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Preface

This introductory biostatistics textbook encourages readers to consider
the full context of the problem being examined. The context includes what
the data actually represent, why and how the data were collected, whether
or not one can generalize from the sample to the target population, and
what problems occur when the data are incomplete due to people refusing
to participate in the study or due to the researcher failing to obtain all the
relevant data from some sample subjects. Although many introductory
biostatistical textbooks do a very good job in presenting statistical tests and
estimators, they are limited in their presentations of the context. In addi-
tion, most textbooks do not emphasize the relevance of biostatistics to
people’s lives and well being. We have written this textbook to address
these deficiencies and to provide a good introduction to statistical meth-
ods. We address the context as well as the importance of research design,
particularly in controlling for confounding variables and in dealing with
reversion to the mean. We focus on these issues in Chapters 1 to 3 and
Chapter 8 and raise them again in examples and exercises throughout the
book.
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PREFACE

This textbook also differs from the other texts in that it uses real data
for most of the exercises and examples in the book. For example, real data
on the relation between prenatal care and birthweight, instead of data from
tossing dice or dealing cards, are used in the definition of probability and
in the demonstration of the rules of probability. We then show how these
rules are applied to the life table, a major tool used by health analysts.
Another major difference between this and other texts is Chapter 12 on the
analysis of the follow-up life table. The follow-up life table can be used to
summarize survival data and is one of the more important tools used in
clinical trials.

We also include material on tolerance and prediction intervals, topics
generally ignored in other texts. We demonstrate in which situations these
intervals should be used and how they provide different information than
that provided by confidence intervals. Two other topics, usually not men-
tioned in other introductory texts, introduced here are multiple regression
and logistic regression, two of the more useful methods of analysis in
statistics and epidemiology.

We do not assume that the reader has prior knowledge of statistical
methods, but we do assume that the reader is not rendered unconscious by
the sight of a formula. In dealing with a formula, we first try to explain the
concept underlying the formula. We then show how the formula is a trans-
lation of the concept into something that can be measured. The emphasis is
on when and how to apply the formula, not on its derivation. We also
show how the calculation can be quickly performed using a statistical pack-
age. The package shown in the text is MINITAB. Comparable commands
for two other packages, Stata and SAS, are shown in the Appendix.

The textbook is designed for a two-quarter course for graduate stu-
dents and for a two-semester course for undergraduate students. If used
for a one-semester course, possible deletions include sections on the fol-
lowing topics: the geometric mean, the life table, the Poisson distribution,
the distribution-free approach to intervals, the confidence interval and test
of hypothesis for the correlation coefficient, the Kruskal-Wallis test, the
trend test for r by 2 contingency tables, the two-way ANOVA and the
linear model representation of the ANOVA.

We wish to acknowledge especially useful suggestions and comments
provided by Joel A. Harrison and Mary Forthofer. Others who made valu-
able contributions include Herbert Gautschi, Irene Easling, Anna Baron,
Mary Grace Kovar, and the students at the University of Texas School of
Public Health Satellite Program in El Paso who reviewed parts or all of the
text. Any problems in the text are the responsibility of the authors, not of
the reviewers.
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Introduction

Biostatistics is the application of statistical methods to the biological and
life sciences. Statistical methods include procedures for: (1) collecting data,
(2) presenting and summarizing data, and -(3) drawing inferences from
sample data to a population. These methods are particularly useful in
studies involving humans because the processes under investigation are
often very complex. Because of this complexity, a large number of mea-
surements on the study subjects are usually made to aid the discovery
process; however, this complexity and abundance of data often mask the
underlying processes. It is in these situations that the systematic methods
found in Statistics help create order out of the seeming chaos. Some areas
of application are:

1. A collection of vital statistics, for example, mortality rates, used to
inform about and to monitor the health status of the population.

2. Clinical trials to determine whether or not a new hypertension
medication performs better than the standard treatment for mild
to moderate essential hypertension.
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3. Surveys to estimate the proportion of low-income women of child-
bearing age with iron-deficiency anemia.

4. Studies to examine whether or not exposure to electromagnetic
fields is a risk factor for leukemia.

Biostatistics aids administrators, legislators, and researchers in answer-
ing questions. The questions of interest are explicit in examples 2 and 4
above: Is the new drug more effective than the standard and is exposure to
the electromagnetic field a risk factor? In examples 1 and 3 the values or
estimates obtained are measurements at a point in time which could be
used with measures at other time points to determine whether or not a
policy change, for example, a 10 percent increase in Medicaid funding in
each state, had an effect.

I. DATA: THE KEY COMPONENT OF A STUDY

In this textbook, much of the material relates to methods to be used in the
analysis of data. It is necessary to become familiar with these methods and
their use as this knowledge will enable one to: (1) better understand re-
ports of studies, and (2) better design and carry out studies. Readers,
however, must not let the large number of methods of analysis and the
associated calculations presented in this book overwhelm them. More im-
portant than the methods used in the analysis is the use of the correct
study design and the correct definition and measurement of the study
variables. The key to a good study is good data! The following examples dem-
onstrate the importance of the data.

Sometimes because of an incomplete understanding of the data or of
possible problems with the data, the conclusion from a study may be
problematic. For example, consider a study to examine whether or not
circumcision status is associated with cancer of the cervix. One issue the
researcher must decide is how to determine the circumcision status. The easiest
way is to ask the male if he had been circumcised; however, Lilienfeld and
Graham (1) found that 34 percent of 192 consecutive male patients they
studied gave incorrect answers about their circumcision status. Most of the
incorrect responses were due to the men not knowing they had been
circumcised. Hence the use of a direct question instead of an examination
may lead to an incorrect conclusion about the relation between circumci-
sion status and cancer of the cervix.

In the preceding example, reliance on the study subject’'s memory or
knowledge could be a mistake. Yaffe and Shapiro (2) provide another
example of potential problems when the study subjects’ responses are
used. They examined the accuracy of subjects’ reports of health care utili-
zation and expenditures for 7 months compared with that shown in their
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medical and insurance records for two geographical areas. In the Baltimore
area, which provided data from approximately 375 households, subjects
reported only 73 percent of the identified physician office visits and only 54
percent of the clinic visits. The results for Washington County, Maryland,
based on about 315 households, showed 84 percent accuracy for physician
office visits but only 39 percent accuracy for clinic visits. Hence the re-
ported utilization of health services by subjects can greatly underestimate
the actual utilization and, perhaps more importantly, the accuracy can vary
by type of utilization and by population subgroups.

An example of how a wrong conclusion could be reached because of a
failure to understand how data are collected comes from Norris and Ship-
ley (3). Figure 1.1 shows the infant mortality rates, calculated convention-
ally as the ratio of the number of infant deaths to the number of live births
during the same period multiplied by 1000, for different racial groups in
California and the United States in 1967.

Norris and Shipley questioned the accuracy of the rate for American
Indians in California because it was much lower than the corresponding
American Indian rate in the U.S., and even lower than the rates of the
Chinese- and Japanese-Americans in California. Therefore they used a
cohort method to recalculate the infant mortality rates. The cohort rate is
based on following all the children that were born in California during a
year and observing how many of those infants died before they reached 1
year of age. Some deaths were missed, for example, infants that died out of
California, but it was estimated that almost 97 percent of the infant deaths
of the cohort were captured in the California death records.

Infant deaths
per 1000
live births

40 |-

California . United States

35 -

30 -

25 §-

20 -

15 -

10 -

" White 77 Atrican American Chinese Japanese
American Indian

Infant mortality rates per 1000 live births by race for California and the United States in 1967.



FIGURE 1.2
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Norris and Shipley used 3 years of data in their reexamination of the
infant mortality to provide better stability for the rates. Figure 1.2 shows
the conventional and the cohort rates for the 1965-1967 period by race. The
use of data from 3 years has not changed the conventional rates much. The
conventional rate for American Indians in California is still much lower
than the rate for American Indians in the U.S., although now it is slightly
above the Chinese- and Japanese-American rates. The cohort rate for
American Indians, however, is now much closer to the corresponding rate
found in the United States. The rates for the Chinese- and Japanese-Ameri-
cans and other races have also increased substantially when the cohort
method of calculation is used. What is the explanation for this discrepancy
in results between these methods of calculating infant mortality rates?

Norris and Shipley attributed much of the difference to how the birth
and death certificates, used in the conventional method, were completed.
They found that the birth certificate is typically filled out by hospital staff
who deal mostly with the mother; hence, the birth certificate usually re-
flects the race of the mother. The funeral director is responsible for com-
pleting the death record and usually deals with the father who may be of a
different racial group than the mother. Hence, the racial identification of an
infant can vary between the birth and death records—a mismatch of the
numerator (death) and the denominator (birth) in the calculation of the
infant death rate. The cohort method is not affected by this possible differ-
ence because it uses only the child’s race from the birth certificate.

- Cohort

Infant deaths ~
per 1000
live births
35 -
30 §-
25 -
20 I~
15 -

10 -

White African Americar-; Chiness Japanese
American indian

Infant mortality rates per 1000 live births by conventional and cohort methods by race for
California, 1965-1967.



lll. CONTENTS 5

Beginning with the 1989 data year, the National Center for Health
Statistics (NCHS) (4, page 53) uses primarily the race of the mother taken
from the birth certificate in tabulating data on births. This change should
remove the problem caused by having parents from two racial groups in
the use of the conventional method of calculating infant mortality rates.

As can be seen, data rarely speak clearly and usually require an inter-
preter. The interpreter—someone like Norris and Shipley in the earlier
example—is someone who is familiar with the subject matter, who under-
stands what the data are supposed to represent, and who knows how the
data were collected.

H. REPLICATION: PART OF THE SCIENTIFIC METHOD

Hi. CONTENTS

Even though most of the examples and problems in this book refer to the
analysis of data from a single study, the reader must remember that one
study rarely tells the complete story.

Statistical analysis of data may demonstrate that there is.a high proba-
bility of an association between two variables; however, a single study rarely
provides proof that such an association exists. Results must be replicated by
additional studies that eliminate other factors that could have accounted
for the relationship observed between the study variables. For example,
many studies have examined the role of cigarette smoking in lung cancer
and other diseases. Proponents of smoking argue that these studies do not
prove that smoking is the cause of lung cancer; however, through the large
number of studies, which almost always have found an association be-
tween smoking and lung cancer in a wide variety of situations, it has
become clear that smoking greatly increases the risk of developing lung
cancer.

Another example of the use of replication is provided by the Food and
Drug Administration (FDA). The FDA requires a pharmaceutical company
to present data from a number of drug trials before it considers the drug.
The FDA believes that a single trial does not provide sufficient evidence of
the drug’s efficacy and safety.

The following chapters continue the theme of combining substantive
knowledge with statistical methods. Where possible, we also demonstrate
how the figures and calculations being considered can be created or per-
formed on the computer. We believe the computer can be an asset as it
removes the burden of the calculations and provides more time for the
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student to deal with the big picture, that is, the concepts. The computer
also provides the capability to experiment, that is, to try different analyses
on a set of data.

Chapters 2, 3, and 8 deal with data and data collection methods. Chap-
ter 2 discusses types of data, methods for collecting data, and possible
problems with these methods. Chapter 3 covers procedures for collecting
observational data via sample surveys, and Chapter 8 discusses the collec-
tion of data from designed experiments.

The basic descriptive tools for presenting and summarizing data em-
ployed in biostatistics are introduced in Chapter 4. These tools include
both numerical and graphical methods and they provide the first step in
the attempt to understand the data.

Chapter 5 provides an introduction to probability with illustrations of
its use in life tables. In Chapter 6, several probability distributions are
introduced and applications of these distributions provided.

The remaining chapters deal with the third component of statistical
methods, inference to a population from information about a sample.
Chapter 7 presents point and interval estimation of parameters in the pop-
ulation based on the sample data. Chapter 9 presents the concept of hy-
pothesis testing and the related terminology. Chapters 10, 11, and 12 dem-
onstrate the use of procedures that make few assumptions about the data
in the testing of hypotheses. Chapter 10 deals with continuous data, and
Chapter 11 focuses on methods for examining the relationship between
two and three discrete (or categorical) variables. In Chapter 12 some of the
procedures introduced in Chapters 10 and 11 are extended and used in the
analysis of survival data.

" Chapter 13 demonstrates the use of a particular distribution, the nor-
mal distribution, in testing hypotheses about means from one and two
populations. Chapter 14 presents one-way and two-way analyses of vari-
ance, extensions of the material in Chapter 13. These methods of analysis
examine the relationship between a continuous response variable and one
or more discrete predictor variables. The linear model and its use are also
introduced in Chapter 14. Chapter 15 shows the use of the linear model in
simple and multiple regression analyses, methods for examining the rela-
tionship between a continuous response variable and one or more continu-
ous predictor variables. It also introduces logistic regression analysis, a
method for examining the relation between a response variable with two
outcomes and one or more predictive variables.

Following these chapters are several appendices. Appendix A presents
SAS and Stata statements, either of which can be used in place of the
MINITAB statements shown in the test. Appendix B contains several sta-
tistical tables that are referenced in the text. Appendix C lists major sources
of health data. Appendix D presents solutions to selected exercises.
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EXERCISES

1.1.

1.2.

1.3.

Provide an example from your area of interest in which data collection
is problematic or data are misused and discuss the nature of the prob-
lem.

Since 1972 the National Institute on Drug Abuse has periodically con-
ducted surveys in the homes of adolescents on their use of cigarettes,
alcohol, and marijuana. In the early surveys, respondents answered
the questions aloud. Since 1979 private answer sheets were provided
for the alcohol questions. Why do you think the agency made this
change? What effect, if any, do you think this change might have had
on the proportion of adolescents who reported consuming alcohol
during the last month? Would you believe the reported values for the
early surveys?

The infant mortality rate for Pennsylvania for the period 1983-1985
was 10.9 per 1000 live births compared with a rate of 12.5 for Louisi-
ana. Is it appropriate to conclude that Pennsylvania had a better rec-
ord than Louisiana relative to infant mortality? What other variable(s)
might be important to consider here? The infant mortality rate was 9.4
for whites and 20.9 for African Americans in Pennsylvania. This is
contrasted with rates of 9.1 and 18.1 for whites and African-Ameri-
cans, respectively, in Louisiana [rates from (5, Table 15)]. Hence the
race-specific rates were lower in Louisiana than in Pennsylvania, yet
the overall rate was higher in Louisiana. Explain how this situation
could arise.

REFERENCES

1. Lilienfeld, A. M., and Graham, S. (1958). Validity of determining circumcision status by
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4. National Center for Health Statistics (1991). Monthly Vital Statistics Report “’Advance
Report of Final Natality Statistics, 1989,” Vol. 40, No. 8, Supplement.

5. National Center for Health Statistics (1988). “Health, United States, 1987,” DHHS Publ.
No. 88-1232. Public Health Service, Hyattsville, MD.



Data and Numbers

Appropriate use of statistical procedures requires that we understand
the data and the process that generated them. This chapter focuses on
data, specifically: (1) the linkage between numbers and phenomena, (2)
types of variables, (3) data reliability and validity, and (4) ways data quality
can be compromised.

I. DATA: NUMERICAL REPRESENTATION

Any record, descriptive account, or symbolic representation of an attrib-
ute, event, or process may constitute a data point. Data are usually mea-
sured on a numerical scale or classified into categories that are numerically
coded. Three examples are:

1. Blood pressure (diastolic) is measured for all middle and high
school students in a school district to learn what percentage of
students have a diastolic blood pressure reading greater than
90 mm Hg (data = blood pressure reading).
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2. All employees of a large company are asked to report their
weight every month to evaluate the effects of a weight control
program (data = self-reported weight measurement).

3. The question “Have you ever driven a car while intoxicated?”
was asked of all licensed drivers in a large university to build the
case for an educational program [data = yes (coded as 1) or no
(coded as 0)].

We try to understand the real world, for example, blood pressure,
weight, and the prevalence of drunken driving, through data recorded as
or converted to numbers. This numerical representation and the under-
standing of the reality, however, do not occur automatically. It is easy for
problems to occur in the conceptualization and measurement processes,
which make the data irrelevant or imprecise. Referring to the earlier exam-
ples, blood pressure may be measured inaccurately by inexperienced
school teachers, those employees who do not measure their weight regu-
larly each month may report inaccurate values, and some drivers may be
hesitant to report drunken driving. Therefore, we must not draw any
conclusions from the data before we ascertain whether or not any problems
exist in the data and, if so, their possible effects. Guarding against misuse
of data is as important as learning how to make effective use of data.
Repeated exposure to misuses of data may lead people to distrust data
altogether. Even a century ago, Bernard Shaw (1) described people’s atti-
tudes toward statistical data as follows:

The man in the street . . . All he knows is that ““you can prove anything by figures,”
though he forgets this the moment figures are used to prove anything he wants to
believe.

The situation is certainly far worse today as we are constantly exposed to
numbers purported to be important in advertisements, news reporting,
and election campaigns. We need to learn to use numbers carefully and to
examine critically the meaning of the numbers to distinguish fact from
fiction.

fl. OBSERVATIONS AND VARIABLES

In statistics, we observe or measure characteristics, called variables, of study
subjects, called observational units. For each study subject, the numerical
values assigned to the variables are called observations. For example, in a
study of hypertension among school children, the investigator measures
systolic and diastolic blood pressures for each pupil; systolic and diastolic
blood pressure are the variables, the blood pressure readings are the observations,
and the pupils are the observational units. We usually observe more than one
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variable on each unit, for example, in a study of hypertension among 500
schoolchildren, we may record the pupil’s age, height, and weight in addi-
tion to the two kinds of blood pressure readings. In this case we have a
data set of 500 students with observations recorded on each of five vari-
ables for each student or observational unit.

Ill. SCALES USED WITH VARIABLES

Four scales are used with variables: nominal, ordinal, interval, and ratio.
The scales are defined in terms of the information conveyed by the numeri-
cal values assigned to the variable. The distinction between the scales is not
of crucial importance. These scale types have frequently been used in the
literature, and we are presentmg them to be sure that the reader under-
stands the terms.

In some cases the numbers are simply indicators of a category. For
example, when considering gender, 1 may be used to indicate that the
person is female and 2 to indicate that the person is male. When the
numbers merely indicate to which category a person belongs, a nominal
scale is being used. Hence gender is measured on a nominal scale. It makes
no difference what numerical values are used to represent females and
males.

In other cases the numbers represent an ordering or ranking of the
observational units on some variable. For example, from a worker’s job
description or work location, it may be possible to estimate the exposure to
asbestos in the workplace, with 1 representing low, 2 representing me-
dium, and 3 representing high exposure. In this case, the exposure to
asbestos variable is measured on the ordinal scale. Values of 10, 50, and 100
could have been used instead of 1, 2, and 3 for representing the categories
of low, medium, and high. The only requirement is that the order is main-
tained.

Other variables are measured on a scale of equal units, for example,
temperature in degrees Celsius (interval scale) or height in centimeters (ratio
scale). There is a subtle distinction between interval and ratio scales, and it
is that a ratio scale has a zero value, which means there is none of the
quantity being measured. For example, zero height means there is no
height, but zero degrees Celsius does not mean there is no heat. When a
variable is measured on a ratio scale, the ratio of two numbers is meaning-
ful. For example, a boy 140 centimeters (cm) tall is 70 cm taller and also
twice as tall as a boy 70 cm tall. In contrast, temperature in degrees Celsius
is an interval variable, but not a ratio variable because an oven at 300
degrees is not twice as hot as one at 150 degrees. This distinction between
interval and ratio scales is of little importance in statistics and both are
measured on a scale continuously marked off in units.
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These different scales give rise to three types of data: nominal (categor-
ical), ordinal (ordered) data, and continuous (interval or ratio) data. The
scale used often depends more on the method of measurement or the use
made of it than on the property measured. The same property can be
measured on different scales; for example, age can be measured in years
(ratio scale); placed into young, middle-aged, and elderly age groups (ordi-
nal scale); or classified as economically productive (ages 16 to 64) and
dependent (under 16 and over 64) age groups (nominal scale). It is possible
to convert a higher-level scale (ratio or interval) into a lower-level scale
(ordinal and nominal scales), but not to convert from a lower level to a
higher level. One final point is that all recorded measurements themselves
are discrete. Age, for example, can be measured in years, months, or even
hours, but it is still measured in discrete steps. It is possible to talk about a
continuous variable, yet actual measurements are limited by the measuring
instruments.

IV. RELIABILITY AND VALIDITY

Data are collected by direct observation or measurement and from re-
sponses to questions. For example, height, weight, and blood pressure of
schoolchildren are directly measured in a health examination. The investi-
gator is concerned about accurate measurement. The measurement of
height and weight sounds easy, but the measurement process must be well
defined and used consistently. For example, height is to be measured
without shoes and weight measured before a meal. Therefore, to under-
stand any measurement we need to know the operational definition, that
is, the actual procedures used in the measurement. In measuring blood
pressure, the investigator must specify what instrument is to be used, how
much training will be given to the measurers, at what time of the day the
blood pressure should be measured, in what position it will be measured
(sitting or standing), and how many times it should be measured for each
pupil.

There are two issues in specifying operational definitions: reliability
and validity.

Reliability requires that the operational definition should be sufficiently
precise so that all persons using the procedure or repeated use of the
procedure by the same person will have the same or approximately the
same results. If the procedures for measuring height and weight of
students are reliable, then the values measured by two observers, say,
the teacher and the nurse, will be the same. If the person reading the
blood pressure is hard of hearing, the diastolic blood pressure values,
recorded at the point of complete cessation of the Korotkoff sounds or,
if no cessation, at the point of muffling, may not be reliable.
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Validity is concerned with the appropriateness of the operational defini-

tion, that is, whether or not the procedure measures what it is sup-
posed to measure. For example, if a biased scale is used, the measured
weight is not valid, even though the repeated measurements give the
same results. Another example of a measurement that may not be valid
is the blood pressure reading obtained when the wrong size cuff is
used. In addition, the person reading the blood pressures may have a
digit preference which also threatens validity. The data shown in Fig-
ure 2.1 from Forthofer (2) suggest that there may have been a digit
preference in the blood pressure data for children and adolescents in
the second National Health and Nutrition Examination Survey
(NHANES 1I). This survey, conducted by the NCHS in 1976-1980,
provides representative health and nutrition data for the noninstitu-
tionalized U.S. population. In this survey, the blood pressure values
ending in zero have a much greater frequency of occurrence than the
other values.

The reliability and validity issues are not only of concern for data

obtained from measurements, but also for data obtained from question-
naires. In fact, the concern may be greater because of the larger number of

mmHg mmHg
140 110
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130 100
120 90
110 80
100 =70
90 60
80 50
70 . " ; " " " 40
600 400 200 200 400 600 800
FREQUENCY

Blood pressure values (first reading) for 4053 children and adolescents in NHANES Il. From
Forthofer (2).
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ways that problems threatening data accuracy can be introduced with
questionnaires (3-5). One problem is that the question may be misinter-
preted, and thus a wrong or irrelevant response may be elicited. For exam-
ple, in a mail survey, a question used the phrase “place of death”” instead
of instructing the respondent to provide the county and state where a
relative had died. One person responded that the deceased died in bed.
Such problems can be avoided or greatly reduced if careful thought goes
into the design of questionnaires and into the preparation of instructions
for the interviewers and the respondents. Even when there are no obvious
faults in the question, however, a different phrasing may elicit a different
response. For example, age can be ascertained by asking age at the last
birthday or date of birth. It is known that the question about the date of
birth tends to obtain the more accurate age.

Another problem often encountered is that many people are uncomfor-
table in appearing to be out of step with society. As a result, these people
may provide a socially acceptable but false answer about their feelings on
an issue. A similar problem is that many people are reluctant to provide
accurate information regarding personal matters, and often the respondent
refuses to answer or intentionally distorts the response. Some issues are
particularly sensitive, for example, questions about whether a woman has
had an abortion or whether a person has attempted suicide. The re-
sponses, if any are obtained, to these sensitive questions are of question-
able accuracy. The following section addresses one way of obtaining data
on sensitive issues that should be accurate.

V. RANDOMIZED RESPONSE TECHNIQUE

There is a statistical technique that allows investigators to ask sensitive
questions, for example, about drug use or driving under the influence of
alcohol, in a way that should elicit an honest response. It is designed to
protect the privacy of individuals and yet provide valid information. This
technique is called randomized response (6,7) and has been used in sur-
veys about abortions, drinking and driving, drug use, and cheating on
examinations.

In this technique, a sensitive question is paired with a nonthreatening
question and the respondent is told to answer only one of the questions.
The respondent uses a chance mechanism, for example, the toss of a coin,
to determine which question is to be answered and only the respondent
knows which question was answered. The interviewer records the re-
sponse without knowing which question was answered. It appears that
these answers are of little value, but the following example demonstrates
that they can be of use.

In the drinking and driving situation, the sensitive question is, “Have
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you driven a car while intoxicated during the last 6 months?” This question
is paired with an unrelated, nonthreatening question such as, “Were you
born in either September or October?”” Each respondent is asked to toss a
coin and not to reveal the outcome; those with heads are asked to answer
the sensitive question and those with tails to answer the nonthreatening
question. The interviewer records the yes or no response without knowing
which question is being answered. Because only the respondent knows
which question has been answered, there is less reason to answer dishon-
estly.

Suppose 36 people were questioned and 12 gave yes answers. At first
glance, this information does not seem very useful because .we do not
know which question was answered; however, Figure 2.2 shows how we
can use this information to estimate the proportion of the respondents who
had been driving while intoxicated during the past 6 months.

As a fair coin was tossed by each respondent, we expect that half the
respondents answered the drunk driving question and half answered the
birthday question. We also expect that one-sixth (2 of 12 months) of those
who answered the birthday question will give a yes response. Hence the
number of yes responses from the birthday question should be 3 [(36/2) x

Chance Mechanism Used to Choose
between Birthday and Drunk
Driving Question (Coin Toss)

I

36 People Questioned
and 12 Answered Yes

/ \

Expect 18 People Expect 18 People

Answered Birthday Answered Drunk
Question Driving Question

| I
Expect 1/6 of 18 Since 3 Yes Answvers
to Answer Yes to Are Expected from
Birthday (Sept or Birthday Question,
Oct) Question Means 9 Yes (12-3)
= 3 Yes Answers Are to Drunk Driving

l

9 of 18 or 50% Are
Estimated to be
Drunk Drivers

F

EINEERER=] Use of randomized response information.
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(1/6)]; the expected number of yes responses to the drinking and driving
question is 9 (the 12 yes answers minus the 3 yes answers from the birth-
day question). Then the estimated proportion of drunk drivers is 50 per-
cent (9/18).

There is no way of proving that the respondents answered honestly,
but they are more likely to tell the truth when the randomized response
method was used rather than the conventional direct question. Note that
the data gathered by the randomized response technique cannot be used
without understanding the process by which the data were obtained. Indi-
vidual responses are not informative but the aggregated responses can
provide useful information at the group level. Of course, we need to in-
clude a sufficiently large number of respondents in the survey to make the
estimate reliable.

Vi. COMMON DATA PROBLEMS

Examination of data can sometimes provide evidence of poor quality. Some
clues to poor quality include many missing values, impossible or unlikely
values, inconsistencies, irregular patterns, and suspicious regularity. Data
with too many missing values will be less useful in the analysis and may
indicate that something went wrong with the data collection process.
Sometimes data contain extreme values that are seemingly unreasonable.
For example, a person’s age of 120 would be suspicious and 200 would be
impossible. Missing values are often coded as 99 or 999 in the data file and
these may be mistakenly interpreted as valid ages. The detection of numer-
ous extreme ages in a data set would cast doubt on the process by which
the data were collected and recorded and, hence, on all other observations,
even if they appear reasonable.

Inconsistencies are often present in the data set. For example, a college
graduate’s age of 15 may appear inconsistent with the usual progress in
school, but it is difficult to attribute this to an error. Some inconsistencies
are obvious errors. An example can be found in the history of the U.S.
population census. In an attempt to study community mental health,
Edward Jarvis (1803-1884) discovered that there were numerous inconsis-
tencies in the 1840 population census reports; for example, in many towns
in the North, the numbers of African-American ““insane and idiots’”” were
larger than the total numbers of African-Americans in those towns. He
published the results in medical journals and demanded that the federal
government take remedial action. This demand led to a series of statistical
reforms in the 1850 population census (8).

A careful inspection of data sometimes reveals irregular patterns. For
example, ages reported in the 1945 census of Turkey have a much greater
frequency of multiples of 5 than numbers ending in 4 or 6 and more even-
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numbered ages than odd-numbered ages (9), as shown in Figure 2.3. This
tendency of digit preference in age reporting is quite common. Even in the
U.S. census we can find a slight clumping or heaping at age 65 when most
of the social benefit programs for the elderly begin. The same phenomenon
of digit preference is often found in laboratory measurements, as was
shown above with the blood pressure measurements in NHANES II.
Large and consistent differences in the values of a variable may indi-
cate that there was a change in the measurement process that should be
investigated. An example of large differences is found in data used in the
Report of the Second Task Force on Blood Pressure Control in Children,
1987 (10). Systolic blood pressure values for 5-year-old boys averaged 103.5
mm Hg in a Pittsburgh study compared with 85.6 mm Hg in a Houston
study. These averages were based on 61 and 181 boys aged 5 in the Pitts-
burgh and Houston studies, respectively. Hence these differences were
not due to small sample sizes. Similar differences were seen for 5-year-old
girls and for 3- and 4-year-old boys and girls as well. There are large
differences between other studies also used by this task force, but the
differences are smaller for older children. These incredibly large differ-
ences between the Pittsburgh and Houston studies were likely due to a
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FIGURE 2.4
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difference in the measurement process. In the Houston study, the children
were at the clinic at least 30 minutes before the blood pressure was mea-
sured, whereas they had a much shorter wait in the Pittsburgh study.
Because the measurement processes differed, the values obtained do not
reflect the same variable across these two studies. The use of data from
these two studies without any adjustment for the difference in the mea-
surement process is questionable.

The use of data from laboratories is another area in which it is crucial to
monitor constantly the measurement process, that is, the equipment and
the personnel who use the equipment. In large multicenter trials that use
different laboratories, or even a single laboratory, referent samples are
routinely sent to the laboratories to determine if the measurement pro-
cesses are under control. This enables any problems to be detected quickly
and prevents subjects from being either unduly alarmed or wrongly com-
forted. It also prevents false values from being entered into the data set.

The Centers for Disease Control (CDC) has an interlaboratory pro-
gram, and data from it demonstrate the need for monitoring. The CDC
distributes samples to about 100 laboratories throughout the United States.
The April 1980 results of measuring lead concentration in blood are shown
in Figure 2.4 (11). According to the author of the article, the best estimate of
the blood lead concentration in the distributed sample was 41 micrograms
per deciliter (ug/dl) but the average reported by all participating laborato-
ries was 44 ug/dl. The large variability from the value of 41 shown in Figure
2.4 is a reason for concern, particularly because the usual value in human
blood lies between 15 and 20 ug/dl.
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Distribution of measurements of blood lead concentration by separate laboratories, Centers
for Disease Control.
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Of course the lack of inconsistencies and irregularities does not mean
that there are no problems with the data. Too much consistency and regu-
larity sometimes are grounds for a special inquiry into the causes: Scientific
frauds have been uncovered in some investigations in which the investiga-
tor discarded data that did not conform with theory. Abbe Gregor Mendel,
the 19th-century monk who pioneered modern gene theory by breeding
and crossbreeding pea plants, came up with such perfect results that later
investigators concluded he probably tailored his data to fit predetermined
theories. Another possible fabrication of data in science is the case of Sir,
Cyril Burt, a British pioneer of applied psychology. In his frequently cited
studies of intelligence and its relation to heredity, he reported the same
correlation in three studies of twins with different sample sizes (0.771 for
twins reared apart and 0.944 for twins reared together). The consistency of
his results eventually raised concern as it is highly unlikely that the exact
same correlations would be found in studies of humans with different
sample sizes. Science historians generally agree that his analyses were
creations of his imagination with little or no data to support them (12).

Vii. CONCLUDING REMARKS

Data are a numerical representation of a phenomenon. By assigning nu-
merical values to occurrences of the phenomenon, we are thus able to
describe and analyze it. The assignment of the numerical values requires
an understanding of the phenomenon and careful measurement. In the
measurement process, some unexpected problems may be introduced and
the data then contain the intended numerical facts as well as the unin-
tended fictions. Therefore we cannot use data blindly. The meaning of data
and its implications have been explored in a number of examples in this
chapter. In the next chapter, we consider some ways data are obtained.

EXERCISES

2.1. Identify the scale used for each of the following variables:
a. Calories consumed during the day
b. Marital status
c. Perceived health status reported as poor, fair, good, or excellent
d. Blood type
e. 1Q score

2.2. A person’s level of education can be measured in several ways. It
could be recorded as years of education or it could be treated as an
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2.3.

2.4.

2.5.

2.6.

ordinal variable, for example, less than high school, high school grad-
uate, and so on. Is it always better to use years of education than the
ordinal variable measurement of education? Explain your answer.

In a health interview survey, a large number of questions are asked.
For the following items, discuss: (1) how the variable should be de-
fined operationally, (2) whether nonresponse is likely to be high or
low, and (3) whether reliability is likely to be high or low. Explain your
answers.

a. Weight

b. Height

c. Family income

d. Unemployment

e. Number of stays in mental hospitals

The pulse is usually reported as the number of heartbeats per minute,
but the actual measurement can be done in several different ways, for
example:

a. Count for 60 seconds

b. Count for 30 seconds and multiply the count by 2

c. Count for 20 seconds and multiply the count by 3

d. Count for 15 seconds and multiply the count by 4

Which procedure would you recommend to be used in clinics, consid-
ering accuracy and practicality?

The first U.S. census was taken in 1790 under the direction of Thomas
Jefferson. The task of counting the people was given to 16 federal
marshals who in turn hired enumerators to complete the task in 9
months. In October of 1791, all of the census reports had been turned
in except the one from South Carolina, which was not received until
March 3, 1792. As can be expected, the marshals encountered many
obstacles and the counting was incomplete. The first census revealed
a population of 3,929,326. This result was viewed as an undercount as
is indicated in the following excerpt from a letter written by Jefferson:

I enclose you also a copy of our census, written in black ink, so far as we have
actual returns, and supplied by conjecture in red ink, where we have no
returns; but the conjectures are known to be very near the truth. Making very
small allowance for omissions, which we know to have been very great, we
are certainly above four millions, (13)

Discuss what types of obstacles they might have encountered and
what might have led Jefferson to believe there was an undercounting
of the people.

The NCHS matched a sample of death certificates in 1960 with the
1960 population census records to assess the quality of data and re-
ported the following results (14):
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Percentage Agreement and Disagreement in Age Reporting,
1860

White Nonwhite
Male Female Male Female Total
Agreement 74.5% 67.9% 44.7% 36.9% 68.8%
Disagreement
1-year difference 16.6 18.8 20.8 20.2 17.8
2+-year difference 8.9. 13.3 34.5 429 13.4

Do you think that age reported in the death certificate is more accurate
than that reported in the census? How do you explain the differential
agreement by gender and race? How do you think these disagree-
ments affect the age-specific death rates calculated by single years and
those computed by 5-year age groups?

2.7. Discuss possible reasons for the digit preference in the 1945 popula-
tion census of Turkey that is shown in Figure 2.3. Why was the digit
preference problem more prominent among females than among
males? How would you improve the quality of age reporting in census
or surveys? How do you think the digit preference affects the age-
specific rates calculated by single years of age and those computed by
5-year age groups?
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Sampling

ln meeting a set of data we must first check the credentials of the data,
that is, what the data represent and how the data were collected. In Chap-
ter 2 we discussed the linkage between concepts and numbers, that is,
what the data represent. As far as data collection is concerned, two basic
methods are used to obtain data, the sample survey and the designed
experiment. In this chapter we examine the sample survey; in Chapter 8,
we consider the designed experiment.

I. WHAT AND WHY SAMPLING

Sampling means selecting a few units from all the possible observational
units in the population. The idea of sampling is not new to us because we
all use some form of sampling in our daily life. For example, in buying fruit
from the produce section, we examine (sample) several pieces of the fruit
before deciding whether or not to make a purchase. If we examine only the
fruit at the top of the basket, we sometimes make a wrong decision about

23
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the quality of the fruit. It turns out that certain sampling methods tend to
cause fewer wrong decisions (introduce less bias) than others.

For practical purposes, any data set is a sample. Even if a complete
census is attempted, there are missing observations. This means that we
must pay attention to the intended as well as the unintended sampling
when evaluating a sample. This also suggests that we cannot evaluate a
sample by looking at the sample itself, but we need to know what sampling
method was used and how well it was executed. We are interested in the
process of selection as well as the sample obtained.

Sampling is used extensively today for many reasons. In many situa-
tions a sample produces information about the population more accurate
than that provided by a census. Two reasons for obtaining more accurate
information from a sample are the following. As was mentioned in Chapter
2, a census often turns out to be incomplete and the impact of the missing
information is most often unknown. Additionally, in obtaining a sample,
fewer interviewers are required and it is likely that they will be better
trained than the huge team of interviewers required to perform a census.

Even more pragmatically, collecting data from a sample is cheaper and
faster than attempting a complete census. In addition, in many situations a
census is impractical or even impossible. The following three examples
illustrate situations in which sampling was used and reasons for the use of
samples.

1. Even in the U.S. population census, many data items are collected
from a sample of households. In the 1990 census, for example, only a few
basic demographic data items—gender, age, race, and marital status—
were asked of each individual in all households in the short form of the
questionnaire. Many questions about socioeconomic characteristics such as
education, income, and occupation are included in the long form, which
was distributed to about 17 percent of U.S. households. In small towns, a
larger proportion of households received the long form to ensure reliable
estimates. Conversely, in large cities, proportionately fewer households
received the long form. Use of sampling not only reduced the cost of the
census, but also shortened the data collection burden and time.

2. Pharmaceutical companies routinely sample a small fraction of their
products to examine the quality and the chemical contents. On the basis of
this examination, a decision is made whether to accept the entire lot-and
ship it or reject the lot and change the manufacturing process. In this case
the sample is destroyed to check the quality; a company cannot afford to
inspect the entire lot.

3. Health departments of large urban areas monitor ambient air qual-
ity. As the health department cannot afford to monitor the air everywhere
in its coverage area, a sample of sites are selected and the values of several
different pollutants are continuously recorded.
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Il. SAMPLING AND SELECTION BIAS

A smart shopper is conscious of the possible variability in the quality of
fruit between the top and bottom of the fruit basket. The smart shopper
looks at pieces of fruit throughout the basket, even though it is more
convenient to look at the pieces on top, before making a purchase. In the
same way, a researcher is aware of the possible variability among observa-
tional units in the population. A good researcher takes steps to ensure that
the process for selecting units from the population deals with this possible
variability. The failure to do so means that the selected sample may not
adequately represent the population.

Selecting a sample of units because of convenience also poses a prob-
lem for a researcher just as it did for the shopper. The opinions of people
interviewed during lunch time on downtown street corners, although con-
venient to obtain, usually are not representative of the residents of the city.
Those who never go to the center of the city during lunch time are not
represented in the sample and they may have different opinions from
those who go to the city center.

Before performing any sampling, it is important to define clearly the
population of interest. Similarly, when we are given a set of data, we need
to know what group the sample represents, that is, from what population
the data were collected. The definition of population is often implicit and
assumed to be known, but we should ask what the population was before
using the data or accepting the information. When we read an election
poll, we should know whether the population was all adults or all regis-
tered voters to interpret the results appropriately. In practice, the popula-
tion is defined by specifying the sampling frame, the list of units from which
the sample was selected. Ideally, the sampling frame should include all
units of the defined population. But, as we shall see, it is often difficult to
obtain the sampling frame and we need to rely on a variety of alternative
approaches.

The failure to include all units contained in the defined population in
the sampling frame leads to selecting a biased sample. A biased sample is
not representative of the population. The average of a variable obtained
from a biased sample is likely to be consistently different from the corre-
sponding value in the population. Selection bias is the consistent divergence
of a sample value (statistic) from the corresponding population value (pa-
rameter) because of an improper selection process. Even with a complete
sampling frame, selection bias can occur if proper selection rules were not
followed. Two basic sources of selection bias are the use of an incomplete
sampling frame and the use of improper selection procedures. The follow-
ing example illustrates the importance of the sampling frame.

In the 1936 presidential election, the Literary Digest confidently pre-
dicted that the Republican nominee, Alfred M. Landon, would defeat the
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Democratic incumbent, Franklin D. Roosevelt (1). This prediction was
based on 2.3 million returns out of 10 million survey ballots mailed to the
magazine’s subscribers, telephone customers, and persons on other mail-
ing lists. The prediction was wrong and there were several causes of this
mistake. One of the key causes was the use of an incomplete sampling
frame of eligible voters, which resulted in a biased sample. The Literary
Digest’s mailing list overrepresented people with high incomes. A second
problem was the low response rate of 23 percent, which meant there was
the possibility of a large nonresponse bias, a type of selection bias. When
there is nonresponse, it means that the respondents were self-selected and
hence might not adequately represent the sampling frame.

The Report of the Second Task Force on Blood Pressure Control in
Children provides another example of the possibility of selection bias in
data (2). This task force used existing data from several studies, only one of
which could be considered representative of the U.S. noninstitutionalized
population. In this convenience sample, more than 70 percent of the data
came from Texas, Louisiana, and South Carolina, with little data from the
Northeast or West. Data from England were also used for newborns and
children up to 3 years of age. The representativeness of these data for use
in the creation of blood pressure standards for U.S. children is question-
able. Unlike the Literary Digest survey, in which the errors in the sampling
were shown to lead to the wrong conclusion, it is not clear that the blood
pressure standards are wrong. All we can point to is the use of conve-
nience sampling and, with it, the likely introduction of selection bias by the
Second Task Force.

Telephone surveys may provide another example of failure of the sam-
pling frame to include all members of the target population. If the target
population is all the resident households in a geographical area, a survey
conducted using the telephone will miss a portion of the resident house-
holds. Even though more than 90 percent of the households in the United
States have telephones, the percentage varies with race and socioeconomic
status. The telephone directory was used frequently in the past as the
sampling frame, but it excluded households without telephones as well as
households with unlisted numbers. A technique called random digit dialing
(RDD) has been developed to deal with the unlisted number problem in an
efficient manner (3). As the name implies, telephone numbers are basically
selected at random from the prefixes—the first 3 digits—thought to con-
tain residential numbers, not from a telephone directory. But the concern
about the possible selection bias resulting from missing households with-
out telephones and people who do not have a stable place of residence
remains.

To avoid or minimize selection bias, every sample needs to be selected
on the basis of a carefully drawn sample design. The design defines the
population the sample is supposed to represent, identifies the sampling
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frame from which the sample is to be selected, and specifies the procedural
rules for selecting units. The sample data are then evaluated based on the
sample design and the way the design was actually executed. The next
section introduces the key to modern sampling methods, the introduction
of randomness into the sample selection process.

iil. IMPORTANCE OF PROBABILITY SAMPLING

We are familiar with the use of a random mechanism to remove possible
biases. For example, to start a football game, a coin toss—a random mecha-
nism—is used to decide which team receives the opening kickoff. A ran-
dom or chance mechanism is also used to select a sample in an attempt to
remove biases. Any sample selected using a random mechanism that
results in known chances of selection of the observational units is called a
random or probability sample. This definition requires only that the chances
of selection are known. It does not require that the chances of the observa-
tional units being selected into the sample are equal.

Knowledge of the chance of selection is the basis for the statistical
inference from the sample to the population. A sample selected with un-
known chances of selection cannot be linked appropriately to the popula-
tion from which the sample was drawn. This point will become clearer
when we study probability in Chapter 5 and probability distributions in
Chapter 6.

IV. SIMPLE RANDOM SAMPLING

The simplest probability sample is a simple random sample (SRS). In a SRS,
each unit in the sampling frame has the same chance of being included in
the sample as any other unit. Use of a SRS removes the possibility of any
bias, conscious or unconscious, on the part of the researcher in selecting
the sample from the sampling frame.

One method of drawing a SRS is to place numbered slips of paper in an
urn, mix them up thoroughly, and then have a neutral party pick out the
slips. This is basically the method the Selective Service officials attempted
to use in the 1970 draft lottery. Figure 3.1 shows the lottery results (4). It
appears that the process did not work as intended as the months at the end
of the year, which were put into the container last and were not mixed
thoroughly, have much smaller lottery numbers than the earlier months.
The unreliability of this traditional method of selecting a SRS has also been
demonstrated empirically. Problems often result because it is difficult to
mix the slips thoroughly enough to approximate a random selection.
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A better method of selecting a SRS is to use a random number table or
random numbers generated by a computer. If the population is relatively
small, we can number all units sequentially. Next we locate a starting point
in the random number table, Table Bl in Appendix B. We then begin
reading random numbers in some systematic fashion, for example, across a
row or down a column or diagonally, but the direction of reading should be
decided ahead of the time. The units in the sampling frame whose unique
numbers match the random numbers that have been read are selected into
the sample.

For example, suppose that we have 50 students in a classroom and
they are sequentially labeled from 00 to 49 by row, starting at the left end of
the first row. We wish to select a SRS of 10 students. We decide to use the
upper left-hand corner of the table as our starting point and we go across
the row. By reading the two-digit numbers from the first row of the ran-
dom digit table, the following 10 numbers are obtained:

17, 17, 47, 59, 08, 43, 30, 67, 70, 61.

As four numbers are greater than 49, they cannot be used and we must
draw additional numbers until we have 10 random numbers smaller than
50. In addition, the number 17 occurred twice. If we were to use the value
of the variable of interest for student 18 twice, the sample would be called a
sample with replacement. As there is no good practical reason for including
the same element twice in the sample, we should draw another number
that has not been selected previously. A sample that does not allow dupli-
cate selections is called a sample without replacement. We usually sample
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without replacement, but this distinction is moot when selecting a sample
from large populations because the chance of selecting a unit more than
once would be very small. The next five valid numbers are 07, 44, 48, 36,
and 47. The students whose labels match the 10 valid numbers drawn are
selected as the sample.

Another way of dealing with this problem of drawing invalid numbers
is to subtract 50 from values greater than or equal to 50 in the first set of 10
random numbers. For example, 59, 67, 70, and 61 become 09, 17, 20, and
11. We now select the students with labels 09, 17, 20, and 11. This proce-
dure is based on the premise that each student is represented by two
numbers differing by 50 in value. For example, the first student will be
selected if either 00 or 50 were read; the second would be selected if either
01 or 51 were read and so on, until the last student would be selected if 49
or 99 were read. Note that even with the subtraction of 50, we again have
another 17. We would still have to draw other random numbers until we
had 10 distinct values.

In using this second procedure (subtracting 50), each unit (student) in
the sampling frame had the same number (two) of labels associated with it.
If there are 30 students in a class, we can label them in three cycles, 1
through 30, 31 through 60, and 61 through 90, but we cannot assign 91
through 99 and 00 to any student. If we assigned these last 10 values to
some of the students, some students would have 3 labels associated with
them whereas other students would have 4 labels. The students would
have unequal chances of being selected. By not using the last 10 values,
each student has 3 labels (numbers). The first student is assigned the
numbers 01, 31, and 61; the second student is assigned the numbers 02, 32,
and 62 and so on for the other students.

Let us take another sample of 10 students from the original group of 50
students. We now are going to use two-digit numbers from the beginning
of the third row. The set of 10 numbers are the following:

24, 04, 13, 38, 00, 09, 97(47), 63(13), 67(17), 85(35).

The value 50 was subtracted from numbers greater than 49 and the values
in parentheses are the result of the subtraction and they indicate which
students are to be selected. Because the fourteenth student is selected
twice, that is, the number 13 appears twice, additional numbers have to be
selected until there are 10 distinct values.

In this example, we used two-digit random numbers because we could
not provide distinct labels for all 50 students with only a single digit. The
number of digits to be used is dependent on the size of the population
under consideration. For example, when we have 570 units in the popula-
tion, we need to use three digits. A population which contains 7870 units
would require four digit random numbers.
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V. COMPLEX SAMPLING DESIGNS

The idea of simple random sampling is essential in statistical thinking and
most methods of analysis assume that the data were collected using a SRS;
however, when we attempt to use a SRS in the collection of data, we often
encounter difficulties. Suppose we wanted a SRS of 500 adults from a large
city. First, a sampling frame is not readily available. Developing a list of all
adults in the city is very costly and should be considered impractical. Even
though we are able to select a SRS of 500 adults from a reasonably complete
list, it would be expensive to send interviewers to sample persons scattered
all over the city. A solution to these practical difficulties is to sample people
based on geographical areas, for example, census tracts. Most survey agen-
cies and researchers use a multistage sample design in this situation. First, a
random sample of census tracts is selected, then blocks within each se-
lected tract are randomly selected. Within the selected blocks a list of
households can be prepared and a sample of households can be selected
systematically from the list, say, every third household. Finally, within
each of the selected households, an adult may be randomly chosen.

In the above sampling design, elementary units (individuals) in the
population are grouped into clusters, for example, groups of households, of
blocks and of tracts that usually are close together. The clusters are then
sampled, which reduces the travel time and cost of the sampling.

In addition to the use of clusters, stratification is often used in complex
sample designs. In a stratified random sample design, the units in the sam-
pling frame are first divided into groups, called strata and a separate SRS is
taken in each stratum to form the total sample. The strata are formed to
keep similar units together, for example, a female stratum and a male
stratum. In this design, units need not have equal chances of being se-
lected and some strata may be deliberately oversampled. For example, in
NHANES], the elderly, persons in poverty areas, and women of childbear-
ing age were oversampled to provide sufficient numbers of these groups
for in-depth analysis (5). If a SRS had been used, it is likely that too few
people in these groups would have been selected to allow any in-depth
analysis.

Another advantage of stratification is that it can reduce the variability
of sample statistics over that of a SRS, thus reducing the sample size
required for analysis. This reduction in variability occurs when the units in
a stratum are similar, but there is variation across strata. Another way of
saying this is that the reduction occurs when the variable used to form the
strata is related to the variable being measured. Let us consider a small
example that illustrates this point.

In this example, we wish to estimate the average weight of persons in
the population. The population contains six persons, three females and
three males. The weights of the females in the population are 110, 120, and
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130 pounds and the weights of the males are 160, 170, and 180 pounds. We
form our estimate of the population average weight by taking a sample of
size 2 without replacement.

If we use a SRS, the smallest possible estimate is 115 pounds [= (110 +
120)/2] and the largest possible estimate is 175 [= (170 + 180)/2]. As an
alternative, we could use a stratified random sample where the strata are
formed on the basis of gender. If one person is randomly selected from
each stratum, the smallest estimate is 135 pounds [= (110 + 160)/2] and the
largest estimate is 155 pounds [= (130 + 180)/2]. The estimates from the
stratified sample approach have less variation, that is, have greater preci-
sion, than those from the SRS approach.

A stratified random sample is often taken in the early stages in multi-
stage sampling. For instance, in the earlier example of multistage sam-
pling, the list of census tracts at the first stage of sampling could have been
stratified by the degree of minority population concentration or by the
median years of education in the tract. A separate SRS from each stratum
could have then been selected. Similarly, stratification can be applied at the
block and household levels.

The sample design can be more complicated than illustrated in earlier
examples. The additional complications are introduced for a variety of
reasons, for example, to control costs, to save time, to take known sources
of variation into account, and to improve precision of sample estimates. In
these more complex sample designs, the selection probabilities are un-
equal; the sampling unit may be a cluster of households, not a person, and
hence persons in the sample are related to other persons by virtue of
belonging to the same cluster. The data collected from these more complex
sample designs require different analyses than data from a SRS; however,
it is beyond the scope of this textbook to deal with the more complicated
analysis of data from these complex designs. Books on the analysis of data
from a complex survey are available (6,7), although it is best to consult a
statistician when dealing with data from a complex sample.

VI. PROBLEMS CAUSED BY UNINTENDED SAMPLING

In analyzing data it is imperative to understand the sample design as well
as how the design was actually executed in the field. Deviations from the
intended sample design are reflected in the data. Even in a well-designed
survey, it is usually not possible to collect data from all the units sampled
because there is almost always some nonresponse. Hence, the respon-
dents, a subset of the sampled persons, are self-selected from the sampled
persons through some procedure that is usually unknown to the designer
of the study. As the respondents are no longer a random sample of the
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study population, there is concern that the data may be unusable because
of nonresponse bias.

If the percentage of nonresponse is small, say, less than 5 to 10 percent,
there is usually little concern because the bias, if any, is also likely to be
small. If the nonresponse is on the order of 20 to 30 percent, the possibility
of a substantial bias exists. For example, assume that we wish to estimate
the proportion of people without health insurance in our community. We
select a SRS and find that 20 percent of the respondents were without
health insurance. However, one-fourth of those selected to be in the sam-
ple did not respond. If we knew the proportion of those without health
insurance among the nonrespondents, it would be easy to combine this
value with that of the respondents to obtain the total sample estimate. The
proportions of those without health insurance among the respondents and
nonrespondents would be weighted by the corresponding proportion of
respondents and nonrespondents in the sample.

For example, if none of these nonrespondents had health insurance,
the total sample estimate would be 40 percent [= (20% * 0.75) + (100% *
0.25)], twice as large as the rate for the respondents only. If all of the
nonrespondents had health insurance, then the total sample estimate be-
comes 15 percent [= (20% * 0.75) + (0% =* 0.25)]. Hence, although 20
percent of the respondents were without health insurance, the total sample
estimate can range from 15 to 40 percent when one-fourth of the sample are
nonrespondents.

For nonresponse bias to occur, the nonrespondents must differ from
the respondents with respect to the variable of interest. In the example, it
may be that many of the nonrespondents were unemployed homeless
whereas few of the respondents were unemployed or homeless. In this
case, the respondents and nonrespondents would likely differ with respect
to health insurance coverage. If they do differ, there would be a large
nonresponse bias. With larger percentages of nonresponse, the likelihood
of a substantial nonresponse bias is very high and this makes the use of the
data questionable. Unfortunately, many large surveys have a high percent-
age of nonresponse or do not mention the level of nonresponse. Data from
these surveys are problematic.

An example of a survey with poor response is the Nationwide Food
Consumption Survey conducted in 1987-1988 for the U.S. Department of
Agriculture. This survey, conducted once per decade, was to be the basis
for policy decisions regarding food assistance programs; however, only
about one-third of the persons who were in the sample participated and,
hence, the sample may not be representative of the U.S. population. An
independent expert panel and the General Accounting Office of the U.S.
Congress have concluded that information from this survey may be un-
usable (8).

There is no easy solution to the nonresponse problem. The best ap-
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proach is a preventive one, that is, to exert every effort to obtain a high
response rate. Even if you are unable to contact the sample person, per-
haps a neighbor or family member can provide some basic demographic
data about the person. If a sample person refuses to participate, again try
to obtain some basic data about the person. If possible, try to obtain some
information about the main topic of interest in the survey. The basic demo-
graphic data can be used to compare the respondents and nonrespon-
dents. If there are no differences between the two groups on the demo-
graphic variables, that does not necessarily guarantee the absence of
nonresponse bias. It does, however, eliminate the demographic variables
as a cause of the potential nonresponse bias. If there is a difference, it may
be possible to take those differences into account and create an adjusted
estimator. The following calculations show one of many possible adjust-
ment methods.

Suppose we found that there was a difference in the gender distribu-
tion between the respondents and nonrespondents. Sixty percent of the
respondent group were females and 40 percent were males, whereas 30
percent of the nonrespondent group were females and 70 percent were
males. If there were no difference in the proportions of females and males
with health insurance, this difference in the gender distribution between
the respondents and nonrespondents would be no problem. For this exam-
ple, however, assume there was a difference. In the respondent group, 30
percent of the females were without health insurance compared with only
5 percent of the males. Figure 3.2 displays these percentages and the calcu-
lations involved in creating an adjusted rate.

The corresponding percentages with health insurance are unknown for
the nonrespondent group. If, however, we assume that the female and
male respondents’ percentages with health insurance hold in the nonre-
spondent group, we can obtain an adjusted rate. The percentage of those
without health insurance in the nonrespondent group under this assump-
tion is found by weighting the proportions of females and males without
health insurance by their proportions in the nonrespondent group, that is,
(30% * 0.3) + (70% * 0.05), which is 12.5 percent. We then use this value for
the proportion of nonrespondents without health insurance and combine it
with the proportion of respondents without health insurance to obtain a
sex-adjusted estimate of the proportion of our community without health
insurance. This adjusted estimate is 18.1 percent [= (75% =* 0.20) +
(25% * 0.125)].

The adjusted rate does not differ much from the rate for the respon-
dents only; however, this adjusted rate was based on the assumption that
the proportions of females and males without health insurance were the
same for respondents and nonrespondents. If this assumption is false,
which we cannot easily check, then this adjusted estimate is incorrect.
Whatever method of adjustment is employed, an assumption similar to the
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Population
/ \
Respondents Nonrespondents
75% of Pop 25% of Pop
20% w/0 HI Unk. % w/o HI
/ \ / \
Females Males Females Males
60% 40% 30% 70%
| l l I
30% w/o 5% w/o Unknown % w/o Health
Health Health Insurance; assume 30%
Insur. Insur. & 5% as respondents
Proportion without Health = 0.60*%0.3 + 0.40*%*0.05 = 0.20
Insurance for Respondents
Proportion without Health = 0.30%0.3 + 0.70%0.05 = 0.125

Insurance for Nonrespondents

Proportion without Health 0.75%0.2 + 0.25%0,125 = 0,181

Insurance in Sample

Display of the percentages for the health insurance example and calculation of the adjusted
rate.

above must be made at some stage in the adjustment process (9). It is better
to prevent nonresponse from occurring or to keep its rate of occurrence
small.

The discussion so far has focused on unit nonresponse, that is, the obser-
vational unit did not participate in the survey. There is also item nonre-
sponse, in which the sample person did not provide the requested informa-
tion for some of the items in the survey. Just as there are no easy answers
to unit nonresponse, item nonresponse or missing data also is a source of
difficulty for the data analyst. Again if the percentage of item nonresponse
is small, say less than 5 to 10 percent, it probably will not have much of an
effect on the data analysis. In this case, the observations with the missing
values may be deleted from the analysis. As the percentage of missing data
increases, there is increasing concern about the representativeness of the
sample persons remaining in the analysis. Because of the concern about
the representativeness of the sample persons remaining, statisticians have
developed methods for imputing or creating values for the missing data (9).
By imputing values, it is no longer necessary to delete the sample persons
with the missing data from the analysis. The imputation methods range
from the very simple to the complex, depending on the amount of auxiliary
data available.
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As an example, suppose that in a survey to estimate the per capita
expenditure for health care, we decided to substitute the respondents’
sample average for those with a missing value on this variable. That is a
reasonable imputation. If, however, we know the age of the sample per-
sons, as age is highly related to health care expenditures, a better imputa-
tion would be to use the average expenditure from respondents in the
same age group. There are other variables that could be used with age that
would be even better than using age alone, for example, the combination
of age and health insurance status. The sample mean from the respondents
in the same age and health insurance group should be an even better
estimate of the missing value than the mean from the age group or the
overall mean. In using any imputation method, we must remember that
the number of observations is really the number of sample persons with no
missing data for the analysis performed, not the number of sample per-
sons.

Other more complicated procedures are also available; however, none
of these procedures guarantee that the value substituted for the missing
data is correct. It is possible that the use of imputation procedures can lead
to wrong conclusions being drawn from the data. Again, the best proce-
dure for dealing with missing data is preventive, that is, make every effort
to avoid missing data in the data collection process.

Vil. CONCLUDING REMARKS

In this chapter we saw how to collect data using sample surveys and
examined the principle of randomness related to the design of samples. We
also presented some practical issues that cause more complicated sample
designs to be used. Regardless of the complexity of the sample design, as
long as we know the selection probability, we can infer from the sample to
the population. The topic of probability is considered in detail in Chapter 5.
In the next chapter, we consider ways to describe the sample data.

EXERCISES

3.1. Choose the most appropriate response from the choices listed after
each question.
a. To determine whether a given set of data is a random sample from
a defined population, one must
— analyze the data
— know the procedure used to select the sample
— use a mathematical proof
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b. A simple random sample is a sample chosen in such a way that
every unit in the population has a(n) chance of being se-
lected into the sample.

—— equal
— unequal
— known

c. In the random number table, Appendix Table Bl, about __ percent

of numbers are 9 or 2.
—20
— 10
— unknown

d. Sampling with replacement from a large population gives virtually
the same result as sampling without replacement.

— true
— false

e. In a stratified random sample, the selection probability for each

element within a stratum is
— equal
— unequal
— unknown

f. A probability sample is a sample chosen in such a way that each

possible sample has a(n) chance of being selected.
— equal
— unequal
— known
— unknown

3.2. If a population has 2000 members in it, how would you use Table B1 to
select a simple random sample of size 25? Assume that the 2000 mem-
bers in the population have been assigned numbers from 0 to 1999.
Beginning with the first row in Table B1, select the 25 subjects for the
sample,

3.3. In the following situations, do you consider the selected sample to be

a simple random sample? Provide your reasoning for the answer.

a. A college administrator wishes to investigate students’ attitudes
concerning the college’s health services program. A 10 percent ran-
dom sample is to be selected by distributing questionnaires to stu-
dents whose student ID number ends with a 5.

b. A medical researcher randomly selected five letters from the alpha-
bet and abstracted data from the charts of patients whose surnames
start with any of those five letters.

3.4. In NHANES 1I, 27 percent of the target sample did not undergo the
health examination. In the examined sample, the weighted estimate of
the percentage overweight was 25.7 percent [from Table 71 in NCHS

(10€)].




EXERCISES 37

3.5.

3.6.

3.7.

3.8.

3.9.

a. Assuming that these data were collected via a SRS, what is the
range for the percentage overweight in the target sample?

b. Should any portion of the population be excluded in the measure-
ment of overweight?

Discuss how sampling can be used in the following situations by

defining: (1) the population, (2) the unit from which data will be

obtained, (3) the unit to be used in sampling, and (4) the sample

selection procedure.

a. A student is interested in estimating the total number of words in
this book.

b. A city planner is interested in estimating the proportion of passen-
ger cars that have only one occupant during rush hours.

c. A county public health officer is interested in estimating the pro-
portion of dogs that have been vaccinated against rabies.

For each of the following situations discuss whether or not random
sampling is used appropriately and why the use of random sampling
is important.

a. A doctor selected every 20th file from medical charts arranged al-
phabetically to estimate the percentage of patients who have not
had any clinic visits during the past 24 months.

b. A city public health veterinarian randomly selected 50 of 500 street
corners and designated a resident at each corner to count the num-
ber of stray dogs for 1 week. He multiplied the number of stray
dogs counted at the 50 corners by 10 as an estimate of the number
of stray dogs in the city.

c. A hospital administrator reported to the board of directors that his
extensive conversations with two randomly selected technicians
revealed no evidence of support for a walkout by hospital techni-
cians this year.

An epidemiologist wishes to estimate the average length of hospital-

ization for cancer patients discharged from the hospitals in her region

of the country. There are 500 hospitals, with the number of beds

ranging from 30 to 1200 in the region.

a. Discuss what difficulties the researcher might encounter in draw-
ing a simple random sample.

b. Offer suggestions for drawing a random sample.

Discuss the advantages and disadvantages of the following sampling
frames for a survey of the immunization levels of preschool children.
a. Telephone directory

b. List of children in kindergarten

c. List of registered voters

Discuss the interpretation of the following surveys:
a. A mail survey was conducted of 1000 U.S. executives and plant
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managers. After a month, 112 responses had been received. The
report of the survey results stated that Japan, Germany, and South
Korea were viewed as being better competitors than the United
States in the world economy. Also, one-third of the managers did
not believe their own operations were making competitive im-
provements.

b. A weekly magazine reported that most American workers are satis-
fied with the amount of paid vacation they are allowed to take. This
conclusion was based on the results of a telephone poll of 522 full-
time employees (margin of error is plus or minus 4 percent; ‘‘not
sure” omitted). The question asked was, “Should you have more
time off or is the amount of vacation you have fair?”

More time off 33%
Current amount fair 62%
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Descriptive Tools

This chapter focuses on the summarization of data that were obtained
from a simple random sampling process. Numerical and pictorial proce-
dures are useful in the summarization of data. Both sets of tools are intro-
duced in this chapter along with computer procedures based on the MINI-
TAB package. Appendix A contains the comparable statements for SAS
and Stata, two other statistical software packages.

I. USE OF THE COMPUTER: MINITAB

A dietary data set selected from a larger study by McPherson et al. (1) is
introduced here to illustrate the use of various descriptive tools. Students
in grades 5 through 8 in two suburban Houston schools were requested to
keep food records for three randomly selected days, two weekdays and
one weekend day, during a 2-week period. Calories, protein, total fat, and
vitamin A consumed on the first day are shown in Table 4.1 for the 33 boys
who participated in the study. These data will be explored by using various
descriptive tools.

39



Dietary Intake from Food Records for 33 Boys Enrolled in Two Middle

Schools outside of Houston?

Day Total Vitamin Day Total Vitamin
of Protein fat A of Protein fat A

1D week  Grade Calories (& (g (110)) 1D week Grade Calories (g (g au)
10 3 8 1823 83 63 4,876 50 1 7 1292 32 59 1,379
11 4 8 2007 64 62 6,202 51 5 7 3049 88 121 4,535
13 4 8 1053 23 33 964 101 7 6 3277 113 133 5,242
14 5 8 4322 128 202 6,761 105 7 6 2039 73 99 3,747
16 6 8 1753 84 83 1,704 107 6 6 2000 54 55 2,246
17 3 8 2685 105 103 2,671 118 3 6 1781 69 84 10,451
26 5 7 2340 157 73 4,288 120 2 6 2748 84 123 2,687
27 4 7 3532 172 227 12,812 127 7 5 2348 75 88 8,675
30 3 7 2842 135 121 4,450 130 3 5 2773 136 91 8,516
32 2 7 2074 44 69 820 137 3 5 2310 71 82 1,459
33 2 7 1505 97 25 9,490 139 2 5 2594 98 82 5,874
39 3 7 2330 60 87 4,315 141 2 5 1898 99 98 1,921
40 1 7 2436 86 115 6,754 145 7 5 2400 93 68 8,631
41 6 7 3076 89 121 8,034 148 1 5 2011 45 28 12,493
44 6 7 1843 94 69 9,710 149 1 5 1645 70 78 1,826
46 3 7 2301 62 74 4,248 150 3 5 1723 45 43 5,703
47 1 7 2546 72 124 2,284

¢ A CDC grant funded the data collection; data used with permission of R. S. McPherson.
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Before considering the descriptive tools, we introduce MINITAB, a
computer package for statistical analysis, which facilitates the description
of the data. The MINITAB statements in each section provide examples,
not detailed instructions, of the commands. In-depth instructions are avail-
able in the “MINITAB User Guide” (2) and the online MINITAB Help
commands. The MINITAB Quick Reference Card (3) provides an overview
of commands. The first step is to enter data into the MINITAB worksheet.
Three ways of entering the data in Table 4.1 are shown in Boxes 4.1 and
4.2,

MINITAB 80X 4.1

The first method of data entry uses the SET command to enter the values of calories
into a column, denoted by the letter ¢ followed by a number. We entered every-
thing to the right of the >’s in the following:

MTB > set cl

DATA> 1823 2007 1053 4322 1753 2685 2340 3532 2842 2074 1505
DATA> 2330 2436 3076 1843 2301 2546 1292 3049 3277 2039 2000
DATA> 1781 2748 2348 2773 2310 2594 1898 2400 2011 1645 1723
DATA> end

There is a space between each caloric value and a carriage return at the end of each
of these lines. The word end in the last line indicates that all of the data for c1 had
been entered. It is useful to label the column by using the NAME command (lim-
ited to eight characters).

MTB > name c¢l 'calories'

The READ command is another way of entering data from the keyboard. It is useful
when there are several columns of data to be entered, whereas the SET command is
more appropriate when there are only a few columns of data to enter. The first
three rows of the day of the week, grade, protein, total fat, and vitamin A data are
entered to demonstrate the use of the READ command. The values of these five
variables are stored in columns ¢2, ¢3, ¢4, ¢5, and c6.

MTB > read c2-c6
DATA> 3 8 83 63 4876
DATA> 4 8 64 62 6220
DATA> 4 8 23 33 964
DATA> end

3 ROWS READ

It is useful to examine whether or not we have entered the data correctly. This can
be done by looking at what we have entered or by using the PRINT command,
which shows what values are in the columns.

MTB > print c2-c6

ROW Cc2 C3 c4 C5 c6
1 3 8 83 63 4876
2 4 8 64 62 6220
3 4 8 23 33 964
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The second value (row) in c6 is supposed to be 6202, not 6220. This can be corrected
by reentering c6 or by using the LET command as shown now:

MTB > let c6(2)= 6202

In ¢6(2), the 2 in the parentheses indicates that we are referring to the second
element (row) in c6 and we are setting its value to 6202. We can use the PRINT
command to see if we have been successful in making the correction.

MTB > print c6
cé6 4876 6202 964

(The correction was made.)

We can also read data from a file that has already been created instead of entering
the data at the keyboard. This method also uses the READ command followed by
the name of the file containing the data in single quotes and the column numbers in
which the data will be stored.

MTB > read 'bookchd.dat' c¢l-c6
33 ROWS READ

ROW Ccl C2 C3 c4 C5 C8
1 4876 1823 63 83 3 8
2 6202 2007 62 64 4 8
3 964 1053 33 23 4 8
4 6761 4322 202 128 5 8

The order of the data in these six columns is different from that shown in Table 4.1.
That poses no problem as we simply label the columns to reflect their contents.

MTB > name c¢l 'vit A' c2 'calories' ¢3 'tot fat'

MTB >'name c4 'protein' ¢5 'day' c6 'grade'

Il. TABULAR AND GRAPHICAL PRESENTATION

One- and two-way frequency tables and several types of figures—line
graph, bar chart, histogram, stem-and-leaf plot, scatter plot, and box
plot—that aid in the description of data are introduced in this and subse-
quent sections.

A. Frequency Tables

A one-way frequency table shows the results of the tabulation of the observa-
tions at each level of a variable. For example, Table 4.2 shows the frequen-
cies of the days of the week when the first measurements were made for
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Freguency of Days of the Week of the First Measurement

Day Number of boys  Percentage
1 (Sunday) 5 15.2
2 (Monday) 5 15.2
3 (Tuesday) 9 27.3
4 (Wednesday) 3 9.1
5 (Thursday) 3 9.1
6 (Friday) 4 12.1
7 (Saturday) 4 12.1
Total 33 100.1

the 33 boys from Table 4.1. Over one-quarter of the observations were
made on Tuesday followed by Sunday and Monday with five observations
each. Note that the total number of boys is 33 as it must be. The sum of the
percents should be 100.0, although a small allowance is made for round-
ing. Note also that the title of the table contains sufficient information to
allow the reader to understand the table.

Two-way frequency tables, formed by the crosstabulation of two variables,
are usually more interesting than one-way tables because they show the
relationship between the variables. The variables can be nominal, ordinal,
or continuous. Usually when continuous variables are used, their values
are grouped into categories. Table 4.3 shows the relationship between day
of the week and caloric intake where caloric intake has been grouped into
below 2500 calories and 2500 calories and above. The value of 2500 calories
was chosen because it is approximately the average intake of boys ages 12
to 15. Day 5, Thursday, appears to be different than the other days as it is
the only day with a majority of its values greater than or equal to 2500

Crosstabulation of Day of the Week and Caloric Intake with Row
Percentages in Parentheses

Calories
Day of week <2500 =2500 Total
1 4 (80%}) 1 (20%) 5
2 3 (60%) 2 (40%) 5
3 6 (67%) 3 (33%) 9
4 2 (67%) 1 (33%) 3
5 1 (33%) 2 (67%) 3
6 3 (75%) 1 (25%) 4
7 3 (75%) 1 (25%) 4

Total 22 (67%) 11 (33%) 33
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calories. However, there are so few observations for most of the levels of
the day variable that the difference between day 5 and the other days may
be due to sampling variation; that is, this difference may be an artifact of
the sample that was selected.

One way of reducing the number of levels with only a few observations
is to combine levels. For example, a natural grouping is weekdays, combin-
ing Monday through Friday, and weekends, combining Saturday and Sun-

The frequencies in Table 4.2 can be easily obtained by using the following com-
mand.

MTB > table ¢5
ROWS: C5
COUNT

OO W
B WO O

ALL 33

Before creating Table 4.3, we require one additional step. In Table 4.3, we had
categorized the calories into below 2500 and greater than or equal to 2500 calories.
We use the CODE command in MINITAB to accomplish this recoding.

MTB > code (1000:2499) 0 (2500:4500) 1 c2 o7

This statement assigns a value of 0 in column ¢7 for boys who consumed from 1000
to 2499 calories on their first recording day and a value of 1 in ¢7 for boys who
consumed 2500 calories or more. The ranges shown are from 1000 to 2499 and from
2500 to 4500 because no boy had a value less than 1000 or greater than 4500. The
caloric values come from column ¢2 and the recoded values are stored in ¢7. Now
the two-way table can be created.

MTB > table ¢5 c¢7

ROWS: C5 COLUMNS: C7
0 1 ALL

1 4 1 5
2 3 2 5
3 6 3 9
4 2 1 3
5 1 2 3
6 3 1 4
7 3 1 4

ALL 22 11 33

CELL CONTENTS ——
COUNT
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Health Expenditures as a Percentage of Gross Domestic Product
over Time

Year Great Britain United States West Germany
1960 3.9 5.2 4.7
1965 4.1 6.0 5.1
1970 4.5 7.4 5.5
1975 5.5 8.4 7.8
1980 5.8 9.2 7.9
1985 6.0 10.6 8.2
1987 6.1 11.2 8.2

Source: Table 104 in “Health, United States, 1990 (4).

day. There are more observations for the weekday and weekend categories
and, if there are differences now, they are more likely to be real. In forming
the groups, we should not allow the data to guide us. We should use our
knowledge of the subject matter, and not use the data, in selecting the
categorization. If we use the data to guide us, it is easy to obtain apparent
differences that are not real but only artifacts of the data. Box 4.3 shows
how to create tables from the data we already entered.

Other data besides frequencies can be presented in tabular format. For
example, Table 4.4 shows the health expenditures of three nations as a
percentage of gross domestic product (GDP) over time. Health expendi-
tures as a percentage of GDP are increasing much more rapidly in the
United States than in either Great Britain or West Germany.

A line graph shows the value of a variable over time. The values of the
variable are given on the vertical axis; the horizontal axis is the time vari-
able. Figure 4.1 shows three line graphs for the data shown in Table 4.4.

These line graphs also show the rapid increase in health expenditures
in the United States compared with those of two other countries with
national health plans. The trends are immediately clear in the line graphs,
whereas one has to study Table 4.4 before the same trends are recognized.

It is possible to give different impressions about the data by shortening
or lengthening the horizontal and vertical axes or by including only a
portion of an axis. In creating and studying line graphs, one must be aware
of the scales used for the horizontal and vertical axes. For example, with
numbers that are extremely variable over time, a logarithmic transforma-
tion (discussed later) of the variable on the vertical axis is frequently used
to allow the line graph to fit on a page.

It is also possible to represent different variables in the same figure as
Figure 4.2 shows. The right vertical axis is used for lead emissions and the
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FIGURE 4.1

FIGURE 4.2
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Line graph: Health expenditures as percentage of GDP. B, Great Britain; +, United States; *,
West Germany. Source: Table 104 in “Health, United States, 1990” (4).

left vertical axis for sulfur oxides emissions. Both pollutants are decreasing,
but the decrease in lead emissions is quite dramatic, from approximately
200 X 10° metric tons in 1970 to only about 8 X 10% metric tons in 1988.
During this same period, sulfur oxides emissions decreased from about
28 X 106 to about 21 x 10° metric tons. The decrease in the lead emissions is
partially related to the use of unleaded gasoline, which was introduced
during the 1970s.
Box 4.4 shows how to create plots and Box 4.5 shows the result.
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Sulfur Ox. Emissions: 106 Metric Tons
Lead Emissions: 103 Metric Tons

Line graphs of sulfur oxides and lead emissions in the United States. M, Sulfur oxides; +,
lead. Source: Table 64 in “Health, United States, 1990’ (4).
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MINITAB has a number of commands for creating plots. For example, the com-
mand PLOT is used to create a single line graph, whereas the command MPLOT
can be used to create multiple line graphs in a figure. MINITAB also has high-
resolution graphics available for a number of its plotting commands. To invoke the
high-resolution graphics, add the letter G in front of the command, for example,
GPLOT or GMPLOT instead of PLOT or MPLOT. When PLOT or MPLOT is
used, the points are shown, but no connecting lines are drawn. When GPLOT or
GMPLOT is used, MINITAB draws the line(s) connecting the points.

The following shows the use of MINITAB in the creation of the line graphs in
Figure 4.1. The first group of statements shows the data entry. The values of the
percentage of GDP are entered in columns ¢8 to c10; c11 contains the years. The
second group of statements creates three lines in a single graph, using the MPLOT
command. The commands of height and width allow the user to indicate how
many lines should be used for the figure (height) and how many columns wide the
figure should be (width). The MPLOT command ends with a semicolon, indicating
that a subcommand will follow. Several subcommands, closed by semicolons, are
used to provide details about what is contained in the figure. There is a period at
the end of the last subcommand; the period tells MINITAB that all the information
for the command has now been entered.

MTB > set ¢8

DATA> 3.9 4.1 4.5 5.5 5.8 6.0 6.1

DATA> set ¢9

DATA> 5.2 6.0 7.4 8.4 9.2 10.6 11.2

DATA> set cl0

DATA> 4.7 5.1 5.5 7.8 7.9 8.2 8.2

DATA> set cll

DATA> 60 65 '70 75 80 85 87

DATA> end

MTB > height 35

MTB > width 55

MTB > mplot ¢8 c¢ll, ¢9 ¢l1, cl0 c¢lli;

SUBC> title='Health Expenditures as % of GDP over Time';
SUBC> footnote='A=Great Brit, B=U.S. and C=West Germ';
SUBC> ylabel='% of GDP';

SUBC> xlabel="'Year'.

The piot is shown in Box 4.5. In this plot the points must be connected by hand to
produce the line graphs. The following MINITAB statements create a high-resolu-
tion graph with three lines connecting the points in the previous graph.

MTB> gmplot ¢8 c¢ll, ¢9 c¢ll, clO0 cll;

SUBC> lines ¢8 cll;

SUBC> lines c¢9 cll;

SUBC> lines ¢l0 cll;

SUBC> footnote 'A=Great Brit, B=U.S., and C=West Germ’;
SUBC> ylabel '% of GDP';

SUBC> xlabel 'Year'.
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Health Expenditures as % of GDP over Time (A = Great Britain, B = United States,
C = West Germany)
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C. Bar Charts

FIGURE 4.3
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A bar chart provides a picture of data that could also often be reasonably
presented in a tabular format. Bar charts can be created for nominal, ordi-
nal, or continuous data, although they are most frequently used with nom-
inal data. If used with continuous data, the chart could be called a histogram
(see below) instead of a bar chart. The bar chart can show the number or
proportion of people by levels of a nominal or ordinal variable. For exam-
ple, the numbers of people enrolled in health maintenance organizations
(HMOs) in the United States by year (ordinal variable) are shown in Figure
4.3.

This bar chart makes it very clear that there has been explosive growth
in HMO enrollment, particularly between 1982 and 1986. The actual enroll-
ments by year are 7.45, 10.81, 25.73, and 33.03 million. The numbers also
document this growth, but it is more dramatic in the visual presentation.

In bar charts, the length of the bar shows the number of observations
or the value of the variable of interest for the levels of the nominal or
ordinal variable. The widths of the bar are the same for all the levels of the
nominal or ordinal variable; the width has no meaning. The levels of the
nominal or ordinal variable are usually separated by several spaces which
makes it easier to view the data. The bars are usually presented vertically
but they could also be horizontal.

More complicated data can also be presented in bar chart format. Fig-
ure 4.4 shows death rates for selected causes for persons 45 to 64 years of
age by race/ethnicity (the nominal variable) in the United States in 1988.
This bar chart, a segmented bar chart, presents a large amount of informa-
tion that is quickly understandable. African-Americans have the highest
mortality rates in this age group and they also have the highest rates of

35 - 33.0
30 - 25.7
25 -
20 -~
15 - 10.8

10 -~ 7.5

Number Enrolled in Millions

1978 1982 1986 1930

Bar chart of the number of persons (in millions) enrolled in health maintenance organizations
by year. Source: Table 126 in ‘“Health, United States, 1990” (4).
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mortality from heart disease and malignant neoplasms. Asians and Pacific
Islanders have the lowest mortality rates for this age group.

Figure 4.5, a three-dimensional bar chart, shows infant mortality rates
by race and year for Harris County, Texas, during the period 1980-1986.
Levels of one nominal variable (race) and one ordinal variable (year) are
used in the creation of this bar chart. From this figure it is clear that the

Infant Deaths per 1000 Live Births
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Infant mortality rates by race for Harris County, Texas, by year. Source: Figure B-19 in Harris
County Health Department (5).
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TABLE 4.5
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infant mortality rates for whites and Hispanics are decreasing over time,
whereas the rate for African-Americans is remaining almost constant. It is
also easy to see that the rate for African-Americans is considerably higher
than that of the other two groups.

These last two figures demonstrate that bar charts can be quite effective
in presenting information on several variables.

As was mentioned earlier, a histogram is similar to a bar chart but is used
with interval/ratio variables. The values of the variable are grouped into
intervals which are usually of equal width. Rectangles are drawn above
each interval and the area of the rectangle represents the number of obser-
vations in that interval. If all the intervals are of equal width, then the
height of the interval, as well as its area, represents the frequency of the
interval. In contrast to bar charts, there are no spaces between the rectan-
gles unless there are no observations in some interval.

We demonstrate the creation of a histogram for the data in Table 4.5
which contains systolic blood pressure values that could be seen in typical
12-year-old U.S. boys.

Before creating the histogram, however, we create a one-way table
which will facilitate the creation of the histogram. Table 4.6 gives the fre-
quency of each blood pressure value. Note that a large proportion of the
blood pressure values appear to end in zero: 43 of the 100 observations end
in zero. All the values are also even numbers, with the exception of 11
values that end with a 5. This suggests that the persons who recorded the
blood pressure values may have had a preference for numbers ending in 0
or 5. This type of finding is not unusual in blood pressure studies or in the
reporting of age, as was seen in Chapter 2. In spite of this possible digit

Systolic Biood Pressure (mm Hgl) Values for 100 Typical 12-Year-Old
U.S. Boys

130 100 125 92 98 108 104 100 100 102 120 110 100
112 110 110 100 128 122 110 120 108 94 130 110 104
120 118 84 115 102 100 112 104 100 120 110 110 106
130 120 108 104 106 114 9% 112 114 100 112 80 100
110 126 95 100 100 94 102 95 140 124 98 110 90

80 102 116 102 90 116 110 128 140 90 104 130 104
105 80 116 106 100 95 105 90 108 88 105 112 134
116 108 108 100 105 110 90 95 125
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preference, we are going to create some histograms based on these values.
The histogram provides a visual summarization of the values shown in
Tables 4.5 and 4.6.

Three questions must be answered before we can draw the histogram
for these data:

1. How many intervals should there be?
2. How large should the intervals be?
3. Where should the intervals be located?

Tarter and Kronmal (6) discuss these three questions in some depth. There
are no hard and fast answers to these questions; only guidelines are pro-
vided.

The number of intervals is related to the number of observations. Gen-
erally 5 to 15 intervals would be used, with a smaller number of intervals
used for smaller sample sizes. There is a trade-off between many small
intervals, which allow for greater detail with few observations in any cate-
gory, and a few large intervals, with little detail and many observations in
the categories.

Once the number of intervals, call this number k, is decided, the size of
the intervals can be determined. One way of choosing the interval size is to
calculate the difference between the maximum and minimum observed
values and divide this difference by k — 1. This is a reasonable approach
unless there are some relatively large or small values. In this case, exclude
these unusual values from the difference calculation. This approach will
yield larger first and last intervals but the other intervals will be the same
size.

The location of the intervals is also arbitrary. Most researchers either
begin the interval with a round number or have the midpoint of the inter-
val be a round number.

Freguency of Individual Systolic Blood Pressures (mm Hg)

Value Frequency Value Frequency Value Frequency
80 3 102 5 118 1
84 1 104 6 120 5
88 1 105 4 122 1
90 5 106 3 124 1
92 1 108 6 125 2
94 2 110 11 126 1
95 4 112 5 128 2
96 1 114 2 130 4
98 2 115 1 134 1

100 13 116 4 140 2
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Let us create several histograms for these 100 systolic blood pressure
values to see the effect of our choices. First we try 11 intervals. As the
maximum and minimum observed values are 140 and 80, respectively, the
difference is 60. Dividing 60 by 10 yields 6 as the interval size. As in Figure
4.6, we could choose the lower boundary of the first interval to be the
minimum observed value (80 mm Hg), a most reasonable choice for these
data, or the minimum value could be located in the first interval as in
Figure 4.7. These two figures look different although they have the same
number of intervals and the intervals are of the same size. The starting
points of the first interval cause the difference in appearance.

Figure 4.8 shows the effect of using 10 intervals instead of 11. An
interval of size 7 (60 divided by 9 is approximately 7) and a starting value of
73.5 are used.

The histograms in Figures 4.6, 4.7, and 4.8 use the same data but give
different impressions about the data. We see that the shapes of the histo-
grams are dissimilar because of the decisions we made; however, the histo-
grams say basically the same thing about the distribution of the sample
data even though their shapes are different. All three histograms show that
the blood pressures are tightly clustered, with most of the values between
approximately 98 and 114, and that there are a few small values around 80
and a few large values around 140. The lesson of these histograms is not to
become enamored of the shape of the histogram but to look at what the
histogram is saying about the data.
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H[EURANSY Histogram of 100 systolic blood pressure values using 11 intervals of size 6 starting at 80.
Interval boundaries are at the bottom of the figure.
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RICIUSISRZ0WE  Histogram of 100 systolic blood pressure values using 11 intervals of size 6 starting at 75.
Interval boundaries are at the bottom of the figure.
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SIE{US=RAMSE Histogram of 100 systolic blood pressure values using 10 intervals of size 7 starting at 73.5.
Interval midpoints are at the bottom of the figure.
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SIBUISIaPZMSE An incorrect histogram of the 100 systolic blood pressures. Interval boundaries are at the
bottom of the figure.
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SISO A correct histogram of the 100 systolic blood pressures. Interval boundaries are at the bottom
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MINITAB BOX 4.6

The data in Table 4.5 are entered in ¢8, although not shown here. The following
shows the MINITAB creation of a histogram shown in Figure 4.8.

MTB > hist c¢8;

SUBC> increment 7;

SUBC> start 77.

Histogram of C8 N = 100
Midpoint Count

77.00 3 e
84.00 1 x

91.00 9 F XK KK XA ¥

9800 20 EXRXEXFRHLXXER XXX, X
105'00 24 FRFRRHR R HHHKXR®HEINRRNXNXHN
11200 19 EREXFAEERXXXHEXAXXEXHE
119_00 ll * WK KKK KN XK

126.00 6 rwxaxx

133.00 5 wxxxx

140.00 2

MINITAB plots histograms sideways in contrast to the conventional manner of
presentation. As is demonstrated in the HISTOGRAM (abbreviated as HIST) state-
ment, there are optional subcommands that can be used to customize the histo-
gram. The size of the interval can be specified; for example, it is of size 7 (because
INCREMENT was set to 7) in this example. As an additional instruction is still to
follow, the INCREMENT 7 subcommand is followed by a semicolon. The value of
the first interval’s midpoint is next specified in the START subcommand and it is
set at 77. Because there are no more subcommands that we wish to specify, START
77 is followed by a period, indicating the end of the HISTOGRAM command.

The first column in the output gives the midpoint of the interval and is followed by
a column showing the number of observations in the interval. The next several
columns show the histogram using asterisks to represent each value in the interval.
When we use GHIST instead of HIST, a high-resolution graph can be obtained as
shown.

C8 N= 100
Midpoint  Count

77 3 | ]

84 1

91 9 ]

98 20 1

105 24 ]
112 19 ]

119 11 T

126 6

133 5

140 2

0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0
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Before leaving histograms, we must examine unequal size intervals
and how to deal with them. Suppose that in Figure 4.7 the third and fourth
intervals were combined, that is, the third interval now extends from 87 to
99 mm Hg, and all the other intervals remained the same. As was men-
tioned above, the area of the rectangle reflects the frequency of the inter-
val. Therefore, because this interval is twice as wide as the other intervals,
to have the appropriate area within the rectangle it is necessary to divide its
height by 2. Figure 4.9 is incorrect because it fails to adjust for the greater
width of the third interval. Figure 4.10 is more appropriate than Figure 4.9
because it has taken the greater width into account. Box 4.6 shows how
MINITAB is used to create the histograms for the systolic'blood pressure
data.

E. Stem-and-Leaf Plot

The stem-and-leaf plot looks similar to a histogram except that the stem-and-
leaf plot shows the data values instead of using asterisks or bars to repre-
sent the height of an interval. In the blood pressure example, the stem
could be the tens units and the leaves then would be the units. We use
MINITAB to create a stem-and-leaf plot for the systolic blood pressure data
as shown in Box 4.7.

MINITAB 130X 4.7

MTB > stem ¢8
Stem—and-leaf of C8 N = 100
Leaf Unit = 1.0
4 8 0004
5 8 8
13 9 00000244
20 9 5555688
44 10 000000000000022222444444
(13) 10 5555666888888
43 11 000000000002222244
25 11 566668
19 12 0000024
12 12 55688
4 13 00004
2 13
2 14 00
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This looks like a histogram except that we now know the values of all
the observations. The first column in this output shows a cumulative count
of all the observations from the top and from the bottom to the interval in
which the median value is found. The median is the value such that 50
percent of the values are less than it and 50 percent are greater than it. The
number of observations in the interval containing the median is shown in
parentheses. The second column is the stem and the subsequent columns
contain the leaves. For example, in the first row we read a stem of 8 and
leaves of 0, 0, 0, and 4. As the stem represents units of 10 in this case and
the leaf unit is 1, these four numbers are 80, 80, 80, and 84. The second row
has the same stem and a leaf of 8 and, thus, represents a blood pressure
value of 88. Note that the first number in the second row is 5, which is the
cumulative count of observations in the first two rows. In the third row the
stem is 9 and there are 8 leaves. These blood pressures are 90, 90, 90, 90,
90, 92, 94, and 94. Because there are 8 values in the third row, the cumula-
tive count is now 13. As the interval from 105 to 109 has 44 observations
less than it, 43 observations greater than it, and 13 observations in it, the
median is in this interval and its value is 106.

Note in Box 4.7 that the interval size of 5 units was used for the
pressure values. We can choose the interval size as shown in Box 4.8. This
stem-and-leaf plot still shows the same values as the first stem-and-leaf
plot but they are grouped differently.

Another characteristic of the data that can be seen from histograms or
stem-and-leaf plots is whether or not the data are symmetrically distrib-
uted. Data are symmetrically distributed when the half of the distribution
above the median matches the distribution below the median. Data could
also come from a skewed or asymmetric distribution. Data from a skewed

MINITAB BOX 4.8

We can choose the interval size by using the subcommand INCREMENT with the
STEM command. An inverval of size 10 is used below.

MTB > stem ¢8;
SUBC> increment 10.

Stem—and—-leaf of C8 N = 100
Leaf Unit = 1.0
5 8 00048

20 9 000002445555688
{37) 10 0000000000000222224444445555666888888
43 11 000000000002222244566668
19 12 000002455688
7 13 00004
2 14 00
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distribution typically have extreme values in one end of the distribution
but no extreme values in the other end of the distribution. When there is a
long tail to the right, or to the bottom if the histogram is presented side-
ways, data are said to be positively skewed. If there are some extremely small
values without corresponding extremely large values, the distribution is
said to be negatively skewed.

For the blood pressure values shown in MINITAB Box 4.7, the sample
data appear to be slightly asymmetric as the data above the median are not
grouped as tightly as those below the median.

The stem-and-leaf plot in Box 4.9 uses the vitamin A values from Table
4.1, data that are positively skewed. MINITAB tells us that the leaf unit is
100 which means that the stem unit is 1000. Hence the two values in the
first row represent one observation in the 800s and one value in the 900s.
From Table 4.1 we see the actual values are 820 and 964. The single obser-
vation in the fourth row has a value of three thousand seven hundred and
something. The actual value is 3747. The median is in the 4000s and there
are observations as large as 12,000. The distance from the median to the
larger values is much greater than that to the smallest values. These data
have a long tail to the right, that is, the vitamin A data are positively
skewed. This statement is more informative than simply saying that the
data are asymmetric. -

The stem-and-leaf plot works best with relatively small sample sizes.
With large sample sizes, having the exact numerical value of every obser-
vation can be overwhelming.

MTB > stem cl
Stem—and-leaf of Cl N = 33
Leaf Unit = 100

2 0 89

7 1 34789
11 2 2266
12 37

(6) 4 223458
15 5 278
12 6 277

9 7

9 8 0566
5 9 47

3 10 4

2 11

2 12 48
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F. Scatter Plot
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The two-dimensional scatter plot is analogous to the two-way frequency
table in that it facilitates the examination of the relationship between two
variables. Unlike the two-way table, the two-dimensional scatter plot is
most effectively used when the variables are continuous. Just as it is possi-
ble to have higher-dimensional frequency tables, it is possible to have
higher-dimensional scatter plots, but they become more difficult to com-
prehend.

One way of pictorially examining the relationship between grams of
protein and grams of total fat shown in Table 4.1 is to use a scatter plot. It is
easy to create two-dimensional scatter plots with MINITAB as can be seen
in Box 4.10. c3 is the column containing the total fat values and c4 contains
the protein values. Each asterisk represents a boy’s protein and total fat
values. For example, the asterisk in the lower left-hand corner of the plot
represents the boy in Table 4.1 whose diet included 23 grams (g) of protein
and 33 g of total fat. The asterisk in the upper right-hand corner represents
the boy whose food intake contained 172 g of protein and 227 g of total fat.
Numerical values in the plot represent the frequency of the point. For
example, the leftmost 2 in the plot refers to two boys whose diets contained
about 70 g of protein and 80 g of total fat. In this case the exact values were
69 and 84 for one of the boys and 70 and 78 for the other boy.

The plot shows that there is a strong tendency for boys with large
protein values to also have large values of total fat and that small values of

MINITAB BOX 4.10

MTB > plot ¢3 c4

- *

210+

- *
c3 -

140+ . *
- * *kk *
- *
- * * * *
- *  2k%k  k *

70+ * * * 2 *
- * *
- *
- * * *

30 60 90 120 150 180
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protein generally correspond with small values of total fat. The relation-
ship is not perfect as can be seen from the point in the lower right-hand
corner which corresponds to a boy with a large protein value (157 g) and a
small total fat value (73 g). It is much easier to see this tendency for a
positive association between protein and total fat from this scatter plot than
by looking at the values in Table 4.1. The association is said to be positive
because boys with large values of protein also tend to have large values of
total fat and boys with small values of protein also tend to have small total
fat values. When there is a positive association, the points in the plot tend
to larger values on the vertical axis as we move from the left to the right in
the graph. The association would be negative if boys with large values of
one variable tended to have small values of the other variable and con-
versely.

Scatter plots are most effective for small to moderate sample sizes.
When there are thousands of observations, it is often difficult to obtain a
sense of the relationship. In these cases, it may be useful to calculate the
sample average of the variable on the vertical axis (C3 in the scatter plot
above) separately for each value of the variable on the horizontal axis (C4
above). If there are 20 distinct values of the variable on the horizontal axis,
call it X, there would be 20 distinct sample means calculated for the vari-
able on the vertical axis, call it Y. Then we plot the sample means of Y
versus the values of X. This approach can aid the visualization of the
relationship between Y and X even though it does not use all the available
information.

This completes the presentation of the pictorial tools in common use
with the exception of the box plot, which is shown later in this chapter. The
following material introduces the more frequently used statistics that aid
us in describing and summarizing data.

Ill. MEASURES OF CENTRAL TENDENCY

Simple descriptive statistics can be useful in data editing as well as in
aiding our understanding of the data. The minimum and the maximum
values of a variable are useful statistics when editing the data. Are the
observed minimum and maximum observed values reasonable or even
possible? For the boys shown in Table 4.1, the minimum intake on the first
day is 1053 calories and the maximum is 4322 calories. These values are
somewhat unusual given that the average number of calories consumed by
12- to 15-year-old boys is about 2500, but they are not impossible. The boy
whose intake was 1053 calories would not show much growth if he were to
continue with this level of intake, but we all have unusual days. We con-
sider other ways of identifying unusual values in later sections.
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A. Mean, Median, and Mode

In terms of describing data, people usually think of the typical or average
value. For example, the average caloric intake for boys was useful in deter-
mining whether or not the maximum and minimum values were reason-
able. There are three frequently used measures of central tendency: the
mean, the median, and the mode.

The sample mean (x) is the sum of all the observed values of a variable
divided by the number of observations. The median, previously mentioned,
is defined to be the middle value, that is, the value such that 50 percent of
the observed values fall above it and 50 percent fall below it. It can also be
called the 50th percentile, where the ith percentile represents a value such
that i percent of the observations are less than it. The mode is the most
frequently occurring value.

Let us calculate these statistics for the caloric intake variable. The sam-
ple mean is the arithmetic average, that is,

1823 + 2007 + 1053 + ... + 1723 _ 76,356
33 - 33

We can also represent the mean succintly using symbols. We use X as the
symbol for the variable under study, in this case, the caloric intake of the
boys based on their first food record. We use x, with subscripts to distin-
guish the boys’ caloric intake from one another, to represent the observed
value of the variable. For example, the first boy’s intake is represented by
x1 and its value is 1823 calories. The second boy’s intake is x, and his intake
is 2007 calories. In the same way, x3is 1053, . . . , and xs33 is 1723. Then the
sum of the caloric intakes can be represented by

= 2313.8

33
x; + x + "'+X33=2x,‘.
i=1
The symbol 2 means summation. The value of i beneath X gives the
subscript of the first x to be included in the summation process. The value
above X gives the subscript of the last x to be included in the summation.
The value of i increases in steps of one from the beginning value to the
ending value. Thus, all the observations with subscripts ranging from the
beginning value to the ending value are included in the sum. The formula
for the sample mean variable, X (pronounced x-bar), is

M=

Xi
i=1

X =
n
In this case, the sample mean, ¥, is 2313.8.
If we have the data for the entire population, not just for a sample of
observations from the population, the mean is denoted by the Greek letter
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# (pronounced mu). Values that come from samples are statistics and val-
ues that come from the population are parameters. For example, the sample
statistic X is an estimator of the population parameter u. The population
mean is defined as

M=
R

It
—

i

IL:

2]

where N is the population size.

In calculating the median, it is useful to have the data sorted from the
lowest to the highest value as that assists in finding the middle value. Table
4.7 shows the sorted caloric intake values for the 33 boys. For a sample of
size n, the sample median is the value such that half (n/2) of the sample
values are less than it and n/2 are greater than it. When the sample size is
odd, the sample median is the [(n + 1)/2]th largest value. For a sample of
size 33, the median is thus the 17th largest value. The value 17 comes from
(33 + 1)/2. When the sample size is even, there is no observed sample value
such that one-half of the sample falls below it and one-half falls above it. By
convention, we use the average of the two middle sample values as the
median, that is, the average of the (n/2)th and [(n/2) + 1]th largest values.
For these data, the sample median is 2310, the 17th largest value.

The mode is the most frequently occurring value. When all the values
occur the same number of times, we usually say that there is no unique
mode. When two values occur the same number of times and more than
any other values, the distribution is said to be bimodal. If three values
occur the same number of times and more than any other value, the distri-
bution could be called trimodal. Usually one would not go beyond trimodal
in labeling a distribution.

For these data, none of the values occurs more than once and hence
there is no unique modal value. This result is not unexpected when dealing

Sorted Caloric Intakes for 33 Boys

1053 2007 2546
1292 2011 2594
1505 2039 2685
1645 2074 2748
1723 2301 2773
1753 2310 2842
1781 2330 3049
1823 2340 3076
1843 2348 3277
1898 2400 3532

2000 2436 4322
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with continuous data as it is unlikely that two people have exactly the same
values of a continuous variable.

B. Use of the Measures of Central Tendency

Now that we understand how these three measures of central tendency are
defined and found, when are they used? Note that in calculating the mean,
we summed the observations. Hence we can only calculate a mean when
we can perform arithmetic operations on the data. For example, we cannot
calculate the mean day for these data because we cannot perform meaning-
ful arithmetic operations on nominal data. Therefore, the mean should be
used only when we are working with continuous data, although some-
times we find it being used with ordinal data as well. The median does not
require us to sum observations, and thus it can be used with continuous
and ordinal data, but it also cannot be used with nominal data. The mode
can be used with all types of data because it simply says which level of the
variable occurs most frequently. Day 3, Tuesday, is the modal value for the
days of the week as it occurs 9 times, more than any other day.

The mean is affected by extreme values, whereas the median is not.
Hence, if we are studying a variable such as income which has some
extremely large values, that is, it is is positively skewed, the mean will
reflect these large values and move away from the center of the data. The
median is unaffected, and it remains at the center of the data. For data that
are symmetrically distributed or approximately so, the mean and median
will be the same or very close to each other. The calories and vitamin A
variables demonstrate situations in which the mean is close to the center
(calories) as well as when it has moved away from the center (vitamin A).
As was mentioned above, the caloric intake ranged from 1053 to 4322 for
the 33 observations. The sample mean was 2313.8 and the sample median
was 2310. These values are very similar as there were no extremely high
caloric intakes. The corresponding observations for vitamin A show some
relatively high intakes. Two values are above 12,000 international units
(IU), and these values have caused the mean of 5326.3 IU to be larger than
the median of 4535 IU. The median might be the more appropriate measure
of central tendency in this case because it is unaffected by the two relatively
large values.

C. The Geometric Mean

Another measure of central tendency is used when the numbers reflect
population counts that are extremely variable. For example, in a laboratory
setting, the growth in the number of bacteria per area is examined over
time. The number of microbes per area does not change by the same
amount from one period to the next, but the change is proportional to the
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number of microbes that were present during the previous period. An-
other way of saying this is that the growth is multiplicative, not additive.
The areas under study may also have used different media, and the mi-
crobes may not do well in some of the media, whereas in other media the
growth is explosive. Hence we may have counts in the hundred or thou-
sands for some cultures and in the millions or billions for other cultures.
The arithmetic mean would not be close to the center of the values in
this situation because of the effect of the extremely large values. The me-
dian could be used in this situation; however, another measure that is used
in these situations is the geometric mean. The sample geometric mean for n
observations is the nth root of the product of the values, that is,

X = Vi sxp* - -5,

Note that because the nth root is used in its calculation, the geometric
mean cannot be used when a value is negative or zero.

This definition of the geometric mean is completely analogous to the
definition of the arithmetic mean. The arithmetic mean is the value such
that if we add it to itself n — 1 times, it equals the sum of all the observa-
tions. It is found by summing the observations and then dividing the sum
by n, the sample size. Because in the situation above we are dealing with
data resulting from a multiplicative process, our measure of central ten-
dency should reflect this. The geometric mean is the value such that if we
multiply it by itself n — 1 times, it equals the product of all the observa-
tions. It is found by multiplying the observations and then taking the nth
root of the product.

When n is 2, there is little difficulty in finding the geometric mean as
the product of the two observed values is usually not large and we know
that the second root is the square root. For larger values of n, however, the
product of the observed values may become very large and we may lose
some accuracy in calculating it, even when we use a computer. Fortunately
there is another way of calculating the product of the observations that
does not cause any accuracy to be lost.

We can transform the observations to a logarithmic scale. Use of the
logarithmic scale provides for accurate calculation of the geometric mean.
After finding the logarithm of the geometric mean, we transform the value
back to the original scale and have the value of the geometric mean. In this
section, we use logarithms to the base 10 although other bases could be
used.

To understand what we mean by logarithm, consider some positive
number y. The base 10 logarithm of y is x where x satisfies the relation that
10* equals y. For example, the base 10 logarithm of 10, often written as
log10(10), is 1 because 10! is 10. The value of logio(100) is 2 because 102
equals 100. The value of log;o(1000) is 3 because 103, equal to 10 * 10 * 10, is
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1000. Therefore, base 10 logarithms of numbers between 10 and 100 will be
between 1 and 2, base 10 logarithms of numbers between 100 and 1000 will
be between 2 and 3, and so on. There are tables as well as keys on calcula-
tors and commands in MINITAB that can be used to find logarithms of
positive numbers. Figure 4.11 shows a plot of base 10 logarithms of posi-
tive numbers up to 40.

The logarithms have negative values for numbers between 0 and 1.
For example, using the definition of logarithms, the base 10 logarithm of
0.1(=110=10"1Yis —1.

A key property of the logarithmic transformation is that the level of the
mathematical operation performed on the arithmetic scale is reduced a
level when the logarithmic scale is used. For example, a product on the
arithmetic scale becomes a sum on the logarithmic scale. Therefore the
logarithm of the product of n values is

log(xy # xp % « - - % x,) = Z log x;.
i=1

In addition, taking the nth root of a product on the arithmetic scale be-
comes division by n on the logarithmic scale, that is, finding the mean
logarithm. In symbols, this is

n
>, logio x;
<
X xy % xp %+ - -k x, = —————— - = logyo x.
10
w
E
£
.E
]
(=
o
-
o 0.04
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SIEBISIERN M Plot of base 10 logarithms of positive numbers up to 40.
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We now have the logarithm of the geometric mean, and to obtain the
geometric mean, we must take the antilogarithm of the mean logarithm,
that is,

% = antilog (logo x)

Suppose that the number of microbes observed from six different areas-
are 100, 100, 1000, 1000, 10,000, and 1,000,000. The geometric mean is
found by taking the logarithm of each observation and then finding the
mean logarithm. The corresponding base 10 logarithms are 2, 2, 3, 3, 4, and
6 and their mean is 3.33. The geometric mean is the antilog of 3.33, which is
2154.43. The arithmetic mean of these observations is 168,700, a value
much larger than the geometric mean and also much larger than five of the
six values. The usual mean does not provide a good measure of central
tendency in this case. The value of the median is the average of the two
middle values, 1000 and 1000, giving a median of 1000 which is of the same
order of magnitude as the geometric mean.

The geometric mean has also been used in the estimation of population
counts, for example, of mosquitos, through the use of capture procedures
over several time points or areas. These counts can be quite variable by
time or area; hence, the geometric mean is the preferred measure of central
tendency in this situation too.

These are the more common measures of central tendency employed in
the description of data. The value of the central tendency does not com-
pletely describe the data, however. For example, consider the nine obser-
vations of calories made on day 3:

1823 2685 2842 2330 2301 1781 2773 2310 1723.

Suppose that the four smallest observations were decreased by 1000 calo-
ries and the four largest were increased by 1000 calories. The values would
now be the following:

823 3685 3842 3330 1301 781 3773 2310 723.

The means and medians of these two data sets are the same, yet the
sets are very different. The sample mean of 2285.3 and the sample median
of 2310 capture the essence of the first data set. In the second data set,
however, the measures of central tendency are less informative as only one
value is close to the mean and median. Therefore, some additional charac-
teristics of the data must be used to provide for a more complete summary
and description of the data and to distinguish between dissimilar data sets.
The next section deals with this additional characteristic, the variability of
the data.
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IV. MEASURES OF VARIABILITY

The observations in the second set above varied much more than those in
the first set, but the means were the same. Hence to provide for a more
complete description of the data, we need to include a measure of its
variability. A number of measures or values—the range, the interquartile
range, selected percentiles, the variance, the standard deviation, and the
coefficient of variation—are used to describe the variability in data.

A. Range and Percentiles

The range is defined as the maximum value minus the minimum value. It
is simple to calculate and it provides some idea of the spread of the data.
For the first data set above, the range is the difference between 2842 and
1723, which is 1119. In the second data set the range is found by subtract-
ing 723 from 3842, which yields 3119. The large difference in the two
ranges points to a difference between the two data sets. Although the
range can be informative, the range has two major deficiencies: (1) it ig-
nores most of the data since only two observations are used in its defini-
tion; and (2) its value depends indirectly on sample size. The range will
either remain the same or increase as more observations are added to a
data set; it cannot decrease. A better measure of variability would use more
of the information in the data by using more of the data points in its
definition and would not be dependent on sample size.

The interquartile range, the difference between the 75th and 25th per-
centiles (also called the third and first quartiles) uses more information
from the data than does the range. In addition, the interquartile (or semi-
quartile) range can either increase or decrease as the sample size increases.
The interquartile range is a measure of the spread of the middle 50 percent
of the values. Finding the value of the interquartile range requires that the
first and third quartiles be specified and there are several reasonable ways
of calculating them. We use the following procedure to calculate the 25th
percentile for a sample of size n:

1. If (n + 1)/4 is an integer, then the 25th percentile is the value of the
(n + 1)/4th smallest observation.

2. If (n + 1)/4 is not an integer, then the 25th percentile is a value
between two observations. For example, if nis 22, (n + 1)/4is (22 + 1)/4 =
5.75. The 25th percentile then is a value three-fourths of the way between
the 5th and 6th smallest observations. To find it, we sum the 5th smallest
observation and 0.75 of the difference between the 6th and 5th smallest
observations.

The sample size is 9 for the two data sets above. According to our
procedure, we first calculate (9 + 1)/4, which is 2.5. Hence the 25th percen-
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tile is a value halfway between the second and third smallest observations.
When the value is halfway between two observations, the above formula
reduces to the average of the two observations. Therefore, for the first data
set, the 25th percentile is (1781 + 1823)/2, which is 1802. For the second
data set, the value is (781 + 823)/2 = 802. The 75th percentile is found in the
same way except that we use 3#(n + 1)/4 in place of (n + 1)/4. The 75th
percentiles are 2729 and 3729 for the first and second data sets, respec-
tively. Hence the interquartile ranges are 2729 — 1802 = 927 and 3729 —
802 = 2927 in the two data sets. These values show that there is relatively
little difference in caloric intake in the middle 50 percent of boys in the first
data set, whereas there is a tremendous spread, more than three times as
large as that in the first data set, in caloric intake in the middle 50 percent of
the boys in the second set. The interquartile range in the second set sug-
gests that there is tremendous variability in the data and that the measures
of central tendency are of far less interest than in the first data set.

The values of five selected percentiles—10th, 25th, 50th, 75th and
90th—when considered together provide good descriptions of the central
tendency and the spread of the data. When the sample size is very small,
however, the calculation of the extreme percentiles is problematic. For
example, when n is 5, it is difficult to determine how the 10th percentile
should be calculated. Because of this difficulty and also because of the
instability of the extreme percentiles for small samples, we calculate them
only when the sample size is reasonably large, say larger than 30. There-
fore we calculate these percentiles for the caloric intake of all 33 boys in
Table 4.1 instead of using only the nine observations from day 3. In calcu-
lating the first and ninth deciles (10th and 90th percentiles), we use the
same idea that was used with the quartiles.

Table 4.7 shows the sorted caloric intakes. The 50th percentile, the
median, was already found to be 2310 calories. The 25th percentile is based
on (n + 1)/4, which equals 8.5. Therefore the 25th percentile is the average
of the 8th and 9th smallest observations. In this case, the 8th and 9th
smallest values are 1823 and 1843, respectively. Thus the first quartile value
is 1833 calories. The third quartile, the 75th percentile, is based on 3*(n +
1)/4, which is 25.5. Therefore the third quartile is the average of the 25th
and 26th smallest values.

For these data the third quartile is (2685 + 2748)/2, which is 2716.5
calories. The first decile, the 10th percentile, is based on (n + 1)/10, which
is 3.4 for these data. Therefore the first decile is the sum of the third
smallest value, 1505 calories, plus 0.4 times the difference between the
fourth and third smallest values. The first decile is then 1505 plus 0.4
multiplied by 1645-1505, which is 1561 calories. The ninth decile is calcu-
lated in a similar fashion and found to be 3196.6 calories.

The values of the five percentiles are thus 1561, 1833, 2310, 2716.5, and
3196.6 calories. These values tell us that an intake of less than 1561 calories
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is somewhat unusual, with only 10 percent of the sample having an intake
less than that. Intakes greater than 3197 calories are also somewhat un-
usual, with only 10 percent of the sample having values greater than that.
The middle 50 percent of the sample have intakes between 1833 and 2717
calories and 50 percent of the sample have intakes greater than 2310 calo-
ries. These five numbers provide a good summary of the central tendency
and the variability in the caloric intakes of the sample. Other values, for
example, the 5th and 95th percentiles or the minimum and maximum, are
sometimes used in place of the 10th and 90th percentiles. The next measure
of variability to be discussed is the variance but, before considering it, we
discuss the box plot because of its relationship to the five percentiles.

The box plot graphically gives the approximate location of the quartiles,
including the median, and the extreme values. The box plot can also reveal
whether or not the data are symmetrically distributed. The figure in Box
4.11 is a box plot of the vitamin A data from Table 4.1.

The lower and upper ends (hinges) of the box mark approximate loca-
tions of the first and third quartiles, respectively, and the plus symbol
gives the approximate location of the median. The first quartile is thus
approximately 2250 IU, the median is approximately 4500 IU, and the third
quartile is about 8000 IU. The dashes (whiskers) indicate how far the data
extend beyond the hinges. The difference between the upper and lower
hinges is approximately the interquartile range, about 5750 IU. If any val-
ues are very unusual, they are indicated by either an asterisk or a zero.
Unusual points are identified in relation to the interquartile range. Values
from [1.5 to 3 times the interquartile range] less (greater) than the lower
(upper) hinge are represented by an asterisk. Values more than 3 times the
interquartile less (greater) than the lower (upper) hinge are represented by
a zero. There are no very unusual values for the vitamin A data according
to these criteria. The distance from the median to the third quartile is much

The vitamin A data from Table 4.4 are entered into cl.
MTB > boxp cl

+ + + + + + c1
0 2500 5000 7500 10,000 12,500
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greater than the corresponding distance to the first quartile, and the whis-
kers in the upper tail extend much further than the whiskers in the lower
tail of the distribution. This picture makes it very clear that the vitamin A
data are very skewed.

Box 4.12 shows how to create box plots for subgroups.

MINITAB BOX 4.12

The systolic blood pressure data are treated as coming from two groups to demon-
strate the BY subcommand, which is an option of the BOXPLOT statement. The
first group contains the first 50 values and the second group contains the other set
of 50 values. This is easily accomplished in MINITAB as the following commands
show. First a column is created in which 50 ones are followed by 50 twos. This
column, ¢12, is used with the BY subcommand in the BOXPLOT statement as
shown,

MTB > set clz2

DATA> 50(1) 50(2)

DATA> end
The number before the parentheses tells how many of the values in the parenthe-
ses are to be created, in this case 50 ones and 50 twos.

MTB > boxp c¢8;
SUBC> by cl2.

c12
1 ————— I S S —
P I + I *
+ + + + + +C8
84 96 108 120 132 144

The use of the BY subcommand makes it possible to visually compare two or more
distributions. The first 50 blood pressure values appear to be more symmetrically
distributed than the second set, to have less variability and no extreme values, and
to have a slightly higher median value.

C. Variance and Standard Deviation

The variance and its square root, the standard deviation are the two most
frequently used measures of variability and both use all the data in their
calculations. The varignce measures the variability in the data from the
mean of the data. The population variance, denoted by o2, for a population
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of size N is defined as

N
2 (x; — IJ«)2
_ il
o? N
For a sample of size n, the sample variance, s?, an estimator of 2, is defined
by .
> (= %2
2 =1
s ——

The population variance could be interpreted as the average squared differ-
ence from the population mean and the sample variance has almost the
same interpretation about the sample mean.

The variance uses the sum of the squared differences from the mean
and the sample variance uses n — 1 in its denominator. Why were the
squared differences chosen for use instead of the differences themselves?
Perhaps Table 4.8 will clarify this. The sum of calories minus the mean,
which would be zero except for rounding, must be zero because the posi-
tive differences cancel the negative differences.

Additionally, why is n — 1 used instead of n in the denominator of the
sample variance? It can be shown mathematically that the use of n results
in an estimator of the population variance that on the average slightly
underestimates it. The following gives some feel for the use of n — 1.

In the formula for the sample variance, the population mean is esti-
mated by the sample mean. This estimation of the population mean re-
duces the number of independent observations to n — 1 instead of n, as is
shown next.

Differences and Squared Differences from the Mean far the Nine
Observations of Day 3 Caloric Intake

Sample Calories (Calories

Calories mean — mean — mean)?
1,823 2,285.33 —462.33 213,749
2,685 2,285.33 399.67 159,736
2,842 2,285.33 556.67 309,881
2,330 2,285.33 44.67 1,995
2,301 2,285.33 15.67 246
1,781 2,285.33 —~504.33 254,349
2,773 2,285.33 487.67 237,822
2,310 2,285.33 24.67 609
1,723 2,285.33 -562.33 316,215

Total 20,568 20,567.97 0.03 1,494,602
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For example, you are told that there are three observations and that
two of the values along with the sample mean are known. Can you find the
value of the other observation? If you can, this means that there are only
two independent observations, not three, once the sample mean is calcu-
lated. Suppose that the two values are 6 and 10 and the sample mean is 9.
As the mean of the three observations is 9, this indicates that the sum of
the values is 27 and that the unknown value is 27 — (6 + 10), which is 11. In
this sample of size 3, given knowledge of the sample mean, only two of the
observations are independent or free to vary. Hence once a parameter, in
this case the population mean, is estimated from the data, it reduces the
number of independent observations (degrees of freedom) by one. To account
for this reduction in the number of independent observations, n — 1 is used
in the denominator of the sample variance.

For the nine caloric values in Table 4.8, the nine values from the first of
the two data sets given above, the value of the sample variance is 1,494,602/
(9 — 1), which is 186,825.3. This number is large, but is hard to interpret as
it is in squared units. Because of this, the square root of the sample vari-
ance, called the sample standard deviation, is also often used as a measure of
variability. The sample standard deviation, s, on the average slightly un-
derestimates the population standard deviation o. For these data, the
value of the standard deviation is V'186,825.3, which is 432.2. The sample
variance and standard deviation for the nine values in the second data set
are 1,937,325.2 and 1391.9, respectively, values much larger than the corre-
sponding statistics for the first nine values. These statistics reflect, as they
must, the much greater variation in the second data set than in the first
data set.

The above calculations showed how the variance changed with non-
constant changes in the data. How does the value of the variance change
when (1) a constant is added to (subtracted from) all the observations in the
data set and (2) all the observations are multiplied (divided) by a constant?

The answer to the first question is that there is no change in the value
of the variance as can be seen from the following. If all the observations are
increased by a constant, say by 10 units, the mean is also increased by the
same amount. Therefore, the constants simply cancel each other out in the
squared differences, that is,

[ + 10) = (u + 10)2 = (x; — p)?

and thus there is no change in the sum of the squared differences or in the
variance.

When all the observations are multiplied by a constant, the variance is
multiplied by the square of the constant as can be seen from the following.
If all the observations are multiplied by a constant, say by 10, the mean is
also multiplied by the same amount. Therefore in the squared differences
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we have
[(x * 10) — (u * 1)1 = [( — p) * 1012 = (x; — p)? * 107

and the sum of the squared differences, and thus the variance, is multi-
plied by the constant squared. This means that the standard deviation is
multiplied by the constant. These two properties will be used in Chapter 6.

In later chapters, the variance and the standard deviation are shown to
be the most appropriate measures of variation when the data come from a
normal distribution, as knowledge of them and the mean is all that is neces-
sary to completely describe the data. The normal distribution is the bell-
shaped distribution often used in the grading of courses; it is the most
widely used distribution in statistics. The interquartile range and the five
percentiles are useful statistics for characterizing the variation in data re-
gardless of the distribution from which the data are selected, but they are
not as informative as the mean and variance are when the data come from a
normal distribution.

One last measure of variation is the coefficient of variation, defined as 100
percent times the ratio of the standard deviation to the mean. In symbols
this is (o/u) * 100 percent, and it is estimated by (s/x) * 100 percent. The
coefficient of variation is a relative measure of variation, because dividing
by the mean directly takes the magnitude of the values into account. Large
values of the coefficient suggest that the data are quite variable.

The coefficient of variation has several uses. One use is in comparison
of the precision of different studies. If another experiment has a coefficient
of variation much smaller than that in your study of the same substance,
this suggests that there may be room for improvement in your study proce-
dures. Another use is in determination of whether or not there is so much
variability in the data that the measure of central tendency is of little value.
For example, the National Center for Health Statistics (NCHS) does not
publish sample means for variables if the estimated coefficient of variation
is greater than 30 percent.

Let us calculate the estimated coefficients of variation for our two sets
of nine observations. For the first set, s was 432.2, and for the second set,
1391.9. The sample mean was 2285.3 in both sets which leads to coeffi-
cients of variation of 18.9 percent [= (432.2/2285.3) * 100%] and 60.9 per-
cent in sets 1 and 2, respectively. These values reinforce our feeling that the
mean provided useful information in the first set, but was of less value in
describing the data in the second set.

Box 4.13 shows how to calculate descriptive statistics.

Box 4.14 shows how to sort data for the calculation of the median and
other percentiles. The sorted data facilitate the calculation of the percen-
tiles because the data are ordered by size. For example, in the text we
stated that the first decile (the 10th percentile) of the 33 calorie values is
found by taking the third smallest calorie value plus 0.4 times the differ-
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MINITABBOX 4.13

We use the DESCRIBE (or DESC for short) command to calculate the descriptive
statistics for the data stored in columns and to read the output.

MTB > desc cl-c4

N MEAN MEDIAN TRMEAN STDEV ~ SEMEAN
vit A 33 5326 4535 5127 3364 586
calories 33 2314 2310 2281 668 116
tot fat 33 90.39 83.00 86.24 42 .84 7.46
protein 33 84.85 84.00 83.31 33.89 5.90
MIN MAX Ql Q3
vit A 820 12812 2265 8275
calories 10563 4322 1833 2717

tot fat 25.00 227.00 65.50 118.00
protein 23.00 172.00 63.00 98.50

Most of the column headings are clear. STDEV stands for standard deviation and
the first and third quartiles are indicated by Q1 and Q3. SEMEAN will be discussed
later, but it stands for the standard error of the mean and is found by dividing
STDEV by the square root of N. TRMEAN stands for trimmed mean and it attempts
to remove the effect of the extreme observations from the calculation of the mean. It
does this by removing the smallest and largest 5 percent of the values and then
calculates the mean of the remaining observations. With 33 values, 5 percent of 33
is 1.65 and this is rounded to 2. Hence the two smallest and two largest values are
deleted and the mean is calculated on the remaining 29 values.

ence between the third and fourth smallest values. From ¢9, the third and
fourth smallest values are easily seen to be 1505 and 1645 and the first
decile is then 1505 + 0.4 * 140, which equals 1561.

The coefficient of variation (CV) is not part of the output from Box 4.13
and thus additional MINITAB commands are required to find its value, as

MINITAB BOX 4.14

The SORT command is used to rearrange the data. In the following, c9 will receive
the sorted calorie values.

MTB > sort 'calories' c¢9
MTB > print c¢9

C9
1053 1292 1505 1645 1723 1753 1781 1823 1843 1898 2000
2007 2011 2039 2074 2301 2310 2330 2340 2348 2400 2436
2546 2594 2685 2748 2773 2842 3049 3076 3277 3532 4322
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is shown in Box 4.15. Thus the CV for calories for these 33 boys is almost 29
percent, denoting a large variation in these values.

MINITAB BOX 4.15

In the following, k1 is the name of the variable that contains the standard deviation
of the data stored in column ¢2 and k2 is the name of the variable that contains the
mean. MINITAB uses the letter k followed by a number to identify a single value.

MTB > stdev c2 Kkl

ST.DEV. = 667.89
MTB > mean c2 k2
MEAN = 2313.8

The CV is 100 percent times the ratio of k1 to k2, and k3 will contain that value.
MTB > let k3=(kl/k2)=100

MTB > print k3
K3 28.8655

MINITAB BOX 4.16

First we enter the data used in the example for calculating the geometric mean.

MTB > set cl0
DATA> 100 100 1000 1000 10000 1000000
DATA> end

We next require the logarithms and we use those with 10 as the base; the LET
command is used again.

MTB > let cll=logten(clQO)
MTB > print cll
Cll
2.00000 2.00000 3.00000 3.00000 4.00000 6.00000

The next step is to find the mean of the logarithms and then take the antilogarithm
of the mean. This value is the geometric mean.

MTB > mean cll k4

MEAN = 3.3333
MTB > antilog k4 kb5
ANSWER = 2154.43

Thus the geometric mean is 2154.43 for these data, the same value reported earlier
in this chapter.

Box 4.16 illustrates the calculation of the geometric mean.
As can be seen from this material, MINITAB is easy to use and it can
greatly reduce the burden of the calculations. Other software could be used
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instead of MINITAB. Regardless of the software used, you are encouraged
to use the computer in carrying out the calculations to allow time for
thinking about what you are analyzing and why.

V. RATES: CRUDE, SPECIFIC, AND ADJUSTED

The rates of diseases and vital rates, which include death rates in general,
infant mortality rates, feto-infant, neonatal, and postneonatal mortality
rates, and birth rates, are frequently used measures in public health. These
rates are useful in determining the health status of a population, in moni-
toring the health status over time, in comparing the health status of popu-
lations, and in assessing the impact of policy changes.

For example, the infant mortality rate is often used in comparing the
performance of health systems in different countries. In 1988, the United
States had an infant mortality rate higher than that of 22 other nations. The
U.S. rate was 10.0 infant deaths under 1 year of age per 1000 live births
compared with a low rate of 4.8 for Japan. Most of the Western European
nations and some Pacific Rim nations (Japan, Singapore, and Hong Kong)
had lower rates than the United States. Canada’s health system is often
touted as a model for the United States because of its lower cost. How does
Canada’s infant mortality rate compare with that of the United States?
Canada’s infant mortality rate in 1988 was 7.2, almost 30 percent lower
than the U.S. rate. The progress in reducing infant mortality has been most
impressive as can be seen from the U.S. rate for 1967 of 22.4 shown in
Figure 1.1 and the 1988 rate of 10.0.

As can be seen from the following definition, a rate is basically a mean
multiplied by a constant. A rate is defined as the product of two parts: (1)
the number of persons who have experienced the event of interest divided
by the population size; and (2) a standard population size. For example,
according to the data compiled by the Harris County Health Department,
there were 15,585 deaths in an estimated population of 2,942,550 in Harris
County, Texas, in 1986. The corresponding death rate per 100,000 is found
by taking (15,585/2,942,550) * 100,000, and it equals 529.6 deaths per
100,000 population. This is considerably lower than the corresponding rate
for the United States of 873.2 deaths per 100,000. This difference will be
explored in a later section.

As is often the case with rates, however, there is a problem in deter-
mining the value of the denominator, that is, the 1986 Harris County
population. What is meant by the 1986 population size? Is it as of January
1, July 1, December 31, or some other date? Convention is that the popula-
tion size in the middle of the period (mid-1986) is used. An additional
problem is that census data were available for 1980 but not for 1986 which
introduces some uncertainty in the value used. In this case, the Harris
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County Health Department used an estimate of the 1986 population based
on projections from the Texas Department of Health. The uncertainty in
the value of the denominator of the rate should be of little concern given
the magnitude of the numbers involved in this situation.

Death rates are usually expressed per 1000 or per 100,000 population.
As was mentioned above, infant mortality rates are expressed per 1000 live
births with the exception of feto-infant mortality rates. Feto-infant mortal-
ity rates are based on the number of late fetal deaths plus infant deaths
under 1 year per 1000 live births plus late fetal deaths. Neonatal mortality
rates are based on deaths of infants who were less than 28 days old, and
postneonatal rates are based on deaths of infants between 28 and 365 days
of age. This split of infant deaths is useful because often the neonatal
deaths may be the result of genetic factors, whereas the postneonatal
deaths may have more to do with the environment. The birth rate is de-
fined as 1000 times the ratio of the number of live births to the population
size.

Note that as the infant mortality rate example in Chapter 1 showed, the
children whose deaths are used in the conventional method of calculating
this rate may have been born in 1987, not 1988. Hence the numerator, the
number of deaths, comes from both 1987 and 1988 births, whereas the
denominator is based solely on 1988 births. This should cause no problem
unless something happened that caused the mortality experience or the
number of births to differ greatly between the two years. One way of
dealing with this possibility of a difference between the years is to combine
several years of data. Often health agencies pool data over 3 years to
provide protection against the instability of small numbers and to reduce
the possible, but unlikely, effect of very different birth or mortality experi-
ences across the years.

A. Crude and Specific Rates

Rates may be either crude or specific. Crude rates use the total number of
events in their definition, whereas specific rates apply to subgroups in the
population. For example, there may be age-, gender-, or race-specific death
rates. For an age-specific death rate, only the deaths of individuals in the
specific age group are used in the numerator and the denominator is the
total number of individuals in the specific age group. Specific rates are used
because they supply more information and also allow for more appropriate
comparisons of groups.

For example, perhaps the difference seen above in the Harris County
and U.S. death rates for 1986 is related to age. The age-specific rates,
shown in Table 4.9, provide a better description of the mortality experience
than the crude rates of 529.6 and 873.2 for Harris County and the United
States, respectively. This table shows that those less than 25 years old in
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Age-Specific Mortality Rates per 100,000 for Harris County, Texas,
and the United States as well as U.S. Deaths and Population
for 1986

Deaths per
100,000 in United States
Harris United Deaths Population
Age County  States’ (in 1000s)
0-4 250.2 255.4 46.4 18,152
5-14 19.6 26.0 8.8 33,860
15-24 99.8 102.3 39.9 39,021
25-34 146.8 132.1 56.5 42,779
35-44 218.5 212.9 70.4 33,070
45-54 464.7 504.8 115.2 22,815
55-64 1320.2 1255.1 279.0 22,232
65-74 2832.8 2801.4 485.5 17,332
=75 8101.1 8470.9 1002.6 11,836
Total 2104.3 241,097

« Rates may not exactly equal the ratio of deaths to popula-
tion because of rounding.
Sources: “Health, United States, 1990,” Tables 1 and 23 (4)
and “The Health Status of Harris County Residents, 1980~
1986,” Tables 3.F and Appendix (5).

Harris County have lower mortality rates than the corresponding U.S.
groups, but from then on the results are mixed. Without knowledge of the
age distributions, it is difficult to conclude whether or not the age variable
is responsible for the difference in the crude rates.

As shown above, one problem with the use of specific rates is that they
are not easily summarized. They do provide more information than the
crude rate which gives a single value for a population, but sometimes it is
difficult to draw a conclusion based on the examination of the specific
rates. However, because of the strong linkage between mortality and age,
age often must be taken into account in the comparison of two or more
populations. One way of adjusting for age or other variables while avoid-
ing the problem of many specific rates is to use adjusted rates.

B. Adjusted Rates

Adjusted rates are weighted rates as is shown below. There are direct and
indirect methods of adjustment; the choice of which method to use de-
pends on what data are available. The direct method requires that we have
the specific rates for each population and a standard population. Table 4.9
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provides the age-specific death rates for both populations of interest. The
standard population provides a referent for purposes of comparison. To pro-
vide more stable values, the standard population is usually larger than the
population(s) under study. The choice of a standard population is subjec-
tive. For example, in comparing the rates between states, often the U.S.
population would be used as the standard. In comparing counties of a
state, the state population often would be used as the standard. For com-
paring rates over time, the population at a previous time point could be
used as the standard. Another alternative might be to pool the populations
of the areas or times under study and use the pooled population as the
standard. In performing the age adjustment here, we have decided to use
the 1986 U.S. population shown in Table 4.9 as the standard. The age-
adjusted rate for Harris County differs from its crude rate, reflecting the
effect of using the 1986 U.S. age distribution.

The adjustment process consists of applying the Harris County age-
specific mortality rates to the standard population’s age distribution and
then summing the expected number of deaths over the age categories.
Another way of saying this is that each age category’s mortality rate is
weighted by that age category’s share of the standard population. Table
4.10 shows the calculation of age-adjusted death rate for Harris County by
the direct standardization method. Hence the direct age-adjusted death
rate for Harris County using the United States as the standard population
is 860.9 deaths per 100,000 population, quite a contrast to the crude rate of
529.6 and very close to the U.S. rate of 873.2. The difference in crude rates
between Harris County and the United States can be accounted for by the

Direct Method of Adjusting the 1986 Harris County Death Rate
Using 1986 U.S. Population as the Standard

Harris County Population

U.S. Expected
Specific population deaths
rates proportion per 100,000
Age Number Proportion ¥V ) 1) * (2
0-4 253,776 0.0862 250.2 0.0753 18.84
5-14 469,446 0.1595 19.6 0.1404 2.75
15-24 489,053 0.1662 99.8 0.1618 16.15
25-34 640,813 0.2178 146.8 0.1774 26.04
35-44 444,366 0.1510 218.5 0.1372 29.98
45-54 275,007 0.0935 464.7 0.0946 43.96
55-64 190,352 0.0647 1320.2 0.0922 121.72
65-74 111,870 0.0380 2832.8 0.0719 203.68
=75 67,867 0.0231 8101.1 0.0491 397.76

Total 2,294,550 1.0000 0.9999 860.88
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difference in the age distributions. As shown in Table 4.10, Harris County
had proportionately far fewer persons over 55 years of age than did the
United States and this contributed to its much lower crude death rate.
After adjustment for the age distribution, there was little difference be-
tween the Harris County and U.S. death rates in 1986.

The indirect method is an alternative to be used when we do not have the
data required for the direct method or when the specific rates may be
unstable because they were based on small numbers. The indirect method
requires the specific rates for the standard population and the age (or, e.g.,
gender or race) distribution for the population to be adjusted. It is more
likely that these data will be available than the age-specific death rates in
the population to be adjusted. The first step in calculating the indirect age-
adjusted death rate is to multiply the age-specific death rates of the stan-
dard (U.S.) population by the corresponding age distribution of the popu-
lation to be adjusted (Harris County). Table 4.11 shows this calculation for
the Harris County data; in this example we ignore the availability of the
Harris County age-specific death rates. The observed crude death rate for
Harris County is 529.6 and the expected rate when the U.S. age-specific
mortality rates are applied is 534.6. The ratio of observed to expected death
rates, the standardized mortality ratio, is 0.99 which indicates that Harris
County’s death rate is very similar to that of the United States once age is
taken into account. To find the indirect age-adjusted death rate for Harris
County, we now multiply the crude rate for the standard population, the
United States, by the value 0.99. Thus the indirect age-adjusted mortality
rate for Harris County is 0.99 x 873.2, which equals 864.5 deaths per
100,000 population.

The First Step in the Calculation of the 1986 Indirect Age-Adjusted
Death Rate for Harris County Using the Estimated 1986 U.S.
Population as the Standard

Harris County . U.S. age-specific _  Expected deaths

Age age distribution death rates per 100,000 per 100,000

0-4 0.0862 255.4 22.0

5-14 0.1595 26.0 4.1
15-24 0.1662 102.3 17.0
25-34 0.2178 132.1 28.8
35-44 0.1510 212.9 32.1
45-54 0.0935 504.8 47.2
55-64 0.0647 1255.1 81.2
65-74 0.0380 2801.4 106.5
=75 0.0231 8470.9 195.7

Total 1.0000 534.6
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In this case, both the direct and indirect age-adjusted death rates for
Harris County are very similar to one another and to the U.S. crude rate.
The difference in the crude death rates between the United States and
Harris County disappeared once the age distributions were taken into
account.

The calculation of adjusted rates can be easily done with MINITAB. For
example, the calculation of the indirect adjusted rate above is demon-
strated in Box 4.17.

MINITAB BOX 4.17

Column c1 contains the Harris County age distribution, and ¢2 contains the U.S. age-specific death
rates. The constant k1 contains the crude death rate for Harris County, k2 contains the crude death rate
for the United States, and k3 contains the standardized mortality ratio.

MTB > set ¢l

DATA> .0862 .1595 .1662 .2178 .1510 .0935 .0647 .0380 .0231
DATA> set c2

DATA> 255.4 26.0 102.3 132.1 212.9 504.8 1255.1 2801.4 8470.9
DATA> end

MTB > mult ¢l ¢2 c¢3
MTB > sum ¢3 k3
SUM = 534.62
MTB > let kl=529.6
MTB > let k2=873.2
MTB > let k4=(k1l/k3)*k2
MTB > print k4
K4 865.003

Note that MINITAB’s value for the indirect age-adjusted mortality rate
is 865.003, slightly larger than the value of 864.5 found above. This differ-
ence is due to our use of only two decimal places for the standardized
mortality rate instead of the more precise value used by MINITAB.

It is possible to adjust for more than one variable at a time; for example,
age and gender are often used together. Gender is frequently used because
the mortality experiences are often quite different for females and males.

Vi. CORRELATION COEFFICIENTS

Earlier in the chapter, we presented a scatter plot of protein and total fat,
and we concluded that there was a strong, although imperfect, positive
association between protein and fat. Although this statement is informa-
tive, it is imprecise. To be more precise, a numerical value that reflects the
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strength of the association is needed. Correlation coefficients do just that; that
is, they reflect the strength of association.

A. Pearson Correlation Coefficient

The most widely used measure of association between two variables, X
and Y, is the Pearson correlation coefficient denoted by p (rho) for the popula-
tion and by r for the sample. This measure is named after Karl Pearson, a
leading British statistician of the late 19th and early 20th century, for his
role in the development of the formula for the correlation coefficient.

We want the correlation coefficient to be large, approaching +1 as a
limit, as the values of the X, Y pair show an increasing tendency to be large
or small together. When the values of the X, Y pair tend to be opposite in
magnitude, that is, a large value of X with a small value of Y or vice versa,
the measure should be large negatively, approaching ~1 as the limit. If
there is no overall tendency of the values of the X, Y pairs, the measure
should be close to 0.

By large or small, we mean in relation to its mean. Because of the above
requirements for the correlation coefficient, one simple function that may
be of interest here is the product of x; — X and y; — ¥. Let us focus on the
sign of the differences, temporarily ignoring the magnitude. The possibili-
ties are the following:

Xi— X yi—y Product
+ + +
- - +
+ — —
—_ + —_

The product of the differences does what we want; that is, it is positive
when the X, Y pairs are large or small together and negative when one
variable is large and the other variable is small. The sum of the products of
the differences over all the sample pairs should give some indication of
whether there is a positive, negative, or no association in the data. If all the
products are positive (negative), the sum will be a large positive (negative)
value. If there is no overall tendency, the positive terms in the sum will
tend to cancel out with the negative terms in the sum, driving the value of
the sum toward zero.

The value of the sum of the products depends on the magnitude of the
data. As we want the maximum value of our measure to be 1, we must do
something to remove the dependence of the measure on the magnitude of
the values of the variables. If we divide the measure by something reflect-
ing the variability in the X and Y variables, this should remove this depen-
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dence. The actual formula for r, reflecting these ideas, is

2<x—x)*(y, )

\/—i (xi — X * 2 @i — 97

Dividing the numerator and denommator of this formula by n — 1 enables
us to rewrite the formula in terms of familiar statistics, that is,

;(x,-—i)*(yf—w(n - 1)

In this version, we used the formula for the sample variance, that is,

= X(x; — ¥)?/(n — 1). The sample variance can also be expressed as s? =
2(x; — X) * (x; — x)/(n — 1). Hence the sample variance could be said to
measure how the X variable varies with itself. The numerator looks very
similar to this, and it measures how the variables X and Y covary.

The denominator, Vs? * s7, standardizes r so that it varies from 1 to
+1. For example, ify = X then the numerator becomes 2(x; — X)?/(n — 1),
that is, s2, which is the same as the denominator and their ratio is +1.

We can use MINITAB to find r for the protein and total fat data from
Table 4.1, as shown in Box 4.18. This value shows that protein and total fat
have a strong positive association with one another.

MTB > corr ¢3 c4
Correlation of C3 and C4 = 0.648

The following example shows that p is not a general-purpose measure
of association, but that it measures linear association, that is, the tendency
of the x;, y; pairs to lie on a straight line. The values of Y and X are the

following;: f 1014
Y

X{ -2 -1 01 2

The sample mean of Y is 2 and the sample mean of X is 0. The pieces
required to calculate r are the following:

Y X (Y-2 * (X-0 = Product (Y-22 (X~ 0p

4 -2 2 * -2 —4 4 4
1 -1 -1 * -1 1 1 1
0 0 -2 * 0 0 4 0
1 1 -1 * 1 -1 1 1
4 2 2 * 2 4 4 4
Total 10 0 0 0 0 14 10
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The estimated Pearson correlation coefficient, 7, is then 0/(V14 * 10) =
0. There is no linear association between Y and X. Note, however, that the
first column (values of Y) and the last column (X?) are the same. Hence
there is a perfect quadratic (squared) relationship between Y and X that
was not found by the Pearson correlation coefficient. The scatter plot in
Box 4.19 graphically shows this relationship.

Thus, even if r is 0, it does not mean that the two variables are unre-
lated; it means that there is no linear relationship between the two vari-
ables. The use of a scatter plot first, followed by the calculation of r, may
find the existence of a nonlinear association that could be missed when r
alone is used.

MTB > set cl
DATA> 4 1 0 1 4
DATA> set c2
DATA> -2 -1 0 1 2
DATA> end
MTB > plot ¢l c2
4.5+
C : * *
3.0+
1.5+
- . *
0.0+ *
[ e o fmm——————— e +====C2
-1.60 -0.80 0.00 0.80 1.60

Connecting these points gives the parabola shape associated
with a quadratic relationship.

B. Spearman Rank Correlation Coefficient

The Pearson correlation coefficient was designed to be used with jointly
normally distributed variables; however, it is used, sometimes incorrectly,
with all types of data in practice. Instead of using the Pearson correlation
coefficient with nonnormally distributed variables, it may be better to use a
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modification suggested by Spearman, an influential British psychometri-
cian, in 1904. Spearman suggested ranking the values of Y and also ranking
the values of X. These ranks are then used instead of the actual values of Y
and X in the formula for the sample Pearson correlation coefficient. The
result of this calculation is the sample Spearman rank correlation coeffi-
cient, denoted by rs. This calculation is demonstrated in Box 4.20 for the
protein and total fat data. Hence rg is 0.573, slightly less than the Pearson
value of 0.648.

MINITAB BOX 4.20

Protein data are in ¢3 and total fat data in c¢4. The ranks of ¢3 and ¢4 are put into ¢5
and c6, respectively.

MTB > rank ¢3 ¢5
MTB > rank ¢4 c6
MTB > corr cb ¢6
Correlation of C5 and C6 = 0.573

In addition to being used with nonnormal continuous data, the Spear-
man rank correlation coefficient can also be used with ordinal data. When
ordinal data are used, ties (two or more subjects having exactly the same
value of a variable) are likely to occur. In the case of ties, the tied observa-
tions receive the same average rank. For example, if three observations of
X are tied for the third smallest value, the ranks involved are 3, 4, and 5.
The average of these three ranks is 4, and that is the rank that each of the
three observations would be assigned. The occurrence of ties causes no
problem in the calculation of the Spearman correlation coefficient when the
Pearson formula is used with the ranks.

Vil. CONCLUDING REMARKS

In this chapter we have presented tables, graphs, and plots as well as a few
key statistics. The pictures and the statistics together enable one to describe
single variables and the relationship between two variables for the sample
data. Although the description of the sample data and the provision of
estimates of population parameters are important, sometimes we wish to
go beyond that, for example, to give a range of likely values for the popula-
tion parameters or to determine whether or not it is likely that two popula-
tions under study have the same mean. To do this requires the use of
probability distributions, a topic presented in Chapter 6. Before studying
probability distributions, however, it is useful to understand probability,
the topic covered in the next chapter.
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EXERCISES

4.1.

4.2.

Create a bar chart of the following data on serum cholesterol for non-
Hispanic whites based on Table 1I-42 in “Nutrition Monitoring in the
United States” (7).

Mean
serum
cholesterol*
Gender Age N (mg/d)!
Male 40-49 572 223.5
50-59 575 228.9
60-69 1354 226.2
70-74 427 215.8
Female 40-49 615 218.5
50-59 649 243.6
60-69 1487 249.0
70-74 533 248.3

“ These data are from the Second National
Health and Nutrition Examination Survey of
noninstitutionalized persons conducted: dur--
ing the period 1976-1980 (8).

A high value of serum cholesterol is thought to be a risk factor for
heart disease. The National Cholesterol Education Program (NCEP)
of the National Institutes of Health in 1987 stated that the recom-
mended value for serum cholesterol is below 200 mg/dl and a value
between 200 and 240 is considered to be borderline. A value above
240 may indicate a problem and NCEP recommended that a lipopro-
tein analysis should be performed. On the basis of these data, it
appears that many non-Hispanic whites, particularly women, have
serum cholesterol values that are too high.

a. Give some possible reasons why non-Hispanic white men have
higher mortality from heart and cerebrovascular diseases when
it appears from these data that non-Hispanic white women
should have the higher rates.

b. Provide a possible explanation why the serum cholesterol val-
ues for older men are lower than those for the younger men
and the reverse is true for women.

Create line graphs for the following expenditures for the Food
Stamps Program in New York State during the 1980s.

What, if any, tendencies in the expenditures (both actual and infla-
tion-adjusted) do you see? Which expenditure data do you think
should be used in describing the New York State Food Stamps Pro-
gram? Explain your choice.
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Actual expenditures Inflation-adjusted
Year (in millions of dollars) expenditures”
1980 745.3 745.3
1981 901.2 814.1
1982 835.7 717.3
1983 930.9 766.8
1984 904.4 709.3
1985 939.4 712.2
1986 926.5 685.3
1987 901.8 638.7
1988 909.1 613.4
1989 964.7 616.4

¢ Expenditures adjusted for inflation using the consumer
price index for the Northeast Region with 1980 as the
base.
Source: Table 3.2 in the Division of Nutritional Sciences,
Cornell University (9).

4.3. Use line graphs to represent the short-stay hospital occupancy rates

4.4.

4.5.

shown here.

Hospital Ownership

Year Federal Nonprofit Proprietary State/local
1960 825 76.6 65.4 71.6
1970 77.5 80.1 72.2 73.2
1975 77.6 77.4 65.9 69.7
1980 77.8 78.2 65.2 70.7
1985 74.3 67.2 52.1 62.8
1989 71.0 68.8 51.7 64.8

Source: Table 105 in National Center for Health Statistics (10).

Discuss the trends, if any, in these data.

The following data on hazardous government jobs appeared as a bar
chart in the USA Snapshots section of USA Today on April 30, 1992.
The variable shown was the number of assaults suffered by federal
officers based on 1990 FBI figures. The least number of assaults suf-
fered were by the Internal Revenue Service (3 assaults), the Bureau of
Indian Affairs (5 assaults), and the Postal Inspectors (6 assaults). The
most assaults were suffered by the Immigration and Naturalization
Service with 409, followed by U.S. Attorneys with 269 and the Bu-
reau of Prisons with 185 assaults. What additional information do
you need to conclude anything about which federal officers have the
more hazardous (from the perspective of assaults) jobs?

A study was performed to determine which of three drugs was more
effective in the treatment of a health problem. The responses of
subjects who received each of three drugs (A, B, and C) were pro-



EXERCISES 89

4.6.

4.7.

vided by Cochran (11). The following table shows the pattern of
response for the 46 subjects; 1 indicates a favorable response and 0 an
unfavorable response.

Response to

A B C Frequency
1 1 1 6
1 1 0 16
1 0 1 2
1 0 0 4
0 1 1 2
0 1 0 4
0 0 1 6
0 0 0 6
Total 46

a. Give an example of a type of health problem that would be
appropriate for this study.

b. Create a two-way frequency table showing the relationship be-
tween drugs A and C. Does it appear that the responses to
these drugs are related?

c. Create a bar chart that shows the number of subjects with a
favorable response by drug.

Using the data shown in Table 4.1, calculate the coefficient of varia-
tion for vitamin A. Do you think that any measure of central ten-
dency adequately describes these data? Explain your answer.

Lee (12) presented survival times in months from diagnosis for 71
patients with either acute myeloblastic leukemia (AML) or acute lym-
phoblastic leukemia (ALL).

AML patients:
18 31 31 31 36 01 09 39 20 04 45 36 12 08 01 15 24 02 33 29 07 00 01
021209 01 01 09 0527 01 13 01 05 01 03 04 01 18 01 02 01 08 03 04
14 03 13 13 01

ALL patients:
16 25 01 22 12 12 74 01 16 09 21 09 64 35 01 07 03 01 01 22

a. Calculate the sample mean and median for both AML and ALL
patients separately. Which measure do you believe is more ap-
propriate to use with these data? Explain.

b. Create box plots, histograms, and stem-and-leaf plots to show
the distributions of the survival times for AML and ALL pa-
tients. Which type of figure is more informative for these data?
Which type of patient has the longer survival time after diag-
nosis?
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4.8.

4.9.

4.10.

4.11.

c. Give examples of additional variables that are needed to interpret
appropriately these survival times.

Is it possible to calculate the mean occupancy rate for the short-stay
hospitals in 1960 given the data provided in Exercise 4.3? If it is,
calculate it. If not, state why it cannot be calculated.

Provide an appropriate summarization of the following data on the
results of inspections of food establishments (e.g., food processing
plants, food warehouses, and grocery stores) conducted by the Divi-
sion of Food Inspection Services of the New York State Department
of Agriculture and Markets.

Approximate number

Number inspected failed
Year Upstate NYC & LI Upstate NYC & LI
1980 19,599 23,676 2,548 5,209
1982 17,183 22,767 3,093 6,830
1984 13,731 18,677 2,746 6,350
1986 10,915 15,948 2,292 6,379
1988 13,614 15,070 3,267 6,179
1990 12,609 16,285 3,026 6,677

* New York City and Long Island.
Source: Table 2.5 in the Division of Nutritional Sciences, Cornell
University (9).

Do you think that there were more or fewer cases of foodborne
illness in New York State in 1990 than in 1980?

Diagnosis-related groups (DRGs) are used in the payment for the
health care of Medicare-funded patients. In the creation of the DRGs,
suppose that the lengths of stay for patients in one of the proposed
groups were the following:

11222222333444555566677888991012131515171718
19 19 20 23 26 29 31 34 36 43 49 52 67 96

Calculate the mean, standard deviation, coefficient of variation, and
five key percentiles for these data. Are these data skewed? Do the
patients in this DRG appear to have homogeneous lengths of stay?
Which measures, if any, should be used in the description of these
data? Explain your answer.

The following data represent bacteria counts measured in water with
levels of 0, 1, and 3 percent sodium chloride.

a. Calculate the mean and coefficient of variation for these data.

b. Calculate the median and geometric mean.

¢. Comment on which measure of central tendency is appropriate
for these data.
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4.12.

4.13.

4.14.

4.15.

Level of

sodium chloride Count

(%) (number/ml)

0 107, 106, 108, 10°, 108, 101
1 104, 104, 105, 10¢

3 103, 104, 104, 103, 10°

In Harris County, Texas, in 1986, there were 24,346.live births to
whites, 11,365 to African-Americans, 14,849 to Hispanics, and 2093
to other groups. There were 187 infant deaths among whites, 125 of
which were to infants less than 28 days old. The corresponding num-
bers were 183 and 121 for African-Americans, 137 and 95 for Hispan-
ics, and 12 and 7 for the other groups. Based on these numbers,
calculate the neonatal and postneonatal mortality rates for these four
groups. Comment on any rate that appears to be unusual.

Of the estimated 1,488,939 male residents of Harris County, Texas, in

1986, there were 8672 deaths. Of the 1,453,611 female residents,

there were 6913 deaths. The estimated 1986 U.S. population was

approximately 48.7 percent male and 51.3 percent female.

a. Calculate the crude death rate and sex-specific death rates for
Harris County in 1986.

b. Do you believe that a sex-adjusted death rate will be very different
from the crude death rate? Provide the reason for your belief.

c. Calculate a sex-adjusted death rate for Harris County in 1986.

The Pearson correlation coefficient between protein and total fat for
the data in Table 4.1 was 0.648. This suggests a strong linear relation-
ship between these two variables; however, this relationship may be
reflecting the amount of food consumed (calories). One way of ad-
justing for the calories is to create new variables by dividing the
protein and total fat variables by the calories consumed.
a. Create a scatter plot of protein per calories by total fat per calories.
b. Calculate the Pearson correlation coefficient for the new variables
protein/calories and total fat/calories. Which measure of correla-
tion do you think best characterizes the strength of the relation-
ship?
Data from NHANES II showed that 39.7 percent of persons ages 20
to 74 had hypertension (systolic blood pressure = 140 mm Hg, dias-
tolic blood pressure = 90 mm Hg, or taking blood pressure medica-
tion) and that 30.3 percent had borderline high or high values of
serum cholesterol. The sources of these percentages are Tables 69
and 70 in ““Health, United States and Prevention Profile, 1991” (10).
Based on these data, can we correctly conclude that 70 percent
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(39.7 + 30.3) of the noninstitutionalized U.S. population ages 20 to 74
had either hypertension or borderline high or high values of serum
cholesterol? Provide the rationale for your answer.
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Probability and
Life Tables

As was mentioned in Chapter 4, we often wish to do more than simply
describe or summarize the data by graphs or descriptive statistics. For
example, we may want to determine whether or not two drugs or treat-
ments are equally effective and safe, or whether the age-adjusted death
rates for two areas are the same. To answer these questions, we require
knowledge of probability, the topic of this chapter.

I. A DEFINITION OF PROBABILITY

We have all encountered the use of probability, for example, in the weather
forecast. The forecast usually involves an estimate of the probability of
rain, as in the statement that the probability of rain tomorrow is 20 percent.
As its use in the weather forecast demonstrates, probability is a numerical
assessment of the likelihood of the occurrence of an outcome of a random
variable. In the weather forecast, weather is the random variable and rain
is one of its possible outcomes.

93
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TABLE 5.1

5 PROBABILITY AND LIFE TABLES

Before considering the numerical assessment of likelihood, we should
consider random variables. There are both discrete and continuous ran-
dom variables. A discrete (nominal, categorical, or ordinal) random variable is
a quantity that reflects an attribute or characteristic that takes on different
values with specified probabilities. A continuous (interval or ratio) random
varigble is a 'quantity that reflects an attribute or characteristic that falls
within an interval with specified probabilities.

Hypertension status is a discrete random variable when the values or
levels of this variable are defined as its presence (can be defined as systolic
blood pressure greater than 140 mm Hg, diastolic blood pressure greater
than 90 mm Hg, or taking antihypertensive medication) or absence. Other
examples of discrete random variables include racial status, the number of
children in a family, and type of health insurance. Examples of continuous
random variables include height, blood pressure, and amount of lead emis-
sions as these are usually measured.

We define the probability of the occurrence of an outcome or interval of
a random variable as its relative frequency in an infinite number of trials or
in a population. A probability is a population parameter. An observed
proportion (relative frequency) from a sample is a statistic which can be
used to estimate a probability. We use the data in Table 5.1 to demonstrate
the calculation of the probability of different racial categories in the United
States in 1990. As shown in Table 5.1, in the U.S. population census there
are four major racial groups and a fifth category that combines all other
races. Hispanics are counted mostly in the White and Other categories.

The probability of a person selected at random being white was 0.803
(= 199,686,070/248,709,873), or 80.3 percent. The corresponding probabili-
ties of being African-American, American Indian, Asian, and other were
0.121 (= 29,986,060/248,709,873), 0.008, 0.029, and 0.039, respectively.
These five probabilities sum to 1.000, or 100.0 percent, as shown in Table
5.1 (1).

As probability is the number of occurrences of an outcome divided by
the total number of occurrences of all possible outcomes of the variable

Racial Compaosition of the 1980 U.S. Population

Racial category Number Percent
White 199,686,070 80.3
African-American 29,986,060 12.1
American Indian, Eskimo, or Aleut 1,959,234 0.8
Asian or Pacific Islander 7,273,662 2.9
Other races 9,804,847 3.9
Total population 248,709,873 100.0

Source: The 1990 Census of Population and Housing, the United
States, STF1A (1).
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under study, this means that a probability cannot be larger than 1.00 or 100
percent in value. By the same reasoning, a probability cannot be smaller
than 0.00 or 0 percent in value. Therefore, the only valid values for proba-
bilities range from 0 to 1 or 0 to 100 percent. Additionally, use of the
relative frequency definition means that the sum of the probabilities of all
the possible outcomes of a random variable must be 1.00 or 100 percent. If a
probability falls outside the range 0 to 1, or if the sum of the probabilities of
all the possible outcomes of a variable do not sum to 1 (with allowance for
rounding), a mistake has been made.

For many variables in the health field, the probability of an outcome is
estimated from a large number of observations and may change over time.
For example, the probabilities of the different racial groups in the United
States in 2000 will be different from the 1990 probabilities. As an additional
example of changing probabilities, the estimates of the age-adjusted proba-
bilities of hypertension among U.S. adult males increased from 0.414 in
1960-1962 to 0.440 in 1971-1974 to 0.453 in 1976-1980 (2). This change in
the values of a probability contrasts with the lack of change in the probabil-
ities associated with physical phenomena such as tossing a coin or a pair of
dice. For example, when a fair coin is tossed, the probability of a head is
assumed to be 0.5 or 50 percent, and it does not change.

The listing of the probabilities of all possible outcomes of a discrete
variable is its probability distribution. For example, the probability distribu-
tion of the racial composition of the U.S. population in 1990 is shown in the
last column of Table 5.1. More will be said about probability distributions
and their use in the next chapter.

il. RULES FOR CALCULATING PROBABILITIES

A few basic rules govern the calculation of probabilities of compound out-
comes or events. We use the data in Table 5.2 to help us discover these
rules. Entries in Table 5.2 (3) are the number of live births by birth weight

H:INaW=l Number of Live Births by Trimester of First Prenatal Care and Birth
Weight for Harris County, Texas, in 1986 (Excluding 1180 Births
with Unknown Trimester or Birth Weight)

Trimester prenatal care began

Birth weight First Second Third No care Total
=551b~2500g 2,412 754 141 234 3,541
5.6-7.7 Ib = 2500-3500 g 20,274 5480 1458 1014 28,226
>7.71b~3500¢g 15,250 3271 738 447 19,706
Total 37,936 9505 2337 1695 51,473

Source: ““The Health Status of Harris County Residents, 1980-1986,” Table 1.5 (3).
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and the trimester in which prenatal care was begun for women in Harris
County, Texas in 1986. For example, the entry in the third row, second
column, 3271, is the number of live births to women who had begun their
prenatal care during their second trimester and whose babies’ birth
weights were greater than 7.7 lb.

A. Addition Rule for Probabilities

The data in Table 5.2 can be used to determine whether a relationship
exists between the timing of the beginning of prenatal care and birth
weight. Before examining this issue, however, let us calculate a few addi-
tional probabilities. For example, the probability of a woman in Harris
County in 1986 having a low-birth-weight baby (less than or equal to 5.5 Ib)
was 0.069 (= 3541/51,473). This value is very close to the 1986 value
of 0.068 for the United States (2). Let us now consider a slightly more com-
plex example. The probability of late prenatal (third trimester) or no
prenatal care is simply the sum of their individual probabilities, that is,
2337/51,473 + 1695/51,473, which is 0.078 (= 4032/51,473). This value is
slightly greater than the corresponding 1986 U.S. value of 0.060 (2). In
these calculations of probabilities, we are considering births in Harris
County in 1986 as our population. If the intended population were Texas or
the United States, then the above values would be sample estimates, that
is, observed proportions, of the probabilities. A sample consisting of births
in Harris County should not, however, be used to draw inferences about
births in Texas or the United States because the Harris County births are
likely not to be representative of either of these two larger units.

So far, these probabilities have focused on row or column totals (mar-
ginal totals), not on the numbers in the interior of the table (cell entries).
Entries in the interior of the table deal with the intersection of outcomes or
events. For example, the outcome of a woman bearing a live infant weigh-
ing 5.5 Ib or less and having begun her prenatal care during the first
trimester is the intersection of those two individual outcomes. The proba-
bility of this intersection, that is, of these two outcomes occurring together,
is easily found to be 0.047 (= 2412/51,473).

Above we found the probability of a baby weighing 5.5 Ib or less by
using the row total of 3541 and dividing it by the grand total of 51,473. Note
that we can also express this probability in terms of the probability of the
intersection of a birth weight of 5.5 Ib or less with each of the prenatal care
levels, that is,

Pr{=5.5 b} = Pr{<5.5Ib & 1st trim.} + Pr{=5.5Ib & 2nd trim.}
+ Pr{<5.5 Ib & 3rd trim.} + Pr{=5.5 Ib & no care}

2412 754 141 234 3541

= 51,473 " 51473 T 51,473 | 51473 _ 51473
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This can be expressed in symbols. Let A represent the outcome of a birth
weight of 5.5 Ib or less and B;, i = 1 to 4, represent the four prenatal care
levels. Then we have

Pr{A} = Pr{A and B;} + Pr{A and B} + Pr{A and Bs} + Pr{A and B,}

which, using the summation symbol, is
Pr{A} = 2 Pr{A and B;}.

Suppose now that we want to find, for a woman who had a live birth,
the probability that either the birth weight was 5.5 Ib or less or the woman
began her prenatal care during the first trimester. It is tempting to add the
two individual probabilities—of a birth weight of 5.5 Ib or less and of
prenatal care beginning during the first trimester—as we had done above.
If, however, we added the entries in the first row (birth weights of 5.5 Ib or
less) to those in the first column (prenatal care begun during the first
trimester), the entry in the intersection of the first row and column would
be included twice. Therefore, we have to subtract this intersection from the
sum of the two individual probabilities to obtain the correct answer. The
calculation is

Pr{=5.5Ib or 1st trim.} = Pr{=5.5 b} + Pr{lst trim.}
— Pr{=5.5Ib and 1st trim.}

_ 3541 + 37,936 — 2412

51,473 = (1.759.

This can be succinctly stated in symbols. Let A represent the outcome
of a live birth of 5.5 Ib or less and B represent the outcome of the initiation
of prenatal care during the first trimester. The intersection of these two
outcomes is represented by A and B. In symbols, the rule is

Pr{A or B} = Pr{A} + Pr{B} — Pr{A and B}.

This rule also was used in the earlier example of late or no prenatal care,
but, in that case, the outcomes were disjoint; that is, there was no overlap
or intersection. Hence the probability of the intersection was zero.

As the sum of the probabilities of all possible outcomes is one, if there
are only two outcomes, say A and not A (represented by A), we also have
the following relationship:

Pr{A} = 1 — Pr{A}

B. Conditional Probabilities

Suppose we change the wording slightly in the above example. We now
want to find the probability of a woman bearing a live infant weighing 5.5
Ib or less (event A) conditional on or given that her prenatal care was begun
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during the first trimester (event B). The word conditional limits our view in
that we now focus on the 37,936 women who began their prenatal care
during the first trimester. Thus, the probability of a woman bearing a live
infant weighing 5.51b or less, given that she began her prenatal care during
the first trimester, is 0.064 (= 2412/37,936). Dividing both the numerator
and denominator of this calculation by 51,473 (the total number of women)
does not change the value of 0.064, but it allows us to define this conditional
probability (the probability of A conditional on the occurrence of B) in terms
of other probabilities. The numerator divided by the total number of
women (2412/51,473) is the probability of the intersection of A and B, and
the denominator divided by the total number of women (37,936/51,473) is
the probability of B. In symbols, this is expressed as

Pr{A and B}
Pr{B}

where Pr{A | B} represents the probability of A given that B has occurred.

Conditional probabilities often are of greater interest than the uncondi-
tional probabilities we have been dealing with as will be shown below.
Before doing that, note that we can use the conditional probability formula
to find the probability of the intersection, that is,

Pr{A and B} = Pr{A | B} * Pr{B}.

Thus, if we know the probability of A conditional on the occurrence of B,
and we also know the probability of B, we can find the probability of the
intersection of A and B. Note that we can also express the probability of the
intersection as

Pr{A | B} =

Pr{A and B} = Pr{B | A} * Pr{A}.

Table 5.3 repeats the data from Table 5.2 along with three different sets
of probabilities. The first set of probabilities is conditional on the birth
weight; that is, it uses the row totals as the denominators in the calcula-
tions. The second set is conditional on the trimester that prenatal care was
begun; that is, it uses the column totals in the denominator. The third set of
probabilities is the unconditional set, that is, those based on the total of
51,473 live births. The probabilities in the Total column are the probabilities
of the different birth weight categories, that is, the probability distribution
of the birth weight variable, and those beneath the Total row are the
probabilities of the different trimester categories, that is, the probability
distribution of the prenatal care variable. As mentioned above, these prob-
abilities are based on the population of births in Harris County, Texas in
1986.

Let us consider the entries in the row 1, column 1 cell. The first two
entries below the frequency of the cell are conditional probabilities. The
value 0.681 (= 2412/3541) is the probability based on the row total, that is,
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Number and Probabilities of Live Births by Trimester of First Prenatal
' Care and Birth Weight for Harris County, Texas, in 1986 (Exciuding
1180 Births with Unknown Trimester or Birth Weight)

Trimester prenatal care began

Birth weight First Second Third No care Total
=55Ib=~2500¢g 2,412 754 141 234 3,541
Re 0.681 0.213 0.040 0.066
C 0.064 0.079 0.060 0.138 0.069
U 0.047 0.015 0.003 0.005
5.6-7.7 Ib = 25003500 g 20,274 5480 1458 1014 28,226
R 0.718 0.194 0.052 0.036
C 0.534 0.577 0.624 0.598 0.548
U 0.394 0.106 0.028 0.020
>7.71b = 3500 g 15,250 3271 738 447 19,706
R 0.774 0.166 0.037 0.023
C 0.402 0.344 0.316 0.264 0.383
U 0.296 0.064 0.014 0.009
Total 37,936 9505 2337 1695 51,473
R 0.737 0.185 0.045 0.033 1.000

2 R, row; C, column; and U, unconditional.

the probability of a woman having begun her prenatal care during the first
trimester given that the baby’s birth weight was 5.5 Ib or less. The value
0.064 (= 2412/37,936) is the probability based on the column total, that is,
the probability of a birth weight of 5.5 Ib or less given that the woman had
begun her prenatal care during the first trimester. The last value, 0.047
(= 2412/51,473), is the unconditional probability; it is based on the grand
total of 51,473 live births. It is the probability of the intersection of a birth
weight of 5.5 Ib or less with prenatal care having been begun during the
first trimester.

As Table 5.3 shows, at least three different probabilities, or observed
proportions if the data are a sample, can be calculated for the entries in the
two-way table. The choice of which probability (row, column, or uncondi-
tional) to use depends on the purpose of the investigation. In this case, the
data may have been tabulated to determine whether or not the timing of
the initiation of the prenatal care had any effect on the birth weight of the
infant. If this is the purpose of the study, the column-based probabilities
may be the more appropriate to use and report. The column-based calcula-
tions give the probabilities of the different birth weight categories condi-
tional on when the prenatal care was begun. The row-based calculations
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give the probability of trimester prenatal care being initiated given the birth
weight category; however, these row-based probabilities are of no interest
because birth weight cannot affect the timing of prenatal care. The uncon-
ditional probabilities are less informative in this situation as they also re-
flect the row and column totals. For example, compare the unconditional
probabilities in the first and third columns in the first row: 0.047 and 0.003.
Even though we have seen that there is little difference in the correspond-
ing column-based probabilities of 0.064 and 0.060, these unconditional
values are very different. The value of 0.047 is larger mainly because there
are 37,936 live births in the first column compared with only 2337 live
births in the third column. The unconditional probabilities may, however,
be useful in planning and allocating resources for maternal and child
health services programs.

Using the column-based values, women who began their prenatal care
during the first trimester had a probability of bearing a low-birth-weight
baby of 0.064. This value is compared to 0.079, the probability of bearing a
low-birth-weight baby for those who began their prenatal care during their
second trimester, to 0.060 for those who began their prenatal care during
the third trimester, and to 0.138 for those who received no prenatal care.
There is little difference in the probabilities of bearing a low-birth-weight
baby among women who received prenatal care; however, the probability
of bearing a low-birth-weight baby is about twice as large for women who
received no prenatal care compared with women who received prenatal
care. The effect of prenatal care is most clearly evident in the probability of
bearing a baby weighing more than 7.7 Ib. In this category, the probabili-
ties are 0.402, 0.344, 0.316, and 0.264 for the first, second, third trimesters,
and no prenatal care, respectively.

Based on the trend in the probabilities of a birth weight greater than 7.7
Ib, one might conclude that there is an effect of prenatal care. To do so,
however, is inappropriate without further information. First, although
these births can be viewed as constituting a population, that is, all the live
births in Harris County in 1986, they could also be viewed as a sample in
time, one year selected from many, or in place, one county selected from
many. From the perspective that these births are a sample, there is sam-
pling variation to be taken into account and this is covered in Chapter 11.
Second, and more important, these data do not represent a true experi-
ment. Chapter 8 presents more on experiments but, briefly, the women
were not randomly assigned to the different prenatal care groups, that is,
to the first, second, or third trimester groups or to the no prenatal care
group. Thus the women in these groups may differ on variables related to
birth weight, for example, smoking habits, amount of weight gained, and
dietary behavior. Without further examination of these other factors, it is
wrong to conclude that the variation in the probabilities of birth weights is
due to the time when prenatal care was begun.
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Probabilities of Birth Weight Level Conditional on Trimester of First
Prenatal Care for Harris County, Texas, in 1986 (Excluding 1180
Births with Unknown Trimester or Birth Weight)

Trimester prenatal care began

Birth weight First Second Third No care Total
=<551b=2500g 0.064 0.079 0.060 0.138 0.069
5.6-7.7 Ib = 2500-3500 g 0.534 0.577 0.624 0.598 0.548
>7.71b = 3500 g 0.402 0.344 0.316 0.264 0.383

Total 1.000 1.000 1.000 1.000 1.000

C. Independent Events

TABLE H.5

Suppose that we were satisfied that there were no additional factors of
interest in the examination of prenatal care and birth weight. Only the data
in Table 5.2 were to be used to determine whether or not there was a
relationship between when prenatal care was initiated and birth weight.
Table 5.4 shows the column-based probabilities, that is, those conditional
on which trimester care was begun or whether care was received, and
these are the probabilities to be used in the study.

If there is no relationship between the prenatal care variable and the
birth weight variable, that is, these two variables are independent, what
values should the column-based probabilities have? If these variables are
independent, this means that the birth weight probability distribution is the
same in each of the columns. The last column in Table 5.4 gives the birth
weight probability distribution, and this is the distribution that will be in
each of the columns if the birth weight and prenatal care variables are
independent. Table 5.5 shows the birth weight probability distribution for
the situation when these two variables are independent.

Probabilities Conditional on Trimester under the Assumption of
Independence of Birth Weight Level and Trimester of First Prenatal
Care for Harris County, Texas, in 1986 (Excluding 1180 Births with
Unknown Trimester or Birth Weight)

Trimester prenatal care began

Birth weight First Second Third No care Total
=551b = 2500 g 0.069 0.069 0.069 0.069 0.069
5.6-7.7 Ib = 2500-3500 g 0.548 0.548 0.548 0.548 0.548
>7.71b=3500g 0.383 0.383 0.383 0.383 0.383

Total 1.000 1.000 1.000 1.000 1.000
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The entries in Table 5.5 are conditional probabilities, for example, of a
birth weight of 5.5 Ib or less (A) given that prenatal care began during the
first trimester (B) under the assumption of independence. Hence, under
the assumption of independence of A and B, the probability of A given B is
equal to the probability of A. In symbols, this is

Pr{A | B} = Pr{A}

when A and B are independent. Combining this formula with the formula
for the probability of the intersection, that is,

Pr{A and B} = Pr{A | B} * Pr{B}
yields
Pr{A and B} = Pr{A} * Pr{B}

when A and B are independent.

When considering diseases, it is unlikely that the disease status of one
person is independent of that of another person for many infectious dis-
eases; however, it is likely that the disease status of one person is indepen-
dent of that of another for many chronic diseases. For example, let 7 be the
probability that a person has Alzheimer’s disease. One person’s Alzheimer
status should be independent of another’s status. Therefore, the probabil-
ity of persons A and B both having Alzheimer’s disease is the product of
the probabilities of either having the disease, that is, Pr{A and B} = 7 * 7.

Establishing the dependence (a relationship exists) or independence
(no relationship) of variables is what much of health research is about. For
example, in the disease context, Is disease status related to some variable?
If there is a relationship (dependency), the variable is said to be a risk factor
for the disease. The identification of risk factors leads to strategies for
preventing or reducing the occurrence of the disease.

Some additional uses of conditional probabilities and the concept of
independence are introduced in the next section.

Ill. DEFINITIONS FROM EPIDEMIOLOGY

Many quantities used in epidemiology are defined in terms of probabilities,
particularly conditional probabilities. Several of these useful quantities are
defined in this section and used in the next section to illustrate Bayes’ rule.

A. Prevalence and Incidence

Prevalence of a disease is the probability of having the disease. It is the
number of people with the disease divided by the number of people in the
population. The observed proportion of those with the disease in a sample
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is the sample estimate of prevalence. When the midyear population is used
for the denominator, it is possible that the numerator contains persons
not included in the denominator. For example, persons with the disease
that move into the area in the second half of the year are not counted
in the denominator, but they are counted in the numerator. When preva-
lence or other quantities use midperiod population values, they are not
really probabilities or proportions, although this distinction usually is
unimportant.

Incidence of a disease is the probability that a person without the dis-
ease will develop the disease during some specified interval of time. It is
the number of new cases of the disease that occur during the specified time
interval divided by the number of people in the popula’aon who do not
already have the disease.

Prevalence provides an idea of the current magnitude of the disease
problem and incidence informs as to whether the disease problem is get-
ting worse or not.

Data on AIDS from Harris County excluding Houston will be used to
demonstrate the calculation of prevalence and incidence. In 1986, the pop-
ulation of Harris County excluding Houston was estimated to be 1,004,947.
According to Table 8.6 in “The Health Status of Harris County Residents”
(3), 132 cases of AIDS had been reported to the Harris County Health
Department by the end of 1986, and of those, 79 were diagnosed in 1986.
There is no information on the number of individuals who had died from
AIDS, but we shall assume that 60 percent of those diagnosed prior to 1986
had died by the end of 1986. Thus, of the 132 reported cases, we are
assuming that 32 individuals [= 0.60 * (132-79)] had died, leaving 100
persons with AIDS at the end of 1986.

The prevalence of AIDS at the end of 1986 then was 0.0000995. (= 100/
1,004,947). Prevalence and incidence are often converted to rates, for exam-
ple, the number of cases per 1000 or 100,000 population. In this case, the
prevalence rate is 9.95 cases per 100,000 population. The incidence is the
probability of new cases during some period. We shall calculate the inci-
dence for 1986. There were 79 new cases diagnosed in 1986; the eligible
population is the number of people without the disease. Therefore the
eligible population is 1,004,947 minus the number of people who had AIDS
prior to 1986. There were 53 cases diagnosed prior to 1986, and of these,
some had already died prior to 1986. We shall assume that 30 percent of
these individuals had died prior to 1986; that is, 16 individuals are assumed
to have died prior to 1986. Therefore we must subtract 37 (= 53 — 16) from
1,004,947 in the denominator of the incidence calculation. The 1986 inci-
dence of AIDS in Harris County excluding Houston was 0.0000716 (= 72/
1,004,910), or 7.16 cases per 100,000 population. The incidence is almost as
large as the prevalence, suggesting that the disease problem is worsening.
In this situation, the subtraction of the number of cases from the denomi-
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nator had little practical importance; however, it must be done and can be
important in many other situations.

B. Sensitivity, Specificity, and Predicted Value Positive

and Negative

Laboratory test results are part of the diagnostic process for determining if
a patient has some disease. Unfortunately in many cases, a positive test
result, that is, the existence of an unusual value, does not guarantee that a
patient has the disease. Nor does a negative test result, the existence of a
typical value, guarantee the absence of the disease. To provide some infor-
mation on the accuracy of testing procedures, their developers use two
conditional probabilities, sensitivity and specificity.

The sensitivity of a test (symptom) is the probability that there was a
positive result (the symptom was present) given that the person has the
disease. The specificity of a test (symptom) is the probability that there was
a negative result (the symptom was absent) given that the person does not
have the disease. Note that one minus sensitivity is the false-negative rate
and one minus specificity is the false-positive rate. Thus, large values of
sensitivity and specificity imply small false-negative and false-positive
rates.

Sensitivity and specificity are probabilities of the test result conditional
on the disease status. These are values that the developer of the test has
estimated during extensive testing in hospitals and clinics. As a potential
patient, however, we are more interested in the probability of disease
status conditional on the test result. Names given to two conditional proba-
bilities that address the patient’s concern are predicted value positive and
predicted value negative. Predicted value positive is the probability of disease
given a positive test result, and predicted value negative is the probability of
no disease given a negative test result.

These four quantities can be expressed succinctly in symbols. Let T
represent a positive test result and T~ represent a negative result. The
presence of disease is indicated by D* and its absence is indicated by D~.
These four quantities can be expressed as conditional probabilities:

Sensitivity Pr{T~ | D*}
Specificity Pr{T- | D}
Predicted value positive Pr{D* | T*}
Predicted value negative ~ Pr{D~| T~}

All four of these probabilities should be large for a screening test to be
useful to the screener and to the screenee. Discussions of these and related
issues are plentiful in the epidemiological literature (4).

[t is possible to estimate these probabilities. One way is to select a large
sample of the population and subject the sample to a screening or diagnos-
tic test as well as to a standard clinical evaluation. The standard clinical
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' Disease Status by Test Results for a Large Sample from
the Population

Test result

Disease
status Positive Negative Total
Presence a b a+b
Absence c d c+d

Total a+c b+d a+b+c+d

evaluation is assumed to provide the true disease status. Then the sample
persons can be classified into one of the four cells in the 2 X 2 table shown
below. For example, hypertension status is first screened by the sphygmo-
manometer in the community and by a comprehensive clinical evaluation
in the clinic; or persons are screened for mental disorders first by the DIS
(Diagnostic Interview Schedule) and then by a comprehensive psychiatric
evaluation. The results from a two-stage diagnostic procedure would look
like Table 5.6. Sensitivity is estimated by a/(a + b), specificity is estimated
by d/(c + d), predicted value positive is estimated by a/(a + c), and pre-
dicted value negative is estimated by d/(b + d). Similarly, the false-positive
rate is estimated by c/(a + c) and the false-negative rate by b/(b + d).

For many diseases of interest, the prevalence is so low that there would
be few persons with the disease in the sample. This means that the esti-
mates of sensitivity and the predicted value positive would be problematic.
Therefore, some alternate sample design must be used to estimate these
conditional probabilities. When a large number of people are screened by a
test in a community and a sample of persons with positive test results and
those with negative test results are subjected to clinical evaluations, the
predicted value positive and the predicted value negative can be directly
calculated from the results of clinical evaluations, and sensitivity and speci-
ficity can be indirectly estimated. Conversely, when sensitivity and speci-
ficity are directly estimated by applying the test to persons with the disease
and persons without the disease in the clinic setting, the predicted value
positive and the predicted value negative can be indirectly estimated if the
prevalence rate of disease is known. These indirect estimation procedures
are explained in the next section.

iV. BAYES’ THEOREM

We wish to find the predicted value positive and predicted value negative
using the known values for disease prevalence, sensitivity and specificity.
- Let us focus on predicted value positive, that is, Pr{D* | T*}, and see how
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it can be expressed in terms of sensitivity, Pr{T* | D'}, specificity,
Pr{T~ | D"}, and disease prevalence, Pr{D*}.
We begin with the definition of the predicted value positive, which is

Pr{D* and T*}
T PHTY 1)

Recall that the probability of the intersection of D* and T* can also be
expressed as

Pe{D* | T*} =

Pr{D* and T*} = Pr{T* | D*} * Pr{D*}.
On substitution of this expression for the probability of the intersection in

(1), we have

Pr{T* | D*} * Pr{D*}
PT ) (2)

Pr{D* | T*} =

which shows that predicted value positive can be obtained by dividing the
product of sensitivity and prevalence by Pr{T*}.

Recall that the probability of an event can be expressed as the sum of
the probabilities of the intersection of that event with all possible outcomes
of another variable, that is,

Pr{A} = >, Pr{A and B;}.

By use of the relationship between the probability of the intersection and
conditional probabilities, this in turn can be reexpressed as

Pr{A} = 3 Pr{A | B;} * Pr{Bi}.

We use this formula to reexpress the probability of a positive test result. T+
is substituted for A, D* replaces By, and D~ replaces B, in this formula, and
this gives

Pr{T*} = Pe{T* | D'} * Pe{D*} + Pr{T* | D} * Pr{D"}.

The first component in this sum is the product of sensitivity and disease
prevalence and the second component is the product of (1 — specificity)
and (1 — disease prevalence). Therefore, predicted value positive (PVP) is

Pr{T* | D*} * Pr{D*}

PVP = 57 D'} » PriD*} + Pr{T* | D} = Pr{D}’

Predicted value negative (PVN) follows immediately:

_ Pr{T~ | D7} * Pr{D}
T Pr{T" | D} * P{D"} + Pr{T~ | D*} * Pr{D*}’

PVN
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These two formulas are special cases of the theorem discovered by Rever-
end Thomas Bayes (1702-1761). In terms of the events A and B;, Bayes’
theorem is

Pr{A | B;} * Pr{B;}
> Pr{A| B} * Pr{B}’

Pr{B; | A} =

As an example, consider the use of the count of blood vessels in breast
tumors. A high density of blood vessels indicates a patient who is at high
risk of having cancer spread to other organs (5). The use of the count of
blood vessels appears to be worthwhile in women with very small tumors
and no lymph node involvement, the node-negative case. Suppose that
during the development stage of this procedure, its sensitivity was esti-
mated to be 0.85; that is, of the women who had cancer spread to other
organs, 85 percent had a high count of blood vessels in their breast tumors.
The specificity of the test was estimated to be 0.90; that is, of the women for
whom there was no spread of cancer, 90 percent had a low count of blood
vessels in their tumors. Assume that the prevalence of cancer spread from
breast cancers is 0.02. Given these assumed values, what is the predicted
value positive (PVP) of counting the number of blood vessels in the small
tumors?

Use the formula from above:

prevalence X sensitivity
[prevalence X sensitivity] + [(1 — prevalence) X (1 — specificity)]

= (0.02 * 0.85)/[(0.02 * 0.85) + (1 — 0.02) * (1 — 0.90)]
= 0.017/0.115 = 0.148.

PVP =

Using the assumed values above for sensitivity, specificity, and preva-
lence, there is approximately a 15 percent chance of having cancer spread
from a small breast tumor given a high density of blood vessels in the
tumor. This value may be too low for the test to be useful. If the true values
for specificity or prevalence are higher than the values assumed above,
then the PVP will also be higher. For example, if the prevalence is 0.04
instead of 0.02, then the PVP is 0.262 instead of 0.148.

V. PROBABILITY IN SAMPLING

One probability-related issue in sampling alluded to in Chapter 3 is reex-
amined here using conditional probability. Simple random sampling was
presented as giving all the units in the population the same chance of being
selected into the sample. The equal probability of selection is clear in sam-
pling with replacement as the total number of units in the population
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remains constant during the sampling. In sampling without replacement,
however, once a subject is selected, it is removed from the population, and
the number of units in the population is decreased by one unit. Does this
decrease in the denominator as a unit is selected invalidate the equal prob-
ability of selection for subsequent units? The following example addresses
this matter.

Suppose that a class has 30 students and a SRS of 5 students is to be
selected without allowing duplicate selections. The probability of selection
for the first draw will be 1/30 and that for the student selected second will
be 1/29, as one student was already selected. This line of thinking seems to
suggest that random sampling without replacement is not an equal proba-
bility sampling model. Is anything wrong in our thinking?

We have to realize that the selection probability of 1/29 for the second
draw is a conditional probability. The student selected in the second draw
is available for selection only if the student were not selected in the first
draw. The probability of not being selected in the first draw is 29/30. Thus,
the event of being selected during the second draw is the intersection of
the events of not being selected during the first draw (B) and being se-
lected during the second draw (A). Using the rule for the probability of the
intersection, that is, Pr{A and B} = Pr{A | B} * Pr{B}, the probability of this
intersection is (1/29) * (29/30), which yields 1/30. The same argument can
be made for subsequent draws as is shown in Table 5.7.

The demonstration in Table 5.7 indicates that the probability of being
selected in any draw is 1/30 and hence the equal probability of selection
also holds for sampling without replacement. Now we can state that the
probability for a particular student to be included in the sample will be
5/30, as the student can be drawn in any one of the five draws. In general, a
SRS of size n from a population of size N will give a selection probability of
n/N to each unit of the population, regardless whether sampling is done
with replacement or without replacement.

The selection probability in a SRS without replacement can be exam-
ined by considering all possible samples that can be drawn. Consider a
situation where a SRS of size 3 is drawn without replacement from a

Calculation of Inclusion Probabilities in Drawing a SRS of 5 from 30
without Replacement

Conditional Probability not selected
Order probability in previous draws Product of
of draw n 2) (1) and (2)
1 1/30 1 1/30
2 1/29 29/30 1/30
3 1/28 (29/30)(28/29) = 28/30 1/30
4 1/27 (29/30)(28/29)(27/28) = 27/30 1/30
5 1/26 (29/30)(28/29)(27/28)(26/27) = 26/30 1/30
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population containing 5 units (labeled as A, B, C, D, and E). There are 10
possible ways of selecting a sample of 3 as listed below. As we used a
random selection mechanism, any one of the 10 possible samples is equally
likely to be chosen with a probability of 1/10.

Elements in the population

Sampe A B C D E
1 ABC X X X
2 ABD X X X
3 ABE X X X
4 ACD X X X
5 ACE X X X
6 ADE X X X
7 BCD X X X
8 BCE X X X
9 BDE X X X
10 CDE X X X

From the above configuration, we can easily see that each element of the
universe is represented in 6 of the 10 possible samples, suggesting that the
probability of a particular element being selected into any sample will be
6/10, which is consistent with n/N = 3/5. The statement that each of the
possible samples is equally likely implies that each unit in the population
has the same probability of being included in the sample.

VI. ESTIMATING PROBABILITIES BY SIMULATION

Our approach to finding probabilities has been to enumerate all possible
.outcomes and to base calculation of probabilities on this enumeration. This
approach works well with simple phenomena, but it is difficult to use with
complex events. Another way of assessing probabilities is to simulate the
random phenomenon by using repeated sampling. With the wide avail-
ability of microcomputers, the simulation approach has become a powerful
tool to approach many statistical problems.

For example, consider the following question. How likely is it that two
students in a class of 30 will share the same birthday? The answer is not
immediately apparent, but the chance does not appear to be very high. Let
us find an answer by simulation. First, we assume that the birthdays of 30
students are independent. Second, any of the 365 dates, ignoring February
29th, is equally likely to be a student’s birthday. This situation is then
equivalent to selecting a random sample of 30 dates from the 365 days
using the sampling with replacement procedure. As described in Chapter
3, we can use the random number table in Appendix B. For example, we
can read 30 three-digit numbers between 1 and 365 from the table and
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check to see if any duplicate numbers are selected. We can repeat the
operation many times and see how many of the trials produced duplicates.
As this manual simulation would require considerable time, we can use
MINITAB as shown in Box 5.1. Table 5.8 shows the results of the MINITAB
simulation. Eight of these ten trials have duplicates, which suggests that
there is a 80 percent probability of finding at least one common birthday
among 30 students. Not shown are the results of 10 additional trials in
which 5 of the 10 had duplicates. Combining these two sets of 10 trials, the
probability of finding common birthdays among 30 students is estimated to
be 65 percent [= (8 + 5)/20]. As we increase the number of trials, the
estimated probability should approach the true value of 70.6 percent.

Let us consider another example. Population and family planning pro-
gram planners in Asian countries have been dealing with the effects of the
preference for a son on population growth. If all couples continue to have
children until they have two sons, what is the average number of children
they would have? To build a probability model for this situation, we as-
sume that genders of successive children are independent and the chance
of a son is 1/2. To simulate the number of children a couple has, we select
single digits from the random number table, considering odd numbers as
boys and even numbers as girls. Random numbers are read until the sec-
ond odd number is encountered, and the number of values required to
obtain two odd values is noted. Table 5.9 shows the results for 20 trials

A set of sequential numbers 1 through 365 is entered into c1 and a sample of 30
numbers are randomly selected with replacement from cl and stored in cll1. To
check for duplicates, the results were sorted in an ascending order. This operation
is repeated 10 times and the results are stored in c11-c20. The results are printed as
shown in Table 5.8.

MTB > set cl

DATA> 1:365

DATA> end

MTB > sample 30 ¢l cll;
SUBC> replace.

MTB > sort cll cll

MTB > sample 30 cl c¢clZ2;
SUBC> replace.

MTB > sort cl2 cl2

MTB > sample 30 cl c20;
SUBC> replace.

MTB > sort ¢20 c20.

MTB > print ¢ll-c20




Simulation via MINITAB to Find the Prabability of Common Birthdays
among 30 Students

Row c1 C12 C13 C14 C15 C16 C17 C18 C19 C20

1 4 2 3 4 8 3 7 5 8 12
2 10 30 10* 52 21 4 47 7 18 19
3 21 46 10* 72 24 22 48 7 27 31
4 47 67 15 85 76 23 54 18 45 48
5 48 97 23 106 91 27 80 23 50 65
6 64 100 26 116 100 42 82 37 66 80
7 65 105 35 120 113 57 93 54 90 82
8 78 106 41 123 124 64 119 59 91 103
9 93 106 53 132 143* 72 123 64 94 116
10 95 109 73 143 143* 104 137 89 97 169
11 101 133 78 151 147 107 138 109 104 175
12 115 140 86 180 150 119 140 120 132 182
13 154 145 87 181 155 132 162 138 149 193
14 165 158 163 188 166 152 179 143 153 195
15 167 191 166 208 172 167 185 173 180 208
16 185 209* 176 231 200 210 191 201 187 217
17 193 209* 186 248 205 229 199 209* 188 247
18 220 220 200 249 241 230 203 209 189 249
19 232 223 209 255 243 233 213 215 193 261
20 242 229 220 259* 248 236 232 223 196 262*
21 257 241 251 259* 250 253 238 224 242 262*
22 282 249 260 267 263 307 252 231 250 305
23 284 268 264 270 281 321 259 239 324 307
24 285 286 265 285 283 326 267 259 333 309
25 288 317 283 286 307 327 272 274 338 321
26 299 323 295 288 310 334 287 335 354 326
27 309 335* 297 296 311 336 295 342 360* 328
28 346 335* 300 310 326 343* 308 352 360* 330
29 347 336 352 327 335 343* 313 357 360* 347
30 357 356 355 352 336 362 363 358 360* 356

LEINMSRER Simulation of Childbearing until the Second Son Is Born

Number Number

Trial Digits of digits Trial Digits of digits
1 19 2 11 37 2
2 2239 4 12 367 3
3 503 3 13 6471 4
4 4057 4 14 509 3
5 56287 5 15 940001 6
6 13 2 16 927 3
7 96409 5 17 277 3
8 125 3 18 544264882425 12
9 31 2 19 3629 4
10 425448285 9 20 045467 6
Total 85

Average = 85/20 = 4.25
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(couples). The average number of children based on this very small simula-
tion is estimated to be 4.25 (= 85/20). Additional trials would provide an
estimate closer to the true value of 4 children.

Vil. PROBABILITY AND THE LIFE TABLE

Perhaps the oldest probability model that has been applied to a problem
related to health is the life table. The basic idea was conceived by John
Graunt (1620-1674) and the first life table, published in 1693, was con-
structed by Edmund Halley (1656-1742). Later Daniel Bernoulli (1700—
1782) extended the model to determine how many years would be added to
the average life span if small pox were eliminated as a cause of death. Now
the life table is used in a variety of fields, for example, in life insurance
calculations, in clinical research, and in the analysis of processes involving
attrition, aging, and wearing out of industrial products.

We present the life table here to show an additional application of the
probability rules described above. Table 5.10 is the abridged life table for
the total U.S. population in 1990 (6). It is based on information from all
death certificates filed in the 50 states and the District of Columbia. It is
called an abridged life table because it uses age groupings instead of single
years of age. Other types of life tables are available from the National
Center for Health Statistics. A brief history and sources for life tables for
the United States can be found in Appendix C.

One use of the life table is to summarize the life experience of the
population. A direct way of creating a life table is to follow a large cohort,
say 100,000 infants born on the same day, until the last member of this
cohort dies. For each person, the exact length of life can be obtained by
counting the number of days elapsed from the date of birth. This yields
100,000 observations of the length of life. The random variable is the length
of life in years or even in days. We can display the distribution of this
random variable and calculate the mean, median, first and third quartiles,
and minimum and maximum. As most people die at older ages, we expect
that the distribution is skewed to the left and hence the median length of
life is larger than the mean length of life. The mean length of life is the life
expectancy. We can tabulate the data using the following age intervals: 0—
1, 1-5, 5-10, 10-15, . . ., 80-85, and 85 or over. All the intervals are the
same length, 5 years, except for the first two and the last interval. The first
interval is of a special interest, as quite a few infants die. From this tabula-
tion, we can also calculate the relative frequency distribution by dividing
the frequencies by 100,000. These relative frequencies give the probability
of dying in each age interval. This probability distribution can be used to
answer many practical questions regarding life expectancy. For instance,
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Abridged Life Table for the Tatal U.S. Population, 1990

Average
remaining
Proportion lifetime
dying
Age interval =~ Average
— T roportlon. o Of 100,000 born alive Stationary population number o'f
Period of life  persons alive years of life
between two  at beginning  Number living In this and all remaining at
exact ages of age interval at beginning  Number dying subsequent beginning of
stated in years dying during  of age interval during age In the age age intervals ~ age interval
(1) interval (2) 3) interval (4) interval (5) (6) (7)
xtox+n i L oty wlx T, ey
0-1 0.0093 100,000 927 99,210 7,535,219 75.4
1-5 0.0018 99,073 183 395,863 7,436,009. 75.1
5-10 0.0011 98,890 110 494,150 7,040,146 71.2
10-15 0.0013 98,780 127 493,654 6,545,996 66.3
15-20 0.0044 98,653 430 492,290 6,052,342 61.3
20-25 0.0055 98,223 539 489,794 5,560,052 56.6
25-30 0.0062 97,684 607 486,901 5,070,258 51.9
30-35 0.0077 97,077 743 483,571 4,583,357 47.2
35-40 0.0099 96,334 952 479,425 4,099,786 42,6
40-45 0.0126 95,382 1,203 474,117 3,620,361 38.0
45-50 0.0187 94,179 1,759 466,820 3,146,244 33.4
50-55 0.0290 92,420 2,685 455,809 2,679,424 29.0
55-60 0.0457 89,735 4,101 439,012 2,223,615 24.8
60-65 0.0706 85,634 6,044 413,879 1,784,603 20.8
65-70 0.1029 79,590 8,186 378,369 1,370,724 17.2
70-75 0.1519 71,404 10,847 330,846 992,355 13.9
75-80 0.2211 60,557 13,389 270,129 661,509 10.9
80-85 0.3239 47,168 15,276 197,857 391,380 8.3
=85 1.0000 31,892 31,892 193,523 193,523 6.1

Source: National Center for Health Statistics (6).

what is a 20-year-old person’s probability of surviving to the retirement age
of 65?

Acquiring such data poses a problem, however. It would take more
than 100 years to collect. Moreover, information obtained from such data
may be of some historical interest, but are not useful in answering current
life expectancy questions, as current life expectancy may be different from
that of earlier times. To solve this problem, we have to find ways to use
current mortality information to construct a life table. The logical current
mortality data for this purpose are the age-specific death rates. For the time
being, we assume that age-specific death rates measure the probability of
dying in each age interval. Note that these rates are conditional probabili-
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ties. The death rate for the age group 5 to 10 years is computed on the
condition that its members survived the previous age intervals.

As studied in Chapter 4, the age-specific death rate is calculated by
dividing the number of deaths in a particular age group by the midyear
population in that age group. This is not exactly a proportion, whereas a
probability is. Therefore the first step in constructing a life table is to
convert the age-specific death rates to the form of a probability. One possi-
ble conversion is based on the assumption that the deaths were occurring
evenly throughout the interval. Under this assumption, we expect that
one-half of the deaths occurred during the first half of the interval. Thus,
the number of persons at the beginning of an interval is the sum of the
midyear population and one-half of the deaths that occurred during the
interval. Then the conditional probability of dying during the interval is
the number of deaths divided by the number of persons at the beginning
of the interval. Actual conversions use more complicated procedures for
different age groups, but we are not concerned about these details.

A. The First Four Columns in the Life Table

With this background, we are now ready to examine Table 5.10. The first
column shows the age intervals between two exact ages. For instance, 5-10
indicates the 5-year interval between the fifth and tenth birthdays. This age
grouping is slightly different from those of under 5, 5-9, 10-14, and so on,
used in the census publications. In the life table, age is considered as a
continuous variable, whereas in the census, counting of people by age
(ignoring the fractional year) is emphasized.

The second column shows the proportion of the persons alive at the
beginning of the interval who will die before reaching the end of the
interval. It is labeled as ,4,, where the first subscript on the left denotes
the length of the interval and the second subscript on the right denotes the
exact age at the beginning of the interval. The first entry in the second
column, 9o, is 0.0093, which is the probability of infants dying during the
first year of life. The second entry is 44, which equals 0.0018. It is the
conditional probability of dying during the interval between ages 1 and 5
provided the child survived the first year of life. The rest of the entries in
this column are conditional probabilities of dying in a given interval for
those who survived the preceding intervals. These conditional probabili-
ties are estimated from the current age-specific death rates. Note that the
last entry of column 2 is 1.0000, indicating everybody dies some time after
age 85.

Thus we have a series of conditional probabilities of dying. Given these
conditional probabilities of dying, we can also find the conditional proba-
bilities of surviving. The probability of surviving the first year of life is

1-190=1- 0.0093 = 0.9907.
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Likewise, the conditional probability of surviving the interval between
exact ages 1 and 5, provided the infants had survived the first year of life, is

1~ 4;=1-0.0018 = 0.9982,

Surviving the first 5 years of life is the intersection of surviving the 0-1
interval and the 1-5 interval. The probability of this intersection can be
obtained as the product of the probability of surviving the 0-1 interval and
the conditional probability of surviving the 1-5 interval given survival
during the 0-1 interval, that is,

Pr{surviving the intervals 0-1 and 1-5} = (1 — 1g0) * (1 — 441)
= (1 — 0.0093) * (1 — 0.0018) = (0.9907) * (0.9982) = 0.9889.

Similarly, the probability of surviving the first 10 years of life, the first three
intervals, is

(1 - 190) %1 — 4g1) * (1 — o45).

Using this approach, we can calculate the survival probabilities from birth
to the beginning of any subsequent age intervals. These survival probabili-
ties are reflected in the third column, the number alive, ,, at the beginning
of the interval that begins at x years of age, out of a cohort of 100,000. Note
that the entries in this column may differ slightly from the product of the
survival probabilities and 100,000 because, although only four digits to the
right of the decimal point are shown in the second column, more digits are
used in the calculations. The first entry in this column, Iy, called the radix,
is the size of the birth cohort. The second entry, the number alive at the
beginning of the interval beginning at 1 year of age, 13, is found by taking
the product of the number alive at the beginning of the previous interval
and the probability of surviving that interval, that is,

L=l —190) =1l — (Io* 190) = lo — 1do.

This quantity, /3, is equivalent to taking the number alive at the beginning
of the previous period minus the number that died during that period, 1dj.
The numbers that died during each interval are shown in the fourth
column, which is labeled as ,4,.

The number who died during the 4-year age interval from 1 to 5 is 4d;.
This is found by taking the product of the number alive at the beginning of
this interval, /;, and the probability of dying during the interval, 49;, that s,
i1 = I * 1. The number alive at the beginning of the interval of 5 to 10
years of age, I5, can be found by subtracting the number who died during
the previous age interval, 4, from the number alive at the beginning of the
previous interval, Iy, that is, Is = I; — 4d;. Repeating this operation yields
the rest of the entries in the third and fourth columns. The fourth column
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can also be obtained directly from the third column. For example,
o =1y — I, di =1 — 15 etc.

Note that the last entry in the third column is the same as the last entry
in the fourth column, because all the survivors at age 85 will die subse-
quently. Note further that the I, value in each row is a cumulative total of
«dy values in that and all subsequent rows.

Dividing the entries in the third and fourth columns by 100,000, we
obtain the probabilities of surviving from birth to the beginning of the
current interval and dying during the current interval, respectively. Note
that the entries in the fourth column sum to 100,000, meaning that the
probability of dying sums to one. As we expected, the distribution is nega-
tively skewed, with the larger probabilities of dying at older ages.

B. Some Uses of the Life Table

The last three columns are discussed in a following section. Before doing
that, we wish to show how the first four columns, particularly the third
column, can be used to answer some questions regarding life expectancy.

For example, what is the probability of surviving from one age to a
subsequent age, say from age 5 to age 207 This is a conditional probability,
conditional on the survival to age 5. The intersection of the events of
surviving to age 20 and surviving to age 5 is surviving to age 20. Thus the
probability of this intersection is the probability of surviving from birth to
age 20. This is the number alive at the beginning of the interval 20-25
divided by the number alive at the beginning, that is, l,0/l. The probability
of surviving from birth to age 5 is Is/l,. Therefore, the conditional survival
probability from age 5 to age 20 is found by dividing the probability of the
intersection by the probability of surviving to age 5, that is,

lz_o)/(l_s) _ o _ 98223 _
(lo I/ 15 98,890 0.9933.

The survival probabilities from any age to an older age can be calculated in
a similar fashion.

We know the conditional probability of dying in any single interval;
however, we may be interested in the probability of dying during a period
formed by the first two or more consecutive intervals. For example, what is
the probability of dying during the first 5 years of life? This probability can
be found by subtracting the probability of surviving the first 5 years from 1,
that is,

L 1
1o -l =1 (Fef) -1

98,890 _
100,000

1 —0.9889 = 0.0111.
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This is simply 1 minus the ratio of the number alive at the beginning of the
final interval of interest and 100,000.

A similar question relates to the probability of dying during a period
formed by two or more consecutive intervals given that one had already
survived several intervals. For example, what is the probability that a 30-
year-old person will die between the ages of 50 and 60? This conditional
probability is found by dividing the probability of the intersection of the
event of dying between the ages of 50 and 60 and the event surviving until
30 by the probability of the event of surviving until 30 years of age. The
intersection of dying between 50 and 60 and surviving until 30 is dying
between 50 and 60. The probability of dying between 50 and 60 is the
number of persons dying, Iso minus ls, divided by the total number, Iy. The
probability of surviving until age 30 is simply I3, divided by Iy. Therefore,
the probability of dying between 50 and 60 given survival until 30 is

(150 - 160) /(1_39) Clso — I 92,420 — 85,634
Iy I/ g 97,077

Another slightly more complicated question concerns the joint survival
of persons. Suppose that a 40-year-old person has a 5-year-old child. What
will be the probability that both the parent and child survive 25 more years
until the parent’s retirement? If we assume that the survival of the parent
and that of the child are independent, we can calculate the desired proba-
bility by multiplying the individual survival probabilities. Applying the
rule for the probability of surviving from one age to a subsequent age from
the first question, this is

les  Iso _ 79,590 97,077

— % —
oy L 95382 98,890

The probability that both the parent and the child will die during the 25
years is

= 0.0699.

= 0.8344 = 0.9817 = 0.8191.

(1 _ 16_5> . (1 _ ’3—0) = (1 — 0.8344) * (1 — 0.9817) = 0.0030.

lso I5

The probability that the parent will die but the child will survive during the
25 years is

(1 - 16—5) * (13—0) — (1 — 0.8344) * (0.9817) = 0.1626.
o/ \T5

The probability that the parent will survive but the child will die during the
25 years is

<l6—°> * (1 - @—) = (0.8344) * (1 — 0.9817) = 0.0153.
Ly I5

These four probabilities sum to 1, because those four events represent all
the possible outcomes in considering the life and death of two persons.
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C. Expected Values in the Life Table

The most widely used expected or average value in the life table is the
mean length of life, which is known as the life expectancy. This is found by
summing all the ages of deaths and dividing by 100,000. This is the same as
multiplying the age of death by the probability of death at that age and
summing over all ages. As we have age groups, not individual ages, we
can approximate life expectancy by using the midpoints of the age intervals
shown in column 1. As shown in Box 5.2, these midpoints are multiplied
by the probabilites of dying in that interval (column 4 divided by 100,000).
The midpoint for the last open inverval is arbitrarily entered as 92.5, as-
suming that the length of interval is 15 years. The sum of these products
approximates the life expectancy. The approximate mean turns out to be
75.8 years, which is slightly larger than 75.4 shown as the first entry of
column 7 in the life table.

MINITAB BOX 5.2

Column c1 contains the midpoints of the age intervals and c2 contains the number
of deaths during the age interval.

MTB > set cl

DATA> .5 3 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5
DATA> 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 92.5
DATA> set c2

DATA> 927 183 110 127 430 539 607 743 952 1203 1759
DATA> 2685 4101 6044 8186 10847 13389 15276 31892
DATA> end

MTB > let ¢3=c2/100000

MTB > let kl=sum(cl#*c3)

MTB > print Kkl

Kl 75.7571

The quartiles are approximated by interpolation as shown below. To
find the median, the second quartile, we must find the value such that 50
percent of the values fall below it. By examining column 3 in the life table,
we find that 60,557 persons are alive at the beginning of the age interval
75-80 whereas only 47,168 are alive at the beginning of the interval 80-85.
As 50,000 is between 60,557 and 47,168, we know that the median is some-
where between 75 and 80 years of age. If we assume that the 13,389
(= 60,557 — 47,168) deaths are uniformly distributed over this age interval,
we can find the median by interpolation. We add a proportion of the 5
years, the length of the interval, to the age at the beginning of the interval,
75 years. The proportion is the ratio of the difference between 60,557 and
50,000 to the 13,389 deaths that occurred in the interval. The calculation is

60,557 — 50,000

median = 75 + 5 * ( 13,389

) = 78.94.
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The corresponding calculations for the first and third quartiles are

_ 79,590 — 75,000) _
Q1 =65+5= ( 8186 = 67.80
and
_ 31,892 — 25,000> _
Q3 =85+ 15 % (_———31,892 = 88.24.

As expected, the mean is smaller than the median. Perhaps, it is more
enlightening to know that one-half of a birth cohort will live to age 79 than
to know that an average length of life is about 75 years.

The above calculations of the mean and quartiles are based on the
assumption that deaths were distributed evenly within each interval. This
assumption is realistic for most intervals but it is not for the intervals at
both ends of the distribution. For instance, vital statistics show that more
deaths occur during the first week of life than in any other week during the
first year of life. Therefore, the use of the midpoint for the first year of life
in the calculation of the mean should have inflated the mean slightly, as
seen above. The last three columns in the life table are based on additional
information which removes the need to assume that the deaths are distrib-
uted uniformly throughout the interval.

and 7 in the Life Table

The fifth column of the life table, denoted by ,L,, shows the person-years
lived during each interval. For instance, the first entry in the fifth column is
99,210, which is the total number of person-years of life contributed by
100,000 infants during the first year of life. This value consists of 99,073
years contributed by the infants that survived the full year plus 137 years
contributed by the 927 infants who died during the year. The value of 137
years is based on actual mortality data coupled with mathematical smooth-
ing. It cannot be found from the first four columns in the table. The value
of 137 years is much less than the 400 to 500 years of life expected if the
deaths had been distributed uniformly during the year. This value also
suggests that most of the deaths occurred during the first half of the inter-
val. The second entry in the fifth column is much larger than the first entry,
mainly reflecting that the length of the second interval is greater than the
length of the first interval. Each person surviving this second interval
contributed 4 person-years of life.

In the life table, the fifth column is labeled as the “stationary popula-
tion in the age interval.” The label stationary population is based on a model
of the long-term process of birth and death. If we assume 100,000 infants
are born every year for 100 years, with each birth cohort subject to the same
probabilities of dying specified in the second column of the life table, then
we expect that 100,000 people will be dying at the indicated ages every
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year. This means that the number of people in each age group will be the
numbers shown in the fifth column. This hypothetical population will
maintain the same size, as the number of births is the same as the number
of deaths and it also keeps the same age distribution. That is, the size and
structure of population are invariant, and hence this is called a stationary
population.

The sixth column of the life table, denoted by T,, shows cumulative
totals of ,L, values starting from the last age interval. The T, value in each
interval indicates the number of person-years remaining in that and all
subsequent age intervals. For example, the Tg value of 391,380 is the sum
of sLg (= 197,857) and 15Lss (= 193,523).

The last column of the life table, denoted by ¢, shows the life expectan-
cies at various ages, which are calculated by e, = T,/I;. The first entry in the
last column is the life expectancy for newborn infants, and all subsequent
entries are conditional life expectancies. Conditional life expectancies are
more useful information than the expectancies figured for newborn in-
fants. For instance, those who survived to age 85 are expected to live 6.1
years more (egs = 6.1) (the last entry of the last column), whereas newborn
infants are expected to live 1.93 years beyond age 85 (Tss/lp = 193,523/
100,000 = 1.93).

On the basis of T, values, more complicated conditional life expectan-
cies can be calculated. For instance, suppose that a 30-year-old person was
killed in an industrial accident and had been expected to retire at age 65 if
still alive. For how many years of unearned income should that person’s
heirs be compensated? The family may request a compensation for 35
years; however, based on the life table, the company argues for a smaller
number of years. The total number of years of life remaining during the
interval from 30 to 65 is T3 minus Tgs, and there are I3 persons remaining
at age 30 to live those years. Therefore, the average number of years of life
remaining is found by

Ty — Tes 4,583,357 — 1,370,724
I3 B 97,077

= 33.1 years.

Finally, the notion of stationary population can be used to make certain
inferences for population planning and manpower planning. The birth rate
of the stationary population can be obtained by dividing 100,000 by the
total years of life lived by the stationary population, or

I, 100,000 1
To 7,535,219  75.4 0.013

or 13 per 1000 population. The death rate should be the same. But note that
the birth rate equals the reciprocal of the life expectancy at birth (1/¢). In
other words, the birth rate (replacement rate) and death rate (attrition rate)
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are determined entirely by the life expectancy under the stationary popula-
tion assumption.

VIil. CONCLUDING REMARKS

Probability has been defined as the relative frequency of an event in an .
infinite number of trials or in a population. Its use has been demonstrated
in a number of examples and a number of rules for the calculation of
probabilities have been presented. The use of probabilities and the rules for
calculating probabilities have been applied to the life table, a basic tool in
public health research.

Now that we have an understanding of probability, we shall examine
particular probability distributions in the next chapter.

EXERCISES

5.1. Choose the most appropriate answer.

a.

Which of the following is not a probability model?

— the life table

— a sampling distribution

— the random digit table

If you get 10 straight heads in tossing a fair coin, a tail is
the next toss.

— more likely

— less likely

— neither more likely nor less likely

In the U.S. life table, the distribution of the length of life (or age at
death) is

— skewed to the left

— skewed to the right

— symmetric

A test with high sensitivity is very good at

— screening out patients who do not have the disease

— detecting patients with the disease

— determining the probability of the disease

In the U.S. life table the life expectancy (mean) is
median length of life.

— the same as

__ greater than

— less than

41 is called a because an infant cannot die in this interval
unless it survived the first year of life.

on

the
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5.2.

5.3.

5.4.

— personal probability
— marginal probability
— conditional probability
g. In the U.S. life table, the mean length of life for those who died
during ages 0-1 is
— about 1/2 year
— more than 1/2 year
— less than 1/2 year

The following table gives estimates of the probabilities that a ran-
domly chosen adult in the United States falls into each of six gender-
by-education categories [based on relative frequencies from
NHANES II (7)]. The three education categories used are (1) less than
12 years, (2) high school graduate, and (3) more than high school
graduation.

Category of education
Gender 1 2 3

Female  0.166 0.194 0.164
Male 0.149 0.140 0.187

a. What is the estimate of the probability that an adult is a high
school graduate?

b. What is the estimate of the probability that an adult is a female?

c. From the NHANES II data, it is also estimated that the proba-
bility that a female is taking a vitamin supplement is 0.426.
What is the estimate of the probability that the adult is a female
and taking a vitamin supplement?

d. From the NHANES IJ, it is also estimated that the probability of
adults taking a vitamin supplement is 0.372. What is the estimate
of the probability that a male is taking a vitamin supplement?

Suppose that the fajlure rate for a brand of smoke detector is 1 in

2000. For safety, two of these smoke detectors are installed in a

laboratory.

a. What is the probability that smoke is not detected in the labora-
tory when smoke is present in the laboratory?

b. What is the probability that both detectors sound an alarm
when smoke is present in the laboratory?

c. What is the probability that one of the detectors sounds the
alarm and the other fails to sound the alarm when smoke is
present in the laboratory?

Suppose that the probability of conception for a married woman in
any month is 0.2. What is the probability of conception in 2 months?
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5.5.

5.6.

5.7.

5.8.

5.9.

A new contraceptive device is said to have only a 1 in 100 chance of
failure. Assume that the probability of conception for a given month,
without using any contraceptive, is 20 percent. What is the probabil-
ity of having at least one unwanted pregnancy if a woman were to
use this device for 10 years? Hint: This would be the complement of
the probability of avoiding pregnancy for 10 years or 120 months.
The probability of conception for any month with the use of the new
contraceptive device would be 0.2 * (1 — 0.99). This and related
issues are examined by Keyfitz (8).

In a community, 5500 adults were screened for hypertension by the
use of a standard sphygmomanometer and 640 were found to have a
diastolic blood pressure of 90 mm Hg or higher. A random sample of
100 adults from those with diastolic blood pressure of 90 mm Hg or
higher and another random sample of 100 adults from those with
blood pressure less than 90 mm Hg were subjected to more intensive
clinical evaluation for hypertension, and 73 and 13 of the respective
samples were confirmed as being hypertensive.

a. What is an estimate of the probability that an adult having
blood pressure greater than or equal to 90 at the initial screen-
ing will actually be hypertensive (predicted value positive)?

b. What is an estimate of the probability that an adult having
blood pressure less than 90 at the initial screening will not actu-
ally be hypertensive (predicted value negative)?

c. What is an estimate of the probability that an adult in this com-
munity is truly hypertensive (prevalence rate of hypertension)?

d. What is an estimate of the probability that a hypertensive per-
son will be found to have blood pressure greater than or equal
to 90 at the initial screening (sensitivity)?

e. What is an estimate of the probability that a person without
hypertension will have blood pressure less than 90 at the initial
screening (specificity)?

How likely is it to find two students in a class of 23 sharing a birth-

day? Simulate using the random number table in Appendix B or

MINITAB.

What is the average number of children per family if every couple
were to have children until a son is born? Simulate using the random
number table or MINITAB.

Calculate the following probabilities from the 1990 U.S. Abridged

Life Table.

a. What is the probability that a 35-year-old person will survive to
retirement at age 65?

b. What is the probability that a 20-year-old person will die be-
tween ages 55 and 65?
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5.10. Calculate the following expected values from the 1990 U.S. Abridged

Life Table.

a. How many years is a newborn expected to live before his fifth
birthday?

b. How many years is a 20-year-old person expected to live after
retirement at age 65? Repeat the calculation for a 60-year-old
person. How would you explain the difference?

c. A 35-year-old person is killed in a factory accident. How many
years would the person have been expected to live before retire-
ment at age 65 if the accident had not occurred?
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Probability Distributions

This chapter introduces three probability distributions: the binomial and
the Poisson for discrete random variables, and the normal for continuous
random variables. For a discrete random variable, its probability distribu-
tion is a listing of the probabilities of its possible outcomes or a formula for
finding the probabilities. For a continuous random variable, its probability
distribution is usually expressed as a formula that can be used to find the
probability that the variable will fall in a specified interval. Knowledge of
the probability distribution (1) allows us to summarize and describe data
through the use of a few numbers; and (2) helps to place results of experi-
ments in perspective, that is, it allows us to determine whether or not the
result is consistent with our ideas. We begin the presentation of probability
distributions with the binomial distribution.

I. THE BINOMIAL DISTRIBUTION

As its name suggests, the binomial distribution refers to random variables
with two outcomes. Three examples of random variables with two out-
comes are (1) hypertension status—a person does or does not have hyper-
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tension, (2) exposure to benzene—a worker was or was not exposed to
benzene in the workplace, and (3) health insurance coverage—a person
does or does not have health insurance. The random variable of interest in
the binomial setting is the number of occurrences of the event under study,
for example, the number of adults in a sample of size n who have hyperten-
sion, or who have been exposed to benzene, or who have health insurance.
For the binomial distribution to apply, the status of each subject must be
independent of that of the other subjects. For example, in the hypertension
question, we are assuming that each person’s hypertension status is unaf-
fected by any other person’s status.

We consider a simple example to demonstrate the calculation of bino-
mial probabilities. Suppose that four adults (labeled A, B, C, and D) have
been randomly selected and asked whether or not they have hypertension.
The random variable of interest in this example is the number of persons
who respond yes to the question about hypertension. The possible out-
comes of this variable are 0, 1, 2, 3, and 4.

The outcomes (0, 1, 2, 3, or 4) translate to estimates of the proportion of
persons who answer yes (0.00, 0.25, 0.50, 0.75, and 1.00, respectively).
Any of these outcomes could occur when we draw a random sample of
four adults. As a demonstration, let us draw 10 random samples of size 4
from a population in which the proportion of adults who answer yes to the
hypertension question is 0.25. We are using the value of 0.25 instead of the
value of 0.397 mentioned in Exercise 4.15 because many people are un-
aware that they have hypertension. We can use a random number table in
performing this demonstration or we can use MINITAB as shown in
Box 6.1.

The command to be used is RANDOM, which tells MINITAB to draw samples and
store the results in a column. We supply the number of samples to be drawn, 10 in
this example, and a column to receive the results, c1. The subcommand identifies
the distribution from which the samples are drawn, in this case the binomial. The
binomial distribution is characterized by two parameters, the sample size and the
population proportion having the characteristic of interest. In this case, the sample
size is 4 and the population proportion is 0.25.

MTB > random 10 cl;

SUBC> binom 4 .25.

MTB > print cl

Ccl 1 1 0 2 2 1 1 1 1 0

The printed values represent the number of people who answered yes in each of
the 10 random samples of size 4. Two samples had zero yes responses, six samples
had one yes response, and in two samples there were two yes responses. These
results translate to two estimates having the value of 0.00, six estimates having the
value of 0.25, and two estimates having the value of 0.50.
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Hence the sample estimate does not necessarily equal the population pa-
rameter and the estimates can vary considerably. In practice a single sam-
ple is selected, and in making an inference from this one sample to the
population, this sample-to-sample variability must be taken into account.
The probability distribution does this. Now let us calculate the binomial
probability distribution for a sample of size 4.

Suppose that in the population, the proportion of people that would
respond yes to this question is . The probability of each of the outcomes
can be found in terms of = by listing all the possible outcomes. Table 6.1
provides this listing.

As each person is independent of all the other persons, the probability
of the joint occurrence of any outcome is simply the product of the proba-
bilities associated with each person’s outcome. That is, the probability of
four yes responses is 7 * 7 * 7 * 7, which is #%. In the same way, the
probability of three yes responses is 4 * #® * (1 — 7) as there are four
occurrences of three yes responses. The probability of two yes responses is
6 * 72 # (1 — m)?, the probability of one yes response is 4 * 7 * (1 — )3, and
the probability of zero yes responses is (1 — ). If we know the value of m,
we can calculate the numerical value of these probabilities.

Suppose 7 is the previously mentioned value of 0.25. Then the proba-
bility of each outcome is as follows:

Pr{4 yes responses} = 1 * (0.25)* * (0.75)° = 0.0039 = Pr{0 no responses}
Pr{3 yes responses} = 4 * (0.25)° * (0.75)' = 0.0469 = Pr{1 no response}

Possible Outcomes and Their Probabilities of Occurrence

Person

A B C D Probability of occurrence

v y y y TET KT R =at* (1 — )
y y y n aEargx(l— ) =q3x (1 —am)
y y n y mrwx(l—m)*mw =adx(l - )
y n y y Tx(l—my*xm*m =adx (1~ o)
n y y y I-m*mxm*n =qx¥* (1 - )
y y n n axax(1—a)yx(1~m =72 (1~ @)
y n y n mx(l—m*xa*x(1—m =72x(1 - wp
y n n y mx(l—m*(1—-m)* =72% (1 — 7)?
n y y n A-mraxa*x(l—m =q2x (1 — @)?
n y n y A-m*ax1-m=*m =m2* (1 - a)
n n y y -m*xA-—mx*m*7 =72x% (1 — w)?
y n n n mx(l-—-m*1—-m=*1—nm) =galx (1 — 7)}
n y n n QA-m*a*x(1—-am)+x1—m =qat*x(l - a)p
n n y n l-m*L-—m*7*(l—m =als(1—-a)pP
n n n y A-m*x0-m*x(1-m=*nx =qal*x(1-a)p
n n n n I-m+«Q-m*Q-m*QA-m)=7n«1—- 7

¢y indicates a yes response and n indicates a no response.
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Pr{2 yes responses} = 6 * (0.25)2 * (0.75)* = 0.2109 = Pr{2 no responses}
Pr{1 yes response} = 4 * (0.25)! * (0.75)® = 0.4219 = Pr{3 no responses}
Pr{0 yes responses} = 1 * (0.25)° * (0.75)* = 0.3164 = Pr{4 no responses}

The sum of these probabilities is one as it must be because these are all the
possible outcomes. If the probabilities do not sum to one (with allowance
for rounding), a mistake has been made. Figure 6.1 shows a plot of the
binomial distribution for n equal to 4 and 7 equal to 0.25.

Are these probabilities reasonable? Because the probability of a yes
response is assumed to be 0.25 in the population, in a sample of size 4, the
probability of one yes response should be the largest. It is also reasonable
that the probabilities of zero and two yes responses are the next largest as
these values are closest to one yes response. The probability of four yes
responses is the smallest, as is to be expected. Figure 6.1 shows the rapid
decrease in the probabilities as the number of yes responses moves away
from the expected response of one.

In the calculation of the probabilities, several patterns are visible. The
exponent of the probability of a yes response matches the number of yes
responses being considered, and the exponent of the probability of a no
response also matches the number of no responses being considered. The
sum of the exponents is always the number of persons in the sample.
These patterns are easy to capture in a formula which eliminates the need
to enumerate the possible outcomes. The formula may appear compli-
cated, but it is really not all that difficult to use. The formula, also referred
to as the probability mass function for the binomial distribution, is

n!

Pr{X = x} = (Z) * ¥ (1 — )~ where (;) =,C, = m,

0.45 -
.422

0.40 -

0.35 -
o .316
£ 0.30 -
5
S 0.25 -
°© 211
S 0.20 -
8
& 0.15 -

0.10 -

0.05 - .047

|| .004
0.00 -
0 1 2 3 4

Number of Yes Responses

S[e{BI=INSMMI Bar chart showing the binomial distribution for n = 4 and = = 0.25,
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kl!'=k*(k — 1) % (k — 2) *--- =1, and 0! is defined to be 1. The symbol k! is
called k factorial, and ,C; is read as n combination x, which gives the num-
ber of ways that x elements can be selected from n elements without regard
to order. In this formula, 7 is the number of persons or elements selected
and x is the value of the random variable which goes from 0 to n. Another
representation of this formula is

B(x; n, m) = (Z) smix(l -7y =Bn—xn1-m)

where B represents binomial. The equality of B(x; n, 7) and B(n — x; n, 1 —
) is a symbolic way of saying that the probability. of x yes responses from n
persons, given that 7 is the probability of a yes response, equals the proba-
bility of n — x no responses.

The hypertension situation can be used to demonstrate the use of the
formula. To find the probability that X = 3, we have

4 4
Pr{X = 3} = (3) £ (0.25)% * (0.75)! = (3,—*17) % 0.015625 * 0.75
- (4*3—::’;%—1) £ 0.01172 = 4 * 0.01172 = 0.0469.

This is the same value we found by listing all the outcomes and the associ-
ated probabilities. There are easier ways of finding binomial probabilities
as is shown next.

There is a recursive relationship between the binomial probabilities
that makes it easier to find them than to use the binomial formula for each
different value of X. The relationship is

Pr{X=x+l}=(Z__’_T)*(lfw)*Pr{X=x}

for x ranging from 0 to n — 1. For example, the probability that X equals 1 in
terms of the probability that X equals 0 is

. (4=0 (0.25) _ 1) _
Pr{X = 1} = (0_1_1> * (75) * 0.3164 = 4 » (3 + 0.3164 = 0.4219

which is the same value we calculated above.

A still easier method is to use Appendix Table B2, a table of binomial
probabilities for n ranging from 2 to 20 and 7 beginning at 0.01 and ranging
from 0.05 to 0.50 in steps of 0.05. There is no need to extend the table to
values of 7 larger than 0.50 because B(x; n, 7) equals B(n — x; n, 1 — ). For
example, if m were 0.75 and we wanted to find the probability that X = 1
for n = 4, B(1; 4, 0.75), we find B(3; 4, 0.25) in Table B2 and read the value
of 0.0469. These probabilities are the same because when n = 4 and the
probability of a yes response is 0.75, the occurrence of one yes response is
the same as the occurrence of three no responses when the probability of a
no response is 0.25.
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Another way of obtaining binomial probabilities is to use MINITAB as
shown in Box 6.2. MINITAB is particularly nice as it does not limit the
values of 7 to being a multiple of 0.05 and n can be much larger than 20.
More will be said about how large n can be in a later section.

MINITAB BOX 6.2

The command that can be used to obtain the probability distribution for the bino-
mial is PDF, an abbreviation for probability density function, which is the name given
to probability distributions for continuous variables and used by MINITAB for both
discrete and continuous variables. The PDF command will give the probabilities
associated with all the values specified after the PDF command or, if none are
specified, for all possible values of X. A subcommand is required to specify which
probability distribution is to be found. Because we are working with the binomial,
we specify it and then provide the values of n and 7 that we are using. The
semicolon at the end of the PDF line and the period after the value of = must be
entered.

MTB > set cl

DATA> 0 1

DATA> end

MTB > pdf cl;

SUBC> binomial 4 0.25.

K P( X = K)
0.00 0.3164
1.00 0.4219
MTB > pdf;

SUBC> binom 4 0.25.
BINOMIAL WITH N = 4 P = 0.250000

P( X = K)

0.3164

0.4219

0.2109

0.0469

0.0039

AN = O R

The probability mass function for the binomial gives Pr{X = x} for x
ranging from 0 to n. Another function that is used frequently is the cumula-
tive distribution function (cdf). This function gives the probability that X is
less than or equal to x for all possible values of X. Table 6.2 shows both the
probability mass function and the cumulative distribution function values
for the binomial when 7 is 4 and = is 0.25. The entries in the cumulative
distribution row are simply the sum of the probabilities in the row above it,
the probability mass function row, for all values of X less than or equal to
the value being considered (see Box 6.3 for MINITAB use). Cumulative
distribution functions all have a general shape shown in Box 6.3. The value
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Probability Mass (Pr{X = x}) and Cumulative (Pr{X =< x}) Distribution
Functions for the Binomial When n=4 and = = 0.25

X 0 1 2 3 4

Pr{X = x} 0.3164 0.4219 0.2109 0.0469 0.0039
Pr{X = x} 0.3164 0.7383 0.9492 0.9961 1.0000

of the function starts with a low value and then increases over the range of
the X variable. The rate of increase in the function is what varies between
different distributions. All the distributions eventually reach the value of
one or approach it asymptotically.

MINITAB BOX 6.3

MINITAB produces these values by using the command CDEF, the abbreviation for
cumulative distribution function, command in the same way as the PDF command.
The following plot shows the cdf for a binomial distribution when » is 4 and = is
0.25.

MTB > set cl

DATA> 0:4

DATA> end

MTB > cdf cl ¢2;
SUBC> binom 4 0.25.
MTB > plot c2 cl

1.00+ * *
c2 -

As seen above, if we know the data follow a binomial distribution, we
can completely summarize the data through its two parameters, the sam-
ple size and the population proportion or an estimate of it. The sample
estimate of the population proportion is the number of occurrences of the
event in the sample divided by the sample size.
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A. Mean and Variance of the Binomial Distribution

We can now calculate the mean and variance of the binomial distribution.
The mean is found by summing the products of each outcome by its proba-
bility of occurrence, that is,

w= > x*Pr{X = x}.
x=0

This appears to be different from the calculation of the sample mean in
Chapter 4, but it is really the same because in Chapter 4 all the observations
had the same probability of occurrence, 1/N. Thus the formula for the
population mean could be re-expressed as

M=

I
—_

x,~/N =

N
i=1

N
x; * (I/N) = Z x; * Pr{x}.
i i=1
The mean of the binomial variable, that is, the mean number of yes
responses out of n responses, when 7 is 4 and = is 0.25, is

(0 * 0.3164) + (1 * 0.4219) + (2 * 0.2109) + (3 * 0.0469)
+ (4% 0.0039) = 1.00 = n * 7

The expression of the binomial mean as n * 7 makes sense because, if the
probability of occurrence of an event is 7, then in a sample of size n, we
would expect n * 7 occurrences of the event.

The variance of the binomial variable, the number of yes responses,
can also be expressed conveniently in terms of 7. From Chapter 4, the
population variance was expressed as

N
o2 =Y, (x — w¥N.
i=1

In terms of the binomial, the X variable takes on the values from 0 to n, and
we again replace the N in the divisor by the probability that X is equal to x.
Thus, the formula becomes

a-2=i(x—n*7r)2*Pr{X=x}
x=0

which, with further algebraic manipulation, simplifies to n * 7 * (1 — 7).
The variance is then 4 * 0.25 = (1 — 0.25), which is 0.75.

There is often interest in the variance of the proportion of yes re-
sponses, that is, in the variance of the number of yes responses divided by
the sample size. This is the variance of the number of yes responses di-
vided by a constant. From Chapter 4, we know that this is the variance of
the number of yes responses divided by the square of the constant. Thus
the variance of a proportion is n * 7 * (1 — a)/n?, which becomes
m* (1 — mw)/n.
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B. Example: Use of the Binomial Distribution

MINITAB BOX 6.4

Let us consider a larger example now. In 1990, cesarean section (c-section)
deliveries represented 23.5 percent of all deliveries in the United States, a
tremendous increase since 1960 when the rate was only 5.5 percent. Con-
cern has been expressed, for example, by the Public Citizen Health Re-
search Group in its June 1992 Health Letter (1), that many unnecessary c-
section deliveries are performed. Public Citizen believes unnecessary -
c-sections waste resources and increase maternal risks without achieving
sufficient concomitant improvement in maternal and infant health. It is in
this context that administrators at a local hospital are concerned as they
believe that their hospital’s c-section rate is even higher than the national
average. Suppose as a first step in determining if this belief is correct, we
select a random sample of deliveries from the hospital. Of the 62 delivery
records pulled for 1990, we found 22 c-sections. Does this large proportion
of c-section deliveries, 35.5 percent (= 22/62), mean that this hospital’s rate
is higher than the national average? The sample proportion of 35.5 percent
is certainly larger than 23.5 percent, but our question refers to the popula-
tion of deliveries in the hospital in 1990, not the sample. As we saw above,
we cannot infer immediately from this sample without taking sample-to-

‘sample variability into account. This is a situation where the binomial

distribution can be used to address the question about: the population
based on the sample.

To put the sample rate into perspective, we need to answer the follow-
ing question. How likely is a rate of 35.5 percent or higher in our sample if
the rate of c-section deliveries is really 23.5 percent? Note that the question
includes rates higher than 35.5 percent. We must include them because if
the sum of their probabilities is large, we cannot conclude that a rate of 35.5
percent is inconsistent with the national rate regardless of how unlikely the
rate of 35.5 percent is.

We can use the cdf for the binomial to find the answer to the above
question. The cdf enables us to find the probability that a variable is less
than a given value, in this case, less than the result we observed in our
sample. Then we can subtract that probability from one to find how likely it
is to obtain a rate as large or larger than our sample rate. The MINITAB
calculation is shown in Box 6.4. Thus, the probability of 21 or fewer c-
sections out of 62 deliveries, assuming that the national rate of 23.5 percent

MTB > cdf 21;

SUBC> binom 62 0.235.
K P(X LESS OR = K)
21.00 0.9776
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holds, is 0.9776. This means that the probability of 22 or more c-section
deliveries is 1 — 0.9776 = 0.0224. The probability of having 22 or more c-
sections is very small. It is unlikely that this hospital’s c-section rate is the
same as the national average; in fact, it appears to be higher. Further
investigation is required to determine why the rate may be higher.

C. Shapes of the Binomial Distribution

The binomial distribution has two parameters, the sample size and the
population proportion, that affect its appearance. So far we have seen the
distribution of one binomial (Figure 6.1) which had a sample size of 4and a
population proportion of 0.25. Box 6.5 examines the effect of population
proportion on the shape of the binomial distribution for a sample size of 10;
the plots are shown in Box 6.6.

The plots in Box 6.6 would look like bar charts if a perpendicular line
were drawn from the horizontal axis to the points above each outcome.

In the first plot with 7 equal to 0.10, the shape is quite asymmetric,
with only a few of the outcomes having probabilities very different from
zero. This plot has a long tail to the right. In the second plot with 7 equal to
0.20, the plot is less asymmetric.

The third binomial distribution, with 7 equal to 0.50, has a mean of 5
(= n * m). The plot is symmetric about its mean of 5, and it has the familiar
bell shape. As 7 is 0.50, it is as likely to have one less occurrence as one
more occurrence; that is, four occurrences of the event of interest are as
likely as six occurrences, three as likely as seven, and so on, and the plot
reflects this.

MINITAR BOX B 5

Column c1 contains the integers from 0 to 10, the possible number of occurrences of
the event of interest in a binomial situation when n = 10. Columns ¢2, c3, and c4
contain the binomial probabilities of each outcome for the population proportions
of 0.1, 0.2, and 0.5, respectively.

MTB > set ¢l
DATA> 0:10

DATA> end

MTB > pdf cl c2;
SUBC> binom 10 .1.
MTB > pdf ¢l ¢3;
SUBC> binom 10 .2.
MTB > pdf cl c4;
SUBC> binom 10 .5.

(The binomial probabilities are plotted against the corresponding outcomes in Box
6.6)
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MTB > plot ¢3 ¢l

0.30+ *

c3 - *

MTB > plot c4 cl

0.240+ .




136 6 PROBABILITY DISTRIBUTIONS

This completes the introduction to the binomial, although we shall say
more about it later. The next section introduces the Poisson distribution,
another widely used distribution.

Il. THE POISSON DISTRIBUTION

The Poisson distribution is named for its discoverer, Siméon-Denis Poisson,
a French mathematician from the late 18th and early 19th centuries. He is
said to have once remarked that life is good for only two things: to do
mathematics and to teach it (2, p. 569). The Poisson distribution is similar
to the binomial in that it is also used with counts or the number of events.
The Poisson is particularly useful when the events occur infrequently. It
has been applied in the epidemiological study of many forms of cancer and
other rare diseases over time. It has also been applied to the study of the
number of elements in a small space when a large number of these small
spaces are spread at random over a much larger space, for example, in the
study of bacterial colonies on an agar plate.

Even though the Poisson and binomial distributions both are used with
counts, the situations for their applications differ. The binomial is used
when a sample of size n is selected and the numbers of events and non-
events are determined from this sample. The Poisson is used when events
occur at random in time or space, and the number of these events is noted.
In the Poisson situation, no sample of size n has been selected.

The Poisson distribution arises from either of two models. In one
model, quantities, for example, bacteria, are assumed to be distributed at
random in some medium with a uniform density of A (lambda) per unit
area. The number of bacterial colonies found in a sample area of size A
follows the Poisson distribution with a parameter s equal to the product of
A and A.

In terms of the model over time, we assume that the probability of one
event in a short interval of length ¢, is proportional to ¢, that is, Pr{exactly
one event} is approximately A * ;. Another assumption is that ¢ is so short
that the probability of more than one event during this interval is almost
zero. We also assume that what happens in one time interval is indepen-
dent of the happenings in another interval. Finally, we assume that X is
constant over time. Given these assumptions, the number of occurrences
of the event in a time interval of length t follows the Poisson distribution
with parameter u where u is the product of A and ¢.

The Poisson probability mass function is

eTH x y¥

Pr{X = x} = p

forx=0,1,2,...
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Calculation of Poisson Probabilities, Pr{X = x} = e # % u*/x!, for p = 1
and 2

p=1 n=2
x e? * 1/x! =Pr{X=x} e? * 2*/x1 = Pr{X = x}
0 0.3679 * 1/1 = 0.3679 0.1353 * 1/1 = 0.1353
1 0.3679 * 1/1 = 0.3679 0.1353 * 2/1 = 0.2707
2 0.3679 * 1/2 = 0.1839 0.1353 * 4/2 = 0.2707
3 0.3679 * 1/6 = 0.0613 0.1353 * 8/6 = 0.1804
4 0.3679 * 1/24 = 0.0153 0.1353 * 16/24 = 0.0902
5 0.3679 * 1/120 = 0.0031 0.1353 * 32/120 = 0.0361
6 0.3679 * 1/720 = 0.0005 0.1353 * 64/720 = 0.0120
7 0.3679 * 1/5040 = 0.0001 0.1353 * 128/5,040 = 0.0034
8 0.1353 * 256/40,320 = 0.0009
9 0.1353 * 512/362,880 = 0.0002
Total 1.0000 0.9999

where ¢ is a constant approximately equal to 2.71828 and u is the parameter
of the Poisson distribution. Usually ¢ is unknown and we must estimate it
from the sample data. Before considering an example, we demonstrate in
Table 6.3 the use of the probability mass function for the Poisson distribu-
tion to calculate the probabilities when u = 1 and p = 2. These probabilities
are not difficult to calculate, particularly when u is an integer. There is also
a recursive relationship between the probability that X = x + 1 and the
probability that X = x that simplifies the calculations:

Pr{X=x+1}:(x’:1>*Pr{X=x}

for x beginning at a value of 0. For example, for u = 2,
Pr{X = 3} = (2/3) * Pr{X = 2} = (2/3) = 0.2707 = 0.1804

which is the value shown in Table 6.3.

These probabilities are also found in Appendix Table B3 which gives
the Poisson probabilities for values of u beginning at 0.2 and increasing in
increments of 0.2 up to 2.0, then in increments of 0.5 up to 7, and in
increments of 1 up to 17. MINITAB can also provide the Poisson probabili-
ties as shown in Boxes 6.7 and 6.8. Note that the Poisson distribution is
totally determined by specifying the value of its one parameter, u. The
plots in Box 6.8 show the shape of the Poisson probability mass and cumu-
lative distribution functions with p = 2.

The shape of the Poisson probability mass function with u equal to 2
(the top figure in Box 6.8) is similar to the binomial mass function for a
sample of size 10 and 7 equal to 0.2 shown above. The cdf (the bottom
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MINITAB BOX 6.7

The following shows the use of the PDF and CDF commands in MINITAB for a
mean value, u, of 2.0. Column ¢l contains the possible outcomes, ¢2 will contain
the probability mass function, and c3 will contain the cumulative distribution func-
tion.

MTB > set ¢l
DATA> 0:10
DATA> end

MTB > pdf cl c2;
SUBC> poisson 2.
MTB > cdf cl c3;
SUBC> poisson 2.

(The Poisson probabilities are printed and plotted in Box 6.8.)

MINITAB BOX 6.8

MTB > print cl c2 ¢3
ROW Cl c2 C3
1 0 0.135335 0.13534
2 1 0.270671 0.40601
3 2 0.270671 0.67668
4 3 0.180447 0.85712
5 4 0.090224 0.94735
6 5 0.036089 0.98344
7 6 0.012030 0.99547
8 7 0.003437 0.99890
9 8 0.000859 0.99976
10 9 0.000191 0.99995
11 10 0.000038 0.99999
MTB > plot c2 cl
0.30+
c2 -
0.20+
0.10+ *
0.00+ * + - .
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MTB > plot ¢3 cl

- - L 4
0.90+
- i
Cc3 -
- *
0.60+
- *
0.30+
- -
0.00+ —4=--w=----- oo L I fommmm———— +C1
0.0 2.0 4.0 6.0 8.0 10.0

figure in Box 6.8) has the same general shape as that shown in the binomial
example above, but the shape is easier to see here as there are more values
for the X variable shown on the horizontal axis.

A. Mean and Variance of the Poisson Distribution

As discussed above, the mean is found by summing the products of each
outcome by its probability of occurrence. For the Poisson distribution with
parameter i = 1 (see Table 6.3), the mean is

population mean = , x * Pr{X = x}

x=0
=0+%0.3679 + 1 *0.3679 + 2 * 0.1839 + 3 * 0.0613

+ 4 % 0.0153 + 5 * 0.0031 + 6 * 0.0005 + 7 = 0.0001
= 1.0000 = u.

The mean of the Poisson distribution is p, which is also the parameter of
the Poisson distribution. It turns out that the variance of the Poisson distri-
bution is also .

B. Example 1: Finding Poisson Probabilities

A famous chemist and statistician, W. S. Gosset, worked for the Guinness
Brewery in Dublin at the turn of the 20th century. Because Gosset did not
wish the competitor breweries to learn of the potential application of his
work for a brewery, he published his research under the pseudonym of
Student. As part of his work, he studied the distribution of yeast cells over
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Observed Frequency of Yeast Cells in 400 Squares

X

0 1 2 3 4 5 6
Frequency 103 143 98 42 8 4 2
Proportion 0.258 0.358 0.245 0.105 0.020 0.010 0.005

Poisson probability 0.267 0.352 0.233 0.103 0.034 0.009 0.003

400 squares of a hemacytometer, an instrument for the counting of cells (3).
One of the four data sets he obtained is shown in Table 6.4.

Do these data follow a Poisson distribution? As was mentioned above,
the Poisson distribution is determined by the mean value, which is un-
known in this case. We can use the sample mean to estimate the popula-
tion mean w. The sample mean is the sum of all the observations divided
by the number of observations, in this case 400. The sum of the number of
cells is

103«0+ 1431 +98+2+42%3 +8%4+4%5+2%6=>529.

The sample mean is then 529/400 = 1.3225. Thus we can calculate the
Poisson probabilities using the value of 1.3225 for the mean. As the value
of 1.3225 for u is not in Appendix Table B3, we must use some other means
of obtaining the probabilities. We can calculate them using the recursive
relatior ship shown above. We begin by finding the probability of squares
with zero cells, 71325, which is 0.2665. The other probabilities are found
from this value. We can also use MINITAB to calculate these probabilities
as shown in Box 6.9. These values are also shown in Table 6.4 and they

MTB > pdf;
SUBC> poiss 1.3225.
POISSON WITH MEAN = 1.322

P( X = K)
. 2665
.3524
.2330
.1027
.0340
.0090
.0020
.0004
.0001
.0000

OCOIOAaAHMWNNDFEORN
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agree reasonably well with the actual proportions also shown in the table.
Based on the visual agreement of the actual and theoretical proportions
(from the Poisson), we cannot rule out the Poisson distribution as the
distribution of the cell counts. The Poisson distribution agreed quite well
for three of the four replications of the 400 cells that Gosset performed.

One reason for interest in the distribution of data is that knowledge of
the distribution can be used in future occurrences of this situation. If future
data do not follow the previously observed distribution, this can alert us to
a change in the process for generating the data. It could also indicate, for
example, that the blood cell counts of a patient under study differ from
those expected in a healthy population or that there are more occurrences
of some disease than was expected assuming that the disease occurrence
follows a Poisson distribution with parameter u. If there are more cases of
the disease, it may indicate that there is some common source of infection,
for example, some exposure in the workplace or in the environment.

A method of visual inspection of whether the data could come from a
Poisson distribution is the Poissonness plot, presented by Hoaglin (4). The
rationale for the plot is based on the Poisson probability mass distribution
formula. If the data could come from a Poisson distribution, then a plot of
the sum of the natural logarithm of the frequency of x and the natural
logarithm of x! against the value of x should be a straight line. We can use
MINITAB with the data in Table 6.4 to create a Poissonness plot as shown
in Box 6.10.

The plot appears to be approximately a straight line with the exception
of a dip for x = 4. In Table 6.4, we see that the biggest discrepancy between
the actual and theoretical proportions occurred when x = 4, confirmed by
the Poissonness plot.

C. Example 2: Use of the Poisson Distribution

In 1986, 18 cases of pertussis were reported in Harris County, Texas, from
its estimated 1986 population of 2,942,550. The reported national rate of
pertussis was 1.2 cases per 100,000 population (5). Do the Harris County
data appear to be consistent with the national rate?

The data are inconsistent if there are too many or too few cases of
pertussis compared with the national rate. This concern about both too few
as well as too many adds a complication lacking in the binomial example in
which we were concerned only about too many occurrences. Our method
of answering the question is as follows.

First calculate the pertussis rate in Harris County. If the rate is above
the national rate, find the probability of at least as many cases occurring as
were observed. If the rate is below the national rate, find the probability of
the observed number of cases or fewer occurring. To account for both too
few and too many in our calculations, we double the calculated probability.
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MINITAB BOX 6.10

In the following MINITAB statements, the frequencies are entered in c1 and values
of x are entered in 2. Column ¢3 contains the values of x!, ¢4 contains the natural
logarithm of the frequencies, c5 has the natural logarithm of x! and c6 is the sum of
c4 and c5.

MTB > set ¢l

DATA> 103 143 98 42 8 4 2
DATA> set c2

DATA> 0:6

DATA> set c3

DATA> 1 1 2 6 24 120 720
DATA> end

MTB > let c4=loge(cl)
MTB > let cb=loge(c3)
MTB > let c6=c4+cb

MTB > plot ¢6 c2

cé - *
7.0+
- *
6.0+
- *
- de Ll
5.0+ *
- W
o ———— trrm—m—— frm = oo ——— pomm e ———— +--C2
0.0 1.2 2.4 3.6 4.8 6.0

Is the resultant probability large? If it is large, there is no evidence that the
data are inconsistent with the national rate. If it is small, it is unlikely that
the data are consistent with the national rate.

The rate of pertussis in Harris County was 0.61 cases per 100,000 popu-
lation, less than the national rate. Therefore, we shall calculate the proba-
bility of 18 or fewer cases given the national rate of 1.2 cases per 100,000
population. The rate of 1.2 per 100,000 is multiplied by 29.4255 (the Harris
County population of 2,942,550 divided by 100,000) to obtain the Poisson
parameter for Harris County of 35.31. This value exceeds those listed in
Table B3. Therefore we can either find the probability of zero cases and use
the recursive formula shown above or use the computer. Box 6.11 calcu-



Il. THE NORMAL DISTRIBUTION 143

MINITAB BOX 6.11

The CDF command provides the probability that the variable is less than or equal to
a specified value. In this case, we want the probability that a variable following the
Poisson distribution with a mean of 35.31 is less than or equal to 18.

MTB > cdf 18;
SUBC> poiss 35.31.
K P( X LESS OR = K)
18.00 0.0010

lates the probability of 18 or fewer cases. The probability of 18 or fewer
cases is 0.001. Multiplying this value by 2 to account for the upper tail of
the distribution gives a probability of 0.002, a very small value. It is there-
fore doubtful, as the probability is only 0.002, that the national rate of
pertussis applies to Harris County.

This completes the introduction to the binomial and Poisson distribu-
tions. The following section introduces the normal probability distribution
for continuous random variables.

HI. THE NORMAL DISTRIBUTION

As was mentioned above, the probability distribution for a continuous
random variable is usually expressed as a formula which can be used to
find the probability that the continuous variable is within a specified inter-
val. This differs from the probability distribution of a discrete variable
which gives the probability of each possible outcome.

One reason why an interval is used with a continuous variable instead
of considering each possible outcome is that there is really no interest in
each distinct outcome. For example, when someone expresses an interest
in knowing the probability that a male 45 to 54 years old weighs 160
pounds, exactly 160.000000000. . . pounds is not what is intended. What
the person intends is related to the precision of the scale used, and the
person may actually mean 159.5 to 160.5 pounds. With a less precise scale,
160 pounds may mean a value between 155 and 165 pounds. Hence the
probability distribution of continuous random variables focuses on inter-
vals rather than on exact values.

The probability density function for a continuous random variable X is
a formula that allows one to find the probability of X being in an interval.
Just as the probability mass function for a discrete random variable could
be graphed, the probability density function can also be graphed. Its graph
is a curve such that the area under the curve sums to one, and the area
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between two points, x; and x,, is equal to the probability that the random
variable X is between x; and x,.

The normal distribution is also sometimes referred to as the Gaussian
distribution after the German mathematician, Carl Gauss (1777-1855).
Gauss, perhaps the greatest mathematician who ever lived, demonstrated
the importance of the normal distribution, and today, it is the most widely
used probability distribution in statistics. The normal distribution is so
widely used because (1) it occurs naturally in many situations; (2) the
sample means of many nonnormal distributions tend to follow it; and (3) it
can serve as a good approximation to some nonnormal distributions.

The normal probability density function is

fx) = \/1——

e EB? o < x < oo
21ra?

where u is the mean and o is the standard deviation of the normal distribu-
tion, and = is a constant approximately equal to 3.14159. The normal den-
sity function is bell-shaped as can be seen from the following plots from
MINITAB.

Box 6.12 shows the standard normal density function, that is, the nor-
mal pdf with a mean of zero and a standard deviation of one, over the

MINITAB BOX B6.12

Column c2 contains the values from —3.5 to 3.5 in steps of 0.1 and ¢3 contains the
pdf values for the standard normal distribution evaluated at the points in ¢2. When
no subcommands are given with the PDF or CDF commands, MINITAB defaults to
the standard normal distribution.

MTB > set c2
DATA> -3.5:3.5/.1
DATA> end

MTB > pdf c2 c¢3
MTB > plot c3 c2

C3 - *2k2k

- 2 2
- * *

0.30+ 2 2
- * *
- * *
- * *
- *k * ok

0.15+ * *
- *% *k
- *% * %
- 2 2
- *%Qk *2 kK

0.00+ 2%2%2%% *kQ2k2 K2
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range of —3.5 to +3.5. The area under the curve is one and the probability
of X being between any two points is equal to the area under the curve
between those two points.

Box 6.13 shows the effect of changing o on the normal pdf. The area
under both of these curves again is one, and both curves are bell-shaped.
The standard normal distribution has smaller variability, evidenced by
more of the area being closer to zero, as it must because its standard
deviation is 50 percent of that of the other normal distribution. There is
more area, or a greater probability of occurrence, under the second curve
associated with values farther from the mean of zero than under the stan-
dard normal curve. The effect of increasing the standard deviation is to

MINITAB BOX 6.13

The standard normal pdf, its values are in 3, is plotted along with the pdf for a
normal distribution with & = 0 and o = 2 (its pdf is stored in column c4). The pdfs
are shown over the range from —7 to 7 in increments of 0.1. Note that the GMPLOT
command is used to obtain a high-resolution plot as the output from the MPLOT
command was hard to follow. The plot is shown below.

MTB > set ¢2

DATA> —7:7/.1

DATA> end

MTB > pdf c2 ¢3

MTB > pdf c2 c4;

SUBC> normal 0 2.

MTB > gmplot ¢3 ¢c2, c4 c2

045 1

c3

3 It $ 3 3
T T T

-5.0 25 0.0 25 5.0
A=C3 vs. C2 B=C4 vs, C2
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MINITABBOX 6.14

Column c3 again contains the pdf for the standard normal distribution over the
range —3.5 to 6.5 in increments of 0.1, and ¢4 will contain the pdf for a normal
distribution with a mean of 3 and a standard deviation of 1.

MTB > set c2

DATA> —3.5:6.5/.1

DATA> end

MTB > pdf c2 ¢c3

MTB > pdf c2 c4;

SUBC> normal 3 1.

MTB > gmplot ¢3 c2, c4 c2

0.45 ¢

c3

0.30 1

015 1

0.00 1

A=C3 vs. C2 B=C4 vs. G2

flatten the curve of the pdf, with a concomitant increase in the probability
of more extreme values of X.

In Box 6.14, statements for graphing two additional normal probability
density functions are shown and the resultant plots show the effect of
changing the mean. Increasing the mean by 3 units has simply shifted the
entire pdf curve 3 units to the right. Hence changing the mean shifts the
curve to the right or left and changing the standard deviation increases or
decreases the spread of the distribution.

A. Transforming Normally Distributed Data to the Standard
Normal Distribution

As can be seen from the normal pdf formula and the plots, two parameters,
the mean and the standard deviation, determine the location and spread of
the normal curve. Hence there are many normal distributions, just as there
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are many binomial and Poisson distributions; however, it is not necessary
to have many pages of normal tables for each different normal distribution
because all the normal distributions can be transformed to the standard
normal distribution. Thus only one normal table is needed.

Consider data from a normal distribution with a mean of & and a
standard deviation of o. We wish to transform these data to the standard
normal distribution which has a mean of zero and a standard deviation of
one. The transformation has two steps. The first step is to subtract the
mean, u, from all the observations. In symbols, let y; be equal to x; — u.
Then the mean of Y is u,, which equals

_ xi—n_zxi—N*[.L_N*p,—N*p,_
Wy =275 = N - N -

0.

The second step is to divide y; by its standard deviation. As we have
subtracted a constant from the observations of X, the variance and stan-
dard deviation of Y are the same as those of X as was shown in Chapter 4.
That is, the standard deviation of Y is also o. In symbols, let z; be equal to
yi/o. What are the mean and standard deviation of Z? The mean is still zero
but the standard deviation of Z is one. This is due to the second property of
the variance shown in Chapter 4; that is, when all the observations are
divided by a constant, the standard deviation is also divided by that con-
stant. Therefore the standard deviation of Z is found by dividing o, the
standard deviation of Y, by the constant, o. The value of this ratio is one.

Therefore any variable, X, which follows a normal distribution with a
mean of u and a standard deviation of o can be transformed to the stan-
dard normal distribution by subtracting u from all the observations and
dividing all the observed deviations by o. The variable Z, defined as (X —
w)/a, follows the standard normal distribution. A symbol for indicating
that a variable follows a particular distribution or is “distributed as” is the
asymptote, ~; for example, Z ~ N(0,1) means that Z follows a normal
distribution with a mean of zero and a standard deviation of one. The
observed value of a variable from a standard normal distribution tells how
many standard deviations that value is from its mean of zero.

B. Calculation of Normal Probabilities

The cumulative distribution function of the standard normal distribution,
denoted by ®(z), represents the probability that the standard normal
variable Z is less than or equal to the value z, that is, Pr{Z =< z}. It is also the
area under the standard normal curve less than z as is depicted in Figure
6.2.

The shaded area represents the probability that a variable, Z, distrib-
uted as a N(0,1) variable, is less than or equal to z. Table B4 presents the
values of ®(z) for values of z ranging from —3.79 to 3.79 in steps of 0.01.
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Depiction of ®(z) for a positive value of z.

The unshaded area in Figure 6.2 represents the probability that Z, a N(0,1)
variable, is greater than some value z.

As can be seen from Figure 6.3, the probability that Z is less than or
equal to a negative z is the same as the probability that Z is greater than the
corresponding positive z. In symbols, this equivalence is expressed as
P(—z) =1 — P(2).

Box 6.15 shows the cumulative distribution function for the standard
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Equivalence of ®&(—z) and 1 — &(z).
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Column c1 contains the values from —3.8 to 3.8 in increments of 0.1 and ¢2 will
contain the corresponding values of the cdf over the range —3.8 to 3.8.

> set cl

MTB

DATA>
DATA>

MTB
MTB

c2

-3.8:3.8/0.1
end

> ¢df cl c2
> plot c2 ¢l

1.05+

2%2%2%2%2 %D

22 K2 KKK %D
A2 %
*2
2
LTS
*k

*2%2

-3.0

-1.5 0.0 1.5 3.0

normal distribution. The vertical axis gives the values of the probabilities
corresponding to the values of z shown along the horizontal axis. The
curve gradually increases from a probability of 0.0 for values of z around
—3, to a probability of 0.5 when z is zero, and on to probabilities close to 1.0
for z values of 3 or larger.

Table 6.5 shows the values of the cdf, taken from ¢2, for z ranging from
~3.8 to 3.8 in increments of 0.5. When z is —3.8, the value of the cdf is
0.000072; when z is —3.3, the value of the cdf is 0.000483; and, although not
shown, when z is 0.0, we know that the cdf value is 0.5.

Values of the Standard Normal cdf for Selected Values of z

z ®(2) z D(2)

—~3.8 0.000072 0.2 0.579260
-3.3 0.000483 0.7 0.758036
—-2.8 0.002555 1.2 0.884930
-2.3 0.010724 1.7 0.955435
-1.8 0.035930 2.2 0.986097
~-1.3 0.096801 2.7 0.996533
-0.8 0.211855 3.2 0.999313
~0.3 0.382089 3.7 0.999892
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1. Example 1: Probability of Being Greater Than a Value

Suppose that we wish to find the probability that an adult woman will have
a diastolic blood pressure value greater than 95 mm Hg given that X, the
diastolic blood pressure for adult women, follows the N(80,10) distribu-
tion. Because the values in Table B4 are for variables that follow the N(0,1)
distribution, we first must transform the value of 95 to its corresponding Z
value. To do this, we subtract the mean of 80 and divide by the standard
deviation of 10. The value of 95 mm Hg therefore is

95 —-80 15
0 10 >

Thus the value of the Z variable corresponding to 95 mm Hg is 1.5, which
means that 95 is 1.5 standard deviations above its mean of 80. We now
want the probability that Z is greater than 1.5. Using Table B4, look for 1.5
under the z heading and then go across the columns until reaching the .00
column. The probability of a standard normal variable being less than 1.5 is
0.9332. Thus the probability of being greater than 1.5 is 0.0668 (= 1 —
0.9332).

The CDF command in MINITAB can be used to obtain the cumulative
distribution function values for variables that follow a normal distribution.
The CDF command provides for a wider coverage of values of z than
Appendix Table B4 does, and the values do not have to be greater than or
equal to zero. In MINITAB, we do not have to transform to the standard
normal distribution as it does that for us. If no distribution is specified,
MINITAB assumes that we are using the N(0,1) distribution. Box 6.16
calculates the probability that X was greater than 95 mm Hg where X ~
N(80,10).

MINITAB BOX 6.16

MTB > cdf 95;
SUBC> normal 80 10.
95.0000 0.9332

As Pr{X > 95} is 1 — Pr{X = 95}, we subtract 0.9332 from 1.0 and obtain 0.0668,
which is the same value we found above.

2. Example 2: Calculation of the Value of the ith Percentile

Table B4 can be used to answer a slightly different question as well. Sup-
pose that we wish to find the 95th percentile of the diastolic blood pressure
variable for adult women, that is, the value such that 95 percent of adult
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women had a diastolic blood pressure less than it. We look in the body of
the table until we find 0.9500. We find the corresponding value in the z
column and transform that value to the N(80,10) distribution.

Examination of Table B4 shows the value of 0.9495 when z is 1.64 and
of 0.9505 when z is 1.65. There is no value of 0.9500 in the table. As 0.9500
is exactly halfway between 0.9495 and 0.9505, we use the value of 1.645 for
the corresponding z. We now must transform this value to the N(80,10)
distribution. This is easy to do because we know the relation between Z
and X.

As Z = (X — p)/o, on multiplication of both sides of the equation by o,
we have o * Z = X — u. If we add u to both sides of the equation, we have
o * Z + u = X. Therefore we must multiply the value of 1.645 by 10, the
value of o, and add 80, the value of g, to it to find the value of the 95th
percentile. This value is 96.45 (= 16.45 + 80) mm Hg.

MINITAB can also perform this calculation as shown in Box 6.17.

The percentiles of the standard normal distribution are used fre-
quently; therefore, a shorthand notation for them has been developed. The
ith percentile for the standard normal distribution is written as z;, for exam-
ple, zo.05 is 1.645. From Table B4, we also see that zy g is approximately 1.28
and zg 975 is 1.96. By the symmetry of the normal distribution, we also know
that 20.10 is —1.28, 20.05 is "1645, and 20.025 is —1.96.

The percentiles in theory could also be obtained from the graph of the
cdf for the standard normal shown above. For example, if the 90th percen-
tile was desired, find the value of 0.90 on the vertical axis and draw a line
parallel to the horizontal axis from it to the graph. Next drop a line parallel
to the vertical axis from that point down to the horizontal axis. The point
where the line intersects the horizontal axis is the 90th percentile of the
standard normal distribution.

The INVCDF (inverse cumulative distribution function) command helps us find the
percentile values.

MTB > invcdf 0.95;
SUBC> normal 80 10.
0.9500 96.4485

The value of the 95th percentile is 96.4485, which agrees with the value found
above. We could also use this command to find the percentiles of the standard
normal distribution.

MTB > invcdf 0.95
0.9500 1.6449
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3. Example 3: Probability Calculation for an Interval

Suppose that we wished to find the proportion of women whose diastolic
blood pressure was between 75 and 90 mm Hg. Before attempting to find
the probabilities numerically, it is useful to make a drawing similar to
Figure 6.4, which depicts the interval we are discussing, to aid our under-
standing of what is wanted. The figure also provides us with an idea of the
probability’s value. If the numerical value is not consistent with our idea of
the value, perhaps we misused Appendix Table B4.

The first step in finding the proportion of women whose diastolic
blood pressure is in this interval is to convert the values of 75 and
90 mm Hg to the N(0,1) distribution. The value of 75 is transformed to
(75 — 80)/10, which is —0.5, and 90 is converted to 1.0. We therefore must
find the area under the standard normal curve between —0.5 and 1.0.
Figure 6.5 shows this interval on the standard normal curve.

Note that the shaded areas in Figures 6.4 and 6.5 represent the same
proportion of the area under each curve. Even though the Figures 6.4 and
6.5 look exactly the same, the vertical axes are different. In Figure 6.4, the
vertical axis goes up to 0.045, whereas it goes up to 0.45 in Figure 6.5. If
these two curves were plotted on the same graph, the N(80,10) curve
would be much flatter than the standard normal because of its much
greater variability. When plotted separately, however, they look the same.
This same appearance supports the use of the standard normal curve for all
normal distributions.

One way of finding the area between —0.5 and 1.0 is to find the area
under the curve less than or equal to 1.0 and to subtract from it the area

0.045 4
g 0.030 +
s
0.015 ¢+
0.000 }
45 60 75 |0 105 120
z Value

Area under the N(80, 10) curve between 75 and 90 mm Hg.



lil. THE NORMAL DISTRIBUTION 153
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Sleuiel=lslel Area under the standard normal curve between —0.5 and 1.0.

under the curve less than or equal to —0.5. In symbols, this is

Pr{-05=Z7Z = 1.0} = Pr{Z = 1.0} — Pr{Z = —0.5}.

From Table B4, we find that the area under the standard normal pdf
curve less than or equal to 1.0 is 0.8413. The probability of a value less than
or equal to —0.5 is 0.3085. Thus the proportion of women whose diastolic
blood pressure is between 75 and 90 mm Hg is 0.5328 (= 0.8413 — 0.3085).
Box 6.18 shows this calculation.

MINITAB BOX 65.18

We can

MTB >
SUBC>
90.

MTB >
SUBC>
75.

do this calculation by using the CDF command in MINITAB as follows.

cdf 90;
normal 80 10.
0000 0.8413

cdf 75;
normal 80 10.
0000 0.3085

The difference between these two probabilities, 0.8413 and 0.3085, yields the value
0.5328, the same value as above.
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C. The Normal Probability Plot

TABLE 6.6

The normal probability plot provides a way of visually determining
whether or not data might be normally distributed. This plot is based on
the cdf of the standard normal distribution. Special graph paper, called
normal probability paper, is used in the plotting of the points. The vertical
axis of normal probability paper shows the values of the cdf of the standard
normal. Table 6.5 showed some of the cdf values corresponding to z values
of —3.8t0 3.7 in steps of 0.5 and we saw that the increase in value of the cdf
was not constant per a constant increase in z. The vertical axis reflects this
with very small changes in values of the cdf initially, then larger changes in
the cdf values in the middle of plot, followed finally by very small changes
in the cdf value. Numbers along the horizontal axis are in their natural
units.

If a variable X is normally distributed, the plot of its cdf against X
should be a straight line on normal probability paper. If the plot is not a
straight line, it suggests that X is not normally distributed. As we do not
know the distribution of X, we approximate its cdf in the following
fashion.

We first sort the observed values of X from lowest to highest. Next we
assign ranks to the observations from 1 for the lowest to n (the sample size)
for the highest value. The ranks are divided by # and this gives an estimate
of the cdf. This sample estimate is often called the empirical distribution
function.

The points, determined by the values of the sample estimate of the cdf
and the corresponding values of x, are plotted on normal probability pa-
per. In practice, the ranks divided by the sample size are not used as the

Values of Vitamin A and Their Ranks and Transformed Ranks for the
33 Boys in Table 4.1

Transformed Vitamin A Transformed Vitamin A Transfof;ned

Vitamin A
(1) Rank rank (Iy) Rank rank (IU) Rank rank
820 1 0.0188 3747 12 0.3496 6754 23 0.6805
964 2 0.0489 4248 13 0.3797 6761 24 0.7105
1379 3 0.0789 4288 14 0.4098 8034 25 0.7406
1459 4 0.1090 4315 15 0.4398 8516 26 0.7707
1704 5 0.1391 4450 16 0.4699 8631 27 0.8008
1826 6 0.1692 4535 17 0.5000 8675 28 0.8308
1921 7 0.1992 4876 18 0.5301 9490 29 0.8609
2246 8 0.2293 5242 19 0.5602 9710 30 0.8910
2284 9 0.2594 5703 20 0.5902 10451 31 0.9211
2671 10 0.2895 5874 21 0.6203 12493 32 0.9511
2687 11 0.3195 6202 22 0.6504 12812 33 0.9812




IIl. THE NORMAL DISTRIBUTION 155

estimate of the cdf. Instead, the transformation, (rank — 0.375)/(n + 0.25),
is frequently used. One reason for this transformation is that the estimate
of the cdf for the largest observation is now a value less than one, whereas
the use of the ranks divided by n always results in a sample cdf value of
one for the largest observation. A value less than one is desirable because it
is highly unlikely that the selected sample actually contains the largest
value in the population.

As an example, consider the vitamin A data for the 33 boys in Table
4.1. Table 6.6 shows the sorted values, their ranks, and the transformed
ranks, which are plotted in Figure 6.6. The points in the plot do not appear
to fall along a straight line. It is therefore doubtful that the vitamin A
variable follows a normal distribution, a conclusion that we had previously
reached in the discussion of symmetry in Chapter 4.

An alternative to normal probability paper is use of the computer as
demonstrated in Box 6.19.

Let us now examine data from a normal distribution and see what its
normality probability plot looks like. The example in Box 6.20 uses data
from a N(80,10) distribution. The plot looks like a straight line, but there
are many points with the same normal scores. Box 6.21 shows a different
plot of the same data, stretching the vertical axis and reducing the number
of points with the same normal scores.

The points still appear to fall mostly on a straight line as they should.
The smallest observed value of X is slightly larger than expected if the data

0.9990 |-

0.9938 |-

0.9713 |- *
0.9032 |- *

0.7580 |- * * k%

.5398 |- * kk %

0.3085 |- 2 *x %

0.1357 |- 2%

Cumulative Probabilities
o

0.0446 |~ *
0.0107 |- *

0.0019 |-

0.0002

1 2 3 4 ) 6 7 8 9 10 11 12 13
Vitamin A (international units in units of 1000)

" FIGURE 6.6 P probability plot of vitamin A data from Table 4.1.



156 6 PROBABILITY DISTRIBUTIONS

The command NSCORES in MINITAB transforms the data into normal scores in
the following manner. First, ranks are assigned to the data and then the ranks are
transformed in a manner similar to that shown above. These transformed ranks
provide an estimate of the cdf, the proportion of values less than x for the X
variable. The next step is to find the values of a standard normal variable that
would have produced these same proportions. These are the normal scores. The
plot of the normal scores versus the observed values of X should be linear if X is
normally distributed. The following example uses the vitamin A data in cl.

MTB > nscores cl c2
MTB > plot c2 cl

c2 - *
- *
1.5+ *
- * %
- 2
- 2 * *
- * 2 %
0.0+ 2 *
- * 3
- 2 2
- * %
- * %k
-1.5+ *
- *
- *
+ + + +m——— e +-C1
0 2500 5000 7500 10000 12500

This plot looks very similar to the normal probability plot shown above in Figure
6.6 as it must. They would be almost identical if the same scales had been used in

the plotting.

MINITAB BOX 6.20

MTB > random 100 cl;
SUBC> normal 80 10.
MTB > desc ¢l
N MEAN MEDIAN TRMEAN STDEV SEMEAN

Cl 106 80.61S9 80.447 80.705 9.443 0.944
MIN MAX Ql Q3
Ccl 57.797 104.728 74.046 87.260

MTB > nscores cl c2
MTB > plot c2 cl
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were perfectly normally distributed, but this deviation is relatively slight.
Hence, based on this visual inspection, these data could come from a
normal distribution.

It is difficult to determine visually whether or not data follow a normal
distribution for small sample sizes unless the data deviate substantially
from a normal distribution. As the sample size increases from 50 to 100,
one can have more confidence in the visual determination.

IV. THE CENTRAL LIMIT THEOREM

As was mentioned above, one of the main reasons for the widespread use
of the normal distribution is that the sample means of many nonnormal
distributions tend to follow the normal distribution as the sample size
increases. The formal statement of this is called the central limit theorem.
Basically, for random samples of size n from some distribution with mean
wu and standard deviation o, the distribution of x, the sample mean, is
approximately N(u, o/\V/n). This statement applies for any distribution as
long as u and o are defined. The approximation to normality improves as n
increases.

The proof of this theorem is beyond the scope of this book and also
unnecessary for our understanding. We shall, however, demonstrate that
it holds for a very nonnormal distribution, the Poisson distribution with
mean one. First, Box 6.22 shows the probability mass function for this
distribution. As can be seen from the plot in Box 6.22, the Poisson distribu-
tion with a mean of one is very nonnormal in appearance.

The following demonstration consists of drawing a large number of
samples, say 100, from this distribution, calculating the mean for each
sample, and examining the sampling distribution of the sample means. We
do this for samples of size 5 in Box 6.23 and of size 40 in Boxes 6.24 and
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The HEIGHT command is used before the PLOT command to stretch out the plot to
avoid some of the clumping. The usual plot of 17 lines is increased to 40 lines in the

following.

MTB > height 40
MTB > plot c2 ¢l

c2 - *

-1.40+ 2
~2.10+ *

-2.80+

+ ot o S Ot +=-—=C1
60 70 80 90 100

The clumping has been reduced. The largest number of points with the same
normal score value is 6 compared with 13 in the previous graph.

6.25. As was stated above, the mean of the means should be one and the
sample estimate is 0.968. The standard deviation of the means is the stan-
dard deviation divided by the square root of the sample size. As the mean
and variance of this Poisson distribution are both one, the standard devia-
tion of the means should be 1/V/5, which is 0.4472. The sample estimate of
0.4519 is very close. Even for a sample of size 5, the sampling distribution
of the sample means does not differ substantially from the bell shape.
Box 6.25 examines the normality of the sample means from Box 6.24.
The normal scores plot in Box 6.25 as well as the box plot and histogram in
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MTB > set cl
DATA> 0:8

DATA> end

MTB > pdf ¢l c2;
SUBC> poisson 1.
MTB > plot c2 cl

0.36+ * *
c2 -~
0.24+
-~ *
0.12+
- *
- *
0.00+ * * * *
+ + + ——— + +~-=C1
0.0 1.5 3.0 4.5 6.0 7.5

MINITAB BOX B6.23

In the following, 100 random samples of size 5 from the Poisson distribution with a
mean of 1 are selected and stored in columns cl to c5, respectively. Column c6 will
contain the means of the 100 samples of size 5.

MTB > random 100 cl-c5;
SUBC> poisson 1.

MTB > add cl-c5 c6

MTB > let c6=c6/5

MTB > desc c6

N MEAN MEDIAN TRMEAN STDEV SEMEAN

cé 100 0.9680 1.0000 0.9644 0.4519 0.0452
MIN MAX Ql Q3
cé 0.0000 2.0000 0.6000 1.2000

MTB > hist c6

Histogram of C6 N = 100
Midpoint Count
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MINITAB BOX 6.24

The following shows the distribution of sample means of size 40.

MTB > random 100 cl-c40;
SUBC> pois 1.

MTB > add cl-c40 c4l
MTB > let c4l=c41/40
MTB > desc c4l

N MEAN MEDIAN TRMEAN STDEV SEMEAN

c4l 100 1.0007 1.0000 0.9983 0.1453 0.0145
MIN MAX Ql Q3
C41 0.7000 1.4500 0.9000 1.1000

MTB > hist c4l

Histogram of C41 N = 100
Midpoint Count

0.7 3 KwxE

08 lo EA A A R L LR R

09 17 EAE Rk R R L R e R

lo 35 HEXXREEXRHRHHXXXEXREXERRRXXNHHRRRNEEN

l‘l 15 F K K W KKK KRN

12 15 LR E S L AR RS A X L X E S 1

1.3 4 wxxx

1.4 0

1.5 1

MTB > boxp c4l
————————————— I + I *

—+- + + +- + +C41
0.75 0.90 1.05 1.20 1.35 1.50

Box 6.24 are used in the examination of the distribution of the 100 sample
means of size 40. All three graphical methods support the idea that the
sample mean could be normally distributed as n increases even though the
variable itself is clearly not normally distributed.

Besides showing that the central limit theorem holds for one very
nonnormal distribution, this demonstration also showed the effect of sam-
ple size on the estimate of the population mean. From the DESC com-
mand, we see that the mean of the 100 sample means from samples of size
40 is 1.0007, which is very close to the population mean of 1.0. The stan-
dard deviation of the sample means is 0.1453. This value is close to the
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MINITAB BOX 6.25

MTB > height 40

MTB > nscores c4l c42

MTB > plot c42 c4l
2.80+

C42 - *

theoretical value of 0.1581 (= 1/V40) and, in addition, is much smaller than
the corresponding standard deviation of the means from samples of size 5.
The sample range also attests to the much smaller variation in the sample
means from samples of size 40 compared with samples of size 5. The range
of the 100 sample means from samples of size 40 is 0.75, with the sample
means ranging from 0.70 to 1.45. The corresponding range based on sam-
ples of size 5 is 2.00, with the sample means ranging from 0.00 to 2.00. This
example reinforces the idea that the mean from a very small sample may
not be close to the population mean.

V. APPROXIMATIONS TO THE BINOMIAL AND
POISSON DISTRIBUTIONS

As was mentioned earlier, another reason for the use of the normal distri-
bution is that, under certain conditions, it provides a good approximation
to some other distributions, in particular, the binomial and Poisson distri-
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butions. This was more important in the past when there was not such a
widespread availability of computer packages for calculating binomial and
Poisson probabilities for parameter values far exceeding those shown in
tables in most textbooks; however, it is still important today as computer
packages have limitations in their ability to calculate binomial probabilities
for large sample sizes or for extremely large values of the Poisson parame-
ter. For example, when the binomial proportion is 0.5, MINITAB is unable
to calculate binomial probabilities for samples larger than 125. In the fol-
lowing sections, we show the use of the normal distribution as an approxi-
mation to the binomial and Poisson distributions. As there are conditions
when the normal distribution does not provide a good approximation, we
also show the use of the Poisson distribution to approximate the binomial.

A. Normal Approximation to the Binomial Distribution

In the plots of the binomial probability mass functions, we saw that as the
binomial proportion approached 0.5, the plot began to look like the normal
distribution. This was true for sample sizes even as small as 10. It is there-
fore not surprising that the normal distribution can sometimes serve as a
good approximation to the binomial distribution. The following plots of the
binomial probability mass function for different values of n and = demon-
strate why we used the modifier sometimes in the above sentence.

In Box 6.26, n * 7 is less than 5 while n * (1 — =) is greater than 5. The
plots in Box 6.27 show plots for which both n * 7r and n * (1 — =) are greater
than 5. The two plots in Box 6.26 show two skewed distributions. The
normal approximation would not provide good fits in either of these two
cases, particularly in the second situation. The first plot in Box 6.27 is
symmetric, as 7 is 0.5, and the normal distribution should provide a rea-
sonable approximation here. The second plot in Box 6.27 also uses the
same proportions of 0.2 and 0.8 as in the first plot in Box 6.26; however, the
sample size is much larger in the latter plot than in the former plot (50
versus 20), and the latter plot is beginning to look more like a normal
distribution with tails in both directions, although the distribution is still
skewed.

The central limit theorem provides a rationale why the normal distribu-
tion can provide a good approximation to the binomial. In the binomial
setting, there are two outcomes, for example, disease and no disease. Let
us assign the numbers 1 and 0 to the outcomes of disease and no disease,
respectively. The sum of these numbers over the entire sample is the
number of diseased persons in the sample. The mean then is simply the
number of diseased sample persons divided by the sample size. And,
according to the central limit theorem, the sample mean should approxi-
mately follow a normal distribution as n increases. But, if the sum of values
divided by a constant approximately follows a normal distribution, the
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MTB > set cl

DATA> 0:20

DATA> end

MTB > pdf cl c2;
SUBC> binom 20 .2.
MTB > plot c2 cl

0.240+
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c2 - *
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MTB > pdf cl c¢3;
SUBC> binom 20 .05.
MTB > plot ¢3 cl

*

0.36+ *
C3 -
0.24+
- *
0.12+
- *
- *
0.00+ * k Kk Kk k k Kk k Kk k Kk k Kk k *k %
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sum of the values itself also approximately follows a normal distribution.
The sum of the values in this case is the binomial variable, and hence, it
also approximately follows the normal distribution.
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MINITAB BOX B6.27

MTB > pdf cl c¢4;
SUBC> binom 20 .5.
MTB > plot c4 cl
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MTB > set ¢b
DATA> 0:50

DATA> end

MTB > pdf ¢5 c¢6;
SUBC> binom 50 .2.
MTB > plot c¢6 cb
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Unfortunately, there is no consensus as to when the normal approxi-
mation can be used, that is, when 7 is large enough for the central limit
theorem to apply. This issue has been examined in a number of recent
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articles (6-8). Based on work by Samuels and Lu (8) and on some calcula-
tions we performed, Table 6.7 shows our recommendations for the size of
the sample required, as a function of 7, for the normal distribution to serve
as a good approximation to the binomial distribution. Use of these sample
sizes guarantees that the maximum difference between the binomial proba-
bility and its normal approximation is less than or equal to 0.0060 and that
the average difference is less than 0.0017.

The mean and variance to be used in the normal approximation to the
binomial are the mean and variance of the binomial, n * rand n * 7 * (1 —
), respectively. As we are using a continuous distribution to approximate
a discrete distribution, we have to take this into account. We do this by
using an interval to represent the integer. For example, the interval 5.5 to
6.5 would be used with the continuous variable in place of the discrete
variable value of 6. This adjustment is called the correction for continuity.

As an example, we use the normal approximation to the binomial for
the c-section deliveries example shown above. We wanted to find the
probability of 22 or more c-section deliveries in a sample of 62 deliveries.
The values of the binomial mean and variance, assuming that 7 is 0.235,
are 14.57 (= 62 * 0.235) and 11.146 (= 62 * 0.235 * 0.765), respectively. The
standard deviation of the binomial is then 3.339. Finding the probability of
22 or more c-sections for the discrete binomial variable is approximately
equivalent to finding the probability that a normal variable with a mean of
14.57 and a standard deviation of 3.339 is greater than 21.5.

Before using the normal approximation, we must first check to see if
the sample size of 62 is large enough. From Table 6.7, we see that because
the assumed value of 7 is between 0.20 and 0.25, our sample size is large
enough. Therefore it is okay to use the normal approximation to the bino-
mial. Figure 6.7 shows the area under the normal curve corresponding to
values greater than 21.5.

To find the probability of being greater than 21.5, we convert 21.5to a

Sample Size Required for the Normal Distribution to Serve as a Good
Approximation to the Binomial Distribution as a Function of the
Binomial Proportion =

T .05 .10 .15 .20 .25 .30 .35 .40 45 .50

n 440 180 100 60 43 32 23 15 11 10

Difference” .0041 .0048 .0054 .0059 .0059 .0057 .0059 .0060 .0049 .0027

Mean .0010 .0012 .0013 .0016 .0016 .00l6 .0016 .0017 .0016 .0013
difference®

* Maximum difference between binomial probability and normal approximation.
¥ Mean of absolute value of difference between binomial probability and normal approxima-
tion for all nonzero probabilities.
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standard normal value by subtracting the mean and dividing by the stan-
dard deviation. The corresponding z value is 2.075 [= (21.5 — 14.57)/3.339].
Looking in Table B4, we find the probability of a standard normal variable
being less than 2.075 is about 0.9810. Subtracting this value from one gives
the value of 0.0190, very close to the exact binomial value of 0.0224 found
above.

A second example involves marijuana use among high school seniors.
According to data reported in Table 65 of “Health, United States, 1991” (9),
14.0 percent of high school seniors admitted that they used marijuana
during the 30 days previous to a survey conducted in 1990. If this percent-
age applies to all seniors in high school, what is the probability that in a
survey of 140 seniors, the number reporting use of marijuana will be be-
tween 15 and 25? We want to use the normal approximation to the bino-
mial, but we must first check our sample size with Table 6.7. As a sample of
size 100 is required for a binomial proportion of 0.15, our sample of 140 for
an assumed binomial proportion of 0.14 is large enough to use the normal
approximation.

The mean of the binomial is 19.6 and the variance is 140 * 0.14 * 0.86,
which is 16.856. Thus the standard deviation is 4.106. These values are
used in converting the values of 15 and 25 to z scores. Taking the continuity
correction into account means that interval is really 14.5 to 25.5. Figure 6.8
shows this interval.

We convert 14.5 and 25.5 to z scores by subtracting the mean of 19.6
and dividing by the standard deviation of 4.106. The z scores are —1[=
[= (14.5-19.6)/4.106] and 1.44 [= (25.5-19.6)/4.106]. To find the probabi of
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of being between —1.24 and 1.44, we first find the probability of being less
than 1.44. From that, we subtract the probability of being less than —1.24.
This subtraction yields the probability of being in the interval.

These probabilities are found from Table B4 in the following manner.
First, we read down the z column until we find the value of 1.44. We go
across to the .00 column and read the value of 0.9251; this is the probability
of a standard normal value being less than 1.44. The probability of being
less than —1.24 is 0.1075. Subtracting 0.1075 from 0.9251 yields 0.8176. This
is the probability that, out of a sample of 140, between 15 and 25 high
school seniors would admit to using marijuana during the 30 days previous
to the question being asked.

B. Poisson Approximation to the Binomial Distribution

As was pointed out above, sometimes the graphs of the binomial and
Poisson distributions look similar; for example, the plot of the probability
mass function for the binomial distribution with a sample size of 10 and =
equal to 0.2 looks similar to the corresponding Poisson plot with a mean of
2. This is also a case in which the normal approximation should not be used
because, for a 7 of 0.2, n should be at least 60. The similarity of the
binomial and Poisson plots means that one of these distributions could be
used to approximate the other under certain conditions. Because the Pois-
son is easier to calculate and has more expansive tables, it is used to
approximate the binomial. As is shown below, the Poisson approximation



168 6 PROBABILITY DISTRIBUTIONS

complements the normal approximation. The Poisson is used for some of
the situations when the requirements for the use of the normal approxima-
tion are not satisfied.

As the mean and variance of the Poisson distribution are equal, plots of
the probability mass functions of the binomial and Poisson distributions
will be similar when the mean and variance of the binomial are approxi-
mately equal. The mean of the binomial is n * 7 and its variance is n * 7 *
(1 — ). Thus, these two values are approximately equal when 1 — = is
close to 1, or when 7 is close to 0. When 7 is close to 0, n must be very large
for the normal approximation to be used. Hence the requirements for use
of the normal approximation to the binomial are usually not satisfied with
very small values of 7. It is in this situation that the Poisson approximation
to the binomial can be used.

The following three plots in Boxes 6.28, 6.29, and 6.30 show the proba-
bility mass functions for the binomial and Poisson distributions for small
values of 7. To use the Poisson approximation, the mean of the binomial is
also used as the mean of the Poisson distribution. In the three examples,
the binomial means are 2, 2.5, and 1, and the corresponding variances are
1.8, 2.375, and 0.9, respectively. Hence the Poisson should provide a good
approximation in these three examples.

In all three plots, there is little difference between the binomial and
Poisson probability mass functions. The value 2 which is plotted indicates
that both the binomial and Poisson probabilities were plotted at the same
value. This high level of agreement is also shown in the printouts of the
probabilities. Of the three situations, the Poisson approximation is the
poorest for the smallest sample size and the largest value of the binomial
proportion. For the sample size of 20, the largest difference between the
binomial probability and its Poisson approximation is about 0.015. The
agreement between the value of the probabilities and their approximations
improves as n increases and as 7 decreases. The plots also show that the
normal distribution would not be a good approximation to the binomial in
these cases.

C. Normal Approximation to the Poisson Distribution

As the Poisson tables do not show every possible value of the parameter u,
and as the tables and computer packages do not provide probabilities for
extremely large values of w, it is useful to be able to approximate the
Poisson distribution. As can be seen from the above plots, the Poisson does
not look like a normal distribution for small values of u; however, as the
two plots in Box 6.31 show, the Poisson does resemble the normal distribu-
tion for large values of . The first plot shows the probability mass function
for the Poisson with a mean of 10 and the second plot shows the probabil-
ity mass function for the Poisson distribution with a mean of 20.
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| MINITAB BOX 6.28

In the following, we use the values from 0 to 12 in c1 because the probability of
counts larger than 12 is so close to zero to be of no interest.

MTB > set ¢l
DATA> 0:12

DATA> end

MTB > pdf cl c2;
SUBC> binom 20 .1.
MTB > pdf cl c¢3;
SUBC> poiss 2.

MTB > print c2 ¢3

ROW C2 Cc3
1 0.121577 0.135335
2 0.270170 0.270671
3 0.285180 0.270671
4 0.190120 0.180447
5 0.089779 0.090224
6 0.031921 0.036089
7 0.008867 0.012030
8 0.001970 0.003437
9 0.000356 0.000858

10 0.000053 0.000181

11 0.000006 0.000038

12 0.000001 0.000007

13 0.000000 0.000001

MTB > mplot c¢2 cl, ¢3 cl
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0.20+ A
- B
- B
- A
0.10+ B
- A
- 2
- B
0.00+ A 2 2 2 2 2 2
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A =C2 vs, Cl B =C3 vs. Cl
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MINITAB BOX 6.29

MTB > pdf cl c4;
SUBC> binom 50 .05.
MTB > pdf ¢l c¢5;
SUBC> poiss 2.5.
MTB > print c4 c¢b

ROW C4 C5
1 0.076945 0.082085
2 0.202487 0.205213
3 0.261101 0.256516
4 0.219875 0.213763
5 0.135975 0.133602
6 0.065841 0.066801
7 0.025990 0.027834
8 0.008598 0.009941
9 0.002432 0.003106

10 0.000597 0.000863
11 0.000129 0.000216
12 0.000025 0.00004°
13 0.000004 0.000010

MTB > mplot c4 cl, ¢5 ¢l
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- 2
0.00+ 2 2 2 2 2 2
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A =C4vs. Cl B =2C5vs. Cl

As can be seen from these plots, the normal distribution should be a
reasonable approximation to the Poisson distribution for values of u
greater than 10. As additional evidence for the use of the normal distribu-
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MINITAB BOX 6.30

MTB > pdf cl c6;
SUBC> binom 100 .01.
MTB > pdf cl c7;
SUBC> poiss 1.

MTB > print c6 c7

ROW Ccé c7
1 0.366032 0.367879
2 0.369730 0.367879
3 0.184865 0.183940
4 0.060999 0.061313
5 0.014542 0.015328
6 0.002898 0.003066
7 0.000463 0.000511
8 0.000063 0.000073
9 0.000007  0.000009

10 0.000001 0.000001

11 0.000000 0.000000

12 0.000000 0.000000

13 0.000000 0.000000

MTB > mplot c¢6 c¢l, c7 cl
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tion as an approximation, consider the plot in Box 6.32 of the normal scores
for the Poisson distribution with the mean of 10. The normal scores plot
appears to be a straight line, additional confirmation that the normal distri-
bution provides a good approximation to a Poisson distribution with a
mean of 10.
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MTB > set ¢l
DATA> 0:25
DATA> end

MTB > pdf ¢l ¢2;
SUBC> poiss 10.
MTB > plot c2 cl

c2 -
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MTB > set ¢l
DATA> 0:40
DATA> end

MTB > pdf cl c3;
SUBC> poiss 20.
MTB > plot ¢3 cl
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MTB > random 100 cl;
SUBC> poiss 10.

MTB > nscores c¢l c2
MTB > plot c¢2 cl

c2 - *
- *
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- * 3
- 8
- +
- +
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- 8
- 8
- 4
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The normal approximation to the Poisson uses the mean and variance
from the Poisson distribution for the normal mean and variance. We use
the pertussis example from above to demonstrate the normal approxima-
tion to the Poisson distribution. In the pertussis example, we wanted to
find the probability of 18 or fewer cases of pertussis, given that the mean of
the Poisson distribution was 35.31. This value, 35.31, is used for the mean
of the normal and its square root, 5.942, for the standard deviation of the
normal. As we are using a continuous distribution to approximate a dis-
crete one, we must use the continuity correction. Therefore, we want to
find the probability of values less than 18.5. To do this, we convert 18.5to a
z value by subtracting the mean of 35.31 and dividing by the standard
deviation of 5.942. The z value is —2.829. The probability of a Z variable
being less than —2.829 or —2.83 is found from Table B4 to be 0.0023, close
to the exact value of 0.001 given above.

Vi. CONCLUDING REMARKS

Three of the more useful probability distributions—the binomial, the Pois-
son, and the normal—were introduced in this chapter. Examples of their
use in describing data were provided. The examples also suggested that
the distributions couild be used to examine whether or not the data came
from population A or some other population. This use is explored in more



174

B8 PROBABILITY DISTRIBUTIONS

depth in Chapter 9 on hypothesis testing and in several of the subsequent
chapters. Another use of these distributions is demonstrated in the next
chapter on interval estimation.

EXERCISES

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

Explain why the cumulative distribution function of X either stays
the same or increases as X increases in value.

According to data from NHANES II (9, Table 70), 26.8 percent of
persons 20 to 74 years of age had high serum cholesterol values
(=240 mg/dl).

a. In a sample of 20 persons ages 20 to 74, what is the probability
that 8 or more persons had high serum cholesterol? Use Table
B2 to approximate this value first and then provide a more accu-
rate answer.

b. How many persons out of the 20 would be required to have
high cholesterol before you would think that the population
from which your sample was drawn differs from the U.S. popu-
lation of persons ages 20 to 74?

c. In a sample of 200 persons ages 20 to 74, what is the probability
that 80 or more persons had high serum cholesterol?

Based on reports from state health departments, there were 10.33
cases of tuberculosis per 100,000 population in the United States in
1990 (9, Table 50). What is the probability of a health department, in a
county of 50,000, observing 10 or more cases in 1990 if the U.S. rate
held in the county? What is the probability of fewer than 3 cases if the
U.S. rate held in the county?

Create a normal probability plot or plot the normal scores for the 33
caloric intakes shown in Table 4.1. Based on the plot, do you think
that the caloric intakes could be normally distributed?

Assume that systolic blood pressure for 5-year-old boys is normally
distributed with a mean of 94 mm Hg and a standard deviation of 11
mm Hg. What is the probability of a 5-year-old boy having a blood
pressure less than 70 mm Hg? What is the probability that the blood
pressure of a 5-year-old boy will be between 80 and 100 mm Hg?

Less than 10 percent of the U.S. population is hospitalized in a typi-
cal year; however, the per capita hospital expenditure in the United
States is generally large, for example, in 1990, it was approximately
$975. Do you think that the expenditure for hospital care (at the
person level) follows a normal distribution? Explain your answer.

In Harris County, Texas, in 1986, there were 173 cases of hepatitis A
in a population of 2,942,550 (5, p. 8-2). The corresponding rate for the
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6.8.

6.9.

6.10.

6.11.

6.12.

United States was 10.0 per 100,000 population. What is the probabil-
ity of a rate as low as or lower than the Harris County rate if the U.S.
rate held in Harris County?

Approximately 6.5 percent of women ages 30 to 49 were iron defi-
cient based on data from NHANES II (10, Table II-99). In a sample of
30 women ages 30 to 49, 6 were found to be iron deficient. Is this
result so extreme that you would want to investigate why the per-
centage is so high?

Based on data from the Hispanic Health and Nutrition Examination
Survey (HHANES) and reported in “Nutrition Monitoring in the
United States” (10, Table II-40), the mean serum cholesterol for Mexi-
can-American men ages 20 to 74 was 203 mg/dl. The standard devia-
tion was approximately 44 mg/dl. Assume that serum cholesterol
follows a normal distribution. What is the probability that a Mexican-
American man 20 to 74 years old has a serum cholesterol value
greater than 240 mg/dl?

In 1988, 71 percent of 15- to 44-year-old U.S. women who have ever
been married have used some form of contraception (9, Table 15).
What is the probability that, in a sample of 200 women in these
childbearing years, fewer than 120 of them have used some form of
contraception?

In ecology, the frequency distribution of the number of plants of a
particular species in a square area is of interest. Skellam (11) pre-
sented data on the number of plants of Plantago major present in
squares of 100 cm? laid down in grassland. There were 400 squares
and the numbers of plants in the squares are as follows:

Plants per square 0 1 2 3 4 5 6 =7
Frequency 235 81 43 18 9 6 4 4

Create a Poissonness plot to examine whether or not these data
follow the Poisson distribution.

The Bruce treadmill test is used to assess exercise capacity in children
and adults. Cumming et al. (12) studied the distribution of Bruce
treadmill test endurance times in normal children. The mean endur-
ance time for a sample of 36 girls 4 to 5 years old was 9.5 minutes,
with a standard deviation of 1.86 minutes. If we assume that these
are the true population mean and standard deviation, and if we also
assume that the endurance times follow a normal distribution, what
is the probability of observing a 4-year-old girl with an endurance
time of less than 7 minutes? The 36 values shown below are based on
summary statistics from the research by Cumming et al. (12). Do you
believe that these data are normally distributed? Explain your an-
swer.
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6.13.

Hypothetical Endurance Times in Minutes for 36 Girls 4 to 5
Years of Age:

5.3 6.5 7.0 7.2 7.5 8.0 8.0 8.0 8.0 8.2 8.5 8.5
8.8 8.8 8.9 90 90 9.0 9.0 9.5 9.8 9.8 100 10.0
106 108 11.0 11.2 11.2 113 115 115 122 124 127 13.3

Seventy-nine firefighters were exposed to burning polyvinyl chloride
(PVC) in a warehouse fire in Plainfield, New Jersey, on March 20,
1985. A study was conducted in an attempt to determine whether
there were short- and long-term respiratory effects of the PVC expo-
sure (13). At the long-term follow-up visit 22 months after the expo-
sure, 64 firefighters who had been exposed during the fire and 22
firefighters who were not exposed reported on the presence of vari-
ous respiratory conditions. Eleven of the PVC-exposed -firefighters
had moderate to severe shortness of breath compared with only one
of the nonexposed firefighters. What is the probability of finding 11
or more of the 64 exposed firefighters reporting moderate to severe
shortness of breath if the rate of moderate to severe shortness of
breath is one case per 22 persons? What are two possible confound-
ing variables in this study that could affect the interpretation of the
results?
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Interval Estimation

In Chapter 6 we saw that there is variation that occurs when we use a
sample instead of the entire population. For example, in the presentation
of the binomial distribution, we saw that the sample estimates of the popu-
lation proportion varied considerably from sample to sample. In this chap-
ter, we present prediction, confidence, and tolerance intervals, quantities
that allow us to take the variation in sample results into account in describ-
ing the data. These intervals represent specific types of interval estimation,
the provision of limits that are likely to contain either (1) the population
parameter of interest or (2) future observations of the variable. Interval
estimation thus provides more information about the population parame-
ter than the point estimation approach discussed in Chapter 4. In that
chapter, we provided a single value as the estimate of the population
parameter without giving any information about the sampling variability of
the estimator. For example, knowledge of the value of the sample mean, a
point estimate of the population mean, does not tell us anything about the
variability of the sample mean. Interval estimation addresses this vari-
ability.
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I. PREDICTION, CONFIDENCE, AND TOLERANCE INTERVALS

The material in this and the following section is based on material pre-
sented by Vardeman (1) and Walsh (2). To understand the difference be-
tween these three intervals (prediction, confidence, and tolerance), con-
sider the following. Dairies add vitamin D to milk for the purpose of
fortification. The recommended amount of vitamin D to be added to a
quart of milk is 400 IU (10 ug). If a dairy adds too much vitamin D, perhaps
more than 5000 IU, there is the possibility that a consumer will develop
hypervitaminosis D, that is, vitamin D toxicity.

A prediction interval focuses on a single observation of the variable, for
example, the amount of vitamin D in the next bottle of milk. A confidence
interval focuses on a population parameter, for example, the mean or me-
dian amount of vitamin D per bottle in a population of bottles of milk. Thus
the prediction interval is of more interest to the consumer of the next bottle
of milk, whereas the confidence interval is of more interest to the dairy. A
tolerance interval provides limits such that there is a high level of confidence
that a large proportion of values of the variable will fall within them. For
example, besides being interested in the mean, the dairy owner or a regula-
tory agency also wants to be confident that a large proportion of the bot-
tles’ vitamin D contents are within a specified tolerance of the value of
400 IU.

We begin our treatment of these intervals with distribution-free in-
tervals.

Il. DISTRIBUTION-FREE INTERVALS

When the method for forming the different intervals is independent of
how the data are distributed, the resultant intervals are said to be distribu-
tion free. Distribution-free intervals are based on the rank order of the
sample values and a notation that captures the rank order is the following.
The smallest of the x values is indicated by x;), the second smallest by x3),
and so on, to the largest value which is denoted by x(,. The x, are called
order statistics as the subscripts show the order of the values.

We use hypothetical data showing the amount of vitamin D in 30
bottles of milk selected at random from one dairy. The values are shown in
rank order in Table 7.1. Based on this sample, x(;) equals 289 IU, x, is 326
IU, and so on to x( which equals 485 IU.

A. Prediction Interval

As a consumer of milk, our major concern about vitamin D is that the milk
does not contain an amount of vitamin D that is toxic to us. We are not too
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Values of Vitamin D (IU) in & Hypothetical Sample of 30 Bottles

289 355 376 392 406 433
326 363 379 395 410 434
339 364 384 396 413 456
346 370 386 398 422 471
353 373 389 403 427 485

concerned about there being too little vitamin D in the bottle. Based on the
hypothetical sample of vitamin D contents in 30 bottles of milk, we can
form a one-sided prediction interval—our concern focuses on the upper
limit—for the amount of vitamin D in the bottle of milk that we are going to
purchase.

A natural one-sided prediction interval in this case is from 0 to the
maximum observed value of vitamin D (485 IU) in the sample. The level of
confidence associated with this interval, from 0 to 485 IU, is 96.8 percent
(= 30/31). This value can be found from the consideration of the order
statistics and the real number line. For example, we have the line

112 | 3 l BN T s D T S S
0 xu X2 X() o X(30)

and there are 31 intervals along this line. The vertical marks indicate the
location of the order statistics along the line and the numbers above the
line between the vertical marks indicate the interval numbers. There are 31
intervals and the next observation can fall into any one of the intervals. Of
these 31 intervals, 30 have values less than the maximum value. Hence, we
are 96.8 percent confident that the vitamin D content in the next bottle will
be between zero and the observed maximum value.

Note that we used the word confidence instead of probability here. We
use confidence because we are using the sample data as the basis of esti-
mating the probability distribution of the vitamin D content. If we used the
probability distribution of the vitamin D content instead of using its sample
estimate, the empirical distribution function, we would use the word proba-
bility. In repeated sampling, we expect that 96.8 percent of the prediction
intervals, ranging from zero to the observed maximum in each sample of
size 30, would contain the next observed vitamin D content.

The use of the second largest value, xp), as the upper limit of the
interval results in a prediction confidence level of 93.5 percent (= 29/31).
An attraction of this interval is that it provides a slightly shorter interval
with a maximum of 471 IU, but we are slightly less confident about it.
Based on either of these intervals, the consumer should not be worried
about purchasing a bottle that has a value of vitamin D that would cause
vitamin D poisoning,.
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For a two-sided interval, a natural interval would be from the mini-
mum observed value, x), to the maximum observed value, xgg. In this
case, the two-sided interval is from 289 to 485 IU. The confidence level
associated with this prediction interval is 93.5 percent (= 29/31). Of the 31
intervals shown above, there is one below the minimum value and also one
above the maximum value. Hence there are 29 chances out of 31 that the
next observed value will fall between the minimum and maximum values.

With a sample size of 30, it is not possible to have a distribution-free,
two-sided, 95 percent prediction interval. The smallest sample size that
attains the 95 percent level is 39. When 7 is 39, there are 40 intervals, and
2/40 equals 0.05. This calculation shows that it is easy to determine how
large a sample is required to satisfy prediction interval requirements.

B. Confidence Interval

The dairy wants to know, on average, how much vitamin D is being added
to the milk. If the interval estimate for the central tendency differs much
from 400 IU, the dairy may have to change its process for adding vitamin
D. One way of obtaining the interval estimate is to use a distribution-free
confidence interval.

Distribution-free confidence intervals are used to provide information
about population parameters, for example, the median and other percen-
tiles. There are two approaches to finding confidence intervals for percen-
tiles: (1) the use of order statistics and (2) the use of the normal approxima-
tion to the binomial distribution. The first approach is generally used for
smaller samples, whereas the second approach is used for larger samples.

1. Use of Order Statistics and the Binomial Distribution

The lower and upper limits of the (1 — a) * 100 percent confidence interval
for the pth percentile of X are the order statistics x(j, and xy,, where the
values of j and k, j less than k, are to be determined. The limits of the
confidence interval for the pth percentile of X are the values x(;, and x, that
satisfy the inequality

Pr{x:;, < pth percentile < xp} =1 — «
and this is equivalently
Pr{x.;y = pth percentile} + Pr{x;, = pth percentile} = a.

If we'require that both terms in the sum be less than or equal to «/2, from
the first term, we have

Pr{at most j — 1 observations < pth percentile} < /2.

This situation has two outcomes: an observation is less than the pth
percentile or it is greater than or equal to the pth percentile. The probability
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that an observation is less than the pth percentile is p. The variable of
interest is the number of observations, out of 7, that are less than the pth
percentile. Thus this variable follows a binomial distribution with parame-
ters n and p. Knowing the values of n and p enables us to find the value of j
because j must satisfy the inequality

o n! , y
2P =al
The inequality used to find the value of k is

C n! , y
> 1P - Py = a2

Putting these two inequalities together means that the binomial sum
from j to k — 1 must be greater than or equal to 1 — «. Here we have
dropped the requirement that the sums of the probabilities from O to j — 1
and from k to n both must be less than a/2. The values of j and k are found
from the binomial table, Table B2, or by using MINITAB.

For example, suppose we want to find a 95 percent confidence interval
for the median, the 50th percentile, for the vitamin D values from the dairy
used in Table 7.1. The sample estimate of the median is the average of the
15th and 16th smallest values, that is, 390.5 IU [= (389 + 392)/2].

To find the 95 percent confidence interval for the median in the popula-
tion of bottles of milk from the selected dairy, we use the binomial distribu-
tion. As Table B2 does not have values for n larger than 20, we use MINI-
TAB to find the confidence interval as shown in Box 7.1. There may be
more than one pair of values of j and k that satisfy the requirement that the
sum of the binomial probabilities from j to k — 1 is greater than or equal to
1 — a. To choose from among these pairs, we select the pair whose differ-
ence (k — j) is the smallest. In the special case of the median, we require
that k equals n — j + 1; this requirement gives the same number of observa-
tions in both tails of the distribution.

The sum of the probabilities from j to k — 1 must be greater than or
equal to 0.95. Examination of the cumulative probabilities tells us that j is 9
and k is 21. The sum of the probabilities between 9 and 20 is 0.9572
(= 0.9786 — 0.0214). If j were 10 and k were 20, the sum of the probabilities
between 10 and 19 would be 0.9012, less than the required value of 0.95.
Thus the approximate 95 percent (really closer to 96 percent) confidence
interval for the median is from 370 IU (= x)) to 406 IU (= x1)). The use of
distribution-free intervals does not necessarily provide intervals that are
symmetric about the sample estimator. For example, the sample median
value, 390.5 IU, is not in the exact middle of the confidence interval.

Note that the confidence interval for the median is much narrower
than the approximate 95 percent prediction interval, from 289 to 485 IU, for



182

MINITAB BOX 7.1

7 INTERVAL ESTIMATION

The CDF command will be used to help us find the values of j and k.

MTB > cdf;
SUBC> binom 30 0.50.
BINOMIAL WITH N = 30

P = 0.500000
K P( X LESS OR = K)
0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 0.0000
5 0.0002
6 0.0007
7 0.0026
8 0.0081
9 0.0214

10 0.0494

11 0.1002

12 0.1808

13 0.2923

14 0.4278

15 0.5722

16 0.7077

17 0.8192

18 0.8998

19 0.9506

20 0.9786

21 0.9919

22 0.9974

23 0.9993

24 0.9998

25 1.0000

a single observation. As we saw in Chapter 4, much less variability is
associated with a mean or median than with a single observation and this is
additional confirmation of that.

As we can observe from the above, the use of distribution-free intervals
does not provide exactly 95 percent levels. The level of confidence associ-
ated with these intervals is a function of the sample size as well as which
order statistics are used in the creation of the interval.

It is also possible to create one-sided confidence intervals for parame-
ters. For example, if the goal were to create an upper one-sided confidence
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interval for the median, we would find the value of k such that
S n! i n—i

;i!(n—i)!p(l—p) =a

for a p having the value of 0.50. The upper one-sided confidence interval
for the median is from 0 to x where k’s value is found from the above
inequality.

2. Use of the Normal Approximation to the Binomial

For larger sample sizes, the normal approximation to the binomial distribu-
tion can be used to find the values of j and k. The sample size must be large
enough to satisfy the requirements for the use of the normal approxima-
tion. As p is 0.50, the sample size of 30 bottles from the dairy is large
enough.

As above, we want to find the value of j such that the probability of the
binomial variable, Y, being less than or equal to j — 1 is less than or equal to
/2, that is,

Prl{Y =j -1} = a/2.
Use of the continuity correction converts this to
Pr{Y =j - 0.5} = /2.

To convert Y to the standard normal variable, we must subtract n * p, the
estimate of the mean, and divide by Vn # p * (1 — p), the estimate of the
standard error. This yields

Pr{ Y—nx*p SJ’-O.S—n*p}Sg_'

Vnxpx(l—-p) Vnspr(1l-p)) 2
This can be reexpressed as

j—O.S—n*P} a

Pr{zs\/ﬁ*p*(l—p) =7

If we change this inequality to an equality, that is, the probability is equal
to a/2, we can find a unique value for j. The value of the term on the right
side of the inequality inside the braces is simply z,»» and, hence, we can
find the value of j from the equation

j—05—nxp=zyp*x Vnxpx(l—p)

or
j=2p*Vnkpx(1—-p)+05+n=*p

In the above example, p was 0.50, n was 30, and « was 0.05. As the
value of zgps is —1.96, we have

j=-1.96 * V30 * 0.50 = 0.50 + 0.5 + 30 = 0.50
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or j is 10.13. To ensure that the level of the confidence interval is at least
(1 = @) * 100 percent, we must round down the value of j to the next
smaller integer, 10, and we round up the value of k, found below, to the
next larger integer.

The value of k is found from the equation

k=21 ap*Vnxpx(1—p)+05+nx*xp

which yields a k equal to 20.87, which is rounded to 21. Thus, the 95
percent confidence interval is from 373 IU (= xq¢) to 406 IU (= x¢)). In this
case, both the binomial and the normal approximation approaches used
X1y as the upper limit, but the binomial approach used x(, as the lower
limit whereas the normal approximation used xg).

C. Tolerance Interval

As mentioned above, tolerance intervals are of most interest to the dairy or
to a regulatory agency. The tolerance limits are values such that we have a
high level of confidence that a large proportion of the bottles have vitamin
D contents located between the lower and upper tolerance limits. These
upper and lower limits of the tolerance interval can be used in determining
whether the process for adding vitamin D is under control. If the limits are
too wide, the dairy may have to modify its process for adding vitamin D to
the milk.

The dairy does not want to add too much vitamin D to the milk because
of the possible problems for the consumer and the extra cost associated
with using more vitamin D than required. At the same time, the dairy must
add enough vitamin D to be in compliance with truth in advertising legisla-
tion.

As with the prediction interval, it is reasonable to use the smallest and
largest observed values for the lower and upper limits of the tolerance
interval, although other values could be used. We also have to specify the
proportion of the population, p, that we want to include within the toler-
ance interval. Given the tolerance interval limits and the proportion of
values to be included within it, we can calculate the confidence level, vy,
associated with the interval.

In symbols, the tolerance interval limits are the order statistics x(;, and
X(r) such that

Pr{Pr{X = xp} — Pr{X = x;)} = p} = v

The quantity, Pr{X = xy} — Pr{X = x;)}, is the proportion of the popula-
tion values contained in the tolerance interval for this sample. Let us call
the above quantity W;;. In symbols we then have Pr{Wy; = p} = . The
variable Wy; is either less than p or greater than or equal to p. This is a
binomial situation and, therefore, we can use the same approach as in the
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confidence interval section to find the value of y. The value of y can be
expressed in terms of the binomial summation as

k—j—1
n! . .
= —_—pt — n—1
If we use the minimum, xg), and the maximum, x4, for the limits,
k —j— 1becomesn — 1 — 1 which equals #n — 2. It is therefore easy to find
the value of this summation for i ranging from 0 to n — 2 because that sum
is equal to 1 minus the binomial sum from n — 1 to n. In symbols, the value
of yis

1=1p" = [np" 1 (1 = p)].

Suppose we want our tolerance interval to contain 95 percent of the
observations. Let us calculate the confidence level associated with the tol-
erance interval of 289 to 485 IU. In this case, n is 30 and p is 0.95. The value
of y is found by taking 1 — 0.95% — 30 * (0.95)% * (1 — 0.95), which equals
0.4465. There is not a high level of confidence associated with this tolerance
interval. This confidence level is contrasted with the 0.935 level associated
with the prediction interval. It is not surprising that the confidence level of
the prediction interval is much higher than that of the tolerance interval
because the prediction interval is based on the location of a single future
value whereas the tolerance interval is based on the location of a large
proportion of the population values.

The interval from 289 to 485 IU is the widest interval we can have using
the sample data as these are the minimum and maximum observed values.
We can increase our confidence either (1) by decreasing p, the proportion
of the population to be included in the tolerance interval, or (2) by taking a
larger sample. _

Let us reduce p to 90 percent. The confidence level for this interval is
increased to 0.8162, a much more reasonable value. Instead of reducing p,
let us increase the sample size from 30 to 60. The confidence level associ-
ated with the increased sample size is 0.8084, also-a much more reasonable
value. Table 7.2 shows the sample size required to have 90, 95, and 99
percent confidence associated with tolerance intervals that have 80, 90, 95,
and 99 percent coverage of the distribution, based on the use of x;) and x).

From these calculations and the general formula for calculating y, we
can see the relationships between p, the values of k and j, n, and y. We can
investigate the values of these quantities before we have performed the
study and can modify the proposed study design if we are not satisfied
with the values of p and 7.

A one-sided tolerance interval is sometimes of interest. Suppose that
there was interest in the upper one-sided tolerance interval. In this case,
the tolerance interval ranges from 0 to x(, and the confidence associated
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Sample Size Required for the Tolerance Interval to Have the Indicated
Confidence Level for the Specified Coverage Proportions Based on the
Use of x4 and x;

Confidence level

Coverage

proportion 90% 95% 99%
0.80 18 22 31
0.90 38 46 64
0.95 77 93 130
0.99 388 473 662

with this interval is found by taking 1 — p", that is, one minus the binomial
term calculated for i equal to n.

Hil. INTERVALS BASED ON THE NORMAL DISTRIBUTION

If the data are from a known probability distribution, knowledge of this
distribution allows more informative (smaller) intervals to be constructed
for the parameters of interest or for future values. We begin this presenta-
tion by showing how to create confidence intervals for a variety of popula-
tion parameters, assuming that the data come from a normal distribution.
Following the material on confidence intervals, we show how to use the
normal distribution in the creation of prediction and tolerance intervals.
We begin the confidence interval presentation with the population mean
and follow it with the confidence interval for the population proportion
which can also be viewed as a mean.

A. Confidence Interval for the Mean

In the material above, we saw how to construct a confidence interval for
the population median. That confidence interval gave information to the
dairy about the average amount of vitamin D being added to the milk. As
an alternative to the median, a confidence interval for the mean could have
been used. To find a confidence interval for the mean, assuming that the
data follow a specific distribution, we must know the sampling distribution
of its estimator. We must also specify how confident we wish to be that the
interval contains the population parameter. The sample mean is the esti-
mator of the population mean, and the sampling distribution of the sample
mean is easily found.

Because we are assuming the data follow a normal distribution, the
sample mean, the average of the sample values, also follows a normal
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distribution; however, this assumption is not crucial. Even if the data are
not normally distributed, the central limit theorem states that the sample
mean, under appropriate conditions, will approximately follow a normal
distribution. To specify the normal distribution completely, we also have to
provide the mean and variance of the sample mean.

‘4. Known Variance

In Chapter 6, we saw that the mean of the sample mean was u, the popula-
tion mean, and its variance was o?/n. The standard deviation of the sample
mean is thus ¢/Vn, and it is called the standard error of the sample mean
(X). The use of the word error is confusing as no mistake has been made;
however, it is the traditional term used in this context. The term standard
error is used instead of standard deviation when we are discussing the
variation in a sample statistic. The term standard deviation is usually re-
served for discussion of the variation in the sample data themselves.

We now address the issue of how confident we wish to be that the
interval contains the population mean (u). From the material on the normal
distribution in Chapter 6, we know that

Pr{—-1.96 < Z < 1.96} = 0.95,

where Z is the standard normal variable. In terms of the sample mean,
this is

X—p
-1.96 < < 1.96; 0.95.
Pr{ 96 (a/\/ﬁ) 9}

But we want an interval for u, not for Z. Therefore we must perform some
algebraic manipulations to convert this to an interval for u. First we multi-
ply all three terms inside the braces by o/Vn. This yields

ag

Pr{—l.% x (W) <F—p<196%* (—\%)} = 0.95.

We next subtract ¥ from all the expressions inside the braces and this gives

Pr{—l.% * (%) - X< —p <196 x (—%) - f} = 0.95.

This interval is about —u; to convert it to an interval about u, we multiply
each term in the braces by —1. Before doing this, we must be aware of the
effect of multiplying an inequality by a minus number. For example, we
know that 3 is less than 4; however, —3 is greater than —4, so the result of
multiplying both sides of an inequality by —1 changes the direction of the
inequality. Therefore, we have

Pr{l.% * (%) FE>pu> —1.96 * (%) + f} = 0.95.
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We reorder the terms to have the smallest of the three quantities to the left,
that is,

[e3

Pr{f— 1.96 * (—\/—ﬁ) <u<¥+196% <—\‘/’—’_1>} = 0.95

or, more generally,

of= s () om s s () 1

The (1 — «) * 100 percent confidence interval limits for the population
mean can be expressed as

_ g
XXz 4p* |7~
Vn

The result of these manipulations is an interval for u in terms of o, 1,
1.96 (or some other z value), and X. The sample mean, ¥, is the only one of
these quantities that varies from sample to sample. Once we draw a sam-
ple, however, the interval is fixed as the sample mean’s value, X, is known.
As the interval will either contain or not contain u, we no longer talk about
the probability of the interval containing .

Although we do not talk about the probability of an interval containing
u, we do know that in repeated sampling, intervals of the form above will
contain the parameter, u, 95 percent of the time. Thus, instead of discuss-
ing the probability of an interval containing u, we say that we are 95
percent confident that the interval from ¥ — 1.96 * (c/Vn) to ¥ + 1.96 *
(o/Vn) will contain . Intervals of this type are therefore called confidence
intervals. This reason for the use of the word confidence is the same as that
discussed in the distribution-free material above. The limits of the confi-
dence interval usually have the form of the sample estimate plus or minus
some distribution percentile—in this case, the normal distribution—times
the standard error of the sample estimate.

The 95 percent confidence interval for the mean caloric intake for sub-
urban middle school boys in the Houston area can be found based on the
data shown in Table 4.1. We assume that the standard deviation for this
population is 700 calories. As the sample mean, X, based on a sample size
of 33 observations, was found to be 2314 calories, the 95 percent confidence
interval for the population mean ranges

from 2314 — 1.96 * (if%) to 2314 + 1.96 * (3?3%) ’

that is, from 2075.2 to 2552.8 calories.
Box 7.2 illustrates the concept of confidence intervals. It shows the
results of drawing 50 samples of size 60 from a normal distribution with a
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mean of 94 and a standard deviation of 11. These values are close to the

mean and standard deviation of the systolic blood pressure variable for

5-year-old boys in the United States as reported by the NHLBI Task Force
on Blood Pressure Control in Children (3).

In the following demonstration, 4 percent of the intervals did not con-

. tain the population mean and 96 percent did. If we draw many more

samples, the proportion of the intervals containing the mean will be 95

MINITAB BOX 7.2

The command ZINTERVAL, shortened to ZINT, is used to creafe the confidence
intervals. If no percentage is specified, a 95 percent confidence interval is created
for the data in the listed columns. The command requires the value of o and the
columns containing the data for which the confidence intervals are to be created.

MTB > random 60 cl-c50;
SUBC> normal 94 11.
MTB > zint 95 11 c¢l-c50

THE ASSUMED SIGMA =11.0
N MEAN STDEV SE MEAN 95 PERCENT CI.

Cl 60 94.75 10.25
c2 60 94.85 10.86
C3 60 94.71 10.09
C4 60 94.03 12.27
C5 60 93.77 10.05
cée 60 ©92.54 9.32
C7 60 93.40 12.07
c8 60 93.97 11.02
CS 60 96.33 9.26
Cl0 60 93.56 12.01
Cll 60 94.94 10.81
Cl2 60 94.66 12.08
Cl13 60 ©94.21 11.02
Cl14 60 ©94.55 9.98
Cl5 60 93.57 11.50
Cl6 60 95.99 12.01
Cl7 60 93.86 12.53
Cl18 60 ©92.02 13.58
Cl19 60 95.16 12.03
C20 60 ©94.99 12.00
C21 60 94.65 11.18
C22 60 92.86 12.52
€23 60 93.99 11.76
C24 60 91.44 10.75
C25 60 96.07 11.8%

.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42
.42

91.96, 97.54
92.06, 97.63
91.92, 97.50
91.24, ©96.82
90.98, 96.56
89.76, 95.33
90.62, 86.19
91.18, 96.75
93.54, 99.12
90.78, 96.35
92.15, 97.73
81.88, 97.45
91.42, 97.00
91.76, 97.34
90.79, 96.36
93.20, 98.78
81.08, 96.65
89.23, 94.81
92.38, 97.95
92.20, 97.78
91.86, 87.43
90.07, 95.64
91.20, ©96.78
88.65, 94.22
93.28, 98.86

I I e i = I T e e S T S N el el =T gy sy Sy
o o o i o o e . o e . e e e o e e e o e o
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N MEAN STDEV SE MEAN 95 PERCENT CI.

C26 60 94.61 11.49 1.42 ( 91.82, 97.39)
C27 60 92.79 9.36 1.42 ( 90.00, 95.58)
C28 60 96.00 12.19 1.42 ( 93.22, 98.79)
€29 60 95.99 11.36 1.42 ( 93.20, 98.78)
C30 60 93.98 11.74 1.42 ( 91.19, 96.76)
C31 60 95.36 13.08 1.42 ( 92.57, 98.15)
€32 60 9l1.10 8.69 1.42 ( 88.31, 93.89)*
€33 60 93.85 12.94 1.42 ( 91.06, 96.63)
€34 60 96.01 9.63 1.42 ( 93.22, 98.79)
C35 60 85.20 8.94 1.42 ( 92.41, 097.99)
C36 60 95.64 9.41 1.42 ( 92.85, 98.43)
C37 60 94.74 10.31 1.42 ( 91.95, 97.53)
€38 60 93.52 10.30 1.42 ( 90.73, 96.31)
C39 60 92.92 10.27 1.42 ( 90.13, 95.71)
C40 60 95.08 10.07 1.42 ( 92.30, 97.87)
C41 60 93.88 10.53 1.42 ( 91.09, 96.66)
€42 60 95.38 9.98 1.42 ( 92.59, 98.17)
C43 60 94.38 11.65 1.42 ( 91.59, 97.17)
C44 60 91.55 10.63 1.42 ( 88.76, 94.33)
C45 60 95.41 12.79 1.42 ( 92.62, 98.20)
C46 60 92.40 10.57 1.42 ( 89.62, 95.19)
C47 60 96.00 11.45 1.42 ( 93.21, 98.78)
C48 60 95.39 10.56 1.42 ( 92.60, 98.18)
C49 60 97.69 10.89 1.42 ( 94.90, 100.47)*
C50 60 95.01 10.61 1.42 ( 92.22, 97.79)

MEAN is the sample mean, STDEV is the sample standard deviation, and SE
MEAN (standard error of the sample mean) is the population standard deviation
divided by the square root of n. The lower limit of the 95 PERCENT interval is the
sample mean minus 1.96 times SE MEAN and the upper limit is the sample mean
plus 1.96 times SE MEAN. We have marked 2 intervals, out of the 50, that did not
contain 94, the population mean.

percent. This is the basis for the statement that we are 95 percent confident
that the confidence interval, based on our single sample, will contain the
population mean.

If we use a different value for the standard normal variable, the level of
confidence changes accordingly. For example, if we had started with a
value of 1.645, z; g5, instead of 1.96, z; 975, the confidence level would be 90
percent instead of 95 percent. The zj95 value is used with the 90 percent
level because we want 5 percent of the values to be in each tail. The lower
and upper limits for the 90 percent confidence interval for the population
mean for the data in cl, the first sample of 60 observations, are 92.41
(= 94.75 — 1.645 * 1.42) and 97.09 (= 94.75 + 1.645 * 1.42), respectively.
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This interval is narrower than the corresponding 95 percent confidence
interval of 91.96 to 97.54. This makes sense because, if we wish to be more
confident that the interval contains the population mean, the interval will
have to be wider. The 99 percent confidence interval uses zj 995, Which is
2.576, and the corresponding interval is 91.09 (= 94.75 —2.576 * 1.42) to
98.41 (= 94.75 + 2.576 * 1.42).

The 50 samples shown above had sample means, based on 60 observa-
tions, ranging from a low of 91.1 to a high of 97.7. This is the amount of
variation in sample means expected if the data came from the same normal
population with a mean of 94 and a standard deviation of 11. The Second
National Task Force on Blood Pressure Control in Children had study
means ranging from 85.6 mm Hg (based on 181 values) to 103.5 mm Hg
(based on 61 values) (3), far outside the range shown above. These extreme
values suggest that these data do not come from the same population, and
this then calls into question the Task Force’s combination of the data from
these diverse studies.

The size of the confidence interval is also affected by the sample size
which appears in the o/V/n term. As 7 is in the denominator, increasing n
decreases the size of the confidence interval. For example, if we doubled
the sample size from 60 to 120 in the above example, the SE MEAN term
changes from 1.42 (= 11/V60) to 1.004 (= 11/V60 * 2). Doubling the sam-
ple size reduces the confidence interval to about 71 percent (= 1/V?2) of its
former width. Thus we know more about the location of the population
mean, because the confidence interval is shorter, as the sample size in-
creases.

The size of the confidence interval is also a function of the value of o,
but to change o means that we are considering a different population. If,
however, we are willing to consider homogeneous subgroups of the popu-
lation, the value of the standard deviation for a subgroup should be less
than that for the entire population. For example, instead of considering the
blood pressure of 5-year-old boys, we consider the blood pressure of
5-year-old boys grouped according to height intervals. The standard devia-
tion of systolic blood pressure in the different height subgroups should be
much less than the overall standard deviation.

Another factor affecting the size of the confidence interval is whether it
is a one-sided or two-sided interval. If we are concerned only about higher
blood pressure values, we could use an upper one-sided confidence inter-
val. The lower limit would be zero, or —x for a variable that had positive
and negative values, and the upper limit would be

X+ 214 % (—U——)
e\
This is similar to the two-sided upper limit except for the use of z;_, instead
of z1-4p.
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a. Sample Size

One important point about the confidence interval is that its width can be
calculated before the sample is selected. The width of the 95 percent confi-
dence interval is the upper limit minus the lower limit, that is,

[f +1.96 * (%)] - [f— 1.96 * (—\%ﬂ

which simplifies to

2 # 1.96 (\—‘};)

As g and n are known, the width can be calculated. If the interval is viewed
as being too wide to be informative, we can change one of the values used,
the z value, the sample size, or o, in calculating the width to see if we can
reduce it to an acceptable value. The two most common ways of reducing
its size are by decreasing our level of confidence and by increasing the
sample size; however, there are limits for both of these choices. Most
researchers prefer to use at least the 95 percent level for the confidence
interval although the use of the 90 percent level is not uncommon. To drop
below the 90 percent level is usually unacceptable. Researchers may be able
to increase the sample size somewhat, but the increase requires additional
resources which are limited.

Suppose that we wish to estimate the mean systolic blood pressure of
girls who are 120 to 130 cm (approximately 4 ft to 4 ft 3 in.) tall. We assume
that the standard deviation of the systolic blood pressure variable for girls
in this height group is 7 mm Hg. Given this information, how large a
sample is required so that the 99 percent confidence interval is no more
than 6 mm Hg wide? From above, we saw that the width of the confidence
interval is

2 * (a selected z value) * (%) .

Because we are using the 99 percent level, 1 — a is 0.99 or « is 0.01. Then
Z)—ai? is Z1-0.005 OY Zp.995, which is 2.576. Thus, we have

2 % 2,576 * (—\Z_ﬁ) =6

and we must solve this equation for #. Multiplying both sides by V7 gives

5 (222576 % 7)

2%2576%7=6%Vn  or <

and squaring both sides gives

(2 * 2 576 % 7
n: —

2
6 ) = 36.13.
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As n must be an integer, the next highest integer value, 37, is taken to be
the value of n.

The formula for n, given a specified width, d, for the (1 — «) * 100
percent confidence interval is

_ (2 *Z1—ann * 0_)2
— /-

So far, we have been assuming that ¢ is known; however, in practice,
we seldom know the population standard deviation. Sometimes the litera-
ture or a pilot study provides an estimate of its value which we may use for

o. In cases when we have no information about o, the method shown in
the following section is used to find the confidence interval for the mean.

2. Unknown Variance

When the population variance, o2, is unknown, it is reasonable to substi-
tute its sample estimator, s?, in the confidence interval calculation. There is
a problem in doing this though. Although (¥ — w)/(a/V'7n) follows the
standard normal distribution, (¥ — w)/(s/Vn) does not. In the first expres-
sion, there is only one random variable, ¥, whereas the second expression
involves the ratio of two random variables, ¥ and s. We need to know the
probability distribution for this ratio of random variables.

Fortunately, Gosset, who we encountered in Chapter 6, already dis-
covered the distribution of (¥ — w)/(s/Vn). The distribution is called Stu-
dent’s ¢, crediting Student, the pseudonym used by Gosset, or more sim-
ply, the t distribution. For large values of n, sample values of s are very
close to o and, hence, the ¢ distribution looks very much like the standard
normal. For small values of n, however, the sample values of s vary consid-
erably and the ¢ and standard normal distributions have different appear-
ances. Thus the t distribution has one parameter, the number of indepen-
dent observations used in the calculation of s. In Chapter 4, we saw that
this value was n — 1, and we called this value the degrees of freedom.
Hence the parameter of the ¢ distribution is the degrees of freedom associ-
ated with the calculation of the standard error. The degrees of freedom is
shown as a subscript, that is, as ty4. For example, a t with 5 degrees of
freedom is written as #s.

The MINITAB commands in Box 7.3 allow us to compare the appear-
ance of different ¢ distributions with the standard normal distribution over
the range —3.8 to 3.8. As we can see from these plots, the t distribution
with one degree of freedom, the lowest curve, is considerably flatter, that
is, there is more variability, than the standard normal distribution, the top
curve in the figure. This is to be expected, as the sample mean divided by
the sample standard deviation is more variable than the sample mean
alone. As the degrees of freedom increases, the t distributions become
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MTB >
DATA>
DATA>
MTB >
MTB >
SUBC>
MTB >
SUBC>
MTB >
SUBC>
SUBC>
SUBC>

0.45

0.30

0.15 1

0.00 1

I

set cl
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-3.8:3.8/.1

end

pdf cl ¢2 (standard normal probability density function)
pdf ¢l ¢3;

t 1.

(t distribution with df=1)

pdf cl c4;

t 5.
gplot;

(t distribution with df=5)

lines c2 cl;
lines ¢3 cl;
lines c4 cl.

Standard normal

s/

c1

closer and closer to the standard normal in appearance. The tendency for
the f to approach the standard normal distribution as the number of de-
grees of freedom increases can also be seen in Table 7.3, which shows
selected percentiles for several ¢ distributions and the standard normal
distribution. A more complete ¢ table is found in Appendix Table B5.

Now that we know the distribution of (¥ — w)/(s/Vn), we can form
confidence intervals for the mean even when the population variance is
unknown. The form for the confidence interval is similar to that above for
the mean with known variance except that s replaces o and the ¢ distribu-
tion is used instead of the standard normal distribution. Therefore, the
lower and upper limits for the (1 — a) * 100 percent confidence interval for
the mean when the variance is unknown are ¥ — t,-1 1-qn * (s/ W) and x +
bio11-an * (s/\/ﬁ), respectively.

Let us calculate the 90 percent confidence interval for the population
mean of the systolic blood pressure for 5-year-old boys based on the sam-



lil. INTERVALS BASED ON THE NORMAL DISTRIBUTION 195

Selected Percentiles for Several t Distributions and the Standard
Normal Distribution

Percentile

Distribution 0.80 0.90 0.95 0.99

t 1.376 3.078 6.314 31.821
ts 0.920 1.476 2.015 3.365
tg 0.879 1.372 1.813 2.764
ty 0.854 1.310 1.697 2.457
teo 0.848 1.296 1.671 2.390
ti20 0.845 1.289 1.658 2.358
Standard normal 0.842 1.282 1.645 2.326

ple data in column c1 above. A 90 percent [= (1 — «) * 100 percent]
confidence interval means that « is 0.10. Based on a sample of 60 observa-
tions, the sample mean was 94.75 and the sample standard deviation was
10.25 mm Hg. Thus we need the 95 th (= 1 — a/2) percentile of a ¢ distribu-
tion with 59 degrees of freedom; however, neither Table 7.3 nor Table B5
show the percentiles for a ¢ distribution with 59 degrees of freedom. Based
on the small changes in the t distribution for larger degrees of freedom,
there should be little error if we use the 95th percentile for a t4 distribution.
Therefore, the lower and upper limits are

10.25 10.25
.75 — 1.671 <——) 4.75 + 1.671 ( )
94.75 — 1.671 * &0 and 94,75 * V&0

which are 92.54 and 96.96 mm Hg, respectively.

If we use MINITARB to find the 95th percentile value for a ts distribu-
tion, we find its value is 1.6711. Hence, there is little error introduced in
this example by using the percentiles from a f¢ instead of a tsy distribution.

Corresponding to the ZINTERVAL (ZINT) command in MINITAB is
the TINTERVAL (TINT) command for finding a confidence interval for the
mean when the population variance is unknown. The command has the
same form as the ZINT command; that is, you specify the level of confi-
dence desired and the columns containing the data of interest. For exam-
ple, suppose you wanted a 90 percent confidence interval for the popula-
tion mean based on the sample data in column c1. The command is TINT
90 cl.

B. Confidence Interval for a Proportion

We are frequently exposed to the confidence interval for a proportion.
Most surveys about opinions or voting intentions today report the margin
of error. This quantity is simply one-half the width of the 95 percent confi-
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dence interval for the proportion. Finding the confidence interval for a
proportion, , can be based on either the binomial or normal distribution.
The binomial distribution is generally used for smaller samples and it pro-
vides an exact interval, whereas the normal distribution is used with larger
samples and provides an approximate interval.

1. Use of the Binomial Distribution

Suppose we wish to find a confidence interval for the proportion of restau-
rants that are in violation of local health ordinances. A simple random
sample of 20 restaurants are selected, and of those, 4 are found to have
violations. The sample proportion, p, which is equal to 0.20 (= 4/20), is the
point estimate of 7, the population proportion. How can we use this sam-
ple information to create the (1 — «) * 100 percent confidence interval for
the population proportion?

This is a binomial situation as there are only two outcomes for a restau-
rant: a restaurant either does or does not have a violation. The binomial
variable is the number of restaurants with a violation and we have ob-
served its value to be 4 in this sample.

The limits of the confidence interval for the proportion are those values
that make this outcome appear to be unusual. Another way of stating this
is that the lower limit is the proportion for which the probability of 4 or
more restaurants is equal to «/2. Correspondingly, the upper limit is the
proportion for which the probability of 4 or fewer restaurants is equal to
a/2. Box 7.4 shows an attempt to find these values by trial and error.

Table B6 provides two charts that can be used to find the 95 and 99
percent confidence intervals. The charts eliminate the need for the calcula-
tions shown in Box 7.4. The detail provided by these charts is less than that
shown above, but the accuracy from the charts should be sufficient for
most applications.

Suppose that instead of the 90 percent confidence interval for the pro-
portion of restaurants with violations of the health code, we wanted the 95
percent interval. We use Table Béa and, because the sample proportion is
less than 0.50, we read across the bottom until we find the sample propor-
tion value of 0.20. We then move up along the line corresponding to 0.20
until it intersects the first curve for a sample size of 20. As p is less than
0.50, we read the value of the lower limit from the left vertical axis; it is
slightly less than 0.06. To find the upper limit, we continue up the vertical
line corresponding to 0.20 until we reach the second curve for a sample size
of 20. We read the upper limit from the left vertical axis and its value is
slightly less than 0.44. The values from MINITAB are 0.0574 and 0.4364.

2. Use of the Normal Approximation to the Binomial

The sample proportion, p, is the binomial variable, x, divided by a con-
stant, the sample size. As the normal distribution was shown in Chapter 6
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Suppose that we wish to find the 90 percent
confidence interval. This means that « is 0.10
and «/2 is 0.05. We wish to find the probability
of being less than or equal to 4 and being greater
than or equal to 4 for different binomial pro-
portions. We start out with the upper limit. As
the sample estimate’s value is 0.20, we know the
upper limit must be greater than this, and thus
we try 0.35.

Because the value of 0.1182 is greater than 0.05,
we try a larger value for the proportion.

This is very close to the value of 0.05, but we
can examine a few more values for the pro-
portion in an attempt to get closer to 0.05.

The value of the upper limit of the confidence
interval is thus 0.401. For the lower limit, we
want the probability of 4 or more restaurants to
be equal to 0.05 or, equivalently, the probability
of less than or equal to 3 to be 0.95. Therefore,
we store the value of 3 in column c2.

Using a proportion of 0.05 gives a probability
that is too large. Therefore we increase the
trial proportion.

The value of the lower limit is 0.071 to three
decimal places. Thus, based on the point
estimate of 0.20, the 90 percent confidence
interval for the proportion of restaurants with
violations of the health code is 0.071 to 0.401.
Note that this interval is not symmetric about the
point estimate.

MTB > set c¢l;
DATA> 4
DATA> end
MTB > cdf cl;

SUBC> binom 20
K P( X
4.00

MTB > cdf cl;

SUBC> binom 20
K P( X
4.00

MTB > cdf cl;

SUBC> binom 20
K P( X
4.00

MTB > cdf cl;
SUBC> binom 20
K P( X
4.00

MTB > set ¢2
DATA> 3
DATA> end
MTB > cdf c2;

SUBC> binom 20
K P( X
3.00

MTB > cdf c2;

SUBC> binom 20
K P( X
3.00

MTB > cdf c2;
SUBC> binom 20
K P{ X
3.00

MTB > cdf c2;
SUBC> binom 20
K P( X
3.00

.35.
LESS OR

.40.
LESS OR

.41,
LESS OR

.401.
LESS OR
.05.
LESS OR
.07.
LESS OR
.071.

LESS OR

.0713.
LESS OR

c.

.1182

.0510

.0423

.0500

.9841

.9529

.9508

9501
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to be a good approximation to the distribution of x when the sample size is
large enough, it also serves as a good approximation to the distribution of
p- The variance of p is expressed in terms of the population proportion, =,
and it is 7 * (1 — m)/n. Because 7 is unknown, we estimate the variance by
substituting p for 7 in the formula.

The sample proportion can also be viewed as a mean as was discussed
in Chapter 6. Therefore, the confidence interval for a proportion has the
same form as that of the mean, and the limits of the interval are

* (1 — 1 * (1 — 1
P~ Zi-an * VP_(_n_P)+§ and p+ zi_gn * p—-(_11_r2+§'ﬁ'

The 1/2n is the continuity correction term required because a continuous
distribution is used to approximate a discrete distribution. For large values
of n, the term has little effect and many authors drop it from the presenta-
tion of the confidence interval.

The local health department is concerned about the protection of chil-
dren against diphtheria, pertussis, and tetanus (DPT). To determine if
there is a problem in the level of DPT immunization, the health department
decides to estimate the proportion immunized by drawing a simple ran-
dom sample of 150 children who are 5 years old. If the proportion of
children in the community who are immunized against DPT is clearly less
than 75 percent, the health department will mount a campaign to increase
the immunization level. If the proportion is clearly greater than 75 percent,
the health department will shift some resources from immunization to
prenatal care. The department decides to use a 99 percent confidence inter-
val for the proportion to help it reach its decision.

Based on the sample, 86 families claimed that their child was immu-
nized, and 54 said their child was not immunized. There were 10 children
for whom immunization status could not be determined. As was men-
tioned in Chapter 3, there are several approaches to dealing with the un-
knowns. As there are only 10 unknowns, we shall ignore them in the
calculations. Thus, the value of p is 0.614 (= 86/140) which is much lower
than the target value of 0.75. If all 10 of the children with unknown status
had been immunized, then p would have been 0.640, not much different
from the value of 0.614, and still much less than the target value of 0.75.

The 99 percent confidence interval ranges from

0.614 * (.386 + 1
0.614 — 2.576 * 140 2 % 140

0.614 = 0.386 + 1
0.614 + 2.576 = 140 2 = 140

to
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or from 0.504 to 0.724. Because the upper limit of the 99 percent confidence
interval is less than 0.75, the health department decides that it is highly
unlikely that the proportion of 5-year-old children who are immunized is
as large as 0.75. Therefore the health department will mount a campaign to
increase the level of DPT immunization in the community.

If the issue facing the health department was whether or not to add
resources to the immunization program, not to shift any resources away
from the program, a one-sided interval could have been used. The 99
percent upper one-sided interval uses 2y 99 instead of zg g95 in its calculation
and it ranges from 0 to

3 10.614 * 0.386 1 - 0.713
0.614 + 2.326 * 140 +m— . .

This interval also does not contain 0.75. Therefore resources should be
added to the immunization program.

The next section shows how to construct confidence intervals for crude
and adjusted rates, parameters that are very similar to proportions.

C. Confidence Intervals for Crude and Adjusted Rates

In Chapter 4, we presented crude, specific, and direct and indirect ad-
justed rates; however, we did not present any estimate for the variance or
standard deviation of a rate which is necessary for the calculation of the
confidence interval. Therefore we begin a discussion of this material with a
section on how to estimate the variance of a rate.

Rates are usually based on the entire population. If this is the case,
there is really no need to calculate their variances or confidence intervals
for them. However, we often view a population rate in some year as a
sample in location or time. From this perspective, there is justification for
calculating variances and confidence intervals. If the value of the rate is
estimated from a sample, as is often done in epidemiology, then it is
important to estimate the variance and the corresponding confidence inter-
val for the rate. If the rate is based on the occurrence of a very small
number of events, for example, deaths, the rate may be unstable and
should not be used in this case. We shall say more about this later.

1. Variances of Crude and Adjusted Rates

The crude rate is calculated as the number of events in the population
during the year divided by the midyear population. This is not really a
proportion, but it is very similar to a proportion and we shall treat it as if it
were a proportion. The variance of a sample proportion, p, is 7 * (1 — m)/n.
Thus the variance of a crude rate is approximated by the product of the rate
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(converted to a decimal value) and one minus the rate divided by the
population total.

From the data on rates in Chapter 4, we saw that the crude death rate
for Harris County, Texas, in 1986 was 529.6 per 100,000. The correspond-
ing estimated 1986 Harris County population was 2,294,550. Thus the esti-
mated standard error, the square root of the variance estimate, for this
crude death rate is

0.005296 * (1 — 0.005296)
2,294,550

= 0.0000479

or 4.8 deaths per 100,000 population.

The direct method’s age-adjusted rate is a sum of the age-specific rates,
sr/'s, in the population under study weighted by the age distribution, w/’s,
in the standard population. In symbols, this is 2 (w; * sr;), where w; is the
proportion of the standard population and sr; is the age-specific rate in the
ith age category. The age-specific rate is calculated as the number of events
in the age category divided by the midyear population in that age category.
Again, this is not a proportion, but it is very similar to a proportion. We
approximate the variance of the age-specific rates by treating them as if
they were proportions. As the w/s are from the standard population which
is usually very large and stable, we treat the w/s as constants as far as the
variance calculation is concerned. Because the age-specific rates are inde-
pendent of one another, the variance of the direct method's adjusted rate, that
is, the variance of this sum, is simply the sum of the individual variances

var(Z w; * sr;) = 2 var(w; * st;) = > w? * var(sr;) = 2 w? * (g,_*_(i__s_@)
where #; is the number of persons in the ith age subgroup in the popula-
tion under study.

Considering the Harris County mortality data as a sample in time, we
can calculate the approximate variance of the direct method’s age-adjusted
death rate. The data to be used are the Harris County age-specific death
rates along with the Harris County population totals and the U.S. popula-
tion proportions by age from Table 4.10. Table 7.4 repeats the relevant data
and shows the calculations. The entries in the last column are all quite
small, less than 0.00000001; therefore, only their sum is shown. The stan-
dard error of the direct method’s age-adjusted mortality rate is 0.00007
(= square root of variance). The direct method’s age-adjusted rate was
860.9 deaths per 100,000 population, and the standard error of the rate is 7
deaths per 100,000. The magnitude of the standard error here is not un-
usual, and it shows why the sampling variation of the adjusted rate is often
ignored in studies involving large samples.
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Calculation of the Approximate Variance for the Age-Adjusted Death
Rate by the Direct Method for Harris County in 1986

Harris county age-  Harris county  U.S. population w2 % st % (1 — sr)

Age specific rate population proportion
i SY; n; w; n;
0-4 0.002502 253,776 0.0753
5-14 0.000196 469,446 0.1404
15-24 0.000998 489,053 0.1618
25-34 0.001468 640,813 0.1774
35-44 0.002185 444,366 0.1372
45-54 0.004647 275,007 0.0946
55—64 0.013202 190,352 0.0922
65-74 0.028328 111,870 0.0719
=75 0.081011 67,867 0.0491
Total 2,942,550 0.9999 49 x 107°

For the indirect method, the adjusted rate can be viewed as the ob-
served crude rate in the population under study multiplied by a ratio. The
ratio is the standard population’s crude rate divided by the rate obtained
by weighting the standard population’s age-specific rates by the age distri-
bution from the study population. This ratio is viewed as a constant in
terms of approximating the variance. Hence the approximation of the variance
of the indirect method’s adjusted rate is simply the square of the ratio multi-
plied by the variance of the study population’s crude rate.

Using the data from Chapter 4, the standard population’s (the U.S.)
crude rate was 873.2 deaths per 100,000 population. Combination of the
standard population’s age-specific rates with the study population’s
(Harris County) age distribution yielded 534.6 deaths per 100,000 popula-
tion. The crude rate in Harris County was 529.6 deaths per 100,000 popula-
tion. Thus the approximate variance of the indirect method’s age-adjusted
mortality rate is

<0.008732>2 . [0.005296 * (1 — 0.005296)
0.005346 2,942,550

The standard error of the indirect method’s age-adjusted death rate is the
square root of the variance, and it is also 0.00007.

] = 0.0000000047.

2. Formation of the Confidence Interval

To form the confidence interval for a rate, we require knowledge of its
sampling distribution. As we are treating crude and specific rates-as if they
are proportions, the confidence intervals for these rates will be based on
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the normal approximation as shown above for the proportion. Therefore,
the confidence interval for the population crude rate (6) is

cr* (1 — cr) cr*x (1 — cr)
o= 2ian* T, <O<aTtziep*\NT T

where cr is the value of the crude rate based on the observed sample.
For example, the 95 percent confidence interval for the 1986 Harris
County crude death rate is

0.005296 — 1.96 * 0.0000479 < 6 < 0.005296 + 1.96 * 0.0000479

or from 0.005202 to 0.005390. Thus the confidence interval for the crude
death rate is 520.2 to 539.0 deaths per 100,000 population.

The confidence intervals for the rates from the direct and indirect
methods of adjustment have the same form as that of the crude rate. For
example, the 95 percent confidence interval for the direct method’s 1986
age-adjusted mortality rate for Harris County is found by taking

860.9 = 1.96 = 7.0 = 860.9 = 13.7
and thus the limits are 847.2 to 874.6 deaths per 100,000 population.

3. Minimum Number of Events Required for a Stable Rate

As we mentioned above, rates based on a small number of occurrences of
the event of interest may be unstable. To deal with this instability, a health
agency for a small area often will combine its mortality data over several
years. By using the estimated coefficient of variation, the estimated stan-
dard error of the estimate divided by the estimate and multiplied by 100
percent, we can determine when there are too few events for the crude rate
to be stable.

Recall that in Chapter 4, we said that if the coefficient of variation was
large, the data had too much variability for the measure of central tendency
to be very informative. Values of the coefficient of variation greater than 30
percent—others might use slightly larger or smaller values—are often con-
sidered to be large. We use this idea with the crude rate to determine how
many events are required so that the rate is stable.

For example, the coefficient of variation for the 1986 crude mortality
rate of Harris County is 0.904 percent [= (0.0000479/0.005296) * 100 per-
cent]. This rate, less than 1 percent, is very reliable from the coefficient of
variation perspective. It turns out that the coefficient of variation of the
crude rate can be approximated by (1/Vd) * 100 percent where d is the
number of events. For example, the total number of deaths for Harris
County in 1986 was 12,152 and (1/V12152) * 100 percent is 0.907 percent,
essentially the same result as above.
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Thus we can use the approximation (1/ \/E) * 100 percent for the coeffi-
cient of variation. Setting this value equal to large values of the coefficient
of variation, say 20, 30, and 40 percent, yields 25, 12, and 7 events, respec-
tively. If the crude rate is based on fewer than 7 events, it certainly should
not be reported. If we require that the coefficient of variation be less than
20 percent, there must be at least 25 occurrences of the event for the crude
rate to be reported.

Besides forming confidence intervals for measures of central tendency
or location, there is also interest in constructing confidence intervals for
other population parameters. The following sections show the creation of
confidence intervals for the population variance and the correlation coeffi-
cient.

D. Confidence Interval for the Variance

Besides being useful in describing the data, the variance is also frequently
used in quality control situations. It is one way of stating how reliable the
process under study is. For example, in Chapter 2 we presented data on
the measurement of blood lead levels by different laboratories. We saw
from that example that great variability in the measurements made by
laboratories exists, and the variance is one way to characterize that variabil-
ity. Variability within laboratories can be due to different technicians, fail-
ure to calibrate the equipment, and so on. It is critically important that
measurements of the same sample within a laboratory have variability less
than or equal to a prespecified small amount. Thus, based on the sample
variance for a laboratory for measuring blood lead, we wish to determine
whether or not the laboratory’s variance is in compliance with the stan-
dards. The confidence interval for the population variance provides one
method of doing this.

To construct the confidence interval for the population variance, we
need to know the sampling distribution of its estimator, the sample vari-
ance, s2. We can use MINITAB to examine the sampling distribution of s?
for a few different situations. A reason for using MINITAB here is that it
has the capability of storing a set of commands and then executing this set
a number of times. The stored set of commands is called a macro. A macro
is particularly useful when studying the sampling distribution of a statistic
as shown in Box 7.5.

Box 7.6 shows the execution of the macro shown in Box 7.5

All 200 sample standard deviations are printed, but most have not been
shown because they themselves are of little interest. The mean of the
sample variance from the 200 observations is 25.50, very close to the popu-
lation value of 25.00. There is tremendous variability in the sample vari-
ances as they range from 0.01 to 130.28 in value. This large variation is
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MINITAB BOX 7.5

We use the STORE command to store in a file a set of commands that (1) draws a
sample from a specified distribution, (2) calculates the sample standard deviation
and variance, and (3) places the standard deviation and variance values in columns
cl and 2. The EXECUTE ‘filename’ command then causes the set of commands in
the file to be executed.

MTB > store 'samdist’
STORE> noecho

STORE> random kl ¢3;
STORE> normal 0 k2.
STORE> stdev ¢3 k3
STORE> let k4=k3*k3
STORE> let kbB=k5+1
STORE> let cl{k5)=k3
STORE> let c2(k5)=k4
STORE> end

MTB > let k1=3

MTB > let k2=5

MTB > let kb=0

The NOECHO statement tells MINITAB not to print each command that it encoun-
ters. The constant k1 is the sample size to be drawn; here we have initially specified
a very small sample of size 3. The constant k2 is the value of the standard deviation
to be used; in this case we are drawing a sample of size 3 from a normal distribution
with a mean of 0 and a standard deviation of 5. The constants k3 and k4 are the
sample standard deviation and variance, respectively. The constant k5 is a counter
which is initialized to be 0 and increases by 1 every time the ‘samdist’ set of
commands is executed.

expected as each sample variance was based on only three observations.
As was pointed out in Chapter 4, the average or expected value of the
sample standard deviation slightly underestimates the population value
and this is demonstrated here. The sample estimate is 4.42, slightly less
than the population value of 5.

The histogram shows that most of the sample variance values are in the
ranges 0 to 5 and 5 to 15, underestimates of the population value. Large
proportions of the values are also in the ranges 15 to 25 and 25 to 35. The
distribution is very asymmetric with a long tail to the right, and it does not
look Iike either a normal or a t distribution.

In Box 7.7 we examine drawing a sample of 21 observations from the
same normal distribution as above. The reduced variation in the sample
variance and standard deviation reflect the increase in the sample size from
3 to 21 observations. The mean of the sample standard deviations is also
closer to the population value with the increase in the sample size. This
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MINITABR BOX 7.6

The EXECUTE command is used to run the macro that draws 200 samples of size 3.

MTB > execute ‘samdist' 200

ST.DEV. =
ST.DEV.

I

ST.DEV. =

MTB > desc ¢l ¢c2

N
Cl 200
c2 200
MIN
Cl 0.095
Cc2 0.01
MTB > hist c2
Histogram of C2

Midpoint Count

0 44
10 43
20 32
30 32
40 16
50 1l
60 5
70 3
80 5
S0 4

100 2
110 0
120 2
130 1

10.107
5.9390

5.0300

MEAN  MEDIAN TRMEAN  STDEV  SEMEAN
4.421 4.474 4.328 2.447 0.173
25.50 20.02 22.72 25.57 1.81

MAX Ql Q3
11.414 2.631 5.870
130.28 6.92 34 .45

N = 200

KW R FREEEEREXERRERRXXE XXX XERRXXEXRXRXXRXRE
ER X R X L8 R R EE LS R RS L EE LR EE EE R EEE LT XS EE S E L EE LT
LEE R E L LR LR E L E R E R R L X E L0 X LR LR E S ES]
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LRk &

* % *

* K ¥ XX

* % %%

* ¥

*%*

agrees with our expectations from Chapter 4. The sample variance now
ranges from 6.9 to 52.4, a much smaller range than from 0.01 to 130.28. The
histogram no longer shows so many small sample variances and the cate-
gories with the greatest frequencies are 17.5 to 22.5, 22.5 to 27.5, and 27.5
to 32.5. The distribution is not so asymmetric and the tail to the right is
much shorter than in the first histogram.
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MINITAB BOX /.7

MTB > let kl=21
MTB > let k5=0
MTB > execute ‘samdist' 200
(We have not shown the standard deviations.)

MTB > desc cl c2

N MEAN  MEDIAN TRMEAN STDEV ~ SEMEAN

Cl 200 5.0269 4.9667 5.0085 0.8618 0.0609

c2 200 26.009 24 .668 25.543 8.938 0.632
MIN MAX Ql Q3
Cl 2.6297 T.2377 4.4713 5.5296
c2 6.915 52.385 19.992 30.577

MTB > hist c2

Histogram of CR2 N = 200
Midpoint Count

5 1 ox
lo 6 PR X 2 X

15 25 EE R E R R L LR LR R R LR L S LR EEE]

20 49 PR R L A SRR LS R R L R R R R RS EEEE LS EEEEEEEEE L]
25 39 LR E R LR L L LS L R EEREEE LS EE R R LS RS R R LT

30 38 LR E R LR LR R RS LR R R R E R EEEEEEEE TS E SR T ST

35 21 I I I I K AWK I WK KKK N H NN

40 lo % I I KK

45 5 3 % H N

50 6 ¥ ¥ K% H KX

In Box 7.8 we increase the sample size to 61. The sample statistics show
much less variability in the sample variance and standard deviation, re-
flecting the increase in the sample size from 21 to 61. For example, the
interquartile range containing the middle 50 percent of the values of the
sample variances goes from 21.15 to 26.68 for the sample size of 61, com-
pared with 19.99 to 30.58 for an n of 21 and 6.92 to 34.45 for an n of 3. The
histogram reflects this reduction in variability as well. We can see that the
sampling distributions for the three sample sizes are very different; that is,
they depend on the sample size. The distributions, particularly for the
smaller sample sizes, also are very nonnormal.

It appears that the distribution of the sample variance does not match
any of the probability distributions we have encountered so far. Fortu-
nately, when the data come from a normal distribution, the distribution
of the sample variance is known. The sample variance, multiplied by
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MINITAB 130X 7.8

MTB > let kl=61

MTB > let k5=0

MTB > execute ‘samdist' 200 (Again the sample standard deviations are not
shown. )

MTB > desc cl c2

Cl
c2

Cl
C2

N MEAN MEDIAN TRMEAN STDEV  SEMEAN
200 4.9116 4.9376 4.9087 0.4527 0.0320
200 24.328 24.380 24.214  4.487 0.317

MIN MAX Ql Q3
3.6778 6.3761 4.5987 5.1656
13.526 40.655 21.148 26.684

MTB > hist c2

Histogram of C2 N = 200
Midpoint

14
16
18
20
22
24
26
28
30
32
34
36
38
40

Count
l *
7 EE R XX £ X3
14 EE R E X L X 2R EX R
24 X XL LI EEELEEEEE L 22 X B L X X3
35 A XL S L RS LR ES EEEE S SRR E R LR EREELERSES
32 R E R X SRR EE R LR E L ELE LR EE R X L E L E L ¥
40 R A XS ST E L EEEE R LR RS L SR LR EEEEE S L EESEE L LTS
21 EE A X X R R EEE R R E LS EEXE L
13 EE R R LB XL X E L
7 LR L X b 2 X
* ¥ %
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(n — 1)/o?, follows a chi-square (x?) distribution. Two eminent 19th-cen-
tury French mathematicians, Laplace and Bienaymé, played important
roles in the development of the chi-square distribution. Karl Pearson, an
important British statistician previously encountered in connection with
the correlation coefficient, popularized the use of the chi-square distribu-
tion in the early 20th century. As we saw above, the distribution of the
sample variance depends on the sample size, actually on the number of
independent observations (degrees of freedom) used to calculate s2. There-
fore Table B7 shows percentiles of the chi-square distribution for different
values of the degrees of freedom parameter.
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To create a confidence interval for the population variance, we begin
with the probability statement

n — 1)s?
(__5)_‘ < X%—l,lﬂx/Z} =1-oa

Pr {X%—l,a/z <
This statement indicates that the confidence interval will be symmetric in
the sense that the probability of being less than the lower limit is the same
as that of being greater than the upper limit; however, the confidence limit
will not be symmetric about s2. This probability statement is in terms of s?
however, and we want a statement about a2. To convert it to a statement
about o2, we first divide all three terms in the bracket by (n — 1)s2. This
yields

Xi-1an _ 1 X%—l,l—a/z} 1
Pr {(n — 1)s? < o? < (n — Ds? 1=a

The interval is now about 1/a-2, not a-2. Therefore, we next take the recipro-

cal of all three terms which changes the direction of the inequalities. For

example, we know that 3 is greater than 2, but the reciprocal of 3, which is

1/3 or 0.333, is less than the reciprocal of 2, which is 1/2 or 0.500. Thus we

have
_ 2 _ 2
Pr{(_nz_l)s_>az>_(_’12__l).s_}=1 - a.
Xn—1,a2 Xn-1,1-af2

and reversing the directions of the inequalities to have the smallest term on

the left yields
— 1\a2 — 1ye2
Pr{u<02<gn_2_1)§_} =1 — .
Xn~1,1-al2 Xn-1,a2

It is also possible to create one-sided confidence intervals for the popu-
lation variance. For example, the lower one-sided confidence interval for
the population variance is

(n — 1)s? < o2

> < o,
Xn—l,l—a

Let us apply this formula to an example. From 1988 to 1991, eight
persons in Massachusetts were identified as having vitamin D intoxication
due to receiving large doses of vitamin Dj in fortified milk (4). The problem
was traced to a local dairy which had tremendous variability in the amount
of vitamin D added to individual bottles of milk. Homogenized whole milk
showed the greatest variability based on measurements made in April and
June 1991, with a low value of less than 40 IU and a high of 232,565 IU of
vitamin Dj per quart. These values are contrasted with the requirement for
at least 400 IU (10 ug) to no more than 500 IU of vitamin D per quart of milk
in Massachusetts.
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The Food and Drug Administration (FDA) found poor compliance with
the requirement for 400 IU of vitamin D per quart of vitamin D-fortified
milk in a 1988 survey (5). Based on this poor compliance, the FDA urged
that the problem be corrected; otherwise it would institute a regulatory
program. Suppose that compliance is defined in terms of the mean and
standard error of the mean vitamin D concentration in milk. The mean
concentration should be 400 IU with a variance of less than 1600 IU. To
determine if a milk producer is in compliance, a simple random sample of
milk cartons from the producer is selected and the amount of vitamin D in
the milk is ascertained. It is decided that if the 90 percent lower one-sided
confidence interval for the variance contains 1600 IU, the process used by
the producer to add vitamin D is within the acceptable limits for variability.
This is an approach for determining compliance that greatly favors the
producer.

A random sample of 30 cartons is selected and the sample variance for
the vitamin D in the milk is found to be 1700 IU. The 90 percent confidence
interval uses X309, Where the first subscript is the degrees of freedom
parameter and the second subscript is the percentile value. The value from
Table B7 is 39.09. The lower limit is found from (29 * 1700)/39.09, which
gives the value of 1261.3. As the 90 percent confidence interval does con-
tain 1600 IU, the producer is said be in compliance with the variability
requirement. To find that a producer is not in compliance requires that the
sample variance be at least 2156.5.

A key assumption in calculating the confidence interval for the popula-
tion variance is that the data come from a normal distribution. If the data
are from a very nonnormal distribution, the use of the above formula for
calculating the confidence interval can be very misleading.

To find the confidence interval for the population standard deviation,
we take the square root of the variance’s confidence interval limits. Thus
the lower limit of the confidence interval for o in the above example is
35.5 IU.

E. Confidence Interval for the Pearson
Correlation Coefficient

In Chapter 4, we presented p, the Pearson correlation coefficient, which is
used in assessing the strength of the linear relationship between two
jointly normally distributed variables. We presented a formula for finding
r, the sample Pearson correlation coefficient. We also found the correlation
between protein and total fat, based on the 33 observations in Table 4.1, to
be 0.648, suggestive of a strong positive relation. Although this point esti-
mate of p is informative, more information is provided by the interval
estimate. For example, if the sampling variation of r is so large that the 95
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percent confidence interval for p contains zero, we would not be impressed
by the strength of the relationship between total fat and protein.

It turns out that the sampling distribution of r is not easily character-
ized; however, the father of modern statistics, Ronald Fisher, showed that
a transformation of r approximately follows a normal distribution. This
transformation is

z' = 0.5 * [log. (1 + r) — log.(1 — 7],

and it provides the basis for the confidence interval for p. The mean of 2’ is
[log.(1 + p) — log.(1 — p)] and its standard deviation, o, is 1/V(n — 3).
Note that for convenience, log, is often written as In and we do that below.
Thus we can employ the procedures we have used above for finding the
confidence interval for the transformed value of p, that is,

Z' = Z1eap* 0y <05%[In(1+p) ~In(1 = p)] <z’ - z1-0p * 0.

There is one simplification we can make that allows us to have to take
only one natural logarithm in the calculation instead of finding two natural
logarithms. In the presentation of the geometric mean in Chapter 4, we
saw that the sum of logarithms of two terms is the logarithm of the product
of the terms, that is,

In x; + In x; = In (x1 * x3).
In the same way, the difference of logarithms of two terms is the logarithm
of the quotient of the terms, that is,
Inx;~Inx =In (ﬁ)
X2

Thus we have the relationship

1+r]

z’=0.5*[ln(1+r)—1n(1—r)]=0.5*1n[1_r

Let us apply these formulas for finding the 95 percent confidence inter-
val for the correlation between total fat and protein. As r is 0.648, z’ is

1+ 0.648) 051 <1.648
1-0648 = 2" ™\p352

= 0.5 = 1.5437 = 0.77185.

The standard deviation of z' is 1/V/30, which is 0.18257. Thus the interval
for 0.5 * In [(1 + p)/(1 — p)]is 0.77185 — 1.96 * 0.18257 to 0.77185 + 1.96 *
0.18257, or 0.4140 to 1.1297.

These caiculations are easily performed with MINITAB as shown in
Box 7.9.

0.5 % In ( ) = 0.5 * In 4.682
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MINITAB BOX 7.9

MTB > let kl1=0.648

MTB > let k2=(1+kl)/{1-kl)
MTB > let k3=0.5*loge(k2)
MTB > print k3

K3 0.77185

MTB > let k4=1/sqrt(30)
MTB > let kb=1.96%k4

MTB > let k6=k3-k5

MTB > let Kk7=k3+k5

MTB > print k6 k7

K6 0.413998

K7 1.12969

To find the confidence interval for p, we first perform the inverse
transformation on twice the lower and upper limits of the interval just
calculated. The inverse transformation of the natural logarithm, In, is the
exponential transformation. This means that

exp (In x) = x.

After obtaining the exponential of twice a limit, call it 4, further manipula-
tion leads to the following equation:

- _a—1

limit for p = panE
The exponential of twice the lower limit, that is, two times 0.4140, is the
exponential of 0.8280, which is 2.28874, and this is the value used for a for
the lower limit. The lower limit for p is then

2.28874 — 1

28874 + 1 0392

The exponential of twice the upper limit, that is, two times 1.1297, is the
exponential of 2.2594, which is 9.57734, and this is the value used for a for
the upper limit. The upper limit for p is then

9.57734 — 1

957734 + 1 0811

Therefore, the 95 percent confidence for the Pearson correlation coefficient
between total fat and protein in the population is 0.392 to 0.811. Thus it is
reasonable to conclude that there is a strong positive association between
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MINITAB BOX 7.10

MTB > let k8=2%k6
MTB > let k9=2#k7
MTB > let klO=exp(k8)
MTB > let kll=exp(k9)

(The constants k10 and k11 are the exponentials of twice the lower and upper
limits, respectively.)

MTB > let kl2=(k1l0-1)/(kl0+1)
MTB > let k13=(kll-1)/(kll+l)
MTB > print kl2 k13

K12 0.391862

K13 0.810913

total fat and protein in the diet of suburban middle school boys in the
Houston area.

These calculations are again easily performed in MINITAB as shown in
Box 7.10.

This material also applies to the Spearman correlation coefficient for
sample sizes greater than or equal to 10.

So far, all the confidence intervals presented have been for a single
parameter. The following sections address confidence intervals for the
comparison of parameters from two populations.

F. Confidence Interval for the Difference of Two Means
1. Independent Means

We often wish to compare the mean from one population with that of
another population. Examples include the following. Is the mean change in
blood pressure for men with mild to moderate hypertension the same for
men taking different doses of an angiotensin-converting enzyme inhibitor?
Is the mean length of stay in a psychiatric hospital equal for patients with
the same diagnosis but under the care of two different psychiatrists? Given
the following, there is an interest in the mean change in air pollution,
specifically, in carbon monoxide, from 1991 to 1992 for neighboring states
A and B. There was no change in gasoline formulation in State A, whereas
on January 1, 1992, State B required that gasoline consist of 10 percent
ethanol during the November to March period.

One reason for interest in the confidence interval for the difference of
two means is that it can be used to address the question of the equality of
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the two means. If there is no difference in the two population means, the
confidence interval for their difference is likely to include zero.

a. Known Variances

The confidence interval for the difference of two means has the same form
as that for a single mean, that is, it is the difference of the sample means
plus or minus some distribution percentile times the standard error of the
difference of the sample means. Let us convert these words to symbols.
Suppose that we draw samples of sizes n; and n, from two independent
populations. All the observations are assumed to be independent of one
another; that is, the value of one observation does not affect the value of
any other observation. The unknown population means are u; and y,, the
sample means are X; and X,, and the known population variances are o2
and o-?, respectively. The variances of the sample means are ¢y?/n; and 0%/
1y, respectively. As the means are from two independent populations, the
standard error of the difference of the sample means is the square root of
the sum of the variances of the two sample means:

[ 2 2
01 a3
— + —=,
m 5]

The central limit theorem implies that the difference of the sample means
will approximately follow the normal distribution for reasonable sample
sizes. This can be expressed as

g @ %)~ — p)
\7 O'%/Tl] + O'%/nz

Therefore, the (1 — a) * 100 percent confidence interval for the difference of
population means, u; — u», ranges

2 2 2 2
= _ = o1,02 = = o1, 02

from ((x1 — X))~ Zi—an* \ T ‘—> to ((xl —X3) — Zjeqn* \|—/ + —)
ny M n M

Suppose we wish to construct a 95 percent confidence interval for the
effect of different doses of ramipril, an angiotensin-converting enzyme
inhibitor, used in treating high blood pressure. A study reported changes
in diastolic blood pressure using the values at the end of a 4-week run-in
period as the baseline and measured blood pressure after 2, 4, and 6 weeks
of treatment (6). We shall form a confidence interval for the difference in
mean decreases from baseline to 2 weeks after treatment was begun be-
tween doses of 1.25 and 5 mg of ramipril. The sample mean decreases are
10.6 (¥;) and 14.9 mm Hg (X;) for the 1.25- and 5-mg doses, respectively,
and n; and n, are both equal to 53. Both o1 and o ; are assumed to be 9 mm
Hg. The 95 percent confidence interval for u; — u is calculated as ranging
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. < 81 81)
rom {(10.6 - 14.9) -1.96 * \53 + 53
81 81)

to ((10.6 — 14.9) +1.96 * \zg3 * 53
or from —7.98 to —0.62. The value of 0 is not contained in this interval. As
the difference in mean decreases is negative, it appears that the 5-mg dose
of ramipril is associated with a greater decrease in diastolic blood pressure
during the first 2 weeks of treatment when considering only these two
doses.

b. Unknown but Equal Population Variances

If the variances are unknown but assumed to be equal, data from both
samples can be combined to form an estimate of the common population
variance. Use of the sample estimator of the variance calls for use of the ¢,
instead of the normal, distribution in the formation of the confidence inter-
val. The pooled estimator of the common variance, s.2, is defined as

ny

> (e — x)? + 2 (21 — Xp)?

2 _ i=1

s
P m+ =2

and this can be rewritten as
,_ =Dt + (= 1)sf (1 — Dsi+ (1 — 1)s}

T T 1)+ (np — 1) M+ -2

The pooled estimator is a weighted average of the two sample variances,
weighted by the respective degrees of freedom associated with the individ-
ual sample variances and divided by sum of the degrees of freedom associ-
ated with each of the two sample variances.

Now that we have an estimator of o2, we can use it in estimating the
standard error of the difference of the sample means, X; and X,. As we are
assuming that the population variances for the two groups are the same,
the standard error of the difference of the sample means is
g2 o? 1 1

=g —_+_
1 (5] n Ha

and its estimator is
1 1

5
PNm o ny

The corresponding ¢ statistic is

p = G = %) — (= )
sp V1ny + 1/n?
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and the (1 — @) * 100 percent confidence interval for u; — u, ranges from

I 11 _ 1 1
X1 — X)) — ty—21-an S —+—tol{(X1— X))+ t,21-a — 4+ -
(( 1 2) 2,1-a/2 Sp 111 nz) (( 1= X2) 2,1~a/2 Sp 111 + le)

where 7 is the sum of #; and n,.

Suppose that we wish to calculate the 95 percent confidence interval
for the difference in the proportion of caloric intake that comes from fat for
fifth and sixth grade boys compared with seventh and eighth grade boys in
suburban Houston. The sample data shown in Table 4.1 will be used in the
calculation. The proportion of caloric intake that comes from fat is found by
converting the grams of fat to calories by multiplying by 9 (2 calories result
from 1 g of fat) and then dividing by the number of calories consumed.
Table 7.5 shows these variables.

The sample mean for the 14 fifth and sixth grade boys is 0.329, com-
pared with 0.353 for the 19 seventh and eighth grade boys. These values of
percent of intake from fat are slightly above the recommended value of 30
percent (7, p. 51). The corresponding standard deviations are 0.0895 and
0.0974, which support the assumption of equal variances.

Total Fat,? Calories, and the Proportion of Calories from Total Fat for
the 33 Boys in Table 4.1

Grades 7 and 8 Grades 5 and 6
Proportion Proportion
Total fat Calories from fat Total fat Calories from fat
567 1823 0.311 1197 3277 0.365
558 2007 0.278 891 2039 0.437
297 1053 0.282 495 2000 0.248
1818 4322 0.421 756 1781 0.424
747 1753 0.426 1107 2748 0.403
927 2685 0.345 792 2348 0.337
657 2340 0.281 819 2773 0.295
2043 3532 0.578 738 2310 0.319
1089 2842 0.383 738 2594 0.285
621 2074 0.299 882 1898 0.465
225 1505 0.150 612 2400 0.255
783 2330 0.336 252 2011 0.125
1035 2436 0.425 702 1645 0.427
1089 3076 0.354 387 1723 0.225
621 1843 0.337
666 2301 0.289
1116 2546 0.438
531 1292 0.411
1089 3049 0.357

“Total fat has been converted to calories by multiplying the number of grams by 9.
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The estimate of the pooled standard deviation is therefore

5, = \/ 13 * 0.08952 + 18 * 0.0974 _  go4.
P 14 +19 - 2

The estimate of the standard error of the difference of the sample means is

T 1 _
0.094 * /ﬁ + 79 = 0.033.

To find the confidence interval, we require f31 g ¢75. This value is not shown
in Table B5, but based on the values for 29 and 30 degrees of freedom, an
approximate value for it is 2.04. Therefore, the lower and upper limits are

(0.329 — 0.353) — 2.04 = 0.033 and (0.329 — 0.353) + 2.04 = 0.033

which are —0.092 and 0.044. As zero is contained in the 95 percent confi-
dence interval, there does not appear to be a difference in the mean pro-
portions of calories that come from fat for fifth and sixth grade boys com-
pared with seventh and eighth grade boys in suburban Houston.

These calculations are easily carried out with MINITAB as shown in
Box 7.11.

MINITAB BOX 7.11

Recall that column c2 contains the caloric intake and ¢3 contains the total fat values.
These data are arranged such that the values for the seventh and eighth graders are
followed by the values for the fifth and sixth graders. Column ¢7 is the proportion
of total calories that come from fat, and c8 is an indicator column that identifies the
seventh and eighth graders (c8 = 0) and the fifth and sixth graders (c8 = 1). The
COPY command used here has two columns, for example, ¢7 and 9. Some or all of
the data from 7 are copied into ¢9. If the USE subcommand is specified, only a
subset of the data in ¢7 are copied into ¢9. The subset includes only the values in ¢7
for which the corresponding values in ¢8 are 0. Thus columns ¢9 and ¢10 contain
the proportions of total calories that come from fat for these two groups of boys.
The DESCRIBE command is then used to obtain the sample means and standard
deviations required for the calculations, and the INVCDF command is used to
obtain the value of t3 .g75.

MTB > let c¢c7=9*c3/c2

MTB > set c8
DATA> 19(0) 14(1)

DATA> end

MTB > copy c¢7 c9;
SUB > use c¢8=0.

MTB > copy c¢7 clO;
SUB > use c8=1.

MTB > desc ¢9 c¢l0
MTB > invcdf 0.975;

SUBC> t 31.
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¢. Unknown and Unequal Population Variances

If the population variances are different, this poses a problem. There is a
procedure for obtaining an exact confidence interval for the difference in
the means when the population variances are unequal, but it is much more
complex than the other methods in this book (8, pp. 141-146). Because of
this complexity, most researchers use an approximate approach to the
problem. The following shows one of the approximate approaches.

As the population variances are unknown, we again use a t-like statis-
tic. This statistic is

(51— %) = (M1~ Ka)
Vein + s3n,

The ¢t distribution with the degrees of freedom shown next can be used to
obtain the percentiles of the t’ statistic. The degrees of freedom value, df, is

(s3/ny + siny)?
($2/m)?(ny — 1) + (3/m)?(my — 1)°

This value for the degrees of freedom was suggested by Satterthwaite (9). It
is unlikely to be an integer and it should be rounded to the nearest integer.

The approximate (1 — a) * 100 percent confidence interval for the
difference of two independent means when the population variances are
unknown and unequal is

o=

df =

(X1 — %) — tg1-an Su-p, < (M1 — M2) < (X0 — X)) + tagi-an S5

where the estimate of the standard error of the difference of the two sam-
ple means is

2 2

S _= = i + .5_2
X1—X2 .
n M

In Exercise 4.5, we presented survival times from Exercise Table 3.3 in
Lee (10) on 71 patients who had a diagnosis of either acute myeloblastic
leukemia (AML) or acute lymphoblastic leukemia (ALL). In one part of the
exercise, we asked for additional variables that should be considered be-
fore comparing the survival times of these two diagnostic groups of pa-
tients. One such variable is age. Let us examine these two groups to deter-
mine if there appears to be an age difference. If there is a difference, it must
be taken into account in the interpretation of the data. To examine if there
is a difference, we find the 99 percent confidence interval for the difference
of the mean ages of the AML and ALL patients. As we have no knowledge
about the variation in the ages, we assume that the variances will be differ-
ent. Table 7.6 shows the ages and survival times for these 71 patients.

The sample mean age for the AML patients, X;, is 49.86, and s; is 16.51
based on the sample size, n;, of 51 patients. The sample mean, x,, for the 20
ALL patients is 36.65 years, and s, is 17.85. This is the information needed
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Ages and Survival Times of the AML and ALL Patients®

AML patients:
Age 20 25 26 26 27 27 28 28 31 33 33 33 34
36 37 40 40 43 45 45 45 45 47 48 50 50
51 52 53 53 56 57 59 59 60 60 61 61 61
62 63 65 71 71 73 73 74 74 75 77 80

Survival time (months) 18 31 31 31 36 01 09 39 20 04 45 36 12
08 01 15 24 02 33 29 07 00 01 02 12 09
01 01 09 05 27 01 13 01 05 01 03 04 01
18 01 02 01 08 03 04 14 03 13 13 01

ALL patients:

Age 18 19 21 22 26 27 28 28 28 28 34 36 37
47 55 56 59 62 83 19
Survival time (months) 16 25 01 22 12 12 74 01 16 09 21 09 64

35 01 07 03 01 01 22

“Age and survival times are in the same order.

to calculate the confidence interval. Let us first calculate the sample esti-
mate of the standard error of the difference of the means:

[16.512  17.85%
Sg-5, = ——S_I_ + T = 4,61,

We next calculate the degrees of freedom, df, to be used and we find it
from

(16.51%/51 + 17.85%/20)%
((16.512/51)2 4 (17.852/20)7-)
51 -1 20-1
which equals 32.501, and this is rounded to 33. The 99.5 percentile of the ¢
distribution with 33 degrees of freedom is about midway between the
values of 2.750 (30 degrees of freedom) and 2.724 (35 degrees of freedom)
in Appendix Table B5. We interpolate and use a value of 2.7344 for the 99.5

percentile of the ¢ distribution with 33 degrees of freedom. Therefore, the
99 percent confidence interval for the difference of the mean ages is

(49.86 — 36.65) — 2.7344 * 4.61 < u; — p;
< (49.86 — 36.65) + 2.7344 * 4.61

or
0.60 < w1 — wy < 25.82.

As zero is not contained in this confidence interval, there is an indication of
a difference in the mean ages. If the survival patterns differ between pa-
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tients with these two diagnoses, it may be due to a difference in the age of
the patients.

How large would the confidence interval have been if we had assumed
that the unknown population variances were equal? Using the approach in
Section F.1.b., the pooled estimate of variance, s,?, is

(51 — 1) * 16.512 + (20 — 1) * 17.85?
51 + 20 — 2

The pooled estimate of the standard deviation is thus 16.89, and this leads
to an estimate of the standard error of the difference of the two means of

/1 1
16.89 * 51 + 20 = 4.456.

Thus the confidence interval, using an approximation of 2.65 to the 99.5
percentile of the t distribution with 69 degrees of freedom, is

(49.86 — 36.65) — 2.65 * 4.456 < u; — uy < (49.86 — 36.65) + 2.65 * 4,456

or

= 285.26

1.20 <y — pp < 25.02.

This interval is slightly narrower than the confidence interval found above;
however, both intervals lead to the same conclusion about the ages in the
two diagnosis groups.

In practice, we usually know little about the magnitude of the popula-
tion variances. This makes it difficult to decide which approach, equal or
unequal variances, should be used. We recommend that the unequal vari-
ances approach be used in those situations when we have no knowledge
about the variances and no reason to believe that they are equal. Fortu-
nately, as we saw above, often there is little difference in the results of the
two approaches. Some textbooks and computer packages recommend that
we first test to see if the two population variances are equal and then
decide which procedure to use. Several studies have been conducted re-
cently and conclude that this should not be done (11-13).

These sections have focused on the situation in which two population
means are independent of one another, for example, men who have re-
ceived different doses of medication, boys in different classes, and patients
with different diagnoses. The next section deals with the creation of a
confidence interval for two dependent means.

2. Confidence Interval for the Difference of Two Dependent Means

Dependent means occur in a variety of situations. One example of interest
comprises a preintervention measurement, some intervention, and a post-
intervention measurement. Another dependent mean situation occurs
when there is a matching or pairing of subjects with similar characteristics.
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One subject in the pair receives one type of treatment and the other mem-
ber in the pair receives another type of treatment. Measurements on the
variable of interest are made on both members of the pair. In both of these
situations, there is some relationship between the values of the observa-
tions in a pair. For example, the preintervention measurement for a subject
is likely to be correlated with the postintervention measurement on the
same subject. If there is a nonzero correlation, this violates the assumption
of independence of the observations. To deal with this relationship (depen-
dency), we form a new variable which is the difference of the observations
in the pair. We then analyze the new variable, the difference of the paired
observations.

Consider the blood pressure example presented earlier. Suppose that
we focus on the 1.25-mg dose of ramipril. We have a value of the subject’s
blood pressure at the end of a 4-week run-in period and the corresponding
value after 2 weeks of treatment for 53 subjects. There are 106 measure-
ments, but only 53 pairs of observations and only 53 differences for analy-
sis. The mean decrease in diastolic blood pressure after 2 weeks of treat-
ment for the 53 subjects is 10.6 mm Hg, and the sample standard deviation
of the difference is 8.5 mm Hg. The confidence interval for this difference
has the form of the confidence interval for the mean from a single popula-
tion. If the population variance is known, we use the normal distribution;
otherwise we use the ¢ distribution. We assumed that the population stan-
dard deviation was 9 mm Hg above and we use that value here. Thus the
confidence interval will use the normal distribution, that is,

% -z *(ﬂ)< <T+z *(ﬂ>
d 1-a/l2 \/-’; d d 1-a/2 n

where the subscript d denotes difference.

Let us calculate the 90 percent confidence interval for the mean de-
crease in diastolic blood pressure. Table B4 shows that the 95th percentile
of the standard normal is 1.645. Thus the confidence interval is

9 9
10.6 — 1.645 * —= < uy; < 10.6 + 1. —==
* 53 7% 0.6 + 1.645 = &

which gives an interval ranging from 8.57 to 12.63 mm Hg. As zero is not
contained in the interval, it appears that there is a decrease from the end of
the run-in period to the end of the first 2 weeks of treatment.

If we had ignored the relationship between the pre- and postinterven-
tion values and used the approach for independent means, how would
that have changed things? The mean difference between the pre and post
values does not change, but the standard error of the mean difference does
change. We assume that the population variances are known and that o,
for the preintervention value, is 7 mm Hg and o is 8 mm Hg. The stan-
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dard error of the differences, wrongly ignoring the correlation between the
pre and post measures, is then

7 &
53 + 53 = 1.46.

This is larger than the value of 9/V/53 (= 1.236) found above when taking
the correlation into account. This larger value for the standard error of the
difference (1.46 versus 1.236) makes the confidence interval larger than it
would be had the correct method been used.

This experiment was done to examine the dose—response relationship
of ramipril. It consisted of a comparison of the changes in the pre- and
postintervention blood pressure values for three different doses of rami-
pril. If the purpose had been different, for example, to determine whether
or not the 1.25-mg dose of ramipril has an effect, this type of design may
not have been the most appropriate. One problem with this type of de-
sigh—measurement, treatment, measurement—when used to establish
the existence of an effect is that we have to assume that nothing else
relevant to the subjects’ blood pressure values occurred during the treat-
ment period. If this assumption is reasonable, then we can attribute the
decrease to the treatment. If this assumption is questionable, however,
then it is problematic to attribute the change to the treatment. In this case,
the patients received a placebo—here, a capsule that looked and tasted
liked the medication to be taken later—during the 4-week run-in period.
There was little evidence of a placebo effect, a change that occurs because
the subject believes that something has been done. A placebo effect, when
it occurs, is real and may reflect the power of the mind to affect disease
conditions. This lack of a placebo effect here lends credibility to attributing
the decrease to the medication, but it is no guarantee. More will be said
about experimental designs in the next chapter.

G. Confidence Interval for the Difference of Two Proportions

In this section, we want to find the (1 — «) * 100 percent confidence interval
for the difference of two independent proportions, that is, w1 — m,. We
assume that the sample sizes are large enough so that it is appropriate to
use the normal distribution as an approximation to the distribution of p; ~
p2. In this case, the confidence interval for the difference of the two propor-
tions is approximate. Its form is very similar to that for the difference of
two independent means when the variances are not equal.

The variance of the difference of the two independent proportions is

7T1*(1—771)+772*(1—772)
np n; ’
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As the population proportions are unknown, we substitute the sample
proportions, p; and p,, for them in the variance formula. The (1 — «) * 100
percent confidence interval for w; — m, then is

(1= p2) — Z1-an \/pl (1n— ) P20 P) <oy -y < (r1 — p2)
1

(7]

+ Zioun \/Pl A-p), 0= p)
1 )

Because we are considering the difference of two proportions, the continu-
ity correction terms cancel out in taking the difference.

Holick et al. (5) conducted a study of 13 milk processors in five Eastern
states. They found that only 12 of 42 randomly selected samples of milk
they collected contained 80 to 120 percent of the amount of vitamin D
stated on the label. Suppose that 10 milk processors in the Southwest are
also studied and that 21 of 50 randomly selected samples of milk contain 80
to 120 percent of the amount of vitamin D stated on the label. Construct a
99 percent confidence interval for the difference of proportions of milk that
contain 80 to 120 percent of the amount of vitamin D stated on the label
between these Eastern and Southwestern producers.

As the sample sizes and the proportions are relatively large, the normal
approximation can be used. The estimate of the standard error of the
sample difference is

\/(12/42)(1 - 12/42) | 21/50)(1 ~ 21/50)
2 50

which is 0.0987. The value of zgq9s is found from Table B4 to be 2.576.
Therefore the 99 percent confidence interval is

(0.286 — 0.420) — 2.576 * 0.0987 < 7; — m
< (0.286 — 0.420) + 2.576 = 0.0987
which is
—0.388 < 7 — m, < 0.120.
As zero is contained in the confidence interval, there is little indication of a
difference in the proportion of milk samples with a vitamin D content

within the 80 to 120 percent range of the amount stated on the label be-
tween these Eastern and Southwestern milk producers.
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H. Prediction and Tolerance Intervals Based on the
Normal Distribution

As we have seen, knowledge that the data follow a specific distribution can
be used effectively in the creation of confidence intervals. This knowledge
can also be used in the formation of prediction and tolerance intervals, and
this use is shown below.

1. Prediction Interval

The distribution-free method for forming intervals used specific observed
values of the variable under study. In contrast, the formation of intervals
based on the normal distribution uses the sample estimates of its parame-
ters, the mean and standard deviation. Assuming that the data follow the
normal distribution, the prediction interval is formed by taking the sample
mean plus or minus some value. This form is the same as that used in the
construction of the confidence interval for the population mean; however,
we know that the prediction interval will be much wider than the confi-
dence interval because the prediction interval focuses on a single future
observation.

The confidence interval for the mean, when the population variance is
unknown, is

— S
X*ti11-an (W)

The estimated standard error of the sample mean, s/V'n, can also be ex-
pressed as V[s? * (1/n)]. The variance of a future observation is the sum of
the variance of an observation about the sample mean and the variance of
the sample mean itself, that is, 02 + o?/n. Thus the estimated standard
error of a future observation is V[s? % (1 + 1/n)] and the corresponding

prediction interval is
_ 1
X*tyg1-an8 1T pe

Let us calculate the prediction interval for the systolic blood pressure
data used above in the calculation of the 90 percent confidence interval for
the mean. The sample mean was 94.75 mm Hg and the sample standard
deviation was 10.25 mm Hg based on a sample size of 60. The value of
ts0,0.95 used in the 90 percent confidence interval was 1.671. The value of
s * V(1 + 1/n)is 10.335 [= 10.25 * V(1 + 1/60)]. Therefore the prediction

interval is
94.75 + 1.671 % 10.335
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and the lower and upper limits are 77.48 and 112.02 mm Hg, respectively.
These values are contrasted with 92.54 and 96.96 mm Hg, limits of the
confidence interval for the mean. Thus, as expected, the 90 percent predic-
tion interval for a single future observation is much wider than the corre-
sponding 90 percent confidence interval for the mean.

2. Tolerance Interval

The tolerance interval is also formed by taking the sample mean plus or
minus some quantity, k, multiplied by the estimate of the standard devia-
tion. As the derivation of k is beyond the level of this book, we simply use
its value found in Table B8. In symbols, the (1 — «) * 100 percent tolerance
interval containing p percent of the population based on a sample of size
n is

X* kn,p,l—a * S,

Let us use Table B8 to find the 90 percent tolerance interval containing
95 percent of the systolic blood pressure values in the population based on
the first sample of 60 observations from above. From Table B8 we find that
the value of ke,0.95,0.90 i 2.248. Therefore, the tolerance interval is

94.75 + 2.248 * 10.25

which gives limits of 71.71 and 117.79.
One-sided prediction and tolerance intervals based on the normal dis-
tribution are also easy to construct.

IV. CONCLUDING REMARKS

In this chapter, the concept of interval estimation was introduced. We
presented prediction, confidence, and tolerance intervals and explained
their applications. We showed how distribution-free intervals and intervals
based on the normal distribution were calculated. The idea and use of
confidence intervals discussed in this chapter are explored further to intro-
duce methods of testing statistical hypotheses in Chapter 13. Parentheti-
cally, it is worth pointing out that the idea of confidence interval is often
expressed as a margin of error in journalistic reporting, which refers to
one-half of the width of a two-sided confidence interval.

We also pointed out that characteristics, for example, size, of the inter-
vals could be examined before actually conducting the experiment. If the
characteristics of the interval are satisfactory, the investigator uses the
proposed sample size. If the characteristics are unsatisfactory, the design
of the experiment, the topic of the next chapter, needs to be modified.

EXERCISES

7.1. Assume that the AML patients shown in Exercise 4.7 can be consid-
ered a simple random sample of all AML patients.
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a.

b.

Calculate the 95 percent confidence interval for the population
mean survival time after diagnosis for AML patients.

Interpret this confidence interval so that someone who knows no
statistics can understand it.

Calculate the approximate 95 percent confidence interval for the
median survival time. Compare the intervals for the population
mean and median.

There are two methods for forming the tolerance interval. Use
both methods to form the approximate 95 percent tolerance inter-
val containing 90 percent of the survival times for the population
of AML patients. Which method do you think is the more appro-
priate one to use here? Provide your rationale.

7.2. Calculate a 90 percent confidence interval for the population median
length of stay based on the data from the patient sample shown in
Exercise 4.10. Is it appropriate to calculate a confidence interval for
the population mean based on these data? Support your answer.

Find a study from the health literature that uses confidence intervals
for one of the statistics covered in this chapter. Provide a reference
for the study and briefly explain how confidence intervals were used.

7.3.

7.4,

The following table shows the average annual fatality rate per
100,000 workers based on the 1980-1988 period by state along with

Fatality NSWI Fatality =~ NSWI Fatality =~ NSWI

State rate* score? State rate score State rate score
CT 1.9 65 sC 6.7 26 LA 11.2 31
MA 2.4 73 vT 6.8 38 NE 11.3 27
NY 2.5 76 1L 6.9 76 NV 11.5 30
RI 3.3 59 NC 7.2 47 X 11.7 72
NJ 34 80 WA 7.7 55 KY 11.9 32
AZ 4.1 40 IN 7.8 47 NM 12.0 14
MN 4.3 64 ME 7.8 67 AR 12.5 11
NH 4.5 56 TN 8.1 24 UT 13.5 26
OH 4.8 55 OK 8.7 53 ND 13.8 21
MI 5.3 63 AL 9.0 25 MS 14.6 25
MO 5.3 42 KS 9.1 15 SD 14.7 25
MD 5.7 46 1A 9.2 54 WV 16.2 47
DE 5.8 40 CO 9.3 52 1D 17.2 22
HI 6.0 25 FL 9.3 48 MT 21.6 28
PA 6.1 55 VA 9.9 60 WYy 29.5 12
WI 6.3 58 GA 10.3 36 AK 33.1 59
CA 6.5 81 OR 11.0 63

“Average annual fatality rate per 100,000 workers based on 19801988 data.
¥National Safe Workplace Institute Score (116 is the maximum and a higher score is
better).
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7.5.

7.6.

7.7.

the state’s composite score on a scale created by the National Safe
Workplace Institute (NSWI). The scale takes into account prevention
and enforcement activities and compensation paid to the victim. The
data are taken from the Public Citizen Health Research Group (14).
During the 1980-1988 period, the National Institute of Occupational
Safety and Health reported that there were 56,768 deaths in the
workplace. The above rates are based on that number. The National
Safety Council reported 105,500 deaths for the same period. Do you
think that there should be any relationship between the fatality rates
and the NSWI scores? If you think that there is a nonzero correlation,
will it be positive or negative? Explain your reasoning. Calculate the
Pearson correlation coefficient for these data. Is there any reason to
calculate a confidence interval based on the correlation value you
calculated? Why or why not?

There is some concern today about excessive intakes of vitamins and
minerals, possibly leading to nutrient toxicity. For example, many
persons take vitamin and mineral supplements. It is estimated that 35
percent of the adult U.S. population consumes vitamin C in the form
of supplements (7, p. 62). Based on survey results, among users of
vitamin C supplements, the median intake was 333 percent of the
recommended daily allowance. Suppose that you take a tablet that
claims to contain 500 mg vitamin C. Which type of interval—predic-
tion, confidence, or tolerance—about the vitamin C content of the
tablets is of most interest to you? Explain your reasoning.

In a test of a laboratory’s measurement of serum cholesterol, 15 sam-
ples containing the same known amount (190 mg/dl) of serum choles-
terol are submitted for measurement as part of a larger batch of sam-
ples, one sample each day over a 3-week period. Suppose that the
following daily values in mg/dl for serum cholesterol for these 15
samples were reported from the laboratory:

180 190 197 199 210 187 192 199 214 237 188 197 208 220 239.

Assume that the variance for the measurement of serum cholesterol is
supposed to be no larger than 100 mg/dl. Construct the 95 percent
confidence interval for this laboratory’s variance. Does 100 mg/dl fall
within the confidence interval? What might be an explanation for the
pattern shown in the reported values?

The proportion of persons in the United States without health insur-
ance in 1991 was 14.1 percent, or approximately 35.5 million persons.
The following data show the percentages of persons without health
insurance in 1991 by state (15) along with the 1990 population of the
state (16). The District of Columbia is treated as a state in this presen-
tation. Calculate the sample Pearson correlation coefficient between
the state population total and its percent without health insurance.
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How can these counts be viewed as a sample? Calculate a 95 percent
confidence interval for the Pearson correlation coefficient in the popu-
lation. Does there appear to be a strong linear relationship between
these two variables? Provide at least one additional variable that may
be related to the proportion without health insurance in each state and
provide a rationale for your choice.

Percent without
health insurance

Percent without

State Population® health insurance State Population

New England East South Central

ME 1.23 11.1 KY 3.69 13.1
NH 1.11 10.1 ™ 4.88 13.4
VT 0.56 12.7 AL 4.04 17.9
MA 6.02 10.9 MS 2.57 18.9
EIT ot 1(7’:2 West South Central
AR 2.35 15.7
Mid-Atlantic LA 4.22 20.7
NY 17.99 12.3 OK 3.15 18.2
NJ 7.73 10.8 X 16.99 22.1
PA 11.88 7.8 Mountain
East North Central MT 0.80 12.7
OH 10.85 10.3 ID 1.01 17.8
IN 5.54 13.0 WY 0.45 11.3
IL 11.43 11.5 CcO 3.29 10.1
MiI 9.30 9.0 NM 1.52 21.5
WI 4.89 8.0 AZ 3.67 16.9
West North Central g‘r] 1;3 123
ND 0.64 7.6 ’ :
SD 0.70 9.9 Pacific
NE 1.58 8.3 WA 4.87 10.4
KS 2,48 11.4 OR 2.84 14.2
MN 4.38 9.3 CA 29.76 18.7
1A 2.78 8.8 AK 0.55 13.2
MO 5.12 12.2 HI 1.11 7.0
South Atlantic
DE 0.67 13.2
MD 4.78 13.1
VA 6.19 16.3
WV 1.79 15.7
FL 12.94 18.6
NC 6.63 14.9
SC 3.49 13.2
GA 6.48 14.1
DC 0.61 25.7

“Population is expressed in millions.

7.8. Calculate the mean state proportion of those without health insur-
ance from data in Exercise 7.7. Is this number the same as the overall
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7.9.

7.10.

U.S. percentage? Explain how the state information can be used to
obtain the overall U.S. percentage of 14.1.

Suppose you are planning a simple random sample survey to esti-

mate the mean family out-of-pocket expenditures for health care in

your community during the last year. In 1990, the approximate per
capita (not per family) out-of-pocket expenditure was $525 (17, Table

121). From previous studies in the literature, you think that the pop-

ulation standard deviation for family out-of-pocket expenditures is

$500. You want the 90 percent confidence interval for the community
mean family out-of-pocket expenditures to be no wider than $100.

a. How many families do you require in the sample to satisfy your
requirement for the width of the confidence interval for the
mean?

b. Do you believe that family out-of-pocket expenditures follow the
normal distribution? Support your answer.

c. Regardless of your answer, assume that you said that the family
out-of-pocket expenditures do not follow a normal distribution.
Discuss why it is still appropriate to use the material based on the
normal distribution in finding the confidence interval for the pop-
ulation mean.

d. In the conduct of the survey, how would you overcome reliance
on a person’s memory for out-of-pocket expenditures for health
care for the past year?

In 1979, the Surgeon General's Report on Health Promotion and

Disease Prevention and its follow-up in 1980 established health ob-

jectives for 1990. One of the objectives was that the proportion of 12-

to 18-year-old adolescents who smoked should be reduced to below 6

percent (17, p. 85). Suppose that you have monitored progress in

your community toward this objective. In a survey conducted in

1983, you found that seventeen of ninety 12- to 18-year-old adoles-

cents admitted that they were smokers. In your 1990 simple random

sample survey, you found eleven of eighty-five 12- to 18-year-old
adolescents who admitted that they smoked.

a. Construct a 95 percent confidence interval for the proportion of
smokers among 12- to 18-year-old adolescents in your commu-
nity. Is 6 percent contained in the confidence interval?

b. Construct a 99 percent confidence interval for the difference in the
proportion of smokers among 12- to 18-year-old adolescents from
1983 to 1990. Do you believe that there is a difference in the
proportion of smokers among the 12- to 18-year-old adolescents
between 1983 and 1990? Explain your answer.

c. Briefly describe how you would conduct a simple random sample
of 12- to 18-year-old adolescents in your community. Do you have
confidence in the response to the question about smoking? Pro-
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7.11.

7.12.

vide the rationale for your answer. What is a method that might
improve the accuracy of the response to the smoking question?

Construct the 95 percent confidence interval for the difference in the
population mean survival times between the AML and ALL patients
shown in Table 7.6. As there appears to be a difference in mean ages
between the AML and ALL patients, perhaps we should adjust for
age. One way to do this is to calculate age-specific confidence inter-
vals. For example, calculate the confidence interval for the difference
in population mean survival times for AML and ALL patients who
are 40 years old or younger. Is the confidence interval for those 40
years of age or younger consistent with the confidence interval that
has ignored the ages? How else might we adjust for the age variable
in the comparison of the AML and ALL patients?

Suppose that we wish to investigate the claims of a weight loss clinic.
We randomly select 20 individuals who have just entered the pro-
gram and we follow them for 6 weeks. The clinic claims that its
members will lose on the average 10 pounds during the first 6 weeks
of membership. The beginning weights and the weights after 6
weeks are shown below. Based on this sample of 20 individuals, is
the clinic’s claim plausible?

Beginning Weight
Person weight at 6 wk
1 147 143
2 163 151
3 198 184
4 261 245
5 233 229
6 227 220
7 158 161
8 154 147
9 162 155
10 249 254
11 246 239
12 218 222
13 143 135
14 129 124
15 154 136
16 166 159
17 278 263
18 228 205
19 173 164
20 135 122

7.13. In a study of aplastic anemia patients, 16 of 41 patients on one treat-

ment achieved complete or partial remission after 3 months of treat-
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ment, compared with 28 of 43 patients on another treatment (18).
Construct a 99 percent confidence interval on the difference in pro-
portions that achieved complete or partial remission. Does there ap-
pear to be a difference in the population proportions of the patients
who would achieve complete or partial remission on these two treat-
ments?

7.14. In 1970, Japanese-American women had a fertility rate (number of

live births per 1000 women ages 15-44) of 51.2, considerably lower
than the rate of 87.9 for all U.S. women in this age group. Use the
following data to calculate an age-adjusted fertility rate for Japanese-
American women and approximate the standard deviation of the
age-adjusted rate.

U.S. age-specific Number of Japanese-

Age fertility rate American women
15-19 69.6 24,964
20-24 167.8 23,435
25-29 145.1 22,093
30-34 73.3 23,055
35-39 31.7 32,935
40-44 8.6 34,044

Source: U.S. Population Census, 1970, P(2)-1G, and
U.S. Vital Statistics, 1970 (19)
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Designed Experiments

This chapter introduces the designed experiment, one of the two meth-
ods used in statistics for producing data. We previously met the other
method, the sample survey, in Chapter 3. Designed experiments have
been used in biostatistics in the evaluation of: (1) the efficacy and safety of
drugs or medical procedures; (2) the effectiveness and cost of different
health care delivery systems; and (3) the effect of exposure to possible
carcinogens. In the following, we present the principles underlying such
experiments. Limitations of experiments and ethical issues related to ex-
periments, especially when applied to humans, are also raised.

I. SAMPLE SURVEYS AND EXPERIMENTS
There are many similarities among as well as some differences between
sample surveys and experiments. From sample surveys, we learn the char-

acteristics of some population. The sample survey design focuses on the
sampling of individuals from the population. From experiments, we dis-

233
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cover the effect of applying a stimulus to subjects. The experimental design
focuses on the formation of comparison groups that allow conclusions
about the effect of the stimulus to be drawn.

As emphasized in Chapter 3, a good survey begins with a carefully
drawn blueprint or design and the same holds true for an experiment. The
blueprint or design of an experiment is based on both statistical and sub-
stantive considerations. Chapter 7 provided one example of statistical con-
siderations that should be part of the study design. We saw how the
analysis of the relationship among sample size, size of the interval, and
level of confidence associated with the study can be used in the creation of
the study design before any data are collected.

An experiment is different from a sample survey in that the experi-
menter actively intervenes with the experimental subjects through the as-
signment of the subjects to groups, whereas the survey researcher pas-
sively observes or records responses of the survey subjects. Experiments
and surveys often have different goals as well.

The goal in an experiment is to determine whether or not there is an
association between the independent or predictor variables and the depen-
dent or response variable. The different groups to which the subjects are
assigned usually represent the levels of the independent variable. Inde-
pendent and dependent were chosen as names for the variable types be-
cause it was thought that the response variable depended on the levels of
the predictor variables. To determine whether or not there is an associa-
tion, the experimenter assigns subjects to different levels of one variable,
for example, to different doses of some medication. The effects of the
different levels—the different doses—are found by measuring the values
of an outcome variable, for example, blood pressure. An association exists
if there is a relationship between the blood pressure values and the dosage
levels.

In a survey, the primary goal is to describe the population and a sec-
ondary goal is to investigate the association between variables. In a survey,
variables are usually not referred to as independent or dependent because
all the variables can be viewed as being response variables. The survey
researcher usually has not manipulated the levels of any of the variables as
the experimenter does.

Let us consider an example to illustrate the essential points in the
experimental design.

Il. EXAMPLE OF AN EXPERIMENT
The Hypertension Detection and Follow-up Program (HDFP) was a com-

munity-based, clinical trial conducted in the early 1970s by the Natio