2 

8 
14 

Sum of ranks: 82 23 

are shown as either a change in the direction of the mean (+) or away from 
the mean (-) . The differences are ranked from smallest to largest, and the 
ranks are summed separately for those changes in the direction of the 
mean and for those changes away from the mean. We use RWSR to repre­
sent the signed rank sum statistic for the positive differences, in this case, 
those changes toward the mean. 

A. Expected Value of the Signed Rank Sum under the 
Null Hypothesis 

When there are n pairs of data, the sum of the ranks is the sum of the 
integers from 1 to n and that sum is n * (n + l)/2. The average rank for an 
observation is therefore (n + l)/2. 

The null hypothesis is that the changes have a median of zero, and the 
alternative hypothesis in this example is that the median is greater than 
zero.1 If changes toward the mean and away from the mean are equally 
likely, that is, the changes have a median of zero, there should be nil 
changes in the direction of the mean and nil away from the mean. There­
fore, if there is no reversion toward the mean, the sum of the ranks for the 
changes toward the mean, #WSR/ should be (nil) * (n + l)/2. If there is 
regression toward the mean, RWSR should be greater than n * (n + l)/4. 
lli H0 is true, the distribution of the differences will be symmetric. 
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B. Determination of the Critical Region 

The test statistic is the sum of the ranks of the changes toward the mean. 
Table B9 provides boundaries for the critical region for the sum of the ranks 
of the positive changes, in this case, changes toward the mean. To give an 
idea how these boundaries were determined, let us consider 5 pairs of 
observations instead of the 14 pairs above. The boundaries result from the 
enumeration of possible outcomes as shown in Table 10.3. 

In Table 10.3, there is no need to show the sum of ranks for 3, 4, and 5 
positive ranks because their values are already shown under the sum of the 
negative rank column. For example, when there are 0 positive ranks, there 
are 5 negative ranks with a sum of 15. But the sum of 5 positive ranks must 
also be 15. When there is 1 positive rank, there are 4 negative ranks with 
the indicated sums. But these are also the sums for the possibilities with 4 
positive ranks. The same reasoning applies for 2 and 3 positive ranks. 

Based on Table 10.3, we can form Table 10.4 which shows all the 
possible values of the sum and their relative frequency of occurrence. 
Using Table 10.4, we see that the smallest rejection region for a two-sided 
test is 0 or 15 and this gives the probability of a type I error of 0.062. Thus, 
in Table B9, there is no rejection region shown for a sample size of 5 and a 
significance level of 0.05. If the test of interest were a one-sided test, then it 
would be possible to have a type I error probability less than 0.05. 

[ l |g| Positive Ranks for a Sample of Size 5 for 0, 1, and 2 Positive Ranks 

Number of Possible Sum of Sum of 
positive ranks ranks positive ranks negative ranks 

1 
2 
3 
4 
5 

1/2 
1/3 
1,4 
1/5 
2,3 
2,4 
2,5 
3,4 
3,5 
4,5 

0 

1 
2 
3 
4 
5 

3 
4 
5 
6 
5 
6 
7 
7 
8 
9 

15 

14 
13 
12 
11 
10 

12 
11 
10 
9 
10 
9 
8 
8 
7 
6 
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|yg] All Possible Sums and Their Relative Frequency 

Sum Frequency Relative frequency 

0 or 15 1 0.031 
1 or 14 1 0.031 
2 or 13 1 0.031 
3 or 12 2 0.063 
4 or 11 2 0.063 
5 or 10 3 0.094 
6 or 9 3 0.094 
7 or 8 3 0.094 

C. Conducting the Test 

Let us return to the 14 pairs now. We perform the test at the 0.05 signifi­
cance level, the same level used in the sign test. As this is a one-sided test 
and Table B9 shows the critical values for a two-sided test, we use the 
boundary shown for an a < 0.10. The critical region consists of values 
greater than or equal to 80. Because our test statistic is 82, greater than 80, 
we reject the null hypothesis of no regression toward the mean in favor of 
the alternative that there is regression toward the mean. 

D. The WTEST Command 

Box 10.5 shows how to conduct the Wilcoxon signed rank test using 
MINITAB. These are the same results we obtained above except that we 
have an approximation to the p value instead of simply knowing that the 
result was statistically significant. The p value is obtained from the normal 
approximation to the test which is discussed in Section II.G. 

We use the WTEST command in MINITAB to perform this test. The WTEST com­
mand uses the same form of the ALT subcommand as was used with STEST. 

MTB > w t e s t c l ; 
SUBO a l t 1. 
TEST OF MEDIAN = 0 .000000 VERSUS MEDIAN G.T. 0 .000000 

N FOR WILCOXON ESTIMATED 
N TEST STATISTIC P-VALUE MEDIAN 

Cl 14 14 8 2 . 0 0 . 0 3 4 4 3 3 . 5 
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E. The Sign Test and the WSR Test 

The WSR result is inconsistent with the result of the sign test and reflects 
the greater power of the WSR test. This greater power is due to the use of 
more of the information in the data by the WSR test compared with the 
sign test. The WSR test incorporates the fact that the average rank for the 
four changes away from the mean is 5.75 [= (1 + 5 + 7 + 10)/4], less than 
the average rank of 7.50. This lower average rank of these four changes, 
along with the fact that there were only four changes away from the mean, 
caused the WSR test to be significant. The sign test used only the number 
of changes toward the mean, not the ranks of these changes, and was not 
significant. Although the sign test failed to reject the null hypothesis, its p 
value of 0.0898 was not that different from 0.05. 

F. Ties in the Data 

Two types of ties can occur in the data. One type is that the day 1 and day 2 
values for a boy are the same. If this type of tie occurs in an observational 
pair, that pair is deleted from the data set and the sample size is reduced by 
one for every pair deleted. Again, this procedure is appropriate when there 
are only a few ties in the data. If there are many ties, there is little reason to 
perform the test. 

The other type of tie occurs when two or more differences have exactly 
the same nonzero value. This has an impact on the ranking of the differ­
ences. In this case, convention is that the differences are assigned the same 
rank. For example, if two differences were tied as the smallest value, each 
would receive the rank of 1.5, the average of ranks 1 and 2. If three differ­
ences were tied as the smallest value, each would receive the rank of 2, the 
average of ranks 1, 2, and 3. If there are few ties in the differences, the rank 
sum can still be used as the test statistic; however, the results of the test are 
now approximate. If there are many ties, an adjustment for the ties (3, p. 
28) must be made or one of the methods in the next chapter should be 
used. 

G. The Normal Approximation 

If at least 16 pairs of observations are used in the calculations, RWSR will 
approximately follow a normal distribution. As we saw above, the ex­
pected value of RWSR/ under the assumption that the null hypothesis 
is true, is n * (n + l)/4, and its variance can be shown to be n * (n + 1) * 
{In + l)/24. Therefore, the statistic 

|RWSR - [n(n + 1)/4]| - 0.5 
Vrc(rc + l)(2n + l)/24 
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approximately follows the standard normal distribution. The two vertical 
lines in the numerator indicate the absolute value of the difference; that is, 
regardless of the sign of the difference, it is now a positive value. The 0.5 
term is the continuity correction term, required because the signed rank 
sum statistic is not a continuous variable. 

Let us calculate the normal approximation to see if it agrees with the 
p value reported by MINITAB. The expected value of RWSR is 52.5 (= 14 * 
15/4) and the standard error is 15.93 (= Vl4 * 15 * 29/24). Therefore, the 
statistic's value is 

|82 - 52.51 - 0-5 
1^93 " L 8 2 

What is the probability that Z is greater than 1.82? This probability is found 
from Table B4 to be 0.0344, and this is the value MINITAB reported. This 
also agrees very closely with the exact p value of 0.0338. The exact p value is 
based on 554 of the 16,384 possible signed rank sums having a value of 82 
or greater. Thus, even though n is less than 16, the normal approximation 
worked quite well in this case. 

The sign and Wilcoxon signed rank tests are both used most frequently 
in the comparison of paired data, although they can be used with a single 
population to test that the median has a specified value. In the use of these 
tests with pre- and postintervention measurement designs, care must be 
taken to ensure that no extraneous factors could have an impact during the 
study. Otherwise, the possibility of confounding of the extraneous factor 
with the intervention variable is raised. In addition, the research designer 
must consider whether or not reversion to the mean is a possibility. If 
extraneous factors or reversion to the mean cannot be ruled out, the re­
search design should be augmented to include a control group to help 
account for the effect of these possibilities. 

III. WILCOXON RANK SUM TEST 

Another test developed by Wilcoxon, the Wilcoxon rank sum (WRS) test, is 
used to determine, at some significance level, whether or not the probabil­
ity that a randomly selected observation from one population being greater 
than a randomly selected observation from another population is equal to 
0.5. This test is sometimes referred to as the Mann-Whitney test after 
Mann and Whitney, who later independently developed a similar test 
procedure for unequal sample sizes. The WRS test also requires that the 
data come from independent continuous distributions. We demonstrate 
this test using the proportion of calories that comes from fat data shown in 
Chapter 7. 
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Proportion of Calories from Fat for Boys in Grades 5 and B and 
Grades 7 and 8 

Grades 5 and 6 Grades 7 and 8 

Proportion from fat 

0.365 
0.437 
0.248 
0.424 
0.403 
0.337« 
0.295 
0.319 
0.285 
0.465 
0.255 
0.125 
0.427 
0.225 

Sum of ranks 

Rank 

21 
30 
4 

26 
23 
16.5 
11 
14 
9 

32 
5 
1 

29 
3 

224.5 

Proportion from fat 

0.311 
0.278 
0.282 
0.421 
0.426 
0.345 
0.281 
0.578 
0.383 
0.299 
0.150 
0.336 
0.425 
0.354 
0.337e 

0.289 
0.438 
0.411 
0.357 

Rank 

13 
6 
8 

25 
28 
18 
7 

33 
22 
12 
2 

15 
27 
19 
16.5 
10 
31 
24 
20 

336.5 

"To four decimals, the value is 0.3373. 
bTo four decimals, the value is 0.3370. 

The proportion of calories from fat for boys in grades 5 and 6 and 
grades 7 and 8 are shown in Table 10.5. The ranks of these values are also 
shown, from smallest to largest. We have rounded the proportions to three 
decimal places, and as a result, there is one tie in the data. The tied values 
were the 16th and 17th smallest observations and hence were assigned the 
rank of 16.5, the average of 16 and 17. We could have used the fourth 
decimal place to break the tie, but we chose not to because we wanted to 
demonstrate how to calculate the ranks when there was a tie. 

A. Expected Value of the Rank Sum under the Null Hypothesis 

The test statistic, KWRS/ is the sum of the ranks for the first sample, in this 
case, for the 14 fifth and sixth grade boys. If there were no difference in the 
magnitudes of the proportion of calories from fat variables in the two 
groups, the rank sum for the smaller sample would be the product of 
the number of boys in the smaller sample and the average rank, that is, 
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14 * 34/2, which is 238. Values of RWRS that deviate greatly from 238 suggest 
that the null hypothesis of no difference in magnitudes—the probability of 
the fifth and sixth grade boys having a higher proportion of calories com­
ing from fat than the seventh and eighth grade boys is equal to 0.5— 
should be rejected in favor of the alternative hypothesis that one group has 
larger values than the other. 

B. Determination of the Critical Region 

The critical region, shown in Table BIO,2 is determined in a manner similar 
to that for the Wilcoxon signed rank statistic. All possible arrangements of 
size 14 of the 33 ranks are listed and the sum of the 14 ranks in each 
arrangement is found. The p value of the RWRS is then determined. For a 
two-sided test, if RWRS is less than the expected sum, the p value is twice 
the proportion of the rank sums that are less than or equal to the test 
statistic. If RWRS is greater than the expected sum, the p value is twice the 
proportion of the rank sums that are greater than or equal to RWRS· For a 
lower-tail, one-sided test, the p value is the proportion of the rank sums 
that are less than or equal to RWRS· For an upper-tail, one-sided test, the p 
value is the proportion of the rank sums that are greater than or equal to 
RWRS· 

As an example of determining the rejection region, consider a situa­
tion with four observations in each of two samples. The possible ranks 
are 1 through 8. Table 10.6 shows all possible arrangements of size 4 
of these ranks and Table 10.7 shows the relative frequency of the rank 
sums. 

For a two-sided test that is to be performed at the 0.05 significance 
level, the rejection region consists of rank sums of 10 and 26. The probabil­
ity of these two values is 0.0286, which is less than the 0.05 level. Including 
11 and 25 in the rejection region increases the probability of the rejection 
region to 0.0571, which is greater than the 0.05 value. For a lower-tail, one­
sided test to be performed at the 0.05 level, the rejection region is 10 and 
11. It is not possible to perform the test at the 0.01 level because the 
probability of each rank sum in the Table 10.7 is greater than 0.01. The 
rejection region we have found here agrees with that shown in Table BIO 
(2a = 0.05, Ni = 4, N2 = 4), the critical region for the WRS test at the 0.05 
significance level. 

Now let us return to the example dealing with the proportion of calo­
ries coming from fat. 

2In Table BIO, the value 2a refers to the two-sided significance level and Ni and N2, respec­
tively, refer to the number of observations in the first and second groups. For a one-sided test 
at a = 0.05, the page with 2a = 0.10 is used. 



Listing of Sets of Size 4 from the Ranks 1 to 8 

Set 

1,2,3,4 
1,2,3,5 
1,2,3,6 
1,2,3,7 
1,2,3,8 
1,2,4,5 
1,2,4,6 
1,2,4,7 
1,2,4,8 
1,2,5,6 
1,2,5,7 
1,2,5,8 
1,2,6,7 
1,2,6,8 
1,2,7,8 
1,3,4,5 
1,3,4,6 
1,3,4,7 
1,3,4,8 
1,3,5,6 
1,3,5,7 
1,3,5,8 
1,3,6,7 
1,3,6,8 
1,3,7,8 
1,4,5,6 
1,4,5,7 
1,4,5,8 
1,4,6,7 
1,4,6,8 
1,4,7,8 
1,5,6,7 
1,5,6,8 
1,5,7,8 
1,6,7,8 

S u m of ranks 

10 
11 
12 
13 
14 
12 
13 
14 
15 
14 
15 
16 
16 
17 
18 
13 
14 
15 
16 
15 
16 
17 
17 
18 
19 
16 
17 
18 
18 
19 
20 
19 
20 
21 
22 

Set 

2,3,4,5 
2,3,4,6 
2,3,4,7 
2,3,4,8 
2,3,5,6 
2,3,5,7 
2,3,5,8 
2,3,6,7 
2,3,6,8 
2,3,7,8 
2,4,5,6 
2,4,5,7 
2,4,5,8 
2,4,6,7 
2,4,6,8 
2,4,7,8 
2,5,6,7 
2,5,6,8 
2,5,7,8 
2,6,7,8 
3,4,5,6 
3,4,5,7 
3,4,5,8 
3,4,6,7 
3,4,6,8 
3,4,7,8 
3,5,6,7 
3,5,6,8 
3,5,7,8 
3,6,7,8 
4,5,6,7 
4,5,6,8 
4,5,7,8 
4,6,7,8 
5,6,7,8 

Su 

14 
15 
16 
17 
16 
17 
18 
18 
19 
20 
17 
18 
19 
19 
20 
21 
20 
21 
22 
23 
18 
19 
20 
20 
21 
22 
21 
22 
23 
24 
22 
23 
24 
25 
26 

Frequency and Relative Frequency of the Rank Sums for Two Samples 
of Four Observations Each 

Rank sum Frequency Relative frequency 

10 or 26 1 0.0143 
11 or 25 1 0.0143 
12 or 24 2 0.0286 
13 or 23 3 0.0429 
14 or 22 5 0.0714 
15 or 21 5 0.0714 
16 or 20 7 0.1000 
17 or 19 7 0.1000 
18 8 0.1143 
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C. Conducting the Test 

Let us perform the test of the null hypothesis of no difference in the 
magnitudes of the variable in the two independent populations at the 0.01 
significance level. The alternative hypothesis is that there is a difference in 
the magnitudes. As this is a two-sided test, extremely large or small values 
of the test statistic will cause us to reject the null hypothesis. The test 
statistic is the rank sum of the smaller sample. Because the test is being 
performed at the 0.01 significance level, we use Table BIO (2a = 0.01) with 
sample sizes of 14 and 19. If RWRS is less than or equal to 168 or greater than 
or equal to 308, we reject the null hypothesis in favor of the alternative 
hypothesis. As RWRS is 224.5, a value not in the rejection region, we fail to 
reject the null hypothesis. Based on this test, there is no evidence that fifth 
and sixth grade boys differ from seventh and eighth grade boys in terms of 
the proportion of calories coming from fat. As discussed above, this con­
clusion applies to a population of boys in a northern suburb of Houston. 
The generalization of this result to a larger population of boys may be 
appropriate; however, the extension to a larger population does not follow 
from statistics, but must come from substantive considerations. 

D. Mann—Whitney Command 

Box 10.6 shows how to conduct the WRS test using MINITAB. 

IBIBIBIIISBHHBEI 
The MINITAB command for performing the WRS test is Mann-Whitney. Data from the smaller sample 
are in column cl, and c2 contains the data from the larger sample. 
MTB > set cl 
DATA> .365 .437 .248 .424 .403 .337 .295 .319 .285 .465 
DATA> .255 .125 .427 .225 
MTB > set c2 
DATA> .311 .278 .282 .421 .426 .345 .281 .578 .383 .299 
DATA> .150 .336 .425 .354 .337 .289 .438 .411 .357 
DATA> end 
MTB > mann-whit cl c2 
Mann-Whitney Confidence Interval and Test 
Cl N = 14 Median = 0.3280 
C2 N = 19 Median = 0.3450 

Point estimate for ETA1-ETA2 is -0.0175 
95.3 pet ci. for ETA1-ETA2 is (-0.0890,0.0490) 
W = 224.5 
Test of ETA1= ETA2 vs. ETAl n.e. ETA2 is significant at 0.6358 
The test is significant at 0.6358 (adjusted for ties) 
Cannot reject at alpha =0.05 
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The medians, estimates of the magnitudes of the variable, in each sample are shown followed by an 
estimate of their difference. An approximate 95 percent confidence interval for the difference is also 
provided. The test statistic, W, is shown next followed by its approximate p value. The W statistic is the 
same as our KWRS· AS no ALT subcommand was used, MINITAB assumed that this was a two-sided test 
in the calculation of the p value. The calculation of the approximate p value is based on the normal 
distribution approximation, shown below, to the distribution of KWRS. As the p value is much larger than 
the significance level, we fail to reject the null hypothesis. If a confidence interval other than 95 percent 
were desired, the numerical value would be entered before the columns containing the data are speci­
fied. The following MINITAB command shows the use of an interval other than 95 percent. 
MTB > mann-whit 0.90 cl c2 

E. Normal Approximation 

Once we exceed the sample sizes shown in Table BIO, or for n\ and n2 both 
greater than or equal to 8, we can use a normal distribution as an approxi­
mation for the distribution of the RWRS statistic. As we saw above, the 
expected value of RWRS is expressed in terms of the sample sizes. Let U\ be 
the sample size of the smaller sample, n2 be the sample size of the other 
sample, and n be their sum. The mean and variance of #WRS/ assuming that 
the null hypothesis is true, are nx * (n + l)/2 and ηλ * n2 * (n + 1)/12, 
respectively. Therefore the statistic 

[RWSR - wi(n + l)/2l - 0.5 

Vnin2(n + 1)/12 

approximately follows the standard normal distribution. The 0.5 term is 
the continuity correction term, required because the rank sum statistic is 
not a continuous variable. 

Let us calculate the normal approximation for these data. We already 
calculated the expected value of RWRS above and its value is 238. The stan­
dard error is 27.453 (= V l 4 * 19 * 34/12). Therefore the statistic's value is 

1224.5 - 2381 - 0.5 Λ _ 
- = 0.4735. 27.453 

Because this is a two-sided test, the p value is twice the probability that a 
standard normal variable is greater than 0.4735. Using linear interpolation 
in Table B4, we find that 

Pr{Z > 0.4735} = 0.3179 

and hence the p value is twice that, or 0.6358. This is the value reported by 
MINITAB. 

If there are many ties between the data in the two groups, an adjust­
ment for the ties should be made (3, p. 69) or a procedure in the next 
chapter should be used in the analysis of the data. 
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WALLIS TEST 

The above procedures are limited to the consideration of two populations. 
In this section, a method for the comparison of the locations (medians) 
from two or more populations is presented. This method, the Kruskal-
Wallis (KW) test, a generalization of the Wilcoxon test, is named after the 
two prominent American statisticians who developed it in 1952. The KW 
test also requires that the data come from continuous probability distribu­
tions. The hypothesis being tested by the KW statistic is that all the medi­
ans are equal to one another; the alternative hypothesis is that the medians 
are not all equal. 

We demonstrate this test in a study of the effect of weight loss without 
salt restriction on blood pressure in overweight hypertensive patients (4). 
Patients in the study all weighed at least 10 percent above their ideal 
weight and all were hypertensive. The patients either were not taking any 
medication or were on medication that had not reduced their blood pres­
sure below 140 mm Hg systolic or 90 mm Hg diastolic. Three groups of 
patients were formed. Group I consisted of patients who were not taking 
any antihypertensive medication and who were placed on a weight reduc­
tion program; group II patients were placed on a weight reduction program 
in addition to continuing their antihypertensive medication; and group III 
patients simply continued with their antihypertensive medication. Patients 
already receiving medication were randomly assigned to group II or III. 
Patients were followed initially for 2 months, and the baseline value was 
the blood pressure reading at the end of the 2-month period. Patients were 
then followed for 4 additional months. Changes in weight and blood pres­
sure between Month 2 and Month 6 were measured. 

Table 10.8 contains simulated values that are consistent with those 
reported in the study by Reisin et al. (4). Besides the simulated values, the 
only data shown are from the female patients. We wish to determine 
whether or not there are differences in the median reductions in diastolic 
blood pressure in the populations of females from which these samples 
were drawn. 

Simulated Reductions Cmm Hg) in Diastolic Blood Pressure for 
Females from Month 2 to Month B of Follow-up in Each of the Three 
Treatment Groups 

Only weight Medication and 
reduction weight reduction Only medication 
(«i = 8) («2 = 15) («a = 16) 

38 10 10 28 
6 8 33 8 

19 36 16 36 
38 28 36 22 
42 24 40 34 
6 16 30 

12 16 0 - 1 2 
14 1 6 - 1 0 4 

-20 -6 18 16 
-14 6 -16 6 
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A. The Test Statistic and Its Distribution 

It is possible, although not feasible for any reasonable sample sizes, to use 
the sums of the ranks as we had done in the Wilcoxon tests. As it is not 
feasible to determine the distribution of the rank sums, we use an alterna­
tive approach suggested by Kruskal and Wallis. They suggested that H, a 
statistic defined in terms of n, and 2?f/ the sample size and rank sum for the 
ith group, be used as the test statistic. The definition of H is 

H = , 1 * Σ — - 3(n + 1) n(n + 1) U ni 

where n is the sum of the group sample sizes and k is the number of 
groups. This statistic follows the chi-square distribution with k - 1 degrees 
of freedom when the null hypothesis is true.3 Thus we reject the null 
hypothesis when the observed value of H is greater than χΙ-ι,ι-α and we 
fail to reject the null hypothesis otherwise. 

B. Conducting the Test 

We have to find the rank sums for the three groups to calculate the value of 
H and we must also choose the significance level for the test. Let us per­
form the test at the 0.10 significance level. Table 10.9 shows the ranks of 
the values in Table 10.8. The smallest observation has the rank of 1 and the 
largest has the rank of 39, as there are 39 observations. Observations with 
the same value receive the same average rank as above. 

We now have the information required to calculate H. The observed 
value of H is found from 

12 /164.52 436.52 1792\ 0 An 

and this is 19.133. If the null hypothesis, equality of medians, is true, H 
follows the chi-square distribution with 2 degrees of freedom. As 19.133 is 
greater than 4.61 (= xio.90)/ we reject the null hypothesis in favor of the 
alternative. From Table B7, we see that the p value of H is less than 0.005. 
There appears to be a difference in the effects of the different interventions 
on diastolic blood pressure. Weight reduction can play an important role in 
blood pressure reduction for overweight patients. 

C. Kruskal—Wallis Command 

Box 10.7 shows how to conduct the Kruskal-Wallis test using MINITAB. 

3The statistic H follows the chi-square distribution because H can be shown to be proportional 
to the sample variance of the rank sums which follows a chi-square distribution. 



[ IMI Ranks of the Simulated Values in Table 10.8 

Medication and 
Only weight reduction weight reduction Only medication 
(/ii = 8) (n2 = 15) («a = 16) 

36.5 
10.5 

15.5 15.5 
13.5 31 

Rl = 164.5 

28.5 
13.5 

25 
36.5 
39 
10.5 

34 
28.5 
27 
21 

R2 = -

21 
34 
38 
30 

436.5 

34 
26 
32 

17 
18 
1 
3 

21 
21 
6 

10.5 

#3 = 

7 
5 

24 
2 

179 

4 
8 

21 
10.5 

The command for this test is Kruskal-Wallis. The data for this command are en­
tered in two columns. One column contains the actual data values and the other 
column contains an indicator variable that tells MINITAB to which group the data 
value belongs, cl contains the 39 data values and c2 contains the corresponding 
group identification. All the values from group I are entered first, followed by the 
group II values and then the group III data. 
MTB > s e t c l 
DATA> 
DATA> 
DATA> 
DATA> 
DATA> 
DATA> 
MTB > 

LEVEL 
1 
2 
3 

38 
19 
12 
s e t 

10 10 
36 16 
16 0 -

c2 

28 6 8 33 
36 38 28 

-12 14 16 

8 ( 1 ) 1 5 ( 2 ) 16 (3 ) 
end 
k r u s k a l - w a l l i s c l 

OVERALL 

H = IS 
H = IS 

1.13 
) .21 

NOBS 
8 

15 
16 
39 

d . f . 
d . f , 

MEDIAN 
10 .000 
3 0 . 0 0 0 

5 .000 

. = 2 p = 

. = 2 p = 

; 8 
36 22 
- 1 0 4 

c2 

AVE. 

42 24 
- 2 0 -€ 

RANK 
2 0 . 6 
2 9 . 1 
1 1 . 2 
2 0 . 0 

= 0 . 0 0 0 
; 0 . 0 0 0 ( a d j . 

40 34 6 16 30 
i 18 16 - 1 4 6 - 1 6 

Z VALUE 
0 . 1 6 
3 . 9 4 

- 4 . 0 3 

f o r t i e s ) 

The median for each group (level) is presented along with the average rank of 
observations in each group. A z value is also shown for each group. This value is 
found by subtracting the overall average rank from the group's average rank and 
dividing by the standard error of the group's average rank. If the null hypothesis 
were true, the z values would follow a standard normal distribution. As it is 
extremely unlikely to observe values of 3.94 and -4.03 from a standard normal 
distribution, these values suggest that the null hypothesis should be rejected. The 
Kruskal-Wallis statistic, H, is shown last and its value is the same as we calculated 
above. 
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V. CONCLUDING REMARKS 

In this chapter, we have introduced the reversion toward the mean idea as 
well as several of the more frequently used nonparametric tests for contin­
uous data. Reversion toward the mean is important because of its possible 
effect on test results (5,6). The nonparametric tests are attractive because 
they do not require an assumption of the normal distribution or the equal­
ity of variances. Even when the data do come from normal distributions, 
these nonparametric tests do not sacrifice much power in comparison to 
tests based on the normality assumption. Although these tests were de­
signed to be used with continuous data, they are often used with ordered 
data as well. Their use with ordered data can create problems as there are 
likely to be more ties for ordered data than for continuous data. In the next 
chapter, we introduce methods for testing hypotheses about ordered or 
nominal data as well as about continuous data that are grouped into cate­
gories. 

EXERCISES 

10.1. The table below shows the annual average fatality rate per 100,000 
workers for each state, data originally introduced in Exercise 7.2. A 
state is placed into one of three groups according to the National Safe 
Workplace Institute (NSWI) score. Group 1 consists of states whose 
NSWI score was above 55, group 2 consists of states with scores of 31 
to 55, and group 3 consists of states with scores less than or equal to 
30. In Exercise 7.2, we examined the correlation between the fatality 
rates and the NSWI scores. Here we wish to determine whether or 
not we believe that the median fatality rates for the three groups of 
states are the same. 

State Fatality Rates per 100,000 Workers by the National Safe Workplace 
Institute Scores 

NSWI group 

Low (<30) Middle (31-55) High (>55) 

State Rate Rank State Rate Rank State Rate Rank 

AR 12.5 41 LA 11.2 35 NH 4.5 8 
WY 29.5 49 KY 11.9 39 WI 6.3 16 
NM 12.0 40 GA 10.3 33 RI 3.3 4 
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State 

KS 
ND 
ID 
TN 
HI 
AL 
MS 
SD 
se 
UT 
NE 
MT 
NV 

Low (<30) 

Rate 

9.1 
13.8 
17.1 
8.1 
6.0 
9.0 

14.6 
14.7 
6.7 

13.5 
11.3 
21.6 
11.5 

Sum of 

Rank 

28 
43 
47 
25 
14 
27 
44 
45 
18 
42 
36 
48 
37 

584 

NSWI group 

Middle (31-55) 

State 

VT 
AZ 
DE 
MO 
MD 
NC 
IN 
wv 
FL 
CO 
OK 
IA 
OH 
PA 
WA 

Rate 

6.8 
4.1 
5.8 
5.3 
5J 
7.2 
7.8 

16.2 
9.3 
9.3 
8.7 
9.2 
4.8 
6.1 
7.7 

Rank 

19 
6 

13 
10.5 
12 
21 
23.5 
46 
30.5 
30.5 
26 
29 
9 

15 
22 

420 

State 

AK 
VA 
MI 
OR 
MN 
CT 
ME 
TX 
MA 
NY 
IL 
NJ 
CA 

High (>55) 

Rate 

33.1 
9.9 
5.3 

11.0 
4.3 
1.9 
7.8 

11.7 
2.4 
2.5 
6.9 
3.4 
6.5 

Rank 

50 
32 
10.5 
34 
7 
1 

23.5 
38 
2 
3 

20 
5 

17 

271 
ranks 

Is there any need to use a statistical test of hypothesis to determine 
whether or not the median fatality rates of these three groups of 
states are the same? If there is, what test would you use? 

10.2. A study was conducted to determine the effect of short-term, low-
level exposure of demolition workers to asbestos fibers and silica-
containing dusts (7). Twenty-three demolition workers were exposed 
for 26 consecutive days during the destruction of a three-story build­
ing. The dependent variable is the percent reduction in the baseline 
value of the ratio of forced expiratory volume in the first second to 
forced vital capacity (FEVi/FVC) compared with the same ratio at the 
end of the demolition project. None of the exposures to asbestos or 
silica were above the permissible values. The following table shows 
the data for the 23 workers, grouped according to level of exposure to 
asbestos and silica. 

Percent Reduction in Pre- and Postproject F E V T / F V C Values by Level of 
Exposure to Asbestos and Silica-Containing Dusts 

Higher exposure (n = 10) Lower exposure (n = 13) 

0.73 0.72 0.70 0.33 0.54 0.42 0.70 0.65 0.62 0.81 
0.75 0.67 0.73 0.69 0.59 0.64 0.63 0.60 0.66 0.61 

0.68 0.76 .0.65 
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Test the hypothesis that there is no difference in the median percent 
reduction between those with the higher level of exposure and those 
with the lower level of exposure. Use a 5 percent significance level. 

10.3. A study was conducted to compare the effectiveness of the applied 
relaxation method and the applied relaxation method with biofeed­
back in patients with chronic low back pain (8). Twenty female pa­
tients were randomly assigned to each treatment group and the treat­
ments were then provided. One of the dependent variables studied 
was the change in the pain rating index, based on the McGill Pain 
Questionnaire, between pre- and posttreatment. Patients were also 
followed for a longer period, but those results are not used in this 
exercise. The actual change data were not shown in the article, but 
the following table contains hypothetical changes for the two groups. 

Hypothetical Data Showing the Changes in Pre- and Posttreatment Values 
of the McGill Pain Questionnaire for 40 Women Randomly Assigned to the 
Different Treatments 

Relaxation only Relaxation with biofeedback 

10 11 21 18 16 16 15 9 2 19 9 12 7 14 4 2 11 8 9 11 
5 18 16 14 12 13 11 13 14 20 6 10 9 7 8 10 6 13 7 8 

Use the appropriate one- or two-sided test for the null hypothesis of 
no difference in the median changes in pain rating between the two 
groups at the 0.10 significance level. Provide the rationale for your 
choice of either the one-sided or two-sided test. 

10.4. The following data are from the 1971 census for Hull, England (9). 
The data show by ward, roughly equivalent to a census tract, the 
number of households per 1000 without a toilet and the correspond­
ing incidence of infectious jaundice per 100,000 population reported 

Ward 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

No toilet 

222 
258 
39 
389 
46 
385 
241 
629 
24 
5 
61 

Jaundice 

139 
479 
88 
589 
198 
400 
80 
286 
108 
389 
252 

Ward 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

No toilet 

1 
276 
466 
443 
186 
54 
749 
133 
25 
36 

Jaundice 

128 
263 
469 
339 
189 
198 
401 
317 
201 
419 
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between 1968 and 1973. Group the wards into three groups based on 
the rate of households without a toilet. Use the Kruskal-Wallis test 
to determine whether or not there is a difference in the median 
incidence of jaundice for the three groups at the 0.05 significance 
level. 

10.5. Exercise 10.4 provides an example of ecological data, data aggregated 
for a group of subjects. Care must be taken in the use of this type of 
data (10). For example, suppose in Exercise 10.4 there was a statisti­
cally significant difference in the median incidence of jaundice for the 
three groups of wards. Is it appropriate to conclude that there is an 
association between the presence or absence of a toilet in a house­
hold and the occurrence of jaundice? Provide the rationale for your 
answer. 

10.6. In the study on ramipril, introduced in Chapter 7, there was a 4-week 
baseline period during which patients took placebo tablets (11). Of 
the 160 patients involved in the study, 24 had previously taken medi­
cation for high blood pressure, but it had been greater than 7 days 
since they had last taken their medication. These 24 patients had 
some expectation that medication works. We will examine hypotheti­
cal data based on the summary statistics reported to determine 
whether or not there is a placebo effect: a reduction in blood pressure 
values associated with taking the placebo. The hypothetical systolic 
blood pressure (SBP in mm Hg) values are the following: 

Patient 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

WeekO 
SBP 

171 
172 
166 
181 
194 
200 
200 
181 
173 
178 
206 
199 

Week 4 
SBP 

182 
167 
186 
175 
177 
200 
168 
178 
189 
189 
167 
185 

Patient 
number 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

WeekO 
SBP 

148 
182 
210 
171 
165 
201 
189 
197 
187 
174 
197 
169 

Week 4 
SBP 

178 
166 
183 
164 
163 
175 
165 
174 
167 
180 
185 
149 

Use the sign test to test the hypothesis that the proportion of de­
creases in SBP between Week 0 and Week 4 is equal to 0.50 versus 
the alternative that the proportion of decreases in SBP is greater than 
0.50. Use the 0.05 significance level. If there were reversion or regres­
sion to the mean here, would that affect our conclusion about the 
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placebo effect? Test the hypothesis of no reversion to the mean at the 
0.05 level. 

10.7. Use the Wilcoxon signed rank test to test the hypothesis that the 
median change in SBP in Exercise 10.6 is zero versus the alternative 
hypothesis that the median change is greater than zero. Perform the 
test at the 0.05 level. Compare your results with those of the sign 
test. Do you think that there is a placebo effect here? 
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Analysis of 
Categorical Data 

I n this chapter, we present some additional nonparametric tests that are 
used with nominal, ordinal, and continuous data that have been grouped 
into categories. The data in this chapter are presented in the form of fre­
quency or contingency tables. In Chapter 4, we demonstrated how one-
and two-way frequency tables could be used in data description. In this 
chapter, we show how frequency or contingency tables can be used to test 
whether the distribution of the variable of interest agrees with some hy­
pothesized distribution or whether there is an association among two or 
more variables. For example, in the material on the normal distribution in 
Chapter 6, we examined the distribution of blood pressure. In this chapter, 
we show how to test the null hypothesis that the data follow a particular 
distribution. In Chapter 5, we considered the association between birth 
weight and the timing of the initiation of prenatal care. In this chapter, we 
show how to test the null hypothesis that an association exists between 
two discrete variables versus the alternative hypothesis that there is no 
association. A goodness-of-fit statistic is used to test these hypotheses and 
it follows a chi-square distribution if the null hypothesis is true. 

291 
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I. GOODNESS-OF-FIT TEST 

The goodness-of-fit test can be used to examine the fit of a one-way frequency 
distribution for X, the variable of interest, to the distribution expected 
under the null hypothesis. This test, developed in 1900, is another contri­
bution of Karl Pearson, also known for the Pearson correlation coefficient. 
The X variable is usually a discrete variable, but it could also be a continu­
ous variable that has been grouped into categories. 

To facilitate the presentation, we use the following symbols. Let O, 
represent the number of sample observations at level i of X, and E,· repre­
sent the expected number of observations at level i assuming that the null 
hypothesis is true. The E, are found by multiplying the population proba­
bility of level i, π„ by n, the total number of observations. As the sum of the 
77/ is one, the sum of the E; is n. 

A natural statistic for this comparison would seem to be the sum of the 
differences of O,· and Eif that is, Σ(Οζ - Ε,); however, as both the O; and the 
Ej sum to n, the sum of their differences is always zero. Thus this statistic is 
not very useful; however, the sum of the squares of the differences, 
Σ(Οζ — Ei)2, will be different from zero except when there is a perfect fit. 
Squaring the differences is the same strategy used in defining the variance 
in Chapter 4. 

One problem remains with Σ(0,· - E/)2. If the sample size is large, even 
very small differences in the observed and expected proportions at each 
level of X become large in terms of the Oz and Ez. Therefore, we must take 
the magnitude of the Oz and Ez into account. Pearson suggested dividing 
each squared difference by the expected number for that category and 
using the result, Σ(Οζ - Ez)2/Ez, as the test statistic. 

It turns out that this statistic, for reasonably large values of Ez, follows 
the chi-square distribution. In the early 1920s, Sir Ronald A. Fisher showed 
that this statistic has k - 1 - m degrees of freedom, where k is the number 
of levels of the X variable and m is the number of estimated parameters. For 
the chi-square distribution to apply, no cell should have an expected count 
that is less than five times the proportion of cells with Ez that are less than 5 
(1). For example, if k is 10 and two cells have expected counts less than 5, 
then no expected cell count should be less than one [=5 * (2/10)]. If some of 
the Ei are less than this minimum value, categories with small expected 
values may be combined with adjacent categories. The combinations of 
categories must make sense substantively; otherwise the categories should 
not be combined. 

Note that the goodness-of-fit test is a one-sided test. Only large values 
of the chi-square test statistic will cause us to reject the null hypothesis of 
good agreement between the observed and expected counts in favor of the 
alternative hypothesis that the observed counts do not provide a good fit to 
the expected counts. Small values of the test statistic support the null 
hypothesis. 
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A. No Parameter Estimation Required 

The study of genetics has led to the discovery and understanding of the 
role of heredity in many diseases, for example, hemophilia, colorblind­
ness, Tay-Sach's disease, phenylketonuria, and diabetes insipidus (2). The 
father of genetics, Abbe Gregor Mendel, presented his research on garden 
peas in 1865, but the importance of his results was not appreciated until 
1900. One of Mendel's discoveries was the 1:2:1 ratio for the number of 
dominant, heterozygous, and recessive offspring from hybrid parents, that 
is, from parents with one dominant and one recessive gene. 

Although doubts have been raised about Mendel's data, we use data 
from one of his many experiments. Table 11.1 (3, p. 328) shows the number 
of offspring by type from the crossbreeding of smooth seeds' (A), the domi­
nant type, with wrinkled seeds (a), the recessive type. Dominant means 
that when both a smooth gene and a wrinkled gene are present, the pea 
will be smooth. The pea will be wrinkled only when both genes are wrin­
kled. 

The question of interest is whether this experiment supports Mendel's 
theoretical ratio of 1:2:1. The null hypothesis is that the observed data are 
consistent with Mendel's theory. The alternative hypothesis is that the 
data are not consistent with his theory. Let us test this hypothesis at the 
0.10 significance level. 

We must first calculate the expected cell counts for this one-way con­
tingency table. As the expected counts are based on the theoretical 1:2:1 
ratio, the ratio tells us that we expect one-fourth of the observations to be 
AA, two-fourths (one-half) to be Aa or aA, and one-fourth to be aa. One-
fourth of 529 is 132.25 and one-half of 529 is 264.5; therefore the expected 
counts are 132.25, 264.5, and 132.25, respectively. The test statistic is 

= (138 - 132.25)2 (265 - 264.5)2 (126 - 132.25)2 

132.25 264.5 132.25 
This statistic follows the chi-square distribution if the null hypothesis is 

true. The number of degrees of freedom is k - 1 - m. In this example, the 
value of k is 3, for the three types of possible offspring. As we did not 
estimate any parameters, m is 0. Therefore there are 2 degrees of freedom. 
The critical value, X2,o.90/ is 4.61. Because 0.546 is less than 4.61, we fail to 
reject the null hypothesis. It appears that these data support Mendel's 
theoretical results. 

Η Ε 3 Β 9 Ι Π ΐ Mendel's Data on Garden Peas 
Number of Smooth and Wrinkled 
Offspring from Hybrid Parents 

AA Aa aa Total 
138 265 126 529 
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In the next section, we consider an example in which we estimate two 
parameters. 

B. Parameter Estimation Required 

The goodness-of-fit chi-square statistic can also be used to test the hypoth­
esis that the data follow a particular probability distribution. Thus it can be 
used to complement the graphic approaches, for example, the Poissonness 
and normal probability plots, presented in Chapter 6. The test of hypothe­
sis provides a number, the p value, that can be used alone or together with 
the graphic approach to help us decide whether we will reject or fail to 
reject the null hypothesis. 

Let us test the hypothesis, at the 0.01 significance level, that the sys­
tolic blood pressure values, shown in Table 4.4, come from a normally 
distributed population. In testing the hypothesis that data are from a nor­
mally distributed population, we must specify the particular normal distri­
bution. This specification means that the values of the population mean 
and standard deviation are required. Because we do not know these values 
for the systolic blood pressure variable for 12-year-old boys in the United 
States, we estimate their values. Table 11.2 shows the systolic blood pres­
sure values along with the sample estimates of the mean and standard 
deviation. 

The goodness-of-fit test is based on the variable of interest being dis­
crete or being grouped into k categories. We must therefore group the 
systolic blood pressures into categories. We use the same categories por­
trayed in the histogram shown in Figure 4.8, and these categories are 
shown in Table 11.3. 

Systolic Blood Pressure Values Cmm Hg] and Their Sample Mean and 
Standard Deviation for the Data in Table 4.4 

Value Frequency Value Frequency Value Frequency 

80 
84 
88 
90 
92 
94 
95 
96 
98 

100 

3 
1 
1 
5 
1 
2 
4 
1 
2 

13 

Sample 

102 
104 
105 
106 
108 
110 
112 
114 
115 
116 

5 
6 
4 
3 
6 

11 
5 
2 
1 
4 

Sample mean = 
; standard deviation = 

118 
120 
122 
124 
125 
126 
128 
130 
134 
140 

= 107.41 
= 12.66 



I. GOODNESS-OF-FIT TEST 295 

Number of Boys Observed and Expected3 in the Systolic Blood 
Pressure Categories 

Systolic blood 
pressure (mm Hg) 

<80.5 
80.51— 87.5 
87.51— 94.5 
94.51—101.5 

101.51—108.5 
108.51—115.5 
115.51—122.5 
122.51—129.5 
129.51—136.5 
>136.5 

Total 

Number 

Observed 

3 
1 
9 

20 
24 
19 
11 
6 
5 
2 

100 

Expected 

1.66 
4.16 
9.57 

16.53 
21.67 
20.30 
14.41 
7.61 
3.02 
1.07 

100.00 

"Expected calculated assuming the data follow the 
#(107.41, 12.66) distribution. 

The expected values are found by converting the category boundaries 
to standard normal values and then finding the probability associated with 
each category. For example, the probability associated with the first cate­
gory, a systolic blood pressure less than 80.5 mm Hg, is found in the 
following manner. First 80.5 is converted to a standard normal value by 
subtracting the mean and dividing by the standard deviation. Thus 80.5 is 
converted to -2.13 [= (80.5 - 107.41)/12.66]. The probability that a stan­
dard normal is less than -2.13 is 0.0166. The expected number of observa­
tions is found by taking the product of n, 100, and the probability of being 
in the category. Thus the expected number of observations is 1.66. 

The expected number of observations in the second category is found 
in the following manner. The upper boundary of the second category, 
87.5, is converted to the standard normal value of —1.57 [= (87.5 -
107.41)/12.66]. The probability that a standard normal value is less than 
-1.57 is 0.0582. The probability of being in the second category is then 
0.0416 (= 0.0582 - 0.0166). Multiplying this probability by 100 yields 
the expected count of 4.16 for the second category. The other expected 
cell counts are calculated in this same way. If the sum of the expected 
counts does not equal the number of observations, with allowance for 
rounding, an error has been made. 

The calculation of the chi-square goodness-of-fit statistic is 

_ (3 - 1.66P (1 - 4.16)» (2 - 1.07)» 
X 1.66 4.16 1.07 Λ * , / · 
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gj| Guideline for the Number of Intervals to Be Used with a 
Continuous Variable 

Sample size 200 400 600 800 1000 1500 2000 
Number of intervals 15 20 24 27 30 35 39 

Source: Cochran (4). 

The value of k, the number of categories, is 10, and that of ra, the number of 
parameters estimated, is 2. Therefore, there are 7 degrees of freedom 
(= 10 - 1 - 2). The value of this test statistic is compared with 18.48 
(= X7,o.99). As 7.832 is less than 18.48, we fail to reject the null hypothe­
sis. Based on this sample, there is no evidence to suggest that the sys­
tolic blood pressures of 12-year-old boys are not normally distributed. 

In dealing with continuous variables, for example, the blood pressure 
variable, we have to decide how many intervals and what interval bound­
aries should be used. In the above example, we used the same intervals 
that were shown in Figure 4.8. Some research has been conducted on the 
relationship between power considerations and the number and size of 
intervals, and as we might expect, the number of intervals depends on the 
sample size. Table 11.4, based on a review by Cochran (4), shows the 
suggested number of intervals to be used with a continuous variable. The 
size of the intervals may also vary. The intervals are chosen so that the 
expected number of observations in each interval are approximately equal. 
Thus some intervals may be much narrower than other intervals. For ease 
of computation, it is reasonable to choose the intervals so that the observed 
numbers of observations in each interval are approximately equal. These 
suggestions for the choice of the number and size of intervals differ from 
those used in Chapter 4, but the goals of the analyses are also different. In 
Chapter 4, the guidelines used were for the presentation of data in histo­
grams. In this chapter, we wish to determine whether or not it appears that 
the data follow a particular distribution. 

In the following sections, we extend the use of the chi-square good-
ness-of-fit test statistic to two-way contingency tables. This extension al­
lows a determination of whether or not there is an association between two 
variables. 

II. 2 BY 2 CONTINGENCY TABLE 

We begin the study of the association of two discrete random variables 
with the simplest two-way table, the 2 by 2 contingency table. The follow­
ing quote by M. H. Doolittle in 1888 (5, p. 131) states the purpose of our 
analysis. 
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The general problem may be stated as follows: Having given the number of in­
stances respectively in which things are both thus and so, in which they are thus but not 
so, in which they are so but not thus, and in which they are neither thus nor so, it is 
required to eliminate the general quantitative relativity inhering in the mere thing­
ness of the things, and to determine the special quantitative relativity subsisting 
between the thusness and the soness of the things, (emphasis added) 

A restatement of the purpose is that we wish to determine, at some signifi­
cance level, whether there is an association between the variables. 

For example, is there is an association between the occurrence of iron 
deficiency in women and their level of education? If we uße two levels of 
education, for example, less than 12 years and greater than or equal to 12 
years, the 2 by 2 table to use in this investigation would look like Table 
11.5. The entries in the table, the ηψ are the observed number of women in 
the ith row (level of education) and/th column (iron status) in the sample. 
The symbol n,·. represents the sum of the frequencies in the ith row, n.; is 
the sum of the frequencies in the ;th column, and n, the sample size, is the 
sum of the frequencies in the entire table. There are several ways of an­
swering the question about whether an association exists between these 
two variables. We begin with the approach from Chapter 7. 

A. Comparing Two Independent Binomial Proportions 

The 2 by 2 table is one way of presenting the data used in the calculation of 
two independent binomial proportions. If there is no association between 
iron status and education, then the probability of iron deficiency for 
women with less than 12 years of education, ττ\, should equal the corre­
sponding probability, π2, for women with 12 or more years of education. 
We can construct a confidence interval for the difference of it\ and 7r2. If the 
interval contains zero, there is no evidence of an association between iron 
status and education. The confidence interval is based on the sample esti­
mates of 7Ti and π2 and these are n\\ln\. and n2i/n2., respectively. 

B. Expected Cell Counts Assuming No Association 

We use the symbol m,y to represent the expected number of women in the 
ith row and ;th column assuming that the null hypothesis is true. In the 

H B Q I ^ U U Q Iron Status by Level of Education 

Iron status 

Education Deficient Acceptable Total 

<12 years nn nu nx. 
2̂ 12 years w2i nn ni-

Total M.i n.2 n 
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material on two-way tables, we are using n and m to represent the ob­
served and expected cell counts instead of the O and £ used in the previous 
section. For the null hypothesis of no association between iron status and 
education, the expected proportion of women with low iron status at each 
level of education, mnlrii., equals the overall proportion of iron-deficient 
women, η.χ/η. This is equivalent to saying that the proportion of women 
with low iron status is the same for those with less than 12 years of educa­
tion as for those who have at least 12 years of education. Thus when there 
is no association, the expected number of iron-deficient women at the ith 
level of education can be found from the relationship 

mn = n.i 
rii. n 

which yields 

Hi. * n.\ Mu = . n 

The same type of relationship holds true for women with acceptable levels 
of iron. Therefore the general formula for the expected cell count, assum­
ing no association, is 

We can use these observed and expected values to calculate the chi-square 
goodness-of-fit statistic to test the hypothesis of no association between the 
two variables. 

C. The Odds Ratio: A Measure of Association 

A useful statistic for measuring the level of association in contingency 
tables is the odds ratio, 0. For example, in Table 11.5, an estimator of the 
odds that a woman with less than a high school education is iron deficient 
is W11/W12. The corresponding estimator of the odds that a woman with at 
least a high school education is iron deficient is η2ι/«22· If there is no 
association between education and iron status, these two odds should be 
equal. If the odds are equal, their ratio equals one. A sample estimator of 
the odds ratio OR is 

à _ n u _ ηπ / η ΐ2 _ Mu * nn 
U — U K — : — ; . 

«21'«22 «21 * «12 

Thus, an OR far from one calls into question the assumption (hypothesis) 
of no association. If the estimated odds ratio is much less than one, this 
means that the denominator is much larger than the numerator; that is, the 
product of the off-diagonal cells in the 2 by 2 table is larger than the 
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product of the diagonal cells. For Table 11.5, an odds ratio of less than one 
indicates that the proportion of women with 12 or more years of education 
who are iron deficient is greater than the corresponding proportion for 
women with fewer than 12 years of education. An odds ratio greater than 
one indicates that women with fewer than 12 years of education have the 
greater proportion of iron deficiency. 

A problem with the estimated odds ratio occurs if any of the cell fre­
quencies are zero. The estimated odds ratio is zero if ri\\ or «22 are zero, and 
it is undefined if n\2 or ui\ are zero. To avoid this problem, some statisti­
cians base the calculation of the estimated odds ratio on η^ + 0.5 instead of 
the Πψ 

D. Data Collection 

The two choices for data collection used most often in practice are a SRS of 
n women and (2) stratified samples of n\. and n2. women. In the SRS case, 
the test for no association is a test of the independence of the row and 
column variables. In the stratified sampling case, the test for no association 
is a test of the homogeneity of the proportions in row i with those in row ;. 
Regardless of which of these two sample selection processes is used, the 
expected cell counts for the hypothesis of no association are calculated as 
shown above. 

Suppose that we select a SRS of 100 women 20 to 44 years old and we 
obtain information on their educational level and iron status. The hypo­
thetical data, based on Figure 6.13 in "Nutrition Monitoring in the United 
States" (6), are shown in Table 11.6. 

E. Calculation of the Confidence Interval for the Difference 
in Proportions 

The estimated conditional probability of a woman being iron deficient 
given that she has less than 12 years of education is 0.133 (= 4/30). This is 
contrasted with the estimated probability of 0.057 (= 4/70) for a woman 
with 12 or more years of education. The 95 percent confidence interval for 

I f m ^ Q m ^ Hypothetical Frequency Data for Iron Status by Education 
Iron status 

Education Deficient Acceptable Total 

<12 years 4 26 30 
>12 years 4 66 70 

Total 8 92 100 
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the difference of ττ\ and π2 is found from 

(0.133 - 0.057) ± zo.975^ 0.133 * 0.867 0.057 * 0.943 
30 + 70 

which yields an interval from -0.057 to 0.209. As zero is contained in the 
interval for the difference, there is no evidence of an association between 
iron status and education based on this sample. 

F. The Test Statistic and Its Calculation 

On the basis of these data, the expected values, assuming the indepen­
dence of the row and column variables, are 

mu = 30 * 8/100 = 2.4 
m12 = 30 * 92/100 = 27.6 
m21 = 70 * 8/100 = 5.6 
ni22 = 70 * 92/100 = 64.4 

Total = 100.0 
The sum of the expected values in the first row is 30, the first row total. The 
sum of the expected values in the first column is 8, the first column total. 
Hence, once we calculate mu, we can determine the value of mi2 by sub­
tracting mu from 30. In the same way, we can determine the value of m2i by 
subtracting rtin from 8. Because we now know the value of mi2, we can also 
determine the value of m22 by subtracting mi2 from 92. Hence, once we 
calculate any cell's expected value, the expected values of the other three 
cells are determined. This means that only one degree of freedom is associ­
ated with the test of no association for a 2 by 2 contingency table. 

The expected cell frequency for the cell in the intersection of the first 
row and first column is 2.4. This is the only expected frequency less than 5, 
and according to the guideline given above, the minimum acceptable value 
for an expected cell frequency is 1.25 [= 5 * (1/4)]. As none of the expected 
frequencies are less than 1.25, we can use the chi-square test statistic. 

Now that we have both the observed and expected cell counts, we can 
test the hypothesis of no association (independence) of iron status and 
education. We perform the test at the 0.05 significance level. The test uses a 
modified version of the chi-square goodness-of-fit statistic. The modified 
form, called the Yates' corrected chi-square after the British statistician 
Frank Yates who suggested it, is 

X2 = y y (K - "*iyl - 0·5)2 

/ j ™ij 

The modification consists of subtracting 0.5 from the absolute value of the 
difference of the observed and expected cell counts (7). The p value associ­
ated with the Yates' corrected chi-square statistic agrees more closely with 
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the p value of the exact test statistic developed by Ronald Fisher (8).1 The 
calculation of Fisher's exact test statistic for 2 by 2 tables, or for its extension 
to r by c tables (9), is quite involved and, therefore, we have chosen not to 
present it in this text. 

The calculated XyC is compared with 3.84 (= χ̂ ο.95). If Xyc is greater 
than 3.84, we reject the hypothesis of independence in favor of the alter­
native that there is some association between iron status and education. 
If Xyc is less than 3.84, we fail to reject the null hypothesis. The test statistic 
is 

2 (|4 - 2.41 - 0.5)2 ([26 - 27.6| - 0.5)2 

X Y C " 2Λ + 27.6 

(14 - 5.61 - 0-5)2 (166 - 64.41 - 0.5)2 

+ 5.6 + 64.4 

or 0.783. As Xyc is less than 3.84, we fail to reject thè null hypothesis. 
Based on this sample, there does not appear to be any association between 
iron status and education. Note that the uncorrected X2 value is 1.656. 

MINITAB can be used to analyze these data, as shown in Box 11.1, but 
MINITAB calculates X2, the uncorrected value of the test statistic. As MINI-
TAB does not calculate Xyc, we shall present a formula that is easier to use 
in place of the defining formula. The easier-to-use formula is 

2 _ n(\nnn22 - nnni\\ ~ n/2)2 
j ^ _ 

u\. n2. n.i n.2 

The calculation of this statistic yields 

2 _ 100(14 * 66 - 4 * 26[ - 100/2)2 _ n ^ 
XYC " 30 * 70 * 8 * 92 " ° · 7 8 3 ' 

the same value as just described. 

G. Confidence Interval for the Odds Ratio 
The sample odds ratio for these data is 2.538 [= (4 * 66)/(4 * 26)]. This value 
seems to be different from one and, therefore, it suggests that there is an 
association. However, there is sampling variation associated with the sam­
ple estimate of Θ and this must be taken into account. 

'Some statisticians question the use of Fisher's exact test in 2 by 2 tables when the data arise 
from either of the two sampling methods discussed above. They question the application 
because Fisher's test was developed based on both the row and column margins being fixed 
in advance, a different sampling scheme than used in the other two methods. Hence they do 
not recommend the use of Yates' correction, but we believe that Yates' correction is appro­
priate (7). 



302 1 1 ANALYSIS OF CATEGORICAL DATA 

The CHISQUARE (abbreviated to CHIS) command is used to analyze the data in 
Table 11.6. 
MTB > 
DATA> 
DATA> 
DATA> 
DATA> 
MTB > 

set 
4 4 
set 

cl 

c2 
26 66 
end 
chis cl c2 

Expected ( 

1 

2 

counts i 
Cl 
4 

2.40 

4 
5.60 

are printed 
C2 
26 

27.60 

66 
64.40 

below observed counts 
Total 
30 

70 

Total 8 92 100 

ChiSq = 1.067 + 0.093 + 0.457 + 0.040 = 1.656 
df = 1 
1 cells with expected counts less than 5.0 

Because the distribution of the natural logarithm of 0, In 0, converges 
to the normal distribution for smaller sample sizes than the distribution of 
0, we focus on the confidence interval for In 0. After finding the confidence 
interval for In 0, we can transform it to a confidence interval for 0. The 
estimated standard error for the sample estimate of In 0 (10, pp. 54-55) is 

, 1 1 1 1 
l̂n(OR) = V + + + · 

{ } y tin n12 n2l n21 

The (1 - a) * 100 percent confidence interval for In 0 is 
In OR ± 2ι_α/2 * (Tin OR-

The estimated standard error for the sample estimate of In 0 is 0.7441, 
which is obtained from Vl /4 + 1/26 4- 1/4 + 1/66. The value of the natural 
logarithm of the sample odds ratio, In 2.538, is 0.9314. Therefore, the 95 
percent confidence interval for In 0 is 0.9314 ± 1.96 * 0.7441, which ranges 
from -0.5270 to 2.3897. Taking the exponential of these limits provides the 
95 percent confidence interval for 0 and its limits are 0.5904 and 10.9104. 
The confidence interval for the odds ratio is quite large and does include 
the value of one. Hence there is no evidence that the null hypothesis 
should be rejected. 
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All three approaches agree that there is no evidence of an association 
between iron status and education based on this hypothetical sample. 
These approaches will almost always agree about whether an association 
exists between two variables. The confidence interval for the difference of 
the probabilities and the uncorrected chi-square statistic will always agree 
in their conclusions. 

Other analyses of the 2 by 2 table could be presented, but we next 
consider the extension of the 2 by 2 table to a table with r rows and c 
columns. We focus on the use of the goodness-of-fit test approach in the r 
by c table. 

III. r BY c CONTINGENCY TABLE 

The data in Table 11.7 are from a study in Los Angeles conducted to 
determine the knowledge and opinion of women about mammography. 
The study was a response to concern raised in the media about the poten­
tial radiation hazards of the long-term use of mammography (11). Two 
issues the study addressed were: (1) whether these articles had caused 
women to refuse the use of mammography screening for breast cancer; and 
(2) variables related to women's opinion about mammography. A tele­
phone interview was conducted with a sample of women and approxi­
mately 60 percent of the women had heard or read something about mam­
mography. Table 11.7 shows the opinion about mammography of those 
women who had heard or read about it. 

A. Hypothesis of No Association 

This is a 2 (the number of rows is always given first) by 3 (number of 
columns) table. The question of interest for this table is whether there is an 
association between the woman's opinion about mammography screening 
and the variable knowing someone with breast cancer. We test this hy­
pothesis at the 0.01 significance level. 

I H ^ B I D Frequency of Women by Opinion about Mammography and Whether 
They Know Someone with Breast Cancer 

Opinion about mammography Know someone 
with breast cancer Positive Neutral Negative Total 

Yes 120 45 28 193 
No 77 15 8 100 

Total 197 60 36 293 
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The same ideas used in the 2 by 2 table still apply here. If there is no 
association between the knowledge of someone with breast cancer variable 
and the opinion about mammography, the ratio of the expected cell fre­
quency in the zth row and ;th column, πΐψ to the zth row total, n,-., should 
equal the ratio of the ;th column total, n7, to the overall total. Thus, m/; is 
still found from 

Hi. n 

which yields 

ni * n-j 
1 n 

The values of πι^ are shown in Table 11.8. 
There are 2 degrees of freedom for this table because once we know the 

frequencies of any two cells, we can find the values of the other frequencies 
by subtraction from the row and column totals. For example, knowing the 
frequencies for the 1,1 and 1,2 cells allows us to find the value of the 1,3 cell 
by subtraction of the sum of the 1,1 and 1,2 frequencies from the total of 
the first row. Knowledge of the frequencies in the first row then allows us 
to find the cell frequencies in the second row by subtraction from the 
column totals. For example, the frequency of the 2,1 cell is found by sub­
tracting the frequency of the 1,1 cell from the total of the first column. 
There is a formula for the degrees of freedom that simplifies its determina­
tion. The formula for the degrees of freedom for the hypothesis of no 
association in an r by c contingency table is (r - 1) * (c - 1). 

The hypothesis of no association between the row and column vari­
ables is tested using the chi-square goodness-of-fit statistic. Most statisti­
cians perform no adjustment to the test statistic when used with tables 
other than the 2 by 2 table. If the test statistic is greater than the value of 
9.21 (= xlo.99)/ we reject the hypothesis of no association in favor of the 
alternative that the row and column variables are related. If the test statistic 

Expected Frequency of Women by Opinion about Mammography and 
Whether They Know Someone with Breast Cancer 

Opinion 
Know someone 
with breast cancer Positive Neutral Negative Total 

Yes 129.76 39.52 23.71 192.99 
No 67.24 20.48 12.29 100.01 

Total 197.00 60.00 36.00 293.00 



III. r BY c CONTINGENCY TABLE 305 

is less than 9.21, we fail to reject the null hypothesis. The value of the test 
statistic is found from 

= (120 - 129.76)2 (45 - 39.52)2 (8 - 12.29)2 

129.76 39.52 ' ' ' 12.29 

which equals 6.648. As 6.648 is less than 9.21, we fail to reject the null 
hypothesis. There does not appear to be a statistically significant associa­
tion, at the 0.01 level, between opinion about mammography and whether 
someone with breast cancer was known. 

We can use MINITAB to perform the test as shown in Box 11.2. The 
p value is 1 minus 0.9640, or 0.036. Although there is some suggestion 
(a p value of 0.036) of an association between the row and column vari­
ables, the association is not statistically significant at the 0.01 level. 

MTB > 
DATA> 
MTB > 

set 
120 
set 

DATA> 45 
MTB > 
DATA> 
DATA> 
MTB > 

set 
28 i 
end 

cl 
77 
c2 
15 
c3 
8 

chis cl-c3 
Expected 

1 

2 

Total 

ChiSq = 

counts 

Cl 
120 

129.76 

77 
67.24 

197 

0.735 

are printed 

+ 

C2 
45 

39.52 

15 
20.48 

60 

0.759 + 

below observed counts 

C3 
28 

23.71 

8 
12.29 

36 

0.775 + 

Total 
193 

100 

293 

1.418 + 1.465 + 1.496 = 6.648 
df = 2 
We can also find the p value of the test by using the CDF command. 
MTB > cdf 6.648; 
SUBO chis 2. 

6.6480 0.9640 
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B. Hypothesis of No Trend 

The hypothesis of no association is very general, and it is a reasonable 
hypothesis to test with nominal variables; however, when a variable con­
veys more information than the category name, it is possible to test a more 
specific hypothesis that uses more of the information contained in the 
variable. For example, in this example, opinion is an ordinal variable that 
ranges from positive to neutral to negative, and the test for no association 
ignores this ordering. In 2 by c contingency tables, there is a test, a test for 
trends, that takes the ordering of the column variable into account.2 

In the test for no association, we examined the unconditional cell prob­
abilities. We also could have focused on the conditional probabilities, for 
example, the probability of women who knew someone with breast cancer 
conditional on their opinion of mammography. In calculating the condi­
tional probabilities in this fashion, we are not implying that the probability 
of women who knew someone with breast cancer depends on their opin­
ion of mammography. We are calculating the conditional probabilities in 
this fashion simply to see if there is a trend in the probabilities of women 
who knew someone with breast cancer by opinion category. The sample 
estimates of these conditional probabilities are easily found. For the 
women who are positive about mammography, the estimated probability 
of a woman knowing someone with breast cancer is 0.609 (= 120/197). The 
corresponding values for the women with neutral and negative opinions 
are 0.750 and 0.778, respectively. If the estimates of these probabilities are 
related to the opinion category, this suggests that an association exists 
between the row and column variables. 

We now consider the hypothesis of no linear trend. By no linear trend, 
we mean that the proportion of women who knew someone with breast 
cancer does not increase (decrease) consistently with the changes in opin­
ion from positive to neutral to negative. To perform a test of this hypothe­
sis, we assign a numerical score to the categories of the opinion variable. 
For example, it seems reasonable to assign scores of +1 to the positive 
category, 0 to the neutral level and —1 to the negative opinion category. 
This assignment of scores assumes that the distance from positive to neu­
tral is the same as the distance from neutral to negative. The assignment of 
scores is subjective, and in unusual situations, the scoring system used can 
have an impact on the test of hypothesis. In most cases, however, different 
reasonable scoring systems will lead to the same conclusion about the test 
of hypothesis. 

The hypothesis of no linear trend is basically a test of no correlation 
between the assigned scores and the conditional probabilities. Thus the 

2There is also a method that can be used for r by c contingency tables. See the article by 
Semenya et al. (12) for details. 
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test statistic should look something like a correlation coefficient. The fol­
lowing notation is used in the representation of the test statistic. Let p; be 
the sample estimate of the conditional probabilities of women who knew 
someone with breast cancer and S; be the score assigned to the ;th opinion 
category, where; equals 1, 2, and 3 for positive, neutral, and negative. The 
unconditional sample estimate of the women who knew someone with 
breast cancer is p, and q is 1 minus p. Let S be the sample mean score. 

The test statistic is 

(Σ HVi - Msi - S) 

pq Σ n.jiSj - S)2 

7 = 1 

The numerator of this statistic is the square of the numerator of the correla­
tion coefficient between the conditional proportion and the assigned score. 
Hence we can see that this statistic is a measure of the linear trend between 
these two variables. For sufficiently large sample sizes, this statistic can be 
shown to follow the chi-square distribution with one degree of freedom if 
there is no linear trend. The sample size is sufficiently large if, given the 
value of p, it is larger than that shown in Table 6.7. Large values of X2 cause 
us to reject the null hypothesis of no linear trend in favor of the alternative 
hypothesis of a linear trend. 

Let us test the null hypothesis of no linear trend in the opinion about 
mammography data at the 0.01 significance level. The overall proportion of 
women who knew someone with breast cancer, p, is 0.659 (= 193/293). 
Hence q is 0.341. As n is 293, much larger than the values in Table 6.7 for 
proportions of 0.30 and 0.35, we can use the test statistic shown above. The 
pj are 0.609, 0.750, and 0.778 for; values of 1, 2, and 3. Si is +1, S2 is 0, and 
S3 is - 1 , and the values of the column totals, n.j, are 197, 60, and 36, 
respectively. The mean of the scores, S, is found from 

(197 * 1) + (60 * 0) + (36 * (-1)) 
293 U V 

The test statistic is 

= [197(-.050)(.4505) + 60(.091)(-.5495) + 36(.119)(-1.5495)]2 

0.659 * 0.341 * [197(.4505)2 + 60(-.5495)2 + 36(-1.5495)2] 

and this simplifies to 
(-14.076)2 

32.479 = 6.100. 

This statistic is compared with 6.63 (= χι,ο.99)· As 6.100 is less than 6.63, we 
fail to reject the null hypothesis of no linear trend. The p value of this test 
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statistic is found from MINITAB to be 0.0135. Although there is not a 
significant linear trend in these data at the 0.01 significance level, there is a 
strong inverse relationship between the conditional proportion of women 
who knew someone with breast cancer and their opinion about mammo-
graphy. We know the relationship is inverse because the sign of the nu­
merator, before squaring, is negative. The opinion about mammography is 
more likely to be neutral or negative as the proportion of women who 
knew someone with breast cancer increases. 

This test for trends is equivalent to creating a confidence interval for 
the difference in means from two independent populations. In this exam­
ple, the two independent populations are the women who did not know 
someone with breast cancer and those who did know someone with breast 
cancer. 

The test for trends is particularly appropriate for 2 by c contingency 
tables when there is an ordering among the column categories. If a linear 
trend exists, it may be missed by the general test for association, whereas 
the trend test has a greater chance of detecting it. The general test for 
association could cause us to say that there is no relationship between the 
rows and columns when there actually is a linear trend. 

IV. MULTIPLE 2 BY 2 CONTINGENCY TABLES 

Most studies involve the analysis of more than two variables at one time. 
Often we are interested in the relationship between an independent vari­
able and the dependent variable, but there is an extraneous variable that 
must also be considered. For example, consider a study to determine if 
there is any association between the occurrence of upper respiratory infec­
tions (URIs) of young children and outdoor air pollution. Several variables 
could affect the relationship between the occurrence of infections and out­
door air pollution. One variable is the quality of the indoor air. One easily 
obtained variable that partially addresses the indoor air quality is whether 
someone smokes in the home. This variable is likely to be related to the 
dependent variable, the occurrence of URIs, and it may also be related to 
the independent variable. Hypothetical data for this situation are based on 
an article by Jaakkola (13) and are shown in Table 11.9. 

A. Analyzing the Tables Separately 

If we ignore the passive smoke variable, the Xyc for the combined table is 
6.387, its p value is 0.0115 and the estimate of the odds ratio is 1.524. There 
is a statistically significant relationship between the outdoor pollution vari­
able and the occurrence of URIs. The estimated odds ratio of 1.524 means 
that the odds of URI during the previous 12 months is about l i times 
greater in a city with high pollution than in a city with low pollution. 
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Number of B-Year-Old Finnish Children by Respiratory Status and 
Pollution Level with a Control for Passive Smoke in the Home* 

Passive smoke 
in home 

Yes 

No 

City 
polluted 

High 
Low 

Total 

High 
Low 

Total 

Upper respiratory infection 
during previous 12 months 

Some None Total 

100 
124 

224 

128 
166 

294 

20 
40 

60 

62 
119 

181 

120 
164 

284 

190 
285 

475 

"The entries in the table are based on an article by Jaakkola et al. 
(13), but the data are hypothetical. 

However, this analysis has excluded the passive smoke variable, a variable 
that we wish to take into account. 

One way of taking the passive smoke variable into account is to ana­
lyze each 2 by 2 table separately. In this example, the XyC statistic is 2.039 
and its p value is 0.1533 for homes in wihch someone smoked. The Xyc 
value is 3.645 and its p value is 0.0562 for those without passive smoke in 
the home. 

The corresponding estimates of the odds ratios for these two tables are 
1.613 and 1.480. The 95 percent confidence intervals for the two odds ratios 
are 0.887 to 2.933 and 1.007 to 2.171, respectively. The first confidence 
interval, which is much wider than the second interval, includes the value 
of one, suggesting there is no relationship between the two variables. The 
second interval barely misses including one. The second interval's smaller 
size reflects the larger sample size associated with the homes in which 
there was no passive smoke. Neither of these tables has a statistically 
significant association between outdoor air pollution and occurrence of 
URI at the 0.05 level based on the test statistics. The conclusion from the 
analyses of the separate tables is different from that from analysis of the 
combined table. 

A problem with the use of separate tables is that the analyses are based 
on smaller sample sizes associated with subtables, not on the sample size of 
the combined table. This makes it difficult to find the presence of small but 
consistent trends across tables. A method for eliminating this problem is 
discussed in the next section. Before presenting the method, however, we 
should consider a problem that can occur when subtables are combined. 

Besides ignoring the passive smoke variable, a potential problem in 
using the combined table is that it can be misleading. For example, if the 
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data are selected from a population that does not represent the target 
population, strange things can occur. Suppose that we want our results to 
apply to all children in Finland, but that the children used in this study 
were sampled from those who had been hospitalized during the previous 
12 months. If this were done, the population used in the study would not 
match the target population. Is that a problem? As has been mentioned 
before, the decision on the generalizability of the results to the target 
population depends on substantive considerations, not on statistical ideas. 
Let us assume that the sample data are those in Table 11.10. 

In both of the subtables, the city with the lesser pollution had the 
greater proportion of children with no URI during the past 12 months. If 
we ignore the passive smoke variable, the combined table is Table 11.11. In 
the combined table, the city with the greater outdoor pollution now has the 
greater proportion of children with no URI during the past 12 months: 
0.624 compared with 0.595 for the city with lesser pollution. This example 
points out that care must be exercised in combining tables when the popu­
lation from which the sample is drawn is not representative of the target 
population. This was clearly pointed out by Berkson in an article 
in 1946 (14). 

B. The Cochran-Mantel-Haenszel Test 

Two biostatisticians, Nathan Mantel and William Haenszel, developed a 
method in 1959 for examining the relationship between two categorical 
variables while controlling for another categorical variable (15). This 
method, similar to a method published by William Cochran in 1954 (16), 
uses all the data in the combined table and produces one overall test 
statistic. The test is designed to detect the consistent effect of the indepen-

Number of B-Year-Old Finnish Children by Respiratory Status and 
Pollution Level with a Control for Passive Smoke in the Home Based 
on Taking Samples from a List of Hospitalized Children0 

Passive smoke 
in home 

Yes 

No 

City 
polluted 

High 
Low 

Total 

High 
Low 

Total 

Upper respiratory infection 
during previous 12 months 

Some None Total 

35 
60 

95 

170 
15 

185 

40 
80 

120 

300 
30 

330 

75 
140 

215 

470 
45 

515 

"Hypothetical data. 
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Number of Children with Occurrence of Upper Respiratory Infection 
by Pollution Status of City Ignoring the Passive Smoke Variable 

City 
polluted 

High 
Low 

Total 

Upper respiratory infection 
during previous 12 months 

Some 

205 
75 

280 

None Total 

340 545 
110 185 

450 730 

dent variable on the dependent variable across the levels of the extraneous 
variable. Thus this method should be used only when the estimated odds 
ratios in the subtables are similar to one another. One very attractive fea­
ture of this test is that it can be used with extremely small sample sizes. 
This test has also been generalized for application to three-way tables of 
size other than 2 by 2 by k (17). 

To facilitate the presentation of the test statistic, we use the following 
notation for the zth 2 by 2 contingency table, where i ranges from 1 to fc, the 
number of levels of the extraneous variable. In our example, A: is 2 as there 
are only two levels, presence and absence, of the passive smoke variable. 
The zth 2 by 2 table is shown next. 

Polluted 
city 

High 
Low 

Total 

Upper 

Some 

ai 

Ci 

ai + Ci 

respiratory 

None 

hi 

di 

hi + di 

infection 

Total 

di + hi 
Ci + di 

Hi 

The test statistic is based on an overall comparison of the observed and 
expected in the (1, 1) cell in each of the k subtables. As we saw earlier in 
this chapter, under the hypothesis of no association between the row and 
column variables, only one degree of freedom is associated with the table. 
Hence we key on only one cell in the table and the choice of which cell is 
arbitrary. A statistic that could be used to examine whether there is an 
association is 

Σ (O, - £,·) 
2* = *=1 

s.e. \Σ (Oi - E,-)] 

where O,· and E; are the observed and expected values in the (1,1) cell in the 
zth subtable. This statistic is very similar to a standard normal variable 
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where Ez is analogous to the hypothesized mean in the standard normal 
variable. 

In terms of the entries in the ith table, E/ is defined as 

the product of the row total and the column total divided by the table's 
sample size. The observed (1, 1) cell frequency, O,, is a*. Vi, the variance of 
Oi minus Eo can be shown to be 

v = (ai + bi)(a + d,-)(fl,· + Ci)(bj + df) 
",*(«,· - 1) 

Because we are dealing with discrete variables, we should use the 
continuity correction with Z*; however, instead of using the continuity-
corrected Z* statistic, we would prefer to use a chi-square statistic as all the 
other tests associated with contingency tables use a chi-square statistic. 
This poses no problem because the square of a standard normal variable 
follows a chi-square distribution with 1 degree of freedom. Thus the statis­
tic to be used to test the hypothesis of no association between air pollution 
and the occurrence of upper respiratory problems is the Cochran-Mantel-
Haenszel chi-square statistic. Also called the Mantel-Haenszel statistic, it 
is defined by 

2 _ (\Q -E\- 0.5)2 

^CMH — y 

where O, E, and V are defined as the sums of the O,, the Ez, and the Vi over 
the k subtables. If XCMH is greater than χι,ι-α, we reject the hypothesis of 
no association between air pollution and the occurrence of upper respira­
tory infections. Otherwise we fail to reject the null hypothesis. 

As the odds ratios in the two separate subtables were similar, 1.613 in 
homes with passive smoke and 1.480 in the other homes, we can use the 
^CMH statistic. If the odds ratios had not been similar, the effect of the 
independent variable on the dependent variable would not be consistent 
across the levels of the extraneous variable. Hence it would not make sense 
to use the CMH statistic to test for a consistent effect of the independent 
variable when we already know that such an effect does not exist. Because 
the values of our odds ratios are similar, we can test the hypothesis of no 
association (no consistent effect) between air pollution and the occurrence 
of URI while controlling for passive smoke and we perform the test at the 
0.05 significance level. From Table 11.9 we see that Oi is 100 and 02 is 128 
and their sum is 228. The expected values are found from 

120 * 224 nA ^ . r 190 * 294 1 1 Ρ 7 / Λ 
1 = 284 = 2 = 475 = 1 1 7 · 6 0 

and their sum is 212.25. The variances are found from 
Tr 120 * 164 * 60 * 224 ^ rft , T7 190 * 285 * 181 * 294 ^ „Λ 
V*= 284^283 = 1 L 5 9 a n d V ^ 475^174 = 2 6 ' 9 4 
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and their sum is 38.53. Thus we have the pieces needed to calculate XCMH· 

2 _ (|228 - 212.25! ~ 0-5)2 _ 
ACMH - oo co — Ο.ΌόΌ. 

As 6.036 is greater than 3.84 (= χι,ο.95)/ we reject the hypothesis of no 
association. At the 0.05 level, we conclude that there is an association 
between air pollution and URI even after controlling for passive smoke in 
the home. 

C. The Mantel—Haenszel Common Odds Ratio 

Mantel and Haenszel also showed how to combine the data from the 
separate subtables to form a common odds ratio for the data. Again, this 
should be done only when the estimated odds ratios in the subtables are 
similar. If the estimated odds ratios for the subtables are not similar, for 
example, some are less than one and some are greater than one, the com­
mon odds ratio would not be very useful. The relationship between the 
independent and dependent variables would depend on the level of the 
extraneous variable, and the use of a common odds ratio would mask this. 
The Mantel-Haenszel estimator of the common odds ratio, 0, is 

k 

X fa * di/tii) 
ORMH = 1 · 

Σ (h * Ci/nO 
1=1 

For the air pollution data, the Mantel-Haenszel estimate is found from 

_ (100 * 40)/284 + (128 * 119)7475 = 
" (20 * 124)/284 + (62 * 166)/475 " 

This value is similar to the individual odds ratios of 1.613 and 1.480 and 
also close to the value, 1.524, found from the overall table. The similarity of 
the values supports the finding that the passive smoke variable had little 
effect on the relationship between air pollution and URL There are several 
approaches to finding an estimate of the variance of the Mantel-Haenszel 
estimator of the common odds ratio (18, 19), but they are quite involved 
and are not presented here. 

V. CONCLUDING REMARKS 

In this chapter, we introduced another nonparametric test, the chi-square 
goodness-of-fit test, and showed its use with one- and two-way contin­
gency tables. We also showed two related methods, comparison of two 
binomial proportions and the calculation of the odds ratio, for determin­
ing, at some significance level, whether a relationship exists between two 
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discrete variables with two levels each. The odds ratio is of particular 
interest as it is used extensively in epidemiological research. We also pre­
sented the extension of the goodness-of-fit test for no interaction to r by c 
contingency tables. Another test shown was the trend test, and it is of 
interest because it has a greater chance of detecting a linear relationship 
between a nominal variable and an ordinal variable than does the general 
chi-square test for no interaction. The Cochran-Mantel-Haenszel test and 
estimate of the common odds ratio were introduced for multiple 2 by 2 
contingency tables. These procedures are also used extensively by epide­
miologists. In the next chapter, we conclude the material on nonparametric 
procedures with the presentation of several nonparametric methods for the 
analysis of survival data. 

EXERCISES 

11.1. The following data are from one of the hospitals that participated in a 
study performed by the Veterans Administration Cooperative Duo­
denal Ulcer Study Group (20). The data from 148 men show the 
severity of an undesirable side effect, the dumping syndrome, of 
surgery for duodenal ulcer for four surgical procedures: (A) drainage 
and vagotomy, (B) 25 percent resection (antrectomy) and vagotomy, 
(C) 50 percent resection (hemigastrectomy) and vagotomy, (D) 75 
percent resection. 

Severity of dumping syndrome 

Surgery 

A 
B 
C 
D 

Total 

None 

23 
23 
20 
24 

90 

Slight 

7 
10 
13 
10 

40 

Moderate 

2 
5 
5 
6 

18 

Total 

32 
38 
38 
40 

148 

Was the design used in this hospital a completely randomized design 
or a randomized block design? Explain your answer. Test the hy­
pothesis of no association between the type of surgery and the sever­
ity of the side effect at the 0.05 significance level. Assuming that the 
procedures are equally effective, would you recommend any of the 
procedures over the others? 

11.2. Test the hypothesis that the data from Gösset, shown in Table 6.4 
and repeated here, come from a Poisson distribution at the 0.01 
significance level. 



EXERCISES 315 

Observed Frequency of Yeast Cells in 400 Squares 

X 0 1 2 3 4 5 6 
Frequency 103 143 98 42 8 4 2 

11.3. The following data, from an article by Cochran (16), show the clinical 
change by degree of infiltration, a measure of a type of skin damage, 
present at the beginning of the study for 196 leprosy patients who 
received 48 weeks of treatment. 

Dpgrw nf 
infiltration Worse 

0-7 11 
8-15 7 

Total 18 

Same 

27 
15 

42 

Improvement 

Slight Moderate 

42 53 
16 13 

58 66 

Marked 

11 
1 

12 

Total 

144 
52 

196 

Test the hypothesis of no association between the degree of infiltra­
tion and the clinical change at the 0.05 significance level. Is this a test 
of independence or homogeneity? Explain your answer. Now assign 
scores from - 1 to +3 for the clinical change categories worse to 
marked improvement and test the hypothesis of no linear trend at 
the 0.05 significance level. Is there any difference in the results of the 
tests? Select another reasonable set of scores and perform the trend 
test again using the second set of scores. Is the result consistent with 
the result from the first set of scores? 

11.4. Mantel (21) provided data from a study to determine whether or not 
there is any difference in the effectiveness of immediately injecting or 
waiting 90 minutes before injecting penicillin into rabbits who have 
been given a lethal injection. An extraneous variable is the level of 
penicillin. The data are shown in the following table. 

Penicillin 
level 

1/8 

1/4 

1/2 

1 

4 

Delay 

None 
90 min 
None 
90 min 
None 
90 min 
None 
90 min 
None 
90 min 

Cured 

0 
0 
3 
0 
6 
2 
5 
6 
2 
5 

Died 

6 
5 
3 
6 
0 
4 
1 
0 
0 
0 

Total 

6 
5 
6 
6 
6 
6 
6 
6 
2 
5 
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Is it appropriate to use the CMH statistic here to test the hypothesis 
of no association between the delay and response variables while 
controlling for the penicillin level? Explain your answer. If you feel 
that it is appropriate to use the CMH statistic here, test, at the 0.01 
significance level, the hypothesis of no association between the delay 
and response variables while controlling for the penicillin level. 

11.5. Your local health department conducts a course on food handling. To 
evaluate this course, you select a SRS of restaurants from the list of 
licensed restaurants. For these restaurants in your sample, you then 
search the list of violations found by the health department during 
the last 2 years as well as the list of restaurants with employees who 
have attended the course during the last 2 years. For the 86 sampled 
restaurants, the data can be presented as follows. 

Attended 
course 

Yes 
No 

Total 

Yes 

9 
36 

45 

Violation 

No Total 

28 37 
13 49 

41 86 

Use an appropriate procedure to test the hypothesis of no association 
between course attendance and the occurrence of a violation at the 
0.10 significance level. On the basis of these data, discuss whether or 
not course attendance had any effect on the finding of a restaurant's 
violation of the health code. 

11.6. Cochran (16) presented data on erythroblastosis foetalis, a some­
times fatal disease of newborn infants. The disease is caused by the 
presence of an anti-Rh antibody in the blood of an Rh+ baby. One 
treatment used for this disease is the transfusion of blood that is free 
of the anti-Rh antibody. In 179 cases in which this treatment was 
used in a Boston hospital, there were no infant deaths out of 42 cases 
when the donor was female compared with 27 deaths when the 
donor was male. One possible explanation for this surprising finding 
was that the male donors were used in the more severe cases. There­
fore, the disease severity was taken into account and the data are 
shown in the following table. 
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Disease 
severity 

None 

Mild 

Moderate 

Severe 

Total 

Donor's 
sex 

M 
F 
M 
F 
M 
F 
M 
F 

Survival status 

Dead 

2 
0 
2 
0 
6 
0 

17 
0 

27 

Alive 

21 
10 
40 
18 
33 
10 
16 
4 

152 

Total 

23 
10 
42 
18 
39 
10 
33 
4 

179 

Use the CMH statistic to test the hypothesis of no association be­
tween donor's sex and the survival status of the infant at the 0.05 
significance level. 

11.7. Group the blood pressure values shown in Table 11.2 into categories 
of <80, 80-89, 90-99, . . . , >130 mm Hg. Based on this grouping, 
test the hypothesis that the systolic blood pressure of 12-year-old 
boys follows a normal distribution using the 0.05 significance level. 
Compare your results with those based on the grouping shown in 
Table 11.3. 

11.8. The following data show the relationship between two types of me­
dia exposure and a person's knowledge of cancer (22, p. 36). 

Media 

Newspapers 

Read 

Do not read 

Total 

exposure 

Radio 

Listen 
Do not listen 
Listen 
Do not listen 

Knowledge of 
cancer 

Good 

168 
310 
34 

156 

668 

Poor 

138 
357 
72 

494 

1061 

On the basis of these data, test the hypothesis of no association 
between newspapers and knowledge of cancer, ignoring the radio 
variable. Next test the hypothesis of no association between radio 
and knowledge of cancer, ignoring the newspaper variable. Which 
variable has the stronger association with the knowledge of cancer 
variable? On the basis of these data, would you feel comfortable 
recommending one of these media over the other for the purpose of 
increasing the public's knowledge of cancer? If your answer is yes, 
what assumptions are you making about the data? If your answer is 
no, provide your rationale for your answer. 



318 1 1 ANALYSIS OF CATEGORICAL DATA 

REFERENCES 

1. Yarnold, J. K. (1970). The minimum expectation in X2 goodness of fit tests and the 
accuracy of approximations for the null distribution. /. Am. Stat. Assoc. 65, 864-886. 

2. Snyder, L. H. (1970). Heredity. Collier's Encycl. 12, 68-76. 
3. Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975). "Discrete Multivariate 

Analysis: Theory and Practice/' MIT Press, Cambridge, MA. 
4. Cochran, W. G. (1952). The χ2 test of goodness of fit. Ann. Math. Stat. 23, 315-345. 
5. Goodman, L. A., and Kruskal, W. H. (1959). Measures of association for cross-classifica­

tions. II. Further discussion and references. /. Am. Stat. Assoc. 54, 123-163. 
6. Life Sciences Research Office, Federation of American Societies for Experimental Biology 

(1989). "Nutrition Monitoring in the United States: An Update Report on Nutrition Moni­
toring," DHHS Pubi. No. (PHS) 89-1255. U.S. Department of Agriculture and the U.S. 
Department of Health and Human Services, Public Health Service, Washington, U.S. 
Government Printing Office. 

7. Yates, F. (1984). Tests of significance for 2 x 2 contingency tables (with discussion). /. R. 
Stat. Soc, Ser. A U7, 426-463. 

8. Fisher, R. A. (1935). The logic of inductive inference (with discussion). /. R. Stat. Soc. 98, 
39-82. 

9. Mehta, C. R., and Patel, N. R. (1983). A network algorithm for performing Fisher's exact 
test in r x c contingency tables. /. Am. Stat. Assoc. 78, 427-434. 

10. Agresti, A. (1990). "Categorical Data Analysis." Wiley, New York. 
11. Berkanovic, E., and Reeder, S. J. (1979): Awareness, opinion and behavioral intention of 

urban women regarding mammography. Am. J. Public Health 69, 1172-1174. 
12. Semenya, K. A., Koch, G. G., Stokes, M. E., Forthofer, R. N. (1983). Linear models 

methods for some rank function analyses of ordinal categorical data. Commun. Stat. 12, 
1277-1298. 

13. Jaakkola, J. J. K., Paunio, M., Virtanen, M., Heinonen, O. P. (1991). Low-level air pollu­
tion and upper respiratory infections in children. Am. J. Public Health 81, 1060-1063. 

14. Berkson, J. (1946). Limitations of the application of fourfold table analysis to hospital data. 
Biometrics Bull. 2, 47-53. 

15. Mantel, N., and Haenszel, W. (1959). Statistical aspects of the analysis of data from 
retrospective studies of disease. /. Nat. Cancer Inst. (U.S.) 22, 719-748. 

16. Cochran, W. G. (1954). Some methods for strengthening the common χ2 tests. Biometrics 
10, 417-451. 

17. Landis, J. R., Heyman, E. R., and Koch, G. G. (1978). Average partial association in three-
way contingency tables: A review and discussion of alternative tests. Int. Stat. Rev. 46, 
237-254. 

18. Mehta, C. R., and Walsh, S. J. (1992). Comparison of exact, mid-p, and Mantel-Haenszel 
confidence intervals for the common odds ratio across several 2 x 2 contingency tables. 
Am. Stat. 46, 146-150. 

19. Letters to the Editor, letters by Mantel, by Sato and Takagi, and by Mehta and Walsh 
relating to (18). (1993). Am. Stat. 47, 86-87. 

20. Grizzle, J. E., Starmer, C. F., and Koch, G. G. (1969). Analysis of categorical data for linear 
models. Biometrics 25, 489-504. 

21. Mantel, N. (1963). Chi-square tests with one degree of freedom; extensions of the Mantel-
Haenszel procedure. /. Am. Stat. Assoc. 58, 690-700. 

22. Forthofer, R. N., and Lehnen, R. G. (1981). "Public Program Analysis: A New Categorical 
Data Approach." Lifetime Learning Publications, Belmont, CA. 



Analysis of Survival Data 

I his chapter introduces methods for analyzing data collected from a 
longitudinal study in which a group of subjects are followed for a defined 
period or until some specified event occurs. We frequently encounter such 
data in the health field. For example, newly diagnosed cancer patients in a 
registry were followed annually until they died. Another example consists 
of smokers who completed a smoking cessation program and were then 
contacted every 3 months to find out whether they had relapsed. The focus 
in these studies is the length of time from a meaningful starting point until 
the time at which either some well-defined event happens, such as death 
or relapse to a certain condition, or the study ends. The data from such 
studies are called survival data. We have previously encountered survival 
data in our consideration of the life table in Chapter 5. In this chapter, we 
consider a special type of life table, the follow-up life table. 

We first discuss the collection and organization of the data. This dis­
cussion is followed by the presentation of two related methods for analyz­
ing survival data. The life-table method is used for larger data sets and the 

319 
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product-limit method is generally used for smaller data sets. We also show 
how the CMH test statistic from Chapter 11 can be used for comparing two 
survival distributions. 

I. DATA COLLECTION IN FOLLOW-UP STUDIES 

Perhaps an example best illustrates the nature of the data required for a 
survival analysis. The California Tumor Registry identified a total of 2711 
females with ovarian cancer initially diagnosed between 1942 and 1956 in 
37 hospitals in California (1). The follow-up system of the Central Registry 
was designed to identify deaths through the statewide vital registration 
system and to facilitate the follow-up activities of the participating hospital 
registries. The Central Registry received yearly follow-up information on 
each case. The registry program served not only to furnish the information 
essential for statistical study of cancer cases, but also to stimulate periodic 
medical checkups of the cancer patients. Based on the data accumulated in 
the Central Registry up to 1957, the researchers were able to analyze ovar­
ian cancer patients who had been followed for up to 17 years. 

In this data set, patients were observed for different lengths of time 
and not all of the patients had died by 1957. In addition, others could not 
be contacted, that is, were lost to follow-up. Despite the different lengths 
of observation and the incomplete observations, it is possible to analyze 
the survival experience of these patients. An appropriate survival analysis 
is not restricted to those who died, but incorporates all the patients who 
entered the study. It is essential to include all those who entered the study 
because the exclusion of any patient from the analysis could introduce a 
selection bias as well as reduce the sample size. 

The survival time cannot be calculated for those patients who were still 
alive at the closing date of the study or for those patients whose survival 
status was unknown. For these incomplete observations, the survival time 
is said to be censored. Those patients who were still alive at the closing date 
are known as withdrawn alive and those patients whose status could not be 
assessed (because, for example, they moved away or refused to participate) 
are known as lost-to-follow-up. 

To include the censored observations in the analysis, we calculate a 
censored survival time from the date of diagnosis to (1) the closing date of 
the study for those withdrawn alive, and (2) the last known date of obser­
vation for the lost-to-follow-up. This allows the number of years from the 
date of diagnosis to the date of death or to the termination date to be 
calculated for each patient in the study. 

By tabulating the uncensored and censored survival times of all 2711 
female ovarian cancer patients by 1-year intervals, we obtain the data 
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Survival Times for Ovarian Cancer Patients Initially Diagnosed 
1942 -1956 , Followed to 1957 

Years after 
diagnosis 

0-1 
1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 

10-11 
11-12 
12-13 
13-14 
14-15 
15-16 
16-17 

Death 
* 

1421 
335 
132 
64 
44 
20 
19 
14 
7 
7 
5 
5 
1 
3 
1 
0 
0 

Lost 
/, 

68 
19 
17 
10 
12 
12 
10 
14 
10 
9 
4 
4 
4 
1 
0 
0 
0 

Withdrawn 
Wi 

0 
37 
84 
47 
48 
39 
35 
19 
25 
19 
14 
17 
11 
15 
13 
7 
9 

Total 

1489 
391 
233 
121 
104 
71 
64 
47 
42 
35 
23 
26 
16 
19 
14 
7 
9 

Number entering 
interval 
fli 

2711 
1222 
831 
598 
477 
373 
302 
238 
191 
149 
114 
91 
65 
49 
30 
16 
9 

Source: California Tumor Registry (1, pp. 258-259). 

shown in Table 12.1. Within the first year of diagnosis, 1421 of 2711 pa­
tients had died and 68 were lost to follow-up. There were no patients in the 
category withdrawn alive, as every patient was followed for at least 1 year. 
The last column of the table can be created by adding the total column 
entries from the bottom. This reverse cumulative total indicates the num­
ber of patients alive at the beginning of each interval. The entry in the first 
row of this column is the total number of patients in the study. The other 
entries in this last column can also be found by subtracting the sum of the 
number of deaths, lost to follow-up, and withdrawn alive from the number 
of persons who started the previous interval. For example, the second 
entry in this column is 1222. It can be found by subtracting the sum of 1421, 
68, and 0 from 2711, the number of subjects who began the previous 
interval. 

The essential data items required for a survival analysis include dif the 
number of deaths, Z,·, the number of patients lost to follow-up, W{, the 
number of patients withdrawn alive, and nI7 the number of patients alive at 
the beginning of the zth interval. These data, presented in Table 12.1, are 
analyzed by the life-table method in the next section. 
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II. THE LIFE-TABLE METHOD 

In Chapter 5, the population life table was introduced to illustrate the idea 
of probability and its connection to life expectancy. The estimated life 
expectancy is generally used as a descriptive statistic. To use the life-table 
technique as an analytical tool, we shall combine ideas from Chapter 6 on 
probability distributions with the life-table analysis framework. 

In survival analysis, our focus is on the length of survival. Let X be a 
continuous random variable representing survival time. Consider a new 
function, the survival function, defined in symbols as 

S(x) = Pr{X > x} 
This function is the probability that a subject survives beyond time x. As 
F(x), the cdf, is defined as 

F(x) = Pr{X < *}, 
the survival function is one minus the cdf, that is, 

S(x) = 1 - F(x). 
It is more convenient to work with S(x) rather than F(x) because we usually 
talk about survival being greater than some value rather than being less 
than a value. 

The idea of a survival function is contained in the population life table 
presented in Chapter 5. It is represented by the lx column, the number of 
survivors at the beginning of each age interval. Specifically, S(x) in the 
population life table is lx/l0. Recall that the lx column starts with Z0, usually 
set at 100,000, and all subsequent lx values are derived by multiplying the 
conditional probability of surviving in an age interval by the number of 
those who have survived all previous age intervals. 

To analyze the data in Table 12.1 by the life-table method, we estimate 
the survival distribution in the same manner. The results of these calcula­
tions are shown in Table 12.2. The first two columns (time interval and 
number of deaths) are transferred from Table 12.1. The other columns 
show the results of the life-table analysis. 

The first task is to estimate the conditional probability of dying for each 
interval of observation. When there is no censoring in an interval, the 
estimate of the probability of dying in the interval is simply the ratio of the 
number who died during the interval to the number alive at the beginning 
of the interval; however, it is not appropriate to use this ratio as the estima­
tor of the probability of dying if censoring occurred in the interval. The use 
of this denominator, the number alive at the beginning of the interval, 
means that those who were lost to follow-up or withdrawn alive during the 
interval are treated as if they survived the entire interval. Thus, using this 
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Estimates of Probabilities and Standard Errors 
for Ovarian Cancer Patients 

(1) (3) 
Years (2) Exposed 
after Deaths to risk 
diagnosis d{ n\ 

0-1 
1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 

10-11 
11-12 
12-13 
13-14 
14-15 
15-16 
16-17 
17 

1421 
335 
132 
64 
44 
20 
19 
14 
7 
7 
5 
5 
1 
3 
1 
0 
0 

2677.0 
1194.0 
780.5 
569.5 
447.0 
347.5 
279.5 
221.5 
173.5 
135.0 
105.0 
80.5 
57.5 
41.0 
23.5 
12.5 
4.5 

0.531 
0.281 
0.169 
0.112 
0.098 
0.058 
0.068 
0.063 
0.040 
0.052 
0.048 
0.062 
0.017 
0.073 
0.043 
0.000 
0.000 

0.469 
0.719 
0.831 
0.888 
0.902 
0.942 
0.932 
0.937 
0.960 
0.948 
0.952 
0.938 
0.983 
0.927 
0.957 
1.000 
1.000 

1.000 
0.469 
0.338 
0.280 
0.249 
0.224 
0.212 
0.197 
0.185 
0.177 
0.168 
0.160 
0.150 
0.147 
0.137 
0.131 
0.131 
0.131 

0.0000 
0.0096 
0.0092 
0.0089 
0.0087 
0.0086 
0.0086 
0.0086 
0.0087 
0.0088 
0.0090 
0.0093 
0.0097 
0.0099 
0.0109 
0.0119 
0.0119 
0.0119 

ratio when there is censoring likely results in an underestimate of the 
probability of dying in the interval. 

The problem with the censored individuals is that we do not know 
their actual length of survival during the interval. We do know that it is 
extremely unlikely that they all survived the entire interval. The assump­
tion used most often in practice, although there are other, perhaps, more 
reasonable assumptions, is that the censored individuals survived to the 
midpoint of the interval. Under this assumption, we can calculate ^ , an 
estimator of the conditional probability of dying during the ith interval, 

a di = di 

qi * , · - ( i ) *(/,· +w,·) nr 
The denominator in this equation is the effective number of subjects ex­
posed to the risk of dying during the interval, denoted by n[. Table 12.2 
shows the estimated effective number of patients exposed to the risk of 
dying in column 3 and the estimate of the conditional probability of dying 
in column 4. 

Conditional 
probability 

(4) (5) 
Dying Surviving 
qi (1 - qd 

(6) 
Cumulative 
probability 
surviving 

(7) 
Standard 
error 
SE(P.) 
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By a simple manipulation of the definition of ^ given above, we obtain 
the alternative expression 

dj + (fr/2) * (/,· + Wj) 
Qi = l . η rii 

The use of n\ above implies that those patients who were lost or withdrawn 
were subjected to one-half the risk of dying during the interval. 

The estimator of the conditional probability of survival in the ith inter­
val is one minus the estimator of the probability of dying, that is, 1 - qx·. 
The result of this subtraction is shown in column 5. 

Next, we calculate P,·, the sample estimator of the probability of surviv­
ing until the beginning of the fth interval. The set of the P,· are used to 
estimate the survival distribution S(x). By definition, Pi = 1, and the esti­
mators of the other survival probabilities are calculated in the following 
manner: 

P2 = (1 - qx), P3 = (1 - q2) * (1 - qi), 

and in general 

Pi = (1 - qi-!) * (1 - qi-i) * . . . * (1 - ft) = (1 - ft~i) * Ρ/-ι 
The results of these products are shown in column 6 of Table 12.2. From 
column 6, we see that the estimate of the 1-year survival probability for 
ovarian cancer patients in California who were diagnosed during the pe­
riod 1942-1956 was 0.47, and the estimate of the 5-year survival probability 
was 0.22. More recent statistics estimate the 5-year survival probability for 
ovarian cancer to be 0.39 for white females and 0.38 for black females in the 
period 1981-1986 (2), suggesting some improvement in cancer treatment. 
This improvement, however, may be due more to the early detection of 
ovarian cancer in recent years. Cancer-related statistics, including esti­
mates of survival rates, are routinely provided by the National Cancer 
Institute's Surveillance, Epidemiology and End Results (SEER) program, 
which includes many population-based cancer registries throughout the 
United States. 

Besides knowing the point estimate of a population survival probabil­
ity, we also wish to have a confidence interval for the survival probability. 
We assume that, in large samples, an estimated cumulative survival proba­
bility approximately follows a normal distribution. The variance of the 
estimated cumulative survival probability is estimated by 

GkPÒ = ?ΪΣ Ζ7-* :. 
,=i fly * (1 - qy) 

The estimated standard errors (the square root of the estimated variance) of 
the Pi are shown in column 7 of Table 12.2. 
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Given these estimated standard errors plus the assumption of the ap­
proximate normality of the estimated survival probabilities, we can calcu­
late confidence intervals for the survival probabilities. The approximate 
(1 - a) * 100 percent confidence interval for a survival probability is given 
by 

Pi ± [zi-«* * s.e.(Pi)]1. 
For example, an approximate 95 percent confidence interval for the 5-year 
survival probability is 

0.224 - (1.96 * 0.0086) to 0.224 + (1.96 * 0.0086) 

or 0.207 to 0.241. 
It is also possible to calculate the confidence interval for the difference 

between two survival probabilities from different study groups, for exam­
ple, the 5-year survival probability of ovarian cancer for white females and 
black females, by using the procedure discussed in Chapter 7. 

Let us further explore the estimated survival distribution by creating 
Figure 12.1, the plot of the cumulative survival probabilities against the 
years after diagnosis. Although we have values of Pf for only the integer 
values of t, we have connected the points to show the shape of the survival 

1 Thomas and Grunkemeier (3) have shown that there are other more complicated approaches 
to constructing a confidence interval for P, that cause the actual confidence level to agree 
more closely with the nominal confidence level, especially for small samples. 
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distribution. It starts with a survival probability of 1 at time 0 and drops 
quickly as time progresses, indicating a very high early mortality for ovar­
ian cancer patients. Note that the survival curve does not descend all the 
way to zero. This is due to some women surviving more than 17 years. 

The rapid decrease in the estimated survival curve suggests that the 
mean and the median survival times will be short. To verify this, let us 
estimate the mean and the median survival times from the estimated sur­
vival distribution. As some of the women survive longer than the 17 years 
of the study, this complicates the estimation of the population mean sur­
vival time. Instead of estimating the population mean, we therefore esti­
mate the mean restricted to the time frame of 17 years, the length of the 
study. This restricted value will thus underestimate the true unrestricted 
mean. If no patient survived longer than the time frame of the study, the 
procedure shown below provides an estimate of the unrestricted mean. 

The sample mean, restricted to the 17-year time frame, is found by 
summing the number of years (or other unit of time) survived during each 
time interval and dividing this sum by the sample size; however, the pro­
cess of determining the number of years survived in an interval is compli­
cated by the deaths, losses, and withdrawals that occurred during the 
interval. Instead of directly attempting to calculate the years survived, we 
use the following method to deal with this complication. 

We calculate the sample mean by forming a weighted average of the 
years provided by each interval. The weight used with each interval is the 
cumulative survival probability associated with the interval. This approach 
deals with the complications mentioned above as the probability takes the 
deaths, losses, and withdrawals into account. Because there are two cumu­
lative survival probabilities associated with each interval, the probability at 
the beginning, Pj, and the probability at the end, PI+i, we use their aver­
age. Thus the formula for the restricted sample mean is 

*-i,.(&±fiu) 
where k is the number of intervals and a\ is the width of the zth interval. 

This formula has an interesting geometric interpretation: it provides an 
approximation to the area under the estimated survival curve. For exam­
ple, consider a curve with three intervals (Figure 12.2). We are using rec­
tangles to estimate the area under the curve. As we can see, some of the 
area under the curve is not included in the rectangles; however, this area is 
approximately offset by the areas included in the rectangles that are not 
under the curve. The formula for the area of a rectangle is the height 
multiplied by the width. In this case, the width is one unit, or in general, a, 
units, and the height is taken to be the average of the points at the begin­
ning and end of the interval, that is, (Pf + P;+i)/2. Hence another way of 
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interpreting the mean is that it is the area under the survival curve. We 
approximate this area by calculating the area of the rectangles that can be 
superimposed on the survival curve. 

When the intervals are all of the same width, for example, a, then the 
formula can be simplified to 

xr = a * 
Jt+l Pi + Pt+i 

■ )· 

Because the intervals are all of width one in this example, the sample mean 
is simply the sum of the entries in column 6 of Table 12.2 minus one-half of 
the first and last entries in the column. This is 

(1.000 + 0.469 + 0.338 + . . . + 0.131) - 0.5(1.000 + 0.131) 

which equals 3.92 years. This restricted mean survival time appears to be 
larger than what the first-year survival probability might suggest. As we 
saw in Chapter 4, the mean can be affected by a few large observations, 
and that is the case here. The sample mean reflects the presence of a few 
long-term survivors. Let us now calculate the median length of survival. 

The median survival time is estimated in the following manner. First 
we read down the list of estimated cumulative survival probabilities, 
column 6 in Table 12.2, until we find the interval for which P, is greater 
than or equal to 0.5 and Pi+i is less than 0.5. In Table 12.2, this is the first 
interval, as Pi is greater than 0.5 and P2 is less than 0.5. Thus we know that 
the estimated median survival time is between 0 and 1 years. As 47 percent 
of the patients survived the first year, we suspect that the estimated me­
dian survival time is much closer to one year than to zero years. To find a 
more precise value, we shall use linear interpolation. 
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In using linear interpolation, we are assuming that the deaths occurred 
at a constant rate throughout the interval. This is the same assumption we 
made when we connected the survival probabilities in Figure 12.1. In using 
linear interpolation, we know that to reach the median, we require only a 
portion of the interval, not the entire interval. The portion that we need is 
simply the ratio of the difference of P,· and 0.5 to the length of the interval. 
In symbols, this is 

(Pi - 0.5)/(P,· - Pi+1). 

We multiply this ratio by the width of the interval and add that to the 
survival time at the beginning of the interval. Replacing these words by 
symbols, the formula is 

Pi - 0.5 sample median = x{ + «,· * — — 

where *,· is the survival time at the beginning of the interval and a, is the 
width of the interval. In this example, the sample median survival time is 

0 + 1*(Γ^Ι) = 0 · 9 4 ^ Γ · 
The sample median survival time of about 1 year is much shorter than the 
estimated restricted mean survival time. As we mentioned above, the 
mean survival time is affected by a small number of long-term survivors. 
This is why the median is more often used with survival data. 

The median can also be obtained from the plot of the estimated sur­
vival curve shown in Figure 12.1. We move up the vertical axis until we 
reach the survival probability value of 0.5. We then draw a line parallel to 
the time axis and mark where it intersects the survival curve. We next draw 
a line, parallel to vertical axis, from the intersection point to the time line. 
The sample median survival time is the value where the line intersects the 
time axis. Figure 12.3 shows the estimated survival curve plot with these 
lines used to find the sample median drawn in the plot as well. The accu­
racy of the estimate of the median is limited by the scales used in plotting 
the survival curve. In Figure 12.3, the precision of the estimate is likely not 
to be high because of the scales used. It appears that the sample estimate of 
the median is approximately 1 year. 

Another statistic often used in survival analysis is the hazard rate, which 
is also known as the life-table mortality rate, force of mortality, and instan­
taneous failure rate. It is used to measure the proneness to failure during a 
very short time interval. It is analogous to an age-specific death rate or 
interval-specific failure rate. It is the proportion of subjects dying or failing 
in an interval per unit of time. The hazard rate is usually estimated by the 
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formula 

hi = 
di 2*fr 

ai*(n} - dill) a,■,* (2 - qtf 
The denominator of this formula uses the number of survivors, again as­
suming that death is occurring at a constant rate throughout the interval, at 
the midpoint of the interval. When the interval is very short, it makes little 
difference whether the number of survivors at the beginning or at the 
midpoint of the interval is used in the denominator. The sample hazard 
rates are calculated and shown in Table 12.3 for the first 10 years of follow-
up. The estimate of the first-year hazard or mortality rate is quite high with 
723 deaths per 1000 patients. The hazard is concentrated in the first 5 years 
after diagnosis and stabilizes at a low level after 5 years of survival. The 
variance of the sample hazard rate is estimated by 

Var(Äf) = hf i - (in * Uj/iy 

The estimated standard errors (the square root of the estimated variance) of 
the sample hazard rates are calculated and shown in Table 12.3. If we 
assume that the sample hazard rates are asymptotically normally distrib­
uted, these sample standard errors can be used to calculate confidence 
intervals for the population hazard rates. For example, the 95 percent 
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Estimates of Hazard Rates and Their Standard Errors 

Year 

0-1 
1-2 
2-3 
3-4 
4-5 

Hazard 
rate 

0.723 
0.326 
0.185 
0.119 
0.104 

Standard 
error 

0.0179 
0.0176 
0.0160 
0.0149 
0.0156 

Year 

5-6 
6-7 
7-8 
8-9 
9-10 

Hazard 
rate 

0.059 
0.070 
0.065 
0.041 
0.053 

Standard 
error 

0.0132 
0.0161 
0.0174 
0.0156 
0.0201 

confidence interval for the first-year hazard or mortality rate ranges from 
0.723 - 1.96(0.0179) to 0.723 + 1.96(0.0179) 

or from 0.688 to 0.758. 
These life-table calculations can be performed by MINITAB as shown 

in Box 12.1; the results are printed in Box 12.2. 

III. PRODUCT-LIMIT METHOD 

When we analyze a smaller data set, for example, a sample size less than 
100, the life-table method may not work very well because the grouping of 
survival times becomes problematic. Instead we use a method that is based 
on the actual survival time for each subject rather than grouping the sub­
jects into intervals. The product-limit method, also known as the Kaplan-
Meier method (4), is used to estimate the cumulative survival probability 
from a small data set, without relying on groupings of survival times. As 
can be seen below, the basic principles and computational procedures in­
volved in the product-limit method are similar to those for the life-table 
method. 

We start with an example. Suppose that 14 alcohol-dependent patients 
went through an intensive detoxification treatment for 4 years during the 
1990-1993 period at a small clinic. There was a follow-up contact every 
month to check on their drinking status. The data shown in Table 12.4 
were abstracted from the clinic patient records. The date of discharge and 
the date of termination are shown in year and month (9001 indicates 1990 
January). The follow-up status is coded 2 if censored (withdrawn or lost-to-
follow-up) and 1 if relapsed to drinking. Gender is coded 1 for females and 
2 for males. The purpose of our study is to analyze the length of alcohol-
free time among these 14 patients. 

The first step of analysis is to calculate the survival time, x, in months 
for all subjects, censored and uncensored, and arrange them in order from 
the smallest to the largest with the censoring status indicated. If an uncen-

330 
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(i) 
MTB > read cl-c5 
DATA> 0 1421 68 0 2711 
DATA> 1 335 19 37 1222 
DATA> 2 132 17 84 831 

DATA> 16 0 0 9 9 
DATA> end 
(2) 
MTB > let c6=c5-.5*(c3+c4) 
MTB > let c7=c2/c6 
MTB > let c8=l-c7 
(3) 
MTB > let c9(l)=l 
MTB > let kl=2 
MTB > store 'cumpro' 
ST0R> noecho 
ST0R> let c9(kl)=c9(kl-l)*c8(kl-l) 
ST0R> let kl=kl+l 
ST0R> end 
MTB > execute 'cumpro' 17 

(4) 
MTB > let cl(18)=17 
MTB > plot c9 cl 
(The plot is not shown here.) 
(5) 
MTB > sum c9 k2 

SUM = 4.4861 
MTB > let k3=k2-0.5*(c9(l)+c9(18)) 
MTB > print k3 
K3 3.9206 
(6) 
MTB > let cl0(l)=0 
MTB > let cl4(l)=0 
MTB > let kl=2 
MTB > let Cl3=c7/(c6*c8) 
MTB > store 'error' 
ST0R> noecho 
ST0K> let Cl4(kl)=cl4(kl-l)+cl3(kl-l) 
ST0R> let cl0(kl)=c9(kl)*sqrt(cl4(kl)) 
ST0R> let kl=kl+l 
ST0R> end 
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MTB > execute 'error' 17 
(7) 
MTB > let cll=c2/(c6-0.5*c2) 
MTB > let Cl2=(l-(.5*cll)**2)/(c6*c7) 
MTB > let cl2=cll*sqrt(cl2) 

(1) The data in Table 12.1 are entered: the starting points of the time intervals 
into cl; the number died during the interval (df) into c2; the number lost (/,·) into c3; 
the number withdrawn (wi) into c4; and the number alive at the beginning of the 
interval (n,-) into c5. 

(2) The effective number, stored in c6; the conditional probability of dying, 
stored in c7; and the conditional probability of surviving, stored in c8. 

(3) The cumulative survival probability is calculated by using Macro com­
mands and the results are stored in column c9. First, c9(l) is set to 1, the value of 
the survival probability at the beginning of the first interval. The constant kl, the 
indicator of which interval is being considered, is set to 2 because we are ready to 
calculate P2. The STORE command creates a Macro file under the name of 'cumpro' 
which contains four statements. After the NOECHO statement, which tells MINI-
TAB not to show the Macro commands each time they are executed, the next 
statement calculates the cumulative survival probability for the interval kl. The 
following statement increases kl by one so that the next survival probability that is 
calculated is stored in the proper row of c9. "EXECUTE 'cumpro' 17" instructs the 
computer to use these formulas 17 times. 

(4) The survival probabilities in c9 are plotted against the years after diagnosis 
in cl. 

(5) The mean survival time is calculated in k3. 
(6) The standard error for Pi is set to 0. The standard errors of P,, calculated by 

a MINITAB macro, are stored in clO. As the calculation is difficult to do by MINI-
TAB in a single step, the intermediate computational steps are stored in cl3 and 
cl4. The constant k2 is an indicator of which interval is being considered. It is 
initially set to 2 because the estimated standard error of Pi was set to zero. Column 
cl3 contains the conditional probability of dying divided by the product of the 
effective sample size and the conditional probability of surviving the zth interval. 

(7) The hazard rates are calculated in ell. The standard errors of the hazard 
rates can be calculated in a single step and the results are stored in cl2. 

sored subject and a censored subject have survival times of the same 
length, the uncensored one precedes the corresponding censored observa­
tion. For the data shown in Table 12.4, the ordered list of alcohol-free times 
in months, with the censored observations marked by asterisks, is: 

4, 6, 6, 9*, 10, 14% 16, 17*, 19, 20, 28, 31, 34*, 47*. 

The second step is to create a worksheet like that shown in Table 12.5. 
In Table 12.5, the column headings refer to death and survival. For this 
problem, death is equated with relapse and survival is remaining alcohol 
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MTB > print cl c9-cl2 

ROW Cl C9 CIO Cil C12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

1 
0 
0 
0 
0 
0 
0, 
0 
0 
0 
0 
0, 
0, 
0, 
0, 
0, 
0. 
0. 

.00000 

.46918 

.33754 

.28046 

.24894 

.22444 

.21152 

.19714 

.18468 

.17723 

.16804 

.16004 

.15010 

.14749 

.13669 

.13088 

.13088 

.13088 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0, 
0 
0 
0 
0, 
0 

.0000000 

.0096454 

.0092394 

.0089133 

.0087390 

.0086243 

.0085980 

.0086231 

. 0086974 

.0087906 

.0089949 

.0092511 

.0096858 

.0098628 

.0109335 

.0119155 

.0119155 

.0119155 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0, 
0. 
0, 
0 
0 
0. 

.722604 

.326352 

.184745 

.119070 

.103529 

.059259 

.070370 

.065268 

.041176 

.053232 

.048780 

.064103 

.017544 

.075949 

.043478 

.000000 

.000000 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0, 
0. 
0, 
0, 

.0178743 

.0175915 

.0160112 

.0148573 

.0155867 

.0132450 

.0161341 

.0174343 

.0155599 

.0201127 

.0218088 

.0286528 

.0175432 

.0438178 

.0434680 
* 
* 

E l Status of 14 Alcohol-Dependent Patients 

Patient 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Date of 
discharge 

9001 
9003 
9005 
9009 
9011 
9102 
9104 
9108 
9110 
9203 
9207 
9212 
9303 
9304 

Date of 
termination 

9312 
9009 
9209 
9111 
9306 
9312 
9211 
9304 
9202 
9308 
9311 
9310 
9312 
9310 

Follow-up status 

2 Still sober (withdrawn) 
1 Relapsed 
1 Relapsed 
2 Lost to follow-up 
1 Relapsed 
2 Still sober (withdrawn) 
1 Relapsed 
1 Relapsed 
1 Relapsed 
2 Lost to follow-up 
1 Relapsed 
1 Relapsed 
2 Still sober (withdrawn) 
1 Relapsed 

Gender 

1 Female 
1 Female 
2 Male 
2 Male 
1 Female 
1 Female 
1 Female 
1 Female 
2 Male 
2 Male 
2 Male 
1 Female 
2 Male 
2 Male 
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Kaplan—Meier Estimates of Survival Probabilities 

(1) 
Survival 
time 
Xi 

0 
4 
6 

10 
16 
19 
20 
28 
31 

(2) 
Number of 
deaths 
dx 

0 
1 
2 
1 
1 
1 
1 
1 
1 

(3) 
Number 
at risk 
nx 

14 
14 
13 
10 
8 
6 
5 
4 
3 

(4) 
Conditional 
probability 
of survival 
(1 - qx) 

1.000 
0.929 
0.846 
0.900 
0.875 
0.833 
0.800 
0.750 
0.667 

(5) 
Cumulative 
probability 
of survival 
Ps 

1.000 
0.929 
0.786 
0.707 
0.619 
0.516 
0.412 
0.309 
0.206 

(6) 
Standard 
error 
SE(PX) 

~z 
0.066 
0.101 
0.121 
0.124 
0.146 
0.141 
0.128 
0.106 

free. The first three columns in the worksheet are created according to the 
following procedures. 

1. List the uncensored alcohol-free times in order. These are 4, 6, 10, 
16, 19, 20, 28, and 31. We refer to these times as xlf x2, . . . , xg, respec­
tively. 

2. Count the number of relapses at each of the *,·. There is one relapse 
at each time unless there are ties. The numbers are 1, 2, 1, 1,1, 1, 1, and 1. 

3. Count the number of subjects who are at risk of relapse at the Xi. For 
example, when the survival time is 10 months, three people have already 
relapsed and one person was withdrawn. Thus, only 10 persons are at risk 
of relapse at 10 months. These numbers are 14, 13, 10, 8, 6, 5, 4, and 3. 

The fourth and fifth columns, estimates of the conditional probability 
of survival (1 - qx) and the cumulative probability of survival (Px), are 
calculated next followed by the calculation of estimated variance of Px, 
shown in column 6. The estimator of the conditional probability of relapse 
is the number of relapses divided by the number at risk, that is, qx = dx/nx. 
The estimator of the conditional probability of survival is 

! _ qx = ! _ k = UizAm 
η ηχ nx 

The estimator of the cumulative probability of survival is found from the 
estimators of the conditional probabilities of survival in the same way as in 
the life-table method, that is, 

ρ.-Πα-ίθ-Π2^· 
t<x t<x nt 
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The product symbol, Π, means that we multiply each term in the expres­
sion by one another for the indicated values of t. For example, 

Π (1 - qt) = (1 - <fc) * (1 - ?e) * (1 - iio). 
f<10 

We could have included 1 - q0 in the product, but as qQ is defined to be 
zero, its inclusion would not have changed the product. 

As we have seen above, the censored observations have not been 
excluded from the analysis. They played a role in the determination of the 
number at risk at each time of relapse. If the censored observations were 
totally excluded from the analysis, the estimate of the conditional survival 
probabilities for the uncensored observations would be different. 

The variance of Px is estimated by 

và(Px) = Pi (Σ T — W - ) = Ρ2χ (-) · 
VéÎ (wt - dt)nt) \nj 

The approximation shown in the above equation is much simpler to calcu­
late and it works reasonably well in most situations (5). Taking the square 
root of the variance, calculated by the use of the approximation, we obtain 
the estimated standard errors of the Px that are shown in column 6. As a 
demonstration of the accuracy of the approximation, the approximate esti­
mate of the standard error of P4 is 0.066, compared with the value of 0.069 
obtained from the use of the first expression for the sample variance. 

Figure 12.4 graphically displays the estimated survival distribution 
shown in the fifth column of Table 12.5. The plot includes a survival proba-
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bility of 1 at time 0. The plot of the survival probabilities is referred to as a 
step function because it looks like a stairstep. It has this appearance be­
cause the probability of survival stays the same over a time period—this 
causes the horizontal lines—and then drops whenever there is another 
relapse—the vertical lines. However, long horizontal lines, showing no 
change in survival probability for a long period, should not be interpreted 
as a period with no risk, for these may occur because only small numbers 
of subjects are under observation during those periods. 

We can estimate the mean survival time from the survival distribution. 
Again, just as in the life-table method, if the largest survival time is a 
censored time, we are really estimating a restricted mean. If the largest 
survival time is uncensored, then the survival probability will decrease to 
zero, and we will be estimating the unrestricted mean. As in the life table, 
the mean survival time is the area under the curve. We again use rectangles 
to approximate this area. Because of the step nature of the survival curve 
here, the rectangles are already formed for us. Unlike the life-table 
method, the widths of the intervals here are usually different. The follow­
ing formula shows the area of each rectangle being calculated as the prod­
uct of the height of the rectangle, the estimated cumulative survival proba­
bility associated with *,·, by the width, xi+\ - Xj. In symbols, this is 

k-1 

Xr = Σ Pxi * (*i+l * *i) 
i=0 

where k is the number of distinct time points when someone relapsed, x0 is 
defined to be zero, and P0 is defined to be one. 

For these data, the estimate of the restricted mean alcohol-free time, 
restricted to a 31-month window, is given by 
xT = 1 * (4 - 0) 4- 0.929 * (6 - 4) + 0.786 * (10 - 6) + 0.707 * (16 - 10) 

+ 0.619 * (19 - 16) + 0.516 * (20 - 19) + 0.412 * (28 - 20) 
+ 0.309 * (31 - 28) = 18.4 months. 

This is an underestimate of the true mean alcohol-free time because we are 
restricted to the study time frame and there were still people free of alcohol 
at the end of the study. 

From Table 12.5, we can see that the median survival time, the point at 
which the cumulative survival probability is 0.5, occurs between the 19th 
and 20th months and is closer to month 19. We interpolate to find the 
sample median in the same way as in the life-table method. From our data, 
the sample median survival time is found as follows: 

1 9 + <20 - 19> * (θ°5166-"θ°412) = 1 9 · 2 m 0 n t h s · 
We should not use interpolation to find the median if there is a large gap in 
time between the two survival times in which we will be using the interpo­
lation. 
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MINITAB can be used to calculate the entries in Table 12.5 as well as 
the sample mean and medians. The commands, not shown here, are a little 
more complicated than those in Box 12.1, but they follow the same ideas. 

Because the product-limit method is based on the ranking of individual 
survival times, it is cumbersome to apply with a large data set. We would 
not consider using it with the ovarian cancer data from the California 
Tumor Registry which comprised more than 2000 observations. For a large 
data set, the life-table method simplifies the calculation and gives results 
similar to those of the product-limit method. 

So far we have focused on describing the survival experience of a single 
population; however, we are often interested in comparing the survival 
experiences of two or more groups of subjects who differ on some account, 
for example, patients who have received different therapies for cancer or 
patients who belong to different age or sex groups. The comparison of two 
survival distributions is the topic of the following section. 

IV. COMPARISON OF TWO SURVIVAL DISTRIBUTIONS 

When comparing the survival experience of two or more groups, the de­
scription of the differences in the estimated survival distributions and the 
plot of the survival curves are only the beginning of the analysis. In addi­
tion to these descriptive techniques, researchers require a statistical test to 
determine whether the observed differences are statistically significant or 
due to chance variation. 

In the analysis of survival data, we generally do not assume that the 
data follow any particular probability distribution. In the analysis, we also 
use the median survival time, rather than the mean, to summarize the 
survival experience. Because of these features, it seems as if a nonparamet-
ric test should be used when comparing survival distributions.2 

For small data sets with no censored observations, the Wilcoxon rank 
sum test (Mann-Whitney test) can be used to test the null hypothesis of no 
difference in survival distributions for two independent samples. How­
ever, as survival time data usually contain censored observations, the 
Wilcoxon test cannot be directly applied. In this section, we show how the 
Cochran-Mantel-Haenszel (CMH) test statistic, described in Chapter 11, 
can be used in testing the hypothesis of no difference between two survival 
distributions (7). There are a number of other tests, extensions of the 
Wilcoxon and other rank tests, that could be used as well, but the CMH 
test seems to perform as well, if not better, than these other tests. Hence, 
the CMH test is the only one presented here. 

2If we know that the survival data follow a particular distribution, we should take advantage 
of that knowledge. Parametric tests are available that can be used when we know the 
probability distribution of the survival data (6). 
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The key to the use of the CMH method with survival data is to realize 
that the data in each time interval can be formulated as a 2 by 2 table. The 
number of deaths and the number of survivors (the number exposed mi­
nus the number of deaths) for the two groups can be put in a 2 by 2 table 
for each time interval as shown next. 

Number Number 
of deaths of survivors Total 

Group 1 du (riu - du) riu 
Group 2 d2i (n'2i - d2i) n'2i 

Total d.i (ri .i - d.i) ri.,· 

It can be shown that the time intervals are uncorrelated with one another 
which allows us to use the CMH statistic here. 

Let us consider an example. The Hypertension Detection and Follow-
up Program examined the effect of serum creatinine on 8-year mortality 
among hypertensive persons under care (8). We are interested in testing 
whether the survival experience of persons with a serum creatinine con­
centration less than 1.7 mg/dl at the time of screening is more favorable 
than those with a serum creatinine concentration greater than or equal to 
1.7 mg/dl. The data for testing this hypothesis are shown in Table 12.6. 

First, we use these data to estimate the cumulative survival probabili­
ties for the two groups, applying the methods discussed earlier. The 
results are shown graphically in Figure 12.5. The survival distribution ap­
pears to be more favorable for the hypertensive persons with a serum 
creatinine concentration less than 1.7 mg/dl than those with a serum creati-

Sample Sizes and Numbers of Deaths by Year and Level of Serum 
Creatinine Concentration in the HDFP Study 

Serum creatinine (mg/dl) 
Year 
under 
care 

0-1 
1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 

Total 

du 

93 
115 
125 
181 
160 
212 
191 
203 

1280 

<1.7 

riu 

10469.5 
10374.5 
10254.0 
10121.5 
9930.5 
9763.0 
9551.0 
9147.5 

d2i 

21 
16 
13 
14 
17 
10 
14 
8 

113 

5*1.7 

ri2i 

297.0 
276.0 
260.0 
246.5 
232.0 
215.0 
205.0 
186.5 

d.i 

114 
131 
138 
195 
177 
222 
205 
211 

1393 

Total 

ri .i 

10766.5 
10650.5 
10514.0 
10368.0 
10162.5 

9978.0 
9756.0 
9334.0 
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Estimated survival distributions by level of serum creatinine concentration. A, serum creati-
nine < 1.7; B, serum creatinine 2* 1.7. 

nine concentration greater than or equal to 1.7 mg/dl. The two survival 
curves are consistently diverging, suggesting that the odds ratios in each 
time interval are similar to one another. Therefore, we do not have any 
problem using the Cochran-Mantel-Haenszel test to compare the two 
survival distributions. 

To apply this test to the data in Table 12.6, we need to find the ex­
pected number of deaths and the variance for the (1,1) cell in each of the 
eight 2 by 2 tables. For example, the 2 by 2 table for the year 0-1 is shown 
next. 

Creatinine Number of Number of 
level deaths survivors Total 

<1.7 mg/dl 93 
>1.7 mg/dl 21 

Total 114 

10,376.5 
276.0 

10,652.5 

10,469.5 
297.0 

10,766.5 

The expected number of deaths in the (1,1) cell is the product of the total of 
the first row and the first column divided by the table total. Thus the 
expected value is 

10,469.5 * 114/10,766.5 = 110.86. 
The variance of the (1,1) cell is the product of the four marginal totals 

divided by the square of the table total times the table total minus one. 
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Thus the sample variance is 
10,469.5 * 297 * 114 * 10,652.5 = 

(10,766.5)2 * 10,765.5 

Table 12.7 shows the expected number of deaths and the variances for 
the eight (1,1) cells based on the data in Table 12.6. The observed number 
of deaths in group 1 (creatinine < 1.7 mg/dl) is 1280 and the expected 
number of deaths is 1361, suggesting that group 1 has a favorable survival 
experience. We shall test the hypothesis of no difference in the survival 
distributions of the two groups at the 0.01 significance level. The test 
statistic, XCMH/ is calculated based on the data in Tables 12.6 and 12.7 as 

\0 - E\ - 0.5)2
 = ([1280 - 1361.071 - 0.5)2 

V ~ 30.65 X2CMH = ^ I ^ = v i — — — ■ ™> = 2 1 L 8 0 

As the test statistic is greater than 6.63 (= χι,ο.99), we reject the null hy­
pothesis and conclude that persons with a serum creatinine concentration 
less than 1.7 mg/dl had a more favorable survival distribution than those 
with a higher creatinine value at the time of screening. 

The Cochran-Mantel-Haenszel test can also be used with a smaller 
data set along with the product-limit method. Let us apply this method to 
the data in Table 12.4 in comparing the survival distributions of male and 
female patients at the 0.05 significance level. The data and the calculation 
of the test statistic for making this comparison are shown in Table 12.8. 

The first column of the table shows the observed alcohol-free times (xj) 
with the censoring status and gender indicated. The second column is the 
total number of subjects under observation at time x. The third and fourth 
columns show, respectively, the number of females (group 1) and number 
of males (group 2) under observation at time x. The fifth column shows the 
observed number of relapses at time x. The numbers of relapses at time x in 
groups 1 and 2 are shown in columns 6 and 7, respectively. 

Expected Values and Variances of the (1,1) Cells 

Year under care 

0-1 
1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 

Expected value 

110.86 
127.61 
134.59 
190.36 
172.96 
217.22 
200.69 
206.78 

Variance 

3.03 
3.27 
3.28 
4.44 
3.88 
4.58 
4.13 
4.04 

Total 1361.07 30.65 
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Comparison of Alcohol-Free Time Distributions for Females and Males 

Survival 
time 
Xi 

(1) 

4 M 
6 MF 
9* M 

10 F 
14* M 
16 M 
17* M 
19 F 
20 F 
28 M 
31 F 
34* F 
47* F 

Total 

Total 
n't 

(2) 

14 
13 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

Number of subjects 

Female 
n' i , 

(3) 

7 
7 
6 
6 
5 
5 
5 
5 
4 
3 
3 
2 
1 

Male 
n'2l 

(4) 

7 
6 
5 
4 
4 
3 
2 
1 
1 
1 
0 
0 
0 

Observed number of 

Total Female 
di 

(5) 

1 
2 
0 
1 
0 
1 
0 
1 
1 
1 
1 
0 
0 

9 

du 

(6) 

0 
1 
0 
1 
0 
0 
0 
1 
1 
0 
1 
0 
0 

5 

relapses 

Male 
*« 
(7) 

1 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 

4 

Expected 
relapses 

(8) 

0.50 
1.08 
0 
0.60 
0 
0.63 
0 
0.83 
0.80 
0.75 
1.00 
0 
0 

6.19 

Variance 

(9) 

0.25 
0.44 
0 
0.24 
0 
0.24 
0 
0.14 
0.16 
0.19 
0.00 
0 
0 

1.66 

* Censored observation. 

The eighth column shows the expected number of relapses at time x, 
for females. It is calculated in the same manner as before. For example, at 6 
months, two relapses are recorded. The proportion of females under obser­
vation at 6 months is 7/13. Therefore, the expected number of relapses for 
females is 2 * (7/13), or 1.08. The variances of the observed numbers of 
relapses for females at time jc,· are shown in column 9. These calculations 
are performed only for the uncensored survival times. The values are next 
summed and the Cochran-Mantel-Haenszel chi-square statistic is calcu­
lated as follows: 

x?-CMH 
(\Q -E\- 0.5)2 _ (|5 - 6.191 - 0.5)2 

V 1.66 = 0.29. 

As the test statistic is smaller than 3.84 (= χι,ο.95)/ we fail to reject the null 
hypothesis. 

In Chapter 11, we indicated that the CMH test statistic should be used 
only when the odds ratios are similar across the subtables. The same as­
sumption for its use applies here. This assumption can also be expressed in 
terms of the plots of the two survival functions instead of in terms of odds 
ratios. If the plots of the two survival functions cross one another, this 
means that the odds ratios are not similar across the subtables and the 
CMH test statistic should not be used. The reason for this is that one group 
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has a better survival experience during part of the study period and the 
other group has a better experience during another part of the period. Thus 
it is difficult to say that one group has a better overall experience. 

V. CONCLUDING REMARKS 

In this chapter, we presented two methods for analyzing survival data: the 
life-table and product-limit methods. The life-table method is generally 
used for large data sets and the product-limit method for smaller data sets. 
In addition, we demonstrated the calculation of the sample median and 
restricted mean survival times. We also discussed why the median is pre­
ferred to the mean as a single summary statistic for use with survival data. 
To complete the description of survival data, we highly recommended the 
plotting of the survival distribution. Finally, we showed the use of the 
Cochran-Mantel-Haenszel test for comparing the equality of two survival 
distributions. 

EXERCISES 

12.1. In an effort to understand employment experience of nurses, person­
nel records of two large hospitals were reviewed (9). A total of 3221 
nurses were hired during a 10-year period from 1970 to 1979 and 
employment records were reviewed 18 months beyond the end of 
1979. In this cohort, only 780 nurses worked more than 33 months. 
The length of employment was presented by 3-month interval as 
follows: 

Number at 
Month after Number Number beginning 
employment terminated censored of interval 

0-3 
3-6 
6-9 
9-12 
12-15 
15-18 
18-21 
21-24 
24-27 
27-30 
30-33 
33+ 

582 
369 
247 
212 
182 
144 
129 
99 
85 
51 
45 

0 
0 
0 
0 
0 
0 
75 
74 
59 
53 
35 

a. Prepare a worksheet for a life-table analysis and estimate the 
cumulative survival probabilities, the restricted mean, and the 
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median length of employment. Also estimate the probability of 
termination for each of the intervals. 

b. Estimate the standard errors of the estimated cumulative sur­
vival probabilities and the probability of termination for each 
interval. 

c. Calculate 95 percent confidence intervals for the 24-month cu­
mulative survival probability and the probability of termination 
during the first 3 months of employment. 

d. What additional data, if any, do you need and what further 
analyses would you perform to assess the nursing employment 
situation? 

12.2. The Hypertension Detection and Follow-up Program collected mor­
tality data for 8 years (8). The following data show the survival expe­
rience of two subgroups formed by the level of serum creatinine 
concentration: 

Year 
care 

0-1 
1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 

Alive 

78 
75 
71 
65 
62 
57 
53 
51 

Serum creatinine concentration 

2.00-

Died 

3 
4 
6 
3 
5 
4 
2 
3 

2.49 

Censored 

0 
0 
0 
0 
0 
0 
0 
3 

Alive 

72 
64 
56 
53 
50 
42 
39 
34 

: (mg/dl) 

^2.5 

Died 

8 
8 
3 
3 
8 
3 
5 
1 

Censored 

0 
0 
0 
0 
0 
0 
0 
1 

a. Analyze the survival pattern of each group using the life-table 
method: estimate the cumulative survival probabilities and their 
standard errors, and compare the survival curves of these two 
groups graphically. 

b. If it is appropriate, determine whether or not the two survival 
distributions are equal at the 0.01 significance level. 

c. Comment on what factors may have confounded the compari­
son above and what further analyses you think are necessary 
before you can draw more defensible conclusions. 

12.3. The Systolic Hypertension in the Elderly Program (SHEP) Coopera­
tive Research Group assessed the ability of antihypertensive drug 
treatment to reduce the risk of stroke (nonfatal and fatal) in a ran­
domized, double-blind, placebo-controlled experiment (10). A total 
of 4736 persons with systolic hypertension (systolic blood pressure 
160 mm Hg and above and diastolic blood pressure less than 90 mm 
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Hg) were screened from 447,921 elderly persons aged 60 years and 
above. During the study period, 213 deaths occurred in the treatment 
group and 242 deaths in the placebo group. The average follow-up 
period was 4.5 years. Total stroke was the primary endpoint and the 
following data were reported: 

Treatment group Placebo group 

Year 

0-1 
1-2 
2-3 
3-4 
4-5 
5-6fl 

Number 
started 

2365 
2316 
2264 
2153 
1438 
613 

Strokes 

28 
22 
21 
18 
13 

1 

Lost 

0 
0 
0 
0 
5 
0 

Number 
started 

2371 
2308 
2229 
2193 
1393 
584 

Strokes 

34 
42 
22 
34 
24 
3 

Lost 

0 
0 
2 
2 
1 
0 

"The last stroke occurred during the 67th month of follow-up. 

a. To analyze the above data by the life-table method, how 
would you set up the worksheet? It is obvious that there were 
censored observations other than the lost-to-follow-up, such as 
deaths and withdrawn alive. This can be seen because the differ­
ence in the number of persons starting one interval and the num­
ber starting the following interval decreased by more than the 
number of strokes in the interval. Would you include or exclude 
the data in the last reported interval? 

b. If it is appropriate, test the hypothesis of the equality of the 
two survival distributions at the 0.05 significance level. 

12.4. The following data were abstracted from the records of the neonatal 
intensive care unit (NICU) in a hospital during the month of Febru­
ary 1993 (day and 24-hour clock time are used to describe the timing 
of events, e.g., 0102 indicates the first day of February, 2 AM): 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Sex 

Boy 
Girl 
Boy 
Boy 
Boy 
Girl 
Boy 
Girl 
Boy 
Girl 

Born 

0102 
0306 
0309 
0523 
0918 
1004 
1107 
1110 
1206 
1307 

Last observed 

2210 
1722 
1517 
2609 
1001 
2411 
2512 
1815 
1408 
2320 

Status 

Discharged 
Died 
Died 
Discharged 
Died 
Died 
Discharged 
Discharged 
Died 
Died 
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No. 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Sex 

Girl 
Boy 
Boy 
Girl 
Boy 
Boy 
Boy 
Girl 
Girl 
Girl 
Boy 
Girl 
Boy 
Girl 

Born 

1412 
1500 
1607 
1819 
1903 
2009 
2110 
2208 
2321 
2323 
2402 
2509 
2620 
2701 

Last observed 

2823 
1510 
2220 
2823 
2009 
2711 
2823 
2329 
2823 
2810 
2823 
2823 
2823 
2822 

Status 

Still in NICU 
Died 
Died 
Still in NICU 
Died 
Discharged 
Still in NICU 
Died 
Still in NICU 
Discharged 
Still in NICU 
Still in NICU 
Still in NICU 
Died 

a. Estimate the neonatal survival function for these NICU infants, 
estimate the median survival time, and form the 90 percent 
confidence interval for the 50-hour survival probability. 

b. Plot the estimated neonatal survival functions separately for 
boys and girls and test the equality of the two survival distribu­
tions at the 0.10 significance level. 

12.5. Quality of care for colorectal cancer was evaluated by comparing the 
survival experience of patients in two types of health plans (fee-for-
service and health maintenance organization) offered by the same 
health care provider (11). The following data were generated from 
the reported survival curves: 

Practice 

Fee-for-

HMO 

service 2 
34 
4 

5 
37* 
10* 

10 
39 
12 

12* 
42* 
15 

Survival time (months) 

14 
46 
19 

14 
47* 
25 

16 
50 
30* 

18 
53* 
35 

23 

38 

26* 

43* 

27 

49 

31 

54* 

Asterisks indicate censored observations. 

a. Estimate the survival distributions by the product-limit method 
and graphically compare the survival curves. 

b. Compare the equality of the survival distributions of the two 
medical services at the 0.01 significance level. 
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Tests of Hypotheses 
Based on the Normal 
Distribution 

I his chapter is similar to and builds on the material in Chapter 7 on 
confidence intervals that are based on the normal distribution. We first 
show the equivalence of the confidence interval and the test of hypothesis 
for the population mean. This equivalence extends to each of the parame­
ters discussed in this chapter. Therefore, we do not repeat the details on 
the distributions of the test statistics that were already presented in Chap­
ter 7. 

Although the confidence interval and the test of hypothesis can be 
used to reach the same conclusion, their emphases are different. The confi­
dence interval provides limits that are likely to contain the parameter. 
These limits can also be used to test a hypothesis, but that is not necessarily 
the reason why they were created. The test of hypothesis aids in reaching 
a decision about whether we believe that the hypothesized value of 
the parameter is correct. The use of the test of hypothesis also serves 
as a reminder to calculate the p value and, occasionally, the power of 
the test. 

347 
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We begin with the test about the population mean and demonstrate 
the use of both one- and two-sided alternatives as well as the calculation of 
power. In subsequent sections, we usually show only the test for two-
sided alternatives. 

I. TESTING HYPOTHESES ABOUT THE MEAN 

Suppose that we wish to analyze the dietary data shown in Table 4.1; 
however, before performing the analyses, we wish to determine whether 
the population represented by the sample of 33 boys differs from the na­
tional population of boys as far as caloric intake is concerned. Therefore, 
we first test the hypothesis that the mean caloric intake for boys in one of 
the northern suburbs of Houston is the same as the national average. If the 
caloric intake is different, we may not wish to analyze the data further until 
we understand why there is a difference. 

From the calculations in Chapter 4, we know that the sample mean, 
based on 33 boys, is 2314 calories. Based on data shown in "Nutrition 
Monitoring in the United States" (1, Table II-3), we take the national aver­
age to be 2400 calories. The test of hypothesis about the population mean, 
just like the confidence interval, uses the normal distribution if the popula­
tion variance is known or the t distribution if the variance is unknown. We 
first assume that the variance is known. 

A. Known Variance 

In Chapter 7, when we formed the 95 percent confidence interval for the 
population mean, we assumed that the population standard deviation was 
700 calories or that the variance was 490,000 calories2. We use that value in 
the test of hypothesis about the population mean. The null and alternative 
hypotheses are 

H0: μ = μο and Ha: μ Φ μ0 

where μο is 2400 calories in this example. To be able to compare the test 
results with the confidence interval from Chapter 7, we conduct the test at 
the 0.05 significance level. 

There are two equivalent ways of presenting the test of hypothesis. 
One method uses z [= (x - μο)/(σ/\/ίη)], the standard normal statistic, as 
the test statistic and the other method uses the sample mean, x, as the test 
statistic. 

1. Use of the Standard Normal Statistic 
The test statistic in this approach is z, the standard normal statistic. If the 
null hypothesis is true, z will follow the standard normal distribution. The 
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rejection region is thus defined in terms of percentiles of the standard 
normal distribution. For a two-sided alternative, if z is either less than or 
equal to za/2 or greater than or equal to Ζι_α/2, we reject the null hypothesis 
in favor of the alternative hypothesis. In symbols, this is 

x - μο 
^ Za/2 or 

x - μο 
— Ζΐ- α /2 · 

{σΐλίη) "α/Ζ ~ (σΐλίη) 

If the test statistic is not in the rejection region, that is, 

Z«/2 < Z < Z\-al2> 

we fail to reject the null hypothesis in favor of the alternative hypothesis. 
Let us calculate the test statistic for the caloric intakes. The z value is 

2314 - 2400 
(700/V33) 

= -0.706. 

As -0.706 does not fall in the rejection region, that is, it is not less than 
—1.96 (= Z0.025) nor is it greater than 1.96, we fail to reject the null hypothe­
sis. This situation is shown pictorially in Figure 13.1. The p value for this 
test is the probability of observing a standard normal variable with a value 
either less than -0.706 or greater than 0.706. This probability is found to be 
0.48. The use of MINITAB is illustrated in Box 13.1. 
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The command for performing this test with MINITAB is ZTEST and it is shown 
next. First we read the data from the file in which it is stored and then we specify 
the values of μ0 and σ and the column(s) containing the data. 
MTB > read J bookch4.dat ' c l - c 6 
MTB > z t e s t 2400 700 c2 

TEST OF MU = 2400.000 VS MU N.E. 2400.000 
THE ASSUMED SIGMA = 700 

N MEAN STDEV SE MEAN Z 
C2 33 2 3 1 3 . 8 1 8 6 6 7 . 8 9 5 1 2 1 . 8 5 4 - 0 . 7 1 

If no value is specified for μ0, the value of zero is assumed. 

P VALUE 
0 . 4 8 

2. Use of the Sample Mean 

In this method, the sample mean's value is compared with the values that 
are based on the hypothesized value of the population mean and the 
standard error of the sample mean. These values are found by simple 
manipulation of the above expressions. The values of x that are in the 
rejection region are those that satisfy 

x < μ0 + Ζα/2 ( r ^ J or x s* μο + Zi-aH ( y j O · 

For this example, the rejection region in terms of x comprises the values of 
the sample mean such that 

x < 2400 - 1.96 | ^ = \ or x > 2400 + 1.96 \^y=\ 
'33) 

which yields the rejection region of 

3c < 2161.17 calories or x > 2638.83 calories. 

Figure 13.2 shows this pictorially. As the observed value of x does 
not fall into the rejection region, we fail to reject the null hypothesis. The 
choice of which statistic, the z statistic or the sample mean, to use as 
the test statistic is left to the analyst. As can be seen from the creation 
of the rejection region, as well as from Figures 13.1 and 13.2, both statistics 
arrive at the same conclusion. 
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3. Equivalence of Confidence Intervals and Tests of Hypotheses 

Recall that in Chapter 7 when we found the (1 - a) * 100 percent confi­
dence interval for the population mean, we started with the expression 

Pr X - μ 
-Zl-a/2 < " Z~F\ < Zl-ot/2 = 1- a. (σ/Vn) 

We manipulated this expression and obtained the expression 

J _ Z l - a / 2 f ë ) < / t < " + Zl-a/2fë 
If we replace μ in the middle portion of the first expression above by μ0, 
the middle portion is the z statistic for testing the hypothesis that μ equals 
μ,0. The confidence interval was derived from this test statistic; this means 
that if μ0 is contained in the confidence interval, then the corresponding z 
statistic must also be in the failure-to-reject (acceptance) region. If μ0 is not 
in the confidence interval, then the z statistic is in the rejection region, that 
is, it is less than or equal to -Ζι_α/2 or greater than or equal to Z\-ail. 

In this case, the hypothesized value of 2400 calories is contained in the 
95 percent confidence interval for the population mean; we saw in Chapter 
7 that the confidence interval ranges from 2075.2 to 2552.8 calories. There­
fore we know that the test statistic will be in the failure-to-reject region and 
we will fail to reject the null hypothesis. In addition, using the same logic, 
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from the confidence interval, we know we would fail to reject the null 
hypothesis for any μ0 ranging from 2075.2 to 2552.8 calories. 

This same type of argument for the linkage of the test of hypothesis 
and the corresponding confidence interval can be used with the other tests 
of hypotheses presented in this chapter. Thus the confidence interval is 
also very useful from a test of hypothesis perspective; however, the confi­
dence interval does not provide the p value of the test, also a useful sta­
tistic. 

4. One-Sided Alternative Hypothesis 
If we are concerned only when the boys do not receive enough calories, the 
null and alternative hypotheses are 

H0: μ = μο and Ha: μ < μ0. 

The test statistic does not change, but the rejection region is a one-sided 
region now. We reject the null hypothesis in favor of the alternative hy­
pothesis if z is less than or equal to za or, equivalently, if x is less than or 
equal to /x0 + (za * σ/Vn). The use of MINITAB is illustrated in Box 13.2. 
and the corresponding one-sided rejection region is shown in Figure 13.3 
in terms of the z test statistic. 

To use MINITAB with a one-sided alternative hypothesis, we must specify the 
ALTERNATIVE (abbreviated to ALT) subcommand. As mentioned in Chapter 10, a 
value of 1 means that the alternative hypothesis is greater than, and a value of - 1 
indicates an alternative hypothesis of less than. 

MTB > z t e s t 2400 700 c2; 
SUBO a l t - 1 . 

TEST OF MU = 2400.000 VS MU L.T. 2400.000 
THE ASSUMED SIGMA = 700 

N MEAN STDEV SE MEAN Z P VALUE 
C2 33 2313.818 667.895 121.854 - 0 . 7 1 0.24 

If we are concerned only when the boys' caloric intake is too high, the 
null and alternative hypotheses are 

H0: μ = μο and Ha: μ > μ0. 

We now reject if z is greater than or equal to Z\-a or, equivalently, if x is 
greater than or equal to μ0 + (ζι_α * cr/Vn). 
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5. Power of the Test 
Before collecting the data, suppose that we wanted to be confident that, if 
the caloric intake in the Houston suburb was substantially less than the 
national average, we could detect this lower mean intake. By substantially 
less, we mean 10 percent or more below the national average of 2400 
calories. Thus we wish to conclude that there is a difference between the 
boys in the Houston suburb and the national average if the Houston sub­
urb has a population mean of 2160 calories or less. The use of 10 percent is 
subjective and other values could be used. 

The null and alternative hypotheses for this situation are 
H0: μ = μο and Ha: μ < μ0. 

We again use a significance level of 0.05. Thus the rejection region includes 
all z less than or equal to z0.05, that is, z less than or equal to -1.645. In 
terms of x, the rejection region includes all values of x less than or equal to 

μο + zoos * ( τ ^ ) = 2400 + (-1.645) * ί^=\ = 2199.55. 

Figure 13.4 shows the rejection and acceptance regions in terms of x as 
well as its distribution under the alternative hypothesis. 

The shaded area provides a feel for how large the power—the proba­
bility of rejecting the null hypothesis when it should be rejected—of the 
test is. Power is the proportion of the area under the alternative hypothesis 
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curve that is in the rejection region, that is, less than or equal to 2199.55 
calories. 

Let us find the power of the test and see if it agrees with our expecta­
tions about it based on Figure 13.4. Power is the probability of being in the 
rejection region, that is, of the sample mean being less than or equal to 
2199.55 calories, assuming th$t the alternative hypothesis (μ = 2160) is 
true. To find this probability, we convert 2199.55 to a standard normal 
value by subtracting the mean of 2160 calories and dividing by σ/Vn. Thus 
the z value is 

(2199.55 - 2160) 
(700/V33) 

= 0.3246. 

The probability of a standard normal variable being less than or equal to 
0.3246 is found from Table B4 to be 0.627. 

The power of the test is almost 63 percent. If this value is not large 
enough, there are several methods of increasing the power. One way is to 
increase the sample size. For example, let us increase the sample size to 
100. Then the z value is 

(2199.55 - 2160) 
(700/VÏOÔ) 

= 0.565. 
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The probability of a standard normal variable being less than or equal to 
0.565 is 0.714, almost 10 percent larger than the power associated with the 
sample size of 33. 

As was discussed in Chapter 9, another way of increasing the power is 
to increase the significance level, for example, to 0.10. Doing this increases 
the size of the rejection region. All values of x that are less than or equal to 

2400 + (-1.28) * i-y2=) = 2244.03 

now are in the rejection region. Using this significance level and still using 
a sample size of 33, the z value becomes 

(2244.03 -2160) = 

(700/V33) 

The probability of a standard normal variable being less than or equal to 
0.6896 is 0.755, a value that is even closer to the value of 0.80 which is often 
used as the desired level for power in the literature. 

Another way of increasing the power is to redefine what we consider 
to be a substantial difference. If our emphasis were on detecting an intake 
15 percent less than the national average, instead of an intake of 10 percent 
less, we would have a higher power. As 15 percent of 2400 calories is 360 
calories, the null and alternative hypotheses become 

H0: μ = 2400 and Ha: μ = 2040. 

The z statistic becomes 

(2199.55 - 2040) 
(700/V33) = 1.31 

and the probability of a standard normal variable being less than or equal 
to 1.31 is 0.905. The power associated with the alternative that μ equals 
2160 has not changed, but our emphasis on what difference is important 
has changed. We have a much higher chance of detecting this greater 
difference, from 2040 instead of from 2160, between the null and alterna­
tive hypotheses. 

Let us consider another example of the calculation of power. Suppose 
that we have reason to suspect that the systolic blood pressure of 5-year-
old boys in Pittsburgh is higher than the national average and we are 
planning a study to test this. The null and alternative hypotheses for the 
study are 

H0: μ = 94 mm Hg and Ha: μ > 94 mm Hg 
We use a value of 11 mm Hg for the standard deviation of systolic blood 
pressure for 5-year-old boys. 
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We must choose a specific value for the mean blood pressure under the 
alternative hypothesis. We have selected the value of 100 mm Hg, a differ­
ence of 6 mm Hg from the national mean, as an important difference that 
we wish to be able to detect. For this study, our initial plans call for a 
sample size of 61. 

To find the power, we must first find the acceptance and rejection 
regions. Let us perform the test at the 0.01 significance level. Therefore the 
rejection region consists of all values of z greater than or equal to Zo.99 
(= 2.326). In terms of the sample mean, the rejection region consists of 
values of x greater than or equal to 

MO + z0.99 * — i = 94 + 2.326 * ( 4 Ü = 97.276. 
\ίλ) lV6Î 

Figure 13.5 shows this situation. 
Once we know the boundary between the acceptance and rejection 

regions, we convert the boundary to a z value by subtracting the mean 
under the alternative hypothesis and dividing by the standard error. For 
this example, the z value is 

= <9 7·2 7 6 -_100> = -1.93. 
(11/V6Ï) 

Φ 
Q 

0.30 + 

0.20 + 

0.10 + 

0.00 + 

Acceptance Rejection 

90.0 105.0 93.0 96.0 99.0 102.0 
Systolic Blood Pressure (mm Hg) 

Rejection and acceptance regions for testing H0: μ = 94 versus Ha: μ = 100 at the 0.01 
significance level. 



I. TESTING HYPOTHESES ABOUT THE MEAN 357 

The power of the test is the probability of observing a z statistic with a 
value greater than or equal to -1.93. From Table B4, we find the power to 
be 0.9732. This value is consistent with what we would have expected 
based on Figure 13.5. A study with 61 boys has an excellent chance of 
detecting a mean value 6 mm Hg above the national average. 

The key point about power is that calculations like these, or like those 
discussed in the material on confidence intervals, should be performed 
before any data are collected. These calculations give some indication 
about whether or not it is worthwhile to conduct an experiment before the 
resources are actually expended. 

B. Unknown Variance 

If the variance is unknown, the t statistic is used in place of the z statistic, 
that is, 

= x - μ0 

(s/Vn) 
in the test of the null hypothesis that the mean is the particular value, μ0. 
The rejection region for a two-sided alternative is t < tn-\,aïi or t ^ fn-u-a/2· 

Suppose that we did not know the value of σ in the caloric intake 
example, or that we were uncomfortable in using the value of 700 for σ. 
Then we would substitute s for σ and use the t distribution in place of the z 
distribution. In this case, the value of the t statistic is 

t = (2313.8 - 2400) = _Q ^ 
(667.9/V33) 

To be consistent with the test shown above, we also perform this test at the 
0.05 significance level. Therefore, t is compared with £32,0.025 which is -2.04 
and with £32,0.975 which is 2.04.1 As -0.74 is in the failure-to-reject region, 
we fail to reject the null hypothesis in favor of the alternative. Not surpris­
ingly, this result is very similar to that obtained when the z statistic was 
used. The results are similar because there was little difference between the 
values of s and σ, and as the sample size is reasonably large, the critical 
values of the t and normal distributions are also close in value. 

The MINITAB command for performing this test is shown in Box 13.3. 

*Ιη situations when certain percentiles are not shown in the tables in Appendix B, we have 
used MINITAB to obtain the exact values of the percentiles shown in the text. 
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The MINITAB command for performing this test is TTEST. 
MTB > t t e s t 2400 c2 

TEST OF MU = 2400.000 VS MU N.E. 2400.000 

N MEAN STDEV SE MEAN T P VALUE 
C2 33 2313.818 667.895 116.266 - 0 . 7 4 0.46 
The TTEST command also has the ALTERNATIVE subcommand which is used 
with one-sided alternative hypotheses. 

II. TESTING HYPOTHESES ABOUT THE PROPORTION 

In this section, we focus on situations for which the use of the normal 
distribution as an approximation for the binomial distribution is appropri­
ate. In general, these are situations in which the sample size is large. 

In Chapter 7, one example considered the immunization level of 5-
year-olds. The health department took a sample and, based on the sample, 
wanted to decide whether to provide additional funds for an immunization 
campaign. For this example, the null and alternative hypotheses are 

H0: 7Γ = TTO = 0.75 and Ha: π Φ π0 = 0.75. 

The test statistic for this hypothesis is 

_ \y - TTQ\ - II{In) 
V p * (1 - p)ln 

If p — 7T0 is positive, a positive sign is assigned to z; if the difference is 
negative, a minus sign is assigned to z. The rejection region consists of 
values of z less than or equal to za/2 or z greater than or equal to Ζι-α/2. This 
framework is very similar to that used with the population mean, the only 
difference being the use of the continuity correction with the proportion. 

The sample proportion, p, had a value of 0.614 based on a sample size 
of 140. Thus the calculation of z is 

[0.614 - 0.751 - 1/(2 * 140) = 3 2ig 

V0.614* (1 - 0.614)/140 

As p - 7T0 is negative, the test statistics value is -3.219. If the test is 
performed at the 0.01 significance level, values of z less than or equal to 
-2.576 or greater than or equal to 2.576 form the rejection region. As z is 
less than -2.576, we reject the null hypothesis in favor of the alternative. 
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The health department should devote more funds to an immunization 
effort. This conclusion agrees with that reached based on the confidence 
interval approach in Chapter 7. 

The continuity correction can be eliminated from the calculations for 
relatively large sample sizes because its effect will be minimal. For exam­
ple, if we had ignored the continuity correction in this example, the value 
of the test statistic would be -3.306, not much different from -3.219. 
MINITAB can be used to analyze these data as shown in Box 13.4. 

For proportions, it is easy to enter the data as is shown below. We enter the data 
into cl using the SET command, and then use the ZTEST command. MINITAB 
does not use the continuity correction, but that poses no problem for relatively 
large sample sizes. In the ZTEST command, we must provide the value of the 
standard deviation, that is, the square root of the product of π and 1 - π. In this 
example, the estimate of the standard deviation, replacing π with γ, is 0.4867. 
MTB > set cl 
DATA> 86(1) 54(0) 
DATA> end 
Eighty-six children were immunized and 54 were not immunized; their order of 
entry is not important. 
MTB > ztest 0.75 0.4867 cl 

TEST OF MU = 0.7500 VS MU N.E. 0.7500 
THE ASSUMED SIGMA = 0.4867 

N MEAN STDEV SE MEAN Z P VALUE 
Cl 140 0.6143 0.4885 0.0411 -3.30 0.0010 
Except for rounding, the value of the test statistic here would be the same as -3.31, 
the value that did not involve the continuity correction. Neither value differs much 
from the continuity corrected value of -3.22. 

III. TESTING CRUDE AND ADJUSTED RATES 

Just as in Chapter 7, we treat rates as if they were proportions. This pro­
vides for a simple approximation to the variance of a rate and also gives a 
justification for the use of the normal distribution as an approximation to 
the distribution of the rate. Thus our test statistic has the same form as that 
used for the proportion. 
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Suppose we wish to test, at the 0.05 significance level, that the 1986 
age-adjusted mortality rate for Harris County, obtained by the direct 
method of adjustment, is equal to the 1986 mortality rate for the United 
States. The alternative hypothesis is that the rates differ. In symbols, the 
null and alternative hypotheses are 

H0: 0 = 0o = 0.008732 and Ha: 0 Φ 0O 

where 0.008732 is the rate for the United States in decimal form. The test 
statistic for this hypothesis is 

0 - flo 
z = 

approximate standard error of 0 
where 0, the Harris County rate in decimal form, is 0.008609. In Chapter 7 
we found the approximation to the standard error of 0 was 0.00007. If this 
value of z is less than or equal to -1.96 (= zo.025) or greater than or equal to 
1.96 (= Z0.975), we reject the null hypothesis in favor of the alternative 
hypothesis. The value of z is 

0.008609 - 0.008732 
0.00007 

As -1.757 is not in the rejection region, we fail to reject the null hypothesis 
in favor of the alternative hypothesis at the 0.05 significance level. There is 
not sufficient evidence to suggest that the age-adjusted mortality rate for 
Harris County, obtained by the direct method of adjustment, differs from 
the national rate. The γ value for this test is obtained by taking twice the 
probability that a z statistic is less than or equal to -1.757; the probability is 
0.0394 and thus the p value is 0.0788. 

As we have previously discussed, this test makes sense only if we view 
the Harris County population data as a sample in time or place. 

The tests for the crude rate and for the adjusted rate obtained by the 
indirect method of adjustment have the same form as the above. 

IV. TESTING HYPOTHESES ABOUT THE VARIANCE 

In Chapter 7 we saw that (n - 1) * s2/cr2 followed the chi-square distribu­
tion with n - 1 degrees of freedom. Therefore we base the test of hypothe­
sis about σ2 on this statistic. The null and alternative hypotheses are 

H0: σ2 = σ0
2 and Ha: σ2 Φ σ0

2. 
We define X2 to be equal to (n - 1) * s2/a0

2. When X2 is greater than or 
equal to Xn-u-a/2 or when X2 is less than or equal to y^-x.aii, we reject H0 in 
favor of Ha. 
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For a one-sided alternative hypothesis, for example, Ha: σ2 < σ0
2, the 

• Y 2 

■ Xn-
ι#α. If the alternative is Ha: σ2 > σ 0 , the rejection rejection region is X2 : 

region is X2 > χ2_14_ 
Returning to the vitamin D in milk example discussed in Chapter 7, 

suppose we wish to test the hypothesis that the producer is in compliance 
with the requirement that the variance be less than 1600. We doubt that the 
producer is in compliance; therefore, we use the following null and alterna­
tive hypotheses: 

H0: σ2 = 1600 and Ha: σ2 > 1600. 

As this test is one-sided, we are implicitly saying that the null hypothesis is 
that the population variance is less than or equal to 1600 versus the alterna­
tive that the variance is greater than 1600. We perform the test at the 0.10 
significance level. Thus the test statistic, X2, which equals 

(n - 1) * s2 

σ0
2 

is compared with χ 29,0.90· If X2 is greater than or equal to 39.09, obtained 
from Table B7, we reject the null hypothesis in favor of the alternative 
hypothesis. Using the values of 1700 for s2 and 30 for n from Chapter 7, the 
value of X2 is 

29 * 1700 
1600 = 30.81. 

Because X2 is not in the rejection region, we fail to reject the null hypothe­
sis. There is not sufficient evidence to suggest that the producer is not in 
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compliance with the variance requirement. This is the same conclusion 
reached when the confidence interval approach was used in Chapter 7. 
Figure 13.6 shows the rejection and acceptance regions for this test. 

As was mentioned in Chapter 7, the chi-square distribution begins to 
resemble the normal curve as the degrees of freedom becomes large. This 
figure is a verification of that fact. From this figure, we also see that the p 
value for the test statistic is large, approximately 0.40. 

V. TESTING HYPOTHESES ABOUT THE PEARSON 
CORRELATION COEFFICIENT 

In Chapter 7, we saw that the z' transformation, z' = 0.5 * ln[(l + 
r)/(l - r)] approximately followed a normal distribution with a mean of 

1988 Infant Mortality Rates and 1987 Health Expenditures as a 
Percentage of Gross Domestic Product for Selected Countries3 

Country 

Japan 
Sweden 
Finland 
The Netherlands 
Switzerland 
Canada 
West Germany 
Denmark 
France 
Spain 
Austria 
Norway 
Australia 
Ireland 
United Kingdom 
Belgium 
Italy 
United States 
New Zealand 
Greece 
Portugal 

1988 Infant 
mortality rate6 

4.8 
5.8 
6.1 
6.8 
6.8 
7.2 
7.5 
7.5 
7.8 
8.1 
8.1 
8.3 
8.7 
8.9 
9.0 
9.2 
9.3 

10.0 
10.8 
11.0 
13.1 

1987 Health expenditures 
as percentage of GDP 

6.8 
9.0 
7.4 
8.5 
7.7 
8.6 
8.2 
6.0 
8.6 
6.0 
7.1 
7.5 
7.1 
7.4 
6.1 
7.2 
6.9 

11.2 
6.9 
5.3 
6.4 

"Infant mortality rates are from Table 25 in National Center for 
Health Statistics (2) and health expenditures are from Table 104 in 
National Center for Health Statistics (3). 

infant mortality rates are deaths to infants under 1 year of age per 
1000 live births. 
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0.5 * In [(1 + p)/(l - p)] and a standard error of 1/Vw - 3. Therefore to test 
the null hypothesis of H0: p = po versus an alternative hypothesis οίΗΆ:ρΦ 
Po, we use the test statistic λ, defined as λ = (ζ' - ζό) * Vrc - 3 where ζό is 
0.5 * ln[(l + po)/(l - Po)]· If λ is less than or equal to zail or greater than or 
equal to z\-aii, we reject the null hypothesis in favor of the alternative 
hypothesis. 

There is often interest as to whether or not the Pearson correlation 
coefficient is zero. If it is zero, then there is no linear association between 
the two variables. In this case, the test statistic simplifies to 

λ = ζ' * Vn - 3. 
Table 13.1 shows infant mortality rates for 1988 and total health expen­

ditures as a percentage of gross domestic product in 1987 for selected 
countries. It is thought that there should be some relationship between 
these two variables. We translate these thoughts into the following null 
and alternative hypotheses: 

H0: p = 0.00 and Ha: p Φ 0.00 
and the null hypothesis will be tested at the 0.10 significance level. The 
rejection region consists of values of λ that are less than or equal to -1.645 
( - 20.05) or greater than or equal to 1.645. MINITAB can be used to calculate 
the value of λ as shown in Box 13.5. 

We first enter the data in columns cl and c2, next find the correlation between 
these columns, and then calculate z' and Z'Q. After these intermediate statistics are 
calculated, we are ready to find the value of λ, the test statistic. 
MTB > set cl 
DATA> 4.8 5.8 6.1 6.8 6.8 7.2 7.5 7.5 7.8 8.1 8.1 
DATA> 8.3 8.7 8.9 9.0 9.2 9.3 10.0 10.8 11.0 13.1 
MTB > set c2 
DATA> 6.8 9.0 7.4 8.5 7.7 8.6 8.2 6.0 8.6 6.0 7.1 
DATA> 7.5 7.1 7.4 6.1 7.2 6.9 11.2 6.9 5.3 6.4 
DATA> end 
Column cl contains the infant mortality rates and c2 contains the health expendi­
tures as a percentage of the gross domestic product. 
MTB > cor r c l c2 
Correlation of Cl and C2 = -0.243 

MTB > let kl=0.5*loge((1.0-0.243)/(1.0+0.243)) 
MTB > let k2=kl*sqrt((21-3)) 
MTB > print kl k2 
Kl -0.247960 
K2 -1.05201 
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The constant kl is z' and k2 contains the value of λ. As -1.05201 is not in the 
rejection region, we fail to reject the null hypothesis. Based on these data, there is 
no evidence to claim that there is some nonzero correlation, at the country level, 
between infant mortality rate and health expenditures as a percentage of gross 
domestic product. 
MTB > cdf k2 

-1.0520 0.1464 
MTB > let k5=2*0.1461 
MTB > print k5 
K5 0.292200 
The constant k5 is the p value of the test. 

This procedure can be used with the Spearman correlation coefficient 
for sample sizes greater than or equal to 10. 

The following sections focus on the difference of two population pa­
rameters instead of testing a hypothesis about a single parameter. 

VI. TESTING HYPOTHESES ABOUT THE DIFFERENCE OF 
TWO MEANS 

A. Independent Means 

We begin with the consideration of independent means under various 
assumptions. The first test assumes that the variances are known, followed 
by the assumption that the variances are unknown but equal and then 
unknown and unequal. After these sections, we consider the difference of 
two dependent means. 

1 . Known Variances 

The null hypothesis of interest for the difference of two independent 
means is 

H0: μι - μ2 = Δ0 

where Δ0 is the hypothesized difference of the two means. Usually Δ0 is 
zero; that is, we are testing that the means have the same value. The 
alternative hypothesis could be either 

Ha: μ\- μιΦ Δ0 

or that the difference is greater (less) than Δ0. Regardless of the alternative 
hypothesis, when the variances are known, the test statistic is 

(xi - x2) - Δ0 

VVi2/tti + σ2
2/η2 
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The rejection region for the two-sided alternative includes values of z less 
than or equal to za/2 or greater than or equal to 2ι_α/2. The rejection region 
for the greater than alternative includes values of z greater than or equal to 
Ζχ-α, and the rejection region for the less than alternative includes values of 
2 less than or equal to za. 

We return to the ramipril example from Chapter 7 and test the hypoth­
esis that μι, the mean decrease in diastolic blood pressure associated with 
the 1.25-mg dose, is the same as μ2, the mean decrease for the 5-mg dose. 
In practice, we should not initially focus on only two of the three doses; all 
three doses should be considered together at the start of the analysis. At 
this stage, however, we do not know how to analyze three means at one 
time, the topic of the next chapter. Therefore, we are temporarily ignoring 
the existence of the third dose (2.5 mg) of ramipril that was used in the 
actual experiment. 

As we expect that the higher dose of medication will have the greater 
effect, the null and alternative hypotheses are 

H0: μι - μ2 = 0 and Ha: μ,χ - μ2 < 0. 
We perform the test at the 0.05 significance level; thus if the test statistic is 
less than -1.645 (= Zo.os)/ we reject the null hypothesis in favor of the 
alternative hypothesis. The sample mean decreases, X\ and x2, are 10.6 and 
14.9 mm Hg, respectively, and both sample means are based on 53 obser­
vations. Both σι and σ2 are assumed to be 9 mm Hg. Therefore the value of 
z, the test statistic, is 

z = < 1 0 · 6 - 14·9> - ° = -2.46. 
V81/53 + 81/53 

As the test statistic is less than -1.645, we reject the null hypothesis in 
favor of the alternative hypothesis. There appears to be a difference in the 
effects of the two doses of ramipril, with the higher dose being associated 
with the greater mean decrease in diastolic blood pressure at the 0.05 
significance level. 

2. Unknown but Equal Population Variances 

The null and alternative hypotheses are the same as in the preceding 
section; however, the test statistic for the difference of two independent 
means, when the variances are unknown, but assumed to be equal, 
changes to 

t = (*i - xi) - Ap 
sp Vl/wi + l/n2 

For a two-sided alternative hypothesis, the rejection region includes values 
of t less than or equal to tn-2f0j2 or greater than or equal to tn-2fl-a/2, where n 
is the sum of n\ and n2. 

Let us test, at the 0.05 significance level, the hypothesis that there is no 
difference in the population mean proportions of total calories coming 
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from fat for fifth and sixth grade boys and seventh and eighth grade boys. 
The alternative hypothesis is that there is a difference, that is, Δ0 is not 
zero. The rejection region includes values of t less than or equal to -2 .04 
( = £31,0.025) or greater than or equal to 2.04. 

From Chapter 7, we know that Χχ, the sample mean proportion for the 
14 fifth and sixth grade boys, is 0.329 and the corresponding value, xlf for 
the 19 seventh and eighth grade boys is 0.353. The value of sp is 0.094. 
Therefore, the test statistics value is 

t = (0.329 - 0.353) - 0 = _Q m 

0.094 Vl /14 + 1/19 

As t is not in the rejection region, we fail to reject the null hypothesis. 
There does not appear to be a difference in the proportion of calories 
coming from fat at the 0.01 significance level. 

MINITAB can be used to perform this test as shown in Boxes 13.6.1 
and 13.6.2 (two parts). 

Two MINITAB commands can be used to perform this test. The choice of which 
command to use depends on how the data have been entered. If the data are stored 
in separate columns, use the TWOSAMPLE command (shown in this box); if the 
data are in a single column and another column contains an indicator identifying to 
which sample the data point belongs, use the TWOT command (shown in the next 
box). 
For the first procedure, the data are entered into two columns. Column cl contains 
the data for the fifth and sixth grade boys and c2 has the data for the seventh and 
eighth grade boys. 
MTB > s e t c l 
DATA> 0.365 0.437 0.248 0.424 0.403 0.337 0.295 0.319 0.285 
DATA> 0.465 0.255 0.125 0.427 0.225 
MTB > set c2 
DATA> 0.311 0.278 0.282 0.421 0.426 0.345 0.281 0.578 0.383 
DATA> 0.299 0.150 0.336 0.425 0.354 0.337 0.289 0.438 0.411 
DATA> 0.357 
DATA> end 
We abbreviate the TWOSAMPLE command to TWOS and use the subcommand 
POOLED, which indicates that we are using sp, a pooled estimate of variance. 
MTB > twos 95 c l c2; 
SUBO pooled. 
TWOSAMPLE T FOR Cl VS C2 

N MEAN STDEV SE MEAN 
C l 1 4 0.3293 0.0974 0.026 
C2 19 0.3527 0.0894 0.020 
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95 PCT CI FOR MU Cl - MU C2: (-0.090, 0.043) 
TTEST MU Cl = MU C2 (VS NE): T= -0.72 P=0.48 DF= 31 
POOLED STDEV = 0.0928 
The values shown here differ slightly from those shown in Chapter 7 because we 
used only three digits after the decimal point in entering the data whereas in 
Chapter 7, more digits were used. A confidence interval for the difference of the 
population means is also provided. 

We create a single column containing the data by using the STACK command, 
stacking column cl on top of c2 and placing all the data in a new column, c3. The 
subscripts for the data, indicating the sample from which the observation came, are 
stored in column c4. 

MTB > s t ack c l c2 c3; 
SUBO s u b s c r i p t s c4. 
MTB > p r i n t c3 
C3 

0.365 
0.285 
0.282 
0.150 
0.357 

MTB 
C4 
1 
2 
2 

0.437 0.248 
0.465 0.255 
0.421 0.426 
0.336 0.425 

> p r i n t c4 

1 1 1 1 
2 2 2 2 
2 2 

0. 
0. 
0, 
0. 

1 
2 

,424 
.125 
.345 
.354 

1 
2 

0.403 
0.427 
0.281 
0.337 

1 1 
2 2 

0 
0. 
0 
0 

.337 

.225 

.578 

.289 

1 
2 

0 
0 
0 
0 

1 
2 

.295 

.311 

.383 

.438 

1 
2 

0, 
0, 
0. 
0, 

1 
2 

.319 

.278 

.299 

.411 

1 
2 

2 
2 

MTB > twot c3 c4; 
SUBO pooled. 
TW0SAMPLE T FOR C3 
C4 N MEAN 
1 14 0.3293 
2 19 0.3527 

STDEV 
0 . 0 9 7 4 
0 . 0 8 9 4 

SE MEAN 
0 . 0 2 6 
0 . 0 2 0 

95 PCT CI FOR MU 1 - MU 2 : (-0.090, 0.043) 
TTEST MU 1 = MU 2 (VS NE): T= -0.72 P=0.48 DF= 31 
POOLED STDEV = 0.0928 

If no percentage is indicated for the confidence interval, the 95 percent confidence 
interval is calculated. Thus it was not necessary to have entered the value 95 in the 
TWOS command above. These commands both have the ALTERNATIVE subcom­
mand as well for performing one-sided tests. 
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3. Unknown and Unequal Population Variances 

The test statistic for testing the null hypothesis of a specified difference in 
the population means, that is, 

H0: μι - μ2 = Δ0, 
assuming that the population variances are unequal, is given by 

t, = (fr - x2) - Ap 
Vsi2/ni + S22/n2 

The statistic V approximately follows the t distribution with degrees of 
freedom, df, given by 

,f = (si2/wi + s2
2/n2f 

((si2/wi)2/(n! - 1)) + ((s2
2/n2)2/(n2 - 1))' 

For a two-sided alternative, if t' is less than or equal to tdi.aii or greater than 
or equal to tdi,i-aii, we reject the null hypothesis in favor of the alternative 
hypothesis. If the alternative hypothesis is 

Ha: μι ~ μ2 < Δ0, 

the rejection region consists of values for V less than or equal to fdf,«· If the 
alternative hypothesis is 

Ha: μι ~ μ2 > Δ0, 
the rejection region consists of values for V greater than or equal to fdf,i-<*· 

In Chapter 7, we examined the mean ages of the AML and ALL pa­
tients. Suppose that we consider that there is no difference in the popula­
tion mean ages if the mean age of AML patients minus the mean age of 
ALL patients is less than or equal to 5 years. Thus the null and alternative 
hypotheses are 

H0: μ\ — μ2 = 5 and Ha: μ\ — μ2> 5. 
We perform this test at the 0.01 significance level, which means that we 
reject the null hypothesis in favor of the alternative hypothesis if V is 
greater than or equal to 2.446 (= £33,0.99)· 

Using the values for the sample means, standard deviations, and sam­
ple sizes from Chapter 7, we calculate V to be 

t, = (49.86 - 36.65) - 5 = χ 

Vl6.512/51 + 17.852/20 
As V is less than 2.446, we fail to reject the null hypothesis. There is not 
sufficient evidence to conclude that the difference in ages is greater than 5 
years. Usually one would test the hypothesis of no difference instead of a 
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difference of 5 years; however, by testing the difference of 5 years, we were 
able to demonstrate the calculations for a nonzero Δ0. ΜΙΝΙΤΑΒ can be 
used to perform this test as is shown in Box 13.7. 

MINITAB can also be used to perform this test by using either the TWOS AMPLE or 
TWOT command. We demonstrate the TWOS AMPLE command with the follow­
ing material. 
MTB > s e t c l 
DATA> 20 25 26 26 27 27 28 28 31 33 33 33 34 36 37 40 40 43 
DATA> 45 45 45 45 47 48 50 50 51 52 53 53 56 57 59 59 60 60 
DATA> 61 61 61 62 63 65 71 71 73 73 74 74 75 77 80 
DATA> end 
MTB > set c2 
DATA> 18 19 21 22 26 27 28 28 28 28 34 36 37 47 55 56 59 62 
DATA> 83 19 
DATA> end 
The sample AML ages are stored in cl and the sample ALL ages are stored in c2. As 
TWOSAMPLE is designed to test that Δ0 is zero, we have to change the data to 
reflect that we are testing the hypothesis that Δ0 equals 5. Therefore, we subtract 5 
from each of the values in cl. 
MTB > let c3=cl-5 
MTB > twos c3 c2; 
SUBO alternative 1. 

TWOSAMPLE T FOR C3 VS C2 
N MEAN STDEV SE MEAN 

C3 51 44.9 16.5 2.3 
C2 20 36.7 17.8 4.0 

95 PCT CI FOR MU C3 - MU C2: (-1.2, 17.6) 
TTEST MU C3 = MU C2 (VS GT): T= 1.78 P=0.04 DF= 32 
The test statistic agrees with that found above, but the degrees of freedom is one 
less than that used above. This difference could be due to the number of digits used 
in the calculations. In Chapter 7, we calculated the degrees of freedom to be 32.501 
and this was rounded to 33. 

As we emphasized in Chapter 7, we seldom know much about the 
magnitude of the two variances. Therefore, in those situations in which we 
know little about the variances and have no reason to believe that they are 
equal, we recommend that the unequal variances assumption should be 
used. 
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B. Test about the Difference of Two Dependent Means 

The test to be used in this section is the paired t test, one of the more well-
known and widely used tests in statistics. The null hypothesis to be tested 
is that the mean difference of the paired observations has a specified value, 
that is, 

Ho: μά = μαθ/ 

where judo is usually zero. The test statistic is 

d sdlV~n " 
The rejection region for a two-sided alternative hypothesis includes 

values of td less than or equal to ta/2 or greater than or equal to ti-a/2. The 
rejection region for the alternative of less than includes values of td less 
than or equal to ta, and the rejection region for the alternative of greater 
than includes values of td greater than or equal to t\-a. 

We use this method to examine the effect of the 1.25-mg level of rami-
pril. We analyze the first 6 weeks of observation of the subjects: 4 weeks of 
run-in followed by 2 weeks of treatment. The null hypothesis is that the 
mean difference in diastolic blood pressure between the value at the end of 
the run-in period and the value at the end of the first treatment period is 
zero. The alternative hypothesis of interest is that there is an effect, that is, 
the mean difference is greater than zero. In symbols, the hypotheses are 

H0: /*d = 0 and Ha: μά > 0. 
We perform the test at the 0.10 significance level. Thus the rejection region 
includes values of td greater than or equal to 1.298 (= £52,0.90)/ using 
52 degrees of freedom because 53 pairs of observations are being ana­
lyzed. 

From Chapter 7, we find that the sample mean difference in diastolic 
blood pressure after the 2 weeks of treatment was 10.6 mm Hg for the 53 
subjects. The sample standard deviation of the differences was 8.5 mm Hg. 
Based on these data, we can calculate the value of td'. 

8.5/V53 

As td is greater than 1.298, we reject the null hypothesis in favor of the 
alternative hypothesis. It appears that there is a difference between 
the values of diastolic blood pressure at the end of the run-in period and 
the treatment period, with the blood pressure at the end of the treatment 
period being significantly less than that at the end of the run-in period. 
Note that we said only that there was a difference; we did not attribute the 
difference to the medication. 
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As we have discussed in Chapters 7, 8, and 10, drawing any conclusion 
from this type of study design is very difficult. Two concerns, the presence 
of extraneous factors and reversion to the mean, are associated with this 
design. Without some control group, it is difficult to attribute any effects 
observed in the study group to the intervention because of the possibility 
of extraneous factors. In a tightly controlled experiment, the researcher 
may be able to remove all extraneous factors, but it is difficult. The pres­
ence of a control group is also useful in providing an estimate of the 
reversion-to-the-mean effect if such an effect exists. Thus we are suggest­
ing that the paired t test should be used with great caution, that is, only in 
those situations for which we believe that there are no extraneous factors 
and no reversion-to-the-mean effect. In other cases, we would randomly 
assign study subjects either to the control group or to the intervention 
group and compare the differences of the pre- and postmeäsures for both 
groups. 

If we are comfortable with the use of the paired t test, it can easily be 
performed by Minitab as is shown in Box 13.8. 

Let the preintervention data be in column cl and the postintervention data in c2. 
We take their difference and store it in column c3. Note that the pre- and post-
measurements must be arranged in the same order; that is, we are subtracting 
person A's postvalue from person A's preintervention value, and so forth. We then 
use the TTEST command on the differences stored in c3. 

VII. TESTING HYPOTHESES ABOUT THE DIFFERENCE OF 
TWO PROPORTIONS 

As in Chapter 7, we are considering only the case of two independent 
proportions. The null hypothesis is 

where Δ0 usually is taken to be zero. The test statistic for this hypothesis, 
assuming that the sample sizes are large enough for the use of the normal 
approximation to the binomial to be appropriate, is 

(Pi - Vi) - Ap 
πά Vpi( l - pi)/ni + p2(l - pi)ln2 

The rejection region for a two-sided alternative includes values of ζπά less 
than or equal to za/2 or greater than or equal to Ζι-α/2· If the alternative is less 



372 13 TESTS OF HYPOTHESES BASED ON THE NORMAL DISTRIBUTION 

than, the rejection region consists of values of ζπα less than or equal to z«; if 
the alternative is greater than, the rejection region consists of values of ζπα 
greater than or equal to Z\-a. 

We test the hypothesis, at the 0.01 significance level, that there is no 
difference in the proportions of milk that contain 80 to 120 percent of the 
amount of vitamin D stated on the label between the Eastern and South­
western milk producers. The alternative hypothesis is that there is a differ­
ence. From Chapter 7, we find the values of p1 and p2 are 0.286 and 0.420, 
respectively. Thus the test statistic is 

z (0.286 - 0.420) - 0 = _1 ^ 
"d V0.286 * 0.714/42 + 0.420 * 0.580/50 

As z„d is not in the rejection region, we fail to reject the null hypothesis. 
MINITAB can be used to perform this test as shown in Box 13.9. 

An approximation to this test can be carried out using the TWOSAMPLE command 
in MINITAB. 
MTB > set cl 
DATA> 12(1) 30(0) 
DATA> set c2 
DATA> 21(1) 29(0) 
DATA> end 
The data from the first sample are entered into cl and the data from the second 
sample are entered into c2. 
MTB > twosample cl c2 

TWOSAMPLE T FOR Cl VS C2 
N MEAN STDEV 

Cl 42 0.286 0.457 
C2 50 0.420 0.499 

95 PCT CI FOR MU Cl - MU C2: 
TTEST MU Cl = MU C2 (VS NE): 
The estimate of the standard error of the difference differs slightly from that found 
using the binomial formula because of the division by n - 1 used in the TWOS 
command instead of the division by n used in the binomial calculation. The re­
ported p value is also slightly off as it uses the t distribution instead of the normal 
distribution in its calculation. For large samples, these differences are very small. 

SE MEAN 
0.071 
0.071 

(-0.333, 0.064) 
T= -1.35 P=0.18 DF= 89 
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Vili. CONCLUDING REMARKS 

In this chapter, we added to the material on confidence intervals presented 
in Chapter 7, demonstrating the equivalence of the confidence intervals to 
the test of hypothesis. We showed how to test hypotheses about the more 
common parameters used with normally distributed data and how to cal­
culate power for a test of hypothesis about the mean when the population 
variance is known. In addition, we presented statistics to be used in the 
tests of hypotheses about the difference of two means and two propor­
tions. This latter material prepares us for the next chapter, the analysis of 
variance, in which we extend the test of hypothesis to comparing two or 
more means. 

EXERCISES 

13.1. In a recent study, Hall (4) examined the pulmonary functioning of 
135 male Caucasian asbestos product workers. An earlier study had 
suggested that the development of clinical manifestations of the 
exposure to asbestos required a minimum of 20 years. Therefore, 
Hall partitioned his data set into two groups, one with less than 20 
years of exposure to asbestos and the other with 20 or more years of 
exposure. Two of the variables used to examine pulmonary function 
are the forced vital capacity (FVC) measured in liters and the per­
centage of the predicted FVC value where the prediction is based on 
age, height, sex, and race. Age is a particularly important variable to 
consider as there is a strong positive correlation between FVC and 
age. The sample means and standard deviations of FVC and the 
percentage of the predicted FVC for each of the two groups are as 
follows: 

Variable 

FVC (liters) 
% Predicted FVC 

Length of 

<20 years 
(n = 66) . 

Mean SD. 

5.19 0.78 
104 9.7 

exposure 

>20 years 
(n = 69) 

Mean SD. 

4.27 0.63 
45 12.8 

Choose the more appropriate of these two variables to use in a test 
of whether there is a difference in the means of the two exposure 
groups. Perform the test at the 0.05 significance level. Explain your 
choice for which variable to use and also your choice of a one- or 
two-sided alternative hypothesis. What assumption did you make 



374 1 3 TESTS OF HYPOTHESES BASED ON THE NORMAL DISTRIBUTION 

about the population variances? Does this study support the idea 
that there is a difference between those with less than 20 years of 
exposure and those with 20 or more years of exposure? What is the 
p value of the test? What, if any, other variable should be taken into 
account in the analysis? 

13.2. Kirklin et al. (5) performed a study of infants less than 3 months old 
who underwent open heart surgery. There were 175 infants in their 
study based on data from 1967 to 1980. It was suggested that the 
survival probabilities improved over time. To examine this, the data 
were broken into two time periods. Test the hypothesis that there is 
a difference in the survival probabilities over these two periods 
versus the alternative hypothesis of no difference over time at the 
0.01 significance level. Use the following hypothetical data, based 
on data presented in the study. 

Probability 
Date of survival Sample size 

January 1967 to December 1973 0.46 66 
January 1974 to July 1980 0.64 109 

Provide possible reasons why there might be a difference in the 
survival probabilities over time. 

13.3. Data from the National Institute of Occupational Safety and Health 
for the period 1980-1988 were used to obtain estimates of the an­
nual workplace fatality rates by state (6). The average annual state 
rates over the 9-year period are given in Exercise 7.4. There is tre­
mendous variability in the rates, ranging from a low of 1.9 to a high 
of 33.1 deaths per 100,000 workers. Provide some possible reasons 
for this variability. For the state of your residence, test the hypothe­
sis of no difference in the crude workplace fatality rate and the 
national average of 7.2 per 100,000 workers. Exercise 7.7 gives the 
population total for your state. Perform this test against a two-sided 
alternative at the 0.05 significance level. What is the p value of the 
test? Provide possible reasons why there is or is not evidence of a 
difference between your state and the national average. 

13.4. In the study by Reisin et al. (7), previously discussed in Chapter 10, 
one of the goals was to observe the effect of weight loss without salt 
restriction on blood pressure. We focus on one of the intervention 
groups, the group that was on a weight reduction program and 
given no medication. The program consisted of a strict diet with 
caloric intake reduced to about 50 percent of the usual adult intake 
for a 2-month period. Before examining the data for an effect on 
blood pressure, it is necessary to determine whether the diet 
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worked. The summary weight data for the sample of 24 patients 
was a mean reduction of 8.8 kg and the standard deviation of the 
weight changes was 4.3 kg. This is a paired t test situation for this 
single group; however, there was also a control group that was not 
part of the weight reduction effort. During the period when the 
study group lost an average of 8.8 kg, the control group showed an 
average decrease of only 0.7 kg. The results from the control group 
increase our confidence in the use of the paired t test here. Test the 
null hypothesis of no weight reduction versus the appropriate one­
sided alternative hypothesis at the 0.01 significance level. Did the 
weight reduction program work? 

13.5. There were a number of drug recalls during 1993 because of the 
failure of the drugs to meet dissolution specifications or content 
uniformity specifications or because of subpotency (8). Three prod­
ucts from the Parke-Davis Division of the Warner-Lambert Com­
pany were recalled. One of the products, Tedral, met neither the 
dissolution or the content uniformity specifications. Suppose that 
the content uniformity specifications were expressed in terms of the 
variance. For example, say that the variance of the amount of phé­
nobarbital in tablets was supposed to be less than or equal to 
0.015 g2. We selected a sample of 30 tablets and found the sample 
standard deviation of phénobarbital to be 0.14 g. Test the appropri­
ate hypothesis to determine, at the 0.10 level, whether there is 
compliance with the content uniformity specifications for the 
amount of phénobarbital in the tablets. 

13.6. In Chapter 7, using data from Table 7.6, we saw that there was a 
statistically significant (at the 0.01 level) difference in the mean ages 
of the AML and ALL patients. The difference in ages is important, 
particularly if the length of survival is strongly related to age. Calcu­
late the sample Pearson correlation coefficient between age and 
length of survival based on all the patients in Table 7.6. Then test 
the null hypothesis, at the 0.05 level, that the population correlation 
coefficient is -0.30 versus the alternative hypothesis that the corre­
lation is less (more negative) than -0.30. Here we are using -0.30 
or more negative values to indicate a strong inverse correlation. 
Based on your analysis, is it necessary to control for the effect of age 
in the comparison of the length of survival of AML and ALL pa­
tients? 

13.7. In Exercise 7.10, we examined progress toward the Surgeon Gen­
eral's goal of reducing the proportion of 12- to 18-year-old adoles­
cents who smoked to below 6 percent for a hypothetical commu­
nity. We found that in 1990, of the 12- to 18-year-olds in the sample, 
11 of 85 admitted that they smoked. Test the hypothesis that the 
hypothetical community has already attained the Surgeon General's 
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goal at the 0.05 significance level. Should you use a one- or two-
sided alternative hypothesis? Explain your reasoning. 

13.8. Opponents of a national health system argue that it will lead to 
rationing of services, something that is viewed as being unaccepta­
ble to people in the United States. To determine how people in the 
United States really felt about rationing of services, the American 
Board of Family Practice conducted a survey, some of the results of 
which are reported by Potter and Porter (9). One question asked 
whether people would approve of rationing medical attention in the 
case of a terminal illness. Suppose that we have decided that there 
is substantial support for rationing if the proportion of the popula­
tion who would approve of rationing in this case is 40 percent. In 
the sample of 1007 Americans, 34 percent supported rationing in 
the case of terminal illness. Test the hypothesis that the population 
proportion equals 40 percent versus the alternative hypothesis that 
it is less than 40 percent. Use the 0.01 significance level. It is inter­
esting to note that 43 percent of the physicians surveyed supported 
rationing in this situation. 

13.9. The proportions of caloric intake coming from fat for the 33 boys in 
the Houston suburb study are shown in MINITAB Box 13.6.1. As 
was mentioned, the recommended amount of calories coming from 
fat should be no more than 30 percent. Test the hypothesis that this 
proportion for boys in the northern suburbs of Houston is equal to 
30 percent at the 0.02 level. In performing the test, assume that the 
population standard deviation is 0.09. Should this test be one- or 
two-sided? What is the p value of the test? What is the power of the 
test to detect a value of 35 percent of the calories coming from fat? 

13.10. Anderson et al. (10) performed a study on the effects of oat bran on 
serum cholesterol for males with high or borderline high values of 
serum cholesterol. High values of serum cholesterol are greater 
than or equal to 240 mg/dl (6.20 mmol/L). We wish to use the data 
from the study to determine whether or not there is a linear rela­
tionship between body mass index and serum cholesterol. The body 
mass index is defined as weight (in kilograms) divided by square of 
the height (in meters). 

Body mass 
index 

29.0 
21.6 
27.2 
25.2 
25.1 
27.9 
31.9 

Serum 
cholesterol 

7.29 
8.43 
5.43 
6.96 
6.65 
8.20 
5.92 

Body mass 
index 

26.3 
21.8 
24.8 
24.5 
23.5 
24.8 
24.4 

Serum 
cholesterol 

8.04 
7.96 
5.77 
6.23 
6.26 
6.21 
5.92 
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Test the hypothesis of no correlation between body mass index and 
serum cholesterol at the 0.10 level. Explain your choice of a one- or 
two-sided alternative hypothesis. What is the γ value of the test? 

13.11. For men, overweight is defined as a body mass index greater than 
27.8 kg/m2. Test the hypothesis that the men in Exercise 13.10 come 
from a population that is overweight. Perform the test at the 0.05 
level. 

13.12. Exercise 7.6 shows 15 hypothetical serum cholesterol values. For 
these data, test the hypothesis that the population variance equals 
100 (mg/dl)2 versus the alternative hypothesis that the population 
variance is greater than 100 (mg/dl)2. Perform the test at the 0.025 
level. Discuss the results of this test in relation to the confidence 
interval obtained in Exercise 7.6. Recall that this test requires that 
the cholesterol values follow a normal distribution. Examine the 
assumption of normality of the cholesterol values. 

13.13. For the same data from Exercise 7.6, test the hypothesis that the 
measuring process works; that is, test the hypothesis that the popu­
lation mean of the values measured by this process equals 190 ver­
sus the alternative hypothesis that the population mean is not equal 
to 190 mg/dl. Perform the test at the 0.02 significance level. 
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Analysis of Variance 

I n Chapter 13, we used the t test to test the equality of two population 
means based on data from two independent samples. In this chapter, we 
introduce a procedure for testing the equality of two or more means. The 
two statistical designs discussed in Chapter 8, the completely randomized 
and the randomized block designs, are considered. 

The comparison of two or more means is based on partitioning the 
variation in the dependent variable into its components, and hence the 
method is called the analysis of variance (ANOVA). It was introduced by 
Sir Ronald A. Fisher and has been used in many fields of research. We 
begin this chapter with a presentation of the assumptions made when the 
ANOVA is used. This section is followed by an introduction to the one­
way ANOVA. In conjunction with this analysis, we present three methods 
used in multiple comparison analysis. These topics are followed by the 
analysis of the randomized block design, an example of a two-way 
ANOVA, and a two-way ANOVA with interaction. Lastly, a linear model 
representation of the ANOVA is provided. 

379 
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I. ASSUMPTIONS FOR THE USE OF THE ANOVA 
The ANOVA is used to determine whether there is a statistically significant 
difference among the population means of two or more groups. The theo­
retical basis of the ANOVA requires that the data being analyzed are inde­
pendent and normally distributed. We must also assume that the popula­
tion variances in each of the groups have the same value, σ2. The ANOVA 
procedure works reasonably well if there are small departures from the 
normality assumption; however, if the variances are very different, there is 
concern about the significance levels reported in the analysis (1, Chapter 
10). This concern is consistent with the material presented in Chapter 7. In 
Chapter 7, we presented different methods for comparing two means, 
depending on whether we assumed that the population variances were 
equal. One method for protecting against the effects of different values for 
the variances is to have approximately equal numbers of observations in 
each of the groups being analyzed. Another approach involves transforma­
tions of the dependent variable (2, Chapter 12; 3). One further assumption 
is that the groups being compared are the only groups of interest.1 

There are no firm rules for the number of observations required by the 
ANOVA. It is possible to perform power calculations or to use the size of 
confidence intervals to estimate the sample size required. In general, we 
recommend that there be a minimum of 5 to 10 observations for each of the 
combinations of levels of the independent variables used in the analysis. 
For example, with two independent variables, if one variable has three 
levels and the other variable has four levels, there are 12 combinations of 
levels. 

II. ONE-WAY ANOVA 

In a one-way ANOVA, there is only one independent variable. The data to 
be analyzed are obtained from either (1) a random sample of subjects who 
belong to different groups, for example, different racial groups, or (2) an 
experiment in which the subjects are randomly assigned to one of several 
groups. The latter situation arises when we use the completely randomized 
design discussed in Chapter 8. In the completely randomized design, sub­
jects are randomly allocated to groups and the groups represent the levels 
of the independent variable. Observations of the continuous variable of 

lrThis assumption means that the factors, the independent variables, are fixed factors. For 
more information on fixed and random factors and the implications, see Steel and Torrie (4, 
Chapter 9). 
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Hypothetical Ages for Control and Surgery Subjects 

Group 

Surgery 

Control I 

Control II 

32 
19 
32 
27 
31 

28 
23 
26 
45 
35 

22 
23 
31 
22 
26 

25 
26 
39 
29 
28 

20 
41 
34 
51 
22 

20 
20 
33 
28 
29 

28 
33 
29 
35 
27 

28 

41 

21 

Ages 

20 29 

35 33 

22 27 

22 

33 

24 

37 

43 

44 

18 

25 

21 

29 

39 

25 

22 

36 

27 

32 

37 

18 

21 

28 

27 

34 

34 

36 

interest, the dependent variable, are taken on the subjects and the subjects' 
group membership is also recorded. 

Data shown in Table 14.1 are based on an article by Kimball et al. (5) 
and can be analyzed using a one-way ANOVA. In the article, the authors 
wished to evaluate ventricular performance after surgical correction of con­
genital coarctation of the aorta. The ventricular performance was compared 
with that found in two control groups. Because of the possible roles that 
age and gender play on ventricular performance, the authors wanted the 
age and sex distributions of the subjects who had undergone the surgery to 
be similar to those of the members of the two control groups. We wish to 
examine whether the authors were successful in obtaining groups that 
were similar on the age variable. The ages shown in Table 14.1 are hypo­
thetical, based on the summary values reported by Kimball et al. In this 
example, the dependent variable is age and the independent variable is the 
group to which the subjects belong. 

The entries in Table 14.1 can be represented symbolically as y,y7 where 
the first subscript indicates the subject's group membership and the sec­
ond subscript identifies the subject in the zth group. For example, yn is 32 
years old, y12 is 28 years old, y2s is 34 years old, y26 is 33 years old, and so 
on. The first subscript ranges from 1 to 3. When the first subscript has the 
value of 1, the range of the second subscript is 1 to 25; this is also the case 
when the first subscript is 2. When the first subscript has the value of 3, the 
second subscript ranges from 1 to 18. In general,, there are r groups and n, 
observations in the zth group. We also use the · notation introduced in 
Chapter 11. For example, yf. is a shorthand notation for Σ;· yi;·, and y.. is 
shorthand for Σ/Σ;· yZ;.Thus, yv represents the sum of all the ages for the 
subjects in the surgery group and y.. is the sum of all the 68 ages in the 
sample. It follows that yf. is the sample mean of the ith group and y.. is the 
overall sample mean. 

In the previous chapter, two means were compared using a t test; 
however, the f-test method used in Chapter 13 does not directly extend to 
the comparison of more than two group means; hence we must introduce 
another method of analysis. 
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A. Sums of Squares and Mean Squares 

As was mentioned above, the analysis of variance is based on a partition­
ing of the variation in the dependent variable. In the one-way ANOVA, 
there are two possible sources of variation in the dependent variable. One 
source is variation among (or between) the groups; that is, the groups may 
have different means that vary about the overall mean. The other possible 
source is variation within the groups. Not all the subjects in the same 
group will have exactly the same values and the within-group variation 
reflects this. 

The null hypothesis being tested here is that the population group 
means are equal to one another. If this hypothesis is true, all the observa­
tions come, in effect, from the same population. Thus, any variation that 
remains among the group means really reflects the random variation 
among the observations, that is, the within-group variation. Therefore, the 
adjusted among and within variations should be similar if the null hypoth­
esis is true. If the null hypothesis is false, the adjusted among-group varia­
tion should be larger than the adjusted within-group variation because it 
includes variation between the populations as well as the within-group 
variation. Thus, we can use the adjusted among- and within-group varia­
tions as the basis of a test of the equality of the group means. 

We can represent the above idea in symbols as 

Σ Σ (y* - y-)2 = Σ Σ (y.·- - y·)2 + Σ Σ (y* - y,·)2· 
i = l j=l /=1 j=l /=1 7=1 

This equation shows the partitioning of the total variation in Y, the depen­
dent variable, about its mean into an among- (or between)-group compo­
nent and a within-group component. These sums of squares are called the 
total sum of squares corrected for the mean (SST), the among (or between)-
group sum of squares (SSB), and the within-group sum of squares (SSW). 

If we adjust these two components for the number of independent 
observations used in their calculations, that is, divide each component sum 
of squares by its degrees of freedom, we have the mean square among (or 
between) and the mean square within. The mean square between is 

r Yi{ r 

Σ Σ (y«· - y )2 Σ w«(yi· - y··)2 

MSB = ^ ^ = ^ 
r - 1 r - 1 

where the second expression reflects the fact that the terms in parentheses 
do not vary with ;. The mean square within is 

r m 

Σ Σ (y.; - y,)2 

n - r 
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where n is the total number of observations, that is, the sum of the nx. The 
degrees of freedom for the mean square between, r - 1, comes from the 
calculation of the variation in r means. The degrees of freedom for the 
mean square within, n - r, is the result of summing the nt - 1 degrees of 
freedom associated with the ith group over the r groups. 

The mean square within is particularly useful as it also provides an 
adjusted estimate of the variation within groups, that is, of σ2, the variance 
of the dependent variable. It is based on the assumption that the variance 
of the dependent variable is the same within each group. If there is no 
difference between the group means, then the mean square between also 
estimates σ2. 

For the data in Table 14.1, we have the following values of means and 
sums of squares. First, y\., the sample mean of the first group, is 26.08, y2. 
is 33.80, and y3. is 27.22. The overall sample mean, y.., is 29.22 years. The 
sum of squares between is 

SSB = 25 * (26.08 - 29.22)2 + 25 * (33.80 - 29.22)2 + 18 * (27.22 - 29.22)2 

= 842.9 
The sum of squares within involves too many terms to show, but its sum of 
squares is 2660.8 and the total sum of squares (corrected) is 3503.7. 

B. The F Statistic 

The comparison of these two mean squares provides information about 
whether the null hypothesis is true. One way of comparing the mean 
squares is to take their difference. If the null hypothesis were true, then the 
difference would be zero; however, the probability distribution of the dif­
ference is not widely available. Another way of comparing the mean 
squares is to take the ratio of the mean square between to the mean square 
within. If the null hypothesis were true, the ratio would equal one. If the 
null hypothesis were false, the ratio would be larger than one. Fortunately, 
the probability distribution of the ratio has been worked out, and it is an F 
distribution with r - 1 and n - r degrees of freedom. Tables of the F 
distribution, named in honor of Sir Ronald Fisher, are shown in Appendix 
Bll for the 0.01, 0.05, and 0.10 significance levels for values of the numera­
tor (/i) and denominator (/2) degrees of freedom parameters. 

The F distribution has many different shapes, depending on the values 
of the degrees of freedom parameters. Figure 14.1 shows the shape of the F 
distribution for degrees of freedom pairs 1 and 20 and 5 and 20. We can see 
that the shapes are different, but most of the probability (area) is associated 
with values of F close to one. 

There is also a relationship between the t and F distributions that can 
be seen from the t and F tables. The relationship is £\ι-α/2 is equal to 
Flk/1_a. For example, when k is 10, *i0,o.95 is 1.8125, and its square is 3.2852. 
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8.0 10.0 

Plot of the probability density functions of the F distribution for FUo (solid line) and F5/20 

(broken line). 

Examination of the F tables in Appendix Bll shows that £1,10,0.90 is 3.29. 
This equivalence when there are two groups leads us to think that there 
may be a relationship between the ANOVA and f-test approaches in the 
two-group situation. 

C. The ANOVA Table 

The sums of squares and mean squares just described are usually pre­
sented in tabular format as shown in Table 14.2. The degrees of freedom 
and sums of squares associated with the between and within groups sum 
to the corresponding total values. If these values do not sum to the total, a 
mistake has been made in the calculations. 

The F statistic is then used to test the null hypothesis that the group 
means are equal against the alternative hypothesis that the group means 

Typical ANOVA Table for a One-Way Analysis 

Source of 
variation 

Between groups 
Within groups 

Degrees of 
freedom 

r- 1 
n - r 

Sum of 
squares 

SSB 
ssw 

Mean square 

SSB/(r - 1) = MSB 
SSW/(rc - r) = MSW 

F 

MSB/MSW 

Total (corrected) n - 1 SST 
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are not all equal. When the null hypothesis is true, the F statistic follows an 
F distribution with r - 1 and n - r degrees of freedom. If the calculated F 
statistic is greater than Έτ-ι,η-τ,ι-α, found in Appendix Table Bll, we reject 
the null hypothesis in favor of the alternative hypothesis at the a signifi­
cance level. If the calculated F statistic is less than this critical value, we do 
not have sufficient evidence to reject the null hypothesis. 

D. Analysis of the Ages 

Let us test the hypothesis of the equality of the mean ages at the 0.01 
significance level. Based on the sums of squares presented above, we can 
complete the ANOVA table for the ages shown in Table 14.1-. Table 14.3 is 
the ANOVA table for the age data. 

A computer package can easily perform these calculations. Box 14.1 
shows the use of two different MINITAB commands for performing a one­
way ANOVA. There are 68 observations in the three groups. Hence there 
are 2 degrees of freedom for the factor (between groups) variable, 65 de­
grees of freedom for error (within groups), and 67 degrees of freedom for 
the total sum of squares. The output shows the sum of squares (SS) and 
mean squares (MS) as well as the F ratio and its p value. It also shows the 
mean and standard deviations of the age variable along with the 95 percent 
confidence intervals for the group means. The pooled standard deviation is 
the square root of the MS for error and estimates σ. 

Based on the ANOVA table, as the p value associated with the F ratio is 
0.000, we know that the F ratio is greater than F2,65,o.99· Therefore we reject 
the equality of the mean ages in favor of the alternative hypothesis. It 
appears that the three groups differ on age. This means that it may be 
necessary to take age into account in the analysis of ventricular perfor­
mance. 

From the confidence intervals shown in Box 14.1, it appears that the 
difference is due mainly to the first control group having a.mean age much 
greater than those of the other two groups. When there is a statistically 
significant difference among the group means, we can perform additional 
tests to see if we can determine the source of the differences in the means. 
The next section describes three approaches to this additional testing. 

m O Q Q Q ANOVA Table for the Ages Shown in Table 14.1 

Source of Degrees of Sum of 
variation freedom squares Mean square F 

Between groups 2 842.9 421.4 10.29 
Within groups 65 2660.8 40.9 

Total (corrected) 67 3503.7 
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One MINITAB command for performing the analysis is AOVONEWAY (abbreviated AOVO). This 
command assumes that data from different groups are entered in different columns. The ages shown in 
Table 14.1 are entered. Ages for the surgery group are in cl, ages for control I are in c2, and ages for 
control II are in c3. These columns are specified after the command. 

MTB > aovoneway cl-c3 

ANALYSIS OF VARIANCE SOURCE 
FACTOR 
ERROR 
TOTAL 

LEVEL 
1 
2 
3 

POOLED 

DF 
2 
65 
67 

N 
25 
25 
18 

STDEV = 

SS 
842.7 
2661.0 
3503.7 

MEAN 
26.080 
33.800 
27.222 

6.398 

MS 
421.4 
40.9 

STDEV 
6.157 
6.708 
6.283 

F P 
10.29 0.000 

INDIVIDUAL 95 PCT CI'S FOR MEAN 
BASED ON POOLED STDEV 

+ + + + 
( * ) 

( * 
( * ) 
+ + + -\ 

24.5 28.0 31.5 35.0 
The other MINITAB command for performing the analysis is ONEWAY. This command assumes that all 
the data are in one column and that there is a second column that indicates group membership. In the 
following we stack columns cl, c2, and c3 together in c4. We next create indicators of group membership 
in c5. The first group is given the code of 1 and there are 25 subjects in that group. The 25 members in 
the second group are assigned the value of 2, and the 18 members in the third group are assigned the 
value of 3. 
MTB > s t ack c l c2 c3 , c4 
MTB > s e t c5 
DATA> 25(1) 25(2) 18(3) 
MTB > oneway c4 c5 
The output is the same as that shown above. The ONEWAY command also has other capabilities that 
are associated with multiple comparisons and the linear model representation of the ANOVA. 

III. MULTIPLE COMPARISONS 

If the overall F statistic from the ANOVA is statistically significant, multi­
ple comparison procedures can be used in an attempt to discover the 
source of the significant differences among the group means. Most of these 
procedures are designed to examine the pairwise differences in group 
means, although there are more general procedures. The comparison of 
the group means is accomplished through the presentation of confidence 
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intervals for pairwise differences of group means. The use of the multiple 
comparison procedures is generally not recommended when we fail to 
reject the null hypothesis; however, exceptions may occur when certain 
comparisons have been planned in the course of the experiment. 

There are many different multiple comparison procedures. We present 
three procedures: the Tukey-Kramer method, Fisher's least significant dif­
ference (LSD) method, and Dunnett's method. The Tukey-Kramer 
method is the procedure recommended when one wishes to estimate si­
multaneously all pairwise differences among the means in a one-way 
ANOVA assuming that the variances are equal (6). We present the LSD 
method because it is frequently used in the literature. Dunnett's procedure 
is used when we wish to compare several groups with a specific group 
selected before the data were obtained (or the control group designated in 
the design). For example, if there were several new treatments and a stan­
dard treatment, we would use Dunnett's procedure to compare each of the 
new treatments with the standard. The multiple comparison procedures 
presented here use the mean square within as the estimator of σ2. 

Before presenting these methods, we present material on the error 
rates associated with the methods. 

A. Error Rates: Individual and Family 

In the pairwise comparison of the group means, many confidence intervals 
are formed. For example, when there are three groups, we form confidence 
intervals for the differences between groups 1 and 2, groups 1 and 3, and 
groups 2 and 3. When there are r groups, there are rCi confidence intervals 
for the pairwise comparisons. Thus we see that there are two probabilities 
of errors in multiple comparison procedures. One probability of error is 
associated with each individual confidence interval: the individual error 
rate. The other probability of error is associated with the rC2 intervals, the 
family of confidence intervals: the family error rate. This is the rate that is 
usually of primary interest, the rate that we want to be less than or equal 
to a. 

It is clear that if we use the ti-a/2 value in the creation of the confidence 
intervals, the family error rate will be larger than a. If we wish to control 
the family error rate to be less than or equal to a, then we must use some 
value other (greater) than ϊ\-αιι in the calculation of the confidence inter­
vals. 

B. Tukey-Kramer Method 

The Tukey-Kramer method focuses on the family error rate. It replaces 
tn-r,\-ai2 in the confidence interval for the difference between two group 
means by qrtn-rti-J^2,where q is the upper a value from the studentized 
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range distribution. Table B12 shows the upper 0.05 and 0.01 points of the 
studentized range distribution. Note that the q value takes the number of 
possible comparisons into account because its value depends on r, the 
number of groups. 

The confidence interval for the difference between μ, and μ; is 

Let us calculate the confidence intervals for the three pairwise compari­
sons for the hypothetical age data shown in Table 14.1. We set the family 
error rate to be 0.05. The value of 3̂,65,0.95 is not found in Table B12. As there 
is little variation in the value of q as n - r changes from 40 to 60 to 120 in the 
table, we use 3.40 (= 3̂,00,0.95) as an approximation to the desired value. The 
confidence interval for the difference between groups 1 and 2 is 

26.08 - 33.80 ± ( ^ 2 * V4Ö9 * 

which yields 
-7.72 ± 4.35 

and the interval ranges from -12.07 to -3.37. The corresponding interval 
for μ1 - μ3 is -5.89 to 3.61 and the interval for μ2 - μ^, is from 1.83 to 11.33. 
Both of the intervals involving μ2 fail to contain zero, suggesting that the 
first control group differs significantly from both the study group and the 
second control group. 

C. Fisher's Least Significant Difference Method 

Fisher's LSD method focuses on the individual error rate. When the n, are all 
equal, there is a value, the least significant difference, such that if any of 
the differences in sample means are greater than that value, the difference 
is statistically significant. If a difference is greater than that value, the 
corresponding confidence interval for the difference does not contain zero. 
If the number of sample observations differ across the groups, there is not 
a single least significant difference. 

The LSD confidence interval looks like the ordinary confidence interval 
for the difference between two means with one exception. The mean 
square within is used as the estimator for the population variance instead 
of an estimator based on only data from the two groups being compared. 
The LSD confidence interval for μζ - μ; is 

yh - yj. ± tn-r/1-a/2 VMSW 

25 + 25 
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Let us calculate the 0.05 individual error rate LSD confidence interval 
for μχ - μ2. We have 

26.08 - 33.80 ± (2.00 * 6.395 * VUÖ8) 
which yields 

-7.72 ± 3.62 
and the interval ranges from -11.34 to -4.10. This interval is narrower 
than the corresponding Tukey-Kramer interval as it must be because it is 
based on the individual error rate, not the family error rate used by the 
Tukey-Kramer procedure. The corresponding LSD interval for μι - μ3 
ranges from -5.10 to 2.82 and the interval for μ2 - μ$ ranges from 2.62 to 
10.54. 

D. Dunnett's Method 

Dunnett's method is used in situations in which we wish to compare the 
means of several groups with the mean of another group that was selected 
in advance. For example, we may wish to compare the means of different 
dosage levels of a new medication with the mean of a placebo group. In our 
example, there are two control groups and one treatment group. We wish 
to see if there is a difference between the two control groups and the 
treatment group (group 1). Thus the comparisons of interest are μ2 — μ\ 
and μ3 - μα. 

The confidence interval for μ{ - /x; using Dunnett's procedure is given 
by 

- %. ± dr-lin-rtl-all VMSW y ~ + -1 1 

where the upper 0.005 and 0.025 levels of d are given in Table B13. Let us 
now calculate the confidence intervals using a family error rate of 0.05 and 
Dunnett's method. 

For the comparison of the first control group with the treatment group, 
we have 

33.80 - 26.08 ± I 2.27 * 6.395 * ^25 + 25 

where 2.27 is the value of 2̂,00,0.975 and this is used as an approximation to 
2̂,65,0.975· This calculation yields 

7.72 ± 4.11 
and the interval ranges from 3.61 to 11.83. The corresponding interval for 
μ3 - μι ranges from -3.35 to 5.63. The confidence intervals using Dun­
nett's procedure are narrower than those provided by the Tukey-Kramer 
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method. This is reasonable because we are doing fewer comparisons with 
Dunnett 's procedure. Based on these intervals, there is a statistically signifi­
cant difference between the first control group and the treatment group, 
but no significant difference between the second control group and the 
treatment group. 

E. Analysis by Computer 

These calculations can be performed with MINITAB using subcommands 
to the ONEWAY command. Box 14.2 shows the use of the subcommands 
to generate these intervals by the three different methods discussed above. 

Multiple comparisons are conducted by using subcommands in ONEWAY. The family error rates are 
specified for the Tukey-Kramer and Dunnett procedures and the individual error rate is specified for 
Fisher's LSD procedure. The level against which the other levels are to be compared is also specified for 
the Dunnett procedure (1 for this example). The ANOVA output is not shown below and we jump 
directly to the multiple comparison output. 
MTB > oneway c4 c5; 
SUBO tukey .05; 
SUBO fisher .05; 
SUBO dunnett .05 1. 

Tukey's pairwise comparisons 
Family error rate = 0.0500 

Individual error rate = 0.0193 
Critical value =3.39 
Intervals for (column level mean) - (row level mean) 

1 2 
2 -12.058 

-3.382 

3 -5.883 1.837 
3.599 11.319 

Fisher's pairwise comparisons 
Family error rate = 0.121 

Individual error rate = 0.0500 
Critical value = 1.997 
Intervals for (column level mean) - (row level mean) 

1 2 
2 -11.334 

-4.106 

3 -5.092 2.628 
2.808 10.528 
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Dunnett's intervals for treatment mean minus control mean 
Family error rate = 0.0500 

Individual error rate = 0.0268 
Critical value =2.27 
Control = level 1 of C5 

Level Lower Center Upper + + 
2 
3 

3 .61 
- 3 . 3 5 

7.72 
1.14 

11.8 
5.63 

-+-
0.0 8.0 16.0 24.0 

IV. TWO-WAY ANOVA FOR THE RANDOMIZED BLOCK DESIGN 
WITH m REPLICATES 

As discussed in Chapter 8, in many situations the same experiment is 
conducted in several sites or under different conditions. In these situa­
tions, the random allocation of subjects takes place separately at each site 
or for each condition. These experiments are using what is called a random­
ized block design. The random allocation of the subjects to the treatments is 
performed separately for each block (site or condition) because it is thought 
that there may be an effect of the blocks on the outcome variable. If the 
subjects were randomly assigned ignoring the blocks, as in a completely 
randomized design, there is a chance that the block effects might be con­
founded with the treatment effects. Hence the random assignment is done 
separately. 

The data in Table 14.4 are from a randomized block design with five 
replicates per cell. The data are the changes in weight for moderately 
overweight female employees who participated in weight reduction pro­
grams. The women worked at one of two company sites, the headquarters 
or a manufacturing plant. At each site, after a semiannual health examina­
tion, the women were randomly given memberships to a diet clinic, a 

n n l Difference between Pre- and Postintervention Weights CPounds) after 
6 Months of Participation by Intervention Program at Two Sites 

Program Office site Factory site 

Diet clinic 
Exercise club 
Both programs 

6 2 
3 4 
8 12 

10 
- 2 

7 

- 1 
6 

10 

8 
- 2 

5 

3 15 4 
- 4 6 8 
15 8 10 

8 
- 2 
16 

6 
3 
3 
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health club, or both. There was a control for company site because it was 
thought that there may be a difference in the effects of the weight reduc­
tion programs between those who were less physically active—the head­
quarters group—and the women in the plant. After the next health exami­
nation, weight reduction was measured. 

In this table, data are classified by program, the row variable, and site, 
the column variable. The type of intervention program is the treatment 
variable with three levels, and site is considered to be the blocking variable 
with two levels. These two independent variables form six cells and the 
cells all have the same number of observations. When the same number of 
observations is in each cell, the design is said to be balanced. The analysis 
of unbalanced data is more complicated and is not discussed here. 

The entries in Table 14.4 can be represented symbolically as y^, where 
i is an indicator of the program (the row variable), ; represents the site (the 
column variable), and k indicates the subject number within the ith pro­
gram and ;th site. The first subscript ranges from 1 to 3, the second sub­
script has the value 1 or 2, and the third subscript ranges from 1 to 5. 

We continue to use the · notation. For example, y.\. represents 
ΣΖ·Σ* yak, the sum of weight losses for the female employees at the office 
site. With this notation, the sample mean of the ith level of the program 
variable is y,.., the sample mean of the ;th level of the site variable is y7., 
and the overall sample mean is y.... The values of these sample means 
follow: 

Program means Site means Overall mean 

Diet 6.10 Office 5.07 5.83 
Exercise 2.00 Factory 6.60 
Both 9.40 

To analyze this data set, we use a two-way ANOVA. The method of 
analysis is called two-way because there are now two independent vari­
ables: the blocking variable with c levels and the treatment variable with r 
levels. The total sum of squares of the dependent variable about its mean is 
now partitioned into a sum of squares between treatment groups, a sum of 
squares between blocks, and the within-cell (error or residual) sum of 
squares. This partitioning, based on m observations per cell, is 

r e m r c 

ΣΣΣ (vm - y···)2 = cm Σ (y.·· - y···)2 + ™ Σ (y> - y··)2 + ssw. 
i = l 7=1 *=1 i = l 7=1 

The total variation of Y about its mean (SST) is partitioned into the sum 
of squares for the row or treatment variable (SSR), the sum of squares for 
the column or block variable (SSC), and the within or residual sum of 
squares (SSW). SSW is found by subtracting the sum of SSR and SSC from 
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SST. The value of SSR is 

SSR = 2 * 5 [(6.10 - 5.83)2 + (2.00 - 5.83)2 + (9.40 - 5.83)2] = 274.9. 

The value of SSC is similarly found and is 

SSC = 3 * 5 [(5.07 - 5.83)2 + (6.60 - 5.83)2] = 17.56. 

Too many terms are involved to show the calculation of SST, but its value is 
768.2 and SSW, found by subtraction, is 475.7. 

We use the same approach to the analysis in the two-way ANOVA as 
was used in the one-way ANOVA. To test the hypothesis of no difference 
in the treatments, we use the F statistic calculated as the ratio of the mean 
square for treatment to the residual mean square. If the null hypothesis of 
no difference in the treatment means, adjusted for the blocking variable, is 
true, this F statistic follows the F distribution. The mean square for treat­
ments has r - 1 degrees of freedom and the residual mean square has 
n - r - c + 1 [= n - (r - 1) - (c - 1) - 1] degrees of freedom. Thus the F 
statistic for the treatment variable will follow an F distribution with r - 1 
and n — r — c + 1 degrees of freedom if there is no difference in the 
treatment group means. In the same way, we could also test the null 
hypothesis of no difference in the block means. The F statistic associated 
with this hypothesis follows the F distribution with c - 1 and n - r — c + 1 
degrees of freedom if this null hypothesis is true. Usually, we are not as 
interested in the hypothesis about the block means as in the treatment 
group means. 

The ANOVA table for a randomized block design with m replicates per 
cell is shown in Table 14.5. 

Let us perform the test of no treatment effect, that is, of no difference 
in the population means associated with the three interventions at the 0.05 

.significance level. The analysis for the change in weight data is shown in 
Table 14.6. As the calculated F value of 7.51 is greater than the critical value 
of 3.37 (= £2,20,0.95)/ w e reject the null hypothesis and conclude that the 
intervention programs are significantly different. We are not interested in 
the site difference. 

ANOVA Table for a Randomized Block Design 

Source of Degrees of Sum of 
variation freedom squares Mean square F 

Treatments r - 1 SSR SSR/(r - 1) = MSR MSR/MSW 
Blocks c - 1 SSC SSC/(c - 1) = MSC MSC/MSW 
Residual n - r - c + 1 SSW SSW/(rc - r - c + 1) = MSW 

Total (corrected) n - 1 SST 
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ANOVA Table for Weight Change Data from Table 14.4: Three 
Intervention Programs at Two Sites 

Source of 
variation 

Between programs 
Between sites 
Residual 

Total 

Degrees 
freedom 

2 
1 

26 

29 

of Sum of 
squares 

274.9 
17.6 

475.7 

768.2 

Mean square 

137.4 
17.6 
18.3 

F 

7.51 

The weight change data in Table 14.3 are entered in cl along with the site identification in c2 and the 
treatment identification in c3. 
MTB > twoway cl-c3; 
SUBO additive; 
SUBO means c2 c3. 
The ADDITIVE subcommand means that the only sources of variation being considered are treatment, 
block, and residual. If we had not used this subcommand, another source of variation, the interaction of 
the treatment and site variables, would have been included. Interaction is discussed in the next section. 
The MEANS subcommand causes the dependent variable means and confidence intervals to be created 
for the levels of the specified independent variables. 
ANALYSIS OF VARIANCE Cl 

MS 
17.6 
137.4 
18.3 

SOURCE 
C2 
C3 
ERROR 
TOTAL 

DF 
1 
2 
26 
29 

SS 
17.6 

274.9 
475.7 
768.2 

C2 
1 
2 

Mean 
5.07 
6.60 

Individual 95% CI 
— + + 

— + -
3.00 

-+-
4.50 

-+-
6.00 7.50 

C3 
1 
2 
3 

Mean 
6.1 
2.0 
9.4 

Individual 95% CI 
+ + 

+_ 
0.0 

+ +_ 
( * ) 

) 
( * 

+ + +_ 
3.5 7.0 10.5 
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Box 14.3 shows how to conduct the preceeding analysis using MINI-
TAB. As MINITAB does not know which of the two independent variables 
is of primary interest, it does not calculate the F statistic for us. The confi­
dence intervals for the treatment variable, c3, support the finding of a 
difference in the treatment group means at the 0.05 significance level. 
There is no overlap for groups 2 and 3. It appears that using both types of 
intervention is the most effective intervention. 

What would have happened had we ignored the site variable in the 
above analysis? If we assume that we would have had the same assign­
ment of the subjects to the different treatments, we can examine the effect 
of the use of the blocking variable. The residual sum of squares in the two-
way ANOVA is less than or equal to the residual sum of squares in the 
corresponding one-way ANOVA, reflecting the removal of the between-
blocks sum of squares. If the sum of squares between the blocks is large 
and its degrees of freedom are small, then the residual mean square is 
much smaller in the two-way ANOVA. This means that if the blocking 
variable is important, there is a greater chance of detecting a difference in 
the treatment group means using the two-way ANOVA than using the 
corresponding one-way ANOVA. 

In the next section, we show a more general two-way analysis of vari­
ance that includes the interaction of the two independent variables. 

V. TWO-WAY ANOVA WITH INTERACTION 

In some instances, a researcher is interested in studying the effects of two 
factors. In these instances, the experimental subjects are randomly allo­
cated to all combinations of levels of both factors. For example, if both the 
row and column factors have two levels each, then the subjects are ran­
domly allocated to four groups. This type of experimental design is espe­
cially useful when we want to study the effects of each factor as well as the 
interaction effect of the factors with one another. Interaction exists when the 
differences in responses to the levels of one factor depend on the level of 
another factor. For example, in a study of byssinosis (brown lung disease) 
in textile workers in North Carolina (7), two variables of interest were 
whether the worker smoked and whether the worker was exposed to dust 
in the workplace. Both of these variables were important; that is, both 
smoking and exposure to dust were associated with a higher occurrence of 
byssinosis. In addition, if a worker smoked and also was exposed to the 
dust, the occurrence of byssinosis was much higher than would have been 
expected by simply adding the effects of the smoking and exposure vari­
ables. In this case, there is a synergistic effect, that is, an interaction of 
these two independent variables. 
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Increase in Test Scores after 4 Weeks of Instruction Using Three 
Textbooks and Two Teaching Methods 

Textbook 

1 
2 
3 

Lecture 

30 
21 
42 

43 
26 
30 

12 
10 
18 

18 
14 
10 

Method of instruction 

22 
17 
21 

16 
16 
18 

Discussion 

36 
33 
41 

34 
31 
46 

15 
28 
19 

18 
15 
23 

40 
29 
38 

45 
26 
48 

We have previously been concerned about interaction, although we 
did not use the term interaction, when we considered the Cochran-
Mantel-Haenszel procedure. We said that the procedure should not be 
used when the odds ratios were not consistent across the subtables. If the 
odds ratios are not consistent, this means that the relationship between the 
dependent and independent variables depends on the levels of an extrane­
ous or confounding variable; that is, there is interaction between the inde­
pendent and extraneous variables. If the interaction exists, it does not 
make sense to talk about an overall effect of the independent variable 
because its effect varies with the level of the extraneous or confounding 
variable. 

The data in Table 14.7 are from a two-factor experiment in a health 
education teacher training program. Three new textbooks (factor A) were 
tested with two methods of instruction (factor B) and 36 trainees were 
randomly allocated to the 6 groups with 6 subjects per group. The trainees 
were tested before and after 4 weeks of instruction and the increases in test 
scores were recorded as shown in the table. As in the randomized block 
design, data are classified by textbook, the row factor, and method of 
instruction, the column factor. In this experiment, the random allocation of 
subjects was done simultaneously to all combinations of the two sets of 
levels, whereas the randomization took place separately in each block in 
the randomized block design. 

The entries in this table are also represented symbolically by yl;fc as in 
the randomized block design with replicates. Several means again are used 
in the analysis. The means here include the cell means (yi;.); two sets of 
marginal means, row (yz..) and column (y ; ) ; and the overall mean (y.). 
The values of these means follow: 

Textbook 

1 
2 
3 
Marginal method means 

Methods 

Lecture 

23.50 
17.33 
23.17 
21.33 

of instruction 

Discussion 

31.33 
27.00 
35.83 
31.39 

Marginal 
book means 

27.42 
22.17 
29.50 
26.36 (overall mean) 
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We analyze this data set using a two-way ANOVA with interaction. 
For the randomized block design, we used a two-way ANOVA ignoring 
interaction. The researcher for this experiment could have used two sepa­
rate completely randomized experiments (one-way ANOVAs): one to com­
pare the three textbooks and the other to compare the two types of instruc­
tional methods. Based on these two separate experiments, however, the 
researcher would not know whether any textbook works better with one 
instructional method than the other. The effects of the textbooks may differ 
across the instructional methods. Interaction measures the difference in 
the textbook effects across the two instructional methods. If the distribu­
tion of the mean increase in test scores for the three textbook types for 
those taught by lecture differs from the corresponding distribution for 
those taught by discussion, there is interaction. The average effects of 
textbooks across both types of instruction and the average instructional 
effects across all textbooks are measures of the main effects of the two 
independent variables. 

If there is an interaction of the two independent variables, then usually 
the interaction terms are of more interest than the main effects of the two 
independent variables. This is because, if there is an interaction, the effect 
of one independent variable depends—it changes—as the level of the 
other independent variable changes. Hence, in our analysis, we must first 
examine the test of hypothesis that there is no interaction before consider­
ing the test of no main effects of the independent variables. 

If there is interaction, we can examine the cell means in an attempt to 
discover the nature of the interaction. If there is no evidence of an interac­
tion, then we consider the hypotheses about the main effects. In this case, 
some statisticians would remove the interaction term from the analysis, 
that is, incorporate its sum of squares and degrees of freedom into the error 
term before calculating the F statistics for the main effects. The decision to 
incorporate or not to incorporate the nonsignificant interaction term into 
the error term usually has little effect on the results. 

To include interaction in the analysis, the total sum of squares (SST) of 
the dependent variable about its mean is now partitioned into a sum of 
squares for the row factor R (SSR), a sum of squares for the column factor C 
(SSC), a sum öf squares for interaction between factor R and factor C 
(SSRC), and the error sum of squares (SSE). As before, we use the symbols 
r and c for the numbers of levels for factors R and C, respectively, and use 
m to represent the number of replicates in each of the cells formed by the 
crosstabulation of factors R and C. This partitioning of the total sum of 
squares is expressed symbolically as 

r e m r c 

Σ Σ Σ (ytjk - y···)2 = αηΣ (#■■ - y···)2 + ^ Σ (y-y - y-)2 

i = l 7=1 it=l i = l ; = 1 
r e r e m 

+ m Σ Σ (VÌI- - Vi- - y-i- + y···)2 + Σ Σ Σ (y.·,·* - yi/·)2· 
1=1 ; ·=1 i = l 7 = 1 * = 1 
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ANOVA Table for a Two-Factor Design with Interaction 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares Mean square 

Factor R 
Factor C 
Interaction 
Error 

Total (corrected) 

Y - 1 
c- 1 
(r - l)(c -
n - re 

n - 1 

- i ) 

SSR 

ssc 
SSRC 
SSE 

SST 

SSR/(r - 1) = MSR 
SSC/(c - 1) = MSC 
SSRC/(r - l)(c - 1) = 
SSE/(n - re) = MSE 

MSRC 

MSR/MSE 
MSC/MSE 
MSRC/MSE 

The rest of the analytic approach is the same as before. The mean 
squares for the main effects and the interaction are calculated by dividing 
the sums of squares by appropriate degrees of freedom. The mean squares 
for factors R and C have r - 1 and e - 1 degrees of freedom, respectively. 
The mean square for interaction has (r - l)(c - 1) degrees of freedom, and 
the error mean square has n - re [= rc(m - 1)] degrees of freedom. The 
error mean square is then used as the denominator in the calculation of the 
F statistics for the two main effects and interaction. The ANOVA table for a 
two-factor experimental design with interaction is shown in Table 14.8. 

The calculations of the sums of squares, similar to those shown above 
in the randomized block analysis, are not shown here, but are summarized 
in Table 14.9. 

Let us perform the tests of hypotheses at the 0.05 significance level. 
The F statistic and its associated p value for interaction indicate that there is 
no statistically significant interaction of the two independent variables. As 
this is the case, we can now examine the F statistics associated with the 
hypotheses of no difference in the test score improvement between the two 
methods of instruction and among the three textbooks. There is a statisti­
cally significant effect for the methods of instruction, a p value less than 
0.05, but no significant effect associated with the textbooks. 

ANOVA Table for Test Score Increase Data in Table 14.6 by 
Combinations of Three Textbooks and Two Methods of Instruction 

Source 
Degrees of 
freedom 

Sum of 
squares Mean square p value 

Textbooks 
Methods of instruction 
Interaction 
Error 

2 
1 
2 

30 

342.7 
910.0 
35.7 

3099.8 

171.4 
910.0 

17.9 
103.3 

1.66 
8.81 
0.17 

0.207 
0.006 
0.842 

Total 35 4388.3 
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If we had removed the interaction term from the analysis after finding 
that it was not important, the error sum of squares would have been 3135.5 
(= 35.7 + 3099.8) and there would have been 32 degrees of freedom associ­
ated with this error sum of squares. The error mean square would have 
been 97.98 instead of 103.3 and the F ratios for textbooks and methods of 
instruction would have been 1.75 and 9.29, respectively. 

Let us explore further the preceding analytical results in relation to the 
cell means that were calculated above and are repeated here for our con­
venience. 

Textbook 

Methods of instruction 

Lecture Discussion 
Marginal 
book means 

1 23.50 31.33 
2 17.33 27.00 
3 23.17 35.83 
Marginal method means 21.33 31.39 

27.42 
22.17 
29.50 
26.36 (overall mean) 

The lack of a significant main effect for textbooks is reflected in the mar­
ginal means for textbooks. The first and third textbooks appear to be a little 
more effective than the second book, but the ANOVA results indicated 
that these differences are not statistically significant. On the other hand, 
the discussion method was associated with a much greater increase, about 
10 points, in test scores than the lecture method and this difference was 
statistically significant. The lack of an interaction effect is reflected in the 
cell means that are plotted in Figure 14.2. 

36.0 

30.0 

8 
co 

24.0 

18.0 + 

H-
050 1.00 

H 
2 5 0 

H 
3.00 150 2.00 

Textbook 

Plot of mean scores by methods of instruction on three textbooks. A, lecture method; B, 
Discussion method. 
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Interaction measures the degree of similarity between the responses to 
factor A at different levels of factor B. The lines connecting the three cell 
means for the discussion method are roughly parallel with the lines con­
necting cell means for the lecture method, reflecting the absence of interac­
tion. If these two lines were not parallel or crossed each other, then the 
interaction effect would have been statistically significant. If a significant 
interaction is present, we need to examine the cell means carefully to draw 
appropriate conclusions. 

Box 14.4 shows how to conduct a two-factor ANOVA with interaction 
by computer software for the above data. As shown in the box, a two-way 
ANOVA can be used with or without interaction, which suggests that we 
need to specify the model to be used in the analysis. The choice of a model 
is dependent on how the data are collected and how we consider each 
effect to be specified. We consider this modeling aspect of ANOVA in the 
next section. 

The test score data in Table 14.6 are entered in cl along with the level designation of factor A (textbooks) 
in c2 and the level designation of factor B (methods of instruction) in c3. The command TWOWAY is 
used without the subcommand ADDITIVE in order to include interaction in the analysis. 
MTB > twowaj/ 
SUBO means 
ANALYSIS OF 
SOURCE 
C2 
C3 
INTERACTION 
ERROR 
TOTAL 

C2 
1 
2 
3 

C3 
1 
2 

r cl-c3; 
c2 c3. 
VARIANCE 
DF 
2 
1 
2 
30 
35 

Mean 
27.4 
22.2 
29.5 

Mean 
21.3 
31.4 

Cl 
SS 
343 
910 
36 

3100 
4388 

Individual 

( 

20 

-+-

.0 
Individual 

(-

20 

-+-

-+-
.0 

MS 
171 
910 
18 
103 

95% 

( — 
— * — 

. 95% 

—* 

CI 
+ 

/ \ 
25.0 
CI 

+ 
) 
( 

+ 
25.0 

+_. 
._# 
— ) 

+ -
30.0 

+_. 

30.0 

+ 
) 

\ I 
+ 

35.0 

+ 

* \ 

35.0 
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VI. LINEAR MODEL REPRESENTATION OF THE ANOVA 

In the ANOVA, we have partitioned the sum of squares of Y about its 
mean into within and between components in the completely randomized 
design or into treatment, blocking, and within components in the random­
ized block design. Underlying these partitions are linear models that show 
the relationship between the dependent variable and the independent 
(treatment and/or blocking) variables. In the following sections, we show 
these models as well as the model with interaction. From these models, we 
can also see that it is possible to extend the ANOVA method of analysis to 
include combinations of the independent variables as well as including 
more than two independent variables. 

A. Linear Model for the Completely Randomized Design 

One representation of the linear model underlying the completely random­
ized design shows the dependent variable being equal to a constant plus a 
treatment effect plus individual variation, that is, 

yij = μ + ai + Sij 

for z ranging from 1 to r and ; going from 1 to n,·. The value of the ;th 
observation of the dependent variable at the zth treatment level is yi;. There 
are r levels of the treatment variable and n{ observations of Y at the zth 
treatment level. The constant is represented by μ and the effect of the zth 
treatment level is represented by a*. As not everyone who has received the 
zth level of treatment will have the same value of the dependent variable, 
this individual variation, the departure from the sum of μ plus aif is repre­
sented by Sij. 

Note that this model can be rewritten as 
yij = μ + Xij * ai + εη 

where Χη is an indicator variable which has the value of 1 if the z/th subject 
has received the zth level of the treatment and zero otherwise. The x vari­
able here simply indicates which level of treatment the person has re­
ceived. We not use this representation of the model here, but refer to it in 
the next chapter. 

In this linear model, there are r + 1 population parameters: the con­
stant μ and the ras; however, there are only r different treatment levels or 
groups. As we can only estimate the same number of parameters as there 
are groups, to obtain estimators for r of the parameters, we must make 
some assumption about them. The appendix on the linear model in Fortho-
fer and Lehnen (8) provides a presentation of a number of assumptions 
that we could make. In this book, we measure the effect of the treatment 
levels from the effect of the rth treatment level. This means that ar is 
assumed to be zero. 
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Now let us rewrite the linear model in terms of the population means. 
The equation for the ith level becomes 

μιr = μ + ai 

and the representation of the model for all r levels is 
μ1 = μ + «i 
μ2 = μ + α2 

Mr-l = M + «r-l 
Mr = M-

From these equations, we can see that the constant term is the mean of the 
rth level, and the effects of the other levels, a\, a2, . . ., ar-i, are measured 
from μΎ (or μ). For example, using the first of these equations to solve for 
OL\, we have 

Oil = μι - μ = μι ~ μ^ 

This equation makes it clear that we are measuring the effects of the first 
level relative to the effect of the rth level and the same is true for levels 2 
through r - 1. 

The sample estimator of the ith effect, aif is obtained by substituting 
the sample means for the population means: 

ài = y«. - Vr-

and the estimator of μ is simply yr.. 
The t test for comparing the means of two populations, assuming equal 

variances, also fits into the ANOVA framework. In this case, r is 2, and the 
above model still applies. 

B. Linear Model for the Randomized Block Design with m Replicates 

A linear model underlying the randomized block design has the dependent 
variable being equal to a constant plus the effect of the ith level of the 
treatment variable plus the ;th block effect plus the individual variation 
term. In symbols, this is 

j/ijk = μ + oii + ßj + Bijk 

where i goes from 1 to r, j ranges from 1 to c, and k ranges from 1 to m. 
Just as in the completely randomized situation, the effects of the levels 

of the treatment variable are measured relative to the rth level of the treat­
ment variable. In the same way, the effects of the levels of the blocking 
variable are measured relative to the cth level of the blocking variable. 
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The definition of the parameters in terms of the /xi; is complicated and 
is not shown for this model, but is shown for the model in the next section. 

C. Two-Way ANOVA with Interaction 

The model for this situation is similar to the above two-way ANOVA 
model except that it includes the interaction term, denoted by αβψ in the 
model. The model is 

yijk = μ + a{ + ßj + aßij + eijk 

where i goes from 1 to r, ; ranges from 1 to c, and k ranges from 1 to m. 
The main effect terms in the model, the OLÌ and the ßj, again are all 

measured relative to their last level. The representation of this model in 
terms of the cell means, the μ,ί;, for the first row is 

μη = μ + « i + 0ι + αβη 

μ12 = μ + α1 + β2 + αβη 

μ1ε = μ + « ι . 
Note that there is no ßc term nor any aß\c terms in the last equation above. 
As the cth level is the reference level for the column variable, ßc is taken to 
be zero. In addition, interaction terms having either an r or a c as a sub­
script are reference levels and these interaction terms are also assumed to 
be zero. This pattern is repeated for the other rows except the last one. 

μι\ = μ + «2 + βι + aß2i 
μιι = μ + «2 + βι + oißn 

μΐε = μ + OL2 

μη = μ + βι 
μγ2 = μ + β2 

μ-rc = μ 
For the cells in the rth row, no ar effect is shown as the rth level is the 
reference level for the row variable and ar is taken to be zero. There are also 
no aßaj terms in the last row, as the rth level is also a reference level for the 
interaction terms. 
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Using these equations, we obtain the following definitions of the pa­
rameters (μ, a, ß, and aß) in terms of the cell means. For example, from 
the last equation above, we see that the constant term in the model is 
simply the mean of the cell formed by the rth row and cth column, that is, 
μ = &rc-

Once we have expressed μ in terms of the cell means, we can find the 
estimate of a,· from the equation /xzc = μ + a,·. This gives the solution that 
oii = μίε - ßrc where we have replaced μγο for μ. This definition for a, is 
reasonable as it compares the mean of the cell in the ith row and cth 
column with the mean of the cell in the rth row and cth column. It is 
comparing a cell in the ith row with its reference cell in the rth row. The 
column effect, ßj, is similarly defined as ßj = μ^ - μΐ€· 

The definition of the interaction term is αβη = (μΐ; - μΪ€) - (μΓ; - μτε). 
The rcth cell is the reference cell and the other parameters are defined in 
terms of it. The ijth interaction parameter focuses on the difference of the 
jth and cth columns, and compares that difference for the ith and rth rows. 
If there is no interaction, the difference of the ;th and cth columns is the 
same over all the rows. 

VII. CONCLUDING REMARKS 

In this chapter we presented several basic models of analysis of variance. 
One-way ANOVA is used to analyze data from a completely randomized 
experimental design. Two-way ANOVA can be used for a randomized 
block design as well as for a two-factor design with interaction. To use 
these analytical methods properly, we need to be aware of how the data 
are collected and to make sure that the data collection design warrants the 
assumptions involved in the ANOVA. In the next chapter, we expand the 
linear model to regression models. 

EXERCISES 

14-1. The data shown below, taken from Brogan and Kutner (9), are the 
change in the maximal rate of urea synthesis (MRUS) level for cir-
rhotic patients who underwent either a standard operation (a nonse-
lective shunt) or a new procedure (a selective shunt). The purpose of 
the operations was to improve liver function, measured by MRUS. A 
low value of MRUS is associated with poor liver function. Patients in 
the nonselective shunt group are divided into two groups based on 
their preoperative MRUS values (^ 40 and > 40). 

Perform an analysis of variance of these data at the 0.05 signifi­
cance level to determine if there is a difference in the three groups. If 
there is a significant difference, use an appropriate multiple compari­
son procedure to find the source of the difference. 
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Group 

Selective shunt 
Nonselective shunt I 
Nonselective shunt II 

Change in MRUS 
(mg urea N/hr/kg body weight) by 

- 3 
- 1 8 
- 2 4 

20 
- 4 
- 7 

- 6 
-18 
-15 

- 5 
- 1 8 

4 

group 

- 3 
- 6 

- 1 4 

- 3 
- 1 8 
- 8 

- 6 

- 1 1 

12 

14.2. In Chapter 13, we used the t test to compare the proportions of 
caloric intake from fat for fifth and sixth grade boys with those for 
seventh and eighth grade boys. The calculated i-test statistic was 
0.727. Perform a one-way ANOVA on the data in Table 7.5 and 
compare your results with the f-test approach. How does the t statis­
tic compare with the F statistic? 

14.3. For the weight change data shown in Table 14.4, we were concerned 
about the level of physical activity of the women. Instead of using the 
site (headquarters or plant) as a way of controlling for physical activ­
ity, how else might we have controlled for the physical activity? Do 
you think that a control group (no intervention) should have been 
used? Explain your reasoning. Would you do anything to determine 
whether the women used the memberships? What, if any, other 
variables should be included in the analysis? 

14.4. To investigate publication bias, 75 referees for one journal were ran­
domly assigned to receive one of five versions of a manuscript (10). 
All versions were identical in the Introduction and Methods sections 
but varied in either the Results or Discussion sections. The first and 
second groups received versions with either positive or negative 
results, respectively. The third and fourth groups received versions 
with mixed results and either positive or negative discussion. The 
fifth group was asked to evaluate the manuscript on the basis of the 
Methods section and no data were provided. The referees used a 
scale of 0 to 6 (low to high) to rate different aspects of the manuscript. 
The average scores for three aspects are shown below: 

Manuscript version 

Positive results 
Negative results 
Mixed results with 

discussion 
Mixed results with 

discussion 
Methods only 

positive 

negative 

Number of 
referees 

12 
14 
13 

14 

14 

Methods 

4.2 
2.4 
2.5 

2.7 

3.4 

Mean rating 

Scientific 
contribution 

4.3 
2.4 
1.6 

1.7 

4.5 

Publication 
merit 

3.2 
1.8 
0.5 

1.4 

3.4 
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State an appropriate linear model for this experiment using scientific 
contribution as the dependent variable. What are the null and alter­
native hypotheses of interest for this model? Assuming that the stan­
dard deviations for the scientific contribution score for the five 
groups are 1.1, 0.9, 0.7, 0.8, and 1.1, respectively, perform an analy­
sis of variance of these data at the 0.05 significance level to determine 
if there is a bias in refereeing scientific papers for this journal. If there 
is a significant difference, use an appropriate multiple comparison 
procedure to find the source of the bias. State your conclusions 
clearly. 

14.5. In an investigation of the effect of smoking on work performance 
under different lighting conditions in a large company, a random 
sample of nine male workers was selected from each of the three 
smoking status groups: nonsmokers, moderate smokers, and heavy 
smokers. Each sample was randomly assigned to three working envi­
ronments with different levels of lighting. The time to complete a 
standard assembling task was recorded in minutes. The sums of 
squares were as follows: 

Degrees Sum of 
Source of freedom squares Mean square F 

Smoking status 84.90 
Lighting conditions 298.07 
Interaction 2.81 
Error 59.25 

Total 445.03 

Perform an analysis of variance for these data to examine the interac­
tion of the variables at the 0.05 significance level. If there is no signifi­
cant interaction, test whether the smoking and lighting condition 
variables have significant effects on the workers' performance and 
state your conclusions. 
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Linear and Logistic 
Regression 

I n this chapter we present methods for examining the relationship be­
tween a response or dependent variable and one or more predictor or 
independent variables. The methods are based on the linear model intro­
duced in Chapter 14. In linear regression, we examine the relationship 
between a normally distributed response or dependent variable and one or 
more continuous predictor or independent variables. In a sense, linear 
regression is an extension of the correlation coefficient. Although linear 
regression was created for the examination of the relationship between 
continuous variables, in practice, people often use the term linear regression 
even when continuous and discrete independent variables are used in the 
analysis. In logistic regression, we examine the relationship between a 
binary dependent variable and one or more independent variables. 

Linear regression and logistic regression are two of the more frequently 
used techniques used in statistics today. These methods are often used 
because problems, particularly those concerning humans, usually involve 
several independent variables. For example, in the creation of norms for 
lung functioning, age, race, and sex are taken into account. Linear regres-

409 
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sion is one approach that allows multiple independent variables to be used 
in the analysis. In the linear regression model, the dependent variable is 
the observed pulmonary function test value and age, race, and sex are the 
independent variables. As another example, in an attempt to identify risk 
factors—variables related to the occurrence of the disease—many variables 
are considered. Logistic regression is an approach that allows many possi­
ble risk factors to be considered simultaneously. In logistic regression, the 
dependent variable is disease status (presence or absence) and the poten­
tial risk factors are included as the independent variables. 

I. SIMPLE LINEAR REGRESSION 

Simple linear regression is used to examine the relationship between a 
normally distributed dependent variable and a continuous independent 
variable. An example of a situation in which simple linear regression is 
useful is the following. 

Some physicians believe that there should be a standard, a value that 
only a small percentage of the population exceeds, for blood pressure in 
children (1). When a standard is used, it is desirable that it be easy for the 
physician to determine quickly and accurately how the patient relates to 
the standard. Therefore, the standards should be based on a small number 
of variables that are easy to measure. As it is known that blood pressure is 
related to maturation, the variables used in the development of the stan­
dard should therefore reflect maturation. Two variables that are related to 
maturation and are easy to measure are age and height. Of these two 
variables, height appears to be the more appropriate variable for the devel­
opment of standards (2-4). Because of physiological differences, the stan­
dards are developed separately for females and males. In the following, we 
focus on systolic blood pressure (SBP). 

In developing the standards, we are going to assume that the mean 
SBP for girls increases by a constant amount for each one-unit increase in 
height. The use of the mean instead of the individual SBP values reflects 
the fact that there is variation in the SBP of girls of the same height. Not all 
the girls who are 50 in. tall have the same SBP; their SBPs vary about the 
mean SBP of girls who are 50 in. tall. The assumption of a constant increase 
in the mean SBP for each one-unit increase in height is characteristic of a 
linear relationship. Thus, in symbols, the relationship between Y, the SBP 
variable, and X, the height variable, can be expressed as 

Mr|x = A) + X * βι 
where μγ\χ is the mean SBP for girls who are X units tall, β0 is a constant 
term, and βι is the coefficient of the height variable. The β0 coefficient is the 
Y intercept and βι is the slope of the straight line. 
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In general, the X variable shown in the above expression may repre­
sent the square, the reciprocal, the logarithm, or some other nonlinear 
transformation of a variable. This is acceptable in linear regression because 
the expression is really a linear combination of the β/s, not of the indepen­
dent variables. 

The above equation is similar to the linear model representation of 
ANOVA. In the ANOVA model, values of the X variables, 1 or 0, indicate 
which effect should be added in the model. In the regression model, the 
values of the X variable are the individual observations of the continuous 
independent variable. The parameters in the ANOVA model are the effects 
of the different levels of the independent variable. In the regression model, 
the parameters are the Y intercept and the slope of the line. 

Figure 15.1 shows the graph of this simple linear regression equation. 
The ® symbols show the values of the mean SBP for the different values of 
height we are considering. As we can see, a straight line does indeed have 
a rate of increase in the mean SBP that is constant for each one-unit in­
crease in height. The ■ symbols show the projected values of the mean SBP 
assuming that the relationship holds for very small height values as well. It 
is usually inappropriate to estimate the values of μγ\χ for values of X 
outside the range of observation. The point at which the projected line 
intersects the μγ\χ axis is β0. As βι is the amount of increase in μΥ\χ for each 
one-unit increase in X, the bracketed change in μΥ\χ is 8 βι because X has 
increased 8 units from χλ to x2. Note that if the regression line is flat, that is, 
parallel to the X axis, there is no change in μΎ\χ regardless of how much X 
changes. Thus, if the regression line is flat, then β1 is zero and there is no 
linear relationship between μγ\χ and X. 

If we wish to express this relationship in terms of individual observa­
tions, we must take the variation in SBP for each height into account. The 
model that does this is 

y/ = A) + Xißi + e,· 

8ß1 

ß0 ■ 8 -

Xi Χ2 

Values of X, the Height Variable 
Line showing the regression of μΥ\χ on X. 
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where εζ represents the difference between the mean SBP value at height x{ 
and the SBP of the /th girl who is also x{ units tall. The ε term is also 
referred to as the residual or error term. 

Knowledge of βο and β\ is necessary in developing the standards for 
SBP; however, we do not know them and we have to collect data to esti­
mate these values. 

II. ESTIMATION OF THE COEFFICIENTS 

There are a variety of ways of estimating βο and β\. We must decide on 
what criterion we will use to find the "best" estimators of these two coeffi­
cients. Possible criteria include minimization of the following: 

1. The sum of the differences of y,· and y,·, where y, is the observed 
value of the SBP and y, is the estimated value of the SBP for the 
/th girl. The value of y,· is found by substituting the estimates of 
βο and β\ in the simple linear regression equation, that is, y,· = 
jâo + Xißi, where xz is the observed value of height for the /th girl. 

2. The sum of the absolute differences of yz and y,·. 
3. The sum of the squared differences of y,· and y,·. 
Based on considerations similar to those discussed in Chapter 4 in the 

presentation of the variance, we are going to use the third criterion to 
determine our "best" estimators.1 

Thus our estimators of the coefficients will be derived based on the 
minimization of the sum of squares of the differences of the observed and 
estimated values of SBP. In symbols, this is the minimization of 

Σ (y, - y.)2· 
i 

The use of this criterion provides estimators that are called least squares 
estimators because they minimize the sum of squares of the differences. 

The least squares estimators of the coefficients are given by 
n n 

Σ (*/ - x)(yi - y) Σ */y/ - nxy 
o - tl tl 
Pi - n - ~~n 

and 
Σ (*i - *)2 Σ xi2 - nx2 

ßo = y - βιχ. 
lrThe first criterion can be made to equal zero by setting βι to zero and letting ßQ equal the 
sample mean. The use of the absolute value yields interesting estimators, but the testing of 
hypotheses is more difficult with these estimators. 
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The second formula for ß\ is provided because it is easier to calculate. Let 
us use these formulas to calculate the least squares estimates for the data in 
Table 15.1. The hypothetical values of the SBP and height variables for the 
50 girls are based on data from NHANES II (4). 

The value of ß\ is found from 
n 

_ Σ * y i - "xy _ 269902 _ 5 0 , 5 2 5 , 1 0 1 5 _ n ^ 
& - ^ — : - 142,319 - 50 * 52.52 " ° ·7 6 8 8 · 

2J Xi ~ nx 

The calculation of β0 is easier to perform, and its value is found from 

yâ0 = y - ßix = 101.5 - 0.7688 * 52.5 = 61.138. 
The estimated coefficient of the height variable is about 0.8. This means 

that there is an increase of 0.8 mm Hg in SBP for an increase of 1 in. in 
height for girls between 36 and 69 in. The estimate of the ßo coefficient is 
about 60 mm Hg and that is the Y intercept. When the regression line is 
projected beyond the data values observed, the Y intercept gives the value 
of SBP for a girl 0 in. tall; however, it does not make sense to talk about the 
SBP for a girl 0 in. tall, and this shows one of the dangers of extrapolating 
the regression line beyond the observed data. 

Hypothetical Data: SBP and Predicted SBPa Cmm Hg) and Height (in.) 
for 50 Girls 

SBP 

105 
90 
82 
96 
82 
74 

104 
100 
80 
98 
96 
86 
88 

128 
118 
90 

108 

Predicted 
SBP 

88.8 
89.6 
90.4 
90.4 
91.1 
91.1 
91.9 
91.9 
92.7 
93.4 
94.2 
95.0 
95.0 
95.0 
95.7 
96.5 
98.0 

Height 

36 
37 
38 
38 
39 
39 
40 
40 
41 
42 
43 
44 
44 
44 
45 
46 
48 

SBP 

120 
114 
78 

116 
74 
80 
98 
90 
92 
80 
88 

104 
100 
126 
108 
106 
98 

Predicted 
SBP 

98.0 
98.8 
98.8 
99.6 
99.6 

100.3 
101.1 
101.9 
102.7 
102.7 
102.7 
103.4 
104.2 
105.0 
105.7 
106.5 
106.5 

Height 

48 
49 
49 
50 
50 
51 
52 
53 
54 
54 
54 
55 
56 
57 
58 
59 
59 

SBP 

94 
88 

110 
124 
86 

120 
112 
100 
122 
122 
110 
124 
122 
94 

110 
140 

Predicted 
SBP 

106.5 
107.3 
107.3 
107.3 
108.0 
108.0 
108.8 
109.6 
110.3 
110.3 
111.1 
111.1 
111.9 
112.6 
112.6 
114.2 

Height 

59 
60 
60 
60 
61 
61 
62 
63 
64 
64 
65 
65 
66 
67 
67 
69 

"Predicted using the least squares estimates of the regression coefficients. 



LINEAR AND LOGISTIC REGRESSION 

125+ * * * 

+ + + + + + -
3 5 . 0 4 2 . 0 4 9 . 0 5 6 . 0 6 3 . 0 7 0 . 0 

Height (in.) 

Plot of SBP versus height for the 50 girls shown in Table 15.1. 

Figure 15.2 is a plot of SBP versus height for the data shown in Table 
15.1. From this plot, we can see that there is a slight tendency for the larger 
values of SBP to be associated with the larger values of height, but the 
relationship is not particularly strong. The squares show the path of the 
regression line. 

We can use the above estimates of the population coefficients in pre­
dicting SBP values for the hypothetical data shown in Table 15.1. For 
example, the predicted value of SBP for the first observation in Table 15.1, 
a girl 36 in. tall, is 

61.14 + 36 * 0.7688 = 88.82 mm Hg. 

The other predicted SBP values are found in the same way and they are 
also shown in Table 15.1. 

III. VARIANCE OF Y\X 

Before going forward with the use of the regression line in the develop­
ment of the standards, we should examine whether the estimated regres­
sion line is an improvement over simply using the sample mean as an 
estimate of the observed values. One way of obtaining a feel for this is 
to examine the sum of squares of deviations of Y from Ϋ, that is, 

Σ (y,· - yò2. 
ι = 1 

414 15 

X 
E 
E 

3 (/) 
CO 
CD 
a. 
■Ό 
o 
o 
m 
o 

C/D 
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If we subtract and add y in this expression, we can rewrite this sum of 
squares as 

Σ Ky.· - y) - (y.· - y)? 

and we have not changed the value of the sum of squares; however, this 
sum of squares can be rewritten as 

Σ (y.· - y.)2 = Σ (y. - y)2 - Σ (y- - y)2 
i = l i = l i = l 

because the crossproduct terms, (yz - y)(yi - y), sum to zero. In regression 
terminology, the first sum of squares is called the sum of squares about 
regression or the residual or error sum of squares. The second sum of squares, 
about the sample mean, is called the total sum of squares (corrected for the 
mean), and the third sum of squares is called the sum of squares due to 
regression. If we rewrite this equation, putting the total sum of squares 
(corrected for the mean) on the left side of the equal sign, we have 

Σ (y- - y)2 = Σ (y, - yd2 + Σ (y.· - y)2· 
i=l i = l f = l 

This equation shows the partition of the total sum of squares into two 
components, the sum of squares about regression and the sum of squares 
due to regression. 

Figure 15.3 is a graph that shows the differences, (yz - y), (yz - y,·), and 
(y, - y), for one yz. In Figure 15.3, the crosses are points representing the 
regression line and the horizontal line is the value of the sample mean. We 
have focused on the last point, the girl who is 69 in. tall and who has a SBP 
of 140 mm Hg. For this point, the deviation of the observed SBP of 140 from 
the sample mean of 101.5 can be partitioned into two components. The first 
component is the difference between the observed value and 114.2, the 
value predicted from the regression line. The second component is the 
difference between this predicted value and the sample mean. This parti­
tioning cannot be done for many of the points because, for example, the 
sample mean may be closer to the observed point than the regression 
line is. 

Ideally, we would like the sum of squares about the regression line to 
be close to zero. From the last equation above, we see that the sum of the 
square deviations from the regression line must be less than or equal to the 
sum of the square deviations from the sample mean; however, the direct 
comparison of the sum of squares is not fair as they are based on different 
degrees of freedom. The sum of squares about the sample mean has n - 1 
degrees of freedom as we discussed in the material about the variance. 
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X 
E 
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CD 
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CO 
CO 
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to 
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140 

105 -

Height (in 

Blowup of part of the regression line. 

Because we estimated two coefficients in obtaining the least squares esti­
mator of Y, there are thus n - 2 degrees of freedom associated with sum of 
squares about Ϋ. Thus, let us compare s\ with s\\x, that is, 

Σ (y.· - y)2 Σ (y< - yò2 

1 versus 

If Sy|x is much less than s\, then the regression was worthwhile; if not, 
then we should use the sample mean as there appears to be little linear 
relationship between Y and X. 

Let us calculate the sample variance of Y taking X into account. The 
sample variance of Y is 

Σ (y.· - y)2 
12,780 

5 0 - 1 49 
and the sample variance of Y given X is 

50 

Σ (yi - vif 

= 260.827 

ί=1 

50 
10,117 

48 = 210.772. 

Thus Sy|X is less than s\. The use of the height variable has reduced the 
sample variance from 260.827 to 210.772, about a 20 percent reduction. It 
appears that the inclusion of the height variable has allowed for somewhat 
better estimation of the SBP values. 
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IV. ff2, THE COEFFICIENT OF DETERMINATION 

An additional way of examining whether the regression was helpful is to 
divide the ratio of the sum of squares due to regression by the sum of 
squares about the mean, that is, 

Σ (y> - 0 Σ (Vi - y)2 - Σ (y, - y.·)2 

Σ (y.· - y)2 Σ (y.· - y)2 

If the regression line provides estimates of the SBP values that closely 
match the observed SBP values, this ratio will be close to one. If the regres­
sion line is close to the mean line, then this ratio will be close to zero. 
Hence, the ratio provides a measure that varies from 0 to 1, with 0 indicat­
ing no linear relationship between Y and X, and 1 indicating a perfect 
linear relationship between Y and X. This ratio is denoted by R2 and is 
called the coefficient of determination. It is a measure of how much of the 
variation in Y is accounted for by X. R2 is also the square of the sample 
Pearson correlation coefficient between Y and X. 

For the SBP example, the value of R2 is 

12,780 - 10,117 

—iw—= ° · 2 0 8 4 

Approximately 21 percent of the variation in SBP is accounted for by height 
for girls between 36 and 69 in. tall. This is not an impressive amount. 
Almost 80 percent of the variation in SBP remains to be explained. Even 
though this measure of the relationship between SBP and height is only 21 
•percent, it is larger than its corresponding value for the relationship be­
tween SBP and age. 

The derivation of the R2 term is based on a linear model which has both 
a β0 term and a βι term. If the model does not include β0, then a different 
expression must be used to calculate R2. 

The sample Pearson correlation coefficient, r, is defined as 

and its numerical value is 

Σ ta - *)(# - y) 
» = 1 

ν Σ te -1)2 Σ (Vi - y)2 

3464.5 . . . . . 
r = . = 0.4565. 

V4506.6 * 12780 
If we square r, r2 is 0.2084 which agrees with R2 as it must. 
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Although, symbolically, K2 is the square of the sample Pearson correla­
tion coefficient, R2 does not necessarily measure the strength of the linear 
association between Y and X. In correlation analysis, the observed pairs of 
values of Y and X are obtained by simple random sampling from a popula­
tion. Neither variable is thought to be dependent on the other and r mea­
sures the strength of the linear association between the two variables. In 
contrast, linear regression provides a formula that describes the linear 
relationship between a dependent variable and an independent variable(s). 
To discover that relationship, we often use stratified random sampling, 
that is, we select SRSs of Y for specified values of X; however, as Ranney 
and Thigpen (5) show, the value of R2 depends on the range of the values 
of X used in the analysis, the number of repeated observations at given 
values of X, and the location of the X values. Hence, although symbolically 
R2 is the square of the correlation coefficient between two variables, it does 
not necessarily measure the strength of the linear association between the 
variables. It does reflect how much of the variation in Y is accounted for by 
knowledge of X. Korn and Simon provide more on the interpretation of R2 

(6). 
There is also a relationship between the sample correlation coefficient 

and the estimator of βι. From Chapter 4, we had another form for r than 
the defining formula given above and it was 

Σ (*,· - x)(yj - y)/(n - 1) 
r = . 

SX * Sy 

The estimator of ß\ is 
Σ (Xj - x)(x/i - y) Σ (Xj - x)(y, - y)l{n - 1) 

^1 Σ(Χί-χ)2 s2 

If we multiply r by sy and divide r by sx, we have 
sy sy Σ (Xj - *)(y, - y)/(n - 1) 
— * γ = — * 
Sx Sx Sx * Sy 

or 
Sy _ Σ (Xj - x)(yj - y)/(n - 1) _ . 
— * r — 2 — HI· 
$x Sx 

As the above relationship shows, if the correlation coefficient is zero, the 
slope coefficient is also zero and vice versa. 

V. INFERENCE ABOUT THE COEFFICIENTS 

The parametric approach to testing hypotheses about a parameter requires 
that we know the probability distribution of the sample estimator of the 
parameter. The standard approach to finding the probability distributions 
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*+"" 

Distribution of Y at selected values of X. 

of the sample estimators of ßo and ß\ is based on the following assump­
tions. 

A. Assumptions for Inference in Linear Regression 

We assume that the y/s are independent, normally distributed for each 
value of X, and that the normal distributions at the different values of X all 
have the same variance, σ2. Figure 15.4 graphically shows these assump­
tions. The regression line, showing the relationship between μγ\χ and X is 
graphed as are the distributions of Y at the selected values of X. Note that Y 
is normally distributed at each of the selected X values and that the normal 
distributions have the same shapes, that is, the same variance, σ2. The 
mean of the normal distribution, μγ\χ, is obtained from the regression 
equation and is β0 + βι * X. 

In the following, we consider the values of the X variable to be fixed. 
This is the conventional approach and it means that the error or residual 
term, ε, also follows a normal distribution with mean 0 and variance σ2.2 

Note that the least squares estimation of the regression coefficients did not 
require this specification of the probability distribution of Y. 

Before testing hypotheses about the regression coefficients, we should 
attempt to determine whether the assumptions stated above are true. We 
should also examine whether any single data point is exercising a large 
influence on the estimates of the regression coefficients. These two issues 
are discussed in the next section. 

2Two ways X can be viewed as being fixed are the following. First, we may have used a 
stratified sample, stratified on height, to select girls with the heights shown in Table 15.1. 
Because we have chosen the values of the height variable, they are viewed as being fixed. In a 
second way, we consider our results to be conditional on the observed values of X. The 
conditional approach is usually used with simple random samples in which both Y and X 
otherwise would be considered to be random variables. 
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B. Regression Diagnostics 
In our brief introduction to regression diagnostics—methods for examin­
ing the regression equation—we consider only two of the many methods 
that exist. More detail on other methods is given in Kleinbaum et al (7). 
The first method we present involves plotting of the residuals. Plots are 
used in an attempt to determine whether the residuals or errors are nor­
mally distributed or to see if there are any patterns in the residuals. The 
second method tries to discover the existence of data points that play a 
major role in the estimation of the regression coefficients. 

1 . Residuals and Standardized Residuals 

The sample estimator of ε,- is the residual eit defined as the difference 
between yf and yif and the e{ can be used to examine the regression assump­
tions. As we are used to dealing with standardized variables, people often 
consider a standardized residual, e//sy|X, instead of ^ itself. The standard­
ized residuals should approximately follow a standard normal distribution 

| ^ ^ ^ H f f i f f i | Residuals and Leverage for the Data in Table 15.1 

Standardized hl Standardized ft, 
y 

105 
90 
82 
96 
82 
74 
104 
100 
80 
98 
96 
86 
88 
128 
118 
90 
108 
120 
114 
78 
116 
74 
80 
98 
90 

Residual 

16.1848 
0.4161 

-8.3527 
5.6473 

-9.1215 
-17.1215 
12.1097 
8.1097 

-12.6590 
4.5722 
1.8034 

-8.9654 
-6.9654 
33.0346 
22.2658 
-6.5029 
9.9595 

21.9595 
15.1907 

-20.8093 
16.4219 

-25.5781 
-20.3468 
-3.1156 

-11.8844 

residual 

1.16253 
0.02977 

-0.59552 
0.40264 

-0.64818 
-1.21667 
0.85790 
0.57452 

-0.89430 
0.32218 
0.12678 

-0.62897 
-0.48866 
2.31756 
1.55920 

-0.45465 
0.69457 
1.53144 
1.05843 

-1.44991 
1.14344 

-1.78096 
-1.41608 
-0.21679 
-0.82693 

leverage 

0.08041 
0.07331 
0.06665 
0.06665 
0.06044 
0.06044 
0.05467 
0.05467 
0.04934 
0.04446 
0.04002 
0.03603 
0.03603 
0.03603 
0.03248 
0.02937 
0.02449 
0.02449 
0.02271 
0.02271 
0.02138 
0.02138 
0.02049 
0.02005 
0.02005 

y 

92 
80 
88 
104 
100 
126 
108 
106 
98 
94 
88 
110 
124 
86 
120 
112 
100 
122 
122 
110 
124 
122 
94 
110 
140 

Residual 

-10.6532 
-22.6532 
-14.6532 

0.5781 
-4.1907 
21.0405 
2.2717 

-0.4971 
-8.4971 
-12.4971 
-19.2658 

2.7342 
16.7342 

-22.0346 
11.9654 
3.1966 

-9.5722 
11.6590 
11.6590 
-1.1097 
12.8903 
10.1215 

-18.6473 
-2.6473 
25.8152 

residual 

-0.74143 
-1.57659 
-1.01982 
0.04025 

-0.29199 
1.46735 
0.15861 

-0.03475 
-0.59407 
-0.87373 
-1.34912 
0.19146 
1.17184 

-1.54585 
0.83944 
0.22473 

-0.67450 
0.82366 
0.82366 

-0.07862 
0.91320 
0.71924 

-1.32950 
-0.18874 
1.85426 

leverage 

0.02049 
0.02049 
0.02049 
0.02138 
0.02271 
0.02449 
0.02671 
0.02937 
0.02937 
0.02937 
0.03248 
0.03248 
0.03248 
0.03603 
0.03603 
0.04002 
0.04446 
0.04934 
0.04934 
0.05467 
0.05467 
0.06044 
0.06665 
0.06665 
0.08041 
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if the regression assumptions are met. Thus, values of the standardized 
residuals larger than 2.5 or less than -2.5 are unusual. Table 15.2 shows 
these residuals and a quantity called leverage (described in the next sec­
tion) for the data in Table 15.1. 

We use the standardized residuals in our examination of the normality 
assumption. Other residuals could also be used for this examination (7). 
The normal scores of the standardized residuals are plotted in Figure 15.5. 

The normal scores plot looks reasonably straight; thus the assumption 
that the error term is normally distributed does not appear to be violated. 

If this plot deviates sufficiently from a straight line to cause us to 
question the assumption of normality, then it may be necessary to consider 
a transformation of the dependent variable. A number of mathematical 
functions can be used to transform nonnormally distributed data to nor­
mality (7-9). 

It is also of interest to plot the standardized residuals against the values 
of the X variable(s). Observation of any pattern in this plot suggests that 
another term involving the X variable, for example, X2, might be needed in 
the model. Figure 15.6 shows the plot of the standardized residuals versus 
the height variable. No pattern is immediately obvious from an examina­
tion of this plot. Again there is no evidence to cause us to reject this model. 
If the data have been collected in time sequence, it is also useful to examine 
a plot of the residuals against time. 

2. Leverage 

The predicted values of Y are found from 

ßo + βι * X 

where the estimators of ß0 and βι are linear combinations of the observed 
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Normal scores plot of the standardized residuals from the linear regression of SBP on height. 
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Plot of standardized residuals versus height. 

values of Y. Thus the predicted values of Y are also linear combinations of 
the observed values of Y. An expression for the predicted value of y, reflect­
ing this relationship is 

Vi = hn * yi + hi2 * y2 + . . . + fa * # + . . . + hin * yn 

where fa is the coefficient of y; in the expression for yz. For simplicity, fa is 
denoted by hi. The effect of y, on its predicted value is denoted by ft, and 
this effect is called leverage. Leverage shows how much change there is in 
the predicted value of y* per unit change in yz. The possible values of the h\ 
are greater than or equal to zero and less than or equal to one. The average 
value of the leverages is the number of estimated coefficients in the regres­
sion equation divided by the sample size. In our problem, we estimated 
two coefficients and there were 50 observations. Thus the average value of 
the leverages is 0.04 (= 2/50). If any of the leverages are large—some 
statisticians consider large to be greater than twice the average leverage 
and others say greater than three times the average—the points with these 
large leverages should be examined. Perhaps there was a mistake in re­
cording the values or there is something unique about the points that 
should be examined. If there is nothing wrong or unusual with the points, 
it is useful to perform the regression again excluding these points. A com­
parison of the two regression equations can be made, and the effect of the 
excluded points can be observed. 

In our problem, we can see from Table 15.2 that there are two points, 
the first and the last, with the larger leverages. Both of these points had 
leverages slightly larger than twice the average leverage value. The first girl 
had a large SBP value relative to her height and the last girl had the highest 
SBP value. At this stage, we assume that there was no error in recording or 

2 * 

* * * 

* * * 
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entering the data. We could perform the regression again, and see if there 
is much difference in the results; however, because the leverages are only 
slightly larger than twice the average leverage, we do not perform any 
additional regressions. 

Based on these looks at the data, we have no reason to doubt the 
appropriateness of the regression assumptions and there do not appear to 
be any really unusual data points that would cause us concern. Therefore, 
it is appropriate to move into the inferential part of the analysis, that is, to 
test hypotheses and to form confidence and prediction intervals. We begin 
the inferential stage with consideration of the slope coefficient. 

C. Slope Coefficient 
Even though there is an indication of a linear relationship between SBP and 
height, that is, it appears that ß\ is not zero, we do not know if ß\ is 
statistically significantly different from zero. To determine this, we must 
estimate the standard error of βι which is used in both confidence intervals 
and tests of hypotheses about ß\. To form the confidence interval about ß\ 
or to test a hypothesis about it, we also must know the probability distribu­
tion of ß\. 

As we are assuming that Y is normally distributed, this means that βι, 
a linear combination of the observed Y values, is also normally distributed. 
Therefore, to form a confidence interval or to test a hypothesis about βι, 
we now need to know the standard error of its estimator. The standard 
error (s.e.) of ß\ is 

s.e.(Â) = , . σ 

λ/Σ (*/ - *)2 
1 ι=1 

and, because σ is usually unknown, the standard error is estimated by 
substituting Sy|X for σ. From the above equation, we can see that the mag­
nitude of the standard error depends on the variability in the X variable. 
Larger variability decreases the standard error of βι. Thus we should be 
sure to include some values of X at the extremes of X over the range of 
interest. 

To test the hypothesis that βι is equal to βί0, that is, 
H0: βι = βιο, 

we use the statistic 
t = jSi — jSio = (βι - jSio) Λ/Σ (*,· - x)2 

est. s.e. (βι) SY\X 

If σ were known, the test statistic, using σ instead of sY\x, would follow the 
standard normal distribution; however, σ is usually unknown and the test 
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statistic using sY\x follows the t distribution with n — 2 degrees of freedom. 
The degrees of freedom parameter has the value of n - 2 because we have 
estimated two coefficients, /30 and ß\. 

If the alternative hypothesis is 

Ha: j3i Φ fro, 

the rejection region consists of values of t less than or equal to tn-2,a/2 or 
greater than or equal to £„-2,1-0/2· 

The hypothesis usually of interest is that βί0 is zero; that is, there is no 
linear relationship between Y and X. If, however, our study is one attempt­
ing to replicate previous findings, we may wish to determine if our slope 
coefficient is the same as that reported in the original work. Then βι0 will be 
set equal to the previously reported value. Let us test the hypothesis that 
there is no linear relationship between SBP and height versus the alterna­
tive hypothesis that there is some linear relationship at the 0.05 signifi­
cance level. 

The test statistic, t, is 

t = (ßi - fro) * V S (Xj - xY 
SY\X 

which is 

L (0.7688 - 0) * V45Ô63 „ r c c 
t * Ï Ï5Ï8 - 3 · 5 5 5 · 

This value is compared with -2.01 (= £48,0.025) and 2.01 (= £48,0.975). As 3.555 
is greater than 2.01, we reject the hypothesis of no linear relationship 
between SBP and height. The p value of this test is approximately 0.001. 

The (1 — a) * 100 percent confidence interval for βι is formed by 

ßl ± tn-2,l-a/2 * e s t . S . e . ( f r ) 

which is 

ßl ± *„-2,l-«/2 * y f U l — , 
ν Σ fa - xf 

The 95 percent confidence interval for βι is found using 

0.7688 ± 2.01 * 1 4 · 5 1 8 = 0.7688 ± 0.4347 
V45Ö6^5 

and this gives a confidence interval from 0.3341 to 1.2035. The confidence 
interval is consistent with the test given above. As zero is not contained in 
the confidence interval for ßlf there appears to be a linear relationship 
between SBP and height. 
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As there is evidence to suggest that βι is not zero, this also means that 
the correlation coefficient between Y and X is not zero. 

D. /-Intercept Coefficient 

It is also possible to form confidence intervals and to test hypotheses about 
ßo, although these are usually of less interest than those for βι. The loca­
tion of the Y intercept is relatively unimportant compared with determin­
ing whether a relationship exists between the dependent and independent 
variables. Sometimes, however, we wish to compare whether both our 
coefficients, slope and Y intercept, agree with those presented in the litera­
ture. In this case, we are interested in examining ßo as well as ß\. 

As the estimator of ßo is also a linear combination of the observed 
values of the normally distributed dependent variable, ßo also follows a 
normal distribution. The standard error of ß0 is estimated by 

est. e.e.(A) = ν π Σ ^ , % 2 * s ^ · 

The hypothesis of interest is 

H0: ßo = ßoo 
versus either a one- or two-sided alternative hypothesis. The test statistic 
for this hypothesis is 

t_ ßo ~ ffoo 
V S xf/[n Σ (Xi - x)2] * sY{x 

and this is compared with ±tn-2,i-a/2 for the two-sided alternative hypothe­
sis. If the alternative hypothesis is that ß0 is greater than β0ο, we reject the 
null hypothesis in favor of the alternative when t is greater than fn-2,i-a. If 
the alternative hypothesis is that ß0 is less than ß0o, we reject the null 
hypothesis in favor of the alternative when t is less than -£„-2,1-«· 

The (1 - a/2) * 100 percent confidence interval for ß0 is given by 

/ Σχί 
βθ ± tn-2,l-a/2 V V /~ _ ~\2 * S y l X ' Σ (xi - x)2 

Let us form the 99 percent confidence interval for ß0 for these SBP data. 
The 0.995 value of the t distribution with 48 degrees of freedom is approxi­
mately 2.68. Therefore, the confidence interval is found from the calcula­
tions 

142,319 
61.14 ± 2.68 V50* 4506.5 * 1 4 · 5 2 = 6 L 1 4 ± 30*93 

which gives an interval from 30.21 to 92.07, a wide interval. 
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E. An ANOVA Table Summary 
Table 15.3 shows the information required to test the hypothesis of no 
relationship between the dependent and independent variables in an 
ANOVA table similar to that used in Chapter 14. The test statistic for the 
hypothesis of no linear relationship between the dependent and indepen­
dent variables is the F ratio, which is distributed as an F variable with 1 and 
n - 2 degrees of freedom. Large values of the F ratio cause us to reject the 
null hypothesis of no linear relationship in favor of the alternative hypoth­
esis of a linear relationship. The F statistic is the ratio of the mean square 
due to regression to the mean square about regression (mean square error 
or residual mean square). The degrees of freedom parameters for the F 
ratio come from the two mean squares involved in the ratio. The degrees of 
freedom due to regression is the number of parameters estimated minus 
one. The degrees of freedom associated with the about regression source of 
variation is the sample size minus the number of coefficients estimated in 
the regression model. The ANOVA table for the SBP and height data is 
shown in Table 15.4. If we perform this test at the 0.05 significance level, 
we compare the calculated F ratio to F1/48/0.95/ which is approximately 4.04. 
As the calculated value, 12.63, is greater than the tabulated value, 4.04, we 
reject the null hypothesis in favor of the alternative hypothesis. There 
appears to be a linear relationship between SBP and height at the 0.05 
significance level. 

Note that if we take the square root of 12.63, we obtain 3.554. With 
allowance for rounding, we have obtained the value of the t statistic calcu­
lated in the section for testing the hypothesis that ß\ is zero. This equality is 
additional verification of the relationship, pointed out in Chapter 14, be­
tween the t and F statistics. An F statistic with 1 and n - p degrees of 
freedom is the square of the t statistic with n - p degrees of freedom. 
Examination of the t and F tables shows that t2

n-P/1-a/2 equals ΐ\ιη-ν,ι-α· 
Hence we have two equivalent ways of testing whether the dependent and 
independent variables are linearly related at a given significance level. As 
we shall see in the multiple regression material, the F statistic directly 

An ANOVA Table for the Simple Linear Regression Model 

Source of 
variation 

Due to regression 
About regression or error 

Corrected total 

Degrees of 
freedom 

1 
n - 2 

n - 1 

Sum of 
squares 

Σ (y, - y)2 

Σ (y, - y,)2 

Σ (y, - y)2 

Mean 
square 

Σ (y, - yfll 
Σ (y, - y,)2/(n - 2 ) 

F ratio" 

MSR/MSE 

aMSR, mean square due to regression; MSE, mean square error term. 
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g ì ANOVA Table for the Regression of SBP on Height 

Source of 
variation 

Due to regression 
About regression or error 

Corrected total 

Degrees of 
freedom 

1 
48 

49 

Sum of 
squares 

2,663 
10,117 

12,780 

Mean 
square 

2663 
210.77 

F ratio 

12.63 

extends to simultaneously testing several variables, whereas t can be used 
with only one variable at a time. 

These calculations associated with the regression analysis require 
much time, care, and effort; however, they can be quickly and accurately 
performed with MINITAB as is shown in Box 15.1. 

Vi. INTERVAL ESTIMATION FOR μγχΒηύ Υ\Χ 

Even though the relationship between SBP and height is not impressive, 
we continue with the idea of developing a height-based standard for SBP 
for children. We would be much more comfortable doing this if the rela­
tionship between height and SBP were stronger. The height-based stan­
dards that we shall create are the SBP levels such that 95 percent of the girls 
of a given height have a lower SBP and 5 percent have a higher SBP. This 
standard is not based on the occurrence of any disease or other undesirable 
property. When a standard created in this manner is used, approximately 5 
percent of the girls will be said to have undesirably high SBP, regardless of 
whether that is really a problem. 

The standard is based on a one-sided prediction interval for the SBP 
variable. Also of interest is the confidence interval for the SBP variable and 
we consider the confidence interval first. 

A. Confidence Interval for μγ\χ 

The regression line provides estimates of the mean of the dependent vari­
able for different values of the independent variable. How confident are we 
about these estimates or predicted values? The confidence interval pro­
vides one way of answering this question. To create the confidence inter­
val, we require knowledge of the distribution of Ϋ and also an estimate of 
its standard error. 

As the predicted value of μγ\χ at a given value of x, say xk, is also a 
linear combination of normal values, it is normally distributed. Its standard 



Stdev 
11.54 
0.2163 
8% 

;s 
4 
1 

t-ratio p 
5.30 0.000 
3.55 0.001 

R-sq(adj) = 19.2% 

MS F 
2663.4 12.64 
210.8 

P 
0.001 

The REGRESS command (abbreviated REGR) is used to perform linear regression 
analysis. The command is followed by the specification of a column containing the 
dependent variable, the number of independent variables to be used, and the 
specification of the column(s) containing the independent variable(s). 

MTB > r e g r c2 1 c l 

The regression equation is 
C2 = 61.1 + 0.769 Cl 
Predictor Coef 
Constant 61.14 
Cl 0.7688 
s = 14.52 R-sq = 20 
Analysis of Variance 
SOURCE DF 
Regression 1 2663 
Error 48 10117 
Total 49 12780.5 

Unusual Observations 
Obs. Cl C2 Fit Stdev.Fit Residual St.Resid 
14 44.0 128.00 94.97 2.76 33.03 2.32R 

R denotes an obs. with a large st. resid. 
The output provides a summary of the calculations. The SBP variable is contained 
in c2 and is regressed on one independent variable, height, stored in cl . The 
regression equation is shown followed by more details about the estimators of the 
coefficients. The standard errors are provided, as are the t statistics for testing that 
the coefficients are equal to zero. The test statistic for the hypothesis that ß0 equals 
zero is 5.30 and the corresponding t statistic for βι is 3.55. The s value shown 
corresponds to our sY\x and is 14.52. The R2 value is shown and agrees with our 
value of 0.208, or 20.8 percent. The R-sq(adj) value is discussed below. After the 
ANOVA table, MINITAB shows what it characterizes as unusual observations. An 
unusual observation either has a large standardized residual (R) or a large leverage 
value (X). For these unusual observations, the observed height and SBP values are 
shown, as are the predicted SBP value, its standard error, the residual, and the 
standardized residual. 

To obtain the predicted values, residuals, and leverages shown in Tables 15.1 
and 15.2, we used subcommands RESIDUALS and HI. The commands used were 
the following: 

MTB > r e g r c2 1 c l c4 c 5 ; 
SUBO r e s i d u a l s c 3 ; 
SUBO h i c 6 . 
The two extra columns, c4 and c5, appended to the REGRESS command after the 
independent variable column(s), cl , contain the standardized residuals and the 
predicted SBP values, respectively. The RESIDUALS subcommand puts the resid­
uals in column c3 and the HI subcommand puts the leverages in column c6. 
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error is estimated by 

est. s.e.(/iyjXfc) = sY|X 
1 , (Xk-x)2 

n Σ (Xi - x)2 

The estimated standard error increases with increases in the distance be­
tween Xk and x, and there is a unique estimate of the standard error for each 
**. 

Because we are using sY\x to estimate σ, we must use the t distribution 
in place of the normal in the formation of the confidence interval. The 
confidence interval for μγ\χ has the form 

βγ\χ ± tn-2,i-a/2 * est. s.e.(/ÎY|x) 
Figure 15.7 shows the 95 percent confidence interval for SBP as a function 
of height. As we can see from the graph, the confidence interval widens as 
the values of height move away from the mean of the height variable. This 
is in accord with the expression for the confidence interval which has the 
term (xk - x)2 in the numerator. We are thus less sure of our prediction for 
the extreme values of the independent variable. The confidence interval is 
about 17 mm Hg wide for girls 35 or 70 in. tall and narrows to about 8 mm 
Hg for girls about 50 to 55 in. tall. 

B. Prediction Interval for Y\X 

In the preceding section, we learned how to form the confidence interval 
for the mean of SBP for a height value. In this section, we form the predic-
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Ninety-five percent confidence interval for μγ\χ. A represents the regression line. B and C 
give the 95 percent confidence level. 
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tion interval, the interval for a single observation. The prediction interval is 
of interest to a physician because the physician is examining a single per­
son, not an entire community. How does the person's SBP value relate to 
the standard? 

As we saw in Chapter 7 in the material on intervals based on the 
normal distribution, the prediction interval is wider than the correspond­
ing confidence interval because we must add the individual variation about 
the mean to the mean's variation. Similarly, the formula for the prediction 
interval based on the regression equation adds the individual variation to 
the mean's variation. Thus, the estimated standard error for a single obser­
vation is 

/ 1 "fa - xf 
est. s.e.(ft) = sr)x yjl + - + 

The corresponding two-sided (1 - a) * 100 percent prediction interval is 

yk ± tn-2tl-a/2 * est. s.e.(yfc). 
Figure 15.8 shows the 95 percent prediction interval for the data in Table 
15.1. The prediction interval is much wider than the corresponding confi­
dence interval because of the addition of the individual variation in the 
standard error term. The prediction interval here is about 60 mm Hg wide. 
Inclusion of the individual variation term has greatly reduced the effect of 
the (Xk - x)2 term in the estimated standard error in this example. The 
upper and lower limits are essentially straight lines, in contrast to the 
shape of the upper and lower limits of the confidence interval. 
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Ninety-five percent prediction interval for yk. A represents the regression line. B and C give 
the 95 percent prediction level. 
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MINITAB can be used to perform the calculations necessary to create 
the 95 percent confidence and prediction intervals. The required com­
mands are shown in MINITAB Box 15.2. 

MTB > set c3 
DATA> 35:70/5 
DATA> end 
MTB > regr c2 1 cl; 
SUBO pred c3. 
The values in column c3 contain values of the height variable from 35 to 70 in. in 
steps of 5 in. These are the values of height that will be used as x^ in the calculation 
of the intervals. They cover the range of height values of interest and allow us to 
see the shapes of the intervals when plotted. 

The following table is printed after the unusual observations have been 
pointed out in the regression output. 

95% C.I. 95% P.I. 
( 79.39, 96.71) ( 57.59, 118.50) 

3.39 ( 85.06, 98.72) ( 61.91, 121.87) 
2.62 ( 90.47, 101.00) ( 66.07, 125.40) 
2.12 ( 95.31, 103.85) ( 70.07, 129.09) 
2.12 ( 99.15, 107.69) ( 73.91, 132.93) 
2.62 ( 102.00, 112.53) ( 77.60, 136.93) 
3.39 ( 104.28, 117.94) ( 81.13, 141.09) 
4.31 ( 106.29, 123.61) ( 84.50, 145.41) 

Stdev.Fit 
4.31 

Fit 
88.05 
91.89 
95.73 
99.58 
103.42 
107.27 
111.11 
114.95 
To create the plots of the confidence and prediction intervals, these values have to 
be entered into columns as is shown next. 
MTB > s e t c4 
DATA> 88.05 91.89 95.73 99.58 103.42 107.27 111.11 114.95 
MTB > set c5 
DATA> 79.39 85.06 90.47 95.31 99.15 102.00 104.28 106.29 
MTB > set c6 
DATA> 96.71 98.72 101.00 103.85 107.69 112.53 117.94 123.61 
MTB > set c7 
DATA> 57.59 61.91 66.07 70.07 73.91 77.60 81.13 84.50 
MTB > set c8 
DATA> 118.50 121.87 125.40 129.09 132.93 136.93 141.09 145.41 
DATA> end 
MTB > gmplot c4 c3, c5 c3, c6 c3, c7 c3, c8 c3; 
SUBO lines c4 c3; 
SUBO xlabel 'Height' ; 
SUBO ylabel 'Systolic Blood Pressure'; 
SUBO footnote 'B & C show the confidence interval'; 
SUBO footnote 'D & E give the prediction interval'. 
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As we are concerned only about systolic blood pressures that may be 
too high, we use a one-sided prediction interval in the creation of the 
height-based standard for SBP for girls. The upper (1 - a) * 100 percent 
prediction interval for SBP is found from 

yk + tn-2>1-a * est. s.e.(#k). 

Because the standard is the value such that 95 percent of the SBP 
values fall below it and 5 percent of the values are greater than it, we use 
the upper 95 percent prediction interval to obtain the standard. 

The data shown in MINITAB Box 15.2 can be used to help create the 
height-based standards for SBP. The difference between the one- and two-
sided intervals is the use of tn-2,\-a in place of tn-2ti-a/2- Thus the amount to 
be added to y* for the upper one-sided interval is simply 0.834 (= £48,0.95/ 
£48,0.975) times the amount added for the two-sided interval. To find the 
amount added for the two-sided interval, we subtract the predicted SBP 
value shown from the upper limit of the 95 percent prediction interval. For 
example, for a girl 35 in. tall, the amount added, using the two-sided 
interval, is found by subtracting 88.05 from 118.50. This yields a difference 
of 30.45 mm Hg. If we multiply this difference by 0.834, we have the 
amount to add to the 88.05 value. Thus the standard for a girl 35 in. tall is 

0.834 * (118.50 - 88.05) + 88.05 = 113.45 mm Hg. 

EAR AND LOGISTIC REGRESSION 
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Table 15.5 shows these calculations and the height-based standards for SBP 
for girls. As shown above, the calculations in Table 15.5 consist of taking 
column 2 minus column 3. This is stored in column 4. Column 5 contains 
0.834 times column 4. The standard, column 6, is the sum of column 3 and 
column 5. 

The upper one-sided prediction interval is one way of creating height-
based standards for SBP. It has the advantage over simply using the ob­
served 95th percentiles of the SBP at the different heights in that it does not 
require such a large sample size to achieve the same precision. If SBP is 
really linearly related to height, standards based on the prediction interval 
also smooth out random fluctuations that may be found in considering 
each height separately. 

The standards developed here are illustrative of the procedure. If one 
were going to develop standards, a larger sample size would be required. 
We would also prefer to use additional variables or another variable to 
increase the amount of variation in the SBP that is accounted for by the 
independent variable(s). In addition, as we have stated above, the ration­
ale for having standards for blood pressure in children is much weaker 
than that for having standards in adults. In adults, there is a direct linkage 
between high blood pressure and disease, whereas in children, no such 
linkage exists. Additionally, the evidence that relatively high blood 
pressure in children carries over into adulthood is inconclusive. Use of 
the 95th percentile or other percentiles as the basis of a standard means 
that some children will be identified as having a problem when none may 
exist. 

So far we have focused on a single independent variable. In the next 
section, we consider multiple independent variables. 

Creation of Height-Based Standards for SBP Cmm Hg) for Girls 

Xk 
inches 
(1) 

35 
40 
45 
50 
55 
60 
65 
70 

Upper limit of 
prediction 
(2) 

118.50 
121.87 
125.40 
129.09 
132.93 
136.93 
141.09 
145.41 

interval y* 
(3) 

88.05 
91.89 
95.93 
99.58 

103.42 
107.27 
111.11 
114.95 

Difference 
(4) 

30.45 
29.98 
29.67 
29.51 
29.51 
29.66 
29.98 
30.46 

0.834 * difference 
(5) 

25.40 
25.00 
24.74 
24.61 
24.61 
24.74 
25.00 
25.40 

Standard 
(6) 

113.45 
116.89 
120.67 
124.19 
128.03 
132.01 
136.11 
140.35 
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VII. INTRODUCTION TO MULTIPLE LINEAR REGRESSION 

For many chronic diseases, no single cause is associated with the occur­
rence of the disease. Many factors, called risk factors, play a role in the 
development of the disease. In the study of the occurrence of air pollution, 
many factors, for example, wind, temperature, and time of day, must be 
considered. In comparing mortality rates for hospitals, factors such as the 
mean age of patients, severity of the diseases seen, and percentage of 
patients admitted from the emergency room must be taken into account in 
the analysis. As these examples suggest, it is uncommon for an analysis to 
include only one independent variable. Therefore, in this section, we 
briefly introduce multiple linear regression, a method for examining the 
relationship between one normally distributed dependent variable and 
more than one continuous independent variable. 

The equation showing the hypothesized relationship between the de­
pendent and independent variables is 

yi = ßo + Xu ßi + Xußi + . . . + Xp-u βρ-ι + ε,·. 
We are making the same assumptions—independence, normality, and 
constant variance—about the dependent variable and the error term in this 
model as we did in the simple linear regression model. 

The coefficient ßi describes how much change there is in the dependent 
variable when the /th independent variable changes by one unit and the 
other independent variables are held constant. Again, the key hypothesis 
is whether ßi is equal to zero. If ßi is equal to zero, we probably would drop 
the corresponding X; from the equation because there is no linear relation­
ship between X, and the dependent variable once the other independent 
variables are taken into account. 

A goal of multiple regression is to obtain a small set of independent 
variables that make sense substantively and that do a reasonable job in 
accounting for the variation in the dependent variable. Often we have a 
large number of variables as candidates for the independent variables and 
our job is to reduce that larger set to a parsimonious set of variables. As 
was mentioned above, we do not want to retain a variable in the equation if 
it is not making a contribution. Inclusion of redundant or noncontributing 
variables increases the standard errors of the other variables and may also 
make it more difficult to discern the true relationship among the variables. 
A number of approaches have been developed to aid in the selection of the 
independent variables, and we show summary output from two of these 
approaches. 

The calculations and the details of multiple linear regression are much 
more than we can cover in this introductory text. For more information on 
this topic, see books by Kleinbaum, Kupper, and Muller (7) and Draper 
and Smith (10), excellent books that focus on linear regression methods. 
We consider an example using MINITAB showing the use of multiple 
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Hypothetical Values for Height, SBP, Age, and Weight Based on Data 
from NHANES II 

Height 
(in.) 

36 
37 
38 
38 
39 
39 N 
40 
40 
41 
42 
43 
44 
44 
44 
45 
46 
48 
48 
49 
49 
50 
50 
51 
52 
53 

SBP 
(mm Hg) 

105 
90 
82 
96 
82 
74 
104 
100 
80 
98 
96 
86 
88 
128 
118 
90 
108 
120 
114 
78 
116 
74 
80 
98 
90 

Age 
(years) 

7 
7 
6 
7 
8 
7 
8 
9 
6 
7 
10 
8 
8 
10 
10 
10 
9 
12 
9 
11 
10 
8 
10 
11 
12 

Weight 
(pounds) 

57 
46 
42 
52 
56 
45 
54 
73 
65 
63 
74 
62 
50 
68 
86 
83 
86 
82 
71 
65 
77 
71 
65 
75 
91 

Height 
(in.) 

54 
54 
54 
55 
56 
57 
58 
59 
59 
59 
60 
60 
60 
61 
61 
62 
63 
64 
64 
65 
65 
66 
67 
67 
69 

SBP 
(mm Hg) 

92 
80 
88 
104 
100 
126 
108 
106 
98 
94 
88 
110 
124 
86 
120 
112 
100 
122 
122 
110 
124 
122 
94 
110 
140 

Age 
(years) 

12 
12 
13 
12 
11 
12 
13 
14 
11 
13 
14 
15 
10 
13 
14 
12 
13 
11 
15 
15 
12 
12 
16 
13 
13 

Weight 
(pounds) 

80 
77 
86 
77 
118 
97 
108 
107 
97 
91 
83 
95 
84 
93 
75 
80 
110 
102 
114 
123 
108 
132 
118 
142 
122 

linear regression. The hypothetical data used in the example are based on 
NHANES II and are shown in Table 15.6. 

Before starting with the multiple regression analysis, we examine the 
correlation among these variables. The simple correlation coefficients 
among these variables can be represented in the format shown in Table 
15.7. The correlation between SBP and weight is 0.509, the largest of the 
correlations between SBP and any of the variables. The correlation between 
height and weight is 0.867, the largest correlation in this table. These large 

Correlations among SBP, Height. Age, and Weight 

SBP Height Age 

Height 0.457 
Age 0.368 0.864 
Weight 0.509 0.867 0.772 
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correlations among the height, age, and weight variables suggest that 
knowledge of one of these variables tells us a lot about the other two 
variables. Thus, not all three variables are needed as the use of only one of 
them conveys most of the independent information about SBP. As is clear 
from these estimates of the correlations among these three independent 
variables, they are not really independent of one another. We prefer to use 
the term predictor variables, but the term independent variables is so widely 
accepted that it is unlikely to be changed. 

There are no firm sample size requirements for performing a multiple 
regression analysis; however, a reasonable guideline is that the sample size 
should be at least 10 times as large as the number of independent variables 
to be used in the final multiple linear regression equation. In our example, 
there are 50 observations and we will probably use no more than three 
independent variables in the final regression equation. Hence our sample 
size meets the guideline, assuming that we do not add interaction terms or 
higher-order terms of the three independent variables. 

In this multiple regression situation, we have three variables that are 
candidates for inclusion in the multiple linear regression equation to help 
account for the variation in SBP. As mentioned above, we wish to obtain a 
parsimonious set of independent variables that account for much of the 
variation in SBP. We use a stepwise regression procedure and an all-possi­
ble-regressions procedure in MINITAB to demonstrate two approaches to 
selecting the independent variables to be included in the final regression 
model. 

There are many varieties of stepwise regression; we consider forward 
stepwise regression. In forward stepwise regression, independent vari­
ables are added to the equation in steps, one per each step. The first 
variable to be added to the equation is the independent variable with the 
highest correlation with the dependent variable, provided that the correla­
tion is high enough. The analyst provides the level that is used to deter­
mine whether the correlation is high enough. Instead of actually using the 
value of the correlation coefficient, the criterion for inclusion into the 
model is expressed in terms of the F ratio for the test that the regression 
coefficient is zero. 

After the first variable is entered, the next variable to enter the model is 
the one that has the highest correlation with the residuals from the model 
that regressed the dependent variable on the first independent variable. 
This variable must also satisfy the F ratio requirement for inclusion. This 
process continues in this stepwise fashion, and an independent variable 
may be added or deleted at each step. An independent variable that had 
been added previously may be deleted from the model if, after the inclu­
sion of other variables, it no longer meets the required F ratio. 

The all-possible-regressions procedure in effect considers all possible 
regressions with one independent variable, with two independent vari­
ables, with three independent variables, and so on, and it provides a 
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summary report of the results for the "best" models. Best here is defined in 
statistical terms but the actual determination of what is best must use 
substantive knowledge as well as statistical measures. MINITAB Box 15.3 
shows the output from both of these procedures. 

Illustration of Stepwise and All Possible Regressions 
MTB > name c l ' h e i g h t ' , c2 ' sbp*, c3 ' a g e ' , c4 'we igh t ' 
In the stepwise (STEP) and all possible regression (BREG) commands, the depen­
dent variable is specified first, followed by the candidates for the independent 
variables. 

MTB > step c2 cl c3 c4 

STEPWISE REGRESSION OF sbp ON 3 PREDICTORS, WITH N = 50 STEP 
CONSTANT 
weight 
T-RATIO 
S 
R-SQ 
MORE? (YES 

1 
72.61 
0.346 
4.09 
14.0 

25.88 
, NO, SUBCOMMAND, OR HELP) 

SUBO y 
NO VARIABLES ENTERED OR REMOVED 
MORE? (YES, NO, SUBCOMMAND, OR HELP) 
SUBO n 

The subcommand asks whether we wish to consider another step. We responded 
yes the first time, but after it performed the calculations and said that there were no 
additions or deletions, there was no need to consider any more steps. 
MTB > breg c2 cl c3 c4 
Best Subsets Regression of sbp 

h w 
e e 
i i 
g a g 

Adj. h g h 
Vars R-sq R-sq C-p s t e t 

1 25.9 24 .3 0 .4 14.049 X 
1 20 .8 19.2 3.5 14.518 X 
2 26.0 22.9 2 .3 14.183 XX 
2 26.0 22 .8 2 .3 14.188 X X 
3 26.5 21 .7 4.0 14.289 X X X 
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In the stepwise output, we see that the weight variable is the indepen­
dent variable that entered the model first. It is highly significant with a t 
value of 4.09, and the R2 for the model is 0.259. None of the other variables 
had a large enough F ratio—the default value is 4—to enter the model. 
Thus, this is the model selected by the forward stepwise process. 

In the all-possible-regressions output, four different variables are 
shown: i?2, adjusted R2, cv, and s. Adjusted R2 is similar to R2, but it takes 
the number of variables in the equation into account. If a variable is added 
to the equation but its associated F ratio is less than one, the adjusted R2 

will decrease. In this sense, the adjusted R2 is a better measure than R2. 
One minor problem with adjusted R2 is that it can be slightly less than 
zero. The formula for calculating the adjusted R2 is 

S -1 - a - «a ( ^ 
where R2 is the coefficient of determination for a model with p coefficients. 
We do not use cp. The quantity s is our sY\x. 

From the all-possible-regressions output, we also see that the model 
including weight was the best model with one independent variable. The 
second best one-independent-variable model used the height variable. 
There is little to choose from between the two best two-independent-vari­
able models. Note that the adjusted R2 for both of these models is less than 
the adjusted R2 for the best one-variable model, indicating that we would 
probably prefer the one-variable model. In the only three-independent-
variable model, the adjusted R2 has again decreased compared with the 
best one- and two-variable models. Thus, on statistical grounds, we should 
select the model with weight as the only independent variable. It has the 
highest adjusted R2 and the lowest value of sY\x. 

Let us now examine the use of the REGRESS command with the full 
three-independent-variable model and compare it with the model with 
weight as the only independent variable. MINITAB Box 15.4 shows the 
regression with the three independent variables. 

In the model with the three independent variables, none of the inde­
pendent variables are statistically significant as is shown by the three t 
values. Weight is closest to being significant. The F ratio of 5.53 is the value 
of the test statistic for the hypothesis that all the coefficients are simulta­
neously zero. As its associated p value is 0.003, we reject the hypothesis in 
favor of the alternative hypothesis that at least one of the coefficients is not 
zero. This situation—overall significance as indicated by the F statistic, but 
none of the variables significant when considered by themselves—results 
from the inclusion of unnecessary or nearly redundant variables. As we 
will see below, the weight variable is highly significant when considered in 
a model with no redundant terms. The height and age variables would also 
be significant if they were the only variables in the model. 
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Multiple Regression with Three Independent Variables 
MTB > regr c2 3 c l c3 c4 

The regression equation is 
sbp = 69.1 + 0.298 height - 0.91 age + 0.318 weight 

Predictor 
Constant 
height 
age 
weight 
s = 14.29 

Analysis of 
SOURCE 
Regression 
Error 
Total 

SOURCE 
height 
age 
weight 

Coef 
69.11 
0. 2978 
-0.908 
0. 3181 
R-sq 

Variance 
DF 
3 
46 
49 

DF 
1 
1 
1 

Stdev 
12.55 

0.! 
1 

0. 
= 26.5% 

ss 3388.0 
9392.5 
12780.5 

SEQ SS 
2663.4 
34.4 
690.1 

5410 
.570 
1730 

t-ratio 
5.51 
0.55 
-0.58 
1.84 

R-sq(adj) = 

MS 
1129.3 
204.2 

P 
0.000 
0.585 
0.566 
0.072 

21.7% 

F p 
5.53 0.003 

Unusual Observations 
Obs. height sbp Fit Stdev.Fit 
14 44.0 128.00 94.76 3.28 

R denotes an obs. with a large st. resid. 

Residual 
33.24 

St .Res id 
2.39R 

The sequential sum of squares can be generally ignored. These sums of 
squares show the added contribution of the variables when they are en­
tered in the order specified in the REGRESS statement. MINITAB Box 15.5 
shows the model with weight alone. 

In this model, the coefficient for the weight variable is highly signifi­
cant with a t value of 4.09 and an F ratio of 16.76. The estimated coefficient 
for the weight variable (0.346) is not that different from its value in the 
three-independent-variable model (0.318), but its standard error has de­
creased to 0.0845 from 0.1730 in the previous model. Inclusion of the un­
necessary terms in the three-independent-variable model has caused the 
increase in the estimated standard errors and thus makes it hard to discern 
the significance of any of the independent variables. 

As is clear from the significance of the weight variable in the model in 
which it is the only variable, compared with its nonsignificance in the 
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Model with Weight as the Only Independent Variable 
MTB > regr c2 1 c4 

The regression equation is 
sbp = 72.6 + 0.346 weight 

Predictor 
Constant 
weight 
s = 14.05 

Coef Stdev 
72.606 7. .333 
0.34579 0.08447 

R-sq = 25.9% 

Analysis of Variance 
SOURCE 
Regression 
Error 
Total 

DF SS 
1 3307.1 

48 9473.4 
49 12780.5 

Unusual Observations 
Obs. C4 
14 68 
49 142 
R denotes an 
X denotes an 

C2 
128.00 96, 
110.00 121, 

Fit 
.12 
.71 

t-ratio 
9.90 
4.09 

R-sq(adj) = 

MS 
3307.1 
197.4 

Stdev.Fit 
2.38 
5.32 

obs. with a large st. resid. 

P 
0.000 
0.000 

■■ 2 4 . 3 % 

F 
16.76 

Residual 
31.88 
-11.71 

P 
0.000 

St.Resid 
2.30R 
-0.90X 

obs. whose X value gives it large influence. 

three-independent-variable model, the conclusions that can be drawn 
about the importance of an independent variable depend on the model that 
is being considered. Because these predictor variables are not independent 
of one another, all conclusions are model dependent. 

The consideration of the extra variables did not greatly increase the R2 

or adjusted R2 statistics. We have not been able to account for the great 
majority of the variation in SBP even by considering other variables. Unfor­
tunately, R2 of this magnitude, 0.2 to 0.3, are not uncommon when analyz­
ing human data. There are still many sources of variation that remain a 
mystery to us. Much work needs to be done to discover these additional 
sources of variation before standards are created. 

VIII. INTRODUCTION TO LOGISTIC REGRESSION 

As was mentioned in the introduction to this chapter, logistic regression is 
a method that allows one to examine the relationship between a dependent 
variable with two levels and one or more independent variables. We are 
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forced to consider this new method because the linear regression approach 
was based on the assumption that the dependent variable was a continu­
ous and normally distributed variable. A variable with only two levels does 
not meet this assumption. In logistic regression, the independent variables 
may be continuous or discrete. The following example shows a situation in 
which both independent variables are discrete. 

Suppose that we wish to determine whether a relationship exists be­
tween a male's pulmonary function test (PFT) results and air pollution at 
his residence, lead in the air serving as a proxy for overall air pollution. The 
data for this situation are shown in Table 15.8 [taken from Table 7.1 in 
Forthofer and Lehnen (11)]. We have categorized the PFT results as normal 
or not normal. This is a 2 by 2 table and we already know several ways of 
analyzing it. We are considering this simple table initially because we can 
show the logistic regression results in terms of statistics with which we are 
already familiar. 

We could analyze the proportion of normal PFT results as a function of 
the lead level. Methods for doing this are shown in Forthofer and Lehnen 
(11); however, if we do that, sometimes the estimated proportions are less 
than 0 or greater than 1, impossible values for proportions. In addition, the 
methods in Forthofer and Lehnen (11) do not apply when the independent 
variables are continuous. Logistic regression provides an alternative 
method of analysis that avoids these problems. 

In logistic regression, the underlying model is that the natural loga­
rithm, In, of the odds of a normal (or nonnormal) PFT is a linear function of 
the constant and the effect of lead pollution. The logarithm of the odds is 
also referred to as the log odds or logit. In this example, a larger logit value 
indicates a more favorable outcome because it indicates a greater propor­
tion of males having a normal PFT. Hence those with low exposures to lead 
have a more favorable outcome than those with higher exposure to lead for 
this sample. 

Using symbols for the logit, this model is 

In ( — ) = constant + lead pollution, 

PFT Results by Ambient Air Pollution 

Lead level 

Low 
High 

Normal 

368 
82 

PFT results 

Not normal 

19 
10 

Logit 
(normal) 

2.964 
2.104 

Source: Forthofer and Lehnen (11, Table 7.1). 
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where ΤΓ,Ί is the probability of a normal PFT, πι2 is the probability of a 
nonnormal PFT for the zth lead level, and lead pollution/ is the effect of the 
ith lead level. The ratio of πα to πι2 is the odds of a normal PFT for the ith 
lead level. 

Substituting symbols for all the terms in the above equation, we have 

- ( s ) - + a, 
\7Tf2/ 

where μ represents the constant and a, is the effect of the ith level of lead. 
This model has the same structure as the linear model representation of the 
ANOVA shown in Chapter 14. Just as in Chapter 14, we measure the 
effects of the levels of a variable from a reference level. For the lead vari­
able, we consider the high level of pollution to be the reference level. This 
means that a2 is taken to be 0 and that μ is the logit for the high lead level 
as can be seen from the following. 

As there are only two lead levels, we have the following two equations: 

l n \Zr) = M + «i 

It is clear from the second of these two equations that μ is the logit of a 
normal PFT for those exposed to the high lead pollution level. If we sub­
tract the second of these two equations from the first, we see that a\ is 
simply the difference of the two logits, that is, 

In M - In M = a, 
\7Γΐ2/ \7Γ22/ 

Because, as we saw in Chapter 7, the difference of two logarithms is the 
logarithm of the ratio, we have 

/ 77117722 \ 
«i = In I 1. 

\77i2772l/ 
That is, «i is also the natural logarithm of the odds ratio. 

It is beyond the scope of this book to provide the details of the estima­
tion and the testing methods used in logistic regression. For more infor­
mation on logistic regression, see the excellent book by Hosmer and 
Lemeshow (12). In the following we show some of the statistics usually 
provided by different logistic regression programs. 

The estimates of μ and a : are 2.104 and 0.860, respectively. The effect 
of the low lead level is to increase the estimate of the logit by 0.860 over the 
corresponding logit for those who were exposed to the high level of lead. 
As was shown above, because of the model we are using, the estimate of a\ 
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is simply the natural logarithm of the odds ratio for Table 15.8. If we take 
the exponential of the estimate of alf we obtain 2.362, the odds ratio. This 
odds ratio is much larger than one, and it strongly supports the idea that 
those with the lower lead exposure have the greater proportion of a normal 
PFT. The estimate of the constant term is the logit for the high level of lead, 
and the exponential of μ is 8.2, the odds of a normal result for those with 
high lead exposures. Thus the logistic regression model leads to parame­
ters that are readily interprétable. 

It is surprising that there appears to be a lead effect as lead has not 
been shown to have a negative impact on the respiratory system in other 
studies; however, during the period 1974-1975 when this study was per­
formed, automobile emissions were a major source of lead pollution. Thus, 
a possible explanation for this finding is that lead pollution is serving as a 
proxy for nitrogen dioxide or other pollutants that have adverse respiratory 
effects. Another possible explanation is that we have not controlled for 
possible confounding variables. Smoking status is a key variable that has 
been ignored in the analysis so far. Table 15.9 shows the inclusion of the 
smoking status variable. 

We begin by considering a model containing the main effects of lead 
and smoking. The symbolic representation of this model is I n © = ̂  + a' + ̂ · 
where π^ι is the probability of a normal PFT and π^ is the probability of a 
nonnormal PFT for the subgroup formed by the ith level of the lead vari­
able and the ;th level of the smoking variable. The constant term is repre­
sented by μ, the effect of the zth lead level is aif and the effect of the ;'th 
smoking level is ßj. The reference level for the smoking variable is the 
heavy smoking level which means that ß4 is taken to be zero. 

PFT Results by Smoking Status and Ambient Air Pollution 

Lead level 

Low 

High 

Smoking status 

Never 
Former 
Light 
Heavy 

Never 
Former 
Light 
Heavy 

Normal 

160 
49 
75 
84 

33 
12 
21 
16 

PFT results 

Not normal 

4 
6 
6 
3 

3 
2 
2 
3 

Logit 
(normal) 

3.69 
2.10 
2.53 
3.33 

2.40 
1.79 
2.35 
1.67 
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The estimated values of the logistic regression parameters are the fol­
lowing: 

μ = 2.18, άι (low lead level) = 0.84 
βι (never smoked) = 0.50 

β2 (former smoker) = -0.77 
β3 (light smoker) = -0.29. 

The addition of the smoking variable has not changed the parameter esti­
mates much as the constant previously was estimated to be 2.104 and the 
low lead effect was previously estimated to be 0.860. In this multiple logis­
tic regression situation, αλ is the natural logarithm of the odds ratio that 
would have been obtained if the high and low lead levels had had the same 
distributions for the smoking status variable. Examination of Table 15.9 
shows that the distributions of the smoking status variable are similar for 
the high and low lead levels. Hence it is not surprising that the estimates of 
«i based on Tables 15.8 and 15.9 are similar. 

There are usually one or more chi-square statistics for assessing the 
goodness of fit of the model as well as test statistics associated with the 
variables included in the model. In our case, the model provides a reason­
able fit to the data, and we can proceed to the test of primary interest, the 
test for no lead effect. The test statistic for the null hypothesis of no lead 
effect is 4.29 and this is asymptotically distributed as a chi-square statistic 
with one degree of freedom if the null hypothesis is true. The p value for 
this test statistic is 0.038. If we use a 0.05 significance level, there is still a 
significant lead effect. 

Logistic regression is an important method, particularly in epidemiol­
ogy, as it allows the investigator to examine the relationship between a 
binary dependent variable and a set of continuous and discrete indepen­
dent variables. The binary variable may indicate the presence or absence of 
a disease or a variable showing the survival status of a person. Interpreta­
tion of the parameters in terms of the odds and odds ratios is a key attrac­
tion of the logistic regression procedure. Many of the procedures for multi­
ple linear regression have also been adapted to logistic regression, making 
it an even more attractive method. 

IX. CONCLUDING REMARKS 

In this chapter, we showed how to examine the relationship between a 
normally distributed dependent variable and a continuous independent 
variable. This method can be extended to include many independent vari­
ables and a brief introduction to this topic was provided. In linear models 
analysis, the independent variables may be continuous or discrete. Often 
we wish to use linear regression or ANOVA, but the dependent variable is 
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a binary variable, for example, the occurrence of a disease. In this case, the 
logistic regression method can be used, and a brief introduction to this 
topic was also provided in this chapter. 

EXERCISES 

15.1. Restenosis, narrowing of the blood vessels, frequently occurs after 
coronary angioplasty, but accurate prediction of which individuals 
will have this problem is problematic. In their study, Simons et al. 
(13) hypothesized that restenosis is more likely to occur if activated 
smooth muscle cells are present in coronary lesions at the time of 
surgery. They used the number of reactive nuclei in the coronary 
lesions as an indicator of the presence of activated smooth muscle 
cells. The number of reactive nuclei in the lesions and the degree of 
stenosis at follow-up for 16 patients who underwent a second angi-
ography are: 

Patient 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Degree of stenosis 
(%)atfollow-

28 
15 
22 
93 
60 
90 
42 
53 
72 
0 

79 
28 
82 
28 

100 
21 

up 
Number of reactive nuclei 
at initial surgery 

5 
3 
2 

10 
12 
25 
8 
3 

15 
13 
17 
0 

13 
14 
17 
1 

Are you suspicious of any of these data points? If so, why? Does 
there appear to be a linear relationship between the degree of steno­
sis and the number of reactive nuclei? If there is, describe the rela­
tionship. Are there any points that have a large influence on the 
estimated regression line? If there are, eliminate the point with the 
greatest leverage and refit the equation. Is there much difference 
between the two regression equations? Are there any points that 
have a large standardized residual? Explain why the residuals are 
large for these points. Do you think that Simons et al. have a promis­
ing lead for predicting which patients will undergo restenosis? 
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15.2. The estimated age-adjusted percentages of persons 18 years of age 
and older who smoke cigarettes are shown for females and males for 
selected years [taken from Table 62 in the National Center for Health 
Statistics (14)]. 

Estimated age-adjusted 
percentage smoking cigarettes 

Year Female Male 

1965 34.0 51.6 
1974 32.5 42.9 
1979 30.3 37.2 
1983 29.9 34.7 
1985 28.2 32.1 
1987 26.7 31.0 
1988 26.0 30.1 
1990 23.1 28.0 

Describe the linear relationship between the estimated age-adjusted 
percentage smoking and time for females and males separately. How 
much of the variation in the percentages is accounted for by time for 
females and for males? Do females and males appear to have the 
same rate of decrease in the estimated age-adjusted percentage 
smoking? Provide an estimate of when the age-adjusted percentage 
of males who smoke will equal the corresponding percentage for 
females. What assumption(s) have you made in coming up with the 
estimate of this time point? Do you think this assumption is reason­
able? Explain your answer. 

15.3. Use the following data taken from Table 112 in the National Center 
for Health Statistics (14) to determine whether there is a linear rela­
tionship between the U.S. national health expenditures as a percent­
age of gross national product (GNP) and time. 

Year 

1929 
1935 
1940 
1950 
1955 
1960 
1965 
1970 
1975 
1980 

National health 
expenditures as 
percentage of GNP 

3.5 
4.0 
4.0 
4.5 
4.4 
5.3 
5.9 
7.3 
8.3 
9.2 

Year 

1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

National health 
expenditures as 
percentage of GNP 

9.5 
10.3 
10.5 
10.3 
10.5 
10.7 
10.9 
11.2 
11.6 
12.2 
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What is your predicted value for national health expenditures as a 
percentage of GNP for 1995? For 2000? What are the 95 percent confi­
dence intervals for your estimates? What data have you used as the 
basis of your predictions? What assumptions have you made? 

15.4. Use the data in Table 15.1 to construct height-based standards for 
systolic blood pressure for girls. In constructing these standards, you 
should be concerned about values that may be too low as well as too 
high. 

15.5. Data from an article by Madsen (15) are used here to examine the 
relationship between survival status—less than 10 years or 10 years 
or longer—and type of operation—extensive (total removement of 
the ovaries and the uterus) and not extensive—for 299 patients with 
cancer of the ovary. Other factors could be included, for example, 
stage of the tumor, whether radiation was used, and the tumor had 
spread, in a logistic regression analysis; however, we begin our con­
sideration with only the one independent variable. The data are 

Type of operation 

Extensive 
Not extensive 

Survival status 

<10 years ^10 years 

129 122 
20 28 

In a logistic regression analysis, using the logit for > 10 years of 
survival and the not extensive type of operation as the base level, the 
estimates of the constant term and the regression coefficient for the 
type of operation (extensive) are 0.3365 and 0.3920, respectively. 
Provide an interpretation for these estimates. Demonstrate that your 
interpretations are correct by relating these estimates to the above 
table. 

15.6. The following data are a sample of observations from NHANES II. 
We wish to determine whether diastolic blood pressure (DBP) of 
adults can be predicted based on knowledge of the person's body 
mass index (BMI: weight in kilograms divided by square of height in 
meters); age; sex (females are coded as 0 and males as 1); smoking 
status (not currently a smoker is coded as 0 and currently a smoker 
as 1); race (0 represents non-African-American and 1 represents 
African-American); years of education; poverty status (household 
income expressed as a multiple of the poverty level for households of 
the same size); and vitamin status (0 indicates not taking supple­
ments and 1 taking supplements). 
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Select an appropriate multiple regression model that shows the rela­
tionship between DBP and the set or a subset of the independent 
variables shown here. Note that the independent variables include 
both continuous and discrete variables. Provide an interpretation of 
the estimated regression coefficients for each discrete independent 
variable used in the model. From these independent variables, are 
we able to do a good job of predicting DBP? What other independent 
variables, if any, should be included to improve the prediction of 
DBP? 

15.7. Anderson et al. (16) provide serum cholesterol and body mass index 
(BMI) values for subjects who participated in a study to examine the 
effects of oat-bran cereal on serum cholesterol. The values of serum 
cholesterol and BMI for the 12 subjects included in the analysis are: 

Subject 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

(mmoll liter) 

7.29 
8.04 
8.43 
7.96 
5.43 
5.77 
6.96 
6.23 
6.65 
6.26 
8.20 
6.21 

Body mass index 

29.0 
26.3 
21.6 
21.8 
27.2 
24.8 
25.2 
24.5 
25.1 
23.5 
27.9 
24.8 

Plot serum cholesterol versus BMI. Calculate the correlation coeffi­
cient between serum cholesterol and BMI. Regress serum cholesterol 
on BMI. Does there appear to be any linear relationship between 
these two variables? Form a new variable that is BMI minus its mean. 
Square this new variable. Include this new independent variable in 
the regression equation along with the BMI variable. Does there 
appear to be any linear relationship between these two independent 
variables and serum cholesterol? Why do you think we suggested 
that this new variable be added to the regression equation? 
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SAS and Stata 
Commands 

SAS and Stata are two other widely used statistical software packages. SAS 
was developed on the mainframe computer and, as a result, can be used 
with small to very large data sets. Stata is a much newer package and is 
usually used with small to moderate-size data sets. This appendix shows 
commands for both of these packages that can be used to perform analyses 
comparable to those in many of the MINITAB boxes shown in the text. As 
many of the boxes are repetitive in that they show several plots or calcula­
tions of the pdf for a probability distribution, we show only one plot or pdf 
from the probability distribution, not all the ones shown in the text. As 
with the MINITAB statements in the text, the statements shown here are 
illustrative. For a complete description and details on the various com­
mands, one should consult the SAS (1-4) and Stata (5, 6) documentation. 
In addition, all three of the computer packages used in the text and in this 
appendix show many of the features of the packages that were available 
when the book was being written. New versions of each of these packages 
are continually being developed, and the new releases will have greater 
capabilities than those illustrated here. 

451 



452 A SAS AND STATA COMMANDS 

I. SAS COMMANDS 

The material here shows the SAS commands for carrying out the analyses 
in the text; however, the material does not show all the capabilities of the 
various commands. We are deliberately attempting to keep the SAS mate­
rial relatively simple, and the price we pay for the simplicity is some ineffi­
ciency in our commands. Even though we are attempting to keep things 
relatively simple, SAS requires that some programming be done in the 
creation of some of the pdf and cdf plots. This is reflected primarily in the 
boxes in Chapter 6. We are also using SAS graphical procedures, for exam­
ple, GPLOT and GCHART. If you do not have SAS Graphics, then PLOT 
and CHART can be used in their place, but the options are slightly differ­
ent. In the following, we are considering that each box represents a sepa­
rate SAS session. 

SAS uses PROCEDURES (PROCs) for carrying out the desired analyses 
and the name of a PROC provides a clue to its purpose. SAS also performs 
some of the calculations in DATA steps as is shown below. SAS differs 
from MINITAB and Stata in that there are not individual commands for 
many of the descriptive tools, for example, box plots. Instead, these tools 
are contained in PROCs and are invoked as options within the PROC. 

Box 4 . 1 : Data Entry from the Keyboard 

We are first creating a library that will store our permanent SAS data files. 
This is done by using the LIBNAME statement. The name of the library 
follows the LIBNAME statement, followed by its location in quotes. If you 
wish to use data files in the library or to enter data files into the library, you 
must use the LIBNAME statement when you begin the SAS session. The 
name of the SAS data file that is to contain the data entered from the 
keyboard is specified in a DATA statement. The name is limited to eight 
characters, excluding the name of the library that is used. The names of the 
variables to be entered are listed in their order of input in an INPUT 
statement. Following the INPUT statement is a CARDS statement (the 
name is a relic of an earlier era in computers) that indicates the data are 
being entered from the keyboard. The data are entered after the CARDS 
statement. The following shows the entry of the data in Table 4.1, which is 
stored in a data set named NUTRIENT. The characters BOOK, before 
NUTRIENT indicate that this data set is to be a permanent SAS file and is 
stored in a library named BOOK. BOOK is an example of a library name. 
Once we have created a SAS file, we refer to the variables by their names 
instead of referring to columns. There is a carriage return (Enter) at the end 
of each line. 
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LIBNAME BOOK 'C:\'; 
DATA BOOK.NUTRIENT; 
INPUT DAY GRADE CALORIES PROTEIN FAT VITA; 

CARDS ; 
3 8 1823 83 63 4876 
4 8 2007 64 62 6202 
4 8 1053 23 33 964 
5 8 4322 128 202 6761 

3 5 1723 45 43 5703 

RUN; 

Note that there is a semicolon at the end of each SAS statement; these 
semicolons must be there. The last line above before the RUN statement is 
also a semicolon and it indicates that all the data have been entered. The 
RUN statement tells SAS to execute the above statements. If we wish to 
view the data, we use PROC PRINT followed by the name of the SAS data 
set to be printed. 
PROC PRINT DATA=B00K.NUTRIENT; 
RUN; 

Box 4.2: Data Entry from a Non-SAS File 

We assume that the data are stored in a file named CALORIES that looks 
exactly like the listing of the data shown above. Again the DATA statement 
is required and the name after DATA is the name of the file that will 
contain the SAS data set we are creating. The name of the non-SAS file, 
CALORIES, that contains the data is specified using an INFILE statement. 
The INPUT statement is again used to specify the location of the variables. 
The numbers after the variable names give the column locations containing 
the variables. We again create a permanent SAS file with the same name as 
used above. 

LIBNAME BOOK 'C:\'; 
DATA BOOK.NUTRIENT; 
INFILE CALORIES; 
INPUT DAY 1 GRADE 3 CALORIES 5-8 PROTEIN 10-12 FAT 14-16 

VITA 18-22; 
RUN; 

Box 4.3: Creation of One- and Two-Way Tables 

We wish to create a one-way table showing the distribution of days and a 
two-way table showing the distribution of days with calories (grouped into 



4 5 4 A SAS AND STATA COMMANDS 

less than 2500 calories and greater than or equal to 2500 calories). We first 
need to create a variable showing the grouping of calories. We create a 
temporary SAS data set, NUTRTEMP, containing this information and use 
that temporary data set in the analysis. In the DATA step, the SET state­
ment identifies the SAS data file that is used for input. The variable 
GROUP will be 0 if the caloric intake is less than 2500 calories and will be 1 
if the intake is greater than or equal to 2500 calories. PROC FREQ creates 
contingency tables and is also used in the analysis of the tables. The LIST 
option tells SAS not to put the tables in tabular format, but simply to list 
the frequency of the different cells. This saves space in the output. TABLES 
is the statement that tells SAS what tables are to be created. The * between 
two variable names means that these variables are to be crosstabulated 
with one another. 

LIBNAME BOOK 'C:\'; 
DATA NUTRTEMP; 
SET BOOK.NUTRIENT; 
GROUP = 0; 
IF CALORIES >= 2500 THEN GR0UP=1; 

PROC FREQ DATA=NUTRTEMP LIST; 
TABLES DAY DAY*GR0UP; 

RUN; 

Boxes 4.4 and 4.5: Creation of a Plot Showing Three Line Graphs 

To create a plot with the three line graphs, we first must enter the data into 
a SAS data set. The $ after the word COUNTRY in the INPUT statement 
tells SAS that the variable COUNTRY will contain some alphabetic charac­
ters. The @@ symbols at the end of the INPUT statement tell SAS that 
more than one set of variables will be entered per line. 

DATA EXPEND; 
INPUT 

CARDS ; 
GB 3.9 
GB 5.5 
GB 6.1 
US 5.2 
US 8.4 
US 11.2 
GER 4.7 
GER 7.8 
GER 8.2 

COUNTRY 

60 GB 
75 GB 
87 
60 US 
75 US 
87 
60 GER 
75 GER 
87 

$ 

4, 
5. 

6, 
9, 

5. 
7. 

PERCENT YEAR @@ 

.1 

.8 

.0 

.2 

.1 

.9 

65 
80 

65 
80 

65 
80 

GB 4.5 
GB 6.0 

US 7.4 
US 10.6 

GER 5.5 
GER 8.2 

70 
85 

70 
85 

70 
85 
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We use the TITLE statement to identify what is being graphed. SAS prints 
what is in the single quotes at the top of the page. In the following, we are 
using three different symbols to represent the values for the three coun­
tries and these symbols are specified by the VALUE option. As we wish to 
have the points for each country connected, we use the JOIN value for the 
INTERPOL option. We want the vertical axis, AXIS2, to have the label of % 
of GDP instead of simply the variable name. Therefore, we use the AXIS2 
statement and its LABEL option. Now we are ready to use the PROC 
GPLOT to display the line graphs. In the PLOT statement, the first variable 
specified is the vertical axis variable and the second variable is the horizon­
tal axis variable. If there are to be multiple graphs (a graph for each level of 
a third variable) in the same figure, the third variable is specified after the 
= sign. 
TITLE 'Health Expenditures as % of GDP over Time'; 
SYMB0L1 INTERP0L=J0IN VALUE=CIRCLE; 
SYMB0L2 INTERP0L=J0IN VALUE=SQUARE; 
SYMB0L3 INTERP0L=J0IN VALUE=DIAMOND; 
AXIS2 LABEL=('% of GDP'); 
GOPTIONS DEVICE = VGA; 
PROC GPLOT DATA=EXPEND; 
PLOT PERCENT*YEAR=COUNTRY; 

RUN; 

Box 4.6: Creation of a Histogram 

SAS uses PROC GCHART to produce bar charts and histograms. We are 
going to create a histogram for the systolic blood pressure data shown in 
Table 4.5. First the data are stored in a permanent SAS data set called 
BOOK.SBP. 

LIBNAME BOOK » C : \ ' ; 
DATA BOOK .SBP; 
INPUT SBP @@; 
CARDS ; 
130 100 
112 110 
120 118 
130 120 
110 126 
80 102 
105 80 
116 108 

125 
110 
84 
108 
95 
116 
116 
108 

92 
100 
115 
104 
100 
102 
106 
100 

98 
128 
102 
106 
100 
90 
100 
105 

108 
122 
100 
114 
94 
116 
95 
110 

104 
110 
112 
96 
102 
110 
105 
90 

100 
120 
104 
112 
95 
128 
90 
95 

100 
108 
100 
114 
140 
140 
108 
125 

102 
94 
120 
100 
124 
90 
88 

120 
130 
110 
112 
98 
104 
105 

110 
110 
110 
80 
110 
130 
112 

100 
104 
106 
100 
90 
104 
134 
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Next PROC GCHART is used to create the histogram shown in Figure 4.8. 
We have used the TITLE command to provide a title for the histogram. 
Note that if we do not change the TITLE statement, all subsequent analyses 
performed in the same SAS session will have this title. The VBAR subcom­
mand causes a vertical histogram to be created. If a horizontal histogram is 
desired, the HBAR subcommand is used. As this is a histogram, there 
should be no space between the bars. Thus we set the SPACE variable 
equal to zero. In addition, because we wanted a histogram with the same 
midpoints as those in Figure 4.8, we had to specify the values of the 
interval midpoints. If we do not specify the midpoints, SAS will create 
what it thinks is the most appropriate histogram. 

TITLE 'Histogram of S y s t o l i c Blood Pressure V a l u e s ' ; 
GOPTIONS DEVICE=VGA; 
PROC GCHART DATA=B00K.SBP; 

VBAR SBP / SPACE=0 MIDP0INTS=77 84 91 98 105 112 119 126 133 140; 
RUN; 

Boxes 4.7 to 4.9: Creation of Stem-and-Leaf Plots 

A stem-and-leaf plot of the systolic blood pressure data in the SAS data set 
BOOK.SBP is created using PROC UNIVARIATE. The PLOT option listed 
causes the stem-and-leaf plot to be created for the blood pressure variable. 
The SAS user can not specify the size of the increment for the stem and leaf 
plot. 
TITLE ' D e s c r i p t i o n of the SBP V a r i a b l e ' ; 
LIBNAME BOOK f C : \ ' ; 
PROC UNIVARIATE DATA=B00K.SBP PLOT; 

VAR SBP; 
A stem-and-leaf plot of vitamin A is also created using the values in the 
SAS data set BOOK.NUTRIENT. 
TITLE 'Stem and Leaf P lo t of Vitamin A'; 
PROC UNIVARIATE DATA=B00K. NUTRIENT PLOT; 

VAR VITA; 
RUN; 

Box 4.10: Creation of a Scatter Plot 

The data used to create the scatter plot are the fat and protein values from 
BOOK.NUTRIENT. Hence we do not have to enter any additional data and 
can immediately use PROC GPLOT to create the scatter plot. 
LIBNAME BOOK 'C:\'; 
TITLE 'Scatter Plot of Total Fat with Vitamin A'; 
GOPTIONS DEVICE = VGA; 
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PROC GPLOT DATA=BOOK.NUTRIENT; 
PLOT FAT*VITA; 

RUN; 

Boxes 4.11 to 4.13: Creation of Box Plots and Univariate Statistics 

The first box plot uses the vitamin A data in BOOK. NUTRIENT and PROC 
UNIVARIATE is used to create it. When the PLOT option is included, 
besides obtaining the descriptive statistics and a stem-and-leaf plot from 
PROC UNIVARIATE, we also obtain a box plot for the variables indicated 
in the VAR statement. Because we want the descriptive statistics for the 
four dietary variables in BOOK.NUTRIENT, we make only one call to 
PROC UNIVARIATE. Thus we also create stem-and-leaf plots and box 
plots for CALORIES, FAT, and PROTEIN as well as those for VITA. 

Included in the descriptive statistics are the sample size, mean, stan­
dard deviation, variance, standard error of the mean, coefficient of varia­
tion, quartiles including the median, minimum and maximum, range, in­
terquartile range, mode, and 1st, 5th, 10th, 90th, 95th, and 99th 
percentiles. The five smallest and largest values are also printed. 
LIBNAME BOOK 'C:\'; 
TITLE 'Creation of Box Plots'; 
PROC UNIVARIATE DATA=B00K.NUTRIENT PLOT; 
VAR CALORIES FAT PROTEIN VITA; 
RUN; 

Next the box plots are created for the SBP variable after it has been split 
into two groups. We use the variable GROUP to indicate group member­
ship. The SAS variable _N_ is the observation number. In this case, _N_ 
ranges from 1 to 100 as there are 100 observations of SBP. The OUTPUT 
command tells SAS to write each observation to the data file TEMPSBP. 
DATA TEMPSBP; 
SET BOOK.SBP; 

GR0UP=0; 
IF _N_ > 50 THEN GROUPS-
OUTPUT; 

A separate box plot will be created for each level of the GROUP vari­
able because we are using the BY command in PROC UNIVARIATE. If the 
data were not ordered according to the variable GROUP (50 0's followed by 
50 l's), then it would have been necessary to use PROC SORT, shown 
below, to sort the data set based on GROUP. 
PROC UNIVARIATE DATA=TEMPSBP PLOT; 
BY GROUP; 
VAR SBP; 
RUN; 
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Box 4.14: Sorting the Data 

We wish to sort the CALORIES variable in ascending order. This is easily 
accomplished in SAS with the use of PROC SORT. 
LIBNAME BOOK 'C:\'; 
PROC SORT DATA=B00K.NUTRIENT; BY CALORIES; 
PROC PRINT; 
RUN; 
The data have all been ordered on the basis of the CALORIES variable and 
have been printed to show the sorting. If no SAS data set is listed with a 
PROC statement, the last SAS data set created during this SAS computer 
session is used. 

Box 4.15: Calculation of the Coefficient of Variation 

There is no need to perform any additional calculations here as the coeffi­
cient of variation is part of the output from PROC UNI VARI ATE. 

Box 4.16: Calculation of the Geometric Mean 

In Box 4.16 in the text, MINITAB was, in effect, used as a desk calculator to 
calculate the geometric mean. SAS can be used in that fashion as well, but 
it is inefficient to do so. We show the use of SAS to perform these calcula­
tions in this case, but we do not use SAS in this fashion for the other desk 
calculator applications shown in the text. The calculations are performed in 
the DATA step. The values used are the number of microbes in six differ­
ent areas. In the following, we have not taken advantage of SAS ARRAYS 
and DO statements in an effort not to introduce too much of the SAS 
language too soon. The KEEP statement tells SAS that it can delete the A 
and B variables; only LOGGM and GM will be printed by PROC PRINT. As 
no data set is specified below, PROC PRINT uses the most recently created 
SAS data set. Here we have used the natural logarithm to the base e, not 
the base 10. As the answer shows, the choice of which base to use does not 
make any difference in the value of the geometric mean (GM). 
DATA GEOMMEAN; 
KEEP LOGGM GM; 
Al=100; A2=100; A3=1000; A4=1000; A5=10000; A6=1000000; 
B1=L0G(Al); B2=L0G(A2); B3=L0G(A3); 
B4=L0G(A4); B5=L0G(A5); B6=L0G(A6); 
LOGGM = (Bl + B2 + B3 + B4 + B5 + B6) / 6; 
GM = EXP(LOGGM); 
PROC PRINT; 
VAR GM; 
RUN; 
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Box 4.18: Calculation of the Correlation Coefficient 

We use PROC CORR to obtain the correlation coefficient between vari­
ables. In this case, we want the correlation between FAT and PROTEIN, 
variables in the BOOK.NUTRIENT data set. 
LIBNAME BOOK ' C : \ ' ; 
PROC CORR DATA=B00K.NUTRIENT; 
VAR FAT PROTEIN; 
RUN; 

Box 5 .1: Creation of 10 Samples of 30 Birthdates 

SAS will create these samples in a DATA step. This section is more compli­
cated than those shown above and may be skipped if desired. We use the 
ARRAY statement to indicate to SAS that the variable B has locations set up 
to hold the 30 birthdates. The RETAIN command tells SAS not to lose the 
values stored in B or the SEED value as we process one observation to the 
next. The DO statement indicates how many times the statements included 
between the DO statement and its closing END statement are to be per­
formed. We are using the function RANUNI to obtain a random number 
between 0 and 1. The value of the SEED variable must be initialized before 
RANUNI is called. By multiplying the number created by RANUNI by 
1000, we obtain a number between 0 and 1000. The INT function truncates 
the number to an integer. If the integer is 0 or greater than 365, we delete it 
and draw another random number. If the integer is between 1 and 365, we 
store it in the ;th location of B. After obtaining 30 numbers, we use the 
OUTPUT statement to write them to the file named BIRTH. We repeat the 
process nine more times and then print the resultant file. 
DATA BIRTH; 
RETAIN SEED; 
ARRAY B(30) B1-B30; 
SEED=0; 
DO 1=1 TO 10; 

DO J=l TO 30; 
REPL: CALL RANUNI(SEED,X); 
X=1000*X; 
X=INT(X); 
IF X = 0 OR X > 365 THEN GOTO REPL; 
B(J)=X; 

END; 
OUTPUT; 

END; 
RUN; 
PROC PRINT; 
ID I; 
VAR I B1-B30; 

RUN; 
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Box 6 .1 : Drawing 10 Binomial Variâtes 

In this section, we wish to obtain the values of binomial variables in 10 
samples from a binomial distribution with a sample size of 4 and a popula­
tion proportion of 0.25. RANBIN generates random numbers from a bino­
mial distribution and stores the value in X. Instead of using PROC PRINT 
to print the results, we can also use a PUT statement to print the results. 
The PUT statement prints the results in the LOG window, not in the 
OUTPUT window. 
DATA BINOM; 
RETAIN SEED; 
SEED=5; 
DO I = 1 TO 10; 
CALL RANBIN(SEED,4,0.25,X); 
PUT ' The value of a binomial variable from B(4,.25) is ■ X; 
END; 

RUN; 

Box 6.2: Generation of the Binomial pdf 

SAS uses a command, PROBBNML, to obtain the values of the binomial 
(BNML) cumulative distribution function. By subtracting the cdf evaluated 
at x from the cdf evaluated at x + 1, we can obtain the pdf of the binomial 
distribution. These calculations are performed in the DATA step. We show 
the calculations for n equal to 4 and π equal to 0.25. 
DATA BNMLPDF; 
ARRAY P(5) P1-P5; 
P(l) = PR0BBNMM.25,4,0); 
DO X = 0 TO 3; 
P(X+2) = PR0BBNML(.25,4,X+1) - PROBBNML(.25,4,X); 

END; 
PROC PRINT; 
VAR P1-P5; 

RUN; 

Box 6.4: Finding the cdf for a 0(62,0.235) Variable 

We wish to find the probability that a B(62,0.235) variable is less than 22. 
The following DATA step shows this calculation. 

DATA BNMLCDF; 
P=PR0BBNML(.235,62,21); 
PUT ' The probability that a B(62,0.235) variate is < 22 is « P; 

RUN; 
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Boxes 6.5 and 6.6: Plot of a Binomial pdf 

We plot the binomial pdf for n equal to 10 and π equal to 0.1. The OUTPUT 
statement tells SAS to write a record. 
DATA BNMLPLOT; 
RETAIN X J; 
J=0; 
P = PR0BBNML(.10,10,0); 
OUTPUT; 
DO X = 0 TO 9; 
P = PR0BBNMM.10,10,X+l) - PR0BBNML(.10,10,X); 
J=J+1; 
OUTPUT; 

END; 
G0PTI0NS DEVICE = VGA; 
PR0C GPL0T; 
PLOT P*J; 

RUN; 

Boxes 6.7 and 6.8: Calculation of the pdf and cdf and Their Plots for 
the Poisson Distribution with a Mean Equal to 2.0 

The pdf and cdf for the Poisson distribution and their plots with a mean of 
2 are obtained below using the POISSON statement. 
DATA POISSON; 
RETAIN X J PDF CDF; 
J=0; 
CDF = P0ISS0N(2.0,0); 
PDF = CDF; 
PUT J ' PDF = ' PDF ' CDF = ' CDF; 
OUTPUT; 
DO X=0 TO 9; 
PDF = POISSON(2.0,X+l) - CDF; 
CDF = POISSON(2.0,X+l); 
J = J + 1; 
PUT J ' PDF = ' PDF ' CDF = ' CDF; 
OUTPUT; 
END; 

GOPTIONS DEVICE = VGA; 
PROC GPLOT; 
PLOT (PDF CDF)*J; 

RUN; 

Box 6.10: Creation of a Poissonness Plot 

We use the DATA statement for performing the necessary transformations 
for the Poissonness plot. 
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DATA PPLOT; 
INPUT FREQS I IFACT; 
Y = L0G(FREQS); Z = LOG(IFACT); 
YAXIS = Y + Z; 

CARDS; 
103 0 1 
143 1 1 
98 2 2 
42 3 6 
8 4 24 
4 5 120 
2 6 720 

GOPTIONS DEVICE = VGA; 
PROC GPLOT; 
PLOT YAXIS*I; 

RUN; 

Box 6.15: Plot of the Standard Normal cdf 

The PROBNORM statement is used in the DATA step to obtain the values 
of the standard normal cdf for a number of values. PROC GPLOT is then 
used to plot these values. 
DATA NORMCDF; 
DO X = -3.8 TO 3.8 BY .1 ; 
Y = PROBNORM(X); 
OUTPUT; 

END; 
GOPTIONS DEVICE = VGA; 
PROC GPLOT; 
PLOT Y*X; 

RUN; 

Box 6.16: Finding the cdf for a A/C80, 10) Variable 

PROBNORM is used to find the cdf for a N(0,1) variable. In particular, we 
wish to find the probability that a N(80,10) variable is greater than 95. We 
find the probability that the variable is less than or equal to 95 and then 
subtract that probability from 1. 
DATA NORMCDF; 
Z=(95-80)/10; 
PLTE=PR0BN0RM(Z); 
PGT=1-PLTE; 
PUT ' PROBABILITY OF BEING LESS THAN 95 IS ' PGT; 

RUN; 
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Box 6.17: Finding the Inverse cdf for a A/180,10) Variable 

The PROBIT statement provides the inverse cdf for a standard normal 
variable. 
DATA INVCDF; 
Z=PR0BIT(0.95); 
X=Z*10+80; 
PUT ' 95-TH PERCENTILE IS f X; 

RUN: 

Box 6.19: A Normal Probability Plot 

We wish to create a normal probability plot, not the normal scores plot 
shown in the text, for the vitamin A data. This plot is part of the PROC 
UNIVARIATE output when the option PLOT is specified. 
LIBNAME BOOK ' C : \ ' ; 
PROC UNIVARIATE DATA=B00K.NUTRIENT PLOT; 
VAR VITA; 

RUN; 

Box 6.20: Normal Probability Plot for 100 Observations from a 
Jtf(80,10) Distribution 

We first must generate the 100 observations in the DATA step using RAN-
NOR and then use PROC UNIVARIATE to create the normal probability 
plot. 
DATA N0RPL0T; 
RETAIN SEED; 
SEED=3; 
DO 1=1 TO 100; 
Z=RANN0R(SEED); 
X=Z*10+80; 
OUTPUT; 

END; 
PROC UNIVARIATE PLOT; 
VAR X; 

RUN; 

Box 6.23: Generation of 100 Samples of Size 5 from a Poisson 
Distribution; Description and Plot of the Means from the 
100 Samples 

The function RANPOI is used in a DATA step to create the 100 samples of 
size 5 from a Poisson distribution with a mean of 1. The MEAN function is 
used to calculate the means for each of the 100 samples. 
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DATA POISSAMP; 
RETAIN SEED; ARRAY X(5) X1-X5; 
SEED=-7; 
DO I = 1 TO 100; 
DO J=l TO 5; 
X(J)=RANP0I(SEED,1); 

END; 
XMEAN=MEAN(OF X1-X5); 
OUTPUT; 

END; 
PROC UNIVARIATE; 
VAR XMEAN; 

GOPTIONS DEVICE = VGA; 
PROC GCHART; 
VAR XMEAN; 

RUN; 

Boxes 7.5 and 7.6: Creation of Histogram of Sample Variances 
Based on 200 Samples of Size 3 from a Λ/(0,5) Distribution 

RANNOR is used in a DATA step to generate samples from a standard 
normal distribution. The function STD is used to calculate the sample 
standard deviation of each sample. PROC MEANS can also be used to 
describe the sample variances. 
DATA STDHIST; 
RETAIN SEED; 
ARRAY X(3) X1-X3; 
SEED=-9; 
DO I = 1 TO 200; 
DO J = 1 TO 3; 
Z=RANNOR(SEED); 
X(J)=5*Z; 

END; 
STANDDEV=STD(OF X1-X3); 
SAMPVAR=STANDDEV*STANDDEV; 
OUTPUT; 

END; 
PROC MEANS; 
VAR SAMPVAR; 

GOPTIONS DEVICE = VGA; 
PROC GCHART; 
VAR SAMPVAR; 

RUN; 
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Boxes 7.9 and 7.10: Calculation of Confidence Interval for the 
Population Correlation Coefficient 

These calculations are performed in the DATA step using the LOG, SQRT, 
and EXP functions. 
DATA CORRCI; 

X=0.648; Y = ( l + X ) / ( 1 - X ) ; 
X=0.5*L0G(Y); 
Y=1/SQRT(30); 
A=1.96*Y; 
B=X-A; C=X+A; 
D=2*B; E=2*C; 
F=EXP(D); 
G=EXP(E); 
H = ( F - 1 ) / ( F + 1 ) ; 
I=(G-1)/(G+1); 

PUT f THE LOWER LIMIT IS ' H ' AND THE UPPER LIMIT IS ' I; 
RUN; 

Boxes 10.1 and 10.4: Data Entry of Seven Smallest and Seven 
Largest Day 1 Values, Descriptive Statistics, and Sign Test 

The following shows the entry of the 14 extreme values (7 smallest and 7 
largest) for calories for the first day of recording as well as the correspond­
ing second day's values. The variable CODE indicates whether or not the 
observation is one of the smallest values (CODE = 1) or one of the largest 
values (CODE = 0). The variable DIFF is the day 1 value minus the day 2 
value for the 7 largest day 1 observations. It is the day 2 value minus the 
day 1 value for the 7 smallest day 1 observations. 
LIBNAME BOOK ' C : \ ' ; 
DATA BOOK.EXTREME; 

INPUT DAY1 DAY2 CODE; 
DIFF=DAY1-DAY2; 
IF C0DE=1 THEN DIFF=DAY2-DAY1; 

CARDS ; 
1053 2484 1 
4322 2926 0 
1753 1054 1 
3532 3289 0 
2842 2849 0 
1505 1925 1 
3076 2431 0 
1292 810 1 
3049 2573 0 
3277 2185 0 
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1781 1844 1 
2773 3236 0 
1645 2269 1 
1723 3163 1 

The statistic labeled M in the PROC UNIVARIATE output is the num­
ber of positive sample values minus the expected number of values greater 
than zero if the null hypothesis is true. (Note that some releases of SAS do 
not have M as part of the PROC UNIVARIATE output. PROBBNML can be 
used if M is not part of the PROC UNIVARIATE output.) In our example, 
there are 10 difference values greater than zero and we would expect 7 
(= 14/2) positive values under the null hypothesis. Therefore M = 3 in this 
case. The p value associated with this test, "Prob > \M\ O.xxxx," is the p 
value for a two-sided alternative hypothesis. Therefore, for our one-sided 
alternative, we must divide the indicated probability by 2 to obtain the 
desired p value. Usually M is of little interest, but in this case, it provides 
what we want. 
PROC UNIVARIATE; 
VAR DIFF; 

RUN; 

Box 10.5: Wilcoxon Signed Rank Test 

PROC UNIVARIATE also performs the Wilcoxon signed rank test. The test 
statistic is labeled Sgn Rank and the corresponding p value for a two-sided 
alternative hypothesis is given by "Prob > |S|." The signed rank statistic, S, 
that SAS uses is the sum of the ranks of the positive values minus the sum 
expected under the null hypothesis, n * (n + l)/4. In this example, S is 29.5 
(= 82 - 52.5). As we are performing a one-sided test, the p value is 1/2 the 
value that SAS has reported; that is, it is 0.0338. SAS uses a f-distribution 
approximation to calculate the p value for n, the sample size, greater than 
20. SAS adjusts its calculation of the t statistic for ties in the data. 
PROC UNIVARIATE DATA=B00K.EXTREME ; 
VAR DIFF; 

RUN; 

Box 10.6: Wilcoxon Rank Sum Test 

PROC NPAR1WAY is used to perform the Wilcoxon rank sum test. The 
data to be used in this section are the percentages of calories coming from 
fat for the 33 boys whose data are shown in Table 4.1. We use the 
BOOK.NUTRIENT data file to create these percentages for the boys. After 
the new data file is created, we use PROC NPAR1WAY to carry out the 
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analysis. The test statistic is the smallest sum of ranks and the p value is 
calculated using a normal and ^-distribution approximation as well as a chi-
square approximation. As SAS carried out the calculations to four decimal 
places, there are no ties in the data. Hence its test statistic, S, is 225, not the 
value 224.5 that is shown in the text. The p value from the normal distribu­
tion approximation is 0.6489; that from the ^-distribution approximation is 
0.6520; and that from the chi-square approximation is 0.6358. All of these 
are very close to the value calculated by MINITAB. 
LIBNAME BOOK » C : \ ' ; 
DATA BOOK.FAT; 
SET BOOK.NUTRIENT; 
PERCTFAT=9*FAT/CAL0RIES; 
GRADEVAR=1; 
IF GRADE > 6 THEN GRADEVAR=2; 

PROC NPAR1WAY DATA=B00K.FAT WILCOXON; 
CLASS GRADEVAR; 
VAR PERCTFAT; 

RUN; 

Box 10.7: Kruskal-Wallis Test 

PROC NPAR1WAY is also used to perform the Kruskal-Wallis test. The 
data to be used here are the weight reductions shown in Table 10.8. The 
entry of the data is shown next. 
DATA WEIGHT; 
INPUT 

CARDS; 
38 1 
19 2 
42 2 
12 3 

-20 3 

REDUCT 

10 
36 
24 
16 
-6 

1 
2 
2 
3 
3 

GROUP @@; 

10 
16 
40 
0 
18 

1 
2 
2 
3 
3 

28 
36 
34 
-12 
16 

1 
2 
2 
3 
3 

6 
38 
6 
14 

-14 

1 
2 
2 
3 
3 

8 
28 
16 
16 
6 

1 
2 
2 
3 
3 

33 
36 
30 
-10 
-16 

The same commands used in Box 10.6 are used here because the Kruskal-
Wallis test is an extension of the Wilcoxon rank sum test. SAS shows the 
sum of the ranks, the expected rank sums, and the mean rank for each of 
the groups. The test statistic is labeled CHISQ and its p value is given by 
'Prob > CHISQ ='. 
PROC NPAR1WAY WILCOXON; 
CLASS GROUP; 
VAR REDUCT; 

RUN; 
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Box 11.1: Chi-Square Test for 2 by 2 Contingency Tables 

PROC FREQ, used earlier to form contingency tables, can also be used to 
test the hypotheses of no association between the row and column vari­
ables. The data to be analyzed are the frequency counts for the crosstabula-
tion of education and iron status for 100 women shown in Table 11.6. We 
first use a DATA step to create the sample data. The variable COUNT 
shows the number of women in each of the four cells created by the 
crosstabulation of education and iron status. We are using alpha variables 
as one way of making the output from PROC FREQ more understandable. 
The alpha values shown will be printed with the table. This is more useful 
than having levels indicated by a 1 and 2 printed. 

DATA IRON; 
INPUT EDUC $ IRONST $ COUNT; 

CARDS; 
LT12 DEF 4 
LT12 ACC 26 
GE12 DEF 4 
GE12 ACC 66 

In PROC FREQ, we specified ORDER=DATA to tell SAS that we wanted 
the table shown in the same order as we entered it in the DATA step. If we 
had not specified ORDER=DATA, SAS would have used alphabetical or­
der, placing the GE12 response before the LT12 response because G pre­
cedes L in the alphabet. It would also have reversed the order of DEF and 
ACC because A precedes D. The variable listed in the WEIGHT statement 
gives the frequency associated with each of the cells. The use of the CHISQ 
option requests that several different test statistics for the hypothesis of no 
association of the row and column variables be calculated. The test statis­
tics we use are 'Chi-Square' (the Pearson chi-square) and 'Continuity Adj. 
Chi-Square' (the Yates chi-square) and its value is 0.783. PROC FREQ also 
calculates the value of Fisher's exact test which we mentioned. The use of 
MEASURES provides the value of the sample odds ratio as well as a num­
ber of other statistics that we have not discussed, but that are discussed in 
the documentation for PROC FREQ. The sample odds ratio is the 'Case-
Control' estimate of the 'Relative Risk' and its value is 2.538. The corre­
sponding confidence interval for the population odds ratio is also pro­
vided. The use of EXPECTED requests that the cell frequencies expected 
under the hypothesis of no association be printed. 

PROC FREQ 0RDER=DATA; 
WEIGHT COUNT; 
TABLES EDUC*IRONST / CHISQ MEASURES EXPECTED; 
RUN; 
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Box 11.2: Chi-Square Test for r by c Contingency Tables 

The data entry and the use of PROC FREQ are similar to that shown for the 
2 by 2 table. The contingency table results from the crosstabulation of 
whether a woman knew someone with breast cancer with her opinion 
about mammography. The value of the chi-square test statistic is 6.648 and 
its p value is 0.036. 

One additional feature is presented here that was not presented above. 
Because we also perform a test for no linear trend for these data, we have 
used the CMH option to generate an approximate test statistic for this 
hypothesis. The output associated with this hypothesis is found in the 
section on the 'Cochran-Mantel-Haenszel Statistics' and the test statistic 
similar to the one shown in the text for no trend is given by 'Nonzero 
Correlation.' Its value is 6.056, close to the value of 6.100 that we had 
calculated. The scores that PROC FREQ uses for the columns are 1, 2, 
and 3. 
DATA CANCER; 
INPUT KNOWL 

CARDS ; 
YES POSITIVE 
YES NEUTRAL 
YES NEGATIVE 
NO POSITIVE 
NO NEUTRAL 
NO NEGATIVE 

PROC FREQ ORDER=DATA; 
WEIGHT CT; 
TABLES KN0WL*0PINI0N / CHISQ EXPECTED CMH; 
RUN; 

Box 11.3: CMH Test Statistic and Estimate of the Odds Ratio 

There is no Box 11.3 in the text but, because SAS calculates these statistics, 
we show this analysis. The data are on the relationship between outdoor 
pollution status and occurrence of upper respiratory infection while con­
trolling for passive smoke in the home. 
DATA URI; 
INPUT SMOKE $ POLLUT $ URI $ WT; 

CARDS ; 
YES HIGH SOME 100 
YES HIGH NONE 20 
YES LOW SOME 124 
YES LOW NONE 40 
NO HIGH SOME 128 
NO HIGH NONE 62 

$ OPINION $ CT; 

120 
45 
28 
77 
15 
8 
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NO LOW SOME 166 
NO LOW NONE 119 

The Cochran-Mantel-Haenszel test statistic used by SAS does not include 
the continuity correction. Its value is given by the 'General Association' 
test statistic. The Mantel-Haenszel estimate of the common odds ratio is 
given by the 'Case-Control' estimate of the common relative risk. 
PROC FREQ ORDER=DATA; 
WEIGHT WT; 
TABLES SMOKE*POLLUT*URI / CMH; 
RUN; 

Box 12.1: Life-Table Method of Calculating Survival Probabilities 

PROC LIFETEST is the SAS procedure used in the nonparametric analysis 
of life tables. In this section, we show its use in performing the life-table 
method of calculating survival probabilities for the data in Table 12.1. 
When the data are already in summary form, PROC LIFETEST requires a 
variable to indicate the frequency of those who have died or withdrawn. In 
the following, this is the variable named COUNT. It also requires a variable 
that indicates the censor status: died or withdrawn. This is the variable 
labeled C below. When C is 0, it is a death and when C is 1, it indicates a 
withdrawal. The option FREQ uses COUNT to indicate the frequencies of 
death and withdrawals. 
DATA LTMETHOD; 

INPUT DIED WITHDREW YEAR @@; 
C0UNT=DIED; C=0; 
OUTPUT; 
COUNT=WITHDREW; C=l ; 
OUTPUT; 

CARDS ; 
1421 68 0 335 56 1 132 

44 60 4 20 51 5 19 
7 35 8 7 28 9 5 
1 15 12 3 16 13 1 
0 9 16 

In the TIME statement, the first variable is the variable representing 
time and the variable following the * is the variable representing the censor 
status. The value in parentheses after C is the code used to indicate with­
drawal. It must be a numeric value. The PLOTS option asks SAS to plot the 
survival and hazard curves. The INTERVALS option specifies the time 
intervals to be used in the analysis. The METHOD option tells SAS to use 
the actuarial (life-table) method of analysis. If METHOD is not specified, 

101 2 64 57 3 
45 6 14 33 7 
18 10 5 21 11 
13 14 0 7 15 
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then the product-limit method is used. In the output, SAS creates Tables 
12.2 and 12.3 as well as providing an estimate of the pdf for the time 
variable. A crude estimated survival curve corresponding to Figure 12.3 is 
provided and an estimated hazard function is also plotted. 
PROC LIFETEST PL0TS=(S,H) INTERVALS=(0 TO 16 BY 1) METHOD=ACT; 

TIME YEAR*C(1); 
FREQ COUNT; 

RUN; 

Box 12.2: Product-Limit Method of Calculating 
Survival Probabilities 

Box 12.2 was not shown in the text, although it would have been similar to 
Box 12.1. PROC LIFETEST also can perform the product-limit method of 
analysis of survival tables. We use PROC LIFETEST in the analysis of the 
14 alcohol-dependent subjects shown in Table 12.4. 
DATA PLMETHOD; 
INPUT MONTHS CENSOR GENDER $; 

CARDS ; 
4 
6 
6 
9 

10 
14 
16 
17 
19 
20 
28 
31 
34 
47 

1 
1 
1 
2 
1 
2 
1 
2 
1 
1 
1 
1 
2 
2 

M 
M 
F 
M 
F 
M 
M 
M 
F 
F 
M 
F 
F 
F 

As above, the TIME statement identifies the time variable and the 
variable following the * is the variable indicating whether the time is right-
censored. The value in parentheses is the value used to indicate that the 
time is censored, and it must be numeric. We have run the analysis twice, 
once without and once with the STRATA option. STRATA is used to indi­
cate group membership. The first analysis ignores the gender variable, 
whereas the second analysis takes gender into account. SAS creates most 
of the information in Table 12.5 as part of its output as well as providing a 
crude plot corresponding to Figure 12.4. In calculating its estimate of the 
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standard error of the survival probabilities, SAS did not use the simplified 
approximation that we used in the text. In the output above the estimated 
survival curve, SAS also provides estimates of the median and the re­
stricted mean survival times. 
PROC LIFETEST PL0TS=(S); 
TIME M0NTHS*CENS0R(2); 

When STRATA is used, the survival probabilities and medians and 
restricted means are estimated separately for females and males. There is a 
plot of both of their estimated survival curves. There are three different test 
statistics for the null hypothesis of no difference in survival times for fe­
males and males. These tests are different from that discussed in the text, 
but we can recognize their form. If the null hypothesis is true, each of these 
three tests asymptotically follows a chi-square distribution with the indi­
cated degrees of freedom. Their p values are also shown. All three tests 
agree with the test that we used in the text. There does not appear to be a 
statistically significant difference in the survival distributions for females 
and males. 
PROC LIFETEST PL0TS=(S); 
TIME M0NTHS*CENS0R(2); 
STRATA GENDER; 

RUN; 

Box 13.3: Testing a Hypothesis about the Mean Assuming 
σ is Unknown 

PROC UNIVARIATE can be used to test a hypothesis about the mean 
assuming that σ is unknown. Part of the output from PROC UNI VARI ATE 
is a test that the population mean is zero. We can convert that to a test that 
the population mean is μ0, different from zero, by subtracting the hypothe­
sized value of μ0 from all the sample observations for that variable. To test 
the null hypothesis that μ is equal to 2400 calories, we subtract 2400 from 
all the observations of CALORIES in BOOK.NUTRIENT. The test statistic 
is labeled T: Mean = 0' and the test statistics value is -0.74125. The 
corresponding two-sided p value is labeled 'Prob > |Γ| Ο.χχχχ' and its 
value is 0.4639. 
LIBNAME BOOK 'C:V ; 
DATA TTEST; 
SET BOOK.NUTRIENT; 
NEWCAL = CALORIES - 2400; 

PROC UNIVARIATE; 
VAR NEWCAL; 

RUN; 
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Box 13.4: Testing a Hypothesis about a Population Proportion 

PROC UNIVARIATE can be used to test a hypothesis about the population 
proportion. The test uses a t statistic to test the null hypothesis that π 
equals π0 instead of the z statistic shown in the text. In addition, the 
estimated standard error uses n - 1 in its denominator instead of n and the 
continuity correction term is not used. Hence there will be slight differ­
ences between the test statistic provided by PROC UNIVARIATE and that 
shown in the text. Additionally, the p value is calculated from the t distri­
bution, not the normal. For large sample sizes, there will be little difference 
between the t and z test statistics and their corresponding p values. In the 
DATA step, we also must subtract the value of π0 (= 0.75) from each of the 
observations. There were 86 children said to be immunized and 54 who 
were reported not to have been fully immunized. 
DATA PROP; 
INPUT IMMUN @@; 
IMMUN = IMMUN - 0.75; 

CARDS; 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

.PROC UNIVARIATE; 
VAR IMMUN; 
RUN; 

Box 13.5: Testing a Hypothesis about the Correlation Coefficient 

PROC CORR is used to test a hypothesis about the correlation coefficient. 
The data are the infant mortality rates and health expenditures shown in 
Table 13.1. The p value shown is for the test that the population correlation 
coefficient is zero. If the null hypothesis involves a nonzero value, then 
PROC CORR does not provide the appropriate test statistic. The p value 
differs slightly from that in the text because we rounded the correlation 
coefficient to three decimal places in the text, whereas PROC CORR used 
at least five decimal places in its calculations. 
DATA IMF; 
INPUT RATE EXPEND @@; 

CARDS ; 
4.8 6.8 5.8 9.0 6.1 7.4 6.8 8.5 6.8 7.7 7.2 8.6 
7.5 8.2 7.5 6.0 7.8 8.6 8.1 6.0 8.1 7.1 8.3 7.5 
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8.7 7.1 8.9 7.4 9.0 6.1 9.2 7.2 9.3 6.9 10.0 11.2 
10.8 6.9 11.0 5.3 13.1 6.4 

PROC CORR; 
VAR RATE EXPEND; 

RUN; 

Boxes 13.6.1 and 13.6.2: Testing the Hypothesis of No Difference 
in Two Population Means Assuming Equal Variances 

PROC TTEST is used to test the hypothesis of no difference in two popula­
tion means. PROC TTEST provides a test statistic and p value assuming 
that the population variances are equal as well as assuming that they are 
unequal. In this section, we are assuming that the variances are equal. The 
data are the proportions of calories coming from fat for the boys whose 
data were originally displayed in Table 4.1. The variable specified in the 
CLASS statement identifies the two groups used in the analysis. We are 
not using the information in the test of the equality of the population 
variances. 
LIBNAME BOOK 'C:\'; 
PROC TTEST DATA=B00K.FAT; 
CLASS GRADEVAR; 
VAR PERCTFAT; 

RUN; 

Box 13.7: Testing the Hypothesis of a Difference of 5 Years in Two 
Population Means Assuming Unequal Variances 

As was stated above, PROC TTEST is used to test the hypothesis of no 
difference in two population means. We now use the test statistic associ­
ated with the assumption that the variances are unequal. The data are the 
ages of the AML and ALL patients from Chapter 7. We must subtract 5 
years from all the observations in the AML group. 
DATA AGES; 
INPUT GROUP $ AGE @@; 
IF GROUP = 'AML' THEN AGE=AGE-5; 

CARDS; 
AML 20 
AML 28 
AML 37 
AML 45 
AML 53 
AML 60 
AML 71 

AML 
AML 
AML 
AML 
AML 
AML 
AML 

25 
31 
40 
47 
53 
61 
71 

AML 
AML 
AML 
AML 
AML 
AML 
AML 

26 
33 
40 
48 
56 
61 
73 

AML 
AML 
AML 
AML 
AML 
AML 
AML 

26 
33 
43 
50 
57 
61 
73 

AML 
AML 
AML 
AML 
AML 
AML 
AML 

27 
33 
45 
50 
59 
62 
74 

AML 
AML 
AML 
AML 
AML 
AML 
AML 

27 
34 
45 
51 
59 
63 
74 

AML 
AML 
AML 
AML 
AML 
AML 
AML 

28 
36 
45 
52 
60 
65 
75 
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AML 77 
ALL 18 
ALL 28 
ALL 55 

AML 80 
ALL 19 
ALL 28 
ALL 56 

PROC TTEST; 
CLASS GROUP; 
VAR AGE; 

RUN; 

ALL 
ALL 
ALL 

21 
28 
59 

ALL 
ALL 
ALL 

22 
34 
62 

ALL 
ALL 
ALL 

26 
36 
83 

ALL 
ALL 
ALL 

27 
37 
19 

ALL 28 
ALL 47 

Box 13.8: Paired tTest 

PROC UNIVARIATE can be used to test for no difference in two depen­
dent population means. The variable to be used in the analysis is the 
difference of the sample observations and this difference is created in a 
DATA step. 

Box 13.9: Testing a Hypothesis about the Difference of 
Two Proportions 

PROC TTEST can be used to provide an approximate test statistic for the 
test of the equality of two population proportions. The estimate of the 
standard error of the difference differs slightly from that found using the 
binomial formula because of the division by n - 1 in PROC TTEST instead 
of n used in the binomial calculation. The reported γ value is also slightly 
off as the t distribution instead of the normal distribution is used in its 
calculation. For large samples, these differences are small. 
DATA MILK; 
INP 

CARDS 
NE 1 
NE l 
NE 0 
NE 0 
NE 0 
SW 1 
SW 1 
SW 1 
SW 0 
SW 0 

PROC ' 

UT REGION 
; 
NE 
NE 
NE 
NE 
NE 
SW 
SW 
SW 
SW 
SW 

1 
1 
0 
0 
0 
1 
1 
0 
0 
0 

TTEST; 

NE 
NE 
NE 
NE 

SW 
SW 
SW 
SW 
SW 

CLASS REGION; 
VAR 

RUN; 
COMPLY; 

$ 

1 
0 
0 
0 

1 
1 
0 
0 
0 

COMPLY (Û 

NE 
NE 
NE 
NE 

SW 
SW 
SW 
SW 
SW 

1 
0 
0 
0 

1 
1 
0 
0 
0 

NE 
NE 
NE 
NE 

SW 
SW 
SW 
SW 
SW 

>@; 

1 
0 
0 
0 

1 
1 
0 
0 
0 

NE 
NE 
NE 
NE 

SW 
SW 
SW 
SW 
SW 

1 
0 
0 
0 

1 
1 
0 
0 
0 

NE 1 
NE 0 
NE 0 
NE 0 

SW 1 
SW 1 
SW 0 
SW 0 
SW 0 

NE 1 
NE 0 
NE 0 
NE 0 

SW 1 
SW 1 
SW 0 
SW 0 
SW 0 

NE 1 
NE 0 
NE 0 
NE 0 

SW 1 
SW 1 
SW 0 
SW 0 
SW 0 

NE 
NE 
NE 
NE 

SW 
SW 
SW 
SW 
SW 

1 
0 
0 
0 

1 
1 
0 
0 
0 
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Boxes 14.1 and 14.2: One-Way ANOVA and Multiple Comparisons 

PROC ANOVA can be used to analyze the age data shown in Table 14.1. 
PROC ANOVA uses a MODEL statement to identify the dependent and 
independent variables. The variable to the left of the equal sign is 
the dependent variable and the variable to the right of the equal sign is the 
independent variable. The independent variable is also identified in the 
CLASS statement. The MEANS statement tells SAS that we wish to see the 
mean of the dependent variable for each level of the variable shown in 
the MEANS statement. The words after the / symbol indicate which types 
of multiple comparisons we wish to use in the analysis. For the Dunnett 
procedure, we must specify which level of the independent variable is to 
be used in the comparisons with the other levels. 
DATA AGES; 
INPUT 

CARDS ; 
SURG 32 
SURG 28 
SURG 22 
SURG 26 
CONI 32 
CONI 41 
CONI 36 
CONI 29 
C0N2 31 
C0N2 21 
C0N2 27 

GROUP 

SURG 
SURG 
SURG 
SURG 
CONI 
CONI 
CONI 
CONI 
C0N2 
C0N2 
C0N2 

$ 

28 
20 
32 
41 
26 
35 
37 
51 
35 
22 
18 

AGE m 
SURG 
SURG 
SURG 
SURG 
CONI 
CONI 
CONI 
CONI 
C0N2 
C0N2 
C0N2 

?; 
22 
29 
21 
20 
31 
33 
28 
28 
26 
27 
27 

SURG 
SURG 
SURG 
SURG 
CONI 
CONI 
CONI 
CONI 
C0N2 
C0N2 
C0N2 

25 
22 
34 
33 
39 
33 
34 
35 
28 
24 
36 

SURG 
SURG 
SURG 

CONI 
CONI 
CONI 

C0N2 
C0N2 

20 
37 
19 

34 
43 
27 

22 
44 

SURG 
SURG 
SURG 

CONI 
CONI 
CONI 

C0N2 
C0N2 

20 
18 
23 

33 
25 
45 

29 
21 

SURG 
SURG 
SURG 

CONI 
CONI 
CONI 

C0N2 
C0N2 

28 
29 
23 

29 
39 
22 

27 
25 

PROC ANOVA DATA=AGES; 
CLASS GROUP; 
MODEL AGE=GR0UP; 
MEANS GROUP / TUKEY LSD DUNNETT 

RUN; 
1SURG' 

Box 14.3: ANOVA for Randomized Block with k Replicates per Cell 

PROC ANOVA can also be used with the two-way ANOVA (or other more 
general ANOVAs as well). The model shown here does not include any 
interaction terms. The MODEL statement again has the dependent variable 
to the left of the equal sign and the independent variables to the right of the 
equal sign. The MEANS statement indicates that we wish to see the mean 
of the dependent variable shown for the levels of both of the independent 
variables. 
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DATA WEIGHT; 
INPUT PROG $ SITE $ WTCHANGE @@; 

CARDS; 
DIET OFFICE 6 DIET OFFICE 2 DIET OFFICE 10 DIET OFFICE -1 
DIET OFFICE 8 
DIET FACTORY 3 DIET FACTORY 15 DIET FACTORY 4 DIET FACTORY 8 
DIET FACTORY 6 
EXERCISE OFFICE 3 EXERCISE OFFICE 4 EXERCISE OFFICE -2 
EXERCISE OFFICE 6 EXERCISE OFFICE -2 
EXERCISE FACTORY -4 EXERCISE FACTORY 6 EXERCISE FACTORY 8 
EXERCISE FACTORY -2 EXERCISE FACTORY 3 
BOTH OFFICE 8 BOTH OFFICE 12 BOTH OFFICE 7 BOTH OFFICE 10 
BOTH OFFICE 5 
BOTH FACTORY 15 BOTH FACTORY 8 BOTH FACTORY 10 
BOTH FACTORY 16 BOTH FACTORY 3 

PROC ANOVA; 
CLASS PROG SITE; 
MODEL WTCHANGE = PROG SITE; 
MEANS PROG SITE; 

RUN; 

Box 14.4: Balanced Two-Way ANOVA with Interaction 

As you might have guessed, PROC ANOVA can also be used here to 
analyze the data shown in Table 14.6. Now that we are familiar with the 
simple, but very tedious, way of entering the data that we have used 
throughout, we complicate the input section a little by using DO and 
ARRAY statements. The DO statement indicates how many times the 
statements included between the DO statement and its closing END state­
ment are to be performed. One form of the ARRAY statement provides the 
name of the variable that will store multiple values, and this name is 
followed by the names of each of the variables storing one of the values. In 
the following, the variable REP is the name of the array, and there are six 
values to be stored in REPl through REP6. The first value of the variable 
METHOD is lecture and the value of BOOK is 1. We next read the six 
values, REPl through REP6. The DO statement is used to create six 
records containing the values for METHOD, BOOK, and INCREASE. The 
first value of INCREASE is REPl, the second value is REP2, and so on 
through REP6. Thus for each of the six lines of INPUT, we have created six 
data points that are used in PROC ANOVA. 
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DATA SCORES; 
ARRAY REP REP1 - REP6; 
INPUT METHOD $ BOOK REP1 - REP6; 
DO OVER REP; 
INCREASE = REP; 
OUTPUT; 

END; 
CARDS ; 
LECTURE 1 30 43 12 18 22 16 
LECTURE 2 21 26 10 14 17 16 
LECTURE 3 42 30 18 10 21 18 
DISCUSS 1 36 34 15 18 40 45 
DISCUSS 2 33 31 28 15 29 26 
DISCUSS 3 41 46 19 23 38 48 

PROC ANOVA; 
CLASS METHOD BOOK; 
MODEL INCREASE = METHOD BOOK METHOD*BOOK; 
MEANS METHOD BOOK; 

RUN; 
In the MODEL statement, we have the term METHOD*BOOK which 
means to include the interaction of the two independent variables in the 
analysis as well as the two main effects. It was not necessary to write the 
terms METHOD and BOOK in the MODEL statement, as the use of the 
METHOD*BOOK term also tells SAS to include the main effect terms. 
PROC ANOVA; 
CLASS METHOD BOOK; 
MODEL INCREASE = METH0D*B00K; 
MEANS METHOD BOOK; 

RUN; 

Box 15.1: Simple Linear Regression 

PROC REG is one of the procedures that can be used to perform linear 
regression analyses in SAS. The following shows the SAS statements to 
perform the simple linear regression of SBP on height. The data are shown 
in Table 15.1. 
DATA BP; 
INPUT SBP HEIGHT @@; 

CARDS; 
105 36 90 37 82 38 
80 41 98 42 96 43 
108 48 120 48 114 49 
90 53 92 54 80 54 

96 38 82 39 74 
86 44 88 44 128 
78 49 116 50 74 
88 54 104 55 100 

39 104 40 100 40 
44 118 45 90 46 
50 80 51 98 52 
56 126 57 108 58 
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106 59 98 59 94 59 88 60 110 60 124 60 86 61 120 61 
112 62 100 63 122 64 122 64 110 65 124 65 122 66 94 67 
110 67 140 69 

In the regression model, the dependent variable is the variable to the left of 
the equal sign in the MODEL statement and the independent variable is to 
the right of the equal sign. The options specified in the MODEL statement, 
jR and INFLUENCE, cause the predicted, observed, and residual values to 
be printed as well as the leverage values, labeled as Hat Diag, H, for each 
observation. Several other statistics are also printed, but we do not discuss 
them. The calculations performed in Box 15.2 are part of this SAS session. 
PR0C REG DATA=BP; 
MODEL SBP = HEIGHT / R INFLUENCE; 

RUN; 

Box 15.2: 95 Percent Confidence and Prediction Intervals 

PROC REG also produces the 95 percent confidence and prediction inter­
vals as is shown below. The option CLI prints the 95 percent prediction 
intervals and CLM prints the 95 percent confidence interval for the mean of 
Y for each value of X. If we choose not to print the statistics from PROC 
REG, and focus only on the plot of the intervals, we can also use the 
NOPRINT option of the MODEL statement. In the following, U95. and 
L95. are keywords in SAS that refer to the upper and lower 95 percent 
prediction interval values. P. is another SAS keyword that refers to the 
predicted value of the dependent variable and U95M. and L95M. are key­
words that refer to the upper and lower 95 percent confidence interval 
values for the mean of Y at each value of the independent variable. All five 
of these variables are plotted versus HEIGHT, the independent variable. 
The OVERLAY option means that all three of these plots are shown in a 
single figure. The symbol P will represent the upper and lower 95 percent 
prediction intervals, R shows the predicted regression line, and C shows 
the upper and lower 95 percent confidence intervals. The plot that is pro­
duced is very crude and cluttered. It is probably better not to include the 
prediction interval and the intervals for the mean in the same graph. To 
improve the quality of the plot, it is also possible to create an output file 
containing the points to be plotted and then to use PROC GPLOT to create 
the plots. This could be done with some of the other plots that are built into 
some of the other procedures as well. 
PROC REG DATA=BP; 
MODEL SBP = HEIGHT / P CLI CLM; 
PLOT (U95. L95.)*HEIGHT='P' P.*HEIGHT='R' 

(U95M. L95M.)*HEIGHT=âC /OVERLAY; 
RUN; 
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Box 15.3: Stepwise and All Possible Regressions 

PROC REG can also be used to perform stepwise and all possible regres­
sions in the multiple regression setting. The data to be analyzed are those 
shown in Table 15.6. The CORR option of PROC REG requests that the 
correlation matrix of all the variables listed in the MODEL statement be 
printed. It is printed as a square matrix with l's—the correlation of a 
variable with itself—printed down the diagonal. The SELECTION option 
tells SAS what method of analysis should be used. The selection of 
STEPWISE tells SAS to use a forward stepwise regression method, which 
allows for a variable to be entered or deleted at each step. SAS prints the F 
test statistic, the square of the t value, instead of the t statistic printed by 
MINITAB as part of the STEPWISE output. When SELECTION is ADJRSQ, 
SAS performs all possible regressions using the adjusted r-square measure 
as the criterion for determining the best model. By including CP, we have 
requested that its values also be printed as part of the output. Calculations 
in Boxes 15.4 and 15.5 are part of this SAS session. 
DATA BOOK.MULTIPLE; 
INPUT HEIGHT SBP AGE WEIGHT @@; 

CARDS ; 
36 105 7 57 37 90 7 46 38 82 6 42 
38 96 7 52 39 82 8 56 39 74 7 45 

67 110 13 142 69 140 13 122 

PROC REG CORR; 
MODEL SBP = HEIGHT AGE WEIGHT / SELECTI0N=STEPWISE; 
MODEL SBP = HEIGHT AGE WEIGHT / SELECTI0N=ADJRSQ CP; 

RUN; 

Boxes 15.4 and 15.5: Multiple Linear Regression 

PROC REG can also be used to perform the multiple regression analysis. 
The SAS statements for analyzing the data in Table 15.6 are the following. 
PROC REG DATA=B00K.MULTIPLE; 

MODEL SBP = HEIGHT AGE WEIGHT; 
MODEL SPB = WEIGHT; 

RUN; 

Box 15.6: Logistic Regression Analysis 

There is no Box 15.6 in the text as the current version of MINITAB does not 
have a logistic regression command; however, SAS has PROC LOGISTIC 
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for performing logistic regression and its use is shown here for the lead, 
smoking, and pulmonary function test results in Table 15.8. We are using 0 
to represent a normal PFT result and 1 to indicate a result that was not 
normal. We must create our own coding of the smoking variable. The 
codes 1, 2, 3, and 4 represent the smoking levels of never, former, light, 
and heavy, respectively. In the DATA step, we create three smoking status 
variables. The variable SMOK1 has the value of 1 if SMOKING is 1 and 0 
otherwise; the variable SMOK2 will has the value of 1 if SMOKING is 2 and 
0 otherwise; and the variable SMOK3 has the value of 1 if SMOKING is 3 
and 0 otherwise. This means that the heavy level of smoking is the refer­
ence level. 
DATA PFT; 
INPUT 
SM0K1= 
IF 
IF 
IF 

LEAD SMOKING 
=0 ; SM0K2=0 ; 

SMOKING = 1 
SMOKING = 2 
SMOKING = 3 

OUTPUT; 
CARDS; 
1 1 
1 1 
1 2 
1 2 
1 3 
1 3 
1 4 
1 4 
,0 1 
0 1 
0 2 
Ö 2 
0 3 
0 3 
0 4 
0 4 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

160 
4 
49 
6 
75 
6 
84 
3 
33 
3 
12 
2 
21 
2 
16 
3 

THEN 
THEN 
THEN 

PFT COUNT; 
SM0K3=0 
SM0K1=1 
SM0K2=1 
SM0K3=1 

PROC LOGISTIC; 
WEIGHT COUNT; 
MODEL PFT = LEAD SMOKI SM0K2 SM0K3; 

RUN; 

II. STATA COMMANDS 

Stata is similar to MINITAB in that it is command oriented instead of 
having many functions grouped into a procedure as is done in SAS. As 
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stated above, we are demonstrating the use of Stata; we are not showing all 
the features available. In addition, just as with SAS, we do not show the 
boxes in which MINITAB was used simply as a desk calculator or those 
boxes in which MINITAB simply provided values of pdf s or cdf s. We are 
assuming that each box below was created during a separate Stata session 
unless we indicate otherwise. This means that the use command (dis­
cussed below) is specified in each box that uses a Stata data set that we 
previously created. Stata uses a . to indicate when it is ready for an addi­
tional command. We enter a carriage return (Enter) at the end of each line 
or, if there is more information than fits on a line, we continue typing until 
we have entered all the required information and then we enter the car­
riage return. The label definition statement in Box 4.1 provides an example 
of how Stata handles information that takes more than one line. Informa­
tion shown in parentheses after a Stata command tells what action Stata 
took in response to the command. 

Box 4 .1 : Data Entry from the Keyboard 

To enter data from the keyboard, we use the input command. The names 
of the variables being entered are listed after the word input. For the data 
in Table 4.1, we use the following format. We enter the values of the 
variables after Stata provides the line numbers. There is a carriage return 
(Enter) at the end of each line. The end statement tells Stata that all the data 
have been entered. 

input day grade calories protein fat vita 
day grade calories protein fat vita 

1.3 8 1823 83 63 4876 
2.4 8 2007 64 62 6202 
3.4 8 1053 23 33 964 
4. 5 8 4322 128 202 6761 

33. 3 5 1723 45 43 5703 
34. end 

We use the label define statement to name the levels of the variables. 
For example, for the day of the week variable, we can assign the labels 
shown in Table 4.2 as follows. The dayfmt variable now contains the labels, 
and the use of the label values statement connects the day variable with 
the labels in daylab. 

label define daylab 1 "Sun" 2 "Mon" 3 "Tue" 4 "Wed" 5 "Thu" 6 
"Fri" 7 "Sat" 
label values day daylab 
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When the day variable is used, the labels assigned to it will appear instead 
of the numeric codes that were entered originally. 

To save this file, we use the save command. Stata appends .dta to the 
file name, indicating that this is a Stata data file. We are saving the file on 
drive c in subdirectory book, hence the c:\book\ before the file name. 
. save c:\book\nutrient 
(file c:\book\nutrient.dta saved) 
To print some of the values to see if they have been entered correctly, we 
use the list command with the in range which specifies which records are 
to be printed. Suppose that we wished to print only the first 10 records. 
The command for doing this is the following. 
. l i s t in 1/10 
If we wish to see only the values for calories in records 5 to 20, the list 
command would be the following. 
. l i s t ca lor ies in 5/20 
If we have made an error in data entry, we can use the replace command to 
correct the error. For example, suppose that we entered the wrong value 
for vita for the second boy in the data set. To replace the incorrect value, 
we do the following. 
. replace vita=6202 in 2 
(1 change made) 

Box 4.2: Data Entry from a Non-Stata File 

Again we assume that the non-Stata file looks exactly like the file shown in 
Box 4.1, except that the observation numbers are not included. Suppose 
that the file is named nutrient.dat. The file is entered into Stata using the 
infile and using commands. The variable names follow the infile statement 
and the file location and name follow the using statement. 

. i n f i l e day grade calor ies protein fat v i ta using c: \book\nutr ient .dat 
(33 observations read) 

We can use the desc command to describe the file. 
. desc 
We wish to save this file as a Stata file, so we use the save command. Note 
that the input file was not a Stata file. Its name was nutrient.dat, which is 
different from nutrient.dta, a Stata file. 
. save c:\book\nutrient 
(file c:\book\nutrient.dta saved) 
Once a file is saved as a Stata file, we access it by the use command as is 
shown in Box 4.3. 

file://c:/book/nutrient
file://c:/book/nutrient.dta
file://c:/book/nutrient.dat
file://c:/book/nutrient
file://c:/book/nutrient.dta
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Box 4.3: Creation of One- and Two-Way Tables 

The tabulate (tab) command is used to create one- and two-way tables in 
Stata. The one-way table for day of the week is created by the following 
commands. Note that in the use command, we do not have to include the 
.dta modifier for Stata files. 
. use c:\book\nutrient 
. tabulate day 
In the two-way table, we wish to crosstab day of the week by a variable that 
indicates whether the calories are less than 2500. Therefore, we first must 
create this new indicator variable. We generate (gen) a new variable whose 
values are all 0 and then we use the replace command and the if statement 
to change the value of the new variable to 1 if calories are greater than or 
equal to 2500. 
. gen codecal=0 
. replace codecal=l if calor ies > 2499 
(11 changes made) 

. tab day codecal 

Boxes 4.4 and 4.5: Creation of a Plot Showing 
Three Line Graphs 

The data to be graphed are the health expenditures as a percentage of GDP 
by year for Great Britain, West Germany, and the United States. The data 
are entered as shown below. 

US WGERM year 
i 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

nput GB US 

3.9 5.2 
4.1 6.0 
4.5 7.4 
5.5 8.4 
5.8 9.2 
6.0 10.6 
6.1 11.2 
end 

WGERM 
GB 

4.7 
5.1 
5.5 
7.8 
7.9 
8.2 
8.2 

year 

1960 
1965 
1970 
1975 
1980 
1985 
1987 

We use the graph (gr) command to create the plots. Each of the countries' 
health expenditures as a percentage of GDP are to be plotted on the same 
graph versus the year variable. The last variable listed is the variable for the 
horizontal axis. The tltitle (tl) is the title at the top of the plot. The lltitle 
(11) is the title on the left axis. If there are no special symbols in the title, the 
" symbols are not necessary. The connectO option tells Stata what method 
to use to connect the points for GB, US, and WGERM. Below, we have 

file://c:/book/nutrient
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entered connect(lll). The code of 1 tells Stata to use straight lines to connect 
the points. As there are three l's, we wish to connect the points by straight 
lines for all three countries. The symbol (s) option tells Stata which sym­
bols to use for the points to be plotted. The O indicates that a large circle is 
to be used for GB values, S means that a large square is to be used for US 
values, and T indicates that a large triangle is to be used for WGERM 
values. Stata does not plot its graphs within Stata, but requires that the file 
be saved. The saving command saves a file named expend.gph. Once we 
exit from Stata using the exit, clear statement, we can then plot the graph 
on the printer. If we do not wish to have a printout of the plot, then we do 
not need to use the saving option. 

. gr GB US WGERM year, t l ("Health Exp. as a % of GDP by Year") 11("% of 
> GDP") connect( l l l ) s(OST) saving(expend) 
. ex i t , clear 

In response to the DOS prompt, we use the gphdot command and provide 
the file name. 
c:\STATA> gphdot c:expend.gph 

Box 4.6: Creation of a Histogram 

The graph command is also used to create histograms in Stata. The data are 
entered from the keyboard and saved in a file bp.dta. Histogram is the 
option that causes the histogram to be created. Bin(x) specifies that x 
intervals are to be used. If bin(x) is not specified, Stata uses 5 intervals. We 
have specified that 11 intervals be used for this histogram. Freq tells Stata 
that the vertical axis is to be labeled in frequency units rather than frac­
tional units. Because we are unable to specify the midpoints of the intervals 
or the starting point in Stata, this histogram may differ from that shown in 
Figure 4.8. We can also use the xlabeK) and ylabelO statements to provide 
more information on the x and y axes. The labels that we want shown are 
included in the parentheses. In this and all future demonstrations of the 
graph command, we are not showing the exiting from Stata to draw the 
graphs as was shown in the box immediately above. 
. input sbp 

sbp 

1. 130 
2. 100 
3. 125 

100. 125 
101. end 
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. save c:\book\bp 
( f i le c:\book\bp.dta saved) 
. graph sbp, histogram b in ( l l ) freq xlabel(80,92,104,116,128,140) 
> ylabel(0,4,8,12,16,20,24) saving(histsbp) 

Box 4.10: Creation of a Scatter Plot 

The graph command is also used to create scatter plots. The data to be used 
are the total fat and protein values in the file nutrient.dta. Therefore, we 
access that file by the use command. Twoway is the option that causes the 
creation of the scatter plot. When there are two variables and no option is 
specified, Stata assumes that twoway is the intended option. 
. use c:\book\nutrient 
. gr fat protein, twoway xlabel(0,30,60,90,120,150,180) 
> ylabel (0,70,140,210) saving(scat) 

Boxes 4.11 to 4.13: Creation of Box Plots and 
Univariate Statistics 

The box plot for the vitamin A data in the nutrient, dta file is created using 
the graph command and the box option as follows. 
. use c:\book\nutrient 
. gr vita, box ylabel(0,2500,5000,7500,10000,12500) 
saving(boxvita) 
. exit, clear 
We also wish to create two box plots for the systolic blood pressure values 
in Table 4.5. This is easily accomplished in Stata by creating an indicator 
variable that has the value of 0 for the first 50 observations and the value of 
1 for the next 50 observations. The symbol _n is a Stata variable that is the 
observation number. The by option tells Stata to draw box plots of sbp for 
each level of the variable in parentheses following the by statement. 
. use c:\book\bp 
. gen dummy=l 
. replace dummy=0 if _n < 51 
(50 changes made) 

. graph sbp, box by(dummy) ylabel(80,100,120,140) 
saving(boxsbp) 
. exit, clear 

We also want to have the descriptive statistics for calories, protein, 
total fat, and vitamin A. Stata uses the summarize (summ) command with 
the detail option to have the descriptive statistics, including the key per-
centiles calculated. 
. use c:\book\nutrient 
. summ calories protein fat vita, detail 

file://c:/book/bp
file://c:/book/bp.dta
file://c:/book/nutrient
file://c:/book/nutrient
file://c:/book/bp
file://c:/book/nutrient
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Box 4.14: Sorting the Data 

Sorting is easy with Stata. For example, to sort the nutrient.dta file based 
on calories, we use the sort statement. We use the list command to show 
that the calories have been sorted. 
. use c:\book\nutrient 
. sort calories 
. list calories 
If we do not save this file, the next time we access it with the use statement, 
it will be in its original unsorted order. 

Box 4.18: Calculation of the Correlation Coefficient 

Stata uses the correlate (corr) statement to calculate the Pearson correlation 
coefficient. 
. use c:\book\nutrient 
. corr protein fat 

Box 4.19: Scatter Plot of a Quadratic Relationship 

We can easily show the plot of a quadratic relationship with Stata using the 
graph command and the twoway option. We first enter the data to be used 
and then plot them. The connect(s) statement tells Stata to connect the 
points, and s means to smoothe the line. 
. input y x 

y x 
1. 4-2 
2. 1 - 1 
3 . 0 0 
4. 1 1 
5 . 4 2 
6. end 

. graph y x, twoway c(s) saving(quad) 

Box 4.20: Spearman Rank Correlation Coefficient 

We can use the genrank statement along with the correlation command to 
calculate the Spearman correlation coefficient; however, it is easier to use 
the spearman command which calculates the correlation in one step as is 
also shown below. 
. use c:\book\nutrient 
. genrank rankprot = protein 
. genrank rankfat = fat 
. corr rankprot rankfat 
. spearman protein fat 

file://c:/book/nutrient
file://c:/book/nutrient
file://c:/book/nutrient
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Box 5 .1: Creation of 10 Samples of 30 Birthdates 

Stata uses the uniformO statement in the creation of 10 samples of 30 
birthdates. The uniformO statement produces random numbers in the 
range 0 to 1. We convert them to integers in the following generate state­
ment. We must also set the seed to obtain different sets of uniform random 
numbers and set the number of observations to 1500. We only need 300 
birthdates, but because we will obtain many numbers outside the range of 
1 to 365, we create extra numbers to give a high probability of obtaining 300 
numbers in the range 1 to 365. The int() function returns the integer por­
tion of the number contained in parentheses. We use the drop command to 
delete observations not in the desired range. The == sign tells Stata to 
drop values of y if they equal to zero. The double equal sign is also used in 
the generate command. Stata requires the == sign when it wishes to test 
for equality in an if statement. If only one equal sign is used, Stata is 
confused and gives an error message. We use the sort command to sort the 
observations in sets of 30 and then we use the list statement to list the set. 
We repeat the sort and list statements 10 times to list the first 300 birth­
dates in sets of 30. 
. set seed -3 
. set obs 1500 
(obs was 0, now 1500) 

. gen x=1000*uniform() 

. gen y=int(x) 

. drop if y > 365 
(931 observations deleted) 

. drop if y==0 
(3 observations deleted) 

. sort y in 1/30 

. list y in 1/30 

. sort y in 31/60 

. list y in 31/60 

. sort y in 271/300 

. list y in 271/300 

Box 6.16: Finding the cdf for a JV(80,10) Variable 

NormprobO is used to find the cumulative probability for a standard nor­
mal variable. We set the number of observations equal to 1, transform the 
observation to a standard normal, and then use the normprobO statement. 
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. set obs 1 

(obs was 0, now 1) 

. gen z=(95-80)/10 

. gen prob=normprob(z) 

. list prob in 1 

Box 6.17: Finding the Inverse cdf for a A/(80,10) Variable 

The invnormO command is used to find the inverse cdf value for a stan­
dard normal variable. 
. set obs 1 
(obs was 0, now 1) 

. gen z=invnorm(0.95) 

. gen x=z*10+80 

. l i s t x in 1 

Box 6.19: Normal Probability Plot 

We can create a normal probability plot by using the qnorm command. The 
horizontal and vertical axes have the values of the random variable as the 
labels instead of the cdf values. We are creating the plot for the vitamin A 
variable in the nutrient data set. The plot provided by Stata has the ob­
served variable, vita, on the vertical axis, instead of the horizontal axis as 
shown in the text. 
. use c:\book\nutrient 
. qnorm v i ta ylabel(0,2500,5000,7500,10000,12500) 
> xlabel(0,2500,5000,7500,10000,12500) 

Boxes 10.1 and 10.4: Data Entry of Seven Smallest and Seven 
Largest Day 1 Values, Descriptive Statistics, and Sign Test 

The data are entered as shown below and the summarize command pro­
vides the summary descriptive statistics. The signtest is used to test the 
hypothesis that π equals 0.50. The rejection region is specified in the out­
put and the two-sided p value based on the normal approximation is also 
provided. 
. input dayl day2 

dayl day2 
1. 1053 2484 
2. 4322 2926 

file://c:/book/nutrient
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3. 1753 1054 
4. 3532 3289 
5. 2842 2849 
6. 1505 1925 
7. 3076 2431 
8. 1292 810 
9. 3049 2573 
10. 3277 2185 
11. 1781 1844 
12. 2773 3236 
13. 1645 2269 
14. 1723 3163 
15. end 

. sort dayl 

. gen dl=dayl if _n < 8 
(7 missing values generated) 

. gen d2=day2 if _n < 8 
(7 missing values generated) 

. gen d3=dayl if _n > 7 
(7 missing values generated) 

. gen d4=day2 if _n > 7 
(7 missing values generated) 

. summ dl-d4, detail 
The replace command used with the if statement is used to change some of 
the values for a variable. In the following, we wish to change the order of 
subtraction for the seven smallest day 1 values. 
. gen diff=dayl-day2 
. replace diff=day2-dayl if _n < 8 
(7 changes made) 

. gen zero=0 

. s igntes t diff=zero 

Box 10.5: The Wilcoxon Signed Rank Test 

The command signrank is used to perform this test. A two-sided p value 
based on the normal approximation is provided. We are assuming here 
that we have not exited Stata, but are continuing with the Stata session 
from Box 10.4. 
. signrank diff=zero 



II. STATA COMMANDS 491 

Box 10.6: The Wilcoxon Rank Sum Test 

The data to be analyzed are the percentages of calories coming from fat for 
the fifth and sixth grade boys compared with seventh and eighth grade 
boys. The wilcoxon command is used to perform the test. The data in 
c:\book\nutrient are ordered with the 19 seventh and eighth grade boys 
appearing first followed by the 14 fifth and sixth grade boys. The two-sided 
γ value based on the normal approximation is provided. 
. use c:\book\nutrient 
. gen fatcal=9*fat 
. gen perfa t=fa tca l /ca lor ies 
. gen gradecod=0 
. replace gradecod=l if _n > 19 
(14 changes made) 

. save c:\book\fatdata 
( f i l e c: \book\fatdata.dta saved) 
. wilcoxon per fa t / by(gradecod) 

Box 10.7: Kruskal-Wallis Test 

The data to be analyzed are the weight reductions from Table 10.8. The 
command kwallis is used to perform the test of no difference in location 
across the three groups. The sum of the group ranks and the chi-square 
test statistic and its p value are provided. 
. input reduct group 

reduct group 

1. 38 1 
2. 10 1 
3. 10 1 
4. 28 1 

39. 6 3 
40. end 

. kwallis reduct, by(group) 

Box 11 .1 : Chi-Square Test for 2 by 2 Contingency Tables 

We wish to analyze the education and iron status data to determine if there 
is a statistically significant relationship between these variables. The tabu­
late command with the chi2 option is used to test the hypothesis of no 
relationship. The test statistic is the uncorrected Pearson chi-square statis-

file://c:/book/nutrient
file://c:/book/nutrient
file://c:/book/fatdata
file://c:/book/fatdata.dta
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tic. If we also specify exact, we obtain the γ value from Fisher's exact test. 
The variables to be crosstabulated are specified, and the variable contain­
ing the cell frequencies follows the equal sign. 
. input educ ironst count 

1. 
2 . 
3 . 
4 . 
5 . 

educ 

1 1 4 
1 2 26 
2 1 4 
2 2 66 
end 

. tab educ ironst = count, chi2 exact 

Box 11.2: Chi-Square Test for r by c Contingency Tables 

The data entry and the use of tabulate are similar to that shown for the 2 by 
2 table. The contingency table results from the crosstabulation of whether a 
woman knew someone with breast cancer with her opinion about mam-
mography. There is no directly calculated test for a linear trend. 
. input knowl opinion ct 

knowl opinion ct 

1. 
2 . 
3 . 
4 . 
5 . 
6 . 
7 . 

1 1 
1 2 
1 3 
2 1 
2 2 
2 3 
end 

120 
45 
28 
77 
15 

8 

. tab knowl opinion = ct , chi2 

Box 12.2: Product-Limit Method of Calculating 
Survival Probabilities 

The data are the times to relapse of the 14 alcohol-dependent patients 
shown in Table 12.4. We use several commands in Stata to summarize the 
survival (time to relapse) experience of the 14 patients. The command 
kapmeier is used to graph the survival curve. The command gwood adds 
confidence bands to the survival curve. 

The command survsum displays summary statistics for the survival 
data. The command mantel is used when we wish to test for a difference in 
two survival curves. The data include the time to relapse or to a censoring 
variable, a dead variable that is 0 if the subject's time is censored and 1 if 
the subject died (relapsed). If there is more than one group, there is also a 
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group variable. We use a 1 to indicate that the subject is female and a 2 to 
indicate a male. 
. input time relapse sex 

time relapse sex 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

4 1 
6 1 
6 1 
9 0 
10 1 
14 0 
16 1 
17 0 
19 1 
20 1 
28 1 
31 1 
34 0 
47 0 
end 

2 
1 
2 
2 
1 
2 
2 
2 
1 
1 
2 
1 
1 
1 

We first provide summary statistics: the estimated mean and median sur­
vival times for each group. 
. survsum time relapse, by(sex) 
Next we create a graph of the survival curves for females and males. As we 
have told Stata not to use any special symbols, it uses the numeric codes of 
1 and 2 for females and males to indicate the group. 
,. kapmeier time relapse, by (sex) 
We add a confidence band to the overall survival curve. 
. gwood time relapse 
We now test the hypothesis of no difference in the survival distributions 
for females and males. Stata uses a normal statistic in the test of hypothe­
sis. If we square the value Stata calculates, we have the chi-square statistic 
shown in the text. Stata also shows the expected and observed values. 
. mantel time relapse, by(sex) 

Box 13.3: Testing a Hypothesis about the Mean Assuming 
σ Is Unknown 

Stata uses the ttest command to test a hypothesis about the mean when σ 
is unknown. To test the hypothesis that the mean of calories is 2400, we 
use the following format. Stata provides the mean and standard deviation, 
the value of the t statistic, its degrees of freedom, and its two-sided p value. 
. use c:\book\nutrient 
. ttest calories=2400 

file://c:/book/nutrient
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Box 13.4: Testing a Hypothesis about a Population Proportion 

The ttest command can be used to test a hypothesis about the population 
proportion. The test uses a t statistic to test the null hypothesis that π 
equals π0 instead of the z statistic shown in the text. In addition, the 
estimated standard error uses n — 1 in its denominator instead of n and the 
continuity correction term is not used. Hence there will be slight differ­
ences between the test statistic provided by ttest and that shown in the 
text. Additionally, the p value is calculated from the t distribution, not the 
normal. For large sample sizes, there will be little difference between the t 
and z test statistics and their corresponding p values. We use the generate 
command to create the data. We create 140 observations with the value of 1 
and then replace 54 of them with the value of 0. It is easier to do this than to 
enter 140 observations. 
. set obs 140 
(obs was 0, now 140) 

. gen immun=l 

. replace immun=0 in 87/140 
(54 changes made) 

. ttest immun=0.75 

Boxes 13.6.1 and 13.6.2: Testing the Hypothesis of No Difference 
in Two Population Means Assuming Equal Variances 

The ttest command is again used to test the hypothesis of no difference in 
two population means. The ttest command provides a test statistic and p 
value assuming that the population variances are equal. If we do not wish 
to assume equal variances, we use the unequal option. In this section, we 
are assuming that the variances are equal. The data are the proportions of 
calories coming from fat for the boys whose data were originally displayed 
in Table 4.1 and saved in the file c:\book\fatdata.dta. We must convert the 
perfat variable into two variables, fati and fat2, corresponding to the 
gradecod variable. The = = here is used to test if gradecod is equal to 1 and 
if gradecod is equal to 0. 
. use c:\book\fatdata 
. gen fatl=perfat if gradecod==l 
(19 missing values generated) 

. gen fat2=perfat if gradecod==0 
(14 missing values generated) 

. ttest fatl=fat2 

file://c:/book/fatdata.dta
file://c:/book/fatdata
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Box 13.7: Testing the Hypothesis of a Difference of 5 Years in Two 
Population Means Assuming Unequal Variances 

As was stated above, ttest is used to test the hypothesis of no difference in 
two population means. We now use the test statistic associated with the 
assumption that the variances are unequal. The data are the ages of the 
AML and ALL patients from Chapter 7. We wish to test that the mean 
AML age is less than or equal to 5 years greater than the mean ALL age 
versus the alternative that the difference is greater than 5 years. The first 51 
observations are from the AML patients and the last 20 are from the ALL 
patients. 
. input age 

age 

1. 20 
2. 25 
3. 26 

71. 19 
72. end 

. gen agel=age-5 in 1/51 
(20 missing values generated) 

. gen age2=age in 52/71 
(51 missing values generated) 

. ttest agel=age2, unequal 

Box 13.8: Paired üTest 
The ttest command can be used to test for no difference in two dependent 
population means. The variable to be used in the analysis can be the 
difference of the sample observations and this difference is created with 
the generate command. As an alternative, we could use the two dependent 
means in ttest with the paired option. 

Box 13.9: Testing a Hypothesis about the Difference of 
Two Proportions 

The ttest command can be used to provide an approximate test statistic for 
the test of the equality of two population proportions. The estimate of the 
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standard error of the difference differs slightly from that found using the 
binomial formula because of the division by n — 1 in ttest instead of n used 
in the binomial calculation. The reported p value is also slightly off because 
the t distribution instead of the normal distribution is used in its calcula­
tion. For large samples, these differences are small. The data are the com­
pliance status of the 42 milk producers in the East and the 50 milk pro­
ducers in the Southwest. We use the generate and replace statements to 
create the data instead of entering 140 lines with the compliance status and 
region. 
. set obs 92 
(obs was 0, now 92) 

. gen comply = 0 

. replace comply=l in 1/12 
(12 changes made) 

. replace comply=l in 43/63 
(21 changes made) 

. gen region=l 

. replace region=2 in 43/92 
(50 changes made) 

. label define reglab 1 "East" 2 "SW" 

. label values region reglab 

. gen compi = comply if region==l 
(50 missing values generated) 

. gen comp2 = comply if region==2 
(42 missing values generated) 

. ttest compl=comp2 

Boxes 14.1 and 14.2: One-Way ANOVA and Multiple Comparisons 

The oneway command can be used to analyze the age data shown in Table 
14.1. In the oneway command, the dependent variable is the first variable 
listed after the command and the independent variable is listed next. The 
tabulate option produces a table of means, standard deviations, and fre­
quencies for each level of the independent variable. Stata reports the 
results of three different multiple comparison procedures. These three pro­
cedures are different from the methods shown in the text. The procedures 
are Bonferroni, Scheff e, and Sidak. All three of these procedures focus on 
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the family error rate. The Scheffe procedure is the most general of the 
three procedures used in Stata. The method of presentation of the multiple 
comparison results differs from that shown in the text. The difference in 
the sample means is shown and the corresponding p value associated with 
the difference and method is shown beneath the difference in the sample 
means. Note that in the data entry, we do not show the group variable as it 
is easier to have Stata create it for us by using generate and replace state­
ments. 
. input age 

age 

1. 32 
2. 28 
3. 22 

68. 36 
69. end 

. gen group=l 

. replace group=2 in 26/50 
(25 changes made) 

. replace group=3 in 51/68 
(18 changes made) 

. label define grouplab 1 "Surg" 2 "Conti" 3 "Cont2" 

. label values group grouplab 

. oneway age group, tabulate bonferroni scheffe sidak 

Box 14.3: ANOVA for Randomized Block with 
k Replicates per Cell 

The anova command is used with the two-way ANOVA (can be used for 
the one-way ANOVA as well). The model shown here does not include 
any interaction terms. The dependent variable immediately follows the 
anova command and the independent variables are given after the depen­
dent variable. If we wish to see the sample means of the dependent vari­
able by the levels of the independent variables, we must use the tabulate 
command and the summarize command with the mean option separate 
from the anova command. By specifying the mean option, we are telling 
Stata that we wish to see only the means, not the standard deviations. 
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. input reduct program s i t e 
reduct program s i t e 

1. 
2 . 
3 . 
4 . 
5 . 
6 . 
7 . 
8 . 
9 . 

10 . 
1 1 . 
12 . 
1 3 . 
14 . 
1 5 . 
16 . 
17 . 
1 8 . 
19 . 
2 0 . 
2 1 . 
2 2 . 
2 3 . 
2 4 . 
2 5 . 
2 6 . 
2 7 . 
2 8 . 
2 9 . 
3 0 . 
3 1 . 

6 1 
2 1 

10 1 
- 1 1 

8 1 
3 1 

15 1 
4 1 
8 1 
6 1 
3 2 
4 2 

-2 2 
6 2 

-2 2 
- 4 2 

6 2 
8 2 

-2 2 
3 2 
8 3 

12 3 
7 3 

10 3 
5 3 

15 3 
8 3 

10 3 
16 3 
3 3 

end 

1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 

. label define proglab 1 "diet" 2 "exer" 3 "both" 

. label values program proglab 

. label define s i t e lab 1 "office" 2 "factory" 

. label values s i t e s i t e lab 

. tabulate program s i t e , summarize(reduct) means 

. anova reduct program s i t e 

Box 14.4: Balanced Two-Way ANOVA with Interaction 

The anova command can also be used here to analyze the data shown in 
Table 14.6. The only difference from the previous analysis is that we in­
clude the interaction term. The interaction of the two independent vari­
ables is specified by the * between the two variables. 
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. input increase text method 
increase text 

1. 30 1 1 
2. 43 1 1 
3. 12 1 1 

36. 48 3 2 
37. end 

. label define methlab 1 "lecture" 2 "discuss" 

. label values method methlab 

. tabulate text method, summarize(increase) means 

. anova increase text method text*method 

Box 15 .1 : Simple Linear Regression 

The regress command is one of the commands that can be used to perform 
linear regression analyses in Stata. The following shows the Stata state­
ments to perform the simple linear regression of SBP on height. The data 
are shown in Table 15.1. The name of the dependent variable immediately 
follows the regress command and it is in turn followed by the name of the 
independent variable. The means option causes Stata to summarize the 
variables before displaying the regression results. The F table is provided 
as are the regression coefficients, their standard errors, the t statistic for 
testing that the regression coefficient is zero, the associated p value for the 
test, and the sample mean of the independent variable. The R-square and 
adjusted R-square values are also printed as are the root MSE which is the 
value of Sy\x. 
. input sbp height 

sbp height 

1. 105 36 
2. 90 37 
3. 82 38 

50. 140 69 
51. end 

save c:\book\girlssbp 
(file c:\book\girlssbp.dta saved) 

. regress sbp height, means 
(obs=50) 

499 

method 

file://c:/book/girlssbp
file://c:/book/girlssbp.dta
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To obtain the predicted values shown in Table 15.1, we use the predict 
command followed by the name of a variable that will store the predicted 
values. The variable named fitted will contain the predicted values. 
. predict fitted 
To obtain the residuals shown in Table 15.2, we again use the predict 
command followed by the name of the variable that will store the residuals 
and the residuals option. The variable that will contain the residuals is 
resid. 
. predict resid, residuals 
To obtain the standardized residuals shown in Table 15.2, we use the 
predict command with the rstandard option. We use stresid for the name 
of the variable that will store the standardized residuals. 
. predict stresid, rstandard 
To obtain the leverages shown in Table 15.2, we use the predict command 
with the hat option. We use leverage for the name of the variable that will 
store the leverages. 
. predict leverage, hat 
To print the values of the dependent variable, its predicted value, the 
residuals, standardized residuals, and leverages, we can use the list com­
mand. 
. list sbp fitted resid stresid leverage 
We can also use the qnorm command to obtain a normal probability plot of 
the standardized residuals as is shown next. 
. qnorm stresid 
To plot the standardized residuals against height, we use the graph com­
mand. 
. graph stresid height 

Box 15.2: 95 Percent Confidence and Prediction Intervals 

To obtain the confidence interval for μγ\χ, we use the predict command 
with the option stdp to obtain the estimate of the standard error of the 
estimate of μγ\χ. The name of the variable that will contain these estimated 
standard errors is semeanyx. We then use the generate command to create 
the lower and upper bounds for the interval. In the creation of the lower 
and upper bounds, we are using the multiplier of 2 as an approximation to 
in-2,0.975- We are also assuming that we are still in the same Stata session in 
which the regression analysis was performed. 
. predict semeanyx, stdp 
. gen lowmean=fitted - 2*semeanyx 
. gen uppmean=fitted + 2*semeanyx 
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To obtain the prediction interval for a single observation, we use the pre­
dict command with the option stdf to obtain the estimated standard error 
of Yx. The name of the variable to contain these estimated standard errors 
is seyx. 
. predict seyx, stdf 
. gen lowy=fitted - 2*seyx 
. gen uppy=fitted + 2*seyx 
To obtain the plot of the confidence and prediction intervals, we use the 
graph command with the connectO option to draw lines connecting the 
points. In the c(.llll) option used below, the . tells Stata not to connect the 
values of the first variable, sbp. The UH tells Stata to use straight lines to 
connect the values of the second through fifth variables. 
. graph sbp f i t t ed lowmean uppmean lowy uppy height, 
c ( . l l l l ) xlabel(3,5,44,53,62,71) 
> ylabel(70,85,100,115,130,145) saving(interv) 

Box 15.3: Stepwise Regression 

We use the stepwise command to perform stepwise regression. Stata per­
forms either forward, backward, or stepwise forward or backward regres­
sions. We discussed the forward stepwise regression in the text and that is 
the method we demonstrate here. Therefore, we use the forward and 
stepwise options. Stata uses default values of 0.5 and 0.1 for the F values 
for a variable to enter and to stay in the equation. This contrasts with 
default values of 4 or more used in some other packages. We can change 
those values by using the fenterO and fstayO options if we desire. The F 
values that we wish to use are entered in parentheses. We use the default 
values. The data are those shown in Table 15.6 which are stored in a non-
Stata file. Therefore, we use the infile command with the using statement 
to enter the data. 
. i n f i l e height sbp age weight using c: \book\gir lssbp.dat 
(50 observations read) 

. stepwise sbp height age weight, forward stepwise 

Boxes 15.4 and 15.5: Multiple Linear Regression 

The regress command can also be used to perform the multiple regression 
analysis. The Stata statements for analyzing the data in Table 15.6 are the 
following. We are also assuming that we are still in the same Stata session 
in which the stepwise regression analysis was performed. 
. regress sbp height age weight, means 
. regress sbp weight, means 
(obs=50) 

file://c:/book/girlssbp.dat
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Box 15.6: Logistic Regression Analysis 

There is no Box 15.6 in the text as the current version of MINITAB does not 
have a logistic regression command; however, Stata has the logit com­
mand for performing logistic regression and its use is shown here for the 
lead, smoking, and pulmonary function test results in Table 15.8. We use 
the generate and replace commands to create Table 15.8 for Stata. We are 
using 1 to represent a normal PFT result and 0 to indicate a result that was 
not normal. Note that this is the reverse of some programs. The low level 
of lead is coded as 1 and the high level is coded as 0. The high lead level is 
thus the reference level. We create three smoking status variables. The 
variable smokl will have the value of 1 if the smoking status is never and 0 
otherwise, the variable smok2 will have the value of 1 if the smoking status 
is former and 0 otherwise, and the variable smok3 will have the value of 1 if 
the smoking status is light and 0 otherwise. This means that the heavy 
level of smoking is the reference level. In the following, we assume that the 
479 observations are in the same order as shown in Table 15.8. Thus the 
first 160 observations refer to people with a normal PFT exposed to low 
levels of lead who have never smoked. The next 4 people have PFT results 
that are not normal. Hence we can take advantage of the order in creating 
the observations below. 
. set obs 479 
(obs was 0, now 479) 
. gen pft=l 
. replace pft=0 in 161/164 
(4 changes made) 

. replace pft=0 in 214/219 
(6 changes made) 

. replace pft=0 in 295/300 
(6 changes made) 

. replace pft=0 in 385/387 
(3 changes made) 

. replace pft=0 in 421/423 
(3 changes made) 

. replace pft=0 in 436/437 
(2 changes made) 

. replace pft=0 in 459/460 
(2 changes made) 

. replace pft=0 in 477/479 
(3 changes made) 
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The dependent variable has been created. Now we can create the lead 
variable. 

. gen lead=l 

. replace lead=0 in 388/479 
(92 changes made) 
The lead level variable has been created. Next we create the three smoking 
status variables. 

. gen smokl=l 

. replace smokl=0 in 165/387 
(223 changes made) 

. replace smokl=0 in 424/479 
(56 changes made) 

. gen smok2=0 

. replace smok2=l in 165/219 
(55 changes made) 

. replace smok2=l in 424/437 
(14 changes made) 

. gen smok3=0 

. replace smok3=l in 220/300 
(81 changes made) 

. replace smok3=l in 438/460 
(23 changes made) 
The variables are all created now. We are ready to use the logit command. 
The dependent variable is specified immediately after logit and it is fol­
lowed by the independent variables. 

. logit pft lead smokl smok2 smok3 
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72324 
18209 
26568 
66895 
28908 
03091 
69948 
80774 
84702 
18067 
76825 
59759 
67377 
86655 
84073 
58999 
11308 
24585 
22369 
24914 
88320 
69848 
77987 
97709 
05209 
68616 
18260 
29121 
36834 
10757 
99465 
59157 
63489 
08723 
75883 
95560 
81329 
13536 
28778 
39757 
54595 

61646 
34043 
03051 
78376 
46380 
87282 
56790 
20680 
07774 
05050 
60272 
12545 
34490 
21020 
10135 
54947 
71613 
95823 
54980 
11257 
28041 
59310 
18980 
53993 
77251 
03979 
78224 
34622 
45155 
48338 
33544 
45152 
78833 
88924 
23573 
40283 
89864 
59756 
21796 
88838 
66024 
17951 
61325 
23261 
45085 
74272 
31170 
55892 
44482 
87336 

87732 
30801 
40583 
40249 
25290 
79921 
91323 
18422 
49216 
52212 
95944 
07291 
95682 
84646 
85594 
28724 
41590 
83712 
38542 
34842 
48498 
86243 
13739 
78016 
84274 
68271 
96506 
75780 
66234 
70689 
50065 
89425 
69516 
10458 
66693 
35008 
44444 
46105 
12219 
45530 
86610 
66279 
57652 
03050 
03464 
70097 
91648 
59449 
21115 
08030 

07598 
64642 
75130 
52103 
59073 
20936 
29070 
64127 
77376 
82330 
64495 
30737 
44956 
17475 
86222 
33966 
18430 
55061 
86549 
26130 
94968 
30374 
12234 
77751 
15777 
51776 
77936 
67276 
00460 
05856 
69910 
81350 
05969 
20004 
83674 
94377 
03931 
01156 
39415 
96133 
70068 
69460 
18876 
36180 
79493 
05615 
67487 
53815 
01607 
30633 

05465 
62329 
88348 
36769 
91662 
56304 
49567 
88381 
83893 
10707 
09247 
11449 
39491 
40539 
36342 
90529 
99863 
89773 
43966 
91870 
02759 
18340 
50705 
31457 
66045 
55915 
97772 
06726 
86700 
91247 
15783 
10697 
98796 
65788 
34890 
47286 
34222 
40367 
32020 
66529 
29879 
03659 
08976 
38486 
25121 
91212 
95149 
84565 
93177 
83752 

68584 
85019 
50303 
53552 
89160 
81358 
86422 
27590 
37631 
92439 
61000 
36252 
54269 
62981 
07903 
16339 
70872 
63242 
92989 
37116 
29884 
58630 
68189 
18155 
84364 
67970 
65814 
07734 
72578 
29214 
76852 
90522 
60938 
91299 
57000 
93322 
49057 
50950 
04178 
57600 
30664 
53135 
51276 
47570 
04125 
73956 
17890 
62568 
26324 
04706 

64790 
22481 
03657 
55846 
94869 
94966 
13878 
99659 
44332 
33220 
52564 
70323 
07867 
93042 
97933 
40152 
41549 
97952 
87768 
90770 
87231 
21092 
02212 
97944 
62165 
52691 
46162 
48849 
57617 
21807 
25025 
10496 
90201 
41139 
07586 
68092 
49713 
43614 
69733 
52060 
87190 
79535 
12793 
72493 
86957 
43022 
50223 
79771 
66403 
96494 

56416 
70105 
47252 
61963 
71368 
54748 
42058 
47854 
54941 
11634 
99690 
80141 
84505 
38181 
53548 
06517 
89671 
24027 
16267 
42369 
17899 
62426 
64653 
27295 
24700 
19073 
58603 
60918 
82212 
77100 
37762 
86753 
99875 
76993 
39661 
92858 
50972 
70178 
83093 
98052 
98772 
05034 
60467 
92403 
16042 
64078 
82906 
00793 
91660 
71064 

21824 
38254 
18090 
86763 
90732 
25865 
53470 
12163 
11038 
35942 
52055 
17833 
05578 
35279 
56768 
18221 
63628 
95176 
47616 
09614 
21157 
37022 
39716 
90526 
00055 
82178 
24666 
83256 
50104 
74896 
49049 
75366 
37430 
47040 
23774 
99829 
23191 
93359 
58039 
72613 
76243 
26052 
11655 
06412 
63551 
77377 
59466 
19324 
62073 
19061 

61643 
57186 
35891 
67257 
33583 
48333 
22312 
41801 
09157 
09534 
70716 
48502 
91088 
21843 
77881 
53248 
82167 
95129 
63546 
16645 
91094 
40022 
29953 
57958 
06668 
66031 
49133 
17099 
34094 
24592 
21666 
83410 
87145 
15777 
50682 
59997 
29933 
77431 
74845 
32354 
62043 
75480 
04069 
10039 
40774 
14160 
01721 
10150 
34237 
84919 
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Binomial Probabilities3 

n x 

2 0 
1 
2 

3 0 
1 
2 
3 

4 0 
1 
2 
3 
4 

5 0 
1 
2 
3 
4 
5 

6 0 
1 
2 
3 
4 
5 
6 

7 0 
1 
2 
3 
4 
5 
6 
7 

8 0 
1 
2 
3 
4 
5 
6 
7 
8 

.01 

.9801 

.0198 

.0001 

.9703 

.0294 

.0003 

.9606 

.0388 

.0006 

.9510 

.0480 

.0010 

.9415 

.0571 

.0014 

.9321 

.0659 

.0020 

.9227 

.0746 

.0026 

.0001 

.05 

.9025 

.0950 

.0025 

.8574 

.1354 

.0071 

.0001 

.8145 

.1715 

.0135 

.0005 

.7738 

.2036 

.0214 

.0011 

.7351 

.2321 

.0305 

.0021 

.0001 

.6983 

.2573 

.0406 

.0036 

.0002 

.6634 

.2793 

.0515 

.0054 

.0004 

.10 

.8100 

.1800 

.0100 

.7290 

.2430 

.0270 

.0010 

.6561 

.2916 

.0486 

.0036 

.0001 

.5905 

.3281 

.0729 

.0081 

.0005 

.5314 

.3543 

.0984 

.0146 

.0012 

.0001 

.4783 

.3720 

.1240 

.0230 

.0026 

.0002 

.4305 

.3826 

.1488 

.0331 

.0046 

.0004 

.15 

.7225 

.2550 

.0225 

.6141 

.3251 

.0574 

.0034 

.5220 

.3685 

.0975 

.0115 

.0005 

.4437 

.3915 

.1382 

.0244 

.0022 

.0001 

.3771 

.3993 

.1762 

.0415 

.0055 

.0004 

.3206 

.3960 

.2097 

.0617 

.0109 

.0012 

.0001 

.2725 

.3847 

.2376 

.0839 

.0185 

.0026 

.0002 

.20 

.6400 

.3200 

.0400 

.5120 

.3840 

.0960 

.0080 

.4096 

.4096 

.1536 

.0256 

.0016 

.3277 

.4096 

.2048 

.0512 

.0064 

.0003 

.2621 

.3932 

.2458 

.0819 

.0154 

.0015 

.0001 

.2097 

.3670 

.2753 

.1147 

.0287 

.0043 

.0004 

.1678 

.3355 

.2936 

.1468 

.0459 

.0092 

.0011 

.0001 

V 
.25 

.5625 

.3750 

.0625 

.4219 

.4219 

.1406 

.0156 

.3164 

.4219 

.2109 

.0469 

.0039 

.2373 

.3955 

.2637 

.0879 

.0146 

.0010 

.1780 

.3560 

.2966 

.1318 

.0330 

.0044 

.0002 

.1335 

.3115 

.3115 

.1730 

.0577 

.0115 

.0013 

.1001 

.2670 

.3115 

.2076 

.0865 

.0231 

.0038 

.0004 

.30 

.4900 

.4200 

.0900 

.3430 

.4410 

.1890 

.0270 

.2401 

.4116 

.2646 

.0756 

.0081 

.1681 

.3602 

.3087 

.1323 

.0284 

.0024 

.1176 

.3025 

.3241 

.1852 

.0595 

.0102 

.0007 

.0824 

.2471 

.3177 

.2269 

.0972 

.0250 

.0036 

.0002 

.0576 

.1977 

.2965 

.2541 

.1361 

.0467 

.0100 

.0012 

.0001 

.35 

.4225 

.4550 

.1225 

.2746 

.4436 

.2389 

.0429 

.1785 

.3845 

.3105 

.1115 

.0150 

.1160 

.3124 

.3364 

.1811 

.0488 

.0053 

.0754 

.2437 

.3280 

.2355 

.0951 

.0205 

.0018 

.0490 

.1848 

.2985 

.2679 

.1442 

.0466 

.0084 

.0006 

.0319 

.1373 

.2587 

.2786 

.1875 

.0808 

.0217 

.0033 

.0002 

.40 

.3600 

.4800 

.1600 

.2160 

.4320 

.2880 

.0640 

.1296 

.3456 

.3456 

.1536 

.0256 

.0778 

.2592 

.3456 

.2304 

.0768 

.0102 

.0467 

.1866 

.3110 

.2765 

.1382 

.0369 

.0041 

.0280 

.1306 

.2613 

.2903 

.1935 

.0774 

.0172 

.0016 

.0168 

.0896 

.2090 

.2787 

.2322 

.1239 

.0413 

.0079 

.0007 

.45 

.3025 

.4950 

.2025 

.1664 

.4084 

.3341 

.0911 

.0915 

.2995 

.3675 

.2005 

.0410 

.0503 

.2059 

.3369 

.2757 

.1128 

.0185 

.0277 

.1359 

.2780 

.3032 

.1861 

.0609 

.0083 

.0152 

.0872 

.2140 

.2918 

.2388 

.1172 

.0320 

.0037 

.0084 

.0548 

.1569 

.2568 

.2627 

.1719 

.0703 

.0164 

.0017 

.50 

.2500 

.5000 

.2500 

.1250 

.3750 

.3750 

.1250 

.0625 

.2500 

.3750 

.2500 

.0625 

.0313 

.1563 

.3125 

.3125 

.1563 

.0313 

.0156 

.0938 

.2344 

.3125 

.2344 

.0938 

.0156 

.0078 

.0547 

.1641 

.2734 

.2734 

.1641 

.0547 

.0078 

.0039 

.0313 

.1094 

.2188 

.2734 

.2188 

.1094 

.0313 

.0039 
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I—Continued 

n x 

9 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

.01 

.9135 

.0830 

.0034 

.0001 

.9044 

.0914 

.0042 

.0001 

.8953 

.0995 

.0050 

.0002 

.8864 

.1074 

.0060 

.0002 

.05 

.6302 

.2985 

.0629 

.0077 

.0006 

.5987 

.3151 

.0746 

.0105 

.0010 

.0001 

.5688 

.3293 

.0867 

.0137 

.0014 

.0001 

.5404 

.3413 

.0988 

.0173 

.0021 

.0002 

.10 

.3874 

.3874 

.1722 

.0446 

.0074 

.0008 

.0001 

.3487 

.3874 

.1937 

.0574 

.0112 

.0015 

.0001 

.3138 

.3835 

.2131 

.0710 

.0158 

.0025 

.0003 

.2824 

.3766 

.2301 

.0852 

.0213 

.0038 

.0005 

.15 

.2316 

.3679 

.2597 

.1069 

.0283 

.0050 

.0006 

.1969 

.3474 

.2759 

.1298 

.0401 

.0085 

.0012 

.0001 

.1673 

.3248 

.2866 

.1517 

.0536 

.0132 

.0023 

.0003' 

.1422 

.3012 

.2924 

.1720 

.0683 

.0193 

.0040 

.0006 

.0001 

.20 

.1342 

.3020 

.3020 

.1762 

.0661 

.0165 

.0028 

.0003 

.1074 

.2684 

.3020 

.2013 

.0881 

.0264 

.0055 

.0008 

.0001 

.0859 

.2362 

.2953 

.2215 

.1107 

.0388 

.0097 

.0017 

.0002 

.0687 

.2062 

.2835 

.2362 

.1329 

.0532 

.0155 

.0033 

.0005 

.0001 

V 
.25 

.0751 

.2253 

.3003 

.2336 

.1168 

.0389 

.0087 

.0012 

.0001 

.0563 

.1877 

.2816 

.2503 

.1460 

.0584 

.0162 

.0031 

.0004 

.0422 

.1549 

.2581 

.2581 

.1721 

.0803 

.0268 

.0064 

.0011 

.0001 

.0317 

.1267 

.2323 

.2581 

.1936 

.1032 

.0401 

.0115 

.0024 

.0004 

.30 

.0404 

.1557 

.2668 

.2668 

.1715 

.0735 

.0210 

.0039 

.0004 

.0282 

.1211 

.2335 

.2668 

.2001 

.1029 

.0368 

.0090 

.0014 

.0001 

.0198 

.0932 

.1998 

.2568 

.2201 

.1321 

.0566 

.0173 

.0037 

.0005 

.0138 

.0712 

.1678 

.2397 

.2311 

.1585 

.0792 

.0291 

.0078 

.0015 

.0002 

.35 

.0207 

.1004 

.2162 

.2716 

.2194 

.1181 

.0424 

.0098 

.0013 

.0001 

.0135 

.0725 

.1757 

.2522' 

.2377 

.1536 

.0689 

.0212 

.0043 

.0005 

.0088 

.0518 

.1395 

.2254 

.2428 

.1830 

.0985 

.0379 

.0102 

.0018 

.0002 

.0057 

.0368 

.1088 

.1954 

.2367 

.2039 

.1281 

.0591 

.0199 

.0048 

.0008 

.0001 

.40 

.0101 

.0605 

.1612 

.2508 

.2508 

.1672 

.0743 

.0212 

.0JD35 

.0003 

.0060 

.0403 

.1209 

.2150 

.2508 

.2007 

.1115 

.0425 
r0106 
.0016 
.0001 

.0036 

.0266 

.0887 

.1774 

.2365 

.2207 

.1471 

.0701 

.0234 

.0052 

.0007 

.0022 

.0174 

.0639 

.1419 

.2128 

.2270 

.1766 

.1009 

.0420 

.0125 

.0025 

.0003 

.45 

.0046 

.0339 

.1110 

.2119 

.2600 

.2128 

.1160 

.0407 

.0083 

.0008 

.0025 

.0207 

.0763 

.1665 

.2384 

.2340 

.1596 

.0746 

.0229 

.0042 

.0003 

.0014 

.0125 

.0513 

.1259 

.2060 

.2360 

.1931 

.1128 

.0462 

.0126 

.0021 

.0002 

.0008 

.0075 

.0339 

.0923 

.1700 

.2225 

.2124 

.1489 

.0762 

.0277 

.0068 

.0010 

.0001 

.50 

.0020 

.0176 

.0703 

.1641 

.2461 

.2461 

.1641 

.0703 

.0176 

.0020 

.0010 

.0098 

.0439 

.1172 

.2051 

.2461 

.2051 

.1172 

.0439 

.0098 

.0010 

.0005 

.0054 

.0269 

.0806 

.1611 

.2256 

.2256 

.1611 

.0806 

.0269 

.0054 

.0005 

.0002 

.0029 

.0161 

.0537 

.1209 

.1934 

.2256 

.1934 

.1209 

.0537 

.0161 

.0029 

.0002 

(continued) 
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—Continued 

n x .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

.8775 

.1152 

.0070 

.0003 

.5133 

.3512 

.1109 

.0214 

.0028 

.0003 

.2542 

.3672 

.2448 

.0997 

.0277 

.0055 

.0008 

.0001 

.1209 

.2774 

.2937 

.1900 

.0838 

.0266 

.0063 

.0011 

.0001 

.0550 

.1787 

.2680 

.2457 

.1535 

.0691 

.0230 

.0058 

.0011 

.0002 

.0238 

.1029 

.2059 

.2517 

.2097 

.1258 

.0559 

.0186 

.0047 

.0009 

.0001 

.0097 

.0540 

.1388 

.2181 

.2337 

.1803 

.1030 

.0442 

.0142 

.0034 

.0006 

.0001 

.0037 

.0259 

.0836 

.1651 

.2222 

.2154 

.1546 

.0833 

.0336 

.0101 

.0022 

.0003 

.0013 

.0113 

.0453 

.1107 

.1845 

.2214 

.1968 

.1312 

.0656 

.0243 

.0065 

.0012 

.0001 

.0004 

.0045 

.0220 

.0660 

.1350 

.1989 

.2169 

.1775 

.1089 

.0495 

.0162 

.0036 

.0005 

.0001 

.0016 

.0095 

.0349 

.0873 

.1571 

.2095 

.2095 

.1571 

.0873 

.0349 

.0095 

.0016 

.0001 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

.8687 

.1229 

.0081 

.0003 

.4877 

.3593 

.1229 

.0259 

.0037 

.0004 

.2288 

.3559 

.2570 

.1142 

.0349 

.0078 

.0013 

.0002 

.1028 

.2539 

.2912 

.2056 

.0998 

.0352 

.0093 

.0019 

.0003 

.0440 

.1539 

.2501 

.2501 

.1720 

.0860 

.0322 

.0092 

.0020 

.0003 

.0178 

.0832 

.1802 

.2402 

.2202 

.1468 

.0734 

.0280 

.0082 

.0018 

.0003 

.0068 

.0407 

.1134 

.1943 

.2290 

.1963 

.1262 

.0618 

.0232 

.0066 

.0014 

.0002 

.0024 

.0181 

.0634 

.1366 

.2022 

.2178 

.1759 

.1082 

.0510 

.0183 

.0049 

.0010 

.0001 

.0008 

.0073 

.0317 

.0845 

.1549 

.2066 

.2066 

.1574 

.0918 

.0408 

.0136 

.0033 

.0006 

.0001 

.0002 

.0027 

.0141 

.0462 

.1040 

.1701 

.2088 

.1952 

.1398 

.0762 

.0312 

.0093 

.0019 

.0002 

.0001 

.0009 

.0056 

.0222 

.0611 

.1222 

.1833 

.2095 

.1833 

.1222 

.0611 

.0222 

.0056 

.0009 

.0001 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

.8601 

.1303 

.0092 

.0004 

.4633 

.3658 

.1348 

.0308 

.0049 

.0006 

.2059 

.3432 

.2669 

.1285 

.0428 

.0105 

.0019 

.0003 

.0874 

.2312 

.2856 

.2184 

.1156 

.0449 

.0132 

.0030 

.0005 

.0001 

.0352 

.1319 

.2309 

.2501 

.1876 

.1032 

.0430 

.0138 

.0035 

.0007 

.0001 

.0134 

.0668 

.1559 

.2252 

.2252 

.1651 

.0917 

.0393 

.0131 

.0034 

.0007 

.0001 

.0047 

.0305 

.0916 

.1700 

.2186 

.2061 

.1472 

.0811 

.0348 

.0116 

.0030 

.0006 

.0001 

.0016 

.0126 

.0476 

.1110 

.1792 

.2123 

.1906 

.1319 

.0710 

.0298 

.0096 

.0024 

.0004 

.0001 

.0005 

.0047 

.0219 

.0634 

.1268 

.1859 

.2066 

.1771 

.1181 

.0612 

.0245 

.0074 

.0016 

.0003 

.0001 

.0016 

.0090 

.0318 

.0780 

.1404 

.1914 

.2013 

.1647 

.1048 

.0515 

.0191 

.0052 

.0010 

.0001 

.0005 

.0032 

.0139 

.0417 

.0916 

.1527 

.1964 

.1964 

.1527 

.0916 

.0417 

.0139 

.0032 

.0005 

510 
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n x 

16 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

.01 

.8515 

.1376 

.0104 

.0005 

.8429 

.1447 

.0117 

.0006 

.05 

.4401 

.3706 

.1463 

.0359 

.0061 

.0008 

.0001 

.4181 

.3741 

.1575 

.0415 

.0076 

.0010 

.0001 

.10 

.1853 

.3294 

.2745 

.1423 

.0514 

.0137 

.0028 

.0004 

.0001 

.1668 

.3150 

.2800 

.1556 

.0605 

.0175 

.0039 

.0007 

.0001 

.15 

.0743 

.2097 

.2775 

.2285 

.1311 

.0555 

.0180 

.0045 

.0009 

.0001 

.0631 

.1893 

.2673 

.2359 

.1457 

.0668 

.0236 

.0065 

.0014 

.0003 

.20 

.0281 

.1126 

.2111 

.2463 

.2001 

.1201 

.0550 

.0197 

.0055 

.0012 

.0002 

.0225 

.0957 

.1914 

.2393 

.2093 

.1361 

.0680 

.0267 

.0084 

.0021 

.0004 

.0001 

V 
.25 

.0100 

.0535 

.1336 

.2079 

.2252 

.1802 

.1101 

.0524 

.0197 

.0058 

.0014 

.0002 

.0075 

.0426 

.1136 

.1893 

.2209 

.1914 

.1276 

.0668 

.0279 

.0093 

.0025 

.0005 

.0001 

.30 

.0033 

.0228 

.0732 

.1465 

.2040 

.2099 

.1649 

.1010 

.0487 

.0185 

.0056 

.0013 

.0002 

.0023 

.0169 

.0581 

.1245 

.1868 

.2081 

.1784 

.1201 

.0644 

.0276 

.0095 

.0026 

.0006 

.0001 

.35 

.0010 

.0087 

.0353 

.0888 

.1553 

.2008 

.1982 

.1524 

.0923 

.0442 

.0167 

.0049 

.0011 

.0002 

.0007 

.0060 

.0260 

.0701 

.1320 

.1849 

.1991 

.1685 

.1134 

.0611 

.0263 

.0090 

.0024 

.0005 

.0001 

.40 

.0003 

.0030 

.0150 

.0468 

.1014 

.1623 

.1983 

.1889 

.1417 

.0840 

.0392 

.0142 

.0040 

.0008 

.0001 

.0002 

.0019 

.0102 

.0341 

.0796 

.1379 

.1839 

.1927 

.1606 

.1070 

.0571 

.0242 

.0081 

.0021 

.0004 

.0001 

.45 

.0001 

.0009 

.0056 

.0215 

.0572 

.1123 

.1684 

.1969 

.1812 

.1318 

.0755 

.0337 

.0115 

.0029 

.0005 

.0005 

.0035 

.0144 

.0411 

.0875 

.1432 

.1841 

.1883 

.1540 

.1008 

.0525 

.0215 

.0068 

.0016 

.0003 

.50 

.0002 

.0018 

.0085 

.0278 

.0667 

.1222 

.1746 

.1964 

.1746 

.1222 

.0667 

.0278 

.0085 

.0018 

.0002 

.0001 

.0010 

.0052 

.0182 

.0472 

.0944 

.1484 

.1855 

.1855 

.1484 

.0944 

.0472 

.0182 

.0052 

.0010 

.0001 

(continued) 
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n x 

18 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

.01 

.8345 

.1517 

.0130 

.0007 

.8262 

.1586 

.0144 

.0008 

.05 

.3972 

.3763 

.1683 

.0473 

.0093 

.0014 

.0002 

.3774 

.3774 

.1787 

.0533 

.0112 

.0018 

.0002 

.10 

.1501 

.3002 

.2835 

.1680 

.0700 

.0218 

.0052 

.0010 

.0002 

.1351 

.2852 

.2852 

.1796 

.0798 

.0266 

.0069 

.0014 

.0002 

.15 

.0536 

.1704 

.2556 

.2406 

.1592 

.0787 

.0301 

.0091 

.0022 

.0004 

.0001 

.0456 

.1529 

.2428 

.2428 

.1714 

.0907 

.0374 

.0122 

.0032 

.0007 

.0001 

.20 

.0180 

.0811 

.1723 

.2297 

.2153 

.1507 

.0816 

.0350 

.0120 

.0033 

.0008 

.0001 

.0144 

.0685 

.1540 

.2182 

.2182 

.1637 

.0955 

.0443 

.0166 

.0051 

.0013 

.0003 

V 
.25 

.0056 

.0338 

.0958 

.1704 

.2130 

.1988 

.1436 

.0820 

.0376 

.0139 

.0042 

.0010 

.0002 

.0042 

.0268 

.0803 

.1517 

.2023 

.2023 

.1574 

.0974 

.0487 

.0198 

.0066 

.0018 

.0004 

.0001 

.30 

.0016 

.0126 

.0458 

.1046 

.1681 

.2017 

.1873 

.1376 

.0811 

.0386 

.0149 

.0046 

.0012 

.0002 

.0011 

.0093 

.0358 

.0869 

.1491 

.1916 

.1916 

.1525 

.0981 

.0514 

.0220 

.0077 

.0022 

.0005 

.0001 

.35 

.0004 

.0042 

.0190 

.0547 

.1104 

.1664 

.1941 

.1792 

.1327 

.0794 

.0385 

.0151 

.0047 

.0012 

.0002 

.0003 

.0029 

.0138 

.0422 

.0909 

.1468 

.1844 

.1844 

.1489 

.0980 

.0528 

.0233 

.0083 

.0024 

.0006 

.0001 

.40 

.0001 

.0012 

.0069 

.0246 

.0614 

.1146 

.1655 

.1892 

.1734 

.2844 

.0771 

.0374 

.0145 

.0045 

.0011 

.0002 

.0001 

.0008 

.0046 

.0175 

.0467 

.0933 

.1451 

.1797 

.1797 

.1464 

.0976 

.0532 

.0237 

.0085 

.0024 

.0005 

.0001 

.45 

.0003 

.0022 

.0095 

.0291 

.0666 

.1181 

.1657 

.1864 

.1694 

.1248 

.0742 

.0354 

.0134 

.0039 

.0009 

.0001 

.0002 

.0013 

.0062 

.0203 

.0497 

.0949 

.1443 

.1771 

.1771 

.1449 

.0970 

.0529 

.0233 

.0082 

.0022 

.0005 

.0001 

.50 

.0001 

.0006 

.0031 

.0117 

.0327 

.0708 

.1214 

.1669 

.1855 

.1669 

.1214 

.0708 

.0327 

.0117 

.0031 

.0006 

.0001 

.0003 

.0018 

.0074 

.0222 

.0518 

.0961 

.1442 

.1762 

.1762 

.1442 

.0961 

.0518 

.0222 

.0074 

.0018 

.0003 
18 
19 
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n x 

20 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

.01 

.8179 

.1652 

.0159 

.0010 

.05 

.3585 

.3774 

.1887 

.0596 

.0133 

.0022 

.0003 

.10 

.1216 

.2702 

.2852 

.1901 

.0898 

.0319 

.0089 

.0020 

.0004 

.0001 

.15 

.0388 

.1368 

.2293 

.2428 

.1821 

.1028 

.0454 

.0160 

.0046 

.0011 

.0002 

.20 

.0115 

.0576 

.1369 

.2054 

.2182 

.1746 

.1091 

.0546 

.0222 

.0074 

.0020 

.0005 

.0001 

P 
.25 

.0032 

.0211 

.0669 

.1339 

.1897 

.2023 

.1686 

.1124 

.0609 

.0271 

.0099 

.0030 

.0008 

.0002 

.30 

.0008 

.0068 

.0278 

.0716 

.1304 

.1789 

.1916 

.1643 

.1144 

.0654 

.0308 

.0120 

.0039 

.0010 

.0002 

.35 

.0002 

.0020 

.0100 

.0323 

.0738 

.1272 

.1712 

.1844 

.1614 

.1158 

.0686 

.0336 

.0136 

.0045 

.0012 

.0003 

.40 

.0005 

.0031 

.0124 

.0350 

.0746 

.1244 

.1659 

.1797 

.1597 

.1171 

.0710 

.0355 

.0146 

.0049 

.0013 

.0003 

.45 

.0001 

.0008 

.0040 

.0139 

.0365 

.0746 

.1221 

.1623 

.1771 

.1593 

.1185 

.0727 

.0366 

.0150 

.0049 

.0013 

.0002 

.50 

.0002 

.0011 

.0046 

.0148 

.0370 

.0739 

.1201 

.1602 

.1762 

.1602 

.1201 

.0739 

.0370 

.0148 

.0046 

.0011 

.0002 

«Calculated by MINITAB. 
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Poisson Probabilities 

x .2 .4 .6 .8 1.0 1.2 1.4 1.6 x 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

.818731 

.163746 

.016375 

.001092 

.000055 

.000002 

.670320 

.268128 

.053626 

.007150 

.000715 

.000057 

.000004 

.548812 

.329287 

.098786 

.019757 

.002964 

.000356 

.000036 

.000003 

.449329 

.359463 

.143785 

.038343 

.007669 

.001227 

.000164 

.000019 

.000002 

.367879 

.367879 

.183940 

.061313 

.015328 

.003066 

.000511 

.000073 

.000009 

.000001 

.301194 

.361433 

.216860 

.086744 

.026023 

.006246 

.001249 

.000214 

.000032 

.000004 

.000001 

.246597 

.345236 

.241665 

.112777 

.039472 

.011052 

.002579 

.000516 

.000090 

.000014 

.000002 

.201896 

.323034 

.258428 

.137828 

.055131 

.017642 

.004705 

.001075 

.000215 

.000038 

.000006 

.000001 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

x 1.8 2.0 2.5 3.0 3.5 4.0 4.5 5.0 x 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

.165299 

.297538 

.267784 

.160671 

.072302 

.026029 

.007809 

.002008 

.000452 

.000090 

.000016 

.000003 

.135335 

.270671 

.270671 

.180447 

.090224 

.036089 

.012030 

.003437 

.000859 

.000191 

.000038 

.000007 

.000001 

.082085 

.205213 

.256516 

.213763 

.133602 

.066801 

.027834 

.009941 

.003106 

.000863 

.000216 

.000049 

.000010 

.000002 

.049787 

.149361 

.224042 

.224042 

.168031 

.100819 

.050409 

.021604 

.008102 

.002701 

.000810 

.000221 

.000055 

.000013 

.000003 

.000001 

.030197 

.105691 

.184959 

.215785 

.188812 

.132169 

.077098 

.038549 

.016865 

.006559 

.002296 

.000730 

.000213 

.000057 

.000014 

.000003 

.000001 

.018316 

.073263 

.146525 

.195367 

.195367 

.156293 

.104196 

.059540 

.029770 

.013231 

.005292 

.001925 

.000642 

.000197 

.000056 

.000015 

.000004 

.000001 

.011109 

.049990 

.112479 

.168718 

.189808 

.170827 

.128120 

.082363 

.046329 

.023165 

.010424 

.004264 

.001599 

.000554 

.000178 

.000053 

.000015 

.000004 

.000001 

.006738 

.033690 

.084224 

.140374 

.175467 

.175467 

.146223 

.104445 

.065278 

.036266 

.018133 

.008242 

.003434 

.001321 

.000472 

.000157 

.000049 

.000014 

.000004 

.000001 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

"Calculated by MINITAB. 
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x 5.5 6.0 6.5 7.0 8.0 9.0 10.0 11.0 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

.004087 

.022477 

.061812 

.113323 

.155819 

.171401 

.157117 

.123449 

.084871 

.051866 

.028526 

.014263 

.006537 

.002766 

.001087 

.000398 

.000137 

.000044 

.000014 

.000004 

.000001 

.002479 

.014873 

.044618 

.089235 

.133853 

.160623 

.160623 

.137677 

.103258 

.068838 

.041303 

.022529 

.011264 

.005199 

.002228 

.000891 

.000334 

.000118 

.000039 

.000012 

.000004 

.000001 

.001503 

.009772 

.031760 

.068814 

.111822 

.145369 

.157483 

.146234 

.118815 

.085811 

.055777 

.032959 

.017853 

.008926 

.004144 

.001796 

.000730 

.000279 

.000101 

.000034 

.000011 

.000003 

.000001 

.000912 

.006383 

.022341 

.052129 

.091226 

.127717 

.149003 

.149003 

.130377 

.101405 

.070983 

.045171 

.026350 

.014188 

.007094 

.003311 

.001448 

.000596 

.000232 

.000085 

.000030 

.000010 

.000003 

.000001 

.000335 

.002684 

.010735 

.028626 

.057252 

.091,604 

.122138 

.139587 

.139587 

.124077 

.099262 

.072190 

.048127 

.029616 

.016924 

.009026 

.004513 

.002124 

.000944 

.000397 

.000159 

.000061 

.000022 

.000008 

.000003 

.000001 

.000123 

.001111 

.004998 

.014994 

.033737 

.060727 

.091090 

.117116 

.131756 

.131756 

.118580 

.097020 

.072765 

.050376 

.032384 

.019431 

.010930 

.005786 

.002893 

.001370 

.000617 

.000264 

.000108 

.000042 

.000016 

.000006 

.000002 

.000001 

.000045 

.000454 

.002270 

.007567 

.018917 

.037833 

.063055 

.090079 

.112599 

.125110 

.125110 

.113736 

.094780 

.072908 

.052077 

.034718 

.021699 

.012764 

.007091 

.003732 

.001866 

.000889 

.000404 

.000176 

.000073 

.000029 

.000011 

.000004 

.000001 

.000001 

.000017 

.000184 

.001010 

.003705 

.010189 

.022415 

.041095 

.064577 

.088794 

.108526 

.119378 

.119378 

.109430 

.092595 

.072753 

.053352 

.036680 

.023734 

.014504 

.008397 

.004618 

.002419 

.001210 

.000578 

.000265 

.000117 

.000049 

.000020 

.000008 

.000003 

.000001 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

(continued) 
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^ ^ ^ ^ ^ ^ 9 s £ ] — C o n t i n u e d 

μ 

12.0 13.0 14.0 15.0 16.0 17.0 x 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

.000006 

.000074 

.000442 

.001770 

.005309 

.012741 

.025481 

.043682 

.065523 

.087364 

.104837 

.114368 

.114368 

.105570 

.090489 

.072391 

.054293 

.038325 

.025550 

.016137 

.009682 

.005533 

.003018 

.001574 

.000787 

.000378 

.000174 

.000078 

.000033 

.000014 

.000005 

.000002 

.000001 

.000002 

.000029 

.000191 

.000828 

.002690 

.006994 

.015153 

.028141 

.045730 

.066054 

.085870 

.101483 

.109940 

.109940 

.102087 

.088475 

.071886 

.054972 

.039702 

.027164 

.017657 

.010930 

.006459 

.003651 

.001977 

.001028 

.000514 

.000248 

.000115 

.000052 

.000022 

.000009 

.000004 

.000001 

.000001 

.000001 

.000012 

.000081 

.000380 

.001331 

.003727 

.008696 

.017392 

.030436 

.047344 

.066282 

.084359 

.098418 

.105989 

.105989 

.098923 

.086558 

.071283 

.055442 

.040852 

.028597 

.019064 

.012132 

.007385 

.004308 

.002412 

.001299 

.000674 

.000337 

.000163 

.000076 

.000034 

.000015 

.000006 

.000003 

.000001 

.000005 

.000034 

.000172 

.000645 

.001936 

.004839 

.010370 

.019444 

.032407 

.048611 

.066287 

.082859 

.095607 

.102436 

.102436 

.096034 

.084736 

.070613 

.055747 

.041810 

.029865 

.020362 

.013280 

.008300 

.004980 

.002873 

.001596 

.000855 

.000442 

.000221 

.000107 

.000050 

.000023 

.000010 

.000004 

.000002 

.000001 

.000002 

.000014 

.000077 

.000307 

.000983 

.002622 

.005994 

.011988 

.021311 

.034098 

.049597 

.066129 

.081389 

.093016 

.099218 

.099218 

.093381 

.083006 

.069899 

.055920 

.042605 

.030986 

.021555 

.014370 

.009197 

.005660 

.003354 

.001917 

.001057 

.000564 

.000291 

.000146 

.000071 

.000033 

.000015 

.000007 

.000003 

.000001 

.000001 

.000001 

.000006 

.000034 

.000144 

.000490 

.001388 

.003371 

.007163 

.013529 

.023000 

.035545 

.050355 

.065849 

.079960 

.090621 

.096285 

.096285 

.090936 

.081363 

.069159 

.055986 

.043262 

.031976 

.022650 

.015402 

.010070 

.006341 

.003850 

.002257 

.001279 

.000701 

.000373 

.000192 

.000096 

.000047 

.000022 

.000010 

.000005 

.000002 

.000001 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
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Cumulative Distribution Function for Standard Normal Distribution3 

z .09 .08 .07 .06 .05 .04 .03 .02 .01 .00 

-3.7 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 
-3.6 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002 
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(continued) 
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Graphs for Binomial Confidence Interval 

Confidence Level 95% 

0.90 

0.85 

0.80 

0.75 

1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80 0.78 0.76 0.74 0.72 0.70 0.68 0.66 0.64 0.62 0.60 0.58 0.56 0.54 0.52 0.50 

0.60 

0.55 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 

P—► 

Source: Reprinted from "Biometrika Tables for Statisticians," 3rd ed., Vol. 1, Table 41, Bentley House, London; 1966, 
with the permission of the Biometrika Trustees. Use the bottom axis with the left axis and the top axis with the right 
axis. 
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I—Continued 

Confidence Level 99% 
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Critical Values for the Chi-Square Ιχ2) Distribution 

Probability below table value 

df .005 .01 .025 .05 .10 .90 .95 .975 .99 .995 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
90 

100 
120 
140 
160 
180 
200 

0.00 
0.01 
0.07 
0.21 
0.41 
0.68 
0.99 
1.34 
1.74 
2.16 
2.60 
3.07 
3.57 
4.07 
4.60 
5.14 
5.70 
6.27 
6.84 
7.43 
8.03 
8.64 
9.26 
9.89 

10.52 
11.16 
11.81 
12.46 
13.12 
13.79 
17.19 
20.71 
24.31 
27.99 
31.74 
35.54 
39.38 
43.28 
47.21 
51.17 
59.20 
67.33 
83.85 

100.66 
117.68 
134.88 
152.24 

0.00 
0.02 
0.12 
0.30 
0.55 
0.87 
1.24 
1.65 
2.09 
2.56 
3.05 
3.57 
4.11 
4.66 
5.23 
5.81 
6.41 
7.02 
7.63 
8.26 
8.90 
9.54 

10.20 
10.86 
11.52 
12.20 
12.88 
13.57 
14.26 
14.95 
18.51 
22.16 
25.90 
29.71 
33.57 
37.49 
41.44 
45.44 
49.48 
53.54 
61.75 
70.07 
86.92 

104.03 
121.35 
138.82 
156.43 

0.00 
0.05 
0.22 
0.48 
0.83 
1.24 
1.69 
2.18 
2.70 
3.25 
3.82 
4.40 
5.01 
5.63 
6.26 
6.91 
7.56 
8.23 
8.91 
9.59 

10.28 
10.98 
11.69 
12.40 
13.12 
13.84 
14.57 
15.31 
16.05 
16.79 
20.57 
24.43 
28.37 
32.36 
36.40 
40.48 
44.60 
48.76 
52.94 
57.15 
65.65 
74.22 
91.57 

109.14 
126.87 
144.74 
162.73 

0.00 
0.10 
0.35 
0.71 
1.15 
1.64 
2.17 
2.73 
3.33 
3.94 
4.57 
5.23 
5.89 
6.57 
7.26 
7.96 
8.67 
9.39 

10.12 
10.85 
11.59 
12.34 
13.09 
13.85 
14.61 
15.38 
16.15 
16.93 
17.71 
18.49 
22.47 
26.51 
30.61 
34.76 
38.96 
43.19 
47.45 
51.74 
56.05 
60.39 
69.13 
77.93 
95.71 

113.66 
131.76 
149.97 
168.28 

0.02 
0.21 
0.58 
1.06 
1.61 
2.20 
2.83 
3.49 
4.17 
4.86 
5.58 
6.30 
7.04 
7.79 
8.55 
9.31 

10.09 
10.87 
11.65 
12.44 
13.24 
14.04 
14.85 
15.66 
16.47 
17.29 
18.11 
18.94 
19.77 
20.60 
24.80 
29.05 
33.35 
37.69 
42.06 
46.46 
50.88 
55.33 
59.80 
64.28 
73.29 
82.36 

100.62 
119.03 
137.55 
156.15 
174.84 

2.71 
4.61 
6.25 
7.78 
9.24 

10.65 
12.02 
13.36 
14.68 
15.99 
17.28 
18.55 
19.81 
21.06 
22.31 
23.54 
24.77 
25.99 
27.20 
28.41 
29.62 
30.81 
32.01 
33.20 
34.38 
35.56 
36.74 
37.92 
39.09 
40.26 
46.06 
51.81 
57.51 
63.17 
68.80 
74.40 
79.97 
85.53 
91.06 
96.58 

107.57 
118.50 
140.23 
161.83 
183.31 
204.70 
226.02 

3.84 
5.99 
7.82 
9.49 

11.07 
12.59 
14.07 
15.51 
16.92 
18.31 
19.67 
21.03 
22.36 
23.69 
25.00 
26.30 
27.59 
28.87 
30.14 
31.41 
32.67 
33.92 
35.17 
36.42 
37.65 
38.88 
40.11 
41.34 
42.56 
43.77 
49.80 
55.76 
61.66 
67.50 
73.31 
79.08 
84.82 
90.53 
96.22 

101.88 
113.15 
124.34 
146.57 
168.61 
190.52 
212.30 
234.00 

5.02 
7.38 
9.35 

11.14 
12.83 
14.45 
16.01 
17.54 
19.02 
20.48 
21.92 
23.34 
24.74 
26.12 
27.49 
28.85 
30.19 
31.53 
32.85 
34.17 
35.48 
36.78 
38.08 
39.36 
40.65 
41.92 
43.20 
44.46 
45.72 
46.98 
53.20 
59.34 
65.41 
71.42 
77.38 
83.30 
89.18 
95.02 

100.84 
106.63 
118.14 
129.56 
152.21 
174.65 
196.92 
219.05 
241.06 

6.64 
9.21 

11.35 
13.28 
15.09 
16.81 
18.48 
20.09 
21.67 
23.21 
24.73 
26.22 
27.69 
29.14 
30.58 
32.00 
33.41 
34.81 
36.19 
37.57 
38.93 
40.29 
41.64 
42.98 
44.31 
45.64 
46.96 
48.28 
49.59 
50.89 
57.34 
63.69 
69.96 
76.15 
82.29 
88.38 
94.42 

100.42 
106.39 
112.33 
124.12 
135.81 
158.95 
181.84 
204.54 
227.06 
249.46 

7.88 
10.60 
12.84 
14.86 
16.75 
18.55 
20.28 
21.96 
23.59 
: .19 
2 .76 
2c.30 
29.82 
31.32 
32.80 
34.27 
35.72 
37.16 
38.58 
40.00 
41.40 
42.80 
44.11, 
45.56 
46.93 
48.29 
49.65 
50.99 
52.34 
53.67 
60.28 
66.77 
73. Ί7 
79.49 
85.75 
91.96 
98.10 

104.21 
110.29 

.116.32 
128.30 
140.18 
163.65 
186.85 
209.84 
232.62 
255.28 

"Calculated by MINITAB. 
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Factors, k, for Two-Sided Tolerance Limits for Normal Distributions 

1 - a = 0.75 

n Π: 0.75 0.90 0.95 0.99 0.999 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
110 
120 
130 
140 
150 
160 
170 

4.498 
2.501 
2.035 
1.825 
1.704 
1.624 
1.568 
1.525 
1.492 
1.465 
1.443 
1.425 
1.409 
1.395 
1.383 
1.372 
1.363 
1.355 
1.347 
1.340 
1.334 
1.328 
1.322 
1.317 
1.313 
1.309 
1.297 
1.283 
1.271 
1.262 
1.255 
1.249 
1.243 
1.239 
1.235 
1.231 
1.228 
1.225 
1.223 
1.220 
1.218 
1.214 
1.211 
1.208 
1.206 
1.204 
1.202 
1.200 

6.301 
3.538 
2.892 
2.599 
2.429 
2.318 
2.238 
2.178 
2.131 
2.093 
2.062 
2.036 
2.013 
1.994 
1.977 
1.962 
1.948 
1.936 
1.925 
1.915 
1.906 
1.898 
1.891 
1.883 
1.877 
1.871 
1.855 
1.834 
1.818 
1.805 
1.794 
1.785 
1.778 
1.771 
1.765 
1.760 
1.756 
1.752 
1.748 
1.745 
1.742 
1.736 
1.732 
1.728 
1.724 
1.721 
1.718 
1.716 

7.414 
4.187 
3.431 
3.088 
2.889 
2.757 
2.663 
2.593 
2.537 
2.493 
2.456 
2.424 
2.398 
2.375 
2.355 
2.337 
2.321 
2.307 
2.294 
2.282 
2.271 
2.261 
2.252 
2.244 
2.236 
2.229 
2.210 
2.185 
2.166 
2.150 
2.138 
2.127 
2.118 
2.110 
2.104 
2.098 
2.092 
2.087 
2.083 
2.079 
2.075 
2.069 
2.063 
2.059 
2.054 
2.051 
2.047 
2.044 

9.531 
5.431 
4.471 
4.033 
3.779 
3.611 
3.491 
3.400 
3.328 
3.271 
3.223 
3.183 
3.148 
3.118 
3.092 
3.069 
3.048 
3.030 
3.013 
2.998 
2.984 
2.971 
2.959 
2.948 
2.938 
2.929 
2.904 
2.871 
2.846 
2.826 
2.809 
2.795 
2.784 
2.773 
2.764 
2.757 
2.749 
2.743 
2.737 
2.732 
2.727 
2.719 
2.712 
2.705 
2.700 
2.695 
2.691 
2.687 

11.920 
6.844 
5.657 
5.117 
4.802 
4.593 
4.444 
4.330 
4.241 
4.169 
4.110 
4.059 
4.016 
3.979 
3.946 
3.917 
3.891 
3.867 
3.846 
3.827 
3.809 
3.793 
3.778 
3.764 
3.751 
3.740 
3.708 
3.667 
3.635 
3.609 
3.588 
3.571 
3.556 
3.543 
3.531 
3.521 
3.512 
3.504 
3.497 
3.490 
3.484 
3.473 
3.464 
3.456 
3.449 
3.443 
3.437 
3.432 

1 - a = 0.90 

0.75 0.90 0.95 0.99 0.999 

11.407 
4.132 
2.932 
2.454 
2.196 
2.034 
1.921 
1.839 
1.775 
1.724 
1.683 
1.648 
1.619 
1.594 
1.572 
1.552 
1.535 
1.520 
1.506 
1.493 
1.482 
1.471 
1.462 
1.453 
1.444 
1.437 
1.417 
1.390 
1.370 
1.354 
1.340 
1.329 
1.320 
1.312 
1.304 
1.298 
1.292 
1.287 
1.283 
1.278 
1.275 
1.268 
1.262 
1.257 
1.252 
1.248 
1.245 
1.242 

15.978 
5.847 
4.166 
3.494 
3.131 
2.902 
2.743 
2.626 
2.535 
2.463 
2.404 
2.355 
2.314 
2.278 
2.246 
2.219 
2.194 
2.172 
2.152 
2.135 
2.118 
2.103 
2.089 
2.077 
2.065 
2.054 
2.025 
1.988 
1.959 
1.935 
1.916 
1.901 
1.887 
1.875 
1.865 
1.856 
1.848 
1.841 
1.834 
1.828 
1.822 
1.813 
1.804 
1.797 
1.791 
1.785 
1.780 
1.775 

18.800 
6.919 
4.943 
4.152 
3.723 
3.452 
3.264 
3.125 
3.018 
2.933 
2.863 
2.805 
2.756 
2.713 
2.676 
2.643 
2.614 
2.588 
2.564 
2.543 
2.524 
2.506 
2.489 
2.474 
2.460 
2.447 
2.413 
2.368 
2.334 
2.306 
2.284 
2.265 
2.248 
2.235 
2.222 
2.211 
2.202 
2.193 
2.185 
2.178 
2.172 
2.160 
2.150 
2.141 
2.134 
2.127 
2.121 
2.116 

24.167 
8.974 
6.440 
5.423 
4.870 
4.521 
4.278 
4.098 
3.959 
3.849 
3.758 
3.682 
3.618 
3.562 
3.514 
3.471 
3.433 
3.399 
3.368 
3.340 
3.315 
3.292 
3.270 
3.251 
3.232 
3.215 
3.170 
3.112 
3.066 
3.030 
3.001 
2.976 
2.955 
2.937 
2.920 
2.906 
2.894 
2.882 
2.872 
2.863 
2.854 
2.839 
2.826 
2.814 
2.804 
2.795 
2.787 
2.780 

30.227 
11.309 
8.149 
6.879 
6.188 
5.750 
5.446 
5.220 
5.046 
4.906 
4.792 
4.697 
4.615 
4.545 
4.484 
4.430 
4.382 
4.339 
4.300 
4.264 
4.232 
4.203 
4.176 
4.151 
4.127 
4.106 
4.049 
3.974 
3.917 
3.871 
3.833 
3.801 
3.774 
3.751 
3.730 
3.712 
3.696 
3.682 
3.669 
3.657 
3.646 
3.626 
3.610 
3.595 
3.582 
3.571 
3.561 
3.552 

(continued) 
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524 B LIST OF TABLES 

1 - a = 0.75 1 - a = 0.90 

n Π: 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

180 
190 
200 
250 
300 
400 
500 
600 
700 
800 
900 

1000 
00 

1.198 
1.197 
1.195 
1.190 
1.186 
1.181 
1.177 
1.175 
1.173 
1.171 
1.170 
1.169 
1.150 

1.713 
1.711 
1.709 
1.702 
1.696 
1.688 
1.683 
1.680 
1.677 
1.675 
1.673 
1.671 
1.645 

2.042 
2.039 
2.037 
2.028 
2.021 
2.012 
2.006 
2.002 
1.998 
1.996 
1.993 
1.992 
1.960 

2.683 
2.680 
2.677 
2.665 
2.656 
2.644 
2.636 
2.631 
2.626 
2.623 
2.620 
2.617 
2.576 

3.427 
3.423 
3.419 
3.404 
3.393 
3.378 
3.368 
3.360 
3.355 
3.350 
3.347 
3.344 
3.291 

1.239 
1.236 
1.234 
1.224 
1.217 
1.207 
1.201 
1.196 
1.192 
1.189 
1.187 
1.185 
1.150 

1.771 
1.767 
1.764 
1.750 
1.740 
1.726 
1.717 
1.710 
1.705 
1.701 
1.697 
1.695 
1.645 

2.111 
2.1Ò6 
2.102 
2.085 
2.073 
2.057 
2.046 
2.038 
2.032 
2.027 
2.023 
2.019 
1.960 

2.774 
2.768 
2.762 
2.740 
2.725 
2.703 
2.689 
2.678 
2.670 
2.663 
2.658 
2.654 
2.576 

3.543 
3.536 
3.529 
3.501 
3.481 
3.453 
3.434 
3.421 
3.411 
3.402 
3.396 
3.390 
3.291 

1 - a = 0.95 1 - a = 0.99 

n Π: 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

22.858 
5.922 
3.779 
3.002 
2.604 
2.361 
2.197 
2.078 
1.987 
1.916 
1.858 
1.810 
1.770 
1.735 
1.705 
1.679 
1.655 
1.635 
1.616 
1.599 
1.584 
1.570 

32.019 
8.380 
5.369 
4.275 
3.712 
3.369 
3.136 
2.967 
2.839 
2.737 
2.655 
2.587 
2.529 
2.480 
2.437 
2.400 
2.366 
2.337 
2.310 
2.286 
2.264 
2.244 

37.674 
9.916 
6.370 
5.079 
4.414 
4.007 
3.732 
3.532 
3.379 
3.259 
3.162 
3.081 
3.012 
2.954 
2.903 
2.858 
2.819 
2.784 
2.752 
2.723 
2.697 
2.673 

48.430 
12.861 
8.299 
6.634 
5.775 
5.248 
4.891 
4.631 
4.433 
4.277 
4.150 
4.044 
3.955 
3.878 
3.812 
3.754 
3.702 
3.656 
3.615 
3.577 
3.543 
3.512 

60.573 
16.208 
10.502 
8.415 
7.337 
6.676 
6.226 
5.899 
5.649 
5.452 
5.291 
5.158 
5.045 
4.949 
4.865 
4.791 
4.725 
4.667 
4.614 
4.567 
4.523 
4.484 

114.363 
13.378 
6.614 
4.643 
3.743 
3.233 
2.905 
2.677 
2.508 
2.378 
2.274 
2.190 
2.120 
2.060 
2.009 
1.965 
1.926 
1.891 
1.860 
1.833 
1.808 
1.785 

160.193 
18.930 
9.398 
6.612 
5.337 
4.613 
4.147 
3.822 
3.582 
3.397 
3.250 
3.130 
3.029 
2.954 
2.872 
2.808 
2.753 
2.703 
2.659 
2.620 
2.584 
2.551 

188.491 
22.401 
11.150 
7.855 
6.345 
5.488 
4.936 
4.550 
4.265 
4.045 
3.870 
3.727 
3.608 
3.507 
3.421 
3.345 
3.279 
3.221 
3.168 
3.121 
3.078 
3.040 

242.300 
29.055 
14.527 
10.260 
8.301 
7.187 
6.468 
5.966 
5.594 
5.308 
5.079 
4.893 
4.737 
4.605 
4.492 
4.393 
4.307 
4.230 
4.161 
4.100 
4.044 
3.993 

303.054 
36.616 
18.383 
13.015 
10.548 
9.142 
8.234 
7.600 
7.129 
6.766 
6.477 
6.240 
6.043 
5.876 
5.732 
5.607 
5.497 
5.399 
5.312 
5.234 
5.163 
5.098 



B TABLE B8 

1 - a = 0.95 

n Π: 0.75 0.90 0.95 0.99 0.999 

24 
25 
26 
27 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
250 
300 
400 
500 
600 
700 
800 
900 

1000 
00 

1.557 
1.545 
1.534 
1.523 
1.497 
1.462 
1.435 
1.414 
1.396 
1.382 
1.369 
1.359 
1.349 
1.341 
1.334 
1.327 
1.321 
1.315 
1.311 
1.302 
1.294 
1.288 
1.282 
1.277 
1.272 
1.268 
1.264 
1.261 
1.258 
1.245 
1.236 
1.223 
1.215 
1.209 
1.204 
1.201 
1.198 
1.195 
1.150 

2.225 
2.208 
2.193 
2.178 
2.140 
2.090 
2.052 
2.021 
1.996 
1.976 
1.958 
1.943 
1.929 
1.917 
1.907 
1.897 
1.889 
1.881 
1.874 
1.861 
1.850 
1.841 
1.833 
1.825 
1.819 
1.813 
1.808 
1.803 
1.798 
1.780 
1.767 
1.749 
1.737 
1.729 
1.722 
1.717 
1.712 
1.709 
1.645 

2.651 
2.631 
2.612 
2.595 
2.549 
2.490 
2.445 
2.408 
2.379 
2.354 
2.333 
2.315 
2.299 
2.285 
2.272 
2.261 
2.251 
2.241 
2.233 
2.218 
2.205 
2.194 
2.184 
2.175 
2.167 
2.160 
2.154 
2.148 
2.143 
2.121 
2.106 
2.084 
2.070 
2.060 
2.052 
2.046 
2.040 
2.036 
1.960 

3.483 
3.457 
3.432 
3.409 
3.350 
3.272 
3.213 
3.165 
3.126 
3.094 
3.066 
3.042 
3.021 
3.002 
2.986 
2.971 
2.958 
2.945 
2.934 
2.915 
2.898 
2.883 
2.870 
2.859 
2.848 
2.839 
2.831 
2.823 
2.816 
2.788 
2.767 
2.739 
2.721 
2.707 
2.697 
2.688 
2.682 
2.676 
2.576 

4.447 
4.413 
4.382 
4.353 
4.278 
4.179 
4.104 
4.042 
3.993 
3.951 
3.916 
3.886 
3.859 
3.835 
3.814 
3.795 
3.778 
3.763 
3.748 
3.723 
3.702 
3.683 
3.666 
3.652 
3.638 
3.527 
3.616 
3.606 
3.597 
3.561 
3.535 
3.499 
3.475 
3.458 
3.445 
3.434 
3.426 
3.418 
3.291 

Source: Abstracted from C. Eisenhart, M. W. Hastay, and 
2.1, pp. 102-107. McGraw-Hill, New York, 1947. 

525 

1 - a = 0.99 

0.75 0.90 0.95 0.99 0.999 

1.764 
1.745 
1.727 
1.711 
1.668 
1.613 
1.571 
1.539 
1.512 
1.490 
1.471 
1.455 
1.440 
1.428 
1.417 
1.407 
1.398 
1.390 
1.383 
1.369 
1.358 
1.349 
1.340 
1.332 
1.326 
1.320 
1.314 
1.309 
1.304 
1.286 
1.273 
1.255 
1.243 
1.234 
1.227 
1.222 
1.218 
1.214 
1.150 

2.522 
2.494 
2.469 
2.446 
2.385 
2.306 
2.247 
2.200 
2.162 
2.130 
2.103 
2.080 
2.060 
2.042 
2.026 
2.012 
1.999 
1.987 
1.977 
1.958 
1.942 
1.928 
1.916 
1.905 
1.896 
1.887 
1.879 
1.872 
1.865 
1.389 
1.820 
1.794 
1.777 
1.764 
1.755 
1.747 
1.741 
1.736 
1.645 

3.004 
2.972 
2.941 
2.914 
2.841 
2.748 
2.677 
2.621 
2.576 
2.538 
2.506 
2.478 
2.454 
2.433 
2.414 
2.397 
2.382 
2.368 
2.355 
2.333 
2.314 
2.298 
2.283 
2.270 
2.259 
2.248 
2.239 
2.230 
2.222 
2.191 
2.169 
2.138 
2.117 
2.102 
2.091 
2.082 
2.075 
2.068 
1.960 

3.947 
3.904 
3.865 
3.828 
3.733 
3.611 
3.518 
3.444 
3.385 
3.335 
3.293 
3.257 
3.225 
3.197 
3.173 
3.150 
3.130 
3.112 
3.096 
3.066 
3.041 
3.019 
3.000 
2.983 
2.968 
2.955 
2.942 
2.931 
2.921 
2.880 
2.850 
2.809 
2.783 
2.763 
2.748 
2.736 
2.726 
2.718 
2.576 

5.039 
4.985 
4.935 
4.888 
4.768 
4.611 
4.493 
4.399 
4.323 
4.260 
4.206 
4.160 
4.120 
4.084 
4.053 
4.024 
3.999 
3.976 
3.954 
3.917 
3.885 
3.857 
3.833 
3.811 
3.792 
3.774 
3.759 
3.744 
3.731 
3.678 
3.641 
3.589 
3.555 
3.530 
3.511 
3.495 
3.483 
3.472 
3.291 

'. A. Wallis, 'Techniques of Statistical Analysis," Table 
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B TABLE B11 531 

Critical Values for the F Distribution3 

f.90 

df in the 
denominator 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
50 
60 

100 
200 

1000 

1 

39.86 
8.53 
5.54 
4.54 
4.06 

3.78 
3.59 
3.46 
3.36 
3.29 

3.23 
3.18 
3.14 
3.10 
3.07 

3.05 
3.03 
3.01 
2.99 
2.97 

2.96 
2.95 
2.94 
2.93 
2.92 

2.91 
2.90 
2.89 
2.89 
2.88 

2.84 
2.81 
2.79 
2.76 
2.73 
2.71 

2 

49.50 
9.00 
5.46 
4.32 
3.78 

3.46 
3.26 
3.11 
3.01 
2.92 

2.86 
2.81 
2.76 
2.73 
2.70 

2.67 
2.64 
2.62 
2.61 
2.59 

2.57 
2.56 
2.55 
2.54 
2.53 

2.52 
2.51 
2.50 
2.50 
2.49 

2.44 
2.41 
2.39 
2.36 
2.33 
2.31 

3 

53.59 
9.16 
5.39 
4.19 
3.62 

3.29 
3.07 
2.92 
2.81 
2.73 

2.66 
2.61 
2.56 
2.52 
2.49 

2.46 
2.44 
2.42 
2.40 
2.38 

2.36 
2.35 
2.34 
2.33 
2.32 

2.31 
2.30 
2.29 
2.28 
2.28 

2.23 
2.20 
2.18 
2.14 
2.11 
2.09 

4 

55.83 
9.24 
5.34 
4.11 
3.52 

3.18 
2.96 
2.81 
2.69 
2.61 

2.54 
2.48 
2.43 
2.39 
2.36 

2.33 
2.31 
2.29 
2.27 
2.25 

2.23 
2.22 
2.21 
2.19 
2.18 

2.17 
2.17 
2.16 
2.15 
2.14 

2.09 
2.06 
2.04 
2.00 
1.97 
1.95 

df in the numerator 

5 

57.24 
9.29 
5.31 
4.05 
3.45 

3.11 
2.88 
2.73 
2.61 
2.52 

2.45 
2.39 
2.35 
2.31 
2.27 

2.24 
2.22 
2.20 
2.18 
2.16 

2.14 
2.13 
2.11 
2.10 
2.09 

2.08 
2.07 
2.06 
2.06 
2.05 

2.00 
1.97 
1.95 
1.91 
1.88 
1.85 

6 

58.20 
9.33 
5.28 
4.01 
3.40 

3.05 
2.83 
2.67 
2.55 
2.46 

2.39 
2.33 
2.28 
2.24 
2.21 

2.18 
2.15 
2.13 
2.11 
2.09 

2.08 
2.06 
2.05 
2.04 
2.02 

2.01 
2.00 
2.00 
1.99 
1.98 

1.93 
1.90 
1.87 
1.83 
1.80 
1.78 

8 

59.44 
9.37 
5.25 
3.95 
3.34 

2.98 
2.75 
2.59 
2.47 
2.38 

2.30 
2.24 
2.20 
2.15 
2.12 

2.09 
2.06 
2.04 
2.02 
2.00 

1.98 
1.97 
1.95 
1.94 
1.93 

1.92 
1.91 
1.90 
1.89 
1.88 

1.83 
1.80 
1.77 
1.73 
1.70 
1.68 

10 

60.19 
9.39 
5.23 
3.92 
3.30 

2.94 
2.70 
2.54 
2.42 
2.32 

2.25 
2.19 
2.14 
2.10 
2.06 

2.03 
2.00 
1.98 
1.96 
1.94 

1.92 
1.90 
1.89 
1.88 
1.87 

1.86 
1.85 
1.84 
1.83 
1.82 

1.76 
1.73 
1.71 
1.66 
1.63 
1.61 

20 

61.74 
9.44 
5.18 
3.84 
3.21 

2.84 
2.59 
2.42 
2.30 
2.20 

2.12 
2.06 
2.01 
1.96 
1.92 

1.89 
1.86 
1.84 
1.81 
1.79 

1.78 
1.76 
1.74 
1.73 
1.72 

1.71 
1.70 
1.69 
1.68 
1.67 

1.61 
1.57 
1.54 
1.49 
1.46 
1.43 

50 

62.69 
9.47 
5.15 
3.80 
3.15 

2.77 
2.52 
2.35 
2.22 
2.12 

2.04 
1.97 
1.92 
1.87 
1.83 

1.79 
1.76 
1.74 
1.71 
1.69 

1.67 
1.65 
1.64 
1.62 
1.61 

1.59 
1.58 
1.57 
1.56 
1.55 

1.48 
1.44 
1.41 
1.35 
1.31 
1.27 

100 

63.01 
9.48 
5.14 
3.78 
3.13 

2.75 
2.50 
2.32 
2.19 
2.09 

2.01 
1.94 
1.88 
1.83 
1.79 

1.76 
1.73 
1.70 
1.67 
1.65 

1.63 
1.61 
1.59 
1.58 
1.56 

1.55 
1.54 
1.53 
1.52 
1.51 

1.43 
1.39 
1.36 
1.29 
1.24 
1.20 

(continued) 



B LIST OF TABLES 

—Continued 

df in the 
denominator 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
50 
60 

100 
200 

1000 

1 

161.5 
18.51 
10.13 
7.71 
6.61 

5.99 
5.59 
5.32 
5.12 
4.96 

4.84 
4.75 
4.67 
4.60 
4.54 

4.49 
4.45 
4.41 
4.38 
4.35 

4.32 
4.30 
4.28 
4.26 
4.24 

4.23 
4.21 
4.20 
4.18 
4.17 

4.08 
4.03 
4.00 
3.94 
3.89 
3.85 

2 

199.5 
19.00 
9.55 
6.94 
5.79 

5.14 
4.74 
4.46 
4.26 
4.10 

3.98 
3.89 
3.81 
3.74 
3.68 

3.63 
3.59 
3.55 
3.52 
3.49 

3.47 
3.44 
3.42 
3.40 
3.39 

3.37 
3.35 
3.34 
3.33 
3.32 

3.23 
3.18 
3.15 
3.09 
3.04 
3.00 

3 

215.7 
19.16 
9.28 
6.59 
5.41 

4.76 
4.35 
4.07 
3.86 
3.71 

3.59 
3.49 
3.41 
3.34 
3.29 

3.24 
3.20 
3.16 
3.13 
3.10 

3.07 
3.05 
3.03 
3.01 
2.99 

2.98 
2.96 
2.95 
2.93 
2.92 

2.84 
2.79 
2.76 
2.70 
2.65 
2.61 

4 

224.6 
19.25 
9.12 
6.39 
5.19 

4.53 
4.12 
3.84 
3.63 
3.48 

3.36 
3.26 
3.18 
3.11 
3.06 

3.01 
2.96 
2.93 
2.90 
2.87 

2.84 
2.82 
2.80 
2.78 
2.76 

2.74 
2.73 
2.71 
2.70 
2.69 

2.61 
2.56 
2.53 
2.46 
2.42 
2.38 

i\95 

df in the numerator 

5 

230.2 
19.30 
9.01 
6.26 
5.05 

4.39 
3.97 
3.69 
3.48 
3.33 

3.20 
3.11 
3.03 
2.96 
2.90 

2.85 
2.81 
2.77 
2.74 
2.71 

2.68 
2.66 
2.64 
2.62 
2.60 

2.59 
2.57 
2.56 
2.55 
2.53 

2.45 
2.40 
2.37 
2.31 
2.26 
2.22 

6 

234.0 
19.33 
8.94 
6.16 
4.95 

4.28 
3.87 
3.58 
3.37 
3.22 

3.09 
3.00 
2.92 
2.85 
2.79 

2.74 
2.70 
2.66 
2.63 
2.60 

2.57 
2.55 
2.53 
2.51 
2.49 

2.47 
2.46 
2.45 
2.43 
2.42 

2.34 
2.29 
2.25 
2.19 
2.14 
2.11 

8 

238.9 
19.37 
8.85 
6.04 
4.82 

4.15 
3.73 
3.44 
3.23 
3.07 

2.95 
2.85 
2.77 
2.70 
2.64 

2.59 
2.55 
2.51 
2.48 
2.45 

2.42 
2.40 
2.37 
2.36 
2.34 

2.32 
2.31 
2.29 
2.28 
2.27 

2.18 
2.13 
2.10 
2.03 
1.98 
1.95 

10 

241.9 
19.40 
8.79 
5.96 
4.74 

4.06 
3.64 
3.35 
3.14 
2.98 

2.85 
2.75 
2.67 
2.60 
2.54 

2.49 
2.45 
2.41 
2.38 
2.35 

2.32 
2.30 
2.27 
2.25 
2.24 

2.22 
2.20 
2.19 
2.18 
2.16 

2.08 
2.03 
1.99 
1.93 
1.88 
1.84 

20 

248.0 
19.45 
8.66 
5.80 
4.56 

3.87 
3.44 
3.15 
2.94 
2.77 

2.65 
2.54 
2.46 
2.39 
2.33 

2.28 
2.23 
2.19 
2.16 
2.12 

2.10 
2.07 
2.05 
2.03 
2.01 

1.99 
1.97 
1.96 
1.94 
1.93 

1.84 
1.78 
1.75 
1.68 
1.62 
1.58 

50 

251.8 
19.48 
8.58 
5.70 
4.44 

3.75 
3.32 
3.02 
2.80 
2.64 

2.51 
2.40 
2.31 
2.24 
2.18 

2.12 
2.08 
2.04 
2.00 
1.97 

1.94 
1.91 
1.88 
1.86 
1.84 

1.82 
1.81 
1.79 
1.77 
1.76 

1.66 
1.60 
1.56 
1.48 
1.41 
1.36 

100 

253.0 
19.49 
8.55 
5.66 
4.41 

3.71 
3.27 
2.97 
2.76 
2.59 

2.46 
2.35 
2.26 
2.19 
2.12 

2.07 
2.02 
1.98 
1.94 
1.91 

1.88 
1.85 
1.82 
1.80 
1.78 

1.76 
1.74 
1.73 
1.71 
1.70 

1.59 
1.52 
1.48 
1.39 
1.32 
1.26 



B TABLE B11 5 3 3 

—Continued 

F.„ 

df in the 
denominator 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
50 
60 

100 
200 

1000 

1 

4052 
98.50 
34.12 
21.20 
16.26 

13.75 
12.25 
11.26 
10.56 
10.04 

9.65 
9.33 
9.07 
8.86 
8.68 

8.53 
8.40 
8.29 
8.19 
8.10 

8.02 
7.95 
7.88 
7.82 
7.77 

7.72 
7.68 
7.64 
7.60 
7.56 

7.31 
7.17 
7.08 
6.90 
6.76 
6.66 

2 

4500 
99.00 
30.82 
18.00 
13.27 

10.92 
9.55 
8.65 
8.02 
7.56 

7.21 
6.93 
6.70 
6.51 
6.36 

6.23 
6.11 
6.01 
5.93 
5.85 

5.78 
5.72 
5.66 
5.61 
5.57 

5.53 
5.49 
5.45 
5.42 
5.39 

5.18 
5.06 
4.98 
4.82 
4.71 
4.63 

3 

5403 
99.17 
29.46 
16.69 
12.06 

9.78 
8.45 
7.59 
6.99 
6.55 

6.22 
5.95 
5.74 
5.56 
5.42 

5.29 
5.19 
5.09 
5.01 
4.94 

4.87 
4.82 
4.76 
4.72 
4.68 

4.64 
4.60 
4.57 
4.54 
4.51 

4.31 
4.20 
4.13 
3.98 
3.88 
3.80 

4 

5625 
99.25 
28.71 
15.98 
11.39 

9.15 
7.85 
7.01 
6.42 
5.99 

5.67 
5.41 
5.21 
5.04 
4.89 

4.77 
4.67 
4.58 
4.50 
4.43 

4.37 
4.31 
4.26 
4.22 
4.18 

4.14 
4.11 
4.07 
4.04 
4.02 

3.83 
3.72 
3.65 
3.51 
3.41 
3.34 

df in the numerator 

5 

5764 
99.30 
28.24 
15.52 
10.97 

8.75 
7.46 
6.63 
6.06 
5.64 

5.32 
5.06 
4.86 
4.69 
4.56 

4.44 
4.34 
4.25 
4.17 
4.10 

4.04 
3.99 
3.94 
3.90 
3.85 

3.82 
3.78 
3.75 
3.73 
3.70 

3.51 
3.41 
3.34 
3.21 
3.11 
3.04 

6 

5859 
99.33 
27.91 
15.21 
10.67 

8.47 
7.19 
6.37 
5.80 
5.39 

5.07 
4.82 
4.62 
4.46 
4.32 

4.20 
4.10 
4.01 
3.94 
3.87 

3.81 
3.76 
3.71 
3.67 
3.63 

3.59 
3.56 
3.53 
3.50 
3.47 

3.29 
3.19 
3.12 
2.99 
2.89 
2.82 

8 

5981 
99.37 
27.49 
14.80 
10.29 

8.10 
6.84 
6.03 
5.47 
5.06 

4.74 
4.50 
4.30 
4.14 
4.00 

3.89 
3.79 
3.71 
3.63 
3.56 

3.51 
3.45 
3.41 
3.36 
3.32 

3.29 
3.26 
3.23 
3.20 
3.17 

2.99 
2.89 
2.82 
2.69 
2.60 
2.53 

10 

6056 
99.40 
27.23 
14.55 
10.05 

7.87 
6.62 
5.81 
5.26 
4.85 

4.54 
4.30 
4.10 
3.94 
3.80 

3.69 
3.59 
3.51 
3.43 
3.37 

3.31 
3.26 
3.21 
3.17 
3.13 

3.09 
3.06 
3.03 
3.00 
2.98 

2.80 
2.70 
2.63 
2.50 
2.41 
2.34 

20 

6209 
99.45 
26.69 
14.02 
9.55 

7.40 
6.16 
5.36 
4.81 
4.41 

4.10 
3.86 
3.66 
3.51 
3.37 

3.26 
3.16 
3.08 
3.00 
2.94 

2.88 
2.83 
2.78 
2.74 
2.70 

2.66 
2.63 
2.60 
2.57 
2.55 

2.37 
2.27 
2.20 
2.07 
1.97 
1.90 

50 

6302 
99.48 
26.35 
13.69 
9.24 

7.09 
5.86 
5.07 
4.52 
4.12 

3.81 
3.57 
3.38 
3.22 
3.08 

2.97 
2.87 
2.78 
2.71 
2.64 

2.58 
2.53 
2.48 
2.44 
2.40 

2.36 
2.33 
2.30 
2.27 
2.25 

2.06 
1.95 
1.88 
1.74 
1.63 
1.54 

100 

6334 
99.49 
26.24 
13.58 
9.13 

6.99 
5.75 
4.96 
4.41 
4.01 

3.71 
3.47 
3.27 
3.11 
2.98 

2.86 
2.76 
2.68 
2.60 
2.54 

2.48 
2.42 
2.37 
2.33 
2.29 

2.25 
2.22 
2.19 
2.16 
2.13 

1.94 
1.82 
1.75 
1.60 
1.48 
1.38 

"Calculated by MINITAB. 



Error 
df 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

a 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

2 

3.64 
5.70 
3.46 
5.24 
3.34 
4.95 
3.26 
4.74 
3.20 
4.60 
3.15 
4.48 
3.11 
4.39 
3.08 
4.32 
3.06 
4.26 
3.03 
4.21 
3.01 
4.17 

■ M <· 

3 

4.60 
6.97 
4.34 
6.33 
4.16 
5.92 
4.04 
5.63 
3.95 
5.43 
3.88 
5.27 
3.82 
5.14 
3.77 
5.04 
3.73 
4.96 
3.70 
4.89 
3.67 
4.83 

j p p e 

4 

5.22 
7.80 
4.90 
7.03 
4.68 
6.54 
4.53 
6.20 
4.42 
5.96 
4.33 
5.77 
4.26 
5.62 
4.20 
5.50 
4.15 
5.40 
4.11 
5.32 
4.08 
5.25 

r r e i 

5 

5.67 
8.42 
5.31 
7.56 
5.06 
7.01 
4.89 
6.63 
4.76 
6.35 
4.65 
6.14 
4.57 
5.97 
4.51 
5.84 
4.45 
5.73 
4.41 
5.63 
4.37 
5.56 

UCML 

6 

6.03 
8.91 
5.63 
7.97 
5.36 
7.37 
5.17 
6.96 
5.02 
6.66 
4.91 
6.43 
4.82 
6.25 
4.75 
6.10 
4.69 
5.98 
4.64 
5.88 
4.60 
5.80 

•aye 

7 

6.33 
9.32 
5.89 
8.32 
5.61 
7.68 
5.40 
7.24 
5.24 
6.91 
5.12 
6.67 
5.03 
6.48 
4.95 
6.32 
4.88 
6.19 
4.83 
6.08 
4.78 
5.99 

nun ii 

8 

6.58 
9.67 
6.12 
8.61 
5.82 
7.94 
5.60 
7.47 
5.43 
7.13 
5.30 
6.87 
5.20 
6.67 
5.12 
6.51 
5.05 
6.37 
4.99 
6.26 
4.94 
6.16 

^ Ul 

V 

9 

6.80 
9.97 
6.32 
8.87 
6.00 
8.17 
5.77 
7.68 
5.60 
7.32 
5.46 
7.05 
5.35 
6.84 
5.27 
6.67 
5.19 
6.53 
5.13 
6.41 
5.08 
6.31 

ui ic o UUUCI 1 U£CU na i iy i =. Va ■ 

= number of treatment means 

10 

6.99 
10.24 
6.49 
9.10 
6.16 
8.37 
5.92 
7.87 
5.74 
7.49 
5.60 
7.21 
5.49 
6.99 
5.40 
6.81 
5.32 
6.67 
5.25 
6.54 
5.20 
6.44 

11 

7.17 
10.48 
6.65 
9.30 
6.30 
8.55 
6.05 
8.03 
5.87 
7.65 
5.72 
7.36 
5.61 
7.13 
5.51 
6.94 
5.43 
6.79 
5.36 
6.66 
5.31 
6.55 

12 

7.32 
10.70 
6.79 
9.49 
6.43 
8.71 
6.18 
8.18 
5.98 
7.78 
5.83 
7.48 
5.71 
7.25 
5.62 
7.06 
5.53 
6.90 
5.46 
6.77 
5.40 
6.66 

13 

7.47 
10.89 
6.92 
9.65 
6.55 
8.86 
6.29 
8.31 
6.09 
7.91 
5.93 
7.60 
5.81 
7.36 
5.71 
7.17 
5.63 
7.01 
5.55 
6.87 
5.49 
6.76 

14 

7.60 
11.08 
7.03 
9.81 
6.66 
9.00 
6.39 
8.44 
6.19 
8.03 
6.03 
7.71 
5.90 
7.46 
5.80 
7.26 
5.71 
7.10 
5.64 
6.96 
5.58 
6.84 

15 

7.72 
11.24 
7.14 
9.95 
6.76 
9.12 
6.48 
8.55 
6.28 
8.13 
6.11 
7.81 
5.99 
7.56 
5.88 
7.36 
5.79 
7.19 
5.72 
7.05 
5.65 
6.93 

J% 

16 

7.83 
11.40 
7.24 

10.08 
6.85 
9.24 
6.57 
8.66 
6.36 
8.23 
6.20 
7.91 
6.06 
7.65 
5.95 
7.44 
5.86 
7.27 
5.79 
7.12 
5.72 
7.00 

17 

7.93 
11.55 
7.34 

10.21 
6.94 
9.35 
6.65 
8.76 
6.44 
8.32 
6.27 
7.99 
6.14 
7.73 
6.03 
7.52 
5.93 
7.34 
5.83 
7.20 
5.79 
7.07 

18 

8.03 
11.68 
7.43 

10.32 
7.02 
9.46 
6.73 
8.85 
6.51 
8.41 
6.34 
8.07 
6.20 
7.81 
6.09 
7.59 
6.00 
7.42 
5.92 
7.27 
5.85 
7.14 

19 

8.12 
11.81 
7.51 

10.43 
7.09 
9.55 
6.80 
8.94 
6.58 
8.49 
6.40 
8.15 
6.26 
7.88 
6.15 
7.66 
6.05 
7.48 
5.97 
7.33 
5.90 
7.20 

20 

8.21 
11.93 

7.59 
10.54 

7.17 
9.65 
6.87 
9.03 
6.64 
8.57 
6.47 
8.22 
6.33 
7.95 
6.21 
7.73 
6.11 
7.55 
6.03 
7.39 
5.96 
7.26 

a 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

Error 
df 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 



16 

17 

18 

19 

20 

24 

30 

40 

60 

120 
oo 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

.05 

.01 

3.00 
4.13 
2.98 
4.10 
2.97 
4.07 
2.96 
4.05 
2.95 
4.02 
2.92 
3.96 
2.89 
3.89 
2.86 
3.82 
2.83 
3.76 
2.80 
3.70 
2.77 
3.64 

3.65 
4.78 
3.63 
4.74 
3.61 
4.70 
3.59 
4.67 
3.58 
4.64 
3.53 
4.54 
3.49 
4.45 
3.44 
4.37 
3.40 
4.28 
3.36 
4.20 
3.31 
4.12 

4.05 
5.19 
4.02 
5.14 
4.00 
5.09 
3.98 
5.05 
3.96 
5.02 
3.90 
4.91 
3.84 
4.80 
3.79 
4.70 
3.74 
4.60 
3.69 
4.50 
3.63 
4.40 

4.33 
5.49 
4.30 
5.43 
4.28 
5.38 
4.25 
5.33 
4.23 
5.29 
4.17 
5.17 
4.10 
5.05 
4.04 
4.93 
3.98 
4.82 
3.92 
4.71 
3.86 
4.60 

4.56 
5.72 
4.52 
5.66 
4.49 
5.60 
4.47 
5.55 
4.45 
5.51 
4.37 
5.37 
4.30 
5.24 
4.23 
5.11 
4.16 
4.99 
4.10 
4.87 
4.03 
4.76 

4.74 
5.92 
4.71 
5.85 
4.67 
5.79 
4.65 
5.73 
4.62 
5.69 
4.54 
5.54 
4.46 
5.40 
4.39 
5.27 
4.31 
5.13 
4.24 
5.01 
4.17 
4.88 

4.90 
6.08 
4.86 
6.01 
4.82 
5.94 
4.79 
5.89 
4.77 
5.84 
4.68 
5.69 
4.60 
5.54 
4.52 
5.39 
4.44 
5.25 
4.36 
5.12 
4.29 
4.99 

5.03 
6.22 
4.99 
6.15 
4.96 
6.08 
4.92 
6.02 
4.90 
5.97 
4.81 
5.81 
4.72 
5.65 
4.63 
5.50 
4.55 
5.36 
4.48 
5.21 
4.39 
5.08 

5.15 
6.35 
5.11 
6.27 
5.07 
6.20 
5.04 
6.14 
5.01 
6.09 
4.92 
5.92 
4.83 
5.76 
4.74 
5.60 
4.65 
5.45 
4.56 
5.30 
4.47 
5.16 

5.26 
6.46 
5.21 
6.38 
5.17 
6.31 
5.14 
6.25 
5.11 
6.19 
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t For Comparisons between p Treatment Means and a Control for a 
Joint Confidence Coefficient of P = .95 and P = .99 
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Source: This table is reproduced from Dunett, C. W. A multiple comparison procedure for comparing several treatments with a control. /. Am. Stat. Assoc. 
50, 1096-1121 (1955). Reprinted with permission from the Journal of the American Statistical Association. Copyright 1955 by the American Statistical 
Association. All rights reserved. 



Selected Governmental 
Sources of 
Biostatistical Data 

Three types of data collections are described below: (1) a population cen­
sus, (2) a vital statistics system, and (3) sample surveys. The sources of the 
data used in U.S. life tables are also described. To understand the data 
resulting from these collection mechanisms, it is essential to be familiar 
with some definitions and the organization of the data collection systems. 

I. POPULATION CENSUS DATA 

The census is a counting of the entire population at a specified time. In the 
United States, it occurs once every 10 years as required by the Constitu­
tion, and the latest census was taken on April 1, 1990. The U.S. census 
attempts to count people in the place where they spend most of their time. 
Most people are counted at their legal residence, but college students, 
military personnel, prison inmates, and residents of long-term institutions 
are assigned to the location of the institutions. 

The information available from the U.S. census is derived from two 

539 
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types of questionnaires. The questions on the short form are intended for 
everybody in every housing unit and include such basic data items as age, 
sex, race, marital status, property value or rent, and number of rooms. The 
long form is intended for persons in sampled housing units and includes, 
in addition to the basic items, income, education, occupation, employ­
ment, and detailed housing characteristics. Data are tabulated for the na­
tion and by two types of geographic areas: administrative areas (states, 
congressional districts, counties, cities, towns, etc.) and statistical areas 
(census regions, metropolitan areas, urbanized areas, census tracts, enu­
meration districts, block groups, etc.). 

The tabulated census data are made available in several different 
forms: printed publications, computer tapes, microfiche, on-line informa­
tion systems, laser disks, and flexible diskettes for microcomputers. To 
access the data, it is necessary to consult documentation for the data media 
of your choosing. In addition to the tabulated data, a 1 percent sample of 
individual records are available for demographic and other research. 

The census data are used for a variety of purposes: by the federal, 
state, and local governments for political apportionment and allocation of 
federal funds for planning and management of public programs; by dem­
ographers to analyze population changes and the makeup of the nation's 
population; by social scientists to study social and economic characteristics 
of the nation's population; and by statisticians to design sample surveys for 
the nation and local communities. The census data, most importantly, 
provide the denominator data for the assessment of social and health 
events occurring in the population, for example, in calculating the birth 
and death rates. 

II. VITAL STATISTICS 

Vital statistics are produced from registered vital events including births, 
deaths, fetal deaths, marriages, and divorces. The scope and organization 
of the vital events registration system vary from one country to another. In 
the United States, the registration of vital events has been the responsibil­
ity of the states primarily and of a few cities. The federal government's 
involvement is to set reporting standards and to compile statistics for the 
nation.1 Each state is divided into local registration districts (counties, cit­
ies, other civil divisions) and a local registrar is appointed for each district. 
The vital records are permanently filed primarily in the state vital statistics 

^ee History and organization of the vital statistics system (1954). In "Vital Statistics of the 
United States, 1950," Vol. 1, Chapter 1, pp. 2-19. Volume I: Analysis and Summary Tables 
with Supplemental Tables for Alaska, Hawaii, Puerto Rico, and Virgin Islands. United States 
Government Printing Office, Washington, D.C. 
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office. The local and state vital registration activities are usually housed in 
public health agencies. The National Center for Health Statistics (NCHS) 
receives processed data or microfilm copies of certificates to compile the 
national vital statistics. 

Vital events are required to be registered with the registrar of the local 
district in which the event occurs. The reporting of births is the direct 
responsibility of the professional attendant at birth, generally a physician 
or midwife. Deaths are reported by funeral directors or person acting as 
such. Marriage licenses issued by town or county clerks and divorce and 
annulment records filed with the clerks or court official provide the data for 
marriage and divorce statistics. The data items on these legal certificates 
determine the contents of vital statistics reports. These certificates are 
revised periodically to reflect the changing needs of users of the vital 
statistics. 

Vital statistics are compiled at the local, state, and federal levels. Data 
are available in printed reports and also on computer tapes. Data are tabu­
lated either by place of occurrence or by place of residence; administrative 
areas are usually used and statistical areas are rarely used. Data by place of 
residence from the local vital statistics reports are often incomplete because 
the events for residents may have occurred outside the local registration 
districts and may not be included in the local data base. 

What uses are made of vital statistics? In addition to calculating the 
birth and death rates, we obtain such well-known indicators of public 
health as the infant mortality rate and life expectancy from vital statistics. 
Much epidemiological research is based on an analysis of deaths classified 
by cause and contributing factors which comes from the vital statistics. 
Birth data are used by local health departments for planning and evalua­
tion of immunization programs and by public health researchers to study 
trends in low-birth-weight infartts, teenage pregnancy, midwife delivery, 
and prenatal care. 

III. SAMPLE SURVEYS 

To supplement the census and vital statistics, several important continu­
ous sample surveys have been added to the statistics programs of the Census 
Bureau and the NCHS. Unlike the census and vital statistics, data are 
gathered from only a small sample of people. The sample is selected using 
a complex statistical design. To interpret the sample survey data appropri­
ately, we must understand the sample design and the survey instrument. 

The Current Population Survey (CPS) is a monthly survey conducted 
by the Census Bureau for the Department of Labor. It is the main source of 
current information on the labor force in the United States. The unemploy­
ment rate that is announced every month is estimated from this survey. In 
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addition, it collects current information on many other population charac­
teristics. The data from this survey are published in the Current Population 
Reports which include several series: Population Characteristics (P-20), 
Population Estimates and Projections (P-25), Consumer Income (P-60), and 
other subject matter areas. Public use tapes are also available. 

The NCHS is responsible for two major national surveys: the National 
Health Interview Survey (NHIS) and the National Health and Nutrition 
Examination Survey (NHANES). The sampling design and the estimation 
procedures used in these surveys are similar to those of the CPS. Because 
of the complex sample design, analyses of data from these surveys are 
complicated. These two surveys are described below. Several other smaller 
surveys are conducted by the NCHS, including the National Survey of 
Family Growth, the National Hospital Discharge Survey, the National Am­
bulatory Medical Care Survey, the National Nursing Home Survey, and 
the National Natality and Mortality Surveys.2 

The NHIS, conducted annually since 1960, is a principal source of 
information on the health of the noninstitutionalized civilian population of 
the United States. The data are obtained through personal interviews cov­
ering a wide range of topics: demographic characteristics, physician visits, 
acute and chronic health conditions, long-term limitation of physical activ­
ity, and short-stay hospitalization. Some specific health topics such as 
aging, health insurance, alcohol use, and dental care are included as sup­
plements in different years of the NHIS. The data from this survey are 
published in the Vital and Health Statistics Reports (Series 10) and data 
tapes are also available. 

The NHANES, conducted periodically, is a comprehensive examina­
tion of the health and nutrition status of the noninstitutionalized U.S. 
civilian population. The data are collected by interview as well as direct 
physical and dental examinations, tests, and measurements performed on 
the sample person. Among the many items included are anthropométrie 
measurements, medical history, hearing test, vision test, blood test, and a 
dietary inventory. Several health examination surveys have been con­
ducted since 1960; the two most recent surveys are the Hispanic HANES 
(conducted in 1982-1984 for three major Hispanic subgroups: Mexican-
Americans in five southwestern states, Cubans in Dade County, Florida, 
and Puerto Ricans in the New York City area) and NHANES III (conducted 
in 1988-1994). The data from health examination surveys are published in 
the Vital and Health Statistics Reports (Series 11). 

2For a list and summary of data tapes, see the National Center for Health Statistics. "Catalog 
of Electronic Data Products/' Hyattsville, MD, DHHS Publication No. (PHS)92-1213, July 
1992, or a later issue. 
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IV. LIFE TABLES 

Life tables have been published periodically by the federal government since 
the mid-19th century. The first federally prepared life tables appeared in 
the report of the 1850 census. Life tables prior to 1900 were based on 
mortality and population statistics compiled from census enumerations. 
The accuracy of these life tables was questioned as mortality statistics de­
rived chiefly from census enumeration were subject to considerable under-
enumeration. The year 1900 is the first year in which the federal govern­
ment began an annual collection of mortality statistics based on registered 
deaths. Since then life tables have been constructed based on registered 
deaths and the enumerated population. Prior to 1930, life tables were lim­
ited to those states that were included in the death registration area. Until 
1946, the official life tables were prepared by the U.S. Bureau of the Cen­
sus. All subsequent tables have been prepared by the U.S. Public Health 
Service (initially by the Nation's Office of Vital Statistics and later by the 
NCHS). 

Life tables provide an essential tool in a variety of fields. Life insurance 
companies largely base their calculations of insurance premiums on life 
tables. Demographers rely on life tables in making population projections, 
in estimating the volume of net migration, and in computing certain fertil­
ity measures. In law cases involving compensation for injuries or deaths, 
life tables are used as a basis for adjudicating the monetary value of a life. 
Personnel managers and planners employ life tables to schedule retirement 
and pension programs and to predict probable needs for employee replace­
ment. Applications are numerous in public health planning and manage­
ment, clinical research, and studies dealing with survivorship. 

Three series of life tables are prepared and published by the NCHS: 
1. Decennial life tables. These are complete life tables, meaning that life-

table values are computed for single years of age. These are based on 
decennial census data and the deaths occurring over 3 calendar years 
around the census year. The advantage of using a 3-year average of deaths 
is to reduce the possible abnormalities in mortality patterns that may exist 
in a single calendar year. The decennial life tables are prepared for the 
United States and for the 50 individual states and the District of Columbia. 
This series also includes life tables by major causes of death, which are 
known as multiple decrement life tables. 

2. Annual life tables. These are abridged life tables, meaning that life-
table values are computed for age intervals instead of single years of age, 
except for the first year of life. The age intervals used are 0-1, 1-5, 5-10, 
10-15, . . . , 80-85, and 85 or over. The annual abridged tables are based 
on a complete count of the registered deaths and postcensal midyear popu­
lation estimates. These are prepared for the total U.S. population by gen-
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der and race. This series also contains summary tables showing life-table 
values for survivorship and expectation of life by single years of age, inter­
polated from the abridged tables. 

3. Provisional annual life tables. These provisional abridged life tables are 
based on a 10 percent sample of registered deaths and population esti­
mates and are prepared for the total U.S. population only. These are pub­
lished in the Monthly Vital Statistics Report before the final annual life 
tables become available. This series has been published annually since 
1958. 



D 

Solutions to 
Selected Exercises 

1.2. 

1.3. 

The change was made to protect the privacy of the adolescent in 
answering sensitive questions. The estimate of the proportion in­
creased slightly immediately after the change, suggesting the earlier 
values were probably underestimated. 
No. The difference in the infant mortality between Pennsylvania 
and Louisiana may be due to the difference in the racial/ethnic 
composition of the two states. The race-specific rates were indeed 
lower in Louisiana than in Pennsylvania. The proportion of blacks 
in Louisiana was sufficiently greater than that in Pennsylvania to 
make the overall rate higher than the overall rate in Pennsylvania. 

545 
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CHAPTER 2 

2.2. Not necessarily, as the choice of scale is dependent on the intended 
use of the variable. For example, we know that those completing 
high school have more economic opportunities than those that do 
not and the same is true for those completing college. Hence there is 
a greater difference between 11 and 12 years of education than 
between 10 and 11 years, and the same is true for the difference 
between 15 and 16 years compared with 13 and 14 or 14 and 15. 

2.4. b. Counting the beats for 60 seconds may be considered too time 
consuming. On the other hand, counting for 20 seconds or 15 sec­
onds and multiplying by 3 or 4 may be unreliable. Counting for 30 
seconds and multiplying by 2 may be a good compromise. 

2.6. Age recorded in the census is considered to be more accurate than 
that reported in the death certificate which was reported by grieving 
relatives and other informants. To alleviate some of these disagree­
ments, the age-specific death rates are usually calculated by 5-year 
age groups. 

CHAPTER 3 

3.2. Read 25 four-digit random numbers and, if any random numbers 
are 2000 or greater, subtract a multiple of 2000 to obtain numbers 
less than 2000. Eliminate duplicates and draw additional random 
numbers to replace the number eliminated. 

3.5. a. The population consists of all the pages in the book; the pages 
can be randomly sampled and number of words counted on the 
selected pages would constitute the data. 

b. All moving passenger cars during the 1-week period can be con­
sidered as the population. The population can be framed in two 
dimensions: time and space. Passing cars can be observed at 
randomly selected locations at randomly selected times and the 
total number of cars and the number with only the driver can be 
observed. 

c. The population consists of all the dogs in the county. House­
holds in the county can be sampled in three stages: census tracts, 
blocks, and households. The number of the dogs found in the 
sample households and the number that have been vaccinated 
against rabies can then be recorded. 

3.8. a. Some people have unlisted telephone numbers and others do not 
have telephones. People who have recently moved into the commu­
nity are also not listed. Thus these groups are unrepresented in the 
sample. The advantage is that the frame, although incomplete, is 
already compiled. 



CHAPTER 6 

CHAPTER 4 

4.2. The actual expenditures increased, whereas the inflation-adjusted 
expenditures decreased. The trend in the inflated-adjusted expendi­
tures would provide a more realistic assessment of the food stamp 
program. 

4.5. b. 
A/C 1 0 Total 
1 8 20 28 
0 8 10 18 
Total 16 30 46 

c. A (28) B(28) C(16) 
4.8. As the total number of each type of hospital is not available, it is not 

possible to calculate the mean occupancy rate. 
4.11. a. Mean = 747,000,000, CV = 344.1 percent. 

b. Median = 105, geometric mean = 541,170. 
c. The geometric mean, 5.4 x 105, seems to capture the sense of the 

data better than the mean or median. 
4.14. b. Correlation = 0.094, adjusting for calories; the correlation of 

0.648 is due to the fact that both protein and total fat are related to 
calories. 

CHAPTER 5 

5.2. a. 0.334 
b. 0.524 
c. 0.426 * 0.524 = 0.223 
d. (0.372 - 0.223)/(l - 0.524) = 0.313 

5.5. 1 - [1 - (1 - 0.99) * 0.2]120 = 0.24 
5.9. a. 79,590/96,334 = 0.826 

b. (89,735 - 79,590)798,223 = 0.103 

CHAPTER 6 

6.2. a. 1 - 0.8593 = 0.1407 
b. At least 10 persons with p = 0.0226 
c. Virtually zero 

6.5. 0.0146; 0.6057 (= 0.7073 - 0.1016) 
6.8. Probability is 0.0116 (= 1 - 0.9884); would investigate further. 

6.12. z = -1.3441; Pr (x<7) = 0.0895; yes, it is normal distributed; can be 
verified by a normal probability plot. 
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CHAPTER 7 

7.1. a. Sample mean = 11.94; sample standard error = 1.75; 95 percent 
confidence interval = (8.42, 15.46). 

c. Sample median = 8; 95 percent confidence interval = {3 (19th 
observation), 12 (32nd observation)}. 

d. The 95 percent tolerance interval to cover 90 percent of observa­
tions, based on a normal distribution = 11.94 ± 1.992(12.5) = (0, 
36.84; based on distribution-free method, the interval (0, 39) cov­
ers 89.6 percent of observations; the latter method is more appro­
priate, as the data are not distributed normally (data are skewed 
to the right). 

7.4. Would expect a negative correlation because those states that have 
the higher workplace safety score should have the lower fatality 
rates, r = -0.435. As the data are based on population values, there 
is no need to calculate a confidence interval; however, if we viewed 
these data as a sample in time, then the formation of a confidence 
interval is appropriate. The 95 percent confidence interval is 
(-0.636, -0.178). A significant negative correlation exists, as the 
confidence interval does not include zero. 

7.7. Correlation = 0.145. These data may be viewed as a sample in time; 
the 95 percent confidence interval is (-0.136, 0.404). No significant 
linear relationship exists, as the confidence interval includes zero. 
Region of the country, perhaps reflecting the unemployment levels, 
may play a role. 

7.10. a. (0.052, 0.206) 
b. (-0.082, 0.202); no difference, as the confidence interval includes 

zero. 
7.13. Difference = -0.261. The 99 percent confidence interval is (-0.532, 

0.010). No difference, as the confidence interval includes zero, al­
though a 95 percent confidence interval would not include zero. 

CHAPTER 8 

8.2. a. Thirty classes can be randomly allocated to two curricula. 
b. A simple random allocation of six teachers to two curricula may 

not be appropriate; instead, teachers can be matched based on 
teaching experience before randomly allocating one member of 
each pair to the new curriculum and the other member to the old 
curriculum. 

8.5. a. Fewer subjects would be needed compared with the two-group 
comparison design. 

b. The random assignment of subjects to the initial diet presumably 
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balanced the sequencing effect but it might not be adequate be­
cause of the small sample size. 

c. The carryover effect is ineffectively controlled by not allowing a 
washout period and the granting of a leave to some subjects. 

8.7. a. Randomized block design 
b. The effect of organizational and leadership types is not con­

trolled effectively, although the matching may have reduced the 
effect of this confounder. 

CHAPTER 9 

9.3. The decision rule is to reject the null hypothesis when the number 
of pairs favoring diet 1 is 14 to 20 with a = 0.0577 and ß = 0.0867. 

9.6. The confidence interval is (0.400, 0.852). 

CHAPTER 10 

10.1. Medians are 12.25 for group 1, 7.75 for group 2, and 5.80 for group 
3; average ranks are 36.5 for group 1, 23.3 for group 2, and 16.9 for 
group 3. The Kruskal-Wallis test is appropriate to use. H = 15.3, 
df = 2, and p = 0.001, indicating the medians are significantly 
different. 

10.4. Divide into three groups based on the toilet rate: 1-61,133-276, and 
385-749, with nine observations in group 1, six in group 2, and six 
in group 3. As H = 6.67 with p = 0.036, we reject Ho. 

10.7. The results by the Wilcoxon signed rank test are consistent with 
those obtained by the sign test in Exercise 10.6, although the p value 
is slightly smaller with the Wilcoxon signed rank test than with the 
sign test. 

CHAPTER 11 

11.3. Note that there are 2 out of 10 cells with expected counts less than 5, 
but the smallest expected count (3.18) is greater than 1 [= 5 * (2/10)] 
and the chi-square test is valid. X2 = 6.66, df = 4, p = 0.1423. We fail 
to reject the null hypothesis at the 0.05 significance level. This is a 
test of independence because it appears that the subjects were se­
lected at random, not by degree of infiltration. By assigning scores 
of - 1 , 0, 1, 2, and 3, we calculate X2 = 6.67, df = 1, p = 0.0098; we 
reject the null hypothesis of no trend. By assigning scores of - 1 , 0, 
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0.5, 1, and 1.5, we calculate X2 = 6.36, df = 1, p = 0.0117; we again 
reject the null hypothesis of no trend. 

11.5. X2 = 20.41, df = 1, p < 0.0001. We reject the null hypothesis; the 
proportion of violation is nearly three times higher for the nonatten-
dees (73.5 percent) than the attendees (24.3 percent). Without more 
information, we cannot draw any conclusion about the effect of 
attending the course. Our interpretation depends on whether the 
course was attended before or after the violation was found. 

11.8. X2 = 103.3, df = 1, p < 0.0001, ignoring the newspaper variable; 
significant. X2 = 24.65, df = 1, p < 0.0001, ignoring the radio vari­
able; significant. The radio variable seems to have the stronger asso­
ciation; however, it is difficult to recommend one media over the 
other, as these two media variables, in combination, appear to be 
related to the knowledge of cancer. Additionally, because people 
were not randomly assigned to the four levels of media, to use these 
results about knowledge of cancer, we must assume that the people 
in each of the four levels of the media initially had the same knowl­
edge of cancer. Without such an assumption, it is difficult to attrib­
ute the status of cancer knowledge to the different media. 

CHAPTER 12 

12.2. a. For the group with serum creatinine concentrations of 2.00-2.49 
mg/dl, the 5-year survival probability is 0.731 with a standard 
error of 0.050. For the group with serum creatinine concentra­
tions of 2.5 mg/dl or greater, the 5-year survival probability is 
0.583 with a standard error of 0.058. 

b. Despite the considerable difference in the 5-year survival proba­
bilities, the two survival distributions are not significantly differ­
ent at the 0.01 level, with X2

CMH = 3.73 and p = 0.0535, reflecting 
the small sample size. 

12.5. Median for the fee-for-service group = 28.8 month; median for 
HMO = 29.5. The two survival distributions are not significantly 
different. 

CHAPTER 13 

13.1. The percent predicted FVC is used because it is adjusted for age, 
height, sex, and race. H0: μι = μι, Ha: μ1 > μ2. One-sided test is 
used to reflect the expected effect of asbestos on pulmonary func­
tion. Assuming equal population variances, pooled variance is 
used, t = 30.08; p value is virtually zero. Reject the null hypothesis, 
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13.4. 

13.7. 

suggesting that those with less than 20 years of exposure have a 
significantly larger forced vital capacity than those with 20 or more 
years of exposure. 
H0: μά = 0, Ha: μά < 0, fa = -10.03, which is smaller than £23,0.01 = 
-2.50. Reject the null hypothesis, suggesting that the weight reduc­
tion program worked. 
H0: π = 0.06, Ha: π Φ 0.06 (two-sided test); z = 1.745, which is not 
larger than Zo.975 = 1.96. Fail to reject the null hypothesis, suggesting 
that there is no strong evidence for the community's attainment of 
the goal. 

13.10. r = -0.243, H0: p = 0, Ha: p Φ 0, λ = -0.8224, which is not smaller 
than Z0.05 = -1.645. Fail to reject the null hypothesis, no evidence 
for nonzero correlation; p = 0.21. 
H0: μ = 190; Ha: μ Φ 190; t = 3.039, which is larger than i14/0.oi = 
2.6245. Reject H0. 

13.13. 

CHAPTER 14 

14.2. F = 0.51, p = 0.479, no significant difference. The test results are 
the same as those obtained using the t test, with the same p value. 
ίΐ,η-Ι,Ι-α = £ η-Ι,Ι-2/α-

14.5. Degrees of freedoms are 2, 2, 4, and 18 for smoking status, lighting 
conditions, interaction, and error, respectively. F = 0.213 for inter­
action, which is not significant. F = 12.896 for smoking status, 
significant. F = 45.276 for lighting conditions, significant. 

CHAPTER 15 

15.1. The zero value for the degree of stenosis in the 10th observation is 
suspicious; it appears to be a missing value rather than 0 percent 
stenosis. The zero value for the number of reactive nuclei at initial 
survey in the 12th observation is also suspicious, but it may well be 
a reasonable value, because there are other smaller numbers such as 
1 and 2. The scatter plot seems to suggest that there is a very weak 
linear relationship. A regression analysis yields β0 = 22.2, β\ = 2.90, 
F = 10.04, p = 0.007. The 10th observation had the largest standard­
ized residual and the 6th observation had the greatest leverage, 
almost three times greater than the average leverage. Eliminating 
the 6th observation, β0 = 21.2 and ft = 3.05. 

15.4. Eliminating the two largest blood pressure values (14th and 50th 
observations) and the two smallest values (22nd and 27th observa­
tions), ft = 63.1, ft = 0.726, and R2 = 23.4 percent. 
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15.7. r = -0.138, ß0 = 8.53, & = -0.063, R2 = 1.9 percent, F = 0.19, and 
p = 0.669. By adding the new variable, ß0 = 8.13, βλ = -0.067, β2 = 
0.110 (new variable), R2 = 37.8 percent, F = 2.73, and p = 0.118. The 
new variable captured the nonlinear effect of BMI on serum choles­
terol. 



Index 

A 
Abridged life table, 112-113 
Acceptance region, 349-372; see also Type I and II 

errors 
Addition rule, for probabilities, 96-97 
Adjusted rate, 79-82, 199-203 

direct method, 79-82, 200 
hypothesis testing for, 359-360 
indirect method, 79-82, 201 
MINITAB analysis, 82 

Adjustment, see also Estimation 
coefficient of determination, 438 
continuity correction, 165 
nonresponses, 33 
ties in data, 276 

Allocation, of subjects, 235-243, 391-392, 
395 

Alpha (a) error, 253; see also Type I and II 
errors 

All-possible-regression, 436-438 
Alternative hypothesis, 253, 258-259 

Analysis of variance (ANOVA) 
Dunnett's method, 389-390 
Fisher's least significant difference method, 388-389 
F ratio, 426-427 
F statistic, 383-385 
interaction of factors, 395-400 
linear model, 401-404 
linear regression, 426-427 
MINITAB analysis, 385-386, 390-391, 394-395, 400 
multiple comparison, 386-391 
one-way, 380-386 
SAS analysis, 476-478 
Stata analysis, 496-499 
table, 384-385, 393-394, 426-427 
Tukey-Kramer method, 387-388 
two-way, 391-400 

ANOVA, see Analysis of variance 
Approximation of distributions 

MINITAB analysis, 162-164, 168-173 
normal to binomial, 162-167, 183-184, 196-199, 238-

239 
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Approximation of distributions (continued) 
normal to Poisson, 168-173 
normal to Wilcoxon rank sum, 282 
normal to Wilcoxon signed rank, 276-277 
Poisson to binomial, 167-168 

Approximation of variance, 200-201 
Area 

under normal curve, 152-153, 353-354 
under survival curve, 326-327 

Arithmetic mean, versus geometric mean, 65 
Association 

hypothesis of no trend, 306-308 
between variables, 5, 296-314 

Assumptions 
for ANOVA, 380 
of independence, 102 
for linear regression, 419, 434 
for logistic regression, 441 
for nonresponses, 33-34 
for stationary population, 119-121 
for survival length, 323 
for variance, 209, 369 

Asymmetric distribution, 58-59, 134 
Attrition rate, 120-121 

B 
Bar chart, 49-51; see also Graph; Histogram; Plot 
Bayes7 theorem, 105-107 
Beta (ß) error, 253; see also Type I and II errors 
Between-groups sum of squares 

one-way ANOVA, 382-383 
two-way ANOVA, 392 

Bias 
in designed experiments, 236, 240-242 
nonresponse, 26, 31-35 
selection, 25-27, 236 

Bimodal distribution, 63 
Binary variable, in logistic regression, 440-444, 445 
Binomial distribution, 125-136 

confidence interval, 180-184, 196, 520-521 
cumulative distribution function, 130-131, 133 
independence of subjects, 126 
mean, 132 
MINITAB analysis, 130, 131, 133, 134-135 
normal approximation to, 162-167, 183-184, 196-

199, 238-239 
parameters, 131, 134 
Poisson approximation to, 167-168 
probabilities, 129, 133-134 
probability mass function, 128-130 
recursive relationship, 129 
SAS analysis, 460-461 
shape, 134-135 

table, 508-513 
variance, 132 

Binomial proportion, 297-298 
Biostatistics, see also Health research 

applications, 1-2 
defined, 1 

Birth rate, 120-121, 540-541 
Blind experiments, 240-242 
Blocking, in designed experiments, 242-243, 391-395 
Box plot 

MINITAB analysis, 70-71 
SAS analysis, 457 
Stata analysis, 486 

c 
Categorical data, 94, 291-314 
Categories 

boundaries of, 295-296 
in frequency tables, 43-45 

Cause-and-effect, in designed experiments, 244 
Cdf, see Cumulative distribution function 
Censored survival time, 320-321, 322-323, 332 
Census 

data sources, 539-540 
life table, 112-121 
sample versus, 24 

Central limit theorem, 157-161, 162, 164 
Central tendency, measures of, 61-67; see also Mean; 

Median; Mode 
Chart, bar, 49-51; see also Graph; Histogram; Plot 
Chi-square distribution 

confidence interval, 207-209 
degrees of freedom, 362 
hypothesis testing about the variance, 360-362 
table, 522 

Chi-square test, 292-314 
Cochran-Mantel-Haenszel test, 310-313, 340-341 
logistic regression, 444 
MINITAB analysis, 301-302, 305 
SAS analysis, 468-469 
Stata analysis, 491-492 
Yates' correction, 300-301 

Clusters, for samples, 30 
Cochran-Mantel-Haenszel (CMH) test, 310-313, 340-

341 
SAS analysis, 469-470 
survival analysis, 337-342 

Coefficient of determination (R2), defined, 417-418, 
438 

Coefficients 
correlation, see Correlation coefficient 
linear regression, see Linear regression 
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Coefficient of variation, 74, 75-76, 202-203 
MINITAB analysis, 76 
SAS analysis, 458 

Cohort method, of data reanalysis, 3-4 
Combination (nCx) notation, 129 
Comparison group, 235-244, 391-395 
Completely randomized design, 242 

and ANOVA, 380-381, 401-402 
Compliance, of subjects, 241 
Computer software, see MINITAB; SAS; Stata 
Conditional probability, 97-102 

in epidemiology, 102, 104 
life table, 114-120 
predicted value negative, 104, 106 
predicted value positive, 104-107 
replacement sampling, 108 
sensitivity of lab tests, 104-105 
specificity of lab tests, 104-105 

Confidence, versus probability, 179 
Confidence interval 

binomial distribution, 196, 520-521 
chi-square distribution, 207-209 
crude and adjusted rates, 199-203 
defined, 188 
difference of means, 212-221 
difference of proportions, 221-222, 238 
distribution-free, 180-184 
hypothesis testing versus, 347, 351-352 
mean, 186-195 
median, 181-183 
MINITAB analysis, 182, 189-190, 197, 203-207, 216, 

263 
odds ratio, 301-303 
Pearson correlation coefficient, 209-212 
percentile, 180-184 
proportion, 195-199 
sample size, 191-193 
variance, 187-195, 203-209 

Confidence level 
confidence interval, 192 
prediction interval, 179 
tolerance interval, 184-186 

Confounded variable, 236 
Constants 

e, 137 
7Γ, 144 

Contingency table, see also Frequency table 
2 by 2, multiple, 308-313 
2 by c, 308 
nonparametric tests, 291 
r by c, 303-308 
subtables, combined, 309-313 

Continuity correction, 165, 312, 359 

Continuous data, 49, 64, 86 
discrete versus, 12 
hypothesis testing, 267-286 
hypothesis testing, grouped, 291-314 

Continuous variable, 43, 60, 94, 125 
discrete versus, 143, 165 
linear regression, 409 
logistic regression, 441 

Control group, 235, 237-238, 240-241, 244 
Correction 

continuity, 165, 312, 359 
Yates', 300-301 

Correlation coefficient, 82-86; see also Pearson correla­
tion coefficient; Spearman rank correlation coeffi­
cient 

hypothesis of no trend, 307 
linear regression, 409, 435 
SAS analysis, 459, 473-474 
Stata analysis, 487 

Critical region, see names of specific tests 
Crosstabulation, 43 
Crude rate, 78-79, 199-203, 359-360 
Cumulative distribution function (cdf), 130-131, 133, 

137-139 
Current Population Survey, 541-542 

D 
Data 

biostatistics, key to, 2-5 
categorical, 94, 291-314 
continuous, see Continuous data 
discrete, 12, 294-296 
fabricated, 19 
graphical presentation, 45-61 
interval, 12, 51, 94 
missing values, 16, 34-35 
nominal, 12, 43, 49, 64, 94 
nominal, grouped, 291-314 
numerical representation, 9-10 
ordinal, 12, 43, 49, 64, 86, 94 
ordinal, grouped, 291-314 
problems with, 2-4, 10, 16-19 
ratio, 12, 51, 94 
reliability, 12-14 
sources, 539-544 
survival, 319 
tabular presentation of, 42-45 
validity, 13-14 

Data entry 
MINITAB analysis, 41-42 
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Data entry (continued) 
SAS analysis, 452-453 
Stata analysis, 482-483 

Data point, defined, 9 
Death rate, 78, 112-121, 328, 540-541 
Decile, 69 
Decision rule, 254-261 

p value versus, 262-263 
Degrees of freedom 

chi-square distribution, 207-209, 292, 304, 362 
F ratio, 426 
F statistic, 383 
goodness-of-fit test, 304 
independent observations as, 73 
sum of squares, 415-416 
t distribution, 193-194 

Density functions 
probability, 130, 134, 138, 140, 143, 144-146 
standard normal, 144-145, 153 

Dependence 
ANOVA and, 380 
of means, 219-221, 364-371 
of variables, 102 

Descriptive statistics, 61-86 
central tendency, 61-67 
correlation, 82-86 
MINITAB analysis, 75-76 
rates, 77-82 
SAS analysis, 457, 465-466 
Stata analysis, 486, 489-490 
variability, 68-77 

Design 
experimental, see Designed experiments 
sample, 27-31 

Designed experiments 
artificial environment of, 243-244 
bias, 236, 240-242 
blind, 240-242 
blocking, 242-243, 391-395 
cause-and-effect, 244 
comparison group, 235-244, 391-395 
completely randomized, 242, 380-381, 401-402 
control-treatment group, 235, 237-238, 240-241, 

244 
ethics, 244-245 
extrapolation of results, 244 
follow-up study, 320-321 
interaction factors, 395-400 
limitations, 243-245 
longitudinal study, 319-321 
measurement-treatment-measurement, 221 
pre- and post-tests, 268 

protocol, 241-242 
randomized blocks, 242-243, 391-395, 402-

403 
sample size, 239 
sample surveys versus, 233-234, 236, 242 
treatment-blocking variable, 391-395 
use of, 233-235 

Diagnostics, linear regression 
leverage, 421-423 
residual plotting, 420-421 

Difference of means 
ANOVA, 382-383 
confidence interval, 212-221 
hypothesis testing about, 364-371 

Difference of proportions 
confidence interval, 221-222, 238, 299-300 
hypothesis testing about, 371-372 

Direct adjusted rate, 79-82, 200 
Discrete data, 12, 294-296 

continuous versus, 12 
Discrete variable, 94, 125; see also Contingency 

table 
continuous versus, 143, 165 
linear regression, 409 
logistic regression, 441 
odds ratio, 298-303 

Disease 
accuracy of testing, 104-105 
incidence, 103-104 
as independent events, 102 
prevalence, 102-104 

Dishonesty of respondents, 15-16 
Disjoint outcomes, probability of, 97 
Distribution-free interval, 178-186, 223-224 
Distribution-free tests, see Nonparametric tests 
Distributions, see also names of specific distributions 

approximation of, see Approximation of 
distributions 

asymmetric, 58-59, 134 
bimodal, 63 
binomial, 125-136 
chi-square test, 292-314 
defined, 95 
F, 383-385 
nonnormal, 85, 157-161 
normal, 143-157 
Poisson, 136-143 
skewed, 58-59 
symmetric, 58, 134 
t, 193-195, 383-384 
trimodal, 63 

Double-blind experiments, 240-242 
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Drug trials, and blind experiments, 240 
Dunnett's method, 389-390 

E 
e, defined, 137 
Empirical distribution function, 154 
Epidemiology, see Health research 
Error, see also Confidence interval 

alpha («), 253 
beta 08), 253 
family, 387 
individual, 387, 388-389 
margin of, 224 
rate of, 387, 388-389 
sum of squares, 397-399 
types I and II, 253-262 

Estimation, see also Adjustment 
accuracy of lab tests, 104-105 
coefficient of variation, 74 
empirical distribution function, 154 
goodness-of-fit parameters, 294-296 
interpolation, 118, 327-328, 336 
interval 

distribution-free interval, 178-186 
linear regression, 427, 429-433 
normal distribution and, 186-224 
versus point estimation, 177, 209 

Kaplan-Meier, 334 
least squares, 412-414 
linear regression coefficient, 412-414 
logistic regression, 442 
Mantel-Haenszel, 313 
missing values, 34-35 
nonresponse, 33 
odds, 298-299, 313 
outcome probability, 94 
population mean, 72, 140 
population variance, 72 
probability by simulation, 109-112 
survival time, 320-342 

Estimator, see Estimation 
Ethics, of designed experiments, 244-245 
Exercises, solutions to, 545-552 
Expected value 

goodness-of-fit, 292 
life table, 118-119 
linear regression, 410, 414, 433 

Experimental design, see Designed experiments 
Extraneous factors, in run-in and treatment 

design, 371 

Extraneous variables, 236, 237, 242-243 
contingency table analysis, 308-313 
interaction, 396 

Extrapolation 
danger of, 413 
experimental results, 244 

Extreme values, effects on mean and median, 64, 65 

F 
Fabrication of data, 19 
Factorial (!) notation, 129 
Failure-to-reject region, see Acceptance region; Type I 

and II errors 
Family error rate, in ANOVA, 387 
F distribution, see also F ratio; F test 

in ANOVA, 383-385 
table, 531-533 
t distribution versus, 383-384 

Fisher's least significant difference method, 388-390 
Fisher's transformation, 210 
Follow-up study 

censored survival time, 320-322, 323 
life table method, 322-330 
lost subjects, 320-321 
withdrawn alive subjects, 320-321 

Forward stepwise regression, 436-438 
F ratio, see also F distribution; F test 

in ANOVA, 383, 385 
in linear regression, 426-427, 438-439 

Frequency, relative, 94 
Frequency table, 42-45; see also Contingency table 

MINITAB analysis, 44 
nonparametric tests, 291 
SAS analysis, 453-454 
Stata analysis, 484 

F test, see also F distribution; F ratio 
in ANOVA, 383-385, 393 
t and F statistics compared, 426-427 

G 
Gaussian distribution, see Normal distribution 
Generalization 

from experimental environment, 244 
from limited population, 243 

Geometric mean 
arithmetic mean versus, 65 
logarithmic transformation, 65-67 
MINITAB analysis, 76 
SAS analysis, 458 
variability and, 64-65 
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Goodness-of-fit test, see also Chi-square test 
2 by 2 table, 300-301 
logistic regression, 444 
one-way table, 292-296 
r by c table, 304-305 
Yates' correction, 300-301 

Graph, see also Bar chart; Histogram; Plot 
for data presentation, 45-61, 520-521 

Grouping of data, see Categorical data; Categories 
Grouping of subjects 

comparison, 235-244, 391-395 
control, 235, 237-238, 240-241, 244 
treatment, 235, 237-238, 240-241, 244 
variation between and within, 382-383, 392-393 

H 
Ha, alternative hypothesis, 253, 258-259 
H0, null hypothesis, 253, 259, 353-357 
Hazard rate, 328-330 
Health research 

Cochran-Mantel-Haenszel test, 314 
data sources, 539-544 
dependence of variables, 102 
designed experiments in, 233-235 
epidemiology definitions, 102-105 
life table, 112-121 
logistic regression, 444 
multiple risk factors, 434 
odds ratio, 314 
standards for population, 410, 414, 433 
systolic blood pressure example, 410-440 

Hinges, of box plot, 70 
Hispanic Health and Nutrition Examination Survey, 

542 
Histogram, 51-55; see also Bar chart; Graph; Plot 

MINITAB analysis, 56 
SAS analysis, 455-456, 464 
Stata analysis, 485-486 
stem-and-leaf plot versus, 57, 58-59 

Honesty of respondents, 15-16 
Hypotheses 

alternative (Ha), 253, 258-259 
null (H0), 253, 259, 296, 347, 353-357 

Hypothesis testing 
by analysis of variance, 379-404 
confidence interval versus, 347, 351-352 
of crude and adjusted rates, 359-360 
decision rules, 254-261 
of difference of means, 364-371 
of difference of proportions, 371-372 
of mean, 348-358 
normal distribution and, 347-373 

one-sided, 255-256 
of Pearson correlation coefficient, 362-364 
of proportion, 358-359 
p value, 262-263 
significance levels for, 261-263 
steps in, 251-264 
of survival analysis, 337-342 
two-sided, 255 
type I and II errors, 253-262 
of variance, 360-362 

Hypothesis tests 
Cochran-Mantel-Haenszel, 310-313 
Dunnett's method, 389-390 
Fisher's least significant difference method, 388-389 
F ratio, 426-427, 438-439 
F statistic, 383-385 
goodness-of-fit, 292-296, 300-301, 304-305 
Kruskal-Wallis, 283-285 
linear regression, 423-433 
logistic regression, 444 
Mann-Whitney, 277-282 
nonparametric, for categorical data, 291-314 
nonparametric, for continuous data, 267-286 
sign, 254, 267-272 
t, 357-358, 365-372 
Tukey-Kramer method, 387-388 
Wilcoxon rank sum, 277-282 
Wilcoxon signed rank, 272-277 

I 
Imputation, of missing values, 34-35 
Incidence, of disease, 103-104 
Incomplete data, in survival studies, 320-321 
Independence 

ANOVA and, 380 
of means, 212-219, 364-371 
of observations, 72-73 
of proportions, 221-222 
of variables, 102 

Independent events 
diseases as, 102 
probability of, 101-102 

Indirect adjusted rate, 79-82, 201 
Individual error rate, in ANOVA, 387, 388-389 
Infant mortality rate, 78 
Inferential statistics, see Hypothesis testing; Hypothesis 

tests 
Informed consent, 245 
Institutional review committee, 245 
Interaction of factors, 395-400, 403-404 
Intercept coefficient, 425 
Interpolation, 118, 327-328, 336 
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Interquartile range, 68 
Intersection of outcomes, probability of, 97, 98 
Interval 

of ages, 113-120 
confidence, See Confidence interval 
distribution-free, 178-186, 223-224 
guidelines for, 52 
in life table, 113-120 
number and size of, 52-57, 296 
prediction, see Prediction interval 
tolerance, see Tolerance interval 

Interval data, 12, 51, 94 
Interval estimation, 177-224; see also Confidence inter­

val; Prediction interval 
distribution-free, 178-186 
linear regression, 427, 429-433 
normal distribution and, 186-224 
point estimation versus, 177, 209 

Interval scale, versus ratio scale, 11 
Inverse cumulative distribution function, see MINITAB 

commands, INVCDF 

K 
Kaplan-Meier method, of survival analysis, 330-337 
Kruskal-Wallis test, 283-285 

MINITAB analysis, 285 
SAS analysis, 467 
Stata analysis, 491 

L 
Lambda (λ) 

Pearson correlation coefficient statistic, defined, 363 
Poisson distribution uniform density, defined, 136 

Least significant difference method, 388-389 
Least squares estimator, 412-414 
Leverage, in linear regression diagnostics, 421-423 
Life expectancy, 112-121; see also Mortality rate 
Life table 

abridged, 112-113 
data sources, 543-544 
follow-up method, 322-330 
MINITAB analysis, 118, 331-333, 337 
mortality rate, 328 
probabilities, 112-121 
SAS analysis, 470-471 

Linear interpolation, 118, 327-328, 336-337 
Linear models, of ANOVA, 401-404 
Linear regression 

advantages, 410 
all-possible procedure, 436-438 

coefficient of determination, 417-418, 438 
coefficient estimation, 412-414 
coefficient inferences, 418-427 
diagnostics, 420-423 
interval estimation, 427, 429-433 
logistic regression versus, 441 
MINITAB analysis, 427-428, 431-432, 434-440 
multiple, 434-440 
SAS analysis, 478-480 
simple, 410-412 
Stata analysis, 499-501 
stepwise, 436-438 
sum of squares about, 415 
variance, 414-416 

Linear trends, 306-308 
Line graph, 45-48 
Logarithm, of odds, 441 
Logarithmic transformation 

geometric mean, 65-67 
Pearson correlation coefficient, 210-212 

Logistic regression, 440-444 
advantages, 410, 443 
linear regression versus, 441 
SAS analysis, 480-481 
Stata analysis, 502-503 

Logit, 441 
Log odds, 441 
Longitudinal study, 319-321; see also Survival analysis 
Lost-to-follow-up subjects, 320-321 
LSD method, see Fisher's least significant difference 

method 

M 
Macro software commands, for MINITAB, 203 
Mann-Whitney test, 277-282 

MINITAB analysis, 281-282 
survival analysis, 337 

Mantel-Haenszel common odds ratio, 313 
Mantel-Haenszel statistic, 312; see also Cochran-Man-

tel-Haenszel test 
Margin of error, 224; see also Confidence interval 
Matched pairs 

sign test, 268 
Wilcoxon signed rank test, 272 

Matching, of experimental groups, 236 
Maximum value, 61, 68 
Mean 

arithmetic versus geometric, 65 
binomial distribution, 132 
confidence interval, 186-195 
dependent versus independent, 212-221 
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Mean (continued) 
difference of 

ANOVA, 382-383 
confidence interval, 212-221 
hypothesis testing about, 364-371 

extreme values, 64, 65 
geometric, 64-67 
hypothesis testing about, 348-358 
independence of, 364-371 
large values and, 328 
median versus, 328 
multiple comparisons, 386-391 
normal distribution, 144 
normality of nonnormal distributions, 

157 
Poisson distribution, 139-140 
population, 62-63, 350 
restricted, 326-327 
reversion toward, 268-269, 272, 286, 371 
sample, 62 
sample versus population, 350 
survival analysis, 326-327, 336 

Mean squares, 382-384, 393 
Measurement, defined, 12-13 
Measures, see also names of specific measures 

of central tendency, 61-67 
of correlation, 82-86 
of rates, 77-82 
of variability, 68-77 

Median 
box plot, 70 
calculation of, 63 
confidence interval, 181-183 
defined, 58, 62 
extreme values, 64, 65 
mean versus, 328 
percentile and, 69 
survival analysis, 327-328, 336-337 

Medians, comparisons of, 267-286 
Minimum value, 61, 68 
MINITAB 

adjusted rate, 82 
data entry, 41-42 
life table analyses, 118 
logarithmic calculation, 66 
macro, 203 
proportion, 372 
simulation of probabilities, 110-111 

MINITAB commands 
ANTILOG, geometric mean, 76 
AOVONEWAY (ANOVA), 386 
BOXPLOT, 70-71 
BREG, all-possible-regression, 437 

CDF 
binomial distribution, 131, 133 
normal distribution, 149-150 
Poisson distribution, 138, 143 

CHISQUARE, 302, 305 
CODE, frequency table, 44 
CORR, correlation, 84, 86 
DESCRIBE, 75, 160, 269 
GMPLOT, 47 
GPLOT, 47 
HEIGHT, 158 
HISTOGRAM, 56 
INVCDF, normal distribution, 151 
KRUSKAL-WALLIS, 285 
LET, 42 
MANN-WHITNEY, 281 
MPLOT, 47 
NAME, 41 
NSCORES 

central limit theorem, 161 
normal distribution, 156 

ONEWAY, 390-391 
PDF 

binomial distribution, 130, 134 
normal distribution, 144-146 
Poisson distribution, 138, 140 
t distribution, 194 

PLOT, 47, 60 
PRINT, 41-42 
RANDOM, 126 
READ, 41-42 
REGRESS, 428, 438-439 
SAMPLE, 110, 237 
SET, 41 
SORT, percentile, 75 
STDEV, coefficient of variation, 76 
STEM-AND-LEAF, 57-59 
STEP, stepwise regression, 437 
STEST, sign test, 272 
STORE, 204 
TABLE, frequency table, 44 
TINTERVAL, 195 
TWOSAMPLE, f-test, 366, 369, 372 
TWOT, ttest, 367 
TWOWAY, variance, 394, 400 
WTEST, Wilcoxon singed rank test, 275 
ZINTERVAL, 189-190 

Missing data values, 16, 34-35; see also Nonresponses 
Mode, 62, 63-64 
Models 

ANOVA, 401-404 
logistic regression, 441-442 
Poisson distribution, 136 



INDEX 561 

Monthly Vital Statistics Report, 544 
Mortality rate, 78, 112-121, 328, 540-541; see also Sur­

vival analysis 
Multiple linear regression, 434-440 
Multistage sample design, 30-31 
Mu (μ,), population mean, defined, 62-63 

N 
National Center for Health Statistics, 5, 541-543 
National Health Interview Survey, 542 
National Health and Nutrition Examination Survey, 54̂  
Negative skew, 59 
Neonatal mortality rate, 78 
Nominal data, 12, 43, 49, 64, 94 

grouped, hypothesis testing on, 291-314 
Nominal scale, 11 
Nonnormal distribution, 85, 157-161 
Nonparametric tests, 267-286; see also Hypothesis tests 

categorical data, 291-314 
Cochran-Mantel-Haenszel, 310-313, 337-342 
goodness-of-fit, 292-296, 300-301, 304-305 
importance of, 286 
Kruskal-Wallis, 283-285 
Mann-Whitney, 277-282, 337 
sign, 254, 267-272 
survival analysis, 337-342 
Wilcoxon rank sum, 277-282, 337 
Wilcoxon signed rank, 272-277 

Nonresponse bias, 26, 31-35 
Nonresponses, 26, 31-35, 320-321 
Normal distribution 

binomial approximated by, 162-167, 183-184, 196-
199, 238-239 

confidence interval, 183-184, 196-199 
hypothesis testing, 347-373 
importance of, 143-144 
interval estimation and, 186-224 
mean, 144 
MINITAB analysis, 144-146, 149-151, 153 
nonnormal distributions and, 157-161 
parameters, 146 
Poisson approximated by, 168-173 
probabilities, 147-153 
probability density function, 144-146 
SAS analysis, 462-463 
shape, 145-146 
standard deviation, 74, 144 
Stata analysis, 488-489 
tables, 517-518, 523-525 
tolerance limits, 523-525 
transformation to standard normal, 146-147 
Wilcoxon rank sum approximated by, 282 

Wilcoxon signed rank approximated by, 276-277 
Z values, 147-151, 153-154 

Normal probability paper, 154 
Normal probability plot, 154-157 
Notation 

combination (nCx), 129 
factorial (!), 129 
product (Π), 335 
summation (X), 62 

Null hypothesis (H0), see also Hypothesis testing; Hy­
pothesis tests 

power of test, 259, 271, 296, 347, 353-357 
rejection error, 253 

Numerical scales, and data, 9-10 

o 
Observational unit, as study characteristic, 10-11 
Observations, number of, see Sample size 

requirements 
Observed proportion, 94 
Odds, logarithm of, 441 
Odds ratio 

association measure, 298-299 
confidence interval, 301-303 
contingency subtable, 311-312 
epidemiology, 314 
interaction, 396 
logistic regression, 443 
Mantel-Haenszel, 313 
SAS analysis, 469-470 
survival analysis, 339, 341-342 

One-sided test, 255-256 
One-way ANOVA, 380-386 

two-way versus, 395 
Order statistics, 178, 180-183 
Ordinal data, 12, 43, 49, 64, 86, 94 

grouped, hypothesis testing on, 291-314 
Ordinal scale, 11 
Outside influence, see Extraneous variables 

P 
Paired data, 268, 272 
Paired t test, 370, 371 

SAS analysis, 475 
Stata analysis, 495 

Parameters, population 
versus sample statistics, 25, 63 

Partition, of sum of squares, 392, 397, 401 
Pdf, see Probability density function 
Pearson correlation coefficient 

coefficient of determination, 417-418 
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Pearson correlation coefficient (continued) 
confidence interval, 209-212 
derivation, 83-84 
graphical representation, 84-85 
hypothesis testing about, 362-364 
linear regression, 417-418 
MINITAB analysis, 84-85, 363-364 
normal transformation, 210-212 
population coefficient, 83-84 
sample coefficient, 83-85 
Spearman rank correlation coefficient versus, 85-8( 
Stata analysis, 487 

Percentile, 68-71, 75 
confidence interval, 180-184 
standard normal distribution, 150-151 

Pi 
7Γ, constant, 144 
Π, notation, 335 

Placebo, 221, 240-241, 244 
Plot, 46-48; see also Bar chart; Graph; Histogram 

binomial distribution, 134-135 
box, 70-71 
interaction of factors, 399-400 
logarithmic, 66 
MINITAB analysis, 47-48 
normal probability, 154-157 
Poissonness, 141 
regression line, 411-432 
SAS analysis, 454-455 
scatter, 60-61 
Stata analysis, 484-487 
stem-and-leaf, 57-59 

Point estimation, versus interval estimation, 177, 209 
Poisson distribution 

binomial approximated by, 167-168 
conditions for, 136 
cumulative distribution function, 137-139 
mean, 139-140 
MINITAB analysis, 137-139, 140-141, 142-143 
model, 136 
normal approximation to, 168-173 
normality of means, 157-161 
parameter, 136-137 
probabilities, 137, 139-143 
probability mass function, 136-137 
recursive relationship, 137 
SAS analysis, 461-462, 463-464 
table, 514-516 
uniform density, 136 
variance, 139 

Poissonness plot, 141, 461-462 
Pooled standard deviation, 216 
Pooled variance, 214, 219 

Population 
generalization from, 243 
life table, 112-121 
Pearson correlation coefficient, 83-84 
specification of, 25 
standard size, 77, 79-81 
stationary, 119-121 
uncertain size, 77-78 

Population census, data sources, 539-540 
Population parameters 

as probabilities, 94 
sample statistics versus, 25, 63 

Population surveys, data sources, 541-542 
Population variance, 71-72 
Positive skew, 59 
Power, of null hypothesis rejection, 259, 353-

356 
importance, 347, 357 
increase of, 355 
interval number and size, 296 
sign test, 271 
2 statistic, 357 

Power curve, 259 
Predicted value negative (PVN), 104, 106 
Predicted value positive (PVP), 104-107 
Prediction interval 

confidence interval versus, 430 
confidence level, 179 
estimation, 178-180 
linear regression, 429-433 
normal distribution and, 223-224 

Predictor variable, see Linear regression 
Prevalence, of disease, 102 
Probabilities 

calculation rules for, 95-102 
changes over time, 95 
column-based, 101 
conditional, 97-100, 101-102, 108, 114-

120 
disease and, 102-104 
disjoint, 97 
independent events, 101-102 
intersection of outcomes, 97, 98 
life table, 112-121 
population versus sample, 94 
survival, see Survival analysis 
type I and II errors, 253, 257-261 
unconditional, 98-100 

Probability 
versus confidence, 179 
defined, 93-95 
as population parameter, 94 
by simulation, 109-112 
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Probability density function (pdf) 
for binomial distribution, 130, 134 
for normal distribution, 144-146 
for Poisson distribution, 138, 140 
probability mass function versus, 143 

Probability distributions, see Distributions 
Probability mass function 

binomial distribution, 128-130 
Poisson distribution, 136-137 
probability density function versus, 143 

Probability sampling, 27-31 
Product-limit method 

SAS analysis, 471-472 
Stata analysis, 492-493 
survival analysis, 330-337 

Product (Π) notation, 335 
Proportion 

binomial, 297-298 
confidence interval, 195-199 
hypothesis testing about, 358-359 
MINITAB analysis, 372 
of pairs, 252-253 

Proportions, difference of 
confidence interval, 221-222, 238, 299-300 
hypothesis testing about, 371-372 

Protocol, study, 241-242 
p value 

confidence interval, 352 
decision rules versus, 262-263 
of hypothesis test, 262-263 

PVN, see Predicted value negative 
PVP, see Predicted value positive 

Q 
Quartile, 68-71 
Questionnaire problems, 14 
Questions, sensitive, 14-16 

R 
r, sample Pearson correlation coefficient, 83-85 
rs, sample Spearman rank correlation coefficient, de­

fined, 86 
R2, coefficient of determination, defined, 417-418, 438 
Random digit dialing, 26 
Randomization, of group members, 235-240, 242-243, 

391-395 
Randomized block design, 242-243 

ANOVA, 391-395, 402-403 
Randomized response, 14-16 
Random number table, 126, 506-507 

MINITAB analysis, 126 
use of, 28-29 

Random sampling 
accuracy, 24 
advantages, 24 
bias, 25-27, 236 
defined, 23-24 
frame, 25-27 
importance, 24 
population, 25, 26-27 
repeated, 109-112 
with replacement, 28-29, 107-109 
without replacement, 28-29, 108-109, 236-237 
SAS analysis, 459 
Stata analysis, 488 
unintended, 31-35 

Random variable, 94, 125, 143; see also Distributions; 
Probabilities 

Range, 68-69 
Rank correlation coefficient, 85-86 
Rank tests 

Kruskal-Wallis, 283-285 
Mann-Whitney, 277-282 
Wilcoxon rank sum, 277-282 
Wilcoxon signed rank, 272-277 

Rate, defined, 77 
Rates, see also Survival analysis 

adjusted, 79-82, 199-203, 359-360 
attrition, 120-121 
birth, 120-121 
crude, 78-79, 199-203, 359-360 
hazard, 328-330 
infant mortality, 78 
life-table mortality, 328 
mortality, 78, 112-121, 328 
replacement, 120-121 
specific, 78-79, 113-117 
stable and unstable, 202 

Ratio data, 12, 51, 94 
Ratios, see also Odds ratio 

coefficient of determination, 417-418, 438 
F, 383, 385, 426-427, 438-439 
mean squares, 383 

Ratio scale, versus interval scale, 11 
Regression, see Linear regression; Logistic regression 
Regression toward the mean, see Reversion toward the 

mean 
Rejection region, 349-372; see also Type I and II errors 
Relative frequency, as probability, 94 
Reliability 

of data, 12-14 
of sensitive questions, 16 

Replacement 
sampling with, 28-29, 107-109 
sampling without, 28-29, 108-109, 236-237 
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Replacement (birth) rate, 120-121 
Replication 

extrapolation versus, 244 
of studies, 5 

Residual mean square, 393 
Residuals, in linear regression, 420-421 
Residual sum of squares, 395, 415 
Restricted mean, 326-327 
Reversion toward the mean, 268-269, 272, 286, 371 
Rho (p), Pearson correlation coefficient, defined, 83 

S 
s, sample standard deviation, 73 
s2, sample variance, defined, 72 
Sample 

biased, 25-27, 236, 391 
census versus, 24 
clustering, 30 
convenience, 25, 26 
multistage, 30-31 
probability, 27-31 
simple random, 27-31 
stratified random, 30-31 

Sample design, 27-31; see also Designed experiments 
Sample size requirements 

ANOVA, 380 
approximation of distributions, 165 
confidence interval, 191-193 
contingency table, separate, 309, 311-313 
continuity correction, 359 
designed experiments, 239 
distribution-free interval, 180 
graphical presentation, 59, 61 
linear regression, 433, 436 
loss of subjects, 241 
multiple regression, 436 
nonnormal distribution, 157-161 
percentile, 68-69 
population mean, 160-161 
proportion hypothesis testing, 358-359 
random group assignment, 236-240 
range, 68 
selection probability, 108-109 
sign test, 270-272 
standards development, 433 
stratification, 30 
survival analysis, 330 
tolerance interval, 185 
type I and II errors, 259-261 

Sample statistics 
mean, 62 

population parameters versus, 25, 63 
as probabilities, 94 
standard deviation, 73 
variance, 72 

Sample survey 
data sources, 541-542 
designed experiments versus, 233-234, 236, 242 
nonresponses, 26, 31-35 
random digit dialing, 26 

Sampling, random, see Random sampling; Simple 
random sampling; Stratified sampling 

SAS commands, 452-481 
Scales, 9-10; see also Data 

interval, 11 
nominal, 11 
ordinal, 11 
ratio, 11 

Scatter plot, 60-61 
Pearson correlation coefficient, 85 
SAS analysis, 456-457 
Stata analysis, 486, 487 

Selection bias, 25-27, 236 
Self-selection, 31 
Semiquartile range, 68 
Sensitivity of lab tests, 104-105 
Sigma 

notation (X), 62 
population standard deviation (σ), defined, 

73 
population variance (σ2), defined, 71-72 

Signed rank test, Wilcoxon, see Wilcoxon signed rank 
test 

Significance, practical versus statistical, 263 
Significance level, 261-263; see also Confidence level; 

Type I and II errors; names of specific tests 
Sign test, 254, 267-268 

MINITAB analysis, 271-272 
SAS analysis, 465-466 
Stata analysis, 489-490 
Wilcoxon signed rank test versus, 272, 276 

Simple random sampling (SRS) 
complete randomized design versus, 242 
descriptive statistics, 39-86 
selection methods, 27-29 
selection probability, 107-109 
stratified sampling versus, 30-31, 299 

Simulation, for estimating probabilities, 109-112 
Single-blind experiments, 240 
Skewed distribution, 58-59 
Slope coefficient, 423-425 
Software, see MINITAB; SAS; Stata 
Solutions to exercises, 545-552 
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Sorting of data 
SAS analysis, 458 
Stata analysis, 487 

Spearman rank correlation coefficient 
MINITAB analysis, 86 
nonnormal distributions, 85 
Pearson correlation coefficient versus, 85-86 
Stata analysis, 487 

Specificity of lab tests, 104-105 
Specific rate, 78-79, 113-117 
SRS, see Simple random sampling 
Standard deviation 

defined, 73, 187 
normal distribution, 144 
pooled, 216 

Standard error 
defined, 187 
survival analysis, 325, 329, 335 

Standardized residuals, in linear regression, 420-
421 

Standard normal density function, 144-145, 
153 

Standard normal distribution 
percentile, 150-151 
residuals in regression analysis, 420-421 
table, 517-518 
t distribution versus, 193-195 
transformation of normal data to, 146-147 

Standard normal statistic 
hypothesis testing about the mean, 348-

350 
MINITAB analysis, 349-350, 352 

Standard population, 77, 79-81 
Stata commands, 481-503 
Stationary population, 119-121 
Statistic, as the sample value, 25 
Statistical significance, 262-263 
Statistics, see also Hypothesis testing; Hypothesis tests, 

MINITAB; SAS; Stata 
data sources, 539-544 
descriptive, 61-86 
order, 178, 180-183 
sample versus population, 25, 63 

Stem-and-leaf plot 
MINITAB analysis, 57-59 
SAS analysis, 456 

Stepwise regression, 436-438 
Stratified sampling, 30-31 

randomized block design and, 242 
simple random sampling versus, 299 

Studentized range, 387-388, 534-535 
Student's t distribution, see t distribution 

Subjects 
grouping of, 235-244, 382-383, 391-395 
loss of, 241-242, 320-321 

Summation (X) notation, 62 
Sum of squares 

between groups, 382-383, 392 
least squares estimators, 412 
linear regression, 412-415 
one-way ANOVA, 382-384 
residual, 395, 415 
two-way ANOVA, 392-394, 397-399 
within-group, 382-383, 392-394 

Surveys, see Designed experiments; Grouping of sub­
jects; Sample survey 

Survival analysis, see also Life expectancy 
Cochran-Mantel-Haenszel test, 337-342 
comparison of two distributions, 337-342 
estimation, 320-342 
hazard rate, 328-330 
hypothesis testing for, 337-342 
Kaplan-Meier method, 330-337 
life table method, 322-330 
Mann-Whitney test, 337 
means, 326-328, 336 
medians, 327-328, 336-337 
MINITAB analysis, 331-333, 337 
odds ratio, 339, 341-342 
product-limit method, 330-337 
variance, 324, 329, 335 
Wilcoxon rank sum test, 337 

Survival curve, 326-327 
Survival data, 319-342 
Survival function, 322 
Survival probability 

SAS analysis, 470-472 
Stata analysis, 492-493 

Survival time 
censored and uncensored, 320-322, 330 
estimated, 320-342 

Symbols, see Constants; Notation 
Symmetric distribution, 58, 134 
Synergism, of variables, 395 

T 
Tables 

ANOVA, 384-385, 393-394, 426-427 
binomial, 508-513 
chi-square, 522 
F, 531-533 
frequency, 42-45 
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Tables (continued) 
life, 112-121 
normal, 517-518, 523-525 
Poisson, 514-516 
random digits, 506-507 
studentized range, 534-535 
t, 519, 536-537 
Wilcoxon rank sum, 527-530 
Wilcoxon signed rank, 526 

t distribution, see also t test 
F distribution versus, 383-384 
MINITAB analysis, 193-194, 195 
standard normal distribution versus, 193-195 
table, 519, 536-537 
variance unknown, 193-195 

Tests 
hypothesis, see Hypothesis testing; Hypothesis tests 
laboratory, 104-105 
one-sided, 255-256 
power of, 259, 296, 347, 353-357 
statistics, 254 
two-sided, 255 

Ties, in data, 276 
Tolerance interval, 178 

confidence level, 184-186 
normal distribution and, 224 

Transformations 
Fisher's, 210 
geometric mean, 65-67 
MINITAB analysis, 210-212 
of normal data to standard normal, 146-147 
Pearson correlation coefficient, 210-212 

Treatment group, 235, 237-238, 240-241, 244 
Trends, linear, 306-308 
Trimodal distribution, 63 
t test, see also t distribution 

ANOVA, 384, 402 
F and t statistics compared, 426-427 
linear regression and, 423-427 
MINITAB analysis, 358, 366-367, 369, 371-372 
paired, 370, 371 
SAS analysis, 472-473, 474-475 
Stata analysis, 493-496 
Studentized range, 387-388 
variance, unknown, and, 357-358 
2 and t statistics compared, 357 

Tukey-Kramer method, 387-388, 390 
Two-sided test, 255 
Two-way ANOVA, 391-400, 395 
Type I and II errors, see also Acceptance region 

calculation of, 256-257, 264 
decision rules, 257-261 

defined, 253 
inverse relationship, 257 
probability of, 253, 257-261 
significance level, 261-262 

u 
Unconditional probability, 98-100; see also Conditional 

probability 
Univariate statistics 

SAS analysis, 457 
Stata analysis, 486 

V 
Validity 

of data, 13-14 
of sensitive questions, 14 

Values, see also Data 
missing, 16, 34-35; see also Nonresponses 
population, 25, 63 
sample, 25, 63 

Variability, measure of, 68-77 
Variables, see also Data 

binary, 440-444, 445 
confounded, 236 
continuous, see Continuous variable 
dependent, 102 
discrete, see Discrete variable 
extraneous, 236, 237, 242-243 
independent, 102 
observations and, 10-11 
predictor, 436 
random, 94, 125, 143 
scales and, 11-12 

Variance 
adjusted rate, 200-201 
analysis of, see Analysis of variance 
approximation of, 200-201 
binomial distribution, 132 
confidence interval, 203-209 
crude rate, 199-201 
defined, 71-72 
equal versus unequal, 214-219 
hypothesis testing about, 360-362 
known and unknown, for confidence interval, 187-

195, 213-219 
known and unknown, for hypothesis testing, 348-

358, 364-369 
linear regression, 414-416 
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Poisson distribution, 139 
pooled, 214, 219 
population, 71-72 
sample, 72 
SAS analysis, 464 
survival analysis, 324, 329, 335 

Variation 
between and within groups, 382-383, 392-393 
coefficient of, 74, 75-76, 202-203 
interval estimation, 177 

Vital and Health Statistics Reports, 542 
Vital statistics, 540-541; see also Rates 

w 
Weighted rate, 79-82 
Whiskers, box plot, 70 
Wilcoxon rank sum (WRS) test, 277-282 

MINITAB analysis, 281-282 
normal approximation to, 282 
SAS analysis, 466-467 
Stata analysis, 491 
survival analysis, 337 
table, 527-530 

Wilcoxon signed rank (WSR) test, 171-177 

MINITAB analysis, 275, 277 
normal approximation to, 276-277 
SAS analysis, 466 
sign test versus, 272, 276 
Stata analysis, 490 
table, 526 

Withdrawn alive subjects, 320-321 
Within-group sum of squares 

one-way ANOVA, 382-383 
two-way ANOVA, 392-394 

WRS test, see Wilcoxon rank sum test 
WSR test, see Wilcoxon signed rank test 

Y 
Yates' correction, 300-301 
Y-intercept coefficient, 425 

z 
2 statistic 

MINITAB analysis, 189-190, 350, 359 
power of test, 357 
standard normal, 147-154, 187, 348-350 
t statistic versus, 357 


