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Preface

I must admit with regret, and not a little embarrassment, that eight years
have passed since I sat down to write a preface for the first volume of this
book. A great deal has changed for the community of quantum opticians in the
meantime. The interests of some have been turned to the fascinating properties
of degenerate quantum gases where a number of analogies with quantum optics
are to be found. Then there is the quantum information revolution: a whole
new language to be learned, built around John Bell’s reading of the Bohr–
Einstein debate and venerable words like entanglement, launched in a new
direction, with the goals of achieving an unbreakable code and a new paradigm
for computation—a quantum-mechanical one. Considering the passage of time
and what has occurred, I can only trust it will not disappoint to announce
that this second volume of Statistical Methods has not been diverted in either
direction—or, perhaps, rather closer to the truth, it could not: a path was
already set in the preface to Volume 1, and this is the path I have followed in
preparing Chaps. 9 through 19 of Volume 2.

The subtitle, Nonclassical Fields, is perhaps not as accurate as it might be
as a summary of content; or to put it another way, if my aim from the start
had been to write a book on this topic, parts of that book would differ sig-
nificantly from what follows here. Possibly the most important thing missing,
and something that should be said, is that there are two quite distinct paths
to a definition of nonclassicality in quantum optics. The first is grounded in
the existence, or otherwise, of a nonsingular and positive Glauber–Sudarshan
P function. The physical grounding is in the treatment of optical measure-
ments, specifically the photoelectric effect: for a given optical field, can the
photoelectron counting statistics, including all correlations, be reproduced by
a Poisson process of photoelectron generation driven by a classical light inten-
sity, allowed most generally to be stochastic? Viewed at a more informal level,
the question asks whether or not the infamous proposal of Bohr, Kramers, and
Slater for the interaction of classical light and quantized atoms can be upheld
in the presence of the observable photoelectron counting statistics.
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This criterion for nonclassicality is likely to be the one offered up by most
quantum opticians when pressed for a definition. There is, however, a second.
It is an outgrowth of John Bell’s work and does not speak directly about
measurements of any sort. At issue are the variances and covariances of a set
of quantum mechanical observables—the quadrature amplitudes occupying
this or that optical mode: can these quantities all be computed from a classi-
cal probability distribution, admitting hidden variables but no nonlocal con-
nections between the values they take? Generally speaking, but not always,
variances and covariances computed from an entangled state within quantum
mechanics cannot be recovered from a classical distribution. Squeezed light
provides a notable counterexample; for it, a positive definite Wigner function
serves as the required classical probability distribution. Thus, by the second
Bell-based criterion, squeezed light is not nonclassical. (Though in a perverse
reversal of Bell’s argument, the entangled character of the two-mode squeezed
state is often seen to trump this observation.) Squeezed light is of course
nonclassical by the former P function criterion.

In this volume squeezed light is nonclassical. The “Nonclassical” of the
subtitle is to be read in the P function sense. Starting with two chapters on
squeezing in the degenerate parametric oscillator, the volume continues on
with the theme taken up in Volume 1 of “methods developed in quantum
optics for analyzing quantum fluctuations in terms of a visualizable evolution
over time.” These are the methods of the quantum–classical correspondence:
the phase-space representations, which when applied to an operator master
equation yield a Fokker–Planck equation, albeit, in many cases, only after
a system size expansion of the full equation of motion is made—i.e., only
when the quantum noise is sufficiently small. Applied to the degenerate para-
metric oscillator, the methods fail, though the positive P representation of
Drummond and Gardiner does manage to resurrect “a visualizable evolution
over time”—qualified, however, by serious difficulties of a new kind.

Chapters 9 and 10 deal with squeezing, the degenerate parametric oscilla-
tor, and how squeezed light generation causes the standard phase-space meth-
ods to fail. Chapter 11 then develops the positive P approach, while Chap.
12 uncovers the problems it encounters when the system size expansion no
longer holds.

Problems with the positive P representation aside, much of the appeal of
the phase-space approach is lost when the system size expansion fails. Its very
premise is a classical dynamic plus quantum fluctuation “fuzz,” the “fuzz”
a perturbation by definition; “fluctuation” is defined in a classical sense from
the very beginning. While the positive P representation escapes this back-
ground to some extent, it also retreats from all but a formal connection with
the physics—as a generator of quantum averages—and any resolution of its
difficulties can only deepen that retreat.
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On this score it is worthwhile to recall my appeal in the preface to Vol-
ume 1: “Nothing in the Schrödinger equation fluctuates. What then is a quan-
tum fluctuation?” A classically inspired method for computing quantum aver-
ages is unlikely to illuminate this question. The seven chapters from Chap. 13
to Chap. 19 work towards an outlook that possibly can.

The context for the development is provided by cavity QED, which is
explored in Chaps. 13–16. Its defining conditions of strong dipole coupling
between a resonant atomic transition and an optical cavity mode are essen-
tially the same—for single atoms—as those defining a small system size, such
that the system size expansion fails, and experiments have reached a remark-
able level of sophistication, a level hardly imagined as researchers set out to
realize strong dipole coupling some 20 years ago.

My attempt to illuminate the “What is a quantum fluctuation?” question
occupies Chaps. 17–19. Here quantum trajectory theory is developed. The ap-
proach, at bottom, is conventional, recalling observations that have been made
about the meaning of quantum mechanics since the time of Niels Bohr. Cer-
tainly nothing fluctuates in the Schrödinger equation; indeed, the Schrödinger
equation describes no realized happenings of any sort—no realized events; it
governs the time evolution of probabilities of events. To actually realize events,
the probabilities must be put into action, to play out as a stochastic process.
But here is the sticking point: the playing out is not unique, not only in
the trivial sense that the throwing of a die yields different answers on every
throw, but because the very shape of the die is not uniquely defined from
within the Schrödinger equation itself. It is we the commentators who chose
a shape through the question we chose to ask—or so it might appear, though
in practice it is not so much a matter of commentators and their questions,
but a subdivision of the physical world into a subsystem acting and one acted
(irreversibly) upon. With only the “acting” subsystem defined, there are, of
course, many possibilities for the subsystem “acted (irreversibly) upon” and
such a division is not unique.

The many years that have passed since I began writing this book have
left me indebted to numerous people, for their support and encouragement,
and for the detection of many of those irritating errors that inevitably seem
to make it into the typeset text. I thank both the University of Oregon and
the University of Auckland for support during periods of concentrated work
on the book. I am also indebted to the Alexander Humboldt Foundation,
my German sponsor, Wolfgang Schleich, and his tireless wife Kathy, for their
support during a year spent in Ulm; the visit allowed me to restart a project
that had languished for quite some time. Then the patience of the editorial
office of Prof. Wolf Beiglböck at Springer can only be wondered at. Finally,
there are my students in Auckland, Mile Gu, Andy Chia, Changsuk Noh, Rob
Fisher, and Felipe Dimer de Oliveira, who provided indispensable service by
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reading parts of the text and detecting so many of those irritating errors, and
my special thanks go to Hyunchul Nha who, as my postdoc, made numerous
contributions that enabled me to improve what is written.

I must add that work on the book has stolen many hours away from my
wife Marybeth. My principal debt is to her. We can both now be happy that
this one cause, at least, of stolen hours is at a close.

Auckland Howard Carmichael
January 2007
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9

The Degenerate Parametric Oscillator I:

Squeezed States

9.1 Introduction

Volume 1 of this book introduced the formalism of open systems in quan-
tum optics as it existed in the early 1980s, two decades after the invention of
the laser. In it we met the operator master equation, the quantum regression
formula, and the phase-space methods, based on the P , Q, and Wigner rep-
resentations, that provide “classical” visualizations of the fluctuations of the
radiation field—the so-called quantum–classical correspondence. We also met
Fokker–Planck equations and stochastic differential equations, and the vari-
ous methods of classical statistical physics that help with the analysis within
the phase-space representations. The application of all these things was illus-
trated by two classic examples: resonance fluorescence and the single-mode
laser.

We begin Volume 2 by recalling some elementary aspects of laser theory,
which introduce us to the theme that will carry us forward into a discussion of
nonclassical fields. The quantum theory of the laser illustrates how an opera-
tor master equation, the quantum–classical correspondence, and the methods
of classical statistical physics can be used to solve a nontrivial problem of some
practical importance. There is, however, something missing in this example;
we alluded to this at the end of Sect. 7.1.3. The laser is essentially a classi-
cal device. Thus, we seem to lose the distinction between quantum statistics
and classical statistics in passing from the Hamiltonian of Sect. 7.2.1 to the
classical stochastic description of the laser developed in Chap. 8. That is not
to say, of course, that laser action has nothing to do with quantum mechan-
ics. Stimulated emission gain results from an inverted population in quantized
atomic states, and the fluctuations of the laser field, characterized by nspon,
are certainly quantum fluctuations; they arise from the intrinsic probabilistic
character of quantum mechanics, not from any externally imposed statistical
assumption. On the other hand, these fluctuations can be described by a clas-
sical stochastic process. The laser operates as a classical nonlinear oscillator
with additive noise. Surely, in general, we would not expect a quantum field
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to be describable in the language of classical statistics, where the fundamental
quantities are probabilities. The fundamental quantities in quantum mechan-
ics are probability amplitudes. Why does our theory of the laser not recognize
the distinction?

In fact the language of the laser theory developed in Chap. 8 is, in a sense,
quantum mechanical, but in a limited sense only. After all, the Fokker–Planck
equations (8.61a), (8.86a), (8.121a), and (8.131a) determine the Glauber–
Sudarshan P representation for a quantum-mechanical density operator; they
evolve a quantum state. The important qualification is that the laser example
does not exploit the full flexibility of the P representation and consequently
avoids the need for probability amplitudes. We deduce this, on the one hand,
from the fact that the P distribution need not satisfy all the requirements
of a classical probability density—it may take on negative values, or be more
singular than a δ-function, as it is for a Fock state (Eqs. 3.31, 3.40, and 3.41)—
yet for the laser it does. Thus, in quantum-mechanical language, the state of
the laser field (Eq. 3.15) is a statistical mixture of coherent states. To define
it, we need only the probabilities that enter this mixture. There is no call for
probability amplitudes. Wherever amplitude (phase) information is needed, it
is provided by the phase-space variable α, the complex amplitude of the laser
field.

A second issue, beyond that of merely representing states, is the issue
of dynamics. We cannot generally expect the state of a quantum system to
evolve over time according to the rules governing the time evolution of a clas-
sical stochastic process. Our experience with the phase-space representation
for two-level atoms (Chap. 6) provides an example showing that there is no
guarantee that the quantum–classical correspondence will identify a Fokker–
Planck equation with a given master equation. In the laser case, however, it
does just this.

The two mentioned properties—a positive, nonsingular P distribution, and
the Fokker–Planck form for the phase-space equation of motion—are not en-
tirely independent. It is as well, however, to note them both. What if, for
example, we substitute the Q representation for the P representation? The Q
distribution is positive and nonsingular by definition, but it need not satisfy
a Fokker–Planck equation, as we will see very shortly (Sect. 10.1.2).

Indeed, there is a choice to be made between different phase-space rep-
resentations (Chap. 4). As a result, there is apparently some ambiguity in
asserting that an optical field, like the field emitted by a laser, is essentially
classical because it is described within a particular phase-space representa-
tion by a classical stochastic process. Such a description may exist in one
representation and not in another. The P representation is special, though,
as it is this representation, not the Q or Wigner representation, that gives the
normal-ordered, time-ordered averages (Sect. 4.3.3) that enter the quantum
theory of photodetection and coherence [9.1, 9.2]. Because of this, any field
that is described by a classical stochastic process within the P representation
can be described, equivalently, within the framework of classical statistical op-
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tics and the semiclassical theory of photoelectric detection [9.3]. On this basis,
such fields are designated classical fields. Those that remain are nonclassical
fields—i.e., nonclassical fields are those that are not described by a classical
stochastic process within the Glauber–Sudarshan P representation.

Volume 2 deals with nonclassical fields. Here we explore the statistical
methods developed in the last two and half decades to treat fluctuations
of nonclassical fields. In order to do this we must add to the repertoire of
quantum-statistical methods learned in Volume 1. The focus initially stays
with the quantum–classical correspondence and the associated phase-space
representations. Various questions arise: in what ways does the quantum–
classical correspondence break down? Can the breakdowns be mended? What
physical conditions result in breakdowns? These questions lead us to the top-
ics of squeezing, the positive P representation, and cavity QED. Ultimately
we will find that a different way of connecting the quantum to the classical
is called for, something that brings us closer to the foundations of quantum
mechanics and the long-standing debate over quantum measurements. The
connection is provided by the method of quantum trajectories. This is the
last of the topics dealt with in Volume 2.

As in Volume 1, formalism is developed around specific examples. We start
by taking a close look at the degenerate parametric oscillator. This device is
closely related to the laser. It is a self-sustained oscillator whose operation
depends on a nonlinear optical interaction taking place inside a cavity. Like
the laser, it exhibits threshold behavior as an adjustable parameter controlling
the energy supply is increased. In this instance, the oscillation is sustained by
the process of parametric amplification (frequency down conversion). Thus,
the pump is a coherent field of frequency 2ω which pumps a cavity mode of
frequency ω via an interaction in a χ(2) medium. Below threshold, the out-
put at frequency ω is a fluctuating field with zero mean amplitude, somewhat
analogous to the chaotic output of a laser below threshold. Above threshold,
the output field has nonzero mean amplitude and exhibits small fluctuations,
again similar to the output from a laser above threshold. Unlike the laser, how-
ever, the degenerate parametric oscillator produces a field of definite phase,
the phase reference being provided by the coherent pump. There is then no
phase diffusion above threshold. Instead, the output field “chooses” between
stable amplitudes 180o out of phase with one another.

The most interesting difference from the laser from our point of view is in
the quantum fluctuations. The fluctuations are nonclassical, they are squeezed,
both below and above threshold. Experiments with parametric oscillators have
demonstrated substantial amounts of squeezing [9.4, 9.5, 9.6, 9.7]. We are not
primarily interested in the squeezed states themselves, though; our interest is
the comparison between the quantum-statistical treatment of an essentially
classical device—the laser—and a device that produces nonclassical light. We
therefore touch only indirectly on the properties of squeezed states. There are
a number of works available which adequately review this topic [9.8,9.9]. For
an introduction to parametric processes, the book by Yariv is a suitable place
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to start [9.10], and Bloembergen’s volume on nonlinear optics [9.11] is a good
source of references for further reading on this subject.

9.2 Degenerate Parametric Amplification
and Squeezed States

There is nothing new about states of the electromagnetic field that have a sin-
gular or non-positive-definite P distribution. The P representation was first
introduced to represent statistical mixtures of coherent states, thus allowing
traditional statistical optics to be translated into the language of quantum
mechanics. Application of the representation to states outside this class was
also considered, however, particularly by Sudarshan and Klauder [9.12, 9.13].
In particular, Mollow and Glauber published a work in 1967 that is closely
related to our interests in this section [9.14]. They analyzed the process of
parametric amplification and derived a number of results concerning the ex-
istence, or otherwise, of a positive, nonsingular P distribution. Parametric
amplification provides the gain for a parametric oscillator and is thus inti-
mately connected with the generation of squeezed states. Let us therefore
begin with some background on degenerate parametric amplification and its
relationship to squeezed states.

9.2.1 Degenerate Parametric Amplification
Without Pump Depletion

First we review the classical theory of degenerate parametric amplification
without pump depletion. Consider the lossless standing-wave cavity illustrated
in Fig. 9.1. The cavity supports two resonant electromagnetic field modes
that couple to one another through the χ(2)

yxy = χ
(2)
yyx = χ

(2)
xyy component of the

nonlinear susceptibility tensor of an intracavity crystal (LiNbO3, for example,
with the optic axis aligned in the x direction). These fields, the subharmonic
and pump, are expanded as

E(z, t) = êyE(t)A(z) cos[Φ(z) + φ]e−iωCt + c.c., (9.1a)

Ep(z, t) = êxEpA(z) cos[2Φ(z) + φp]e−i2ωC t + c.c., (9.1b)

with

A(z) ≡ 1 +
(
1/

√
n− 1

)
[θ(z) − θ(z − 	)], (9.2a)

Φ(z) ≡ (ωC/c)z + (n− 1)(ωC/c)
∫ z

0

dz′[θ(z′) − θ(z′ − 	)], (9.2b)

where θ(ξ) ≡ 0, 1 for ξ < 0 and ξ ≥ 0, respectively, E(t) and Ep are complex
mode amplitudes, φ and φp are constants which set the phases of the standing
waves inside the crystal, êx and êy are unit polarization vectors, and n is
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Fig. 9.1. Cavity geometry for a standing-wave degenerate parametric amplifier.
The relative phases of the pump and subharmonic standing-wave mode functions
are shown for maximum coupling inside the crystal and are determined by reflection
boundary conditions at the mirrors. The incompatible standing-wave patterns are
matched by dispersive elements placed inside the cavity (see Note 9.3)

the crystal refractive index. We assume perfect phase matching, and small
parametric gain so that the forwards and backwards field amplitudes may be
taken to be equal. In the undepleted pump approximation, we take Ep to be
constant and seek an equation of motion for the amplitude E(t).

Note 9.1. We have assumed that all of the power incident upon a face
of the crystal propagates into the crystal—i.e., no reflection. Thus, the
field amplitudes in vacuum and inside the crystal are matched by setting
1
2ε0c|Evac|2 = 1

2nε0c|Ecrystal|2 and 1
2ε0c|Evac

p |2 = 1
2nε0c|Ecrystal

p |2.
The nonlinear interaction between the two electromagnetic field modes inside
the crystal generates a polarization

P ωC (z, t) = êy(2ε0χ(2)/n)E∗(t)Ep cos[Φ(z) + φ] cos[2Φ(z) + φp]e−iωCt

+ c.c., (9.3)

oscillating at the frequency ωC , where χ(2) ≡ χ
(2)
yxy = χ

(2)
yyx = χ

(2)
xyy. More

precisely, we identify the polarization components that radiate forward- and
backward-traveling subharmonic waves by expanding the product of cosines in
(9.3) as a sum of exponentials; thus, there are forward- and backward-traveling
electric fields

Ef (z, t) = êy
1
2E(t)A(z)e−i[ωC t−Φ(z)−φ] + c.c., (9.4a)

and
Eb(z, t) = êy

1
2E(t)A(z)e−i[ωCt+Φ(z)+φ] + c.c. (9.4b)

radiated, respectively, by the polarization components (0 < z < 	)

P f
ωC

(z, t) = êy
1
2Pf(t)e−i[ωC(t−z/c)−φ] + c.c., (9.5a)

Pf (t) ≡ (ε0χ(2)/n)E∗(t)Epei(φp−2φ), (9.5b)
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and

P b
ωC

(z, t) = êy
1
2Pb(t)e−i[ωC(t+z/c)+φ] + c.c., (9.6a)

Pb(t) ≡ (ε0χ(2)/n)E∗(t)Epe−i(φp−2φ). (9.6b)

When the parametric gain is small, the subharmonic field must make many
round trips in the cavity before its amplitude changes significantly. The rate
of change can be obtained from the ratio of the change ΔE on a single round
trip and the cavity round-trip time

tC = 2L̄/c, L̄ ≡ L+ (n− 1)	; (9.7)

L is the cavity length and 	 is the length of the crystal. By following the
forward-traveling field once around the cavity, starting at z = 0, we find

E +ΔE =
{(

1√
n
E + i

ωC	

2ε0cn
Pf

)√
neiφRe2i[Φ(�+d)+φ] 1√

n
+ i

ωC	

2ε0cn
Pb

}

×√
neiφRe−2i[Φ(−L+�+d)+φ], (9.8)

where the terms i(ωC	/2ε0cn)Pf and i(ωC	/2ε0cn)Pb are increments to the
field amplitude arising from its propagation through the crystal in the forwards
and backwards directions, respectively; factors 1/

√
n and

√
n transform field

amplitudes into and out of the crystal, φR is a phase change due to reflection
at the mirrors, and phase changes 2[Φ(	+ d) + φ] and −2[Φ(−L+ 	+ d) + φ]
are required by boundary conditions at the mirrors. Substituting (9.5b) and
(9.6b) into (9.8), and using the resonance condition

2[φR + Φ(	+ d) − Φ(−L+ 	+ d)] = N2π, N an integer, (9.9)

and boundary condition at z = 	+ d,

φR + 2[Φ(	+ d) + φ] = M2π, M an integer, (9.10)

we arrive at the desired equation of motion for the subharmonic field ampli-
tude:

Ė =
ΔE

2L̄/c
= KE∗, (9.11)

where

K ≡ i
ωC	χ

(2)

2n3/2L̄
Ep cos(φp − 2φ). (9.12)

Note 9.2. The fields radiated by the polarization components (9.5) and (9.6)
are calculated in the slowly-varying-amplitude approximation. The approxi-
mation is defined as follows. Inside the crystal the field

E(z, t) = êy
[
1
2Ef (z, t)ei[n(ωC/c)z+φ] + 1

2Eb(z, t)e−i[n(ωC/c)z+φ]
]
e−iωCt

+ c.c. (9.13)



9.2 Degenerate Parametric Amplification and Squeezed States 7

satisfies Maxwell’s equation
(
∂2

∂z2
− n2

c2
∂2

∂t2

)
E =

1
ε0c2

∂2

∂t2
(
P f
ωC

+ P b
ωC

)
. (9.14)

In the slowly-varying-amplitude approximation we assume

∂2Ef,b

∂z2 � n(ωC/c)
∂Ef,b

∂z � [n(ωC/c)]2Ef,b,
∂2Ef,b

∂t2 � ωC
∂Ef,b

∂t � ω2
CEf,b,

∂2Pf,b

∂t2 � ωC
∂Pf,b

∂t � ω2
CPf,b.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9.15)

Then neglecting small terms in (9.14) yields the Maxwell equations for slowly-
varying amplitudes

∂Ef
∂z

+
n

c

∂Ef
∂t

= i
ωC

2ε0cn
Pf , (9.16a)

−∂Eb
∂z

+
n

c

∂Eb
∂t

= i
ωC

2ε0cn
Pb. (9.16b)

The field increments appearing in (9.8) are obtained by integrating (9.16a)
and (9.16b) through the crystal (in a retarded frame) with the right-hand
sides of the equations treated as constants.

Note 9.3. The coupling constant defined by (9.12) depends on the relative
phases of the pump and subharmonic field standing waves. The boundary
condition satisfied by the subharmonic field at z = 	 + d is given by (9.10),
while the pump field must satisfy the boundary condition

φR + 2[2Φ(	+ d) + φp] = M ′2π, M ′ an integer. (9.17)

From (9.10) and (9.17), we find

| cos(φp − 2φ)| =
∣
∣cos

(
1
2φR

)∣∣. (9.18)

It follows that the phase change φR = π required to produce nodes at the
mirrors sets the coupling constant (9.12) to zero. The coupling constant van-
ishes because the field increments produced by the parametric gain during
forwards and backwards propagation through the crystal add out-of-phase;
alternatively, the spatial average of the mode function overlap in the crystal,
the integral of the product cos[n(ωC/c)z+φ] cos[2n(ωC/c)z+φp], vanishes. Wu
and Kimble have studied these effects in some detail [9.15]. To achieve strong
mode coupling, additional dispersive elements must be used in the cavity or
at the mirrors.

The solution to (9.11) is best expressed in terms of the two quadrature phase
amplitudes of the subharmonic field. For an arbitrary phase θ, the quadrature
phase amplitudes Eθ(t) and Eθ+π/2(t) are defined by writing (9.1a) as the sum
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of oscillating cosine and sine functions:

E(z, t)

= êy2A(z) cos[Φ(z) + φ]
[Eθ(t) cos(ωCt− θ) + Eθ+π/2(t) sin(ωCt− θ)

]
,

(9.19)

with
Eθ ≡ 1

2

(Ee−iθ + E∗eiθ). (9.20)

Equation 9.11 is equivalent to the pair of equations for quadrature phase
amplitudes

Ẋ = |K|X , Ẏ = −|K|Y, (9.21)

where X ≡ Eθ, Y ≡ Eθ+π/2, with θ = 1
2 arg(K). The straightforward solution

of these equations gives

X (t) = e|K|tX (0), Y(t) = e−|K|tY(0). (9.22)

Thus, the degenerate parametric amplifier is a phase-sensitive amplifier; with
the appropriate choice of phase, one quadrature phase amplitude of the sub-
harmonic field is amplified while the other is deamplified.

9.2.2 Quantum Fluctuations and Squeezed States

In quantum-mechanical language the energy exchange in degenerate paramet-
ric amplification results from an interaction that annihilates one pump photon,
of frequency 2ωC , and creates a pair of subharmonic photons of frequency ωC .
The conjugate interaction accounts for the process of second harmonic gen-
eration. In the undepleted pump approximation, or parametric approximation,
the pump mode is assumed to be highly populated and its loss or gain of pho-
tons is assumed to be negligible. Then the pump may be treated as a classical
field of constant amplitude, and the Hamiltonian describing the creation and
annihilation of subharmonic photons is

H ≡ �ωCa
†a+ i� 1

2

(
Ke−i2ωCta†2 −K∗ei2ωCta2

)
, (9.23)

where K is the coupling constant defined in (9.12). From (9.23) we obtain the
Heisenberg equations of motion

˙̃a = Kã†, ˙̃a† = K∗ã, (9.24)

where the annihilation and creation operators ã and ã† are defined in a frame
rotating at frequency ωC . The Heisenberg equations (9.24) are quantized ver-
sions of the classical equation (9.11). To complete the translation of our de-
generate parametric amplifier model into quantum-mechanical language we
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replace the classical field (9.1a) by the field operator

Ê(z, t) = iêy

√
�ωC
ε0AL̄

A(z) cos[Φ(z) + φ]
(
ã(t)e−iωC t − ã†(t)eiωC t

)
, (9.25)

where A is the cross-sectional area of the field mode [not to be confused with
the function A(z)]. In parallel with (9.19) and (9.20), we introduce operator
quadrature phase amplitudes, or quadrature phase operators

Âθ ≡ 1
2

(
ãe−iθ + ã†eiθ

)
. (9.26)

Within the quantum theory, amplification and deamplification of quadra-
ture phase amplitudes occurs in much the same way as it does in the classical
treatment. Writing the Heisenberg equations of motion (9.24) in the form

˙̂
X= |K|X̂, ˙̂

Y = −|K|Ŷ , (9.27)

with X̂ ≡ Âθ, Ŷ ≡ Âθ+π/2, for θ = 1
2 arg(K), we obtain solutions

X̂(t) = e|K|tX̂(0), Ŷ (t) = e−|K|tŶ (0), (9.28)

analogous to those given in (9.22). So far everything looks just the same.
There is one important difference, however. The quadrature phase amplitudes
are now operators, and they therefore exhibit fluctuations. We characterize
these fluctuations by the standard deviation

ΔAθ ≡
√〈(

Âθ − 〈Âθ〉
)2〉

. (9.29)

The size of the fluctuations will depend on the state of the field. In principle,
the fluctuation of any particular quadrature phase amplitude may be arbi-
trarily small. According to the Heisenberg uncertainty principle, however, for
any phase θ the uncertainty product ΔAθΔAθ+π/2 is bounded below by

ΔAθΔAθ+π/2 ≥ 1
2 |〈Ĉ〉|, (9.30)

where Ĉ is the commutator

Ĉ =
[
Âθ, Âθ+π/2

]

= − 1
4 i
[(
ãe−iθ + ã†eiθ

)
,
(
ãe−iθ − ã†eiθ

)]

= 1
4 i
{[
ã, ã†

]− [
ã†, ã

]}

= 1
2 i. (9.31)
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Thus, in contrast to the classical theory, quantum mechanics imposes an un-
certainty relation for quadrature phase amplitudes

ΔAθΔAθ+π/2 ≥ 1
4 . (9.32)

This uncertainty relation for quadrature phase amplitudes is formally
equivalent to the uncertainty relation for position and momentum operators
of a mechanical oscillator. We may recast (9.32) with the definitions

q̂θ ≡
√

2�

mωC
Âθ, p̂θ ≡

√
2�mωCÂθ+π/2, (9.33)

to obtain the familiar result

ΔqθΔpθ ≥ 1
2�; (9.34)

q̂θ and p̂θ are related to the position operator q̂ and momentum operator p̂ of
a mechanical oscillator by a rotation of coordinates through the angle ωCt−θ
[use (9.26) and (3.5)].

We saw in Chap. 3 that coherent states of the harmonic oscillator are
minimum uncertainty states, satisfying the uncertainty relation (9.34) with
the equality ΔqΔp = 1

2� (Eqs. 3.4–3.6). Also, for coherent states the uncer-
tainties in the scaled operators

√
2mω/�q̂ and

√
2/�mωp̂ are equal to one

another (Eqs. 3.6). With the help of (9.33), these results are transfered to the
quadrature phase amplitudes. Thus, a freely evolving field mode prepared in
a coherent state satisfies

ΔAθΔAθ+π/2 = 1
4 , ΔAθ = ΔAθ+π/2 = 1

2 . (9.35)

Finally, under free evolution, an initial coherent state remains as a coher-
ent state for all times (Eq. 3.3). Taken together, these observations provide
the picture of quantum fluctuations for a free field mode in a coherent state
illustrated in Fig. 9.2a.

What happens to the quantum fluctuations when a mode prepared in
a coherent state undergoes degenerate parametric amplification? Of course,
the mean quadrature phase amplitudes 〈X̂〉 and 〈Ŷ 〉 are amplified and deam-
plified just like X and Y in the classical treatment. What, though, about
the standard deviations? Equations 9.28, 9.29, and 9.35 provide the simple
answer: from these equations,

ΔX(t) = e|K|tΔX(0) = e|K|t 1
2 , (9.36a)

ΔY (t) = e−|K|tΔY (0) = e−|K|t 12 . (9.36b)

Thus, the fluctuations in quadrature phase amplitudes [with θ = 1
2 arg(K)]

are amplified and deamplified in the same way as the means; as a result they
continue to satisfy the minimum uncertainty condition – ΔX(t)ΔY (t) = 1

4 .
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Fig. 9.2. Phase-space picture of the quantum fluctuations of (a) a freely evolving
field mode prepared in the coherent state |α〉, and (b) the subharmonic field for
degenerate parametric amplification of the vacuum state. Fluctuations of the field
amplitude are concentrated in the regions within the circle, part (a), and the ellipse,
part (b). For a rigorous interpretation, Aθ should be defined in terms of the complex
argument α of the Wigner distribution (see Eq. 9.47b). Note that the figure adopts
a rotating frame; in a nonrotating frame, the circle and the ellipse rotate clockwise
about the origin at frequency ωC , and the ordinate is proportional to the oscillating
electric field

This process is illustrated for an initial vacuum state in Fig. 9.2b. More gener-
ally, for an initial coherent state |α〉, the ellipse in Fig. 9.2b is displaced from
the origin to the point (X,Y ), with X = exp

(|K|t)|α| cos
[
arg(α)− 1

2 arg(K)
]

and Y = exp
(− |K|t)|α| sin [

arg(α) − 1
2 arg(K)

]
.

Let us now shift our point of view from the Heisenberg to the Schrödinger
picture. In the Schrödinger picture, degenerate parametric amplification
changes a coherent state of the subharmonic field into a squeezed coherent
state. Using Hamiltonian (9.23), the Schrödinger equation in the interaction
picture is given by

d|ψ̃(t)〉
dt

= 1
2

(
Ka†2 −K∗a2

)|ψ̃(t)〉, (9.37)

where the state in the interaction picture is |ψ̃(t)〉 = eiωCa
†at|ψ(t)〉, and we

have used the result eiωCa
†atae−iωCa

†at = ae−iωCt (Eq. 1.40). The formal
solution for an initial coherent state |α0〉 is

|ψ(t)〉 = e−iωCa
†at exp

[
1
2

(
Ka†2 −K∗a2

)
t
]|α0〉

= e−iωCa
†atS

(−Kt
)|α0〉

= S
(− e−i2ωCtKt

)|e−iωCtα0〉, (9.38)

where we introduce the unitary operator

S(ξ) ≡ exp
[
1
2 (ξ∗a2 − ξa†2)

]
. (9.39)
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The operator S(ξ), ξ = rei2θ, is known as the squeeze operator, with r the
squeeze parameter. It is the generator of the so-called squeezed coherent states,
which we define by

|α, ξ〉 ≡ D(α)S(ξ)|0〉. (9.40)

Starting from the vacuum state |0〉, acting with the squeeze operator pro-
duces a squeezed vacuum state with quadrature fluctuations ΔAθ = 1

2e
−r and

ΔAθ+π/2 = 1
2e
r, where Âθ and Âθ+π/2 are defined by (9.26) with ã → a.

Acting with the displacement operator,

D(α) ≡ exp
(
αa† − α∗a

)
, (9.41)

adds the coherent amplitude α.

Note 9.4. The displacement operator D(α) is derived by writing |0〉 = eα
∗a|0〉

on the right-hand side of (3.10) and simplifying with the help of the Baker–
Hausdorff theorem (4.8).

In the expression (9.38) for |ψ(t)〉, the squeeze operator rescales the initial
coherent amplitude as well as the fluctuations. Taking this into account, we
may write the state as the squeezed coherent state

|ψ(t)〉 = |α(t), ξ(t)〉, (9.42)

where [θ = −ωCt+ 1
2 arg(K)]

α(t) = eiθ
{
e|K|t 12

[
α0e
−i(ωCt+θ) + α∗0e

i(ωC t+θ)
]

+e−|K|t 12
[
α0e
−i(ωCt+θ) − α∗0e

i(ωC t+θ)
]}

= e−iωCt
[
α0 cosh

(|K|t) + α∗0e
i arg(K) sinh

(|K|t)], (9.43a)

and
ξ(t) = −e−i2ωCtKt. (9.43b)

Note 9.5. The common use of the term squeezed vacuum state can be a little
misleading. The state S(ξ)|0〉 differs substantially from the vacuum; it is not
simply a vacuum state with redistributed fluctuations. The vacuum fluctu-
ations have been amplified, and the amplified vacuum fluctuations contain
energy and can do work. While the mean photon number in the vacuum is
zero, the squeezed vacuum state S(−e−i2ωCtKt)|0〉 has nonzero mean photon
number

〈(a†a)(t)〉 = 〈(Âθ(t) − iÂθ+π/2(t)
)(
Âθ(t) + iÂθ+π/2(t)

)〉
= 〈Â2

θ(t)〉 + 〈Â2
θ+π/2(t)〉 + i〈[Âθ, Âθ+π/2](t)〉

=
(
ΔAθ(t)

)2 +
(
ΔAθ+π/2(t)

)2 − 1
2

= 1
2

[
cosh

(
2|K|t)− 1

]
, (9.44)

where we have made use of (9.26), (9.29), (9.31), and (9.36).
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Exercise 9.1. Squeezed states are nonclassical states. They do not possess
a positive, nonsingular P distribution. The Q and Wigner distributions do
exist, though, as positive-definite functions. Derive the Q and Wigner distri-
butions for a squeezed vacuum state. First show that

S†(ξ)aS(ξ) = a cosh r − ei2θa† sinh r, (9.45a)

and
S†(ξ)a†S(ξ) = a† cosh r − e−i2θa sinh r. (9.45b)

Use these results to obtain the characteristic functions

χ
A

(μ+ iν, μ− iν)

= exp
[− 1

2 (1 + e−2r)(μ cos θ − ν sin θ)2 − 1
2 (1 + e2r)(μ sin θ + ν cos θ)2

]
,

(9.46a)

and

χ
S
(μ+ iν, μ− iν)

= exp
[− 1

2e
−2r(μ cos θ − ν sin θ)2 − 1

2e
2r(μ sin θ + ν cos θ)2

]
; (9.46b)

hence obtain the Q distribution for a squeezed vacuum state,

Q(x+ iy, x− iy) =

√
2

π(1 + e−2r)
exp

[
−1

2
(x cos θ + y sin θ)2

(1 + e−2r)/4

]

×
√

2
π(1 + e2r)

exp
[
−1

2
(−x sin θ + y cos θ)2

(1 + e2r)/4

]
,

(9.47a)

and the Wigner distribution for a squeezed vacuum state

W (x+ iy, x− iy) =

√
2

πe−2r
exp

[
−1

2
(x cos θ + y sin θ)2

e−2r/4

]

×
√

2
πe2r

exp
[
−1

2
(−x sin θ + y cos θ)2

e2r/4

]
. (9.47b)

Note the larger variance of the Q distribution compared to the Wigner dis-
tribution, a repetition of the comparison for a thermal state (Eqs. 4.21 and
4.41). Note also that the variance of Âθ involves the symmetrically-ordered
product 1

2 (a†a + aa†), which is why the Gaussian widths of the Wigner dis-
tribution match the standard deviations, ΔAθ and ΔAθ+π/2, displayed in
Fig. 9.2 (see Sect. 4.1.4). Determine the normal-ordered characteristic func-
tion χ

N
(μ+ iν, μ− iν). Where does the problem arise in the derivation of the

P distribution for a squeezed vacuum state?
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9.2.3 The Degenerate Parametric Oscillator

The parametric amplifier model we have just studied will produce arbitrar-
ily large amounts of squeezing no matter how small we make the coupling
constant |K|. For smaller |K|, we simply need to wait longer to achieve the
same level of squeezing. This situation is of course not physical. In practice,
a parametric amplifier is normally operated as a traveling-wave device, with-
out a cavity, and the interaction time is limited to the propagation time n	/c
through the nonlinear crystal. The squeezing obtained in this manner is very
small unless a pulsed pump of high intensity or a very long (unreasonably so)
crystal is used. This limitation led to the use of cavities in early squeezing
experiments. Considering such experiments, our treatment of squeezing for
a single cavity mode is appropriate, but then the model of Sect. 9.2.1 is in-
complete. Specifically, this model does not include any mechanism for getting
the pump field into the cavity and the subharmonic field out. A more realistic
model must account for the injection of the pump field and extraction of the
subharmonic field through mirrors of nonunit reflectivity. The nonunit reflec-
tivity introduces losses for the intracavity fields, and there may be losses from
absorption in the crystal as well. With these losses included, the parametric
gain on a single round trip must exceed the round-trip loss for amplification
to take place – the parametric amplifier becomes a parametric oscillator.

Note 9.6. From the expression (9.12) for the coupling constant K, the single-
pass gain coefficient |K|t for a crystal of length 	 is

|K|(L̄/c) =
ωC	χ

(2)

2n3/2c
|Ep|

=
ωC	χ

(2)

2n3/2c

√
2 × 104

ε0c
Pp, (9.48)

where Pp is the (forward-propagating) pump power in W/cm2. Numbers for
LiNbO3 provide an estimate of the single-pass gain and squeezing: for ωC =
2πc/λC , λC = 10−6m, χ(2) = 1.2×10−11m/V (see [9.16], with χ(2) = 2d31/ε0),
n = 2.25, and 	 = 10−2m, we obtain

|K|(L̄/c) = 3.0 × 10−4

√
Pp(W/cm2). (9.49)

Thus, for a single pass through a 1-cm crystal, a pump power as large as
∼ 10MW/cm2 is required to achieve a squeeze factor of unity (r = |K|t = 1).
Note the useful relationship [9.17]

χ
(2)
SI = 4π

√
40πε0χ(2)

esu (9.50)

for converting nonlinear susceptibilities from electrostatic to S.I. units.
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We aim to convert our degenerate parametric amplifier model into a model for
the degenerate parametric oscillator. To do so we must add losses. Let us first
add the losses in the classical theory, then introduce a quantum-mechanical
master equation to extend the result into the quantum domain.

At this point we must also allow for depletion of the pump. If we do not do
this, once the round-trip gain exceeds the round-trip loss the intensity of the
subharmonic field will grow without bound, as it does in the expression (9.44)
for the subharmonic mode photon number. As with the laser above thresh-
old, the parametric oscillator relies on nonlinear gain reduction to establish
a balance between gain and loss. For the laser the nonlinearity comes from
saturation of the lasing transition; its origin for the parametric oscillator is
pump depletion.

To derive the loss term to be added to (9.11), we must rewrite (9.8) so
that it includes the effects of nonunit reflection coefficients, R1 and R2, and
absorption in the crystal, with absorption coefficient α. We introduce the
absorption by adding the linear polarization − 1

2αE to the right-hand sides of
(9.16a) and (9.16b). Equation 9.8 then reads (for perfect resonance)

E +ΔE =
{(

1√
n
E − α	

2
E + i

ωC	

2ε0cn
Pf

)√
n
√
R2e

iφRe2i[Φ(�+d)+φ] 1√
n

−α	
2
E + i

ωC	

2ε0cn
Pb

}√
n
√
R1e

iφRe−2i[Φ(−L+�+d)+φ]

=
[
1 − α	− 1

2 (T1 + T2)
]E + i

ωC	

2ε0cn1/2
Pf + i

ωC	

2ε0cn1/2
Pb; (9.51)

we have written
√
R1 =

√
1 − T1 ≈ 1 − 1

2T1 and
√
R2 =

√
1 − T2 ≈ 1 − 1

2T2,
where T1 � 1 and T2 � 1 are the mirror transmission coefficients. Dividing
this expression for ΔE by the cavity round-trip time 2L̄/c, and substituting
Pf and Pb from (9.5b) and (9.6b), we obtain the equation of motion for the
subharmonic field amplitude including cavity and crystal loss :

Ė = −κE + iK ′E∗Ep, (9.52)

where

K ′ ≡ ωC	χ
(2)

2n3/2L̄
cos(φp − 2φ), (9.53)

and

κ =

[
α	+ 1

2 (T1 + T2)
]

2L̄/c
(9.54)

is the subharmonic mode damping rate.
With pump depletion taken into account the pump field amplitude Ep is

no longer to be treated as a constant. We must derive an equation of motion
for it too. The derivation proceeds in a similar manner, with the one difference
that injection of the external pump field into the cavity must be included. We
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take the external field,

E0(z, t) = êx
1
2E0e

−i[2ωC(t−z/c)−φ0] + c.c., (9.55)

z ≤ −L + 	 + d, to be incident from the left of the cavity. To account for
its injection, we decompose Ep(z, t) into forward- and backward-propagating
components,

Ef
p(z, t) = êx

1
2Efp (t)A(z)e−i[2ωC t−2Φ(z)−φp] + c.c. (9.56a)

and

Eb
p(z, t) = êx

1
2Ebp(t)A(z)e−i[2ωC t+2Φ(z)+φp] + c.c., (9.56b)

and impose the boundary condition at z = −L+ 	+ d

Efp =
√
R1
pe
iφREbpe−2i[2Φ(−L+�+d)+φp] +

√
T 1
p e
iφT E0e

i(φ0−φp), (9.57)

where φT is the phase change upon transmission at the mirrors. The remaining
details of the derivation are left as an exercise.

Exercise 9.2. Follow the approach leading to (9.11) and (9.52) to obtain the
equation of motion for the pump field amplitude with cavity loss and injected
external field

Ėp = −κpEp + iK ′E2 + ei(φT +φ0−φp)(c/2L̄)
√
T 1
p E0, (9.58)

where the pump mode damping rate is

κp =

[
αp	+ 1

2 (T 1
p + T 2

p )
]

2L̄/c
; (9.59)

T 1
p , T 2

p , and αp are the mirror transmission coefficients and the absorption
coefficient for the pump field in the crystal.

The equations of motion (9.52) and (9.58) can be simplified by introducing
scaled field amplitudes

Ē ≡
√
ξ(K ′/κ)e−i

1
2 (ψ+π/2)E , (9.60a)

and
Ēp ≡ (K ′/κ)e−iψEp, (9.60b)

where we have defined the ratio of damping rates

ξ ≡ κ

κp
, (9.61)

and the phase
ψ ≡ φT + φ0 − φp + arg(E0). (9.62)
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Then (9.52) and (9.58) become a set of coupled equations of motion in scaled
variables for the degenerate parametric oscillator :

κ−1 ˙̄E = −Ē + Ē∗Ēp, (9.63a)

κ−1
p

˙̄Ep = −Ēp − Ē2 + λ. (9.63b)

With the introduced scaling, λ is a real (and positive) dimensionless pump
parameter :

λ ≡ K ′

κκp
(c/2L̄)

√
T 1
p |E0|

=
ωC	χ

(2)

n3/2c

√
T 1
p

[
αL + 1

2 (T1 + T2)
][
αpL+ 1

2 (T 1
p + T 2

p )
] |E0| cos(φp − 2φ)

=
F
π

Fp
π

ωC	χ
(2)

n3/2c

√
T 1
p |E0| cos(φp − 2φ), (9.64)

where F and Fp are cavity finesses for the subharmonic and pump modes,
respectively.

The degenerate parametric amplifier model discussed in Sect. 9.2.1 is con-
tained within this more general model. To recover the equation of motion
(9.11), we assume that |Ēp| ∼ λ � |Ē|2 in (9.63b) and κp � κ. Then, for
times that are long compared to the cavity filling time for the pump field,
κ−1
p , but short compared to the decay time κ−1 for the subharmonic, we may

replace (9.63a) by
˙̄E = (κλ)Ē∗. (9.65)

In the present notation, κλ = K ′(c/2L̄)
√
T 1
p |E0|/κp corresponds to the cou-

pling constant |K| in (9.11), where the factor (c/2L̄)
√
T 1
p |E0|/κp is the pump

field amplitude inside the cavity (without depletion). The phase ψ + π/2,
which is the phase of K in (9.11), has been absorbed into the definition of the
scaled field amplitude Ē (Eq. 9.60a).

Note 9.7. It is interesting to estimate the squeeze parameter r that can be
achieved using intracavity parametric amplification and compare it with the
result (9.49) obtained for a single-pass amplifier. Taking the interaction time
to be the cavity lifetime yields the result r = κλt = κλκ−1 = λ. Then adopting
the parameters used to obtain (9.49), we have

λ =
F
π

Fp
π

ωC	χ
(2)

n3/2c

√
T 1
p

√
2 × 104

ε0c
P0

=
F
π

Fp
π

√
T 1
p × 6.0 × 10−4

√
P0(W/cm2). (9.66)

The product of the finesses decreases the external pump power P0 required to
reach r = λ = 1 by orders of magnitude.
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In the long time limit, the parametric oscillator equations (9.63a) and (9.63b)
behave very differently to the parametric amplifier equation (9.65). In place
of the unbounded growth of the subharmonic field, these equations de-
scribe evolution to a steady state, with field amplitudes Ēss and Ēss

p satis-
fying

−Ēss + Ē∗ssĒss
p = 0, (9.67a)

−Ēss
p − Ē2

ss + λ = 0. (9.67b)

The first steady-state solution to the degenerate parametric oscillator equa-
tions of motion is the trivial solution

Ēss = 0, Ēss
p = λ. (9.68)

There are also other possibilities, however, which we uncover in the following
way. First multiply (9.67b) by Ē∗ss and substitute

Ē∗ssĒss
p = Ēss(9.69) (9.69)

from (9.67a), to obtain

−Ēss + (λ − Ē2
ss)Ē∗ss = 0. (9.70)

Then take the conjugate of this equation, multiply by (λ−Ē2
ss), and substitute

(λ − Ē2
ss)Ē∗ss = Ēss, using (9.70) once again. This leads us to an autonomous

equation for the complex amplitude Ēss:

Ēss

(|λ− Ē2
ss|2 − 1

)
= 0. (9.71)

Thus, in addition to the trivial solution (9.68), there are four solutions to
(9.67) satisfying

|λ− Ē2
ss| = 1. (9.72)

The pair satisfying λ − Ē2
ss = −1 is spurious, since this relation leads to an

inconsistency: working from (9.70) we find

λ− Ē2
ss = −1 ⇒ Ēss = −Ē∗ss ⇒ Ēss = ±i|Ēss|; (9.73a)

hence

λ− Ē2
ss = −1 ⇒ λ+ |Ēss|2 = −1 ⇒ |Ēss|2 = −(λ+ 1). (9.73b)

The final result is a contradiction because λ is positive by definition. We there-
fore require (9.72) to be solved by λ − Ē2

ss = +1, which gives the second pair
of steady-state solutions to the degenerate parametric oscillator equations of
motion

Ēss = ±√
λ− 1, Ēss

p = 1. (9.74)
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Fig. 9.3. Threshold behavior of the degenerate parametric oscillator. The steady
state shown by the broken line is unstable

These solutions are admissible for λ ≥ 1. In summary, from (9.68) and (9.74),
the degenerate parametric oscillator shows the threshold behavior displayed
in Fig. 9.3.

Below threshold (λ < 1): There is a single acceptable steady-state solution,
the trivial solution (9.68):

Ē< ≡ Ē<ss =
√
ξ(K ′/κ)e−i

1
2 (ψ+π/2)E<ss = 0, (9.75a)

Ē<p ≡ Ēss
p,< = (K ′/κ)e−iψEss

p,< = λ. (9.75b)

Below threshold, the round-trip gain

K ′|E<p |(2L̄/c) = κ|Ē<p |(2L̄/c) = κλ(2L̄/c)

is less than the round-trip loss, κ2L̄/c.

At threshold (λ = 1): There is a single three-fold degenerate solution:

Ēthr ≡ Ēthr
ss =

√
ξ(K ′/κ)e−i

1
2 (ψ+π/2)Ethr

ss = 0, (9.76a)

Ēthr
p ≡ Ēss

p,thr = (K ′/κ)e−iψEss
p,thr = 1; (9.76b)

the round-trip gain is equal to the round-trip loss.

Above threshold (λ > 1): There are three acceptable steady-state solutions.
The trivial solution (9.68) still exists, but is unstable above threshold, and
there exists the pair of stable solutions (9.74):

Ē> ≡ Ē>ss =
√
ξ(K ′/κ)e−i

1
2 (ψ+π/2)E>ss = ±√

λ− 1, (9.77a)

Ē>p ≡ Ēss
p,> = (K ′/κ)e−iψEss

p,> = 1. (9.77b)

Above threshold, the undepleted round-trip gain—determined by the below-
threshold solution for the pump amplitude, Ēss

p = λ—exceeds the round-trip
loss. This high gain value is unstable, though. The subharmonic field must
be amplified to reach its steady-state value Ē>ss = ±√

λ− 1; in response, the
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pump field is depleted, which reduces the round-trip gain. Steady state is
reached when the pump field amplitude has been reduced to its threshold value
Ēss
p,> = Ēss

p,thr = 1. This process of pump depletion is analogous to inversion
clamping in the laser (Eq. 7.22).

Exercise 9.3. Investigate the stability of steady states (9.68) and (9.74).
Show that for steady state (9.68) the decay of small perturbations is gov-
erned by the eigenvalues

Λ1 = −κ(1 − λ), real part of Ē ,
Λ2 = −κ(1 + λ), imaginary part of Ē ,
Λ3 = Λ4 = −κp, real and imaginary parts of Ēp.

⎫
⎬

⎭
(9.78a)

It follows that above threshold (λ > 1) this steady state is unstable to per-
turbations in the real part of Ē (the amplified quadrature phase amplitude).
Show that steady states (9.74) are stable above threshold, with the decay of
small perturbations governed by eigenvalues

Λ1,2 = − 1
2κp ± 1

2

√
κ2
p − 8κκp(λ− 1), coupled real parts

of Ē and Ēp,
Λ3,4 = −(

κ+ 1
2κp

)±
√(

κ+ 1
2κp

)2 − 2κκpλ, coupled imaginary
parts of Ē and Ēp.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9.78b)

9.2.4 Master Equation for the Degenerate Parametric Oscillator

The quantum-mechanical model for the degenerate parametric oscillator is il-
lustrated schematically in Fig. 9.4. The system Hamiltonian,HS , describes the
intracavity interaction between the subharmonic and pump, and the driving

Fig. 9.4. Schematic diagram of the quantum-mechanical model for the degen-
erate parametric oscillator, with system Hamiltonian HS (Eq. 9.79) and reservoir
Hamiltonian HR (Eqs. 9.85 and 9.86)
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of the pump mode. It is given by

HS = Ha +Hb +Hab +Hdrive

≡ �ωCa
†a+ �2ωCb†b

+ i�(g/2)(a†2b− a2b†) + �
(Ē0e

−i2ωCtb† + Ē∗0 ei2ωC tb
)
, (9.79)

with coupling constant

g ≡
√

�2ωC
ε0AL̄

K ′ =

√
�2ωC
ε0AL̄

ωC	χ
(2)

2n3/2L̄
cos(φp − 2φ), (9.80)

and effective driving field amplitude

Ē0 ≡ ei(φT +φ0−φp)

√
ε0AL̄

�2ωC
(c/2L̄)

√
T 1
p E0, (9.81)

where a and a† (b and b†) are annihilation and creation operators for the
subharmonic (pump) mode, respectively. The quantized field expansions, cor-
responding to (9.1a) and (9.1b), are

Ê(z, t) = iêy

√
�ωC
ε0AL̄

A(z) cos[Φ(z) + φ][ã(t)e−iωC t − ã†(t)eiωC t], (9.82a)

and

Êp(z, t) = iêx

√
�2ωC
ε0AL̄

A(z) cos[2Φ(z) + φp][b̃(t)e−i2ωC t − b̃†(t)ei2ωC t],

(9.82b)

where we introduce annihilation and creation operators in a rotating frame:

ã(t) ≡ eiωCta(t), ã†(t) ≡ e−iωC ta†(t),

b̃(t) ≡ ei2ωCtb(t), b̃†(t) ≡ e−i2ωC tb†(t).
(9.83a)

Exercise 9.4. Show that Hamiltonian (9.79) gives the Heisenberg equations
of motion

ȧ = −iωCa+ ga†b, (9.84a)

ḃ = −i2ωCb− (g/2)a2 − iĒ0e
−i2ωCt. (9.84b)

Verify that the factorized mean-value equations obtained from these equations
reproduce the classical equations of motion without damping terms, (9.52) and
(9.58).
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Each mode interacts with three reservoirs, which account for the transmission
losses at the two mirrors and the absorption loss in the crystal. Although,
formally, the three reservoir interactions could be combined into a single term,
it is better to keep them separate; their physical origins are distinct, and the
differences become important when we consider the cavity output fields in
Sect. 9.2.5. The reservoir Hamiltonian is then written as

HR = Ha1
R +Ha2

R +Haα
R +Hb1

R +Hb2
R +Hbα

R , (9.85)

where (μ = 1, 2, α)

Haμ
R ≡

∑

j

�ωjr
†
aμjraμj , (9.86a)

Hbμ
R ≡

∑

j

�ωjr
†
bμjrbμj , (9.86b)

and for the interaction between system and reservoir we write

HSR = Ha1
SR +Ha2

SR +Haα
SR +Hb1

SR +Hb2
SR +Hbα

SR, (9.87)

where (μ = 1, 2, α)

Haμ
SR ≡ �(aΓ †aμ + a†Γaμ), (9.88a)

Hbμ
SR ≡ �(bΓ †bμ + b†Γbμ), (9.88b)

with

Γ †aμ ≡
∑

j

κ∗aμjr
†
aμj , Γaμ ≡

∑

j

κaμjraμj ,

Γ †bμ ≡
∑

j

κ∗bμjr
†
bμj , Γbμ ≡

∑

j

κbμjrbμj .
(9.89a)

The individual Hamiltonians Ha1
R , Ha2

R and Ha1
SR, Ha2

SR, on the one hand,
and Hb1

R , Hb2
R and Hb1

SR, Hb2
SR, on the other, account for mirror transmission

losses for the subharmonic and pump modes, respectively; similarly, Haα
R and

Haα
SR, and Hbα

R and Hbα
SR account for absorption losses for the subharmonic

and pump. Each reservoir comprises a collection of harmonic oscillators. The
reservoir oscillators interacting with the subharmonic mode have annihilation
and creation operators raμj and r†aμj , μ = 1, 2, α, while those interacting with
the pump mode have annihilation and creation operators rbμj and r†bμj . For
the moment we leave all coupling constants, κaμj and κbμj , unspecified.

The derivation of the master equation now runs parallel to the derivation
of the master equation for the laser in Sect. 7.2.2. Adopting the notation of
Chap. 1, there are four system operators

{si} ≡ (
a, a†; b, b†

)
, (9.90a)
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which couple, respectively, to the four reservoir operators

{Γi} ≡ (
Γ †a1 + Γ †a2 + Γ †aα, Γa1 + Γa2 + Γaα;Γ †b1 + Γ †b2 + Γ †bα, Γb1 + Γb2 + Γbα

)
,

(9.90b)

We have grouped the interactions associated with each system operator to-
gether; thus each Γi is a sum of three terms. The individual reservoirs are
taken to be in thermal equilibrium. We allow, however, for different reservoir
temperatures, Tμ, μ = 1, 2, α. The complete reservoir density operator is given
by

R0 = Ra10 Ra20 Raα0 Rb10 R
b2
0 R

bα
0 , (9.91)

with

Raμ0 =
∏

j

exp
(− �ωjr

†
aμjraμj/kBTμ

)[
1 − exp

(− �ωj/kBTμ
)]
, (9.92a)

Rbμ0 =
∏

j

exp
(− �ωjr

†
bμjrbμj/kBTμ

)[
1 − exp

(− �ωj/kBTμ
)]
. (9.92b)

With this reservoir state, the mean values 〈Γi(t)〉R0 are all zero, and the only
nonvanishing reservoir correlations, 〈Γi(t)Γj(t′)〉R0 , are between the pairs of
reservoir operators Γ1 ≡ Γ †a1 + Γ †a2 + Γ †aα and Γ2 ≡ Γa1 + Γa2 + Γaα, and
Γ3 ≡ Γ †b1 + Γ †b2 + Γ †bα and Γ4 ≡ Γb1 + Γb2 + Γbα. The master equation in the
interaction picture is

˙̃ρ =
1
i�

[Hab + H̃drive, ρ̃] +
( ˙̃ρ

)
a

+
( ˙̃ρ

)
b
, (9.93)

where

H̃drive ≡ e(i/�)(Ha+Hb)tHdrivee
−(i/�)(Ha+Hb)t = �(Ē0b

† + Ē∗0 b),
and

( ˙̃ρ
)
a

and
( ˙̃ρ

)
b

each take the form (1.34), with definitions
(
s̃1, s̃2

)
a
≡ (

ã, ã†
)
, (9.94a)

(
Γ̃1, Γ̃2

)
a
≡ (

Γ̃ †a1 + Γ̃ †a2 + Γ̃ †aα, Γ̃a1 + Γ̃a2 + Γ̃aα
)
, (9.94b)

(
s̃1, s̃2

)
b
≡ (

b̃, b̃†
)
, (9.94c)

(
Γ̃1, Γ̃2

)
b
≡ (

Γ̃ †b1 + Γ̃ †b2 + Γ̃ †bα, Γ̃b1 + Γ̃b2 + Γ̃bα
)
. (9.94d)

We neglect the effect of the internal interactions Hab and Hdrive on the reser-
voir interactions [see Sect. 2.3.2 and the discussion below (7.92f)]; thus, the
interaction picture is defined with Ha +Hb in place of HS :

{s̃i} ≡ e(i/�)(Ha+Hb)t{si}e−(i/�)(Ha+Hb)t, (9.95a)

{Γ̃i} ≡ e(i/�)HRt{Γi}e−(i/�)HRt. (9.95b)

and
ρ̃ ≡ e(i/�)(Ha+Hb)tρe−(i/�)(Ha+Hb)t. (9.96)
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Note 9.8. At each mirror the transmission losses for the two cavity modes
arise from interactions with the same electromagnetic field; i.e., both ra1j
(r†a1j) and rb1j (r†b1j) are annihilation (creation) operators of the electromag-
netic field to the left of the cavity, and ra2j (r†a2j) and rb2j (r†b2j) are both
annihilation (creation) operators of the electromagnetic field to the right of
the cavity. It might appear that correlations would exist between the opera-
tor pairs (Γ †a1, Γa1) and (Γ †b1, Γb1), and also between (Γ †a2, Γa2) and (Γ †b2, Γb2).
This is not in fact the case, since the cavity modes are polarized in orthogonal
directions; hence the reservoir modes with which they interact are distinct.
Even if the polarizations were the same there would be no significant correla-
tions, as the subharmonic mode interacts most strongly with reservoir modes
in the vicinity of ωC , while the pump interacts most strongly with reservoir
modes in the vicinity of 2ωC .

Explicit evaluation of the last two terms on the right-hand side of (9.93)
involves essentially the same calculation as the one carried out in Sect. 1.4.1.
The one difference is that the reservoir operators (9.94b) and (9.94d) are
broken into three pieces. We note, however, that although three reservoirs
couple to each cavity mode, the three reservoirs are statistically independent;
hence, every nonvanishing reservoir correlation function is generalized to a sum
of three terms, each term taking the form (1.45) or (1.46). Using (1.73), we may
pass directly from (9.93) to the master equation for the degenerate parametric
oscillator :

ρ̇ = −iωC [a†a, ρ] − i2ωC[b†b, ρ]

+ (g/2)[a†2b− a2b†, ρ] − i[Ē0e
−i2ωCtb† + Ē∗0 ei2ωC tb, ρ]

+ κ(2aρa† − a†aρ− ρa†a) + κp(2bρb† − b†bρ− ρb†b)

+ 2κn̄(aρa† + a†ρa− a†aρ− ρaa†)

+ 2κpn̄p(bρb† + b†ρb− b†bρ− ρbb†), (9.97)

where
κ ≡ 1

2 (γa1 + γa2 + γaα), κp ≡ 1
2 (γb1 + γb2 + γbα), (9.98)

with (μ = 1, 2, α)

γaμ ≡ 2πgaμ(ωC)|κaμ(ωC)|2, (9.99a)

γbμ ≡ 2πgbμ(ωC)|κbμ(ωC)|2, (9.99b)

where gaμ(ω) and gbμ(ω) are reservoir densities of states, and n̄ and n̄p are
weighted thermal photon number averages:

n̄ ≡ γa1n̄a1 + γa2n̄a2 + γaαn̄aα
γa1 + γa2 + γaα

, (9.100a)

n̄p ≡ γb1n̄b1 + γb2n̄b2 + γbαn̄bα
γb1 + γb2 + γbα

, (9.100b)
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with (μ = 1, 2, α)

n̄aμ =
(
e�ωC/kBTμ − 1

)−1
, n̄bμ =

(
e�2ωC/kBTμ − 1

)−1
. (9.101a)

Exercise 9.5. In (9.97) the pump mode is driven by the classical field
Ē0e
−i2ωC t. Setting g = 0, the reduced density operator for the pump mode

obeys the master equation for a driven damped harmonic oscillator :

ρ̇p = −i2ωC[b†b, ρp] − i[Ē0e
−i2ωCtb† + Ē∗0 ei2ωC tb, ρp]

+ κp(2bρpb† − b†bρp − ρpb
†b)

+ 2κpn̄p(bρpb† + b†ρpb− b†bρp − ρpbb
†). (9.102)

Neglect thermal fluctuations (n̄p = 0) and show that if the initial state is the
vacuum, ρp(0) = |0〉〈0|, the solution to (9.102) is

ρp(t) =
∣
∣−i(Ē0/κp)e−i2ωCt(1 − e−κpt)

〉〈− i(Ē0/κp)e−i2ωC t(1 − e−κpt)
∣
∣,

(9.103)

where |β(t)〉, β(t) = −i(Ē0/κp)(1−e−κpt), denotes a coherent state. Thus, the
pump mode is excited to a coherent state with time-dependent amplitude β(t).
The amplitude grows exponentially to reach its steady-state value β(∞) =
−i(Ē0/κp).

Note 9.9. The interaction term Hdrive in Hamiltonian (9.79) treats the driving
field as a c-number. We have now seen two justifications for this: (i) Hdrive,
as written, yields the desired source term in the equation of motion for the
mean pump field amplitude (Exercise 9.4); (ii) in the absence of thermal fluc-
tuations, Hdrive excites the quantized pump mode to the coherent state |β(t)〉
(Eq. 9.103). For a more convincing justification, we can arrive at the interac-
tion Hamiltonian Hdrive by associating the classical field Ē0e

−i2ωCt with the
coherent state excitation of a single reservoir mode. Let us write the annihi-
lation and creation operators of this mode as

r0 ≡ rb1j

∣
∣
∣
ωj=2ωC

, r†0 ≡ r†b1j
∣
∣
∣
ωj=2ωC

. (9.104)

We then consider this mode to be prepared in the coherent state |β0〉〈β0|
and remove the term Hdrive = �(Ēie−i2ωC tb† + Ē∗0 ei2ωCtb) from the system
HamiltonianHS . Following through with the derivation of the master equation
as before, we will encounter the difficulty that the reservoir operators Γ̃b1 and
Γ̃ †b1 have nonzero means. The same difficulty arose in the treatment of phase
destroying processes in Sect. 2.2.4. The way around the difficulty is described
there. We must move the interaction with the mean reservoir field from Hb1

SR

to the system Hamiltonian HS . This reintroduces Hdrive. Explicitly, we define
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the new reservoir operator

Γb1 ≡
∑

ωj �=2ωC

κb1jrb1j + κ0(r0 − β0e
−i2ωCt), (9.105a)

where
κ0 ≡ κb1j

∣
∣∣
ωj=2ωC

, (9.105b)

and add
Hdrive ≡ �(κ0β0e

−i2ωCtb† + κ∗0β
∗
0e
i2ωC tb) (9.106)

to HS . Now the reservoir operators Γ̃b1 and Γ̃ †b1 have zero means and the
derivation of the master equation can go ahead as before. The amplitude Ē0

of the external field is identified with κ0β0.

Note 9.10. It should be noted that although this way of doing things might
be more satisfactory than merely asserting that the external field is classical,
it does, nevertheless, slip in an assumption that forces the driving field to act
in a classical way. Recall that the master equation treatment assumes weak
coupling between the system S and the reservoir R. Under this assumption,
changes in R due to its interaction with S are neglected. Thus, the coher-
ent state |β0〉—as well as the amplitude Ē0 ≡ κ0β0—is assumed to remain
unaltered by the interaction between S and R. The assumption asserts a pri-
ori that the driving field will act as a constant-amplitude external field. To
see a little more of what the weak coupling assumption entails, we observe
that as the reservoir size (L′ in Fig. 9.4) is taken to infinity, weak coupling
requires

|κ0|κ−1
p → 0; (9.107)

κ−1
p characterizes the typical timescale of the interaction between S and R.

Now consider what this means for the photon number in the reservoir mode
r0 compared with that in the driven cavity mode b. With Ē0 ≡ κ0β0, we may
write

〈r†0r0〉 = |β0|2 = |Ē0/κ0|2 =
(
κp/|κ0|

)2(|Ē0|/κp
)2 =

(
κp/|κ0|

)2〈b†b〉ss,
(9.108)

where 〈b†b〉 = (|Ē0|/κp)2 is the steady-state photon number in the coher-
ent state (9.103). According to (9.107), 〈r†0r0〉/〈b†b〉ss goes to infinity with the
reservoir size. This ensures that the exchange of photons between S and R can
be neglected so far as the photon number in reservoir mode r0 is concerned.
To see explicitly how the reservoir size enters the picture, from (9.99b) we
may write

|κ0| =
√
γb1/2πgb1(2ωC) =

√
c/2L′

√
γb1, (9.109)
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where gb1(ω) = L′/πc is the density of modes in a standing-wave cavity of
length L′ (Fig. 9.4). Then

|κ0|κ−1
p =

√
κ−1
p

2L′/c

√
γb1/κp. (9.110)

We find, under the first square root, the ratio of a system timescale, κ−1
p ,

and the round-trip time 2L′/c for photons in the reservoir. The ratio goes to
zero as L′ goes to infinity. In this weak-coupling limit, photons removed from
the reservoir do not deplete the photon flux impinging upon S, and photons
emitted into the reservoir never return to act back upon S. In summary,
use of a c-number external field in interaction Hamiltonian (9.106) assumes
the limit κ−1

p |κ0| → 0, β0 → ∞, with κ−1
p Ē0 = κ−1

p (κ0β0) finite; or more
specifically L′ → ∞ (infinite reservoir mode volume), |β0|2 → ∞ (infinite
reservoir mode photon number), with (2L′/c)−1|β0|2 finite (finite reservoir
mode photon flux).

9.2.5 Cavity Output Fields

Master equation 9.97 provides us with a quantized model for the degener-
ate parametric oscillator. The quantum-statistical properties of the intracav-
ity fields can be calculated directly from this equation. As we noted for the
laser, however, the intracavity fields are not, in fact, the fields that are di-
rectly measured (Sect. 7.3). The measured fields are those carried by the
modes of the reservoirs that describe the mirror transmission losses. We used
a traveling-wave model for the laser output field (Fig. 7.8). For the standing-
wave geometry illustrated in Fig. 9.4, the reservoir modes are defined in ex-
ternal standing-wave cavities of length L′. There are four input–output fields,
whose positive frequency components are specified as follows:

(i) for z < −L+ 	+ d,

Ê(+)(z, t)

= iêy
∑

j

√
�ωj
ε0AL′

1
2i

[
ei(ωj/c)(z+L−�−d) + eiφRe−i(ωj/c)(z+L−�−d)

]
ra1j(t),

(9.111a)

Ê(+)
p (z, t)

= iêx
∑

j

√
�ωj
ε0AL′

1
2i

[
ei(ωj/c)(z+L−�−d) + eiφRe−i(ωj/c)(z+L−�−d)

]
rb1j(t);

(9.111b)
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(ii) for z > 	+ d,

Ê(+)(z, t)

= iêy
∑

j

√
�ωj
ε0AL′

1
2i

[
eiφRei(ωj/c)(z−�−d) + e−i(ωj/c)(z−�−d)

]
ra2j(t),

(9.112a)

Ê(+)
p (z, t)

= iêx
∑

j

√
�ωj
ε0AL′

1
2i

[
eiφRei(ωj/c)(z−�−d) + e−i(ωj/c)(z−�−d)

]
rb2j(t).

(9.112b)

Each of these fields may be written as the sum of a free field and a source
field, with the source field derived using the method of Sect. 7.3.1. We write

Ê(+)(z, t) = Ê
(+)
f (z, t) + Ê(+)

s (z, t), (9.113a)

Ê(+)
p (z, t) = Ê

(+)
pf (z, t) + Ê(+)

ps (z, t), (9.113b)

where the free fields mimic the expansions just given:

(i) for z < −L+ 	+ d,

Ê
(+)
f (z, t) = iêy

∑

j

√
�ωj
ε0AL′

× 1
2i

[
ei(ωj/c)(z+L−�−d) + eiφRe−i(ωj/c)(z+L−�−d)

]
ra1j(0)e−iωjt,

(9.114a)

Ê
(+)
pf (z, t) = iêx

∑

j

√
�ωj
ε0AL′

× 1
2i

[
ei(ωj/c)(z+L−�−d) + eiφRe−i(ωj/c)(z+L−�−d)

]
rb1j(0)e−iωjt;

(9.114b)

(ii) for z > 	+ d,

Ê
(+)
f (z, t)

= iêy
∑

j

√
�ωj
ε0AL′

1
2i

[
eiφRei(ωj/c)(z−�−d) + e−i(ωj/c)(z−�−d)

]
ra2j(0)e−iωjt,

(9.115a)
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Ê
(+)
pf (z, t)

= iêx
∑

j

√
�ωj
ε0AL′

1
2i

[
eiφRei(ωj/c)(z−�−d) + e−i(ωj/c)(z−�−d)

]
rb2j(0)e−iωjt.

(9.115b)

The derivation of the source fields differs slightly from that in Sect. 7.3.1 due
to the standing-wave form of (9.111) and (9.112) (see Note 7.10). The details
are left as an exercise.

Exercise 9.6. Show that the source fields at the outputs of the degenerate
parametric oscillator take the following form:

(i) for z < −L+ 	+ d,

Ê(+)
s (z, t) = iêy

√
�ωC

2ε0Ac
ei[φT−Φ(−L+�+d)−φ]√γa1 a(t′), (9.116a)

Ê(+)
ps (z, t) = iêx

√
�ωC
ε0Ac

ei[φT−2Φ(−L+�+d)−φp]√γb1 b(t′), (9.116b)

with retarded time ct′ = ct+ (z + L− 	− d);
(ii) for z > 	+ d,

Ê(+)
s (z, t) = iêy

√
�ωC

2ε0Ac
ei[φT +Φ(�+d)+φ]√γa2 a(t′), (9.117a)

Ê(+)
ps (z, t) = iêx

√
�ωC
ε0Ac

ei[φT +2Φ(�+d)+φp]√γb2 b(t′), (9.117b)

with retarded time ct′ = ct− (z − 	− d).

When deriving these results it is necessary to show that the reservoir coupling
coefficients κaμ(ωC) and κbμ(ωC), μ = 1, 2, are related to parameters of the
cavity through [compare (7.112)]

−
√

2L′

c
κ∗a1(ωC)eiφR =

√
c

2L̄

√
T1e

iφT e−i[Φ(−L+�+d)+φ], (9.118a)

−
√

2L′

c
κ∗b1(ωC)eiφR =

√
c

2L̄

√
T 1
p e

iφT e−i[2Φ(−L+�+d)+φp], (9.118b)

for mirror 1, and

−
√

2L′

c
κ∗a2(ωC)eiφR =

√
c

2L̄

√
T2e

iφT ei[Φ(�+d)+φ], (9.119a)

−
√

2L′

c
κ∗b2(ωC)eiφR =

√
c

2L̄

√
T 2
p e

iφT ei[2Φ(�+d)+φp], (9.119b)

for mirror 2. From these expressions and (9.99), we obtain damping rates
γaμ = Tμc/2L̄, γbμ = T μp c/2L̄, μ = 1, 2, which agree with those expected from
the classical analysis of cavity damping [use (9.98), (9.54), and (9.59)].
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The output fields are the components of (9.113a) and (9.113b) that propagate
away from the cavity. They are conveniently expressed in photon flux units,
as in (7.122) and (7.123a):

(i) the left-propagating output fields of the degenerate parametric oscillator
are given by (z < −L+ 	+ d)

Ê←(z, t) =
√
c/2L′ra1f (t′) +

√
γa1a(t′), (9.120a)

Êp←(z, t) =
√
c/2L′rb1f (t′) +

√
γb1b(t′), (9.120b)

with

ra1f (t′) ≡ −iei(φR−φT )ei[Φ(−L+�+d)+φ]
∑

j

√
ωj
ωC

ra1j(0)e−iωjt
′
, (9.121a)

rb1f (t′) ≡ −iei(φR−φT )ei[2Φ(−L+�+d)+φp]
∑

j

√
ωj

2ωC
rb1j(0)e−iωjt

′
,

(9.121b)

and retarded time ct′ = ct+ (z + L− 	− d);
(ii) the right-propagating output fields of the degenerate parametric oscillator

are given by (z > 	+ d)

Ê→(z, t) =
√
c/2L′ra2f (t′) +

√
γa2a(t′), (9.122a)

Êp→(z, t) =
√
c/2L′rb2f (t′) +

√
γb2b(t′), (9.122b)

with

ra2f (t′) ≡ −iei(φR−φT )e−i[Φ(�+d)+φ]
∑

j

√
ωj
ωC

ra2j(0)e−iωjt
′
, (9.123a)

rb2f (t′) ≡ −iei(φR−φT )e−i[2Φ(�+d)+φp]
∑

j

√
ωj

2ωC
rb2j(0)e−iωjt

′
, (9.123b)

and retarded time ct′ = ct− (z − 	− d).

Finally, we recall that the free field and source field are correlated at each
output (Sect. 7.3.3). The correlations for a thermal reservoir state are given
by (7.133a) and (7.133b). For the subharmonic mode, we have (μ = 1, 2)

√
c/2L′

√
γaμ〈Ô(t+ τ)raμf (t)〉

=

⎧
⎪⎨

⎪⎩

0 τ < 0
1
2γaμn̄aμ〈[Ô(t+ τ), a(t)]〉 τ = 0
γaμn̄aμ〈[Ô(t+ τ), a(t)]〉 τ > 0,

(9.124a)
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√
c/2L′

√
γaμ〈raμf (t)Ô(t+ τ)〉

=

⎧
⎪⎨

⎪⎩

0 τ < 0
1
2γaμ(n̄aμ + 1)〈[Ô(t+ τ), a(t)]〉 τ = 0
γaμ(n̄aμ + 1)〈[Ô(t+ τ), a(t)]〉 τ > 0,

(9.124b)

and for the pump mode
√
c/2L′

√
γbμ〈Ô(t+ τ)rbμf (t)〉

=

⎧
⎪⎨

⎪⎩

0 τ < 0
1
2γbμn̄bμ〈[Ô(t+ τ), b(t)]〉 τ = 0
γbμn̄bμ〈[Ô(t+ τ), b(t)]〉 τ > 0,

(9.125a)

√
c/2L′

√
γbμ〈rbμf (t)Ô(t+ τ)〉

=

⎧
⎪⎨

⎪⎩

0 τ < 0
1
2γbμ(n̄bμ + 1)〈[Ô(t+ τ), b(t)]〉 τ = 0
γbμ(n̄bμ + 1)〈[Ô(t+ τ), b(t)]〉 τ > 0.

(9.125b)

9.3 The Spectrum of Squeezing

Extracting a prediction of squeezing from the master equation for the degen-
erate parametric oscillator is not quite as straightforward as solving a sim-
ple Heisenberg equation to demonstrate squeezing in parametric amplication
(Eqs. 9.27–9.36). The analysis of fluctuations for the model of Sect. 9.2.4 will
be tackled in Chap. 10, where we convert the master equation into a Fokker–
Planck equation using the quantum–classical correspondence. The emphasis
there will not be on the squeezing per se, however, but on how its presence
changes the way in which the quantum–classical correspondence works. In fact,
if our aim is to understand squeezing, the master equation is not the best place
to start. Squeezing, more so than other phenomena in quantum optics, is very
much tied up with the measurement used to observed it. It is desirable to
first analyze this measurement to learn what one should calculate—using the
master equation, the quantum–classical correspondence, or any other method.

It turns out that what one should calculate is the so-called spectrum of
squeezing, or more specifically, the quantity we define as the source-field spec-
trum of squeezing. The spectrum of squeezing is a recent invention. It is less
familiar than the optical spectrum, for example, and its definition raises tricky
issues of interpretation not encountered by the latter—talk of vacuum fluctu-
ations etc... What then is the measurement scheme underlying its definition?
This is the question taken up in the rest of this chapter.

Note 9.11. Perhaps some qualification is called for. At a fundamental level
there is no difference between using a master equation to calculate the squeez-
ing properties of an optical source and using it to calculate something more



32 9 The Degenerate Parametric Oscillator I: Squeezed States

familiar, such as the optical spectrum or the intensity correlation function.
Squeezing appears to be different, but what is easily forgotten is that in all
cases when performing a quantum-mechanical analysis, the full program in-
volves the same two steps. First, the measurement scheme that gives defini-
tion to the property of interest must be outlined and analyzed. This step is
needed to tell us what to calculate—generally some field correlation function
or combination of correlation functions. Only after this step has been taken
can the master equation be brought into play, along with the quantum regres-
sion formula, to make the calculation. With regard to intensity correlations,
for example, the analysis of the appropriate measurement scheme was carried
out many years ago by Glauber [9.1]. We are so familiar with the result that
there is a tendency to think that the quantity to be calculated, the correla-
tion function G(2)(τ) (see Sect. 2.3.5), is self-evident. Of course it is not, since
a particular ordering of operators is involved, dictated by the fact that the
appropriate measurement scheme counts the outgoing particles (photons) of
a scattered field.

9.3.1 Intracavity Field Fluctuations

We are led to consider a spectrum of squeezing because the subharmonic field
is carried by a quasimode—not by a genuine single mode, but by a cavity mode
that has a linewidth. We expect fluctuations of the cavity mode amplitude to
be distributed over a range of frequencies falling within the cavity linewidth.
How should the spectrum of these fluctuations—the spectrum of squeezing—
be defined? Perhaps we can define it by decomposing the quadrature phase
operators, X̂ and Ŷ , into Fourier components. In fact, this guess is not going to
work. It is useful to pursue it as an exercise, though, since the decomposition
does teach us something about intracavity field fluctuations. It also helps us
appreciate why we need to make a thorough analysis of the measurement
procedure used to observe squeezing.

We will consider the degenerate parametric oscillator operating below
threshold. To see how the Fourier decomposition should be performed, we
complement our master equation treatment with one based on a quantum
Langevin equation for the operator a. This approach is closely related to the
work on multimode squeezing by Caves and Schumaker [9.18] and Gardiner
and coworkers [9.19,9.20]. The required Langevin equation is obtained by gen-
eralizing the derivation of (7.130). The explicit derivation is left as an exercise.

Exercise 9.7. Adopt the system Hamiltonian

HS = �ωCa
†a+ �(gĒ0/2κp)e−2iωCta†2 + H.c.,

which is obtained from the two-mode Hamiltonian (9.79) by replacing the
pump mode annihilation operator b by the amplitude of the coherent state
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(9.103). Follow the method yielding (7.130) to derive the quantum Langevin
equation for the degenerate parametric oscillator below threshold :

ȧ = −(κ+ iωC)a− ieiψκλe−2iωCta† −
√
c/2L′

√
2κraf , (9.126)

where ψ is defined as in (9.62) and

raf ≡ (
1/

√
2κ

)(√
γa1ra1f +

√
γa2ra2f +

√
γaαraαf

)
, (9.127)

where ra1f and ra2f are the free-field operators (9.121a) and (9.123a), respec-
tively, and

raαf (t) = eiφα

∑

j

√
ωj
ωC

raαj(0)e−iωjt, (9.128)

with φα ≡ arg[κaα(ωC)]+π/2. Note that the density of modes for the reservoir
that accounts for absorption in the crystal (or mirrors) has been written as
L′/πc—i.e., equal to the density of modes for the reservoirs that carry the
cavity outputs. It is not necessary to do this, but it is a convenient way to
simplify the equations. Final results do not depend on the reservoir mode
density in any case, only on the decay rate γaα = α	c/2L̄ (Eq. 9.99a).

If we now Fourier-decompose the subharmonic mode annihilation and creation
operators, writing

a =
∑

ω

α̂ωe
−i(ωC+ω)t, a† =

∑

ω

α̂†ωe
i(ωC+ω)t, (9.129)

from the quantum Langevin equation (9.126), we find that the Fourier com-
ponents couple in pairs. In the long-time limit, components oscillating at fre-
quencies displaced symmetrically from the cavity resonance—the frequencies
ωC+ω and ωC−ω—couple to one another through the steady-state equations

0 = −(κ− iω)α̂ω − ieiψκλα̂†−ω −
√
c/2L′

√
2κf̂ω, (9.130a)

0 = −(κ− iω)α̂†−ω + ie−iψκλα̂ω −
√
c/2L′

√
2κf̂ †−ω, (9.130b)

where f̂ω is the free-field operator

f̂ω ≡ 1√
2κ

[
iei(φR−φT )

(
ei[Φ(−L+�+d)+φ]√γa1ra1j(0)

+e−i[Φ(�+d)+φ]√γa2ra2j(0)
)

+ eiφα
√
γaαraαj(0)

]∣∣
∣
ωj=ωC+ω

, (9.131)

and f̂ω and f̂ω′ obey the boson commutation relations

[f̂ω, f̂ω′ ] = [f̂ †ω, f̂
†
ω′ ] = 0, [f̂ω, f̂

†
ω′ ] = δω,ω′ . (9.132)

In writing (9.131), we have made the approximation ωj/ωC → 1, as was done
in the derivation of (7.129).
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For the thermal reservoir states (9.92a), fluctuations of the free fields ex-
hibit correlations

〈f̂ω f̂ω′〉 = 〈f̂ †ω f̂ †ω′〉 = 0, (9.133a)

〈f̂ †ω f̂ω′〉 = n̄δω,ω′ , (9.133b)

〈f̂ω f̂ †ω′〉 = (n̄+ 1)δω,ω′ , (9.133c)

where we have made use of (9.98) and (9.100a). To determine the correlations
between Fourier components of the subharmonic field, we solve (9.130a) and
(9.130b) for

α̂ω = −
√

c

2L′
√

2κ
(κ− iω)f̂ω − ieiψκλf̂ †−ω

(κ− iω)2 − κ2λ2
, (9.134a)

and

α̂†−ω = −
√

c

2L′
√

2κ
(κ− iω)f̂ †−ω + ie−iψκλf̂ω

(κ− iω)2 − κ2λ2
, (9.134b)

thus expressing the intracavity Fourier components in terms of their reservoir
inputs.

Note 9.12. Steady-state solutions (9.134a) and (9.134b) preserve the commu-
tation relations for a and a†, as they should. Converting frequency sums to in-
tegrations, with reservoir mode density L′/πc, from (9.129), (9.132), (9.134a),
and (9.134b), we find

[a, a†] =
∫ ∞

−∞
dω(L′/πc)[α̂ω, α̂†ω]

=
κ

π

∫ ∞

−∞
dω

|κ− iω|2 − κ2λ2

|(κ− iω)2 − κ2λ2|2

=
κ

π

∫ ∞

−∞
dω

κ2(1 − λ)(1 + λ) + ω2

[κ2(1 − λ)2 + ω2][κ2(1 + λ)2 + ω2]

=
∫ ∞

−∞
dω

1
2

{
κ(1 − λ)/π

[κ(1 − λ)]2 + ω2
+

κ(1 + λ)/π
[κ(1 + λ)]2 + ω2

}

= 1. (9.135)

Our aim is to decompose the quadrature phase operators X̂ and Ŷ into Fourier
components, not simply the annihilation and creation operators. As a first
step we write X̂ and Ŷ in terms of quadrature phase operators for individual
Fourier components of a and a†. We define x̂ω and ŷω by

x̂ω ≡ 1
2

[
α̂ωe

−i 12 (ψ−π/2) + α̂†ωe
i 12 (ψ−π/2)], (9.136a)

ŷω ≡ 1
2

[
α̂ωe

−i 12 (ψ+π/2) + α̂†ωe
i 12 (ψ+π/2)

]
, (9.136b)



9.3 The Spectrum of Squeezing 35

and write

X̂ = 1
2

[
ãe−i

1
2 (ψ−π/2) + ã†ei

1
2 (ψ−π/2)]

=
1
2

[(
∑

ω

α̂ωe
−iωt

)

e−i
1
2 (ψ−π/2) +

(
∑

ω

α̂†ωe
iωt

)

ei
1
2 (ψ−π/2)

]

=
∑

ω

(x̂ω cosωt+ ŷω sinωt), (9.137a)

and similarly,
Ŷ =

∑

ω

(−x̂ω sinωt+ ŷω cosωt). (9.137b)

Clearly x̂ω and ŷω are not themselves the Fourier amplitudes, X̂ω and Ŷω, of
X̂ and Ŷ . In fact, the four operators x̂ω , ŷω, x̂−ω, and ŷ−ω all contribute to
the Fourier amplitudes X̂ω and Ŷω. The relationship is illustrated in Fig. 9.5.
In the mathematics, we simply make the substitution ω → −ω in appropriate
places in (9.137a) and (9.137b), to obtain

X̂ =
∑

ω

X̂ωe
−iωt, Ŷ =

∑

ω

Ŷωe
−iωt, (9.138)

with

X̂ω = 1
2 [(x̂ω + iŷω) + (x̂−ω − iŷ−ω)]

= 1
2

[
α̂ωe

−i 12 (ψ−π/2) + α̂†−ωe
i 12 (ψ−π/2)], (9.139a)

and

Ŷω = −i 12 [(x̂ω + iŷω) − (x̂−ω − iŷ−ω)]

= 1
2

[
α̂ωe

−i 12 (ψ+π/2) + α̂†−ωe
i 12 (ψ+π/2)

]
. (9.139b)

We are finally in a position to decompose the fluctuations in quadrature
phase amplitudes into a spectrum. Using (9.139a) and (9.139b), together with
the explicit solutions for the degenerate parametric oscillator (9.134a) and
(9.134b), the Fourier components of the quadrature phase amplitudes are
given for the X quadrature by

X̂ω = 1
2

[
α̂ωe

−i 12 (ψ−π/2) + α̂†−ωe
i 12 (ψ−π/2)]

= −
√

c

2L′
√

2κ
κ(1 + λ) − iω

(κ− iω)2 − κ2λ2
1
2

[
f̂ωe
−i 12 (ψ−π/2) + f̂ †−ωe

i 12 (ψ−π/2)]

= −
√

c

2L′
√

2κ
1
2
f̂ωe
−i 12 (ψ−π/2) + f̂ †−ωe

i 12 (ψ−π/2)

κ(1 − λ) − iω
, (9.140a)



36 9 The Degenerate Parametric Oscillator I: Squeezed States

Fig. 9.5. Phase-space pictures showing the relationship between the Fourier ampli-
tudes Xω and Yω, defined by (9.139a) and (9.139b), and the single-mode quadrature
phase amplitudes x̂ω, ŷω, x̂−ω, and ŷ−ω defined by (9.136a) and (9.136b)

and in a similar fashion, for the Y quadrature by

Ŷω = −
√

c

2L′
√

2κ
1
2
f̂ωe
−i 12 (ψ+π/2) + f̂ †−ωei

1
2 (ψ+π/2)

κ(1 + λ) − iω
. (9.140b)

Using the free-field variances and covariances (9.133), and introducing the
density of states L′/πc, the spectra of intracavity field fluctuations are then
given by

(ΔX)2<(ω) = (L′/πc)〈X̂†ωX̂ω〉 =
1
4

2n̄+ 1
1 − λ

κ(1 − λ)/π
[κ(1 − λ)]2 + ω2

, (9.141a)

(ΔY )2<(ω) = (L′/πc)〈Ŷ †ω Ŷω〉 =
1
4

2n̄+ 1
1 + λ

κ(1 + λ)/π
[κ(1 + λ)]2 + ω2

, (9.141b)

where the subscript < indicates that the expressions hold for the degenerate
parametric oscillator below threshold.

We aim to derive a spectrum of squeezing; are the spectra (9.141a) and
(9.141b) what we might expect for X- and Y -quadrature spectra of squeez-
ing? Perhaps, at this point, we should look ahead to the results (10.55a) and
(10.55b), which tell us that for the degenerate parametric oscillator below
threshold, the quadrature phase variances, without Fourier decomposition,
are given by

(ΔX)2< =
1
4

2n̄+ 1
1 − λ

and (ΔY )2< =
1
4

2n̄+ 1
1 + λ

.

Squeezing is evidenced by the fact that (ΔY )2< < 1/4 for λ �= 0 and n̄ = 0.
We note then that when they are integrated over all frequencies, (9.141a)
and (9.141b) reproduce these results; so in this respect, at least, (9.141a)
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and (9.141b) are satisfactory spectral decompositions of the quadrature phase
amplitude fluctuations. To reinforce the point, using (9.140a), we can show
that 〈X̂†ω′′X̂ω′〉 ∝ δω′′,ω′ , and hence that

(ΔX)2<(ω) = (L′/πc)〈X̂†ωX̂ω〉

=
1
2π

∫ ∞

−∞
dτ

∑

ω′
〈X̂†ω′X̂ω′〉ei(ω−ω′)τ

=
1
2π

∫ ∞

−∞
dτeiωτ

〈(
∑

ω′′
X̂†ω′′e

iω′′t

)(
∑

ω′
X̂ω′e−iω

′(t+τ)

)〉

=
1
2π

∫ ∞

−∞
dτeiωτ 〈X̂(t)X̂(t+ τ)〉, (9.142a)

and similarly,

(ΔY )2<(ω) = (L′/πc)〈Ŷ †ω Ŷω〉

=
1
2π

∫ ∞

−∞
dτeiωτ 〈Ŷ (t)Ŷ (t+ τ)〉. (9.142b)

Thus, (ΔX)2<(ω) and (ΔY )2<(ω) are Fourier transforms of the autocorrelation
functions for quadrature phase amplitudes—just what we would expect of
a spectral decomposition.

In spite of all this, though, the spectra (9.141a) and (9.141b) are not what
we want for spectra of squeezing. To appreciate why, we might look at Fig. 9.6.
Squeezing is concerned with the reduction of fluctuations below their level in
the vacuum state. Figure 9.6 compares (ΔX)2<(ω) and (ΔY )2<(ω), for n̄ = 0,
with the spectrum

(ΔX)2(ω) = (ΔY )2(ω) =
1
4

κ/π

κ2 + ω2
(9.143)

calculated for the vacuum state—i.e., with n̄ = 0 and λ = 0. We see that
there is, indeed, a frequency-dependent amplification and deamplification of
the vacuum fluctuations across the cavity line, such that fluctuations of the
Y -quadrature phase amplitude fall below their value in the vacuum state. We
are hardly looking at an extension, to many frequencies, of the phenomenon
described by (9.36), however; certainly, the horizontal line in the figure, at
κ(ΔX)2(ω) = κ(ΔY )2(ω) = 1/4, cannot be the appropriate vacumm level. In
fact, we have a clear indication that we are on the wrong track from the vac-
uum state Lorentzians without considering parametric amplification at all.
Remember that ω denotes a displacement away from the cavity resonance
frequency ωC . It is then apparent that it is possible in principle—even with
λ = 0—to reduce the fluctuations at a chosen frequency ω0 = ωC+ω to what-
ever level we desire by simply detuning ωC sufficiently far from ω0. Moreover,
in doing this, we reduce the fluctuations in both quadrature phase amplitudes
at once.
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Fig. 9.6. Frequency decomposition of the fluctuations in intracavity quadrature
phase amplitudes for the degenerate parametric oscillator below threshold. Spectra
(9.141a) and (9.141b) are plotted for n̄ = 0 and λ = 0.4. The dashed curves show the
same spectra calculated with the subharmonic mode in the vacuum state (λ = 0)

Of course, all of this has nothing to do with squeezing. What we are seeing
here is the action of the cavity as a filter for the vacuum field entering through
its partially transparent mirrors. Equation 9.143 decomposes the single (quasi-
)mode variance (ΔX)2 = (ΔY )2 = 1

4 into a spectrum. Since, by definition, the
integral of the spectrum over all frequencies is equal to 1

4 , the noise strength
(ΔX)2Δω = (ΔY )2Δω in any finite bandwidth Δω is guaranteed to be less
than 1

4 .

Note 9.13. There is no violation of a fundamental uncertainty requirement if
(ΔX)2(ω) and (ΔY )2(ω) are both zero simultaneously, since X̂ω and Ŷω are
not conjugate variables obeying a canonical commutation relation (they are
also not Hermitian). In fact, from their explicit definition (Eqs. 9.140), we find
[X̂ω, Ŷω] = 0. Only after X̂ω and Ŷω have been integrated over all frequencies
do we recover the commutator [X̂, Ŷ ] = 1

2 i, and hence the uncertainty relation
ΔXΔY ≥ 1

4 . It should be noted that although the filtering effect revealed
by X̂ω and Ŷω is not related to squeezing, it does have interesting physical
consequences; for example, it is responsible for the phenomenon of cavity-
inhibited spontaneous emission (see Note 13.4).

9.3.2 Definition of the Spectrum of Squeezing

We have seen that the spectrum of squeezing is not just a Fourier decomposi-
tion of the fluctuations in the quadrature phase amplitudes of the intracavity
field, as might be suggested by simple analogy with the optical spectrum.
Clearly we need to think a little harder about what a spectrum of squeezing,
a measured spectrum of squeezing, might be. In Sect. 9.3.3 we define it in an
operational manner, basing the definition on a specific measurement scheme.
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Before beginning the analysis, it might be helpful to see what that definition
is, and how it differs from (9.142).

We write SX(ω) and SY (ω) for the source-field spectra of squeezing de-
tected with unit efficiency. Then the spectra obeying an uncertainty relation
analogous to (9.35) are

1 + ηζSX(ω) = 1 + ηζ(2κ)4
∫ ∞

−∞
dτeiωτ 〈:X̂(t)X̂(t+ τ) :〉, (9.144a)

1 + ηζSY (ω) = 1 + ηζ(2κ)4
∫ ∞

−∞
dτeiωτ 〈: Ŷ (t)Ŷ (t+ τ) :〉, (9.144b)

where η ≤ 1 is a detection efficiency, ζ < 1 is a collection efficiency, and
〈::〉 denotes averages that are normal- and time-ordered; thus,

√
1 + ηζSX(ω)

and
√

1 + ηζSY (ω) are the frequency-resolved generalizations of ΔX and ΔY
in Sect. 9.2.2. Actually, they are scaled to correspond to 2ΔX and 2ΔY ,
so that the uncertainty relation is

√
1 + ηζSX(ω)

√
1 + ηζSY (ω) ≥ 1. There

is squeezing at frequency ω in the X- or Y -quadrature phase amplitude if
1 + ηζSX,Y (ω) < 1, or equivalently SX,Y (ω) < 0.

On comparing (9.144a) and (9.144b) with (9.142a) and (9.142b), we see
two differences over and above the unimportant scaling by a factor of four.
First, there is a further scaling by (2κ) × 2π. This is a consequence of the
different normalizations implied by the different definitions of the two types
of spectra. The spectra (9.142a) and (9.142b) specify a noise level per mode
as a function of the mode frequency; there is a background noise level of
1 + ηζSX,Y (ω) = 1 per mode (the vacuum noise level), which is modified
when the spectrum of squeezing differs from zero. The spectra (9.142a) and
(9.142b), on the other hand, decompose the fluctuations of a single quasi-
mode into a spectrum. These spectra produce the noise level of the single
quasi-mode when integrated over all frequencies. For the vacuum state, the
normalization required is 4

∫∞
−∞ dω(ΔX)2<(ω) = 4

∫∞
−∞ dω(ΔY )2<(ω) = 1. The

scale factor (2κ) × 2π is therefore also not a fundamental thing.
The second difference is the more important one. This is the specification

of normal ordering and time ordering in (9.143a) and (9.143b)—absent from
(9.142a) and (9.142b)—together with the +1 outside the integrals. This dif-
ference arises from the answer to the question we now pose concerning the
measurement scheme that defines the spectrum of squeezing. It is, of course,
precisely the ambiguity of operator ordering that advises us not to rely on
naive generalizations of classical formulae to account for measurements made
on a quantum field.

Note 9.14. In the limit of large thermal photon number, n̄ � 1, the spectra
(ΔX)2<(ω) and (ΔY )2<(ω) (Eqs. 9.141), and S<X(ω) and S<Y (ω) (Eqs. 10.61)
differ by the scale factor (2κ)×4×2π only. In this classical limit, the differences
in operator ordering are unimportant—the source-field spectrum of squeezing
is, aside from the scaling, just the Fourier decomposition of the amplitude
fluctuations inside the cavity.
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Exercise 9.8. The solutions for a and a† in terms of free-field operators
(Eqs. 9.129 and 9.134) can be used to derive a number of useful results. As an
example, use these solutions to derive the commutators (10.70); thus, provide
an alternative derivation to the one based on operator ordering conventions
for different phase-space representations given in Chap. 10. From (10.70), one
can determine the correlations between the free field and the source field
(Eqs. 9.124). Use the solutions for a and a† to verify (9.124) with Ô ≡ a and
Ô ≡ a†.

Exercise 9.9. Use the commutators (10.70) to prove 〈[X̂(t), X̂(t + τ)]〉 =
〈[Ŷ (t), Ŷ (t+τ)]〉 = 0; hence, show that (9.142a) and (9.142b) give the spectra
of quadrature phase amplitude fluctuations obtained by Fourier transform-
ing correlation functions calculated in the Wigner representation. In contrast,
(9.144a) and (9.144b) are Fourier transforms of the correlation functions cal-
culated in the P representation.

9.3.3 Homodyne Detection:
The Source-Field Spectrum of Squeezing

Let us now analyze the measurement scheme that gives definition to the spec-
trum of squeezing. We begin by considering the measurement that defines the
source-field spectrum of squeezing. This spectrum applies in situations where
the source field carries all the real photons illuminating the detector (the free-
field state is the vacuum state). Having understood the source-field spectrum,
we include free-field contributions in Sect. 9.3.5. We follow the treatment given
by Carmichael [9.21].

Since squeezing is a phase-dependent phenomenon, clearly any scheme
designed to measure it must introduce a phase reference. Homodyne detection
is then a natural candidate. In homodyne detection, a strong local oscillator
(coherent field) is added to the field to be measured (the source field) and
continuous photoelectric detection is performed on the sum. We therefore
consider continuous photoelectric detection of the field

Ê(t) ≡ e−iωC t[Êlo +
√
ζ
√

2κΔã(t′)], (9.145)

where 〈Êlo〉 = Elo = |Elo|eiθ is the local oscillator amplitude, t′ is a retarded
time [see, for example, the definitions below (9.121b) and (9.123b)], ζ is the
collection efficiency, and

√
2κ scales the amplitude of the source field so that

2κΔã†ã(t) has units of photon flux; Ê(t) and Êlo also have photon flux units.
We assume 〈ã〉 = 0; if this is not so we may consider the nonzero 〈ã〉 to be
absorbed into the definition of Elo.

The probability of photoelectric emission depends on the intensity (Ê†Ê)(t),
which is sensitive to the relative phase between the local oscillator and the
fluctuating amplitude of the source. More generally, there is a distribution in
the number of photoelectric counts recorded in an interval t−Δt to t, given
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by

p(nt, t,Δt) =

〈

:
[η(Ê†Ê)(t)]ntΔtnt

nt!
exp[−η(Ê†Ê)(t)Δt] :

〉

, (9.146)

where nt denotes the number of counts, η is the detection efficiency, and Δt
is assumed to be much less than the correlation time of the fluctuations. This
distribution follows from the standard theory of photoelectron counting due
to Mandel [9.3], Glauber [9.1], and Kelley and Kleiner [9.2]; note how normal
and time ordering enters directly in this theory. Now, while we could define
the spectrum of squeezing in terms of such a photoelectron counting distribu-
tion, in practice the high photon flux of the local oscillator makes the actual
counting of photoelectrons inappropriate. Under these circumstances, we stay
closer to the physics defining the spectrum of squeezing in terms of an analog
photocurrent. This requires us to say something about how the intensity op-
erator (Ê†Ê)(t) is connected to the photocurrent i(t): the measurement signal,
a time series of real numbers.

Note 9.15. The counting formula (9.146) gives a Poisson distribution when
(Ê†Ê)(t) is replaced by the classical intensity |E(t)|2. Physically, the Poisson
distribution results from the random emission of photoelectrons from a photo-
cathode illuminated by a constant classical intensity. In quantum-mechanical
language, the prescribed normal ordering ensures the result that an initial
coherent state |E(0)〉, with Ê(t)|E(0)〉 = E(t)|E(0)〉, acts just like the classical
intensity |E(t)|2.
Let us assume that a single photoelectric detection event produces a current
pulse of width τd and amplitude Ge/τd, where e is the electronic charge and
G is the gain, as illustrated in Fig. 9.7a. Figure 9.7b shows how the photocur-

Fig. 9.7. (a) Current pulse produced by a single photodetection event. (b) Con-
struction of the instantaneous photocurrent i(t) from the overlap of current pulses
initiated during the interval t − τd to t
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rent
i(t) = nt

Ge

τd
(9.147)

is formed from the overlap of the nt current pulses initiated during the in-
terval t − τd to t; i(t) is a classical stochastic process and nt is a random
variable. We now use the photoelectron counting formula (9.146) to relate the
classical fluctuations of i(t) to the quantum fluctuations of the detected field.
In order to derive the spectrum of photocurrent fluctuations, we will need
the autocorrelation function i(t)i(t+ τ). First, though, just to see how things
work, it is easier to calculate the photocurrent variance. We therefore begin
with

i(t)i(t) −
(
i(t)

)2

=
(
Ge

τd

)2
⎡

⎣
∑

nt

n2
tp(nt, t, τd) −

(
∑

nt

ntp(nt, t, τd)

)2
⎤

⎦

=
(
Ge

τd

)2
⎧
⎨

⎩

∑

nt

[nt(nt − 1) + nt]

〈

:
[η(Ê†Ê)(t)]ntτnt

d

nt!
exp[−η(Ê†Ê)(t)τd] :

〉

−
(
∑

nt

nt

〈

:
[η(Ê†Ê)(t)]ntτnt

d

nt!
exp[−η(Ê†Ê)(t)τd] :

〉)2
⎫
⎬

⎭

=
(
Ge

τd

)2[
η2〈Ê†(t)Ê†(t)Ê(t)Ê(t)〉τ2

d + η〈Ê†(t)Ê(t)〉τd − η2〈Ê†(t)Ê(t)〉2τ2
d

]
.

(9.148)

After substituting for the field operator from (9.145) and taking the strong
local oscillator limit, we find

i(t)i(t) −
(
i(t)

)2

= (Ge)2
{
η2|Elo|4 + η2|Elo|2ζ(2κ)

[
4〈Δã†(t)Δã(t)〉

+ e−2iθ〈Δã(t)Δã(t)〉 + e2iθ〈Δã†(t)Δã†(t)〉]

+ η|Elo|2τ−1
d − η2

[|Elo|4 + 2|Elo|2ζ(2κ)〈Δã†(t)Δã(t)〉]
}

= (Ge)2η2|Elo|2ζ(2κ)4〈:ΔÂθ(t)ΔÂθ(t) :〉
+ (Ge)2η|Elo|2τ−1

d ; (9.149)

ΔÂθ ≡ Âθ − 〈Âθ〉, where Âθ is defined in (9.26).
For a given local oscillator phase θ, the noise in the photocurrent de-

pends on the field fluctuations described by the quadrature phase operator
ΔÂθ; measurements of different quadrature phase amplitudes are selected by
varying the angle θ. How, then, do we set the level of squeezing in a quan-
titative fashion? The point of reference is set by considering what, in classi-
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cal language, is a source field without any fluctuations. Assume the subhar-
monic mode is in a coherent state—it might as well be the vacuum state.
Then 〈:ΔÂθ(t)ΔÂθ(t) :〉 vanishes, and the photocurrent fluctuates with vari-
ance (Ge)2η|Elo|2τ−1

d . This is the shot noise arising from the detection of the
local oscillator intensity |Elo|2. Squeezed light has 〈:ΔÂθ(t)ΔÂθ(t) :〉 < 0; it
reduces the photocurrent variance below this shot noise (vacuum state) level.
The degree of squeezing is therefore defined by the size of the photocurrent
variance relative to the shot noise level. Do we simply take the ratio of the
two terms in (9.149), though? Probably not, because this ratio depends on
τd, and the shot noise always dominates in the limit τd → 0. The reason for
this is that the photocurrent variance is the integral, over all frequencies, of
the power spectrum

Pθ(ω) =
1
π

∫ ∞

0

dτ cosωτ lim
t→∞

[
i(t)i(t+ τ) −

(
i(t)

)2
]
. (9.150)

Thus, the shot noise term in (9.149) corresponds to a noise level in frequency
space of (Ge)2η|Elo|2/2π per unit bandwidth, multiplied by a bandwidth
2π/τd. The bandwidth is infinite when τd → 0.

To define the spectrum of squeezing we compare the contributions to
the photocurrent fluctuations in frequency space. The details can be found
in [9.11]. They result in a fairly obvious generalization of (9.149). In the limit
τd → 0, the correlation function needed to calculate Pθ(ω) is given by

i(t)i(t+ τ) −
(
i(t)

)2

= (Ge)2η2|Elo|2ζ(2κ)4〈:ΔÂθ(t)ΔÂθ(t+ τ) :〉
+ (Ge)2η|Elo|2δ(τ), (9.151)

where the normal and time ordering in 〈:ΔÂθ(t)ΔÂθ(t+τ) :〉 are both relevant.
After taking the Fourier transform (9.150), we then have

Pθ(ω) = P θhom(ω) + Pshot, (9.152)

where

P θhom(ω) ≡ (Ge)2η2|Elo|2ζ(2κ)
4
π

∫ ∞

0

dτ cosωτ lim
t→∞〈:ΔÂθ(t)ΔÂθ(t+ τ) :〉,

(9.153a)

and
Pshot(ω) ≡ (Ge)2η|Elo|2/2π. (9.153b)

The source-field spectrum of squeezing is defined by

S̄θ(ω) ≡ ηζSθ(ω) ≡ Pθ(ω) − Pshot

Pshot

= ηζ(2κ)8
∫ ∞

0

dτ cosωτ lim
t→∞〈:ΔÂθ(t)ΔÂθ(t+ τ) :〉.

(9.154)
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The spectrum of photocurrent fluctuations is given in terms of the source-field
spectrum of squeezing by

Pθ(ω)/Pshot = 1 + ηζSθ(ω). (9.155)

This is the spectrum given by the expressions (9.144a) and (9.144b).
We see here how the operator order in the definition of the spectrum

of squeezing is determined by the need to make a connection between the
quantum field radiated by the source and the classical stochastic current that
appears as data when a homodyne measurement of the field is made. Photo-
electric emission provides the physical connection between the two. For the
moment let us leave things there; we will return to the issue of operator order
in Sect. 9.3.6.

Note 9.16. Actual squeezing measurements are made with balanced detectors.
We have used a single unbalanced detector to simplify the analysis. Balanced
homodyne detection is described in the paper by Yuen and Chan [9.22]. It
is the optical analog of a well-known microwave technique. The slightly more
elaborate scheme is a little more tedious to analyze, but, ignoring technical
noise on the local oscillator, leads to the same result for the spectrum of
photocurrent fluctuations. It is treated in Sect. 18.2.2.

9.3.4 The Source-Field Spectrum of Squeezing
with Unit Efficiency

We have included two efficiencies in our calculation, which scale the source-
field spectrum of squeezing and decrease the observed shot noise reduction:
the detection efficiency η and the photon flux collection efficiency ζ. These
two efficiencies represent two occurrences of the one problem. The reduction
in shot noise results from the detection of correlated photons. In a realistic
measurement, however, the homodyne detector will generally not detect every
correlated photon emitted by the source. Photons are missed at random unless
η and ζ are both unity; this results in a breaking up of correlated photon
pairs and a smaller shot noise reduction than is available in principle. So
far as photon flux collection efficiency is concerned, setting ζ = 1 assumes
that the signal added to the local oscillator carries the total flux lost by the
subharmonic mode through dissipation—the flux lost by absorption in the
crystal as well as the radiated flux carried by the fields (9.120a) and (9.122a)
(the photon flux transmitted through the mirrors). A more realistic choice
for ζ is ζ(2κ) = γa1, or ζ(2κ) = γa2, which corresponds to one or other of
the radiated fields being detected. Then the source-field spectrum of squeezing
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detected at a single cavity output is

S̄θ(ω) = η
γaμ

γa1 + γa2 + γaα
Sθ(ω)

= ηγaμ8
∫ ∞

0

dτ cosωτ lim
t→∞〈:ΔÂθ(t)ΔÂθ(t+ τ) :〉, (9.156)

where μ = 1, 2.
Of course it is not possible, in practice, to recover photons that are ab-

sorbed in the crystal. Nevertheless, we can, at least conceptually, construct
a measurement scheme that combines all three cavity outputs and, thus, re-
alizes (within the limitations set by η) the full potential of the source for shot
noise reduction. It is interesting to see how this is done, since it demonstrates
the sense in which the source-field spectrum with unit detection efficiency,
Sθ(ω), is well defined. In fact, the scheme we now analyze could be extended
to treat the detection efficiency in the same way as we treat the loss in the
crystal. For simplicity, however, let us just imagine that η = 1.

The measurement scheme is illustrated in Fig. 9.8. The cavity output fields
are detected separately to produce the photocurrents i1(t), i2(t), and iα(t).
These currents are then added to arrive at the current i(t). Let us look at the
fluctuations in i(t) as a function of the relative strengths of the three local
oscillator fields. We specify these relative strengths by the unit vector

f ≡ (f1, f2, fα), f2
1 + f2

2 + f2
α = 1, (9.157)

writing (μ = 1, 2, α)

eiφt
√
tEμlo = fμe

−iωCt|Elo|eiθ, (9.158)

where t � 1 and φt denote the transmission coefficient and phase shift on
transmission of the three mirrors used to combine the local oscillator fields
with the cavity outputs (see Fig. 9.8).

The correlation functions for the three individual photocurrents iμ(t),
i = 1, 2, α, are given by (9.151) as (η = 1)

iμ(t)iμ(t+ τ) −
(
iμ(t)

)2

= (Ge)2(fμ|Elo|)2γaμ4〈:ΔÂθ(t)ΔÂθ(t+ τ) :〉
+ (Ge)2(fμ|Elo|)2δ(τ). (9.159)

On adding the photocurrents, we cannot simply add the correlation functions
to get the result for the total current i(t). We do expect the shot noise terms
to add in this way, but we must be careful about the homodyne terms, as
correlated photoelectron counts might occur at different detectors. Consider,
for example, how the derivation of the photocurrent variance (Eqs. 9.145–
9.149) is modified. In place of the averages over n2

t = nt(nt − 1) + nt and nt
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Fig. 9.8. Measurement scheme used to define the source-field spectrum of squeezing
with unit efficiency

in (9.148), we now need averages over

(nt +mt + kt)2 = [nt(nt − 1) + nt] + [mt(mt − 1) +mt] + [kt(kt − 1) + kt]
+ 2ntmt + 2mtkt + 2ktnt

and nt + mt + kt, where nt, mt, and kt denote the numbers of photoelectric
emissions at the three detectors during the interval t− τd to t. The averages
are to be taken with respect to the joint photoelectron counting distribution
(η = 1)

p(nt,mt, kt, t, τd)

=

〈

:
[(Ê†1 Ê1)(t)]ntτnt

d

nt!
exp[−(Ê†1 Ê1)(t)τd]

[(Ê†2 Ê2)(t)]mtτmt

d

mt!

× exp[−(Ê†2 Ê2)(t)τd]
[(Ê†αÊα)(t)]ktτkt

d

kt!
exp[−(Ê†αÊα)(t)τd] :

〉

, (9.160)

where (μ = 1, 2, α)

Êμ(t) ≡ e−iωCt
[Êμlo +

√
γaμΔã(t′)

]
. (9.161)

The calculation is performed in much the same way as before. The main
new element is the need to compute averages of the products ntmt, mtkt,
and ktnt—these averages do not factorize; they account for the correlations
between photoelectron counts at different detectors. Omitting the details, the
final result for the photocurrent correlation function is (η = 1)

i(t)i(t+ τ) −
(
i(t)

)2

= (Ge)2|Elo|2
(
f1
√
γa1 + f2

√
γa2 + fα

√
γaα

)2

× 4〈:ΔÂθ(t)ΔÂθ(t+ τ) :〉 + (Ge)2|Elo|2δ(τ).
(9.162)
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From this result, the source-field spectrum of squeezing for the three detector
arrangement, with η = 1, is

S̄θ(ω) = (f · g)2(2κ)8
∫ ∞

0

dτ cosωτ lim
t→∞〈:ΔÂθ(t)ΔÂθ(t+ τ) :〉, (9.163)

where g ≡ (√
γa1/2κ,

√
γa2/2κ,

√
γaα/2κ

)
.

On setting f = (1, 0, 0) or f = (0, 1, 0) we recover the definition (9.156) of
the source-field spectrum of squeezing at a single cavity output. The source-
field spectrum of squeezing with unit efficiency is recovered when the rela-
tive strengths of the local oscillators are chosen to maximize |S̄θ(ω)|. This is
achieved with the choice

f = funit ≡ g ≡
(√

γa1/2κ,
√
γa2/2κ,

√
γaα/2κ

)
. (9.164)

In this case f ·g = 1 and (9.163) corresponds to (9.154) taken with η = ζ = 1.

9.3.5 Free-Field Contributions

We are not finished yet with variations on the spectrum of squeezing. In gen-
eral the source-field spectrum of squeezing, including collection and detection
efficiency loss, is not the spectrum observed in an experiment. It is apparent,
from (9.120a) and (9.122a) for example, that we have been a little glib in
the way we added the local oscillator and source fields when writing (9.145)
and (9.161). For the detection of a single cavity output, we should really be
writing (μ = 1, 2)

Êμ(t) ≡ e−iωCt
[Êlo +

√
c/2L′r̃aμf (t′) +

√
γaμΔã(t′)

]
, (9.165)

with the free-field term included; thus, we still have to account for free-field
contributions. Formally, the free-field term is needed to preserve the com-
mutation relations. We have omitted it for simplicity because often—leaving
the formal niceties aside—the free-field contributes nothing to the spectrum
of squeezing. This is not always the case, though, and now we must under-
stand when the free field contributes and when it does not. We must also
determine what the free field contributes in those cases where it cannot be
ignored.

Now, including the free-field term, the full spectrum of squeezing is defined
by (μ = 1, 2)

S̄θ(ω) ≡ η8
∫ ∞

0

dτ cosωτ lim
t→∞

〈
:
[√

c/2L′R̂θaμf (t) +
√
γaμΔÂθ(t)

]

× [√
c/2L′R̂θaμf (t+ τ) +

√
γaμΔÂθ(t+ τ)

]
:
〉
, (9.166)
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where
R̂θaμf ≡ 1

2 (r̃aμfe−iθ + r̃†aμfe
iθ). (9.167)

It is assumed here that the free field has zero mean, or if there is a nonzero
mean, that it has been absorbed by adding it into the local oscillator ampli-
tude. Twelve additional terms now appear on the right-hand side of (9.156).
They introduce correlation functions, written in normal-ordered, time-ordered
(for τ ≥ 0) form,

〈r̃†aμf (t)r̃aμf (t+ τ)〉, 〈r̃†aμf (t+ τ)r̃aμf (t)〉,
〈r̃†aμf (t)r̃†aμf (t+ τ)〉, 〈r̃aμf (t+ τ)r̃aμf (t)〉,
〈r̃†aμf (t)Δã(t+ τ)〉, 〈Δã†(t+ τ)r̃aμf (t)〉,
〈r̃†aμf (t)Δã†(t+ τ)〉, 〈Δã(t+ τ)r̃aμf (t)〉,
〈Δã†(t)r̃aμf (t+ τ)〉, 〈r̃†aμf (t+ τ)Δã(t)〉,
〈Δã†(t)r̃†aμf (t+ τ)〉, 〈r̃aμf (t+ τ)Δã(t)〉.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.168)

If the reservoir that carries the free field is in the vacuum state, all of these
terms vanish and the spectrum of squeezing, S̄θ(ω), reduces to the source-
field spectrum of squeezing S̄θ(ω). The vanishing of the first ten correlation
functions is clearly guaranteed by the normal ordering and time ordering;
this ordering of the operators results in expressions with r̃aμf (t) and r̃†aμf (t)
acting to the right and left, respectively, on the vacuum state. The last two
correlation functions are seen to vanish by invoking (9.124b). In fact, these
correlation functions are zero, for τ ≥ 0, even if the reservoir state is not the
vacuum state. The result follows because Δã(t) and Δã†(t) cannot depend on
free-field operators evaluated at later times.

In summary, then, in our model, free-field contributions vanish if n̄aμ = 0.
They do not vanish when n̄aμ �= 0. In the latter case they can be calculated
using the method of Sect. 7.3.3. The explicit calculation is left as an exercise.

Exercise 9.10. When n̄aμ �= 0, correlations between the free field and source
field can be expressed in terms of source-field correlation functions using
(9.124a) and (9.124b). Use the results of Sect. 10.2.2 to derive the required
source-field correlation functions; hence show that the spectra of squeezing for
the degenerate parametric oscillator below threshold are given by (μ = 1, 2)

S̄X(ω) = η

[
ωC + ω

ωC
n̄(ωC + ω, Tμ) +

ωC − ω

ωC
n̄(ωC − ω, Tμ)

+
(

2n̄+ λ

1 − λ
− 2n̄aμ

)
2γaμκ(1 − λ)

[κ(1 − λ)]2 + ω2

]
, (9.169a)

and
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S̄Y (ω) = η

[
ωC + ω

ωC
n̄(ωC + ω, Tμ) +

ωC − ω

ωC
n̄(ωC − ω, Tμ)

+
(

2n̄− λ

1 + λ
− 2n̄aμ

)
2γaμκ(1 + λ)

[κ(1 + λ)]2 + ω2

]
, (9.169b)

where n̄(ωC + ω, Tμ) and n̄(ωC − ω, Tμ) are mean photon numbers evaluated
in the thermal states (9.92a). Note that we recover the spectra of squeezing
quoted in Chap. 10 (Eqs. 10.61a and 10.61b) by setting η = 1, γaμ = 2κ, and
n̄aμ = n̄(ωC + ω, Tμ) = n̄(ωC − ω, Tμ) = 0. Under these conditions it is still
possible to keep a nonzero value of n̄ = n̄aα; though in doing this, strictly we
should read γaμ = 2κ as γaμ ≈ 2κ, since if n̄aμ �= 0, it is permitted to have
γaα � γaμ but not γaα = 0.

9.3.6 Vacuum Fluctuations

The definition we have given for the spectrum of squeezing is based upon
homodyne detection of the squeezed light. By taking this operational approach
we gain a clear picture of what the spectrum of squeezing means in terms of
photocurrent fluctuations. As the photocurrent is a classical quantity, we can
always conjure up a picture of its fluctuations. It is tempting to extend the
picture to the field, to regard the fluctuating current to be a direct “mapping”
(measurement) of fluctuations in the quantized electromagnetic field. At this
point we must exercise some caution. Certainly we can visualize the field if it
carries classical (thermal, for example) fluctuations; we have already observed
that the spectrum of squeezing has a natural interpretation in terms of field
fluctuations in this case (see Note 9.14). Can we construct a mental picture
of the nonclassical fluctuations of the electromagnetic field though—one to
match our picture of what the photocurrent is doing? If we can, on what basis
is the picture to be constructed? What is the mathematical correspondence
between the fluctuations of the photocurrent and the “visualized” fluctuations
of the field?

We will now discuss these questions using the three detector measure-
ment scheme used to define the spectrum (9.163) (Fig. 9.8), but extending
our previous treatement to include the free-field term introduced in (9.166).
Combining the two expressions, equations (9.163) and (9.166), we have

S̄θ(ω)

= η8
∫ ∞

0

dτ cosωτ lim
t→∞

〈

:

[
√
c/2L′

∑

μ

fμR̂
θ
aμf (t) +

√
2κf · gΔÂθ(t)

]

×
[
√
c/2L′

∑

ν

fνR̂
θ
aνf (t+ τ) +

√
2κf · gΔÂθ(t+ τ)

]

:

〉

, (9.170)

where f and g are defined by (9.157) and (9.164), respectively, and the fμ,
μ = 1, 2, α, define the local oscillator strengths Eμlo (Eq. 9.158). We consider
an ideal measurement, with η = 1 and f ·g = funit ·g = 1. Then the spectrum
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of squeezing with unit efficiency, including the free-field term, is given by

Sθ(ω) = 8
∫ ∞

0

dτ cosωτ lim
t→∞

〈
:
(√

c/2L′F̂θ(t) +
√

2κΔÂθ(t)
)

×
(√

c/2L′F̂θ(t+ τ) +
√

2κΔÂθ(t+ τ)
)

:
〉
, (9.171)

where
F̂θ ≡ 1

2

( ˆ̃fe−iθ + ˆ̃f †eiθ
)
, (9.172)

with combined free field

ˆ̃f ≡ (
√
γa1r̃a1f +

√
γa2r̃a2f +

√
γaα r̃aαf )/

√
2κ; (9.173a)

alternatively, using (9.128), the combined free field is expressed in the form

ˆ̃
f =

∑

ω

√
ωC + ω

ωC
f̂ωe
−iωτ , (9.173b)

where f̂ω is defined in (9.131).
As we observed in Sect. 9.3.5, when the reservoirs—the carriers of the free

fields—are in the vacuum state, (9.171) reduces, by virtue of the normal and
time ordering, to the source-field spectrum of squeezing. This is the spectrum
computed in the work of Walls and coworkers [9.23, 9.24, 9.25]. We are now
going to relate this spectrum to one defined without normal and time ordering,
the spectrum used widely in the work of others [9.18, 9.22, 9.26, 9.27].

The question posed in the introduction can be answered in the affirmative:
yes, we can construct a mental picture, a visualization, of the fluctuations of
the quantized electromagnetic field. The formal basis for the construction is
provided by the quantum–classical correspondence, by adopting one of the
phase-space representations we met in Chaps. 3 and 4. In Chap. 10 we will
develop the phase-space analysis of the degenerate parametric oscillator in all
its details. For the moment it is enough to anticipate just one or two of the
results we meet there.

Equation 9.171 states that the spectrum of squeezing is the Fourier trans-
form of the normal-ordered, time-ordered correlation function of a quadra-
ture phase operator of the quantized cavity output field, the field

√
c/2L′ ˆ̃f +√

2κΔã. Since it is the Glauber–Sudarshan P representation that evaluates
normal-ordered, time-ordered correlation functions as “classical” integrals, the
Fokker–Planck equation in this representation (and its associated stochastic
differential equation) should provide the desired visualization of the fluctua-
tions of the field. As shown in Chap. 10, however, there is a problem here. The
Fokker–Planck equation in the P representation (Eqs. 10.51 and 10.74 with
σ = 1) does not possess positive semidefinite diffusion. The P distribution
must therefore be a generalized function (Sect. 3.1.3 and Exercise 9.1), and
as such, it seems that it cannot provide any sort of classical visualization of
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the field fluctuations. There is, nevertheless, a ready solution to this prob-
lem. The Fokker–Planck equations in both the Wigner and Q representations
(Eqs. 10.51 and 10.74 with σ = 0 and σ = −1) do have positive semidefinite
diffusion. Perhaps, then, we can base our visualization of the field fluctua-
tions on one of these representations. If we aim to do this, we must first
change the operator ordering in the expression for the spectrum of squeezing
so that it corresponds to the ordering appropriate to the chosen representation
(Sects. 4.1.1 and 4.1.4). Thus, let us reorder the operators in (9.171) to clarify
the connection between the spectrum of squeezing and the Wigner stochastic
representation of the electromagnetic field.

Note 9.17. The statements made here might convey a somewhat oversimpli-
fied view of the situation. There is, in general, no guarantee that either the
Wigner or the Q representation will provide a stochastic visualization of the
field fluctuations; indeed, for the degenerate parametric oscillator they do so
only in the small-noise limit (Sect. 10.1.2); moreover, as we will see shortly
(Chaps. 11 and 12), the P representation can be generalized so that it too
provides a stochastic visualization of the field fluctuations. The broader mes-
sage then is that “classical” visualizations of the fluctuations of a quantum
field are not unique. Different representations provide different visualizations,
the variety being a function largely of the ingenuity of those inventing the pic-
tures. Of course, there is always the deeper question of just how “classical,”
or physically well-defined, a particular visualization might be—i.e., how well
does it fit into a general theory of measurements?

The normal-ordered, time-ordered averages that appear in the expression for
the spectrum of squeezing may be written as as averages without normal
and time ordering by introducing appropriate commutators. There are four
operator products to consider:

〈: F̂θ(t)F̂θ(t+ τ):〉
= 〈F̂θ(t)F̂θ(t+ τ)〉 + 1

4

〈[ ˆ̃
f(t+ τ)e−2iθ + ˆ̃

f †(t+ τ), ˆ̃
f(t)

]〉
, (9.174a)

〈: F̂θ(t)ΔÂθ(t+ τ):〉
= 〈F̂θ(t)ΔÂθ(t+ τ)〉 + 1

4

〈[
Δã(t+ τ)e−2iθ +Δã†(t+ τ), ˆ̃f(t)

]〉〉, (9.174b)

〈:ΔÂθ(t)F̂θ(t+ τ):〉
= 〈ΔÂθ(t)F̂θ(t+ τ)〉 + 1

4

〈[ ˆ̃
f(t+ τ)e−2iθ + ˆ̃

f †(t+ τ), Δã(t)
]〉
, (9.174c)

〈:ΔÂθ(t)ΔÂθ(t+ τ):〉
= 〈ΔÂθ(t)ΔÂθ(t+ τ)〉 + 1

4

〈[
Δã(t+ τ)e−2iθ +Δã†(t+ τ), Δã(t)

]〉
.

(9.174d)

The free-field commutator that appears on the right-hand side of (9.174a)
can be evaluated using (9.173b) and the boson commutation relations for the
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Fourier components f̂ω (Eq. 9.132); thus, with the help of the quasimonochro-
matic condition ω � ωC , we may write

〈[ ˆ̃
f(t+ τ)e−2iθ + ˆ̃

f †(t+ τ), ˆ̃
f(t)

]〉
=

∑

ω

ωC + ω

ωC
〈[f †ω , fω]〉eiωτ

= −(L′/πc)
∫ ∞

−∞
dω

ωC + ω

ωC
eiωτ

= −(2L′/c)δ(τ). (9.175)

The next two relations, (9.174b) and (9.174c), call for expectations of com-
mutators between source-field operators and free-field operators. They may
be expressed in terms of source-field commutator expectations alone using
(9.173a) and the correlation functions (9.124a) and (9.124b). Specifically, we
have

〈[
Δã(t+ τ)e−2iθ +Δã†(t+ τ), ˆ̃

f(t)
]〉

=

⎧
⎨

⎩

−√
2κ

√
2L′/c

[〈[
Δã(t+ τ)e−2iθ +Δã†(t+ τ), Δã(t)

]〉]
τ > 0,

− 1
2

√
2κ

√
2L′/c

[〈[
Δã(t+ τ)e−2iθ +Δã†(t+ τ), Δã(t)

]〉]
τ = 0,

(9.176a)

and

〈[ ˆ̃f(t+ τ)e−2iθ + ˆ̃f †(t+ τ), Δã(t)
]〉

=

{
0 τ > 0,

− 1
2

√
2κ

√
2L′/c

[〈[
Δã(t+ τ)e−2iθ +Δã†(t+ τ), Δã(t)

]〉]
τ = 0.

(9.176b)

We notice now that the commutator appearing on the right-hand sides of
(9.176a) and (9.176b) appears also on the right-hand side of (9.174d), but
there with the opposite sign. Hence, on substituting (9.174a)–(9.174d) into
(9.171) and using (9.175), and (9.176a) and (9.176b), a cancellation of this
source-field commutator occurs, which gives

Sθ(ω) + 1 = 8
∫ ∞

0

dτ cosωτ lim
t→∞

〈[√
c/2L′F̂θ(t) +

√
2κΔÂθ(t)

]

× [√
c/2L′F̂θ(t+ τ) +

√
2κΔÂθ(t+ τ)

]〉
. (9.177)

The free-field commutator (9.175) contributes the +1 on the left-hand side

of this expression, the Fourier transform of (c/2L′)〈[ ˆ̃
f(t), ˆ̃

f †(t + τ)]〉 = δ(τ).
Apparently, the +1 arises from free-field vacuum fluctuations.

If we now compare (9.177) with (9.155) we see that the vacuum fluctuation
contribution in (9.177) stands in for the photocurrent shot noise in (9.155).
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Since the latter expression is explicitly normal ordered, vacuum fluctuations
contribute nothing to it. It explicitly includes the shot noise, however, which
arises from the self-correlation of photopulses making up the photocurrent
(Fig. 9.7); correlations between photopulses cause Sθ(ω) + 1 to deviate from
the shot noise level [9.21]. Now, on the basis of (9.177), we are permitted
an alternative picture, one in which all fluctuations—those expressed as pho-
tocurrent shot noise included—are considered to reside in the electromagnetic
field prior to its detection.

We can take the picture one step further by noting that the expectation
of the total field commutator—source field plus free field—vanishes:
〈[
F̂θ(t) +

√
2κ

√
2L′/cΔÂθ(t), F̂θ(t+ τ) +

√
2κ

√
2L′/cΔÂθ(t+ τ)

]〉
= 0;

(9.178)

in effect, the total field behaves as a free field (in an altered state). With the
aid of this result, we can re-express (9.177) as the Fourier transform

Sθ(ω) + 1 = 4(πc/L′)
1
2π

∫ ∞

−∞
dτeiωτ lim

t→∞

〈[
F̂θ(t) +

√
2κ

√
2L′/cΔÂθ(t)

]

× [
F̂θ(t+ τ) +

√
2κ

√
2L′/cΔÂθ(t+ τ)

]〉
. (9.179)

Then, since the averages appearing on the right-hand side of (9.179) can be
calculated as phase-space averages in the Wigner representation, it follows
that

Sθ(ω) + 1

= 4 × (πc/L′) ×
(

the variance of quadrature phase amplitude
fluctuations per unit bandwidth (in photon number units)

in the Wigner stochastic representation of the field.

)

(9.180)

The factor of 4 scales the single-mode quadrature variance of 1/4 to unity,
while the factor πc/L′ is the mode spacing in frequency space. The latter may
be omitted with the words “per unit bandwidth” replaced by “per mode.”

Note 9.18. The Wigner representation actually gives correlation functions in
symmetrized time order (Eq. 4.124). Strictly, then, the spectrum of quadrature
phase amplitude fluctuations calculated in this representation is the average
of (9.179) and the same expression with reverse operator order. This issue
of time order is unimportant, however, because of the vanishing commutator
expectation (9.178).

Exercise 9.11. Use (9.173b) and the correlation functions (9.124) to derive
the commutator expectation (9.178).
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Equation 9.180 provides the formal basis for the visualization of squeezed field
fluctuations most commonly encountered in the squeezing community. In the
Wigner representation, every mode of the field has a stochastic amplitude
which even in the vacuum state shows a nonzero level of noise. Squeezing
deamplifies—and amplifies—this vacuum noise level. In this picture, squeezed
light is not emitted from the source as energy deposited against a background
of nothing. Rather, the source sits embedded within a background of vac-
uum fluctuations, which it takes in, transforms, and reemits, with the net
result being a modification of the background vacuum fluctuations. In this
transformation, rather than emission imagery, the vacuum fluctuations are
like a processed substance. One must be careful not to confuse the end of the
processing with some point part of the way through, though. Thus it is the
transformed fluctuations outside the cavity and not the fluctuations inside the
cavity that are of concern in a standard squeezing measurement. Even though,
aside from its scaling, the right-hand side of (9.179) has the same form as the
Fourier integrals used to compute (ΔX)2(ω) and (ΔY )2(ω) in (9.142a) and
(9.142b), the two types of spectra are completely different. Part of the dif-
ference comes from the fact that the cavity acts as a filter which suppresses
vacuum fluctuations (and thermal fluctuations) at frequencies outside the cav-
ity linewidth (see the discussion above Note 9.13). This is not the complete
story, though. The spectrum of field fluctuations outside the cavity, (9.179),
is not simply the sum of a vacuum noise level (the +1), a thermal noise level
for the free field, and a noise level for real photons emitted through the cavity
mirrors. The squeezing comes about because there are correlations between
the fluctuations of the free-field modes driving the cavity and the fluctuating
intracavity source-field amplitude. The presence of these correlations is clear
from the operator expressions for the source-field Fourier components (9.140a)
and (9.140b); in these the free-field operators f̂ω and f̂ †−ω explicitly appear.
The Wigner representation captures the same correlations (for symmetric op-
erator ordering) in a c-number relationship between the source field and the
free field.

9.3.7 Squeezing in the Wigner Representation:
A Comment on Interpretation

In order to see exactly what the Wigner representation has to say about
the spectrum of squeezing, let us restate the principal results from the last
few sections with the field operators replaced by phase-space variables. For
simplicity, we take γa1 = γaα = 0; thus, we consider a single-ended cavity
with output field traveling to the right:

Ê→(z, t) =
√
c/2L′ra2f (t′) +

√
2κa(t′), (9.181)

z > 	 + d and 2κ = γa2. We also ignore the frequency dependence of the
thermal photon number, setting n̄a1(ωC + ω, T1) = n̄(ωC , T1) ≡ n̄.
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We now follow the development in Sect. 9.3.1. First, expanding the fields
as in (9.128) and (9.129), the operator expression (9.181) is replaced by

E→(z, t) =
∑

ω

(√
c/2L′fω +

√
2καω

)
e−i(ωC+ω)t′ , (9.182)

ct′ ≡ ct−(z−	−d), where E→(z, t), fω, and αω are phase-space variables in the
Wigner representation (Sects. 4.1.4 and 4.3.1). Then the Fourier amplitudes
of the source field are related to those of the free field through phase space
versions of the steady-state equations (9.130a) and (9.130b). We have

0 = −(κ− iω)αω − ieiψκλα∗−ω −
√
c/2L′

√
2κfω, (9.183a)

0 = −(κ− iω)α∗−ω + ie−iψκλαω −
√
c/2L′

√
2κf∗−ω, (9.183b)

with the operator expectations (9.133) replaced by
(
fωfω′

)
W

=
(
f∗ωf∗ω′

)
W

= 0, (9.184a)
(
f∗ωfω′

)
W

= (n̄+ 1
2 )δω,ω′ , (9.184b)

where
( )

W
denotes the phase-space average in the Wigner representation;

thus, we have used
(
f∗ωfω

)
W

= 1
2 (〈f̂ †ω f̂ω〉 + 〈f̂ω f̂ †ω〉) = n̄+ 1

2 . (9.185)

Finally, solving (9.183a) and (9.183b), and introducing

Xω
f ≡ 1

2 [fωe−i
1
2 (ψ−π/2) + f∗−ωe

i 12 (ψ−π/2)], (9.186a)

Y ωf ≡ 1
2 [fωe−i

1
2 (ψ+π/2) + f∗−ωe

i 12 (ψ+π/2)], (9.186b)

gives the intracavity field quadrature phase amplitudes [phase space versions
of (9.139a) and (9.139b)]

Xω = −
√

c

2L′
√

2κ
Xω
f

κ(1 − λ) − iω
, (9.187a)

and

Yω = −
√

c

2L′
√

2κ
Y ωf

κ(1 + λ) − iω
, (9.187b)

which are the phase space versions of (9.140a) and (9.140b).
Equations 9.182–9.187 define the visualization of squeezed vacuum fluctu-

ations within the Wigner representation. Vacuum fluctuations enter through
the variance of 1

2 per free-field mode added to the thermal photon number
in (9.184b) and (9.185). These fluctuations, together with the thermal fluc-
tuations, drive the parametric oscillator through the terms fω and f∗−ω in
(9.183a) and (9.183b). The oscillator response is then added to the free field
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to produce the total field in (9.182). The net result is a transformed spectrum
of quadrature phase amplitude fluctuations. The two spectra are given by

2L′

c

(∣
∣
∣
√
c/2L′Xω

f +
√

2κXω

∣
∣
∣
2
)

W

=

(∣
∣
∣
∣X

ω
f + 2κ

Xω
f

κ(1 − λ) − iω

∣
∣
∣
∣

2
)

W

=
∣
∣
∣∣
κ(1 + λ) + iω

κ(1 − λ) − iω

∣
∣
∣∣

2

|Xω
f |2

=
1
4
(2n̄+ 1)

[κ(1 + λ)]2 + ω2

[κ(1 − λ)]2 + ω2
,

(9.188a)

and

2L′

c

(∣
∣
∣
√
c/2L′Y ωf +

√
2κYω

∣
∣
∣
2
)

W

=
1
4
(2n̄+ 1)

[κ(1 − λ)]2 + ω2

[κ(1 + λ)]2 + ω2
, (9.188b)

which, apart from an overall scale factor, agree with the spectra of pho-
tocurrent fluctuations calculated from (9.154) and (9.155), or (9.155) and
(9.179); specifically, (9.188a) and (9.188b) are the spectra given by (9.169a)
and (9.169b) for the specified conditions of a single-ended cavity.

This phase-space visualization is very appealing and a useful way to think
about squeezed light. Some words of caution and qualification are called for,
however. First a word of caution against a possible misconception. Squeezed
states are usually discussed with reference to a single mode, with the Wigner
distribution (9.47b) plotted to illustrate the squeezing. It is tempting to view
the spectra (9.188a) and (9.188b) in single-mode terms—as the frequency-
dependent variances of a single-mode Wigner function. Strictly, this is not
correct. These spectra describe properties of a two-mode Wigner function
(other than at ω = 0), since squeezing arises from the correlated fluctuations
of the pair of modes with frequencies ωC + ω and ωC − ω. This is clear from
a number of the above equations. Fundamentally, it goes back to the issue
illustrated in Fig. 9.5 and expressed in definitions (9.139) and (9.186) of the
frequency-dependent quadrature phase amplitudes: two modes contribute to
the modulation of a quadrature phase amplitude at a given frequency ω, those
with the symmetrically displaced frequencies ωC ± ω.

Then there is a qualification which is possibly more important. It con-
cerns the identification of a formal variance of field fluctuations, as in (9.188a)
and (9.188b), with the variance of a photocurrent produced by photoelectric
detection. Should we accept the literal interpretation that the photocurrent
fluctuations are simply a proportional response to the visualized field fluc-
tuations, as they appear within the Wigner representation? What is more,
should we do so by fiat, without even analyzing the photoelectric detection as
a physical processes? The answer, surely, is negative on both counts. Suppose,
for example, we consider the optical spectrum, and persist with the literal in-
terpretation that the measured quantity is a proportional response to the field
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fluctuations in the Wigner representation. In this case we solve (9.183a) in the
steady state for

αω = −
√

c

2L′
√

2κ
(κ− iω)fω − ieiψκλf∗−ω

(κ− iω)2 − κ2λ2
, (9.189)

and compute the spectrum

2L′

c

(∣∣
∣
√
c/2L′fω +

√
2καω

∣∣
∣
2
)

W

=
∣
∣
∣
∣1 − 2κ

κ− iω

(κ− iω)2 − κ2λ2

∣
∣
∣
∣

2 (
f∗ωfω

)
W

+ 4κ
∣
∣
∣
∣

ieiψκλ

(κ− iω)2 − κ2λ2

∣
∣
∣
∣

2 (
f∗−ωf−ω

)
W

= (n̄+ 1
2 )

1
2

{
[κ(1 + λ)]2 + ω2

[κ(1 − λ)]2 + ω2
+

[κ(1 − λ)]2 + ω2

[κ(1 + λ)]2 + ω2

}

= n̄+ 1
2 + (2n̄+ 1)

{
κ2λ

[κ(1 − λ)]2 + ω2
− κ2λ

[κ(1 + λ)]2 + ω2

}
. (9.190)

The result is of course incorrect, since the + 1
2 , the vacuum fluctuation vari-

ance, should not contribute to the optical spectrum. The correct calculation
is made in terms of normal-ordered field operators and yields the optical spec-
trum

2L′

c

〈(√
c/2L′f̂ †ω +

√
2κα̂†ω

)(√
c/2L′f̂ω +

√
2κα̂ω

)〉

=
∣
∣
∣∣1 − 2κ

κ− iω

(κ− iω)2 − κ2λ2

∣
∣
∣∣

2

〈f̂ †ω f̂ω〉 + 4κ
∣
∣
∣∣

ieiψκλ

(κ− iω)2 − κ2λ2

∣
∣
∣∣

2

〈f̂−ω f̂ †−ω〉

= n̄
1
2

{
[κ(1 + λ)]2 + ω2

[κ(1 − λ)]2 + ω2
+

[κ(1 − λ)]2 + ω2

[κ(1 + λ)]2 + ω2

}

+
κ2λ

[κ(1 − λ)]2 + ω2
− κ2λ

[κ(1 + λ)]2 + ω2

= n̄+ (2n̄+ 1)
{

κ2λ

[κ(1 − λ)]2 + ω2
− κ2λ

[κ(1 + λ)]2 + ω2

}
. (9.191)

The difference is that where 〈f̂ †ω f̂ω〉 and 〈f̂−ω f̂ †−ω〉 = 〈f̂ †−ω f̂−ω〉 + 1 appear
in the second line of (9.191), a literal interpretation of the Wigner phase-
space variables substitutes

(
f∗ωfω

)
W

= 〈f̂ †ω f̂ω〉 + 1
2 and

(
f∗−ωf−ω

)
W

=
〈f̂ †−ω f̂−ω〉 + 1

2 . Field operators are needed to keep this sort of book-keeping
straight when changing from one measurement scheme to another—in this
case from homodyne detection to photoelectron counting.

In summary, the qualification is this. The Wigner visualization of squeezed
vacuum fluctuations is appealing because it supports an inclination towards
naive realism; it provides a picture of realistic field fluctuations, simply tran-
scribed through measurement as the observed photocurrent fluctuations; it
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presents a simple view of something happening in the field to cause what is
seen to happen in the photocurrent. The appealing realism is a deception,
though, since it is precisely the connection between the quantum field—with
its operators and Hilbert space—and the classical photocurrent—a time series
of real numbers—that raises the difficult questions of interpretation and mea-
surement in quantum mechanics. The constructed visualization of squeezed
vacuum fluctuations simply ignores these questions, basing its credibility on
the fact that it does, indeed, provide a solution to the technical question of
calculating a spectrum of squeezing.

For a broader view of things we might note that there is a version of “quan-
tum” electrodynamics known as stochastic electrodynamics (SED) which
claims to do away with field quantization altogether by adding to the classical
Maxwell field a stochastic (and realistic) vacuum field [9.28, 9.29, 9.30, 9.31,
9.32, 9.33, 9.34]. Adopted literally, the Wigner visualization of squeezed vac-
uum fluctuations accepts the claim of SED. It is beyond the scope of this book
to weigh the evidence for and against this claim. Suffice it to say that it is
not considered valid by proponents of conventional quantum electrodynamics,
even though it can often have illuminating things to say about the physics of
squeezed light [9.35, 9.36].

As a final point, we might take note of our reliance on the linearity of the
equations of motion (9.130) and (9.183) when setting up the Wigner visual-
ization of squeezed vacuum fluctuations. As we will see shortly, phase-space
treatments of the parametric oscillator meet with serious difficulties in the
nonlinear regime. The topic is addressed initially in Chap. 10 and more ex-
plicitly in Chap. 12.

Note 9.19. The comments at the beginning of this chapter assert that the
Glauber–Sudarshan P representation is special amongst the phase-space rep-
resentations when we come to consider “classical” visualizations of the electro-
magnetic field. How is this distinction to be defended in the face of the Wigner
visualization of squeezed vacuum fluctuations? There is, in fact, a clear differ-
ence between the physical status of “classical” phase-space descriptions in the
P and Wigner representations. When such a description exists in the P repre-
sentation, this means that the classical field concept can be used throughout
the entire analysis of some experimental scenario, even in treating the pho-
toelectric detection involved in the measurement process. Thus, the complete
scenario can be understood on the basis of classical fields. When the Wigner
representation is used, the measurement stage is first analyzed for a quantized
field, and only after the correct operator expression describing the measure-
ment has been obtained is this expression recast in phase-space language. Of
course, an operator expression can be recast in any number of representations.
The relevant question is whether the classical field concept can, or cannot, be
adopted a priori (fundamentally) for the analysis of an entire experimental
scenario, including—most importantly in fact—the measurement stage; it is
the Glauber–Sudarshan P representation that provides a test of whether it
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can or it cannot. From a historical perspective, the Glauber–Sudarshan P
representation puts the proposal of Bohr, Kramers, and Slater [9.37] to the
test [9.38].

Exercise 9.12. Derive an expression for the spectrum of squeezing Sθ(ω) and
the spectrum of photocurrent fluctuations Pθ(ω) based on the evaluation of
correlation functions in the Q representation.
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The Degenerate Parametric Oscillator II:

Phase-Space Analysis in the Small-Noise Limit

We turn now to an analysis of the degenerate parametric oscillator within the
phase-space representations. Overall, the program is similar to the one carried
out for the laser in Chap. 8, but with one fundamentally new element encoun-
tered here. At the start of the exercise, our premise is that the phase-space
approach will lead to an acceptable Fokker–Planck equation. This premise
will be seen to be incorrect, and two new topics emerge from the problems
encountered. First, a new representation is introduced, the so-called positive
P representation, formulated as a generalization of the Glauber–Sudarshan
P representation to rescue the overall strategy of the quantum–classical cor-
respondence in the small-noise limit; we make use of the positive P represen-
tation here, though its systematic development is postponed until Chap. 11.
Second, the issue of quantum fluctuations outside the small-noise limit be-
comes a concern, since for large noise the positive P representation encoun-
ters difficulties of its own. These difficulties are explored in some detail in
Chap. 12.

10.1 Phase-Space Formalism
for the Degenerate Parametric Oscillator

Analysis of the master equation (9.97) is made difficult by the nonlinear cou-
pling between the subharmonic mode and the pump mode. Without this cou-
pling (g = 0) the subharmonic mode is described by the master equation for
the damped harmonic oscillator (Eq. 1.73) and the pump mode by the mas-
ter equation for the driven damped harmonic oscillator (Eq. 9.102). Both of
these equations may be solved by a number of methods, but there is no known
analytic solution to the full equation with the nonlinear coupling. Our aim
is to make progress on the basis of a phase-space formulation, by invoking
approximations similar to those used for the laser. First, we convert the mas-
ter equation into phase-space form. We aim to do this for the P , the Q, and
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the Wigner representations. Let us begin with the calculation within the P
representation.

10.1.1 Phase-Space Equation of Motion in the P Representation

The definitions and results of Sect. 3.2.1 generalize to two modes in an obvious
manner. The two-mode characteristic function is denoted χ

N
(z, z∗, w, w∗) and

the corresponding distribution as P (α, α∗, β, β∗). We have previously derived
the phase-space equation of motion for the harmonic oscillator, and most of
the terms that appear in the master equation for the degenerate parametric
oscillator (Eq. 9.97) were encountered there. Thus, by referring to the former
equation of motion (Eq. 3.47), we can immediately write

∂P

∂t
=
[
(κ+ iωC)

∂

∂α
α+ (κ− iωC)

∂

∂α∗
α∗ + 2κn̄

∂2

∂α∂α∗

+(κp + i2ωC)
∂

∂β
β + (κp − i2ωC)

∂

∂β∗
β∗ + 2κpn̄p

∂2

∂β∂β∗

]
P

+
(
∂P

∂t

)

ab

+
(
∂P

∂t

)

drive

. (10.1)

There are two new terms, the last two terms on the right-hand side of (10.1),
which are contributed, respectively, by the mode-coupling and the pump-
mode-driving terms in (9.97). To derive their explicit form, we start from
the corresponding expressions in the equation of motion for the characteristic
function χ

N
:

(
∂χ

N

∂t

)

ab

= tr{[(g/2)
(
a†2bρ− ρa†2b

)− (g/2)
(
a2b†ρ− ρa2b†

)]

× eiz
∗a†eizaeiw

∗b†eiwb}, (10.2)

and
(
∂χ

N

∂t

)

drive

= tr{[− iĒ0e
−i2ωCt(b†ρ− ρb†) − iĒ∗0 ei2ωC t(bρ− ρb)

]

× eiz
∗a†eizaeiw

∗b†eiwb}. (10.3)

The right-hand sides of (10.2) and (10.3) must be rewritten as partial deriva-
tives of χ

N
. Following the strategy of Sect. 3.2.2, with the help of relations
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(3.78), we have

(
∂χ

N

∂t

)

ab

= (g/2)

[(
∂

∂(iz∗)
+ iz

)2
∂

∂(iw)
− ∂2

∂(iz∗)2

(
∂

∂(iw)
+ iw∗

)

+
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∂

∂(iz)
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)2
∂
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− ∂2

∂(iz)2

(
∂
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+ iw

)]

χ
N

= (g/2)
[
2iz

∂2

∂(iz∗)∂(iw)
− iw∗

∂2

∂(iz∗)2
+ (iz)2

∂

∂(iw)

+2iz∗
∂2

∂(iz)∂(iw∗)
− iw

∂2

∂(iz)2
+ (iz∗)2

∂

∂(iw∗)

]
χ
N
, (10.4)

and
(
∂χ

N

∂t

)

drive

=
[− iĒ0e

−i2ωCt(iw) + iĒ∗0 ei2ωCt(iw∗)
]
χ
N
. (10.5)

Then, substituting the Fourier transform of P (α, α∗, β, β∗) for χ
N

(z, z∗, w, w∗)
and following steps in parallel to those leading from (3.83) to (3.85), the two
new terms in the phase-space equation of motion are

(
∂P

∂t

)

ab

= (g/2)
[
−2

∂

∂α
α∗β +

∂

∂β∗
α∗2 +

∂2

∂α2
β − 2

∂

∂α∗
αβ∗

+
∂

∂β
α2 +

∂2

∂α∗2
β∗

]
P, (10.6)

and (
∂P

∂t

)

drive

= i

(
∂

∂β
Ē0e
−i2ωCt − ∂

∂β∗
Ē∗0 ei2ωC t

)
P. (10.7)

Equations 10.1, 10.6, and 10.7 give the phase-space equation of motion for the
degenerate parametric oscillator in the P representation:

∂P

∂t
=
{
∂

∂α

[
(κ+ iωC)α− gα∗β

]
+

∂

∂α∗
[
(κ− iωC)α∗ − gαβ∗

]

+
∂

∂β

[
(κp + i2ωC)β + (g/2)α2 + iĒ0e

−i2ωCt
]

+
∂

∂β∗
[
(κp − i2ωC)β∗ + (g/2)α∗2 − iĒ∗0 ei2ωCt

]

+(g/2)
(
∂2

∂α2
β +

∂2

∂α∗2
β∗

)
+ 2κn̄

∂2

∂α∂α∗
+ 2κpn̄p

∂2

∂β∂β∗

}
P.

(10.8)
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This equation has the fortunate property that it only involves deriva-
tives up to second order. It therefore seems that we can formulate a clas-
sical stochastic model for the degenerate parametric oscillator without hav-
ing to use the system size expansion to justify a truncation of higher-
order derivatives. In this respect, we are in a better position than we were
with laser theory. Although we may not be able to solve the nonlinear
stochastic differential equations corresponding to (10.8) analytically, numer-
ical simulation of the equations should be feasible. Unfortunately, however,
Eq. 10.8 presents us with a new difficulty: this equation is not a true Fokker–
Planck equation, because it does not possess positive definite diffusion. To
see this, we introduce real and imaginary parts of the phase-space vari-
ables,

α = x+ iy, α∗ = x− iy, (10.9a)
β = u+ iv, β∗ = u− iv. (10.9b)

Then, expressed in terms of the real variables x, y, u, and v, the second-order
derivatives in phase-space equation (10.8) are

(g/2)
(
∂2

∂α2
β +

∂2

∂α∗2
β∗

)
+ κn̄

∂2

∂α∂α∗
+ κpn̄p

∂2

∂β∂β∗

=
1
2
∂2

∂x2

[
κn̄+ (g/2)u

]
+

1
2
∂2

∂y2

[
κn̄− (g/2)u

]

+ (g/2)
∂2

∂x∂y
v +

1
2
κpn̄p

(
∂2

∂u2
+

∂2

∂v2

)
. (10.10)

Hence our “Fokker–Planck” equation has diffusion matrix

D(x, y, u, v) =

⎛

⎜
⎜
⎜⎜
⎝

κn̄+ (g/2)u (g/2)v 0 0

(g/2)v κn̄− (g/2)u 0 0

0 0 κpn̄p 0

0 0 0 κpn̄p

⎞

⎟
⎟
⎟⎟
⎠
. (10.11)

Positive definite diffusion requires that the quadratic form

zTDz

=
[
κn̄+ (g/2)u

]
z2
1 +

[
κn̄− (g/2)u

]
z2
2 + (gv)z1z2 + κpn̄p(z2

3 + z2
4)
(10.12)

be positive for all choices of the vector z. Clearly this is not so for all points
throughout the phase space; it is not so for v = 0 and |u| > 2κn̄/g, for
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example. More generally, a necessary and sufficient condition for D to be
positive definite is that the complex amplitude β = u + iv lies within the
circle |β|2 = u2 + v2 = 4n̄(κ/g)2—i.e., for the diffusion matrix to be positive
definite, we require

|β|2 = u2 + v2 < 4n̄(κ/g)2. (10.13)

Exercise 10.1. Prove that the quadratic form az2
1 + bz2

2 + 2cz1z2 is positive
definite if and only if a > 0, b > 0, and ab > c2. Inequality (10.13) follows
from this result.

Actually, a diffusion matrix is acceptable if it is merely positive semidefi-
nite; it is permissible for zTDz to vanish. This happens when the vector
z points in a direction in which locally the diffusion is zero (when z is
an eigenvector of D with zero eigenvalue). Choosing n̄p = 0, the diffusion
matrix (10.11) is at best positive semidefinite, since then there is no dif-
fusion in the u and z directions. Thus, the problem with the phase-space
equation of motion for the degenerate parametric oscillator in the P repre-
sentation is that it only possesses positive semidefinite diffusion within the
region |β|2 ≤ 4n̄(κ/g)2. For a parametric oscillator at optical frequencies,
the diffusion matrix is effectively not positive semidefinite anywhere in phase
space, since at room temperature n̄ ∼ 10−44, while κ/g ∼ 104; inequality
(10.13) is violated for almost all |β|2. (At threshold we might approximate
the physically relevant values of |β|2 by the undepleted pump photon number
|β|2 = |Ē0/κp|2 ∼ 108.)

Note 10.1. The parameter g/κ plays an important role in determining the
size of the quantum fluctuations in the degenerate parametric oscillator. To
demonstrate the physical significance of this parameter, we use (9.80) and
(9.54) to write

( g
κ

)2

=
�2ωC
ε0AL̄

(F
π

ωC	χ
(2)

n3/2c

)2

cos2(φp − 2φ), (10.14)

and (9.81), (9.64), and (9.59) to write

∣
∣∣
∣
Ē0

κp

∣
∣∣
∣

2

= λ2 ε0AL̄

�2ωC

(
π

F
n3/2c

ωC	χ(2)

)2

cos−2(φp − 2φ). (10.15)

The quantity |Ē0/κp|2 is the mean photon number in the pump mode assuming
there is no pump depletion (Eq. 9.103). Now, setting λ = 1 in (10.15), we have

( g
κ

)2

= |Ēthr
0 /κp|−2 = (nthr

p )−1, (10.16)
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where we introduce the threshold photon number

nthr
p =

ε0AL̄

�2ωC

(
π

F
n3/2c

ωC	χ(2)

)2

cos−2(φp − 2φ); (10.17)

nthr
p is the undepleted pump-mode photon number required to reach thres-

hold—typically nthr
p ∼ 108.

We might have anticipated that there would be a problem with the phase-
space formulation for the degenerate parametric oscillator in the P represen-
tation, since we have seen that degenerate parametric amplification generates
a squeezed state, a state for which a positive, nonsingular P distribution does
not exist. The Q and Wigner distributions, on the other hand, do exist for
a squeezed state as ordinary positive functions (Exercise 8.1). Perhaps, then,
we should base our phase-space analysis of the degenerate parametric oscil-
lator on one of these representations. Let us now see what the phase-space
equation of motion corresponding to master equation (9.97) looks like in the
Q and Wigner representations.

10.1.2 Phase-Space Equations of Motion in the Q
and Wigner Representations

Fokker–Planck equations for the damped harmonic oscillator in the Q and
Wigner representations were derived in Chap. 4. Drawing upon these results
(Eqs. 4.14 and 4.37), as in (10.1) we can immediately write

∂Q,W

∂t

=
{

(κ+ iωC)
∂

∂α
α+ (κ− iωC)

∂

∂α∗
α∗ + 2κ

[
n̄+ 1

2 (1 − σ)
] ∂2

∂α∂α∗

+ (κp + i2ωC)
∂

∂β
β + (κp − i2ωC)

∂

∂β∗
β∗

+2κp
[
n̄p + 1

2 (1 − σ)
] ∂2

∂β∂β∗

}
Q,W +

(
∂Q,W

∂t

)

ab

+
(
∂Q,W

∂t

)

drive

,

(10.18)

where σ takes the values −1 and 0 for Q and W , respectively. The mode-
coupling and pump-mode-driving terms may be obtained from those in the
P representation (Eqs. 10.4 and 10.5) using relationships (4.9) and (4.34)
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connecting the different characteristic functions; thus, we obtain
(
∂χ

A
, χ

S

∂t

)

ab

= e−
1
2 (1−σ)|z|2e−

1
2 (1−σ)|w|2

(
∂χ

N

∂t

)

ab

= (g/2)

[

2iz
(

∂

∂(iz∗)
− 1

2 (1 − σ)iz
)(

∂

∂(iw)
− 1

2 (1 − σ)iw∗
)

− iw∗
(

∂

∂(iz∗)
− 1

2 (1 − σ)iz
)2

+ (iz)2
(

∂

∂(iw)
− 1

2 (1 − σ)iw∗
)

+ 2iz∗
(

∂

∂(iz)
− 1

2 (1 − σ)iz∗
)(

∂

∂(iw∗)
− 1

2 (1 − σ)iw
)

−iw
(

∂

∂(iz)
− 1

2 (1 − σ)iz∗
)2

+ (iz∗)2
(

∂

∂(iw∗)
− 1

2 (1 − σ)iw
)]

χ
A
, χ

S
,

(10.19)

and
(
∂χ

A
, χ

S

∂t

)

drive

= e−
1
2 (1−σ)|z|2e−

1
2 (1−σ)|w|2

(
∂χ

N

∂t

)

drive

=
[− iĒ0e

−i2ωCt(iw) + iĒ∗0 ei2ωCt(iw∗)
]
χ
A
, χ

S
. (10.20)

Then substituting the explicit values of σ into (10.19), in the Q representation
we have

(
∂χ

A

∂t

)

ab

= (g/2)
[
2iz

∂2

∂(iz∗)∂(iw)
− iw∗

∂2

∂(iz∗)2
− (iz)2

∂

∂(iw)

+2iz∗
∂2

∂(iz)∂(iw∗)
− iw

∂2

∂(iz)2
− (iz∗)2

∂

∂(iw∗)

]
χ
A
, (10.21a)

and in the Wigner representation,
(
∂χ

S

∂t

)

ab

= (g/2)
[
2iz

∂2

∂(iz∗)∂(iw)
− iw∗

∂2

∂(iz∗)2
− 1

4 (iz)2(iw∗)

+2iz∗
∂2

∂(iz)∂(iw∗)
− iw

∂2

∂(iz)2
− 1

4 (iz∗)2(iw)
]
χ
S
. (10.21b)

Passage from the equations of motion for the characteristic functions, χ
A

and
χ
S
, to equations of motion for the distributions Q and W is made with the
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substitutions

iz → − ∂

∂α
, iz∗ → − ∂

∂α∗
,

∂

∂(iz)
→ α,

∂

∂(iz∗)
→ α∗,

iw → − ∂

∂β
, iw∗ → − ∂

∂β∗
,

∂

∂(iw)
→ β,

∂

∂(iw∗)
→ β∗,

where derivatives are to be placed to the left in each term. With these sub-
stitutions, from (10.20), we obtain

(
∂Q,W

∂t

)

drive

=
(
iĒ0e

−i2ωCt
∂

∂β
− iĒ∗0 ei2ωCt

∂

∂β∗

)
Q,W, (10.22)

while from (10.21a) and (10.21b), respectively, we obtain
(
∂Q

∂t

)

ab

= (g/2)
(
−2

∂

∂α
α∗β +

∂

∂β∗
α∗2

− ∂2

∂α2
β − 2

∂

∂α∗
αβ∗ +

∂

∂β
α2 − ∂2

∂α∗2
β∗

)
Q, (10.23a)

and
(
∂W

∂t

)

ab

= (g/2)
(
−2

∂

∂α
α∗β +

∂

∂β∗
α∗2

+
1
4

∂3

∂α2∂β∗
− 2

∂

∂α∗
αβ∗ +

∂

∂β
α2 +

1
4

∂3

∂α∗2∂β

)
W. (10.23b)

Finally, substituting (10.22) and (10.23a) into (10.18), the phase-space equa-
tion of motion for the degenerate parametric oscillator in the Q representation
is given by

∂Q

∂t
=
{
∂

∂α

[
(κ+ iωC)α− gα∗β

]
+

∂

∂α∗
[
(κ− iωC)α∗ − gαβ∗

]

+
∂

∂β

[
(κp + i2ωC)β + (g/2)α2 + iĒ0e

−i2ωC t
]

+
∂

∂β∗
[
(κp − i2ωC)β∗ + (g/2)α∗2 − iĒ∗0 ei2ωCt

]

− (g/2)
(
∂2

∂α2
β +

∂2

∂α∗2
β∗

)
+ 2κ(n̄+ 1)

∂2

∂α∂α∗

+2κp(n̄p + 1)
∂2

∂β∂β∗

}
Q. (10.24)

Similarly, from (10.22), (10.23b), and (10.18), the phase-space equation of
motion for the degenerate parametric oscillator in the Wigner representation
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is given by

∂W

∂t
=
{
∂

∂α

[
(κ+ iωC)α− gα∗β

]
+

∂

∂α∗
[
(κ− iωC)α∗ − gαβ∗

]

+
∂

∂β

[
(κp + i2ωC)β + (g/2)α2 + iĒ0e

−i2ωCt
]

+
∂

∂β∗
[
(κp − i2ωC)β∗ + (g/2)α∗2 − iĒ∗0 ei2ωCt

]

+ 2κ
(
n̄+ 1

2

) ∂2

∂α∂α∗
+ 2κp

(
n̄p + 1

2

) ∂2

∂β∂β∗

+
1
4
(g/2)

(
∂3

∂α2∂β∗
+

∂3

∂α∗2∂β

)}
W. (10.25)

Do these equations offer a resolution to our problem with non-positive-
semidefinite diffusion? Before we answer this question, the first thing to notice
is that the Wigner representation yields an equation of motion with third-
order derivatives; the exact truncation at second order obtained in (10.8)
[and (10.24)] has been lost in (10.25). Perhaps the third-order derivatives
may be dropped, though, on the basis of a system size expansion. In this case
the Wigner representation does give a Fokker–Planck equation with positive
definite diffusion; the diffusion matrix is the diagonal matrix

D = diag
[
κ
(
n̄+ 1

2

)
, κ

(
n̄+ 1

2

)
, κp

(
n̄p + 1

2

)
, κp

(
n̄p + 1

2

)]
. (10.26)

The dropping of third-order derivatives is valid in the limit of small quan-
tum noise (Sects. 10.2.1 and 10.2.2), and the resulting Fokker–Planck equa-
tion underlies the visualization of squeezed vacuum fluctuations discussed
in Sect. 9.3.7. Thus, in the small-noise limit, the problem of non-positive-
semidefinite diffusion can be avoided by using the Wigner representation in
place of the P representation. The solution is not a fundamental one, though,
because it only applies when the small-noise truncation is valid (see also Note
9.19).

Note 10.2. Stochastic methods for dealing with third-order derivatives do in
fact exist. Gardiner [10.1] provides a short discussion of this subject.

What now is the situation with the Q representation? The phase-space equa-
tion of motion preserves the exact truncation of derivatives at second order.
It also has a modified diffusion matrix which might well be positive semidefi-
nite. It is similar to matrix (10.11) but with larger terms along the diagonal.
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Specifically, from (10.24), we obtain

D(x, y, u, v)

=

⎛

⎜
⎜
⎜
⎜
⎝

κ(n̄+ 1) − (g/2)u −(g/2)v 0 0

−(g/2)v κ(n̄+ 1) + (g/2)u 0 0

0 0 κp(n̄p + 1) 0

0 0 0 κp(n̄p + 1)

⎞

⎟
⎟
⎟
⎟
⎠
.

(10.27)

Thus, to replace inequality (10.13), the requirement for positive semidefinite
diffusion is

|β|2 = u2 + v2 ≤ 4(n̄+ 1)(κ/g)2. (10.28)

Once again, this requirement cannot be satisfied everywhere in phase space.
There is, however, an important difference between (10.28) and the require-
ment |β|2 ≤ 4n̄(κ/g)2 for positive semidefinite diffusion in the P representa-
tion. If we assume that the quantum fluctuations of the pump field are small,
we may identify β with the classically determined pump field amplitude

|β|2 = |〈b〉|2 =
ε0AL̄

�2ωC
|Ep|2

=
ε0AL̄

2�ωC

( κ

K ′
)2

|Ēp|2

=
ε0AL̄

2�ωC

(
π

F
n3/2c

ωC	χ(2)

)2

cos−2(φp − 2φ)|Ēp|2

= (κ/g)2|Ēp|2, (10.29)

where we have used (9.60b), (9.53), (9.54), and (10.14). The largest steady-
state value of |Ēp| is |Ēss

p | = 1. This value is reached at threshold and holds
everywhere above threshold (Eqs. 9.75–9.77). We may therefore write, using
(10.29), |βss|2 ≤ (κ/g)2 < 4(n̄+1)(κ/g)2, which shows that inequality (10.28)
is satisfied in the vicinity of the steady state; it is satisfied both below and
above threshold and for all values of n̄. It follows that the problem of non-
positive-semidefinite diffusion can be avoided by using the Q representation.
As with the Wigner representation, however, small noise must be assumed.
Again, the resolution is not genuinely fundamental.

In summary, the results obtained using the Q and Wigner representations
are mixed. Neither representation provides the ideal phase-space equation
of motion—a nonlinear Fokker–Planck equation which has positive semidef-
inite diffusion everywhere in phase space. In the Wigner representation, the
phase-space equation has derivatives beyond second order, while in the Q
representation a Fokker–Planck equation is obtained, but one possessing non-
positive-semidefinite diffusion outside the circle |β| = 2

√
n̄+ 1κ/g. Both rep-
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resentations do, however, provide a solid foundation for a linearized treatment
of quantum fluctuations based upon the system size expansion.

10.2 Squeezing:
Quantum Fluctuations in the Small-Noise Limit

10.2.1 System Size Expansion Far from Threshold

Although further analysis with the P representation would appear to be prob-
lematic, we carry out the system size expansion for all three representations;
all are included by starting from the general phase-space equation of motion

∂Fσ
∂t

= Lσ

(
α, α∗, β, β∗,

∂

∂α
,
∂

∂α∗
,
∂

∂β
,
∂

∂β∗
, t

)
Fσ, (10.30)

with

Lσ

(
α, α∗, β, β∗,

∂

∂α
,
∂

∂α∗
,
∂

∂β
,
∂

∂β∗
, t

)

≡ ∂

∂α

[
(κ+ iωC)α− gα∗β

]
+

∂

∂α∗
[
(κ− iωC)α∗ − gαβ∗

]

+
∂

∂β

[
(κp + i2ωC)β + (g/2)α2 + iĒ0e

−i2ωCt
]

+
∂

∂β∗
[
(κp − i2ωC)β∗ + (g/2)α∗2 − iĒ∗0 ei2ωC t

]

+ 2κ
[
n̄+ 1

2 (1 − σ)
] ∂2

∂α∂α∗
+ 2κp

[
n̄p + 1

2 (1 − σ)
] ∂2

∂β∂β∗

+ σ(g/2)
(
∂2

∂α2
β +

∂2

∂α∗2
β∗

)
+

1
4
(1 − σ2)(g/2)

(
∂3

∂α2∂β∗
+

∂3

∂α∗2∂β

)
,

(10.31)

where σ takes the values +1, 0, and −1, with definitions

F+1 ≡ P
F0 ≡W
F−1 ≡ Q

⎫
⎬

⎭
. (10.32)

We must first scale the field amplitudes following the prescription (5.39).
A natural choice for the system size parameter is the undepleted pump photon
number at threshold nthr

p = (κ/g)2 (Eq. 10.16). The powers of nthr
p used in

the scaling are to be chosen self-consistently in the manner of Sect. 8.1.1. The
details need not be repeated here. It seems reasonable to adopt the scaling
that worked for the laser away from threshold (p = q = 1/2), while for fine-
tuning we are guided by (9.60) and (9.80) [and the comparison between (9.1)
and (9.82)]. Thus, for the subharmonic mode we write [with ξ and ψ defined
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in (9.61), (9.62), and (9.81)]

√
ξ/2e−i

1
2 (ψ−π/2)α =

(
nthr
p

)1/2
ᾱ,

√
ξ/2ei

1
2 (ψ−π/2)α∗ =

(
nthr
p

)1/2
ᾱ∗,
(10.33)

with

ᾱ = 〈ā(t)〉 +
(
nthr
p

)−1/2
z, (10.34a)

ᾱ∗ = 〈ā†(t)〉 +
(
nthr
p

)−1/2
z∗, (10.34b)

where
√
ξ/2e−i

1
2 (ψ−π/2)a =

(
nthr
p

)1/2
ā,

√
ξ/2ei

1
2 (ψ−π/2)a† =

(
nthr
p

)1/2
ā†,
(10.35)

and similarly for the pump mode, we write

e−i
1
2 (ψ−π/2)β =

(
nthr
p

)1/2
β̄, ei

1
2 (ψ−π/2)β∗ =

(
nthr
p

)1/2
β̄∗, (10.36)

with

β̄ = 〈b̄(t)〉 +
(
nthr
p

)−1/2
w, (10.37a)

β̄∗ = 〈b̄†(t)〉 +
(
nthr
p

)−1/2
w∗, (10.37b)

where

e−i
1
2 (ψ−π/2)b =

(
nthr
p

)1/2
b̄, ei

1
2 (ψ−π/2)b† =

(
nthr
p

)1/2
b̄†. (10.38)

Then the phase-space distribution in scaled variables is defined by

F̄σ(z, z∗, w, w∗, t) ≡ ξ−1Fσ
(
α(z, t), α∗(z∗, t), β(w, t), β∗(w∗, t), t

)
, (10.39)

and satisfies the equation of motion

∂F̄σ
∂t

= ξ−1

(
∂Fσ
∂α

∂α

∂t
+
∂Fσ
∂α∗

∂α∗

∂t
+
∂Fσ
∂β

∂β

∂t
+
∂Fσ
∂β∗

∂β∗

∂t
+
∂Fσ
∂t

)

=
(
nthr
p

)1/2
(
∂F̄σ
∂z

d〈ā(t)〉
dt

+ c.c.
)

+
(
nthr
p

)1/2
(
∂F̄σ
∂w

d〈b̄(t)〉
dt

+ c.c.
)

+
∂

∂t

(
ξ−1Fσ

)

=
(
nthr
p

)1/2
(
∂F̄σ
∂z

d〈ā(t)〉
dt

+ c.c.
)

+
(
nthr
p

)1/2
(
∂F̄σ
∂w

d〈b̄(t)〉
dt

+ c.c.
)

+ L̄σ

(
z, z∗, w, w∗,

∂

∂z
,
∂

∂z∗
,
∂

∂w
,
∂

∂w∗
, t

)
F̄σ, (10.40)
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where

L̄σ

(
z, z∗, w, w∗,

∂

∂z
,
∂

∂z∗
,
∂

∂w
,
∂

∂w∗
, t

)

≡ Lσ

(
α(z, t), α∗(z∗, t), β(w, t), β∗(w∗, t),

√
ξ/2e−i

1
2 (ψ−π/2) ∂

∂z
,

√
ξ/2ei

1
2 (ψ−π/2) ∂

∂z∗
, e−i

1
2 (ψ−π/2) ∂

∂w
, ei

1
2 (ψ−π/2) ∂

∂w∗
, t

)
. (10.41)

Substituting for Lσ from (10.31), our aim is to identify the macroscopic
law that governs the mean behavior and the Fokker–Planck equation that
describes the fluctuations about the mean. The substitution yields

∂F̄σ
∂t

=
(
nthr
p

)1/2
{
∂F̄σ
∂z

[
d〈ā(t)〉
dt

+ (κ+ iωC)〈ā(t)〉 − κ〈ā†(t)〉〈b̄(t)〉
]
+ c.c.

+
∂F̄σ
∂w

[
d〈b̄(t)〉
dt

+ (κp + i2ωC)〈b̄(t)〉 + κp
(〈ā(t)〉2 − λe−i2ωCt

)
]
+ c.c.

}

+
{
∂

∂z

[
(κ+ iωC)z − κ

(
〈ā†(t)〉w + 〈b̄(t)〉z∗ +

(
nthr
p

)−1/2
z∗w

)]
+ c.c.

+
∂

∂w

[
(κp + i2ωC)w + κp

(
2〈ā(t)〉z +

(
nthr
p

)−1/2
z2

)]
+ c.c.

+
1
4
ξσκ

[
∂2

∂z2

(
〈b̄(t)〉 +

(
nthr
p

)−1/2
w
)

+ c.c.
]

+ ξκ
[
n̄+ 1

2 (1 − σ)
] ∂2

∂z∂z∗
+ 2κp

[
n̄p + 1

2 (1 − σ)
] ∂2

∂w∂w∗

+
(
nthr
p

)−1/2 1
16
ξ(1 − σ2)κ

(
∂3

∂z2∂w∗
+ c.c.

)}
F̄σ. (10.42)

The terms multiplied by
(
nthr
p

)1/2 must vanish, otherwise there is a divergence
in the limit nthr

p → ∞; hence we arrive at the macroscopic law, the degenerate
parametric oscillator equations without fluctuations:

κ−1 d〈˜̄a〉
dt

= −〈˜̄a〉 + 〈˜̄a†〉〈˜̄b〉, (10.43a)

κ−1 d〈˜̄a†〉
dt

= −〈˜̄a†〉 + 〈˜̄a〉〈˜̄b†〉, (10.43b)
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κ−1
p

d〈˜̄b〉
dt

= −〈˜̄b〉 − 〈˜̄a〉2 + λ, (10.43c)

κ−1
p

d〈˜̄b†〉
dt

= −〈˜̄b†〉 − 〈˜̄a†〉2 + λ, (10.43d)

where

˜̄a ≡ eiωCtā, ˜̄a† ≡ e−iωCtā†,
˜̄b ≡ ei2ωC tb̄, ˜̄b† ≡ e−i2ωCtb̄†.

(10.44)

We then drop terms of order
(
nthr
p

)−1/2, and what remains is the linearized
Fokker–Planck equation for the degenerate parametric oscillator :

∂ ˜̄Fσ
∂t

=
{
κ
∂

∂z̃

[
z̃ − 〈˜̄a†(t)〉w̃ − 〈˜̄b(t)〉z̃∗] + κ

∂

∂z̃∗
[
z̃∗ − 〈˜̄a(t)〉w̃∗ − 〈˜̄b†(t)〉z̃]

+ κp
∂

∂w̃

[
w̃ + 2〈˜̄a(t)〉z̃] + κp

∂

∂w̃∗
[
w̃∗ + 2〈˜̄a†(t)〉z̃∗]

+
1
4
ξσκ

(
∂2

∂z̃2
〈˜̄b(t)〉 +

∂2

∂z̃∗2
〈˜̄b†(t)〉

)

+ξκ
[
n̄+ 1

2 (1 − σ)
] ∂2

∂z̃∂z̃∗
+ 2κp

[
n̄p + 1

2 (1 − σ)
] ∂2

∂w̃∂w̃∗

}
˜̄Fσ, (10.45)

where

˜̄Fσ(z̃, z̃∗, w̃, w̃∗, t) ≡ F̄σ
(
z(z̃, t), z∗(z̃∗, t), w(w̃, t), w∗(w̃∗, t), t

)
, (10.46)

and we have written

z = e−iωCtz̃, z∗ = eiωC tz̃∗,

w = e−i2ωCtw̃, w∗ = ei2ωC tw̃∗.
(10.47)

10.2.2 Quantum Fluctuations Below Threshold

Equations 10.43a–10.43d are equivalent to the equations of motion for the field
amplitudes Ē and Ēp in the classical treatment of the degenerate parametric
oscillator (Eqs. 9.63a and 9.63b). Steady-state solutions below, at, and above
threshold are given by (9.75), (9.76), and (9.77), respectively, with

〈˜̄a〉ss = Ēss, 〈˜̄a†〉ss = Ē∗ss, (10.48a)

〈˜̄b〉ss = Ēss
p , 〈˜̄b†〉ss = (Ēssp )∗. (10.48b)
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Our interest here is in the quantum fluctuations about these steady states. We
look first at the fluctuations below threshold, where the squeezing experiments
of Wu et al. [10.2, 10.3] were carried out.

The steady-state solution to the mean value equations 10.43a–10.43d is
〈˜̄a(t)〉 = 〈˜̄a†(t)〉 = 0, 〈˜̄b(t)〉 = 〈˜̄b†(t)〉 = λ. Substituting this solution into
(10.45), the Fokker–Planck equation is found to be separable, with solution

˜̄Fσ(z̃, z̃∗, w̃, w̃∗, t) = ˜̄Xσ(z̃1, t) ˜̄Yσ(z̃2, t) ˜̄Uσ(w̃1, t) ˜̄Vσ(w̃2, t), (10.49)

where

z̃ = z̃1 + iz̃2, z̃∗ = z̃1 − iz̃2,

w̃ = w̃1 + iw̃2, w̃∗ = w̃1 − iw̃2.
(10.50)

Fluctuations about the steady state are described by the Fokker–Planck equa-
tion below threshold for quadrature phase amplitudes of the subharmonic mode
of the degenerate parametric oscillator,

κ−1 ∂
˜̄Xσ

∂t
=
{
(1 − λ)

∂

∂z̃1
z̃1 +

1
8
ξ
[
2n̄+ 1 − σ(1 − λ)

] ∂2

∂z̃2
1

}
˜̄Xσ, (10.51a)

κ−1∂
˜̄Yσ
∂t

=
{
(1 + λ)

∂

∂z̃2
z̃2 +

1
8
ξ
[
2n̄+ 1 − σ(1 + λ)

] ∂2

∂z̃2
2

}
˜̄Yσ, (10.51b)

and the Fokker–Planck equation below threshold for quadrature phase ampli-
tudes of the pump mode of the degenerate parametric oscillator,

κ−1
p

∂ ˜̄Uσ
∂t

=
{

∂

∂w̃1
w̃1 +

1
4
(
2n̄p + 1 − σ

) ∂2

∂w̃2
1

}
˜̄Uσ, (10.52a)

κ−1
p

∂ ˜̄Vσ
∂t

=
{

∂

∂w̃2
w̃2 +

1
4
(
2n̄p + 1 − σ

) ∂2

∂w̃2
2

}
˜̄Vσ. (10.52b)

Clearly, the pump mode simply fluctuates as an oscillator in thermal equi-
librium, and we focus our attention on the subharmonic mode fluctuations.
Note first that the drift terms in (10.51a) and (10.51b) yield deterministic
equations

˙̃z1 = −κ(1 − λ)z̃1, ˙̃z2 = −κ(1 + λ)z̃2, (10.53)

where the terms +κλz̃1 and −κλz̃2 on the right-hand sides describe amplifi-
cation and deamplification of the quadrature phase amplitudes, respectively,
as seen for the parametric amplifier in (9.22) and (9.28). The gain is less than
the loss below threshold, so the fluctuations do not initiate the growth of
a mean amplitude z̃1. Nevertheless, they experience a phase-dependent decay,
which results in some form of squeezing, a phase-dependent distribution of
deviations from the steady state.

Let us more specifically consider fluctuations in the quadrature phase op-
erators X̂ ≡ Âθ and Ŷ ≡ Âθ+π/2, where θ = 1

2 (ψ − π/2), with ψ defined by
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(9.62) and (9.81). Since 〈ã〉 = 〈ã†〉 = 0, we may use (9.26) and the scaling
relations (10.33)–(10.35) to write

(ΔX)2 = 1
4

〈[
ãe−i

1
2 (ψ−π/2) + ã†ei

1
2 (ψ−π/2)]2〉

= 1
4 (2/ξ)nthr

p 〈(˜̄a+ ˜̄a†)2〉
= 1

4 (2/ξ)nthr
p 〈˜̄a2 + ˜̄a†2 + ˜̄a˜̄a† + ˜̄a†˜̄a〉

= (2/ξ)
(
z̃1z̃1

)
˜̄Xσ

+ 1
4σ, (10.54a)

where the last step follows by noting that phase-space averages in the P ,
Q, and Wigner representations give normal-ordered, antinormal-ordered, and
symmetric-ordered operator averages, respectively. From a similar calculation,

(ΔY )2 = (2/ξ)
(
z̃2z̃2

)
˜̄Yσ

+ 1
4σ. (10.54b)

It is now trivial to use (5.102a), together with drift and diffusion coefficients
taken from (10.51a) and (10.51b), to obtain the intracavity quadrature phase
amplitude fluctuations for the degenerate parametric oscillator below thresh-
old :

(ΔX)< ≡ (ΔX)<ss =
1
2

√
2n̄+ 1
1 − λ

, (10.55a)

(ΔY )< ≡ (ΔY )<ss =
1
2

√
2n̄+ 1
1 + λ

. (10.55b)

We see that fluctuations in the deamplified Y -quadrature phase amplitude
are smaller than in the vacuum state (Eq. 9.35) whenever λ > 2n̄; for n̄ = 0,
the limit at threshold is ΔY = 1

2 (1/
√

2) < 1
2 . On the other hand, fluctuations

in the amplified X-quadrature phase amplitude are larger, and diverge as
the threshold is approached. An analogous divergence was seen for the laser
(Eqs. 8.52), where we concluded that it arises from a breakdown of the system
size expansion. Threshold fluctuations for the degenerate parametric oscillator
are treated in Sect. 10.2.4. For the remainder of this section, let us see what
our results for the fluctuations below threshold can tell us about non-positive-
definite diffusion and squeezed states.

Although the choice of representation enters explicitly into (10.54a) and
(10.54b), the results for (ΔX)< and (ΔY )< are independent of σ. The + 1

4σ
in (10.54a) and (10.54b) cancels with the σ-dependence in the variances of
the phase-space variables. This of course is as it should be; different repre-
sentations cannot produce different answers for the same operator average.
The special significance of the Wigner representation is made clear here. It
corresponds to the choice σ = 0; thus, fluctuations of the Wigner phase-space
variables relate directly to the picture of squeezed fluctuations presented in
Fig. 9.2 (see also Sect. 9.3.7).
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At this point we are drawn to an unexpected conclusion. We wrote down
the results for (ΔX)< and (ΔY )< from the relationship (5.102a), which gives
the steady-state covariance matrix for a linear Fokker–Planck equation in
terms of its drift and diffusion matrices. This was done without asking if
the diffusion matrix was positive semidefinite or not. With σ = 0 or −1,
the diffusion constant in the Fokker–Planck equation (10.51b) is positive; but
with σ = 1 it is not (whenever λ > 2n̄). Thus, if we accept the results
given by (10.54a) and (10.54b) when σ = 0 or −1, it appears that the P
representation (σ = 1) also gives the correct results, even though the Fokker–
Planck equation in this representation does not have positive semidefinite
diffusion. Looking more closely, there is certainly a problem when the diffusion
constant is negative, because, with σ = 1, the steady-state distribution given
by (5.80) and (10.51b) is

˜̄Y+1(z̃2) ∝ exp
(
−z̃2

2

4
ξ

1 + λ

2n̄− λ

)
. (10.56)

This expression diverges as |z̃2| → ∞ if λ > 2n̄. The distribution violates the
normalization requirement (3.16) and cannot possibly give the characteristic
function via a Fourier transform as it should (Eq. 3.73). From another per-
spective, the stochastic differential equations corresponding to Fokker–Planck
equations (10.51a) and (10.51b) are

dz̃1 = −(1 − λ)z̃1(κdt) + 1
2

√
ξκ

[
2n̄+ 1 − σ(1 − λ)

]
dWz̃1 , (10.57a)

dz̃2 = −(1 + λ)z̃2(κdt) + 1
2

√
ξκ

[
2n̄+ 1 − σ(1 + λ)

]
dWz̃2 . (10.57b)

With σ = 1 and λ > 2n̄, the fluctuation term driving the real variable z̃2 is
pure imaginary! Clearly there are problems—at least some sort of inconsis-
tency in the formalism.

For the moment we set the formal questions aside, being satisfied with
the observation that the right answers are obtained. We will soon tidy up
the formalism by modifying the P representation, introducing the so-called
positive P representation (Chap. 11). After this is done, we find the following
somewhat surprising statement is true, in line with what is suggested by the
above example:
Results for quantum averages derived using the formulae of Sects. 5.2.2–5.2.5
are correct even when the formulae are applied to a “Fokker–Planck” equation
whose diffusion matrix is not positive semidefinite.

Now what can be said about the quantum state of the subharmonic field?
It is clear from (10.55a) and (10.55b) that it is not a minimum uncertainty
state, not a squeezed state; the uncertainly product is (ΔX)<(ΔY )< =
1
4 (2n̄+1)/

√
1 − λ2, and always greater than 1

4 . When Milburn and Walls [10.4]
first analyzed this model, the minimum value ΔY = 1

2 (1/
√

2) obtained from
(10.55b) was a bit of a disappointment. The fluctuation is reduced by only
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a factor 1/
√

2 from its vacuum state value. Perhaps, however, this is not so
different from what one might expect. If we take the interaction time for the
fields inside the cavity to be the photon lifetime, then λ = 1 corresponds to
a squeeze parameter of r = λ/2 = 0.5 (see Note 9.7). From this we would pre-
dict ΔY = e−r 1

2 = e−0.5 1
2 ≈ 0.30 ≈ 1

2 (1/
√

2), essentially just what the more
sophisticated calculation carried out above has obtained. Although λ is larger
above threshold, we should not hope for increased squeezing there. Once the
parametric oscillator turns on, the pump field depletes to its threshold value;
therefore, even above threshold, the squeeze parameter would never exceed
r = 0.5.

Fortunately this pessimistic outlook is the result of an oversimplification.
It is important to recognize that the cavity mode that carries the subhar-
monic field is actually a quasimode—i.e., it has a linewidth; also that it is the
field escaping through the cavity mirrors and not the intracavity field that is
measured. The complete picture is revealed by the fluctuations in the Fourier
components of the subharmonic field escaping the cavity (see Sect. 9.3). In
place of (10.55a) and (10.55b), we must look at the fluctuation amplitudes
1
2

√
1 + Sθ(ω), with θ = 1

2 (ψ ∓ π/2), where

Sθ(ω) = (2κ)8
∫ ∞

0

dτ cosωτ lim
t→∞〈:ΔÂθ(t)ΔÂθ(t+ τ) :〉 (10.58)

is the source-field spectrum of squeezing (with unit efficiency) (Sect. 9.3.4);
in this expression 〈::〉 denotes the normal-ordered, time-ordered average and
ΔÂθ ≡ Âθ − 〈Âθ〉, with Âθ defined by (9.26). Setting θ = 1

2 (ψ − π/2), and
with SX(ω) ≡ S 1

2 (ψ−π/2)(ω), we have

SX(ω) = (2κ)8
∫ ∞

0

dτ cosωτ lim
t→∞

〈
: 1
2

[
ã(t)e−i

1
2 (ψ−π/2) + ã†(t)ei

1
2 (ψ−π/2)]

× 1
2

[
ã(t+ τ)e−i(

1
2 (ψ−π/2) + ã†(t+ τ)ei

1
2 (ψ−π/2)] :

〉

= (2κ)8
∫ ∞

0

dτ cosωτ(2/ξ)nthr
p lim

t→∞
〈

: 1
2

[
˜̄a(t) + ˜̄a†(t)

]

× 1
2

[
˜̄a(t+ τ) + ˜̄a†(t+ τ)

]
:
〉

= (2κ)8
∫ ∞

0

dτ cosωτ(2/ξ) lim
t→∞

(
z̃1(t)z̃1(t+ τ)

)
˜̄X+1

. (10.59a)

In a similar manner, with θ = 1
2 (ψ+π/2) and SY (ω) ≡ S 1

2 (ψ+π/2)(ω), we find

SY (ω) = (2κ)8
∫ ∞

0

dτ cosωτ(2/ξ) lim
t→∞

(
z̃2(t)z̃2(t+ τ)

)
˜̄Y+1

. (10.59b)

The P representation (σ = +1) is used in these expressions to give normal-
ordered, time-ordered correlation functions.
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With the help of (5.93), (5.102a), and the Fokker–Planck equations (10.51a)
and (10.51b), we obtain the correlation functions

lim
t→∞

(
z̃1(t)z̃1(t+ τ)

)
˜̄X+1

= e−κ(1−λ)|τ |(ξ/2)
1
4

2n̄+ λ

1 − λ
, (10.60a)

lim
t→∞

(
z̃2(t)z̃2(t+ τ)

)
˜̄Y+1

= e−κ(1+λ)|τ |(ξ/2)
1
4

2n̄− λ

1 + λ
; (10.60b)

hence,

S<X(ω) =
2n̄+ λ

1 − λ

4κ2(1 − λ)
[κ(1 − λ)]2 + ω2

, (10.61a)

S<Y (ω) =
2n̄− λ

1 + λ

4κ2(1 + λ)
[κ(1 + λ)]2 + ω2

. (10.61b)

Thus, we obtain the quadrature phase amplitude fluctuations of the cavity
output for the degenerate parametric oscillator below threshold :

1
2

√
1 + S<X(ω) =

1
2

√
8κ2n̄+ [κ(1 + λ)]2 + ω2

[κ(1 − λ)]2 + ω2
, (10.62a)

1
2

√
1 + S<Y (ω) =

1
2

√
8κ2n̄+ [κ(1 − λ)]2 + ω2

[κ(1 + λ)]2 + ω2
. (10.62b)

In these expressions we find a close connection with minimum uncertainty
squeezed states. If n̄ = 0, the minimum uncertainty condition 1

2

√
1 + S<X(ω)

× 1
2

√
1 + S<Y (ω) = 1

4 is satisfied at each frequency; furthermore, the squeezing
at line center becomes perfect as threshold is approached: 1

2

√
1 + S<Y (0) → 0

and 1
2

√
1 + S<X(0) → ∞ as λ→ 1.

Note 10.3. These results computed from (10.58) assume that both optical
outputs are detected with unit efficiency (Sect. 9.3.4) and that γaα � γ1μ

(μ = 1, 2). Also, since only the source-field spectrum of squeezing is consid-
ered, if n̄ is taken to be nonzero, the nonzero value must be associated with
losses in the crystal—i.e., n̄ = n̄aα (n̄a1 = n̄a2 = 0). Spectra of squeezing for
more general conditions are given in (9.169a) and (9.169b).

The squeezing of one quadrature phase amplitude of the subharmonic field
shows up in its optical spectrum. Well below threshold, we might expect this
spectrum to be a Lorentzian with the cavity linewidth, just as it is for the
laser below threshold (Eqs. 8.69 and 8.70). In fact this is not so. We calculate
the optical spectrum from the Fourier transform of the normalized first-order
correlation function

g
(1)
< (τ) =

(〈a†a〉<
)−1

[
lim
t→∞〈a

†(t)a(t+ τ)〉
]

=
(〈a†a〉<

)−1
e−iωCτ (2/ξ)

[
lim
t→∞

(
z̃1(t)z̃1(t+ τ)

)
˜̄X+1

+ lim
t→∞

(
z̃2(t)z̃2(t+ τ)

)
˜̄Y+1

]
, (10.63)
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where, using (9.29), (9.31), and (10.55a) and (10.55b), the mean photon num-
ber in the subharmonic mode is given by

〈a†a〉< ≡ 〈a†a〉<ss = 〈(X̂ − iŶ )(X̂ + iŶ )〉<ss
= 〈X̂2〉<ss + 〈Ŷ 2〉<ss + i〈[X̂, Ŷ ]〉<ss
= (ΔX)2< + (ΔY )2< − 1

2

=
1
2

2n̄+ λ2

1 − λ2
. (10.64)

Then, since correlation functions (10.60a) and (10.60b) are real and symmetric
in τ , by comparing the expressions (10.59a) and (10.59b) with (10.63), we are
able to write the optical spectrum for the degenerate parametric oscillator
below threshold as

T<(ω) =
1
π

∫ ∞

0

dτ cos[(ω − ωC)τ ]|g(1)
< (τ)|

=
(〈a†a〉<

)−1S<X(ω − ωC) + S<Y (ω − ωC)
16κπ

=
1
2

1 − λ2

2n̄+ λ2

{
2n̄+ λ

1 − λ

κ(1 − λ)/π
[κ(1 − λ)]2 + (ω − ωC)2

+
2n̄− λ

1 + λ

κ(1 + λ)/π
[κ(1 + λ)]2 + (ω − ωC)2

}
. (10.65)

Specifically, well below threshold (λ � 1), we have

T<(ω) =
1

2n̄+ λ

[
2n̄

κ/π

κ2 + (ω − ωC)2
+ λ2 2κ3/π

[κ2 + (ω − ωC)2]2

]
. (10.66)

The thermal noise contribution to this spectrum is, indeed, a Lorentzian with
the cavity linewidth; but the term associated with the quantum fluctuations
is a Lorentzian squared. The square arises because the quantum contribu-
tions to S<X(ω − ωC) and S<Y (ω − ωC) subtract in (10.65); quantum fluc-
tuations in the Y -quadrature phase amplitude enter (10.65) with negative
weight because they are squeezed. This nonclassical effect is discussed in de-
tail by Rice and Carmichael [10.5] who show that it explains a feature in
the spectrum of resonance fluorescence noted by Mollow some thirty years
ago [10.6].

Note 10.4. It is not always possible to decompose the optical spectrum into
the sum of two spectra of squeezing as in (10.65). It is clear that the de-
composition will not always work, because the spectrum of squeezing is
symmetric about ω = 0, by definition, while the optical spectrum need
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not be symmetric about ωC . The decomposition is possible here because
fluctuations in the quadrature phase variables z̃1 and z̃2 are uncorrelated;
thus, in (10.63) the correlation function eiωCτg(1)(τ) is real and given by
a sum of correlation functions describing the independent fluctuations in z̃1
and z̃2.

At the conclusion of this section we are in a position to illustrate a point
raised some time ago about the evaluation of two-time averages within the
phase-space representations. Two-time averages calculated “classically” in
different representations correspond to quantum averages with different op-
erator orderings. When two times are involved, we generally do not know
the commutation relations needed to reorder the operators so that the av-
erage can be evaluated in the representation of our choosing [see the dis-
cussion below (4.128)]. The spectrum of squeezing (10.58) and the optical
spectrum (10.65) are defined in terms of normal-ordered, time-ordered op-
erator averages; we therefore calculated these spectra using diffusion con-
stants taken from Fokker–Planck equations (10.51a) and (10.51b) with the
choice σ = +1 (using the P representation). Without knowing the mean
commutators limt→∞〈[a(t + τ), a†(t)]〉 and limt→∞〈[a(t + τ), a(t)]〉, we can-
not reorder the operator averages to calculate S<X(ω), S<Y (ω), and T<(ω) in
the Q and Wigner representations. In fact, things work exactly the other
way around; two-time averages calculated in the Q and Wigner represen-
tations tell us the mean commutators for operators evaluated at unequal
times:

Exercise 10.2. Working from (4.100), (4.113), and (4.124), respectively, show
that the P representation gives

lim
t→∞〈ã

†(t)ã(t+ τ)〉 =
1
4

[
e−κ(1−λ)|τ | 2n̄+ λ

1 − λ
+ e−κ(1+λ)|τ | 2n̄− λ

1 + λ

]
, (10.67a)

lim
t→∞〈ã(t+ |τ |)ã(t)〉 = ei(ψ−

π
2 ) 1

4

[
e−κ(1−λ)|τ |2n̄+ λ

1 − λ
− e−κ(1+λ)|τ | 2n̄− λ

1 + λ

]
,

(10.67b)

that the Q representation gives

lim
t→∞〈ã(t+ τ)ã†(t)〉

=
1
4

[
e−κ(1−λ)|τ |2n̄+ 2 − λ

1 − λ
+ e−κ(1+λ)|τ |2n̄+ 2 + λ

1 + λ

]
, (10.68a)

lim
t→∞〈ã(t)ã(t+ |τ |)〉
= ei(ψ−

π
2 ) 1

4

[
e−κ(1−λ)|τ |2n̄+ 2 − λ

1 − λ
− e−κ(1+λ)|τ |2n̄+ 2 + λ

1 + λ

]
,

(10.68b)
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and that the Wigner representation gives

lim
t→∞

1
2

[〈ã†(t)ã(t+ τ)〉 + 〈ã(t+ τ)ã†(t)〉]

=
1
4

[
e−κ(1−λ)|τ | 2n̄+ 1

1 − λ
+ e−κ(1+λ)|τ | 2n̄+ 1

1 + λ

]
, (10.69a)

lim
t→∞

1
2

[〈ã(t)ã(t+ τ)〉 + 〈ã(t+ τ)ã(t)〉]

= ei(ψ−
π
2 ) 1

4

[
e−κ(1−λ)|τ | 2n̄+ 1

1 − λ
− e−κ(1+λ)|τ | 2n̄+ 1

1 + λ

]
. (10.69b)

Hence obtain the mean commutators

lim
t→∞〈[ã(t+ τ), ã†(t)]〉 = 1

2

[
e−κ(1−λ)|τ | + e−κ(1+λ)|τ |], (10.70a)

and

lim
t→∞〈[ã(t+ |τ |), ã(t)]〉 = −ei(ψ−π

2 ) 1
2

[
e−κ(1−λ)|τ | − e−κ(1+λ)|τ |]. (10.70b)

Note that (10.70a) and (10.70b) give the expected results 〈[ã, ã†]〉 = 1 and
〈[ã, ã]〉 = 0 at τ = 0. Note also that (10.67a)–(10.69b) are self-consistent: the
two-time averages given by the Wigner representation are averages of those
given by the P and Q representations.

Note 10.5. It would not be correct to conclude that the Q and Wigner repre-
sentations cannot be used to calculate normal-ordered, time-ordered averages.
What we have just noted concerns calculations carried out entirely within
the phase-space formalism—the calculation of a two-time operator average as
a two-time phase-space average. Alternatively, one can invoke the quantum re-
gression formula—in the form (1.107)–(1.109)—and solve equations of motion
for the desired correlation functions. The initial conditions for these equations
require us to calculate certain one-time averages. These can be evaluated in
the P , Q, or Wigner representations, using known commutation relations to
switch between the different operator orderings. In the above example, the
mean quadrature phase amplitudes obey the equations of motion

〈 ˙̂
X〉 = −κ(1 − λ)〈X̂〉, 〈 ˙̂

Y 〉 = −κ(1 + λ)〈Ŷ 〉. (10.71)

These follow as averages of the stochastic differential equations (10.57a) and
(10.57b). According to the quantum regression formula, (10.67a)–(10.70b) can
then be derived by solving equations of motion for two-time averages in the
same form. All that is needed to get started are the initial conditions, which
may be derived from (10.54a) and (10.54b) using whichever representation
one chooses; the + 1

4σ accounts for the necessary commutators.
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10.2.3 Quantum Fluctuations Above Threshold

The treatment of the laser above threshold called for a rather complicated
application of the system size expansion based on amplitude and phase vari-
ables. Treatment of the degenerate parametric oscillator is simpler, since the
subharmonic field above threshold has a well-defined phase (Eqs. 9.77). It
is then possible to use the same system size expansion as below threshold.
The only change is that the fluctuations are now to be computed for the new
steady state solutions

〈˜̄a(t)〉 = 〈˜̄a†(t)〉 = ±√
λ− 1, (10.72a)

〈˜̄b(t)〉 = 〈˜̄b†(t)〉 = 1. (10.72b)

Substituting these into Fokker–Planck equation (10.45), the resulting equation
is again separable, but now with a solution in the form

˜̄Fσ(z̃, z̃∗, w̃, w̃∗, t) = ˜̄Xσ(z̃1, w̃1, t) ˜̄Yσ(z̃2, w̃2, t). (10.73)

Above threshold, fluctuations in the X-quadrature phase amplitudes of the
subharmonic and pump fields are coupled, and described by the Fokker–Planck
equation above threshold for the X-quadrature phase amplitudes of the degen-
erate parametric oscillator,

∂ ˜̄Xσ
∂t

=
{
κ
∂

∂z̃1

(∓√
λ− 1w̃1

)
+ κp

∂

∂w̃1

(
w̃1 ± 2

√
λ− 1z̃1

)

+
1
8
ξκ(2n̄+ 1)

∂2

∂z̃2
1

+
1
4
κp(2n̄p + 1 − σ)

∂2

∂w̃2
1

}
˜̄Xσ, (10.74a)

while fluctuations in the Y -quadrature phase amplitudes are also coupled, and
described by the Fokker-Planck equation above threshold for the Y -quadrature
phase amplitudes of the degenerate parametric oscillator,

∂ ˜̄Yσ
∂t

=
{
κ
∂

∂z̃2

(
2z̃2 ∓

√
λ− 1w̃2

)
+ κp

∂

∂w̃2

(
w̃2 ± 2

√
λ− 1z̃2

)

+
1
8
ξκ(2n̄+ 1 − 2σ)

∂2

∂z̃2
2

+
1
4
κp(2n̄p + 1 − σ)

∂2

∂w̃2
2

}
˜̄Yσ. (10.74b)

Since equations in two dimensions must be considered here, the mechanics of
the calculation are a little more involved. There is no fundamental difference,
however, from the analysis of fluctuations below threshold. The details are
left as an exercise.

Exercise 10.3. With X̂ ≡ Âθ, Ŷ ≡ Âθ+π/2, X̂p ≡ B̂θ, and Ŷp ≡ B̂θ+π/2,
where Âθ is defined by (9.26) (with B̂θ similarly defined) and θ = 1

2 (ψ − π
2 ),

use (5.102a), and (10.74a) and (10.74b), to show that the covariance matrix
in quadrature phase amplitudes for the degenerate parametric oscillator above
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threshold is given by

(ΔX)2> ≡ 〈(X̂ − 〈X̂〉)2〉>ss = (2/ξ)
[(
z̃1z̃1

)
˜̄Xσ

+ 1
4σ

]

=
1
4

[
1
2

2n̄+ 1
λ− 1

+
κ(2n̄+ 1) + κp(2n̄p + 1)

κp

]
,

(10.75a)

(ΔY )2> ≡ 〈(Ŷ − 〈Ŷ 〉)2〉>ss = (2/ξ)
[(
z̃2z̃2

)
˜̄Yσ

+ 1
4σ

]

=
1
4

1
2 (2κλ+ κp)(2n̄+ 1) + κp(λ− 1)(2n̄p + 1)

(2κ+ κp)λ
,

(10.75b)

and

(ΔXp)2> ≡ 〈(X̂p − 〈X̂p〉)2〉>ss =
(
w̃1w̃1

)
˜̄Xσ

+ 1
4σ

=
1
4
κ(2n̄+ 1) + κp(2n̄p + 1)

κp
, (10.76a)

(ΔYp)2> ≡ 〈(Ŷp − 〈Ŷp〉)2〉>ss =
(
w̃2w̃2

)
˜̄Yσ

+ 1
4σ

=
1
4
κ(λ− 1)(2n̄+ 1) + (2κ+ κpλ)(2n̄p + 1)

(2κ+ κp)λ
,

(10.76b)

and

〈(X̂ − 〈X̂〉)(X̂p − 〈X̂p〉)〉>ss =
√

2/ξ
(
z̃1w̃1

)
˜̄Xσ

= ∓1
4

√
κ

2κp
2n̄+ 1√
λ− 1

, (10.77a)

〈(Ŷ − 〈Ŷ 〉)(Ŷp − 〈Ŷp〉)〉>ss =
√

2/ξ
(
z̃2w̃2

)
˜̄Yσ

= ∓1
4

√
2κp
κ

κ
√
λ− 1

[
1
2 (2n̄+ 1) − (2n̄p + 1)

]

(2κ+ κp)λ
.

(10.77b)

Note that all results are independent of σ.

We see from (10.75b) and (10.76b) that the subharmonic and pump fields are
both squeezed above threshold: setting the thermal photon numbers to zero,
(ΔY )> varies monotonically from 1

2 (1/
√

2) at λ = 1, to 1
2

√
(κ+ κp)/(2κ+ κp)

in the limit λ → ∞; (ΔYp)> varies monotonically from 1
2 at λ = 1 to
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1
2

√
(κ+ κp)/(2κ+ κp) for λ → ∞. These are the intracavity results. To ob-

tain spectra of squeezing like (10.61a) and (10.61b), we must work with the
correlation matrices

C ˜̄Xσ
(τ) = lim

t→∞

((
z̃1(t)z̃1(t+ τ)

)
˜̄Xσ

(
z̃1(t)w̃1(t+ τ)

)
˜̄Xσ(

w̃1(t)z̃1(t+ τ)
)

˜̄Xσ

(
w̃1(t)w̃1(t+ τ)

)
˜̄Xσ

)

, (10.78a)

and

C ˜̄Yσ
(τ) = lim

t→∞

((
z̃2(t)z̃2(t+ τ)

)
˜̄Yσ

(
z̃2(t)w̃2(t+ τ)

)
˜̄Yσ(

w̃2(t)z̃2(t+ τ)
)

˜̄Yσ

(
w̃2(t)w̃2(t+ τ)

)
˜̄Yσ

)

. (10.78b)

These are evaluated using (Eq. 5.93b)

C ˜̄X+1
(τ) = C ˜̄X+1

(0) exp(AT
X τ), (10.79a)

C ˜̄Y+1
(τ) = C ˜̄Y+1

(0) exp(AT
Yτ), (10.79b)

where C ˜̄X+1
(0) and C ˜̄Y+1

(0) are to be computed from the right-hand sides of
(10.75a)–(10.77b) (with σ = +1) and the drift matrices are

AX =
(

0 ±κ√λ− 1
∓2κp

√
λ− 1 −κp

)
, (10.80a)

AY =
( −2κ ±κ√λ− 1
∓2κp

√
λ− 1 −κp

)
. (10.80b)

From the definition of the source-field spectrum of squeezing (with unit effi-
ciency) (Eq. 10.58) we then have

SX(ω) = (2κ)8
∫ ∞

0

dτ cosωτ(2/ξ)
[
C ˜̄X+1

(τ)
]

11

= (2κ)8Re
∫ ∞

0

dτeiωτ (2/ξ)
[
C ˜̄X+1

(0) exp(AT
X τ)

]

11

= (2κ)8Re
∫ ∞

0

dτ(2/ξ)
[
C ˜̄X+1

(0) exp
[
(AT
X + iωI2)τ

]]

11

= (2κ)8Re
[
(2ξ)C ˜̄X+1

(0)(AT
X + iωI2)−1

]

11
, (10.81a)

and in a similar manner,

SY (ω) = (2κ)8Re
[
(2ξ)C ˜̄Y+1

(0)(AT
Y + iωI2)−1

]

11
. (10.81b)
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Similarly, for the pump mode we have the expressions

SXp(ω) = (2κp)8Re
[
(2ξ)C ˜̄X+1

(0)(AT
X + iωI2)−1

]

22
, (10.82a)

and
SYp(ω) = (2κp)8Re

[
(2ξ)C ˜̄Y+1

(0)(AT
Y + iωI2)−1

]

22
. (10.82b)

Although these spectra can be developed explicitly in analytic form, the results
are sufficiently complicated that there is little to be gained from them. It is
more efficient to compute spectra numerically from the formal expressions.

Exercise 10.4. Write a computer program to compute the spectra of squeez-
ing S>X(ω), S>Y (ω), S>Xp

(ω), and S>Yp
(ω), and use it to study the parameter

dependence of squeezing in the degenerate parametric oscillator above thresh-
old. Also compute the optical spectra T>(ω) and T>p (ω), obtaining them from
the spectra of squeezing in the manner used to derive (10.65).

10.2.4 Quantum Fluctuations at Threshold

We saw in Sec. 8.2 that the system size expansion used to treat the laser
below threshold breaks down as threshold is approached. The breakdown is
evidenced by a divergence of fluctuations, where the source of the divergence
traces back to the fact that at least one eigenvalue of the deterministic equa-
tions of motion (two in the laser case) vanishes at threshold. We can expect
similar behavior in the degenerate parametric oscillator. Indeed, the results
derived so far do show divergences as threshold is approached: below thresh-
old divergences occur in (10.55a) and (10.64), and above threshold the ex-
pressions (10.75a) and (10.77a) diverge. The eigenvalue responsible for these
divergences is Λ1 = −κ(1− λ), the eigenvalue governing the decay of the real
part of the subharmonic field [after removal of the phase 1

2 (ψ − π
2 )]; Λ1 is

negative below threshold, vanishes at threshold, and becomes positive above
threshold, where it determines the growth rate of the amplified fluctuations
that switch the degenerate parametric oscillator from the unstable vacuum
state to a stable state of sustained oscillation.

Because Λ1 vanishes, we need a new version of the system size expansion
to treat threshold fluctuations. First, let us determine where the expansion
based on the scaling (10.33)–(10.38) breaks down. To this end, we return
to the phase-space equation of motion (10.42) and substitute the solution
〈˜̄a(t)〉 = 〈˜̄a†(t)〉 = 0, 〈˜̄b(t)〉 = 〈˜̄b†(t)〉 = λ, which describes the macroscopic
steady state both below and at threshold. Then in a rotating frame, defined
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by (10.47), the phase-space equation of motion is

∂ ˜̄Fσ
∂t

=
{
κ
∂

∂z̃

[
z̃ − λz̃∗ − (

nthr
p

)−1/2
z̃∗w̃

]
+ c.c.

+ κp
∂

∂w̃

[
w̃ +

(
nthr
p

)−1/2
z̃2

]
+ c.c.

+
1
4
ξσκ

[
∂2

∂z̃2

(
λ+

(
nthr
p

)−1/2
w̃
)

+ c.c.
]

+ ξκ
[
n̄+ 1

2 (1 − σ)
] ∂2

∂z̃∂z̃∗
+ 2κp

[
n̄p + 1

2 (1 − σ)
] ∂2

∂w̃∂w̃∗

+
(
nthr
p

)−1/2 1
16
ξ(1 − σ2)κ

(
∂3

∂z̃2∂w̃∗
+ c.c.

)}
˜̄Fσ. (10.83)

Written as it is, in terms of complex field amplitudes, this equation does not
appear to meet with any special problems at threshold. When rewritten in
terms of real variables, though, it becomes

∂ ˜̄Fσ
∂t

=
{
κ
∂

∂z̃1

[
(1 − λ)z̃1 −

(
nthr
p

)−1/2(z̃1w̃1 + z̃2w̃2)
]

+ κ
∂

∂z̃2

[
(1 + λ)z̃2 +

(
nthr
p

)−1/2(z̃1w̃2 − w̃1z̃2)
]

+ κp
∂

∂w̃1

[
w̃1 +

(
nthr
p

)−1/2(z̃2
1 − z̃2

2)
]

+ κp
∂

∂w̃2

[
w̃2 +

(
nthr
p

)−1/22z̃1z̃2
]

+
1
8
ξσκ

[(
∂2

∂z̃2
1

− ∂2

∂z̃2
2

)(
λ+

(
nthr
p

)−1/2
w̃1

)
+ 2

(
nthr
p

)−1/2 ∂2

∂z̃1∂z̃2
w̃2

]

+
1
8
ξκ(2n̄+ 1 − σ)

(
∂2

∂z̃2
1

+
∂2

∂z̃2
2

)
+

1
4
κp(2n̄p + 1 − σ)

(
∂2

∂w̃2
1

+
∂2

∂w̃2
2

)

+
(
nthr
p

)−1/2 1
64
ξ(1 − σ2)κ

[(
∂2

∂z̃2
1

− ∂2

∂z̃2
2

)
∂

∂w̃1
+ 2

∂2

∂z̃1∂z̃2

∂

∂w̃2

]}
˜̄Fσ.

(10.84)

In this form it is clear that at threshold, when λ = 1, or more generally when
1−λ ∼ (

nthr
p

)−1/2
w̃1, we cannot justify dropping the nonlinear drift in the z̃1

direction. In this region the nonlinearity is needed to damp the fluctuations in
z̃1, which otherwise grow without bound. Our task then is to find a scaling of
the variables that gives a systematic treatment of fluctuations when the non-
linear terms in (10.84) are retained to lowest order. Since z̃1 becomes a “slow”
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variable near threshold, damped by the gradient of an ever shallower potential
as the threshold is approached, the required scaling cannot be finalized until
all “fast” variables have been adiabatically eliminated; thus, as in the laser
case (Sect. 8.2.1), the system size expansion at threshold introduces a sepa-
ration of time scales for the fluctuations, in addition to the usual separation
of the fluctuations from the macroscopic law.

There is no reason to anticipate a change in the scaling of variables z̃2, w̃1,
and w̃2, since the linear drift vanishes in the z̃1 direction only. We therefore
make only one change to the scaling (10.33)–(10.38); in place of (10.34), we
write

eiωC tᾱ =
(
nthr
p

)−q
z̃1 + i

(
nthr
p

)−1/2
z̃2, (10.85a)

e−iωCtᾱ∗ =
(
nthr
p

)−q
z̃1 − i

(
nthr
p

)−1/2
z̃2, (10.85b)

where q is to be chosen self-consistently in the manner outlined in Sects. 5.1.3
and 5.1.4. The change calls for the replacement

z̃1 → (
nthr
p

)−q+1/2
z̃1 (10.86)

in (10.84). The phase-space equation of motion then reads, setting λ = 1,

∂ ˜̄Fσ
∂t

=
{
κ
∂

∂z̃1

[
− (

nthr
p

)−1/2
z̃1w̃1 −

(
nthr
p

)q−1
z̃2w̃2

]

+ κ
∂

∂z̃2

[
2z̃2 +

(
nthr
p

)−q
z̃1w̃2 −

(
nthr
p

)−1/2
w̃1z̃2

]

+ κp
∂

∂w̃1

[
w̃1 +

(
nthr
p

)−2q+1/2
z̃2
1 − (

nthr
p

)−1/2
z̃2
2

]

+ κp
∂

∂w̃2

[
w̃2 +

(
nthr
p

)−q
2z̃1z̃2

]

+
1
8
ξσκ

[(
(
nthr
p

)2q−1 ∂2

∂z̃2
1

− ∂2

∂z̃2
2

)(
1 +

(
nthr
p

)−1/2
w̃1

)

+2
(
nthr
p

)q−1 ∂2

∂z̃1∂z̃2
w̃2

]

+
1
8
ξκ(2n̄+ 1 − σ)

(
(
nthr
p

)2q−1 ∂2

∂z̃2
1

+
∂2

∂z̃2
2

)

+
1
4
κp(2n̄p + 1 − σ)

(
∂2

∂w̃2
1

+
∂2

∂w̃2
2

)

+
(
nthr
p

)−1/2 1
64
ξ(1 − σ2)κ

[(
(
nthr
p

)2q−1 ∂2

∂z̃2
1

− ∂2

∂z̃2
2

)
∂

∂w̃1

+2
(
nthr
p

)q−1/2 ∂2

∂z̃1∂z̃2

∂

∂w̃2

]}
˜̄Fσ, (10.87)
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where we have defined

˜̄Fσ(z̃1, z̃2, w̃1, w̃2, t)

≡ (2/ξ)
(
nthr
p

)−q+1/2
Fσ

(
α(z̃1, z̃2, t), α∗(z̃1, z̃2, t), β(w̃1, w̃2, t), β∗(w̃1, w̃2, t), t

)
.

(10.88)

Now it is certain that q is smaller than a half, since q = 1/2 was used by
the scaling away from threshold and the threshold fluctuations are certainly
increased in size. On this basis, the third-order derivatives in (10.87) can be
dropped as they were away from threshold, along with many of the nonlinear
terms. The result is a separable Fokker–Planck equation, with

˜̄Fσ(z̃1, z̃2, w̃1, w̃2, t) = ˜̄Xσ(z̃1, w̃1, t) ˜̄Yσ(z̃2, t) ˜̄Vσ(w̃2, t). (10.89)

The Y -quadrature phase amplitudes of the subharmonic and pump fields fluc-
tuate independently and obey the same equations as below threshold (with
λ = 1); i.e., we have Fokker–Planck equations at threshold for the Y -quadrature
phase amplitudes of the degenerate parametric oscillator

κ−1 ∂
˜̄Yσ
∂t

=
[
2
∂

∂z̃2
z̃2 +

1
8
ξ(2n̄+ 1 − 2σ)

∂2

∂z̃2
2

]
˜̄Yσ, (10.90a)

κ−1
p

∂ ˜̄Vσ
∂t

=
[
∂

∂w̃2
w̃2 +

1
4
(2n̄p + 1 − σ)

∂2

∂w̃2
2

]
˜̄Vσ. (10.90b)

Fluctuations in the X-quadrature phase amplitudes are coupled. They are
described by the Fokker–Planck equation

∂ ˜̄Xσ
∂t

=
{
−κ ∂

∂z̃1

(
nthr
p

)−1/2
z̃1w̃1 + κp

∂

∂w̃1

[
w̃1 +

(
nthr
p

)−2q+1/2
z̃2
1

]

+
(
nthr
p

)2q−1 1
8
ξκ(2n̄+ 1)

∂2

∂z̃2
1

+
1
4
κp(2n̄p + 1 − σ)

∂2

∂w̃2
1

}
˜̄Xσ.(10.90c)

From this point we need only consider (10.90c).
It would of course be an error to drop all terms involving the variable z̃1

in this equation simply because they appear multiplied by negative powers
of nthr

p . We know from the divergences observed in the linearized results that
fluctuations in z̃1 are important. In fact most powers of nthr

p appearing in
(10.90c) will be absorbed into the scaling of time used to separate the slow
fluctuations in z̃1 from the fast fluctuations in w̃1. To uncover the separation
of timescales, hence fix the value of q, we consider the stochastic differential
equations equivalent to (10.90c). These are, following the prescription given
in Sect. 5.3.5,

dz̃1 = κ
(
nthr
p

)−1/2
z̃1w̃1dt+

(
nthr
p

)q−1/2 1
2

√
ξκ(2n̄+ 1)dWz̃1 , (10.91a)
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and

dw̃1 = −κp
[
w̃1 +

(
nthr
p

)−2q+1/2
z̃2
1

]
dt+

√
1
2κp(2n̄p + 1 − σ)dWw̃1 . (10.91b)

From these equations we see that the evolution of the “slow” variable, z̃1,
occurs on a timescale ∼ (

nthr
p

)1/2
κ−1 that is much longer (as nthr

p → ∞) than
that for the “fast” variable w̃1, which is ∼ κ−1

p . We may therefore adiabatically
eliminate w̃1 from (10.91a); thus, setting the left-hand side of (10.91b) to zero,
we write

w̃1dt = −(
nthr
p

)−2q+1/2
z̃2
1dt+ κ−1

p

√
1
2κp(2n̄p + 1 − σ)dWw̃1 , (10.92)

and substituting this result into (10.91a), and dropping the noise term of
order

(
nthr
p

)−1/2 compared to the term of order
(
nthr
p

)q−1/2, we arrive at the
stochastic differential equation

dz̃1 = −κ(nthr
p

)−2q
z̃3
1dt+

(
nthr
p

)q−1/2 1
2

√
ξκ(2n̄+ 1)dWz̃1 , (10.93a)

with equivalent Fokker–Planck equation

κ−1 ∂
˜̄Xσ

∂t
=
[
(
nthr
p

)−2q ∂

∂z̃1
z̃3
1 +

(
nthr
p

)2q−1 1
8
ξ(2n̄+ 1)

∂2

∂z̃2
1

]
˜̄Xσ. (10.93b)

Now q may be chosen so that the two terms on the right-hand side of (10.93b)
are of the same order. This requires

q = 1
4 , (10.94)

which is the scaling used for the laser at threshold (Eq. 8.85).
We are now in a position to separate Fokker–Planck equation (10.90c) into

a pair of equations, one describing slow fluctuations of the subharmonic field
and the other describing fast fluctuations of the pump. Note, though, that
while this separation based on timescales may be made, fluctuations in the
two modes are not entirely independent. While the subharmonic field fluctu-
ates independently of the pump, the converse is not true; pump fluctuations
are conditioned on the value of the X-quadrature phase amplitude of the
subharmonic. We therefore write the joint distribution as

˜̄Xσ(z̃1, w̃1, t) = ˜̄Xσ(z̃1, t) ˜̄Uσ(w̃1, t|z̃1), (10.95)

where, from (10.93b), the Fokker–Planck equation for the X-quadrature phase
amplitude of the subharmonic mode of the degenerate parametric oscillator at
threshold is

[(
nthr
p

)−1/2
κ
]−1 ∂ ˜̄Xσ

∂t
=
[
∂

∂z̃1
z̃3
1 +

1
8
ξ(2n̄+ 1)

∂2

∂z̃2
1

]
˜̄Xσ, (10.96a)
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and, from (10.91b), the Fokker–Planck equation for the X-quadrature phase
amplitude of the pump mode of the degenerate parametric oscillator at thresh-
old is

κ−1
p

∂ ˜̄Uσ
∂t

=
[
∂

∂w̃1
(w̃1 + z̃2

1) +
1
4
(2n̄p + 1 − σ)

∂2

∂w̃2
1

]
˜̄Uσ. (10.96b)

Note the coupling of the two equations through the term +z̃2
1 in (10.96b).

Steady-state solutions to Fokker–Planck equations (10.90a), (10.90b),
(10.96a), and (10.96b) are readily obtained using results from Chap. 5. First,
with the help of the potential solution (5.30), for the solution to (10.96a) we
obtain

˜̄Xσ(z̃1) =
2

Γ (1
4 )

(
2κp
κ

1
2n̄+ 1

) 1
4

exp
(
−2κp

κ

z̃4
1

2n̄+ 1

)
. (10.97a)

Solutions to the remaining three equations then follow from the asymptotic
form of the conditional distribution (5.18): for (10.96b) we obtain

˜̄Uσ(w̃1|z̃1) =

√
2
π

1
√

2n̄p + 1 − σ
exp

(
−1

2
4(w̃1 + z̃2

1)
2

2n̄p + 1 − σ

)
, (10.97b)

while the steady-state solutions to (10.90a) and (10.90b) are

˜̄Yσ(z̃2) =

√
2
π

√
4κp
κ

1√
2n̄+ 1 − 2σ

exp
(
−1

2
4κp
κ

4z̃2
2

2n̄+ 1 − 2σ

)
, (10.97c)

and
˜̄Vσ(w̃2) =

√
2
π

1√
2n̄+ 1 − σ

exp
(
−1

2
4w̃2

2

2n̄p + 1 − σ

)
. (10.97d)

From these solutions the covariances are obtained. We first consider the
covariance matrix for the Y quadrature phase amplitudes of the degenerate
parametric oscillator at threshold :

(ΔY )2thr ≡ 〈(Ŷ − 〈Ŷ 〉)2〉thr
ss = (2/ξ)

[(
z̃2z̃2

)
˜̄Yσ

+ 1
4σ

]

= 1
8 (2n̄+ 1), (10.98a)

(ΔYp)2thr ≡ 〈(Ŷp − 〈Ŷp〉)2〉thr
ss =

(
w̃2w̃2

)
˜̄Vσ

+ 1
4σ

= 1
4 (2n̄p + 1), (10.98b)

and
〈(Ŷ − 〈Ŷ 〉)(Ŷp − 〈Ŷp〉)〉thr

ss =
√

2/ξ
(
z̃2w̃2

)
˜̄Yσ

˜̄Vσ
= 0. (10.99)

There is nothing of great interest here. These results are recovered by set-
ting λ = 1 in the corresponding below- and above-threshold expressions
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(Eq. 10.55b and Eqs. 10.75b, 10.76b, and 10.77b). In particular, as there
is no change of stability for the Y -quadrature phase amplitudes, there is no
threshold enhancement of their fluctuations.

Fluctuations in the X-quadrature phase amplitudes are of more interest.
The X-quadrature amplitude of the subharmonic does change stability at
threshold. Moreover, as we have just noted, its fluctuations are correlated
with those of the pump. The correlation is illustrated by Fig. 10.1, where the
distribution ˜̄Xσ(z̃1, w̃1) is plotted. Here the threshold fluctuations anticipate
the development of two peaks above threshold—two peaks to identify two
allowed phases for the subharmonic field (Fig. 9.3). In this, the fluctuations
of z̃1 and w̃1 are correlated. The correlation provides a hint of the developing
pump depletion above threshold (Eq. 9.77b). Derivation of the covariance
matrix that shows these results is left as an exercise.

Exercise 10.5. Use (10.97a) and (10.97b) to derive the covariance matrix for
the X-quadrature phase amplitudes of the degenerate parametric oscillator at

Fig. 10.1. (a) The distribution ˜̄Xσ(z̃1, w̃1) = ˜̄Xσ(z̃1) ˜̄Uσ(w̃1|z̃1), for n̄ = n̄p = 0,

κ = κp, and σ = 0. (b) The contour ˜̄Xσ(z̃1, w̃1) = e−1 ˜̄Xσ(0, 0), for n̄ = n̄p, κ = κp,
and σ = 0
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threshold. First, show that

(ΔX)2thr ≡ 〈(X̂ − 〈X̂〉)2〉thr
ss = (2/ξ)

[(
z̃1z̃1

)
˜̄Xσ

+ 1
4σ

]

=
(
nthr
p

)1/2Γ (3
4 )

Γ (1
4 )

(
2κp
κ

1
2n̄+ 1

) 1
2

(2n̄+ 1),

(10.100a)

and

(ΔXp)2thr ≡ 〈(X̂p − 〈X̂p〉)2〉thr
ss =

(
w̃1w̃1

)
˜̄Uσ

˜̄Xσ
+ 1

4σ

= 1
4 (2n̄p + 1) + (κ/2κp)1

8 (2n̄+ 1).
(10.100b)

Note the enhancement of (ΔX)2thr, which is of order unity away from threshold
and of order

(
nthr
p

)1/2 at threshold. With regard to the correlations between
z̃1 and w̃1, it is clear that 〈(X̂ − 〈X̂〉)(X̂p − 〈X̂p〉)〉thr

ss = 0; the result follows
by symmetry. It is instructive, however, to express the zero as the sum of
positive and negative terms (averages over z̃1 < 0 and z̃1 > 0), each of which
represents the extrapolation to threshold of the nonvanishing correlations in
one above-threshold steady state (Eq. 10.77a). Thus, second, show that

〈(X̂ − 〈X̂〉)(X̂p − 〈X̂p〉)〉thr
ss

=
√

2/ξ
(
z̃1w̃1

)
˜̄Xσ

˜̄Uσ

= −(
nthr
p

)1/4 2
Γ (1

4 )

(
2κp
κ

1
2n̄+ 1

) 1
4 1
4

√
κ

2κp
(2n̄+ 1)

+
(
nthr
p

)1/4 2
Γ (1

4 )

(
2κp
κ

1
2n̄+ 1

) 1
4 1
4

√
κ

2κp
(2n̄+ 1). (10.101)

From (10.100a) we obtain the average photon number in the subharmonic
mode at threshold :

〈a†a〉thr ≡ 〈a†a〉thr
ss =

Γ (3
4 )

Γ (1
4 )

√
2κp
κ

√
nthr
p (2n̄+ 1), (10.102)

and (10.98b) and (10.100b) give the correction due to fluctuations to the
average photon number in the pump mode at threshold :

〈b†b〉thr − nthr
p ≡ 〈b†b〉thr

ss − nthr
p = (ΔXp)2thr + (ΔYp)2thr − 1

2

= n̄p + (κ/2κp)1
8 (2n̄+ 1). (10.103)

In conclusion, we might summarize what we have learned about fluctua-
tions of the quadrature phase amplitudes for the degenerate parametric oscilla-
tor, combining the results (10.98)–(10.101) with those derived in Sects. 10.2.2
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Fig. 10.2. Steady-state fluctuations as a function of pump parameter for the de-
generate parametric oscillator, with κ = κp and n̄ = n̄p = 0: (a) X-quadrature
variances, (b) Y -quadrature variances, (c) cross-correlation between subharmonic
and pump modes. In (a) and (b), solid lines are for the subharmonic mode and
dashed lines for the pump mode. In (c) the solid and dashed lines are for the X-
and Y -quadrature phase amplitudes, respectively

and 10.2.3. The resulting picture of the threshold transition is illustrated by
Fig. 10.2. Note how the curves change discontinuously at threshold in the
limit nthr

p → ∞.

Note 10.6. The distribution ˜̄Xσ(z̃1) is independent of σ. This suggests that the
P , Q and Wigner distributions describing fluctuations in the X-quadrature
phase amplitude of the subharmonic field all have the same form, which should
not be the case, since their moments correspond to operator averages in dif-
ferent orders. The reason for the apparent error is that the system size ex-
pansion only provides an approximate answer for ˜̄Xσ(z̃1). The scaling de-
fined by (10.33) and (10.85) (with q = 1/4) gives α to an accuracy of order
√

2/ξ
(
nthr
p

)1/4 when we treat the fluctuations in z̃1 to an accuracy of order
unity. The results obtained are therefore not accurate enough to distinguish
between quantum averages differing at the one-quantum level (α ∼ 1). To
achieve one-quantum accuracy, we would need to include first-order correc-
tions to z̃1, writing z̃1 = z̃0

1 +
(
nthr
p

)−1/4
z̃1
1 .
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The Positive P Representation

The positive P representation generalizes the Glauber–Sudarshan P repre-
sentation. It was introduced by Drummond and Gardiner [11.1] specifically
to deal with the problem of phase-space equations of motion in the Fokker–
Planck form that do not possess positive semidefinite diffusion. The degener-
ate parametric oscillator provides one of the simplest examples. Although
this representation has been used extensively by its originators and their
colleagues—especially by Drummond and collaborators to treat squeezing in
optical fibers [11.2,11.3,11.4,11.5,11.6,11.7,11.8] and more recently quantum
gases [11.9,11.10,11.11,11.12]—it is probably fair to say that it is poorly under-
stood outside this circle of the initiated. One reason for this, certainly, is that
problems with non-positive-semidefinite diffusion can often be avoided using
either the Wigner or the Q representation, as we have seen in Sect. 10.1.2;
why would one become entangled in the mysteries of negative diffusion if
it can be avoided? Beyond this, any inclination against the representation
is reinforced by the appearance that there is something unreasonable, or at
least unnecessarily complicated, about it: unreasonable because the positive
P representation allows real quantities to be driven by imaginary noise; un-
necessarily complicated because it accomplishes this feat by representing each
field mode by a pair of complex phase-space variables instead of just one—the
positive P distribution is defined within a phase space that has double the
usual number of dimensions.

As it turns out, certain applications of the positive P representation do face
fundamental difficulties, so there is justification for caution; we look in some
detail at the difficulties in Chap. 12. The difficulties are restricted, however, to
the highly nonlinear regime where the system size expansion breaks down, and
in applications where the expansion is justified there is absolutely no reason
for reservations. Here the positive P representation holds no more mystery
than the Glauber–Sudarshan representation; moreover, it is just as easy to
calculate with, despite its doubled dimensions. This chapter deals with these
standard applications. We learn what the positive P representation is and
how it is used in the linearized treatment of fluctuations—for example, to
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justify overlooking the negative diffusion in Fokker–Planck equation (10.51b)
(for n̄ = 0 and σ = 1).

What should we say, however, about the reasonable objection that since
a stochastic description of the degenerate parametric oscillator can be formu-
lated within the Wigner or Q representation, why should we be concerned
with the positive P representation at all? There are three principal reasons.
First, as we noted in the introduction to Chap. 9, the Glauber–Sudarshan
P representation classifies optical fields: there are classical fields, which ad-
mit a stochastic description within the Glauber–Sudarshan representation and
whose statistical properties can therefore be understood using classical statis-
tical optics and the semiclassical theory of photoelectric detection; and there
are nonclassical fields, which do not admit such a description and understand-
ing. Thus, the close relationship between the positive P representation and
the Glauber–Sudarshan representation makes it the natural one to use to
highlight the differences between classical and nonclassical fields.

The second reason is simply one of completeness and interest. What we
saw in the previous chapter surely raises our curiosity; how did we manage
to obtain correct results from a Fokker–Planck equation with a negative dif-
fusion constant? The answer must teach us something about the meaning of
“diffusion” in the quantum–classical correspondence.

The third, and perhaps the most important reason of all, is that the suc-
cess of the Wigner and Q representations is a little misleading. Both repre-
sentations meet with similar difficulties outside the small-noise limit (see the
summary at the end of Sect. 10.1.2). In fact, the strategy adopted by the
positive P representation to deal with non-positive-definite diffusion can be
applied to these representations as well; though, if it is to be applied outside
the small-noise limit, the issues discussed in Chap. 12 must be considered.

11.1 The Positive P Representation

The ideas behind the positive P representation follow quite naturally from
the way in which the Glauber–Sudarshan P representation breaks down for
the degenerate parametric oscillator. To see how we might invent the positive
P representation, let us refresh our memories about the difficulty with the
stochastic differential equations (10.57). Setting n̄ = 0 and σ = +1, these
equations read

dz̃1 = −(1 − λ)z̃1(κdt) + 1
2

√
ξκλdWz̃1 , (11.1a)

dz̃2 = −(1 + λ)z̃2(κdt) + i 12

√
ξκλdWz̃2 . (11.1b)

In the second, a pure imaginary noise term acts as a source for the real phase-
space variable z̃2; as the diffusion constant in Fokker–Planck equation (10.51b)
is negative, its square root is pure imaginary, hence the noise in the stochastic
differential equation is imaginary too. Alternatively, writing the stochastic
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differential equations in terms of complex variables, z̃ = z̃1 + iz̃2 and z̃∗ =
z̃1 − iz̃2, we have

dz̃ = −(z̃ − λz̃∗)(κdt) +
√

(ξ/2)κλdWz̃ , (11.2a)

dz̃∗ = −(z̃∗ − λz̃)(κdt) +
√

(ξ/2)κλdWz̃∗ , (11.2b)

with new statistically independent Wiener increments

dWz̃ ≡ 1√
2

(
dWz̃1 − dWz̃2

)
, dWz̃∗ ≡ 1√

2

(
dWz̃1 + dWz̃2

)
. (11.3)

Here the inconsistency appears in different form: since dWz̃ and dWz̃∗ are in-
dependent [since dWz̃∗ �= (dWz̃)∗], because of their noise terms the stochastic
differential equations do not preserve the conjugacy of z̃ and z̃∗.

Definitely, then, something is wrong. On the other hand, one can calcu-
late formally with these equations and get sensible results; for example, from
(11.1a) and (11.1b), using (5.144b), we find

(2κ)−1 d〈z̃2
1〉

dt
= −(1 − λ)〈z̃2

1〉 + (ξ/2)1
4λ, (11.4a)

(2κ)−1 d〈z̃2
2〉

dt
= −(1 + λ)〈z̃2

2〉 − (ξ/2)1
4λ, (11.4b)

with steady-state solutions

〈z̃2
1〉ss = (ξ/2)

1
4

λ

1 − λ
= (ξ/2)

[
(ΔX)2< − 1

4

]
, (11.5a)

〈z̃2
2〉ss = −(ξ/2)

1
4

λ

1 + λ
= (ξ/2)

[
(ΔY )2< − 1

4

]
, (11.5b)

where (ΔX)2< and (ΔY )2< are the quadrature phase amplitude variances
(10.55a) and (10.55b) (with n̄ = 0). The results 〈z̃2

1〉ss and 〈z̃2
2〉ss are cor-

rect for operator averages in normal order. Thus, although this success is
slim evidence indeed, possibly it is telling us that the main problem with the
stochastic differential equations (11.1a)–(11.2b) is one of notation. Perhaps
we should accept that z̃2 is complex, and z̃ and z̃∗ are not complex con-
jugate. Perhaps we should write (11.2a) and (11.2b) in the similar, though
fundamentally different form

dz̃ = −(z̃ − λz̃∗)(κdt) +
√

(ξ/2)κλdWz̃ , (11.6a)

dz̃∗ = −(z̃∗ − λz̃)(κdt) +
√

(ξ/2)κλdWz̃∗ , (11.6b)

where z̃ and z̃∗ are two independent complex variables, two phase-space vari-
ables (four real dimensions) associated with the one field mode. The sub-
script ∗ is used to remind us that we still require z̃ and z̃∗ to be complex
conjugate in the mean—i.e., with 〈z̃∗〉 = 〈z̃〉∗: a relationship that is indeed
preserved by (11.6a) and (11.6b).
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Here then is the hint to set us on the path to inventing the positive P
representation. If the change in notation is permissible, it must be possible
to justify it. Moreover, if we aim to find the justification, we must set up
the formalism so that there are independent variables α and α∗ (α∗ �= α∗)
associated with each field mode from the beginning. In essence, all we have to
do is make the change of notation when formulating the standard Glauber–
Sudarshan P representation and see where this leads.

11.1.1 The Characteristic Function and Associated Distribution

Our ultimate aim is to treat the two-mode degenerate parametric oscillator
model—master equation (9.97). To simplify the notation, let us first define
the positive P representation for a single mode. We replace complex con-
jugate variables by independent complex variables in the definition of the
normal-ordered characteristic function (3.70). Thus, we define the character-
istic function in the positive P representation

χ
N

(z, z∗) ≡ tr
(
ρeiz∗a

†
eiza

)
, (11.7)

from which normal-ordered averages are calculated by taking derivatives in
the usual way:

〈a†paq〉 = tr
(
ρa†paq

)

=
∂p+q

∂(iz∗)p∂(iz)q
χ
N

(z, z∗)
∣
∣
∣∣
z=z∗=0

. (11.8)

The important change is that the characteristic function is now analytic in the
variables z and z∗. The analyticity should be noted, since it is this property
that eventually allows us to construct a Fokker–Planck equation with positive
semidefinite diffusion.

Note 11.1. The variables z and z∗ in (11.7) and (11.8) should not be confused
with the z̃ and z̃∗ in (11.6a) and (11.6b). The latter are phase-space variables
introduced when making the system size expansion (Eqs. 10.33–10.38); they
are arguments of the phase-space distribution, not the characteristic function.

Now the Glauber–Sudarshan P distribution is the two-dimensional Fourier
transform of the normal-ordered characteristic function (Eq. 3.72). We might
expect, as the natural generalization, to define the positive P distribution as
the four-dimensional Fourier transform of (11.7). In fact this is not what we
want. We must be guided by the use made of the relationship between P and
χ
N

. The essential side of the relationship is the integral expression (3.73),
which gives χ

N
in terms of P , not its inverse. It is this expression, together

with the formula (3.71), that allows operator averages to be calculated as
phase-space integrals. We therefore generalize this expression. We associate
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a distribution P (α, α∗) with ρ by assuming that there exists an expansion for
χ
N

(z, z∗) in the form

χ
N

(z, z∗) =
∫
d2α

∫
d2α∗ P (α, α∗)eiz∗α∗eizα. (11.9)

If such an expansion exists, the phase-space result for normal-ordered averages
remains intact; from (11.8) and (11.9), we may write

〈a†paq〉 =
∂p+q

∂(iz∗)p∂(iz)q

∫
d2α

∫
d2α∗ P (α, α∗)eiz∗α∗eizα

∣
∣∣
∣
z=z∗=0

=
(
αp∗αq

)
P
, (11.10a)

with
(
αp∗αq

)
P
≡

∫
d2α

∫
d2α∗ αp∗α

qP (α, α∗). (11.10b)

It is important now to note that although (11.9) may look like a Fourier
transform, it is not. In order for it to be a Fourier transform, two additional
exponentials, ei(z∗)∗(α∗)∗ and eiz

∗α∗
, would need to appear in the integrand.

In their absence, the relationship between χ
N

and P goes in one direction
only; (11.9) cannot be inverted to write P in terms of χ

N
.

As with the Glauber–Sudarshan representation, the characteristic function
is not the only route to a definition. Drummond and Gardiner [11.1] introduce
the positive P representation in a different manner. They propose a gener-
alization of the diagonal expansion for ρ presented in Sect. 3.1.2 (Eq. 3.15),
writing

ρ =
∫
d2α

∫
d2α∗

|α〉〈(α∗)∗|
〈(α∗)∗|α〉 P (α, α∗). (11.11)

It is easy to show that the existence of such an expansion for ρ implies that
an expansion for χ

N
exists in the form (11.9). The converse is also true, since

χ
N

specifies ρ uniquely.
From (11.11) we see that there is a close relationship between the expansion

proposed by Drummond and Gardiner and Glauber’s R representation. The
R representation (Eq. 3.13) is recovered from (11.11) by choosing

P (α, α∗) =
1
π2

〈(α∗)∗|α〉e− 1
2 |α|2e−

1
2 |α∗|2R

(
α∗, (α∗)∗

)

=
1
π2

〈(α∗)∗|α〉〈α|ρ|(α∗)∗〉, (11.12)

where (Eq. 3.14) R
(
α∗, (α∗)∗

) ≡ e
1
2 |α|2e

1
2 |α∗|2〈α|ρ|(α∗)∗〉. Alternatively, the

choice (11.12) for P (α, α∗) follows directly from (11.7) and (11.9). We simply
insert the expansion of the unit operator (3.9) into (11.7) twice; thus, the
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characteristic function is written as

χ
N

(z, z∗) = tr
[
ρ

(
1
π

∫
d2α∗ |(α∗)∗〉〈(α∗)∗|

)
eiz∗a

†
eiza

(
1
π

∫
d2α |α〉〈α|

)]

=
∫
d2α

∫
d2α∗

[
1
π2

〈(α∗)∗|α〉〈α|ρ|(α∗)∗〉
]
eiz∗α∗eizα.

(11.13)

Comparing (11.9) yields the expression (11.12) for P (α, α∗).
The fact that P (α, α∗) and χ

N
(z, z∗) are not Fourier transforms of one

another is of central importance. It follows from this that (11.7) and (11.9) do
not define the positive P distribution in the way the similar relationships from
Chaps. 3 and 4 define the Glauber–Sudarshan P , the Q, and the Wigner dis-
tributions. Most importantly, P (α, α∗) is not unique. For any density operator
ρ there are many functions that allow χ

N
(z, z∗) to be expanded in the form

(11.9). Even the positive character of the distribution is not yet defined. The
latter is apparent from (11.12). It is clear that (1/π2)〈(α∗)∗|α〉〈α|ρ|(α∗)∗〉
need not be positive or even real: consider the vacuum state, ρ = |0〉〈0|,
for which (1/π2)〈(α∗)∗|α〉〈α|ρ|(α∗)∗〉 = (1/π2)e−|α|

2
e−|α∗|2eαα∗ ; this function

takes on values that are both negative and complex for appropriate choices of
αα∗.

At this stage, then, the definition of the positive P representation is not
complete. What we have defined so far is a generalized P representation. The
positivity of the distribution must be imposed as an additional constraint.
We must also set out an explicit procedure for constructing such a positive
distribution. Thus, in the most general terms, a positive P representation for ρ
is provided by any P (α, α∗), as specified above, that is both real and positive.
Since (11.9) and (11.7) guarantee that

∫
d2α

∫
d2α∗ P (α, α∗) = χ

N
(0, 0) = 1, (11.14)

such a distribution satisfies all the properties expected of a probability distri-
bution. Referring to a positive as distinct from a generalized P representation
is appropriate because, as it turns out, it is always possible to find a real,
positive function for P (α, α∗). Let us now prove this by explicit construc-
tion. Our proof varies only slightly from the one given by Drummond and
Gardiner [11.1].

Using the Glauber–Sudarshan representation, we first expand the density
operator in diagonal form,

ρ =
1
π

∫
d2λ|λ〉〈λ|PGS(λ, λ∗), (11.15)

where we temporarily adopt the notation PGS to distinguish the Glauber–
Sudarshan distribution from the positive P distribution. This diagonal ex-
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pansion can always be made, although PGS(λ, λ∗) may need to be a general-
ized function [see the discussion below (3.32)]. Now substituting (11.15) into
(11.7), the characteristic function is given by

χ
N

(z, z∗) = tr
[(∫

d2λ|λ〉〈λ|PGS(λ, λ∗)
)
eiz∗a

†
eiza

]

=
∫
d2λPGS(λ, λ∗)eiz∗λ

∗
eizλ. (11.16)

Then write (see Note 11.2 for the proof)

eiz∗λ
∗

=
1
2π

∫
d2α∗ eiz∗α∗e−

1
2 |α∗−λ∗|2 , (11.17a)

eizλ =
1
2π

∫
d2α eizαe−

1
2 |α−λ|2 , (11.17b)

and we obtain

χ
N

(z, z∗)

=
∫
d2α

∫
d2α∗

[
1

4π2

∫
d2λPGS(λ, λ∗)e−

1
2 |α∗−λ∗|2e−

1
2 |α−λ|2

]

× eiz∗α∗eizα

=
∫
d2α

∫
d2α∗

[
1
4π
e−

1
4 |α−(α∗)∗|2 1

π

∫
d2λPGS(λ, λ∗)e−|λ−

1
2 (α+(α∗)∗)|2

]

× eiz∗α∗eizα

=
∫
d2α

∫
d2α∗

[
1
4π

|〈(α∗)∗/2|α/2〉|2Q
(

1
2 (α+ (α∗)∗), 1

2 (α∗ + α∗)
)]

× eiz∗α∗eizα, (11.18)

where the last step follows from (3.8) and (4.7); hence, we achieve an expansion
of the characteristic function in the form (11.9), from which, by definition, the
density operator possesses the generalized P representation

P (α, α∗) =
1
4π

|〈(α∗)∗/2|α/2〉|2Q
(

1
2 (α+ (α∗)∗), 1

2 (α∗ + α∗)
)
. (11.19)

The representation is, however, a positive representation, since the Q distri-
bution, given by the diagonal coherent state matrix elements of ρ (Eq. 4.6),
is explicitly a real and positive function.

Note 11.2. The proof of (11.17a) and (11.17b) proceeds as follows. Consider
in particular (11.17b). Making the transformation α− λ→ α = reiφ, we may
write
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R.H.S. of (11.17b) = eizλ
1
2π

∫
d2α eizαe−

1
2 |α|2

= eizλ
1
2π

∫ ∞

0

dr

∫ 2π

0

dφ

∞∑

m=0

(iz)m

m!
rm+1eimφe−

1
2 r

2

= eizλ
∫ ∞

0

drre−
1
2 r

2

= eizλ.

Even with P (α, α∗) restricted to be a real and positive function, the repre-
sentation remains nonunique. Our construction, Eq. 11.19, defines a positive
P distribution, not the positive P distribution. To illustrate this point, we
might note that any density operator that possesses a positive, nonsingular
Glauber–Sudarshan P distribution, also admits the positive P representation

P (α, α∗) = PGS(α, α∗)δ(2)
(
α− (α∗)∗

)
. (11.20)

For example, for the thermal state (3.26), using (11.20) and the Glauber–
Sudarshan distribution (3.27), we obtain

P (α, α∗) =
1

π〈n̂〉 exp
(
−|α|2

〈n̂〉
)
δ(2)

(
α− (α∗)∗

)
, (11.21a)

quite a different positive P representation to the one obtained from (11.19)
[and (4.21)]—i.e.,

P (α, α∗) =
1

4π2(1 + 〈n̂〉)e
− 1

4 |α−(α∗)∗|2 exp
(
−1

4
|α+ (α∗)∗|2

1 + 〈n̂〉
)
. (11.21b)

Exercise 11.1. Show by explicit calculation that the positive P representa-
tions (11.21a) and (11.21b) give the same results for normal-ordered operator
averages.

At first sight the nonuniqueness of the positive P representation might ap-
pear to be a weakness; but along with nonuniqueness comes flexibility, and
it is this flexibility that suggests we might use the positive P representa-
tion to construct acceptable Fokker–Planck equations in situations where the
Glauber–Sudarshan representation fails. It is just possible that amongst all
possible positive P distributions, P (α, α∗, t), representing (nonuniquely) the
density operator ρ(t), one may be found at each time t such that the fam-
ily of distributions, for different times, satisfies a Fokker–Planck equation. Of
course, there is no reason for the distributions that accomplish this trick to
be those defined by (11.19).

Exercise 11.2. Use (11.19) and (4.10) to obtain a positive P distribution for
the Fock state |l〉. Show that this distribution gives the correct normal-ordered
operator averages
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〈l|a†paq|l〉 =

{
δp,ql(l − 1) · · · (l − q + 1) q ≤ l,

0 q > l.
(11.22)

Show that the same results are obtained from the complex-valued distribution
(11.12).

11.1.2 Fokker–Planck Equation
for the Degenerate Parametric Oscillator

We are now ready to derive the Fokker–Planck equation for the degenerate
parametric oscillator in the positive P representation. Our starting point is
the master equation (9.97) and the characteristic function (11.7), generalized
to the two-mode situation in the obvious way. Proceeding in the standard
fashion [Sects. 3.2.2 and 10.1.1], we first derive the equation of motion for the
characteristic function

∂χ
N

∂t
= D

(
z, z∗, w, w∗,

∂

∂z
,
∂

∂z∗
,
∂

∂w
,
∂

∂w∗

)
χ
N
, (11.23)

with

D

(
z, z∗, w, w∗,

∂

∂z
,
∂

∂z∗
,
∂

∂w
,
∂

∂w∗

)

≡ −z
[
(κ+ iωC)

∂

∂z
+ ig

∂2

∂z∗∂w

]
− z∗

[
(κ− iωC)

∂

∂z∗
+ ig

∂2

∂z∂w∗

]

− w

[
(κp + i2ωC)

∂

∂w
− i(g/2)

∂2

∂z2
− Ē0e

−i2ωCt

]

− w∗

[
(κp − i2ωC)

∂

∂w∗
− i(g/2)

∂2

∂z2∗
− Ē∗0 ei2ωC t

]

+ i(g/2)
(
z2 ∂

∂w
+ z2
∗
∂

∂w∗

)
− 2κn̄zz∗ − 2κpn̄pww∗. (11.24)

Here the algebraic manipulations carry through as they did before, the only
change being one of notation, z∗ → z∗, w∗ → w∗; up to this point we meet
nothing new. Substituting the expansion (11.9) for χ

N
into (11.23), we then

have
∫
d2α

∫
d2α∗

∫
d2β

∫
d2β∗

∂P (α, α∗, β, β∗, t)
∂t

eiz∗α∗eizαeiw∗β∗eiwβ

=
∫
d2α

∫
d2α∗

∫
d2β

∫
d2β∗ P (α, α∗β, β∗, t)

×D

(
z, z∗, w, w∗,

∂

∂z
,
∂

∂z∗
,
∂

∂w
,
∂

∂w∗

)
eiz∗α∗eizαeiw∗β∗eiwβ.

(11.25)
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Acting with the derivatives to the right on the product of exponentials, we
effect the replacements

∂

∂z
→ iα,

∂

∂z∗
→ iα∗,

∂

∂w
→ iβ,

∂

∂w∗
→ iβ∗.

It is from here that the derivation branches in a new direction.
If we were to follow strictly the derivation from Sect. 3.2., we would now

make the replacements

z → −i ∂
∂α

, z∗ → −i ∂

∂α∗
, w → −i ∂

∂β
, w∗ → −i ∂

∂β∗
.

Here we do much the same thing but with a twist. Recall that the characteristic
function in the positive P representation is analytic. The analyticity is passed
through to (11.25) in the product of exponentials. This product is an analytic
function of α, α∗, β, and β∗, which it is not if α∗ → α∗, β∗ → β∗. Given the
analyticity, we may interpret derivatives taken with respect to the phase-space
variables as arbitrary linear combinations of derivatives taken with respect
their real and imaginary parts. Thus, we make the proposed replacements in
the form

z → −i∂α, z∗ → −i∂α∗ , w → −i∂β, w∗ → −i∂β∗ ,

with definitions

∂α ≡
(
μ
∂

∂x
− iν

∂

∂y

)
, ∂α∗ ≡

(
μ
∂

∂x
− iν

∂

∂y

)
, (11.26a)

∂β ≡
(
μ
∂

∂u
− iν

∂

∂v

)
, ∂β∗ ≡

(
μ
∂

∂u
− iν

∂

∂v

)
, (11.26b)

where μ and ν are real numbers satisfying μ+ ν = 1, and

α = x+ iy, α∗ = x + iy, (11.27a)
β = u+ iv, β∗ = u + iv. (11.27b)

In this way we introduce a degree of flexibility into the equation of motion for
P (α, α∗, β, β∗, t). Ultimately, we plan to make use of this flexibility by choosing
the parameters μ and ν, term by term, so as to force the equation of motion
for P (α, α∗, β, β∗, t) to have positive semidefinite diffusion. By this strategy
the positivity of the distribution is guaranteed and the path to a unique
distribution is defined.

Having made all replacements, D
(
z, z∗, w, w∗, ∂∂z ,

∂
∂z∗

, ∂
∂w ,

∂
∂w∗

)
is replaced

by the differential operator in phase-space variables
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L+(α, α∗,β, β∗, ∂α, ∂α∗ , ∂β , ∂β∗)

≡ −[
(κ+ iωC)α − gα∗β

]
∂α − [

(κ− iωC)α∗ − gαβ∗
]
∂α∗

− [
(κp + i2ωC)β + (g/2)α2 + iĒ0e

−i2ωCt
]
∂β

− [
(κp − i2ωC)β∗ + (g/2)α2

∗ − iĒ∗0 ei2ωCt
]
∂β∗

+ (g/2)(β∂2
α + β∗∂2

α∗) + 2κn̄∂α∂α∗ + 2κpn̄p∂β∂β∗ . (11.28)

Then integrating by parts on the right-hand side of (11.25) and assuming that
boundary terms at infinity vanish, we arrive at a generalization of (3.85),

∫
d2α

∫
d2α∗

∫
d2β

∫
d2β∗ eiz∗α∗eizαeiw∗β∗eiwβ

∂P

∂t

=
∫
d2α

∫
d2α∗

∫
d2β

∫
d2β∗ eiz∗α∗eizαeiw∗β∗eiwβ

× L(α, α∗, β, β∗, ∂α, ∂α∗ , ∂β , ∂β∗)P, (11.29)

where

L(α, α∗,β, β∗, ∂α, ∂α∗ , ∂β , ∂β∗)

≡ ∂α
[
(κ+ iωC)α− gα∗β

]
+ ∂α∗

[
(κ− iωC)α∗ − gαβ∗

]

+ ∂β
[
(κp + i2ωC)β + (g/2)α2 + iĒ0e

−i2ωCt
]

+ ∂β∗
[
(κp − i2ωC)β∗ + (g/2)α2

∗ − iĒ∗0 ei2ωCt
]

+ (g/2)(∂2
αβ + ∂2

α∗β∗) + 2κn̄∂α∂α∗ + 2κpn̄p∂β∂β∗ . (11.30)

A sufficient condition for (11.28) to be satisfied is that the distribution satisfy
the phase-space equation of motion for the degenerate parametric oscillator
within the generalized P representation

∂P

∂t
= L(α, α∗, β, β∗, ∂α, ∂α∗ , ∂β , ∂β∗)P. (11.31)

This equation incorporates the flexibility introduced through the definitions
(11.26a) and (11.26b); it is not yet an equation of motion defining a positive P
representation. It involves derivatives up to second order and may be viewed
as a generalized Fokker–Planck equation.

Note 11.3. Since the integration in (11.29) is not a Fourier transform, we can-
not pass from it to (11.31) via the inversion of a Fourier transform as we did,
for example, at the end of Sect. 3.2.2. There is no cause to worry that (11.31) is
only a sufficient condition for (11.29) to hold, however. Our interest is in find-
ing a (not the) P (α, α∗, β, β∗, t) that represents ρ(t); we already know from
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the discussion in Sect. 11.1.1 that the distribution is not unique. We should,
on the other hand, be a little worried about the assumption that boundary
terms vanish in the integration by parts connecting (11.25) and (11.29). At
least one example where this is demonstrably not the case is known [11.13],
and for it the solution to the resulting Fokker–Planck equation gives physically
incorrect results. We return to this issue at the end of Chap. 12.

On comparing the differential operator (11.30) with the right-hand side of
(10.8), we find that our generalized phase-space equation of motion has the
same form as the phase-space equation of motion in the Glauber–Sudarshan
P representation, but with the advertised difference of notation: α∗ and β∗
are not assumed complex conjugates of α and β, and the partial derivatives
have the arbitrary form defined in (11.26a) and (11.26b). In substance, one
might say, we have still done nothing new; it is always possible to write down
such a generalized equation of motion knowing the equation in the Glauber–
Sudarshan representation. Only when the form of each derivative is specif-
ically set will the Fokker–Planck equation in the positive P representation
be defined. The setting of the derivatives must be such that the solution to
(11.31) is a real, positive function, a function possessing all the properties of
a classical probability density. Then the Fokker–Planck equation will define
a classical stochastic process whose moments reproduce all normal-ordered
operator averages (Eq. 11.10).

Note 11.4. In addition to the real, positive solution sought, the generalized
phase-space equation of motion possesses solutions as complex valued func-
tions. These do not, of course, provide a description in terms of a classical
stochastic process, but they do provide an alternative representation of the
quantum mechanics. A representation of ρ in terms of a complex valued func-
tion is known as a complex P representation. The representation is also due
to Drummond and Gardiner [11.1]. Within it, normal-ordered operator av-
erages are given by a formula like (11.10) with the integration taken around
a contour in the complex plane. Examples of its use can be found in the work
of Drummond et al. [11.14] and Walls et al. [11.15].

Our task is to replace the differential operator L by an operator Lpos in which
each of the derivatives is taken with a specific choice of μ and ν (Eqs. 11.26a
and 11.26b). We first write the operator L in compact form; from (11.30), we
may write

L(X,X ′) ≡ −∂iAi(X) + 1
2∂i∂jDij(X), (11.32)

where ∂i ≡ ∂Xi , X and X ′ are column vectors of phase-space variables and
derivatives with respect to these variables,

X ≡

⎛

⎜
⎜
⎝

α
α∗
β
β∗

⎞

⎟
⎟
⎠, X ′ ≡

⎛

⎜
⎜
⎝

∂α
∂α∗
∂β
∂β∗

⎞

⎟
⎟
⎠, (11.33)
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and the functions Ai(X) and Dij(X) define the generalized drift vector

A(X) ≡

⎛

⎜⎜
⎜
⎜
⎝

−(κ+ iωC)α+ gα∗β

−(κ− iωC)α∗ + gαβ∗
−(κp + i2ωC)β − (g/2)α2 − iĒ0e

−i2ωCt

−(κp − i2ωC)β∗ − (g/2)α2
∗ + iĒ∗0 ei2ωCt

⎞

⎟⎟
⎟
⎟
⎠
, (11.34a)

and diffusion matrix

D(X) ≡

⎛

⎜
⎜
⎝

gβ 2κn̄ 0 0
2κn̄ gβ∗ 0 0
0 0 0 2κpn̄p
0 0 2κpn̄p 0

⎞

⎟
⎟
⎠. (11.34b)

In (11.32) and throughout this section we adopt the convention that repeated
indices imply summation.

Now, it is always possible to decompose a symmetric matrix like the gen-
eralized diffusion matrix D(X) as a product

D(X) = B(X)B(X)T , (11.35)

where B(X) is a complex matrix. The decomposition is not unique since we
can insert the product MMT = I between B(X) and B(X)T , where M is
any orthogonal matrix. For the D(X) defined in (11.34b), the decomposition
may be made with

B(X) =
(

S(β, β∗) 0
0 P

)
, (11.36)

where

S(β, β∗) ≡

⎛

⎜
⎝

√
gβ/2 +

√
β/β∗κn̄

√
gβ/2 −√

β/β∗κn̄
√
gβ∗/2 +

√
β∗/βκn̄ −

√
gβ∗/2 −√

β∗/βκn̄

⎞

⎟
⎠, (11.37a)

and

P ≡
(√

κpn̄p i
√
κpn̄p

√
κpn̄p −i√κpn̄p

)

. (11.37b)

Exercise 11.3. One strategy for making the decomposition (11.35) is to begin
with the quadratic form zTD(X)z. The decomposition is made by writing the
quadratic form as a sum of squares, wTw, for some w = Nz; the transpose
of N is the matrix B(X). Use this approach to arrive at the decomposi-
tion defined by (11.36)–(11.37b). Starting again with the quadratic form, use
the method of completing the square to find an alternative decomposition of
D(X). Find the orthogonal matrix that connects the two decompositions.
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Equations 11.32–11.36 are defined within a phase space of four independent
complex variables. Alternatively, we may view the phase space as a space of
eight real variables. The Fokker–Planck equation for the positive P distribu-
tion is defined within this eight-dimensional space. To construct it explicitly,
we first separate A(X) and B(X) into real and imaginary parts, writing

A(X) = AR(x) + iAI(x), (11.38a)
B(X) = BR(x) + iBI(x), (11.38b)

where x is a real eight-component vector of phase-space variables:

x ≡
(

XR

XI

)
, XR ≡

⎛

⎜
⎜
⎝

x
x
u
u

⎞

⎟
⎟
⎠, XI ≡

⎛

⎜
⎜
⎝

y
y
v
v

⎞

⎟
⎟
⎠. (11.39)

We also define the vector of derivatives with respect to these variables

x′ ≡
(

X ′R
X ′I

)
, X ′R ≡

⎛

⎜
⎜
⎜
⎝

∂/∂x

∂/∂x

∂/∂u

∂/∂u

⎞

⎟
⎟
⎟
⎠
, X ′I ≡

⎛

⎜
⎜
⎜
⎝

∂/∂y

∂/∂y

∂/∂v

∂/∂v

⎞

⎟
⎟
⎟
⎠
. (11.40)

The differential operator Lpos(x,x′) is then defined by fixing the form of each
derivative in (11.32) (choosing μ and ν) so that

L(X,X ′) → Lpos(x,x′) ≡ − ∂

∂xi
A

(2)
i (x) +

1
2

∂2

∂xi∂xj
D

(2)
ij (x), (11.41)

with the A(2)
i (x) components of an eight-dimensional real drift vector A(2)(x),

and the D
(2)
ij (x) elements of an eight-dimensional (real) diffusion matrix

D(2)(x) that is explicitly positive semidefinite. This is achieved by taking
either μ, ν = 1, 0 or μ, ν = 0, 1 in (11.26a) and (11.26b), to obtain

−∂iAi(X) → − ∂

∂XR
i

AiR(x) − ∂

∂XI
i

AiI(x), (11.42a)

and

1
2∂i∂jDij(X) →1

2
∂2

∂XR
i ∂X

R
j

BikR (x)BjkR (x)

+
1
2

∂2

∂XR
i ∂X

I
j

BikR (x)BjkI (x)

+
1
2

∂2

∂XI
i ∂X

R
j

BikI (x)BjkR (x)

+
1
2

∂2

∂XI
i ∂X

I
j

BikI (x)BjkI (x). (11.42b)
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The choices for μ and ν are guided first by the requirement that Lpos(x,x′)
be real. Thus we choose μ, ν = 1, 0 when ∂i acts on the real part of Ai(X) and
μ, ν = 0, 1 when ∂i acts on the imaginary part of Ai(X); we obtain (11.42a),
or

A(2)(x) ≡
(

AR(x)
AI(x)

)
. (11.43)

The choices for μ and ν when ∂i∂j acts on Dij(X) are guided also by the
requirement that D(2)(x) be positive semidefinite. With a little trial and
error we arrive at (11.42b), or

D(2)(x) ≡ B(2)(x)B(2)(x)T , (11.44a)

with

B(2)(x) ≡
(

BR(x) 0
BI(x) 0

)
. (11.44b)

To verify that (11.44a) and (11.44b) do indeed define a positive semidefinite
matrix, consider the quadratic form

(
z
w

)T
D(2)(x)

(
z
w

)
=

(
BT
Rz + BT

I w
)T (

BT
Rz + BT

I w
)

+ 02. (11.45)

This is either positive or zero for all choices of z and w; thus, the diffusion
matrix in eight dimensions, D(2)(x), is positive semidefinite by construction,
no matter the explicit form of B(2)(x).

Collecting together our results, from (11.31) and (11.41), we arrive at the
Fokker–Planck equation for the degenerate parametric oscillator in the positive
P representation:

∂P

∂t
= Lpos(x,x′)P, (11.46)

where Lpos(x,x′) is defined by the drift vector A(2)(x) and diffusion ma-
trix D(2)(x) given in (11.43) and (11.44), and (11.34)–(11.39). This result is
expressed more compactly by the equivalent Ito stochastic differential equa-
tions. From (5.149), the stochastic differential equations for the degenerate
parametric oscillator in the positive P representation are

dx = A(2)(x)dt+ B(2)(x)dW (2), (11.47)

dW (2) ≡ (dWR, dW I)T , or equivalently, from (11.39), (11.43), and (11.44b),

dXR = AR(XR,XI)dt+ BR(XR,XI)dW , (11.48a)
dXI = AI(XR,XI)dt+ BI(XR,XI)dW , (11.48b)

where dW = dWR; the Wiener increments dW I do not enter the equations
because the second column of B(2)(x) is zero (Eq. 11.44b). For a still more
compact form, (11.48a) and (11.48b) may be written in terms of the four
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complex phase-space variables α, α∗, β, and β∗,

dX = A(X)dt+ B(X)dW . (11.49)

Thus we revert to the notation of (11.33)–(11.34b).
Admittedly, all of this seems quite complicated. The complication is largely

an illusion, though, since the calculation just performed merely gives formal
justification to a simple result. In the introduction to this section we sug-
gested (below Eqs. 11.5) that perhaps there was nothing substantially wrong
with the stochastic differential equations obtained in the Glauber–Sudarshan
representation, in spite of their complex noise. Certainly, the notation was
inconsistent, because variables introduced as complex conjugates would not
remain so in the presence of the complex noise. We proposed, nevertheless,
that the stochastic differential equations might be accepted and the nota-
tion changed (α∗ → α∗, β∗ → β∗) to include the extra dimensions that the
stochastic trajectories apparently wanted to explore. What we have done in
deriving (11.49) is demonstrate that the suggestion was correct. In order to
see more explicitly that this is so, let us continue by deriving a set of stochastic
differential equations in the Glauber–Sudarshan P representation, by simply
overlooking the fact that the diffusion matrix obtained is not positive semidef-
inite.

Within the Glauber–Sudarshan representation, the phase-space equation
of motion for the degenerate parametric oscillator has the form (11.31) with
the differential operator L(α, α∗, β, β∗, ∂α, ∂α∗ , ∂β , ∂β∗) replaced by

L(Y ,Y ′) ≡ − ∂

∂Yi
Ai(Y ) +

1
2

∂2

∂Yi∂Yj
Dij(Y ), (11.50)

where

Y ≡

⎛

⎜
⎜
⎝

α
α∗

β
β∗

⎞

⎟
⎟
⎠, Y ′ ≡

⎛

⎜
⎜
⎜
⎝

∂/∂α

∂/∂α∗

∂/∂β

∂/∂β∗

⎞

⎟
⎟
⎟
⎠
. (11.51)

In terms of the real and imaginary parts of α and β, we write this as

L(Y ,Y ′) ≡ L(y,y′) = − ∂

∂yi
A

(1)
i (y) +

1
2

∂2

∂yi∂yj
D

(1)
ij (y), (11.52)

where

y ≡

⎛

⎜
⎜
⎝

x
y
u
v

⎞

⎟
⎟
⎠, y′ ≡

⎛

⎜
⎜
⎜
⎝

∂/∂x

∂/∂y

∂/∂u

∂/∂v

⎞

⎟
⎟
⎟
⎠
, (11.53)

and from the transformation between the complex variables and their real and
imaginary parts,
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Y =

⎛

⎜
⎜
⎝

1 i 0 0
1 −i 0 0
0 0 1 i
0 0 i −i

⎞

⎟
⎟
⎠y, Y ′ =

1
2

⎛

⎜
⎜
⎝

1 −i 0 0
1 i 0 0
0 0 1 −i
0 0 1 i

⎞

⎟
⎟
⎠y′, (11.54)

we have the drift vector

A(1)(y) =
1
2

⎛

⎜
⎜
⎝

1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

⎞

⎟
⎟
⎠A[Y (y)], (11.55)

and diffusion matrix

D(1)(y) = B(1)(y)B(1)(y)T , (11.56a)

with

B(1)(y) =
1
2

⎛

⎜
⎜
⎝

1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

⎞

⎟
⎟
⎠B[Y (y)]. (11.56b)

If the diffusion matrix is not positive semidefinite, the matrix B(1)(y) will
not be real. If we are prepared, however, to overlook this apparent problem,
the “Fokker–Planck” operator (11.51) defines the Ito stochastic differential
equations

dy =
1
2

⎛

⎜
⎜
⎝

1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

⎞

⎟
⎟
⎠{A[Y (y)]dt+ B[Y (y)]dW }, (11.57)

or for the complex variables Y , using (11.54),

dY = A(Y )dt+ B(Y )dW . (11.58)

Equation 11.58 is the same as (11.49), except that in the former, according to
the original construction, Y contains two pairs of complex conjugate variables,
while the four complex variables of the latter are independent. Note, though,
that if B(1)(y) is not real, the two pairs of initially conjugate variables are
not preserved as complex conjugates by (11.58). Thus, while we can calculate
with this equation and get correct results, there is an inconsistency between
its derivation and the behavior it describes. The more complicated derivation
of (11.49) removes the inconsistency; (11.49) is the same equation as (11.58),
but it is derived with nonconjugate variables in mind from the outset. In
summary we may state the following:
The stochastic differential equations in the positive P representation are ob-
tained by replacing pairs of complex conjugate variables by pairs of indepen-
dent complex variables in the stochastic differential equations in the Glauber–
Sudarshan P representation; the latter are derived in the standard fashion,
relaxing the requirement for positive semidefinite diffusion.
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Of course the stochastic differential equations must eventually be solved,
and the task again appears to be a complicated one in the positive P rep-
resentation; the equations are defined in a space of eight dimensions rather
than the four needed in the Q and Wigner representations. Nevertheless, we
will find that because of the intimate relationship between (11.49) and (11.58)
calculations in the positive P representation are often no more arduous than
those in the Glauber–Sudarshan P representation.

11.1.3 Linear Theory of Quantum Fluctuations

Now that we have formulated the phase-space description of the degenerate
parametric oscillator within the positive P representation, our first task is
to treat the small-noise limit. There is little point in rederiving the results
of Sect. 10.2. In this section our interest is in more formal aspects of the
linearized treatment of fluctuations; specifically, in the relationship between
the treatment in the positive P and Glauber–Sudarshan representations. Our
main objective is to prove, and hopefully illuminate, the statement made below
(10.57b); i.e., that results from Sects. 5.2.2–5.2.5 can be applied to a “Fokker–
Planck” equation derived within the Glauber–Sudarshan representation, even
when the “diffusion matrix” is not positive semidefinite.

To begin we introduce scaled variables corresponding to those of (10.33)–
(10.38); we replace the variables X by the scaled variables X̄, where

⎛

⎜
⎜⎜
⎝

√
ξ/2e−i

1
2 (ψ−π/2)α

√
ξ/2ei

1
2 (ψ−π/2)α∗

e−i
1
2 (ψ−π/2)β

ei
1
2 (ψ−π/2)β∗

⎞

⎟
⎟⎟
⎠

=
(
nthr
p

)1/2

⎛

⎜⎜
⎝

ᾱ
ᾱ∗
β̄

β̄∗

⎞

⎟⎟
⎠≡ (

nthr
p

)1/2
X̄; (11.59)

ξ and ψ are defined in (9.61) and (9.62). Fluctuations about the steady state
are described by variables Z, of order unity, where we write

X̄ =

⎛

⎜⎜
⎜
⎝

e−iωCt〈˜̄a〉ss
eiωCt〈˜̄a†〉ss
e−i2ωCt〈˜̄b〉ss
ei2ωC t〈˜̄b†〉ss

⎞

⎟⎟
⎟
⎠

+
(
nthr
p

)−1/2
Z, Z ≡

⎛

⎜⎜
⎝

z
z∗
w
w∗

⎞

⎟⎟
⎠. (11.60)

There are now two ways in which we might proceed. The more direct of
the two approaches works from the stochastic differential equations (11.49),
taking advantage of the complex notation to automatically select the phase-
space averages that correspond to normal-ordered, time-ordered averages of
the quantum-mechanical operators. The alternative approach uses the Fokker–
Planck equation (11.46), written in terms of the real and imaginary parts of the
phase-space variables. The notation is less convenient, but the approach has
the advantage that it makes the role of the doubling of dimensions particularly
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clear. Specifically, it shows why, within the linearized treatment, we never
actually need to do any calculations in twice as many dimensions. Both have
their uses, so let us look at the two approaches in turn.

Consider first the stochastic differential equations (11.49), with A(X) de-
fined by (11.34a), and B(X) by (11.36) and (11.37). After making a change
of variables, the linearized stochastic differential equations for the degenerate
parametric oscillator in the positive P representation are given by

dZ̃ = J̄ ssZ̃dt+ B̄ssdW , Z̃ ≡

⎛

⎜
⎜
⎝

eiωC tz
e−iωCtz∗
ei2ωCtw
e−i2ωCtw∗

⎞

⎟
⎟
⎠, (11.61)

where the Jacobian matrix in the steady state is (Eqs. 11.106 and 11.34a)

J̄ ss ≡

⎛

⎜
⎜
⎜
⎝

−κ κ〈˜̄b〉ss κ〈˜̄a†〉ss 0

κ〈˜̄b†〉ss −κ 0 κ〈˜̄a〉ss
−2κp〈˜̄a〉ss 0 −κp 0

0 −2κp〈˜̄a†〉ss 0 −κp

⎞

⎟
⎟
⎟
⎠
, (11.62)

and, using (11.36) and (11.37), we have

B̄ss =
(

S̄ss 0
0 P̄ ss

)
, (11.63)

with

S̄ss ≡
√

1
2
ξκ

⎛

⎜
⎝

√
〈˜̄b〉ss/2 + eiφss n̄

√
〈˜̄b〉ss/2 − eiφss n̄

√
〈˜̄b†〉ss/2 + e−iφss n̄ −

√
〈˜̄b†〉ss/2 − e−iφssn̄

⎞

⎟
⎠, (11.64a)

and

P̄ ss ≡
(√

κpn̄p i
√
κpn̄p

√
κpn̄p −i√κpn̄p

)

. (11.64b)

Note that the phase φss ≡ arg
(〈˜̄b〉ss

)
is zero for the steady states (10.43a)–

(10.43d). From (11.35) and (11.63), we obtain the steady-state “diffusion ma-
trix”

B̄ssB̄
T
ss = D̄ss =

⎛

⎜
⎜
⎝

1
2ξκ〈˜̄b〉ss ξκn̄ 0 0
ξκn̄ 1

2ξκ〈˜̄b†〉ss 0 0
0 0 0 2κpn̄p
0 0 2κpn̄p 0

⎞

⎟
⎟
⎠. (11.65)

Recall that this “diffusion matrix” is not positive semidefinite when it is in-
terpreted as the diffusion matrix of a Fokker–Planck equation in the four-
dimensional phase space of the Glauber–Sudarshan representation. Within
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the positive P representation, on the other hand, it defines a positive semidef-
inite diffusion matrix D̄

(2)
ss in eight dimensions (Eqs. 11.44). We meet with

the explicit relationship between D̄ss and D̄
(2)
ss shortly.

Now, the central results of the linear theory of fluctuations are the equa-
tions of motion for the vector of mean values

(
Z̃

)
˜̄P

and for the autocorrelation
matrix

C(t′, t) ≡ (
Z̃(t′)Z̃(t)T

)
˜̄P
. (11.66)

According to the quantum–classical correspondence set up in Sect. 11.1.1,
together with its generalization to two-time averages, it is these quantities that
correspond to the normal-ordered, or normal-ordered, time-ordered operator
averages. We have seen how to derive equations of motion for such quantities in
Chap. 5 (Sect. 5.3.6). There, the stochastic variables were considered real, but
the derivations of Sect. 5.3.6 remain unchanged if the variables are complex.
Hence, we may take over (5.154) and (5.156) directly, writing the equation of
motion for mean values

d

dt

(
Z̃

)
˜̄P

= J̄ ss

(
Z̃

)
˜̄P
, (11.67)

and for the autocorrelation matrix,

d

dt′
C(t′, t) =

{
J̄ ssC(t′, t) t′ > t

C(t′, t)J̄Tss t′ < t
, (11.68)

while, from (5.157), the covariance matrix C(t, t) satisfies the equation of
motion

d

dt
C(t, t) = J̄ ssC(t, t) + C(t, t)J̄T

ss + D̄ss. (11.69)

The important thing to note about these equations is that they involve 4× 4,
not 8 × 8, matrices. In fact, J̄ ss and D̄ss are precisely the matrices obtained
within the Glauber–Sudarshan P representation by overlooking the fact that,
in the four-dimensional phase-space, D̄ss is not positive semidefinite. Thus,
we quickly prove what we set out to prove. Indeed, the calculations involved in
solving (11.67)–(11.69) are simply those performed in Sects. 10.2.2 and 10.2.3;
within the linearized theory, there is no need to calculate anything in eight
dimensions.

Note 11.5. Extending the quantum–classical correspondence of Sect. 11.1.1 to
the calculation of two-time averages requires a little rethinking of the calcu-
lation in the Glauber–Sudarshan representation (Sect. 4.3.3). We must recog-
nize that the positive P distribution is not unique; in particular, while we have
the relationship (11.9) expressing χ

N
in terms of P , we do not have a corre-

sponding inverse relationship, and a direct transcription of the development of
Sect. 4.3.3 requires an inverse to arrive at the equivalent of (4.97). Something
has to change at this point. Essentially, the difference is that now we prove
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the results for two-time averages in the reverse direction. First, we assume
there exists a family of positive P distributions (parameterized by t) that
satisfy a Fokker–Planck equation and represent the density operator at every
time. These provide a representation of ρ(t), though the representation is not
unique. We then show that two-time averages evaluated within the phase-
space formalism from the joint distribution P (α, α∗, t+ τ ;α0, α0

∗, t) are equal
to the normal-ordered, time-ordered operator averages given by the master
equation and the quantum regression formula. This may be done by following
the argument of Sect. 4.3.3, except that with regard to the use of (4.97), in-
stead of arguing that P (α, α∗, t)α

p
∗αq is the positive P function representing

the operator aqρ(t)a†p, we can only argue that it provides a representation.

Exercise 11.4. Obtain drift and diffusion matrices for the degenerate para-
metric oscillator below and above threshold in the Glauber–Sudarshan P
representation from Fokker–Planck equations (10.51), (10.52), and (10.74).
Change to the complex variables (10.50) and show that the matrices obtained
in this way are those given by (11.62) and (11.65).

Since 4 × 4 matrices are all that is needed for calculations, it seems that
the four additional dimensions introduced by the positive P representation
have somehow disappeared. The reason for this is that the representation
actually embeds a four-dimensional quantum-mechanical problem in an eight-
dimensional classical stochastic process. Only a subset of the moments avail-
able in the eight dimensions contain the solution to the quantum-mechanical
problem; a lot of additional baggage is carried along. The baggage is neces-
sary if the quantum dynamics is to be represented by a classical evolution
of the Fokker–Planck type, but it has no direct connection to quantities of
physical interest. Within the linearized treatment, an analytical solution is
obtained that allows the embedded physical information to be extracted in
a simple way, without explicit reference to the additional embedding dimen-
sions. Mathematically, the stochastic differential equation approach avoids the
full eight dimensions because we can work with (11.61) alone, without refer-
ence to the complex conjugate equation; all physically relevant moments are
computed from the variables Z̃, which do not couple dynamically to the con-
jugate variables. The trick is so slick that it is easy to miss what is really going
on. It helps to repeat the calculation leading to (11.67)–(11.69), starting from
the Fokker–Planck equation this time.

To explicitly write out the Fokker–Planck equation in the positive P rep-
resentation we must use the eight-dimensional space of real variables. Using
(11.46) and (11.41), the linearized Fokker–Planck equation for the degenerate
parametric oscillator in the positive P representation is given by

∂ ˜̄P
∂t

=
(− z̃′T J̄

(2)
ss z̃ + 1

2 z̃′T D̄
(2)
ss z̃′

) ˜̄P , (11.70)
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where z̃ is the eight-dimensional vector of phase-space variables,

z̃ ≡
(

Z̃R

Z̃I

)

, Z̃R ≡

⎛

⎜⎜
⎝

z̃1
z̃∗1
w̃1

w̃∗1

⎞

⎟⎟
⎠, Z̃I ≡

⎛

⎜⎜
⎝

z̃2
z̃∗2
w̃2

w̃∗2

⎞

⎟⎟
⎠, (11.71)

and z̃′ is the vector of derivatives with respect to these variables,

z̃′ ≡
(

Z̃
′
R

Z̃
′
I

)

, Z̃
′
R ≡

⎛

⎜
⎜
⎜
⎝

∂/∂z̃1

∂/∂z̃∗1
∂/∂w̃1

∂/∂w̃∗1

⎞

⎟
⎟
⎟
⎠
, Z̃

′
I ≡

⎛

⎜
⎜
⎜
⎝

∂/∂z̃2

∂/∂z̃∗2
∂/∂w̃2

∂/∂w̃∗2

⎞

⎟
⎟
⎟
⎠
. (11.72)

The drift and diffusion matrices are defined in terms of the real and imaginary
parts of matrices (11.62) and (11.63). For the drift matrix in eight dimensions,
we have

J̄
(2)
ss =

(
J̄
R
ss −J̄

I
ss

J̄
I
ss J̄

R
ss

)

, (11.73)

and for the diffusion matrix,

D̄
(2)
ss =

(
B̄
R
ss 0

B̄
I
ss 0

)(
(B̄R

ss)
T (B̄I

ss)
T

0 0

)

. (11.74)

We apply the results of Chap. 5 (Sect. 5.2) directly to (11.70).
All together, in the eight-dimensional phase space, there are eight mean

values and sixty-four correlation functions. From (5.90) and (5.93), these sat-
isfy the equations of motion

d

dt

(
z̃
)

˜̄P
= J̄

(2)
ss

(
z̃
)

˜̄P
, (11.75)

and
d

dt′
C(2)(t′, t) =

{
J̄

(2)
ss C(2)(t′, t) t′ > t

C(2)(t′, t)
(
J̄

(2)
ss

)T
t′ < t

, (11.76)

where C(2)(t′, t) is the autocorrelation matrix in eight dimensions,

C(2)(t′, t) ≡ (
z̃(t′)z̃(t)T

)
˜̄P
, (11.77)

and from (5.99), the covariance matrix C(2)(t, t) satisfies the equation of mo-
tion

d

dt
C(2)(t, t) = J̄

(2)
ss C(2)(t, t) + C(2)(t, t)

(
J̄

(2)
ss

)T
+ D̄

(2)
ss . (11.78)
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The central point now is the observation that it is not necessary to solve
these equations in eight dimensions. The solutions in eight dimensions contain
a large amount of unnecessary information, information that is not directly
related to the physical problem of interest. The relevant moments are all
averages of the variables

Z̃ =
(
I4 iI4

)
z̃, (11.79)

where I4 is the 4 × 4 identity matrix. The physically relevant correlation
functions are therefore particular combinations of the correlation functions
contained in C(2)(t′, t); they are contained in the contracted autocorrelation
matrix

C(t′, t) =
(
I4 iI4

)
C(2)(t′, t)

(
I4

iI4

)
. (11.80)

It is now straightforward to use (11.79) and (11.80) to contract the equations of
motion (11.75), (11.76), and (11.78) into a set of equations in four dimensions.
To do this we note that the drift and diffusion matrices may be contracted in
a similar way to z̃ and C(2)(t′, t):

(
I4 iI4

)
J̄

(2)
ss =

(
I4 iI4

)(
J̄
R
ss −J̄

I
ss

J̄
I
ss J̄

R
ss

)

=
(
I4 iI4

)
J̄ ss, (11.81)

and
(
I4 iI4

)
D̄

(2)
ss

(
I4

iI4

)
=

(
I4 iI4

)(
B̄
R
ss 0

B̄
I
ss 0

)(
(B̄R

ss)T (B̄I
ss)T

0 0

)(
I4

iI4

)

=
(
B̄ss0

)(
B̄
T
ss

0

)

= D̄ss. (11.82)

Using (11.79)–(11.82), we readily recover the equations of motion (11.67)–
(11.69).

11.2 Miscellaneous Topics

11.2.1 Alternative Approaches
to the Linear Theory of Quantum Fluctuations

Before leaving the subject of linear fluctuation theory, we should consider
the question of alternatives to the positive P representation. There are in
fact quite a number. We met one in Chap. 10, where in Sect. 10.1 we saw
that the Wigner and Q representations yield positive semidefinite diffusion
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for the degenerate parametric oscillator when the Glauber–Sudarshan P rep-
resentation does not [see the discussion below (10.11), (10.26), and (10.27)];
thus, choosing a different phase-space representation can eliminate the need to
deal with non-positive-semidefinite diffusion. A second alternative is to work
directly with the equations of motion for operator averages and correlation
functions. Generally these quantities obey infinite hierarchies of coupled equa-
tions. In a linearized treatment, though, such a hierarchy may be truncated
at second-order, on the basis of the system size expansion, and the resulting
equations solved to find relationships equivalent to those of Chap. 5. Since
operator averages and correlations functions are what we eventually want
in any case—the diffusion process only being a path to this end—we might
argue for this more direct approach independently of any problem with non-
positive-semidefinite diffusion. Popular versions are the so-called input–output
theories, which deal directly with the multimode fields carried by the reser-
voirs [11.16, 11.17, 11.18, 11.19], fields like those defined in (9.120a)–(9.123b).
We will not develop the operator-based approach in detail. The main ideas
should be clear after working through the following example.

Exercise 11.5. Show that the master equation for the degenerate parametric
oscillator (Eq. 9.97) gives the following equations of motion for first-order
averages:

κ−1 d〈˜̄a〉
dt

= −〈˜̄a〉 + 〈˜̄a†˜̄b〉, (11.83a)

κ−1 d〈˜̄a†〉
dt

= −〈˜̄a†〉 + 〈˜̄a˜̄b†〉, (11.83b)

κ−1
p

d〈˜̄b〉
dt

= −〈˜̄b〉 − 〈˜̄a2〉 + λ, (11.83c)

κ−1
p

d〈˜̄b†〉
dt

= −〈˜̄b†〉 − 〈˜̄a†2〉 + λ. (11.83d)

Unlike the corresponding equations in the linearized treatment of fluctuations
(Eqs. 10.43a–10.43d), these couple to the equations of motion for second-
order operator averages. Show that the second-order averages couple to those
of third-order through the equations

(2κ)−1 d〈˜̄a† ˜̄a〉
dt

= −〈˜̄a†˜̄a〉 + 1
2

(〈˜̄a†2˜̄b〉 + c.c.
)

+ (nthr
p )−1(ξ/2)n̄,

(2κ)−1 d〈˜̄a2〉
dt

= −〈˜̄a2〉 + 〈˜̄a†˜̄a˜̄b〉 + (nthr
p )−1(ξ/4)〈˜̄b〉,

(2κ)−1 d〈˜̄a†2〉
dt

= −〈˜̄a†2〉 + 〈˜̄a†˜̄a˜̄b†〉 + (nthr
p )−1(ξ/4)〈˜̄b†〉,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(11.84a)
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(2κp)−1 d〈˜̄b†˜̄b〉
dt

= −〈˜̄b†˜̄b〉 − 1
2

[〈(˜̄a2 − λ)˜̄b†〉 + c.c.
]
+ (nthr

p )−1n̄p,

(2κp)−1 d〈˜̄b2〉
dt

= −〈˜̄b2〉 − 〈(˜̄a2 − λ)˜̄b〉,

(2κp)−1 d〈˜̄b†2〉
dt

= −〈˜̄b†2〉 − 〈(˜̄a†2 − λ)˜̄b†〉,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(11.84b)

and

(κ+ κp)−1 d〈˜̄a†˜̄b〉
dt

= −〈˜̄a†˜̄b〉 + (1 + ξ)−1
[
ξ〈˜̄a˜̄b†˜̄b〉 − 〈˜̄a†(˜̄a2 − λ)〉],

(κ+ κp)−1 d〈˜̄a˜̄b†〉
dt

= −〈˜̄a˜̄b†〉 + (1 + ξ)−1
[
ξ〈˜̄a†˜̄b†˜̄b〉 − 〈(˜̄a†2 − λ)˜̄a〉],

(κ+ κp)−1 d〈˜̄a˜̄b〉
dt

= −〈˜̄a˜̄b〉 + (1 + ξ)−1
[
ξ〈˜̄a†˜̄b2〉 − 〈(˜̄a2 − λ)˜̄a〉],

(κ+ κp)−1 d〈˜̄a†˜̄b†〉
dt = −〈˜̄a†˜̄b†〉 + (1 + ξ)−1

[
ξ〈˜̄a˜̄b†2〉 − 〈˜̄a†(˜̄a†2 − λ)〉].

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.84c)

Now introduce the scaling from the phase-space implementation of the system
size expansion (Eqs. 10.33–10.38) in operator form, writing

ā = 〈ā〉 + (nthr
p )−1/2ẑ, (11.85a)

ā† = 〈ā†〉 + (nthr
p )−1/2ẑ†, (11.85b)

and
b̄ = 〈b̄〉 + (nthr

p )−1/2ŵ, (11.86a)

b̄† = 〈b̄†〉 + (nthr
p )−1/2ŵ†, (11.86b)

where ẑ, ẑ†, ŵ, and ŵ† are displaced annihilation and creation operators
describing fluctuations about the mean. Assuming (nthr

p )−1/2 � 1, show that
to dominant order the equations of motion for first-order averages reduce to
(10.43a)–(10.43d), and that second-order averages of the fluctuation operators
satisfy

(2κ)−1 d〈˜̂z† ˜̂z〉
dt

= −〈˜̂z† ˜̂z〉 + 1
2

(〈˜̄a†〉〈˜̂z† ˜̂w〉 + 〈˜̄b〉〈˜̂z†2〉 + c.c.
)

+ (ξ/2)n̄,

(2κ)−1 d〈˜̂z2〉
dt

= −〈˜̂z2〉 + 〈˜̄a†〉〈˜̂z ˜̂w〉 + 〈˜̄b〉〈˜̂z† ˜̂z〉 + (ξ/4)〈˜̄b〉,

(2κ)−1 d〈˜̂z†2〉
dt

= −〈˜̂z†2〉 + 〈˜̄a〉〈˜̂z† ˜̂w†〉 + 〈˜̄b†〉〈˜̂z† ˜̂z〉 + (ξ/4)〈˜̄b†〉,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(11.87a)
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(2κp)−1 d〈 ˜̂w† ˜̂w〉
dt

= −〈 ˜̂w† ˜̂w〉 − (〈˜̄a〉〈˜̂z ˜̂w†〉 + c.c.
)

+ n̄p,

(2κp)−1 d〈 ˜̂w2〉
dt

= −〈 ˜̂w2〉 − 2〈˜̄a〉〈˜̂z ˜̂w〉,

(2κp)−1 d〈 ˜̂w†2〉
dt

= −〈 ˜̂w†2〉 − 2〈˜̄a†〉〈˜̂z† ˜̂w†〉,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(11.87b)

and

(κ+ κp)−1 d〈˜̂z† ˜̂w〉
dt

= −〈˜̂z† ˜̂w〉 + (1 + ξ)−1
[
ξ
(〈˜̄a〉〈 ˜̂w2〉 + 〈˜̄b†〉〈˜̂z ˜̂w〉)

−2〈˜̄a〉〈˜̂z† ˜̂z〉],
(κ+ κp)−1 d〈˜̂z ˜̂w†〉

dt
= −〈˜̂z ˜̂w†〉 + (1 + ξ)−1

[
ξ
(〈˜̄a†〉〈 ˜̂w†2〉 + 〈˜̄b〉〈˜̂z† ˜̂w†〉)

−2〈˜̄a†〉〈˜̂z† ˜̂z〉],
(κ+ κp)−1 d〈˜̂z ˜̂w〉

dt
= −〈˜̂z ˜̂w〉 + (1 + ξ)−1

[
ξ
(〈˜̄a†〉〈 ˜̂w2〉 + 2〈˜̄b〉〈˜̂z† ˜̂w〉)

−2〈˜̄a〉〈˜̂z2〉],
(κ+ κp)−1 d〈˜̂z† ˜̂w†〉

dt
= −〈˜̂z† ˜̂w†〉 + (1 + ξ)−1

[
ξ
(〈˜̄a〉〈 ˜̂w†2〉 + 2〈˜̄b†〉〈˜̂z ˜̂w†〉)

−2〈˜̄a†〉〈˜̂z†2〉].

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.87c)

Note that the equations of motion for second-order averages depend on the
solutions for first-order averages, but no longer couple to third-order averages.
Verify that (11.87a)–(11.87c) are equivalent to the equation of motion for the
covariance matrix in the positive P representation (Eq. 11.69). (Operators
referring to the same field mode have been written in normal order to obtain
this equivalence.)

Carrying out the linearization at the level of the operator equations underlines
the fact that the positive P representation is merely a bookkeeping device for
operator averages. In this approach there is no call for the diffusion matrix
D̄ss that appears in (11.69) [implicitly in (11.87a)–(11.87c)] to be positive
semidefinite; it is the attempt to recover the operator averages from a classi-
cal stochastic process that leads to the requirement for positive semidefinite
diffusion. There, of course, should be no surprise here. The quantum–classical
correspondence was initially set up as a formal device for computing operator
averages; we noted, for example, in Sect. 3.1.3 that something as formal as
a generalized function might be needed to make the correspondence work.
This raises the question: can we work with non-positive-definite diffusion in
the Glauber–Sudarshan P representation and do the bookkeeping using a gen-
eralized function? The answer is affirmative—indeed we can. In this we find
yet another—a third—version of linear fluctuation theory.
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As an illustration of the generalized function approach, let us consider the
one-dimensional Fokker–Planck equation

∂P

∂t
=
(
−A ∂

∂x
x+

1
2
D
∂2

∂x2

)
P. (11.88)

When the diffusion constant D is a positive number (and A is negative) this
equation has a Gaussian steady-state solution, as described in Sects. 5.1.1
and 5.1.2. If D is negative, the Gaussian diverges as x2 → ∞ and is no longer
acceptable as a normalizable probability distribution. On the other hand, if
generalized functions are permitted, the usual Gaussian solution of (11.88) is
not unique; we may also find a solution in the form

Pss(x) =
∞∑

n=0

cnδ
(n)(x), (11.89)

where δ(n)(x) is the nth derivative of the δ-function [see the discussion below
(3.32b)]. To determine the coefficients cn, we substitute (11.89) into (11.88)
with the time derivative set to zero. This yields

∞∑

n=0

cn
[−A

(
δ(n)(x) + xδ(n+1)

)
+ 1

2Dδ
(n+2)(x)

]
= 0. (11.90)

Multiplying throughout by xm and integrating over x gives

∫ ∞

−∞
dxxm

∞∑

n=0

cn
[−A

(
δ(n)(x) + xδ(n+1)

)
+ 1

2Dδ
(n+2)(x)

]
= 0

⇒ −A[(−1)mm!cm + (−1)m+1(m+ 1)!cm
]
+ 1

2D(−1)mm!cm−2 = 0

⇒ Amcm + 1
2Dcm−2 = 0. (11.91)

Thus we arrive at the steady-state distribution

Pss(x) =
∞∑

k=0

(
− D

2A

)k 1
k!

1
2k
δ(2k)(x)

= exp
[
− 1

2 (D/2A)
d2

dx2

]
δ(x). (11.92)

In fact, all we have done is demonstrate the equivalence—previously proved in
Note 4.2—between a Gaussian distribution and an infinite sum of derivatives
of the δ-function.

The distribution (11.92) has one advantage over the usual Gaussian; it
is a normalized distribution for both positive and negative values of D. It
readily yields the result that all odd-order moments of x are zero, while the
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even-order moments are given by

〈x2k〉 =
(
− D

2A

)k (2k)!
k!2k

. (11.93)

For D positive and A negative, these are the moments of the usual normal-
izable Gaussian distribution. The generalized function tells us that the same
moments hold, formally, when D is negative—some of the moments, e.g., the
variance, simply become negative.

Of course, a negative variance makes no sense if x takes on the observ-
able values of a physical variable, in the sense of a classical ensemble, since it
must then be a real number. The phase-space of the quantum–classical cor-
respondence is not, however, a space of observable values. At least it makes
no fundamental claim to this effect. The quantum–classical correspondence
provides a formal connection between phase-space moments and ordered op-
erator averages. If it is to be interpreted as anything more, the interpretation
must be established through a theory of measurement.

The sense in which a negative variance is formally acceptable is demon-
strated by the example of the degenerate parametric oscillator. Below thresh-
old, in the Glauber–Sudarshan P representation, Fokker–Planck equations
(10.51a) and (10.51b) require that the steady-state P distribution satisfy
(n̄ = 0) [

(1 − λ)
∂

∂z̃1
z̃1 +

1
8
ξλ

∂2

∂z̃2
1

]
˜̄X+1 = 0, (11.94a)

and [
(1 + λ)

∂

∂z̃2
z̃2 − 1

8
ξλ

∂2

∂z̃2
2

]
˜̄Y+1 = 0. (11.94b)

Equation 11.94b has non-positive-semidefinite diffusion. Nonetheless, it is
solved by a generalized function in the form (11.92). The solution yields the
phase-space moments

(
z̃2
1

)
˜̄X+1

= (ξ/2)
1
4

λ

1 − λ
,

(
z̃2
2

)
˜̄Y+1

= −(ξ/2)
1
4

λ

1 + λ
. (11.95)

The negative variance
(
z̃2
2

)
˜̄Y+1

is physically acceptable because it corresponds
to the normal-ordered operator average

〈: [(−i/2)(˜̄a− ˜̄a†)]2 :〉 = 1
4

(
2〈˜̄a†˜̄a〉 − 〈˜̄a2〉 − 〈˜̄a†2〉);

of course this normal-ordered average is permitted to be negative. The neg-
ative variance will only contribute a part of any physical quantity that is
necessarily positive, the remaining parts offsetting its negative value. This is
so, for example, in the expression for the mean photon number:
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〈a†a〉< = (2/ξ)
[(
z̃2
1

)
˜̄X+1

+
(
z̃2
2

)
˜̄Y+1

]

=
1
4

λ

1 − λ
− 1

4
λ

1 + λ

=
1
2

λ2

1 − λ2
, (11.96)

which reproduces (10.64).
Time dependence can also be handled using generalized functions. A gen-

eralized function can be found to replace the Gaussian Green function solution
to a linear Fokker–Planck equation with non-positive-semidefinite diffusion.

Exercise 11.6. Show that (11.88) has the Green function solution

P (x, t|x0, 0) = exp
[

1
2 (D/2A)(e2At − 1)

d2

dx2

]
δ(x− x0e

At). (11.97)

Note 11.6. By referring to (5.80)–(5.81b), it is not difficult to guess the multi-
dimensional generalization of the steady-state distribution (11.92). It is given
by

Pss(x) = exp
(

1
2x′TQssx

′)δ(x), (11.98)

with
AQss + QssA

T = −D, (11.99)

where D need not be positive semidefinite. The formal generalization of
(5.102a) is made by calculating the steady-state covariance matrix

Css =
∫ ∞

−∞
dx1 · · ·dxnxxT exp

(
1
2x′TQssx

′)δ(x)

=
∫ ∞

−∞
dx1 · · ·dxnxxT

(
1
2x′TQssx

′)δ(x)

=
∫ ∞

−∞
dx1 · · ·dxnxxT

1
2

n∑

i,j=1

(Qss)ij
∂2

∂xi∂xj
δ(x)

= Qss. (11.100)

The second line follows because only second-order derivatives contribute.

Other variations on the theme of linear fluctuation theory exist. In one final
example, Yuen and Tombesi [11.20] note that equations like (11.69) may be
absorbed, formally, into classical Langevin theory when D̄ss is not positive
semidefinite. Their approach is essentially that of the positive P representa-
tion, but it avoids explicit reference to the i =

√−1 used to connect a negative
operator average to a positive phase-space variance in an equation like (11.1b).
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11.2.2 Dynamical Stability of the Classical Phase Space

The positive P representation uses double the number of phase-space dimen-
sions. The extra dimensions are introduced to accommodate the quantum
noise. In the presence of non-positive-semidefinite diffusion, some noise sources
effectively “ask” for new dimensions; in (11.1b), for example, the noise term
i 12
√
ξκλdWz̃2 “asks” that the real variable z̃2 be given an imaginary part. We

will designate the standard phase space the classical phase space and its exten-
sion the nonclassical phase space. When diffusion in the Glauber–Sudarshan
P representation is not positive semidefinite, fluctuations in the positive P
representation extend into the nonclassical phase space. It is then natural to
ask whether the classical phase space is stable (under the deterministic dy-
namics) to perturbations into the nonclassical dimensions. If not, doubling
the dimensions will have a more profound effect on the dynamics than we
might expect; small excursions into the nonclassical phase space will grow
exponentially, possibly leading to unforeseen nonlinear behavior involving the
nonclassical degrees of freedom.

We investigate this question by linearizing the deterministic equations
about an arbitrary point in the classical phase space and looking at the eigen-
values of the linearized dynamics. First, we transform the deterministic equa-
tions of motion derived in Sect. 11.1.2 into a rotating frame, thus removing
their explicit time dependence. To replace (11.33) and (11.34a), we define the
vector of phase-space variables

X̃ ≡

⎛

⎜
⎜
⎜
⎝

α̃
α̃∗
β̃

β̃∗

⎞

⎟
⎟
⎟
⎠

≡

⎛

⎜
⎜
⎝

eiωCtα

e−iωCtα∗
ei2ωC tβ
e−i2ωC tβ∗

⎞

⎟
⎟
⎠, (11.101)

and the drift vector

Ã(X̃) ≡

⎛

⎜
⎜
⎜
⎜
⎝

−κα̃+ gα̃∗β̃

−κα̃∗ + gα̃β̃∗

−κpβ̃ − (g/2)α̃2 − iĒ0

−κpβ̃∗ − (g/2)α̃2
∗ + iĒ∗0

⎞

⎟
⎟
⎟
⎟
⎠
. (11.102)

The deterministic equations of motion for the degenerate parametric oscillator
in the positive P representation are then given by

dX̃

dt
= Ã(X̃), (11.103a)

dX̃∗

dt
=

(
Ã(X̃)

)∗
. (11.103b)

We linearize the equations about an arbitrary point X̃0 = (α̃, α̃∗, β̃, β̃∗)T

located within the classical phase space. Writing X̃ as the sum of the fixed
vector X̃0 and a perturbation δX̃,
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X̃ = X̃0 + δX̃, (11.104)

the linearized equations of motion are

dδX̃

dt
= J(X̃0)δX̃ + Ã(X̃0), (11.105a)

d(δX̃)∗

dt
=

(
J(X̃0)

)∗(δX̃)∗ +
(
Ã(X̃0)

)∗
, (11.105b)

where J(X̃) is the Jacobian matrix

J(X̃) ≡

⎛

⎜
⎜
⎜
⎜
⎝

∂α̃Ãα̃(X̃) ∂α̃∗Ãα̃(X̃) ∂β̃Ãα̃(X̃) ∂β̃∗Ãα̃(X̃)

∂α̃Ãα̃∗(X̃) ∂α̃∗Ãα̃∗(X̃) ∂β̃Ãα̃∗(X̃) ∂β̃∗Ãα̃∗(X̃)

∂α̃Ãβ̃(X̃) ∂α̃∗Ãβ̃(X̃) ∂β̃Ãβ̃(X̃) ∂β̃∗Ãβ̃(X̃)

∂α̃Ãβ̃∗(X̃) ∂α̃∗Ãβ̃∗(X̃) ∂β̃Ãβ̃∗(X̃) ∂β̃∗Ãβ̃∗(X̃)

⎞

⎟
⎟
⎟
⎟
⎠
. (11.106)

Our interest is in the eigenvalues of J(X̃0), which determine the stability of
the point X̃0.

We are interested specifically in the growth or decay of perturbations out
of the classical phase space. In order to isolate this behavior, it is helpful
to make a change of variables. We introduce a set of classical phase-space
variables,

X̃C ≡ 1
2

⎛

⎜
⎜
⎜
⎝

α̃+ (α̃∗)∗

α̃∗ + α̃∗
β̃ + (β̃∗)∗

β̃∗ + β̃∗

⎞

⎟
⎟
⎟
⎠

=
1
2

⎡

⎢
⎢
⎣X̃ +

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠X̃∗

⎤

⎥
⎥
⎦, (11.107a)

and a set of nonclassical phase-space variables

X̃NC ≡ 1
2

⎛

⎜
⎜
⎜
⎝

α̃− (α̃∗)∗

−α̃∗ + α̃∗
β̃ − (β̃∗)∗

−β̃∗ + β̃∗

⎞

⎟
⎟
⎟
⎠

=
1
2

⎡

⎢
⎢
⎣X̃ −

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠X̃∗

⎤

⎥
⎥
⎦. (11.107b)

The classical phase space is the subspace in which X̃NC = 0. Within this sub-
space the variables X̃C satisfy the same conjugacy relations as in the Glauber–
Sudarshan P representation. We now transform (11.105a) and (11.105b) into
equations of motion for the perturbations δX̃C and δX̃NC. Inverting (11.107a)
and (11.107b) yields

X̃ = X̃C + X̃NC, (11.108a)

and

X̃∗ =

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠
(
X̃C − X̃NC

)
. (11.108b)
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Then from (11.105a) and (11.105b), and (11.107a)–(11.108b), the equations
of motion for perturbations within the classical phase space, δX̃C, and out of
the classical phase space, δX̃NC, are

d

dt

(
δX̃C

δX̃NC

)

=
1
2

(
J(X̃0) + J ′(X̃0) J(X̃0) − J ′(X̃0)

J(X̃0) − J ′(X̃0) J(X̃0) + J ′(X̃0)

)(
δX̃C

δX̃NC

)

+

(
C+(X̃0)

C−(X̃0)

)

,

(11.109)

where C+(X̃0) and C−(X̃0) are constant vectors,

C±(X̃0) ≡ 1
2

⎡

⎢⎢
⎣Ã(X̃0) ±

⎛

⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟
⎠
(
Ã(X̃0)

)∗

⎤

⎥⎥
⎦

=
1
2

⎡

⎢⎢
⎢
⎢
⎢
⎣

⎛

⎜⎜
⎜
⎜
⎜
⎝

Ãα̃(X̃0)

Ãα̃∗(X̃0)

Ãβ̃(X̃0)

Ãβ̃∗(X̃0)

⎞

⎟⎟
⎟
⎟
⎟
⎠
±

⎛

⎜⎜
⎜
⎜
⎜
⎝

(
Ãα̃∗(X̃0)

)∗
(
Ãα̃(X̃0)

)∗
(
Ãβ̃∗(X̃0)

)∗

(
Ãβ̃(X̃0)

)∗

⎞

⎟⎟
⎟
⎟
⎟
⎠

⎤

⎥⎥
⎥
⎥
⎥
⎦
, (11.110)

and we have introduced the transformed Jacobian matrix

J ′(X̃)

≡

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠
(
J(X̃)

)∗

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(
∂α̃∗Ãα̃∗(X̃)

)∗ (
∂α̃Ãα̃∗(X̃)

)∗ (
∂β̃∗Ãα̃∗(X̃)

)∗ (
∂β̃Ãα̃∗(X̃)

)∗

(
∂α̃∗Ãα̃(X̃)

)∗ (
∂α̃Ãα̃(X̃)

)∗ (
∂β̃∗Ãα̃(X̃)

)∗ (
∂β̃Ãα̃(X̃)

)∗

(
∂α̃∗Ãβ̃∗(X̃)

)∗ (
∂α̃Ãβ̃∗(X̃)

)∗ (
∂β̃∗Ãβ̃∗(X̃)

)∗ (
∂β̃Ãβ̃∗(X̃)

)∗

(
∂α̃∗Ãβ̃(X̃)

)∗ (
∂α̃Ãβ̃(X̃)

)∗ (
∂β̃∗Ãβ̃(X̃)

)∗ (
∂β̃Ãβ̃(X̃)

)∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

(11.111)

Note that if X̃0 happens to be a steady state, the constants C+(X̃0) and
C−(X̃0) vanish, since in this case Ã(X̃0) = 0.

Now we assume the point X̃0 to lie within the classical phase space, and
may therefore read the definitions of J(X̃0), J ′(X̃0), and C±(X̃0) with α̃∗
replaced by α̃∗ and β̃∗ replaced by β̃∗. It follows that J ′(X̃0) = J(X̃0),
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C+(X̃0) = Ã(X̃0), and C−(X̃0) = 0. Then, from (11.109), the perturbations
δX̃C and δX̃NC undergo a decoupled evolution: the deterministic equations
of motion within the positive P representation linearized about a point located
in the classical phase space are

d

dt

(
δX̃C

δX̃NC

)

=

(
J(X̃0) 0

0 J(X̃0)

)(
δX̃C

δX̃NC

)

+

(
Ã(X̃0)

0

)

. (11.112)

According to this equation, the classical and nonclassical perturbations are
not only decoupled; their dynamical evolution is governed by the same Jaco-
bian matrix, J(X̃0). Thus, for each eigenvalue governing motion within the
classical phase space, there is an equal eigenvalue governing motion out of
the classical phase space and into the nonclassical dimensions. Since J(X̃0)
is also the Jacobian matrix from the semiclassical theory of the degenerate
parametric oscillator (Eqs. 9.63 or 10.43), we conclude that the stability of
the classical phase space is tied directly to the linearized semiclassical theory.
One result of this is that the classical phase space is stable in the vicinity of
stable steady states; for example, those shown in Fig. 9.3. This is reassuring,
as we aim to use the positive P representation to describe quantum fluctua-
tions about such states; one would hardly expect the representation to convert
a stable steady state into an unstable steady state.

We also find, however, that the classical phase space is unstable wherever
there is instability in the semiclassical theory. With reference to Fig. 9.3, for
example, above threshold the classical phase space is unstable in the vicinity
of the vacuum state. The implications of this are not yet clear. There is no
obvious reason to conclude that such instability will lead to a problem. We
should keep in mind, though, that whenever there are unstable phase-space
regions in the semiclassical theory, the global nonlinear dynamics within the
doubled dimensions of the positive P representation may well be important,
because in the presence of noise, it cannot be guaranteed that the stochastic
trajectory will remain close to any trajectory of the semiclassical equations of
motion. Indeed, we will discover later (Sect. 12.2) that when it does not, the
positive P representation can run into serious problems.

11.2.3 Preservation of Conjugacy for Stochastic Averages

The formal derivation of the stochastic differential equations in the positive
P representation (Eq. 11.49) should be sufficient to satisfy us that the equa-
tions are valid in the sense that they yield normal-ordered operator averages
as ensemble averages over trajectories. It is helpful, nevertheless, to explicitly
see that they do not lead to obvious problems. One problem that might be
foreseen concerns the question of conjugacy: since α and α∗ are no longer
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complex conjugates, can we be sure that their averages over an ensemble of
trajectories are going to be complex conjugates? More generally, can we be
sure that trajectory averages preserve the conjugacy requirement

〈a†paqb†p′bq′〉 = 〈a†qapb†q′bp′〉∗? (11.113)

Within the positive P representation the requirement is
∫
d2α

∫
d2α∗

∫
d2β

∫
d2β∗ αp∗α

qβp
′
∗ β

q′P (α, α∗, β, β∗)

=
(∫

d2α

∫
d2α∗

∫
d2β

∫
d2β∗ αq∗α

pβq
′
∗ β

p′P (α, α∗, β, β∗)
)∗

, (11.114)

which holds if the P distribution satisfies the symmetry relation

P (α, α∗, β, β∗) = P
(
(α∗)∗, α∗, (β∗)∗, β∗

)
, (11.115)

where the latter follows by making the change of variables α → (α∗)∗,
α∗ → α∗, β → (β∗)∗, β∗ → β∗ in (11.114), and noting that P (α, α∗, β, β∗)
is real. Note that (11.115) does not require that states satisfying α∗ = α∗

and β∗ = β∗ alone occur with nonzero probability; this is a sufficient but
not a necessary condition to satisfy (11.115) and gives back the Glauber–
Sudarshan representation. More generally, (11.115) assumes that pairs of
states, α, α∗, β, β∗ and (α∗)∗, α∗, (β∗)∗, β∗, occur with equal probability (equal
probability density). The positive P distribution constructed from the Q rep-
resentation (Eq. 11.19), as one example, exhibits the symmetry (11.115).

The question is not whether or not distributions satisfying (11.115) exist,
but whether or not the Fokker–Planck equation in the positive P represen-
tation (Eq. 11.46) preserves this symmetry if it holds initially. Equivalently,
we can ask the same question of the stochastic differential equations (11.49),
which are easier to work with than the Fokker–Planck equation since they
have a convenient form in complex notation. In this section we show that if
the distribution from which the initial conditions for trajectories are chosen
obeys (11.115), then the stochastic differential equations in the positive P rep-
resentation do, indeed, preserve the conjugacy requirement over time. For the
stochastic differential equations, the requirement takes the form

(
(αp∗αqβ

p′
∗ βq

′)(t)
)
P

=
(
(αq∗αpβ

q′
∗ βp

′)(t)
)∗
P
, (11.116)

where the average is taken, ideally, over an infinite ensemble of independent
realizations or trajectories.

In order to make the demonstration clear, it is helpful to define certain
special trajectories associated with a given realization of the stochastic dif-
ferential equations. In the first place, a particular trajectory is defined by
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an initial condition X0 and a vector of Wiener paths W . We denote such
a trajectory by

T (X0,W ) ≡ (
α(t), α∗(t), β(t), β∗(t)

)
; (11.117)

using (11.49), and (11.33), (11.34a), and (11.36), the explicit form of the
trajectory is generated as a realization of the stochastic differential equations
for the degenerate parametric oscillator in the positive P representation:

dα =
[− (κ+ iωC)α+ gα∗β

]
dt

+
(√

gβ/2 +
√
β/β∗κn̄dWα +

√
gβ/2 −

√
β/β∗κn̄dWα∗

)
,

(11.118a)

dα∗ =
[− (κ− iωC)α∗ + gαβ∗

]
dt

+
(√

gβ∗/2 +
√
β∗/βκn̄dWα −

√
gβ∗/2 −

√
β∗/βκn̄dWα∗

)
,

(11.118b)

dβ =
[− (κp + i2ωC)β − (g/2)α2 − iĒ0e

−i2ωCt
]
dt

+
√
κpn̄p(dWβ + idWβ∗), (11.118c)

dβ∗ =
[− (κp − i2ωC)β∗ − (g/2)α2

∗ + iĒ∗0 ei2ωCt
]
dt

+
√
κpn̄p(dWβ − idWβ∗), (11.118d)

where the initial condition X0 and the Wiener paths W are

X0 ≡

⎛

⎜⎜
⎝

α0

α0∗
β0

β0
∗

⎞

⎟⎟
⎠, W ≡

⎛

⎜⎜
⎝

Wα

Wα∗
Wβ

Wβ∗

⎞

⎟⎟
⎠. (11.119)

Given a particular realization of (11.118a)–(11.118d), a particular trajectory
(11.117), we define the two related trajectories

TI(X0,W )

≡ (
αI(t), αI∗(t), β

I(t), βI∗(t)
) ≡

((
α∗(t)

)∗
,
(
α(t)

)∗
, (β∗(t)

)∗
, (β(t)

)∗)
,

(11.120a)

and

TA(X0,W ) ≡ (
αA(t), αA∗ (t), βA(t), βA∗ (t)

) ≡ T (XI
0,W ), (11.120b)
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where

XI
0 ≡

⎛

⎜
⎜
⎜
⎜
⎝

(α0
∗)
∗

(α0)∗

(β0
∗)
∗

(β0)∗

⎞

⎟
⎟
⎟
⎟
⎠
. (11.121)

The initial state XI
0 is referred to as the image of the state X0; for states

satisfying α∗ = α∗ and β∗ = β∗, the state and its image are the same. The
trajectory TI(X0,W ) is the image trajectory, the trajectory obtained by tak-
ing the image of every state visited by T (X0,W ), and TA(X0,W ) is the
associated trajectory, the trajectory evolved from the initial image XI

0 by the
same realization of Wiener paths as the one generating T (X0,W ).

Now, to prove (11.116), we must show that

TI(X0,W ) = TA(X0,W
′) ≡ T (XI

0,W
′), (11.122)

where

W ′ ≡

⎛

⎜
⎜
⎝

Wα

−Wα∗
Wβ

Wβ∗

⎞

⎟
⎟
⎠. (11.123)

With this result, since XI
0 and X0 occur with equal probability to X0

(Eq. 11.115 for the initial distribution), and since the Wiener path W ′ is
realized with equal probability to the path W , then in an infinite ensemble of
trajectories, T (X0,W ) and TI(X0,W ) must be present with equal weight.
We may therefore divide the ensemble average into two sums, one over tra-
jectories T (X0,W ) and the other over their images, to write

(
(αp∗αqβ

p′
∗ βq

′)(t)
)
P

= lim
N→∞

1
N

N/2∑

j=1

{[(
α∗(t)

)p(
α(t)

)q(
β∗(t)

)p′(
β(t)

)q′]

j

+
[(
α(t)

)∗p(
α∗(t)

)∗q(
β(t)

)∗p′(
β∗(t)

)∗q′]

j

}

= lim
N→∞

1
N

N/2∑

j=1

{[
(αp∗α

qβp
′
∗ β

q′ )(t)
]
j
+

[
(αq∗α

pβq
′
∗ β

p′)(t)
]∗
j

}
,(11.124a)

where j labels the individual trajectories and N is the size of the ensemble.
In a similar way

(
(αq∗αpβ

q′
∗ βp

′ )(t)
)
P

= lim
N→∞

1
N

N/2∑

j=1

{[
(αq∗α

pβq
′
∗ β

p′)(t)
]
j
+

[
(αp∗α

qβp
′
∗ β

q′)(t)
]∗
j

}
. (11.124b)
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The conjugacy requirement, in the form (11.116), follows from (11.124a) and
(11.124b).

It remains to prove (11.122). To do this we note that the image trajectory
defined by (11.120b) satisfies the stochastic differential equations

dαI =
[− (κ+ iωC)αI + gαI∗β

I
]
dt

+

(√

gβI/2 +
√
βI/βI∗κn̄dWα −

√

gβI/2 −
√
βI/βI∗κn̄dWα∗

)

,

(11.125a)

dαI∗ =
[− (κ− iωC)αI∗ + gαIβI∗

]
dt

+

(√

gβI∗/2 +
√
βI∗/βIκn̄dWα +

√

gβI∗/2 −
√
βI∗/βIκn̄dWα∗

)

,

(11.125b)

dβI =
[− (κp + i2ωC)βI − (g/2)(αI)2 − iĒ0e

−i2ωC t
]
dt

+
√
κpn̄p(dWβ + idWβ∗), (11.125c)

dβI∗ =
[− (κp − i2ωC)βI∗ − (g/2)(αI∗)

2 + iĒ∗0 ei2ωCt
]
dt

+
√
κpn̄p(dWβ − idWβ∗). (11.125d)

These equations are obtained by taking complex conjugates of (11.118a)–
(11.118d) and interchanging the first with the second equation and the third
with the fourth equation. Observe now that the image trajectory TI(X0,W )
and the associated trajectory TA(X0,W ) evolve from the same initial state—
the state XI

0—but the image trajectory satisfies (11.125a)–(11.125d) while the
associated trajectory satisfies (11.118a)–(11.118d). The two sets of equations
are the same except for the appearance of −dWα∗ and +dWα∗ in (11.125a)
and (11.125b) where +dWα∗ and −dWα∗ appear in (11.118a) and (11.118b).
Offsetting this difference with the introduction of W ′, we conclude that
TI(X0,W ) = TA(X0,W

′). This completes the proof of (11.122).

Note 11.7. The square roots appearing in front of the Wiener increments in
(11.118a) and (11.118b) must be interpreted using a consistent convention
by choosing the same root in each term; for example, taking an argument
z ≡ reiφ under the square root, with −π < φ ≤ π, choose the root

√
reiφ/2.

Keeping this convention in mind, we then trace the nonclassical character of
the noise to the minus sign in front of the second square root in (11.118b).
Consider, for example, the case with β and β∗ as complex conjugates. Then
for −π < φ± < π (but not for φ± = π), the noise terms in (11.118a) and
(11.118b) are, respectively,

√
z+dWα +

√
z−dWα∗ =

√
r+e

iφ+/2dWα +
√
r−eiφ−/2dWα∗ , (11.126a)

√
z∗+dWα −√

z∗−dWα∗ =
√
r+e
−iφ+/2dWα −√

r−e−iφ−/2dWα∗ . (11.126b)
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These are not complex conjugates, due to the minus sign; thus, if initially
there is conjugacy, α = (α∗)∗ and β = (β∗)∗, it is not preserved at later times.
Note that (11.126a) and (11.126b) do not hold on the boundary of the range
of phase, for φ+ = π or φ− = π. These cases are special because we write
(eiπ)∗ = eiπ, not (eiπ)∗ = e−iπ (−π lies outside the chosen range of phase).
The special cases apply when the effect of the pump on the noise is removed
by setting β = β∗ = 0,

√
β/β∗ =

√
β∗/β = 1. Then we replace (11.126a) and

(11.126b) by
√
κn̄dWα +

√−κn̄dWα∗ =
√
κn̄(dWα + idWα∗), (11.127a)√

κn̄dWα −√−κn̄dWα∗ =
√
κn̄(dWα − idWα∗). (11.127b)

These are complex conjugates, thermal noise terms like those in (11.118c) and
(11.118d). Figure 11.1 illustrates how the phase factors multiplying dWα∗ in
(11.118a) and (11.118b) vary as φ− is varied continuously from zero to 2π
(through intervals [0, π] and (−π, 0]). There is a discontinuity at φ− = π,
which, although it appears strange, amounts to a change of sign only; such
a sign change is irrelevant, since the Wiener increment dWα∗ is positive or
negative with equal probabilities at each step of the integration. It is only for
φ− = π that the phase factors depicted in Fig. 11.1 are conjugates of one
another.

Fig. 11.1. Behavior of the phase factors multiplying dWα∗ in (11.126a) and
(11.126b) as φ− changes from zero to 2π. For φ− = π the phase factors are written
as +eiφ−/2 → +i and −e−iφ−/2 → −i. As φ− moves incrementally away from π in
either direction, one or other of the phase factors crosses the discontinuity
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The Degenerate Parametric Oscillator III:

Phase-Space Analysis
Outside the Small-Noise Limit

The small-noise limit has received a great deal of attention in quantum optics,
and not without good reason. Until quite recently, in cases of experimental
interest, the system size expansion has always been well justified. In the case
of the laser, for example, its validity is governed by the saturation photon
number nsat = γh(γ↑ + γ↓)/8g2; for the degenerate parametric oscillator by
the threshold pump photon number nthr

p = (κ/g)2. Each of these numbers
is determined by the ratio of a dissipation rate and a fundamental coupling
constant. When the dissipation rate dominates, the ratio is large; nsat and
nthr
p are typically on the order of 108 (see the final paragraph of Sect. 7.1.4

and Eq. 10.17).
The experimental situation has changed in recent years. With the use

of Rydberg atoms and superconducting microwave cavities, dipole coupling
strengths that are much larger than dissipation rates can now be realized.
Also, at optical frequencies, the development of high-finesse cavities allows
a similar regime of strong dipole coupling to be entered. These strong cou-
pling conditions define the field of cavity QED. Cavity QED systems have
small system size, hence large quantum noise. Treatment of their quantum
fluctuations must be taken beyond the small-noise limit. The remaining chap-
ters of the book explore various aspects of this topic. The subject of cavity
QED itself is taken up in Chaps. 13–16. In the present chapter, we continue
with the positive P representation and the degenerate parametric oscillator,
to see where the quantum–classical correspondence leads when it is taken
beyond the small-noise limit.

The quantum–classical correspondence provides a visualization in phase
space. In the small-noise limit, the dynamical picture is that of a “fuzz ball”
of noise carried along classical trajectories, trajectories obtained from clas-
sical nonlinear dynamics; the “fuzz ball” accounts for the quantum fluc-
tuations. The picture is not qualitatively changed in the presence of weak
nonlinearities—the threshold regions of the laser and degenerate parametric
oscillator, for example; there the analysis is based on the system size expan-
sion also (Sects. 8.2 and 10.2.4) and is still limited by the small-noise assump-
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tion. Interesting new territory is reached, however, when the photon number
needed to reach threshold is on the order of unity or less. Then the small-
noise assumption fails. The quantum fluctuations are large and intertwined
with the classical nonlinearity in a fundamental way [see the discussion below
(7.78)]. Phase-space trajectories no longer have any relevance here. A mani-
festly quantum-mechanical picture of the fluctuations must take their place.
In this chapter we track this transition for the degenerate parametric oscillator
example.

12.1 The Degenerate Parametric Oscillator
with Adiabatic Elimination of the Pump

There is probably little progress to be made by searching for an analyti-
cal solution to the Fokker–Planck equation (11.46). Certainly, we could start
with numerical simulations of the equivalent stochastic differential equations
(Eqs. 11.118a–11.118d), but even this may be too large a step to take if we
wish to gain some understanding—to achieve something more than a blind
numerical calculation of operator averages. The stochastic differential equa-
tions describe a nonlinear evolution in eight dimensions. Could a reduction in
the number of dimensions be achieved?

Apparently, the minimum number of dimensions in the positive P repre-
sentation is four, the four dimensions demanded by the two complex variables,
α and α∗, that represent a single mode of the field. If the field amplitude in
the classical dimensions is real, however, and if, in addition, the fluctuations
are confined to one nonclassical dimension only, then a two-dimensional phase
space is a possibility. As it turns out, this simplest case can be realized for the
degenerate parametric oscillator. However, before we can see how to achieve
the reduction from four dimensions to two, we must first perform a reduction
from eight dimensions to four. This is done by adiabatically eliminating the
pump to obtain a set of stochastic differential equations for the subharmonic
mode alone.

There are a number of ways to carry out the adiabatic elimination. We
may work, for example, entirely within the phase-space representation, as we
did when adiabatically eliminating the atomic variables in our treatment of
the laser (Sects. 8.1.4, 8.2.1, and 8.3.2). In the present situation this method
provides a quick route to the desired stochastic differential equations. Thus, we
first derive the equations in this way. Then, for the sake of learning something
new, we see how the adiabatic elimination can be carried through at the level
of the master equation itself.
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12.1.1 Adiabatic Elimination
in the Stochastic Differential Equations

Since we are primarily interested in the nonclassical noise, let us for simplicity
set n̄ = 0. The stochastic differential equations for the coupled pump and
subharmonic modes are then given by Eqs. 11.118a–11.118d:

dα̃ = [−κα̃+ gα̃∗β̃]dt+
√
gβ̃dWα, (12.1a)

dα̃∗ = [−κα̃∗ + gα̃β̃∗]dt+
√
gβ̃∗dWα∗ , (12.1b)

dβ̃ = [−κpβ̃ − (g/2)α̃2 − iĒ0]dt, (12.1c)

dβ̃∗ = [−κpβ̃∗ − (g/2)α̃2
∗ + iĒ∗0 ]dt, (12.1d)

where we have adopted a rotating frame (Eq. 11.101) and made the substi-
tutions (dWα + dWα∗)/

√
2 → dWα and (dWα − dWα∗)/

√
2 → dWα∗ ; these

substitutions are permitted because (dWα+Wα∗)/
√

2 and (dWα−dWα∗)/
√

2
are independent Wiener increments. Assuming now that the pump mode de-
cays much more quickly than the subharmonic mode (ξ = κ/κp � 1), we solve
(12.1c) and (12.1d) for β̃ and β̃∗ by setting the increments on the left-hand
side to zero; thus, introducing scaled variables ˜̄α and ˜̄α∗, defined as in (10.33),
with the help of (10.14)–(10.16) we obtain

gβ̃ = κei(ψ−π/2)(λ − ˜̄α2), gβ̃∗ = κe−i(ψ−π/2)(λ− ˜̄α2
∗). (12.2)

Substituting these results into (12.1a) and (12.1b), we arrive at the stochastic
differential equations for the degenerate parametric oscillator in the positive
P representation with adiabatic elimination of the pump (and n̄ = 0):

d ˜̄α = [− ˜̄α+ ˜̄α∗(λ− ˜̄α2)]dt̄+
(
2ξ−1nthr

p

)−1/2
√
λ− ˜̄α2dW̄α, (12.3a)

d ˜̄α∗ = [− ˜̄α∗ + ˜̄α(λ− ˜̄α2
∗)]dt̄+

(
2ξ−1nthr

p

)−1/2
√
λ− ˜̄α2∗dW̄α∗ , (12.3b)

where
t̄ ≡ κt. (12.4)

The corresponding phase-space equation of motion is

∂ ˜̄P
∂t̄

=
{
∂

∂ ˜̄α
[ ˜̄α− ˜̄α∗(λ − ˜̄α2)] +

∂

∂ ˜̄α∗
[ ˜̄α∗ − ˜̄α(λ − ˜̄α2

∗)]

+
1
2
(
2ξ−1nthr

p

)−1
[
∂2

∂ ˜̄α2
(λ− ˜̄α2) +

∂2

∂ ˜̄α2∗
(λ− ˜̄α2

∗)
]}

˜̄P, (12.5)

where, as explained in Sect. 11.1.2, a specific interpretation of derivatives is
assumed so that (12.5) is a Fokker–Planck equation with positive semidefi-
nite diffusion—now in four dimensions instead of eight. The derivation of the
explicit Fokker–Planck equation is left as an exercise.
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Exercise 12.1. Show that the Fokker–Planck equation for the degenerate
parametric oscillator in the positive P representation with adiabatic elimi-
nation of the pump (and n̄ = 0) is given by (11.46) and (11.41), where

x ≡

⎛

⎜
⎜
⎝

˜̄x
˜̄x
˜̄y
˜̄y

⎞

⎟
⎟
⎠ , x′ ≡

⎛

⎜
⎜
⎜
⎝

∂/∂ ˜̄x
∂/∂ ˜̄x
∂/∂ ˜̄y
∂/∂ ˜̄y

⎞

⎟
⎟
⎟
⎠
, (12.6)

with drift matrix

A(2)(x) =

⎛

⎜
⎜
⎜
⎝

−˜̄x+ ˜̄x(λ− ˜̄x2 + ˜̄y2) + 2˜̄y ˜̄x˜̄y
−˜̄x + ˜̄x(λ− ˜̄x2 + ˜̄y2) + 2˜̄y ˜̄x ˜̄y
− ˜̄y + ˜̄y(λ− ˜̄y2 + ˜̄x2) + 2˜̄x ˜̄y ˜̄x
−˜̄y + ˜̄y(λ− ˜̄y2 + ˜̄x2) + 2˜̄x˜̄y ˜̄x

⎞

⎟
⎟
⎟
⎠
, (12.7)

and diffusion matrix

D(2)(x) =
(
2ξ−1nthr

p

)−1

⎛

⎜
⎜
⎝

R2 0 RI 0
0 R2

∗ 0 R∗I∗
RI 0 I2 0
0 R∗I∗ 0 I2

∗

⎞

⎟
⎟
⎠ , (12.8)

where

R ≡ Re
(√

λ− (˜̄x+ i ˜̄y)2
)
, I ≡ Im

(√
λ− (˜̄x+ i ˜̄y)2

)
, (12.9a)

and

R∗ ≡ Re
(√

λ− (˜̄x + i˜̄y)2
)
, I∗ ≡ Im

(√
λ− (˜̄x + i˜̄y)2

)
. (12.9b)

Show explicitly that the diffusion matrix is positive semidefinite.

It is possible to work backwards from the phase-space equation of motion
(12.5) to deduce the single-mode master equation to which it corresponds.
Thus, the master equation for the degenerate parametric oscillator with adia-
batic elimination of the pump (and n̄ = 0) is given by

ρ̇ = −iωC [a†a, ρ] − i
g

2κp
[Ē0e

−i2ωCta†2 + Ē∗0 ei2ωC ta2, ρ]

+ κ(2aρa† − a†aρ− ρa†a)

+
g2

4κp
(2a2ρa†2 − a†2a2ρ− ρa†2a2). (12.10)

We can discern the physics of the adiabatic elimination more clearly here than
in the stochastic differential equations. The elimination has two distinct ef-
fects, revealed by the second and last terms on the right-hand side of (12.10).
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The former describes the driving of the subharmonic mode by the pump. It
replaces the term proportional to (g/2) in the full master equation (Eq. 9.97);
for the operator b in that equation it substitutes the coherent state amplitude
〈b(t)〉ss = −i(Ē0/κp)e−i2ωCt, the amplitude that would be established in an
empty cavity in steady state (Eq. 9.103). This seems sensible; at least the
appearance of the steady-state amplitude makes sense. However, the substi-
tution b → −i(Ē0/κp)e−i2ωC t cannot be the whole story, since it allows the
pump mode amplitude to continue to increase with |Ē0| above threshold where
we know that pump depletion must set in (Eqs. 9.76b and 9.77b). The non-
linear physics needed to account for pump depletion is contained in the last
term on the right-hand side of (12.10).

To see how the depletion term arises, we must first identify the process
that reduces the pump mode energy when the subharmonic mode becomes
excited. Contrary to what we might expect, the process is one that creates,
rather than annihilates, a photon in the pump mode—specifically, it is the
process that converts two subharmonic photons into a pump photon through
the term −i�a2b† in Hamiltonian (9.79). This photon creation process can
account for a loss of pump mode energy because it interferes, destructively,
with the direct creation of pump photons by the term �Ē0e

−i2ωCt in (9.79).
The interference is seen explicitly in the equation of motion (9.63a). From
here, the physical origin of the last term on the right-hand side of (12.10) can
be traced as follows. Under the adiabatic elimination, a pump photon created
by the annihilation of two subharmonic photons is immediately lost from the
cavity before its conversion back into subharmonic photons can occur. The net
effect is a two-photon loss from the subharmonic mode, the last term on the
right-hand side of (12.10). The loss is nonlinear, having a rate that increases
with the subharmonic mode energy. It therefore forestalls the energy explosion
that would occur above threshold in the absence of pump depletion.

Exercise 12.2. Show that within the positive P representation, master equa-
tion (12.10) does, indeed, yield the phase-space equation of motion given in
(12.5).

A procedure that takes us from master equation (9.97) to master equation
(12.10) via the phase-space equation of motion (10.8), the stochastic differen-
tial equations (12.1a–12.1d), the stochastic differential equations (12.3a) and
(12.3b), and the phase-space equation of motion (12.5), seems like a round-
about way to carry out an adiabatic elimination. Of course, all of this effort
has not been expended in order to arrive at (12.10). Our main interest is in the
stochastic differential equations (12.3a) and (12.3b) themselves. Before doing
anything with these equations, though, it would be nice to see that it is pos-
sible to pass directly from master equation (9.97) to master equation (12.10).
To help with the calculation, we first make a short diversion to familiarize
ourselves with some of the intricacies of the superoperator notation.
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12.1.2 A Note About Superoperators

We met the basic idea of a superoperator in Chap. 1, where in Sect. 1.5.1
the notation eLt, where L is a superoperator, provided a compact way of
writing the formal solution to the master equation and related equations of
motion. We have not actually used the properties of superoperators in any
calculations, though. It is now our intention to do so, and it is time to meet
some elementary properties of superoperators and to see what they allow us
to do.

Superoperators act on operators to produce new operators, just as opera-
tors act on vectors to produce new vectors. The difference to keep in mind is
that superoperators “embrace” their arguments, as indicated in the following
examples:

(a†2b ·)Ô ≡ a†2bÔ, (a · a†)Ô ≡ aÔa†, (· b†b)Ô ≡ Ôb†b. (12.11)

Ô denotes the operator on which the superoperator—the parentheses and its
contents—acts. We adopt the convention that the action is always on the
operator, or operator expression, to the immediate right of the parentheses;
although action to the left is sometimes defined too [12.1]. The dot is an
essential part of the superoperator definition. It indicates where, within the
parentheses, the argument is to be placed. In cases like the first example of
(12.11), the notation appears redundant, since the effect of the superoperator
is the same as ordinary operator multiplication. The advantage of the notation
comes from situations like those illustrated in the other examples, where it
allows the nesting of operators to be expressed as a superoperator product.
Without such a device, writing out the nested operators explicitly can become
very tedious.

Superoperators are added in an obvious way—for example, to obtain the
right-hand side of the typical master equation. The meaning of a superoperator
product is similarly straightforward. To illustrate what is involved, let us
factorize the examples given; we may write

(a†2b ·) = (a†2 ·)(b ·), (a · a†) = (a ·)(· a†), (· b†b) = (· b)(· b†).
(12.12)

In each case, the equality is verified by imagining an operator argument placed
to the right on each side of the expression and working from right to left, sub-
stituting the appropriate operator, or parenthesized product of operators, for
the dots. Of course the superoperators in a product do not generally commute.
They do, however, if every operator appearing in the definition of one of the
superoperators commutes with every operator appearing in the definition of
the other. A trivial example is given by the product

(a · a†)(b · b†) = (ab · b†a†)
= (ba · a†b†)
= (b · b†)(a · a†). (12.13)
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Given a superoperator S, we associate with it a conjugate superoperator
S†, with

(SÔ)† ≡ S†Ô†, (12.14)

where Ô is again an arbitrary operator argument. As an example, we have

[(a†2b ·)Ô]† = (a†2bÔ)†

= (Ô†b†a2)

= (· b†a2)Ô, (12.15)

and thus
(a†2b ·)† = (· b†a2). (12.16)

The rule, therefore, is that the operators on either side of the dot are conju-
gated and the positions of the operators relative to the dot are exchanged. It
follows that for two superoperators S1 and S2,

(S1S2)† = S†1S†2 , (12.17)

as in

[(a · a†)(· a†a)]† = (a · a†aa†)†
= (aa†a · a†)
= (a · a†)(a†a·)
= (a · a†)†(· a†a)†. (12.18)

Note that contrary to what one might expect, the order of the superoperators
on the right-hand side of (12.17) is not reversed.

Note 12.1. The conjugate superoperator defined by (12.14) is not the usual
Hermitian conjugate or adjoint obtained from tr(Ô1SÔ2) ≡ tr(Ô†2S†Ô†1)—or
equivalently, SÔ ≡ (Ô†S†), with an appropriate definition of superoperator
action to the left. See [12.1] for a more complete discussion of the conjugation
of superoperators. In that reference, the superoperator we denote by S† is
called the “associated” superoperator. It is this type of conjugation that is of
use to us in the next section.

Knowing how to construct products of superoperators allows their commu-
tators to be derived. Three particular examples, which we will find useful,
are:

[(b · b†), (b ·)] = (b · b†)(b ·) − (b ·)(b · b†) = 0, (12.19a)

a trivial example; followed by a slightly less trivial one,

[(b†b ·), (b ·)] = (b†b ·)(b ·) − (b ·)(b†b ·)
= (b†b2 ·) − (bb†b ·)
= −(b ·); (12.19b)
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and thirdly,

[(· b†b), (b ·)] = (· b†b)(b ·) − (b ·)(· b†b)
= 0. (12.19c)

Taking the conjugate of each, using (12.14) and (12.17), yields

[(b · b†), (· b†)] = 0, [(b†b ·), (· b†)] = 0, [(· b†b), (· b†)] = −(· b†).
(12.19d)

The derivation of other useful commutators is left as an exercise.

Exercise 12.3. Derive the commutation relations

[(b · b†), (b† ·)] = (· b†), [(b†b ·), (b† ·)] = (b† ·), [(· b†b), (b† ·)] = 0,
(12.19e)

and

[(b · b†), (· b)] = (b ·), [(b†b ·), (· b)] = 0, [(· b†b), (· b)] = (· b),
(12.19f)

where the latter are obtained as conjugates of the former.

From their commutation relations we may write equations of motion for super-
operators that are quite analogous to the more familiar Heisenberg equations
of motion for ordinary operators. Thus, the superoperator formally defined by
the expression

S′(t) ≡ e−LtSeLt (12.20)

obeys the equation of motion

dS′
dt

= [S′,L]. (12.21)

This equation of motion is solved in much the same way as a Heisenberg
equation of motion. As an example, let us take L = Lp ≡ κp(2b·b†−b†b ·−· b†b)
and S′(0) = (b ·). Then

d(b ·)′
dt

= κp[(b ·)′, 2(b · b†)′ − (b†b ·)′ − (· b†b)′]
= −κp(b ·)′, (12.22)

and the solution is clearly

e−Lpt(b ·)eLpt = e−κpt(b ·). (12.23)

The example is particularly simple. It is more usual to find that the equation
of motion for one superoperator couples it to others, in which case further
equations of motion must be added until a closed set is obtained. In the
following section we need the solution to one example of this type.

Exercise 12.4. Take L = Lp ≡ κp(2b · b† − b†b · − · b†b) and S′(0) = (b† ·),
and solve the equation of motion for (b† ·)′(t). Hence show that

e−Lpt(b† ·)eLpt = eκpt(b† ·) + (e−κpt − eκpt)(· b†). (12.24)
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12.1.3 Adiabatic Elimination in the Master Equation

The discussion at the end of Sect. 12.1.1 shows that the physics of the adia-
batic elimination may be summarized in the following two observations: first,
for the purpose of exciting the subharmonic, the pump mode appears to be in
a coherent state of amplitude −iĒ0/2κp; second, the pump in addition medi-
ates a two-photon loss from the subharmonic mode. Considering these observa-
tions, and in light of the underlying assumption of the adiabatic elimination—
that the pump field has far larger bandwidth than the subharmonic—we see
a parallel emerging with the system plus reservoir approach to damping dis-
cussed in Sect. 1.3. In the case of the adiabatic elimination, the system S is
the subharmonic mode, while the broad bandwidth of the pump field justifies
its treatment as a reservoir R. The reservoir is not, however, in a thermal
state; it is externally driven and excited to a monochromatic coherent state.
Nonetheless, the apparent connection with the system plus reservoir approach
to damping suggests a method of adiabatic elimination at the level of the mas-
ter equation.

The idea is to follow the formal development of Sects. 1.3.1 and 1.3.2 to
obtain an equation of motion for the density operator

σ̃(t) ≡ trp[ρ̃(t)] = trp[ρ̃D(t)], (12.25)

where
ρ̃D(t) ≡ Dp(iĒ0/κp)ρ̃(t)D†p(iĒ0/κp). (12.26)

Equation 12.25 is the analog of (1.17), with ρ̃D(t) in place of the density
operator for S ⊕ R, the trace over R in (1.17) replaced by a trace over the
pump mode, and the reduced density operator for the subharmonic mode,
σ̃(t), replacing the density operator for S. The displacement (12.26) has
been introduced so that the pump mode may be treated as a reservoir in
the vacuum state (see Note 9.9). We also adopt the interaction picture,
ρ(t) = e−i[(ωCa

†a+2ωCb
†b)t]ρ̃(t)ei[(ωCa

†a+2ωCb
†b)t], which removes the explicit

time-dependence of the pump-mode driving field. [In this section we use dif-
ferent notations, ρ and σ, to distinguish the two-mode and the one-mode den-
sity operators. The density operator denoted by ρ(t) in (12.10) corresponds
to σ(t) = e−iωCa

†atσ̃(t)eiωCa
†a t in the present notation.]

The principal change from the calculation of Sects. 1.3.1 and 1.3.2 is that
the starting equation of motion is the master equation (9.97) rather than the
Liouville equation (1.19). Written in the interaction picture, and after making
the displacement (12.26), this two-mode master equation is

˙̃ρD = (Ls + Lp + Lsp)ρ̃D, (12.27)
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where

Ls ≡ −i g

2κp
[Ē0a

†2 + Ē∗0a2, · ] + κ(2a · a† − a†a · − · a†a), (12.28a)

Lp ≡ κp(2b · b† − b†b · − · b†b), (12.28b)

Lsp ≡ (g/2)[a†2b− a2b†, · ]. (12.28c)

The goal is to derive an equation of motion for the one-mode density operator
σ̃(t) under the assumption

ρ̃D(t) ≈ σ̃(t)
(|0〉〈0|)

p
. (12.29)

It is of course not sufficient to simply substitute the ansatz (12.29) into (12.27)
and take the trace, since this yields only ˙̃σ = Lsσ̃, omitting the two-photon
loss required to account for pump depletion. Rather, as in Sect. 1.3.1, we must
introduce the ansatz at a higher order of perturbation theory.

The first step is to isolate the interaction between the subharmonic and
pump modes. In the earlier calculation, the interaction between S and R was
isolated by the transformation (1.20). Here we make the similar transformation

ρ̄D(t) ≡ e−(Ls+Lp)tρ̃D(t), (12.30)

to obtain
˙̄ρD = L̄sp(t)ρ̄D, (12.31)

with the superoperator

L̄sp(t) ≡ e−(Ls+Lp)tLspe(Ls+Lp)t (12.32)

taking the role of the interaction picture Liouvillian (1/i�)[H̃SR(t), · ]. To par-
allel (1.26), we have

trp[ρ̄D(t)] = e−Lstσ̃−a(t) ≡ σ̄(t). (12.33)

Then, after integrating (12.31) once formally, substituting the integral form
for ρ̄D(t) on the right-hand side of the equation, and taking the trace over the
pump mode, we arrive at the equation of motion

˙̄σ = trp[L̄sp(t)ρD(0)] +
∫ t

0

dt′trp[L̄sp(t)L̄sp(t′)ρ̄D(t′)]. (12.34)

This equation is the analog of (1.27).
The purpose of the displacement (12.26) now becomes apparent. To a good

approximation the displaced pump mode is in the vacuum state. Therefore, the
first term on the right-hand side of (12.34) is zero; it takes the expectation
of the pump field in the vacuum state

(|0〉〈0|)
p
. Although a proof of the

result is hardly needed, it does give some practice in the manipulation of
superoperators.
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Exercise 12.5. Show that

trp[L̄sp(t)ρD(0)] = (g/2)
[
e−Lst

p〈0|(a†2b− a2b†)|0〉peLstσ(0)

− σ(0)p〈0|(a†2b− a2b†)|0〉p
]

= 0. (12.35)

It is now safe to introduce the ansatz (12.29). Doing so brings us to an equation
of motion in the Born approximation corresponding to master equation (1.30):

˙̄σ =
∫ t

0

dt′trp
[L̄sp(t)L̄sp(t′)σ̄(t′)

(|0〉〈0|)
p

]
. (12.36)

To complete the adiabatic elimination we have only to find the explicit form
of L̄sp(t) and to carry out the integration over time.

Recall that any two superoperators commute when the sets of operators
entering their definitions commute (Eq. 12.13). Using this property and some
straightforward factorizations (Eq. 12.12), we can pass from (12.28c) and
(12.32) to

L̄sp(t) = (g/2)e−(Ls+Lp)t
[
(a†2b ·) − (a2b† ·) − (· a†2b) + (· a2b†)

]
e(Ls+Lp)t

= (g/2)e−(Ls+Lp)t
[
(a†2·)(b ·) − (a2·)(b† ·) − (a2·)†(b† ·)†

+ (a†2·)†(b ·)†]e(Ls+Lp)t

= (g/2)[S̄1(t)P̄1(t) − S̄2(t)P̄2(t) + S̄†1(t)P̄†1(t) − S̄†2(t)P̄†2(t)],
(12.37)

where

S̄1(t) ≡ e−Lst(a†2·)eLst, S̄2(t) ≡ e−Lst(a2·)eLst,

P̄1(t) ≡ e−Lpt(b ·)eLpt, P̄2(t) ≡ e−Lpt(b† ·)eLpt.
(12.38a)

The explicit time dependences of P̄1(t) and P̄2(t) are given by (12.23) and
(12.24), and the conjugates are obtained from (12.14); thus, we have

P̄1(t) = e−κpt(b ·), (12.39a)

P̄†1(t) = e−κpt(· b†), (12.39b)

P̄2(t) = eκpt(b† ·) + (e−κpt − eκpt)(· b†), (12.39c)

P̄†2(t) = eκpt(· b) + (e−κpt − eκpt)(b ·). (12.39d)

All that remains is some tedious algebra.
On substituting the explicit form of L̄sp(t)L̄sp(t′) in (12.36), a total of

thirty-six superoperator products are produced. Many terms are zero, though,
due to the assumption that the displaced pump mode is in the vacuum state.
When making the substitution, our eyes should be on the superoperators (b ·),
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(b ·), (b† ·), and (· b), and how they act upon the state
(|0〉〈0|)

p
. For the first

two, the result of their action on the vacuum state is zero; this eliminates four
of the six terms that enter (12.36) at the first order in the interaction, so we
obtain

L̄sp(t′)σ̄(t′)
(|0〉〈0|)

p

= −(g/2)eκpt
′[S̄2(t′)(b† ·) + S̄†2(t′)(· b)]σ̄(t′)

(|0〉〈0|)
p
. (12.40)

There are then twelve rather than thirty-six terms at the second order. Four
of these vanish for the same reason, and the result at second order is

L̄sp(t)L̄sp(t′)σ̄(t′)
(|0〉〈0|)

p

= −(g/2)2eκpt
′{[

e−κptS̄1(t)(b ·) − eκptS̄2(t)(b† ·)

− eκptS̄†2(t)(· b) − (e−κpt − e−κpt)S̄†2(t)(b ·)]S̄2(t′)(b† ·)
+

[− eκptS̄2(t)(b† ·) − (e−κpt − eκpt)S̄2(t)(· b†)

+ e−κptS̄†1(t)(· b†) − eκptS̄†2(t)(· b)]S̄†2(t′)(· b)
}
σ̄(t′)

(|0〉〈0|)
p

= −(g/2)2
{
e−κp(t−t′)[(S̄1(t)S̄2(t′) − S̄†2(t)S̄2(t′)

)
(bb† ·) + s.c.

]

− eκp(t+t′)[S̄2(t)S̄2(t′)(b†2·)

+ S̄†2(t)S̄2(t′)
(
(b† · b) − (bb† ·)) + s.c.

]}
σ̄(t′)

(|0〉〈0|)
p
, (12.41)

where s.c. denotes the superoperator conjugate defined in (12.14).
The surviving terms in (12.41) are of two types, those proportional to

e−κp(t−t′) and those proportional to eκp(t+t′). The latter appear to diverge,
but vanish when the trace in (12.36) is taken. The time integral over the
former is performed in the adiabatic limit, where we take

e−κp(t−t′)S̄2(t′)σ̄(t′) → 2κ−1
p δ(t− t′)S̄2(t′)σ̄(t′), (12.42)

which is the analog of the Markov approximation (1.36). Thus, from (12.36),
(12.41), (12.42), and (12.38a), we arrive at the equation of motion

˙̄σ =
g2

4κp
e−Lst

[
2(a2 · a†2) − (a†2a2·) − (· a†2a2)

]
eLstσ̄. (12.43)

Inverting the transformations (12.33) and into the interaction picture, writing
σ(t) = e−iωCa

†atσ̃(t)eiωCa
†at = e−iωCa

†at[eLstσ̄(t)e−Lst]eiωCa
†at, we recover

the master equation with adiabatic elimination of the pump (12.10).
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12.1.4 Numerical Simulation
of the Stochastic Differential Equations

We now return to our main agenda, the numerical simulation of the stochastic
differential equations (12.3a) and (12.3b). Of course these equations do not
possess a solution as a continuous function of time like a set of ordinary differ-
ential equations do. The procedure is to generate an ensemble of trajectories,
T (X0,W ) ≡ (

α(t), α∗(t)
)
,

X0 ≡
(
α0

α0
∗

)
, W ≡

(
Wα

Wα∗

)
, (12.44)

with each trajectory obtained by the Ito stochastic integration of (12.3a) and
(12.3b) for the same initial condition X0 and a particular realization of the
two-dimensional Wiener path W . So long as the ensemble is sufficiently large,
the average of

(
α∗(t)

)p(
α(t)

)q over the ensemble will be a good approximation
to the moment

(
(αp∗αq)(t)

)
P

= 〈(a†paq)(t)〉.
The simplest integration algorithm is provided by the one-step Euler

method, where, for a time step of Δt̄, the solution is advanced by writing

˜̄α(t +Δt) = ˜̄α(t) +Δ ˜̄α(t), (12.45a)
˜̄α∗(t+Δt) = ˜̄α∗(t) +Δ ˜̄α∗(t), (12.45b)

with Δ ˜̄α(t) and Δ ˜̄α∗(t) computed from (12.3a) and (12.3b), taking dt̄→ Δt̄,
dW̄α → ΔW̄α, and dW̄α∗ → ΔW̄α∗ ; the Wiener increments ΔW̄α and ΔW̄α∗
are statistically independent Gaussian-distributed random numbers of zero
mean and variance Δt̄ (see Sect. 5.3.3). More sophisticated algorithms exist
that are superior to the Euler algorithm in either their accuracy or stabil-
ity [12.2,12.3,12.4,12.5,12.6,12.7,12.8]. Needless to say, when compared with
the situation for ordinary differential equations, the numerical analysis is more
difficult, and there certainly is not an equivalent range of packaged, general
purpose integrators available. So far as accuracy is concerned, we should re-
member that the computed moments are going to be compromised by the
finite size of the ensemble (sampling error) as well as by the limited accuracy
of the stochastic integration. In many cases, this sampling error will be the
limiting factor. Stability of the integration is another matter. The one-step
Euler method is particularly sensitive to instability, and may require a very
small time step in order to be stable, a demand that can easily increase the
time needed for an accurate simulation to the point that the computation is
effectively impossible. We will discover in fact that stability, or rather insta-
bility, is potentially a real worry for the integration of (12.3a) and (12.3b).
Nevertheless, let us forge ahead using the Euler method. For an initial at-
tempt at the integration, its tendency towards instability can actually be an
advantage, in so far as it serves as a diagnostic; perhaps it is just as well to
encourage any potential numerical instability, given that the physics has very
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little to say about what to expect from stochastic differential equations in the
positive P representation.

We are interested in behavior outside the small-noise limit. Up to now
we have used the threshold photon number in the pump mode, nthr

p , as the
system size parameter. Having taken the adiabatic limit, the threshold photon
number in the subharmonic mode is the more natural parameter to use. This is
apparent from the noise terms in (12.3a) and (12.3b), both of which have (aside
from the constant factor Γ (1

4 )/Γ (3
4 )) the coefficient 〈a†a〉−1

thr (Eq. 10.102). In
the following we therefore compare results for different values of 〈a†a〉thr.

Figures 12.1 and 12.2 illustrate the behavior in two different operating
regimes. The first displays results at threshold, where the quantities plotted
are computed as ensemble averages from the expressions

〈a†a〉−1
thr〈(a†a)(t)〉 =

[
Γ (1

4 )
Γ (3

4 )

]2

〈a†a〉thr

(
(˜̄α∗ ˜̄α)(t)

)
P
, (12.46a)

(
nthr
p

)−1/2
e−i

1
2 (ψ−π/2)〈b̃(t)〉 = λ− (

˜̄α2(t)
)
P
, (12.46b)

(ΔY )2(t) − 1
4 = − 1

4

[(
(˜̄α− ˜̄α∗)2(t)

)
P
− (

(˜̄α − ˜̄α∗)(t)
)2

P

]
.

(12.46c)

Since each of the averages should be real, only the real parts are shown. Of
course the imaginary parts are not precisely zero when computed from an
ensemble of finite size. They are seen to decrease, though, as the number
of trajectories is increased, and in practice deviations from the conjugacy
requirement (11.113)—proved for an infinite ensemble in Sect. 11.2.3—serve
as a test to decide when the ensemble is sufficiently large.

The mean photon number at threshold in the subharmonic mode was
calculated using the small-noise assumption in Sect. 10.2.4. The first thing to
note from the simulations is that the small-noise result is not reached by any
of the curves in Fig. 12.1a; in the most extreme case—for 〈a†a〉thr = 0.25—the
steady-state photon number is only one half that predicted by the small-noise
approximation (system size expansion to lowest nonvanishing order). This
large deviation decreases rather quickly with increasing 〈a†a〉thr, to become
something less than 5% for 〈a†a〉thr = 10. These changes in photon number
are explained by Fig. 12.1b, where the mean amplitude of the pump field
is plotted. For small values of the system size parameter, the amplitude of
the pump is significantly depleted, falling below the 〈˜̄b〉ss = λ = 1 obtained
by neglecting the fluctuations (Eqs. 10.43). A further consequence of this
depletion appears in Fig. 12.1c, where the steady-state squeezing (integrated
over frequency) is smaller than the predicted (ΔY )2thr = 1/8 (Eq. 10.98a).
Finally, note the scaling of time in Figs. 12.1a and 12.1b; the timescale reflects
the critical slowing down of fluctuations in the dimension that has become
unstable—the amplified X-quadrature phase amplitude of the subharmonic
field (Eq. 10.96a).
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Fig. 12.1. Quantum fluctuations for the degenerate parametric oscillator at thresh-
old as a function of threshold photon number. Each curve averages over an ensemble
of 10, 000 trajectories generated by simulating (12.3a) and (12.3b) for λ = 1 and
˜̄α(0) = ˜̄α∗(0) = 0, with time step Δt̄ = 10−4: (a) mean photon number in the sub-
harmonic mode (Eq. 12.46a), (b) mean amplitude of the pump mode (Eq. 12.46b),
and (c) normal-ordered variance of the squeezed quadrature phase amplitude of the
subharmonic mode (Eq. 12.46c). Curves (i), (ii), (iii), and (iv) are for threshold
photon numbers 〈a†a〉thr = 10, 1, 0.5, and 0.25, respectively

Depletion of the pump amplitude occurs because of its dependence on the
squared amplitude of the subharmonic field. Specifically, away from the small-
noise limit, the average

(
˜̄α2

)
P

in (12.2) is not negligible compared to λ = 1.
In fact, this depletion of the pump is also included in the small-noise analysis
of Sect. 10.2.4. It enters through the conditional distribution (10.97b), whose
mean, w̃1 = −z̃2

1 , depends on the squared amplitude of the subharmonic mode,
itself distributed according to (10.97a). The point is illustrated by the plot of
the conditional distribution in Fig. 10.1, which shows an average fluctuation
of the pump amplitude that is negative, rather than zero. The small-noise
analysis is limited, nevertheless, because it fails to feed the depletion back
into the calculation of fluctuations for the subharmonic. The approximation
is acceptable when the system size parameter is large, but not more generally,
as Fig. 12.1 shows.

No doubt the results of Fig. 12.1 could be reproduced by systematically
extending the system size expansion beyond the lowest nonvanishing order.
Let us not follow up on this idea right now (see Sect. 12.1.9), however, since we
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are about to discover, after a little more probing with numerical simulations,
that the steady-state solution for the positive P distribution can be given to
all orders in a closed form expression.

Note 12.2. The methods of many-body quantum theory have been used to
treat system size effects in the degenerate parametric oscillator [12.9, 12.10,
12.11]. It is reasonably expected that results obtained using these methods
would also be reproduced by a systematic extension of the system size expan-
sion to higher order.

For a second demonstration of what can be done with stochastic differential
equations, Fig. 12.2 displays some results for above-threshold operation. The
quantities plotted are (12.46b) and (12.46c), and also

(
2ξ−1nthr

p

)−1〈(a†a)(t)〉 =
(
(˜̄α∗ ˜̄α)(t)

)
P
, (12.47a)

and
(
2ξ−1nthr

p

)−2[〈(a†a)2(t)〉 − 〈(a†a)(t)〉2]
=

(
(˜̄α∗ ˜̄α)2(t)

)
P
− (

(˜̄α∗ ˜̄α)(t)
)2

P
+

(
2ξ−1nthr

p

)−1( (˜̄α∗ ˜̄α)(t)
)
P
.

(12.47b)

For the plots of Figs. 12.2a and 12.2b, 〈a†a〉thr is large, comparable to what
would be typical in an experiment (see Note 10.1). The purpose here is to il-
lustrate the “turn on” of the degenerate parametric oscillator, where a macro-
scopic number of photons grows in the subharmonic mode, initiated by quan-
tum fluctuations about the unstable vacuum state. The decay of an unsta-
ble state amplifies fluctuations up to the macroscopic level (Sect. 5.1.4), and
it is only in the early stages of the amplification that the linearization of
Sects. 10.2.1 and 10.2.2 holds. Analytical methods for treating the amplifica-
tion process exist. They allow one to calculate such things as the mean first
passage time for the system to reach a specified locally stable state [12.12].
A good discussion of the difficulties of the problem is given by van Kam-
pen [12.13], who illustrates the issues with an exact solution for a simplified
model of a symmetric bistable potential.

We may leave aside the sophisticated analytical methods. If we are not too
worried about quantitative agreement, a crude approximation does a reason-
able job of getting at least the orders of magnitude right. After the “turn on”
of the degenerate parametric oscillator, the variable 1

2 (˜̄α + ˜̄α∗) has acquired
one of two possible macroscopic values—either +

√
λ− 1 or −√

λ− 1. Before
the “turn on,” this variable is zero; but it is driven away from zero by a noise
source with variance

(
2ξ−1nthr

p

)−1(λ/2)t̄ = [Γ (3
4 )/Γ (1

4 )]2〈a†a〉−2
thr(λ/2)t̄ (in

the linear regime), and the fluctuations are amplified with a gain coefficient
λ− 1. The argument based on these observations is that the “turn on” really
gets under way after the time, t̄on, at which the exponential growth from an
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Fig. 12.2. Quantum fluctuations for the degenerate parametric oscillator above
threshold as a function of threshold photon number. Each curve averages over an
ensemble of 10, 000 trajectories generated by simulating (12.3a) and (12.3b) for λ = 2
and ˜̄α(0) = ˜̄α∗(0) = 0, with time step Δt̄ = 10−4: 〈a†a〉thr = 108 (a), 104 (b), 1
(c), and 0.25 (d). Curve (i) is the mean photon number in the subharmonic mode
(Eq. 12.47a); curve (ii) is the photon number variance in the subharmonic mode
(Eq. 12.47b); curve (iii) is the mean amplitude of the pump (Eq. 12.46b); and curve
(iv) is the normal-ordered variance of the squeezed quadrature phase amplitude of
the subharmonic mode (Eq. 12.46c)

initial condition of the typical size provided by pure diffusion (up to time t̄on)
would give 1

2 [ ˜̄α(ton) + ˜̄α∗(t̄on)] ∼ 1. Thus, t̄on is the solution to

[
Γ (3/4)
Γ (1/4)

]2

〈a†a〉−2
thr(λ/2)t̄one2(λ−1)t̄on = 1. (12.48)

Iteration with a calculator quickly gives t̄on ∼ 18.1 for the parameters of
Fig. 12.2a and t̄on ∼ 9.2 for the parameters of Fig. 12.2b. These estimates
are not at all bad for the time at which the mean photon number in the
subharmonic mode starts to grow [curve (i)], simultaneously depleting the
mean amplitude of the pump [curve (ii)]. Note how the squeezing is reduced
as pump depletion sets in [curve (iv)]. Before the pump is depleted, formula
(10.55b)—derived from the linearized analysis below threshold—continues to
hold [12.14]. Of course the decay of the unstable state is actually stochastic,
and there is a distribution of “turn on” times. Evidence of this appears as
a peak in the photon number variance—curve (iii) of Fig. 12.2.



150 12 The Degenerate Parametric Oscillator Outside the Small-Noise Limit

Turning now to Figs. 12.2c and 12.2d, the system size parameter is small
enough that we would expect to see deviations from the small-noise analysis,
similar to those seen in Fig. 12.1. Indeed, the subharmonic mode photon
number falls below the predicted

(
2ξ−1nthr

p

)−1〈a†a〉ss = 〈˜̄a†〉ss〈˜̄a〉ss = λ −
1 = 1 (Eq. 10.72a) and the mean pump amplitude is no longer depleted to
(
nthr
p

)−1/2
e−i

1
2 (ψ−π/2)〈b̃〉ss = 〈˜̄b〉ss = 1 (Eq. 10.72b). The largest change from

the predictions of the small-noise analysis is the absence of a distinct peak in
the plot of photon number variance; instead, the variance grows and settles
to a nonzero value, indicating that full-scale intensity fluctuations persist in
the steady state.

It would appear from these results that the positive P representation can,
indeed, take us into the regime of large quantum noise. In Fig. 12.2d, in par-
ticular, the system size parameter is sufficiently small that the macroscopic
equations (10.43a–10.43d) no longer provide a meaningful starting point for
an understanding of the physics. From curves (i) and (ii), for example, we
deduce that 〈a†a〉ss < 〈ã〉2ss, with the quantity on the right-hand side of the
inequality real—a relationship that cannot possibly hold for classical ran-
dom variables. Of course, in itself this relationship is not particularly special;
it is what accounts for the existence of squeezing and holds, therefore, in
Figs. 12.2a–c as well. What is special about Fig. 12.2d, though, is the scale
of the nonclassical fluctuations. Here, the fluctuations have the same scale as
the nonlinear physics predicted by the macroscopic law. Thus, the picture of
classical nonlinear dynamics plus “fuzz” (even squeezed “fuzz”) must surely
beak down.

Before we become too enthusiastic, however, we need to take note of one
other feature of Fig. 12.2d, one which raises some concern. What should we
make of the “spikes” that occur along curve (iv)? These “spikes” are the most
dramatic features of the whole figure, and are quite anomalous compared with
the regular behavior seen elsewhere in Figs. 12.1 and 12.2. Anomalous behav-
ior of this kind was first seen by Carmichael et al. [12.15] in their treatment
of absorptive bistability outside the small-noise limit. The authors traced the
“spikes” to a few trajectories within an ensemble that make wide excursions
into the nonclassical phase-space. They suggested that the excursions might
be nonphysical manifestations of a modified nonlinear dynamics introduced by
doubling the phase-space dimensions. As we have seen (Sect. 11.2.2), the clas-
sical phase space can indeed be unstable to perturbations in the nonclassical
phase-space variables. Of course, it could be that our numerical integration
is at fault; we should be particularly cautious now with the Euler method.
Even granting this qualification, though, the consensus reached from work
to date is that the “spikes” are a genuine feature of the nonlinear dynami-
cal equations [12.16, 12.17, 12.18]. Our task now is to understand their origin
and consequences in detail. We start with an analysis of the deterministic
nonlinear dynamics in the extended phase space.
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12.1.5 Deterministic Dynamics in the Extended Phase Space

With the noise terms neglected, (12.3a) and (12.3b) are coupled nonlinear
ordinary differential equations. It is possible to solve these equations and, from
the solution, gain some understanding of the origin of the “spikes.” Written
in terms of the new complex variables

q ≡ ˜̄α/ ˜̄α∗, p ≡ 1/ ˜̄α ˜̄α∗, (12.49)

the equations to be solved are

dq

dt̄
= λ(1 − q2), (12.50a)

dp

dt̄
= −p[λ(q + 1/q) − 2] + 2. (12.50b)

From (12.50a), we have

dq

(
1

1 + q
+

1
1 − q

)
= 2λdt̄, (12.51)

whose direct integration gives the solution for q,

q(t̄) =
M(t̄)
P (t̄)

, (12.52)

with

M(t̄) ≡ [1 + q(0)]eλt̄ − [1 − q(0)]e−λt̄, (12.53a)

P (t̄) ≡ [1 + q(0)]eλt̄ + [1 − q(0)]e−λt̄. (12.53b)

A formal integration of (12.50b) yields

p(t̄) = p(0)e−Q(t̄) + 2e−Q(t̄)

∫ t̄

0

dt̄′eQ(t̄′), (12.54)

with

Q(t̄) ≡
∫ t̄

0

dt̄′{λ[q(t̄′) + 1/q(t̄′)] − 2}. (12.55)

We can obtain an explicit expression for Q(t̄) using (12.52), (12.53a), and
(12.53b); thus, we write

q(t̄) +
1
q(t̄)

=
1
λ

d

dt̄
ln[M(t̄)P (t̄)], (12.56)

to obtain
eQ(t̄) = e−2t̄M(t̄)P (t̄)

4q(0)
. (12.57)
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Substituting this result into (12.54) gives the solution for p,

p(t̄) = e2t̄
4q(0)

M(t̄)P (t̄)

{
p(0) +

1
4q(0)

×
[
[1 + q(0)]2

1 − e−2(1−λ)t̄

1 − λ
− [1 − q(0)]2

1 − e−2(1+λ)t̄

1 + λ

]}
. (12.58)

Finally, inverting the transformation (12.49) yields the solution to the de-
terministic equations of motion within the positive P representation for the
degenerate parametric oscillator with adiabatic elimination of the pump:

˜̄α(t̄) =
[˜̄α(0) + ˜̄α∗(0)]e−(1−λ)t̄ + [˜̄α(0) − ˜̄α∗(0)]e−(1+λ)t̄

√
4 + [˜̄α(0) + ˜̄α∗(0)]2Λ−(t̄) − [ ˜̄α(0) − ˜̄α∗(0)]2Λ+(t̄)

, (12.59a)

and

˜̄α∗(t̄) =
[˜̄α(0) + ˜̄α∗(0)]e−(1−λ)t̄ − [ ˜̄α(0) − ˜̄α∗(0)]e−(1+λ)t̄

√
4 + [˜̄α(0) + ˜̄α∗(0)]2Λ−(t̄) − [ ˜̄α(0) − ˜̄α∗(0)]2Λ+(t̄)

, (12.59b)

where

Λ−(t̄) ≡ 1 − e−2(1−λ)t̄

1 − λ
, Λ+(t̄) ≡ 1 − e−2(1+λ)t̄

1 + λ
. (12.60)

Our aim is to use this solution to construct a picture of the deterministic flow,
particularly within the nonclassical phase space.

It is difficult to deduce very much by looking at the general expressions.
We therefore simplify the situation by considering particular initial conditions.
There are four simple cases for which the phase space trajectories are straight
lines. The first two give trajectories confined to the classical phase space: we
take initial condition ˜̄α(0) = ˜̄α∗(0) = x, for which the phase space trajectory
is given by

˜̄α(t̄) = ˜̄α∗(t̄) =
xe−(1−λ)t̄

√
1 + x2[1 − e−2(1−λ)t̄]/(1 − λ)

, (12.61a)

and initial condition ˜̄α(0) = − ˜̄α∗(0) = iy, which gives the trajectory

˜̄α(t̄) = − ˜̄α∗(t̄) = i
ye−(1+λ)t̄

√
1 + y2[1 − e−2(1+λ)t̄]/(1 + λ)

. (12.61b)

With a change of sign the trajectories are confined to the nonclassical phase
space (at least initially, see below): for ˜̄α(0) = − ˜̄α∗(0) = x we obtain the
trajectory

˜̄α(t̄) = − ˜̄α∗(t̄) =
xe−(1+λ)t̄

√
1 − x2[1 − e−2(1+λ)t̄]/(1 + λ)

, (12.62a)



12.1 The Degenerate Parametric Oscillator with Adiabatic Elimination 153

and for ˜̄α(0) = ˜̄α∗(0) = iy, the trajectory

˜̄α(t̄) = ˜̄α∗(t̄) = i
ye−(1−λ)t̄

√
1 − y2[1 − e−2(1−λ)t̄]/(1 − λ)

. (12.62b)

There is an important difference between the first and second pair of trajecto-
ries. In (12.61a) and (12.61b) the expression under the square root is always
positive, and it is easily seen that the trajectories asymptotically approach
the steady states ˜̄αss = ˜̄αss

∗ = 0, for λ < 1, and ˜̄αss = ˜̄αss
∗ = (x/|x|)√λ− 1, for

λ > 1. The expressions under the square root in (12.62a) and (12.62b), on the
other hand, are not always positive. These expressions can vanish: the square
root in (12.62a) vanishes at time

t̄ = − 1
2(1 + λ)

ln
[
1 − 1 + λ

x2

]
,

if |x| > √
1 + λ, and in (12.62b) it vanishes at

t̄ = − 1
2(1 − λ)

ln
[
1 − 1 − λ

y2

]
,

if |y| > √
1 − λ, for λ < 1, and y �= 0, for λ > 1. When the square root van-

ishes, the phase space trajectory passes to infinity, and it does so in a finite
time. If we apply expressions (12.62a) and (12.62b) for later times, the di-
vergent trajectory returns from infinity, now within the classical phase space.
In the case of (12.62a), the trajectory returns to the origin along the line
˜̄α(t̄) = − ˜̄α∗(t̄) with both variables pure imaginary; for (12.62b), the returning
trajectory follows the line ˜̄α(t̄) = ˜̄α∗(t̄) with both variables real; in the latter
case the trajectory returns to the origin for λ < 1 and to the steady state
(y/|y|)√λ− 1 for λ > 1.

Even in just four dimensions it is difficult to construct a global picture
of how the deterministic flow is organized. There are certainly other initial
conditions that produce divergences; for example, with ˜̄α(0) = −(

˜̄α∗(0)
)∗

=
x+ iy, for λ < 1 all initial states outside the ellipse x2/(1+λ)+y2/(1−λ) = 1
produce diverging trajectories, while for λ > 1, all trajectories except those
beginning on the line segment |x| ≤ √

1 + λ, y = 0, diverge. For a more
complete picture, we can plot the flow in two-dimensional cross-sections of the
four-dimensional phase space. The real plane, ˜̄y = ˜̄y = 0, and the imaginary
plane, ˜̄x = ˜̄x = 0, [ ˜̄α = ˜̄x+i ˜̄y, ˜̄α∗ = ˜̄x+i˜̄y] are particularly instructive, because
they contain all the steady states and the existence of diverging trajectories
is tied to the fact that, in the extended phase space, new unstable steady
states appear; thus, below threshold, the one physical steady state (Eq. 9.68)
is complemented by four nonphysical steady states located in the nonclassical
phases space, while above threshold there are two nonphysical steady states
and three physical steady states (Eqs. 9.68 and 9.74). While the stability of
the physical steady states continues to follow the prediction of semiclassical
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theory (see Sect. 11.2.2 and Exercise 9.3), the nonphysical steady states are
all unstable.

The complete set of steady states is obtained by setting the deterministic
parts of (12.3a) and (12.3b) to zero. This gives

˜̄αss(1 + ˜̄αss ˜̄αss
∗ ) = λ ˜̄αss

∗
˜̄αss
∗ (1 + ˜̄αss ˜̄αss

∗ ) = λ ˜̄αss

}
⇒ ˜̄αss = ± ˜̄αss

∗ , (12.63)

where the implication follows by taking the ratio of the two equations. Then
substituting ˜̄αss∗ = ± ˜̄αss back into the steady-state equations, we have

˜̄αss(1 − λ+ ˜̄α2
ss) = 0, ˜̄αss

∗ = ˜̄αss, (12.64a)
˜̄αss(1 + λ− ˜̄α2

ss) = 0, ˜̄αss
∗ = − ˜̄αss, (12.64b)

with a full complement of five solutions

˜̄αss = ˜̄αss
∗ = 0 (I)

˜̄αss = ˜̄αss∗ = ±i√1 − λ = ±√
λ− 1 (II, III)

˜̄αss = − ˜̄αss
∗ = ±√

1 + λ (IV,V)

⎫
⎪⎬

⎪⎭
. (12.65)

Steady state (I) is physical below threshold, and (I), (II), and (III) are physical
above threshold. Steady states (IV) and (V) are always nonphysical, and (II)
and (III) are nonphysical below threshold.

Figures 12.3 and 12.4 show how the deterministic flow is organized around
these steady states. The fate of trajectories repelled by the nonphysical steady
states is the focus of our interest. Below threshold (Fig. 12.3) the situation is
quite complex. Consider the trajectories repelled by steady state (V). Some,
like T5, execute wide loops that terminate on the physical steady state (I),
remaining within the real plane throughout. Others, like trajectory T4, diverge
after a finite time; they leave the real plane at infinity, to reenter the imaginary
plane and follow a track like trajectory T4′ , before diverging again at a later
time, reentering the real plane this time, to be eventually attracted, just like
T5, to steady state (I). There are also trajectories like T2 that diverge, leave
the real plane, and do not return to it. These trajectories are also attracted to
steady state (I), but from within the imaginary plane, like trajectory T2′ . The
trajectories labeled T1, T3, and T6 demark boundaries between these different
kinds of behavior.

As λ is increased, nonphysical steady states (II) and (III), located in the
imaginary plane, move towards the physical steady state (I) (Fig. 12.3b).
They collide with the physical steady state at threshold and emerge above
threshold (in the real plane) as new stable physical steady states. The deter-
ministic flow is simplified somewhat in the process (Fig. 12.4). Above thresh-
old, all trajectories that diverge and leave the real plane—like T2 and T3 in
Fig. 12.4a—eventually return to it, where they terminate on steady states (II)
and (III).
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Fig. 12.3. Trajectories generated by the deterministic parts of (12.3a) and (12.3b)
plotted in the planes (a) ˜̄y = ˜̄y = 0 and (b) ˜̄x = ˜̄x = 0, for λ = 0.5. The filled and
open circles indicate physical and nonphysical steady states, respectively
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Note 12.3. In order to match trajectories moving from the real to the imagi-
nary plane or vice versa, a consistent convention must be applied to the square
roots in (12.59a) and (12.59b). When a trajectory leaves one plane (at infin-
ity) and enters the other, the expression under the square root changes sign,
from positive to negative. If a trajectory moves from the real plane to the
imaginary plane, we interpret the square root after the move with

√−1 = +i.
For a trajectory moving from the imaginary plane to the real plane we take√−1 = −i. With this convention there is no net change in the sign of the
square root for trajectories like T4 that leave the real plane and return at
a later time; the trajectory returns to the quadrant (defined by the diagonals
in the plane) from which it left.

Having seen this analysis of the deterministic flow, the “spikes” in
Fig. 12.2d are hardly a surprise anymore. The deterministic equations gen-
erate numerous diverging trajectories; moreover, the divergences are strong,
as they set in over a finite time. Admittedly, the word “numerous” is rather
loose, since we have not even determined the dimension of the phase space
volume containing all initial conditions that diverge. Nevertheless, the exis-
tence of a set of diverging trajectories implies the existence of a neighborhood
within which trajectories make large excursions into the nonclassical phase
space without actually diverging. Unless the quantum noise cleverly avoids
these regions, we can certainly expect “spikes”—and perhaps even “diseases.”

All of this raises the possibility that there is something fundamentally
wrong with the use we are making of the positive P representation. We will
see shortly that this can indeed be the case; for certain examples, simulations
within the positive P representation yield the wrong results (Sect. 12.2.1). The
degenerate parametric oscillator with adiabatic elimination of the pump is not
such an example, however, in so far as the noise terms in (12.3a) and (12.3b) do
cleverly avoid the dangerous regions of the extended phase space—or at least
they should, if only the simulation were performed correctly; the “spikes” in
Fig. 12.2d are numerical artifacts. Before we look into the genuine difficulties
that arise with other examples, we should spend some time understanding
how a correct integration of the stochastic differential equations works out in
this case—for arbitrarily large quantum noise, despite the dangers revealed in
Figs. 12.3 and 12.4.

12.1.6 Steady-State Solution for the Positive P Distribution

Let us imagine a stochastic trajectory beginning from the phase space origin
˜̄α(0) = ˜̄α∗(0) = 0. Initially, the noise terms in (12.3a) and (12.3b) are real.
They generate a Brownian motion in the vicinity of the origin confined to the
real plane ˜̄y = ˜̄y = 0. The deterministic flow is also confined to this plane for
excursions not too far away from the origin (Figs. 12.3a and 12.4a). Clearly,
then, the stochastic trajectory remains within the real plane, at least during
some initial short period of time.
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Fig. 12.4. Trajectories generated by the deterministic parts of (12.3a) and (12.3b)
plotted in the planes (a) ˜̄y = ˜̄y = 0 and (b) ˜̄x = ˜̄x = 0, for λ = 2. The filled and
open circles indicate physical and nonphysical steady states, respectively
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There are two paths by which the trajectory might leave: (i) either ˜̄x or
˜̄x becomes larger than

√
λ so that one or other of the noise terms becomes

pure imaginary, or (ii) the trajectory diverges, switching between the real and
imaginary planes in the manner of T2 from Figs. 12.3a and 12.4a. In fact,
the second path may be eliminated in favor of the first, because all divergent
regions of the phase space lie outside the square—|˜̄x| ≤ √

λ, |˜̄x| ≤ √
λ—within

which both noise terms are real. But, the first path may then be eliminated
as well, since it is not possible to cross the boundary of this square: on it, the
quantum noise is directed entirely along the boundary, while the deterministic
flow is everywhere inwards, back towards one of the physical steady states.
Thus, a trajectory beginning at the origin is strictly confined to a bounded
two-dimensional phase space, the square |˜̄x| ≤ √

λ, |˜̄x| ≤ √
λ, ˜̄y = ˜̄y = 0;

the same is true for any trajectory beginning within the square. The “spikes”
of Fig. 12.2d occur only because the finite time step used for the numerical
simulation allows trajectories to “jump” out of the bounded region, as shown
by Carmichael and Wolinsky [12.19]. This is verified by adopting a simple
strategy to enforce the confinement.

Exercise 12.6. Implement a numerical simulation of (12.3a) and (12.3b) in
the real plane ˜̄y = ˜̄y = 0 by including the reflecting boundary condition
˜̄x → (˜̄x/|˜̄x|)[√λ − (|˜̄x| − √

λ)] if |˜̄x| > √
λ, ˜̄x → (˜̄x/|˜̄x|)[√λ − (|˜̄x| − √

λ)] if
|˜̄x| > √

λ; the test for reflection is applied after ˜̄x and ˜̄x are updated at the
end of each time step. Use the simulation to reproduce Fig. 12.2d without any
“spikes” and show that the numerical integration remains well behaved for
even smaller values of 〈a†a〉thr.

Exercise 12.7. Implement a numerical simulation of the stochastic differ-
ential equations without adiabatic elimination of the pump (with n̄ = 0)
(Eqs. 12.1a–12.1d). Investigate how the results presented in Figs. 12.1 and 12.2
change for ξ ∼0.1–1.0. Is there a similar confinement of phase space trajecto-
ries in the general case? Can very small values of 〈a†a〉thr be handled without
generating “spikes”?

Having recognized that stochastic trajectories are strictly confined to the
square in the real plane |˜̄x| ≤ √

λ, |˜̄x| ≤ √
λ, it is convenient to adopt the

scaled variables
θ ≡ ˜̄x/

√
λ, ϑ ≡ ˜̄x/

√
λ, (12.66)

with θ and ϑ confined to the unit square. Figure 12.5 shows the square |θ| ≤ 1,
|ϑ| ≤ 1 in relation to the steady states and deterministic flow. Note that all
physical steady states lie within the square and all nonphysical steady states
lie outside it. The positive P distribution is

˜̄P(θ, ϑ, t̄) ≡ λ ˜̄P (
√
λθ

√
λϑ, t̄), (12.67)

with zero measure outside the unit square. From (12.5), it satisfies the Fokker–
Planck equation for the degenerate parametric oscillator within the positive
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Fig. 12.5. Deterministic flow in the real plane ˜̄y = ˜̄y = 0 in relation to the unit
square |θ| ≤ 1, |ϑ| ≤ 1 (dashed lines): (a) below threshold (λ = 0.5), (b) above
threshold (λ = 2). All physical steady states (filled circles) lie inside the square,
while nonphysical steady states (open circles) lie outside

P representation with adiabatic elimination of the pump (and n̄ = 0) and
quantum noise confined to the real plane:

∂ ˜̄P
∂t̄

=
{
∂

∂θ
[θ − λϑ(1 − θ2)] +

∂

∂ϑ
[ϑ− λθ(1 − ϑ2)]

+
1
2
(
2ξ−1nthr

p

)−1
[
∂2

∂θ2
(1 − θ2) +

∂2

∂ϑ2
(1 − ϑ2)

]}
˜̄P . (12.68)

Conveniently, we now have a Fokker–Planck equation in two, rather than the
original four, phase space dimensions.

We aim to solve (12.68) in the steady state. Note first that we may account
for the change in the probability density over time by considering it to follow
from the flow of a probability current J ˜̄P(θ, ϑ, t). We rewrite (12.68) as

∂ ˜̄P
∂t̄

= −divJ ˜̄P , (12.69)

with

J ˜̄P ≡

⎛

⎜
⎜
⎝

−
[
θ − λϑ(1 − θ2) + 1

2

(
2ξ−1nthr

p

)−1 ∂

∂θ
(1 − θ2)

]
˜̄P

−
[
ϑ− λθ(1 − ϑ2) + 1

2

(
2ξ−1nthr

p

)−1 ∂

∂ϑ
(1 − ϑ2)

]
˜̄P

⎞

⎟
⎟
⎠ . (12.70)

Then one way for a steady state to be obtained is for the probability current
to vanish everywhere within the unit square. We know, in fact, that on the
boundary, the perpendicular component of the current does vanish. In addi-
tion, a symmetry argument allows us to discount the possibility of a steady
nonzero current circulating around the square; for this to happen the symme-
try between clockwise and counterclockwise circulation must be broken. Thus,
there is every reason to expect a steady state solution satisfying J ˜̄P(θ, ϑ) = 0.
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For a general Fokker–Planck equation (Eq. 5.1), the necessary and suffi-
cient conditions for such a solution to exist are given by a relationship connect-
ing the components of the drift vector, Ai(x), and diffusion matrix, Dij(x).
These so-called potential conditions can be found, for example, in [12.20]. In
the present case, the existence of a solution satisfying J ˜̄P(θ, ϑ) = 0 requires

∂

∂θ
ln ˜̄P = − (

2ξ−1nthr
p − 1

) 2θ
1 − θ2

+ λ
(
2ξ−1nthr

p

)
2ϑ, (12.71a)

∂

∂ϑ
ln ˜̄P = − (

2ξ−1nthr
p − 1

) 2ϑ
1 − ϑ2

+ λ
(
2ξ−1nthr

p

)
2θ. (12.71b)

If the two equations are to be consistent, the partial derivative of the first
with respect to ϑ must equal the partial derivative of the second with respect
to θ. This rather simple potential condition is satisfied. Thus, the equations
may be integrated to obtain

ln ˜̄P =
(
2ξ−1nthr

p − 1
)
ln(1 − θ2) + λ

(
2ξ−1nthr

p

)
2ϑθ + F (ϑ), (12.72a)

ln ˜̄P =
(
2ξ−1nthr

p − 1
)
ln(1 − ϑ2) + λ

(
2ξ−1nthr

p

)
2θϑ+G(θ), (12.72b)

where the functions F (ϑ) and G(θ) are chosen to make the two results con-
sistent with one another. We arrive at an analytical expression for the steady-
state positive P distribution for the degenerate parametric oscillator with adi-
abatic elimination of the pump (and n̄ = 0), in the form

˜̄P(θ, ϑ) = N [(1 − θ2)(1 − ϑ2)](2ξ
−1nthr

p −1) exp
[
λ
(
2ξ−1nthr

p

)
2θϑ

]
; (12.73)

N is a normalization constant such that
∫ 1

−1
dθ

∫ 1

−1
dϑ ˜̄P(θ, ϑ) = 1.

12.1.7 Quantum Fluctuations and System Size

What does the exact solution for the positive P distribution have to say about
quantum fluctuations and the way they change with system size? The first step
towards an answer is to recover the results of the small-noise analysis derived
in Sects. 10.2.2–10.2.4. This is most easily accomplished using the expression
for the logarithm of ˜̄P(θ, ϑ),

ln ˜̄P = (2ξ−1nthr
p − 1)[ln(1 − θ2) + ln(1 − ϑ2)] + (2ξ−1nthr

p )λ2θϑ+ constant.
(12.74)

We expand the logarithm in different ways, depending on the region of
operation—below, at, or above threshold. The justification for the expansion
is that 2ξ−1nthr

p is very large in the small-noise limit. It is therefore necessary
to represent the logarithm accurately only near its maximum or maxima above
threshold; away from a maximum, once the value of the logarithm falls by an
order of magnitude, the distribution falls by the factor e−10—it might just
as well be set to zero. Maxima and minima of the logarithm are located—to
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lowest order in
(
2ξ−1nthr

p

)−1—by the steady states (I)–(V) of (12.65), with
maxima and minima corresponding, respectively, to stable and unstable steady
states. It is convenient to use classical and nonclassical phase space variables
as defined in (11.107a) and (11.107b). We make the change of variables

ΘC ≡ 1
2 (θ + ϑ), ΘNC ≡ 1

2 (θ − ϑ). (12.75)

Thus, our goal is to derive expressions below, at, and above threshold, for the
steady-state positive P distribution

˜̄Π(ΘC , ΘNC) ≡ 2 ˜̄P [θ(ΘC , ΘNC), ϑ(ΘC , ΘNC)], (12.76)

with ˜̄P(θ, ϑ) given by (12.73), under the small-noise assumption 2ξ−1nthr
p =

[Γ (1
4 )/Γ (3

4 )]2〈a†a〉2thr � 1.

Below threshold (λ < 1): There is a single stable steady state for λ < 1,
the state (I) of (12.65),

θss = ϑss = 0. (12.77)

When expanding ln ˜̄P about this steady state we expand ln(1−θ2) and ln(1−
ϑ2) to lowest order. This yields

ln ˜̄P = 2ξ−1nthr
p (−θ2 − ϑ2 + 2λθϑ) + constant, (12.78a)

or in terms of classical and nonclassical variables,

ln ˜̄Π = 4ξ−1nthr
p [−(Θ2

C +Θ2
NC) + λ(Θ2

C −Θ2
NC)] + constant

= 4ξ−1nthr
p [−(1 − λ)Θ2

C − (1 + λ)Θ2
NC] + constant. (12.78b)

Hence, below threshold, the normalized steady-state positive P distribution
in the small-noise limit is

˜̄Π(ΘC, ΘNC) =
1
2π

√
1 − λ2

1
4 (2ξ−1nthr

p )−1
exp

[

−1
2

(1 − λ)Θ2
C + (1 + λ)Θ2

NC
1
4 (2ξ−1nthr

p )−1

]

.

(12.79)

Aside from a different scaling of variables, the result is essentially the prod-
uct of the steady-state solutions to (10.51a) and (10.51b) (with n̄ = 0 and
σ = 1). There is, however, one important difference: ΘNC is associated with
the variable iz̃2 in (10.51b), rather than with z̃2 itself. By releasing α∗ from
the constraint α∗ = α∗ in the definition ΘNC = 1

2 (˜̄α − ˜̄α∗)/
√
λ (Eqs. 11.27a,

12.66, and 12.75), the positive P representation works with the scaled variable
(
nthr
p

)1/2
ΘNC ↔ (iz̃2)

√
λ as a real quantity. Distribution (12.79) is therefore

normalized with respect to ΘNC, while (10.51b) has no normalizable steady-
state solution in the variable z̃2.
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At threshold (λ = 1): At threshold, the term in Θ2
C vanishes in (12.78b).

While ln ˜̄P still has its maximum at θ = ϑ = 0, it is now necessary to expand
ln(1+θ2) and ln(1+ϑ2) to higher order to obtain a normalizable distribution.
At the next order, we have

ln ˜̄P = 2ξ−1nthr
p

(− θ2 − ϑ2 + 2θϑ− 1
2θ

4 − 1
2ϑ

4
)

+ constant, (12.80a)

and

ln ˜̄Π = 2ξ−1nthr
p

[− 4Θ2
NC − 1

2 (ΘC +ΘNC)4 − 1
2 (ΘC −ΘNC)4

]
+ constant

= 2ξ−1nthr
p (−4Θ2

NC −Θ4
C −Θ4

NC − 6Θ2
CΘ

2
NC) + constant.

(12.80b)

Three new terms appear in place of the one that has vanished: −(2ξ−1nthr
p )Θ4

C,
−(2ξ−1nthr

p )Θ4
NC, and −(2ξ−1nthr

p )6Θ2
CΘ

2
NC. Of the three, only those that

make a significant contribution near the origin need be kept. Clearly, we
have ΘC ∼ (

2ξ−1nthr
p

)−1/4 and ΘNC ∼ (
2ξ−1nthr

p

)−1/2. Thus, the orders are

Θ4
C ∼ (

2ξ−1nthr
p

)−1, Θ4
NC ∼ (

2ξ−1nthr
p

)−2, and Θ2
CΘ

2
NC ∼ (

2ξ−1nthr
p

)−3/2;
the three new terms are of three different orders in system size. It is therefore
acceptable to drop the smaller two. Retaining only the term Θ4

C, at threshold,
the normalized steady-state positive P distribution in the small-noise limit is

˜̄Π(ΘC, ΘNC) =
4√

πΓ (1
4 )

1
(
2ξ−1nthr

p

)−3/4
exp

[

− Θ4
C + 4Θ2

NC(
2ξ−1nthr

p

)−1

]

. (12.81)

The result reproduces the product of (10.97a) and (10.97b) (for n̄ = 0 and
σ = 1). Similar comments regarding the relationship between the variable
ΘNC in (12.81) and z̃2 in (10.97b) apply.

Note 12.4. By including the term in Θ4
C we constrain the fluctuations in the

X-quadrature phase amplitude to a finite value, removing the divergence
(at ω = 0) from the spectrum in the linearized treatment of fluctuations
(Eq. 10.62a). If there is to be no violation of the Heisenberg uncertainty re-
lations, the spectrum of fluctuations in the Y -quadrature phase amplitude
cannot vanish at ω = 0, as it does in (10.62b); strictly, the squeezing at zero
frequency cannot be perfect for λ = 1. Apparently, (12.81) does not respect
this requirement, since it makes no changes to the distribution of fluctuations
in the Y -quadrature phase amplitude (variable ΘNC) compared to what one
obtains by setting λ = 1 in (12.79). As it turns out, it is necessary to keep
the term 6Θ2

CΘ
2
NC in (12.80b) in order to take the correction to the degree of

squeezing into account (see Sect. 12.1.9).

Above threshold (λ > 1): There are two stable steady states for λ > 1, the
states (II) and (III) of (12.65),

θss = ϑss = Θ0 ≡ ±
√

1 − 1/λ. (12.82)
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We make the expansion of ln ˜̄P about either steady state as

ln ˜̄P = 2ξ−1nthr
p {ln[1 −Θ2

0 − (θ −Θ0)2 + 2Θ0(θ −Θ0)]

+ ln[1 −Θ2
0 − (ϑ−Θ0)2 + 2Θ0(ϑ−Θ0)]

+ 2λ[Θ2
0 + (θ −Θ0)(ϑ −Θ0) −Θ0(ϑ+ θ − 2Θ0)]} + constant

= 2ξ−1nthr
p {ln[1 − λ(θ −Θ0)2 + 2λΘ0(θ −Θ0)]

+ ln[1 − λ(ϑ−Θ0)2 + 2λΘ0(ϑ−Θ0)]

+ 2λ[(θ −Θ0)(ϑ−Θ0) −Θ0(θ + ϑ− 2Θ0)]} + constant, (12.83)

where in the second line we have substituted 1 − Θ2
0 = 1/λ and moved

4ξ−1nthr
p (− lnλ+λΘ2

0) into the constant. Now, on expanding the logarithms,
the linear terms cancel and to lowest order

ln ˜̄P = 2ξ−1nthr
p λ{−(2λ− 1)[(θ −Θ0)2 + (ϑ−Θ0)2]

+ 2(θ −Θ0)(ϑ−Θ0)} + constant, (12.84a)

or in terms of classical and nonclassical variables,

ln ˜̄Π = 4ξ−1nthr
p λ{−(2λ− 1)[(ΘC −Θ0)2 +Θ2

NC]

+ (ΘC − Θ0)2 −Θ2
NC} + constant

= 8ξ−1nthr
p λ[−(λ− 1)(ΘC −Θ0)2 − λΘ2

NC] + constant. (12.84b)

There are two symmetrically placed steady states; thus, the positive P dis-
tribution has two peaks of equal weight. Normalizing the local distribution,
from (12.84b), we write

˜̄Πlocal(ΘC, ΘNC)

=
1
2π

λ
√
λ(λ− 1)

1
8

(
2ξ−1nthr

p

)−1 exp

[

−1
2
λ(λ − 1)(ΘC −Θ0)2 + λ2Θ2

NC

1
8

(
2ξ−1nthr

p

)−1

]

. (12.85)

After taking the different scalings of the variables into account, the variances of
ΘC and ΘNC reproduce the previously calculated quadrature phase amplitude
variances (10.75a) and (10.75b).

Having recovered our previous results for the limit of large system size,
we are now set to see how the steady-state distribution (12.73) changes as
the system size is decreased. It is possible to take the mathematical analy-
sis further in this direction. First, however, it is helpful to see the changes
through a series of numerical simulations and plots. Figures 12.6–12.8 plot
the distribution ˜̄P for λ = 2 (above threshold) and five different values of the
system size parameter. Each plot is complemented with a typical realization
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of the corresponding stochastic process, to give some impression of how the
fluctuations develop in time.

To provide an initial point of reference, Fig. 12.6 illustrates the situation
for a large system size—a correspondingly small quantum noise. The scale of
Fig. 12.6a is the entire unit square. At this scale the quantum fluctuations
do not show up at all. The trajectory begins with the decay of the unstable
steady state, θ = ϑ = 0, and apparently moves in a deterministic way to the
stable steady state θ = ϑ =

√
1 − 1/λ; the trajectory appears to be confined

within the classical phase space all the while—i.e., ΘNC = 0. Of course, there
are actually small fluctuations, which, in particular, initiate the decay of the
unstable state. The inset—also Fig. 12.6b—illustrates how the fluctuations
are distributed once the final steady state is reached. Their size is consistent
with the amplitudes

(
2ξ−1nthr

p

)−1/2

2
√

2λ(λ− 1)
=

[Γ (3
4 )/Γ (1

4 )]〈a†a〉−1
thr

2
√

2λ(λ− 1)
∼ 8 × 10−6,

for ΘC, and

(
2ξ−1nthr

p

)−1/2

2
√

2λ
=

[Γ (3
4 )/Γ (1

4 )]〈a†a〉−1
thr

2
√

2λ
∼ 6 × 10−6,

for ΘNC, obtained from (12.85).
The basic idea of the system size expansion is that the fluctuations increase

with decreasing system size. This, certainly, is what is observed. Yet while
the amplitude of the fluctuations increases, the organization of the dynamics
continues to reflect the influence of the steady states and, more generally,
the deterministic flow within the classical phase space. Surprisingly, even for
〈a†a〉thr ∼ 1, it is reasonable to take the classical nonlinear dynamics as the
starting point for understanding the physics (Fig. 12.7a). If 〈a†a〉thr becomes
still smaller, though, we begin to notice the changes illustrated in Fig. 12.7b.
Much greater use is made of the nonclassical dimension, to such an extent that
the attraction for the classical phase space begins to disappear. Also, while the
boundary of the unit square is completely irrelevant in Fig. 12.6—at no stage
does ˜̄P(θ, ϑ, t) have significant weight near the boundary—Fig. 12.7b shows
a pronounced effect from the constraint imposed by the boundary. Indeed,
eventually the constraint completely controls the behavior, with no reference
being made at all to the classical nonlinear dynamics. Thus, in Fig. 12.8, the
probability density is attracted to the boundary, away from the classical phase
space, where it concentrates at the corners of the unit square. In fact, ˜̄P(θ, ϑ)
diverges on the boundary for 2ξ−1nthr

p < 1 ⇒ 〈a†a〉thr < Γ (3
4 )/Γ (1

4 ) ≈ 0.33.
This explains why the “spiking” in Fig. 12.2d arises for a system size that is
just a little smaller than this value.
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Fig. 12.6. (a) One realization of the decay, above threshold, of the unstable steady
state θ = ϑ = 0, for the limit of large system size. (b) The positive P distribution
(Eq. 12.73) in the vicinity of the stable steady state θ = ϑ =

p
1 − 1/λ. The

trajectory in (a) begins from the initial condition θ = ϑ = 0 and was generated
from (12.3a) and (12.3b) using the Euler algorithm with Δt = 10−4 and tmax = 100.
The parameters are λ = 2 and 〈a†a〉thr = 104

The message conveyed by Figs. 12.6–12.8 is, first, that when the system
size becomes small enough, quantum fluctuations are no longer organized
around classical nonlinear dynamics. This might also be true of an extremely
noisy classical system, though, if by “classical nonlinear dynamics” we mean
the deterministic behavior displayed in the absence of noise. Thus, a second
observation is even more important: there is qualitative change in the nature
of the fluctuations, from the “fuzz ball” notion of diffusion in phase space to
something decidedly more quantum mechanical, requiring new tricks for its
mathematical description and a new conceptual framework for its understand-
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Fig. 12.7. Development of the steady-state positive P distribution with decreasing
system size: for λ = 2 and (a) 〈a†a〉thr = 1.0, (b) 〈a†a〉thr = 0.5. Each plot of the
distribution (Eq. 12.73) is accompanied by a single realization of the corresponding
stochastic process; trajectories begin from the initial condition θ = ϑ = 0 and were
generated from (12.3a) and (12.3b) using the Euler algorithm with (a) Δt = 5×10−5,
tmax = 400 and (b) Δt = 5 × 10−5, tmax = 100

ing. To underline the point, we have only a little, if any, trouble interpreting
the distribution of Fig. 12.6b; the only unfamiliar feature is the small vari-
ance of the nonclassical variable (stochastic trajectories make small excursions
into the nonclassical dimension). A satisfactory strategy for accommodating
oneself to this is to replace the positive P distribution by a Wigner distri-
bution (see Sect. 10.1.2); excursions into the nonclassical dimension are then
replaced by a narrowing of the background distribution of vacuum fluctua-
tions, all within the usual phase space. What, however, are we to make of
Fig. 12.8b? Once we understand these fluctuations, it will be clear that in
the limit of small system size, the Wigner function too must exhibit quantum
features of an entirely new sort—something beyond the paradigm of classical
nonlinear dynamics plus “fuzz.”
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Fig. 12.8. As in Fig. 12.7: for λ = 2 and (a) 〈a†a〉thr = 0.25, Δt = 10−6, tmax = 20;
(b) 〈a†a〉thr = 0.025, Δt = 10−8, tmax = 0.4

Note 12.5. When we speak of an increase in the size of the fluctuations, the
increase must be measured in appropriately scaled variables. This can be con-
fusing, since from another point of view the size of the quantum fluctuations
always remains the same—it is set by the amplitude of a one-quantum field.
In Figs. 12.6–12.8, the scale set by the unit square is the scale of the nonlin-
ear physics. What the figures illustrate is the transition from a situation in
which many quanta are needed to reach the intracavity energy density that
turns on the nonlinearity to a situation in which a single quantum produces
the same energy density. In an alternative view, using unscaled variables, the
size of the quantum noise remains the same, while the range in phase space
characterizing the nonlinearity shrinks down to meet the scale of the quantum
noise.

It is largely fortuitous that the positive P representation has given such
a graphic illustration of the transition from large to a small system size. As
we will see shortly, the representation offers no guarantee of such a pleasing
outcome, and it is merely a coincidental matching of the physical example to
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the mathematical technique that allows things to work out so well in this case.
Even with the success, the physics behind the stochastic process on the unit
square remains unclear. It is clear enough for a large system size where the
classical nonlinear dynamics serves as a guide; but when we consider trajec-
tories like those in Fig. 12.8, there is little to indicate what physical process
has replaced the classical nonlinear dynamics plus “fuzz.”

One clue can be found with little extra effort. To add to the approximate
expressions (12.79), (12.81), and (12.85) for the limit of large system size,
we can write down an approximate expression for the steady-state positive P
distribution in the opposite limit. Let us take 2ξ−1nthr

p → 0, λ → ∞, with
2ξ−1nthr

p λ constant, and assume that the singular expression given by (12.73)
may be written in terms of δ functions as

˜̄P(θϑ) =
1
2

[
δ(θ − 1)δ(ϑ− 1) + δ(θ + 1)δ(ϑ+ 1)

1 + e−4|A|2

+
δ(θ − 1)δ(ϑ+ 1) + δ(θ + 1)δ(ϑ− 1)

1 + e4|A|2

]
. (12.86)

Then, to determine the corresponding density operator, we turn to (11.11).
From this equation, it appears that the first two products of δ functions in
(12.86) represent diagonal terms in a coherent state expansion of the density
operator—the others, interferences between these coherent states. Thus, after
inverting the various transformations of variables (Eqs. 10.33, 11.27a, 12.66,
and 12.75), and with the help of (3.8), the corresponding density operator is

ρ̃ =
1
2

[ |A〉〈A| + | −A〉〈−A|
1 + e−4|A|2 + e2|A|

2 |A〉〈−A| + | −A〉〈A|
1 + e4|A|2

]
, (12.87)

with

A ≡ ei
1
2 (ψ−π/2)

√
2ξ−1nthr

p λ = ei
1
2 (ψ−π/2)√λ

√
2κκp
g2

=

√
−igĒi/2κp
g2/4κp

, (12.88)

where, to help express the coherent state amplitude A in terms of fundamental
parameters we have used (9.62), (9.64), (9.80), and (9.81). It may not be
obvious that the δ functions are legitimate, but a calculation of normal-ordered
averages shows that (12.86) and the density operator deduced from it are,
indeed, correct.

Exercise 12.8. Use (11.10) and the expression (12.73) for the steady-state
positive P distribution to derive the following result for the general normal-
ordered average:

〈a†paq〉ss = 0, (12.89a)
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p+ q odd, and for p+ q even

〈a†paq〉ss

= (eiωCtA∗)p(e−iωCtA)q

⎧
⎨

⎩

∑

k≥0 even

(2|A|2)k
k!

[
B

(
k + 1

2
, 2ξ−1nthr

p

)]2
⎫
⎬

⎭

−1

×
∑

k≥0 even

or

k>0 odd

(2|A|2)k
k!

B

(
p+ k + 1

2
, 2ξ−1nthr

p

)
B

(
q + k + 1

2
, 2ξ−1nthr

p

)
,

(12.89b)

where B(μ, ν) denotes the Beta function and the second summation is taken
over even k for p and q even, and odd k for p and q odd. Verify that in the limit
2ξ−1nthr

p → 0, λ → ∞, with 2ξ−1nthr
p λ constant, these averages agree with

those obtained from (12.86). Write a computer program to evaluate (12.89b),
and use it to study the dependence of the average photon number and the
fluctuation of quadrature phase amplitudes on system size. (Note that (12.89b)
is a special case of Eq. 4.6 in [12.21].)

A physical process that can explain the quantum fluctuations in the limit of
small system size is suggested by introducing the even and odd superpositions
of coherent states

|Aeven〉 ≡ 1√
1 + e−2|A|2

1√
2
(|A〉 + | −A〉), (12.90a)

|Aodd〉 ≡ 1√
1 − e−2|A|2

1√
2
(|A〉 − | −A〉), (12.90b)

and writing density operator (12.87) as

ρ̃ =
1
2

{[
1 +

1
cosh(2|A|2)

]
|Aeven〉〈Aeven| +

[
1 − 1

cosh(2|A|2)
]
|Aodd〉〈Aodd|

}
.

(12.91)

This representation in terms of coherent state superpositions is diagonal, and
a plausible suggestion for the dynamics is a two-state rate process which
produces this density operator in the steady state from a balancing of transi-
tions between |Aeven〉 and |Aodd〉. We should work this out further; but what-
ever the underlying dynamic, the distinctly quantum mechanical character of
the behavior illustrated in Fig. 12.8b is already apparent from (12.91)—with
2|A|2 = 2[Γ (1

4 )/Γ (3
4 )]2〈a†a〉2thrλ ≈ 3.6 × 10−3, to a first approximation, the

steady state of the subharmonic mode is the superposition state |Aeven〉.

12.1.8 Quantum Dynamics Beyond Classical Trajectories
plus “Fuzz”

The superposition state corresponding to Fig. 12.8b is not particularly dra-
matic. It is not a macroscopic superposition of the sort that arises in relation
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to Schrödinger’s famous cat. The mean photon number is much less than
unity, and, according to (12.91), cannot be increased without changing the
superposition into a mixture. This is effectively what happens in moving from
Fig. 12.8b to Fig. 12.8a, with a corresponding increase in 2|A|2 by two or-
ders of magnitude. In fact, the status of the proposed superposition state is
more marginal still. Consider the mean photon numbers in the coherent state
components: for |Aeven〉 we have

n̄even ≡ 〈Aeven|a†a|Aeven〉 =
1

1 + e−2|A|2
1
2
(〈A| + 〈−A|)a†a(|A〉 + | −A〉)

= |A|2 1 − e−2|A|2

1 + e−2|A|2

= |A|2 tanh |A|2, (12.92a)

and similarly, for |Aodd〉,

n̄odd ≡ 〈Aodd|a†a|Aodd〉 = |A|2 coth |A|2. (12.92b)

Now with |A|2 � 1, from (12.92a), we obtain n̄even ∼ |A|4, a very small num-
ber indeed; moreover, n̄odd ∼ |A|2. It follows that even in this limit where
Fig. 12.8b appears to represent a coherent state superposition, both compo-
nents of the mixture (12.91) contribute to the photon number expectation at
the same order in |A|2. Thus, the positive P distribution of Fig. 12.8b does
not actually represent a coherent state superposition at all. Nevertheless, the
suggestion made about the dynamics does turn out to be correct, and it is
here, in the dynamics, that the quantum nature of the limit of small system
size shows itself most clearly.

In this section we intend to develop the suggestion further—i.e., the idea of
a two-state rate process for transitions between |Aeven〉 and |Aodd〉. To begin,
let us add a little more substance to the suggestion by writing

1 +
1

cosh(2|A|2) =
2 cosh2 |A|2
cosh(2|A|2)

= tanh(2|A|2) coth |A|2

= 2
coth |A|2

tanh |A|2 + coth |A|2

= 2
n̄even

n̄even + n̄odd
, (12.93a)

and similarly,

1 − 1
cosh(2|A|2) = 2

n̄odd

n̄even + n̄odd
. (12.93b)
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Then (12.91) may be rewritten as

ρ̃ =
n̄odd

n̄even + n̄odd
|Aeven〉〈Aeven| + n̄even

n̄even + n̄odd
|Aodd〉〈Aodd|, (12.94)

which is the steady-state limit of the time-dependent density operator

ρ̃(t) = peven(t)|Aeven〉〈Aeven| + podd(t)|Aodd〉〈Aodd|, (12.95)

with probabilities peven(t) and podd(t) governed by the rate equations

dpeven

dt
= −2κn̄evenpeven + 2κn̄oddpodd, (12.96a)

dpodd

dt
= −2κn̄oddpodd + 2κn̄evenpeven. (12.96b)

In (12.96a) and (12.96b), the transition rates, 2κn̄even and 2κn̄odd, are the
rates of emission of subharmonic photons from the cavity, with the subhar-
monic mode in coherent states |Aeven〉 and |Aodd〉, respectively. If we add to
this the observation that a|Aeven〉 ∝ |Aodd〉 and a|Aodd〉 ∝ Aeven, a fairly com-
plete picture emerges. The steady state (12.95) is maintained by the two-state
rate process

· · · |Aeven〉→
2κn̄even

|Aodd〉→
2κn̄odd

|Aeven〉→
2κn̄even

|Aodd〉 · · · ,

where the transitions occur at random and are accompanied by the emission
from the cavity of a single subharmonic photon. This is a stochastic process;
but it is not the stochastic process offered up to us directly by the positive P
representation.

We would like to have a more convincing demonstration that this is what
the master equation actually describes. Confirmation can be obtained in the
following way. The basic idea is to develop the solution to the master equa-
tion, ρ̇ = Lρ, in a perturbation series using a superoperator Dyson expansion.
The physics enters in dividing the superoperator L into a part that generates
free evolution to an unperturbed steady state, and an interaction part, which
“perturbs” this steady state. For the example of the degenerate parametric
oscillator with adiabatic elimination of the pump, the superoperator L is de-
fined by the right-hand side of (12.10), after transforming to the interaction
picture (ρ = e−iωCa

†atρ̃eiωCa
†at) to remove the time dependence of the driving

field.
Our interest is specifically with the limit of small system size. It is this

limit that dictates how the decomposition of L should be made. Taking the
system size parameter as 2ξ−1nthr

p = 2κpκ/g2 = 1
2κ(g2/4κp)−1, we see that

a large system is one in which one-photon decay dominates two-photon decay
[compare the coefficients of the decay terms in (12.10)], while in a small system
the relative sizes of one- and two-photon decay are reversed. In the limit of
small system size, the “perturbation” is therefore the one-photon decay (the



172 12 The Degenerate Parametric Oscillator Outside the Small-Noise Limit

emission of subharmonic photons from the cavity) and the unperturbed steady
states are generated by the two-photon decay (the emission of pump photons
from the cavity), balanced against the excitation by the external pump field.
With this in mind, we decompose (12.10) as

˙̃ρ = (D1 + C1 + L2)ρ̃ (12.97)

with

D1 ≡ 2κ(a · a†), (12.98a)

C1 ≡ −κ(a†a · + · a†a), (12.98b)

L2 ≡ −i g

2κp
[Ēia†2 + Ē∗i a2, · ]

+
g2

4κp
(2a2 · a†2 − a†2a2 · − · a†2a2), (12.98c)

where the principal step taken to this point is the identification of L2 as the
generator of the unperturbed steady states. To be convinced that L2 does,
indeed, generate appropriate steady states, we note that |Aeven〉 and |Aodd〉
are eigenstates of a2, with

a2|Aeven〉 = A2|Aeven〉, a2|Aodd〉 = A2|Aodd〉. (12.99)

It follows that |Aeven〉 and |Aodd〉 are steady states with respect to L2:

L2

(|Aeven〉〈Aeven|
)

= −i g

2κp
[Ēi(a†2·) − Ē∗i (· a2) + Ē∗i A2 − ĒiA∗2]

(|Aeven〉〈Aeven|
)

+
g2

4κp
[2|A|4 −A2(a†2·) −A∗2(· a2)]

(|Aeven〉〈Aeven|
)

= 0, (12.100a)

and similarly
L2

(|Aodd〉〈Aodd|
)

= 0, (12.100b)

where the definition (12.88) has been used.
Turning now to the superoperators D1 and C1, we note for the first that

D1

(|Aeven〉〈Aeven|
) ∝ |Aodd〉〈Aodd| and D1

(|Aodd〉〈Aodd|
) ∝ |Aeven〉〈Aeven|.

Thus, D1 describes the one-photon emissions associated with the interaction
part of L. There remains the superoperator C1: where should this piece of L
go, into the free evolution or the interaction? It seems that L2 and D1 already
account for the two parts of the proposed rate process, and we might consider
neglecting C1 altogether. After all, if added to L2 it should not alter the unper-
turbed steady states a great deal, and it does not appear to be involved in the
transitions between steady states so there seems to be no reason to add it to
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D1 either. It must be recognized, though, that in speaking of D1 as a “pertur-
bation” the word is used rather loosely. A perturbation must be “weak,” and
in the limit of small system size D1 and C2 are certainly both small compared
to L2. But “weak” means that the perturbation may be treated to low order
in an evolution over short enough time—and we intend to allow the evolution
to proceed add infinitum, certainly for a time sufficiently long that very many
photons are emitted (2κ〈a†a〉t � 1). In this situation, it would be better, per-
haps, to argue for the decomposition of L on the basis of a separation of time
scales; we are separating a process that is fast—evolution to a steady state
under L2—from a much slower process—emission of subharmonic photons
under D1. While slower, the second process will have a large enough effect
over a sufficiently long time. We should therefore be cautious about neglect-
ing C1, which is in fact of the same order as D1. As the latter is so clearly
satisfactory for describing the one-photon emissions, for the moment let us add
C1 to L2 and see what can be done after the Dyson expansion has been made.

Following through now with the proposed strategy, we define

D ≡ D1, (12.101a)
C ≡ L2 + C1 (12.101b)

and make a Dyson expansion [12.22] of the density operator in the form

ρ̃(t) =
∞∑

n=0

∫ t

0

dtn · · ·
∫ t3

0

dt2

∫ t2

0

dt1e
C(t−tn)DeC(tn−tn−1)

· · · DeC(t2−t1)DeCt1(|0〉〈0|). (12.102)

The expansion is exact; at this stage no approximation has been made.
Our task is to recast (12.102) so that it may be seen as a generalized

sum over n transitions between states |Aeven〉 and |Aodd〉, occuring at the
ordered sequence of times 0 ≤ t1 ≤ t2 · · · ≤ tn, the dynamic suggested by
(12.94)–(12.96b). The formal structure for such an evolution is already there,
but we must show that the free propagation, eC(tk−tk−1), really does form
the steady states |Aeven〉 and |Aodd〉; that D generates transitions between
these steady states once formed is already clear. Beyond this, we must also
demonstrate that the correct probabilities, peven(t) and podd(t), can emerge
from this expression. Note that it is only in accomplishing the first task, in
the treatment of the free propagation, that an approximation based on the
limit of small system size must be used.

Let us begin with the initial vacuum state and work through the first few
steps of the evolution, from right to left inside the integrals, up to time t2. We
start with the assumption that the time t1 of the first photon emission is much
larger than the time required to reach a steady state under the propagator
eCt1 . If the effect of C1 in C is neglected, the steady state reached is certainly
|Aeven〉〈Aeven|, since the repeated application of L2 must yield a state with
even photon number when beginning from the vacuum state. The superop-
erator C1 conserves the photon number and cannot change this property. As
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noted, though, C1 might have a nonvanishing effect over long enough times,
so to be cautious, we make the conservative approximation

eCt1
(|0〉〈0|) = eCt1

(|Aeven〉〈Aeven|
)
. (12.103)

In fact, we can see a clear reason now why C1 should not be neglected: it
brings a qualitative, not merely a quantitative, change to the state; without it
the norm is conserved, which is not the case when C1 is retained. We therefore
make the additional assumption that the only effect of C1 is to change the
norm of the state. This leads to the ansatz

eCt1
(|Aeven〉〈Aeven|

)
= Neven(t1)

(|Aeven〉〈Aeven|
)
, (12.104)

and hence to the equation of motion for the state norm

dNeven

dt

(|Aeven〉〈Aeven|
)

= NevenC
(|Aeven〉〈Aeven|

)

= −κNeven(a†a · + · a†a)(|Aeven〉〈Aeven|
)

⇒ dNeven

dt
= −2κn̄evenNeven. (12.105)

It follows that

eCt1
(|Aeven〉〈Aeven|

)
= e−2κn̄event1

(|Aeven〉〈Aeven|
)
. (12.106)

Combining (12.103) and (12.106) takes us up to the first transition in the
Dyson expansion (12.102).

At this point all of the approximations we need have been made and the
sought after sequence of transitions unfolds with little effort. The interaction
superoperator D is applied for the first time at time t1, where we have

D(|Aeven〉〈Aeven|
)

= 2κ|A|2 1 − e−2|A|2

1 + e−2|A|2
(|Aodd〉〈Aodd|

)

= 2κn̄even

(|Aodd〉〈Aodd|
)
. (12.107)

An ansatz equivalent to (12.105) takes us to time t2,

eC(t2−t1)
(|Aeven〉〈Aeven|

)
= Nodd(t2 − t1)

(|Aodd〉〈Aodd|
)

= e−2κn̄odd(t2−t1)(|Aodd〉〈Aodd|
)
, (12.108)

where a second application of D gives

D(|Aodd〉〈Aodd|
)

= 2κ|A|2 1 + e−2|A|2

1 − e−2|A|2
(|Aeven〉〈Aeven|

)

= 2κn̄odd

(|Aeven〉〈Aeven|
)
. (12.109)
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From this point the sequence (12.106)–(12.109) is simply repeated. In this
way the Dyson expansion yields a mixed state density operator in the form
(12.95) with

peven(t)

=
∑

n≥0 even

∫ t

0

· · ·
∫ t3

0

∫ t2

0

e−2κn̄even(t−tn)(2κn̄odddtn)e−2κn̄odd(tn−tn−1)

· · · (2κn̄odddt2)e−2κn̄odd(t2−t1)(2κn̄evendt1)e−2κn̄event1 , (12.110a)

and

podd(t)

=
∑

n>0 odd

∫ t

0

· · ·
∫ t3

0

∫ t2

0

e−2κn̄odd(t−tn)(2κn̄evendtn)e−2κn̄even(tn−tn−1)

· · · (2κn̄odddt2)e−2κn̄odd(t2−t1)(2κn̄evendt1)e−2κn̄event1 . (12.110b)

It is clear that the same probabilities are recovered from the two-state stochas-
tic process described by rate equations (12.96a) and (12.96b). The terms
inside the integrals multiply a sequence of probabilities, e2κn̄even(tk−tk−1) or
e2κn̄odd(tk−tk−1), for no transition to occur between tk−1 and tk, by the proba-
bilities, 2κn̄evendtk or 2κn̄odddtk, for a transition to take place between tk and
tk + dtk; the transition rates alternate in the appropriate way, in accord with
the proposed switching backwards and forwards between |Aeven〉 and |Aodd〉.

Explicit results for peven(t) and podd(t) may be obtained by taking Laplace
transforms to help with the evaluation of the integrals and the execution of
the sums. If the integrals are evaluated without carrying out the sums, the
photon counting distribution for subharmonic photons is obtained:

Exercise 12.9. Show that (12.110a) and (12.110b) reproduce the results,

peven(t) = 1 − podd(t), (12.111a)

podd(t) =
n̄even

n̄even + n̄odd

[
1 − e−2κ(n̄even+n̄odd)t

]
, (12.111b)

obtained by direct solution of the rate equations (12.96a) and (12.96b).

Exercise 12.10. Evaluate the integrals in (12.110a) and (12.110b) but do
not carry out the sums. Hence show that the counting distribution for sub-
harmonic photons emitted by the cavity in time T is

P (2k, T ) =
(2κn̄evenT )k(2κn̄oddT )k

2kk!
exp[−κ(n̄even + n̄odd)T ]

×
√
π

2

Ik− 1
2
[κ(n̄odd − n̄even)T ] + Ik+ 1

2
[κ(n̄odd − n̄even)T ]

[κ(n̄odd − n̄even)T ]k−
1
2

,

(12.112a)
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and

P (2k + 1, T ) =
(2κn̄evenT )k+1(2κn̄oddT )k

2kk!
exp[−κ(n̄even + n̄odd)T ]

×
√
π

2

Ik+ 1
2
[κ(n̄odd − n̄even)T ]

[κ(n̄odd − n̄even)T ]k+
1
2
, (12.112b)

for k = 0, 1, 2, · · · , where
√
π/2zIn+ 1

2
(z) is the Modified Spherical Bessel

function of the first kind.

The picture of the quantum dynamics gained from this analysis is very differ-
ent from the one provided by the diffusion process of Fig. 12.8. It does appear,
moreover, to offer a better understanding of the physics. The main point is
that we are now able to connect the evolution to physical events—the emis-
sion of subharmonic photons from the cavity, one by one. In the limit of small
system size, each emission brings a large change to the state of the intracavity
field, and it is this large, discrete perturbation that gives so much trouble in
the phase space approach; we encountered similar difficulties with the damped
two-level atom (Sects. 6.1.3 and 6.1.4). By relying on diffusion, the positive
P stochastic process effectively anticipates that the quantum fluctuations will
arise from an incremental accumulation of perturbations over time—there is
no place within its framework for a notion as fundamental as the single quan-
tum event or quantum jump.

Of course, the emission of a photon from a cavity need not necessarily bring
about a large change to the quantum state. If, for example, the intracavity
field is in the coherent state |A〉, action by the superoperator D describes no
physical change at all—D(|A〉〈A|) = 2κ|A〉〈A|; this is the case even when
the photon number is small. Thus, it is the scale of the nonlinearity that
distinguishes small from large system size, not merely the number of photons
the cavity contains.

In the present example, the large perturbation is the change from a state of
even photon number to one of odd photon number, or vice versa. Both before
and after, the subharmonic mode is in a superposition of coherent states, and
potentially one of high photon number. Thus, coherent state superpositions
of high photon number (Schrödinger cat states) are produced, in principle,
by our model. Considerations of practice are another question. Keeping track
of the even or odd parity would be essential in any scenario that aimed to
observe the coherent state superpositions. A measurement like this would of
course be extremely difficult, since it is impossible to detect every last photon,
and for large photon numbers (flux) there is the difficulty involved in resolving
the photon counts in time. A more realistic place to observe the perturbation
due to a photon emission is in the regime of low photon numbers, |A|2 � 1.
Here, also, a dramatic change occurs in the transition |Aeven〉 → |Aodd〉 or
|Aodd〉 → |Aeven〉. It is apparent from the wide disparity in the photon number
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expectations

n̄even = |A|4 � 1, (12.113a)
n̄odd = 1. (12.113b)

This disparity accounts for some rather simple physics. Photons are created
inside the cavity in pairs; 2κn̄even = 2κ|A|4 governs the rate at which we
expect to detect a “first” emitted photon, indicating that a pair has been
created. In the limit of very weak excitation, this rate is small compared to
the inverse cavity lifetime. In contrast, 2κn̄odd = κ governs the rate at which
we expect to see a “second” photon emitted given that a “first” has just been
seen. The “second” photon is surely there, as it is created inside the cavity
alone with the “first,” and it must certainly be emitted in a time of the order of
the cavity lifetime. Thus the wide disparity in n̄even and n̄odd accommodates
the difference between the average time separating successive pairs of photons
and the time—on the order of the cavity lifetime—separating the two photons
of a pair.

We have conjured up a picture of the photon stream from parametric down
conversion: a stream of photon pairs separated by a time of order (2κ|A|4)−1,
with the photons of each pair separated, on average, by (2κ)−1. It follows
that counting photons for a time that is long compared with the average time
between pairs should invariably result in an even number of counts. To verify
this, we evaluate (12.112a) and (12.112b) in the limit |A|2 → 0, κT → ∞, with
2κ|A|4T constant; Modified Spherical Bessel functions for large argument are
given in [12.23]. The result is

P (2k, T ) → (2κ|A|4T )k

k!
e−2κ|A|4T , (12.114a)

P (2k + 1, T ) → (2κ|A|4T )k+1

k!
e−2κ|A|4T

2κT
= |A|4P (2k, T )

→ 0, (12.114b)

which agrees with the suggested physical picture.

Note 12.6. Photon counting reveals a similar pairing phenomenon in the limit
of large system size. Again, there is the requirement for low mean photon
number, so the pairing is seen below threshold. Photon counting distribu-
tions have been derived for this regime using the positive P representation
and the methods of linearization [12.24, 12.25]. On the experimental side, an
indirect observation of photon pairs was recently made by tomographic re-
construction of the photon number distribution from balanced heterodyne
measurements [12.26].
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12.1.9 Higher-Order Corrections to the Spectrum
of Squeezing at Threshold

Before we leave the topic of quantum fluctuations and system size, one last
comment on threshold fluctuations is in order. The steady-state positive P
distribution derived in Sec. 9.9.7 (Eq. 12.81) incorporates the lowest-order
correction to the linearized treatment needed to remove the divergence of
fluctuations in the classical (unsqueezed) phase-space variable. It makes no
correction to the linearized treatment of the nonclassical, or squeezed fluc-
tuations, however, not even at lowest order (Note 12.4). To include such
a correction, two of the three higher-order terms in (12.80b) must be kept—
the term −(2ξ−1nthr

p )Θ4
C, which gives the previously derived result, and also

the term −(2ξ−1nthr
p )6Θ2

CΘ
2
NC that couples fluctuations in the two quadra-

ture phase amplitudes. The extra term introduces an additional exponential,
exp

[− 6Θ2
CΘ

2
NC/

(
2ξ−1nthr

p

)−1], multiplying expression (12.81) for the posi-
tive P distribution. We may expand the exponential to lowest order. Thus,
correctly normalized to the new higher order of the treatment, the positive P
distribution for the degenerate parametric oscillator at threshold becomes

˜̄Π(ΘC, ΘNC) =
4√

πΓ (1
4 )

1
(
2ξ−1nthr

p

)−3/4
exp

[

− Θ4
C + 4Θ2

NC(
2ξ−1nthr

p

)−1

]

×
[

1 − 6Θ2
CΘ

2
NC(

2ξ−1nthr
p

)−1 +
3
4
Γ (3

4 )
Γ (1

4 )

(
2ξ−1nthr

p

)−1/2

]

. (12.115)

How, then, are the fluctuations of the squeezed quadrature phase ampli-
tude changed? From (12.115), the variance in the nonclassical variable is

(
Θ2

NC

)
˜̄Π

=
[
1 +

3
4
Γ (3

4 )
Γ (1

4 )

(
2ξ−1nthr

p

)−1/2
]

1
8
(
2ξ−1nthr

p

)−1

− 6
(
2ξ−1nthr

p

)−1

Γ (3
4 )

Γ (1
4 )

(
2ξ−1nthr

p

)−1/23
[
1
8
(
2ξ−1nthr

p

)−1
]2

=
1
8
(
2ξ−1nthr

p

)−1
[
1 − 3

2
Γ (3

4 )
Γ (1

4 )

(
2ξ−1nthr

p

)−1/2
]
, (12.116)

from which, after inverting the transformation of variables (Eqs. 10.33, 11.27a,
12.66, and 12.75) and using definitions (9.26) and (9.29), the variance of fluc-
tuations in the squeezed quadrature phase amplitude at threshold corrected for
system size is given by

(ΔY )2thr =
[
(ΔY )2thr

]
0

{
1 − 3

2

(
2ξ−1nthr

p

)−1[(ΔX)2thr

]
0

}
. (12.117)

In this formula
[
(ΔY )2thr

]
0

and
[
(ΔX)2thr

]
0

denote the variances calculated at
lower order, (10.98a) and (10.100a) respectively. Since

[
(ΔX)2thr

]
0

is of order
(
2ξ−1nthr

p

)1/2, the correction to the squeezing is of order
(
2ξ−1nthr

p

)−1/2.
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This calculation based on the state-state positive P distribution does not
tell us how the system-size correction enters into the spectrum of squeezing;
nor does it provide much physical insight into the origin of the correction. To
address these issues we return to the stochastic differential equations. First,
let us write (12.3a) and (12.3b) in terms of ΘC and ΘNC, which gives (λ = 1)

dΘC = −ΘC(Θ2
C −Θ2

NC)dt̄

+ 1√
2

(
2ξ−1nthr

p

)−1/2
√

1 −Θ2
C −Θ2

NCdW̄ΘC , (12.118a)

dΘNC = −ΘNC(2 +Θ2
C −Θ2

NC)dt̄

+ 1√
2

(
2ξ−1nthr

p

)−1/2
√

1 −Θ2
C −Θ2

NCdW̄ΘNC , (12.118b)

where dW̄ΘC = (dW̄α + dW̄α∗)/
√

2 and dW̄ΘNC = (dW̄α − dW̄α∗)/
√

2 are
new independent Wiener increments, with variance dt̄. Next, we simplify the
stochastic differential equations, keeping only those nonlinear terms that con-
tribute at the order included in (12.117). Certainly the decay term −Θ3

Cdt̄ in
(12.118a) must be kept, since it is needed to prevent the divergence of fluctua-
tions in the unsqueezed quadrature phase amplitude. We must also keep Θ2

C in
(12.118b); this is the term that couples fluctuations in the unsqueezed quadra-
ture phase amplitude into the squeezed quadrature phase amplitude. Keeping
these terms and neglecting the rest, the stochastic differential equations are

dΘC = −Θ3
Cdt̄+ 1√

2

(
2ξ−1nthr

p

)−1/2
dW̄ΘC , (12.119a)

dΘNC = −ΘNC(2 +Θ2
C)dt̄+ 1√

2

(
2ξ−1nthr

p

)−1/2
√

1 −Θ2
CdW̄ΘNC . (12.119b)

Aside from the different scaling, (12.119a) is the same as (10.93a), and the
new physics is contained in (12.119b) [compare (10.91b)] where both the decay
rate and the noise strength depend on the fluctuating variable ΘC.

There is one further simplification to make. We noted in Sects. 8.2
and 10.2.4 that threshold fluctuations in a single “slow” variable show crit-
ical slowing down, and this allows other “fast” variables to be adiabatically
eliminated. In the present situation, it is the fluctuations in ΘC that are slow,
having timescale

(
2ξ−1nthr

p

)−1/2
t̄, compared to those in ΘNC. We may there-

fore view (12.119b) as if it were an autonomous equation, regarding ΘC as
being constant in time. In this way we first calculate a spectrum of squeezing
that depends conditionally on ΘC, from which the final spectrum is obtained
by taking a steady-state average over ΘC. This procedure accomplishes an
adiabatic elimination of, and averaging over, the critical fluctuations of the
classical variable ΘC.

The completion of the calculation is now straightforward. The positive P
distribution corresponding to stochastic differential equations (12.119a) and
(12.119b) is written in the factorized form

˜̄Π(ΘC, ΘNC, t̄) = ˜̄C(ΘC, t̄) ˜̄N(ΘNC, t̄|ΘC), (12.120)
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where the distribution in the classical variable satisfies the Fokker–Planck
equation

∂ ˜̄C
∂t̄

=
[

∂

∂ΘC
Θ3

C +
1
4
(
2ξ−1nthr

p

)−1 ∂2

∂Θ2
C

]
˜̄C, (12.121a)

while the conditional distribution in the nonclassical variable satisfies the
equation

∂ ˜̄N
∂t̄

=
[
(2 +Θ2

C)
∂

∂ΘNC
ΘNC +

1
4
(
2ξ−1nthr

p

)−1(1 −Θ2
C)

∂2

∂Θ2
NC

]
˜̄N. (12.121b)

If ΘC, the “slow” variable, is considered to be constant, (12.121b) is a sim-
ple one-dimensional linear Fokker–Planck equation. From it, using (5.93) and
(5.102a), we obtain the autocorrelation

lim
t→∞

(
ΘNC(t)ΘNC(t+ τ)

)
˜̄N

= e−κ(2+Θ2
C)|τ |(2ξ−1nthr

p

)−1 1
8
(
1 − 3

2Θ
2
C

)
.

(12.122)
The spectrum of squeezing (Eq. 10.58) in the Y -quadrature phase amplitude,
conditioned on the value of the X-quadrature phase amplitude, is then

Sthr
Y (ω|ΘC) = −(

1 − 3
2Θ

2
C

)1
2

8κ
(
1 + 1

2Θ
2
C

)

[
2κ

(
1 + 1

2Θ
2
C

)]2 + ω2
. (12.123)

This result may be written down from (10.61b), by comparing (12.122) and
(10.60b)(with λ = 1 and n̄ = 0). Note that both the linewidth and the max-
imum squeezing, at ω = 0, vary with ΘC. Finally, the spectrum of squeezing
is the average of this result taken with respect to the steady-state solution to
(12.121a):

Sthr
Y (ω) =

(
Sthr
Y (ω|ΘC)

)
˜̄C
. (12.124)

When the system-size correction is not taken into account, squeezing is perfect
on resonance (Eq. 10.62b with λ = 1 and n̄ = 0). From (12.123) and (12.124),
on the other hand, we have

1
2

√
1 + Sthr

Y (0) =
1√
2

Γ (3
4 )

Γ (1
4 )

(
2ξ−1nthr

p

)−1/4
. (12.125)

Thus, the amplitude of the squeezed fluctuations is nonzero and of order
(
2ξ−1nthr

p

)−1/4.

Note 12.7. Due to critical slowing down, the spectrum of fluctuations in the
X-quadrature phase amplitude has width ∼ (

2ξ−1nthr
p

)−1/2. The integral over

this spectrum gives a variance (ΔX)2thr ∼ (
2ξ−1nthr

p

)1/2 (Eq. 8.223a); on

resonance, the amplitude of the fluctuations is therefore ∼ (
2ξ−1nthr

p

)1/2. It
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follows, by taking the product with (12.125), that the resonant mode of the
radiated subharmonic field is not, in fact, in a minimum uncertainty state at
threshold; the uncertainty product is of the order

(
2ξ−1nthr

p

)1/4 rather than
1
2

√
1 + Sthr

X (0) × 1
2

√
1 + Sthr

Y (0) = 1
4 .

12.2 Difficulties with the Positive P Representation

From what we have seen, particularly from the results of Sect. 12.1.6, the
positive P representation has served its advertised purpose. It has taken us
beyond the picture of quantum noise as merely a “fuzz” added to classical
nonlinear dynamics, and demonstrated the role of the system size in this story.
Enthusiasm for the approach must be dampened, however, by what we noticed
along the way. The issue of the “spikes” in stochastic simulations (Fig. 12.2d)
is still a worry. While it is true that for initial conditions taken within the
unit square, |θ| ≤ 1, |ϑ| ≤ 1, they are a numerical artifact, the implications for
initial conditions outside the square is still an open question. Conveniently for
the analysis of Sect. 12.1.6, all physical steady states lie within the unit square.
Initial conditions need not be so restricted, though, and there is certainly
no guarantee that a trajectory beginning outside the square can avoid the
unstable regions of the extended phase space (Sect. 12.1.5).

In fact, even the confinement of trajectories having initial conditions inside
the unit square is slightly misleading, since this property is a structurally
unstable feature of the model; it is not retained, for example, by the full
set of stochastic differential equations (12.1a–12.1d)—i.e., without adiabatic
elimination of the pump; neither does it hold in the presence of detuning
where terms −iΔ ˜̄αdt̄ and iΔ ˜̄α∗dt̄, respectively, are added to the right-hand
sides of (12.3a) and (12.3b). There remains, then, a possibility that in some
cases at least the stochastic differential equations derived on the basis of the
positive P representation contain a genuine pathology. It is desirable to have
a definite answer on an issue of such importance.

A definite answer in the affirmative can be given by considering the de-
generate parametric oscillator with adiabatic elimination of the pump for the
limit of zero pump amplitude. In this limit, λ → 0, the region of bounded
trajectories—˜̄x ≤ √

λ, ˜̄x ≤ √
λ—shrinks to the origin. Then all nontrivial

initial conditions lie outside the bounded domain. So far as master equation
(12.10) is concerned, the second term on the right-hand side is removed, and
only those terms describing the two damping processes remain: the standard
one-photon damping at rate 2κ, and the two-photon damping, at rate g2/2κp,
which arises from the up-conversion of two photons of frequency ωC to a pho-
ton of frequency 2ωC—which is then rapidly lost from the cavity before its
reconversion to a pair of subharmonic photons can occur. Smith and Gardiner
discovered that simulations of the positive P stochastic differential equations
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for this so-called two-photon damping model yield a result that is demonstra-
bly incorrect on straightforward physical grounds [12.17]. Let us look at the
evidence and try to understand why in this case a wrong result is obtained.

12.2.1 Technical Difficulties: Two-Photon Damping

The stochastic differential equations in the positive P representation for two-
photon damping follow by setting λ = 0 in (12.3a) and (12.3b):

d ˜̄α = − ˜̄α
[
(1 + ˜̄α∗ ˜̄α)dt̄ − i

(
2ξ−1nthr

p

)−1/2
dW̄α

]
, (12.126a)

d ˜̄α∗ = − ˜̄α∗
[
(1 + ˜̄α∗ ˜̄α)dt̄− i

(
2ξ−1nthr

p

)−1/2
dW̄α∗

]
. (12.126b)

To appreciate the technical difficulties that arise with this model it is sufficient
to consider the decay of the mean photon number, for which we need only the
one equation

d(˜̄α∗ ˜̄α) = −2(˜̄α∗ ˜̄α)
{
[1 + (˜̄α∗ ˜̄α)]dt̄− i

√
ηdW̄

}
, (12.127)

where dW̄ ≡ (dW̄α + dW̄α∗)/
√

2 is a Wiener increment, variance dt̄, and

η ≡ g2/4κp
κ

= 1
2

(
2ξ−1nthr

p

)−1
. (12.128)

Figure 12.9 shows the result of numerical simulations for an initial coherent
state with amplitude α0, initial condition (˜̄α∗ ˜̄α)(0) = |α0|2/2η. The mean
photon number computed from the simulation is compared with the result of
a direct numerical integration of the master equation. Clearly there is a prob-
lem with the long-time behavior, since the mean photon number does not
approach zero as it should. In this respect the stochastic differential equa-
tions in the positive P representation disagree dramatically with the master
equation from which they are derived.

One possible explanation is that something has gone wrong with the nu-
merics, perhaps because the Euler method was used for the integration. This
explanation can be ruled out, though, because the stochastic differential equa-
tion can also be solved analytically [12.18], and the same wrong result is ob-
tained. To make the analytical calculation, we re-express the right-hand side
of (12.127) as a sum of two separable terms, by writing

d(˜̄α∗ ˜̄α) = −2(˜̄α∗ ˜̄α)(dt̄− i
√
ηdW̄ ) − 2(˜̄α∗ ˜̄α)2dt̄, (12.129)

and introducing the ansatz
(˜̄α∗ ˜̄α) =

μ

ν
, (12.130)

with μ(0) = (˜̄α∗ ˜̄α)(0) and ν(0) = 1. From (12.130), we obtain

d(˜̄α∗ ˜̄α) =
1
ν
dμ− μ

ν2
dν. (12.131)
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Fig. 12.9. Numerical simulation of the positive P stochastic differential equations
for two-photon damping of a coherent state (Eq. 12.127). The solid curve is the
average over 10, 000 stochastic trajectories and the dashed curve the result obtained
from master equation (12.10) (with Ē0 = 0): for |α0|2 = 10 and η = 10 with time
step Δt̄ = 10−4

The two terms on the right-hand side of this equation may be identified with
those in (12.129) so long as

dμ = −2μ(dt̄− i
√
ηdW̄ ), (12.132a)

dν = 2μdt̄. (12.132b)

Solving (12.127) is reduced in this way to the task of solving the pair of
equations (12.132a) and (12.132b). The latter is readily accomplished. To
solve for μ, we make a change of variable and consider

d ln(μ) = ln(μ+ dμ) − ln(μ)

= ln(μ) + dμ/μ− 1
2 (dμ/μ)2 − ln(μ)

= −2(dt̄− i
√
ηdW̄ ) + 2ηdt̄

= −2(1 − η)dt̄+ i2
√
ηdW̄ ,

with solution
μ(t̄) = μ(0)e−2(1−η)t̄ei2

√
ηW̄ . (12.133a)

Then, from (12.132b), the solution for ν is

ν(t̄) = 1 + 2
∫ t̄

0

dt̄′μ(t̄′). (12.133b)

Bringing together (12.130), (12.133a), and (12.133b), we arrive at an explicit
expression for (˜̄α∗ ˜̄α)(t̄) in terms of the Wiener process W̄ ; thus, we obtain

(˜̄α∗ ˜̄α)(t̄) =
(˜̄α∗ ˜̄α)(0)e−2(1−η)t̄ei2

√
ηW̄

1 + (˜̄α∗ ˜̄α)(0)2
∫ t̄
0 dt̄
′e−2(1−η)t̄′ei2

√
ηW̄ ′

. (12.134)
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Recall that W̄ is a Gaussian-distributed random variable with variance t̄
(Sect. 5.3.2); its mean is taken here to be zero.

What we have obtained is perhaps not quite a full analytical solution,
since it does not allow a closed-form expression for the mean photon num-
ber to be written down. It does, nevertheless, allow a more direct numerical
computation to be made. As W̄ is Gaussian-distributed with zero mean and
variance t̄, a sequence of Gaussian-distributed random numbers is all that is
needed to compute the mean photon number for any particular time t̄. This
computation reproduces the wrong result displayed in Fig. 12.9.
Note 12.8. A closed form expression for the mean photon number may in fact
be found by expanding (12.134) in a Taylor series. Surprisingly, the expression
obtained in this way is correct, in so far as it agrees with a series solution to the
infinite hierarchy of coupled equations for normal-ordered operator averages,
〈(˜̄a†p˜̄ap)(t̄)〉, obtained from the master equation; the hierarchy of moment
equations is certainly equivalent to the master equation. Apparently there is
a contradiction: it is possible to construct a correct analytical solution, as
a Taylor series, when direct computation from (12.134) yields wrong results.
The resolution of the apparent contradiction is that the Taylor expansion
is not strictly legitimate for arbitrary times. It is valid for times that are
sufficiently short, and analytic continuation of the short time result follows
the correct physical solution (the dashed curve in Fig. 12.9). As shown below,
however, knowing nothing of analytic continuation, the solution followed by
the stochastic differential equation encounters a singularity—where the Taylor
expansion first fails to converge—which switches it onto a nonphysical path
(a consequence of the divergent trajectories of Sect. 12.1.5.).
To provide some insight into what has gone wrong, we can make a simplifica-
tion by replacing the phase factor exp(i2

√
ηW̄ ′) inside the integral in (12.134)

by its value, exp(i2
√
ηW̄ ), at the upper limit of integration. The approxima-

tion is perhaps somewhat uncontrolled, and we would not argue that it is
good one for producing accurate results. It is nevertheless useful in so far as it
defines a simplified model that can be analyzed further analytically. We refer
to this model as the “toy” model. It also exhibits pathological behavior, and
it helps us uncover the origin of the disagreement in Fig. 12.9 in a clear and
convincing way.

After making the replacement exp(i2
√
ηW̄ ′) → exp(i2

√
ηW̄ ), the integra-

tion can be carried out. Thus, to replace the exact solution for photon number
(12.134), the “toy” model is defined by

(˜̄α∗ ˜̄α)toy(t̄) ≡ (˜̄α∗ ˜̄α)(0)e−2(1−η)t̄ei2
√
ηW̄

1 + (˜̄α∗ ˜̄α)(0){[1 − e−2(1−η)t̄]/(1 − η)}ei2√ηW̄ . (12.135)

Taking the average over the Wiener process, the mean photon number in the
“toy” model is

(
(α∗α)toy(t̄)

)
P

=
1√
2πt̄

∫ ∞

−∞
dW̄

A(t̄)ei2
√
ηW̄

1 +B(t̄)ei2
√
ηW̄

e−
1
2 W̄

2/t̄, (12.136)



12.2 Difficulties with the Positive P Representation 185

where

A(t̄) ≡ |α0|2e−2(1−η)t̄, B(t̄) ≡ 2η|α0|2 1 − e−2(1−η)t̄

1 − η
. (12.137)

Now the integral has zero imaginary part, as the integrand is odd, while for
the real part we find

(
(˜̄α∗ ˜̄α)toy(t̄)

)
P

=
1√
2πt̄

A(t̄)
∫ ∞

−∞
dW̄

cos(2
√
ηW̄ ) +B(t̄)

1 + 2B(t̄) cos(2
√
ηW̄ ) +B(t̄)2

e−
1
2 W̄

2/t̄

=
1√
2πt̄

A(t̄)
B(t̄)

∫ ∞

0

dW̄

[
1 − 1 −B(t̄)2

1 + 2B(t̄) cos(2
√
ηW̄ ) +B(t̄)2

]
e−

1
2 W̄

2/t̄

=

⎧
⎨

⎩

A(t̄)
B(t̄)

∑∞
k=1(−1)k+1B(t̄)ke−k

22ηt̄ B(t̄)2 < 1
A(t̄)
B(t̄)

[
1 +

∑∞
k=1(−1)kB(t̄)−ke−k

22ηt̄
]

B(t̄)2 > 1
, (12.138)

where the final result is taken from Gradshteyn and Ryzhik [12.27].
The pathological behavior of the “toy” model follows directly from (12.138).

Note, in particular, how the this result is conditional on the value of B(t̄)2—
a quantity that changes with time. From this, the mean photon number
evolves discontinuously in time; at least, this will be the case whenever
|α0|2 > (1 − η)/2η [so that B(∞) > 1]. The discontinuity occurs at the time

t̄D =
1

2(η − 1)
ln
[ |α0|2 + (η − 1)/2η

|α0|2
]
, (12.139)

where there is a jump in the value of the mean photon number,

D ≡ (
(˜̄α∗ ˜̄α)toy(t̄)

)
P

∣
∣
∣
t̄=t̄+D

− (
(˜̄α∗ ˜̄α)toy(t̄)

)
P

∣
∣
∣
t̄=t̄−D

, (12.140)

given, from (12.138), by the explicit expression

D = A(t̄D)

[

1 + 2
∞∑

k=1

(−1)ke−k
2ηt̄D

]

=
[|α0|2 + (η − 1)/2η

]
{

1 + 2
∞∑

k=1

(−1)k
[ |α0|2
|α0|2 + (η − 1)/2η

]k2η/(η−1)
}

.

(12.141)

This discontinuity is the clue to understanding what has gone wrong in the
simulation of the full model, Fig. 12.9.
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Fig. 12.10. Discontinuity in the “toy” model (Eq. 12.138) compared with a sim-
ulation of the positive P stochastic differential equation (12.127). The parameters
are |α0|2 = 0.1 and η = 10 (D = 0.385 and t̄D = 0.0947). The simulation averages
10,000 stochastic trajectories with time step Δt̄ = 10−4. The dashed curve shows
the correct result obtained from master equation (12.10) (with Ēi = 0)

For the parameters used in Fig. 12.9, the values of t̄D and D are t̄D =
2.45 × 10−3 and D = 3.48 × 10−15. The numbers seem so small as to be
of no consequence at all. Changing the initial photon number, though, from
|α0|2 = 10 to |α0|2 = 0.1, gives tD = 9.5 × 10−2 and D = 3.85 × 0−1. Then
the discontinuity is the dominant feature of the decay, as seen in Fig. 12.10,
where the analytical expression (12.138) for the “toy” model is compared
with a numerical simulation of the exact solution (12.134). The “toy” model
shows a dramatic discontinuity in this case, and although the discontinuity
is smoothed out by the exact solution, the pathological behavior remains
essentially the same: at time t̄ ∼ t̄D both models abruptly switch away from
following the expected monotonic decay.

The source of the abrupt change can be traced to the denominators
of (12.134) and (12.135). Both produce divergences—similar to those of
Sect. 12.1.5—for certain choices of the stochastic path. This does not mean
that a simulation necessarily produces many trajectories that race off to in-
finity. The probability density in the variable Re(˜̄α∗ ˜̄α) can approach zero at
infinity, while at the same time there is a finite contribution to the mean
from the tail of the distribution—essentially, the approach of the probability
density to zero at infinity is too slow. In the case of the positive P repre-
sentation, a further subtlety must be considered. For it the variable Re(˜̄α∗ ˜̄α)
need not be positive, unlike its counterpart, ˜̄α∗ ˜̄α, in the Glauber–Sudarshan
P representation. It is then possible to have an outward probability current at
Re(˜̄α∗ ˜̄α) = ±∞ balanced by an inward probability current at Re(˜̄α∗ ˜̄α) = ∓∞.
This, in fact, is how the abrupt switching seen in Fig. 12.10 occurs. For the
“toy” model, the probability current at infinity is isolated as a δ-function in
time, contributing only at time t̄D, while for the full stochastic model it flows
during an interval of time around (near) t̄D.
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These ideas can be demonstrated in detail for the “toy” model. From
(12.135), at any time and for all choices of the random variable W̄ , the vari-
able (˜̄α∗ ˜̄α)toy(t̄) lies on a circle in the complex plane. The particular circle
changes over time. Figure 12.11a shows its evolution for the parameters of
Fig. 12.10. Initially, so long as t̄ is smaller than t̄D, the radius of the circle
grows and the circle extends further and further into the negative half plane.
At t̄ = t̄D, the radius is infinite. For t̄ larger than t̄D, the circle shrinks again.
The discontinuity results from the behavior connecting t̄−D and t̄+D. At this
instant, the circle switches from the negative half plane to the positive half
plane. Thus, there is a δ-function-in-time probability current passing from
Re(˜̄α∗ ˜̄α)toy = −∞ to Re(˜̄α∗ ˜̄α)toy = +∞ at t̄ = t̄D. Figure 12.11b plots the
probability density in the variable Re

(
(˜̄α∗ ˜̄α)toy

)
for the earliest time in the

sequence of Fig. 12.11a. Note that the density has two integrable divergences
at the boundaries of its domain. Similar divergences are present at all times.
Being integrable, the divergences are of no concern in themselves; they arise
from the Jacobian when changing variables from W̄ to Re

(
(˜̄α∗ ˜̄α)toy

)
. The

significant points are: (i) that the divergence at the lower boundary travels
in the negative direction to pass from −∞ to +∞ at t̄ = t̄D, and (ii) the
integrated probability under the lower divergence approaches zero sufficiently
slowly, as the divergence moves to −∞, that for t̄ = t̄D the probability current
at infinity contributes a finite amount to the mean.

Fig. 12.11. (a) Contours (α∗α)toy(θ) = A(t̄)/[B(t̄) + e−iθ] (Eq. 12.135) plotted
for the parameters of Fig. 12.10 at (i) t̄ = 0.091, (ii) t̄ = 0.092, (iii) t̄ = 0.093,
(iv) t̄ = 0.096, (v) t̄ = 0.097, and (vi) t̄ = 0.098. (b) The probability distribution
P (N, t̄) (Eq. 12.142) at t̄ = 0.091; the distribution diverges at the boundaries N =
A(t̄)/[B(t̄) + 1] = 0.2678 and N = A(t̄)/[B(t̄) − 1] = −6.519
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Exercise 12.11. From (12.135) and the distribution over the random variable
W̄ , show that the probability distribution over N ≡ Re

(
(˜̄α∗ ˜̄α)toy

)
is
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√

2πηt̄

×
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−1

2
θ(N)2 + (k2π)2
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]
cosh

[
kπθ(N)/2ηt̄

]
, (12.142)

with

θ(N) ≡ cos−1

{
N [B(t̄)2 + 1] −A(t̄)B(t̄)

A(t̄) − 2NB(t̄)

}
, (12.143)

where N lies inside the range bounded by A(t̄)/[B(t̄)+1] and A(t̄)/[B(t̄)−1].

Returning to our original observation, for the initial condition used in Fig. 12.9,
the discontinuity itself is far too small to be noticed. Nonetheless, it is still
the heart of the problem. In fact, the behavior in Figs. 12.9 and 12.10 is not
as different as it first appears. In both the long-time solution approaches the
same wrong steady state value; the only difference is that for the initial con-
dition of Fig. 12.10, a large departure from the correct monotonic decay is
needed to reach that state, while a small and gradual deviation of the path
suffices for the initial condition of Fig. 12.10.

Of course the ultimate source of the difficulty with the positive P repre-
sentation must lie somewhere in the derivation of the stochastic differential
equation (12.127). From what we have just seen, it is fairly clear where the
mistake must occur. We can trace it to the sentence below (11.28): “Integrat-
ing by parts on the right-hand side of (11.25) and assuming that the boundary
terms at infinity vanish, . . .” Apparently the stochastic process derived un-
der the assumption that “the boundary terms at infinity vanish” can, in some
cases at least, generate boundary terms that do not in fact vanish. Considering
the sort of reorganization the deterministic nonlinear dynamics receives—i.e.,
its extrapolation into the nonclassical phase space (Sect. 12.1.5)—it is likely
the boundary term assumption fails very often when the full nonlinear behav-
ior of the stochastic process is put on display for small system size. There is
never a problem, on the other hand, in the linear treatment of fluctuations
(Sect. 11.1.3); it gives Gaussian distributions, which decay faster than any
polynomial at infinity.

As a final word, it is important to say that it is not the positive P repre-
sentation per se that fails when the boundary term assumption is not fulfilled.
It remains true that any density operator has a positive P representation—
given for example by (11.19). Thus, one can certainly, in principle, construct
a family of positive P distributions, parameterized by time, to represent the
time evolution of the density operator for two-photon damping. Nevertheless,
the utility of the positive P representation (also of the Glauber–Sudarshan,
Q, and Wigner representations) relies on more than the existence of a phase-
space distribution representing the state at a particular time. The wider aim
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is to represent the dynamics, with the traditional assumption that the repre-
sentation should take the form of a phase-space diffusion. The latter places
a constraint on the family of distributions used to represent a density opera-
tor evolving in time: members of the family must be related to one another
through a particular type of propagator, through the Fokker–Planck equation.

The positive P representation attempts to satisfy this aim in a clever way.
It first abandons the idea that the distribution representing a state must be
unique. It then tries to impose the assumption of a phase-space diffusion by se-
lecting amongst the many distributions representing the state at a given time,
to construct a unique family of distributions, parameterized by time, that sat-
isfy a Fokker–Planck equation. When deriving the Fokker–Planck equation for
the degenerate parametric oscillator (Sect. 11.1.2), the selection is made by
fixing the interpretation of the partial derivatives, the step between (11.31)
and (11.46). Ultimately, then, it is the failure of the dynamical assumption—
the attempt to represent the dynamics as a diffusion process—that causes the
technical difficulties with the two-photon damping example.

Note 12.9. Technical difficulties with the positive P representation are miti-
gated to a large extent by the stochastic gauge method introduced by Deuar
and Drummond [12.28, 12.29, 12.30]. This approach exploits the nonunique-
ness of positive P representations even further. It introduces still more degrees
of freedom, setting the stochastic evolution in a still larger phase space. By
a judicious choice of the added gauge variables, instabilities and divergences
of the sort described can be avoided.

12.2.2 Physical Interpretation: The Anharmonic Oscillator

To add to any technical difficulties, the positive P representation also raises
a question of interpretation. As we just noted, one aim of the phase-space
approach is to represent quantum dynamics, bringing with it an implicit as-
sumption of a meaningful physical interpretation. For example, stochastic
realizations of the Glauber–Sudarshan P representation of a laser field may
be considered, in a sense, to be realizations of an actual laser output. The
physical interpretation—the “sense”—is grounded in the fact that the multi-
time correlation functions of phase-space variables are equal to the normal-
ordered, time-ordered correlation functions of field operators. Thus, a con-
nection with photoelectric detection is established: assuming the representa-
tion yields a well-behaved stochastic process (positive semidefinite diffusion),
individual realizations of that process elicit a response in the semiclassical
simulation of photoelectric detection—random photoelectron counts at a rate
governed by the stochastic field intensity—that is statistically equivalent to
an ensemble of actual detection records.

The same connection might be claimed for the positive P representation,
which also generates normal-ordered, time-ordered correlation functions, ex-
cept that realizations of the positive P stochastic process generally explore the
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nonclassical dimensions of the extended phase space; generally, α∗(t) �= α∗(t),
so that the stochastic intensity need not be positive definite, or even real, and
a straightforward extension of the physical interpretation fails. The conse-
quences of this are not so apparent in the small-noise limit, where the classical
nonlinear dynamics provides a framework around which a physical interpre-
tation may be built. As the system size decreases, though, the quantum noise
increases and the classical framework dissolves. Then the positive P represen-
tation of the dynamics provides little, if any, physical insight, as demonstrated
for the example of the degenerate parametric oscillator with adiabatic elimi-
nation of the pump in Sects. 12.1.7 and 12.1.8.

It might be said that the discussion of Sects. 12.1.7 and 12.1.8 does not
make much of a case against the positive P representation as a source of phys-
ical insight. After all, it was pictures like those of Fig. 12.8 that suggested the
two-state rate process described in Sect. 12.1.8. Recall, however, the technical
difficulties and their resolution, obtained by confining the stochastic trajecto-
ries to a bounded region in phase space—the device looks more like a mathe-
matical trick than a consequence of anything physical. Indeed, whenever the
positive P representation proves successful outside the small-noise limit, it
does appear to manage its success by employing some surprising mathemati-
cal trick.

Possibly the best demonstration of its cunning is given by the example
considered in this section, the positive P stochastic process for the anhar-
monic oscillator. Here a rather involved stochastic evolution is used to generate
normal-ordered operator averages that are strictly constant in time. Further-
more, although the evolution of the quantum state is periodic, the stochas-
tic evolution is a Brownian motion that spreads, monotonically, deeper and
deeper into the nonclassical phase space; thus, a quantum state that repeats
periodically is represented by a different positive P distribution every time it
recurs—the nonuniqueness of the positive P representation is made explicit.

The model Hamiltonian is

H = �ωCa
†a+ �λ(a†a)2, (12.144)

where λ sets the strength of the anharmonicity. One may readily solve for
the normal-ordered operator averages as a function of time in either the
Schrödinger or Heisenberg pictures. The positive P stochastic process rep-
resenting the dynamics is also straightforward to obtain. The details of these
calculations are unimportant and are left as an exercise.

Exercise 12.12. Consider the model Hamiltonian (12.144). Show that the
normal-ordered operator averages for the anharmonic oscillator prepared in
initial coherent state |α0〉 evolve periodically in time, with

〈(ã†pãq)(t̄)〉 = α∗p0 αq0 exp{−|α0|2
[
1 − ei(p−q)t̄

]}ei 12 [p(p−1)−q(q−1)]t̄, (12.145)
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where
a = ãe−i(ωC+λ)t, a† = ã†ei(ωC+λ)t, (12.146)

and t̄ ≡ 2λt.

Exercise 12.13. Derive the stochastic differential equations in the positive P
representation for the anharmonic oscillator :

dα̃ = α̃[−i(α̃∗α̃)dt̄+ e−iπ/4dW̄α], (12.147a)

dα̃∗ = α̃∗[i(α̃∗α̃)dt̄+ eiπ/4dW̄α∗ ], (12.147b)

where dW̄α and dW̄α∗ are independent Wiener increments of zero mean and
variance dt̄.

The normal-ordered operator averages are periodic with period T̄ = 2π, and,
in fact, the anharmonic oscillator provides a particularly simple example of
a quantum collapse and revival, with the initial state recurring exactly at times
t̄ = T̄ , 2T̄ , 3T̄ , . . . [12.31,12.32]. Our interest is with the unusual way in which
the positive P representation handles these manifestly quantum mechanical
dynamics. To this end, it is helpful first to consider the stochastic differential
equation for photon number. From (12.147a) and (12.147b), we have

d(α̃∗α̃) = (α̃∗α̃)(e−iπ/4dW̄α + eiπ/4dW̄α∗). (12.148)

With this equation we can compute all normal-ordered operator averages with
p = q. If this were our only aim, we might combine the independent noise
terms, e−iπ/4dW̄α and eiπ/4dW̄α, in a single complex Wiener increment of
variance e−iπ/2dt̄ + eiπ/2dt̄ = 0. Thus, (12.148) is reduced to the statement
d(α̃∗α̃) = 0; there is in fact no noise at all on the variable (α̃∗α̃). The result
is hardly a surprise, as the photon number operator, a†a, commutes with
Hamiltonian (12.144). It is therefore a constant of the motion, from which
it follows that the normal-ordered operator averages with p = q are also all
constant in time.

Dropping the noise from (12.148) is not acceptable, however, if we aim to
compute operator averages with p �= q. We might wish to compute the mean
field amplitude, for example, by simulating (12.147a) and (12.148) as a coupled
set of equations [we might equivalently simulate (12.147a) and (12.147b)]. For
this the correlation between the noises in the two equations must be kept, since
it is easily shown that on setting (α̃∗α̃) constant in (12.147a), we replace the
correct solution for the mean field amplitude,

〈ã(t̄)〉 = α0 exp[−|α0|2(1 − cos t̄)] exp(−i|α0|2 sin t̄), (12.149)

with its short-time approximation, 〈ã(t̄)〉 = α0 exp[−i|α0|2t̄]. The collapse
and revival has been lost. Clearly, then, we face the following strange and
unfamiliar (from classical noise processes) situation:
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In the presence of a conserved physical quantity, the positive P stochastic
representation of the quantum dynamics generally requires that there be noise
on the corresponding phase-space variable, even though every single moment
of that variable is constant in time.

To understand in detail how the positive P stochastic process for the an-
harmonic oscillator works, we consider (12.148) without combining the Wiener
increments on the right-hand side. Consider the equation

d ln(α̃∗α̃) = ln[(α̃∗α̃) + d(α̃∗α̃)] − ln(α̃∗α̃)

=
1

(α̃∗α̃)
d(α̃∗α̃) − 1

2

[
1

(α̃∗α̃)
d(α̃∗α̃)

]2

= e−iπ/4dW̄α + eiπ/4dW̄α∗ , (12.150)

whose solution for the initial state |α0〉 may be written as

(α̃∗α̃)(t̄) = |α0|2 exp(e−iπ/4W̄α + eiπ/4W̄α∗)

= |α0|2eW̄+e−iW̄− , (12.151)

where W̄+ = (W̄α + W̄α∗)/
√

2 and W̄− = (W̄α − W̄α∗)/
√

2 are independent
Wiener processes that determine, respectively, the amplitude and phase of
(α̃∗α̃)(t̄).

The unusual character of the positive P stochastic process is now made
clear. By expanding eW̄+ in a power series, it is readily shown that it has the
average value 〈eW̄+〉 = et̄/2. Thus, the average amplitude of (α̃∗α̃)(t̄) grows
exponentially, while the average value of the complex number itself remains
constant in time. This somewhat surprising combination of results is allowed
because (α̃∗α̃), unlike |α̃|2 (the photon number phase-space variable in the
Glauber–Sudarshan representation), is neither real nor positive definite. While
the positive P stochastic process explores more and more of the (α̃∗α̃)-plane
over time (the mean amplitude grows exponentially), a cancellation of phases
in the ensemble average is nevertheless possible, such that

(
(α̃∗α̃)(t̄)

)
P̃

=
|α0|2. The cancellation is put into effect by the phase factor e−iW̄− , whose
average value is 〈e−iW̄−〉 = e−t̄/2; the phase average brings an exponential
decay to cancel the exponential growth of the amplitude average.

The principal lesson from the anharmonic oscillator example is that while
the stochastic process (12.151) serves, formally, as a generator of operator
averages, it does so using a phase-space dynamics that clearly has nothing
to do with the physics. Then there is a secondary but important practical
lesson: numerical simulations of the stochastic differential equations (12.147a)
and (12.147b) are bound to fail for long enough times. This follows from the
spreading of the positive P stochastic process in the nonclassical phase space
and the phase-averaging in the ensemble average needed to recover physical
results. Even before the revival time is reached, t̄ = T̄ , an accurate average in
the presence of sampling error calls for ensembles of an impossibly large size.
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Exercise 12.14. Show that (12.151) gives normal-ordered, time-ordered op-
erator averages for p = q that are constant in time.

Exercise 12.15. Formally solve the stochastic differential equations for the
anharmonic oscillator, (12.147a) and (12.147b); hence verify the result for
normal-ordered operator averages (12.145).
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Cavity QED I: Simple Calculations

Having seen that fluctuations outside the small-noise limit present the phase-
space methods with fundamental difficulties, we look in the remaining four
chapters at alternative ways of treating quantum fluctuations in this regime.
The topic is not entirely new to us, since we handled the problem of res-
onance fluorescence in Chapter 2 without the need for either phase-space
representations or a system size expansion. Of course this example is rather
trivial, falling as it does within the class of solvable one-particle problems.
Phase-space representations do an excellent job in the opposite limit, where
the nonlinear physics builds upon the cooperation of many atoms and many
photons, and the fluctuations may be viewed as small perturbations (“fuzz”)
about classical nonlinear dynamics—the positive P representation even allows
the “fuzz” to be squeezed. The real difficulties lie in the intermediate regime,
where it may be hard, if not impossible, to solve density matrix equations
exactly as we did for resonance fluorescence, and yet a small-noise approx-
imation to a phase-space equation of motion may not be made either. We
meet two new techniques in the remaining chapters: a systematic expansion
of the density matrix equations for weak excitation (Sects. 16.1 and 16.3.4)
and the quantum trajectory method (Chaps. 17–19). There is also more to be
done with exact solutions of density matrix equations for systems of small or
moderate size, analytically in the former case (Sect. 13.2) and in the latter
with the help of a computer (Sect. 16.3.6).

The theme we take up here has been laid out in some detail for the de-
generate parametric oscillator in Chap. 12; but this system is not a good
candidate for realizing a small system size in the laboratory. A far better one
is provided by the near-resonant interaction of atoms with an optical cav-
ity mode. Systems of this type have been studied experimentally for more
than two decades. At least one half of that time has focused explicitly on
conditions beyond the small-noise limit—this is the regime of so-called cavity
quantum electrodynamics (cavity QED). The early studies of atoms in cavi-
ties were concerned with optical bistability, and later dynamical instabilities
and chaos; we will look at a little of this physics too since it is certainly a part
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of the overall picture. On the whole, though, it is the quantum fluctuations
beyond the small-noise limit that interest us the most, so many things out-
side this scope we will simply overlook. The classical nonlinear dynamics of
atoms in cavities is covered in the books of Gibbs [13.1] and Narducci and
Abraham [13.2], while Lugiato [13.3] gives an excellent review of the topic of
quantum fluctuations in the small-noise limit.

13.1 System Size and Coupling Strength

To reiterate, when the system size parameter is small, we enter a regime
of large fluctuations where the phase space methods based on the Fokker–
Planck equation appear, perhaps inevitably, to encounter difficulties. There is
a natural scale to define “large”—the scale of the system nonlinearity, or more
precisely, the number of elementary excitations (quanta) required to bring
the nonlinear physics into play. Thus, the system size parameter is generally
a photon number: for the laser, it is the saturation photon number nsat =
γh(γ↑ + γ↓)/8g2 (essentially the square of the threshold photon number); for
the degenerate parametric oscillator, it is the threshold photon number, nthr

p =
(κ/g)2, for the pump; for the degenerate parametric oscillator with adiabatic
elimination of the pump, it is the number 2ξ−1nthr

p = 2κκp/g2 (essentially the
square of the threshold photon number for the subharmonic mode).

In each of these cases the system size parameter is a product of ratios of
dissipation rates, or linewidths, and a fundamental coupling constant. Here
is a clue to an alternative view of things. In this view, for the words system
size we substitute coupling strength (small system size means large coupling
strength) and the reference to nonlinearity is understood in terms of multi-
photon transitions, which take place, of course, within an energy spectrum
influenced by the coupling strength. The issue of small versus large becomes
one of energy level resolution—a question of the sizes of energy level shifts
or splittings (coupling strength) compared with energy level widths. This is
a more appropriate language than that of classical nonlinear dynamics plus
“fuzz” once we enter the domain of small system size.

We can illustrate these ideas with the degenerate parametric oscillator
Hamiltonian

HS ≡ �ωCa
†a+ �2ωCb†b+ i�(g/2)(a†2b− a2b†). (13.1)

The energy level diagram for the ground state and first two excited states is
shown in Fig. 13.1. The eigenstates are

|G〉 = |0〉a|0〉b, |E1〉 = |1〉a|0〉b, (13.2)
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Fig. 13.1. Energy level diagram for the degenerate parametric oscillator showing
the ground state, the first excited state, and the second excited state doublet

and

|E2,U 〉 =
1√
2

(|2〉a|0〉b − i|0〉a|1〉b
)
, (13.3a)

|E2,L〉 =
1√
2

(|2〉a|0〉b + i|0〉a|1〉b
)
, (13.3b)

with corresponding energies,

EG = 0, E1 = �ωC , (13.4)

and a doublet at the second excited state,

E2,U = 2�ωC + �g/
√

2, (13.5a)

E2,L = 2�ωC − �g/
√

2. (13.5b)

The system size parameters are nthr
p = (κ/g)2 and 2ξ−1nthr

p = 2κκp/g2.
Whether the system size parameters are small numbers or large numbers

amounts to asking how well the doublet at the second excited state is re-
solved, with the relevant scale set by the linewidths κ and κp. Is the coupling,
by this measure, weak or is it strong? We should note that it is the funda-
mental coupling constant g that is the issue—i.e., the splitting produced by
a single pump quantum. Level shifts of much larger size appear at high ex-
citation and might even have dynamical consequences (for example the Rabi
oscillation of a two-level atom). It is not, however, the appearance of level
shifts per se that interests us in cavity QED. It is the fine scale of the energy
spectrum. We ask whether the addition or subtraction of just one quantum,
or perhaps a few, is noticeable as observable physics. If the answer is yes,
we will say, by definition, that we are dealing with a phenomenon in cavity
QED—equivalently a phenomenon in the regime of small system size where
the treatment of fluctuations can no longer rely on concepts adapted to the
small-noise limit.
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There are two distinct senses in which the coupling may be strong. The
obvious one defines cavity QED in the nonperturbative limit. Clearly, if both
g/κ > 1 and g/κp > 1, the doublet at the second excited state is resolved
and observable spectroscopically (Sects. 13.3.1 and 13.3.2), and the well-split
energy levels create what is essentially a new quantum system. Consider, for
example, the subharmonic mode driven at frequency ωC , so that the tran-
sition from the ground state to the first excited state is resonantly excited.
Assuming a large enough splitting, both transitions to the second excited state
are far from resonance. The lower levels then behave as a two-state system
(Sect. 13.3.3), and all of the fluctuation phenomena of Sect. 2.3 should emerge
to replace the usual behavior of the degenerate parametric oscillator.

Strong coupling of a slightly different kind underlines the definition of
cavity QED in the perturbative limit. In this case we take g/κ� 1, g/κp � 1,
with g2/κκp ∼ 1. These are the appropriate strong coupling conditions when
the pump mode is adiabatically eliminated (Sects. 12.1.1 and 12.1.3). They
allow that mode to act as a reservoir, opening up a second channel for the
loss of subharmonic photons. Thus, master equation (12.10) acquires its two-
photon loss term with rate ∼ g2/κp. What we have here, in the language of
cavity QED, is an example of cavity-enhanced emission (Sect. 13.2.1). Since
the additional loss is nonlinear, its presence is felt in this case even if the
coupling is arbitrarily weak; it certainly cannot be neglected for sufficiently
high excitation. Once again, though, it is the effect at the level of a few quanta
that is of concern in cavity QED. The requirement for an enhanced loss rate
at this level is g2/κp ∼ κ.

13.2 Cavity QED in the Perturbative Limit

As noted above, the degenerate parametric oscillator is not a suitable system
for studying cavity QED in the laboratory. The strong coupling requirements
cannot be met. They can for the near-resonant interaction of a cavity mode
with an atomic transition. We therefore make our initial survey of cavity QED
effects by considering the system illustrated in Fig. 13.2. A single two-level
atom is localized at an antinode of a standing-wave cavity that supports one
TEM00 mode near-resonant with the atom. The coupling to all nonresonant
modes is neglected. The cavity has length L and the Gaussian mode waist is
w0. The system S, so defined, is described by the Jaynes–Cummings Hamil-
tonian [13.4, 13.5],

HS = HA +HF +HAF

≡ 1
2�ωAσz + �ωCa

†a+ i�g(a†σ− − aσ+), (13.6)

with dipole coupling constant

g ≡
√

ωCd2

2�ε0VQ
, VQ ≡ π(w0/2)2L, (13.7)
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Fig. 13.2. Schematic diagram of single-atom cavity QED. The atom is localized
on axis at an antinode of the standing-wave TEM00 mode

where VQ is the mode volume. The cavity field operator is

Ê(r, t) = i

√
�ωC

2ε0VQ
cos[(ωC/c)z + φC ]e−(x2+y2)/w2

0

× [e0ã(t)e−i(ωCt−φ′
C) − e∗0ã

†(t)ei(ωCt−φ′
C)], (13.8)

where φ′C ≡ arg(−e∗0 · d12).

Note 13.1. We may alternatively write VQ as V ′Q/2 with V ′Q ≡ π(w0/
√

2)2L,
where the explicit factor of 1/2 is the spatial average of cos2(kCz). This is
what was done in (9.82a); in that expression the factor AL̄ corresponds to the
volume V ′Q. Note that V ′Q is the volume of a cylinder whose radius is equal
to the half-width of the Gaussian transverse profile of the mode amplitude;
when the 1/2 is absorbed into the definition of the mode volume, VQ is the
volume of a cylinder whose radius is equal to the half-width of the transverse
profile of the mode intensity.

Setting out the rest of the model repeats things we have done before. The
atom and cavity mode are both coupled to radiative reservoirs. For the cavity
mode there is loss through the mirrors, with transmission coefficients T1 and
T2, and there is spontaneous emission from the atom which exits through the
sides of the cavity. The Hamiltonian for the complete reservoir R is

HR = Ha1
R +Ha2

R +HA
R , (13.9)

with (μ = 1, 2)

Haμ
R ≡

∑

j

�ωjr
†
aμjraμj , (13.10a)

HA
R ≡

∑

k,λ

�ωkr
†
k,λrk,λ, (13.10b)
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and the interaction between S and R is

HSR = Ha1
SR +Ha2

SR +HA
SR, (13.11)

with (μ = 1, 2)

Haμ
SR ≡ �(aΓ †aμ + a†Γaμ), (13.12a)

HA
SR ≡ �(σ−Γ

†
A + σ+ΓA), (13.12b)

where

Γ †aμ ≡
∑

j

κ∗aμjr
†
aμj , Γaμ ≡

∑

j

κaμjraμj , (13.13a)

Γ †A ≡
∑

k,λ

κ ∗k,λr
†
k,λ, ΓA ≡

∑

k,λ

κk,λrk,λ. (13.13b)

The master equation may be written down from (1.73) and (2.26), noting
the issues concerning internal coupling discussed in Sect. 2.3.2. For simplicity
we take n̄ = 0, which is appropriate for optical frequencies, and then our
model is defined by the master equation for single-atom cavity QED at zero
temperature (n̄ = 0)

ρ̇ = −i 12ωA[σz , ρ] − iωC [a†a, ρ] + g[a†σ− − aσ+, ρ]

+
γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+ κ(2aρa† − a†aρ− ρa†a), (13.14)

with spontaneous emission rate

γ =
1

4πε0
4ω3

Ad
2
12

3�c3
, (13.15)

the Einstein A coefficient, and cavity mode damping rate

κ ≡ 1
2 (γa1 + γa2), (13.16)

with (μ = 1, 2)
γaμ ≡ 2πgaμ(ωC)|κaμ(ωC)|2. (13.17)

Written in terms of the mirror transmission coefficients (see the paragraph
below Note 7.10), the cavity linewidth is

κ = 1
2 (T1 + T2)c/2L. (13.18)

Note 13.2. Strictly speaking γ is not the Einstein A coefficient, since the sum
over modes in the expressions for ΓA and Γ †A excludes those modes whose k-
vectors lie within the solid angle subtended by the cavity. These are accounted
for in the interaction Hamiltonian HAF and the coupling of the cavity mode
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to its own two reservoirs. By taking γ to be the full Einstein A coefficient, we
specialize to the case where the solid angle subtended by the cavity mode is
very small. Cavities of this type are used quite widely in cavity QED experi-
ments at optical frequencies [13.6, 13.7, 13.8, 13.9].

The output fields, the fields transmitted though the cavity mirrors, are exci-
tations of the reservoir. They may be expanded in a similar fashion to those of
Chap. 9 [Sect. 9.2.5, with AL′ → 2V ′Q ≡ π(w0/2)2L′]. Written in photon flux
units (strictly the square root of photon flux), there is the forward-propagating
field (z > L/2)

Ê→(z, t) =
√
c/2L′ra2f (t′) +

√
γa2a(t′), (13.19)

where ct′ ≡ ct− (z − L/2), and the backward-propagating field (z < −L/2)

Ê←(z, t) =
√
c/2L′ra1f (t′) +

√
γa1a(t′), (13.20)

where ct′ ≡ ct+(z+L/2). Both are composed of a free field and a source field
radiated by the cavity QED system. The free fields are expanded in reservoir
modes as

ra2f (t′) ≡ −iei(φR−φT )e−i[(ωC/c)L/2+φC+φ′
C ]

∑

j

√
ωj
ωC

ra2j(0)e−iωjt
′
,

(13.21a)

ra1f (t′) ≡ −iei(φR−φT )e−i[(ωC/c)L/2−φC+φ′
C ]

∑

j

√
ωj
ωC

ra1j(0)e−iωjt
′
,

(13.21b)

where φR and φT are phase changes upon reflection and transmission at the
mirrors, and φC and φ′C are defined by (13.8).

It might be helpful to recall the phase relationships encountered when
setting up cavity modes for the laser and the degenerate parametric oscillator.
Firstly, energy conservation at the mirrors requires (Note 7.12)

φR − φT = π/2. (13.22a)

Then there is the resonance condition for the cavity mode (Eq. 9.9),

2[φR + (ωC/c)L] = N2π, N an integer, (13.22b)

and finally, from the boundary condition at L/2 (Eq. 9.10),

φR + [(ωC/c)L+ 2φC ] = M2π, M an integer. (13.22c)
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13.2.1 Cavity-Enhanced Spontaneous Emission

In 1946 Purcell proposed the first scheme for realizing enhanced spontaneous
emission [13.10]. No cavity was involved, but the main idea was the same:
if a two-level system is coupled to a damped oscillator with high enough
coupling strength, and the oscillator has weak enough damping, a new loss
channel can be opened up to significantly increase the overall radiative decay
rate of the two-level system. Purcell had a radiofrequency transition in mind,
and the damped oscillator was a resonant electronic circuit. The idea has since
been implemented at both microwave [13.11] and optical frequencies [13.12,
13.13] as true cavity-enhanced emission, with the role of the oscillator taken by
a mode of an electromagnetic cavity. Purcell’s idea also works in the absence
of an actual cavity, but near a reflecting surface [13.14, 13.15], where one can
think of the enhancement as being due to constructive interference between
an outgoing and a reflected radiation reaction field.

Cavity-enhanced spontaneous emission is an effect in the perturbative limit
of cavity QED; it is explained within perturbation theory. While it is desir-
able that the damping of the oscillator should not be too fast, its decay time
must nevertheless be short enough for the oscillator to be treated as a reser-
voir; any photon transferred to the oscillator must be dissipated before being
reabsorbed by the two-level system—alternatively, the oscillator quasimode
bandwidth must be much larger than the linewidth of the two-level system,
thus permitting the application of Fermi’s golden rule.

It is often said that the enhanced emission rate is caused by an increase
in the density of states; but while the density of states is certainly an impor-
tant factor in Fermi’s golden rule, this way of speaking is not strictly correct.
Imagine the cavity of Fig. 13.2, embedded in a one-dimension universe, as in
Fig. 9.4. Surely the presence of the cavity hardly changes the density of states.
The length of the cavity is negligible (L/L′ → 0), and the density of states
is essentially 2L′/πc whether there is a cavity present or not. What changes
are the mode functions, hence the mode coupling strengths to the two-level
atom. There are some modes, near-resonant with the cavity, that have much
greater amplitudes inside than outside the cavity, and there are other nonres-
onant modes that have much smaller amplitudes inside than out. If the atom
is located inside the cavity, it couples more strongly to those modes that have
increased amplitude inside the cavity; it still couples to these modes if located
outside the cavity but of course at considerably reduced strength. When the
more strongly coupled modes are the main ones for determining the atomic
decay rate—i.e., the atomic transition is near-resonant with the cavity—the
decay rate is increased. It is thus the enhancement of the electromagnetic
field amplitude inside a resonant cavity that increases the spontaneous emis-
sion rate. Although the context is quantum mechanical when we speak of
spontaneous emission, the mechanism increasing the emission rate is largely
classical and could have been anticipated from antenna theory.
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In this section we look at the perturbative treatment of cavity-enhanced
emission for the system depicted in Fig. 13.2. We approach the problem from
two different points of view, the first set in the Schrödinger picture using the
master equation approach, and the second based upon Heisenberg equations
of motion.

In the first calculation, we adiabatically eliminate the cavity mode from
master equation (13.4), following the approach of Sect. 12.1.3. We write the
master equation in the interaction picture,

ρ = e−i[(
1
2ωAσz+ωCa

†a)t]ρ̃ei[(
1
2ωAσz+ωCa

†a)t],

and for exact resonance (ωC = ωA) as

˙̃ρ = (LA + La + LAa)ρ̃, (13.23)

with superoperators

LA ≡ γ

2
(2σ− · σ+ − σ+σ− · − · σ+σ−), (13.24a)

La ≡ κ(2a · a† − a†a · − · a†a), (13.24b)

LAa ≡ g[a†σ− − aσ+, · ]. (13.24c)

We seek an equation of motion for the reduced density operator of the atom
alone,

ρ̃A(t) ≡ tra[ρ̃(t)], (13.25)

under the assumption that in the bad-cavity limit, κ � γ/2, g, the density
operator approximately factorizes as

ρ̃(t) ≈ ρ̃A(t)
(|0〉〈0|)

a
. (13.26)

Thus we introduce an ansatz equivalent to (12.29), where the cavity mode
plays the role of a reservoir in the vacuum state. Then, following (12.30)–
(12.32), we transform (13.23) to obtain

˙̄ρ = L̄Aa(t)ρ̄, (13.27)

with
ρ̄(t) ≡ e−(LA+La)tρ̃(t), (13.28)

and
L̄Aa(t) ≡ e−(LA+La)tLAae(LA+La)t. (13.29)

Introducing the trace over the cavity mode and following the earlier calculation
to get equations equivalent to (12.26) and (12.37), we arrive at

˙̄ρA =
∫ t

0

dt′tra[L̄Aa(t)L̄Aa(t′)ρ̄(t′)], (13.30)
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where

L̄Aa(t) = −g[Ā1(t)ā1(t) − Ā2(t)ā2(t) + Ā†1(t)ā†1(t) − Ā†2(t)ā†2(t)], (13.31)

with

Ā1(t) ≡ e−LAt(σ+·)eLAt, Ā2(t) ≡ e−LAt(σ−·)eLAt,

ā1(t) ≡ e−Lat(a ·)eLat, ā2(t) ≡ e−Lat(a†·)eLat.
(13.32a)

It remains for us to find the explicit time dependences of the cavity mode
operators, and then to take the trace and evaluate the integrals in the manner
described below (12.39). For ā1(t), ā2(t) and their conjugates, using (12.23),
(12.24), and (12.14), we obtain

ā1(t) = e−κt(a ·), (13.33a)

ā†1(t) = e−κt(· a†), (13.33b)

ā2(t) = eκt(a†·) + (e−κt − eκt)(· a†), (13.33c)

ā†2(t) = eκt(· a) + (e−κt − eκt)(a ·). (13.33d)

Finally, after retracing the steps from (12.40) to (12.43), we reach the equation
of motion

˙̄ρA =
g2

κ
e−LAt

[
2(σ− · σ+) − (σ+σ−·) − (· σ+σ−)

]
eLAtρ̄A; (13.34)

thus, inverting the transformation (13.28), the master equation for cavity-
enhanced (on resonance) spontaneous emission at zero temperature (n̄ = 0) is

ρ̇A = −i 12ωA[σz, ρA] +
γ

2
(1 + 2C1)(2σ−ρAσ+ − σ+σ−ρA − ρAσ+σ−),

(13.35)

where

2C1 ≡ 2
g2

γκ
(13.36)

is the spontaneous emission enhancement factor.
Perhaps the technical detail in this approach to the adiabatic elimination

is a little complex; but when the algebra is all over, the physics that goes into
the enhanced spontaneous emission rate is rather trivial: the square of the
coupling constant is just what we would expect from a perturbative calculation
in the spirit of Fermi’s golden rule, while the inverse cavity linewidth comes
from the integration of the cavity quasimode correlation function over time—
in the density of states way of thinking, it is 1 mode divided by the mode
linewidth.
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Exercise 13.1. Repeat the adiabatic elimination of the cavity mode for
nonzero temperature (n̄ �= 0). Show that (13.33a)–(13.33d) are replaced by
the expressions

ā1(t) = [(1 + n̄)e−κt − n̄eκt](a ·) − n̄(e−κt − eκt)(· a), (13.37a)

ā†1(t) = [(1 + n̄)e−κt − n̄eκt](· a†) − n̄(e−κt − eκt)(a†·), (13.37b)

ā2(t) = [(1 + n̄)eκt − n̄e−κt](a†·) + (1 + n̄)(e−κt − eκt)(· a†), (13.37c)

ā†2(t) = [(1 + n̄)eκt − n̄e−κt](· a) + (1 + n̄)(e−κt − eκt)(a ·). (13.37d)

Hence derive the master equation for cavity-enhanced (on resonance) sponta-
neous emission at nonzero temperature:

ρ̇A = −i 12ωA[σz , ρA]

+
γ

2
(1 + 2C1)(1 + n̄)(2σ−ρAσ+ − σ+σ−ρA − ρAσ+σ−)

+
γ

2
(1 + 2C1)n̄(2σ+ρAσ− − σ−σ+ρA − ρAσ−σ+). (13.38)

The treatment of spontaneous emission in Sect. 2.2 produced a frequency shift
Δ (Eq. 2.22) to go along with the spontaneous decay rate γ (Eq. 2.21). No
frequency shift has been found in the above treatment of cavity-enhanced
spontaneous emission. This is not because there is none in principle. Indeed,
it is apparent from (2.22) that the shift obtained for ordinary spontaneous
emission would be zero if g(k)|κ(k, λ)|2 were a symmetric function about
the atomic resonance frequency kc = ωA. We have found no cavity-enhanced
frequency shift (see [13.13] for example) for essentially the same reason: we
took the cavity mode resonant with the atom, which makes its lineshape
symmetric about ωA. We now rederive the cavity-enhanced emission rate from
a Heisenberg picture point of view. Here we include a detuning of the cavity
mode from the atom so that the frequency shift will appear.

We make the calculation on the basis of coupled moment equations, work-
ing towards modified optical Bloch equations to describe the atomic decay.
From master equation (13.14), the equations of motion for the coupled cavity
mode amplitude, atomic polarization, and inversion are

d〈a〉
dt

= −(κ+ iωC)〈a〉 + g〈σ−〉, (13.39a)

d〈a†〉
dt

= −(κ− iωC)〈a†〉 + g〈σ+〉, (13.39b)

d〈σ−〉
dt

= −
(γ

2
+ iωA

)
〈σ−〉 + g〈σza〉, (13.39c)

d〈σ+〉
dt

= −
(γ

2
− iωA

)
〈σ+〉 + g〈a†σz〉, (13.39d)

d〈σz〉
dt

= −γ(〈σz〉 + 1
)− 2g

(〈σ+a〉 + 〈a†σ−〉
)
. (13.39e)
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The Heisenberg equation of motion for the cavity field amplitude [correspond-
ing to (7.130) and (9.126)] is

ȧ = −(κ+ iωC)a+ gσ− −
√
c/2L′

√
2κraf , (13.40)

where
raf ≡ (1/

√
2κ)

(√
γa1ra1f +

√
γa2ra2f

)
, (13.41)

with the free fields defined explicitly in (13.21a) and (13.21b).
Our approach is to adiabatically eliminate the cavity field by formally

integrating the Heisenberg equation of motion and substituting the result into
(13.39c)–(13.39e) thus obtaining a closed set of equations for the atom. The
formal integration runs parallel to the integration used in the derivation of
the scattered field in resonance fluorescence (Sect. 2.3.1) and the laser output
field (Sect. 7.3.1). There, however, the reservoir modes were the focus of the
attention; here it is the system operator that couples to the reservoir. The
result of the formal integration of (13.40) is

ã(t) = a(0)e−κ(1+iΔC)t + g

∫ t

0

dt′σ̃−(t− t′)e−κ(1+iΔC)t′

−
√
c/2L′

√
2κ

∫ t

0

dt′eiωA(t−t′)raf (t− t′)e−κ(1+iΔC)t′ , (13.42)

where we introduce the atom-cavity detuning,

ΔC ≡ ωC − ωA
κ

, (13.43)

and slowly-varying operators

ã ≡ aeiωAt, ã† ≡ a†e−iωAt,

σ̃− ≡ σ−eiωAt, σ̃+ ≡ σ+e
−iωAt.

(13.44a)

Note that although ã began its life as a system operator in master equation
(13.14), we should read (13.42) as an expression relating a reservoir field to
a source field after the fashion of (2.75) and (7.105) (also see Note 13.5); the
second and third terms on the right-hand side of (13.42) are the source-field
and free-field contributions, respectively. As noted above, in the perturbative
regime of cavity QED, the cavity quasimode acts as a reservoir for the atom.

Our principal concern is with the mean-value equations for the atom. Writ-
ten in terms slowly-varying operators, from (13.39c)–(13.39e), these are

d〈σ̃−〉
dt

= −γ
2
〈σ̃−〉 + g〈σz ã〉, (13.45a)

d〈σ̃+〉
dt

= −γ
2
〈σ̃+〉 + g〈ã†σz〉, (13.45b)

d〈σz〉
dt

= −γ(〈σz〉 + 1
)− 2g

(〈σ̃+ã〉 + 〈ã†σ̃−〉
)
. (13.45c)
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Although the operator products could be written in either order, there is
a definite advantage to adopting normal order as shown. With this ordering
of the operator products, it follows immediately that the free-field terms may
be dropped when (13.42) is substituted into (13.45a)–(13.45c); in every case,
upon evaluating the expectation the free-field operators act upon the vacuum
state of the reservoir R. With the operator products written in any other
order, we would need to account explicitly for correlations between the free-
field operators raf (t−t′) and r†af (t−t′) and the source operators σ̃−(t), σ̃+(t),
and σz(t) (see Sect. 7.3). As things are written, in (13.45a) for example, we
have

〈(σz ã)(t)〉 = 〈σz(t)a(0)〉e−κ(1+iΔC)t + g

∫ t

0

dt′〈σz(t)σ̃−(t− t′)〉e−κ(1+ΔC)t′ .

(13.46)

In the bad-cavity limit the cavity field correlation time is very short compared
to the timescale for the decay of the atom. The first term on the right-hand
side decays rapidly to zero, while, inside the integral, the atomic correlation
function may be evaluated at t′ = 0. Thus, in the adiabatic or Markov ap-
proximation, we can write

〈(σz ã)(t)〉 = g〈σz(t)σ̃−(t)〉
∫ ∞

0

dt′e−κ(1+iΔC)t′

=
g

κ

1 − iΔC

1 +Δ2
C

〈(σz σ̃−)(t)〉. (13.47a)

In a similar fashion, for the other three operator products, we have

〈(ã†σz)(t)〉 =
g

κ

1 + iΔC

1 +Δ2
C

〈(σ̃+σz)(t)〉, (13.47b)

〈(σ̃+ã)(t)〉 =
g

κ

1 − iΔC

1 +Δ2
C

〈(σ̃+σ̃−)(t)〉, (13.47c)

〈(ã†σ̃−)(t)〉 =
g

κ

1 + iΔC

1 +Δ2
C

〈(σ̃+σ̃−)(t)〉. (13.47d)

Then, using (2.25a) and (2.132),

〈σz ã〉 = − g

κ

1 − iΔC

1 +Δ2
C

〈σ̃−〉, (13.48a)

〈ã†σz〉 = − g

κ

1 + iΔC

1 +Δ2
C

〈σ̃+〉, (13.48b)

〈σ̃+ã〉 =
1
2
g

κ

1 − iΔC

1 +Δ2
C

(〈σz〉 + 1
)
, (13.48c)

〈ã†σ̃−〉 =
1
2
g

κ

1 + iΔC

1 +Δ2
C

(〈σ̃z〉 + 1
)
. (13.48d)
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Finally, after substituting (13.48a)–(13.48d) into the right-hand side of (13.45a)–
(13.45c), we arrive at the optical Bloch equations for cavity-enhanced sponta-
neous emission at zero temperature (n̄ = 0):

d〈σ−〉
dt

= −
(
γ′

2
+ iω′A

)
〈σ−〉, (13.49a)

d〈σ+〉
dt

= −
(
γ′

2
− iω′A

)
〈σ+〉, (13.49b)

d〈σz〉
dt

= −γ′(〈σz〉 + 1
)
, (13.49c)

where, with the atom-cavity detuning included, the cavity-enhanced emission
rate is

γ′ = γ

(
1 + 2C1

1
1 +Δ2

C

)
, (13.50)

and we obtain the advertised cavity-induced frequency shift,

ω′A − ωA = −γ
2
2C1

ΔC

1 +Δ2
C

. (13.51)

Of course, by including an atom-cavity detuning, the same results are obtained
from the adiabatic elimination within the master equation.

Exercise 13.2. Repeat the derivation of master equation (13.35) with the
cavity mode detuned from the resonance frequency of the atom; hence derive
the cavity-enhanced emission rate (13.50) and the cavity-induced frequency
shift (13.51) in the Schrödinger picture approach.

The spontaneous emission enhancement factor can be expressed in terms of
the solid angle subtended by the cavity mode. From its definition in (13.36),
using (13.7) and (13.15), and noting that ωC ≈ ωA, we write

2C1 ≡ 2g2

γκ

= 2
ωA(e0 · d12)2

2�ε0π(w0/2)2L
4πε0

3�c3

4ω3
Ad

2
12

2L
(T1 + T2)c

=
2

T1 + T2

(e0 · d12)2

d2
12/3

(
λ

πw0

)2

. (13.52)

Note then that the TEM00 cavity mode has an expanding width as a function
of distance from the midpoint along the cavity axis [13.16],

w(z) = w0

√

1 +
z2

z2
0

, z0 ≡ πw2
0

λ
. (13.53)
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Fig. 13.3. Sketch of the solid angle subtended by an expanding Gaussian beam

The relationship between the expanding width and solid angle is illustrated
in Fig. 13.3. For large z/z0, the width increases as w(z) ≈ zλ/πw0; therefore
the mode subtends the solid angle

ΔΩ =
π
[
w(z)/

√
2
]2

z2
=

1
π

(
λ

w0

)2

, (13.54)

where w(z)/
√

2 is the radial distance to the 1/e point of the field amplitude.
It follows from these results that

2C1 =
8

T1 + T2

(e0 · d12)2

d2
12/3

ΔΩ

4π
. (13.55)

Typical ultra-high-finesse optical cavities have T1 + T2 ∼ 10−5 (transmission
plus absorption) [13.17], for which an enhancement factor of between one or
two orders of magnitude is possible even though ΔΩ is extremely small (see
Note 13.2).

Note 13.3. It may be difficult to achieve a large enhancement factor while also
satisfying the requirements of the bad-cavity limit (κ� γ/2, g). Large values
of 2C1 generally move in the direction of nonperturbative cavity QED. Some
examples taken from the literature are:

1. (g, κ, γ)/2π = (0.22, 11, 0.175)MHz with 2C1 = 0.05 [13.12] (perturbative,
optical frequency);

2. (g, κ, γ)/2π = (120, 40, 5.2)MHz with 2C1 = 138 [13.18] (nonperturbative,
optical frequency);

3. (g, κ, γ)/2π = (39, 223, 0.024)kHz with 2C1 = 568 [13.11] (perturbative,
microwave frequency);

4. (g, κ, γ)/2π = (25, 0.36, 0.005)kHz with 2C1 = 6.8 × 105 [13.19] (nonper-
turbative, microwave frequency).

Note 13.4. When the solid angle subtended by the cavity mode is not neg-
ligible, the spontaneous emission rate can be inhibited as well as enhanced.
This possibility is apparent from the expression derived for the emission rate
(Eq. 13.50). By detuning the cavity sufficiently far from the atomic resonance,
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the contribution 2C1/(1 +Δ2) to γ′ is turned off. Then if the rate γ that re-
mains is smaller than the free-space Einstein A coefficient (as it is for large
solid angle), we speak of cavity-inhibited spontaneous emission. For details
see [13.20, 13.21, 13.22, 13.12, 13.13].

13.2.2 Cavity-Enhanced Resonance Fluorescence

Let us make a small extension to our model for cavity-enhanced spontaneous
emission. We introduce the classical driving field

E0(r, t) = e0
1
2E0e

−(x2+y2)/w2
0e−i[ω0(t−z/c)−φ0] + c.c., (13.56)

which is mode-matched to the cavity and traveling in the positive z direction—
i.e., incident upon the left-hand mirror in Fig. 13.2. Then master equation
(13.14) is generalized to the master equation for single-atom cavity QED with
coherent driving of the cavity mode:

ρ̇ = −i 12ωA[σz , ρ] − iωC [a†a, ρ]

+ g[a†σ− − aσ+, ρ] − i[Ē0e
−iω0ta† + Ē∗0 eiω0ta, ρ]

+
γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+ κ(2aρa† − a†aρ− ρa†a), (13.57)

where we introduce the scaled driving field amplitude

Ē0 ≡ ei(φT +φ0−φC−φ′
C)

√
2ε0VQ
�ωC

(c/2L)
√
T1E0. (13.58)

The relationship between Ē0 and E0 is similar to that in (9.81). Its derivation
can be traced in detail through Sects. 14.2.2 and 14.3.

We return to master equation (13.57) repeatedly throughout our discussion
of single-atom cavity QED in the remainder of this chapter and in Chap. 16.
This equation contains a surprising amount of physics, and poses all the dif-
ficulties associated with fluctuations outside the small-noise limit. By quan-
tizing the cavity mode, we have formulated a model that takes us beyond the
trivial example of free-space resonance fluorescence. Of course, the Jaynes–
Cummings Hamiltonian, if it is taken on its own, can be diagonalized (Exercise
13.10), and certainly its diagonalization explains many things in cavity QED.
Nevertheless, so far as quantum fluctuations in the presence of coherent driv-
ing and damping are concerned, the problems posed by (13.57) cannot be
solved analytically in the general case. In certain parameter regimes, though,
an analytical treatment is possible. We look at perhaps the simplest example
in this section, what might be termed cavity-enhanced resonance fluorescence.

Continuing with the simplification provided by the perturbative limit but
now taking the driving field into account, and specializing to the resonant
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case (ω0 = ωC = ωA), the master equation for cavity-enhanced resonance
fluorescence is

ρ̇A = −i 12ωA[σz , ρA] + i
g

κ
[Ē0e

−iωAtσ+ + Ē∗0 eiωAtσ−, ρA]

+
γ

2
(1 + 2C1)(2σ−ρAσ+ − σ+σ−ρA − ρAσ+σ−). (13.59)

With the addition of the driving field, the cavity field operator (Eq. 13.42) is
given by

ã(t) = −i Ē0

κ
+
g

κ
σ̃−(t) + v.f., (13.60)

where there is no need to explicitly write out the vacuum field contribution,
denoted here by v.f.

Note 13.5. Master equation (13.57) provides a description within the Schrö-
dinger picture, while the adiabatically eliminated cavity field operator is given
as a Heisenberg picture expression. At first sight, combining the two pictures
in this way might seem a little confusing; would it not be preferable to work
with the Schrödinger picture at all times? In fact, combining the pictures is
helpful, because it enables us to break our problem up into two easily tackled
parts. The strategy is not something new; we do this, for example, when
using expressions like (2.83) and (7.111) to relate an output field operator
to an operator of the source; these expressions are given in the Heisenberg
picture and (13.59) [also (13.42)] is another of the same kind. Once we are
in possession of such expressions, we may work with a master equation in
the Schrödinger picture to analyze the source part of the problem. In this
way we account for quantum correlations between a system S (source) and
its reservoir R (output field) without explicitly constructing a state vector
that entangles the two, as would be required if we were to work entirely
within the Schrödinger picture. This division of labor relies on the separation
of time scales first encountered in the context of the Markov approximation
(Sect. 1.3.3). Here we encounter it in a slightly different form, by making an
adiabatic elimination.

Master equation (13.59) is identical to the master equation for free-space res-
onance fluorescence (Eq. 2.96), except that it has an enhanced spontaneous
emission rate, γ → γ(1 + 2C1). Everything discussed in Sects. 2.3.3–2.3.5 is
transferable. It is important to remember, however, that the master equation
and quantum regression formula are used, ultimately, to calculate the statis-
tical properties of outgoing fields. At this level there is a difference between
free-space resonance fluorescence and resonance fluorescence from an atom
in a cavity. With the cavity in place, the forward- and backward-scattered
light constitute distinct output channels, with statistical properties that are
measurably different from those of the light scattered out the side of the
cavity—which looks like free-space resonance fluorescence—or of the incident
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laser light. The spectrum (Sect. 2.3.4) only changes in the ratio of the incoher-
ent and coherent intensities. The second-order correlation function (Sect. 2.3.5
and 2.3.6), on the other hand, is modified significantly. It shows either photon
antibunching or photon bunching depending on the size of the spontaneous
emission enhancement factor.

Consider first the steady-state averages of atomic operators, which may
be taken directly from (2.120a) and (2.120b). These are

〈σ̃∓〉ss = ±i 1√
2
e±i arg(Ē0) Y ′

1 + Y ′2
, (13.61a)

〈σz〉ss = − 1
1 + Y ′2

, (13.61b)

with

Y ′ ≡
√

2(2g|Ē0|/κ)
γ′

=
|Ē0|/κ√
n′sat

, (13.62)

where

n′sat ≡
γ′2

8g2
(13.63)

is the saturation photon number calculated from the cavity-enhanced sponta-
neous emission rate. Then, from (13.60) and (13.61a), the mean amplitude of
the intracavity field is

〈ã〉ss = −i Ē0

κ

(
1 − 2C1

1 + 2C1

1
1 + Y ′2

)
. (13.64)

Note that it is not 〈ã〉ss, but rather −iĒ0/κ, that appears as the amplitude of
the field driving the atom in the second term on the right-hand side of (13.59).
The effect of radiation reaction—the term (g/κ)σ̃−(t) in (13.60)—is not seen
as a mean field by the atom; it appears through the cavity enhancement of
spontaneous emission.

Before saying something about the fluctuations, let us look at the conser-
vation of photon flux. The sum of all output fluxes should equal the photon
flux of the driving field. There are three output channels to consider: for-
wards scattering, backwards scattering, and off-axis scattering from the sides
of the cavity. From (13.19), we write the forward-scattered field, in units of
the square root of photon flux, as

Ê→(z, t) =
√
γa2ã(t′)e−iωC t

′
+ v.f., (13.65)

where ct′ ≡ ct−(z−L/2). The backwards field takes a similar form, but in this
case the reservoir carries a coherent excitation, which is needed to account for
the direct reflection of the incident field from the input mirror. Derivation of
the explicit expression is left as an exercise.
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Exercise 13.3. From (13.20), show that the backward-scattered field, ex-
pressed in units of the square root of photon flux, is given by

Ê←(z, t) =
√
γa1

[
i
Ē0

γa1
+ ã(t′)

]
e−iωCt

′
+ v.f., (13.66)

where ct′ ≡ ct + (z + L/2) and Ē0 is defined in (13.58). Note the phase
shift on the term iĒ0/γa1, so that in an empty cavity with symmetric loss
(γa1 = γa2 = κ) the mean reflected field amplitude is zero.

Now working from (13.60), (13.65), and (13.66), we obtain for the forwards
photon flux

〈Ê†→Ê→〉ss

= γa2

{( |Ē0|
κ

)2

+
|Ē0|
κ

g

κ

[
ie−i arg(Ē0)〈σ̃−〉ss + c.c.

]
+
( g
κ

)2

〈σ̃+σ̃−〉ss
}

,

(13.67)

and for the backwards photon flux

〈Ê†←Ê←〉ss

= γa1

{(
κ

γa1
− 1

)2( |Ē0|
κ

)2

−
(
κ

γa1
− 1

) |Ē0|
κ

g

κ

[
ie−i arg(Ē0)〈σ̃−〉ss + c.c.

]

+
( g
κ

)2

〈σ̃+σ̃−〉ss
}

. (13.68)

Photon flux conservation can be demonstrated from these results.

Exercise 13.4. From (13.67) and (13.68), and the flux of photons scattered
by the atom out the sides of the cavity, show that photon flux is conserved
overall—i.e., that the sum of the three outgoing photon fluxes equals the
photon flux, |Ē0|2/γa1, of the incident field. The latter is the square of the
first term in the bracket on the right-hand side of (13.66).

Let us now turn to the fluctuations. The analysis can be made along the lines
of Sects. 2.3.4–2.3.6. Nothing changes for the fluorescence out the sides of
the cavity, other than the different scaling of Y ′ in (13.62) compared with
the scaling of Y in (2.112)—i.e., γ is replaced by γ′. As mentioned, though,
there are changes for the forward- and backward-scattered fields. For them,
we introduce the operators

Δã ≡ ã− 〈ã〉ss
=
g

κ
(σ̃− − 〈σ̃−〉ss) + v.f., (13.69a)
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and

Δã† ≡ ã† − 〈ã†〉ss
=
g

κ
(σ̃+ − 〈σ̃+〉ss) + v.f., (13.69b)

and, as in (2.122)–(2.126), divide the photon flux into coherent and incoherent
components. From (13.64) and (13.65), the coherent part of the forwards
scattering is

F coh
→ = γa2〈ã†〉ss〈ã〉ss

= γa2

( |Ē0|
κ

)2(
1 − 2C1

1 + 2C1

1
1 + Y ′2

)2

, (13.70)

and from (13.65a) and (13.65b), and (13.61a) and (13.61b), the incoherent
part is

F inc
→ = γa2〈Δã†Δã〉ss

= γa2

( g
κ

)2 (〈σ̃+σ̃−〉ss − 〈σ̃+〉ss〈σ̃−〉ss
)

=
γa2

γa1 + γa2
γ2C1

1
2

Y ′4

(1 + Y ′2)2
. (13.71)

The relative magnitudes of the two pieces tell us whether the quantum fluc-
tuations are large or small. For the purposes of a comparison with free-space
resonance fluorescence, it is useful to rewrite (13.70) and (13.71) as

F coh
→ = γa2n

′
satY

′2
(

1 − 2C1

1 + 2C1

1
1 + Y ′2

)2

= γa2n
′
sat

[
1 + Y ′2(1 + 2C1)

1 + 2C1

]2
Y ′2

(1 + Y ′2)2
, (13.72)

and

F inc
→ = γa2

γ

2κ
2C1

1
2

Y ′4

(1 + Y ′2)2

= γa2n
′
sat

(
2C1

1 + 2C1

)2
Y ′4

(1 + Y ′2)2
, (13.73)

where we have used the relationship γ/2κ = 4C1n
′
sat/(1+2C1)2, which follows

from the definition of the saturation photon number (Eq. 13.63) and the en-
hanced spontaneous emission rate (Eq. 13.50). The sum of the two expressions
gives the total forwards photon flux,
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〈Ê→Ê→〉ss = F coh
→ + F inc

→

= γa2n
′
sat

Y ′2

(1 + Y ′2)2
[1 + Y ′2(1 + 2C1)]2 + 4C2

1Y
′2

(1 + 2C1)2

= γa2n
′
sat

Y ′2

(1 + Y ′2)2
1 + Y ′2[1 + (1 + 2C1)2] + Y ′4(1 + 2C1)2

(1 + 2C1)2

= γa2n
′
satY

′2 (1 + 2C1)−2 + Y ′2

1 + Y ′2
. (13.74)

Note the factors on the far right of (13.72) and (13.73); these are the free-
space results (2.125) and (2.126), evaluated with γ → γ′. The behavior of the
three photon fluxes, (13.72), (13.73), and (13.74), as a function of parameters
is illustrated in Fig. 13.4.

When 2C1 is small, F coh
→ is approximately linear in Y ′2 and F inc

→ is negligi-
ble. In this case, the forwards flux is dominated by the straight-through trans-
mission of the incident light. For large 2C1, the incoherent flux is generally
a significant contribution. Indeed, for nonsaturating intensities it dominates;
now it is the coherent part of the forwards scattering that is negligible, due to
cavity-enhanced absorption: the straight-through transmission of the incident
light interferes destructively with the cavity-enhanced reradiation from the
atom. Note also that for large 2C1, F inc→ /F coh→ → 1/Y ′2. This is exactly the

Fig. 13.4. Variation of (i) the coherent, (ii) the incoherent, and (iii) the total
photon flux in the forwards direction as a function of the incident intensity Y ′2: for
(a) 2C1 = 0.5, (b) 2C1 = 5.0, (c) 2C1 = 50.0
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inverse of the ratio for the sideways fluorescence and resonance fluorescence
in free space.

Exercise 13.5. When 2C1 is small the forwards photon flux is essentially the
transmitted flux, γa2(|Ē0|/κ)2, of the empty cavity. When it is large, there is
significant absorption at weak and moderate levels of excitation. Show that at
high excitation, so long as the conditions for the adiabatic elimination hold,
the deviation from γa2(|Ē0|/κ)2 is necessarily much less than γa2 × 1; thus,
the presence of the atom changes the intracavity photon number by much
less than one photon. The atom still develops a Rabi oscillation, exchanging
one photon backwards and forwards with the driving field. Nevertheless, the
photon number inside the cavity does not oscillate by a whole photon—i.e.,
it is not reduced, in the time average, by one half of a photon. This is because
the cavity bandwidth must be much larger than the Rabi frequency for the
adiabatic elimination to hold.

The most significant difference from ordinary resonance fluorescence is seen
in the photon statistics of the forward-scattered light, where dramatic modifi-
cations of the usual photon antibunching are seen. In the following section we
derive the second-order correlation function of the forward-scattered light in
the limit of a weak driving field. Here, for completeness, we quote the result for
arbitrary excitation strengths: from Rice and Carmichael [13.23], the second-
order correlation function of forwards photon scattering in cavity-enhanced
resonance fluorescence is given by

g(2)
→ (τ) − 1

= − 8C2
1

[1 + Y ′2(1 + 2C1)2]2
e−(3γ′/4)τ{[1 − 2C2

1 − Y ′2(1 + 2C1)2
]
cosh δ′τ

+
γ′/4
δ′

[
1 + 2C2

1 − Y ′2(1 + 2C1)(5 + 2C1)
]
sinh δ′τ}, (13.75)

where

δ′ ≡ γ′

4

√
1 − 8Y ′2. (13.76)

This is to compared with (2.152). The result differs from resonance fluores-
cence in free space because of the interference between the straight-through
transmission and the forwards scattering from the atom (Eq. 13.60).

Note 13.6. The cavity might be driven off-axis, in which case the driving field
does not interfere with the atomic scattering along the cavity axis. For such
non-mode-matched driving, the light emitted through the cavity mirrors has
the g(2)(τ) of resonance fluorescence in free space.
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13.2.3 Forwards Photon Scattering in the Weak-Excitation Limit

New features arise in the second-order statistics of the forward-scattered
light because of an interference between the straight-through transmission
of the coherent driving field and the forward-directed fluorescence from
the atom. The results of this interference were first noted by Rice and
Carmichael [13.23] for single-atom cavity QED in the perturbative limit. Sub-
sequently, an extension to many atoms and nonperturbative cavity QED was
made [13.24, 13.25]; in the latter regime a number of experiments have been
performed [13.26, 13.27, 13.9]. Here we analyze the original proposal, spe-
cializing, in addition, to weak excitation, which produces the most dramatic
effects. We return to this topic in Sects. 15.2.4 and 16.1.4, where the limited
treatment of the present section is extended.

We have observed (Note 2.8) that the second-order correlation function
factorizes as the product of a probability for a first photodetection, at τ = 0,
and the probability for a delayed photodetection, which evolves under the
propagator eLτ . The factorization is a formal consequence of the quantum
regression formula, specifically of the formula (1.102), and in the present case,
for the forward-scattered field, we use it to write (τ ≥ 0)

g(2)
→ (τ) =

〈ã†(0)ã†(τ)ã(τ)ã(0)〉ss
〈ã†ã〉2ss

=
tr{ã†(0)ã(0)eL̃τ [ã(0)ρ̃ssã

†(0)]}
〈ã†ã〉2ss

=
〈(ã†ã)(τ)〉ρ̃(0)=ρ̃′ss

〈ã†ã〉ss , (13.77)

where the initial state ρ̃(0) = ρ̃′ss is given by

ρ̃′ss ≡
ãρ̃ssã

†

tr(ãρ̃ssã†)
; (13.78)

this initial state is the reduced state prepared under the condition that a pho-
todetection occurs at time τ = 0. We are working in the interaction picture,
ρ = e−i[ω0(

1
2σz+a†a)t]ρ̃ei[ω0( 1

2σz+a†a)t].
Under the adiabatic elimination, (13.60) expresses the forward-scattered

field as a sum of the straight-through transmission and the atomic fluores-
cence. Our calculation is therefore carried out within the Hilbert space of the
atom, where, using (13.61a) and (13.61b), the steady-state density matrix is

(ρ̃A)ss =
1
2

2 + Y ′2

1 + Y ′2
|1〉〈1| + 1

2
Y ′2

1 + Y ′2
|2〉〈2|

− i
1√
2

Y ′

1 + Y ′2
[
e−i arg(Ē0)|1〉〈2| − ei arg(Ē0)|2〉〈1|]. (13.79)



218 13 Cavity QED I: Simple Calculations

The calculation is simplified considerably by specializing to weak excitation,
for which this density matrix is approximated as

(ρ̃A)ss ≈ |1〉〈1| + 1
2Y
′2|2〉〈2|

− i
1√
2
Y ′

[
e−i arg(Ē0)|1〉〈2| − ei arg(Ē0)|2〉〈1|]. (13.80)

Thus the steady state is approximately a pure state,

(ρ̃A)ss ≈ |Ãss〉〈Ãss|, (13.81)

with
|Ãss〉 = |1〉 + i

1√
2
Y ′ei arg(Ē0)|2〉. (13.82)

The reduced state (13.78) is then also approximately pure, admitting the
factorization

(ρ̃A)′ss ≈ |Ã′ss〉〈Ã′ss| (13.83)

with

|Ã′ss〉 ≡
[−iĒ0/κ+ (g/κ)σ̃−]|Ãss〉√

〈Ãss|[iĒ∗0/κ+ (g/κ)σ̃+][−iĒ0/κ+ (g/κ)σ̃−]|Ãss〉
, (13.84)

where we make use of (13.60) once again.
We now develop the explicit form of the reduced state (13.84) to dominant

order in the excitation strength. Consider first the unnormalized state, where,
using (13.82) and definition (13.62) of Y ′, we may write

(
−i Ē0

κ
+
g

κ
σ̃−

)
|Ãss〉

=
(
−i Ē0

κ
+
g

κ
σ̃−

)[
|1〉 + i

1√
2
Y ′ei arg(Ē0)|2〉

]

= −i
( Ē0

κ
− g

κ

1√
2
Y ′ei arg(Ē0)

)
|1〉 +

Ē0

κ

1√
2
Y ′ei arg(Ē0)|2〉

=
(
−i Ē0

κ

)[(
1 − 2C1

1 + 2C1

)
|1〉 + i

1√
2
Y ′ei arg(Ē0)|2〉

]
. (13.85)

Then to dominant order in the driving field amplitude, the state norm, the
square of the denominator in (13.84), is

tr(ãρ̃ssã
†) ≈ 〈Ãss|

(
i
Ē∗0
κ

+
g

κ
σ̃+

)(
−i Ē0

κ
+
g

κ
σ̃−

)
|Ãss〉

≈
( |Ē0|/κ

1 + 2C1

)2

. (13.86)
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From (13.84)–(13.86), the reduced state is

|Ã′ss〉 = |1〉 + i
1√
2
Y ei arg(Ē0)|2〉, (13.87)

where

Y ≡
√

2
2g|Ē0|/κ

γ
=

|Ē0|/κ√
nsat

. (13.88)

On comparing (13.87) with the steady state (13.82), we see that the change
brought about by conditioning on a photodetection is remarkably simple: one
is to simply replace Y ′ by Y—the cavity enhancement is turned off.

In effect, the enhancement of the spontaneous emission rate which enters
the normalization of Y ′ is turned off by conditioning the atomic state on the
detection of a forward-scattered photon; given the photodetection, the polar-
ization of the atom is determined by its decay rate γ/2 in free space, rather
than by the cavity-enhanced rate γ′/2. The results of this can be dramatic
if the cavity enhancement factor is large. Given the changed decay rate, the
conditional polarization amplitude is increased from its steady-state value; the
cavity field amplitude is decreased, as the polarization is out of phase with
the cavity field. For large cavity enhancement, the increase in the polarization
is so large that the amplitude of the cavity field changes sign; thus, the cavity
field acquires a π phase shift relative to its phase in steady state.

The fact that the conditional cavity field amplitude decreases indicates
a nonclassical field. This follows because, by classical logic, conditioning on
a photodetection should select a subensemble of field amplitudes biased to-
wards larger rather than smaller values; photodetection is more likely when
the intensity fluctuates above, not below, its mean. Conditional homodyne de-
tection [13.28, 13.29] may be used to observe the nonclassical field-amplitude
fluctuation directly. It appears only indirectly in the photon statistics, through
nonclassical features of g(2)(τ). These nonclassical features appear in two dis-
tinct ways, depending on the ratio of Y to Y ′. Before describing them, let
us complete our calculation by solving for the relaxation back to the steady
state.

The regression of the fluctuation—the relaxation of conditional state |Ã′ss〉
to the steady state |Ãss〉—is governed by the propagator eL̃Aτ , where L̃A
is defined by the right-hand side of (13.59). Under the assumption of weak
excitation, we make the approximation

L̃A ≡ i
g

κ
[Ē0σ+ + Ē∗0σ−, · ] +

γ′

2
(2σ− · σ+ − σ+σ− · − · σ+σ−)

≈ i
g

κ
Ē0[σ+, · ] − γ′

2
[σ+σ−, · ]+. (13.89)

This simplification can be verified through an expansion in powers of Ē0 (see
Sect. 16.1.1). Physically, it is justified so long as there is negligible probability
for the atom to emit a photon during its evolution back to the steady state.
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Thus, for weak excitation, the purity of the state is preserved over time and
from (13.77), (13.86), and (13.89) we obtain

g(2)
→ (τ)

≈
( |Ē0|/κ

1 + 2C1

)−2

〈Ã(τ)|
(
i
Ē∗0
κ

+
g

κ
σ̃+

)(
−i Ē0

κ
+
g

κ
σ̃−

)
|Ã(τ)〉

∣
∣
∣∣
|Ã(0)〉=|Ã′

ss〉
,

(13.90)

where the state obeys a Schrödinger equation with non-Hermitian Hamilto-
nian:

d|Ã(τ)〉
dτ

=
(
i
g

κ
Ē0σ+ − γ′

2
σ+σ−

)
|Ã(τ)〉. (13.91)

Expanding the state as

|Ã(τ)〉 = α(τ)|1〉 + β(τ)|2〉, (13.92)

the Schrödinger equation reduces to the coupled equations

α̇ = 0, β̇ = −γ
′

2
β + i

g

κ
Ē0α, (13.93)

which are to be solved—matching conditional state (13.87)—for initial condi-
tions α(0) = 1, β(0) = i(Y/

√
2)ei arg(Ē0). The solution is

|Ã(τ)〉 = |1〉 + i
1√
2
ei arg(Ē0){Y e−(γ′/2)τ + Y ′[1 − e−(γ′/2)τ ]}|2〉. (13.94)

Then, to lowest order in the strength of the driving field,
(
−i Ē0

κ
+
g

κ
σ̃−

)
|Ã(τ)〉

= −i Ē0

κ

{
1 − 2C1e

−(γ′/2)τ − 2C1

1 + 2C1
[1 − e−(γ′/2)τ ]

}
|1〉

= −i Ē0/κ

1 + 2C1
[1 − 4C2

1e
−(γ′/2)τ ]|1〉, (13.95)

and, from (13.90) and (13.95), we arrive at a simple expression for the second-
order correlation function of forwards photon scattering in cavity-enhanced
resonance fluorescence in the weak-excitation limit :

g(2)
→ (τ) ≈ [1 − 4C2

1e
−(γ′/2)τ ]2. (13.96)

Note that this expression is recovered for Y ′ → 0 from (13.75).
In contrast to free-space resonance fluorescence, the correlation function

(13.96) does not generally vanish at zero delay. Returning to the earlier com-
ment, it is, however, the square of a field amplitude that is decreased relative
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Fig. 13.5. Second-order intensity correlation function of the forward-scattered light
in cavity-enhanced resonance fluorescence (Eq. 13.75): (a) in the weak-excitation
limit (Y ′2 = 10−4) with (i) 2C1 = 0.4, (ii) 2C1 = 1.0, (iii) 2C1 = 1.6, and (b) with
2C1 = 1.0 and (i) Y ′2 = 10−2, (ii) Y ′2 = 10−1, (iii) Y ′2 = 1, and (iv) Y ′2 = 10

to its steady-state value. We may write g(2)(0) = (1+2C1)2(1− 2C1)2, where
the factor (1 + 2C1)2 may be identified as arising from the normalization of
the correlation function with respect to the mean photon number (Eq. 13.86).
The factor (1−2C1) scales the conditional field amplitude relative to its mag-
nitude in the steady state. For 2C1 ≤ 1, the phase of the conditional field does
not change, though its amplitude is reduced. In this case, g(2)(τ) exhibits con-
ventional photon antibunching, the behavior illustrated by curves (i) and (ii)
of Fig. 13.5a. For 2C1 > 1, there is a π phase shift of the conditional field.
In such a case the field amplitude passes through zero during its return to
the steady state and we observe a zero in g(2)(τ) at a finite delay—curve (iii)
of Fig. 13.5a. Thus, while the conditioning of the field amplitude develops
continuously as the spontaneous emission enhancement factor is increased, its
nonclassical character appears in two distinct ways in g(2)(τ). Figure 13.5b
illustrates how stimulated emission gradually eliminates these nonclassical
features at larger excitation strengths.

Note 13.7. The weak-excitation limit calls for extremely low intracavity pho-
ton numbers. The constraint is that the probability of photon emission during
relaxation back to the steady state should be very small. From (13.86)–(13.88),
this translates into the requirement

〈ã†ã〉ss � γ′

2κ
1

2C1(1 + 2C1)3
. (13.97)

The ratio γ′/2κ is necessarily less then unity for the adiabatic elimination
(perturbative treatment) to be valid. Consider then that the spontaneous
emission rate is enhanced by an order of magnitude: the intracavity photon
number is required to be much smaller than 10−4. The extreme condition
arises because, for a large spontaneous emission enhancement factor, 2C1, the
forwards photon scattering is highly bunched.
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13.2.4 A One-Atom “Laser”

The treatment of quantum noise in the laser is an important and instructive
example of the use of phase-space methods in the small-noise limit. Outside
this limit, the laser provides an instructive example of cavity QED ideas.
Much work in this area is concerned with the micromaser [13.30,13.31,13.32],
a very different device to the one described in Chaps. 7 and 8. More closely
related are proposals for practical light sources that operate with reduced
power consumption, laser sources designed using the principles of cavity QED.
The idea is to eliminate loss due to spontaneous emission into modes other
than the laser mode [13.33, 13.34, 13.35]. The figure of merit for this is the
so-called laser β-factor, the ratio of the spontaneous emission rate into the
laser mode to the total spontaneous emission rate. For the model of Sect. 7.1.4
the β-factor may be written as

β =
2C̄1

1 + 2C̄1
, 2C̄1 = 2

g2

γ↓(γh/2)
. (13.98)

2C̄1 is an enhancement factor analogous to (13.36), except that in the case of
the laser the inhomogeneous linewidth, γh/2, replaces the cavity linewidth as
the dominant reservoir bandwidth. Note that when γ↑ � γ↓ (no population in
the lower level of the lasing transition), 2C̄1 = 1/2nsat (Eq. 7.69c); once again
we find a connection between strong coupling, β → 1, and a small system size
parameter, nsat � 1.

There is a great deal that could be said about laser theory in the cavity
QED regime, especially on the topic of quantum noise. Cavity QED lasers
do not show the generic threshold behavior that follows from the “thermody-
namic” limit, nsat → ∞. Indeed, they have been proposed to operate precisely
in the opposite regime, nsat → 0 (β → 1), where they become thresholdless
devices [13.33, 13.34, 13.36]. While for small but nonzero nsat a smeared out
threshold region might remain, ultimately the noise characteristics of cavity
QED lasers depend on the particular system considered. We do not aim to ex-
plore these things in detail. Here, we simply observe, for a simplest case, how
the quantum noise is changed when the small-noise approximation no longer
holds. We show, in particular, that the emitted light becomes nonclassical, ex-
hibiting photon antibunching and sub-Poissonian statistics, as observed in the
experiment of McKeever and coworkers [13.37]. We also take the opportunity
to say a little more about waiting-time distributions (Sect. 2.3.6).

As the starting point for our model, we adopt the one-atom limit of the
laser master equation from Chap. 7 (Eq. 7.93). Setting n̄ = 0, for simplicity,
the one-atom master equation is
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ρ̇ = −i 12ωA[σz , ρ] − iωA[a†a, ρ] + g[a†σ− − aσ+, ρ]

+ κ(2aρa† − a†aρ− ρa†a)

+
γ↓
2

(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+
γ↑
2

(2σ+ρσ− − σ−σ+ρ− ρσ−σ+). (13.99)

Normally the laser gain is provided by the weak coupling of many atoms to the
laser mode. One strongly coupled atom can possibly do a similar job; although
for a single atom, the approximation (Sect. 6.2.4) that justifies the truncation
of the phase-space equation of motion in atomic variables must certainly be
set aside. In fact, to make something close to a conventional laser—a light
source dominated by stimulated emission—with a single atom, a good cavity,
κ < 2g2/γh, is required, so that a significant intracavity photon number builds
up. In the good-cavity limit, the solution of the master equation must be
carried out numerically [13.38,13.39]. For something simpler, something that
allows for an analytical treatment, we stay with the adiabatic elimination of
the cavity mode. From (13.99), this gives

ρ̇A = −i 12ωA[σz , ρA] +
γ′↓
2

(2σ−ρAσ+ − σ+σ−ρA − ρAσ+σ−)

+
γ↑
2

(2σ+ρAσ− − σ−σ+ρ− ρAσ−σ+), (13.100)

where

γ′↓ ≡ γ↓ +
2g2

κ
, (13.101)

and from (13.60) and (13.65), setting Ē0 = 0, the output field in the forwards
direction is

Ê→(z, t) =
√
γa2

g

κ
σ−(t′) + v.f., (13.102)

where ct′ = ct − (z − L/2). Of course our model is hardly the model of
a genuine laser. More accurately, the cavity is simply used to collect and
direct incoherently driven fluorescence from the atom. We are considering an
incoherently driven version of cavity-enhanced resonance fluorescence, from
which it is already clear that the output field will be nonclassical. Nevertheless,
the model explores an instructive limit of laser theory.

Consider first the optical Bloch equations derived from (13.100). These are
the closed set of three coupled equations

d〈σ−〉
dt

= −
(
γ↑ + γ′↓

2
+ iωA

)
〈σ−〉, (13.103a)

d〈σ+〉
dt

= −
(
γ↑ + γ′↓

2
− iωA

)
〈σ+〉, (13.103b)

d〈σz〉
dt

= −(γ↑ + γ′↓)
(〈σz〉 − ℘

)
, (13.103c)
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where we introduce the pump parameter

℘ ≡ γ↑ − γ′↓
γ↑ + γ′↓

. (13.104)

The steady-state solution to these equations is

〈σ∓〉ss = 0, 〈σz〉ss = ℘, (13.105)

from which, using (13.102), we calculate the forwards-emitted mean photon
flux

〈Ê†→Ê→〉ss = γa2

( g
κ

)2

〈σ+σ−〉ss

= γa2

( g
κ

)2
1
2 (1 + ℘)

=
γa2
2κ

(
2g2

κ

)
γ↑

γ↑ + γ′↓
. (13.106)

Note now that the pump parameter (13.104) is not simply the one-atom ver-
sion of the pump parameter from standard laser theory (Eqs. 7.72 and 7.73).
In fact, it is less than unity for all γ↑, and therefore, consistent with the com-
ment above—“our model is hardly the model of a genuine laser”—this “laser”
remains forever below threshold. Thus, (13.106) should be compared with
a conventional laser operating below threshold. For the latter, using (7.41),
(7.72), and (7.73), we obtain the photon flux

〈Ê→Ê→〉ss = γa2
C + 1

2℘

1 − ℘

= γa2
1

1 − ℘

(
2Ng2

γhκ

)
γ↑

γ↑ + γ↓

=
γa2
2κ

2κ
1

2κ(1 − ℘)

(
2g2

γh/2

)
Nγ↑

γ↑ + γ↓
. (13.107)

A comparison of (13.107) with (13.106) is instructive.
The common prefactor γa2/2κ is the fraction of cavity mode loss in the

forwards direction. Consider then the terms on the far right of each expres-
sion. Equation 13.107 has an extra factor of N from the number of atoms
in the lasing medium. Beyond this trivial difference, where γ′↓ appears in
(13.106), γ↓ appears in (13.107). The two terms have the same function. Both
are spontaneous emission rates; but in (13.106) the spontaneous emission rate
is enhanced. Here there is a substantial difference. For the one-atom model,
the spontaneous emission enhancement is the entire effect of the interaction
between the atom and cavity mode. In a true laser, on the other hand, the
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interaction enters in a different way. The cavity does not simply act as a reser-
voir to modify emission rates. It introduces a second, independent, step to the
emission process, by providing a temporary storage place for photons. Thus,
to understand (13.107), in comparison with (13.106), we must see the emission
of a photon as a two-step sequence: photons are first emitted into the cav-
ity mode, and then, in an independent step, transmitted through the output
mirror. In this way, a significant photon number can be built up inside the
cavity so that stimulated emission dominates over spontaneous emission. The
important factor 1−℘ therefore enters (13.107); as ℘→ 1, it accounts for the
onset of stimulated emission.

Note that it would be incorrect to replace γ↓ and γh in (13.107) by γ′↓ and
γ′h, as a sort of higher-order correction to standard laser theory. This double-
counts the effect of the interaction of the atoms with the cavity mode. Only
in the perturbative (bad-cavity) limit is the interaction accounted for in this
way.

Note 13.8. The pump rate for this one-atom “laser” is controlled entirely by
γ↑. The option available to a conventional laser of changing the number of
atoms [see the discussion below (7.75)] has been given up. One consequence
of this is that increasing the pumping rate in the one-atom “laser” eventually
causes the inversion to saturate. When the inversion is plotted as a function
of pump rate, the behavior looks a little like a smoothed-out inversion (gain)
clamping (Eq. 7.22), but it is actually straightforward saturation.

Our principal aim is to explore the nonclassicality of the one-atom “laser”
emission. Rather than calculate g(2)(τ) again, let us do something a little
different and calculate the waiting-time distribution of photon emissions in
the forwards direction (see Sects. 2.3.6 and 17.3.5)

wa2(τ) = γa2
tr[a†aeL̄τ (aρssa

†)]
〈a†a〉ss

= γa2

( g
κ

)2 tr{σ+σ−eL̄Aτ [σ−(ρA)ssσ+]}
〈σ+σ−〉ss

=
γa2
2κ

(
2g2

κ

)
tr[σ+σ−ρ̄A(τ)], (13.108)

where we have defined
ρ̄A(τ) ≡ eL̄Aτ (ρA)′ss, (13.109)

with reduced state

(ρA)′ss ≡
σ−(ρA)ssσ+

tr[σ−(ρA)ssσ+]
= |1〉〈1|, (13.110)
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and superoperator

L̄A ≡ LA − γa2
2κ

(
2g2

κ

)
σ− · σ+, (13.111a)

LA ≡ −i 12ωA[σz, · ] +
γ′↓
2

(σ− · σ+ − σ+σ− · − · σ+σ−)

+
γ↑
2

(σ+ · σ− − σ−σ+ · − · σ−σ+). (13.111b)

Aside from an overall normalization, the difference between the second-order
correlation function (Eq. 13.77) and the waiting-time distribution (Eq. 13.108)
is that the time evolution of the former is governed by eLAτ , while that of the
latter is governed by eL̄Aτ ; the change from superoperator LA to L̄A imposes
the condition that no photons are emitted in the forwards direction during
the interval τ . The definition given in (13.108) places no constraint on the
number of photon emissions in the backwards direction or the fluorescence
from the sides of the cavity.

While (13.108)–(13.111) set up a somewhat imposing formalism, the ex-
plicit dynamic is that of a simple rate equation or quantum jump process. For
the full atomic density operator, we can write

ρA(t) = p1(t)|1〉〈1| + p2(t)|2〉〈2|, (13.112)

and master equation (13.100) is then conveniently recast as the equivalent
rate equations

dP

dt
= MP , (13.113)

where the state of the atom is represented by the vector of probabilities

P (t) ≡
(
p1(t)
p2(t)

)
, (13.114)

and

M ≡
(
−γ↑ γ′↓
γ↑ −γ′↓

)

. (13.115)

The evolution required by (13.109) may be recast in a similar way, with the
change from superoperator LA to L̄A expressed through a different dynamical
matrix M̄ . Thus, we write

ρ̄A(τ) = p̄1(τ)|1〉〈1| + p̄2(τ)|2〉〈2|, (13.116)

and from (13.109) obtain
dP̄

dτ
= M̄P̄ , (13.117)
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with

P̄ (τ) ≡
(
p̄1(τ)
p̄2(τ)

)
, (13.118)

and

M̄ ≡
(−γ↑ γ̄↓′

γ↑ −γ′↓

)
. (13.119)

The only change is to the element in the upper right corner of the matrix M ,
which is replaced by

γ̄↓′ ≡ γ′↓ −
γa2
2κ

2g2

κ
≡ γ↓ +

γa1
2κ

2g2

κ
. (13.120)

In the new and more transparent notation, the waiting-time distribution of
photon emissions in the forwards direction is given by the solution to (13.117),
with initial condition (13.110):

wa2(τ) =
γa2
2κ

(
2g2

κ

)
p̄2(τ)|P̄ (0)=(10)

. (13.121)

Note 13.9. Although the notation suggests it, ρ̄A(τ) is not a normalized den-
sity matrix; the sum p̄1(τ) + p̄2(τ) is not unity. This sum is in fact the null-
measurement, or no-jump probability, the probability that no photon is emit-
ted in the forwards direction up to the time τ , given there was a forwards
photon emission at τ = 0. Clearly this probability must approach zero asymp-
totically, a property that is easily verified by noting that, unlike M , which
has one zero eigenvalue, the eigenvalues of M̄ are both nonzero and negative.

Note 13.10. Equations 13.108 and 13.121 are both rather formal. They are
useful for calculations but obscure the simple principles at play. The basic
ideas apply also to a classical jump process and have nothing, specifically, to
do with quantum mechanics. To understand them we might label all γa2-type
jumps, leaving the other jumps unlabeled, and display a single realization of
the time sequence of jumps diagrammatically as

|1〉 → |2〉 · · · · · · |2〉
γa2

→|1〉 · · · · · · · · · |2〉
γa2

→|1〉 · · · · · ·
0 t1 t1 + dt1 t2 t2 + dt2

The times t1, t2, . . . are the times of successive γa2-type jumps and the times of
the other jumps are not noted. Now, the rate equations (13.113) are formally
solved by

P (t) = eMtP (0). (13.122)

The solution tells us the unconditional state occupation probabilities. How
then do the conditional probabilities P̄ (t)—the state occupation probabilities
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given the state was |1〉 at t = 0 and no γa2-type jump has occurred up to time
t—evolve? Let us answer the question by writing

P̄ (t) = eM̄ t

(
1
0

)
. (13.123)

What, then, is the matrix M̄? Clearly, from the proposed expression (13.123),
the probability for the (k+ 1)-th (a2)-type jump to occur at time tk+1, given
that the k-th occurred at tk, is

Prob

(
k + 1th (a2)−jump
at tk+1

∣
∣
∣
∣∣
kth (a2)−jump

at tk

)

= dtk+1

(
γa2
2κ

2g2

κ

)[
(01)eM̄(tk+1−tk)

(
1
0

)]
. (13.124)

Hence, taking the product of these probabilities, and summing over the num-
ber and times of possible (a2)-type jumps up to time t, we obtain an expression
for the unconditional probabilities in the form

P (t) =
∞∑

n=0

∫ t

0

dtn · · ·
∫ t3

0

dt2

∫ t2

0

dt1e
M̄(t−tn)Ja2e

M̄(tn−tn−1)

· · ·Ja2eM̄(t2−t1)Ja2e
M̄t1

(
1
0

)
, (13.125)

where

Ja2 ≡ γa2
2κ

2g2

κ

(
1
0

)
(0 0)

=
γa2
2κ

2g2

κ

(
0 1
0 0

)
(13.126)

acts as a jump operator (matrix). The generalized sum over jumps in (13.125)
is a Dyson expansion, which when reversed gives

P (t) = e(M̄+Ja2)t

(
1
0

)
. (13.127)

From (13.122), (13.123), and (13.127), we deduce the relationship

M̄ = M − Ja2. (13.128)

This is precisely the matrix recovered from the formal expression (13.108) and
defined in (13.119).

Returning now to the evaluation of the waiting-time distribution, it is straight-
forward to solve the pair of coupled equations for the conditional probabilities
p̄1(τ) and p̄2(τ). From (13.117)–(13.119), we find for the excited state proba-
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bility,
p̄2(τ)|P̄ (0)=(10) = C+e

λ+τ + C−eλ−τ , (13.129)

with eigenvalues of M̄

λ± = −γ↑ + γ′↓
2

± δ̄, (13.130)

where

δ̄ ≡
√(

γ↑ − γ′↓
2

)2

+ γ↑γ̄↓′. (13.131)

The initial conditions are

C+ + C− = 0, λ+C+ + λ−C− = γ↑. (13.132)

Then, using (13.129), (13.130), and (13.132), from (13.121) we obtain the
waiting-time distribution of photon emissions in the forwards direction for
incoherently driven cavity-enhanced fluorescence:

wa2(τ) =
γa2
2κ

(
2g2

κ

)
γ↑
δ̄

exp
(
−γ↑ + γ′↓

2
τ

)
sinh δ̄τ. (13.133)

Note 13.11. This result holds as a photoelectron waiting-time distribution—
a distribution of waiting times between photoelectric detections—assuming
unit quantum efficiency. More generally, for a quantum efficiency η < 1, one
must replace γa2/2κ by ηγa2/2κ (in the prefactor and the definition of γ̄′↓).
The change follows from the obvious modification of (13.124), which is now
a probability of photoelectric detection. See also the work of Carmichael and
coworkers on waiting times in resonance fluorescence [13.40].

Our result is similar to the waiting-time distribution for free-space resonance
fluorescence (Eq. 2.158). In particular, it vanishes at τ = 0, from which we
know that g(2)(0) = 0 and the photon emissions are antibunched; of course
there is no effect of the kind discussed in Sect. 13.2.3 from interference with
the driving field. More can be deduced from the waiting time distribution,
however, than from g(2)(τ). In some instances, for example, although g(2)(0) =
wa2(0) = 0, in a very real sense the light is nonetheless nearly classical. Let
us explore this assertion a little.

We make a comparison between two operating regimes of the one-atom
“laser,” both of which produce g(2)(0) = wa2(0) = 0, but one corresponding
to light that is nearly classical and the other to manifestly nonclassical light.
First, rewrite the expression for δ̄ (Eq. 13.131) as

δ̄ ≡
√(

γ↑ − γ′↓
2

)2

+ γ↑γ̄↓′ =

√(
γ↑ + γ′↓

2

)2

+ γ↑(γ̄↓′ − γ′↓)

=
γ↑ + γ′↓

2

√

1 − 2
〈Ê†→Ê→〉ss

(γ↑ + γ′↓)/2
, (13.134)
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where we have introduced the photon flux from (13.106) and made use of
(13.120). Consider now case (i): a correlation time much less than the mean
time between photon emissions—i.e., (γ↑+γ′↓)

−1 � 〈Ê†→Ê→〉−1
ss . From (13.130)

and (13.134), the decay rates are

λ+ ≈ −〈Ê†→Ê→〉ss, λ− ≈ −(γ↑ + γ′↓), (13.135)

and from (13.121) and (13.129) the waiting-time distribution is

wa2(τ) ≈ 〈Ê†→Ê→〉ss
[
e−〈Ê

†
→Ê→〉ssτ − e−(γ↑+γ′

↓)τ
]
. (13.136)

This, to a good approximation, is the waiting-time distribution of a Poisson
process (classical light; Note 2.9). It shows only one small deviation from the
exponential form for a Poisson process, this to account for the antibunching
effect, which is confined to one or two correlation times only. As the ratio of
the correlation time to the mean time between photon emissions approaches
zero, the area subtracted from a pure exponential decay also approaches zero,
as illustrated by curve (i) in Fig. 13.6. In this sense the limit of classical light
is approached.

Contrast this behavior with case (ii): optimal photon antibunching for in-
coherently driven cavity-enhanced fluorescence, which occurs for δ̄ → 0. Con-
sidering the term under the square root in (13.134), note that

2
〈Ê†→Ê→〉ss

(γ↑ + γ′↓)/2
=
γa2
2κ

4(2g2/κ)γ↑
γ↑ + γ↓ + 2g2/κ

, (13.137)

whose maximum value of unity is reached with

γa2 � γa1,
2g2

κ
= γ↑ � γ↓.

Under these conditions, the correlation time and the mean time between pho-
ton emissions have the same order of magnitude, and the waiting-time distri-
bution is

wa2(τ) = γ2
↑τe
−γ↑τ . (13.138)

The distribution is illustrated by curve (ii) in Fig. 13.6. It shows a distinct
tendency towards perfect photon antibunching—a sequence of photons equally
separated in time.

Note 13.12. A measurement of g(2)(τ) can focus in on the few events where
two photons are emitted close together. Such a measurement is therefore able
to detect the nonclassical dip in Fig. 13.5a. It provides an example of a con-
ditional measurement. A nonconditional measurement, of the Mandel Q pa-
rameter, for example, looks at the photon stream without regard to when
a previous photon might have been emitted. The nonclassical dip does leave
a mark to be seen in a nonconditional measurement—in a sub-Poissonian pho-
ton counting distribution. In the case of curve (i) of Fig. 13.6, however, the
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Fig. 13.6. Waiting-time distribution for cavity-enhanced fluorescence (Eq. 13.133):
for (i) a photon flux much less than the inverse correlation time, 2〈Ê†→Ê→〉ss/ 1

2
(γ↑+

γ′↓) = 0.1, and (ii) optimal photon antibunching, 2〈Ê†→Ê→〉ss/ 1
2
(γ↑ + γ′↓) → 1

sub-Poissonian effect is very small. It is large only for conditions like those
depicted in the second curve of Fig. 13.6. A practical difficulty can arise even
in this case, since a low detection efficiency will turn the waiting-time distri-
bution of curve (ii) into one looking more like curve (i); it reduces the detected
flux so that the mean time between photon counts is again much larger than
the correlation time.

Exercise 13.6. To complement the waiting-time distribution, one might
also be interested in the related conditional distribution, the so-called null-
measurement, or no-jump probability (Note 13.9). Show that

Prob
(

no (a2)−jump
at τ = 0

∣
∣∣
∣
(a2)−jump

up to τ

)

= exp
(
−γ↑ + γ′↓

2
τ

)(
cosh δ̄τ +

γ↑ + γ′↓
2δ̄

sinh δ̄τ
)
. (13.139)

13.3 Nonperturbative Cavity QED

Cavity QED in the perturbative limit focuses on the engineering of spon-
taneous emission—its enhancement or inhibition and angular redistribution.
Changes are made at the level of incoherent quantum dynamics: decay rates in
a master equation are changed with the possible introduction of perturbative
level shifts. The nonperturbative regime extends the range of phenomena to
modifications of the coherent quantum dynamics. Here the entire energy level
structure is redesigned, such that new single- and multiphoton resonances
appear. We begin exploring the possibilities by calculating the spontaneous
emission spectrum for one atom in a cavity (Fig. 13.2) without the earlier
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restriction on dipole coupling strength (the bad-cavity limit of Sect. 13.2.1).
Physically, for strong enough dipole coupling, a photon emitted into the cavity
mode can be reabsorbed before it is lost by transmission through the cavity
mirrors. Clearly, if we are to allow for this possibility, an adiabatic elimination
of the cavity mode must not be made.

13.3.1 Spontaneous Emission from a Coupled Atom and Cavity

It is convenient to perform the calculation in a way that anticipates the quan-
tum trajectory theory of Chaps. 17 and 18. To this end, we separate the mas-
ter equation into two parts, the first containing all terms that act within the
subspace of one energy quantum, and the second, those terms that generate
transitions to the ground state with the emission of a photon. The decompo-
sition is similar to the one introduced in (12.97) and (12.98), which helped
us follow the photon emission sequences of the degenerate parametric oscil-
lator. Making the development in parallel fashion, master equation (13.14) is
written as

ρ̇ = (C + D)ρ, (13.140)

with

C = CA + Ca + CAa, (13.141a)
D = DA + Da, (13.141b)

where the individual superoperators are

CA ≡ −i 12ωA[σz , · ] − γ

2
[σ+σ−, · ]+, (13.142a)

Ca ≡ −iωC [a†a, · ] − κ[a†a, · ]+, (13.142b)

CAa ≡ g[a†σ− − aσ+, · ], (13.142c)

where [ ·, · ]+ denotes the anticommutator, and

DA ≡ γ(σ− · σ+), (13.143a)

Da ≡ 2κ(a · a†). (13.143b)

Now, for the spontaneous emission problem, the density operator has an initial
condition confined within the one-quantum subspace

ρ(0) =
(|2〉〈2|)

A

(|0〉〈0|)
a
. (13.144)

We can express the solution, ρ(t), in terms of a pure state |ψ̄(t)〉 expanded in
that subspace and a probability, Pspon(t), that a photon has been emitted via
one of the two output channels; thus, we can decompose the density operator
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as
ρ(t) = ρ0(t) + ρ1(t), (13.145)

where

ρ0(t) = Pspon(t)|G〉〈G|, (13.146a)

ρ1(t) = |ψ̄(t)〉〈ψ̄(t)|, (13.146b)

with ground state
|G〉 ≡ |1〉A|0〉a (13.147a)

and expansion within the one-quantum subspace

|ψ̄(t)〉 = α(t)|1〉A|1〉a + β(t)|2〉A|0〉a, (13.147b)

where α(t) and β(t) are probability amplitudes for the excitation of the cavity
mode and atom, respectively.

With the decomposition (13.145)–(13.147), the master equation separates
into two easily solvable pieces. Substituting this ansatz into (13.140), it follows
that

ρ̇1 = Cρ1, (13.148a)
ρ̇0 = Dρ1. (13.148b)

Then, using (13.141b), (13.143), (13.146), and (13.147), the second of these
equations yields an equation of motion for Pspon,

dPspon

dt
= γ〈G|σ−|ψ̄(t)〉〈ψ̄(t)|σ+|G〉 + 2κ〈G|a|ψ̄(t)〉〈ψ̄(t)|a†|G〉
= γ|β(t)|2 + 2κ|α(t)|2, (13.149)

and given the form of C—as a sum of commutators and anticommutators—
the first factorizes to give a Schrödinger equation for the one-quantum state
consistent with (13.146b):

d|ψ̄〉
dt

=
1
i�
HC |ψ̄〉, (13.150)

with non-Hermitian Hamiltonian

HC ≡ 1
2�(ωA − iγ)σ+σ− − 1

2�ωAσ−σ+ + �(ωC − iκ)a†a

+ i�g(a†σ− − aσ+). (13.151)

From (13.150) and (13.151), we obtain the equations of motion for the one-
quantum amplitudes,

α̇ = −(κ+ iωC)α+ gβ, (13.152a)

β̇ = −(γ/2 + iωA)β − gα. (13.152b)
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Thus, the solution of master equation (13.140) with initial state (13.144) has
been reduced to the solution of (13.152a), (13.152b), and (13.149), with initial
condition α(0) = 0 and |β(0)| = 1.

In effect, the spontaneous emission problem has been reduced to the equa-
tions of motion for damped, coupled harmonic oscillators (in the rotating-wave
approximation). Strictly speaking, the oscillator amplitudes are probability
amplitudes in the present quantum mechanical context; nevertheless, so far
as phenomenology is concerned, anything we can learn from (13.152a) and
(13.152b) will be familiar from the classical evolution of a Lorentz oscillator
of amplitude β, radiatively coupled to an electromagnetic field oscillator of
amplitude α, the two oscillators damped at rates γ/2 and κ, respectively. Of
course, the initial state (13.144) gives a mean amplitude to neither oscillator,
since these means are the products of β and α with the probability ampli-
tude of state |G〉, which is zero in the initial state. Nevertheless, this simply
requires that the coupled oscillator equations be understood in a statistical
sense, where, as we shall see, it is the correlation functions of the amplitudes
that have nontrivial initial values. Indeed, recall that according to the quan-
tum regression formula, the correlation functions obey the same equations of
motion as the oscillator amplitudes themselves; thus, even with the statistical
interpretation, we eventually solve (13.152a) and (13.152b).

We are running a little ahead of ourselves, however. To carry out our
program we must solve the coupled oscillator equations twice, the first time
simply to find the density operator ρ(t). The exercise is straightforward:

Exercise 13.7. Solve (13.152a) and (13.152b) for initial conditions α(0) = 0
and |β(0)| = 1; i.e., for slowly varying amplitudes

α̃ ≡ ei
1
2 (ωA + ωC)te−iarg[β(0)]α, (13.153a)

β̃ ≡ ei
1
2 (ωA + ωC)te−iarg[β(0)]β, (13.153b)

show that
α̃(t) = e−

1
2 (κ+ γ/2)t g

δ1
sinh δ1t, (13.154a)

and

β̃(t) = e−
1
2 (κ+ γ/2)t

[
cosh δ1t+

κ+ γ/2 + iκΔC

2δ1
sinh δ1t

]
, (13.154b)

with
δ1 ≡

√
1
4 (κ− γ/2 + iκΔC)2 − g2, (13.155)

where ΔC is the detuning (13.43). Hence, obtain the one-quantum part of the
density operator (Eqs. 13.146b and 13.147b).

Our goal is to calculate the spontaneous emission spectrum, which, as we
will see, follows directly from (13.154a) and (13.154b). Before turning to the
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spectrum, though, let us briefly consider the ground state part of the density
operator, which is fully specified by the probability of emission Pspon(t). We
integrate (13.149) for the special case of equal damping rates, κ = γ/2. The
one-quantum probability amplitudes in this case are

α̃(t) = e−(γ/2)t g
√

(κΔC/2)2 + g2
sin

[√
(κΔC/2)2 + g2t

]
, (13.156a)

and

β̃(t) = e−(γ/2)t

{

cos
[√

(κΔC/2)2 + g2t
]

+ i
κΔC/2√

(κΔC/2)2 + g2
sin

[√
(κΔC/2)2 + g2t

]
}

. (13.156b)

Then the probabilities for the cavity mode and atom to be excited are, re-
spectively,

|α(t)|2 = e−γt
g2

(κΔC/2)2 + g2
sin2

[√
(κΔC/2)2 + g2t

]
, (13.157a)

and

|β(t)|2 = e−γt
{

cos2
[√

(κΔC/2)2 + g2t
]

+
(κΔC/2)2

(κΔC/2)2 + g2
sin2

[√
(κΔC/2)2 + g2t

]
}

. (13.157b)

It follows that the probability of a spontaneous emission up to time t is pre-
cisely the same as it would be if there were no interaction with the cavity
mode; we have

|β(t)|2 + |α(t)|2 = e−γt, (13.158)

with probability

Pspon(t) = γ

∫ t

0

dt′[|β(t′)|2 + |α(t′)|2]

= 1 − e−γt. (13.159)

Of course there is a cavity interaction, and because of it the emission is dis-
tributed between two output channels—a photon is emitted either from the
side of the cavity or along the cavity axis (through the cavity mirrors). Gener-
ally the spectra in the two directions are different, and they, like the individual
probabilities |β(t)|2 and |α(t)|2, depend explicitly on the coupled oscillator dy-
namics within the one-quantum subspace.
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Spontaneous emission is nonstationary process, so the emission spectrum
is given by a double integration, after the fashion of (2.49) (see also Sect. 19.3).
The spectrum from the sides of the cavity is determined from the autocorre-
lation of the atomic dipole amplitude,

Tside(ω) =
γ

2π

∫ ∞

0

dt

∫ ∞

0

dt′e−iω(t−t′)〈σ+(t)σ−(t′)〉, (13.160a)

while the spectrum along the cavity axis follows from the autocorrelation of
the cavity field,

Taxis(ω) =
κ

π

∫ ∞

0

dt

∫ ∞

0

dt′e−iω(t−t′)〈a†(t)a(t′)〉. (13.160b)

In these expressions the normalization has been chosen so that the integrated
spectra reflect the branching ratio into the output channels, with

∫ ∞

−∞
dωTside(ω) = γ

∫ ∞

0

dt|β(t)|2 = Pside(∞), (13.161a)

∫ ∞

−∞
dωTaxis(ω) = 2κ

∫ ∞

0

dt|α(t)|2 = Paxis(∞), (13.161b)

where Pside(∞) and Paxis(∞) are the probabilities for the eventual emission of
a photon from the sides of the cavity and along the cavity axis, respectively,
and of course

Pside(∞) + Paxis(∞) = 1. (13.162)

Let us carry out the calculation of the autocorrelation function for the
sideways-emitted light. The axial result follows by extension. We must deter-
mine the correlation function 〈σ+(t)σ−(t′)〉. The decomposition (13.145) of
ρ(t) provides an elegant alternative to the derivation in Sect. 2.2.3. From the
quantum regression formula, in the form (1.97), we have

〈σ+(t)σ−(t′)〉 = tr{σ−e(C+D)(t′−t)[ρ(t)σ+]}, (13.163)

which holds for t′ ≥ t, while for t′ < t

〈σ+(t)σ−(t′)〉 = 〈σ+(t′)σ−(t)〉∗. (13.164)

Now, with ρ(t) expressed through (13.145)–(13.147), we find

ρ(t)σ+ = β∗(t)|ψ̄(t)〉〈G|, (13.165)

and using (13.141)–(13.143),

C[|ψ̄(t)〉〈G|] =
[

1
i�
HC |ψ̄(t)〉

]
〈G|, (13.166a)

D[|ψ̄(t)〉〈G|] = 0, (13.166b)
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where HC is the non-Hermitian Hamiltonian (13.151). It follows then that
(t′ ≥ t)

e(C+D)(t′−t)|ψ̄(t)〉〈G| = {e(1/i�)HC(t′−t)|ψ̄(t)〉}〈G|
= |ψ̄(t′)〉〈G|, (13.167)

where the exponential inside the curly bracket propagates |ψ̄(t)〉 forwards in
time under Schrödinger equation (13.150). Hence, from (13.163), (13.165),
(13.167), and (13.147b), we arrive at

〈σ+(t)σ−(t′)〉 = β∗(t)tr
[
σ−|ψ̄(t′)〉〈G|]

= β∗(t)β(t′), (13.168)

where, although the result is derived for t′ ≥ t, from (13.164) it holds for t′ < t
as well. Thus, from (13.160a), (13.160b), and (13.168), we are led to a simple
expression for the spontaneous emission spectrum in single-atom cavity QED :

Tside(ω) =
γ

2π

∣∣
∣
∣

∫ ∞

0

dteiωtβ(t)
∣∣
∣
∣

2

, (13.169a)

and in a parallel derivation,

Taxis(ω) =
κ

π

∣
∣
∣∣

∫ ∞

0

dteiωtα(t)
∣
∣
∣∣

2

, (13.169b)

where α(t) and β(t) obey the coupled oscillator equations of motion (13.152a)
and (13.152b).

The result shows that, although the means of the cavity mode and atomic
dipole amplitudes are zero, their autocorrelations are not; furthermore, the
autocorrelations are the products α∗(t)α(t′) and β∗(t)β(t′), respectively. For-
mally, α(t) and β(t) behave as the amplitudes of damped, coupled harmonic
oscillators; it is the random phase of β in the initial state (vacuum fluctua-
tions) that leads to the vanishing of the ensemble means.

Exercise 13.8. Write a computer program to calculate the spontaneous emis-
sion spectrum by taking fast Fourier transforms of α(t) and β(t). Explore the
dependence of the spectrum on parameters g/κ, γ/2κ, and ΔC .

Results showing the cavity enhancement of the spontaneous emission rate
are recovered from (13.168a) and (13.168b) in the bad-cavity limit. Assuming
κ� γ/2, g, we expand δ1 (Eq. 13.155) in powers of g/κ to obtain

δ1 = 1
2 (κ− γ/2 + iκΔC)

√

1 +
4g2

(κ− γ/2 + iκΔC)2

≈ 1
2 (κ+ γ/2 + iκΔC) − g2

κ

1 − iΔC

1 +Δ2
C

. (13.170)
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Then the coupled dynamics of the probability amplitudes α̃(t) and β̃(t) are
governed by eigenvalues

λ̃+ = − 1
2 (κ+ γ/2) + δ1

≈ −
(
γ

2
+
g2

κ

1
1 +Δ2

C

)
+ i

(
1
2
κΔC +

g2

κ

ΔC

1 +Δ2
C

)
, (13.171a)

and

λ̃− = − 1
2 (κ+ γ/2)− δ1 ≈ −κ(1 + i 12ΔC), (13.171b)

or for the evolution of α(t) and β(t) (Eqs. 13.153a and 13.153b), the eigen-
values

λ+ = λ̃+ − i 12 (ωA + ωC) ≈
(
γ′

2
+ iω′A

)
, (13.172a)

λ− = λ̃− − i 12 (ωA + ωC) ≈ −(κ+ iωC), (13.172b)

where γ′ is the cavity-enhanced spontaneous emission rate (13.50) and ω′A is
the shifted resonance frequency (13.51). In the bad-cavity limit we retain the
shift of the atomic resonance frequency, ωA, because it might be significant
compared to the linewidth γ′/2; the shift of the cavity resonance frequency,
ωC , is assumed to be negligible compared to the linewidth κ. Now the spectrum
of cavity-enhanced spontaneous emission follows from the solutions for α and
β. Using (13.172a) and (13.172b),

α(t) ≈ g

κ(1 + iΔC)
[
e−(γ′/2+iω′

A)t − e−(κ+iωC)t
]
, (13.173a)

and
β(t) ≈ e−(γ′/2+iω′

A)t. (13.173b)

For the sideways spectrum, the Fourier transform of (13.173b) gives a shifted
Lorentzian with cavity-enhanced linewidth. Equation 13.173a yields the same
result for the axial spectrum in the vicinity of the atomic resonance, where
the first term inside the bracket dominates for κ� γ′/2. The branching ratio
recovered from (13.161a) and (13.161b) is Pside(∞) = γ/γ′ and Paxis(∞) =
1 − γ/γ′.

Note 13.13. There is a symmetric limit to the bad-cavity limit—the good-
cavity limit, γ/2 � κ, g. Whereas in the bad-cavity limit the cavity enhances
the spontaneous emission from the atom, in the good-cavity limit the opposite
occurs—the atom enhances cavity mode loss and at the same time shifts the
cavity resonance. This particular phenomenon is commonplace, though. It
simply amounts to a spoiling of the cavity Q, ωC/2κ, in the presence of an
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intracavity absorber, and an associated refractive index effect. To recover these
effects from the general analysis, it is convenient to introduce the alternative
detuning

ΔA ≡ ωA − ωC
γ/2

= − κ

γ/2
ΔC . (13.174)

Then for γ/2 � κ, g, we expand δ1 (Eq. 13.155) to obtain the approximation

δ1 = 1
2 [κ− γ/2 − i(γ/2)ΔA]

√

1 − 4g2

[κ− γ/2 − i(γ/2)ΔA]2

≈ 1
2 [κ− γ/2 − i(γ/2)ΔA] +

2g2

γ

1 − iΔA

1 +Δ2
A

. (13.175)

In place of (13.172a) and (13.172b), the eigenvalues are

λ+ = λ̃+ − i 12 (ωA + ωC) ≈
(γ

2
+ iωA

)
, (13.176a)

λ− = λ̃− − i 12 (ωA + ωC) ≈ −(κ′ + iω′C). (13.176b)

Thus, we obtain the enhanced cavity decay rate (spoiled cavity Q) due to
atomic absorption,

κ′ = κ

(
1 + 2C1

1
1 +Δ2

A

)
, (13.177)

together with the shifted cavity resonance frequency,

ω′C = ωC − κ2C1
ΔA

1 +Δ2
A

, (13.178)

due to atomic dispersion. The latter may be associated with a single-atom
refractive index.

Exercise 13.9. Calculate the spontaneous emission spectrum for the case
where the atom is initially unexcited but there is one quantum of excitation
in the cavity mode. Compare the spectrum for an initially excited atom.

13.3.2 Vacuum Rabi Splitting

Continuing now with our derivation, from (13.169a), (13.169b), and (13.153)–
(13.155), and assuming exact resonance between the cavity mode and atom
(ΔC = 0), we arrive at compact expressions for the spontaneous emission
spectrum in nonperturbative cavity QED :

Tside(ω)

=
γ

2π
1

4|g′|2
∣
∣∣
∣

1
2 (κ− γ/2) + ig′

1
2 (κ+ γ/2)− i(ω − ωA + g′)

−
1
2 (κ− γ/2)− ig′

1
2 (κ+ γ/2)− i(ω − ωA − g′)

∣
∣∣
∣

2

,

(13.179a)
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and

Taxis(ω)

=
κ

π

1
4|g′|2

∣
∣
∣
∣

g
1
2 (κ+ γ/2)− i(ω − ωA + g′)

− g
1
2 (κ+ γ/2)− i(ω − ωA − g′)

∣
∣
∣
∣

2

,

(13.179b)

where
g′ ≡

√
g2 − 1

4 (κ− γ/2)2. (13.180)

Generally, the two components have different shapes due to the cross-terms
in the square modulus, a consequence of the different phases of oscillation of
probability amplitudes α(t) and β(t). The cross-terms are negligible, however,
in the strong-coupling limit, g � κ, γ/2, in which case we find

Tside(ω)
γ

≈ Taxis(ω)
2κ

≈ T (ω)
γ + 2κ

. (13.181)

In this limit only the emission probabilities differ; both spectral components
approach the so-called vacuum Rabi spectrum, or vacuum Rabi doublet,

T (ω) =
1
2

[ 1
2 (κ+ γ/2)/π

1
4 (κ+ γ/2)2 + (ω − ωA + g)2

+
1
2 (κ+ γ/2)/π

1
4 (κ+ γ/2)2 + (ω − ωA − g)2

]
.

(13.182)

Figure 13.7 shows the development of the vacuum Rabi doublet as the dipole
coupling strength is increased.

The vacuum Rabi spectrum may be interpreted as the emission from the
first excited state of the Jaynes–Cummings Hamiltonian (Eq. 13.6), where
the degenerate first excited state is split by the strong dipole coupling. In the
resonant case, ωC = ωA, the energy eigenstates are the one-quantum dressed
states (Exercise 13.10)

|1, U〉 =
1√
2

(|2〉A|0〉a + i|1〉A|1〉a
)
, (13.183a)

|1, L〉 =
1√
2

(|2〉A|0〉a − i|1〉A|1〉a
)
, (13.183b)

where, from (13.6),

(HA +HF +HAF )|1, U〉 = (1
2�ωA + �g)|1, U〉, (13.184a)

(HA +HF +HAF )|1, L〉 = (1
2�ωA − �g)|1, L〉, (13.184b)

which yield transition frequencies to the ground state ωA+ g and ωA− g. The
initial state |2〉A is a superposition of the energy eigenstates, so the emission
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Fig. 13.7. Development of the vacuum Rabi doublet with increasing dipole cou-
pling strength: (a) spectrum of spontaneous emission out the sides of the cavity
(Eq. 13.179a), and (b) spectrum of spontaneous emission along the cavity axis
(Eq. 13.179b). The spectra are plotted for γ/2κ = 1

spectrum shows peaks at both transition frequencies. Of course, for a doublet
to be observed, the peak widths must be smaller than the level separation.
The widths are obtained by noting that each energy eigenstate decays via
both output channels—via the transition operator (sideways channel)

σ− = |G〉
[

1√
2

(〈1, U | + 〈1, L|)
]
+ · · · , (13.185a)

and the transition operator (axial channel)

a = |G〉
[
−i 1√

2

(〈1, U | − 〈1, L|)
]
+ · · · . (13.185b)

Thus, the vacuum Rabi resonances show the average linewidth 1
2 (κ + γ/2).

Alternatively, a time-domain argument can be given, where the linewidth av-
eraging occurs as the system energy oscillates between the atom (decay rate γ)
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Fig. 13.8. Frequencies (solid curves) and widths (dashed curves) of the vacuum
Rabi resonances plotted as a function of the detuning of the cavity mode from the
atomic resonance: for g/κ = 5 and (a) γ/2κ = 1, (b) γ/2κ = 5

and the cavity mode (decay rate 2κ). It is interesting to note that the average
linewidth is subnatural whenever κ < γ/2. A subnatural linewidth has been
observed [13.41] through the measurement of weak-probe transmission spectra
in many-atom cavity QED (Sect. 14.4.1).

When viewed as a function of the detuning between the cavity mode and
the atom, the vacuum Rabi resonances provide an example of an avoided
crossing. The resonance frequencies and widths are given by

ω± ≡ 1
2 (ωA + ωC) ± Imδ1, γ± ≡ 1

2 (κ+ γ/2)∓ Reδ1, (13.186)

with δ1 defined in (13.155). These are plotted to illustrate the avoided crossing
in Fig. 13.8.

Of course, the terminology “vacuum Rabi resonances” (also “vacuum
Rabi splitting”), taken from Sanchez-Mondragon and coworkers [13.42], is
something of a misnomer. It is clearly the first excited state of the Jaynes–
Cummings Hamiltonian that explains the level splitting, so “one-quantum
Rabi splitting” might be better. Other names are also used and more accu-
rately describe the physics—normal-mode resonances or normal-mode split-
ting [13.43, 13.6], and, for semiconductor systems, cavity polaritons [13.44,
13.45].

Note 13.14. When κ is set to zero Tside(ω) (Eq. 13.179a) vanishes identically
on line center (ω = ωA) for all values of g and γ/2. This is sometimes ex-
plained [13.41] in terms of an interference of probability amplitudes for emis-
sion from the dressed states |1, U〉 and |1, L〉; these states are prepared so as to
give destructive interference by the initial condition (13.144). An alternative
time-domain explanation follows from the coupled equations (13.152a) and
(13.152b). These may be written as (ωC = ωA, κ = 0)

˙̃α = gβ̃,
˙̃
β = −(γ/2)β̃ − gα̃. (13.187)

Note then that the expression (13.169a) for Tside(ω) writes the transition
amplitude at line center as the integral over time of the dipole amplitude
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β̃(t); hence, we obtain

Tside(ωA) =
1
2π

∣∣
∣
∣

∫ ∞

0

dt′β̃(t′)
∣∣
∣
∣

2

=
1
2π

1
g2

|α̃(∞) − α̃(0)|2 = 0. (13.188)

The integral is guaranteed to vanish because α̃(∞) is definitely zero—the
photon is definitely emitted—and the initial condition is set with α̃(0) = 0.
Thus, the initial condition sets up a particular phased oscillation of the dipole
amplitude, which leads to the zero in the spectrum. Seen in this light, the
phenomenon is not uniquely quantum-mechanical. There is a counterpart in
the decay of coupled classical oscillator amplitudes.

13.3.3 Vacuum Rabi Resonances in the Two-State Approximation

We will see in Sect. 14.4.1 that vacuum Rabi resonances also arise in many-
atom cavity QED. It is not that the spontaneous emission problems for one
and many atoms are the same; but when excited by a weak probe, the many-
atom system shows the same two-peaked spectrum. The connection is made
through the coupled oscillator equations (13.152a) and (13.152b). For a weakly
excited two-level medium the Maxwell–Bloch equations take the same coupled
oscillator form. In fact, the oscillator equations are generic; they describe the
coupling of one electromagnetic field mode to a polarized medium in the linear
response regime. Details that distinguish one medium from another change
parameters, but not the form of the equations; hence the connection between
polaritons [13.46] and vacuum Rabi resonances, for example.

Once the nonlinear regime is entered, however, differences appear in the
behavior of one versus many atoms. In quantum mechanical terms, they arise
through multiphoton transitions. Such transitions depend on the excited state
spectrum above the one-quantum level, which is of course different for one
compared with many atoms, and for a semiconductor medium. Fluctuations
provide a sensitive probe of multiphoton effects, and measurements of g(2)(τ)
(Sects. 15.2.7, 16.1.3, and 16.2) or the incoherent spectrum (Sect. 15.2.6) can
detect the influence of nonlinearity—even in a many-atom system—at the
two-quanta level. The mean system response is less sensitive, and in a many-
atom system remains approximately linear until the cavity contains enough
photons to saturate the entire medium [13.47]; thus, the vacuum Rabi res-
onances persist to high excitation, looking much like the normal modes of
coupled harmonic oscillators (Exercise 13.11).

The situation is different for single-atom cavity QED, where the energy
spectrum differs from that of coupled harmonic oscillators even at the second
excited state. For this case, Tian and Carmichael [13.48] have shown that,
for sufficiently strong dipole coupling, each vacuum Rabi resonance behaves
like an approximate two-state system, from which one recovers the Mollow
spectrum (Sect. 2.3.4) and photon antibunching of resonance fluorescence



244 13 Cavity QED I: Simple Calculations

(Sects. 2.3.5 and 2.3.6). The predicted photon antibunching has been ob-
served [13.49]. In this section we formulate the two-state approximation of
Tian and Carmichael without reproducing their exact numerical results.

The derivation of the full Jaynes–Cummings spectrum is left as an exercise
(Exercise 13.10). In the resonant case, there is the ground state (13.147a), and
an infinite ladder of excited state doublets (n = 1, 2, . . .)

|n,U〉 =
1√
2

(|2〉A|n− 1〉a + i|1〉A|n〉a
)
, (13.189a)

|n,L〉 =
1√
2

(|2〉A|n− 1〉a − i|1〉A|n〉a
)
, (13.189b)

generalizing (13.183a) and (13.183b). The energies are

EG = − 1
2�ωA, (13.190)

and

En,U = (n− 1
2 )�ωA +

√
n�g, (13.191a)

En,L = (n− 1
2 )�ωA −√

n�g. (13.191b)

Consider now that the cavity is coherently driven, as in Sects. 13.2.2 and 13.2.3,
but at the frequency of one of the vacuum Rabi resonances rather than the
cavity resonance frequency ωC . For sufficiently large g, and assuming that the
strength of the driving field is not too large, the detuning of the transition to
the second excited state suggests that we might make a two-state approxima-
tion. Choosing excitation of the lower vacuum Rabi resonance (Fig. 13.9), the
two-state system comprises the ground state |G〉 and the excited state |1, L〉.
Formally, we define

Σ̂− ≡ |G〉〈1, L|, Σ̂+ ≡ |1, L〉〈G|, (13.192)

and make the approximation

ia→ 1√
2
Σ̂−, −ia† → 1√

2
Σ̂+,

σ− → 1√
2
Σ̂−, σ+ → 1√

2
Σ̂+,

Master equation (13.57) becomes (ω0 → ωA − g)

ρ̇ = −i[(1
2ωA − g)Σ̂+Σ̂− − 1

2ωAΣ̂−Σ̂+, ρ
]

+
1√
2

[Ē0e
−i(ωA−g)tΣ̂+ − Ē∗0 ei(ωA−g)tΣ̂−, ρ

]

+ 1
2 (κ+ γ/2)(2Σ̂−ρΣ̂+ − Σ̂+Σ̂−ρ− ρΣ̂+Σ̂−), (13.193)
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Fig. 13.9. (a) Spectrum of the Jaynes–Cummings Hamiltonian showing the ground
state and first and second excited-state doublets; the driving field is tuned to the
lower vacuum Rabi resonance so the second excited state transition is detuned.
(b) Corresponding spectrum of coupled harmonic oscillators; the second excited-
state transition is tuned

which is the master equation of resonance fluorescence (Eq. 2.96). Thus, ev-
erything familiar from resonance fluorescence is reproduced, approximately at
least—the Mollow triplet spectrum (Sect. 2.3.4), and the photon antibunching
and squeezing (Sects. 2.3.5 and 2.3.6). Since in the two-state approximation
the fields scattered into both output channels are proportional to Σ̂−, we can
expect to see these effects for the axially as well as the sideways-scattered
light. The generation of a Mollow triplet spectrum in transmission is a partic-
ularly interesting novelty, arising from a splitting of the |G〉 and |1, L〉 levels,
a dressing of the dressed states.

Exercise 13.10. Show that in the presence of detuning the eigenstates and
eigenenergies of the Jaynes–Cummings Hamiltonian (Eq. 13.6), the so-called
dressed states and dressed energies, are the ground state |G〉 (Eq. 13.147a),
with energy EG = − 1

2�ωA, and the excited-state doublets (n = 1, 2, . . .)

|n,U〉 =
1√
2

(
C|2〉A|n− 1〉a + iD|1〉A|n〉a

)
, (13.194a)

|n,L〉 =
1√
2

(
D|2〉A|n− 1〉a − iC|1〉A|n〉a

)
, (13.194b)

where

C ≡
⎡

⎣1 +
1
2 (ωA − ωC)

√
1
4 (ωA − ωC)2 + g2n

⎤

⎦

1/2

, (13.195)
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and

D ≡
⎡

⎣1 −
1
2 (ωA − ωC)

√
1
4 (ωA − ωC)2 + g2n

⎤

⎦

1/2

, (13.196)

with energies

En,U = (n− 1
2 )�ωC + �

√
1
4 (ωA − ωC)2 + g2n, (13.197a)

En,L = (n− 1
2 )�ωC − �

√
1
4 (ωA − ωC)2 + g2n. (13.197b)

Exercise 13.11. Consider the Hamiltonian of coupled harmonic oscillators,
with the interaction on resonance,

HS = Ha +Hb +Hab

= �ω0a
†a+ �ω0b

†b+ i�g(a†b− ab†). (13.198)

Show that the eigenenergies and eigenstates are (N = 1, 2, . . .; M = 1, 2, . . .)

EN,M = N�(ω0 − g) +M�(ω0 + g), (13.199)

and

|EN,M 〉 =
(a† − ib†)N (a† + ib†)M√

2N+MN !M !
|0〉a|0〉b. (13.200)

Draw a sketch to compare the energy spectrum (13.199) with the Jaynes–
Cummings spectrum. Why is it that for coherent excitation—interaction
Hamiltonian i�E(e−iωta† − eiωta), for example—resonances are observed at
the normal-mode frequencies ω0 − g and ω0 + g only?
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Many Atoms in a Cavity: Macroscopic Theory

We will be familiar with much of the background to many-atom cavity QED
from our treatment of laser theory in Chaps. 7 and 8. Laser theory is closely
related to the theory of optical bistability, which is also built around the quasi-
resonant interaction of atoms and light inside an optical cavity, but considers
a passive rather than active medium. In this chapter we develop the semiclas-
sical theory of optical bistability and uncover its most obvious connections
with cavity QED—in particular, the many-atom version of the vacuum Rabi
doublet. We meet the Maxwell–Bloch equations for a two-level medium in-
teracting with a single mode of a Fabry–Perot, and discuss the relationship
between these macroscopic equations and a microscopic description in terms
of Hamiltonians and master equations.

To start with, in Sect. 14.1 we review the physical principles that underlie
the phenomena of absorptive and dispersive optical bistability, avoiding the
detailed description of any particular nonlinear medium. An excellent review
of the application of these principles is given in the book by Gibbs [14.1] where
a number of specific systems are considered, ranging from the two-level atoms
considered in Sects. 14.2–14.4 to optical fibers and excitonic nonlinearities in
semiconductors.

14.1 Optical Bistability: Steady-State Transmission
of a Nonlinear Fabry–Perot

Consider a Fabry–Perot cavity partially filled with a nonlinear medium, as
depicted in Fig. 14.1. A coherent TEM00 traveling-wave field, frequency ω0, is
mode-matched into the cavity traveling in the positive z direction. The input
field is expanded in the form

E0(r, t) = ê0
1
2E0e

−(x2+y2)/w2
0e−i[ω0(t−z/c)−φ0] + c.c., (14.1)

z ≤ −L+ 	+ d, where ê0 is a unit polarization vector, E0 is the amplitude of
the field (a real number), w0 is the mode waist, and φ0 is an arbitrary phase.
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Fig. 14.1. Schematic of the nonlinear Fabry–Perot interferometer. A medium of
two-level atoms extends between z = 0 and z = �

There are two output fields, one propagating to the left of the cavity,

E1(r, t) = ê0
1
2E1(t)e−(x2+y2)/w2

0e−i[ω0(t+z/c)−φ1(t)] + c.c., (14.2)

z ≤ −L+ 	+ d, and the other to the right,

E2(r, t) = ê0
1
2E2(t)e−(x2+y2)/w2

0e−i[ω0(t−z/c)−φ2(t)] + c.c., (14.3)

z ≥ 	+d, where E1(t)eiφ1(t) and E2(t)eiφ2(t) are complex amplitudes, assumed
to be slowly varying functions of time. Inside the cavity the field is a sum of
forwards and backwards traveling waves. We expand these as

Ef (r, t) = ê0
1
2Ef (z, t)e−(x2+y2)/w2

0e−i[ω0(t+z/c)−φf (z,t)] + c.c., (14.4a)

and

Eb(r, t) = ê0
1
2Eb(z, t)e−(x2+y2)/w2

0e−i[ω0(t−z/c)−φb(z,t)] + c.c., (14.4b)

	+ d− L ≤ z ≤ 	+ d, where Ef (z, t)eiφf (z,t) and Eb(z, t)eiφb(z,t) are complex
amplitudes, assumed to be slowly varying in space and time. Like E0 the
functions E1(t), E2(t), Ef (z, t), and Eb(z, t) are all real.

Our goal is to determine the output fields, E1(r, t) and E2(r, t), in terms
of the input field E0(r, t). Here and in the following section we address this
question for the steady state only. Time evolution is considered in Sect. 14.2.2.
We start from the equations that relate the steady-state output fields to the
input and the steady-state fields inside the cavity. Using (14.1)–(14.4b), and
dropping the time argument on the field amplitudes, we have

E1e
iφ1 =

√
R1E0e

i[φ0+φR−2(ω0/c)(L−�−d)] +
√
T1Eb(0)ei[φb(0)+φT ], (14.5a)

and
E2e

iφ2 =
√
T2Ef (	)ei[φf (�)+φT ], (14.5b)

where φT is the phase change on transmission at the mirrors. It remains to
relate Eb(0)eiφb(0) and Ef (	)eiφf (�) to E0e

iφ0 . This is accomplished in two steps.
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Consider first the boundary conditions relating the forwards and backwards
field amplitudes at either end of the medium. At z = 0, the forwards field
may be written as a sum of the input field and the backwards field. Taking
into account free propagation and transmission and reflection at mirror 1, the
boundary condition is

Ef (0)eiφf (0) =
√
T1E0e

i(φ0+φT ) +
√
R1Eb(0)ei[φb(0)+φR+2(ω0/c)(L−�−d)],

(14.6a)

where φR is the phase change on reflection, and 2(ω0/c)(L−	−d) is the phase
accumulated through free propagation of the backwards field. At z = 	, the
backwards field is related to the forwards field through its free propagation
and reflection at mirror 2:

Eb(	)eiφb(�) =
√
R2Ef (	)ei[φf (�)+φR+2(ω0/c)(�+d)], (14.6b)

where (ω0/c)(	+ d) is the phase accumulated through free propagation.
The second step requires us to relate the amplitudes of the forwards and

backwards fields at either end of the medium. This calls for the solution of
a nonlinear propagation problem. A diversion in this direction would lead us
into unnecessary detail at this stage and require us to specialize to a particular
model, so we set aside the nonlinear propagation for the time being and simply
write

Ef (	)eiφf (�) = Kf
absEf (0)ei[φf (0)+θf

disp], (14.7a)

Eb(0)eiφb(0) = Kb
absEb(	)ei[φb(�)+θ

b
disp], (14.7b)

which holds without loss of generality so long as Kf
abs, K

b
abs, θ

f
disp, and θbdisp

are viewed as functions of the field amplitudes. The amplitude changing fac-
tors Kf

abs and Kb
abs account for absorption in the medium, while θfdisp and

θbdisp account for dispersion. Fundamentally, each of these is a function of
two amplitudes, because in a nonlinear medium the forwards and backwards
waves do not propagate independently of one another (see Note 14.1). The
dependence on one amplitude is eliminated through the boundary conditions,
though, which leaves a dependence on just one of the four field amplitudes
Ef (0), Eb(	), Eb(0), or Eb(	); we consider the dependence to be on Ef (0).

We are now in a position to derive the steady-state relationship between
input and output fields for a standing-wave cavity (Fabry-Perot). From (14.6a),
and using (14.7b), (14.6b), and (14.7a), we obtain

Ef (0)eφf (0) =
√
T1E0e

i(φ0+φT )

+
√
R1R2K

f
absK

b
absEf (0)ei[φf (0)+θ0+θ

f
disp+θb

disp], (14.8)

where
θ0 ≡ mod 2π[2(ω0/c)L+ 2φR] (14.9)
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is the round-trip phase change due to free propagation. Collecting terms in
Ef (0)eφf (0), we have

Ef (0)eiφf (0) =
√
T1E0e

i(φ0+φT )

1 −√
R1R2K

f
absK

b
abse

i(θ0+θ
f
disp+θb

disp)
. (14.10)

Implicitly, this is a nonlinear equation to be solved by Ef (0), through the
functional dependence in Kf

abs, K
b
abs, θ

f
disp, and θbdisp. Given a solution for

Ef (0), the amplitudes of the output fields are

E1e
iφ1 =

√
R1E0e

i[φ0+φR−2(ω0/c)(L−�−d)]

+
√
R1T1K

f
absK

b
abs

[Ef (0)eiφf (0)
]
ei[φR+φT +2(ω0/c)(�+d)+θ

f
disp+θb

disp],

(14.11)

where we have used (14.5a), (14.7b), (14.6b), and (14.7a), and

E2e
iφ2 =

√
T2K

f
abs

[Ef (0)eiφf (0)
]
ei(φT +θf

disp), (14.12)

which follows from (14.5b) and (14.7a). Note that it can be helpful to read
(14.10) in the reverse direction: assuming that the functional dependencies of
Kf

abs, K
b
abs, θ

f
disp, and θbdisp on Ef (0) are given, then (14.10) determines E0e

iφ0

as an explicit function of Ef (0)eiφf (0); stated another way, the input field and
one output field are given explicitly as a function of the second output field.

Note 14.1. Equation 14.10 is equivalent to what one obtains by summing over
successive round trips in the cavity. Thus, we have the alternative derivation

Ef (0)eiφf (0) =
√
T1E0e

i(φ0+φT )
[
1 +

√
R1R2K

f
absK

b
abse

i(θ0+θ
f
disp+θb

disp)

+
(√

R1R2K
f
absK

b
abs

)2
e2i(θ0+θf

disp+θb
disp) + · · ·

]

=
√
T1E0e

i(φ0+φT )

1 −√
R1R2K

f
absK

b
abse

i(θ0+θ
f
disp+θb

disp)
. (14.13)

Strictly, however, the notion of following successive round trips in this way is
a little problematic for a nonlinear medium, since the forwards and backwards
waves scatter into one another, through the standing-wave grating written into
the medium by the standing-wave field (see Eqs. 14.26a and 14.26b).

Equation 14.10 is the so-called optical bistability state equation, at this stage
written in rather rudimentary form. Essentially, it is the standard result for the
steady-state field inside a Fabry–Perot cavity, generalized to include losses and
phase shifts that depend themselves on the amplitude of the intracavity field;
the equation amounts to a self-consistency requirement to be satisfied by the
intracavity field. Various explicit versions of it appear in the literature, each
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with a different choice of the functions Kf
abs, K

b
abs, θ

f
disp, and θbdisp. Different

versions hold for different nonlinear media or different cavity geometries—
the equation also applies to a ring cavity, for example, where one simply
considers the backwards wave to propagate freely and sets Kb

abse
iθb

disp = 1.
A ring cavity is often assumed for theoretical work, since the solution to the
nonlinear propagation problem is simpler in this case. Explicit state equations
for a two-level medium appear in Sect. 14.2 (Eqs. 14.53–14.56).

Most generally, absorption and dispersion are present at the same time,
but for an initial understanding of the physics it is helpful to consider them
separately. Consider first a purely absorptive medium, θfdispθ

b
disp = 0. We

assume the absorption exhibits a saturable nonlinearity, so that as a function
of the intracavity intensity,

If (0) ≡ [Ef (0)]2, (14.14)

Kf
absK

b
abs behaves as shown in Fig. 14.2a. The implicit expression for If (0)

may then be found by solving (14.10) graphically for fixed I0 ≡ E2
0 . Thus,

introducing the two functions [left- and right-hand sides of (14.10)]

g[If (0)] ≡ If (0)
T1I0

, (14.15)

and
h[If (0)] ≡ 1

{1 −√
R1R2K

f
abs[If (0)]Kb

abs[Ib(0)]}2
, (14.16)

the solutions for If (0) occur at curve crossings, where

g[If (0)] = h[If (0)]. (14.17)

Figures 14.2b and 14.2c illustrate what is found at a series of I0 values for
two different choices of the absorption strength.

In Fig. 14.2c there is only one solution for If (0) at each value of input
intensity I0; outputs are uniquely determined by the input, as in a linear
interferometer. On the other hand, when the unsaturated absorption is suf-
ficiently strong [Fig. 14.2b] there can be three solutions for If (0) at certain
input intensities I0. Two of the three solutions are stable (Sect. 14.2.3). There
is one stable solution of low intracavity intensity, for which the absorption
is unsaturated, hence able, self-consistently, to maintain the low intensity;
and there is a second stable solution of sufficiently high intensity to satu-
rate the absorption and maintain the high intensity, self-consistently. This
is the phenomenon of absorptive optical bistability, which was proposed in
a patent application by H. Seidel in 1969 [14.2] and independently by Szoke
et al. [14.3].

We turn now to a purely dispersive medium, setting Kf
absK

b
abs = 1. Equa-

tion 14.15 carries over, but in place of (14.16) we now introduce the function
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Fig. 14.2. The mechanism of absorptive optical bistability in a saturable medium:
(a) the saturable function Kf

abs[If (0)]Kb
abs[If (0)] is plotted for two values of weak-

field absorption, smaller in case (i) than case (ii); (b) for low absorption [case (i)] the
functions g[If(0)] (dashed lines) and h[If (0)] (solid curve) have only one intersection
for all input intensities and no bistability exists; (c) for larger absorption [case
(ii)] the functions g[If (0)] and h[If (0)] have three intersections (open circles) for
intermediate input intensities and absorptive bistability exists. The decreasing slope
of g[If (0)] corresponds to increasing intensity I0; h[If (0)] is plotted from (14.16) for
R1R2 = 0.94

[right-hand side of (14.10)]

h[If (0)] ≡ 1
(
1 −√

R1R2

)2 + 4
√
R1R2 sin2 1

2{θ0 + θfdisp[If (0)] + θbdisp[If (0)]}
,

(14.18)

where the nonlinearity enters as a phase shift which can tune the cavity
through resonance. Figure 14.3a shows results for a saturable phase shift, but
in fact a simple Kerr effect is all that is required. Whether or not dispersive
optical bistability occurs depends on θ0 and the range of tuning provided by
the nonlinear phase shift. Figure 14.3b illustrates the case where no bistability
occurs since the nonlinear phase shift is too small. In contrast, Fig. 14.3c shows
how a larger nonlinear phase shift results in the tuning of the interferometer
through resonance and a range of input intensity yielding three solutions for



14.2 The Mean-Field Limit for a Two-Level Medium 253

Fig. 14.3. The mechanism of dispersive optical bistability: (a) the nonlinear phase
shift θf

disp[If (0)] + θb
disp[If (0)] (for a saturable medium) is plotted for two values

of weak-field dispersion, smaller in case (i) than case (ii); (b) for weak dispersion
[case (i)] the functions g[If (0)] (dashed lines) and h[If (0)] (solid curve) have only
one intersection for all input intensities and no bistability exists; (c) for stronger
dispersion [case (ii)] the nonlinear phase shift tunes the cavity through resonance
so that g[If (0)] and h[If (0)] have three intersections (open circles) for intermediate
input intensities and dispersive bistability exists. The decreasing slope of g[If (0)]
corresponds to increasing intensity I0; h[If (0)] is plotted from (14.18) for R1R2 =
0.94

If (0). The first explanation of this dispersive mechanism appears in the work
of McCall, Gibbs, and Venkatessan [14.4, 14.5].

14.2 The Mean-Field Limit
for a Homogeneously Broadened Two-Level Medium

Our ultimate interest is in cavity QED, specifically in the quantum fluctu-
ations of cavity QED systems. With this goal in mind, it is useful to make
some specializations and simplifications. We specialize to a dilute medium of
homogeneously broadened two-level atoms interacting with one mode of a high
finesse standing-wave cavity. There are four important pieces to this prescrip-
tion: a dilute medium, two-level atoms, one mode, and a high finesse cavity.
Taken together they greatly simplify the analysis of the model. The pieces are
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interdependent and stand together as a package. One mode, for example, is
generally insufficient. This is readily appreciated, since in an optically dense
medium the steady-state amplitudes Ef (z)eiφf (z) and Eb(z)eiφb(z) change sig-
nificantly over the medium length. Clearly, many cavity modes are needed to
expand the spatial dependence. Thus, the simplification to one mode requires
also that the medium be dilute. Then there is the time domain to consider.
In a low finesse cavity the mode frequencies are closely spaced, increasing the
possibility that the bandwidth of the fluctuations overlaps adjacent modes;
the simplification to one mode also calls for a high cavity finesse. Finally, to
close the circle, a high cavity finesse increases the number of round trips per
cavity lifetime, providing for a good optical depth even when the medium is
dilute.

In this section, we first derive the explicit form of the optical bistability
state equation for a dilute medium of homogeneously-broadened two-level
atoms. Then we develop a set of Maxwell–Bloch equations to describe the
time dependence under single-mode conditions. The review by Lugiato [14.6]
is a good place to start for a treatment that goes beyond the simplifications
used here.

14.2.1 Steady State

The scenario that ensures that the forwards and backwards wave amplitudes
remain essentially constant throughout the medium is referred to as the mean-
field limit. We introduce the mean-field limit into state equation (14.10) by
requiring

1 −R1 = T1 � 1, θ0 � 1,

1 −R2 = T2 � 1, θfdisp + θbdisp � 1,

1 −Kf
absK

b
abs � 1.

⎫
⎪⎪⎬

⎪⎪⎭
(14.19)

Keeping first-order terms in each of the small quantities, the equation is rewrit-
ten as

√
T1E0e

i(φ0+φT ) = Ef(0)eiφf (0)
[
1 −

√
R1R2K

f
absK

b
abse

i(θ0+θ
f
disp+θb

disp)
]

= Ef(0)eiφf (0)
{
1 − (1 − 1

2T1)(1 − 1
2T2)

× [
1 − (1 −Kf

absK
b
abs)

][
1 + i(θ0 + θfdisp + θbdisp)

]

+ higher orders
}

= Ef(0)eiφf (0)
[

1
2 (T1 + T2)

+ (1 −Kf
absK

b
abs) − i(θ0 + θfdisp + θbdisp)

+ higher orders
]
. (14.20)
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Now, dividing throughout by 1
2 (T1+T2) and assuming that the resulting ratios

of small quantities are all of similar order, we have

√
T1E0

1
2 (T1 + T2)

ei(φ0+φT ) = EeiφC

[

1 +
1 −Kf

absK
b
abs

1
2 (T1 + T2)

− i
θ0 + θfdisp + θbdisp

1
2 (T1 + T2)

]

,

(14.21)

where we have set (see Eqs. 14.68b, 14.69b, and 14.91a)

Ef (0)eiφf (0) = EeiφC , φC = 1
2 (φf − φb). (14.22)

From (14.11) and (14.12), the output fields are

E1e
iφ1 =

√
R1E0e

i[φ0+φR−2(ω0/c)(L−�−d)] +
√
T1Eei[φR+φT +φC+2(ω0/c)(�+d)],

(14.23)
and

E2e
iφ2 =

√
T2Eei(φT +φC), (14.24)

where again we keep only dominant terms.
The remaining task is to derive an explicit expression for the absorption

loss factor, 1−Kf
absK

b
abs, and the phase shift θfdisp + θbdisp. We must solve the

nonlinear propagation problem for a dilute, homogeneously broadened two-
level medium. To this end, the medium polarization is expanded in forwards
and backwards waves in the manner of (14.4a) and (14.4b); we introduce
expansions

P f (r, t) = ê0
1
2Pf (r, t)e−(x2+y2)/w2

0e−i[ω0(t+z/c)−ψf (z,t)] + c.c., (14.25a)

and

P b(r, t) = ê0
1
2Pb(r, t)e−(x2+y2)/w2

0e−i[ω0(t−z/c)−ψb(z,t)] + c.c., (14.25b)

0 ≤ z ≤ 	, where ψf (z, t) and ψb(z, t) are slowly-varying functions of space and
time, and Pf (r, t) and Pb(r, t) are slowly varying in time but not in space—
the latter in anticipation of a dependence on the standing-wave modulation
of the light intensity; note also that in contrast to Ef (z, t) and Eb(z, t) in
(14.4a) and (14.1b), Pf (r, t) and Pb(r, t) are functions of both longitudinal
and transverse spatial coordinates.

We work now from Maxwell’s equation for the field (9.14) (with n = 1),
where the polarization P f (r, t) + P b(r, t) replaces the source term on the
right-hand side. Since Ef (z, t)eiφf (z,t) and Eb(z, t)eiφb(z,t) are slowly varying
in z and t, we may use the slowly-varying-amplitude approximation. The
resulting equations are similar to (9.16a) and (9.16b), but with the source
terms integrated against TEM00 traveling-wave mode functions. Setting the
time derivatives to zero, the steady-state field amplitudes then satisfy the pair
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of coupled equations

dEfeiφf

dz

= i
ω0

2ε0c
2

πw2
0	

∫
d3re−2(x2+y2)/w2

0

{
Pf (r)eiψf (r) + Pb(r)e−i[2(ω0/c)z−ψb(r)]

}
,

(14.26a)

dEbeiφb

dz

= −i ω0

2ε0c
2

πw2
0	

∫
d3re−2(x2+y2)/w2

0

{
Pb(r)eiψb(r) + Pf(r)ei[2(ω0/c)z+ψf (r)]

}
.

(14.26b)

Note that the integral over the second term in the curly bracket does not
vanish because Pf (r)eiψf (r) and Pb(r)eiψb(r) are modulated by the standing-
wave light intensity—the so-called population grating effect.

For a homogeneously broadened two-level medium, explicit expressions for
the forwards and backwards polarization amplitudes follow from

P f (r, t) + P b(r, t) = ê0Dd〈σj−(t)〉|rj=r + c.c., (14.27)

where D is the atomic density, and the interaction of atom j with the intra-
cavity field is described by Hamiltonian

HS ≡ 1
2�ωAσjz − d1

2e
−(x2

j+y2
j )/w2

0{[Ef(zj)eiφf (zj) + Eb(zj)eiφb(zj)]

× e−iω0tσj+ + c.c.}, (14.28)

where rj ≡ (xj , yj, zj) is the location of the atom. Radiative damping and de-
phasing are described by master equation (2.66) (n̄ = 0) and are independent
of the atomic location. Thus, every atom obeys a similar set of optical Bloch
equations (Sect. 2.3.3), the only variation being the dependence of (14.28)
on rj . The polarization amplitudes are given by the steady-state solution to
these equations with the replacement rj → r:

Exercise 14.1. Derive the optical Bloch equations for an atom located at
rj → r from Hamiltonian (14.28) and master equation (2.66); hence show
that the forwards and backwards steady-state polarization amplitudes are
given by

Pf,b(r)eiψf,b(r) = iD
2d2

�γh
Ef,b(z)eiφf,b(z)

1 + iΔ

1 +Δ2 + I(r)/Isat
, (14.29)

with detuning from atomic resonance

Δ ≡ ω0 − ωA
γh/2

, (14.30)
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saturation intensity

Isat ≡ �
2γγh
8d2

, (14.31)

and

I(r) ≡ e−2(x2+y2)/w2
0 1

4 |Efei[(ω0/c)z+φf ] + Ebe−i[(ω0/c)z−φb]|2. (14.32)

The population grating comes from the interference term in (14.32). The ho-
mogeneous width (half-width at half-maximum) is

γh/2 = (γ + γp)/2, (14.33)

which includes nonradiative dephasing at the rate γp.

We return now to the coupled equations (14.26a) and (14.26b) with the polar-
ization amplitudes given by (14.29). Since we are considering a dilute medium,
we may take Ef (z)eiφf (z) and Eb(z)iφb(z) to be independent of z in the pref-
actor on the right-hand sides of (14.29), but the spatial dependence of I(r)
must be retained. Then, after integrating over the length of the medium, we
obtain

Ef (	)eiφf (�) = Ef (0)eiφf (0)

[

1 − Dω0d
2

�γhε0c
(1 + iΔ)

× 2
πw2

0

∫ ∞

−∞
dx

∫ ∞

−∞
dye−2(x2+y2)/w2

0

∫ �

0

dzΞ(r)

]

, (14.34a)

Eb(0)eiφb(0) = Eb(	)eiφb(�)

[

1 − Dω0d
2

�γhε0c
(1 + iΔ)

× 2
πw2

0

∫ ∞

−∞
dx

∫ ∞

−∞
dye−2(x2+y2)/w2

0

∫ �

0

dzΞ∗(r)

]

, (14.34b)

with

Ξ(r) ≡ 1 + e−2i[(ω0/c)z+
1
2 (φf−φb)]

1 +Δ2 + (|E|2/Isat)e−2(x2+y2)/w2
0 cos2[(ω0/c)z + 1

2 (φf − φb)]
.

(14.35)
Note the different physical significance of the two terms in the numerator of
(14.35). For the first term, which is constant, the integral over z takes an
average of the population grating; this accounts for field propagation with-
out coupling between the forwards and backwards waves. The second term
oscillates with a period equal to half the optical wavelength, and originates
from the polarization Pb(r) in (14.26a) and Pf (r) in (14.26b); it accounts for
back-scattering from the population grating.
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First, let us consider the integral with respect to z. It is convenient to
make a change of variable, with

θ ≡ (ω0/c)z + 1
2 (φf − φb), θ′ ≡ 2θ, (14.36)

and to neglect the difference between the actual length of the medium and
the nearest integer multiple of half-wavelengths. Then we can write

∫ �

0

dzΞ(r) =
	

λ0/2

∫ −(ω0/c)
−1 1

2 (φf−φb)+λ0/2

−(ω0/c)−1 1
2 (φf−φb)

dzΞ(r)

= 	
1
π

∫ π

0

dθ
1 + e−2iθ

1 +Δ2 + (|E|2/Isat)e−2(x2+y2)/w2
0 cos2 θ

= 	
1
2π

∫ 2π

0

dθ′
1 + cos θ′

1 +Δ2 + (|E|2/Isat)e−2(x2+y2)/w2
0 1

2 (1 + cos θ′)
,

(14.37)

where the imaginary part of the integral vanishes because the integrand is
odd. For the transverse integration we make a second change of variable,
introducing (r2 = x2 + y2)

η̄ ≡ |E|2/Isat
1 +Δ2

e−2r2/w2
0 . (14.38)

We now have

2
πw2

0

∫ ∞

−∞
dx

∫ ∞

−∞
dye−2(x2+y2)/w2

0

∫ �

0

dzΞ(r)

= 	
1

|E|2/Isat

∫ |E|2/Isat
1+Δ2

0

dη̄
1
2π

∫ 2π

0

dθ′
1 + cos θ′

1 + η̄ 1
2 (1 + cos θ′)

= 	
2

|E|2/Isat

∫ |E|2/Isat
1+Δ2

0

dη̄
1
η̄

1
2π

∫ 2π

0

dθ′
[
1 − 1

1 + η̄ 1
2 (1 + cos θ′)

]

= 	
2

|E|2/Isat

∫ |E|2/Isat
1+Δ2

0

dη̄
1
η̄

(
1 − 1√

1 + η̄

)
. (14.39)

The integral over θ′ can be taken from Gradshteyn and Ryzhik [14.7]. Making
a further change of variable, with

η′ ≡
√

1 + η̄, (14.40)
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the integral on the right-hand side of (14.34a) is finally evaluated as

2
πw2

0

∫ ∞

−∞
dx

∫ ∞

−∞
dye−2(x2+y2)/w2

0

∫ �

0

dzΞ(r)

= 	
4

|E|2/Isat

∫
r

1+
|E|2/Isat

1+Δ2

1

dη′
1

1 + η′

= 	
4

|E|2/Isat ln

[
1
2

(

1 +

√

1 +
|E|2/Isat
1 +Δ2

)]

. (14.41)

Thus, substituting (14.41) into (14.34a) and (14.34b), we arrive at the solu-
tion to the propagation problem relating the forwards and backwards wave
amplitudes at either end of the nonlinear medium:

Ef(	)eiφf (�) = Ef (0)eiφf (0)

{

1 − Dω0d
2

�γε0c
	

×(1 + iΔ)
4

|E|2/Isat ln

[
1
2

(

1 +

√

1 +
|E|2/Isat
1 +Δ2

)]}

, (14.42a)

Eb(0)eiφb(0) = Eb(	)eiφb(�)

{

1 − Dω0d
2

�γε0c
	

×(1 + iΔ)
4

|E|2/Isat ln

[
1
2

(

1 +

√

1 +
|E|2/Isat
1 +Δ2

)]}

. (14.42b)

Comparing (14.7a) and (14.7b), absorption in the medium is accounted for by
the factor

1 −Kf
absK

b
abs = α	

4
|E|2/Isat ln

[
1
2

(

1 +

√

1 +
|E|2/Isat
1 +Δ2

)]

, (14.43a)

and the dispersive phase shift by

−(θfdisp + θbdisp) = α	
4Δ

|E|2/Isat ln

[
1
2

(

1 +

√

1 +
|E|2/Isat
1 +Δ2

)]

. (14.43b)

The assumption of a dilute medium requires α	� 1, with on-resonance weak-
field absorption coefficient

α ≡ 2Dω0d
2

�γhε0c
. (14.44)

Note 14.2. The expression for the absorption coefficient may also be derived
from an understanding of the radiative losses caused by spontaneous emission
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(see Note 2.6). For simplicity, consider a wave propagating in the forwards
direction with amplitude 1

2Ef . The change in intensity over a propagation
distance δz through the medium is given in terms of α by

2ε0cδ[(1
2Ef )2] = 2ε0c(αδz)(1

2Ef )2. (14.45)

The energy loss rate for a volume Aδz (cross-section A) is then

δP = 2ε0c(αδz)(1
2Ef)2A. (14.46)

This is the difference in power carried into and out of the elemental volume
by the forward-propagating wave. The energy lost is radiated as spontaneous
emission from DAδz atoms. Since each atom has a probability (1

2Ef )2/2Isat of
being in the excited state and each photon carries away an energy �ωA ≈ �ω0,
alternatively

δP = �ω0(DAδz)γ
(1
2Ef )2
2Isat

. (14.47)

Equating (14.46) and (14.47) yields

α =
1

2ε0c
(�ω0Dγ)

4d2

�2γγh
=

2Dω0d
2

�γhε0c
. (14.48)

We can now write down the explicit relationship between the input and out-
put fields for a homogeneously broadened two-level medium and a TEM00

standing-wave cavity mode. From (14.21), (14.43a), and (14.43b), we have
√
T1E0

1
2 (T1 + T2)

ei(φ0+φT )

= EeiφC

{

1 +
α	

1
2 (T1 + T2)

4
|E|2/Isat ln

[
1
2

(

1 +

√

1 +
|E|2/Isat
1 +Δ2

)]

−i θ0
1
2 (T1 + T2)

+ i
α	

1
2 (T1 + T2)

4Δ
|E|2/Isat ln

[
1
2

(

1 +

√

1 +
|E|2/Isat
1 +Δ2

)]}

.

(14.49)

Then, to simplify the relation we introduce the cooperativity parameter

2C ≡ α	
1
2 (T1 + T2)

, (14.50)

cavity detuning

Φ ≡ θ0
1
2 (T1 + T2)

=
ω0 − ωC

κ
, (14.51)
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and the scaled field amplitudes

Y ≡
√
T1E0

[12 (T1 + T2)]
√
Isat

, X ≡ |E|√
Isat

. (14.52)

Taking the square modulus of (14.49) brings us finally to the optical bistability
state equation for a homogeneously broadened two-level medium in a TEM00

mode (Gaussian-mode) standing-wave cavity:

Y 2 = X2

⎧
⎪⎨

⎪⎩

⎛

⎝1 + 2C
4
X2

ln

[
1
2

(

1 +

√

1 +
X2

1 +Δ2

)]⎞

⎠

2

+

⎛

⎝Φ− 2CΔ
4
X2

ln

[
1
2

(

1 +

√

1 +
X2

1 +Δ2

)]⎞

⎠

2
⎫
⎪⎬

⎪⎭
. (14.53)

There are two output fields, one reflected and one transmitted, whose ampli-
tudes, using (14.23), (14.24), and (14.52), are given by

E1e
iφ1 =

√
T1Isat

{ 1
2 (T1 + T2)

T1
Y ei[φ0+φR−2(ω0/c)(L−�−d)]

+Xei arg(E)ei[φR+φT +φC+2(ω0/c)(�+d)]

}
, (14.54)

and
E2e

iφ2 =
√
T2IsatXe

i arg(E)ei(φT +φC). (14.55)

The phase of the intracavity field is

arg(E) = φ0 + φT − φC + φX , (14.56)

with

sin(φX) =
X

Y

{

Φ− 2CΔ
4
X2

ln

[
1
2

(

1 +

√

1 +
X2

1 +Δ2

)]}

, (14.57a)

cos(φX) =
X

Y

{

1 + 2C
4
X2

ln

[
1
2

(

1 +

√

1 +
X2

1 +Δ2

)]}

, (14.57b)

which follows by equating phase factors on the left- and right-hand sides of
(14.49).

Exercise 14.2. Other optical bistability state equations appear in the liter-
ature, for plane rather than TEM00 waves, and ring rather then standing-
wave cavities. Derive the following: (i) the optical bistability state equation for
a homogeneously broadened two-level medium in a plane and standing-wave
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cavity,

Y 2 = X2

⎧
⎨

⎩

[

1 + 2C
1
X2

(

1 −
√

1 +Δ2

1 +Δ2 +X2

)]2

+

[

Φ− 2CΔ
1
X2

(

1 −
√

1 +Δ2

1 +Δ2 +X2

)]2
⎫
⎬

⎭
; (14.58)

(ii) the optical bistability state equation for a homogeneously broadened two-
level medium in a TEM00 mode (Gaussian-mode) ring cavity,

Y 2 = X2

{[
1 + 2C

1
X2

ln
(

1 +
X2

1 +Δ2

)]2

+
[
Φ− 2CΔ

1
X2

ln
(

1 +
X2

1 +Δ2

)]2
}

; (14.59)

and (iii) the optical bistability state equation for a homogeneously broadened
two-level medium in a plane-wave ring cavity,

Y 2 = X2

{(
1 + 2C

1
1 +Δ2 +X2

)2

+
(
Φ− 2CΔ

1
1 +Δ2 +X2

)2
}

. (14.60)

Note that the state equations for a ring cavity are for a medium of length 2	
and assume Eb → 0, 1

2Ef → |E|.
In the mean-field limit the intracavity field amplitude is almost constant
throughout the medium; there is only a small change, of order α	 � 1, from
one end of the medium to the other. Nevertheless, the small change can have
a dramatic effect on the cavity transmission if it is accumulated over many
round trips—i.e., when the cavity finesse is high, for 1

2 (T1 + T2) � 1. This
balance between absorption loss and cavity finesse is expressed through the
cooperativity parameter 2C. To make a connection with Figs. 14.2 and 14.3,
the state equation yields three solutions for X2 at fixed Y 2 when 2C exceeds
a threshold value. The threshold is different for the different state equations.
To determine it, we first look for the turning points of the input–output curve,
Y 2(X2), given as solutions to the equation

dY 2/d(X2) = 0. (14.61)

There are either no solutions or two solutions to this equation depending
on whether 2C is above or below its threshold value; of course, physically
acceptable solutions are real and positive. At threshold, (14.61) has a single
degenerate solution—a solution to both (14.61) and

d2Y 2/d(X2)2 = 0. (14.62)
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Fig. 14.4. Typical optical bistability input–output curves plotted from state equa-
tion (14.53): (i) 2C = 20, Δ = 0, Φ = 0; (ii) 2C = 100, Δ = 0, Φ = 0; (iii) 2C = 120,
Δ = 2, Φ = −2. Dotted regions are unstable (Sect. 14.2.3) and dashed lines mark
the asymptotes X = Y/

√
1 + Φ2

To illustrate the possibilities, the input–output relation (14.53) is plotted for
a selection of parameter values in Fig. 14.4.

Exercise 14.3. Show that the threshold condition for pure absorptive optical
bistability (Δ = Φ = 0) is 2Cthr = 8 for state equation (14.60) and 2Cthr =
20.1 for state equation (14.53). The calculation must be done numerically in
the latter case.

14.2.2 Maxwell–Bloch Equations

The mean-field limit allows us to make a one-mode expansion of the intra-
cavity field in the steady state. We now turn our attention to the time de-
pendence of the intracavity field. The topic introduces a new consideration,
since, if the medium bandwidth is large enough, polarization fluctuations can
excite additional cavity modes. Should these modes become unstable, amplifi-
cation of the fluctuations will replace the stationary steady state by a steady
oscillation—several excited modes beating against one another. This possibil-
ity is excluded in the mean-field single-mode limit, defined by the mean-field
limit (14.19) plus

γh/2
Δωfsr

� 1, (14.63)

where Δωfsr = πc/L is the free spectral range. The new inequality ensures that
the fluctuation bandwidth is much less than the longitudinal mode spacing.
Of course, more generally, transverse modes should be considered with the
obvious modification of (14.63). Assuming, then, that both (14.19) and (14.63)
hold, in this section we retain the single-mode expansion of the intracavity
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field and derive an equation of motion for the mode amplitude, coupled to
optical Bloch equations to account for the time dependence of the two-level
medium.

We begin with the full Maxwell equations for the slowly-varying forwards
and backwards wave amplitudes. With time derivatives included and the
source terms taken from (14.26a) and (14.26b), we write

(
∂

∂z
+

1
c

∂

∂t

)
Efeφf = i

ω0

2ε0c	

∫ 1

0

dη

∫ �

0

dz
{
Pfeiψf + Pbe−i[2(ω0/c)z−ψb]

}
,

(14.64a)
(
∂

∂z
− 1
c

∂

∂t

)
Ebeφb = −i ω0

2ε0c	

∫ 1

0

dη

∫ �

0

dz
{
Pbeiψb + Pfei[2(ω0/c)z+ψf ]

}
,

(14.64b)

where
η ≡ e−2r2/w2

0 ≡ e−2(x2+y2)/w2
0 . (14.65)

The polarization amplitudes are functions of z, t, and η, while the field am-
plitude are functions of z and t alone. The medium polarization (Eq. 14.27)
and inversion,

M(r, t) = D〈σjz(t)〉|rj=r, (14.66)

satisfy the optical Bloch equations
[
∂

∂t
+
γh
2

(1 − iΔ)
]{

Pfei[(ω0/c)z+ψf ] + Pbe−i[(ω0/c)z−ψb]
}
,

= −id
2

�
M

{
Efei[(ω0/c)z+φf ] + Ebe−i[(ω0/c)z−φb]

}
,

(14.67a)
∂M
∂t

+ γ(M +D) = i
1
2�
η
{
Pfe−i[(ω0/c)z+ψf ] + Pbei[(ω0/c)z−ψb]

}

×
{
Efei[(ω0/c)z+φf ] + Ebe−i[(ω0/c)z−φb]

}
+ c.c..

(14.67b)

We aim to construct a course-grained time derivative by following the
propagation of the field for one cavity round trip (see also Eqs. 9.8 and 9.51).
Note, first, that in the mean-field limit, forwards and backwards wave am-
plitudes are nearly equal and uniform throughout the medium. Thus, on the
right-hand sides of the Maxwell equations and in the optical Bloch equations,
we may take

Pf (r, t) = Pb(r, t) ≡ |P [η, θ(z), t]|, (14.68a)
Ef (z, t) = Eb(z, t) ≡ |E(t)|, (14.68b)



14.2 The Mean-Field Limit for a Two-Level Medium 265

and introduce

arg{P [η, θ(z), t]} ≡ 1
2 [ψf (r, t) + ψb(r, t)], (14.69a)

arg[E(t)] ≡ 1
2 [φf (z, t) + φb(z, t)], (14.69b)

where θ(z) is defined by (14.36). The phase differences ψf − ψb and φf − φb
simply determine the location of the nodes and antinodes of the standing
wave, with φf − φb fixed by the boundary conditions (Eq. 14.78) and the
same phase written onto the medium polarization; we therefore take

ψf − ψb = φf − φb, (14.70)

where both phase differences are independent of z and t.
Clearly we cannot use (14.68a)–(14.69b) on the left-hand sides of the

Maxwell equations or in boundary conditions (14.6a) and (14.6b), since our
aim is to compute the change—though very small—in the field amplitude over
a cavity round trip. To this end, we introduce the retarded times

t− ≡ t− z/c, t+ ≡ t+ z/c, (14.71)

and with

Eret
f (z, t−) ≡ Ef (z, t), (14.72a)

φret
f (z, t−) ≡ φf (z, t), (14.72b)

and

Eret
b (z, t+) ≡ Eb(z, t), (14.73a)

φret
b (z, t+) ≡ φb(z, t), (14.73b)

write the Maxwell equations, (14.64a) and (14.64b), as

∂Eret
f eiφ

ret
f

∂z
= i

ω0

2ε0c
e

1
2 i(φf−φb)

∫ 1

0

dη
1
π

∫ π

0

dθP(η, θ)(1 + e−2iθ), (14.74a)

∂Eret
b eiφ

ret
b

∂z
= −i ω0

2ε0c
e−

1
2 i(φf−φb)

∫ 1

0

dη
1
π

∫ π

0

dθP(η, θ)(1 + e2iθ), (14.74b)

where the previous transformation from integration with respect to z to θ has
been made (Eqs. 14.36 and 14.37). From (14.67)–(14.70), the optical Bloch
equations are

∂P
∂t

= −γh
2

(1 − iΔ)P − i
d2

�
ME , (14.75a)

∂M
∂t

= −γ(M +D) +
(
i
2
�
η cos2 θP∗E + c.c.

)
, (14.75b)

where the spatial dependence of the TEM00 mode function is contained in
η(x, y) (Eq. 14.65) and θ(z) (Eq. 14.36).
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We now follow the cavity round trip starting with the backwards wave as
it exits the medium at z = 0. The full round trip is comprised of four pieces:
(i) free propagation with one reflection back to where the forwards wave enters
the medium; (ii) propagation through the medium in the forwards direction;
(iii) free propagation with a second reflection to where the backwards wave
enters the medium; and (iv) propagation through the medium in the back-
wards direction. There are four associated propagation delays, as depicted in
Fig. 14.5:

τ1 = 2(L− 	− d)/c, τ2 = τ1 + 	/c,
τ3 = τ2 + 2d/c, τ4 = τ3 + 	/c.

(14.76)

We now write boundary conditions (14.6a) and (14.6b) with the propagation
delays included, where for the boundary condition at the cavity input, we
have

Ef (0, t) =
√
T1E0e

i(φ0+φT ) +
√
R1Eb(0, t− τ1)

× ei[φb(0,t−τ1)+2(ω0/c)(L−�−d)+φR], (14.77a)

and at the cavity output,

Eb(	, t− τ2)e−i[(ω0/c)�−φb(�,t−τ2)] =
√
R2Ef (	, t− τ3)

× ei[(ω0/c)�+φf (�,t−τ3)+2(ω0/c)d+φR].
(14.77b)

It follows from (14.77b) that the standing-wave phase is

1
2 (φf − φb) = −[(ω0/c)(	+ d) + 1

2φR], (14.78)

where we neglect the small time difference in the arguments of φf and φb.
We must also relate the field amplitudes at either end of the medium. This
is done by integrating the retarded equations (14.74a) and (14.74b) through
the medium. Thus, we also have

Ef (	, t− τ3)eiφf (�,t−τ3) = Ef(0, t− τ4)eiφf (0,t−τ4) + ei
1
2 (φf−φb)Π, (14.79a)

Eb(0, t− τ1)eiφb(0,t−τ1) = Eb(	, t− τ2)eiφb(�,t−τ2) + e−i
1
2 (φf−φb)Π, (14.79b)

where

Π ≡ i
ω0	

ε0c

∫ 1

0

dη
1
π

∫ π

0

dθ cos2 θP . (14.80)
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Fig. 14.5. Illustration of the four propagation intervals making up a cavity round
trip

Equations 14.77a–14.79b provide everything needed to construct the
change in the field amplitude over a cavity round trip. The first three steps
are taken beginning with (14.77a) and then using (14.79b) and (14.77b). From
these equations we obtain

Ef(0, t)eiφf (0,t)

=
√
T1E0e

i(φ0+φT ) +
√
R1e

i[2(ω0/c)(L−�−d)+φR]
[Eb(	, t− τ2)eiφb(�,t−τ2)

+ e−i
1
2 (φf−φb)Π

]

=
√
T1E0e

i(φ0+φT ) +
√
R1e

i[2(ω0/c)(L−�−d)+φR]

×
{√

R2Ef (	, t− τ3)eiφf (�,t−τ3)ei[2(ω0/c)(�+d)+φR] + e−i
1
2 (φf−φb)Π

}
,

(14.81)

which, using (14.9) and (14.78), may be written as

Ef (0, t)eiφf (0,t) =
√
T1E0e

i(φ0+φT ) +
√
R1e

iθ0
[√

R2Ef(	, t− τ3)eiφf (�,t−τ3)

+ ei
1
2 (φf−φb)Π

]
. (14.82)

The fourth step is taken using (14.79a). It brings us to a relationship between
the forwards field amplitude at the entrance to the medium at times t and
t− τ4, where τ4 = 2L/c is the cavity round-trip time:

Ef (0, t)eiφf (0,t) =
√
T1E0e

i(φ0+φT ) +
√
R1e

iθ0
[√

R2Ef (0, t− τ4)eiφf (0,t−τ4)

+ ei
1
2 (φf−φb)(

√
R2 + 1)Π

]
. (14.83)

Setting φf = 1
2 (φf +φb)+ 1

2 (φf −φb) on the left-hand side and using (14.68b)
and (14.69b), the round-trip change in field amplitude is

E(t) − E(t− 2L/c) =
√
T1E0e

i[φ0+φT− 1
2 (φf−φb)] +

(√
R1R2e

iθ0 − 1
)E(t)

+
√
R1

(√
R2 + 1

)
eiθ0Π

]
. (14.84)
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Division by 2L/c gives the course-grained derivative in time. Thus, keeping
only lowest-order terms in the expansion of

√
R1 =

√
1 − T1,

√
R2 =

√
1 − T2,

and eiθ0 (Eq. 14.19), we obtain the single-mode Maxwell equation

dE
dt

= −κ(1 − iΦ)E + i
ω0	

ε0L

∫ 1

0

dη
1
π

∫ π

0

dθ cos2 θP

+ (c/2L)
√
T1E0e

i[φ0+φT− 1
2 (φf−φb)], (14.85)

where we have used (13.18) and (14.51). Equations 14.85, 14.75a, and 14.75b
are the Maxwell–Bloch equations for a homogeneously broadened two-level
medium in a TEM00 (Gaussian-mode) standing-wave cavity.

14.2.3 Stability of the Steady State

The steady-state solution to the Bloch equations (14.75a) and (14.75b) recov-
ers the medium response (14.29); the solution to the Maxwell equation (14.85)
reproduces the state equation (14.53). Steady states are not necessarily stable,
however. In this section we look briefly at the stability of the steady state.

There is a huge literature on instabilities in passive nonlinear interfer-
ometers [14.6, 14.8] and an equal, or possibly even larger body of work on
instabilities in laser systems [14.8, 14.9, 14.10]. The instabilities come with
some variety: there are single-mode instabilities, with the steady state yield-
ing to sustained oscillation of the medium variables coupled to the amplitude
of one cavity mode—behavior described by the single-mode Maxwell–Bloch
equations; and there are multimode instabilities, where the beating of a few,
or even many, cavity modes occurs. The entire zoology known from nonlin-
ear dynamics can be found. In the case of multimode instabilities, the work
of Ikeda [14.11, 14.12] was particularly influential, since it was through his
work that the field of optical bistability first encountered period doubling and
chaos [14.13,14.14,14.15]. Ikeda treated the evolution of the cavity field at the
level of the individual round trips with the medium adiabatically eliminated.
As a result, although the dynamical behavior is complex, Ikeda’s model is very
simple; one simply iterates a two-dimensional map to construct the amplitude
of the intracavity field on successive round trips. For a two-level medium, the
Ikeda map can be obtained from the extreme multimode limit of the cou-
pled Maxwell–Bloch equations. In fact, the multimode stability analyses for
these equations possess a symmetry that guarantees the existence of so-called
Ikeda instabilities whenever optical bistability itself exists [14.16,14.15,14.18]:
optical bistability occurs with the cavity tuned near resonance, while the cor-
responding multimode, or Ikeda, instability occurs when the driving field is
tuned approximately midway between two cavity resonances.

A thorough treatment of instabilities would take us too far afield. We
should look, though, at the simplest case—the instability that comes as a pack-
age with the existence of a bistable transmission. As we have seen, bistabil-
ity is associated with three curve intersections in Figs. 14.2c and 14.3c, or
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with the corresponding S-shaped regions of the input–output characteristics
of Fig. 14.4. Thus, in a bistable system there are three, not two, coexisting
steady states, one of which is unstable. The instability of the third solution is
what we now aim to prove.

The dashed central branch of Fig. 14.4 identifies the unstable solution,
or equivalently the middle of the three intersections in Figs. 14.2c and 14.3c.
A plausible argument for its instability can be given in a few words. Consider
the middle intersection in Fig. 2c, for example, where the nonlinearity is pro-
vided by saturable absorption. Moving the intracavity intensity to a slightly
higher value decreases the strength of the absorption, which produces a further
increase in intensity; thus, positive feedback is present to move the intracav-
ity intensity towards the stable high-intensity steady state. Similarly, a slight
decrease in the intracavity intensity increases the absorption, providing the
positive feedback to move the solution towards the low-intensity steady state.
Perhaps the words are not entirely convincing, though, as they make no refer-
ence to the actual time-dependence of the cavity field or medium. Certainly,
questions about stability should generally make such a reference. Let us ad-
dress them, more carefully, then, by carrying through a linear stability analysis
of the Maxwell–Bloch equations.

For the sake of simplicity, we confine our attention to the single-mode
Maxwell–Bloch equations, (14.75a), (14.75b), and (14.85). Steady-state solu-
tions satisfy the five equations

0 = κ
√
T1IsatY e

i[φ0+φT− 1
2 (φf−φb)]

− κ(1 − iΦ)Ess + i
ω0	

2ε0L

∫ 1

0

dη
1
π

∫ π

0

dθ cos2 θPss, (14.86a)

0 = κ
√
T1IsatY e

−i[φ0+φT− 1
2 (φf−φb)]

− κ(1 + iΦ)E∗ss − i
ω0	

2ε0L

∫ 1

0

dη
1
π

∫ π

0

dθ cos2 θP∗ss, (14.86b)

0 = −γh
2

(1 − iΔ)Pss − i
d2

�
MssEss, (14.86c)

0 = −γh
2

(1 + iΔ)P∗ss + i
d2

�
MssE∗ss, (14.86d)

0 = −γ(Mss +D) +
(
i
2
�
η2 cos2 θP∗ssEss + c.c.

)
. (14.86e)

Stability is assessed by considering small perturbations away from the steady
state. Generically, these decay or grow exponentially, faster in some phase-
space directions than in others. For an arbitrary perturbation, the full time-
dependent solution is written as a sum of exponential components; these
are the normal modes—those specially configured perturbations whose de-
cay (growth) is governed by a single exponential. Thus, we look for solutions
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to the Maxwell–Bloch equations in the form

E(t) = Ess + eλtΔE , (14.87a)

E∗(t) = E∗ss + eλtΔE∗, (14.87b)

P(η, θ, t) = Pss(η, θ) + eλtΔP(η, θ), (14.87c)

P∗(η, θ, t) = P∗ss(η, θ) + eλtΔP∗(η, θ), (14.87d)

M(η, θ, t) = Mss(η, θ) + eλtΔM(η, θ). (14.87e)

Substituting (14.87a)–(14.87e) into (14.86a)–(14.86e), and keeping up to first-
order terms in the perturbations ΔE , ΔE∗, ΔP , ΔP∗, and ΔM, they and the
decay (growth) rate λ must satisfy the system of linear equations

0 = −[λ+ κ(1 − iΦ)]ΔE + i
ω0	

2ε0L

∫ 1

0

dη
1
π

∫ π

0

dθ cos2 θΔP , (14.88a)

0 = −[λ+ κ(1 + iΦ)]ΔE∗ − i
ω0	

2ε0L

∫ 1

0

dη
1
π

∫ π

0

dθ cos2 θΔP∗, (14.88b)

0 = −
[
λ+

γh
2

(1 − iΔ)
]
ΔP − i

d2

�
(EssΔM + MssΔE), (14.88c)

0 = −
[
λ+

γh
2

(1 + iΔ)
]
ΔP∗ + i

d2

�
(E∗ssΔM + MssΔE∗), (14.88d)

0 = (λ+ γ)ΔM +
[
i
2
�
η2 cos2 θ(EssΔP∗ + P∗ssΔE) + c.c.

]
. (14.88e)

In general, for arbitrary λ, only the trivial solution holds. The normal modes
are the nontrivial solutions. Five such solutions exist, one for each eigenvalue
λj , j = 1, 2, . . . , 5, of the system of equations (14.88a)–(14.88e).

There is no need to explore the solution to the eigenvalue problem in all its
generality. We recall now that a particular steady-state of the Maxwell–Bloch
equations is uniquely defined by the intracavity intensity X2 through the state
equation (14.53). This allows us to differentiate each of (14.86a)–(14.86e) with
respect to X to obtain a second system of linear equations for the derivatives
of Ess, E∗ss, Pss, P∗ss, and Mss, and dY/dX , where Y 2 is the output intensity.
Thus, we obtain

0 = κ
√
T1Isat

dY

dX
ei[φ0+φT− 1

2 (φf−φb)]

− κ(1 − iΦ)
dEss

dX
+ i

ω0	

2ε0L

∫ 1

0

dη
1
π

∫ π

0

dθ cos2 θ
dPss

dX
, (14.89a)

0 = κ
√
T1Isat

dY

dX
e−i[φ0+φT− 1

2 (φf−φb)]

− κ(1 + iΦ)
dE∗ss
dX

− i
ω0	

2ε0L

∫ 1

0

dη
1
π

∫ π

0

dθ cos2 θ
dP∗ss
dX

, (14.89b)
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0 = −γh
2

(1 − iΔ)
dPss

dX
− i

d2

�

(
Ess

dMss

dX
+ Mss

dEss

dX

)
, (14.89c)

0 = −γh
2

(1 + iΔ)P∗ss + i
d2

�

(
E∗ss

dMss

dX
+ Mss

dE∗ss
dX

)
, (14.89d)

0 = −γ dMss

dX
+
[
i
2
�
η2 cos2 θ

(
Ess

dP∗ss
dX

+ P∗ss
dEss

dX

)
+ c.c.

]
. (14.89e)

When dY/dX = 0, these equations are the same as (14.88a)–(14.88e) with
eigenvalue λ set to zero. It follows that at the turning points of the S-shaped
input–output curves of Fig. 14.4, there exists a nontrivial solution to (14.88a)–
(14.88e) with eigenvalue λ = 0 and eigenvector

⎛

⎜
⎜
⎜⎜
⎜
⎝

ΔE
ΔE∗
ΔP
ΔP∗
ΔM

⎞

⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎝

dEss/dX

dE∗ss/dX
dPss/dX

dP∗ss/dX
dMss/dX

⎞

⎟
⎟
⎟⎟
⎟
⎠
. (14.90)

The vanishing eigenvalue indicates a change of stability. A perturbative calcu-
lation shows that λ changes from a negative value—a stable steady state—for
dY/dX small and positive, to a positive value—an unstable steady state—
for dY/dX small and negative. Thus, we show that negative slope regions of
the input–output curves are unstable. It should be apparent that the proof is
quite general; it holds no matter what the equations of motion for the medium
might be.

14.3 Relationship Between Macroscopic
and Microscopic Variables

It is helpful to see how the variables used in the macroscopic Maxwell–Bloch
equations relate to the variables of a microscopic description like that offered
by master equation (13.57). We develop the microscopic description in the
following two chapters. This section provides a bridge to the Maxwell–Bloch
equations of Sect. 14.2.2.

To begin, let us make the identification between phase factors previously
introduced

1
2 (φf − φb) → φC , (14.91a)

where φf and φb are introduced in (14.4a) and (14.4b), and φC is introduced
in (13.8). We also make the identifications

E → i

√
�ωC

2ε0VQ
α̃eiφ

′
C , (14.91b)
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η cos θP → (Dd)ṽeiφ
′
C , (14.91c)

M → Dm, (14.91d)

where α̃, ṽ, and m are new field, polarization, and inversion variables, and the
phase φ′C is also introduced in (13.8). Written in terms of the new variables,
the single-mode Maxwell equation (Eq. 14.85) now reads

dα̃

dt
= −κ(1 − iΦ)α̃+

2Ddω0	

ε0L

√
2ε0VQ
�ωC

∫ 1

0

dη
1
π

∫ π

0

dθ cos θṽ − iĒ0, (14.92)

where we use the scaled driving field amplitude (13.58). The new form of the
optical Bloch equations, (14.75a) and (14.75b), is

dṽ

dt
= −γh

2
(1 − iΔ)ṽ +

√
ωCd2

2�ε0VQ
η cos θmα̃, (14.93a)

dm

dt
= −γ(m+ 1) − 2

√
ωCd

2�ε0VQ
η cos θ(ṽ∗α̃+ c.c.). (14.93b)

Now if we write gmax, instead of g, for the dipole coupling constant of an
optimally located atom (Eq. 13.7), then the spatially dependent coupling for
the TEM00 standing-wave mode is

g(r) ≡ gmaxe
−(x2+y2)/w2

0 cos[(ω0/c)z + φC ], (14.94a)

or with the changes of variable (14.36) and (14.65),

g[r(η, θ)] =

√
ωCd2

2�ε0VQ
η cos θ. (14.94b)

Using (14.94a) and (14.94b), the optical Bloch equations may be written as

dṽ

dt
= −γh

2
(1 − iΔ)ṽ + g(r)mα̃, (14.95a)

dm

dt
= −γ(m+ 1) − 2g(r)(ṽ∗α̃+ c.c.), (14.95b)

and, if we overlook the difference between ω0 and ωC , the Maxwell equation
takes the form

dα̃

dt
= −κ(1 − iΦ)α̃+ N̄eff

1
VQ

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ �

0

dzg(r)ṽ(r) − iĒ0, (14.96)

where we have introduced an effective number of atoms, defined as the mean
number of atoms in the effective interaction volume 	VQ/L:

N̄eff ≡ D

(
	

L
VQ

)
. (14.97)
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Note that the spatial integration to the right of N̄eff in (14.96) gives the
mean—spatially averaged—polarization entering as a source into Maxwell’s
equation per atom.

Equations 14.96, 14.95a, and 14.95b are the Maxwell–Bloch equations for
a spatially continuous distribution of atoms with number density D. Of course,
the two-level medium is actually a collection of localized atoms, not a con-
tinuous fluid. Looking on the microscopic level, we should therefore use the
density

Dloc(r) =
∑

j

δ(3)(r − rj), (14.98)

where rj denotes the atomic positions. In passing from (14.92) to (14.96),
the nonuniform density must be kept inside the spatial integral, which for the
density (14.98) becomes a sum over atoms. Thus, we arrive at the Maxwell–
Bloch equations for a collection of homogeneously broadened two-level atoms
and one coherently driven mode of the electromagnetic field :

dα̃

dt
= −κ(1 − iΦ)α̃+

∑

j

g(rj)ṽj − iĒ0, (14.99a)

dα̃∗

dt
= −κ(1 + iΦ)α̃∗ +

∑

j

g(rj)ṽ∗j + iĒ∗0 , (14.99b)

dṽj
dt

= −γh
2

(1 − iΔ)ṽj + g(rj)mjα̃, (14.99c)

dṽ∗j
dt

= −γh
2

(1 + iΔ)ṽ∗j + g(rj)mjα̃∗, (14.99d)

dmj

dt
= −γ(mj + 1) − 2g(rj)(ṽ∗j α̃+ c.c.). (14.99e)

One last step completes the connection with master equation (13.57). Intro-
ducing the further identifications

α̃→ 〈ã〉, ṽj → 〈σ̃−aj−〉, mj → 〈σjz〉, (14.100)

with

ã ≡ aeiω0t, ã† ≡ a†e−iω0t, (14.101a)

σ̃j− ≡ σj−eiω0t, σ̃j+ ≡ σj+e
−iω0t, (14.101b)

we see that (14.99a)–(14.99e) are the factorized mean-value equations derived
from master equation (13.57), generalized to the many-atom Hamiltonian

HS ≡ 1
2�ωA

∑

j

σjz + �ωCa
†a+ i�

∑

j

g(rj)(a†σj− − aσj+)

+ �(Ē0e
−iω0ta† + Ē∗0 eiω0ta), (14.102)

and including the dephasing term (γp/2)
∑
j(σjzρσjz − ρ) (Sect. 2.2.4).
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Two important relationships determine the importance of quantum fluct-
uations—i.e., whether a small-noise analysis holds or strong coupling condi-
tions apply. The first involves the so-called cooperativity parameter 2C. This
is an intensive parameter, which may take the same value in a large system,
where the small-noise approximation holds, as it does in a small system (strong
coupling) where it does not. To see this, we write 2C in terms of the sponta-
neous emission enhancement factor, a measure of the absorption (interaction
strength) per atom. Thus, from (14.50), (14.44), (13.18), and (14.97), we write

2C ≡ α	
1
2 (T1 + T2)

= 2
Dω0d

2	

�γhε0c

1
1
2 (T1 + T2)

=
γ

γh
D

(
	

L
VQ

)
2
(

ω0d
2

2�ε0VQ

)
1
γκ

=
γ

γh
N̄eff2Cmax

1 , (14.103)

where, once again, the difference between ω0 and ωC is neglected. The factor
2Cmax

1 is the spontaneous emission enhancement factor (Eq. 13.36) for an
optimally coupled atom (Eq. 13.7). For radiatively damped atoms (γh = γ),
the cooperativity parameter is just this enhancement factor multiplied by
the effective number of interacting atoms. It follows that the same value of
2C may be realized with large N̄eff and small 2C1—corresponding to a large
system size, small noise, and weak coupling—or with small N̄eff and large
2C1—corresponding to small system size, large noise, and strong coupling.
As macroscopic equations, the Maxwell–Bloch equations make no distinction
between the two cases; they depend on the intensive parameter 2C alone. The
difference is of primary importance, however, when quantum fluctuations are
considered.

Note 14.3. For a TEM00 standing-wave mode, N̄eff is the average number of
atoms in a cylinder with radius equal to the half-width, w0/2, of the transverse
intensity profile and length 	 of the medium (Eqs. 14.97 and 13.7; also see Note
13.1). When the density is low and the limit of a single atom interacting with
the cavity mode is approached, it is tempting to interpret this number as the
actual number of interacting atoms. The number cannot be interpreted so
strictly, however. In fact, it is not possible to assign any definite number of
interacting atoms—even a mean number—because the interaction volume is
unbounded in the direction perpendicular to the cavity axis. Of course, one
should not take the number of interacting atoms to be infinite either, since
certainly atoms at different locations couple to the cavity mode at different
strengths (Eq. 14.94a), and atoms sufficiently far from the cavity axis are, for
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all practical purposes, uncoupled, even though no distinct boundary marks
where the coupling turns off. A reasonable estimate of the number of atoms
contributing significantly to the interaction is the best one can do. Carmichael
and Sanders [14.19] argue that the number is close to an order of magnitude
larger than N̄eff .

To complement the effective number of atoms, there is a similar measure for
the number of photons. Here, the issue of nonlinearity enters explicitly, as
noted before. The relevant measure is the number of photons required to turn
on the nonlinearity—in the case of the two-level medium, to saturate the
atoms (Sect. 13.1; also see the discussion of Eq. 7.76). As with N̄eff , the num-
ber itself is not relevant in the Maxwell–Bloch equations. For them only the
intensive parameter, the saturation intensity, matters. The saturation photon
number is the relevant quantity when fluctuations are considered, however.
The issue may be approached in the same way as with the parameter 2C.
The same saturation intensity might be realized in a large system or a small
system—where fluctuations are either a small or a large perturbation. The
saturation photon number provides a measure of what is large or small, with
the measure tied to the energy density required to turn on the nonlinearity.
We convert the energy density 2ε0Isat to a saturation photon number through
the definition

nsat ≡ 2ε0IsatVQ
�ωC

=
γγh
8

(
2ε0�VQ
ωCd2

)

=
γγh

8g2
max

, (14.104)

where we have used (14.31) and (13.7). Of course, the degree of saturation
experienced by a particular atom depends on its location; only an optimally
coupled atom experiences saturation for nsat photons in the cavity.

14.4 Cavity QED with Many Atoms

Cavity QED phenomena are not restricted to single atoms. When strong cou-
pling conditions are meet, there are physical consequences for a system of
many atoms, just as there are for one atom. The many-atom case does meet
with a new dimension, however, since there is the possibility that the coupling
is strong in a collective, many-atom sense, but not for each atom considered
alone. Thus, in place of the definitions of strong coupling in terms of the ratios
2g/γ and g/κ, we consider the ratios 2

√
Ng/γ and

√
Ng/κ, where N is the

number of atoms. In the perturbative limit, for example, 2Ng2/κ ∼ γ may
hold (even 2Ng2/κ � γ) while 2g2/κ � γ. This may be viewed as a ver-
sion of strong coupling because

√
Ng does emerge as an effective coupling
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strength for certain collective radiative effects. In some instances these collec-
tive effects have a long history unrelated to cavity QED. Superradiance and
superfluorescence are cases in point [14.20,14.21]—or perhaps, more appropri-
ately, cavity-assisted superradiance and superfluorescence [14.22,14.23,14.24].
Of course, from (14.103) and (13.36), with γh = γ and N̄eff → N , the inequal-
ity 2Ng2/κ > γ may be read as 2C > 1; strong coupling for many atoms
is therefore a requirement of absorptive optical bistability (Exercise 14.3). It
is achieved in the perturbative limit with

√
Ng/κ < 1 and γ/2κ � 1; thus,

we encounter collective, or superradiant, cavity-enhanced emission rates in
optical bistability in the bad-cavity limit [14.25, 14.26, 14.27].

The history of nonperturbative strong coupling for many atoms is shorter,
but this case is encountered in optical bistability as well. It is here that we met
with the many-atom version of vacuum Rabi splitting [14.28]. Vacuum Rabi
oscillation was first noticed in the context of optical bistability by Carmichael,
in his treatment of the linearized theory of quantum fluctuations about sta-
ble states [14.29]. The novelty of this work was its avoidance of the usual
adiabatic elimination, either of the field (bad-cavity limit) or of the atoms
(good-cavity limit). There is a more direct path to the many-atom vacuum
Rabi oscillation than the one followed by Carmichael, though. Its frequency-
domain counterpart—the vacuum Rabi doublet—sits waiting to be uncovered
in the optical bistability state equation. We begin this section by seeing how
this is so.

14.4.1 Weak-Probe Transmission Spectra

We use the optical bistability state equation to calculate the transmission
spectrum of an optical cavity containing a homogeneously broadened two-
level medium in the weak-excitation limit. The atoms and cavity mode are on
resonance, with (Eqs. 14.30 and 14.51)

Φ ≡ ω0 − ωC
κ

=
ω0 − ωA

κ
=
γh
2κ
Δ. (14.105)

The amplitude Y (Eq. 14.52) of the incident field is held constant while its
frequency ω0 is scanned. Specialized to the weak-excitation limit, the state
equation (Eq. 14.53, 14.58, 14.59, or 14.60) is

Y 2 = X2

[(
1 +

2C
1 +Δ2

)2

+Δ2

(
γh
2κ

− 2C
1 +Δ2

)2
]

. (14.106)

It is a very simple relationship, accounting for the interplay of linear absorp-
tion, 2C/(1+Δ2), linear dispersion, 2CΔ/(1+Δ2), and detuning, (Δγh/2κ)2.
Despite its simplicity, the interplay produces a remarkable result if the param-
eter 2C is sufficiently large.

For 2C → 0 (14.106) yields the Lorentzian line X2 = Y 2/(1 +Δ2) of the
empty cavity. To display the dependence on 2C in the most transparent way,
we first expand the right-hand side in powers of 1 +Δ2:
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Y 2 = X2 1
(1 +Δ2)2κ2

{
κ2(1 +Δ2 + 2C)2 +

[
(1 +Δ2) − 1

]

× [
(γh/2)(1 +Δ2) − 2Cκ

]2}

= X2 1
(1 +Δ2)κ2

{
(κ+ γh/2)

[
(κ− γh/2)(1 +Δ2) + 4Cκ

]

+
[
(γh/2)(1 +Δ2) − 2Cκ

]2}

= X2 1
(1 +Δ2)κ2

{
(γ/2)2(1 +Δ2)2 +

[
κ2 − (γh/2)2 − 2Cκγh

]
(1 +Δ)2

+ (κ+ γh/2)4Cκ+ 4C2κ2
}
. (14.107)

The result is a ratio of polynomials in the detuning

Δω = ω0 − ωC = ω0 − ωA = (γh/2)Δ; (14.108)

from (14.107), we have

Y 2 = X2Δω
4 +

[
κ2 + (γh/2)2 − 2Cκγh

]
Δω2 + κ2(γh/2)2(1 + 2C)2

κ2[(γh/2)2 +Δω2]
.

(14.109)

Then, writing the numerator as the product of quadratics

|Λ+ + iΔω|2|Λ− + iΔω|2 = |Λ+Λ− −Δω2 + iΔω(Λ+ + Λ−)|2, (14.110)

with
Λ± ≡ − 1

2 (κ+ γh/2) ±
√

1
4 (κ− γh/2)2 − Cκγh, (14.111)

we obtain the weak-probe transmission spectrum of a Lorentzian cavity reso-
nance with linear intracavity absorption and dispersion:

X2(Δω) = Y 2 κ2[(γh/2)2 +Δω2]
|Λ+ + iΔω|2|Λ− + iΔω|2 . (14.112)

As we now see, the many-atom vacuum Rabi doublet emerges in a straight-
forward way from this expression.

The connection is immediately apparent from (14.111). Returning to the
problem of spontaneous emission for an atom in a cavity, we recall the solu-
tions, (13.154a) and (13.154b), to coupled equations (13.152a) and (13.152b),
which depend upon the eigenvalues (with ΔC = 0)

λ̃± = − 1
2 (κ+ γ/2)±

√
1
4 (κ− γ/2)2 − g2. (14.113)

For comparison, using (14.103) and (13.36), we have

Λ± = − 1
2 (κ+ γh/2) ±

√
1
4 (κ− γh/2)2 − N̄effg

2
max. (14.114)
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Thus, the same eigenvalues govern intracavity spontaneous emission and the
weak-probe transmission spectrum (14.112), but with a collective dipole cou-
pling constant,

√
N̄effgmax, replacing g in the latter case. When the collective

coupling is strong, with
√
N̄effgmax � max(κ, γ/2), the transmission spec-

trum takes the form of a vacuum Rabi doublet (Eqs. 13.179a and 13.179b);
explicitly, for Cκγh = N̄effg

2
max >

1
4 (κ− γh/2)2, (14.112) reduces to

X2(Δω)
Y 2

=
κ2[(γh/2)2 +Δω2]

[
1
4 (κ+ γh/2)2 + (Δω +G)2

][
1
4 (κ+ γh/2)2 + (Δω −G)2

] ,

(14.115)

where
G ≡

√
N̄effg2

max − 1
4 (κ− γh/2)2. (14.116)

Note how this spectrum vanishes on resonance for γh = 0, a counterpart to
the quantum interference effect of Note 13.14.

Given the equivalence of (14.113) and (14.114), there are also many-atom
versions of the cavity-enhanced emission rate (13.172a) (bad-cavity limit) and
the spoiled-cavity decay rate (13.176b) (good-cavity limit), with associated
frequency shifts when the atoms and cavity are detuned. The transmission
spectrum is plotted for the three different regimes in Fig. 14.6.

Fig. 14.6. Weak-probe transmission spectra (Eq. 14.112) showing: (a) development
of the cavity-enhanced absorption dip, for 2C = 2 and 1 ≤ 2κ/γh ≤ 50 (bad-cavity
limit); (b) development of the spoiled-cavity transmission resonance, for 2C = 2
and 1 ≤ γh/2κ ≤ 20 (good-cavity limit); (c) development of the many-atom vacuum
Rabi doublet, for γh/2κ = 1 and 2 ≤ 2C ≤ 200 (strong coupling)
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While it is legitimate to regard the condition
√
N̄effgmax � max(κ, γ/2) as

a special case of strong coupling, we should bear in mind that if N̄eff � 1, the
coupling is not strong in the sense of a small system size, hence large quantum
noise. The doublet transmission spectrum has been observed in experiments
with one atom [14.30], a few atoms [14.31, 14.32, 14.33], many atoms [14.34,
14.35], and very many atoms [14.36]; in the latter case, at least, the linearized
treatment of quantum fluctuations will hold.

In fact, the doublet may be understood from very general physics, without
making reference to quantum energy levels at all. It is explained by the inter-
play of strong absorption, which suppresses transmission on the empty cavity
resonance [the first term inside the bracket in (14.105)] and strong dispersion;
the dispersion shifts the cavity resonance by a sufficiently large amount (be-
yond the anomalous dispersion regime) that resonance with the driving field
is achieved by the shifted cavity resonance in the normal dispersion regime
[the second term inside the bracket in (14.105)]. Given the right combina-
tion of absorption and dispersion, any linear medium can duplicate the effect.
The simplicity and generality of the physics is perhaps even more apparent
in a time domain picture. Here we meet, once again, with coupled harmonic
oscillators, one oscillator for the field mode and the other for the polariza-
tion of the medium. The equations of motion are equivalent to (13.152a) and
(13.152b), and the new resonances are the normal mode frequencies of the
coupled harmonic oscillators, or, in the language of solid state physics, the
polariton frequencies (Exercise 14.4).

Spectrum (14.112) is obtained in the weak-field limit of the more general
input–output relationship provided by the optical bistability state equation.
Figure 14.7 shows how the weak-probe, linear response connects with the
nonlinear regime for the state equation (14.53). Gripp and coworkers [14.35]
have made experimental observations of the nonlinear extension of the vacuum
Rabi doublet.

Exercise 14.4. For weak excitation, the Maxwell–Bloch equations (14.85),
(14.75a), and (14.75b) take the linear form

d

dt

(E
P
)

= M

(E
P
)

+ ei[φ0+φT + 1
2 (φf−φb)](c/2L)

√
T1E0

(
1
0

)
, (14.117)

with

M ≡
(−κ(1 − iΦ) iω0	/2ε0L

id2D/� −(γh/2)(1 − iΔ)

)
, (14.118)

where it has been assumed all atoms remain in the lower state (M = −D).
Diagonalize the matrix M ; hence find the normal modes of the coupled field
and polarization, the so-called cavity polaritons [14.37,14.38]. Use the diagonal
form of M to solve for the steady state field amplitude in the presence of E0

and thus verify the spectrum (14.112).
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Fig. 14.7. Relationship between the vacuum Rabi transmission spectrum (14.115)
and the optical bistability state equation (14.53). The output field amplitude X is
plotted as a function of the input field amplitude and detuning, Y and Δω/κ, for
2C = 100, γh/2κ = 1, and ωA = ωC . Lines of constant Δω/κ correspond to the
input–output curves plotted in Fig. 14.4 [where curve (ii) is the line Δω/κ = 0];
they are crossed by contours of constant X. The vacuum Rabi resonances appear
for Y → 0 at Δω/κ = ±√

2C = ±10

14.4.2 A Comment on Spatial Effects

Throughout this chapter we have taken the spatial distribution of the atoms
into account. There is no particular difficulty in doing this when working at
the level of the Maxwell–Bloch equations with the atoms treated as a contin-
uous medium; we simply integrate the medium polarization against the cavity
mode function, as in Sect. 14.2.1. In the nonlinear regime spatial effects are
very important. They bring about the differences between the various opti-
cal bistability state equations, equation (14.53) versus (14.58)–(14.60). They
are apparently unimportant in the linear regime, however, where every state
equation reduces to (14.105). Of course, at low densities the assumption of
a continuous medium does not hold, and the spatial distribution of atoms is
important even in the linear regime. In the limit of just one atom, for exam-
ple, it certainly matters where in the cavity the atom is placed, as the dipole
coupling strength is position-dependent; thus, the parameter 2C, defined for
a continuous medium in terms of absorption length (Eq. 14.50), must be de-
fined for one atom as in (13.36), by 2C = (γ/γh)2C1 = 2g2(rA)/γhκ, where
rA is the position of the atom.

In the following chapter we begin our analysis of quantum fluctuations for
many atoms. Spatial effects create a real difficulty in this context. Ultimately
one is led towards a treatment in terms of coupled quantum fields—one field
for the upper atomic state and one for the lower—under conditions where
high excitation of the fields must be considered. The direction goes beyond
the scope of the book; therefore, for the most part, we neglect spatial effects
in what follows (Sect. 16.2 excepted). It is useful, nonetheless, to say a little
about how the problem with spatial effects arises; in particular, to pinpoint
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the role of nonlinearity. We do this here, and at the same time fill in some
detail about how the spatial distribution of atoms is taken into account in the
linear regime.

Consider first a distribution of exactly N atoms located at positions rj ,
j = 1, . . . , N . Hamiltonian (14.102) leads to a set of mean-value equations
that are a straightforward generalization of (13.39a)–(13.39e). Factorizing
the averages of operator products, we arrive at the Maxwell–Bloch equations
(14.99a)–(14.99e). Under weak excitation, we may then make the replacement
σjz → −1, or in the Maxwell–Bloch equations, mj → −1, which yields a set
of linear equations coupling the amplitude α̃ of the cavity field to the polar-
ization amplitudes ṽj , j = 1, . . . , N . There are N + 1 equations; how then
do we make a connection to the pair of oscillator equations that produce the
vacuum Rabi doublet?

The clue is to note that the field amplitude actually couples to just one
variable, the collective polarization

∑N
j=1 g(rj)ṽj . Thus, if we multiply the

equation of motion for ṽj by the coupling constant gj and sum over j, we
obtain the pair of coupled equations

dα̃

dt
= −κ(1 − iΦ)α̃+

[∑N
j=1g(rj)ṽj

]
− iĒ0, (14.119a)

d
[∑N

j=1 g(rj)ṽj
]

dt
= −γh

2
(1 − iΔ)

[∑N
j=1g(rj)ṽj

]
−

[∑N
j=1g

2(rj)
]
α̃.

(14.119b)

The effective number of interacting atoms, Neff , is then defined through the
relationship

N∑

j=1

g2(rj) = Neffg
2
max, (14.120)

and if we introduce the collective variable

ṽ ≡ 1√
Neffgmax

N∑

j=1

g(rj)ṽj , (14.121)

the equations of motion for coupled oscillator amplitudes in the linear regime
of many-atom cavity QED are

dα̃

dt
= −κ(1 − iΦ)α̃+

√
Neffgmaxṽ − iĒ0, (14.122a)

dṽ

dt
= −γh

2
(1 − iΔ)ṽ −

√
Neffgmaxα̃, (14.122b)

where the detunings κΦ and γhΔ/2 are defined, respectively, by (14.51) and
(14.30).
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The more likely scenario is that the number of interacting atoms is not
definite and their spatial configuration is not fixed. This is the situation for
cavity QED with atomic beams, for example [14.31,14.32,14.34,14.35,14.36].
In this case, assuming the fluctuations due to atomic motion are sufficiently
slow, the results obtained for a definite number and configuration of atoms
may be averaged. As an example, the weak-probe transmission spectrum may
be obtained as an average of spectra calculated from (14.122a) and (14.122b),
the approach taken by Thompson and coworkers [14.32]. In the high-density
limit, the treatment of Sect. 14.4.1 assumes that averaging spectra gives the
same result as calculating a single spectrum for an averaged effective dipole
coupling strength. To recover this point of view from (14.119a) and (14.119b),
we define N̄eff through the relationship

N∑

j=1

g2(rj) = N̄effg
2
max, (14.123)

where the overbar denotes an average over the number and spatial configura-
tion of the atoms. We also introduce the averaged collective variable

ṽ ≡ 1
√
N̄effgmax

N∑

j=1

g(rj)ṽj . (14.124)

Then averaging the equations of motion term by term, and adopting the
factorization

∑N
j=1 g

2
j (rj)α̃ =

∑N
j=1 g

2
j (rj)α̃, we arrive at the equations of

motion for coupled oscillator amplitudes in the linear regime of many-atom
cavity QED averaged over atomic configuration:

dα̃

dt
= −κ(1 − iΦ)α̃+

√
N̄effgmaxṽ − iĒ0, (14.125a)

dṽ

dt
= −γh

2
(1 − iΔ)ṽ −

√
N̄effgmaxα̃. (14.125b)

These equations are related to the Maxwell–Bloch equations (14.117) through
the scaling (14.91b) and (14.91c).

The difficulty introduced by nonlinearity becomes apparent if we attempt
to apply the same averaging procedure to the full set of Maxwell–Bloch equa-
tions (14.99a)–(14.99e). Allowing that α̃ may be factorized from the average
at high densities, there is still another difficulty to consider; namely, the sum
over j can no longer be accounted for through the two equations (14.123) and
(14.124). In place of (14.124), we find a dependence on the infinite hierarchy
of collective variables
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N∑

j=1

g(rj)ṽj ,
N∑

j=1

g2(rj)m̃j ,

N∑

j=1

g3(rj)ṽj ,
N∑

j=1

g4(rj)m̃j ,

...
...

As it happens, the resulting hierarchy of equations may be solved in the steady
state, where the calculation is equivalent to carrying out the spatial average
over the saturation term (14.35). Things become more complicated, however,
with the quantum fluctuations included.

For an introduction to the quantum treatment, let us consider once more
a distribution of exactly N atoms with fixed locations. For weak excitation,
corresponding to the regime of the linear equations (14.122a) and (14.122b),
we expand the state up to the level of one quantum of excitation:

|ψ〉 = |0〉a|0〉(N) + α̃e−iω0t|0〉(N)|1〉a + ṽe−iω0t|1〉(N)|0〉a, (14.126)

where

|0〉(N) ≡
N∏

j=1

|1〉j (14.127)

is the ground state of the collection of N atoms, and

|1〉(N) ≡ 1√
N
J+|0〉(N), (14.128)

where we introduce the ladder operators

J± ≡
[

N
∑N

j=1 g
2(rj)

]1/2 N∑

j=1

g(rj)σj±. (14.129)

It is perhaps unclear why the state may be taken as pure, but this is justified
in Sects. 16.1.1 and 16.1.2. It is essentially because coherent excitation from
the ground state to the one-quantum manifold dominates at weak excitation,
since the time between incoherent scattering events (fluorescence or photon
loss from the cavity) is far greater than the coherence time [12 (κ+γh/2)]−1. It
then follows from the master equation that the one-quantum Schrödinger am-
plitudes, α̃ and ṽ in (14.126), obey the coupled oscillator equations (14.122a)
and (14.122b).
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The ladder operators (14.129) look very much like the collective operators
introduced in Sect. 6.2.1 (Eq. 6.44). Indeed, if the dipole coupling constants
g(rj) are all equal, they are the same collective operators. An important dif-
ference arises for unequal coupling constants, though. The collective operators
defined by (6.44) obey a closed algebra, with commutation relations (6.45).
For comparison, from (14.129), we have

[J+, J−] = Jz , (14.130)

with

Jz ≡
[

N
∑N

j=1 g
2(rj)

]
N∑

j=1

g2(rj)σjz . (14.131)

At first sight the parallel appears to continue. But now the algebra does not
close. The commutator of J± and Jz is

[J±, Jz] = ∓2

[
N

∑N
j=1 g

2(rj)

]3/2 N∑

j=1

g3(rj)σj±. (14.132)

When the g(rj) are all equal the right-hand side is ∓2J±; more generally,
(14.129), (14.131), and (14.132) begin the hierarchy we just met, which ap-
pears now as a consequence of the operator algebra.

Exercise 14.5. Consider the many-atom Hamiltonian

HS ≡ 1
2�ωA

N∑

j=1

σjz + �ωCa
†a+ i�

N∑

j=1

g(rj)(a†σj− − aσj+). (14.133)

At the one-quantum level a basis is provided by the states |{};−N/2〉|1〉a and
|{j};−N/2+1〉|0〉a, j = 1, . . . , N [the notation for atomic states is taken from
(6.60)]. Diagonalize the Hamiltonian in the manifold of one-quantum states
for ωA = ωC ; hence show that there exists a pair of eigenstates,

|1, U〉 =
1√
2

[|1〉(N)|0〉a + i|0〉(N)|1〉a
]
, (14.134a)

|1, L〉 =
1√
2

[|1〉(N)|0〉a − i|0〉(N)|1〉a
]
, (14.134b)

with energies corresponding to the vacuum Rabi resonances,

E1,U = 1
2�ωA + �

√
Neffgmax, (14.135a)

E1,L = 1
2�ωA − �

√
Neffgmax, (14.135b)

where Neff is given by (14.120), and N −2 degenerate eigenstates with energy
E1 = 1

2�ωA.
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Many Atoms in a Cavity II:

Quantum Fluctuations
in the Small-Noise Limit

We proceed now from the macroscopic theory of the previous chapter to the
analysis of quantum fluctuations for many atoms in a cavity. The program
is similar to that of Chap. 8, where the phase-space approach to the quan-
tum theory of the laser was developed; we work from a master equation to
a Fokker–Planck equation with the help of the system size expansion. The
treatment therefore is restricted to the small-noise limit. Recall, though, that
the collective dipole coupling may be strong—

√
N̄effgmax � 1

2 (κ + γh/2)—
while the dipole coupling of the individual atoms is weak—gmax � γh/2, κ;
thus, collective vacuum Rabi oscillations may appear, even for a system size
parameter nsat = γγh/8g2

max � 1.
The analysis of the present chapter goes beyond that for the laser in so

far as the fluctuations are nonclassical. Unlike laser light, with its fluctuations
dominated by spontaneous emission, the forward-scattered light in many-atom
cavity QED may be antibunched and squeezed. We return to the theme of
Chaps. 10–12, to nonclassical noise in the phase-space approach—i.e., to the
vagaries of non-positive-semidefinite diffusion.

A great deal has been written on the topic of quantum fluctuations for
many atoms in cavity in the small-noise limit, much of it during the 1970s
and 1980s when optical bistability was widely studied. The article by Lugiato
[15.1] is an excellent place to start for a review of the entire field. We will be
satisfied with a few selected examples from the wide range of things accessible
to the phase-space analysis. We concentrate on the limit of weak excitation,
where nonclassical features are strongest and appear in their most interesting
form: atom–atom correlations are discussed in Sect. 15.2.4, since they are
not addressed explicitly anywhere else in the book; squeezing and photon
antibunching are discussed in Sects. 15.2.5– 15.2.7. The small noise analysis
provides an introduction and background for Chap. 16, where the treatment
of quantum fluctuations in many-atom cavity QED is taken beyond the small-
noise limit.
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15.1 Microscopic Model

15.1.1 Master Equation for Optical Bistability

The microscopic model underlying our macroscopic treatment of an optical
cavity filled with a homogeneously broadened two-level medium (Chap. 14) is
defined by a straightforward generalization of the master equation for single-
atom cavity QED (Eq. 13.14). Adopting the simplification that every atom
couples to the cavity mode with the same coupling strength (see Sect. 14.4.2),
and neglecting thermal fluctuations, we generalize (13.14) to N atoms and add
an atomic dephasing term (Sect. 2.2.4) to obtain what is commonly known as
the master equation for optical bistability (with n̄ = 0):

ρ̇ = −i 12ωA[Jz , ρ] − iωC [a†a, ρ]

+ g[a†J− − aJ+, ρ] − i[Ē0e
−iω0ta† + Ē∗0 eiω0ta, ρ]

+
γ

2

⎛

⎝
N∑

j=1

2σj−ρσj+ − 1
2Jzρ− 1

2ρJz −Nρ

⎞

⎠+
γp
2

⎛

⎝
N∑

j=1

σjzρσjz −Nρ

⎞

⎠

+ κ(2aρa† − a†aρ− ρa†a), (15.1)

where J−, J+, and Jz are collective atomic operators,

J± ≡
N∑

j=1

σj±, Jz ≡
N∑

j=1

σjz , (15.2)

which satisfy angular momentum commutation relations

[J+, J−] = Jz, [J±, Jz] = ∓2J±. (15.3)

The cavity output fields are defined in Chap. 13 (Eqs. 13.9 and 13.20), and
we note here, for completeness, that there is also an output field generated
as fluorescence from the atoms. For this, we generalize the expression from
Sect. 2.3.1 to a collection of atoms located within the cavity at positions rj ,
j = 1, . . . , N ; thus, we write

Ê(+)(r, t) = Ê
(+)
f (r, t) − ω2

A

4πε0c2r
(d12 × r̂) × r̂

N∑

j=1

σj−(t− |r − rj |/c),

(15.4)

where the free field is (Eq. 2.77)

Ê(+)(r, t) = i
∑

k,λ

√
�ωk
2ε0V

êk,λrk,λ(0)e−i(ωkt−k·r). (15.5)

To be in accord with our habit, the field must be reexpressed in photon flux
units. In this instance, it is necessary to consider the direction of the emission
and state that the considered flux is into the solid angle dΩ in the direction
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r̂ ≡ (θ, φ); then, for the directed fluorescence, we have the output field operator
in photon flux units

Êr̂(t) =

√
cr2dΩ

V
rAf (t′) +

√
3dΩ
8π

sin θ
√
γ

N∑

j=1

e−iωAr̂·rj/cσj−(t′), (15.6)

where t′ = t− r/c, and the free field is

rAf (t′) ≡ −i
∑

k

√
ωk
ωA

rkr̂,λ2(0)e−iωkt
′
. (15.7)

In order to stay with a scalar notion, we include only those free-field modes
that have a nonvanishing projection onto the atomic dipole moment (polar-
ization êk,λ2 in Fig. 2.2); in fact, there is an additional free-field contribution
polarized perpendicular to both r̂ and the dipole moment (polarization êk,λ1

in Fig. 2.2).

15.1.2 Fokker–Planck Equation in the P Representation

Let us begin by deriving the phase-space equations of motion correspond-
ing to master equation (15.1) in the three representations we have met—the
Glauber–Sudarshan P representation, the Q representation, and the Wigner
representation. From these equations and the system size expansion, Fokker–
Planck equations may be derived. It turns out that the diffusion matrix is
not generally positive semi-definite in this case; it therefore helps to see the
Fokker–Planck equations in all three representations so that comparisons can
be made.

We consider the P representation first, where the appropriate characteris-
tic function,

χ
N

(z, z∗, ξ, ξ∗, η) ≡ tr
(
ρeiz

∗a†eizaeiξ
∗J+eiηJzeiξJ−

)
, (15.8)

generates the hierarchy of normal-ordered operator averages (Eq. 7.96). The
associated quasi-distribution function is the Fourier transform

P (α, α∗, v, v∗,m) (15.9)

≡ 1
2π5

∫
d2z

∫
d2ξ

∫
dη χ

N
(z, z∗, ξ, ξ∗, η)e−iz

∗α∗
e−izαe−iξ

∗v∗e−iξve−iηm.

Now, the phase-space equation of motion can be pieced together from things
we already know. It is changed only slightly from the laser phase-space equa-
tion of motion (Sect. 7.2.4); hence, we go immediately from master equa-
tion (15.1) to the phase-space equation of motion for optical bistability in the
Glauber–Sudarshan P representation (with n̄ = 0):

∂P

∂t
=
[
LA+1

(
v, v∗,m,

∂

∂v
,
∂

∂v∗
,
∂

∂m

)
+ LF+1

(
α, α∗,

∂

∂α
,
∂

∂α∗

)

+LAF+1

(
α, α∗, v, v∗,m,

∂

∂α
,
∂

∂α∗
,
∂

∂v
,
∂

∂v∗
,
∂

∂m

)]
P, (15.10)
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where the first term on the right-hand side is taken from (7.101a), with the re-
placements γ↓ → γ, γ↑ → 0 and the addition of the dephasing term (Eq. 6.158)

LA+1

(
v, v∗,m,

∂

∂v
,
∂

∂v∗
,
∂

∂m

)

≡ iωC

(
∂

∂v
v − ∂

∂v∗
v∗

)

+
γ

2

[
(
e2

∂
∂m − 1

)
(N +m) +

∂

∂v
v +

∂

∂v∗
v∗

]

+ γp

[
∂

∂v
v +

∂

∂v∗
v∗ +

∂2

∂v∂v∗
e−2 ∂

∂m (N +m)
]
; (15.11a)

the second term is taken from (7.101b) (n̄ = 0), with the addition of a term
to account for the coherent driving of the cavity mode (Eq. 10.7),

LF+1

(
α, α∗,

∂

∂α
,
∂

∂α∗

)
≡ (κ+ iωC)

∂

∂α
α+ (κ− iωC)

∂

∂α∗
α∗

+ i

(
∂

∂α
Ē0e
−iω0t − ∂

∂α∗
Ē∗0 eiω0t

)
; (15.11b)

and the third term is exactly the interaction term from the laser phase-space
equation of motion (Eq. 7.101c),

LAF+1

(
α, α∗, v, v∗,m,

∂

∂α
,
∂

∂α∗
,
∂

∂v
,
∂

∂v∗
,
∂

∂m

)

≡ −g
{[

(
e−2 ∂

∂m − 1
)
v∗ +

∂

∂v
m− ∂2

∂v2
v

]
α+

∂

∂α
v

+
[
(
e−2 ∂

∂m − 1
)
v +

∂

∂v∗
m− ∂2

∂v∗2
v∗

]
α∗ +

∂

∂α∗
v∗
}
.

(15.11c)

Note that the subscript σ = −1, 0,+1 (here +1) follows the notation of
(10.32).

When developing the phase-space treatment of the laser in Chap. 8, we
were careful to apply the system size expansion in a systematic way (Sect.
5.1.3): we passed directly from the full phase-space equation of motion to a lin-
earized equation below threshold, a quasi-linearized equation above threshold,
and to an equation one step beyond linearization at threshold which retained
the lowest nonvanishing order of the nonlinearity. Treatments found in the
literature are rarely concerned with such niceties. It is more usual to find the
authors passing directly to a phase-space equation of motion truncated at sec-
ond derivatives and retaining all orders of the nonlinearity. Of course, when
this truncated equation is linearized, which it usually is, the end point is just
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the same. Since we have seen how the systematic approach works and since
there is nothing to be learned from its repetition, we follow the common prac-
tice here. Thus, keeping only first and second derivatives in (15.11a)–(15.11c),
we replace (15.10) by the Fokker–Planck truncation of the phase-space equa-
tion of motion for optical bistability in the Glauber–Sudarshan P representa-
tion (with n̄ = 0):

∂P

∂t
=

{
∂

∂α

[
(κ+ iωC)α− gv + iĒ0e

−iω0t
]

+
∂

∂α∗
[
(κ− iωC)α∗ − gv∗ − iĒ∗0 eiω0t

]

+
∂

∂v

[(γh
2

+ iωA

)
v − gmα

]

+
∂

∂v∗
[(γh

2
− iωA

)
v∗ − gmα∗

]

+
∂

∂m

[
γ(m+N) + 2g(v∗α+ vα∗)

]

+
γh − γ

2
(N +m)

∂2

∂v∂v∗

+ g
∂2

∂v2
vα+ g

∂2

∂v∗2
v∗α∗

+
∂2

∂m2

[
γ(m+N) − 2g(v∗α+ vα∗)

]
}
P. (15.12)

Note 15.1. When considering the Wigner representation in Sect. 15.1.4, we
find it much easier to derive the Fokker–Planck truncation corresponding to
(15.12) than the full phase-space equation of motion corresponding to (15.10).
The difficulty is that the operator disentangling theorem used to manipulate
the exponentials in the characteristic function—the Baker–Hausdorff theorem
(4.8)—is considerably more difficult to apply when the commutator on the
right-hand side produces an operator rather than a constant (see, for exam-
ple, [15.2]).

15.1.3 Fokker–Planck Equation in the Q Representation

Considering now the Q representation, the characteristic function generates
operator averages in antinormal order. We have

χ
A

(z, z∗, ξ, ξ∗, η) ≡ tr
(
ρeizaeiz

∗a†eiξJ−eiηJzeiξ
∗J+

)
, (15.13)
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and, from its Fourier transform,

Q(α, α∗, v, v∗,m)

≡ 1
2π5

∫
d2z

∫
d2ξ

∫
dη χ

A
(z, z∗, ξ, ξ∗, η)e−iz

∗α∗
e−izαe−iξ

∗v∗e−iξve−iηm.
(15.14)

The derivation of the phase-space equation of motion requires a little extra
work as we have not considered atomic operators in antinormal order before.
In place of (15.10), we write

∂Q

∂t
=
[
LA−1

(
v, v∗,m,

∂

∂v
,
∂

∂v∗
,
∂

∂m

)
+ LF−1

(
α, α∗,

∂

∂α
,
∂

∂α∗

)

+LAF−1

(
α, α∗, v, v∗,m,

∂

∂α
,
∂

∂α∗
,
∂

∂v
,
∂

∂v∗
,
∂

∂m

)]
Q. (15.15)

From here, the explicit terms—specifically those involving the atoms—are
not so easily constructed from equations we have written down before. Their
derivation follows, however, from an obvious generalization of the methods
described in Sects. 3.2.2, 6.1.3, and 6.3.4. In fact, once we have the results, it
will be clear that a direct connection with the previously derived phase-space
equation of motion for the laser exists; it is a useful exercise, nevertheless, to
carry through the derivation from first principles, using the methods of the
quantum-classical correspondence.

Exercise 15.1. Extend the methods of Sects. 3.2.2, 6.1.3, and 6.3.4 to the Q
representation; hence show that in place of (15.11a), we have

LA−1

(
v, v∗,m,

∂

∂v
,
∂

∂v∗
,
∂

∂m

)

≡ iωC

(
∂

∂v
v − ∂

∂v∗
v∗

)

+
γ

2

[
(
e2

∂
∂m − 1

)
(N +m) +

∂4

∂v2∂v∗2
e−2 ∂

∂m (N −m)

+2
(
e2

∂
∂m +

∂2

∂v∂v∗
− 1

2

)(
∂

∂v
v +

∂

∂v∗
v∗

)
+ 2N

∂2

∂v∂v∗

]

+ γp

[
∂

∂v
v +

∂

∂v∗
v∗ +

∂2

∂v∂v∗
e2

∂
∂m (N −m)

]
, (15.16a)

in place of (15.11b), we have

LF−1

(
α, α∗,

∂

∂α
,
∂

∂α∗

)
≡ (κ+ iωC)

∂

∂α
α+ (κ− iωC)

∂

∂α∗
α∗

+ i

(
∂

∂α
Ē0e
−iω0t − ∂

∂α∗
Ē∗0 eiω0t

)
+ 2κ

∂2

∂α∂α∗
,

(15.16b)
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and in place of (15.11c), we have

LAF−1

(
α, α∗, v, v∗,m,

∂

∂α
,
∂

∂α∗
,
∂

∂v
,
∂

∂v∗
,
∂

∂m

)

≡ g

{[(
e2

∂
∂m − 1

)
v∗ − ∂

∂v
m− ∂2

∂v2
v

]
α− ∂

∂α
v

+
[
(
e2

∂
∂m − 1

)
v − ∂

∂v∗
m− ∂2

∂v∗2
v∗

]
α∗ − ∂

∂α∗
v∗
}
.

(15.16c)

Note the similarity to the phase-space equation of motion in the Glauber–
Sudarshan P representation.

On comparing (15.16a)–(15.16c) with (15.11a)–(15.11c), we note first that the
diffusion term added to the right-hand side of (15.16b) is to be expected on
the basis of (3.47) and (4.14); it follows from the relationship between the
normal- and antinormal-ordered characteristic functions (Eq. 4.14). So far as
atomic variables go, (15.16c) differs from (15.11c) only through a change of
sign on all even-order derivatives, while (15.16a) may actually be taken from
the term describing upwards transitions in the laser phase-space equation
of motion (Eq. 7.100); the sign of m also changes in the dephasing term of
(15.16a)—the term proportional to γp (Eq. 6.158).

Now keeping derivatives up to second order in (15.15), we arrive at the
Fokker–Planck truncation of the phase-space equation of motion for optical
bistability in the Q representation (with n̄ = 0):

∂Q

∂t
=

{
∂

∂α

[
(κ+ iωC)α− gv + iĒ0e

−iω0t
]

+
∂

∂α∗
[
(κ− iωC)α∗ − gv∗ − iĒ∗0 eiω0t

]

+
∂

∂v

[(γh
2

+ iωA

)
v − gmα

]

+
∂

∂v∗
[(γh

2
− iωA

)
v∗ − gmα∗

]

+
∂

∂m

[
γ(m+N) + 2g(v∗α+ vα∗)

]

+ 2κ
∂2

∂α∂α∗
+
(
γh + γ

2
N − γh − γ

2
m

)
∂2

∂v∂v∗

− g
∂2

∂v2
vα− g

∂2

∂v∗2
v∗α∗ + 2γ

∂

∂m

(
∂

∂v
v +

∂

∂v∗
v∗

)

+
∂2

∂m2

[
γ(m+N) + 2g(v∗α+ vα∗)

]
}
Q. (15.17)
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15.1.4 Fokker–Planck Equation in the Wigner Representation

Turning now to the Wigner representation, we finally meet with an oppor-
tunity to do something entirely new. It is possible, in principle, to derive an
exact phase-space equation of motion for the Wigner distribution as well. The
calculations, however, are significantly more complicated, and since we plan
to truncate the equation at second-order derivatives in any case, it hardly
seems worth the effort to labor through a lot of algebra if it is possible to
avoid it. Can we, then, go directly from the master equation to the Fokker–
Planck truncation of the phase-space equation of motion? It turns out that
this is possible. We could, in fact, follow this alternative approach in any of the
representations. Let us therefore see how it works as a general method. The
truncated equation of motion in the Wigner representation will then follow as
a special case at the end of the calculations.

In any representation, we may start out by proposing a Fokker–Planck
truncation of the phase-space equation of motion in the form

∂Fσ
∂t

= Lσ(X,X ′)Fσ, (15.18)

with

Lσ(X ,X ′) ≡ −
∑

i

∂

∂Xi
Aiσ(X) +

1
2

∑

i,j

∂2

∂Xi∂Xj
Dij
σ (X), (15.19)

where σ = +1, 0, and −1 signifies the P , Wigner, and Q representations,
respectively (Eq. 10.32). For the present application the vectors of phase-space
variables and the corresponding derivatives with respect to these variables are

X ≡

⎛

⎜
⎜
⎜
⎜
⎝

α
α∗

v
v∗

m

⎞

⎟
⎟
⎟
⎟
⎠
, X ′ ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂/∂α

∂/∂α∗

∂/∂v

∂/∂v∗

∂/∂m

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (15.20)

Our task is to determine the explicit functions Aiσ(X) and Dij
σ (X) to be

substituted as components of the drift vector,

Aσ(X) ≡

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

Aασ(X)

Aα
∗
σ (X)

Avσ(X)

Av
∗
σ (X)

Amσ (X)

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

, (15.21)
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and the elements of the diffusion matrix

Dσ(X) ≡

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

Dαα
σ (X) Dαα∗

σ (X) Dαv
σ (X) Dαv∗

σ (X) Dαm
σ (X)

Dα∗α
σ (X) Dα∗α∗

σ (X) Dα∗v
σ (X) Dα∗v∗

σ (X) Dα∗m
σ (X)

Dvα
σ (X) Dvα∗

σ (X) Dvv
σ (X) Dvv∗

σ (X) Dvm
σ (X)

Dv∗α
σ (X) Dv∗α∗

σ (X) Dv∗v
σ (X) Dv∗v∗

σ (X) Dv∗m
σ (X)

Dmα
σ (X) Dmα∗

σ (X) Dmv
σ (X) Dmv∗

σ (X) Dmm
σ (X)

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

(15.22)

The determination is to be made by comparing the equations of motion for
phase-space averages that follow from (15.18) with the equations of motion
for operator averages derived directly from the master equation.

The equations of motion for phase-space averages are obtained by gen-
eralizing the calculation found in Sect. 5.1.1 to many dimensions. For the
phase-space variable means, i.e., first-order moments, this yields

d
(
Xi

)
Fσ

dt
=

(
Aiσ(X)

)
Fσ
, (15.23)

while for the second-order moments,

d
(
XiXj

)
Fσ

dt
=

(
XiA

j
σ(X)

)
Fσ

+
(
XjAiσX)

)
Fσ

+ 1
2

[(
Dij
σ (X)

)
Fσ

+
(
Dji
σ (X)

)
Fσ

]
. (15.24)

These are to be compared with the corresponding equations of motion for
operator averages, with the correspondence defined by using the appropriate
operator order for the three cases: σ = +1 (normal order), σ = 0 (symmet-
ric order), and σ = −1 (antinormal order). Thus, each phase-space average
appearing on the left-hand side of either (15.23) or (15.24) corresponds to an
operator average in a particular order. The master equation tells us what the
equation of motion for that operator average is. To connect that equation with
(15.23) or (15.24), every term in it is to be written with its operators in the
appropriate order. The functions Aiσ(X) and Dij

σ (X) are then determined by
noting that once the operator ordering is correct, there must be a one-to-one
correspondence between the averages appearing term by term throughout the
two sets of equations.

The procedure is largely trivial to carry through for first-order moments.
Corresponding to the vector of phase-space variables, we define the vector of
associated operators

X̂ ≡

⎛

⎜
⎜
⎜
⎜
⎝

a
a†

J−
J+

Jz

⎞

⎟
⎟
⎟
⎟
⎠
. (15.25)
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Then, from master equation (15.1), the equations of motion for the operator
means are given by

d〈X̂i〉
dt

= 〈Âi〉, (15.26)

Âi ≡ ÂX̂i
, with

Â ≡

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

Âa

Âa†

ÂJ−

ÂJ+

ÂJz

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

−(κ+ iωC)a+ gJ− − iĒ0e
−iω0t

−(κ− iωC)a† + gJ+ + iĒ∗0 eiω0t

−(γh/2 + iωA)J− + gJza

−(γh/2 − iωA)J+ + gJza
†

−γ(Jz +N) − 2g(J+a+ J−a†)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

. (15.27)

Note, then, that the Âi contain no noncommuting operator products. Thus,
the operator ordering issue is irrelevant and we may simply replace operators
by associated phase-space variables to obtain the drift vector

Aσ(X) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

−(κ+ iωC)α+ gv − iĒ0e
−iω0t

−(κ− iωC)α∗ + gv∗ + iĒ∗0 eiω0t

−(γh/2 + iωA)v + gmα

−(γh/2 − iωA)v∗ + gmα∗

−γ(m+N) − 2g(v∗α+ vα∗)

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

, (15.28)

which is independent of representation. From (15.13) and (15.28), the phase-
space equations of motion for first-order moments lie in one-to-one correspon-
dence with the Maxwell–Bloch equations (14.99a)–(14.99e).

There is rather more work to be done in determining the three diffusion
matrices. Let us consider the Glauber–Sudarshan P representation first. The
equations of motion for second-order moments are to be written in normal
order and matched to (15.24). The tedious algebra is left as an exercise.

Exercise 15.2. For master equation (15.1) and X̂i = a, a†, J−, J+, Jz, show
that the normal-ordered equations of motion for second-order moments may
be written in the form

d〈(X̂iX̂j

)
N
〉

dt
= 〈(X̂iÂj

)
N
〉 + 〈(X̂jÂi

)
N
〉 + 1

2

(〈D̂ij
+1〉 + 〈D̂ji

+1〉
)
, (15.29)

where all D̂ij
+1 ≡ D̂

X̂iX̂j

+1 vanish, except for

D̂
J−J−
+1 = 2gJ−a, (15.30a)

D̂
J+J+
+1 = 2gJ+a

†, (15.30b)

D̂JzJz
+1 = 2γ(Jz +N) − 4g(J+a+ J−a†), (15.30c)

D̂
J−J+
+1 = D̂

J+J−
+1 =

γh − γ

2
(N + Jz). (15.30d)



15.1 Microscopic Model 295

Hence find the diffusion matrix in the Fokker–Planck truncation of the phase-
space equation of motion for optical bistability in the Glauber–Sudarshan P
representation:

D+1 =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0

0 0 Dvv
+1 Dvv∗

+1 0

0 0 Dv∗v
+1 Dv∗v∗

+1 0
0 0 0 0 Dmm

+1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

, (15.31)

with nonzero elements

Dvv
+1(X) = 2gvα, (15.32a)

Dv∗v∗
+1 (X) = 2gv∗α∗, (15.32b)
Dmm

+1 (X) = 2γ(m+N) − 4g(v∗α+ vα∗), (15.32c)

Dvv∗
+1 (X) = Dv∗v

+1 (X) =
γh − γ

2
(N +m). (15.32d)

Note the agreement with (15.12).

Considering the Q representation next, equations of motion for second-order
moments are to be written in antinormal order and matched to (15.24). Equa-
tion 15.30 must be rewritten as

d〈(X̂iX̂j

)
A
〉

dt
= 〈(X̂iÂj

)
A
〉 + 〈(X̂jÂi

)
A
〉 + 1

2

(〈D̂ij
−1〉 + 〈D̂ji

−1〉
)
. (15.33)

As an illustration of how to proceed, let us follow the details through for one
operator product. We consider the case X̂i = J+ and X̂j = J−.

To begin, from the commutation relations for collective atomic operators
(Eqs. 15.3), we have

d〈(J+J−
)
A
〉

dt
=
d〈(J+J−

)
N
〉

dt
− d〈Jz〉

dt
. (15.34)

Then substituting (15.33) and (15.29) on the left- and right-hand sides of this
equation, respectively, and substituting for d〈Jz〉/dt using (15.26), we find the
relationship

D̂
J+J−
−1 = D̂

J+J−
+1 +

[(
J+ÂJ−

)
N
− (

J+ÂJ−
)
A

]

+
[(
J−ÂJ+

)
N
− (

J−ÂJ+

)
A

]− Âz. (15.35)

On substituting the explicit expression for the drift operators ÂJ− and ÂJ+

(Eq. 15.27) we obtain
[(
J+ÂJ−

)
N
− (

J+ÂJ−
)
A

]
= −

(γh
2

+ iωA

)
[J+, J−] + g[J+, Jz ]a

= −
(γh

2
+ iωA

)
Jz − 2gJ+a, (15.36a)
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and
[(
J−ÂJ+

)
N
− (

J−ÂJ+

)
A

]
= −

(γh
2

− iωA

)
Jz − 2gJ−a†. (15.36b)

Finally, combining (15.35) with (15.30d), (15.36a), and (15.36b) yields the
antinormal-ordered diffusion operator

D̂
J+J−
−1 =

γh − γ

2
(N + Jz) − γhJz − 2g(J+a+ J−a†)

+ γ(N + Jz) + 2g(J+a+ J−a†)

=
γh + γ

2
N − γh − γ

2
Jz. (15.37)

A calculation along similar lines must be carried out for each operator product.
The details are left, once again, as an exercise.

Exercise 15.3. For master equation (15.1) and X̂i = a, a†, J−, J+, Jz, use
the operator moment equations (15.29) and (15.33) as above to show that all

D̂ij
−1 ≡ D̂

X̂iX̂j

−1 vanish, except for

D̂aa†
−1 = D̂a†a

−1 = 2κ, (15.38a)

D̂
J−J−
−1 = −2gJ−a, (15.38b)

D̂
J+J+
−1 = −2gJ+a

†, (15.38c)

D̂JzJz
−1 = 2γ(Jz +N) + 4g(J+a+ J−a†), (15.38d)

D̂
J−J+
−1 = D̂

J+J−
−1 =

γh + γ

2
N − γh − γ

2
Jz, (15.38e)

D̂
J−Jz

−1 = D̂
JzJ−
−1 = 2γJ−, (15.38f)

D̂
J+Jz

−1 = D̂
JzJ+
−1 = 2γJ+. (15.38g)

Hence find the diffusion matrix in the Fokker–Planck truncation of the phase-
space equation of motion for optical bistability in the Q representation:

D−1 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

0 Dαα∗
−1 0 0 0

Dα∗α
−1 0 0 0 0

0 0 Dvv−1 Dvv∗−1 Dvm−1

0 0 Dv∗v
−1 Dv∗v∗

−1 Dv∗m
−1

0 0 Dmv
−1 Dmv∗

−1 Dmm
−1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

, (15.39)

with nonzero elements

Dαα∗
−1 = Dα∗α

−1 = 2κ, (15.40a)
Dvv
−1 = −2gvα, (15.40b)



15.1 Microscopic Model 297

Dv∗v∗
−1 = −2gv∗α∗, (15.40c)
Dmm
−1 = 2γ(m+N) + 4g(v∗α+ vα∗), (15.40d)

Dvv∗
−1 = Dv∗v

−1 =
γh + γ

2
N − γh − γ

2
m, (15.40e)

Dvm
−1 = Dmv

−1 = 2γv, (15.40f)

Dv∗m
−1 = Dmv∗

−1 = 2γv∗. (15.40g)

Note the agreement with (15.17).

This brings us, finally, to the Wigner representation, our principal objective
in this section. In this case, results with the second-order moments written in
symmetric order may be reached by averaging the normal- and antinormal-
ordered results. In line with (15.29) and (15.33), we write the equations of
motion for second-order moments in the symmetric-ordered form

d〈(X̂iX̂j

)
S
〉

dt
= 〈(X̂iÂj

)
S
〉 + 〈(X̂jÂi

)
S
〉 + 1

2

(〈D̂ij
0 〉 + 〈D̂ji

0 〉), (15.41)

where, term by term, the symmetric-ordered equation is the average of the
other two. Thus, by averaging diffusion matrices (15.31) and (15.39), we find

that all D̂ij
0 ≡ D̂

X̂iX̂j

0 vanish, except for

D̂aa†
0 = D̂a†a

0 = κ, (15.42a)

D̂JzJz
0 = 2γ(Jz +N), (15.42b)

D̂
J−J+
0 = D̂

J+J−
0 =

γh
2
N, (15.42c)

D̂
J−Jz

0 = D̂
JzJ−
−1 = γJ−, (15.42d)

D̂
J+Jz

0 = D̂
JzJ+
0 = γJ+. (15.42e)

We arrive at the diffusion matrix in the Fokker–Planck truncation of the
phase-space equation of motion for optical bistability in the Wigner represen-
tation:

D0 =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

0 Dαα∗
0 0 0 0

Dα∗α
0 0 0 0 0

0 0 0 Dvv∗
0 Dvm

0

0 0 Dv∗v
0 0 Dv∗m

0

0 0 Dmv
0 Dmv∗

0 Dmm
0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

, (15.43)

with nonzero elements

Dαα∗
0 = Dα∗α

0 = κ, (15.44a)
Dmm

0 = 2γ(m+N), (15.44b)

Dvv∗
0 = Dv∗v

0 =
γh
2
N, (15.44c)
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Dvm
0 = Dmv

0 = γv, (15.44d)

Dv∗m
0 = Dmv∗

0 = γv∗. (15.44e)

Now using (15.18)–(15.22), (15.28), (15.43), and (15.44a)–(15.44e), we con-
struct the Fokker–Planck truncation of the phase-space equation of motion
for optical bistability in the Wigner representation (with n̄ = 0):

∂W

∂t
=

{
∂

∂α

[
(κ+ iωC)α− gv + iĒ0e

−iω0t
]

+
∂

∂α∗
[
(κ− iωC)α∗ − gv∗ − iĒ∗0 eiω0t

]

+
∂

∂v

[(γh
2

+ iωA

)
v − gmα

]

+
∂

∂v∗

[(γh
2

− iωA

)
v∗ − gmα∗

]

+
∂

∂m

[
γ(m+N) + 2g(v∗α+ vα∗)

]

+ κ
∂2

∂α∂α∗
+
γh
2
N

∂2

∂v∂v∗

+ γ
∂

∂m

(
∂

∂v
v +

∂

∂v∗
v∗

)
+ γ

∂2

∂m2
(m+N)

}
W. (15.45)

The drift terms are the same as in the Glauber–Sudarshan P and Q represen-
tations, while the diffusion terms are the averages of those in the other two
representations.

15.2 Linear Theory of Quantum Fluctuations

Much of the interesting physics exhibited by a system of many atoms in a cav-
ity arises from the system nonlinearity. Most notably, we have the analogy with
a first-order phase transition—the optical bistability of Sects. 14.1 and 14.2.
Beyond this there are the numerous dynamical instabilities briefly mentioned
at the beginning of Sect. 14.2.3. All of these things carry us into the interesting
territory of nonlinear dynamics and chaos. They raise questions about global
fluctuations, which might be addressed by retaining the full nonlinearity of the
drift and diffusion in Fokker–Planck equations (15.12), (15.17), and (15.45),
or in some instances, in the multimode versions of these equations [15.3,15.4].
Although there has been some work in this direction, caution is called for when
assessing the results, since they can be infected by inconsistencies introduced
by the arbitrary truncation of derivatives at the second order.

To expand just a little on the point, we have already noted (Sect. 5.1.3)
that retaining nonlinear terms in the drift and diffusion after truncating
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derivatives is an inconsistent procedure; it is not a systematic truncation at
a particular order of the system size parameter. It is possible, though, that we
might accept the “small” inaccuracy involved. But considering applications
in quantum optics, there is something of a more fundamental nature to note.
Different phase-space representations give different phase-space equations of
motion. The moments obtained by solving these equations should neverthe-
less be related to one another through the operator ordering conventions—
normal, antinormal, and symmetric—i.e., through the commutation relations.
The expected relationships are, indeed, faithfully preserved by the Fokker–
Planck truncation for moments up to second order, essentially by construc-
tion, as we can see from the derivation of the Fokker–Planck truncation in
Sect. 15.1.4. Noting, then, that the linearized Fokker–Planck equations have
Gaussian solutions—with all moments given in terms of first- and second-
order moments—consistency between the P , Q, and Wigner representations
is guaranteed under linearization. There is no guarantee, on the other hand,
when nonlinearities in the drift and diffusion are kept. Equations 15.12, 15.17,
and 15.45 are approximate equations, and it is important to realize that, with-
out linearization, the approximations made in the different representations are
not the same; they differ in just such a way that some disagreement is to be
expected at the level of the commutation relations. Explicit examples of the
kinds of inconsistency that result can be found in the work of Drummond and
collaborators [15.5, 15.6].

For the most part we will not concern ourselves with global fluctuations,
except for a brief consideration of the topic in Sect. 16.3.6. In this section
we work from the linearized Fokker–Planck equations to develop a treatment
of quantum fluctuations for many atoms in a cavity which follows a path we
have traveled before.

15.2.1 System Size Expansion for Optical Bistability

The most suitable scaling of phase-space variables has become fairly standard
for us now. We model what is to be done in the present case on (8.17) and
(8.20), introducing scaled variables through the relationships

ie−i(φT +φ0−φC−φ′
C)α = n

1/2
sat ᾱ, (15.46a)

−iei(φT +φ0−φC−φ′
C)α∗ = n

1/2
sat ᾱ

∗, (15.46b)

i
√

2γh/γe−i(φT +φ0−φC−φ′
C)v = Nv̄, (15.46c)

−i
√

2γh/γei(φT +φ0−φC−φ′
C)v∗ = Nv̄∗, (15.46d)
m = Nm̄, (15.46e)

where nsat is the saturation photon number [(14.104) with gmax → g]; the
factor

√
2γh/γ is introduced in (15.46c) and (16.46d) to simplify the equa-

tions and the phase factors [taken from (13.58)] ensure that the driving field
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amplitude will appear in the equations as a real number. It is convenient to
also transform to a frame rotating at the driving field frequency, writing

ᾱ = e−iω0t ˜̄α, ᾱ∗ = eiω0t ˜̄α∗, (15.47a)

v̄ = e−iω0t ˜̄v, v̄∗ = eiω0t ˜̄v∗, (15.47b)

and to combine the three Fokker–Planck equations, (15.12), (15.17), and
(15.45), as a single equation using the index σ = +1, 0, or −1 in our usual
way (Eq. 10.32). The distribution function is then

˜̄F ′σ(˜̄α, ˜̄α
∗, ˜̄v, ˜̄v∗, m̄, t)

≡ N3nsat
γ

2γh
Fσ

(
α(˜̄α, t), α∗(˜̄α∗, t), v(˜̄v, t), v∗(˜̄v∗, t),m(m̄), t

)
, (15.48)

and satisfies the Fokker–Planck equation

∂ ˜̄F ′σ
∂t

=
{
κ
∂

∂ ˜̄α
[
(1 − iΦ)˜̄α− 2C ˜̄v − Y

]
+ κ

∂

∂ ˜̄α∗
[
(1 + iΦ)˜̄α∗ − 2C ˜̄v∗ − Y

]

+
γh
2
∂

∂ ˜̄v
[
(1 − iΔ)˜̄v − m̄ ˜̄α+

γh
2

∂

∂ ˜̄v∗
[
(1 + iΔ)˜̄v∗ − m̄ ˜̄α∗

]

+ γ
∂

∂m̄

[
m̄+ 1 + 1

2 (˜̄v∗ ˜̄α+ ˜̄v ˜̄α∗)
]

+ n−1
sat(1 − σ)κ

∂2

∂ ˜̄α∂ ˜̄α∗
+N−1

(
γh − σγ

γ
+ σ

γh − γ

γ
m̄

)
γh

∂2

∂ ˜̄v∂ ˜̄v∗

+N−1σ
γh
2

(
∂2

∂ ˜̄v2
˜̄v ˜̄α+

∂2

∂ ˜̄v∗2
˜̄v∗ ˜̄α∗

)

+N−1γ
∂2

∂m̄2

[
m̄+ 1 − σ 1

2 (˜̄v∗ ˜̄α+ ˜̄v ˜̄α∗)
]
}

˜̄F ′σ, (15.49)

where Δ and Φ are the dimensionless detunings (14.30) and (14.51), re-
spectively, C is the cooperativity parameter [(Eq. 14.103) with N̄eff → N ,
gmax → g], and Y is the dimensionless driving field amplitude (13.88).

Now we pass from (15.49) to the linearized Fokker–Planck equation by
way of the system size expansion. As in the case of the laser, we might adopt
either nsat or N as the system size parameter. For the laser we chose nsat.
Here choosing N leads to equations in a slightly simpler form. We therefore
make the expansions

ᾱ = 〈ā(t)〉 +N−1/2z, (15.50a)

ᾱ∗ = 〈ā†(t)〉 +N−1/2z∗, (15.50b)
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v̄ = 〈J̄−(t)〉 +N−1/2ν, (15.50c)

v̄∗ = 〈J̄+(t)〉 +N−1/2ν∗, (15.50d)

m̄ = 〈J̄z(t)〉 +N−1/2μ, (15.50e)

where the scaled operator averages are defined in parallel with (15.46a)–
(15.46e),

ie−i(φT +φ0−φC−φ′
C)a = n

1/2
sat ā, (15.51a)

−iei(φT +φ0−φC−φ′
C)a† = n

1/2
sat ā

†, (15.51b)

i
√

2γh/γe−i(φT +φ0−φC−φ′
C)J− = NJ̄−, (15.51c)

−i
√

2γh/γei(φT +φ0−φC−φ′
C)J+ = NJ̄+, (15.51d)
Jz = NJ̄z. (15.51e)

Then, corresponding to (15.48), the distribution function for the fluctuations
is

˜̄Fσ(z̃, z̃∗, ν̃, ν̃∗, μ, t) ≡ N−5/2 ˜̄F ′σ
(
˜̄α(z̃, t), ˜̄α∗(z̃∗, t), ˜̄v(ν̃, t), ˜̄v∗(ν̃∗, t), m̄(μ, t), t

)
,

(15.52)

with

z = e−iω0tz̃, z∗ = eiω0tz̃∗, (15.53a)

ν = e−iω0tν̃, ν∗ = eiω0tν̃∗, (15.53b)

and it satisfies the equation of motion

∂ ˜̄Fσ
∂t

= N−5/2

(
∂ ˜̄F ′σ
∂ ˜̄α

∂ ˜̄α
∂t

+
∂ ˜̄F ′σ
∂ ˜̄α∗

∂ ˜̄α∗

∂t
+
∂ ˜̄F ′σ
∂ ˜̄v

∂ ˜̄v
∂t

+
∂ ˜̄F ′σ
∂ ˜̄v∗

∂ ˜̄v∗

∂t

+
∂ ˜̄F ′σ
∂m̄

∂m̄

∂t
+
∂ ˜̄F ′σ
∂t

)

= N1/2

(
∂ ˜̄Fσ
∂z̃

d〈˜̄a(t)〉
dt

+ c.c.

)

+N1/2

(
∂ ˜̄Fσ
∂ν̃

d〈 ˜̄J−(t)〉
dt

+ c.c.

)

+N1/2 ∂
˜̄Fσ
∂μ

d〈J̄z(t)〉
dt

+
∂

∂t
(N−5/2 ˜̄F ′σ), (15.54)
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where the last term on the right-hand side is to be substituted from the
Fokker–Planck equation (15.49). The substitution yields

∂ ˜̄Fσ
∂t

= N1/2

(
∂ ˜̄Fσ
∂z̃

{
d〈˜̄a(t)〉
dt

+ κ
[
(1 − iΦ)〈˜̄a(t)〉 − 2C〈 ˜̄J−(t)〉 − Y

]
}

+ c.c.

+
∂ ˜̄Fσ
∂ν̃

{
d〈 ˜̄J−(t)〉

dt
+
γh
2
[
(1 − iΔ)〈 ˜̄J−(t)〉 − 〈J̄z(t)〉〈˜̄a(t)〉

]
}

+ c.c.

+
∂ ˜̄Fσ
∂μ

{
d〈J̄z(t)〉

dt
+ γ

[(〈J̄z(t)〉 + 1
)− 1

2

(〈 ˜̄J+(t)〉〈˜̄a(t)〉 + c.c.
)]
})

+
{
κ
∂

∂z̃
[(1 − iΦ)z̃ − 2Cν̃] + c.c.

+
γh
2

∂

∂ν̃

[
(1 − iΔ)ν̃ − 〈J̄z(t)〉z̃ − 〈˜̄a(t)〉μ] + c.c.

+ γ
∂

∂μ

[
μ+ 1

2

(〈 ˜̄J+(t)〉z̃ + 〈˜̄a(t)〉ν̃∗ + c.c.
)]

+ (1 − σ)κξ4C
∂2

∂z̃∂z̃∗
+
(
γh − σγ

γ
+ σ

γh − γ

γ
〈J̄z(t)〉

)
γh

∂2

∂ν̃∂ν̃∗

+ σ
γh
2

(
〈 ˜̄J−(t)〉〈˜̄a(t)〉 ∂

2

∂ν̃2
+ c.c.

)
+ (1 − σ)γ

(
〈 ˜̄J−(t)〉 ∂

∂ν
+ c.c.

)
∂

∂μ

+γ
[
〈J̄z(t)〉 + 1 − σ 1

2

(〈 ˜̄J+(t)〉〈˜̄a(t)〉 + c.c.
)] ∂2

∂μ2
+O(N−1/2)

}
˜̄Fσ,

(15.55)

where in order to eliminate nsat in favor of N , we have used (14.103) and
(14.104) (with N̄eff → N and gmax → g) to establish the relationship [compare
(8.1)],

N = nsatξ4C, ξ ≡ 2κ
γ
. (15.56)

Now, in the limit N → ∞, the terms of order N1/2 in (15.55) must vanish.
This yields the macroscopic law, the Maxwell–Bloch equations for a collection
of homogeneously broadened two-level atoms and one driven mode of the field
(with equal coupling strengths):

κ−1 d〈˜̄a〉
dt

= −(1 − iΦ)〈˜̄a〉 + 2C〈 ˜̄J−〉 + Y, (15.57a)

κ−1 d〈˜̄a†〉
dt

= −(1 + iΦ)〈˜̄a†〉 + 2C〈 ˜̄J+〉 + Y, (15.57b)
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(γh
2

)−1 d〈 ˜̄J−〉
dt

= −(1 − iΔ)〈 ˜̄J−〉 + 〈J̄z〉〈˜̄a〉, (15.57c)

(γh
2

)−1 d〈 ˜̄J+〉
dt

= −(1 + iΔ)〈 ˜̄J+〉 + 〈J̄z〉〈˜̄a†〉, (15.57d)

γ−1d〈J̄z〉
dt

= −(〈J̄z〉 + 1) − 1
2

(〈 ˜̄J+〉〈˜̄a〉 + 〈 ˜̄J−〉〈˜̄a†〉
)
. (15.57e)

Dropping the term of order N−1/2, the fluctuations about the macroscopic
state are governed by the linearized Fokker–Planck equation for optical bista-
bility (with n̄ = 0),

∂ ˜̄Fσ
∂t

=
{
κ
∂

∂z̃
[(1 − iΦ)z̃ − 2Cν̃] + κ

∂

∂z̃∗
[(1 + iΦ)z̃∗ − 2Cν̃∗]

+
γh
2

∂

∂ν̃

[
(1 − iΔ)ν̃ − 〈J̄z(t)〉z̃ − 〈˜̄a(t)〉μ]

+
γh
2

∂

∂ν̃∗
[
(1 + iΔ)ν̃∗ − 〈J̄z(t)〉z̃∗ − 〈˜̄a†(t)〉μ]

+ γ
∂

∂μ

[
μ− 1

2

(〈 ˜̄J+(t)〉z̃ + 〈˜̄a(t)〉ν̃∗ + 〈 ˜̄J−(t)〉z̃∗ + 〈˜̄a†(t)〉ν̃)
]

+ (1 − σ)κξ4C
∂2

∂z̃∂z̃∗
+
(
γh − σγ

γ
+ σ

γh − γ

γ
〈J̄z(t)〉

)
γh

∂2

∂ν̃∂ν̃∗

+ σ
γh
2

(
〈 ˜̄J−(t)〉〈˜̄a(t)〉 ∂

2

∂ν̃2
+ 〈 ˜̄J+(t)〉〈˜̄a†(t)〉 ∂2

∂ν̃∗2

)

+ (1 − σ)γ
(
〈 ˜̄J−(t)〉 ∂

∂ν
+ 〈 ˜̄J+(t)〉 ∂

∂ν∗

)
∂

∂μ

+γ
[
〈J̄z(t)〉 + 1 − σ 1

2

(〈 ˜̄J+(t)〉〈˜̄a(t)〉 + 〈 ˜̄J−(t)〉〈˜̄a†(t)〉)
] ∂2

∂μ2

}
˜̄Fσ.

(15.58)

Exercise 15.4. Verify that the Maxwell–Bloch equations (15.57a)–(15.57e)
follow from (14.99a)–(14.99e) when the dipole coupling constants g(rj) are
assumed to be equal to gmax → g for all atoms.

Our first interest is to ask whether or not the linearized Fokker–Planck equa-
tion has positive semidefinite diffusion. To this end, it is helpful to introduce
the real and imaginary parts of phase-space variables; we write

z̃ = z̃1 + iz̃2, z̃∗ = z̃1 − iz̃2, (15.59a)
ν̃ = ν̃1 + iν̃2, ν̃∗ = ν̃1 − iν̃2. (15.59b)



304 15 Many Atoms in a Cavity II: The Small-Noise Limit

Then, from the coefficients of second-order derivatives in (15.58), the diffusion
matrix is

D̄σ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

D̄z̃1z̃1
σ 0 0 0 0

0 D̄z̃2z̃2
σ 0 0 0

0 0 D̄ν̃1ν̃1
σ D̄ν̃1ν̃2

σ D̄ν̃1μ
σ

0 0 D̄ν̃2ν̃1
σ D̄ν̃2ν̃2

σ D̄ν̃2μ
σ

0 0 D̄μν̃1
σ D̄μν̃2

σ D̄μμ
σ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (15.60)

with nonzero elements

D̄z̃1z̃1
σ = D̄z̃2z̃2

σ = (1 − σ)κξ2C, (15.61a)

D̄ν̃1ν̃1
σ =

γh
2

[
γh − σγ

γ
+ σ

γh − γ

γ
〈J̄z〉 + σ 1

2

(〈 ˜̄J−〉〈˜̄a〉 + c.c.
)
]
, (15.61b)

D̄ν̃2ν̃2
σ =

γh
2

[
γh − σγ

γ
+ σ

γh − γ

γ
〈J̄z〉 − σ 1

2

(〈 ˜̄J−〉〈˜̄a〉 + c.c.
)
]
, (15.61c)

D̄μμ
σ = 2γ

[〈J̄z〉 + 1 − σ 1
2

(〈 ˜̄J+〉〈˜̄a〉 + c.c.
)]
, (15.61d)

D̄ν̃1ν̃2
σ = D̄ν̃2ν̃1

σ = σ
γh
2

1
2

(− i〈 ˜̄J−〉〈˜̄a〉 + c.c.
)
, (15.61e)

D̄ν̃1μ
σ = D̄μν̃1

σ = (1 − σ)γ 1
2

(〈 ˜̄J−〉 + c.c.
)
, (15.61f)

D̄ν̃2μ
σ = D̄μν̃2

σ = (1 − σ)γ 1
2

(− i〈 ˜̄J−〉 + c.c.
)
. (15.61g)

The matrix is block diagonal, with diagonal diffusion in each field quadrature—
i.e., the diffusion of the field variables is decoupled from the atoms. The
diffusion constants for the field are positive definite in the Q and Wigner
representations (σ = −1 and 0) and vanish in the Glauber–Sudarshan P rep-
resentation (σ = +1). The question, then, is whether or not the 3 × 3 atomic
diffusion matrix has nonnegative eigenvalues. Since it depends on σ, there is
a possibility that its eigenvalues are nonnegative in one representation and
not in another.

Let us consider the Wigner representation first, where for σ = 0, from
(15.61b)–(15.61g), the atomic diffusion matrix is

⎛

⎜
⎝

D̄ν̃1ν̃1
0 D̄ν̃1ν̃2

0 D̄ν̃1μ
0

D̄ν̃2ν̃1
0 D̄ν̃2ν̃2

0 D̄ν̃2μ
0

D̄μν̃1
0 D̄μν̃2

0 D̄μμ
0

⎞

⎟
⎠

=
γ

2

⎛

⎜
⎜
⎝

(γh/γ)2 0 〈 ˜̄J−〉 + c.c.

0 (γh/γ)2 −i〈 ˜̄J−〉 + c.c.

〈 ˜̄J−〉 + c.c. −i〈 ˜̄J−〉 + c.c. 4
(〈J̄z〉 + 1

)

⎞

⎟
⎟
⎠. (15.62)



15.2 Linear Theory of Quantum Fluctuations 305

The eigenvalues are

γ−1λ1 =
1
2

(
γh
γ

)2

, (15.63a)

γ−1λ2,3 =
1
4

(
γh
γ

)2

+ 〈J̄z〉 + 1 ±
⎧
⎨

⎩

[
1
4

(
γh
γ

)2

− 〈J̄z〉 − 1

]2

+ 〈 ˜̄J+〉〈 ˜̄J−〉
⎫
⎬

⎭

1/2

,

(15.63b)

from which the requirement for positive semidefinite diffusion is given by the
inequality (

γh
γ

)2 (〈J̄z〉 + 1
)− 〈 ˜̄J+〉〈 ˜̄J−〉 ≥ 0. (15.64)

Solutions to the optical Bloch equations must lie inside the Bloch sphere (see
the discussion below Fig 2.3). It follows that 4〈J+〉〈J−〉 + 〈Jz〉2 ≤ N2, which
with the scaling (15.51c)–(15.51e) yields the inequality

4〈 ˜̄J+〉〈 ˜̄J−〉 ≤ 2γh
γ

(
1 − 〈J̄z〉2

)
. (15.65)

We are also assured that γh/γ ≥ 1. Thus, noting that on the right-hand side
of (15.65) we may write 2(1 − 〈J̄z〉2) = 4(1 + 〈J̄z〉) − 2(1 + 〈J̄z〉)2, from the
constraint that solutions to the Bloch equations lie within the Bloch sphere
we prove that

(
γh
γ

)2 (〈J̄z〉 + 1
)− 〈 ˜̄J+〉〈 ˜̄J−〉 ≥ 1

2

(〈J̄z〉 + 1
)2

≥ 0. (15.66)

We conclude that the diffusion matrix in the Wigner representation is always
positive semidefinite.

Note 15.2. The guarantee of positive semidefinite diffusion comes from the re-
quirement that solutions to the optical Bloch equations lie within the Bloch
sphere. On the other hand, the optical Bloch equations emerge as the macro-
scopic equations of motion as a consequence of linearization. There is, then,
no assurance that Fokker–Planck equation (15.45), with its nonlinear drift
and diffusion, has positive semidefinite diffusion. Indeed, there are certainly
regions of phase space where this Fokker–Planck equation has non-positive-
semidefinite diffusion—eigenvalue λ3 can be negative if

(〈 ˜̄J−〉, 〈 ˜̄J+〉, 〈J̄z〉
) →

(˜̄v, ˜̄v∗, m̄) is permitted to venture outside the Bloch sphere. This is hardly
surprising: a Wigner function that satisfies a Fokker–Planck equation with
positive semidefinite diffusion is itself everywhere positive; it can represent
only a limited range of the possible quantum states.
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We turn now to the Glauber–Sudarshan P representation, with σ = +1. To
simplify the general case, let us take 〈˜̄a〉 and 〈 ˜̄J−〉 to be real. This yields
a diagonal atomic diffusion matrix with diffusion constants

D̄ν̃1ν̃1
+1 =

γh
2

[
γh − γ

γ

(〈J̄z〉 + 1
)

+ 1
2

(〈 ˜̄J−〉〈˜̄a〉 + c.c.
)
]
, (15.67a)

D̄ν̃2ν̃2
+1 =

γh
2

[
γh − γ

γ

(〈J̄z〉 + 1
)− 1

2

(〈 ˜̄J−〉〈˜̄a〉 + c.c.
)
]
, (15.67b)

D̄μμ
+1 = 2γ

[〈J̄z〉 + 1 − 1
2

(〈 ˜̄J+〉〈˜̄a〉 + c.c.
)]
. (15.67c)

We conclude that diffusion in the Glauber–Sudarshan P representation is
definitely not positive semidefinite if, for example, γh = γ and 〈 ˜̄J−〉〈˜̄a〉 �= 0;
then either D̄ν̃1ν̃1

+1 or D̄ν̃2ν̃2
+1 is negative.

Finally, in the Q representation (σ = −1), although the atomic diffusion
matrix is not diagonal under the same conditions, the ν̃2-diffusion decouples
from the other two dimensions, with diffusion constant

D̄ν̃2ν̃2
−1 =

γh
2

[
γh + γ

γ
− γh − γ

γ
〈J̄z〉 + 1

2

(〈 ˜̄J−〉〈˜̄a〉 + c.c.
)
]
. (15.68)

It is straightforward to prove that this also gives non-positive-semidefinite
diffusion in accessible regions of the phase space.

In summary, diffusion in our phase-space treatment of many atoms in
a cavity is positive semidefinite in the Wigner representation so long as the
Fokker–Planck equation is linearized. It is non-positive-semidefinite in the
Glauber–Sudarshan P and Q representations, even under linearization. Both
of the latter yield positive semidefinite diffusion in some regions of the phase
space, though. The next task to check is whether or not the steady state lies
within these regions.

15.2.2 Linearization About the Steady State

Introducing the dimensionless amplitude and phase defined in (14.52) and
(14.56) [see also (13.58), (14.91), and (15.51) for the definition of the phase],
we write the steady-state intracavity field amplitude as

〈˜̄a〉ss = eiφXX, (15.69a)

〈˜̄a†〉ss = e−iφXX, (15.69b)

and solve the Maxwell–Bloch equations (15.57a)–(15.57e) in steady state to
obtain

〈 ˜̄J−〉ss = − 1 + iΔ

1 +Δ2 +X2
eiφXX, (15.70a)

〈 ˜̄J+〉ss = − 1 − iΔ

1 +Δ2 +X2
e−iφXX, (15.70b)

〈J̄z〉ss = − 1 +Δ2

1 +Δ2 +X2
, (15.70c)
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where X and φX satisfy the optical bistability state equation

Y = eiφXX

[(
1 + 2C

1
1 +Δ2 +X2

)
− i

(
Φ− 2CΔ

1
1 +Δ2 +X2

)]
. (15.71)

With the adoption of equal dipole coupling strengths for all atoms, the state
equation for a ring cavity is obtained. Now, to simplify the otherwise tedious
algebra, let us specialize to the absorptive case (Δ = Φ = 0): from (15.71), the
state equation of absorptive optical bistability for a homogeneously broadened
two-level medium in a plane-wave ring cavity is

Y = X

(
1 + 2C

1
1 +X2

)
, φX = 0, (15.72)

with
dY

dX
= 1 + 2C

1 −X2

(1 +X2)2
. (15.73)

It is readily checked that dY/dX vanishes for X2
± = C − 1 ± √

C(C − 4),
verifying that (15.72) possesses three real solutions for X whenever 2C > 8
(Exercise 14.3).

We wish to determine whether or not diffusion matrix (15.60) is positive
semidefinite when the linearization is made around these steady states. Let
us restrict ourselves to radiative damping (γh = γ) to further simplify the
calculation. Then, substituting from (15.69a)–(15.70c) into (15.61a)–(15.61g),
the diffusion matrix has nonzero elements

(D̄ss
σ )z̃1z̃1 = (D̄ss

σ )z̃2z̃2 = γ(1 − σ)ξ2C, (15.74a)

(D̄ss
σ )ν̃1ν̃1 =

γ

2

(
1 − σ − σ

X2

1 +X2

)
, (15.74b)

(D̄ss
σ )ν̃2ν̃2 =

γ

2

(
1 − σ + σ

X2

1 +X2

)
, (15.74c)

(D̄ss
σ )μμ = 2γ(1 + σ)

X2

1 +X2
, (15.74d)

(D̄ss
σ )ν1μ = (D̄ss

σ )μν1 = −γ(1 − σ)
X

1 +X2
. (15.74e)

As expected from our general proof (Eq. 15.66), it is positive semidefinite
in the Wigner representation (σ = 0). In the Q representation (σ = −1),
however, it is not, since one eigenvalue of the coupled (ν1, μ)-diffusion is al-
ways negative. Also, in the Glauber–Sudarshan P representation (σ = +1)
it is not; the diffusion matrix is diagonal with (D̄ss

σ )ν̃1ν̃1 < 0. Thus, both the
Q and Glauber–Sudarshan P representations yield non-positive-semidefinite
diffusion in the vicinity of the steady state.

We could carry through the linearized analysis of fluctuations in any one of
these representations; alternatively, we might leave the representation unspec-
ified, as we did for the degenerate parametric oscillator (Sect. 10.2). The sim-
plicity of diagonal diffusion is appealing, though; moreover, since we can carry
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through the calculations formally, ignoring the intricacies of negative diffusion
in practice, we proceed with the Glauber–Sudarshan P representation—seen
now, however, to require a reinterpretation as the positive P representation.

Strictly, the positive P distribution is a function in ten dimensions. In-
stead of writing out the Fokker–Planck equation in the phase space of double
dimensions, though, it is convenient to write it in the common complex no-
tation, a notation mirroring that of the standard Glauber–Sudarshan P rep-
resentation. Thus, we begin our linearized analysis of fluctuations from the
Fokker–Planck equation in the positive P representation for absorptive optical
bistability linearized about the steady state (with n̄ = 0):

∂ ˜̄P
∂t

=
(− Z̃

′T
J̄ ssZ̃ + 1

2 Z̃
′T

D̄ssZ̃
′) ˜̄P, (15.75)

with

Z̃ ≡

⎛

⎜
⎜
⎜
⎜
⎝

z̃
z̃∗
ν̃
ν̃∗
μ

⎞

⎟
⎟
⎟
⎟
⎠
, Z̃

′ ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂/∂z̃

∂/∂z̃∗
∂/∂ν̃

∂/∂ν̃∗
∂/∂μ

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (15.76)

where, substituting (15.69a)–(15.70c) into (15.58) (Δ = Φ = 0 and γh = γ),
the Jacobian matrix is

J̄ ss =
γ

2

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

−ξ 0 ξ2C 0 0

0 −ξ 0 ξ2C 0

−1/(1 +X2) 0 −1 0 X

0 −1/(1 +X2) 0 −1 X

X/(1 +X2) X/(1 +X2) −X −X −2

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

, (15.77)

and from (15.74a)–(15.74e) with σ = +1 we obtain the diagonal diffusion

D̄ss = γ
X2

1 +X2

⎛

⎜
⎜
⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 4

⎞

⎟
⎟
⎟⎟
⎠
. (15.78)

Here Z̃ is a vector of five independent complex variables. The positive P in-
terpretation of (15.75) amounts to a definition of how derivatives with respect
to these variables are to be taken (see the discussion below Note 11.3); but
we need not be concerned with these formal issues. All we need to perform
the calculations is contained in the matrices J̄ ss and D̄ss. We work with them
in exactly the way we would if the diffusion matrix were positive semidefinite
(Sect. 11.1.3).
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Note 15.3. Having discovered that we need to reinterpret Fokker–Planck equa-
tion (15.12) in the positive P representation, we should be aware that this
equation, if accepted along with its nonlinear drift and diffusion, leads to dif-
ficulties similar to those discussed in Sect. 12.2. The first hint of this comes
with the observation that, in addition to the physical steady states identified
in (15.69)–(15.71), the extended phase space admits nonphysical steady states.
Specifically, the state equation (Eq. 15.72) which we present as an equation for
the intracavity intensityX2 ≡ 〈˜̄a†〉ss〈˜̄a〉ss, is now generalized to allowX2 to be
complex; variables ᾱ and ᾱ∗, expanded in (15.50a) and (15.50b) about 〈ā(t)〉
and 〈ā†(t)〉—i.e., interpreted as complex conjugates—are replaced by ᾱ and
ᾱ∗, which need not be conjugates of one another. Looking beyond the steady
states themselves, there is a reorganization of the deterministic flow analogous
to that described for the degenerate parametric oscillator below (12.65). When
the quantum fluctuations are sufficiently large, bringing the full nonlinearity
into play, suspicious “spiking” occurs in the positive P stochastic simulations.
Indeed, Carmichael and coworkers first discovered the problem of divergent
trajectories in positive P stochastic simulations of absorptive optical bista-
bility [15.7]. Of course, within the linear treatment of fluctuations no such
anomalies arise.

We aim to calculate the covariance matrix for absorptive optical bistability.
Before doing so, it is useful to consider the eigenvalues of Jacobian matrix
(15.77). These govern the regression of fluctuations, and we can discover quite
a bit of physics directly from them and the characteristic polynomial they
solve. To this end, it is convenient to adopt a new set of variables,

Z̃1 ≡

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

−i 12 (z̃ − z̃∗)

−i 12 (ν̃ − ν̃∗)
1
2 (z̃ + z̃∗)
1
2 (ν̃ + ν̃∗)

μ

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

. (15.79)

In these variables the rows and columns of the Jacobian matrix are rearranged
into block diagonal form:

J̄
1
ss =

γ

2

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

−ξ ξ2C 0 0 0

−1/(1 +X2) −1 0 0 0

0 0 −ξ ξ2C 0

0 0 −1/(1 +X2) −1 X

0 0 2X/(1 +X2) −2X −2

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

. (15.80)

The eigenvalues of the matrix then separate into a pair governing the evolution
of phase-space variables −i 12 (z̃ − z̃∗) and −i 12 (ν̃ − ν̃∗), and a set of three
governing the evolution of phase-space variables 1

2 (z̃ + z̃∗), 1
2 (ν̃ + ν̃∗), and μ.
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Defining dimensionless eigenvalues

λ̄i = (2/γ)λi, (15.81)

i = 1, · · · , 5, the first pair, λ̄1 and λ̄2, are the roots of the quadratic

(λ̄+ ξ)(λ̄ + 1) + ξ2C
1

1 +X2
. (15.82)

Explicitly, we have

λ̄1,2 = − 1
2 (ξ + 1) ±

√
1
4 (ξ − 1)2 − ξ2C

1
1 +X2

. (15.83)

These eigenvalues are essentially Λ+ and Λ− from (14.114). They are respon-
sible for the many-atom vacuum Rabi doublet and arise from the coupling
of one quadrature of the intracavity field amplitude—phase-space variable
−i 12 (z̃− z̃∗)—to the same quadrature of the atomic polarization—phase-space
variable −i 12 (ν̃− ν̃∗). Here, with 2C = 2Ng2/γκ, they appear for a fixed num-
ber of atoms rather than the effective number N̄eff , and with γ in place of γh,
as we are considering radiative damping. The factor 1/(1 +X2) in (15.83) is
an important nonlinear extension that takes us beyond the weak-excitation
limit. It accounts for saturation of the atomic inversion. Because of it the vac-
uum Rabi peaks move together as the intracavity field amplitude is increased;
saturation of the inversion effectively reduces the dipole coupling strength.
Eventually, in the limit of strong excitation, eigenvalues λ1 and λ2 are trans-
formed into the independent damping rates κ and γ/2. This “closing up” of
the vacuum Rabi doublet is seen in experiments and was reported on in some
detail by Gripp and coworkers [15.8].

Explicit forms for λ̄3, λ̄4, and λ̄5 do not teach us very much. We can learn
something, though, from the cubic polynomial they solve. In fact, it is helpful
to write this cubic in three different forms:

[
(λ̄+ ξ)(λ̄ + 1) + ξ2C

1
1 +X2

]
(λ̄ + 2) = −2X2

(
λ̄+ ξ − ξ2C

1
1 +X2

)
,

(15.84a)

or equivalently,

(λ̄ + ξ)[(λ̄+ 1)(λ̄+ 2) + 2X2] = −ξ2C 1
1 +X2

(λ̄ + 2 − 2X2), (15.84b)

or

λ̄

[
λ̄2 + (3 + ξ)λ + 3ξ + 2(1 +X2) + ξ2C

1
1 +X2

]
= −2ξ(1 +X2)

dY

dX
,

(15.84c)

where dY/dX in the last equation is given by (15.73). Something can be
learned from each of these equations.
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The cubic polynomial in version (15.84a) provides another view of vacuum
Rabi splitting. If we set the right-hand side to zero, we recover two eigenval-
ues, λ̄3 and λ̄4, degenerate with λ̄1 and λ̄2, plus the eigenvalue λ̄5 = 2. The
degeneracy reflects the fact that the field and polarization amplitudes are
complex, so vacuum Rabi oscillation occurs in both their real and imaginary
parts. Eigenvalue λ5 = γ describes the decay of fluctuations in the atomic
inversion. Generally, for nonvanishing X , coupled field and polarization vari-
ables 1

2 (z̃ + z̃∗) and 1
2 (ν̃ + ν̃∗) also couple to the inversion variable μ; thus,

there is an interplay of three eigenvalues at moderate excitation levels.
The ultimate development of this three-way coupling is revealed by (15.84b),

where in the strong-excitation limit the right-hand side of the equation may
be set to zero. We see then that two of the eigenvalues satisfying this equation
describe the evolution of the coupled polarization and inversion in free-space
resonance fluorescence (ordinary Rabi oscillation). The third reverts to the
decay rate κ for the quadrature 1

2 (z̃ + z̃∗) of the cavity field amplitude.
The third version of the cubic polynomial, (15.84c), reveals local (lin-

earized) dynamical features of the optical bistability phenomenon. From it we
see that one of the eigenvalues vanishes at each turning point of the input–
output curves (Fig. 14.4), whenever the slope dY/dX is zero. Furthermore,
since the right-hand side of (15.84c) is the product λ̄3λ̄4λ̄5, we may con-
clude that the eigenvalue that vanishes at the turning point is positive when
dY/dX < 0—i.e., the steady state is unstable in regions of negative slope. We
have in (15.84c) an explicit expression of the stability issues discussed more
generally in Sect. (14.2.3).

Exercise 15.5. Find the roots of the cubic characteristic polynomial numer-
ically and determine how the eigenvalues λi, i = 3, 4, 5, vary as a function of
the intracavity field amplitude X . Observe how the properties identified in
(15.84a), (15.84b), and (15.84c) are carried continuously from the region of
weak excitation to the region of strong excitation, passing through the range
of unstable steady states.

Many things can be calculated from the linearized Fokker–Planck equation:
optical spectra, spectra of squeezing, intensity correlation functions, to men-
tion some things we have already met. In addition to the number of correlation
functions and spectra that might be of interest, there are a wide range of oper-
ating conditions to consider. Results depend on the steady state about which
the linearization is made, and as our observations about eigenvalues show,
the behavior of the quantum fluctuations can be expected to change signifi-
cantly with the steady state—the steady-state field amplitude X . The main
distinction is between the lower branch,

X2 < X2
− ≡ C − 1 −

√
C(C − 4), (15.85a)

and the upper branch,

X2 > X2
+ ≡ C − 1 +

√
C(C − 4), (15.85b)
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of the input–output curve (Fig. 14.4). The lower branch is sometimes called
the cooperative branch, because it is here that coherence induced by the col-
lective interaction of the N atoms with the cavity mode beats out the spon-
taneous emission; the latter exerts its influence through individual atoms and
tends to destroy both collectivity and coherence. Along the upper branch the
spontaneous emission wins. The upper branch is therefore referred to as the
independent-atom branch.

A sense of this physics is made available by the roots of (15.84b) and
(15.84c) with the right-hand sides of the equations set to zero. The first
equation (weak-excitation limit or lower branch) produces a pair of eigen-
values which depend on the collectivity parameter 2C, while the second
(strong-excitation limit or upper branch) produces the eigenvalues of single-
atom resonance fluorescence. Considering the first in the bad-cavity limit,
κ� γ/2,

√
Ng, we find that one of the eigenvalues corresponds to the many-

atom version of the cavity-enhanced emission rate; the enhancement factor
2C1 of (13.50) is replaced by 2C = N2C1, the decay rate of cavity-assisted
superradiance [15.9,15.10,15.11]; thus, fluctuations along the lower branch of
absorptive optical bistability exhibit features associated with both collective
and cavity QED effects.

Another aspect of the variety of operating conditions comes from the time
scales set by damping rates κ and γ/2, and the coupling strength

√
Ng; we

might make a distinction between this collective coupling strength and the
strength of the single-atom coupling, but so long as we stay in the small-noise
regime the single-atom coupling is necessarily weak.

Most of what is found in the literature deals with either the bad-cavity
limit, just mentioned, or the good-cavity limit, κ � γ/2,

√
Ng. Perhaps the

more interesting results are those for the bad-cavity limit; specifically, along
the lower, or cooperative branch, where the connections with perturbative
cavity QED and superradiance show up [15.12,15.13,15.14]. We cannot review
everything, however, so let us limit ourselves to a few calculations that are
not covered so widely in the literature. We begin with a calculation of the
covariance matrix, carried through generally, without any restriction on the
operating conditions. We then look explicitly at the atom–atom correlations
associated with collective effects (Sect. 15.2.4), and finally at some results
relating to nonperturbative cavity QED (Sects. 15.2.6 and 15.2.7).

15.2.3 Covariance Matrix for Absorptive Bistability

We aim to calculate the steady-state covariance matrix for absorptive optical
bistability. According to (11.69), we must solve the matrix equation

J̄ssC∞ + C∞J̄ ss = −D̄ss, (15.86)

where J̄ss and D̄ss are the Jacobian and diffusion matrices defined in (15.77)
and (15.78). The covariance matrix is symmetric, and for purely absorptive
bistability all of its matrix elements are real. We therefore write it as
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C∞ ≡ (
Z̃Z̃T

)
˜̄Pss

≡

⎛

⎜
⎜
⎜⎜
⎝

A B U V W
· · · A V U W
· · · · · · P Q R
· · · · · · · · · P R
· · · · · · · · · · · · S

⎞

⎟
⎟
⎟⎟
⎠
. (15.87)

Then, from the quantum–classical correspondence, and using the scaling re-
lationships (15.50a)–(15.50e), we have
⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

〈Δ˜̄aΔ˜̄a〉ss 〈Δ˜̄a†Δ˜̄a〉ss 〈Δ˜̄aΔ ˜̄J−〉ss 〈Δ˜̄aΔ ˜̄J+〉ss 〈Δ˜̄aΔJ̄z〉ss
· · · 〈Δ˜̄a†Δ˜̄a†〉ss 〈Δ˜̄a†Δ ˜̄J−〉ss 〈Δ˜̄a†Δ ˜̄J+〉ss 〈Δ˜̄a†ΔJ̄z〉ss
· · · · · · 〈Δ ˜̄J−Δ ˜̄J−〉ss 〈Δ ˜̄J+Δ

˜̄J−〉ss 〈ΔJ̄zΔ ˜̄J−〉ss
· · · · · · · · · 〈Δ ˜̄J+Δ

˜̄J+〉ss 〈Δ ˜̄J+ΔJ̄z〉ss
· · · · · · · · · · · · 〈ΔJ̄zΔJ̄z〉ss

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

=
1
N

⎛

⎜
⎜
⎜
⎜
⎝

A B U V W
· · · A V U W
· · · · · · P Q R
· · · · · · · · · P R
· · · · · · · · · · · · S

⎞

⎟
⎟
⎟
⎟
⎠
, (15.88)

where the fluctuation operators are

Δā ≡ ā− 〈ā〉ss, (15.89a)

Δā† ≡ ā† − 〈ā†〉ss, (15.89b)
ΔJ̄− ≡ J̄− − 〈J̄−〉ss, (15.89c)
ΔJ̄+ ≡ J̄+ − 〈J̄+〉ss, (15.89d)
ΔJ̄z ≡ J̄z − 〈J̄z〉ss. (15.89e)

One approach to the solution of (15.86) is to diagonalize the drift matrix,
J̄ ss, in the manner of (5.62), and obtain as in (5.81)

C∞ = −S−1

((
SD̄ssS

−1
)
ij

λi + λj

)

(S−1)T . (15.90)

Although possible in principle, this is not a practical approach here, since
even the eigenvalues of J̄ss are not given by closed expressions, let alone the
eigenvectors. We are nevertheless able to find a closed form solution by directly
solving the simultaneous equations. There are nine equations to solve: the first
row of (15.86) gives the five equations

A− 2CU = 0, (15.91a)
B − 2CV = 0, (15.91b)
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(1 + ξ)U − ξ2CP +
1

1 +X2
A−XW = 0, (15.91c)

(1 + ξ)V − ξ2CQ+
1

1 +X2
B −XW = 0, (15.91d)

(2 + ξ)W − ξ2CR− X

1 +X2
(A+B) +X(U + V ) = 0; (15.91e)

the third row (columns three, four, and five) gives,

1
1 +X2

U + P −XR = − X2

1 +X2
,

(15.91f)
1

1 +X2
V +Q−XR = 0, (15.91g)

1
1 +X2

W + 3R−XS − X

1 +X2
(U + V ) +X(P +Q) = 0; (15.91h)

and the fifth row (column five) gives

X

1 +X2
W −XR− S = − 2X2

1 +X2
. (15.91i)

From this point the algebraic manipulations are left to the reader to explore
as an exercise.

Exercise 15.6. Solve the set of nine simultaneous equations (15.91a)–(15.91i).
The following four steps provide a possible avenue to the solution:

(i) From (15.91a)–(15.91d), show that

A = 2CV − 2CX2 ξ

1 + ξ

(
1 − X

Y

)
, (15.92a)

B = 2CV, (15.92b)

U = V −X2 ξ

1 + ξ

(
1 − X

Y

)
. (15.92c)

(ii) From (15.91f) and (15.91g), show that

P = Q− X2

1 +X2

1 + ξX/Y

1 + ξ
. (15.92d)

(iii) Now express W and R in terms of V and Q, with

W =
1
X

[(
1 + ξ + 2C

1
1 +X2

)
V − ξ2CQ

]
, (15.92e)

R =
1
X

(
1

1 +X2
V +Q

)
. (15.92f)
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(iv) Finally, solve (15.91e), (15.91h), and (15.91i) to obtain

S =
1

1 +X2

(
ξ + 2C

1
1 +X2

)
V −

(
1 + ξ2C

1
1 +X2

)
Q+

2X2

1 +X2
,

(15.92g)

Q =
ξ(3 + ξ) + 2(1 +X2)dY/dX

ξ(3 + ξ)
1

2C
V +

X4

1 +X2

1 − 2X/Y
(1 + ξ)(3 + ξ)

, (15.92h)

and

V = 2C
(

X2

1 +X2

)2
ξ

1 + ξ

(
dY 2

dX2

)−1

× (1 +X2)(2 − Y/X)(3 + ξ − ξdY/dX) + (3 + ξ)[2ξ + (3 + ξ)Y/X ]
2(1 +X2)(3 + ξ − ξdY/dX) + ξ(3 + ξ)(2 + Y/X)

.

(15.92i)

Through back-substitution, starting from (15.92i), all elements of the steady-
state covariance matrix are obtained.

This solution provides the input needed for the calculations of the next three
sections. As a first indication of what it can tell us, Fig. 15.1 shows how the
fluctuations in the intracavity field amplitude change as a function of the
mean amplitude X ; matrix elements A and B are plotted for three values of
ξ ranging from the bad-cavity limit (ξ � 1) to the good-cavity limit (ξ � 1).
The most obvious feature of the plots is the divergence at the turning points
of the input–output curve, a repetition of behavior we have seen before—for
the degenerate parametric oscillator in Fig. 10.2, and in our treatment of the
laser threshold in Sect. 8.2. The magnitude of the amplitude variance A =
N〈Δ˜̄aΔ˜̄a〉ss is also something to note. Along much of the lower branch [frames
(a), (b), and (c)] it is larger than the fluctuation intensity B = N〈Δ˜̄a†Δ˜̄a〉ss.
This is not possible for any classical stochastic field since the fluctuation
intensity is the sum of two quadrature amplitude variances, both positive
numbers (see Sect. 15.2.5). We can deduce from this observation that the field
fluctuations are squeezed. To explicitly demonstrate the presence of squeezing,
we use the scaling (15.51a) and (15.51b), and the relation (15.56), to calculate
the quadrature phase variances

(ΔX)2ss ≡ 1
4

〈[− iΔãe−i(φT +φ0−φc−φ′
c) + iΔã†ei(φT +φ0−φc−φ′

c)
]2〉

= nsat
1
2

(〈Δ˜̄a†Δ˜̄a〉ss + 〈Δ˜̄aΔ˜̄a〉ss
)

+ 1
4

= (ξ4C)−1 1
2 (B +A) + 1

4 , (15.93a)
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Fig. 15.1. Steady-state fluctuations in absorptive optical bistability as a function
of the mean intracavity field amplitude. Quadrature amplitude fluctuations A =
N〈Δ˜̄aΔ˜̄a〉ss (dashed lines) and intensity fluctuations B = N〈Δ˜̄a†Δ˜̄a〉ss (solid lines)
are plotted as a function of X for 2C = 20 and ξ = 10.0 [(a) and (d)], ξ = 1.0 [(b)
and (e)], and ξ = 0.1 [(c) and (f)]

and

(ΔY )2ss ≡ 1
4

〈[
Δãe−i(φT +φ0−φc−φ′

c) +Δã†ei(φT +φ0−φc−φ′
c)
]2〉

= nsat
1
2

(〈Δ˜̄a†Δ˜̄a〉ss − 〈Δ˜̄aΔ˜̄a〉ss
)

+ 1
4

= (ξ4C)−1 1
2 (B −A) + 1

4 . (15.93b)

When −A > B, which is true along much of the lower branch, the variance
(ΔX)2 falls below the vacuum fluctuation level of 1

4 ; thus, the normal-ordered
quadrature amplitude variance is negative and the intracavity field quadrature
in phase with the driving field is squeezed.

Squeezing for a system of many atoms in a cavity was observed in ex-
periments by Raizen and coworkers [15.15], who used balanced homodyne
detection to measure a narrow frequency component within the squeezing
spectrum [the variance given in (15.93a) is the integral over the squeezing
spectrum]. The normal-ordered variance—(ΔX)2 − 1

4—can also be measured
through conditional homodyne detection [15.16]. Foster and coworkers [15.17]
have demonstrated squeezing for atoms in a cavity using this method.
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15.2.4 Atom–Atom Correlations

The elements of the covariance matrix (15.92) provide the starting point for
numerous calculations—of optical spectra, spectra of squeezing, intensity cor-
relation functions, to name just some of the possibilities. Here, and in the
following two sections, we make a brief survey of what can be done, restrict-
ing our attention to examples where analytical calculations can be carried
through. To begin with, in the present section, we explore the question of
correlations between atoms.

In the paragraph below (15.85b), we noted that the lower and upper
branches of the steady-state input–output curve are sometimes referred to,
respectively, as the cooperative branch (or the collective branch) and the in-
dependent atom branch. Invoking the word “cooperative” again, we denoted
C the cooperativity parameter (Eqs. 14.50 and 15.56). Very little in the way
of motivation was given for the “cooperative” terminology, though clearly it
has something to do with correlations between atoms. The reasoning behind
the choice of names is made clearer by calculating the atom–atom correlation
functions explicitly. Atom–atom correlations come in two types. Consider, for
example, the collective operator correlation function

〈Δ ˜̄J+Δ
˜̄J−〉 = 〈 ˜̄J+

˜̄J−〉 − 〈 ˜̄J+〉〈 ˜̄J−〉

= N−2 2γh
γ

⎡

⎣
N∑

j=1

(〈σ̃j+σ̃j−〉 − 〈σ̃j+〉〈σ̃j−〉
)

+
N∑

j,k=1
j �=k

(〈σ̃j+σ̃−ak−〉 − 〈σ̃j+〉〈σ̃−ak−〉
)
⎤

⎦

= N−1 2γh
γ

[〈Δσ̃+Δσ̃−〉like + (N − 1)〈Δσ̃+Δσ̃−〉unlike

]
.

(15.94)

Now, an explicit expansion of the summation over atoms gives N like-atom
correlations,

〈Δσ̃+Δσ̃−〉like ≡ 〈σ̃j+σ̃j−〉 − 〈σ̃j+〉〈σ̃j−〉, any j, (15.95)

and N(N − 1) unlike-atom correlations,

〈Δσ̃+Δσ̃−〉unlike ≡ 〈σ̃j+σ̃−ak−〉 − 〈σ̃j+〉〈σ̃−ak−〉, any j �= k. (15.96)

There is only one like-atom correlation, the same for each atom, because we
take the dipole coupling constants for all atoms to be equal; for the same
reason, there is only one unlike-atom correlation, which holds for all pairs
of different atoms. Like- and unlike-atom correlations must be distinguished,
though, since they take on different values as we will see.
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Note 15.4. The equality of all like-atom and all unlike-atom correlations sug-
gests that we are dealing with identical atoms. Indeed, the atoms are iden-
tical in a certain sense, since they couple to the cavity mode with the same
strength and decay spontaneously at the same rate; it follows that they are
interchangeable in any operator average. It would be a mistake to think of
the atoms as indistinguishable particles in the conventional sense, however.
They are, in fact, distinguishable, due to their independent spontaneous emis-
sion output channels. Thus, so long as the atoms remain far apart compared
with a resonant wavelength, the fluorescence from each atom may, at least
in principle, be imaged separately. One can in principle assign the emission
of a detected side-scattered photon to a particular atom and know that it
was this atom, and no other, that just returned to its ground state (also see
Note 6.3).

The like-atom correlation (15.95) is readily evaluated from the single-operator
expectation values. Using (2.25a), and (15.89c) and (15.89d), the result is

〈Δσ̃+Δσ̃−〉like = 1
2 (〈σjz〉 + 1) − 〈σ̃j+〉〈σ̃j−〉, any j, (15.97)

and then the unlike-atom correlation (15.96) is obtained by subtracting this
from the collective operator correlation function:

〈Δσ̃+Δσ̃−〉unlike = (N − 1)−1

[
γ

2γh
N〈Δ ˜̄J+Δ

˜̄J−〉 − 〈Δσ̃+Δσ̃−〉like
]
. (15.98)

As one would expect, the collective atom correlation functions tell us about
unlike-atom correlations.

Equations 15.97 and 15.98 hold generally for any collection of atoms in-
teracting with a cavity mode, accepting the restriction to equal coupling
strengths. In the specific case of absorptive optical bistability (Δ = Φ = 0)
in the steady state, and for radiative damping, from (15.97), using (15.70a)–
(15.70c), we obtain

〈Δσ̃+Δσ̃−〉sslike = 1
2 (〈σjz〉ss + 1) − 〈σ̃j+〉ss〈σ̃j−〉ss

=
1
2

X2

1 +X2
− 1

2
X2

(1 +X2)2

=
1
2

(
X2

1 +X2

)2

, (15.99)

while from (15.98), using the expression (15.92h), and noting Q =
N〈Δ ˜̄J+Δ

˜̄J−〉, we obtain
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〈Δσ̃+Δσ̃−〉ssunlike = N−1

[
ξ(3 + ξ) + 2(1 +X2)dY/dX

ξ(3 + ξ)
1

4C
V

+
1
2

(
X2

1 +X2

)2 (1 +X2)(1 − 2X/Y ) − (1 + ξ)(3 + ξ)
(1 + ξ)(3 + ξ)

]

,

(15.100)

where we are satisfied that N−1 can be replaced by N on the right-hand side
of (15.98) since terms of order N−1 are already neglected when performing
the system size expansion; in fact, the additional term of order N−1 should
be dropped to retain a consistent expansion.

It is instructive now to evaluate the expression for the unlike-atom corre-
lation in both good- and bad-cavity limits. To this end, we substitute for V
(Eq. 15.92i) in (15.100) and first take the limit ξ → 0. The result is

〈Δσ̃+Δσ̃−〉ssunlike
−−→
ξ→0 N

−1 1
2

(
X2

1 +X2

)2

×
[
(1 +X2)X/Y

3
(1 +X2)(2 − Y/X) + 3Y/X

1 +X2

+
(1 +X2)(1 − 2X/Y ) − 3

3

]

−−→
ξ→0 0. (15.101)

Thus, the unlike-atom correlation vanishes in the good cavity limit—at least
this is so to dominant order in N−1. In contrast, the bad-cavity limit, ξ → ∞,
yields a nonvanishing correlation:

〈Δσ̃+Δσ̃−〉ssunlike
−−→
ξ→∞ N−1 1

2

(
X2

1 +X2

)2( 1
dY 2/dX2

− 1
)
. (15.102)

Note now that there are N(N − 1) unlike-atom correlations contributing to
the collective operator correlation function, which is to be compared with just
N like-atom correlations. It follows that although like- and unlike-atom cor-
relations are individually of order N0 and N−1, respectively, they contribute
overall at the same order to the collective operator average.

These results teach two pieces of physics. First, that there is a decrease
in unlike-atom correlation as the good-cavity limit is approached. This may
be seen to result from a filtering of the atomic fluctuations by the cavity
mode. The fluctuation bandwidth of an individual atom is determined by
its spontaneous emission linewidth γ. To set up an unlike-atom correlation,
there must be a communication from one atom to another, which takes place
via the cavity mode. The latter provides a communication channel of finite
bandwidth 2κ. Thus, communication is increasingly restricted as ξ = 2κ/γ →
0, and the correlation between unlike atoms is consequently reduced. The same
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filtering effect in the good-cavity limit protects the bimodality of the steady
state from destruction by atomic fluctuations, even when the atom number is
reduced to N = 1. Indeed, Savage and Carmichael [15.18] have demonstrated
the existence of single-atom optical bistability by numerically solving master
equation (13.57).

Note 15.5. At first sight it might appear thatN = 1 must surely invalidate any
treatment of fluctuations based on the system size expansion. Recall, however,
that we may choose to use either N or nsat as the system size parameter; we
chose nsat in Chap. 8, while in the present chapter we have chosen N . The
two alternatives are related through (15.56). They remain interchangeable so
long as N−1 (alternatively n−1

sat) is genuinely the smallest parameter in the
system. This is not so when the good-cavity limit is taken, since then ξ is
a small parameter as well. Clearly, in the good-cavity limit, nsat = N/ξ4C,
and not N , is the system size parameter; as ξ → 0, nsat goes to infinity for
fixed 2C and N , even if N = 1.

The second lesson is taken from (15.102), where we see that while the unlike-
atom correlation is generally nonzero in the bad-cavity limit, it approaches
zero along the upper branch of the input–output curve—i.e., forX2 � 2C � 1
(Eq. 15.85b) and dY 2/dX2 → 1 (Eq. 15.73). By comparison, dY 2/dX2 is
significantly larger than unity along the lower branch, where like- and unlike-
atom correlations contribute to the collective operator correlation function at
the same level. It is here that we find justification for the common designations
of the upper branch as the independent atom branch and the lower branch
as the cooperative, or collective branch. The parameter 2C determines just
how far the slope dY 2/dX2 deviates from unity. As this slope determines
the magnitude of the unlike-atom correlation, the parameter C is termed the
cooperativity parameter.

Exercise 15.7. Show that one obtains similar behavior for the other unlike-
atom correlations in the good- and bad-cavity limits. There are three correla-
tions to consider: 〈Δσ−Δσ̃−〉ssunlike, 〈ΔσzΔσ̃−〉ssunlike, and 〈ΔσzΔσz〉ssunlike; two
others, 〈Δσ+Δσ̃+〉ssunlike and 〈Δσ̃+Δσz〉ssunlike, are conjugates of these.

15.2.5 A Comment on Measures of Squeezing

We briefly mentioned squeezing at the end of Sect. 15.2.3. Squeezing occurs
for many atoms in a cavity along the lower branch of the input–output curve.
If the aim is to maximize the degree of squeezing, it is necessary to go beyond
the expressions (15.93) for intracavity quadrature phase variances; spectra of
squeezing must be calculated from (9.144a) and (9.144b). We will not concern
ourselves with this exercise here. Surveys showing how the magnitude of the
squeezing changes under different operating conditions can be found in the
literature; for example, Raizen and coworkers [15.15] carried out a search for
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the optimum squeezing in preparation for their experiments on squeezed-state
generation by the normal modes of a coupled atom-cavity system (squeezing
at the vacuum-Rabi resonances).

When speaking here of the degree of squeezing, we refer, of course, to
a standard squeezing measurement based on balanced homodyne detection.
In that scheme the degree of squeezing is determined by the relative drop
in the homodyne current noise level below the shot noise level (Sect. 9.3.3).
More simply, considering the integrated squeezing spectrum, the measure is
provided by the magnitude of the term (ξ4C)−1 1

2 (B +A) in (15.93a) relative
to the vacuum fluctuation term—the additional + 1

4 . By this measure, the
squeezing can never be large for very weak fields. Significant squeezing requires
photon numbers per mode that approach the 1

2 -photon characterizing the zero-
point energy—an output photon flux that approaches 1

2 -photon per inverse
bandwidth.

The nonclassicality of squeezed light need not be characterized in this
standard way, though. An alternate measure in the case of (15.93a) is simply
the ratio |A|/B. Consider the values of A and B when the excitation is weak.
For X2 � 1, (15.92a) and (15.92b) yield

A −−−→
X2�1 −X2 ξ

1 + ξ
4C2, (15.103a)

and

B −−−→
X2�1 X

4 ξ

1 + ξ

4C2(2 + ξ + 2C)
(1 + 2C)2(1 + ξ)

. (15.103b)

As we noted already below (15.93b), these results imply squeezing because
B+A is negative—i.e., because −A > B. Certainly, the degree of squeezing is
negligible by the standard measure, since −A ∼ X2 � 1. On the other hand,
(15.103a) and (15.103b) reveal something entirely new. Suppose we adopt the
relative measure |A|/B as suggested. In these terms, −A exceeds B by the
greatest amount precisely in the weak-excitation limit; indeed, |A|/B diverges
as X2 → 0.

To see what this means physically, consider a classical field of complex
amplitude z̃ = z̃1 + iz̃2. Assuming 〈Δ˜̄aΔ˜̄a〉ss to be real, as it is in the present
case, the ratio

|A|
B

≡ |〈Δ˜̄aΔ˜̄a〉ss|
〈Δ˜̄a†Δ˜̄a〉ss (15.104)

is given for the classical field by

|A|
B

=

∣
∣( z̃2

1

)
Pss

− (
z̃2
2

)
Pss

∣
∣

(
z̃2
1

)
Pss

+
(
z̃2
2

)
Pss

, (15.105)

where Pss is the steady-state Glauber–Sudarshan P distribution (assumed
to be a nonsingular and positive semidefinite probability density). The ra-
tio, therefore, has an upper bound of unity, since the quadrature amplitude
variances are nonnegative.



322 15 Many Atoms in a Cavity II: The Small-Noise Limit

How then can the expressions (15.103a) and (15.103b) produce the result
|A|/B ∼ X−2 � 1? This can happen because, for a general quantum field, the
phase-space averages

(
z̃2
1

)
Pss

and
(
z̃2
2

)
Pss

evaluate normal-ordered variances
of quadrature phase amplitudes, and these are allowed to be negative. The
variances are, from (15.93a) and (15.93b),

〈: (ΔX̂)2 :〉ss = (ΔX)2ss − 1
4

= (ξ4C)−1 1
2 (B +A), (15.106a)

〈: (ΔŶ )2 :〉ss = (ΔY )2ss − 1
4

= (ξ4C)−1 1
2 (B −A), (15.106b)

with a sum proportional to B, as indicated by the denominator in (15.105).
Equations 15.103 and 15.106 show that in the weak-excitation limit, both
normal-ordered variances are of order X2, while they sum to something of
order X4. This classically disallowed result is possible because one of the
normal-ordered variances is negative. The ratio |A|/B dramatically captures
this particular nonclassical result in the divergence as X2 → 0.

The measure |A|/B contrasts the standard squeezing measure by compar-
ing the quadrature phase amplitude variance with the light intensity rather
than the vacuum fluctuation level. It is a particularly sensitive detector of
squeezing when the light intensity is weak and may be implemented experi-
mentally through conditional homodyne detection [15.16]. Measurements have
been performed for a system of many atoms in a cavity [15.17], though viola-
tion of the classical bound on |A|/B has not been observed to date.

Note 15.6. Conditional homodyne detection separately measures the ratios
〈:(ΔX̂)2:〉ss/〈Δã†Δã〉ss and 〈:(ΔŶ )2:〉ss/〈Δã†Δã〉ss. It therefore explicitly re-
veals the minus sign in the normal-ordered variance of the squeezed quadrature
phase amplitude. It is also worth noting that the conditional measurement is
independent of detection efficiency, unlike the standard squeezing measure-
ment, which is degraded by lower efficiency (Eq. 9.154 and Sect. 9.3.4).

15.2.6 Spectrum of the Transmitted Light
in the Weak-Excitation Limit

The incoherent spectrum of the transmitted light provides yet another mea-
sure of squeezing in the weak-excitation limit. Recall what we observed for
the degenerate parametric oscillator by writing the optical spectrum as a sum
of squeezing spectra (Eqs. 10.65 and 10.66). When one of the squeezing spec-
tra appears with negative weight the sum is actually a subtraction. Then, if
dominant terms cancel, as they do to produce (9.94b) from (15.106a) and
(15.106b), Lorentzian spectra of squeezing can yield an optical spectrum
that is a Lorentzian squared. Considering single-atom cavity QED, Rice and
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Carmichael showed that this mechanism produces a vacuum Rabi doublet of
squared Lorentzians [15.19]. Carmichael and coworkers found a similar re-
sult for many-atom cavity QED [15.20]. We reproduce their result here. The
single-atom calculation is discussed in Sect. 16.3.4.

The optical spectrum is given by the Fourier transform of the first-order
correlation function of the transmitted light. For the output field (13.19), we
write

T→(ω) =
γa2
2π

∫ ∞

−∞
dτeiωτ 〈a†(0)a(τ)〉ss, (15.107)

where 〈a†(0)a(τ)〉ss ≡ limt→∞〈a†(t)a(t+ τ)〉 and the normalization is in units
of photon flux. Dividing the spectrum into its coherent and incoherent parts,
we have

T→(ω) = T coh
→ (ω) + T inc

→ (ω), (15.108)

where the coherent part is defined by the mean output field,

T coh
→ (ω) =

γa2
2π

∫ ∞

−∞
dτei(ω−ω0)τ 〈ã†〉ss〈ã〉ss

= γa2nsatX
2δ(ω − ω0), (15.109)

and the incoherent part accounts for the field fluctuations,

T inc
→ (ω) =

γa2
2π

∫ ∞

−∞
dτei(ω−ω0)τ 〈Δã†(0)Δã(τ)〉ss. (15.110)

The integral over frequency gives the coherent transmitted photon flux,

F coh
→ = γa2〈ã†ã〉ss

= γa2nsatX
2, (15.111)

and the incoherent photon flux

F inc
→ = γa2〈Δã†Δã〉ss

= γa2nsat〈Δ˜̄a†Δ˜̄a〉ss

= γa2nsatN
−14C2

(
X2

1 +X2

)2
ξ

1 + ξ

(
dY 2

dX2

)−1

× (1 +X2)(2 − Y/X)(3 + ξ − ξdY/dX) + (3 + ξ)[2ξ + (3 + ξ)Y/X ]
2(1 +X2)(3 + ξ − ξdY/dX) + ξ(3 + ξ)(2 + Y/X)

.

(15.112)

Since a calculation for arbitraryX is too difficult to carry through analytically,
we confine our attention to the weak-excitation limit, where, from (15.112),
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we have

F inc
→ −−−→

X2�1 γa2nsatN
−1X4 ξ

1 + ξ

4C2(2 + ξ + 2C)
(1 + 2C)2(1 + ξ)

. (15.113)

Aside from an overall scaling factor, F inc→ is equal to the quantity B from the
previous section; it shows the X4 dependence of (15.103b), which arises from
the cancelation of the dominant X2 dependence of each of the quadrature
phase variances.

To calculate the incoherent spectrum (15.110), we must determine the
first-order correlation function of the fluctuations. Thus, we set out to solve
the equation of motion (Eq. 11.68)

dCss

dτ
=

{
CssJ̄

T
ss τ ≥ 0

J̄ ssCss τ ≤ 0
, (15.114)

where J̄ ss is the Jacobian matrix (11.62) and

Css(τ) ≡ lim
t→∞

(
Z̃(t)Z̃(t+ τ)

)
˜̄P
. (15.115)

The spectrum is obtained from the element C z̃∗z̃ss (τ) of the correlation matrix,
where, from (15.110), (15.115), and the quantum-classical correspondence for
two-time operator averages in normal order (Sect. 4.3.3),

T inc
→ (ω) =

γa2
2π

nsat
1
N

∫ ∞

−∞
dτei(ω−ω0)τC z̃∗z̃ss (τ)

=
γa2
π
nsat

1
N

Re
[∫ ∞

0

dτei(ω−ω0)τC z̃∗z̃ss (τ)
]

=
γa2
π
nsat

1
N

Re
{C z̃∗z̃ss [−i(ω − ω0)]

}
, (15.116)

where C z̃∗z̃ss (s) and C z̃∗z̃ss (τ) form a Laplace transform pair.
The correlation function C z̃∗z̃ss (τ) and four others make up the second row

of the autocorrelation matrix. Forming the five correlation functions as a col-
umn vector, we have

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

C z̃∗z̃ss (τ)

C z̃∗z̃∗ss (τ)

C z̃∗ν̃ss (τ)

C z̃∗ν̃∗ss (τ)

C z̃∗μss (τ)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

= N lim
t→∞

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

〈Δ˜̄a†(t)Δ˜̄a(t + τ)〉
〈Δ˜̄a†(t)Δ˜̄a†(t+ τ)〉
〈Δ˜̄a†(t)Δ ˜̄J−(t+ τ)〉
〈Δ˜̄a†(t)Δ ˜̄J+(t+ τ)〉
〈Δ˜̄a†(t)ΔJ̄z(t+ τ)〉

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

, (15.117)
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with the equation of motion

d

dτ

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

C z̃∗z̃ss

C z̃∗z̃∗ss

C z̃∗ν̃ss

C z̃∗ν̃∗ss

C z̃∗μss

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

= J̄ ss

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

C z̃∗z̃ss

C z̃∗z̃∗ss

C z̃∗ν̃ss

C z̃∗ν̃∗ss

C z̃∗μss

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

, (15.118)

where J̄ ss is given in explicit form in (15.77), and the initial conditions are,
in the notation of (15.87),

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

C z̃∗z̃ss (0)

C z̃∗z̃∗ss (0)

C z̃∗ν̃ss (0)

C z̃∗ν̃∗ss (0)

C z̃∗μss (0)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

B

A

U

V

W

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

. (15.119)

Explicitly, the initial conditions are given by (15.92a)–(15.92c) and (15.92e).

Note 15.7. Equation of motion (15.118) is simply a phase-space version of the
equations of motion obtained by applying the quantum regression formula
directly to the linearized Maxwell–Bloch equations (15.57).

Since we are interested in the weak-excitation limit, we retain only dominant
terms in the intracavity field amplitude X . The initial conditions are then
given by

C z̃∗z̃ss (0) = X4 ξ

1 + ξ

4C2(2 + ξ + 2C)
(1 + 2C)2(1 + ξ)

, (15.120a)

C z̃∗z̃∗ss (0) = −X2 ξ

1 + ξ

4C2

1 + 2C
, (15.120b)

C z̃∗ν̃ss (0) = X4 ξ

1 + ξ

2C(2 + ξ + 2C)
(1 + 2C)2(1 + ξ)

, (15.120c)

C z̃∗ν̃∗ss (0) = −X2 ξ

1 + ξ

2C
1 + 2C

, (15.120d)

C z̃∗μss (0) = X3 ξ

1 + ξ

2C
1 + 2C

, (15.120e)
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and also expanding J̄ ss to lowest order, from (15.118) and (15.77), the equa-
tions of motion are

dC z̃∗z̃ss

dτ̄
= − ξC z̃∗z̃ss + ξ2CC z̃∗ν̃ss , (15.121a)

dC z̃∗z̃∗ss

dτ̄
= − ξC z̃∗z̃∗ss + ξ2CC z̃∗ν̃∗ss , (15.121b)

dC z̃∗ν̃ss

dτ̄
= − C z̃∗ν̃ss − C z̃∗z̃ss +XC z̃∗μss , (15.121c)

dC z̃∗ν̃∗ss

dτ̄
= − C z̃∗ν̃∗ss − C z̃∗z̃∗ss +XC z̃∗μss , (15.121d)

dC z̃∗μss

dτ̄
= − 2C z̃∗μss +X(C z̃∗z̃ss + C z̃∗z̃∗ss − C z̃∗ν̃ss − C z̃∗ν̃∗ss ), (15.121e)

with dimensionless time
τ̄ ≡ γτ/2. (15.122)

Note now that terms on the right-hand side of each equation need be kept
only where they are of the same order, in X , as the correlation function on
the left-hand side. Thus, reading the orders of the correlation functions from
the initial conditions, the term XC z̃∗μss may be dropped from (15.121d), and
the terms XC z̃∗z̃ss and XC z̃∗ν̃ss from (15.121e). With this simplification, the
five equations of motion are conveniently arranged as a set of three matrix
equations which are readily solved in sequence:

d

dτ̄

(
C z̃∗z̃ss

C z̃∗ν̃ss

)
=
(−ξ ξ2C
−1 −1

)(
C z̃∗z̃ss

C z̃∗ν̃ss

)
+XC z̃∗μss

(
0
1

)
, (15.123a)

d

dτ̄

(
C z̃∗z̃∗ss

C z̃∗ν̃∗ss

)
=
(−ξ ξ2C
−1 −1

)(
C z̃∗z̃∗ss

C z̃∗ν̃∗ss

)
, (15.123b)

dC z̃∗μss

dτ̄
= −2C z̃∗μss +X(C z̃∗z̃∗ss − C z̃∗ν̃∗ss ). (15.123c)

To solve the equations, we first take Laplace transforms to obtain a cor-
responding set of algebraic equations. The transformed equations are

(
ξ + s̄ −ξ2C

1 1 + s̄

)(C̄ z̃∗z̃ss

C̄ z̃∗ν̃ss

)
= X4 ξ

1 + ξ

2C(2 + ξ + 2C)
(1 + 2C)2(1 + ξ)

(
2C
1

)

+X C̄ z̃∗μss

(
0
1

)
, (15.124a)

(
ξ + s̄ −ξ2C

1 1 + s̄

)(C̄ z̃∗z̃∗ss

C̄ z̃∗ν̃∗ss

)
= −X2 ξ

1 + ξ

2C
1 + 2C

(
2C
1

)
, (15.124b)

(2 + s̄)C̄ z̃∗μss = X3 ξ

1 + ξ

2C
1 + 2C

+X(C̄ z̃∗z̃∗ss − C̄ z̃∗ν̃∗ss ), (15.124c)
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where scaled quantities have been introduced, with

s̄ ≡ 2s/γ, Cijss (s) =
2
γ
C̄ijss (s̄), (15.125)

where Cijss (s) is the Laplace transform of Cijss (τ). Now invert the 2 × 2 matrix
appearing on the left-hand side of (15.124a) and (15.124b). The inverse is

(
ξ + s̄ −ξ2C

1 1 + s̄

)−1

=
1

(ξ + s̄)(1 + s̄) + ξ2C

(
1 + s̄ ξ2C
−1 ξ + s̄

)
, (15.126)

from which the solution to (15.124b) is

C̄ z̃∗z̃∗ss (s̄) = −X2 ξ

1 + ξ

4C2

1 + 2C
ξ + 1 + s̄

(ξ + s̄)(1 + s̄) + ξ2C
, (15.127)

and
C̄ z̃∗ν̃∗ss (s̄) = −X2 ξ

1 + ξ

2C
1 + 2C

ξ + s̄− 2C
(ξ + s̄)(1 + s̄) + ξ2C

; (15.128)

hence, from (15.124c),

C̄ z̃∗μss (s̄) = X3 ξ

1 + ξ

2C
1 + 2C

ξ + s̄− 2C
(ξ + s̄)(1 + s̄) + ξ2C

. (15.129)

Finally, substituting the latter expression into (15.124a) and using the matrix
inverse once again, we obtain the Laplace transform of the correlation function
we seek:

C̄ z̃∗z̃ss (s̄) = X4 ξ

1 + ξ

4C2

1 + 2C

{
2 + ξ + 2C

(1 + 2C)(1 + ξ)
1 + ξ + s̄

(ξ + s̄)(1 + s̄) + ξ2C

+
ξ(ξ − 2C + s̄)

[(ξ + s̄)(1 + s̄) + ξ2C]2

}
. (15.130)

We may now combine (15.113), (15.116), (15.125), and (15.130), to arrive at
the incoherent spectrum of the transmitted light for a system of many atoms
in a cavity, on resonance (Δ = Φ = 0), and in the weak-excitation limit (with
n̄ = 0):

T inc
→ (ω) = F inc

→ T̄inc[2(ω − ω0)/γ], (15.131)

with

T̄inc(y) =
2
πγ

Re
{

1 + ξ − iy

(ξ − iy)(1 − iy) + ξ2C

+
(1 + 2C)(1 + ξ)

2 + ξ + 2C
ξ(ξ − 2C − iy)

[(ξ − iy)(1 − iy) + ξ2C]2

}
. (15.132)

The spectrum comprises two pieces: one, the first term inside the curly
brackets, is of the usual Lorentzian form, while the other, the second term,
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takes the promised squared-Lorentzian form. By considering some limiting
cases we can reveal the squared Lorentzians more clearly.

Bad-cavity limit (ξ � 1, 2C): Taking ξ → ∞ in (15.132) yields

T̄inc(y) =
2
πγ

Re

[
1

1 + 2C − iy
+ (1 + 2C)

(
1

1 + 2C − iy

)2
]

=
2
πγ

2(1 + 2C)3

[(1 + 2C)2 + y2]2
, (15.133)

and the result from (15.131) is the spectrum of collective cavity-enhanced res-
onance fluorescence in the weak-excitation limit :

T inc
→ (ω) = F inc

→
2
π

[γ(1 + 2C)/2]3

{[γ(1 + 2C)/2]2 + (ω − ω0)2}2
. (15.134)

The form as a Lorentzian squared is the same as that identified by Rice and
Carmichael [15.19] for resonance fluorescence in free space. The interaction
with the cavity mode adds the linewidth enhancement factor 2C = N2C1;
the factor 2C1 is the spontaneous emission enhancement factor (13.36), which
applies to each atom individually, and, through atom–atom correlations, the
overall enhancement is raised by the additional factor N . Thus, the linewidth
is collectively enhanced; it corresponds to the familiar superradiant decay rate
for a collection of atoms in a cavity [15.9, 15.10, 15.11]. Working against the
enhancement, the width of the Lorentzian squared is less than the width
of the Lorentzian itself. Since the square arises from squeezing, Rice and
Carmichael [15.19] speak of squeezing-induced linewidth narrowing.

Good-cavity limit (ξ � 1): The limiting form of (15.132) in the good-cavity
limit is only a little more difficult to obtain. We first note that the function
T̄inc(y) is peaked around y ∼ ξ � 1. Then we may write

T̄inc(y) =
2
πγ

Re

{
1

ξ(1 + 2C) − iy
− ξ(1 + 2C)

C

1 + C

[
1

ξ(1 + 2C) − iy

]2
}

=
2
πγ

{
ξ(1 + 2C)

[ξ(1 + 2C)]2 + y2
− C

1 + C

[ξ(1 + 2C)]3 − ξ(1 + 2C)y2

{[ξ(1 + 2C)]2 + y2}2

}
,

(15.135)

and the spectrum is

T inc
→ (ω) = F inc

→
1
π

{
κ(1 + 2C)

[κ(1 + 2C)]2 + (ω − ω0)2

− C

1 + C

[κ(1 + 2C)]3 − κ(1 + 2C)(ω − ω0)2

{[κ(1 + 2C)]2 + (ω − ω0)2}2

}
. (15.136)
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The spectrum in this limit is the sum of a Lorentzian and a Lorentzian squared.
The Lorentzian squared is subtracted from the Lorentzian, which produces
a prominent dip in the center of the spectrum. A two-peaked structure results,
though the resulting “doublet” has nothing to do with vacuum Rabi splitting.
Rice and Carmichael [15.19] speak of a squeezing-induced spectral hole.

Many-atom strong-coupling limit (
√
ξ2C � 1

2 (ξ + 1)): Here we recover
a connection with the vacuum Rabi doublet. The spectrum develops two peaks
in the manner of the weak-probe transmission spectrum derived in Sect. 14.4.1,
and the approximations we make are targeted towards the two-peaked form.
First, the denominator in (15.132) is factorized and written as

(ξ − iy)(1 − iξ) + ξ2C = (Λ̄+ + iy)(Λ̄− + iy), (15.137)

with
Λ̄± = − 1

2 (ξ + 1) ± i
√
ξ2C − 1

4 (ξ − 1)2. (15.138)

We then make the approximations for large ξ2C:

(ξ − iy)(1 − iy) + ξ2C

≈ [
1
2 (ξ + 1) − i(y +

√
ξ2C)

][
1
2 (ξ + 1) − i(y −

√
ξ2C)

]
, (15.139a)

1 + ξ − iy

(ξ − iy)(1 − iy) + ξ2C

≈ 1
2

[
1

1
2 (ξ + 1) − i(y +

√
ξ2C)

+
1

1
2 (ξ + 1) − i(y −√

ξ2C)

]
, (15.139b)

and

(1 + 2C)(1 + ξ)
2 + ξ + 2C

ξ(ξ − 2C − iy)
[(ξ − iy)(1 − iy) + ξ2C]2

≈ 1
4

{
1

[
1
2 (ξ + 1) − i(y +

√
ξ2C)

]2 +
1

[
1
2 (ξ + 1) − i(y −√

ξ2C)
]2

}

,

(15.139c)

where in (15.139b) and (15.139c), close to the resonances at y = +
√
ξ2C and

y = −√
ξ2C, we replace y in the nonresonant term by its on-resonance value.

From (15.132), and (15.139b) and (15.139c), we obtain

T̄inc(y)

=
1
πγ

⎧
⎪⎨

⎪⎩

2
[
1
2 (ξ + 1)

]3
{[

1
2 (ξ + 1)

]2 + (y +
√
ξ2C)2

}
2

+
2
[
1
2 (ξ + 1)

]3
{[

1
2 (ξ + 1)

]2 + (y −√
ξ2C)2

}2

⎫
⎪⎬

⎪⎭
.

(15.140)
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The resulting spectrum, from (15.131), is the many-atom vacuum Rabi doublet
with squeezing-induced linewidth narrowing:

T inc
→ (ω) = F inc

→
1
2

⎧
⎨

⎩
2
[

1
2 (κ+ γ/2)

]3
/π

{[
1
2 (κ+ γ/2)

]2 + (ω − ω0 +
√
Ng)2

}
2

+
2
[
1
2 (κ+ γ/2)

]3
/π

{[
1
2 (κ+ γ/2)

]2 + (ω − ω0 −
√
Ng)2

}
2

⎫
⎬

⎭
. (15.141)

Each vacuum Rabi peak is a Lorentzian squared.

Note 15.8. In the bad-cavity limit, the Lorentzian squared (Eq. 15.134) ap-
proaches zero as |ω − ω0|−4 as |ω − ω0| → ∞, instead of following the usual
|ω − ω0|−2. Mollow noted this interesting fact in his original paper on the
spectrum of resonance fluorescence [15.21]. He also identified the subtraction
responsible for the behavior, though he had nothing to say about squeezing,
which was unknown at the time. The relevant passage in the Mollow paper
starts below Eq. 4.21: “It is important to note, however, that one of the pa-
rameters D0, D+, or D− (the one associated with the root of intermediate
magnitude) is negative, and hence the Lorentzian in which it appears has neg-
ative weight. It is an interesting feature of the model we are considering that,
in the limit |ν−ω| → ∞, the spectral density falls to zero as |ν−ω|−4, rather
than as |ν − ω|−2, as it would for positive Lorentzian functions.” The noted
property can be traced to the short-time behavior of the first-order correlation
function [15.22]; if the derivative of the correlation function vanishes at zero
delay, the spectrum shows the |ω − ω0|−4 behavior. It is easily verified, from
(15.121a), and (15.120a) and (15.120c), that the derivative of C z̃∗z̃ss vanishes
at τ̄ = 0.

Exercise 15.8. Show that the general result (15.132) for the spectrum ap-
proaches zero as |y|−4 as |y| → ∞. Why then does (15.136) approach zero as
|ω − ω0|−2?

15.2.7 Forwards Photon Scattering in the Weak-Excitation Limit

As a last application of our solution for the steady-state covariance matrix,
let us calculate the second-order correlation function of the forward-scattered
light. We once again restrict our attention to the weak-excitation limit where
it is possible to obtain a closed expression. Forwards photon scattering for one
atom in a cavity was treated in Sect. 13.2.3, though only for the bad-cavity
limit [however see (13.75)]. Here, a linearized treatment of the fluctuations is
made and the number of atoms is assumed to be large. We return to the topic
of forwards photon scattering in Sects. 16.1.3 and 16.2, where a treatment for
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arbitrary numbers of atoms is developed in which no restriction is imposed
other than the requirement that the excitation be weak. The result from
Sect. 16.1.3 is compared with the present calculation in Sect. 16.1.4.

The second-order correlation function of the forward-scattered light is
given by

g(2)
→ (τ) =

〈˜̄a†(0)˜̄a†(τ)˜̄a(τ)˜̄a(0)〉ss
(〈˜̄a†˜̄a〉ss

)2 , (15.142)

where 〈˜̄a†(0)˜̄a†(τ)˜̄a(τ)˜̄a(0)〉ss ≡ limt→∞〈˜̄a†(t)˜̄a†(t+ τ)˜̄a(t+ τ)˜̄a(t)〉ss . Expand-
ing the annihilation and creation operators as sums of a mean and a fluctuation
(Eqs. 15.89a and 15.89b), we write

〈˜̄a†˜̄a〉ss = 〈˜̄a†〉ss〈˜̄a〉ss + 〈Δ˜̄a†Δ˜̄a〉ss
= X2 +N−1B, (15.143)

where we use (15.69) and (15.88), and

〈˜̄a†(0)˜̄a†(τ)˜̄a(τ)˜̄a(0)〉ss
=

(〈˜̄a†〉ss〈˜̄a〉ss + 〈Δ˜̄a†Δ˜̄a〉ss
)2 + 〈˜̄a†〉ss〈˜̄a〉ss

[〈Δ˜̄a†(0)Δ˜̄a(τ)〉ss + c.c.
]

+
(〈˜̄a〉ss

)2〈Δ˜̄a†(0)Δ˜̄a†(τ)〉ss + c.c.

= (X2 +N−1B)2 + 2N−1X2[C z̃∗z̃ss (τ) + C z̃∗z̃∗ss (τ)], (15.144)

where we make use of (15.117). In order to remain consistent with the as-
sumptions of the linearized treatment of fluctuations, in (15.144) we neglect
〈Δ˜̄a†(0)Δ˜̄a†(τ)Δ˜̄a(τ)Δ˜̄a(0)〉ss as a term of second-order in N−1; of course,
third-order terms in Δ˜̄a† and Δ˜̄a vanish because the linearized fluctuations
are Gaussian. Now, from (15.142)–(15.144), using (15.103b), (15.127) and
(15.130), we obtain

g(2)(τ) = 1 + 2N−1C
z̃∗z̃∗
ss (τ)
X2

, (15.145)

where the standard correlation C z̃∗z̃ss (τ) ∼ X4 is neglected in the weak-
excitation limit compared with the anomalous correlation C z̃∗z̃∗ss (τ) ∼ X2;
thus, the source of nonclassicality discussed in Sect. 15.2.5 enters the picture
once again.

One further step takes us to the final result. The Laplace transform of
C z̃∗z̃∗ss (τ) is given as (15.127). Making the factorization (15.137) in its denom-
inator, the transform is

C̄ z̃∗z̃∗ss (s̄) = −X2 ξ

1 + ξ

4C2

1 + 2C
ξ + 1 + s̄

(Λ̄+ − s̄)(Λ̄− − s̄)

= −X2 ξ

1 + ξ

4C2

1 + 2C
1

Λ̄+ − Λ̄−

(
Λ̄−

Λ̄+ − s̄
− Λ̄+

Λ̄− − s̄

)
, (15.146)
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with inverse

C z̃∗z̃∗ss (τ) = −X2 ξ

1 + ξ

4C2

1 + 2C
e−

1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]
.

(15.147)

Thus, substituting this result into (15.145), the second-order correlation func-
tion of forwards scattering for many atoms in a cavity in the weak-excitation
limit (within the linearized treatment of fluctuations) is given by

g(2)
→ (τ) − 1

= −2N−1 ξ

1 + ξ

4C2

1 + 2C
e−

1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]
,

(15.148)

where
G ≡

√
Ng2 − 1

4 (κ− γ/2)2. (15.149)

The principal feature of interest is that the forwards photon scattering is
antibunched. The size of the antibunching effect, for 2C � 1, is determined
by N−12C = 2C1, the enhancement factor of cavity-enhanced spontaneous
emission from a single atom (Eq. 13.36). In the bad-cavity limit, the regression
of fluctuations from the steady state damps at the collectively enhanced rate
γ(1 + 2C) [compare the spectrum (15.134)]. More generally, it is oscillatory,
with frequency determined by the splitting of the many-atom vacuum Rabi
doublet (Sect. 14.4.1, with gmax replaced by g and N̄eff replaced by N). This
is the so-called vacuum Rabi oscillation, a collective vacuum Rabi oscillation
in this case.

Examples of oscillatory correlation functions are plotted in Fig. 15.2. The
chosen parameters trace something of the history of experiments in optical
bistability and cavity QED. Figure 15.2a corresponds to an optical bistabil-
ity experiment by Kimble and coworkers [15.23], which, although it realizes
2C ∼ 30, uses a large cavity and realizes a very small dipole coupling constant;
the high value of 2C results from the large number of cooperating atoms. Un-
der these conditions, the sizes of the fluctuations and the photon antibunching
effect are small. For comparison, a photon antibunching effect some 40× larger
is displayed in Fig. 15.2b, where the parameters correspond to the measure-
ment of the many-atom vacuum Rabi doublet by Zhu and coworkers [15.24].
Finally, Figs. 15.2c and d use parameters from the experiment by Raizen and
coworkers [15.25], who also measured the vacuum Rabi doublet. In this case,
the photon antibunching effect is raised to a few percent. Of course, all plots
overlook the degradation of the photon antibunching effect by the average
over dipole coupling strengths for spatially distributed atoms (Sect. 16.2).

Finally, returning to the comment below (15.145), we note that g(2)
→ (τ)−1

provides a measurement of the anomalous correlation C z̃∗z̃∗ss (τ) = C z̃z̃ss (τ),
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Fig. 15.2. Antibunching of forwards photon scattering for many atoms in a cav-
ity in the weak-excitation limit. Intensity correlation function (15.148) is plotted
for (a) (g, κ, γ)/2π = (0.07, 1.45, 10) MHz, N = 90, 000 [15.23]; (b) (g, κ, γ)/2π =
(1.3, 15, 19) MHz, N = 300 [15.24]; and (c) (g, κ, γ)/2π = (1.06, 0.88, 10) MHz,
N = 40, and (d) (g, κ, γ)/2π = (1.06, 0.88, 10) MHz, N = 310 [15.25]

which is responsible for squeezing in the weak-excitation limit; the negative
sign on the right-hand side of (15.147) produces antibunching in Fig. 15.2 and
a negative spectrum of squeezing.

Note 15.9. Equation 15.148 is based upon the small-noise approximation,
which assumes N−1 � 1. If it is used where the approximation is not valid,
it can produce a negative g(2)(0), which is of course nonphysical since g(2)(0)
is nonnegative by definition. The possibility of a negative result is introduced
by dropping the term 〈Δ˜̄a†(0)Δ˜̄a†(τ)Δ˜̄a(τ)Δ˜̄a(0)〉ss from (15.144). By keeping
it, negative values of g(2)(0) can be avoided (see Sect. 16.1.4). The resulting
expression for g(2)→ (τ) − 1 is certainly, in one sense, a better approximation,
though it is still in error at order N−2, and the error can be very large if
N ∼ 1 (see, for example, Fig. 16.3).



16

Cavity QED II: Quantum Fluctuations

In Chap. 15 we made some progress applying linear fluctuation theory to the
system of many atoms in a cavity. Conditions of strong dipole coupling were
included, assuming the coupling was strong only in the many-atom sense.
Ultimately, cavity QED is concerned with strong coupling for single atoms,
though—i.e., with g � κ, γ/2 (alternatively 2C1 � 1), conditions that invali-
date the small-noise assumption upon which the linear theory of fluctuations
rests (Sect. 13.1).

The remaining chapters of the book deal with alternatives to the linearized
treatment of fluctuations. The present chapter deals specifically with quan-
tum fluctuations in cavity QED, while Chaps. 17– 19 take up the issue from
a broader point of view, reformulating our whole approach to the treatment
of fluctuations in open quantum systems.

Much of the present chapter stays with the weak-excitation limit. Sec-
tions 16.1 and 16.2 tackle the limit by making a perturbation expansion in
the driving field strength, an approach that allows us to generalize a number
of earlier results. We then sketch the behavior that unfolds as the excitation
strength is increased (Sect. 16.3). Though analytical solutions cannot be found
here, we are able to demonstrate the breakdown of the small-noise picture of
deterministic (semiclassical) evolution plus quantum “fuzz”; thus, we return to
the theme of the degenerate parametric oscillator example treated in Chap. 12.

16.1 Density Matrix Expansion
for the Weak-Excitation Limit

When treating forwards photon scattering for one atom in a cavity in Sect.
13.2.3, we took the weak-excitation limit by factorizing the steady-state den-
sity operator in pure state form (Eqs. 13.81, 13.82 and 13.89). It turns out
that this factorization has rather wide application, requiring only that the
excitation be sufficiently weak that over periods on the order of the correla-
tion time (the larger of κ−1 and 2γ−1) the probability of irreversible photon
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emission be much less than one. Then, the scattering processes that destroy
the coherence of the quantum evolution are weak, in so far as the regression
of a typical fluctuation is unlikely to be interrupted by a scattering event (an
irreversible photon emission); thus, the purity of the quantum state is pre-
served during the regression of fluctuations—at least to lowest order in the
driving field strength. A rigorous justification for the factorization follows by
expanding the density operator, and its master equation evolution, in powers
of the driving field amplitude |Ē0|. Let us see how this is done, first for one
atom, then generalized to the many-atom case.

16.1.1 Pure-State Factorization
of the Density Operator for One Atom

The master equation for single-atom cavity QED with coherent driving is
given as an operator equation in (13.57). For the present purposes we rewrite
it as a density matrix equation, specializing, for simplicity, to the case of
resonant excitation (ωA = ωC = ω0). Then, working in the interaction picture,
with ρ̃(t) = eiω0(σz/2+a

†a)tρ(t)e−iω0(σz/2+a
†a)t, the density matrix equation for

single-atom cavity QED with coherent driving of the cavity mode is
(

˙̃ρ2,n;2,m
˙̃ρ2,n;1,m

˙̃ρ1,n;2,m
˙̃ρ1,n:1,m

)

= g

[
√
n

(
0 0

ρ̃2,n−1;2,m ρ̃2,n−1;1,m

)
−√

n+ 1

(
ρ̃1,n+1;2,m ρ̃1,n+1;1,m

0 0

)

+
√
m

(
0 ρ̃2,n;2,m−1

0 ρ̃1,n;2,m−1

)

−√
m+ 1

(
ρ̃2,n;1,m+1 0
ρ̃1,n;1,m+1 0

)]

+ iĒ0

[√
m+ 1

(
ρ̃2,n;2,m+1 ρ̃2,n;1,m+1

ρ̃1,n;2,m+1 ρ̃1,n;1,m+1

)

−√
n

(
ρ̃2,n−1;2,m ρ̃2,n−1;1,m

ρ̃1,n−1;2,m ρ̃1,n−1;1,m

)]

− iĒ∗0
[
√
n+ 1

(
ρ̃2,n+1;2,m ρ̃2,n+1;1,m

ρ̃1,n+1;2,m ρ̃1,n+1;1,m

)

−√
m

(
ρ̃2,n;2,m−1 ρ̃2,n;1,m−1

ρ̃1,n;2,m−1 ρ̃1,n;1,m−1

)]

+ 2κ
√

(n+ 1)(m+ 1)

(
ρ̃2,n+1;2,m+1 ρ̃2,n+1;1,m+1

ρ̃1,n+1;2,m+1 ρ̃1,n+1;1,m+1

)

− κ(n+m)

(
ρ̃2,n;2,m ρ̃2,n;1,m

ρ̃1,n;2,m ρ̃1,n;1,m

)

− γ

2

(
2ρ̃2,n;2,m ρ̃2,n;1,m

ρ̃1,n;2,m −2ρ̃2,n;2,m

)

, (16.1)

where ρ̃η,n;ξ,m ≡ 〈η, n|ρ̃|ξ,m〉; n,m = 1, 2, . . .; η, ξ =1 (atomic lower state)
and 2 (atomic upper state).
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We propose to make a self-consistent truncation of the matrix element
equations based on an expansion in powers of |Ē0|. Since the equations them-
selves determine the solution for ρ̃, and hence the correct powers to use in the
expansion, the best we can do is start out with an ansatz. For this, we choose

ρ̃η,n;ξ,m ∼ |Ē0|n+m+η+ξ−2. (16.2)

Verification will come if we can show that the ansatz is consistent with the
explicit terms in |Ē0| appearing in the equations of motion for density matrix
elements. The ansatz does make physical sense, though, since the exponent
n+m+η+ ξ−2 simply counts the total number of quanta in the states |η, n〉
and |ξ,m〉.

Let us work through the truncation of the first two matrix element equa-
tions explicitly. Treatment of the rest follows by a straightforward generaliza-
tion of the procedure illustrated by these examples. Consider the equation

˙̃ρ1,0;1,0 = iĒ0ρ̃1,0;1,1 − iĒ∗0 ρ̃1,1;1,0 + γρ̃2,0;2,0 + 2κρ̃1,1;1,1

According to the ansatz, to lowest order ρ̃1,0;1,0 ∼ 1. On the other hand, every
term on the right-hand side of the equation is of order |Ē0|2. For consistency,
we therefore write

˙̃ρ1,0;1,0 = 0. (16.3a)

For a second example, we begin with

˙̃ρ2,0;2,0 = −g(ρ̃2,0;1,1 + ρ̃1,1;2,0) + iĒ0ρ̃2,0;2,1 − iĒ∗0 ρ̃2,1;2,0

− γρ̃2,0;2,0 + 2κρ̃2,1;2,1.

In this case, the matrix elements ρ̃2,0;2,0, ρ̃2,0;1,1, and ρ̃1,1;2,0 have the same
dominant order, |Ē0|2; but ρ̃2,0;2,1 and ρ̃2,1;2,0 appear multiplied by |Ē0|, which
gives terms of order |Ē0|3, and ρ̃2,1;2,1 is of order |Ē0|4. We therefore drop the
latter terms and write

˙̃ρ2,0;2,0 = −g(ρ̃2,0;1,1 + ρ̃1,1;2,0) − γρ̃2,0;2,0. (16.3b)

Proceeding in this way yields the self-consistent truncation we are after.
The process could be carried through for all matrix elements. We will be
satisfied, however, with a solution for the density matrix taking into account
up to a maximum of two energy quanta; this is sufficient to extend our earlier
results on forwards photon scattering for an atom in a cavity (Sect. 13.2.3).
With this restriction, three diagonal matrix elements remain, for which the
truncated equations are

˙̃ρ1,1;1,1 = g(ρ̃2,0;1,1 + ρ̃1,1;2,0) − iĒ0ρ̃1,0;1,1 + iĒ∗0 ρ̃1,1;1,0 − 2κρ̃1,1;1,1, (16.3c)
˙̃ρ2,1;2,1 = −√

2g(ρ̃1,2;2,1 + ρ̃2,1;1,2) − iĒ0ρ̃2,0;2,1 + iĒ∗0 ρ̃2,1;2,0

− (2κ+ γ)ρ̃2,1;2,1, (16.3d)
˙̃ρ1,2;1,2 =

√
2g(ρ̃2,1;1,2 + ρ̃1,2;2,1) − i

√
2Ē0ρ̃1,1;1,2 + i

√
2Ē∗0 ρ̃1,2;1,1

− 4κρ̃1,2;1,2. (16.3e)
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Then, for the twenty off-diagonal matrix elements, we obtain

˙̃ρ1,0;2,0 = −gρ̃1,0;1,1 − (γ/2)ρ̃1,0;2,0, (16.4a)
˙̃ρ1,0;1,1 = gρ̃1,0;2,0 + iĒ∗0 ρ̃1,0;1,0 − κρ̃1,0;1,1, (16.4b)
˙̃ρ1,0;2,1 = −

√
2gρ̃1,0;1,2 + iĒ∗0 ρ̃1,0;2,1 − (κ+ γ/2)ρ̃1,0;2,1, (16.4c)

˙̃ρ1,0;1,2 =
√

2gρ̃2,1;1,0 + i
√

2Ē∗0 ρ̃1,0;1,1 − 2κρ̃1,0;1,2, (16.4d)
˙̃ρ2,0;1,1 = −g(ρ̃1,1;1,1 − ρ̃2,0;2,0) + iĒ∗0 ρ̃1,0;2,0 − (κ+ γ/2)ρ̃2,0;1,1, (16.4e)
˙̃ρ2,0;2,1 = −g(

√
2ρ̃2,0;1,2 + ρ̃1,1;2,1

)
+ iĒ∗0 ρ̃2,0;2,0 − (κ+ γ)ρ̃2,0;2,1, (16.4f)

˙̃ρ2,0;1,2 = −g(ρ̃1,1;1,2 −
√

2ρ̃2,0;2,1

)
+ i

√
2Ē∗0 ρ̃2,0;2,0

− (2κ+ γ/2)ρ̃2,0;1,2, (16.4g)
˙̃ρ1,1;2,1 = −g(

√
2ρ̃1,1;1,2 − ρ̃2,0;2,1

)− iĒ0ρ̃1,0;2,1 + iĒ∗0 ρ̃1,1;2,0

− (2κ+ γ/2)ρ̃1,1;2,1, (16.4h)
˙̃ρ1,1;1,2 = g

(
ρ̃2,0;1,2 +

√
2ρ̃1,1;2,1

)− iĒ0ρ̃1,0;1,2 + i
√

2Ē∗0 ρ̃1,1;1,1

− 3κρ̃1,1;1,2, (16.4i)
˙̃ρ2,1;1,2 = −

√
2g(ρ̃1,2;1,2 − ρ̃2,1;2,1) − iĒ0ρ̃2,0;1,2 + i

√
2Ē∗0 ρ̃2,1;1,1

− (3κ+ γ/2)ρ̃2,1;1,2, (16.4j)

and the ten complex conjugates of (16.4a)–(16.4j).
The self-consistency of the truncation is apparent from the fact that each

equation of motion is of uniform order in |Ē0|. The truncation is helpful be-
cause it removes unnecessary terms from the equations, considering our goal of
solving the master equation to dominant order only in |Ē0|; each of (16.4a)–
(16.4j) retains the minimum number of terms needed to obtain the correct
matrix elements to dominant order. Of course we must remember the spirit
of the procedure when looking at an equation like (16.3a). Starting from the
ground state, the solution to this equation is ρ̃1,0;1,0(t) = 1, which clearly
violates the normalization requirement for the density matrix as a whole;
nonetheless, it is correct to dominant order, which is all that is claimed and
all that is required.

Having obtained the truncated matrix element equations, we are now in
a position to follow through with the factorization of the density operator. We
propose that (16.3a)–(16.3e) and (16.4a)–(16.4j) are consistent with a solution
for the density operator in the form

ρ̃(t) = |ψ̃(t)〉〈ψ̃(t)|, (16.5)
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with |ψ̃(t)〉 expanded in the two-quanta basis for one atom in a cavity,

|1〉A|0〉a
|1〉A|1〉a
|2〉A|0〉a
|1〉A|2〉a
|2〉A|1〉a

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (16.6)

as

|ψ̃(t)〉 = |1〉A|0〉a + α̃(t)|1〉A|1〉a + β̃(t)|2〉A|0〉a
+ η̃(t)|1〉A|2〉a + ζ̃(t)|2〉A|1〉a, (16.7)

where |n〉a, n = 0, 1, 2, are Fock states for the cavity mode, and |1〉A and |2〉A
are the lower and upper states, respectively, of the atom. With the proposed
factorization, each matrix element is to be expressed as a product of two of the
five state amplitudes—1, α̃, β̃, η̃, and ζ̃—and there is of course no guarantee
that a consistent set of equations of motion for the amplitudes will emerge
when the products are substituted into (16.3a)–(16.3e) and (16.4a)–(16.4j)—
the substitution gives an overdetermined set of twenty-five equations for only
five state amplitudes. It turns out that the overdetermined set is consistent,
though: the four time-varying state amplitudes must satisfy the equations of
motion in the two-quanta truncation of the master equation for single-atom
cavity QED,

˙̃α = −κα̃+ gβ̃ − iĒ0, (16.8a)
˙̃
β = −γ

2
β̃ − gα̃, (16.8b)

˙̃η = −2κη̃ +
√

2gζ̃ − i
√

2Ē0α̃, (16.8c)
˙̃ζ = −(κ+ γ/2)ζ̃ −√

2gη̃ − iĒ0β̃. (16.8d)

Equations 16.8a and 16.8b are the coupled oscillator equations whose nor-
mal modes explain the phenomenology of the vacuum Rabi doublet (compare
Eqs. 13.152, 14.117, and 14.125). The doublet is a consequence of the vacuum
Rabi oscillation of the one-quantum amplitudes (Sect. 13.3.2). By adding the
two-quanta amplitudes, we are able to describe certain features of the quan-
tum fluctuations. Before setting out in this direction, though, let us first set
up the pure-state factorization in the many-atom case.

16.1.2 Pure-State Factorization
of the Density Operator for Many Atoms

The two-quanta truncation for many atoms must consider a basis of six, rather
than five states, since we must now account for the possibility that two atoms
are excited simultaneously. The two-quanta basis for N atoms in a cavity is
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denoted by
|0〉(N)|0〉a
|0〉(N)|1〉a
|1〉(N)|0〉a
|0〉(N)|2〉a
|1〉(N)|1〉a
|2〉(N)|0〉a

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (16.9)

where the states for the atoms are the collective, or symmetrized, atomic
states

|0〉(N) ≡
N∏

j=1

|1〉j = |1, N/2,−N/2〉, (16.10a)

|1〉(N) ≡ 1√
N
J+|0〉(N) = |1, N/2,−N/2 + 1〉, (16.10b)

|2〉(N) ≡
√

2
N − 1

J+|1〉(N) = |1, N/2,−N/2 + 2〉, (16.10c)

with the notation on the right-hand sides taken from Sect. 6.2.2.
A comment is in order regarding the choice of symmetrized atomic states;

their use might seem inappropriate as it suggests the atoms are indistinguish-
able, which is definitely not the case. In the first place, in a standing-wave
cavity, atoms at different locations experience different coupling strengths; al-
though, this source of distinguishability is ignored in master equation (15.1),
and we continue with the simplification throughout the present chapter (with
the exception of Sect. 16.2). Of more fundamental concern is the role of spon-
taneous emission. Each emission event may be assigned to a particular atom
(Note 15.4); surely this counters any argument for using symmetrized atomic
states. Contrary to appearances, though, there is a justification for our choice
of basis. It follows from the limited goal of solving for each density matrix ele-
ment to dominant order in |Ē0|. To show that our basis is, indeed, appropriate
and consistent, let us consider the various processes that cause transitions
between the basis states.

It is clear, first, that symmetrized states couple self-consistently through
the interaction between the atoms and the cavity mode; the Hamiltonian
g(a†J− − a J+) generates transitions up and down the truncated ladder of
states: |0〉(N)|1〉a → |1〉(N)|0〉a → |0〉(N)|1〉a and |0〉(N)|2〉a → |1〉(N)|1〉a →
|2〉(N)|0〉a → |1〉(N)|1〉a → |0〉(N)|2〉a. Spontaneous emission, on the other
hand, should work to destroy the coherence. Emission from a particular atom j
induces two kinds of transitions. For a transition out of state |1〉(N), we obtain
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the final state

σj−|1〉(N) = σj−
1√
N

N∑

k=1

σk+|0〉(N)

=
1√
N
σj−σj+|0〉(N)

=
1√
N

|0〉(N). (16.11)

This state is trivially one of the symmetrized states and lies within the basis
(16.9). It is the second kind of transition, out of state |2〉(N), that is potentially
problematic. In this case we find

σj−|2〉(N) = σj−

√
2

N(N − 1)

N∑

k,l=1

k>l

σk+σl+|0〉(N)

=

√
2

N(N − 1)
|1〉j

⎡

⎢⎢
⎢
⎢
⎢
⎣

N∑

k=1

k �=j

|2〉k

⎛

⎜⎜
⎜
⎜
⎜
⎝

N∏

l=1

l �=j,k

|1〉l

⎞

⎟⎟
⎟
⎟
⎟
⎠

⎤

⎥⎥
⎥
⎥
⎥
⎦

=

√
2
N

|1〉j |1〉(N−1)
{j} , (16.12)

where |m〉(N−n)
{j1,...,jn} is the symmetrized state ofm excited atoms amongstN−n

atoms, excluding specifically atoms j1, . . . , jn. Here the final state lies outside
the basis (16.9); it is not a symmetrized state, since a particular atom—atom
j—is definitely in its lower state (see Note 15.4). To clarify the point, we
might write the symmetrized one-quantum state as

|1〉(N) =
1√
N

[√
N − 1|1〉j |1〉(N−1)

{j} + |2〉j |0〉(N−1)
{j}

]
, (16.13)

where the transition (16.12) produces only the first term on the right-hand
side. While this is the dominant term when the number of atoms is large,
spontaneous emission from state |2〉(N) nevertheless degrades the coherence,
as we would expect, and the basis (16.9) appears to eliminate any possibility
of accounting for this process.

There can be no argument about the omission. The relevant point for
our program, though, is that while transitions of the latter type threaten to
expand the basis at the one-quantum level where diagonal matrix elements
are of order |Ē0|2, they contribute themselves at order |Ē0|4; this is the order
of the probability for a two-quanta excitation. The threatened expansion of
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the basis may therefore be neglected within the framework of our adopted
dominant-order truncation.

Accepting, then, the basis defined by (16.9) and (16.10), we propose a fac-
torization with pure-state expansion

|ψ̃(t)〉 = |0〉(N)|0〉a + α̃(t)|0〉(N)|1〉a + β̃(t)|1〉(N)|0〉a
+ η̃(t)|0〉(N)|2〉a + ζ̃(t)|1〉(N)|1〉a + θ̃(t)|2〉(N)|0〉a. (16.14)

Bypassing the tedious details involved in the explicit verification of the fac-
torization, we go directly to the equations of motion in the two-quanta trun-
cation of the master equation for many-atom cavity QED (with equal coupling
strengths) first reported by Carmichael, Rice, and Brecha [16.1]:

˙̃α = −κα̃+
√
Ngβ̃ − iĒ0, (16.15a)

˙̃β = −γ
2
β̃ −

√
Ngα̃, (16.15b)

˙̃η = −2κη̃ +
√

2
√
Ngζ̃ − i

√
2Ē0α̃, (16.15c)

˙̃ζ = −(κ+ γ/2)ζ̃ −√
2
√
Ngη̃ +

√
2
√
N − 1gθ̃ − iĒ0β̃, (16.15d)

˙̃
θ = −γθ̃ −

√
2
√
N − 1gζ̃. (16.15e)

Note 16.1. It is possible to develop the pure-state expansion from a self-
consistent truncation of the matrix element equations of motion with the
density matrix written in the product state basis—i.e., with all atoms ex-
plicitly labeled. In this approach we would initially distinguish between the
like-atom matrix elements, 〈{j},−N/2 + 1|ρ̃|{j},−N/2 + 1〉, and the unlike-
atom matrix elements 〈{j},−N/2+1|ρ̃|{k},−N/2+1〉, k �= j; the former are
equal for all j, by symmetry, and the latter are equal for all j �= k. It is then
shown, on the basis of the self-consistent truncation, that like- and unlike-
atom matrix elements are also equal. The approach provides an alternative
path to the conclusion that process (16.12) may be neglected.

It may be helpful in conclusion to look at what we have done from a more
formal point of view. Formally, we may write the master equation for many-
atom cavity QED—alternatively, the master equation for optical bistability
(Eq. 15.1)—as

˙̃ρ = L̃ρ̃, (16.16)

with the superoperator L̃ defined by

L̃ ≡ g[a†J− − aJ+, · ] − i[Ē0a
† + Ē∗0a, · ]

+
γ

2

⎛

⎝
N∑

j=1

2σj− · σj+ − 1
2Jz · − · 1

2Jz −N ·
⎞

⎠+
γp
2

⎛

⎝
N∑

j=1

σjz · σjz −N ·
⎞

⎠

+ κ(2a · a† − a†a · − · a†a), (16.17)
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generalizing (13.89) to many atoms. The pure-state factorization follows from
these equations by making the approximation (γp = 0)

L̃ ≈ g[a†J− − aJ+, · ] − i[Ē0a
†, · ] − γ

4
[Jz +N, · ]+ − κ[a†a, · ]+, (16.18)

where [ , ]+ denotes the anticommutator. Then, substituting the factorized
form ρ̃ ≈ |ψ̃〉〈ψ̃| into the approximate equation, the pure state |ψ̃〉 satisfies
the Schrödinger equation

d|ψ̃〉
dt

=
[
g(a†J− − aJ+) − iĒ0a

† − γ

4
(Jz +N) − κa†a

]
|ψ̃〉. (16.19)

The equations of motion for state amplitudes (16.15) are readily recovered
from this equation.

Note that the factorized solution is permitted because after making the
approximation (16.18) L̃ is a sum of commutators and anticommutators. It is
specifically the terms

∑N
j=1 2σj− ·σj+ and 2a ·a† in the master equations—the

terms omitted under the approximation—that impose the usual mixed-state
character on the density matrix. We have also dropped the term Ē∗0a, as it
only contributes at higher-order in |Ē0|; but this plays no role in justifying the
factorization.

Note 16.2. Equation 16.19 is a Schrödinger equation with a non-Hermitian
Hamiltonian. It describes a nonunitary evolution which does not preserve the
state norm. The equation is nevertheless acceptable, given our aim of solving
for density matrix elements to dominant order in |Ē0|. Thus the comment in
the paragraph below (16.4) applies here as well.

Note 16.3. Approximation (16.18) omits nonradiative dephasing. It should be
noted that if dephasing is included, the pure-state factorization can no longer
be consistently carried through. Thus there is a fundamental difference be-
tween radiative and nonradiative damping. This is apparent from the decay
(without coherent driving) of a single atom. The matrix element equations
are

˙̃ρ12 = −
(γ

2
+ γp

)
ρ̃12, ˙̃ρ22 = −γρ̃22, and ˙̃ρ11 = γρ̃22.

For weak excitation (ρ̃22 � ρ̃11), we might propose a pure-state solution

ρ̃(t) ≈ |ψ̃(t)〉〈ψ̃(t)|, with ψ̃(t) = |1〉 + β̃(t)|2〉.
This proposal is consistent with the matrix element equations when γp = 0—

one need only require that ˙̃β = −(γ/2)β̃. On the other hand, there exists no
consistent equation of motion for β̃ when γp �= 0.

In the introduction to Sect. 16.1 we gave a physical argument for the pure-
state factorization. To reiterate, the basic requirement is that photon emission
events are rare on the scale of the system correlation time—both emission
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through the cavity mirrors and spontaneous emission. The correlation time
sets the scale because it governs how long it takes for the system to relax
to a stationary state; thus, if we associate a photon emission with a fluctua-
tion away from the stationary state, it must be rare that a second emission
interrupts the regression of the fluctuation.

We are now in a position to be a little more precise about this picture. The
stationary state referred to is the stationary solution to Schrödinger equation
(16.19) [equivalently (16.8)]; this is the equation that governs the regression of
the fluctuations after an emission. In the master equation the emission events
are accounted for by terms

JA =
N∑

j=1

J j
A ≡

N∑

j=1

γσj− · σj+, (16.20a)

Ja ≡ 2κa · a†, (16.20b)

the terms that are dropped in making the approximation (16.18); specifically,
spontaneous emission from atom j is expressed through the transition

|ψ̃〉〈ψ̃| → J j
A|ψ̃〉〈ψ̃| = γ

(
σj−|ψ̃〉

)(〈ψ̃|σj+
)
, (16.21a)

and emission of a photon from the cavity through

|ψ̃〉〈ψ̃| → Ja|ψ̃〉〈ψ̃| = 2κ
(
a|ψ̃〉)(〈ψ̃|a†). (16.21b)

By dropping the terms (16.20), we assume that the emission events are rare:
(i) that they are separated by long periods in the stationary state given by the
stationary solution to (16.19), and (ii) that they rarely interrupt the otherwise
coherent evolution into the stationary state.

Note 16.4. The approximation leading to the pure-state factorization can be
extremely restrictive. It assumes that typically no photon emissions, cavity
or spontaneous, take place during a randomly selected interval of duration
τcoh ≡ max(κ−1, 2γ−1). Taking κ ∼ γ/2, the condition on the rate of cav-
ity emissions requires that the intracavity photon number be small. Even
〈a†a〉ss ∼ 10−2 may not be small enough, however, when the additional con-
straint on spontaneous emission is considered. Compare the spontaneous emis-
sion rate for weak excitation—given by γN 1

2 (〈J̄z〉ss +1) = γNX2/2—with the
rate of cavity emissions 2κ〈a†a〉ss = 2κnsatX

2; the estimates are taken from
(15.69) and (15.70c) using the scaling (15.51). The spontaneous emission rate
exceeds the rate of cavity emissions by a factor N/2nsatξ = 2C (Eq. 15.56).
Since experiments realize values of 2C on the order of 102 [16.2,16.3], intracav-
ity photon numbers as low as 10−4, or less, may be needed to strictly satisfy
the requirements of the pure-state factorization.
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16.1.3 Forwards Photon Scattering for N Atoms in a Cavity

Let us now apply the pure-state factorization to calculate the second-order
correlation function of the forward-scattered light. The calculation generalizes
the result of Sect. 13.2.3 to an arbitrary number of atoms and arbitrary ξ =
2κ/γ. We compare the result obtained with that obtained from the linear
theory of fluctuations in Sect. 15.2.7; thus, we are able to perform an explicit
check on the limitations of the linearization.

The calculation begins, as in (13.77), from the expression for the second-
order correlation function,

g(2)
→ (τ) =

〈(ã†ã)(τ)〉ρ̃(0)=ρ̃′ss
〈ã†ã〉ss , (16.22)

with

ρ̃′ss ≡
ãρ̃ssã†

tr(ãρssã†)
. (16.23)

Making use of the pure-state factorization (16.5), this expression is recast in
simpler form as

g(2)
→ (τ) =

〈ψ̃(τ)|ã†ã|ψ̃(τ)〉
〈ψ̃ss|ã†ã|ψ̃ss〉

, (16.24)

where

|ψ̃(τ)〉 = |0〉(N)|0〉a + α̃(τ)|0〉(N)|1〉a + β̃(τ)|1〉(N)|0〉a, (16.25)

with initial conditions, α̃(0) and β̃(0), defined by

|ψ̃(0)〉 ≡ ã|ψ̃ss〉√
〈ψ̃ss|ã†ã|ψ̃ss〉

e−i arg(a〈0|(N)〈0|ã|ψ̃ss〉), (16.26)

where |ψ̃ss〉 is the stationary state obtained from the steady-state solutions to
(16.15a)–(16.15e); the phase factor e−i arg(a〈0|(N)〈0|ã|ψ̃ss〉) is inserted in order
to make the coefficient of the ground state in the expansion of |ψ̃(τ)〉 real.
From (16.24), (16.25), and (16.14), we arrive at the simple expression

g(2)
→ (τ) =

|α̃(τ)|2
|α̃ss|2 , (16.27)

where α̃(τ), the conditional one-photon amplitude, is the solution to the cou-
pled oscillator equations (16.15a) and (16.16b) with initial conditions

α̃(0) =
√

2η̃ss
α̃ss

, β̃(0) =
ζ̃ss
α̃ss

; (16.28)

α̃ss, η̃ss, and ζ̃ss satisfy (16.15a)–(16.15e) in the steady state.
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Calculation of the correlation function has been reduced to two straight-
forward tasks: first, find the steady-state solutions to (16.15a)–(16.15e), then
solve for α̃(τ) with initial condition (16.28). Considering the steady state, it
is trivial to solve for the one-quantum amplitudes

α̃ss = −i Ē0/κ

1 + 2C
, (16.29a)

β̃ss = i

√
Ng

γ/2
Ē0/κ

1 + 2C
, (16.29b)

and also, from (16.15e), to obtain

θ̃ss = −
√

2
√
N − 1g
γ

ζ̃ss. (16.30)

Substituting these results into (16.15c) and (16.15d), we then obtain a pair of
coupled equations for the two-quanta amplitudes η̃ss and ζ̃ss:

η̃ss − 1√
2

√
Ng

κ
ζ̃ss = − 1√

2
(Ē0/κ)2

1 + 2C
, (16.31a)

√
2

√
Ng

γ/2
η̃ss + [1 + ξ(1 + 2C − 2C1)]ζ̃ss = ξ

√
Ng

γ/2
(Ē0/κ)2

1 + 2C
. (16.31b)

The solution to the pair of equations is

ζ̃ss =
√
Ng

γ/2
(Ē0/κ)2

1 + 2C
1

1 + 2C − 2C1ξ/(1 + ξ)
, (16.32a)

η̃ss = − 1√
2

(Ē0/κ)2

1 + 2C

[
1 − 2C

1
1 + 2C − 2C1ξ/(1 + ξ)

]
. (16.32b)

Thus, (16.29), (16.30), and (16.32) provide the required stationary state |ψ̃〉ss.
Turning now to the second task, the general solution to (16.15a) and

(16.15b) is governed by eigenvalues Λ± = γΛ̄±, with Λ̄± given in (15.138); we
may write

α̃(τ) = −i Ē0/κ

1 + 2C
+ AeΛ+τ +BeΛ−τ , (16.33)

where the first term is the steady-state solution (16.29a), and the constants
A and B are to be determined from the initial conditions. Matching (16.33)
with the expression for α̃(0) using (16.28), (16.29a), and (16.32b), we have

A+B = i
Ē0/κ

1 + 2C
− i(Ē0/κ)

[
1 − 2C

1 + 2C − 2C1ξ/(1 + ξ)

]

= −i(Ē0/κ)
[

2C
1 + 2C

− 2C
1 + 2C − 2C1ξ/(1 + ξ)

]

= i
Ē0/κ

1 + 2C
2C1ξ

1 + ξ

2C
1 + 2C − 2C1ξ/(1 + ξ)

, (16.34)
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and matching the derivative of α̃(τ) at τ = 0, we have

(Λ+ + κ)A+ (Λ− + κ)B = iĒ0
1

1 + 2C
+ iĒ0

2C
1 + 2C − 2C1ξ/(1 + ξ)

− iĒ0

= iκ
Ē0/κ

1 + 2C
2C1ξ

1 + ξ

2C
1 + 2C − 2C1ξ/(1 + ξ)

,

(16.35)

where we use also (16.15a) and (16.32a). Subtracting κ(A + B) from both
sides of this expression and using (16.34) yields

Λ+A+ Λ−B = 0; (16.36)

hence, on substituting Λ± = γΛ̄± = 1
2 (κ+γ/2)±G (Eqs. 15.138 and 15.149),

A−B = −i
1
2 (κ+ γ/2)

G
(A+B). (16.37)

If follows from (16.33), (16.34), and (16.37) that the solution for the condi-
tional one-photon amplitude is

α̃(τ) = −i Ē0/κ

1 + 2C

{
1 − 2C1

ξ

1 + ξ

2C
1 + 2C − 2C1ξ/(1 + ξ)

×e− 1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]}
. (16.38)

Finally, (16.27), (16.29a), and (16.38) yield the second-order correlation func-
tion of forwards scattering in cavity QED in the weak-excitation limit (equal
coupling strengths):

g(2)
→ (τ) =

{
1 − 2C1

ξ

1 + ξ

2C
1 + 2C − 2C1ξ/(1 + ξ)

×e− 1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]}2

, (16.39)

where G ≡
√
Ng2 − 1

4 (κ− γ/2)2. This result holds for any number of atoms
(even N = 1) and reproduces (13.96) in the bad-cavity limit (ξ � 1).

It is notable that (16.39) is a perfect square, the square of the one-
photon amplitude conditioned upon the detection of a forward-scattered pho-
ton at τ = 0. Qualitatively, the regression of the amplitude is simple and
unremarkable—merely a damped oscillation, whose damping rate and fre-
quency are determined by the eigenvalues of the coupled oscillator equations
(16.15a) and (16.15b). A number of interesting features appear, however, when
the inequalities constraining g(2)

→ (τ) for a classical noise process are considered.
These follow, in the first place, from the negative deviation of the one-photon
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amplitude from its steady-state value at τ = 0. The minus sign produces the
photon antibunching illustrated by Fig. 15.2, and when using (16.39), rather
than (15.148), there is no longer any requirement that the magnitude of the
deviation be small. Thus, in Fig. 16.1a we see an example of photon anti-
bunching with g(2)(0) = 0—antibunching of the same order as in free-space
resonance fluorescence (Sect. 2.3.5). Although N = 1 in this example, it is
clear that g(2)(0) = 0 can be achieved for a large number of atoms as well;
the requirement for large 2C is only that 2C1ξ/(1 + ξ) = 1.

With a moderate increase in the dipole coupling strength, the correla-
tion function changes rather dramatically, from Fig. 16.1a to Fig. 16.1b. All
that happens to the underlying state amplitude is that the magnitude and
frequency of its excursion increases. After the square is taken, however, we
obtain the interesting result shown in the figure, with its new violation of
classicality. The correlation function for a classical intensity is constrained by
the Schwartz inequality [16.4]

|g(2)(τ) − 1| ≤ g(2)(0) − 1 ≥ 0, (16.40)

Fig. 16.1. Photon correlations in forwards scattering for single-atom cavity QED.
The second-order correlation function (16.39) is plotted for N = 1 and (a) g/κ =
1.35, ξ = 1; (b) g/κ = 1.85, ξ = 1; (c) g/κ = 3.0, ξ = 1; (d) g/κ = 3.0, ξ = 5. The
dashed lines in frame (b) mark upper and lower bounds derived from the Schwartz
inequality (16.40)
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which generalizes the usual definition of photon antibunching (second inequal-
ity only) to give the upper and lower bounds depicted in Fig. 16.1b. Violation
of the upper bound has been observed by Mielke and coworkers [16.5], though
in a many-atom system rather than for a single atom, as shown [see Fig. 16.5b].
On increasing the coupling strength still further, the violation of inequality
(16.40) disappears and the correlation function looks like Fig. 16.1c. In a bad
cavity and for a single atom, truly enormous intensity fluctuations are possi-
ble, for relatively moderate values of 2C1; g(2)→ (0) approaches a limiting value
of (1 − 4C2

1 )2. Figure 16.1d shows an example of this extreme regime.

Note 16.5. Although the correlation functions plotted in Figs. 16.1c and d do
not violate any classical inequality, in both cases the underlying field ampli-
tude, (16.38), does. The amplitude rather than the intensity may be measured
using conditional homodyne detection. It violates the classical constraint on
the ratio |A|/B discussed in Sect. 15.2.5 [16.6].

Figure 16.2 shows something of how the intensity fluctuations are affected
by an increase in the number of atoms. Qualitatively, similar phenomenology
is seen regardless of the number of atoms. On the other hand, the extreme
size of the fluctuations shown by Fig. 16.1d is largely a single-atom feature.
Considering the bad-cavity limit and 2C � 1, for one atom, we have g(2)(0) =
(1 − 2C2

1 )2, while g(2)(0) = (1 − 2C1)2 in the many-atom case. Increasing the
number of atoms with 2C1 fixed can change the magnitude of the fluctuations
by orders of magnitude. Figure 16.2a illustrates the change from Fig. 16.1d,
where the number of atoms is changed from N = 1 to N = 15. If the vacuum
Rabi frequency is held fixed, rather than 2C1, the change can be even more
dramatic; Fig. 16.2b replaces Fig. 16.1d, for example.

Fig. 16.2. Photon correlations in forwards scattering for many-atom cavity QED.
The second-order correlation function (16.39) is plotted for N = 15, ξ = 5, and
(a) g/κ = 3.0, as in Fig. 16.1(d); (b) g/κ = 0.77, giving the same vacuum Rabi
frequency as in Fig. 16.1(d). The dashed line in frame (b) marks the upper bound
derived from the Schwartz inequality (16.40)



350 16 Cavity QED II: Quantum Fluctuations

16.1.4 Corrections to the Small-Noise Approximation

The linearized treatment of fluctuations led us to the result (15.148) for the
second-order correlation function of forwards scattering, which is in general
disagreement with (16.39). A comparison of the two expressions provides
a quantitative illustration of the breakdown of linear fluctuation theory under
strong-coupling conditions. For the purposes of this comparison, it is helpful
to rewrite (16.39) in the form

g(2)
→ (τ) = [1 + λΓ (τ)]2 (pure-state factorization), (16.41)

with

Γ (τ) ≡ e−
1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]
, (16.42)

λ ≡ −2C1
ξ

1 + ξ

2C
1 + 2C − 2C1ξ/(1 + ξ)

. (16.43)

Equation 15.148 may be similarly rewritten as

g(2)
→ (τ) = 1 + 2λ′Γ (τ) (linear fluctuation theory), (16.44)

with
λ′ ≡ −2C1

ξ

1 + ξ

2C
1 + 2C

. (16.45)

There are then two distinct differences between these expressions. First, after
expanding the square on the right-hand side of (16.41), the term λ2Γ 2(τ)
must be dropped in order to recover something similar to (16.44). Then there
is the difference between the prefactors λ and λ′.

The missing term, λ′2Γ 2(τ), can in fact be recovered working entirely
within the small noise approximation. The omission occured when we dropped
〈Δ˜̄a†(0)Δ˜̄a†(τ)Δ˜̄a(τ)Δ˜̄a(0)〉ss from the expansion (15.144). To show this, let
us return briefly to the calculation of Sect. 15.2.7, where now, for simplicity,
we consider only g(2)→ (0); extending the calculation to include time dependence
follows in a straightforward way from the τ = 0 case.

Working from (15.142), introducing the decomposition of field operators
into a mean value and fluctuation (Eqs. 15.89a and 15.89b), the second-order
correlation function at zero delay is

g(2)
→ (0) =

〈(〈˜̄a†〉ss +Δ˜̄a†
)2(〈˜̄a〉ss +Δ˜̄a

)2
〉

ss〈(〈˜̄a†〉ss +Δ˜̄a†
)(〈˜̄a〉ss +Δ˜̄a

)〉2

ss

. (16.46)

Since the fluctuations are Gaussian in the small noise approximation, we may
expand the numerator and denominator setting all moments of odd order to
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zero. The numerator expands as
〈(〈˜̄a†〉ss +Δ˜̄a†

)2(〈˜̄a〉ss +Δ˜̄a
)2
〉

ss

=
(〈˜̄a†〉ss〈˜̄a〉ss

)2

[∣∣
∣
∣1 +

〈(Δ˜̄a)2〉ss
〈˜̄a〉2ss

∣∣
∣
∣

2

+
〈(Δ˜̄a†)2(Δ˜̄a)2〉ss − 〈(Δ˜̄a†)2〉ss〈(Δ˜̄a)2〉ss

(〈˜̄a†〉ss〈˜̄a〉ss
)2 + 4

〈Δ˜̄a†Δ˜̄a〉ss
〈˜̄a†〉ss〈˜̄a〉ss

]

, (16.47)

while for the denominator we have

〈(〈˜̄a†〉ss +Δ˜̄a†
)(〈˜̄a〉ss +Δ˜̄a

)〉2

ss
=

(〈˜̄a†〉ss〈˜̄a〉ss
)2
(

1 +
〈Δ˜̄a†Δ˜̄a〉ss
〈˜̄a†〉ss〈˜̄a〉ss

)2

. (16.48)

Previously we neglected the second term inside the square bracket in (16.44);
we argued that it is a term of second order in the expansion parameter N−1

and should therefore be neglected for self-consistency—terms of the same or-
der are already dropped in setting up the linearized treatment of fluctuations.
On the other hand, one might argue in favor of keeping the term, which
is, at least, an approximate representation of the higher-order corrections to
linear theory. We may do so by evaluating it using the Gaussian moment
theorem [16.7]; thus, we write

〈(Δ˜̄a†)2(Δ˜̄a)2〉ss = 〈(Δ˜̄a†)2〉ss〈(Δ˜̄a)2〉ss + 2
(〈Δ˜̄a†Δ˜̄a〉ss

)2
. (16.49)

The steps taken so far are completely general with no limitation placed on
the excitation strength. Specializing now to weak excitation, we make use of
the inequality

〈Δ˜̄a†Δ˜̄a〉ss
〈˜̄a†˜̄a〉ss �

∣
∣
∣
∣
∣
〈(Δ˜̄a)2〉ss
(〈˜̄a〉ss

)2

∣
∣
∣
∣
∣
, (16.50)

which holds on the basis of (15.120a) and (15.120b). The inequality shows
that the first term on the right-hand side of (16.47) is dominant; therefore,
retaining this term only, we arrive at the result

g(2)
→ (0) =

∣∣
∣
∣1 +

〈(Δ˜̄a)2〉ss
〈˜̄a〉2ss

∣∣
∣
∣

2

. (16.51)

The additional term in this expression, |〈(Δ˜̄a〉ss)2/〈˜̄a〉2ss|2, finds its origin in
the previously omitted moment 〈(Δ˜̄a†)2(Δ˜̄a)2〉ss ≈ 〈(Δ˜̄a†)2〉ss〈(Δ˜̄a)2〉ss.

Inclusion of time dependence calls for a somewhat more involved calcula-
tion, but leads in the end to the natural generalization of (16.51); it yields
the second-order correlation function of forwards scattering for many atoms
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in a cavity including second-order corrections within the linearized treatment
of fluctuations :

g(2)
→ (τ) =

∣
∣
∣∣1 +

〈Δ˜̄a(0)Δ˜̄a(τ)〉ss
〈˜̄a〉2ss

∣
∣
∣∣

2

=
{

1 −N−1 ξ

1 + ξ

4C2

1 + 2C

×e− 1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]}2

, (16.52a)

or
g(2)
→ (τ) = [1 + λ′Γ (τ)]2, (16.52b)

where the explicit form of the correlation function 〈Δ˜̄a(0)Δ˜̄a(τ)〉ss has been
taken from (15.147).

The end result shows that retaining the second-order moment is, indeed, in-
consistent, since the difference between λ in (16.41) and λ′ in (16.52b)makes the
new result incorrect at the order N−2; specifically, the term −2C1ξ/(1 + ξ) =
−N−12Cξ/(1 + ξ) appearing in the denominator of λ is absent from λ′. This
term affects the overallmagnitude of the fluctuation g(2)

→ (τ)−1. Large errors can
arise if (16.52a) is applied to a single atom under conditions of strong coupling
to a single atom. Figure 16.3 illustrates this breakdown of linear fluctuation the-
ory under cavity QED conditions. If the number of atoms is sufficiently large,
the agreement between (16.39) and (16.52a) can be rather good, as shown in
Fig. 16.3a. On the other hand, for N = 1 and moderately strong coupling, sig-
nificant errors are made by (16.52a), at the level shown by Fig. 16.3b. In extreme
cases, the error can underestimate the size of the fluctuation by more than an
order of magnitude; an example is presented in Fig. 16.3c.

Note 16.6. The missing factor −2C1ξ/(1 + ξ) illustrates, once again, how dif-
ferent system size parameters and scalings of the quantum fluctuations apply
in the good- and bad-cavity limits [see the discussion below (15.102)]. While
this factor is negligible in the good-cavity limit, even for N = 1, it requires
N � 1 to be neglected in the bad-cavity limit.

16.1.5 Antibunching of Fluorescence for One Atom in a Cavity

Having considered the forwards scattering, it is now natural to ask about the
fluorescence, about the side-scattered light. Early reports for many atoms in
a cavity predicted interesting modifications compared with resonance fluo-
rescence in free space [16.8, 16.9, 16.10, 16.11]. These reports were eventually
shown to be incorrect. It was shown by Carmichael [16.12] and Lugiato [16.13]
(and also Agarwal [16.14]) that there are no significant cavity-induced modifi-
cations to the fluorescence if the small-noise approximation holds. The fluores-
cence exhibits the Mollow spectrum [Sect. 2.3.4] and the usual photon bunch-
ing of resonant scattering from many independent sources [16.15]. Strictly, of
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Fig. 16.3. Comparison of the correlation function with second-order corrections
(16.52a) (solid curves) and the exact correlation function (16.39) (dashed curves):
for (a) g/κ = 0.77, ξ = 5, and N = 15 [Fig. 16.2(b)]; (b) g/κ = 1.85, ξ = 1, and
N = 1 [Fig. 16.1(b)]; (c) g/κ = 3.0, ξ = 5, and N = 1 [Fig. 15.1(d)]

course, the sources are not independent due to their coupling though the in-
tracavity field (Sect. 15.2.4). This brings only very small corrections, though,
of order N−1. We note then that there is a fundamental difference between
scattering in the forwards direction and scattering from the sides of the cav-
ity: the latter does not take place into a single collective mode; thus, while
there are nonvanishing correlations between pairs of atoms (Sect. 15.2.4), these
unlike-atom correlations do not add coherently (constructively) to correlation
functions measured on the side-scattered light as in an expression like (15.94).

From what we have just seen, however, the situation should be very dif-
ferent under cavity QED conditions—for strong coupling in the single-atom
sense. In that case, corrections of order N−1 will appear at dominant order,
and we might anticipate the side-scattered light to differ significantly from
the scattering of ordinary resonance fluorescence. To illustrate the point, let
us compute the second-order correlation function of the side-scattered light
for one atom in a cavity. We specialize again to the limit of weak excitation,
so the calculation runs parallel to that of Sect. 16.1.3.
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We begin from the expression for the second-order correlation function
(16.22) with ã→ σ̃−,

g
(2)
side(τ) =

〈(σ̃+σ̃−)(τ)〉ρ̃(0)=ρ̃′ss
〈σ̃+σ̃−〉ss , (16.53)

where
ρ̃′ss ≡

σ̃−ρ̃ssσ̃+

tr(σ̃−ρssσ̃+)
. (16.54)

Using the pure-state factorization for one atom (Eqs. 16.5 and 16.7), this may
be recast as

g
(2)
side(τ) =

〈ψ̃(τ)|σ̃+σ̃−|ψ̃(τ)〉
〈ψ̃ss|σ̃+σ̃−|ψ̃ss〉

, (16.55)

with the one-quantum expansion of the state

|ψ̃(τ)〉 = |1〉A|0〉a + α̃(τ)|1〉A|1〉a + β̃(τ)|2〉A|0〉a, (16.56)

and initial condition

|ψ̃(0)〉 ≡ σ̃−|ψ̃ss〉√
〈ψ̃ss|σ̃+σ̃−|ψ̃ss〉

e−i arg(a〈0|A〈1|ã|ψ̃ss〉). (16.57)

We obtain

g
(2)
side(τ) =

|β̃(τ)|2
|β̃ss|2

, (16.58)

where, using (16.56), (16.57), and the two-quanta expansion of the steady
state (Eq. 16.7), the initial values of the conditional one-quantum amplitudes
are

α̃(0) =
ζ̃ss

β̃ss

, β̃(0) = 0. (16.59)

The steady-state amplitudes β̃ss and ζ̃ss may be taken from (16.29a)–(16.32b)
with the number of atoms set to N = 1.

The solution for the time-dependent amplitude β̃(τ) follows the steps be-
low (16.32b). We write

β̃(τ) = i
g

γ/2
Ē0/κ

1 + 2C1
+AeΛ+τ +BeΛ−τ , (16.60)

where the initial condition requires

A+B = −i g

γ/2
Ē0/κ

1 + 2C1
. (16.61)
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Then, using (16.8b) and (16.29a) to match the initial value of the derivative,

Λ+A+ Λ−B = − g

γ/2
(Ē0/κ)

κ+ γ/2
1 + ξ + 2C1

, (16.62)

or with Λ± = γΛ̄± = − 1
2 (κ+ γ/2)± g′ (Eqs. 15.138, 15.149, and 13.180),

A−B = −i
1
2 (κ+ γ/2)

g′

[
2i

g

γ/2
Ē0/κ

1 + ξ + 2C1
+ (A+B)

]

= −i
1
2 (κ+ γ/2)

g′
(A+B)

(
−2

1 + 2C1

1 + ξ + 2C1
+ 1

)

= −
1
2 (κ+ γ/2)

g′
(A+B)

1 + 2C1 − ξ

1 + 2C1 + ξ
. (16.63)

Thus, from (16.60), (16.61), and (16.63), the solution for the conditional dipole
amplitude is

β̃(τ) = i
g

γ/2
Ē0/κ

1 + 2C1

{
1 − e−

1
2 (κ+γ/2)τ

×
[
cos(g′τ) +

κ− γ′/2
κ+ γ′/2

1
2 (κ+ γ/2)

g′
sin(g′τ)

]}
, (16.64)

where γ′ = γ(1 + 2C1) is the cavity-enhanced emission rate. Finally, (16.58),
(16.64), and (16.29b) yield the second-order correlation function of the side-
scattered light in cavity QED in the weak-excitation limit (single-atom case):

g
(2)
side(τ) =

{
1 − e−

1
2 (κ+γ/2)τ

[
cos(g′τ) +

κ− γ′/2
κ+ γ′/2

1
2 (κ+ γ/2)

g′
sin(g′τ)

]}2

.

(16.65)

The corresponding result for free-space resonance fluorescence in the weak-
excitation limit is (Eq. 2.152)

g
(2)
side(τ) = (1 − e−(γ/2)τ)2. (16.66)

Both results show photon antibunching with g
(2)
side(0) = 0—formally, a sim-

ple consequence of the identity σ2
+ = σ2

− = 0. Beyond this, there is little
similarity between the two expressions. Equation 16.65 shows the cavity-
modified dynamics seen in spontaneous emission (Sects. 13.2.1, 13.3.1, and
13.3.2)—a cavity-enhanced emission rate in the perturbative regime (bad-



356 16 Cavity QED II: Quantum Fluctuations

Fig. 16.4. Second-order correlation function of the side-scattered light in single-
atom cavity QED (solid curves) compared with the correlation function for free-
space resonance fluorescence (dashed curves): for g/γ = 2 and (a) κ/γ = 5 (pertur-
bative regime), (b) κ/γ = 0.5 (nonperturbative regime)

cavity limit) and vacuum Rabi oscillations in the nonperturbative regime
(strong-coupling limit). The free-space expression shows neither of these ef-
fects (Fig. 16.4).

Returning to the comment at the beginning of the section, we might also
contrast strong coupling for a single atom with strong coupling in the many-
atom sense. In the latter case, 2C1 is negligible, although 2C = N2C1 is
large; setting side corrections of order N−1, the correlation function for the
side-scattered light is to be computed from

g
(2)
side(τ) = 1 +

|〈σ̃+(0)σ̃−(τ)〉ss|2 −
(〈σ̃+〉ss〈σ̃−〉ss

)2

〈σ̃+σ̃−〉2ss +
(〈σ̃+〉ss〈σ̃−〉ss

)2 , (16.67)

where the operator moments are calculated from (2.120a), (2.121a), and
(2.127) using the intracavity field amplitude X in place of the input field
amplitude Y . The result for weak excitation is

g
(2)
side(τ) = 1 +X2(2e−(γ/2)τ − e−γτ). (16.68)

This is again a very different expression from (16.65).
Forwards photon scattering is described by (16.39) whether or not the

coupling for a single atom is strong; thus, forwards scattering does not distin-
guish, qualitatively (through the time dependence of the regression), between
a 2C that is large because many atoms cooperate and a situation where 2C1

is large and the number of atoms is small. Sideways scattering does make this
distinction.

Exercise 16.1. Derive (16.67) making use of the following two observations:
(i) the side-scattered light is a sum of fields scattered by many different atoms
and (ii) the ratio of unlike-atom to like-atom correlations is of order N−1.
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16.1.6 Spectra of Squeezing in the Weak-Excitation Limit

We have now seen that an expansion of the density operator and master
equation in powers of |Ē0| can take us away from the small-noise limit. The
approach has its limitations, though; for example, when applied to calculate
the optical spectrum, where the calculation, even to lowest order, becomes
unexpectedly involved.

The difficulty here is easy enough to find. To lowest order, the pure
state (16.14) yields the expectations 〈ã〉ss = α̃ss, 〈ã†ã〉ss = |α̃ss|2, and
〈ã2〉ss =

√
2η̃ss. Thus, while the anomalous moment is of order 〈(Δã)2〉ss =

〈ã2〉ss − 〈ã〉2ss ∼ |Ē0|2, consistent with (15.120b), in this approximation the
ordinary moment vanishes: 〈Δã†Δã〉ss = 〈ã†ã〉ss − 〈ã†〉ss〈ã〉ss = 0. To ob-
tain a nonzero result for 〈Δã†Δã〉ss the calculation must be carried to higher
order. This presents no difficulty so long as we may continue to work with
the pure-state factorization. Doing so we keep two-quanta contributions to
obtain

〈ã〉ss = α̃ss +
√

2α̃ssη̃ss + β̃ssζ̃ss, (16.69a)

〈ã†ã〉ss = |α̃ss|2 + 2|η̃ss|2 + |ζ̃ss|2, (16.69b)

with nonvanishing 〈Δã†Δã〉ss ∼ |Ē0|4, just as expected from (15.120a). The
result obtained in this way cannot be correct, however, beyond its giv-
ing a result of the correct order. Note that α̃ss on the right-hand side of
(16.69a) is calculated as the dominant contribution to the matrix element
a〈0|(N)〈0|ρ̃ss|0〉(N)|1〉a, and |α̃ss|2 on the right-hand side of (16.69b) as the
dominant contribution to the matrix element a〈1|(N)〈0|ρ̃ss|0〉(N)|1〉a. How-
ever, these dominant terms cancel when 〈Δã†Δã〉ss is computed. The matrix
elements clearly must be determined to higher order, a task for which the
pure-state factorization does not hold. Thus, in order to compute the optical
spectrum, one must return to the equations of motion for the density matrix
elements themselves and develop the perturbative approach at that level. This
laborious task has been carried through by Rice [16.16] for single-atom cavity
QED.

Fortunately, there is an alternative path to the optical spectrum, which we
develop in Sect. (16.3.4). For now we simply avoid the difficulties by limiting
our attention to the spectra of squeezing. These are determined from the
anomalous correlation 〈Δã(τ)Δã(0)〉ss, which evaluates in the weak-excitation
limit without a cancellation of dominant terms. Working from (9.156), noting
that 〈Δã†(0)Δã(τ)〉ss � 〈Δã(τ)Δã(0)〉ss, the spectrum of squeezing is

S̄θ→(ω) = ηγa22
∫ ∞

0

dτ cosωτ
[
e−2iθ〈Δã(τ)Δã(0)〉ss + c.c.

]

= ηγa22Re
{∫ ∞

0

dτeiωτ
[
e−2iθ〈Δã(τ)Δã(0)〉ss + c.c.

]
}
. (16.70)
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Of course it is not possible to recover the optical spectrum from a sum of
spectra of squeezing calculated within this approximation.

Let us turn now to the evaluation of (16.70) using the quantum regression
formula (1.98) and the pure-state factorization for many atoms (16.14). Hav-
ing the pure-state factorization, the expression for the anomalous correlation
is recast as

〈Δã(τ)Δã(0)〉ss = tr{(ã− α̃ss)eL̃τ [(ã− α̃ss)ρ̃ss]}
= 〈ψ̃ss|(ã− α̃ss)| ˜̄ψ(τ)〉, (16.71)

with the one-quantum expansion of the state

| ˜̄ψ(τ)〉 = Δα̃(τ)|0〉(N)|1〉a +Δβ̃(τ)|1〉(N)|0〉a, (16.72)

where Δα̃ and Δβ̃ obey equations of motion (16.15a) and (16.15b), for initial
condition

| ˜̄ψ(0)〉 = (ã− α̃ss)|ψ̃ss〉. (16.73)

The right-hand side of (16.71) has been developed by substituting L̃ in the ap-
proximate form (16.18) and using the fact that |ψ̃ss〉 is the stationary solution
to (16.19); the overbar on | ˜̄ψ(τ)〉 indicates that the state is not normalized,
in this case even at dominant order—the argument of eL̃τ in (16.71) is not
a density operator. From (16.71), (16.72), and (16.14), the correlation function
is given by the one-photon amplitude of the time-dependent state,

〈Δã(τ)Δã(0)〉ss = Δα̃(τ), (16.74)

where the dominant term only has been kept: 〈ψ̃ss|(ã− α̃ss)| ˜̄ψ(τ)〉 is replaced
by a〈0|(N)〈0|a| ˜̄ψ(τ)〉.

The initial values Δα̃(0) and Δβ̃(0) are evaluated using (16.72), (16.73),
and the solution (16.29a)–(16.32b) for the two-quanta expansion in the steady
state. We find

Δα̃(0) =
√

2η̃ss − α̃2
ss

= − (Ē0/κ)2

1 + 2C

[
1 − 2C

1 + 2C − 2C1ξ/(1 + ξ)

]
+
( Ē0/κ

1 + 2C

)2

=
( Ē0/κ

1 + 2C

)2

2C1
ξ

1 + ξ

2C
1 + 2C − 2C1ξ/(1 + ξ)

, (16.75)
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and

Δβ̃(0) = ζ̃ss − α̃ssβ̃ss

=

√
Ng

γ/2
(Ē0/κ)2

1 + 2C
1

1 + 2C − 2C1ξ/(1 + ξ)
−

√
Ng

γ/2

( Ē0/κ

1 + 2C

)2

=

√
Ng

γ/2

( Ē0/κ

1 + 2C

)2

2C1
ξ

1 + ξ

1
1 + 2C − 2C1ξ/(1 + ξ)

. (16.76)

Then the one-photon amplitude is written as

Δα̃(τ) = AeΛ+τ +BeΛ−τ , (16.77)

which, from (16.75), yields

A+B =
( Ē0/κ

1 + 2C

)2

2C1
ξ

1 + ξ

1
1 + 2C − 2C1ξ/(1 + ξ)

, (16.78)

and by matching the initial derivative in (16.15a),

(Λ+ + κ)A+ (Λ− + κ)B = κ

( Ē0/κ

1 + 2C

)2

2C1
ξ

1 + ξ

1
1 + 2C − 2C1ξ/(1 + ξ)

,

(16.79)

where we use (16.75) and (16.76). Substituting the eigenvalues Λ± = γΛ̄± =
− 1

2 (κ+ γ/2) ±G (Eqs. 15.138 and 15.149) into the latter expression yields

A−B = −i
1
2 (κ+ γ/2)

G
(A+B); (16.80)

hence, from (16.74), (16.75), (16.77), and (16.80), the anomalous correlation
function is

〈Δã(0)Δã(τ)〉ss = 〈(Δã)2〉sse− 1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]
,

(16.81)

with 〈(Δã)2〉ss = Δα̃(0) given in (16.75). Thus, expression (16.70) for the
spectrum of squeezing is now evaluated as

S̄θ→(ω) = ηγa24 cos[2(θ − arg(Ē0))]|〈(Δã)2〉ss|

× Re
{∫ ∞

0

dτeiωτe−
1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]}
.

(16.82)
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Finally, after carrying out the integration we obtain the spectrum of squeezing
for the forwards scattered light in cavity QED in the weak-excitation limit :

S̄θ→(ω) = ηγa24 cos[2(θ − arg(Ē0))]
|〈(Δã)2〉ss|

2|G|

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|G|2 − [ 12 (κ+ γ/2)]2
[
1
2 (κ+ γ/2) + |G|]2 + ω2

− |G|2 − [ 12 (κ+ γ/2)]2
[

1
2 (κ+ γ/2)− |G|]2 + ω2

(i)

1
2 (κ+ γ/2)(2G+ ω)

[
1
2 (κ+ γ/2)

]2 + (ω +G)2
+

1
2 (κ+ γ/2)(2G− ω)

[
1
2 (κ+ γ/2)

]2 + (ω −G)2
(ii)

(16.83)

where cases (i) and (ii) apply, respectively, for Ng2 ≤ 1
4 (κ−γ/2)2 and Ng2 ≥

1
4 (κ−γ/2)2. The squeezing is in phase with the mean intracavity field, i.e., the
spectrum is negative for θ = −π/2 + arg(Ē0).

The result should be compared with the Fourier transform of (15.147),
which, leaving aside an overall scale factor, is the spectrum of squeezing in
the small noise approximation. The difference is again what we noted at the
end of Sect. 16.1.4—the factor 2C1ξ/(1+ ξ), which appears in (16.75) but not
in (13.138).

16.2 Spatial Effects

Taking spatial effects into account in a general treatment of quantum fluctua-
tions in cavity QED is a difficult task. Some background to the problems one
faces is provided by the discussion in Sect. 14.4.2. The principal difficulty is
that the atoms are no longer indistinguishable (overlooking the distinguisha-
bility due to spontaneous emission); one cannot account for the coherent inter-
action with the cavity mode using symmetrized atomic states. More formally,
as explained in Sect. 14.4.2, we are no longer able to find a set of collective
atomic operators like J−, J+, and Jz that obey a closed commutator algebra.

It is, however, possible to account for spatial effects in the weak-excitation
limit, where the pure-state factorization may be used. One must simply drop
the symmetrized atomic states in favor of a direct product state basis and
labor through the algebra required to solve the resulting equations of motion
for state amplitudes. At a quantitative level, spatial effects can change things
rather dramatically, though there is no qualitative change in the character
of the fluctuations. We illustrate this by revisiting the treatment of forwards
photon scattering in Sect. 16.1.3.

Consider N atoms located at positions rj , j = 1, . . . , N within the
standing-wave cavity mode shown in Fig. 13.2. The dipole coupling constants
vary with position according to (14.94a). To treat this situation, in place of
the two-quanta expansion (16.14), we expand the atomic part of state |ψ̃(t)〉
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in the direct product basis (6.60), writing

|ψ̃(t)〉 = |{},−N/2〉A|0〉a
+ α̃(t)|{},−N/2〉A|1〉a

+
N∑

j=1

β̃j(t)|{j},−N/2 + 1〉A|0〉a

+ η̃(t)|{},−N/2〉A|2〉a

+
N∑

j=1

ζ̃j(t)|{j},−N/2 + 1〉A|1〉a

+
N∑

j,k=1
j>k

θ̃(j,k)(t)|{j, k},−N/2 + 2〉A|0〉a. (16.84)

The bracketed notation (j, k) for the subscript on θ(j,k)(t) is intended to indi-
cate that the order of the indices is unimportant. The Schrödinger equation
replacing (16.19) is

d|ψ̃〉
dt

=

⎡

⎣
N∑

j=1

g(rj)(a†σj− − aσj+) − iĒ0a
† − γ

4

N∑

j=1

(σjz + 1) − κa†a

⎤

⎦|ψ̃〉.

(16.85)
From the Schrödinger equation and state expansion we obtain the equations of
motion in the two-quanta truncation of the master equation for many atoms
in a cavity, with unequal coupling strengths :

˙̃α = −κα̃+
N∑

j=1

g(rj)β̃j − iĒ0, (16.86a)

˙̃βj = −γ
2
β̃j − g(rj)α̃, (16.86b)

˙̃η = −2κη̃ +
√

2
N∑

j=1

g(rj)ζ̃j − i
√

2Ē0α̃, (16.86c)

˙̃
ζj = −(κ+ γ/2)ζ̃j −

√
2g(rj)η̃ +

N∑

k=1
k �=j

g(rk)θ̃(j,k) − iĒ0β̃j , (16.86d)

˙̃θ(j,k) = −γθ̃(j,k) − [g(rj)ζ̃k + g(rk)ζ̃j ]. (16.86e)

These equations are the generalization of (16.15a)–(16.15e).
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The equations of motion for the one-quantum state amplitudes, (16.86a)
and (16.86b), may be written in a form resembling (14.119a) and (14.119b).
Multiplying the latter by g(rj) and summing over j yields the pair of equations

dα̃

dt
= −κα̃+

[∑N
j=1g(rj)β̃j

]
− iĒ0, (16.87a)

d
[∑N

j=1g(rj)β̃j
]

dt
= −γ

2

[∑N
j=1g(rj)β̃j

]
−

[∑N
j=1g

2(rj)
]
α̃. (16.87b)

These are again equivalent (apart from the added driving field) to the oscilla-
tor equations underlying the treatment of spontaneous emission in single-atom
cavity QED (Eqs. 13.152). They have the steady-state solution

α̃ss = −i Ē0/κ

1 + 2C
, (16.88a)

1√
Neffgmax

[∑N
j=1g(rj)β̃j

]

ss
= i

√
Neffgmax

γ/2
Ē0/κ

1 + 2C
, (16.88b)

which generalizes (16.29a) and (16.29b), with the effective number of atoms
Neff (Eq. 14.120) in place of N , and

2C ≡ 2

∑N
j=1 g

2(rj)
γκ

= 2
Neffg

2
max

γκ
= Neff2Cmax

1 , (16.89)

in agreement with definition (14.103) of the cooperativity parameter in optical
bistability. Proceeding now as in Sect 16.1.3, the second-order correlation
function is to be calculated by solving the oscillator equations (16.87) for the
conditional one-photon amplitude α̃(τ), with initial conditions

α̃(0) =
√

2η̃ss
α̃ss

,
[∑N

j=1g(rj)β̃j
]
(0) =

[∑N
j=1g(rj)ζ̃j

]

ss

α̃ss
, (16.90)

where η̃ss and
[∑N

j=1g(rj)ζ̃j
]

ss
are found by solving (16.86c)–(16.86e) in the

steady state. As in (16.27), the correlation function is computed as

g(2)
→ (τ) =

|α̃(τ)|2
|α̃ss|2 . (16.91)

Thus, the only remaining task is to find the steady-state solution to (16.86c)–
(16.86e).

The first steps towards the solution may be followed in similar fashion
to those leading from (16.15c)–(16.15e) to (16.30) and (16.31). Starting with
(16.86e), we obtain

θ̃(j,k) = −g(rj)ζ̃
ss
k + g(rk)ζ̃ss

j

γ
, (16.92)
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and from (16.86c) and (16.86d), the amplitudes η̃ss and
[∑N

j=1g(rj)ζ̃j
]

ss
then

satisfy simultaneous equations

√
2κη̃ss −

[∑N
j=1g(rj)ζ̃j

]

ss
= −κ (Ē0/κ)

1 + 2C
, (16.93a)

and

2
√

2
[∑N

j=1g
2(rj)

]
η̃ss + γ(1 + ξ)

[∑N
j=1g(rj)ζ̃j

]

ss
+

4
γ

N∑

j,k=1
k �=j

g2(rj)g(rk)ζ̃ss
k

= 2ξ
[∑N

j=1g
2(rj)

] (Ē0/κ)2

1 + 2C
. (16.93b)

From this point something new is needed, since, while (16.92) is a straight-
forward generalization of (16.30), the system of simultaneous equations is not
closed—unlike (16.30) and (16.31). To verify this, consider the third term on
the left-hand side of (16.93b) rewritten as

N∑

j,k=1
k �=j

g2(rj)g(rk)ζ̃ss
k =

[∑N
j=1g

2(rj)
][∑N

k=1g(rk)ζ̃k
]

ss
−

[∑N
j=1g

3(rj)ζ̃j
]

ss
.

(16.94)

A new collective variable,
[∑N

j=1g
3(rj)ζ̃j

]

ss
, has been introduced; we en-

counter the start of the hierarchy of equations discussed in Sect. 14.4.2.
Having recognized the hierarchy, we can now tackle it head on. First,

generalizing the definitions of
∑N
j=1g(rj)ζ̃j and

∑N
j=1g

2(rj), we define the
infinite set of collective variables

Z(2n−1) ≡
N∑

j=1

g2n−1(rj)ζ̃j , (16.95)

and

Γ (2n) ≡
N∑

j=1

g2n(rj). (16.96)

Equation 16.93a is transcribed as

√
2κη̃ss − Z(1)

ss = −κ (Ē0/κ)2

1 + 2C
. (16.97)
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The process of arriving at the replacement for (16.93b) is just a little more
involved. Multiplying (16.86d) by g2n−1(rj) and summing over j yields

2
√

2Γ (2n)η̃ss + γ(1 + ξ)Z(2n−1)
ss +

2
γ

N∑

j,k=1
k �=j

[
g2n(rj)g(rk)ζ̃ss

k

+ g2n−1(rj)g2(rk)ζ̃ss
j

]
= 2iĒ0

N∑

j=1

g2n−1(rj)β̃ss
j . (16.98)

We then simplify the third term on the left-hand side, by writing

N∑

j,k=1
k �=j

[
g2n(rj)g(rk)ζ̃ss

k + g2n−1(rj)g2(rk)ζ̃ss
j

]

= Γ (2n)Z(1)
ss + Γ (2)Z(2n−1)

ss − 2Z(2n+1)
ss , (16.99)

and on the right-hand side, using (16.86b) and (16.88a), have

2iĒ0

N∑

j=1

g2n−1(rj)β̃ss
j = 2ξΓ (2n) (Ē0/κ)2

1 + 2C
. (16.100)

Equation 16.98 is rewritten as

2
√

2Γ (2n)η̃ss + γ[1 + ξ(1 + C)]Z(2n−1)
ss +

2
γ

(
Γ (2n)Z(1)

ss − 2Z(2n+1)
ss

)

= 2ξΓ (2n) (Ē0/κ)2

1 + 2C
. (16.101)

Our task is reduced to solving the hierarchy of equations (19.97) and
(16.101) for the two-quanta amplitudes η̃ss and Z

(1)
ss ≡

[∑N
j=1 g(rj)ζ̃j

]

ss
.

We first eliminate η̃ss from (16.101), where, using (16.97),

√
2η̃ss =

1
κ
Z(1)

ss − (Ē0/κ)2

1 + 2C
. (16.102)

This yields the recurrence relation

γ[1 + ξ(1 + C)]Z(2n−1)
ss − 4

γ
Z(2n+1)

ss

= 2
[
(1 + ξ)

(Ē0/κ)2

1 + 2C
− (1 + ξ/2)

1
κ
Z(1)

ss

]
Γ (2n), (16.103)
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or, after a little rearrangement,

Z(2n−1)
ss =

4
γ2

1
1 + ξ(1 + C)

{
Z(2n+1)

ss

+
γ

2

[
(1 + ξ)

(Ē0/κ)2

1 + 2C
− (1 + ξ/2)

1
κ
Z(1)

ss

]
Γ (2n)

}
. (16.104)

To solve the recurrence relation, we iterate the substitution, from the left to
the right, of Z(2n+1)

ss , Z(2n+3)
ss , etc. In this way an expansion for Z(2n−1)

ss in
terms of Z(1)

ss is developed. Using (16.96), we find

Z(2n−1)
ss

=
2
γ

1
1 + ξ(1 + C)

[
(1 + ξ)

(Ē0/κ)2

1 + 2C
− (1 + ξ/2)

1
κ
Z(1)

ss

]

×
{

Γ (2n) +
4/γ2

1 + ξ(1 + C)
Γ (2n+2) +

[
4/γ2

1 + ξ(1 + C)

]2

Γ (2n+4) + · · ·
}

=
[
(1 + ξ)

(Ē0/κ)2

1 + 2C
− (1 + ξ/2)

1
κ
Z(1)

ss

] N∑

j=1

2g2n(rj)/γ
1 + ξ(1 + C)

×
∞∑

p=0

[
4/γ2

1 + ξ(1 + C)

]p
g2p(rj). (16.105)

The case n = 1 gives

1
κ
Z(1)

ss =
[
(1 + ξ)

(Ē0/κ)2

1 + 2C
− (1 + ξ/2)

1
κ
Z(1)

ss

]
S, (16.106)

with

S ≡
N∑

j=1

2C1j

1 + ξ(1 + C) − 2C1jξ
, (16.107)

where (Eq. 13.36)

2C1j ≡ 2
g2(rj)
γκ

(16.108)

is the spontaneous emission enhancement factor for an atom located at rj .
The solution for Z(1)

ss is

Z(1)
ss ≡

[∑N
j=1g(rj)ζ̃j

]

ss
= κ

(Ē0/κ)2

1 + 2C
(1 + ξ)S

1 + (1 + ξ/2)S
, (16.109)

and for η̃ss, from (16.102),

η̃ss = − 1√
2

(Ē0/κ)2

1 + 2C

[
1 − (1 + ξ)S

1 + (1 + ξ/2)S

]
. (16.110)
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Note that while for some choices of parameters the sum over p in (16.105) is
not guaranteed to converge—e.g. when N = 1 and g2(r1)/γ � 1 + ξ—we can
extend our results to these cases by analytic continuation.

We are finally in a position to construct the solution for the second-order
correlation function (16.91). Following (16.33) we write

α̃(τ) = −i Ē0/κ

1 + 2C
+ AeΛ+τ +BeΛ−τ , (16.111)

where the eigenvalues Λ± = γΛ̄± are still defined by (15.138), even with
unequal coupling constants for the atoms. Then, with the help of (16.90),
(16.88a), and (16.110), initial conditions require

A+B = i
Ē0/κ

1 + 2C
− i

Ē0

κ

[
1 − (1 + ξ)S

1 + (1 + ξ/2)S

]

= −i Ē0

κ

[
2C

1 + 2C
− (1 + ξ)S

1 + (1 + ξ/2)S

]

= i
Ē0/κ

1 + 2C
[1 + ξ(1 + C)]S − 2C

1 + (1 + ξ/2)S
, (16.112)

and, using also (16.87a) and (16.109),

(Λ+ + κ)A+ (Λ− + κ)B = iĒ0
1

1 + 2C
+ iĒ0

(1 + ξ)S
1 + (1 + ξ/2)S

− iĒ0

= iκ
Ē0/κ

1 + 2C
[1 + ξ(1 + C)]S − 2C

1 + (1 + ξ/2)S
. (16.113)

From (16.112) and (16.113), we find Λ+A+ Λ−B = 0; hence

A−B = −i
1
2 (κ+ γ/2)

G
(A+B). (16.114)

Substituting (16.112) and (16.114) into (16.111), we arrive at the desired
generalization of (16.39), the second-order correlation function of forwards
scattering in cavity QED in the weak-excitation limit with unequal coupling
strengths,

g(2)
→ (τ) =

{
1 − [1 + ξ(1 + C)]S − 2C

1 + (1 + ξ/2)S

×e− 1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]}2

, (16.115)

where, to replace (15.149), G ≡
√
Neffg2

max − 1
4 (κ− γ/2)2.

The new expression has the same structure as (16.39). The differences are
quantitative: the prefactor that determines the amplitude of the damped os-
cillation, and the use of Neff rather than N in the frequency G of the vacuum
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Fig. 16.5. Comparison of (16.39) evaluated for N̄eff optimally coupled atoms
(dashed curves) and the configuration average of (16.115), with mean number density
D = N̄eff/[π(w0/2)

2�] (solid curves): for (a) gmax/2π = 3.2MHz, κ/2π = 5.0MHz,
γ/2π = 0.9MHz, and N̄eff = 18 (Fig. 4a of [16.2]); (b) gmax/2π = 11.1MHz,
κ/2π = 2.73MHz, γ/2π = 6.07MHz, and N̄eff = 10 (Fig. 2b of [16.5])

Rabi oscillation. The differences are significant though. With regard to the
amplitude of oscillation, using (16.39) and Neff atoms each with the optimal
coupling g = gmax can yield a result that differs from (16.115) by something
greater than an order of magnitude. To consider an example, Rempe and
coworkers [16.2] derived (16.115) to improve the fit of the theory to their ex-
perimental results. Since an atomic beam is used in the experiment, an average
over an ensemble of atomic configurations, rj , j = 1, . . . , N , must be taken;
it is taken at fixed atomic density D with each atom randomly distributed
in some suitably large interaction volume. The atomic density determines the
effective number of atoms to be used: for the standing-wave mode function
(14.94a), the configuration average of Neff is N̄eff = Dπ(w0/2)2	, where 	 is
the atomic beam width along the cavity axis [16.17].

Using the parameters of the experiment, Fig. 16.5a demonstrates the dif-
ference between the Monte Carlo average of (16.115) and the equal-coupling-
constant formula (16.39). Figure 16.5b makes the same comparison for a later
experiment by Mielke and coworkers [16.5].
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Exercise 16.2. Show that the expression (16.115) reduces to (16.39) when
g(rj) = g, j = 1, . . . , N .

Exercise 16.3. Consider the continuous medium limit defined by N̄eff → ∞,
gmax → 0, with 2C = 2N̄effg

2
eff/γκ constant. Show that the limit is approached

with

g(2)
→ (τ) =

{
1 − N̄−1

eff

3
8

ξ

1 + ξ

4C2

1 + 2C

×e− 1
2 (κ+γ/2)τ

[
cos(Gτ) +

1
2 (κ+ γ/2)

G
sin(Gτ)

]}2

, (16.116)

where G =
√
N̄effg2

max − 1
4 (κ− γ/2)2. Compare this result with (16.52a).

Exercise 16.4. Devise a Monte Carlo implementation of the average over
configurations described in the last paragraph. Compare the Monte Carlo
average with the continuum result (16.116) for the parameters of Fig. 16.5.
Explain any differences observed.

Exercise 16.5. It is possible to solve for the steady state of the coupled
equations (18.86a)–(18.86e) more directly, without introducing the hierarchy
of equations (16.97) and (16.101). Develop the alternate method of solution.

16.3 Beyond Classical Trajectories plus “Fuzz”:
Spontaneous Dressed-State Polarization

Earlier chapters have introduced us to three major applications of linear fluc-
tuation theory—(i) to the homogeneously broadened laser (Chaps. 7 and 8),
the paradigm of a quantum noise process, but one where the noise is actually
classical; (ii) to the degenerate parametric oscillator (Chaps. 10 and 11) with
its squeezed and nonclassical fluctuations; and (iii) to a system of many atoms
in a driven cavity, or optical bistability (Chap. 15), where again the fluctua-
tions are nonclassical and exhibit both photon antibunching and squeezing.

Quantum fluctuations were added in each of these examples as a perturba-
tion upon a background of classical nonlinear physics. For the system of many
atoms in a cavity, to pick a particular case, the basic features of the classi-
cal physics are summarized in the optical bistability state equations (14.53)
and (14.58)–(14.60). So long as the fluctuations remain small, the hysteresis
cycle deduced from these equations is expected to remain intact. Fluctuations
simply add a “fuzz-ball” of noise around a chosen operating point—except,
of course, close to the cycle boundaries, where even small fluctuations can
precipitate switching from one operating branch to the other. Certainly, if the
fluctuations are nonclassical, the “fuzz-ball” lives within the double-dimension
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phase-space of the positive P representation. Nevertheless, the background of
classical nonlinear physics is still present in exactly the same way.

Contrast cavity QED conditions: the system size is small, the quantum
fluctuations large, and the underlying classical physics is expected to break
down. We expect to see a disintegration of the hysteresis cycle accompanied
by a transformation of the noise process similar to that illustrated for the
degenerate parametric oscillator in Figs. 12.6–12.8. For an illustration, let us
take the parameters of Fig. 16.5b and imagine they are realized for a sin-
gle atom localized at an antinode of the standing-wave cavity mode. We find
a saturation photon number nsat = 0.037 (Eq. 14.104), which should be com-
pared with the threshold photon number, 〈a†a〉thr = 0.025, of Fig. 12.8b. For
the latter example, the noise process is entirely changed from the picture of
local fluctuations about classical steady states shown in Figs. 12.6 and 12.7a;
its interpretation involves transitions between even and odd superpositions of
coherent states (Sect. 12.1.8)—a decidedly quantum-mechanical evolution.

Unfortunately, the assumed conditions are very difficult to realize in the
laboratory. The experiment to which the parameters of Fig. 16.5b
apply [16.5] does not work with a single localized atom, but with a ther-
mal atomic beam, with N̄eff = 10, and is strongly affected by spatial effects;
Horvath and Carmichael have shown just how troublesome the atomic mo-
tion and density fluctuations in an atomic beam can be [16.18]. In order to
overcome these difficulties, experiments with single trapped atoms are per-
formed [16.19, 16.20, 16.21].

There are complementary difficulties on the theoretical side. It is not pos-
sible to arbitrarily extend computations with many-atoms, particularly when
including spatial effects, as the size of the basis required grows as 2N—a very
large number, even for N = 100. While Horvath and Carmichael [16.18] treat
systems with N̄eff = 13 and 18 at weak excitation, it is not feasible to extend
their numerical methods to high excitation.

We can carry our treatment of the single-atom system further, though,
thus moving away from the weak-excitation limit and its reliance on the pure-
state factorization. This is the goal for the rest of the chapter. A number of
miscellaneous calculations are presented. Although a general analytical so-
lution like the one underlying the progression followed through Sect. 12.1.7
cannot be given, the accumulated results of the next few sections trace a clear
outline of the quantum noise process which replaces the picture of classical
trajectories plus “fuzz” at intermediate and strong excitation for single-atom
cavity QED.

16.3.1 Maxwell–Bloch Equations for “Zero System Size”

We are interested in the limit of small system size. A good way to start out
is to set the system size parameter to zero. This can be done by turning off
the spontaneous emission; thus, we let γh = γ → 0, and in this way reach the
limit nsat = γ2/8g2 → 0. We refer to the limit as the limit of “zero system
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size.” Of course, nsat rather than N is taken as the system size parameter,
since there is nothing useful to be learned from setting N = 0.

A quick path to the basic physics of this limit is provided by the Maxwell–
Bloch equations. Perhaps this appears to be a contradiction: the fluctuations
scale inversely with system size and the Maxwell–Bloch equations neglect fluc-
tuations altogether; what then can they have to say about a limit in which
fluctuations diverge? In fact there is no contradiction, as we soon see. The
essential point is that from the Maxwell–Bloch equations we are able to iden-
tify new stationary states that play a central role in organizing the dynamics
once the fluctuations are reintroduced. These states are complementary to
the steady states identified in (15.69)–(15.71). The latter are steady states
only when γh and γ are nonzero. The new states are strictly stationary only
when γh = γ = 0. Through the Maxwell–Bloch equations, we first familiar-
ize ourselves with these states in their semiclassical version. Their quantum-
mechanical character is explored in the following section.

The Maxwell–Bloch equations for scaled variables are given as (15.57a)–
(15.57e). We first remove the scaling (Eqs. 15.51) then set γh = γ = 0. The
resulting equations are the Maxwell–Bloch equations for “zero system size”:

d〈ã〉
dt

= −κ〈ã〉 + g〈J̃−〉 − iĒ0, (16.117a)

d〈ã†〉
dt

= −κ〈ã†〉 + g〈J̃+〉 + iĒ0, (16.117b)

d〈J̃−〉
dt

= g〈Jz〉〈ã〉, (16.117c)

d〈J̃+〉
dt

= g〈Jz〉〈ã†〉, (16.117d)

d〈Jz〉
dt

= −2g
(〈J̃+〉〈ã〉 + 〈J̃−〉〈ã†〉

)
, (16.117e)

where we specialize to the resonant case (Δ = Φ = 0). Note now that with
γh = γ = 0, the Bloch equations, (16.117c)–(16.117e), are undamped, and
conserve the length of the Bloch vector, which for atoms prepared in the
ground state is given by the number of atoms. The five-dimensional state vec-
tor

(〈ã〉, 〈ã†〉, 〈J̃−〉, 〈J̃+〉, 〈Jz〉
)

therefore moves on a four-dimensional surface:
two dimensions—the

(〈ã〉, 〈ã†〉)-plane—specify the cavity field amplitude, and
the other two identify the state of the atoms with a point on the surface of
the collective Bloch sphere,

4〈J̃+〉〈J̃−〉 + 〈Jz〉2 = N2. (16.118)

Although in future sections it will be necessary to limit our attention to a sin-
gle atom, here we encounter no difficulty retaining the full dependence on N .

Our task is to find stationary solutions to (16.117a)–(16.117e) subject
to the constraint (16.118). It is clear from (16.117c) and (16.117d) that the
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solutions fall into two classes: those with vanishing field amplitude and those
with vanishing inversion. On looking more carefully at the equations, the
classification is to be made according to whether the driving field amplitude
lies below, at, or above the threshold value |Ē0| = Ng/2:

Below threshold (|Ē0|/g < N/2): there is a single stationary solution with
vanishing field amplitude,

〈ã〉< ≡ 〈ã〉<ss = 0. (16.119a)

The vanishing of the field amplitude guarantees that (16.117c), (16.117d),
and (16.117e) are all satisfied. The polarization is then determined by the
requirement that it cancel the driving field exactly; from (16.117a), (16.117b),
and (16.118), the collective state of the atoms is

〈J̃∓〉< ≡ 〈J̃∓〉<ss = ±ie±iarg(Ē0)|Ē0|/g, (16.119b)

〈Jz〉< ≡ 〈Jz〉<ss = −N
√

1 − (2|Ē0|/Ng)2. (16.119c)

Since 〈Jz〉< is real, the solution is unacceptable above the defined threshold,
|Ē0|/g = N/2.

At threshold (|Ē0|/g = N/2): the field amplitude and inversion both vanish.
We have

〈ã〉thr ≡ 〈ã〉thr
ss = 0, (16.120a)

〈J̃∓〉thr ≡ 〈J̃∓〉thr = ±ie±iarg(Ē0)N/2, (16.120b)

〈Jz〉thr ≡ 〈Jz〉thr
ss = 0, (16.120c)

and the solution is doubly degenerate.

Above threshold (|Ē0|/g > N/2): there are two solutions with vanishing
inversion. The field amplitude is nonzero and, from (16.117e),

〈J̃−〉ss
〈J̃+〉ss

= − 〈ã〉ss
〈ã†〉ss . (16.121)

The solutions are of the form

〈ã〉±> = Aeiφ± , 〈ã†〉±> = Ae−iφ± ,

〈J̃−〉±> = ±ieiφ±N/2, 〈J̃+〉±> = ∓ie−iφ±N/2,
(16.122a)

〈ã〉> ≡ 〈ã〉>ss , 〈ã†〉> ≡ 〈ã†〉>ss , and 〈J̃±〉> ≡ 〈J̃±〉>ss , with

〈Jz〉> ≡ 〈Jz〉ss = 0. (16.122b)
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The magnitude of the polarization amplitude is set by (16.118), while the
magnitude and phase of the field amplitude are determined by (16.117a) and
(16.117b), which require

−κAeiφ± ± i(Ng/2)eiφ± − iĒ0 = 0. (16.123)

We obtain
A = (|Ē0|/κ)

√
1 − (Ng/2|Ē0|)2, (16.124)

and

eiφ± =
−iĒ0/κ

A∓ i(Ng/2κ)

= −iei arg(Ē0)
[√

1 − (Ng/2|Ē0|)2 ± i(Ng/2|Ē0|)
]
. (16.125)

It is clear that the stationary solutions (16.119), (16.120), and (16.122)
are not those recovered from the γh = γ → 0 limit of the steady states in
absorptive optical bistability (Eqs. 15.69–15.71). This follows, in particular,
because according to (16.125) the phases φ+ and φ− change with driving field
strength, while the phases in absorptive bistability are fixed by the driving
field. The new transition, passing through threshold, is therefore a symmetry-
breaking transition: the phases of the individual field states,

(〈ã〉+>, 〈ã†〉+>
)

and(〈ã〉−>, 〈ã†〉−>
)
, do not reflect the phase of the external field, though the phase

of an equally weighted average of them does; a similar comment holds for the
states on the Bloch sphere,

(〈J̃−〉+>, 〈J̃+〉+>, 0
)

and
(〈J̃−〉−>, 〈J̃+〉−>, 0

)
.

It is useful to make an explicit comparison between the new stationary
states and the “zero system size” limit of absorptive optical bistability. To do
this we must first determine precisely what that limit is:

Exercise 16.6. Show that in the limit γh = γ → 0 the stable steady states
determined from (15.69)–(16.71) (with Δ = Φ = 0) approach, for

√
2|Ē0|/g ≤

N/2,

〈ã〉ss = 〈ã†〉ss = 0, (16.126a)

〈J̃∓〉ss = ie±i arg Ē0 |Ē0|/g, (16.126b)

〈Jz〉ss = −N
2

[
1 +

√
1 − 8(|Ē0|/Ng)2

]
, (16.126c)

which defines the limit of the lower branch of the absorptive bistability input-
output curve, and for all |Ē0|/g ≥ 0,

〈ã〉ss = iĒ0/κ, 〈ã†〉ss = −iĒ∗0/κ, (16.127a)

〈J̃−〉ss = 〈J̃+〉ss = 〈Jz〉ss = 0, (16.127b)

which defines the limit of the upper branch of the input–output curve.
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Figure 16.6 shows how the intracavity photon number changes with driving
field strength according to the optical bistability state equation and compares
the change according to the new stationary states. There appears to be very
little relationship between the two curves. The steady states of absorptive op-
tical bistability, (16.126) and (16.127), are, of course, also stationary solutions
to (16.117a)–(16.117e). But they do not respect the conservation law (16.118),
and in the limit, when γh = γ = 0, they cannot be reached from the initial
state 〈J̃−〉 = 〈J̃+〉 = 0, 〈Jz〉 = −N/2. Moreover, close to the limit, when
γh = γ is close to zero, the relaxation time to these steady states becomes
extremely long. The limit of “zero system size” is in this sense structurally
unstable. It follows that near to the limit all of the mentioned states are quasi-
stationary and fragile to fluctuations. This is borne out in Sect. 16.3.6, where
we see that quantum fluctuations in single-atom cavity QED are strongly in-
fluenced by all four quasi-stationary states, and, at least in a qualitative way,
merge the contrasting pictures depicted in Fig. 16.6.

To help clarify the physics behind the new stationary states, let us define
real and imaginary parts of the complex cavity field amplitude by

x+ iy ≡ N−1/2
[
ie−i arg(Ē0)〈ã〉], (16.128)

and the collective atomic state Bloch vector

m ≡ N−1{2Re
[
ie−i arg(Ē0)〈J̃−〉

]
x̂+2Im

[
ie−iarg(Ē0)〈J̃−〉

]
ŷ+ 〈Jz〉ẑ}, (16.129)

which represents a point on the unit sphere. The Maxwell–Bloch equations for
“zero system size,” (16.117a)–(16.117e), may then be written more compactly
as

ẋ = −κx+ 1
2

√
Ngmx + |Ē0|/

√
N, (16.130a)

ẏ = −κy + 1
2

√
Ngmy, (16.130b)

Fig. 16.6. Intracavity photon number as a function of input intensity for the stable
steady states, (16.126a) and (16.127a), of absorptive optical bistability (solid lines)
and the stationary states (16.119), (16.120), and (16.122) (dashed lines); for Ng/κ =
20
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and
ṁ = B × m, m · m = 1, (16.130c)

where we introduce the fictitious magnetic field

B ≡ 2
√
Ng

⎛

⎝
−y
x
0

⎞

⎠. (16.131)

We may now discuss the physics in terms of the magnetic analogy introduced
in Sect. 2.3.3.

Equations 16.129, 16.130c, and 16.131 correspond to (2.105), (2.106), and
(2.107) of Sect. 2.3.3, respectively. According to the analogy, they describe
a magnetic moment m moving under the influence of the magnetic field B.
In the present case there is a significant difference from the standard picture,
though; the magnetic field B is not a fixed external field, but a field that
changes through its dynamical coupling to the magnetic moment. In terms of
the true physical variables, the induced collective dipole changes under the
influence of the intracavity field, while at the same time radiating into the
cavity mode and thus, in turn, changing the intracavity field.

It is seen from this construction that the stationary states above threshold,
where Bss is nonzero, are self-consistent dressed states—i.e., the steady state
is established by both mss and Bss adjusting their values so that the pair
either align or anti-align with one another. Alsing and Carmichael call this
phenomenon spontaneous dressed-state polarization [16.22]. This particular
strategy for reaching a stationary state is only followed above threshold, where
it is no longer possible for the polarization to cancel the driving field, as it
does below threshold, since that would require |〈J̃∓〉| to be larger than the
maximum value of N/2 permitted by (16.118).

Figure 16.7 illustrates the progression of the new stationary states from
below threshold, where the polarization grows steadily to cancel the increasing
driving field, to above threshold, where the stationary state is reached through
spontaneous dressed-state polarization.

Before leaving our discussion of the Maxwell–Bloch equations, we should
say something about the stability of the stationary states. Consider, first, the
bad-cavity limit, where κ is much larger than

√
Ng and |Ē0|/

√
N . In this

case we can adiabatically eliminate the cavity field and, from (16.130a) and
(16.130b), write

x = |Ē0|/
√
Nκ+

(√
Ng/2κ

)
mx, (16.132a)

y =
(√

Ng/2κ
)
my. (16.132b)

After substituting these expressions into (16.130c), the resulting equations
are the nonlinear Bloch equations of collective resonance fluorescence—i.e.,
the semiclassical equations of the single-mode, or Dicke model of superradi-
ance with an added external driving field. Drummond and Carmichael [16.26]
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Fig. 16.7. Stationary states (16.119a)–(16.122c) plotted as a function of 2|Ē0|/Ng
(a) in the phase-plane of the cavity field and (b) on the Bloch sphere. Bloch-sphere

axes are defined with J ′− ≡ ie−iarg(Ē0)J−

studied these equations and identify the same threshold behavior. They also
solved the general time-dependent problem. The time dependence shows that
while, below threshold, the stationary state (16.119a)–(16.119c) is a glob-
ally attracting fixed point, the state above threshold, (16.122a)–(16.122c), is
nonstable; here the two fixed points lie at the foci of families of cyclic solu-
tions, with frequency ω = (4g|Ē0|/κ)

√
1 − (Ng/2|Ē0|)2. By solving the full set

of Maxwell–Bloch equations numerically, we can show that similar behavior
holds above threshold to that observed in the bad-cavity limit (Fig. 16.8).

This completes the semiclassical background against which quantum fluc-
tuations will be added in Sect. 16.3.6. The next few sections make a diversion
into the spectroscopy of single-atom cavity QED in the presence of an external
field.

Note 16.7. The Hamiltonian for a collection of two-state atoms interacting
with a single mode of the electromagnetic field may be mapped onto an anal-
ogous system of ions interacting with a single vibrational mode in an RF
trap. The Jaynes–Cummings Hamiltonian maps onto the single ion case. The
trapped ion analogy may be carried through to realize various cavity QED
phenomena. Meekhof and coworkers [16.23], for example, performed an ion
experiment to extend the time-domain measurement of few-quanta Rabi oscil-
lations by Brune and coworkers [16.24] to nonclassical states of the vibrational
mode (field). Spontaneous dressed-state polarization also exists in a trapped
ion version, and has been discussed in this context by Milburn and Alsing
[16.25]. We should perhaps note that the analogy is not complete, though; in
particular, because of the different loss mechanisms that come into play. The
results of this and the next section find a direct parallel in the ion system,
but those on quantum fluctuations (Sect. 16.3.6) do not transfer directly.

Note 16.8. When considering many atoms, the limit of “zero system size”
(γh = γ → 0) is not necessarily a limit of large fluctuations. We might let
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Fig. 16.8. Solutions to the Maxwell–Bloch equations (16.130) above threshold:
for

√
Ng/κ = 0.25, |Ē0|/

√
Nκ = 0.15 [columns (i) and (iii)] and

√
Ng/κ = 2.5,

|Ē0|/
√

Nκ = 1.5 [columns (ii) and (iv)]; the first case is a good approximation to
the bad-cavity limit. Columns (i) and (ii) are for an initial condition close to the
stationary state (dashed lines). Columns (iii) and (iv) show the evolution from the
ground state

g/|Ē0| → 0, N → ∞, with Ng/2|Ē0| finite to reach the small noise regime
analyzed (bad-cavity case) by Drummond [16.27] and Carmichael [16.28].

16.3.2 Dressed Jaynes–Cummings Eigenstates

With the elimination of spontaneous emission, the limit of “zero system size”
would appear to bring us closer to the physics of the pure Jaynes–Cummings
model. This, however, is not really the case, because we are still concerned
with the asymptotic dynamics of an open system—a system driven by an
external field and damped by cavity loss. Even with the loss set aside as a small
perturbation, we are not concerned with the Jaynes–Cummings Hamiltonian
but with the Hamiltonian of the driven Jaynes–Cummings model :

H(t) ≡ 1
2�ωAσz + �ωCa

†a+ i�g(a†σ− − aσ+)

+ �(Ē0e
−iω0ta† + Ē∗0 eiω0ta). (16.133)

There are two competing interactions: first the Jaynes–Cummings interaction
between the atom and cavity mode, and then the interaction of the cavity
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mode with the driving (external) field. We should note that the results of the
previous section assume that they have similar strength, since the threshold
for spontaneous dressed-state polarization occurs at 2|Ē0| = g.

In this section we calculate the energy spectrum and stationary states of
Hamiltonian (16.133) for the case of resonant excitation, ω0 = ωC = ωA.
For an idea of where we are headed, we might compare (16.133) with the
Hamiltonian of resonance fluorescence (Eq. 2.68a). In resonance fluorescence,
the external field shifts, or splits, the bare energy levels of the atom to produce
the so-called dressed atomic energies. We might anticipate similar level shifts
here, but where the bare energies are now those of the Jaynes–Cummings
Hamiltonian; thus, we can anticipate a dressing of the dressed states—if we
care to speak in that way.

We meet an example of such double dressing in Sect. 13.1. There, with fre-
quencies satisfying ω0 + g = ωA = ωC , we made a two-state approximation to
predict a splitting of the lower vacuum Rabi resonance at intermediate driv-
ing field strengths—for 1

2 (κ+ γ/2) < |Ē0| � g. In the present situation, with
ω0 = ωC = ωA, we can expect the spectrum for weak driving fields, 2|Ē0| � g,
to be the Jaynes–Cummings spectrum plus a perturbative level shift of order
(2|Ē0|/g)2. More generally, the perturbed-dressed-state picture must be quali-
fied, though, since in the opposite extreme, for strong driving fields, 2|Ē0| � g,
the roles of the interactions is reversed; the Jaynes–Cummings interaction be-
comes the perturbation. The dominant interaction is the interaction with the
external field, which, written in the interaction picture as �(Ē0a

† + Ē∗0a), is
formally a potential energy proportional to the position (or momentum) of
a harmonic oscillator. It has a continuous spectrum. It seems then that the
spectrum of (16.133) must change from the discrete Jaynes–Cummings spec-
trum to a continuous spectrum with increasing (2|Ē0|/g). Considering what
we learned in the previous section, it is reasonable to anticipate a transition
from a discrete spectrum to a continuous one at 2|Ē0|/g = 1.

As it stands, Hamiltonian (16.133) is explicitly time-dependent. It does
not define an eigenvalue problem of the standard sort. Instead of looking for
energy eigenvalues and eigenstate, we follow the method outlined in Note 2.5
to find periodic solutions, |ψE(t)〉, to the Schrödinger equation

d|ψ〉
dt

=
1
i�
H(t)|ψ〉, (16.134)

and their associated quasienergies E. The procedure is rather straightforward
in this instance because the time-dependence can be removed by working in
the interaction picture; thus, setting ω0 = ωC = ωA, we write

|ψ〉 = e−iωA( 1
2σz+a†a)t|ψ̃〉, (16.135)
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to obtain
d|ψ̃〉
dt

=
1
i�
H̃ |ψ̃〉, (16.136)

with time-independent Hamiltonian

H̃ = i�g(a†σ− − aσ+) + �(Ē0a
† + Ē∗0a). (16.137)

Solutions to the time-independent Schrödinger equation

H̃ |ψ̃E〉 = E|ψ̃E〉 (16.138)

yield the desired periodic solutions to Schrödinger equation (16.134),

|ψE(t)〉 = e−i(E/�)te−iωA( 1
2σz+a†a)t|ψ̃E〉. (16.139)

The rotation operator, e−iωA( 1
2σz+a†a)t, which enters the transformation into

the interaction picture (16.135), generates periodicity at the frequency of the
driving field, ω0 = ωA.

The substance of the calculation involves finding solutions to the time-
independent Schrödinger equation (16.138). We follow the solution scheme
devised by Alsing and coworkers [16.29]. Expanding the eigenstate as

|ψ̃E〉 = |2〉A|ψ̃2
E〉a + |1〉A|ψ̃1

E〉a, (16.140)

from (16.137), (16.138), and (16.140), we obtain coupled equations for |ψ̃2
E〉a

and |ψ̃1
E〉a,

[�(Ē0a
† + Ē∗0a) − E]|ψ̃2

E〉a = i�ga|ψ̃1
E〉a, (16.141a)

[�(Ē0a
† + Ē∗0a) − E]|ψ̃1

E〉a = −i�ga†|ψ̃2
E〉a. (16.141b)

The goal is to first decouple these equations and then solve separately for
|ψ̃1
E〉a and |ψ̃1

E〉a. Decoupling the equations is straightforward. We multiply
(16.141a) and (16.141b) on the left by a† and a, respectively, to obtain

{[�(Ē0a
† + Ē∗0a) − E]a† − �Ē∗0 }|ψ̃2

E〉a = i�ga†a|ψ̃1
E〉a, (16.142a)

{[�(Ē0a
† + Ē∗0a) − E]a+ �Ē0}|ψ̃1

E〉a = −i�gaa†|ψ̃2
E〉a. (16.142b)

Then, substituting for a†|ψ̃2
E〉a and a|ψ̃1

E〉a, respectively, on the left-hand sides
of (16.142a) and (16.142b), using (16.141b) and (16.141a), we obtain the new
set of coupled equations

[ÔE + 1
2 (�g)2]|ψ̃1

E〉a = −i�2Ē∗0 g|ψ̃2
E〉a, (16.143a)

[ÔE − 1
2 (�g)2]|ψ̃2

E〉a = −i�2Ē0g|ψ̃1
E〉a, (16.143b)

with
ÔE ≡ [E − �(Ē0a

† + Ē∗0a)]2 − (�g)2 1
2 (a†a+ aa†). (16.144)
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These have constant coefficients on the right-hand side and are therefore read-
ily decoupled; |ψ̃1

E〉 and |ψ̃2
E〉 are both solutions to the equation

[ÔE + 1
2 (�g)2e−2r][ÔE − 1

2 (�g)2e−2r]|ψ̃1,2
E 〉a = 0, (16.145)

where
e−2r ≡

√
1 − (2|Ē0|/g)2. (16.146)

Thus, general solutions for |ψ̃1
E〉 and |ψ̃2

E〉 may be written as linear combina-
tions

|ψ̃1
E〉a = cP |P 〉a + cM |M〉a, (16.147a)

|ψ̃2
E〉a = dP |P 〉a + dM |M〉a, (16.147b)

where cP,M and dP,M are complex constants, and |P 〉a and |M〉a vanish when
operated on by one or other of the prefactors in (16.145),

[ÔE + 1
2 (�g)2e−2r]|P 〉a = 0, (16.148a)

[ÔE − 1
2 (�g)2e−2r]|M〉a = 0. (16.148b)

It remains for us to solve these equations and determine the coefficients cP,M
and dP,M .

The equations have solutions for particular values of E only. We must
determine both these values of E and the corresponding solutions. To this
end, we note, first, that ÔE is quadratic in a and a†; it can be diagonalized
by the combination of a displacement and squeeze transformation. Thus, we
write

|P 〉a = D(α)S(η)|P 〉′a, |M〉a = D(α)S(η)|M〉′a, (16.149)

where α and η are complex parameters, and the squeeze operator, S(η), is
defined by (9.39) and the displacement operator, D(α), by (9.41). Under the
displacement and squeeze, (16.148a) and (16.148b) transform as

[Ô′E(α, η) + 1
2 (�g)2e−2r]|P 〉′a = 0, (16.150a)

[Ô′E(α, η) − 1
2 (�g)2e−2r]|M〉′a = 0, (16.150b)

with
Ô′E(α, η) ≡ D(α)S(η)ÔES†(η)D†(α). (16.151)

We must now choose the adjustable parameters α and η so that the trans-
formed operator Ô′E takes on the diagonal form

Ô′E = A(E)1
2 (a†a+ aa†) +B(E), (16.152)
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where A(E) and B(E) are some undetermined functions of E. With this done,
substituting (16.152) into (16.150a) and (16.150b), the latter are rewritten as

[
A(E)(a†a+ 1

2 ) +B(E) + 1
2 (�g)2e−2r

]|P 〉′a = 0, (16.153a)
[
A(E)(a†a+ 1

2 ) +B(E) − 1
2 (�g)2e−2r

]|M〉′a = 0, (16.153b)

whose solutions are photon number states: we have |P 〉′a = |n〉a, n ≥ 0 an
integer, which holds for quasienergies satisfying

(n+ 1
2 )A(E) +B(E) + 1

2 (�g)2e−2r = 0, (16.154a)

and |M〉′a = |n〉a, n ≥ 0 an integer, which holds for quasienergies satisfying

(n+ 1
2 )A(E) +B(E) − 1

2 (�g)2e−2r = 0. (16.154b)

The unknown quantities α, η, A(E), and B(E) are all fixed by the diagonal-
ization procedure. Their determination is left as an exercise.

Exercise 16.7. Using (16.144) and (16.151), write the displacement and
squeeze transformation (16.152) in terms of quadrature phase operators as

D(α)S(η)
[
(E − �2|Ē0|X̂)2 + (�g)2(X̂2 + Ŷ 2)

]
S†(η)D†(α)

= A(E)(X̂2 + Ŷ 2) +B(E), (16.155)

with

X̂ ≡ 1
2 (ae−iθ + a†eiθ), Ŷ ≡ −i 12 (ae−iθ − a†eiθ), (16.156)

where θ ≡ arg(Ē0). Show that the equality holds for the choice of parameters

η = −rei2 arg(Ē0), α(E) = −ei arg(Ē0)E/�
g

e4r
√

1 − e−4r, (16.157)

and functions of the quasienergy

A(E) = −(�g)2e−2r, B(E) = E2e4r. (16.158)

Note that the squeeze parameter r (degree of squeezing) is determined by
the strength of the driving field relative to the dipole coupling strength
(Eq. 16.146) and goes to infinity for 2|Ē0|/g = 1.

We are now in a position to determine the allowed quasienergies E. These
follow from (16.154a) and (16.154b), with the functions A(E) and B(E) taken
from (16.158): from (16.154a) and (16.158), the quasienergy satisfies

n+ 1
2 =

(
E/�

g

)2

e6r + 1
2 , (16.159)
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with corresponding solution to (16.148a)

|P 〉a = D[α(E)]S(η)|n〉a, (16.160)

and from (16.154b) and (16.158) the quasienergy satisfies

n+ 1
2 =

(
E/�

g

)2

e6r − 1
2 , (16.161)

with corresponding solution to (16.148b)

|M〉a = D[α(E)]S(η)|n〉a. (16.162)

Thus, in summary, the quasienergies and corresponding states solving (16.145)
as elementary solutions are, for n = 0,

E = 0, |P 〉a = S(η)|0〉a, (16.163)

[note that (16.161) is not satisfied by any n ≥ 0 if E = 0] and, for n = 1, 2, . . .,

E = ±e−3r
√
n�g,

{ |P 〉a = D[α(E)]S(η)|n〉a
|M〉a = D[α(E)]S(η)|n − 1〉a , (16.164)

where both of the bracketed solutions are admitted for each value (positive or
negative) of quasienergy E.

As a final step, the coefficients cP,M and dP,M in the expansions (16.147a)
and (16.147b) of |ψ̃1

E〉a and |ψ̃2
E〉a must be determined. First, coefficients dP

and dM are written in terms of cP and cM by substituting (16.147a) and
(16.147b) into (16.141a) and equating the coefficients of |P 〉a and |M〉a on
either side of the equation. Then two more relationships are needed. One is
the normalization condition 〈ψ̃E |ψ̃E〉 = 1, and for the second, we can return
to the step taking us from (16.141a) and (16.141b) to (16.142a) and (16.142b).
Consider, specifically, that we multiplied (16.141b) by a to obtain (16.142b).
It follows that a solution to (16.142b) need not necessarily satisfy (16.141b);
we can add a multiple of the vacuum state on the right-hand side of the latter
without altering the former. Thus, we must now impose the requirement that
(16.141b) be satisfied. This provides the fourth relationship needed to fix the
four expansion coefficients. The details of the derivation are left as an exercise.

Exercise 16.8. Show that for the quasienergy E = 0 the expansion coeffi-
cients in (16.147a) and (16.147b) are

cP =
1√
2

√
1 + e−2r, dP = iei arg (Ē0) 1√

2

√
1 − e−2r, (16.165)

cM = dM = 0, and that otherwise, for quasienergies E �= 0, the expansion
coefficients depend only on the sign of the quasienergy, not on n, with

cP = ±i1
2

√
1 + e−2r, dP = ∓ei arg (Ē0) 1

2

√
1 − e−2r, (16.166)
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and

cM = −ie−iarg (Ē0) 1
2

√
1 − e−2r, dM =

1
2

√
1 + e−2r. (16.167)

In writing (16.166) and (16.167), a convenient choice has been made for the
arbitrary phase factor.

According to (16.163) and (16.164), for quasienergy E = 0 the state of the
intracavity field is a squeezed vacuum state, while for nonzero quasienergies it
is formed as a superposition of squeezed and displaced Fock states—|n〉a and
|n−1〉a—entangled with the state of the atom. The threshold from Sect. 16.3.1
emerges through the squeeze parameter r (Eq. 16.146), which tends to infinity
(perfect squeezing) as 2|Ē0|/g → 1. The squeeze parameter also determines
the nonzero quasienergies, through (16.171a) and (16.171b), where the semi-
classical threshold emerges once again. All quasienergies collapse to zero at
2|Ē0|/g = 1, and the above-threshold spectrum is continuous (Fig. 16.9). The
constructed stationary states no longer hold above threshold.

Finally, putting all the pieces together, the stationary states and quasiener-
gies of the Jaynes–Cummings model driven on resonance [interaction picture
Hamiltonian (16.137)] and for 2|Ē0|/g ≤ 1, are the “ground” state

|ψ̃G〉 = S(η)|O(r)〉A|0〉a, (16.168)

quasienergy
EG = 0, (16.169)

and the “excited” state doublets (n = 1, 2, . . .)

|ψ̃n,U 〉 = D[α(En,U )]S(η)
1√
2

[|T (r)〉A|n− 1〉a + i|O(r)〉A|n〉a
]
, (16.170a)

|ψ̃n,L〉 = D[α(En,L)]S(η)
1√
2

[|T (r)〉A|n− 1〉a − i|O(r)〉A|n〉a
]
, (16.170b)

Fig. 16.9. First eight quasienergies plotted as a function of the driving field strength
showing the transition from a discrete to a continuous spectrum at 2|Ē0|/g = 1
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with quasienergies

En,U = +e−3r√n�g, (16.171a)

En,L = −e−3r√n�g, (16.171b)

where

|O(r)〉A ≡ 1√
2

(√
1 + e−2r|1〉A + iei arg(Ē0)

√
1 − e−2r|2〉A

)
, (16.172)

|T (r)〉A ≡ 1√
2

(√
1 + e−2r|2〉A − ie−iarg(Ē0)

√
1 − e−2r|1〉A

)
, (16.173)

and r, η, and α(E) are defined in (16.146) and (16.157). We refer to the
stationary states as the dressed Jaynes–Cummings eigenstates. Note that the
words “ground” and “excited” have been placed in quotes. This is because
they refer to quasienergies, not energies, and the associated states are sta-
tionary in the interaction but not the Schrödinger picture. Indeed, through
(16.139), each stationary state defines a periodic solution to the Schrödinger
equation, expanded in a superposition of an infinite number of terms oscillat-
ing at frequencies (m− 1

2 )ωA+E/�,m = 0, 1, 2, . . .; thus, each dressed Jaynes–
Cummings eigenstate—even the “ground” state—is expanded over the entire
spectrum of bare states—the bare ground state |1〉A|0〉a and all excited states
|1〉A|m〉a, |2〉A|m− 1〉a, m = 1, 2, . . ..

Exercise 16.9. The threshold condition is not the only trace of the semiclas-
sical analysis to surface in the quantum solution. Show that for the “ground”
state (16.168) the state of the atom is the same as that given by the semiclas-
sical solution (16.119b) and (16.119c).

Note 16.9. In the general case of arbitrary detunings between the driving
field and the cavity, and the cavity and the atom, the interaction picture
Hamiltonian (16.137) acquires the additional term 1

2ΔωAσz +�ΔωCa
†a, with

ΔωA ≡ ωA − ω0 and ΔωC ≡ ωC − ω0 [replace ωA by ω0 in (16.135)]. If
ΔωA �= 0 and ΔωC = 0, the solution scheme carries through as before. The
only change is that the operator Ô(E) (Eq. 16.144) acquires the extra term
−(�ΔωA/2)2. Since the operator is still quadratic in a and a†, it can still be
diagonalized by a suitable choice of displacement and squeeze operators. For
nonzero cavity detuning, the solution scheme fails, as Ô(E) is then quartic in
a and a†.

16.3.3 Secular Approximation in the Basis
of Dressed Jaynes–Cummings Eigenstates

The dressed Jaynes–Cummings eigenstates are nondegenerate eigenstates of
the Hamiltonian (16.137). They form an orthonormal basis and may be used
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in place of the bare states or ordinary dressed states (Eqs. 13.189 and 13.190)
to write the master equation in matrix element form. Thus, in the interaction
picture and for the resonant case (ω0 = ωC = ωA), we may write master
equation (13.57) as

˙̃ρEE′ =
1
i�

(E − E′)ρ̃EE′

+
∑

ε,ε′

(
γ〈E|σ−|ε〉〈ε′|σ+|E′〉 + 2κ〈E|a|ε〉〈ε′|a†|E′〉)ρ̃εε′

−
∑

ε

(γ
2
〈E|σ+σ−|ε〉 + κ〈E|a†a|ε〉

)
ρ̃εE′

−
∑

ε

(γ
2
〈ε|σ+σ−|E′〉 + κ〈ε|a†a|E′〉

)
ρ̃Eε, (16.174)

where
ρ̃EE′ ≡ 〈ψ̃E |ρ̃|ψ̃E′〉. (16.175)

We may then remove the trivial time dependence, writing

ρ̃EE′ = e−(i/�)(E−E′)tρ̄EE′ , (16.176)

with ρ̄EE′ ≡ 〈ψE(t)|ρ|ψE′(t)〉 (Eq. 16.139). Then the evolution of matrix
elements ρ̄EE′(t) is due to the cavity and atomic damping alone.

Most generally, the matrix elements obey rather complicated equations of
motion. First, an explicit time dependence is introduced by the transformation
(16.176), and, although only damping terms remain, these terms are far from
simple when written in the basis of dressed Jaynes–Cummings eigenstates;
diagonal and off-diagonal matrix elements are coupled, and in place of the
relatively simple coupling in the bare-state basis (Eq. 16.1), each state, |ψ̃E〉,
is coupled to every other state, |ψ̃E′〉. Nevertheless, the ρ̄EE′-representation
can still be useful if a secular approximation is made.

The secular approximation was popularized by Cohen–Tannoudji and Rey-
naud [16.30] who applied it to resonance fluorescence, where it provides an
appealing understanding of the Mollow spectrum, especially in the strong-
excitation limit. A similar approximation holds here for the limit of strong
nonperturbative coupling—g � κ, γ/2—and sufficiently weak excitation; un-
der these conditions the quasienergy splittings of Fig. 16.9 may be assumed to
be much larger than the level widths. Consider then the equation of motion
for a diagonal density matrix element ρ̄EE . Terms in the equation that couple
to the off-diagonal elements, ρ̃EE′ , oscillate with frequencies (E −E′)/�. As-
suming a slow time variation for ρ̄EE′ , of order (2κ)−1 or γ−1, and integrating
over an interval short compared with this timescale but much longer than the
period of oscillation, the time-averaged oscillatory terms contribute at the or-
der 2κ/|E−E′| or γ/|E−E′|. Similar comments apply to nonresonant terms
in the equation of motion for an off-diagonal matrix element.
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In summary, the secular approximation neglects the time-averaged terms
of order 2κ/|E−E′| or γ/|E−E′| to describe the dynamics on a course-grained
timescale. It drops off-diagonal matrix elements from the equations of motion
for diagonal matrix elements, and keeps only resonant terms [terms that also
oscillate as e−(i/�)(E−E′)t] in the equations of motion for off-diagonal matrix
elements. Thus, coming back to master equation (16.174), for the diagonal
matrix elements we obtain the rate equations in the basis of dressed Jaynes–
Cummings eigenstates

˙̄ρEE =
∑

ε

(γε,E ρ̄εε − γE,ερ̄EE), (16.177)

with
γε,E = γ|〈E|σ−|ε〉|2 + 2κ|〈E|a|ε〉|, (16.178)

where we have used 〈E|(γσ+σ−+2κa†a)|E〉 =
∑
ε γE,ε, which is easily proved

using the completeness relation
∑

ε |ε〉〈ε| = 1. For the off-diagonal elements,
note that resonance between quasienergies occurs with ε = E and ε′ = E′,
and also with ε = −E′ and ε′ = −E; thus, we obtain (E �= E′)

˙̄ρEE′ = −
(
∑

ε

γE,ε + γE′,ε

2
−K

(1)
E,E′

)

ρ̄EE′ +K
(2)
E,E′ ρ̄−E′−E , (16.179)

with

K
(1)
E,E′ ≡ γ〈E|σ−|E〉〈E′|σ+|E′〉 + 2κ〈E|a|E〉〈E′|a†|E′〉, (16.180a)

K
(2)
E,E′ ≡ γ〈E|σ−| − E′〉〈−E|σ+|E′〉 + 2κ〈E|a| − E′〉〈−E|a†|E′〉. (16.180b)

Note 16.10. Frequencies |E −E′|/� may be classified according to whether E
and E′ have the same or opposite signs. For opposite signs, these frequencies
are all larger than g � κ, γ/2. For the same sign, on the other hand, they
can be quite small—for example, choose E = En,U and E′ = En−1,U with
n� 1. It might appear that the latter case creates a problem for the secular
approximation, as matrix elements between basis states having quasienergy of
the same sign are not identically zero. These matrix elements approach zero,
though, as 2|Ē0|/g → 0. Therefore, so long as the excitation is not too strong,
the seemingly troublesome terms may still be neglected.

16.3.4 Spectrum of the Transmitted Light
in the Strong-Coupling and Weak-Excitation Limits

Although the density matrix element equations in the secular approximation
are considerably simpler than for the full master equation, they are still dif-
ficult to work with; evaluating the matrix elements (16.178) and (16.180) is
a daunting task in itself. Noting, however, that the approximation is only valid
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for weak excitation in any case, we may further simplify calculations by mak-
ing a quasienergy truncation. In this section we employ a truncation similar
to the two-quanta truncation of Sect. 16.1.1 and calculate the spectrum of the
transmitted light in the strong-coupling and weak-excitation limits.

The resulting spectrum is the squared-Lorentzian doublet obtained from
the linear theory of fluctuations in Sect. 15.2.6. The ρ̄EE′ -representation is
particularly suited to this derivation as the basis states already incorporate the
source of the squared Lorentzians—the squeezing of Sects. 15.2.5 and 16.1.6.
A quasienergy truncation at the first “excited” state is adequate and provides
a particularly quick route to the spectrum. For comparison, the alternative
derivation carried through by Rice [16.16] adds higher-order terms to the
two-quanta truncation in the bare-state basis. It is considerably more tedious,
and less transparent concerning the role of the squeezing of the intracavity
field. The following calculation expands upon the sketch of Carmichael and
coworkers [16.31].

Truncated at the first “excited” state, the density matrix equations in the
secular approximation, (16.177) and (16.179), describe a birth–death process
with transitions between the three states |ψ̃G〉, |ψ̃1,U 〉, and |ψ̃1,L〉. In steady
state the off-diagonal matrix elements vanish, since they are uncoupled from
the diagonal elements and obey a homogeneous set of equations. The steady
state is the mixed state

ρ̄ss = |ψ̃G〉〈ψ̃G| + pss
1

(|ψ̃1,U 〉〈ψ̃1,U | + |ψ̃1,L〉〈ψ̃1,L|
)
, (16.181)

where pss
1 � 1 is the occupation probability of the first “excited” state dou-

blet. From Sect. 16.1.1 we know that the steady state is pure to lowest order
in |Ē0|/g, with |ψ̃ss〉 given by the two-quanta truncation in the bare-state ba-
sis. This requires |ψ̃G〉 = |ψ̃ss〉, which we verify below. To this lowest-order
approximation, the birth–death process adds the higher orders needed to go
beyond the pure-state factorization and obtain the optical spectrum at dom-
inant order (see the opening paragraphs of Sect. 16.1.6).

Before the calculation of the spectrum can begin, we must find explicit
expressions for the basis states |ψ̃G〉, |ψ̃1,U 〉, and |ψ̃1,L〉, compute the transition
rates γε,E , and solve the rate equations (16.177). The parameters entering the
formulae for the states are given by (16.146) and (16.157). For weak excitation,
2|Ē0|/g � 1, we may write

r =
( |Ē0|

g

)2

, (16.182)

and

η = −
( Ē0

g

)2

, α(E) = −sgn(E)
√
n

2Ē0

g
. (16.183)

Then, substituting for r in (16.172) and (16.173), and expanding the expo-
nentials to lowest order in |Ē0|/g � 1, the atomic part of the “excited” states
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|ψ̃1,U 〉 and |ψ̃1,L〉 evaluates as

|O(r)〉A = |1〉A + i(Ē0/g)|2〉A, (16.184a)
|T (r)〉A = |2〉A − i(Ē∗0/g)|1〉A. (16.184b)

Similarly, from the definitions (9.39) and (9.41) of the squeeze and displace-
ment operators, to lowest order we have

S(η)|0〉a = |0〉a +
1√
2

( Ē0

g

)2

|2〉a, (16.185a)

S(η)|1〉a = |1〉a, (16.185b)

and

D[α(E)]S(η)|0〉a = |0〉a − sgn(E)2
Ē0

g
|1〉a +

1√
2

( Ē0

g

)2

|2〉a, (16.186a)

D[α(E)]S(η)|1〉a = sgn(E)2
Ē∗0
g
|0〉a + |1〉a − sgn(E)2

√
2
Ē0

g
|2〉a. (16.186b)

Thus, from (16.168), (16.184a), and (16.185a), we obtain the dressed Jaynes–
Cummings “ground” state in the limit of weak excitation,

|ψ̃G〉 = |1〉A|0〉a + i
Ē0

g
|2〉A|0〉a +

1√
2

( Ē0

g

)2

|1〉A|2〉a, (16.187)

and from (16.170a), (16.170b), and (16.184a)–(16.186b), the dressed Jaynes–
Cummings first “excited” state doublet,

|ψ̃1,U 〉 = |1, U〉 + i
1√
2
Ē∗0
g
|1〉A|0〉a, (16.188a)

|ψ̃1,L〉 = |1, L〉 + i
1√
2
Ē∗0
g
|1〉A|0〉a. (16.188b)

Exercise 16.10. Show that in the strong-coupling limit, g � 1
2 (κ + γ/2),

the “ground” state (16.187) agrees with the pure state defined by (16.7)
and the steady-state Schrödinger amplitudes (16.29a), (16.29b), (16.32a), and
(16.32b).

Expressions for the transition rates γε,E follow in a straightforward manner.
Using (16.178), (16.187), (16.188a), and (16.188b), the transition rates into
and out of the “ground” state are

γG,G = γ

( |Ē0|
g

)2

, (16.189a)

γG;1,U = γG;1,L = (κ+ γ/2)
( |Ē0|

g

)4

, (16.189b)

γ1,U ;G = γ1,L;G = (κ+ γ/2), (16.189c)
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while the rates for transitions within the “excited” state doublet are

γ1,U ;1,U = γ1,L;1,L = (κ+ γ/2)
1
2

( |Ē0|
g

)2

, (16.189d)

γ1,U ;1,L = γ1,L;1,U = (κ+ γ/2)
1
2

( |Ē0|
g

)2

. (16.189e)

We can now write out the rate equations explicitly. We may ignore the equa-
tion for ρ̄GG since it only adds higher-order corrections to the ansatz ρ̄GG = 1.
Transition rates (16.189d) and (16.189e) may be ignored as well; they con-
tribute further higher-order corrections. The only equations of importance
are those accounting for the excitation and de-excitation of the first “excited”
states. Thus, we obtain the rate equations in the limit of weak excitation
within the secular approximation in the basis of dressed Jaynes–Cummings
eigenstates :

˙̄ρ1,U ;1,U = −(κ+ γ/2)ρ̄1,U ;1,U + (κ+ γ/2)
( |Ē0|

g

)4

ρ̄GG, (16.190a)

˙̄ρ1,L;1,L = −(κ+ γ/2)ρ̄1,L;1,L + (κ+ γ/2)
( |Ē0|

g

)4

ρ̄GG, (16.190b)

with steady-state solution ρ̄1,U ;1,U = ρ̄1,L;1,L = (|Ē0|/g)4ρ̄GG, or steady-state
density matrix (setting ρ̄GG = 1)

ρ̄ss = |ψ̃G〉〈ψ̃G| +
( |Ē0|

g

)4 (
|ψ̃1,U 〉〈ψ̃1,U | + |ψ̃1,L〉〈ψ̃1,L|

)
. (16.191)

Note how the probability of occupation of the first “excited” state doublet is
of order (|Ē0|/g)4. This probability sets the order of the incoherent part of the
optical spectrum, which we are now in a position to calculate.

The spectrum of the transmitted light is calculated from the Fourier trans-
form of the first-order correlation function of the cavity output field:

T→(ω) =
γa2
2π

∫ ∞

−∞
dτe−iωτ 〈a†(0)a(τ)〉ss,

=
γa2
π

Re
[∫ ∞

0

dτe−iωτ 〈a†(0)a(τ)〉ss
]
, (16.192)

where we use 〈a†(0)a(−τ)〉ss = 〈a†(τ)a(0)〉ss = 〈a†(0)a(τ)〉∗ss. From the quan-
tum regression formula (1.97), the required correlation function is calculated
as (τ ≥ 0)

〈a†(0)a(τ)〉ss = e−iω0τ tr[aeL̃τ (ρ̃ssa
†)]

= e−iω0τ tr[aR̃(τ)], (16.193)
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with
R̃(τ) ≡ eL̃τ (ρ̃ssa

†). (16.194)

Like the density matrix elements themselves, the matrix elements of R̃(τ) obey
the equations of motion (16.174). Our plan is to solve these matrix element
equations in the secular approximation, with the important change from the
above that now a transient solution for the off-diagonal matrix elements is
required.

Continuing with the weak-excitation limit, each matrix element has a dom-
inant order determined by its initial value R̃EE′(0) = 〈E|ρ̃ssa

†|E′〉. From
(16.187), (16.188a), (16.188b), and (16.191), we have

(ρ̃ssa
†)G;1,U = i

1√
2

( Ē∗0
g

)2

, (ρ̃ssa
†)1,U ;G = −i 1√

2

( |Ē0|
g

)4

(ρ̃ssa
†)G;1,L = −i 1√

2

( Ē∗0
g

)2

, (ρ̃ssa
†)1,L;G = i

1√
2

( |Ē0|
g

)4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (16.195)

with all other matrix elements of higher order than (|Ē0|/g)4. We therefore
limit our attention to the four equations (Eqs. 16.179):

˙̄RG;1,U = −[
1
2 (κ+ γ/2)−K

(1)
G;1,U

]
R̄G;1,U +K

(2)
G;1,U R̄1,L;G, (16.196a)

˙̄RG;1,L = −[
1
2 (κ+ γ/2)−K

(1)
G;1,L

]
R̄G;1,L +K

(2)
G;1,LR̄1,U ;G, (16.196b)

˙̄R1,U ;G = −[
1
2 (κ+ γ/2)−K

(1)
1,U ;G

]
R̄1,U ;G +K

(2)
1,U ;GR̄G;1,L, (16.196c)

˙̄R1,L;G = −[
1
2 (κ+ γ/2)−K

(1)
1,L;G

]
R̄1,L;G +K

(2)
1,L;GR̄G;1,U , (16.196d)

where
R̄EE′ ≡ e(i/�)(E−E′)tR̃EE′ . (16.197)

K
(1)
E,E′ and K

(2)
E,E′ are to be evaluated from (16.180a) and (16.180b), using

the dressed Jaynes–Cummings eigenstates (16.187), (16.188a), and (16.188b).
The first coefficient is of order (|Ē0|/g)2 for all relevant E and E′; thus, it
makes negligible corrections to the damping rate 1

2 (κ+γ/2). Furthermore, the
second coefficient need not be evaluated in (16.196a) and (16.196b), since the
terms proportional to this coefficient may be dropped; according to (16.195),
the dominant order of the two equations is (|Ē0|/g)2, while the dropped terms
involve matrix elements of order (|Ē0|/g)4. There are then just two coefficients
to evaluate, for which we find

K
(2)
1;U ;G = K

(2)
1;L;G = (κ+ γ/2)

( Ē0

g

)2

. (16.198)

The resulting equations of motion are

˙̄RG;1,U = − 1
2 (κ+ γ/2)R̄G;1,U , (16.199a)

˙̄RG;1,L = − 1
2 (κ+ γ/2)R̄G;1,L, (16.199b)
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and

˙̄R1,U ;G = − 1
2 (κ+ γ/2)R̄1,U ;G + (κ+ γ/2)

( Ē0

g

)2

R̄G;1,L, (16.199c)

˙̄R1,L;G = − 1
2 (κ+ γ/2)R̄1,L;G + (κ+ γ/2)

( Ē0

g

)2

R̄G;1,U , (16.199d)

with solutions

R̄G;1,U (τ) = i
1√
2

( Ē∗0
g

)2

e−
1
2 (κ+γ/2)τ , (16.200a)

R̄G;1,L(τ) = −i 1√
2

( Ē∗0
g

)2

e−
1
2 (κ+γ/2)τ , (16.200b)

and

R̄1,U ;G(τ) = −i 1√
2

( |Ē0|
g

)4{−1 + 2
[
1 + 1

2 (κ+ γ/2)τ
]}
e−

1
2 (κ+γ/2)τ ,

(16.200c)

R̄1,L;G(τ) = i
1√
2

( |Ē0|
g

)4{−1 + 2
[
1 + 1

2 (κ+ γ/2)τ
]}
e−

1
2 (κ+γ/2)τ .

(16.200d)

With these we can evaluate the trace in (16.193) and the optical spectrum
from (16.192).

The effect of squeezing on the spectrum enters through the equations of
motion (16.199c) and (16.199d), where each matrix element, R̄1,U ;G or R̄1,L;G,
couples to a conjugate element—respectively to R̄G;1,L and R̄G;1,U ; compare
the two-mode coupling in (9.183a) and (9.183b). As a result of this coupling
and the degeneracy of the decay rates, solutions (16.200c) and (16.200d) do not
exhibit the usual exponential decay, but include terms decaying as (1+ τ̄ )e−τ̄ ,
where τ̄ ≡ 1

2 (κ+γ/2)τ . The Fourier transform of such a decay is a Lorentzian
squared.

To complete the derivation of the spectrum and explicitly reveal its
squared-Lorentzian form, from (16.193), and employing the truncation at the
first “excited” state doublet, we have

eiω0τ 〈a†(0)a(τ)〉ss = 〈ψ̃G|a|ψ̃1,U 〉R̃1,U ;G(τ) + 〈ψ̃G|a|ψ̃1,L〉R̃1,L;G(τ)

+ 〈ψ̃1,U |a|ψ̃G〉R̃G;1,U (τ) + 〈ψ̃1,L|a|ψ̃G〉R̃G;1,L(τ).
(16.201)
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Then, using (16.187), (16.188a), and (16.188b), the matrix elements of a in
the dressed Jaynes–Cummings basis are

〈ψ̃G|a|ψ̃1,U 〉 = i 1√
2
, 〈ψ̃1,U |a|ψ̃G〉 = −i 1√

2

(Ē0/g
)2

〈ψ̃G|a|ψ̃1,L〉 = −i 1√
2
, 〈ψ̃1,L|a|ψ̃G〉 = i 1√

2

(Ē0/g
)2

⎫
⎬

⎭
. (16.202)

It follows that (τ ≥ 0)

〈a†(0)a(τ)〉ss = 2
( |Ē0|

g

)4

e−[ 12 (κ+γ/2)+iω0]τ
[
1 + 1

2 (κ+ γ/2)τ
]
cos(gτ),

(16.203)

where we have used (16.197) with E1,U = �g and E1,L = −�g. Substituting
(16.203) into (16.192) and carrying out the Fourier transform, we arrive at
the spectrum of the transmitted light, the single-atom vacuum Rabi doublet
with squeezing-induced linewidth narrowing,

T→(ω) = γa2

( |Ē0|
g

)4
{

2
[
1
2 (κ+ γ/2)

]3
/π

{[1
2 (κ+ γ/2)

]2 + (ω − ω0 + g)2}2

+
2
[
1
2 (κ+ γ/2)

]3
/π

{[1
2 (κ+ γ/2)

]2 + (ω − ω0 − g)2}2

}

. (16.204)

This spectrum should be compared with the many-atom result (15.141).

Note 16.11. The Fourier transform yielding the Lorentzian squared may be
performed using

1
π

Re
∫ ∞

0

dτe−iωτ (1 +Kτ)e−Kτ =
1
π

Re
(

1 −K
d

dK

)∫ ∞

0

dτe−(K+iω)τ

=
1
π

Re
[

1
K + iω

+
K

(K + iω)2

]

=
2K3/π

(K2 + ω2)2
. (16.205)

16.3.5 The
√

n Anharmonic Oscillator

The dressed Jaynes–Cummings eigenstates of Sect. 16.3.2 show a number of
features that may be connected with the phenomenon of spontaneous dressed-
state polarization (Sect. 16.3.1): the threshold at 2|Ē0|/g = 1.0 and a “ground”
state (Eq. 16.168) that is a fully quantum mechanical version of the below-
threshold semiclassical steady state (Eqs. 16.119b and 16.119c). We would
now like to say something more about spontaneous dressed-state polariza-
tion; in particular, we wish to identify the broken-symmetry steady states
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above threshold within a fully quantum-mechanical analysis. To do so, in
this section we exploit a relationship between the driven Jaynes–Cummings
model and the

√
n anharmonic oscillator model introduced by Chough and

Carmichael [16.32]. The two models agree closely far above threshold, and
even show similar behavior throughout the threshold region.

We return to the standard Jaynes–Cummings eigenstates (Eqs. 13.189a
and 13.189b) and introduce the ladder operators

Û ≡ |G〉〈1, U | +
∞∑

n=1

√
n+ 1|n,U〉〈n+ 1, U |, (16.206a)

L̂ ≡ |G〉〈1, L| +
∞∑

n=1

√
n+ 1|n,L〉〈n+ 1, L|. (16.206b)

These operators are similar to annihilation operators for independent Boson
modes, but the identification is not exact because the two ladders of states,
one connecting the upper dressed states and the other the lower, begin out of
the same ground state |G〉. The split ladder is illustrated in Fig. 16.10. The
one common state means that the modes are not strictly independent, and
satisfy commutation relations

[Û , Û †] = P̂U + |G〉〈G|, [L̂, L̂†] = P̂L + |G〉〈G|, (16.207a)

and
[Û , L̂†] = |1, L〉〈1, U |, (16.207b)

where P̂U and P̂L are projectors onto the two branches of excited states:

P̂U ≡
∞∑

n=1

|n,U〉〈n,U |, P̂L ≡
∞∑

n=1

|n,L〉〈n,L|. (16.208)

Independence of the modes is prevented by the appearance of the projector
|G〉〈G| in (16.207a), and the nonvanishing of the commutator (16.207b). Note,
however, that for excitations far above the ground state, the commutators
might be replaced by [Û , L̂†] = 0 and [Û , Û †] = [L̂, L̂†] = 1.

We now build upon this picture of the Jaynes–Cummings spectrum as two
loosely joined energy-level ladders by writing the Jaynes–Cummings Hamilto-
nian in terms of the defined ladder operators and expanding the field annihila-
tion operator in the driven Jaynes–Cummings Hamiltonian as far as possible
in the same way. The details are left as an exercise:

Exercise 16.11. Show that the Hamiltonian (16.133) of the driven Jaynes–
Cummings model can be written in the resonant case (ω0 = ωC = ωA) as

HS + 1
2�ωA

= 0|G〉〈G| +
(
�ωAÛ

†Û + �g
√
Û †Û

)
+
(
�ωAL̂

†L̂− �g
√
L̂†L̂

)

+ �(Ē0e
−iωAta† + Ē∗0 eiωAta). (16.209)
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Fig. 16.10. The split ladder of Jaynes–Cummings eigenstates. Arrows show how
the detuning of resonant excitation (ω0 = ωC = ωA) decreases with increasing level
of excitation

Show also that the annihilation operator for the cavity mode may be written
in the form

a = Û + L̂− |G〉
(
a〈1|A〈1| +

√
2a〈0|A〈2|

)

−
∞∑

n=1

(√
n+ 1 −√

n
)(|2〉〈2|)A

(|n− 1〉〈n|)a. (16.210)

At high levels of excitation, the expansion (16.210) of the annihilation operator
may be simplified as a = Û + L̂, since the factors

√
n+ 1 −√

n are all small;
hence, for high excitation, we may write Hamiltonian (16.209) as a sum of
two parts,

HS +
1
2

�ωA = H+√
n

+H−√
n
, (16.211)

with

H+√
n
≡ �ωAÛ

†Û + �g
√
Û †Û + �(Ē0e

−iωAtÛ † + Ē∗0 eiωAtÛ), (16.212a)

H−√
n
≡ �ωAL̂

†L̂− �g
√
L̂†L̂+ �(Ē0e

−iωAtL̂† + Ē∗0 eiωAtL̂). (16.212b)

Now if we regard U and L as independent bosons, H+√
n

and H−√
n

each define
a
√
n anharmonic oscillator driven away from resonance. The anharmonicity

arises from an excitation-dependent detuning: detunings of ±�g for transi-
tions from the ground to the first excited state, evolve with increasing n to
±�g

(√
n+ 1−√

n
) ≈ ±�g/2

√
n for transitions between highly excited states.
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Let us now add a small cavity damping, κ� g, and consider, for example,
excitation of the U -oscillator using master equation

ρ̇ =
1
i�

[H+√
n
, ρ] + κ(2Û †ρÛ − Û †Ûρ− ρÛ †Û). (16.213)

Two conclusions readily follow: (i) for weak driving fields, since single-photon
excitation is far from resonance, a small steady-state mean photon number
will result,

〈a†a〉ss ≈
∣
∣
∣
∣

Ē0

κ+ ig

∣
∣
∣
∣ ≈

( |Ē0|
g

)2

; (16.214)

and (ii) for driving fields sufficiently strong to drive multiphoton transitions
past the first few excited states, high-level excitation becomes quasi-resonant
(detuning g/2

√
n), and

〈a†a〉ss ≈
∣
∣
∣
∣∣

Ē0

κ+ ig/2
√〈a†a〉ss

∣
∣
∣
∣∣

2

⇒ 〈a†a〉ss ≈
( Ē0

κ

)2

−
( g

2κ

)2

. (16.215)

Equation 16.215 is in agreement with the square of the semiclassical intracav-
ity field amplitude (16.124).

The steady-state photon number computed for the
√
n anharmonic oscil-

lator model with damping is plotted in Fig. 16.11. It agrees well with our two
conclusions.

Of course, details given by the
√
n anharmonic oscillator model are a rather

poor approximation to the real thing. We know, for example, that the mean
photon number below threshold is of order (|Ē0|/g)4 (Eqs. 15.113 and 16.203),
not of order (|Ē0|/g)2 as given by (16.214). This difference comes about from
an interference between the two possible pathways for excitation out of the
ground state. In fact, quantum fluctuations associated with the competition
between pathways are missing entirely—below threshold, at threshold, and
even well above threshold. Nevertheless, Fig. 16.11 mirrors Fig. 16.6 in its

Fig. 16.11. Mean photon number as a function of driving field strength for the
√

n
anharmonic oscillator with g/κ = 10
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essential features: it shows a smoothed out transition at 2|Ē0|/g = 1, and
the same offset from 〈a†a〉ss = (|Ē0|/κ)2 in the strong-excitation limit arising
from quasiresonant excitation up one or the other Jaynes–Cummings lad-
der. Thus the phenomenon of spontaneous dressed-state polarization is cap-
tured in broad outline, with the shortcoming that the symmetry breaking has
been introduced by hand. To conclude the chapter, let us briefly review what
a direct numerical solution of the master equation reveals about how quantum
fluctuations, in fact, execute the symmetry breaking.

16.3.6 Quantum Fluctuations for Strong Excitation

The limit of “zero system size” takes γ = γh → 0 with nsat = γ2/8g2 → 0. We
investigated the limit in Sect. 16.3.1 by neglecting quantum fluctuations alto-
gether. There we uncovered the new semiclassical stationary states (16.119a)–
(16.122c). In Sects. 16.3.2 and 16.3.5 we discovered that the main features
of the semiclassical analysis are recovered from a fully quantum-mechanical
treatment: the threshold at 2|Ē0|/g = 1 and the above-threshold dressed-state
polarization. It remains to put the pieces together by solving the master equa-
tion for the limit of “zero system size.”

The numerical results presented in this section reproduce those reported by
Alsing and Carmichael [16.22]. They illustrate the behavior of the steady-state
solution to master equation (13.57) for the case of resonant dipole coupling
(ωA = ωC) and resonant excitation of the cavity mode (ω0 = ωC). Figure 16.12
corresponds to the limit of “zero system size.” Here, with γ = 0, the steady
state is established through cavity damping alone.

A number of features are worthy of note. First, the mean photon num-
ber, shown in frame (a), reproduces the threshold behavior deduced from the
Maxwell–Bloch equations (Fig. 16.6), with the transition region smoothed
out by fluctuations as we would expect. Note again how much the behavior
differs from that deduced from a small-noise analysis of absorptive optical
bistability (the light dashed line in the figure). Second, if we compare the

√
n

anharmonic oscillator (Fig. 16.11), the plot of Fig. 16.12a is similar, but the
fluctuations clearly behave differently in the threshold region. The importance
of fluctuations near threshold is illustrated, for example, by Fig. 16.12c.

Finally, the most significant thing to note does not concern the station-
ary states themselves, but rather their stability. Recall from Sect. 16.3.1 (be-
low Fig. 16.8) that the semiclassical stationary states above threshold are
nonstable—they are the foci of an infinite family of cyclic asymptotic so-
lutions (nonstable limit cycles or Volterra-Lotka cycles). As such, we might
expect fluctuations to smear the asymptotic distribution across the whole fam-
ily of solutions—across the entire surface of the Bloch sphere and through-
out a corresponding contiguous region in the phase plane of the field. This
is indeed what happens for many atoms and weak coupling, where a small-
noise analysis is justified (Note 16.8). In contrast to the expectation, though,
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Fig. 16.12. Quantum fluctuations in spontaneous dressed-state polarization for
g/κ = 10 and γ/2κ = 0. (a) Steady-state photon number (solid line) compared
with the semiclassical stationary states (16.119a)–(16.122c) (dashed line) and the
stable steady states of optical bistability (16.126a)–(16.127b) (light dashed line). The
steady-state Wigner distribution is plotted for (b) 2|Ē0|/g = 0.9, (c) 2|Ē0|/g = 1.0,
and (d) 2|Ē0|/g = 1.1

Fig. 16.12d shows that for one atom and strong coupling the semiclassical sta-
tionary states are “attractors” in the full quantum-mechanical treatment; for
stronger excitation than that used in the figure the steady-state Wigner distri-
bution approaches two isolated Gaussians, the quantum state corresponding
to a mixture of coherent states with amplitudes (16.122a). In short, as with
the degenerate parametric oscillator (Sect. 12.1.8), in the limit of small sys-
tem size a situation is encountered where the notion of semiclassical dynamics
plus “fuzz” does not provide even an approximate starting point for under-
standing the quantum dynamics. In this limit, we must turn to the spectrum
of the Hamiltonian HS , as we did in Sects. 16.3.2 and 16.3.5, and rethink
the physics for a situation where the internal coupling is sufficiently strong to
produce (few-quantum) energy-level shifts and splittings in excess of the level
widths.

Note 16.12. Coherent driving of the cavity mode can be replaced by coher-
ent driving of the atom without fundamentally altering the behavior. Den-
sity operators satisfying the different master equations are related through
a displacement of the cavity field. In particular, the solution to (13.57) with
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driving field amplitude Ē0 is recovered from the solution to the driven-atom
master equation with driving field amplitude −gĒ0/κ; the former solution is
obtained from the latter through a displacement of magnitude Ē0/κ [16.22].
This flexibility was used when computing the Wigner distributions displayed
in Figs. 16.12 and 16.13, where improved numerical accuracy was achieved by
driving the atom and cavity mode simultaneously with parameters chosen so
that the mean steady-state amplitude of the field was zero; the Wigner distri-
bution for pure cavity driving was then recovered by appropriately displacing
the computed distribution.

The story remains unfinished so long as we have considered only the strict
“zero system size” limit. The limit helped us uncover the phenomenon of
spontaneous dressed-state polarization, but it yields a structurally unstable
model, since the behavior with γ = 0 is constrained by the conservation
law (16.118)—or, more precisely, when quantum fluctuations are included by
4〈J̃+J̃−〉 + 〈Jz〉2 = N(N + 2). The conservation law is broken for nonzero
γ. To complete the story, then, we must consider how spontaneous emission
changes the picture presented in Fig. 16.12

Results for γ/2κ = 1 are displayed in Fig. 16.13. The behavior of the mean
photon number shows a significant change, with movement in the direction of
what might be predicted from the steady states of absorptive optical bistabil-
ity. In fact, as Fig. 16.13c shows, the threshold region is now an amalgamation
of the bimodality of absorptive bistability—the double-peaked character in the
x-dimension—and the bimodality associated with spontaneous dressed-state
polarization—the double peak in the y-dimension. Only the latter remains in
evidence above threshold, where the general shape of the Wigner distribution
shown in Fig. 16.13d persists as the strength of the excitation is increased;
the distribution is simply displaced further and further along the x-axis.

What, then, is happening above threshold to explain the difference be-
tween Figs. 16.12d and 16.13d? Observe first that a spontaneous emission puts
the atom into its ground state |1〉A—i.e., into a superposition of the dressed
states |U〉 =

(|2〉A + i|1〉A
)
/
√

2 and |L〉 =
(|2〉A − i|1〉A

)
/
√

2. We might now
start from the picture of spontaneous dress-state polarization without spon-
taneous emission and assume that the system is polarized along the U -branch
(Fig. 16.10) prior to the emission. Thus, prior to the emission the atomic state
is |U〉, to a good approximation, and factorized from the field state (assuming
a position well up the ladder of states). Now after the spontaneous emission,
with the transition to atomic state |1〉A, the system is no longer localized on
the U -branch; in fact it is no longer on either branch. The field state remains
localized on the U -branch, but the atomic state is a superposition of one state
lying on the U -branch and another lying on the L-branch.

The subsequent evolution may be unclear. We must expect, though, that it
attempts to return the system to one or other of the stationary states, to one
or other of the self-consistent dressed states. Either the atomic state returns
to |U〉 and the system remains polarized on the U -branch, or the system
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Fig. 16.13. Quantum fluctuations in spontaneous dressed-state polarization for
g/κ = 10 and γ/2κ = 1. (a) Steady-state photon number (solid line) compared
with the semiclassical stationary states (16.119a)–(16.122c) (dashed line) and the
stable steady states of optical bistability (16.126a)–(16.127b) (light dashed line). The
steady-state Wigner distribution is plotted for (b) 2|Ē0|/g = 0.9, (c) 2|Ē0|/g = 1.0,
and (d) 2|Ē0|/g = 1.1

polarization switches to localize on the L-branch. If the second option is taken,
the phase of the intracavity field must switch. The “skirt” connecting the
peaks in Fig. 16.13d [compare Fig. 16.12d] is a result of the phase switching.

Alsing and Carmichael [16.22] have provided a mathematical formulation
to verify this picture. Kilin and Krinitskaya [16.33] provide another treatment.
Summarizing the model of Alsing and Carmichael, well above threshold, the
state of the cavity field at time t is to a good approximation a coherent state
|α̃(t)〉 whose complex amplitude obeys the stochastic equation

dα̃

dt
= −(κ+ iεg/2|α̃|)α+ iĒ0, (16.216)

where ε = ±1 is a random number that either switches sign or does not switch
sign (with 50/50 probability) whenever there is a spontaneous emission; spon-
taneous emissions occur randomly at rate γ/2. The term iεg/2|α̃| in (16.215)
represents the detunings, either +g/2

√
n or −g/2√n, of the two ladders of

states in Fig. 16.10. A typical phase-space trajectory of the field amplitude is
shown in Fig. 16.14. If we now imagine the Wigner distribution that repre-
sents |α̃(t)〉—a stochastic Wigner distribution—and average it over time, we
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recover the Wigner distribution of a mixed state, one looking just like the
distribution plotted in Fig. 16.13d.

The main point for us to appreciate is that the phase switching, which
is macroscopic, is initiated by a single quantum event, a single spontaneous
emission. Consequently, the fluctuations have nothing in common with those
envisaged by the system size expansion, where the outcomes of single-quantum
events are assumed microscopic with only their accumulated effect appearing
as a diffusion process at the macroscopic level.

There is a second, less obvious point to note. With the introduction of
equation (16.216), we have slipped from our earlier discussions of stochastic
processes in phase space into a discussion of a stochastic process in Hilbert
space, which is correlated with (conditioned on) detectable scattering events:
a stochastic process in Hilbert space; one conditioned on a record of scat-
tering events. These are the themes of quantum trajectory theory; in fact,
Fig. 16.14 is a reproduction of one of the earliest applications of quantum
trajectories [16.22]. The final three chapters of the book will teach us how
a representation of quantum fluctuations like that depicted in Fig. 16.14 can
be formulated in a systematic way.

Fig. 16.14. A typical switching trajectory for spontaneous dressed-state polariza-
tion: (a) real part of the field amplitude, (b) imaginary part of the field amplitude.
The parameters are g/κ = 10, γ/2κ = 1, and 2|Ē0|/g = 2.0. The dashed line shows
the trajectory in the absence of the atom
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Note 16.13. The polarization of a pseudo-spin in the presence of an external
laser field and a quantized cavity field can be seen as an analog of the polariza-
tion of a real spin in a Stern–Gerlach apparatus. The analogy has been worked
out by Carmichael and coworkers [16.34]. From the analogy, it is clear that
the ideas carry over to any number of atoms; the only change is the increase
in the number of available spin states. See Kochan and coworkers [16.35] for
a discussion of the two-atom generalization.
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Quantum Trajectories I:

Background and Interpretation

We have discussed many things in the last eight chapters, but there have
been just two overriding themes. Both arise from a consideration of the phase-
space methods which account so effectively for the quantum fluctuations of
laser light (Chap. 8). First, there is the issue of nonclassical fluctuations
(Chaps. 9, 10) which led us to an investigation of the positive P representa-
tion (Chaps. 11 and 12). The second, interrelated theme, concerns the scaling
of fluctuations with system size. After introducing the topic by way of the
positive P representation (Chap. 12), we were led to a study of cavity QED
(Chaps. 13– 16) which provides an experimentally accessible realization of the
limit of small system size (large quantum noise).

Our grand conclusion from all of this is that the methods which provide
a satisfying visualization of quantum fluctuations for the laser fail more gen-
erally. In fact, it is not only the visualization that is lost, but also the utility of
the phase-space approach for calculating correlation functions and moments.
The foundation upon which the phase-space methods rest is not simply the
existence of a representation for quantum states, but the existence of an ac-
cessible and analyzable classical stochastic process—specifically, a phase-space
diffusion process. While the positive P representation might extend the phase
space to accommodate nonclassical noise, its target remains unaltered; it aims
to find a classical stochastic process whose correlation functions and moments
are mapped, via some ordering rule, to those of the quantum mechanical prob-
lem. For all but a few model examples, the system size expansion is needed
to access such a pseudo-classical accounting of quantum fluctuations. Ulti-
mately, then, nonclassicality remains as the central issue. The phase-space
paradigm is a classical noise paradigm. Reasonably, we can expect a quantum
stochastic process to differ from it in fundamental ways. Quantum statistics
is founded on probability amplitudes, not probabilities, and surely this intro-
duces subtleties. One might wonder, for example, how phase-space diffusion
is to account for the intricacies of entangled states.

We have set no firm formal bounds on what can be achieved with the
phase-space approach. Precisely circumscribing the limits is not so easy and
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leads us into questions of interpretation; in particular, the question of a def-
inition for what is, and is not, “nonclassical” (see Note 9.19). We have seen,
for example, that both the Wigner representation and the Q representation
make the squeezed fluctuations of the degenerate parametric oscillator appear
classical (Sect. 10.1.2); also, the positive P representation exists for entangled
states of the electromagnetic field and has been used to treat correlations
of the Einstein–Podolsky–Rosen type [17.1]. Against this, we have seen that
nonlinearity is a decisive factor. Nonlinearities cause the Wigner and Q rep-
resentations to lose their ability to make quantum fluctuations look classical
(Sect. 10.1.2, Note 15.2). Strong nonlinearity presents the positive P repre-
sentation with profound difficulties (Sect. 12.2).

In this chapter and what follows we explore a new approach to the formu-
lation of a quantum stochastic process. We use the name quantum trajectories
or quantum trajectory theory (the terminology originates in Sect. 5 of [17.2]);
others speak of the quantum Monte Carlo wavefunction method [17.3] or sim-
ply Monte Carlo wavefunction simulations of the master equation [17.4,17.5].
The approach is not founded upon a particular representation of the density
operator. It sets up a stochastic process that is fully equivalent to the master
equation plus the regression formula for time- and normal-ordered correla-
tion functions. It is a quantum stochastic process in its conception. Of course,
we can work directly with the master equation and regression formula them-
selves, as we have done in Chap. 16. When doing this we are surely working,
formally, with a quantum stochastic process; nevertheless, the central feature
of a stochastic evolution, the feature that yields visualizable realizations or
“trajectories”—i.e., the playing out of probabilistic decisions over time—is
missing if we limit ourselves to this type of activity. The master equation
and regression formula constitute a mathematical apparatus to tell us about
ensemble-averaged quantities. They reveal nothing of the stochastic realiza-
tions from which the ensemble is made up, and cannot, for example, pro-
vide a Fig. 16.14 to illuminate Fig. 16.13. We wish to do more than calculate
ensemble-averaged quantities. We wish to regain the appeal of the phase-space
methods in providing a path to an explicit stochastic process with visualizable
realizations of the quantum fluctuations.

A glimpse of the stochastic process underlying a quantum master equa-
tion first crept into quantum optics from mathematical physics, principally
through the work Davies [17.6] and Lindblad [17.7], and the quantum dynam-
ical semigroup approach to open quantum systems. The connection between
a Davies process, a trajectory of realized events (photocounts in this case), and
a quantum optics master equation was, however, unclear for a long time, and
the early ideas from mathematical physics had little impact on mainstream
quantum optics. Looking around more widely, there is now an extensive math-
ematical physics literature relevant to stochastic processes in quantum optics.
Much of it is focused on technical questions of a kind swept aside by quantum
opticians, in their informal recourse to the Markov approximation. There is
a considerable amount of work on the quantum stochastic calculus [17.8,17.9],
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for example, which provides a stochastic formulation within the Heisenberg
picture, at the level of S⊗R. Quantum Langevin equations, like those met in
Sects. 7.3.3 and 9.3.1, fall within its scope, as does the input–output theory of
Gardiner and Collet [17.10]. The theory of dilations of a quantum dynamical
semigroup [17.8, 17.9, 17.11, 17.12, 17.13] is also relevant to quantum optics.
Interestingly, a dilation moves in the opposite direction to the derivations of
the master equation in Chaps. 1 and 2; it takes us from a master equation
for S (from the generator of a quantum dynamical semigroup) to a unitary
evolution in S ⊗R, or to a realization of the evolution in the language of the
quantum stochastic calculus.

Concrete connections between these and related interests in mathematical
physics and applications in quantum optics are, even today, rather slight. The
work of Barchielli is notable. Barchielli discusses photoelectron counting in
quantum optics [17.14,17.15], and with Lupieri [17.16] has treated the problem
of resonance fluorescence in great detail. Bouten and coworkers [17.17] also
treat resonance fluorescence. Their work is of particular interest as it has the
explicit objective of showing how quantum trajectory theory may be fitted into
the rigorous framework developed in mathematical physics. In the following
we make no attempt to match the rigor of the mathematical work. We keep
to our customary physics style.

Quantum trajectory theory sets out in a new direction, but the direction
is not so far removed from things we have already met. In fact, we stum-
bled upon elements of the approach in Sect. 12.1.8; specifically, through the
Dyson expansion (12.102) and the subsequent discussion of switching between
coherent state superpositions, |Aeven〉 and |Aodd〉.

Working ahead from this point, quantum trajectory theory is formulated
as a photoelectron counting theory for photoemissive sources. It was developed
as such by Carmichael and coworkers [17.2,17.18,17.19]. The Dyson expansion
is the quickest path to a connection with photoelectron counts and, indeed,
Davies processes (see Exercise 12.10). Building the topic in this direction is
perhaps not the best way for us to start out, though. Although quite informal
compared with the style in mathematical physics, the typical treatment of
photoelectron counting in quantum optics is sufficiently encumbered, by such
things as quantum fields and superoperators, to obscure the simplicity of
the central ideas upon which quantum trajectory theory is based. There is,
then, some advantage to introducing these ideas without attempting to make
any explicit connections to photoelectron counting theory. We do this in the
present chapter. The systematic development of quantum trajectories from
photoelectron counting is put off until Chap. 18.

17.1 Density Operators and Scattering Records

Considered most broadly, quantum optics deals with the interactions of light
with matter, laying its emphasis on the fluctuations of the light and questions
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about how these fluctuations might be understood in terms of a physical pro-
cess unfolding in time—i.e., the focus is on quantum dynamics. The special
characteristics of laser light are important, because it is the laser, ultimately,
that makes most things of interest in quantum optics possible. Two related
characteristics of laser light are central: (i) the high single-mode photon flux,
which makes it possible to excite a material system far from thermal equilib-
rium where nonlinearities set in, and (ii) that the excitation is coherent, as
implied by the word “single-mode,” or more accurately “single quasimode;”
thus it is possible to induce coherences between highly excited material states,
states reached through the absorption of many quanta. Along with these char-
acteristics comes the important role of radiative decay or dissipation; far from
equilibrium the system maintains its steady state by balancing excitation with
some form of decay.

Throughout this book we have seen many examples that fit this paradigm
and learned a lot about how to analyze their quantum fluctuations. It is useful
before moving on to step back and summarize what, in the big picture, our
approach has been. It starts from the system plus reservoir point of view
introduced in Sect. 1.3, illustrated for specific examples by Figs. 7.7 and 9.4.
From here the development is made in three steps. In the first, attention is
focused on the system; we trace over the reservoir, or what might be called
the system’s environment, and work with the reduced density operator

ρ(t) ≡ trR[χ(t)] =
∑

n

〈En|χ(t)|En〉, (17.1)

where |En〉 denotes an energy eigenstate of the reservoir (environment). We
derive an equation of motion for ρ(t) in the Born–Markov approximation
(Sects. 1.4, 2.2.1, and 2.2.4), which takes the generic Lindblad form [17.7]

ρ̇ = Lρ, (17.2)

with
L =

1
i�

[HS , · ] +
∑

j

γj
2

(2Ôj · Ô†j − Ô†j Ôj · − · Ô†j Ôj). (17.3)

Most of our time has been spent in analyzing this equation. In particular,
phase-space methods were introduced to help with this analysis. Analyzing
the master equation is certainly an important issue, but a largely technical
one. It can be approached in many ways, in many representations, and it is
not a part of our general approach.

The second step takes us back to the level of system plus reservoir. While
derivation of the master equation was carried through in the Schrödinger
picture, we now switch and adopt the Heisenberg picture. We solve Heisenberg
equations of motion for output fields (Sects. 2.3.1 and 7.3.1). Again, the Born–
Markov approximation is used. A typical field operator is expanded as

Ê(+)(r, t) = Ê
(+)
f (r, t) + Ê(+)

s (r, t), (17.4)
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where Ê
(+)
f (r, t) is the free-field operator—the field of the reservoir, or envi-

ronment, with the coupling to the system turned off—and Ê
(+)
s (r, t) is the

source-field operator. The goal and main achievement of the second step is the
derivation of an explicit expression for Ê

(+)
s (r, t) in terms of retarded system

operators; specific examples appear in (2.83), (7.111), (9.116), and (9.117).
The third step makes the connection between steps one and two. Contin-

uing to work in the Heisenberg picture, a regression formula for time-ordered
and normal-ordered correlation functions is derived (Sect. 1.5). When the
reservoir (the input field to the system) is in the vacuum state, the correla-
tion function may be expressed in terms of source fields alone; for example,
we may write

〈Ê(−)
s (r, t)Ê(+)

s (r, t+ τ)〉 = trS{Ê(+)
s (r)eLτ

[
ρ(t− r/c)Ê(−)

s (r)
]}. (17.5)

The right-hand side of this expression depends on operators and superopera-
tors of the system only: operators ρ(t − r/c) and Ê

(+)
s (r) = [Ê(−)

s (r)]†, and
superoperator L. Returning to the Schrödinger picture, the correlation func-
tion can be evaluated by solving master equation (17.2) twice—assuming, of
course, that we know the explicit form of Ê

(+)
s (r).

Quantum trajectory theory makes two changes to this picture. First, in
place of the trace over the environment, it disentangles the system from its
environment, and second, rather than approaching the master equation and
output field calculations as two separate exercises, and being satisfied with the
resulting local description of the system, it lets the output fields—more pre-
cisely the detection of these fields—tell us how the disentanglement should be
made. Through the latter device, quantum trajectory theory provides a non-
local description of the system and its environment taken as a whole, or of the
system and certain classically described elements of the environment (record-
ing or measuring devices).

These few words are hardly sufficient to fully define the altered approach.
In order to clarify it, we might start by recognizing that quantum optics
experiments are scattering experiments. We should not be thinking of a lo-
calized system, with internal fluctuations, as the usual focus of attention on
the master equation tends to imply. We should think of a scattering scenario,
where the system S replaces the potential, V (r), of elementary scattering
theory, and the reservoir, or environment, carries the incoming and outgoing
fields—generally photons in quantum optics, though they might be phonons,
or even atoms. Perhaps the optical tables in a quantum optics laboratory do
not seem to fit the standard picture of a scattering experiment. Nevertheless,
the role of the experimenter is fundamentally the same as in any scattering
scenario: the experimenter, in essence, controls the inputs applied and detects
the generated outputs.

Figure 17.1 illustrates a general scattering scenario in quantum optics.
The figure is schematic. In practice, a lot of nontrivial apparatus might be
involved: optical cavities, beam splitters, polarizers, traps for atoms or ions
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Fig. 17.1. Schematic of a typical scattering scenario in quantum optics

and the like. Once everything is set up, however, the experimenter sits out-
side the interaction region (the system S) controlling inputs and detecting
outputs. Certainly the interaction region differs from that of elementary scat-
tering theory. Generally, it must account for a complex process of excitation
and deexcitation, with the excitation possibly reaching highly excited states.
Most importantly, at least a part of this process is coherent. The interactions
are strong and quasiresonant, and the scattering is not simply a matter of
bouncing a particle off a potential. The scattering of inputs into outputs is
nevertheless what quantum optics experiments are about.

As alluded to above, we tend to lose sight of the scattering scenario once
we get tied up with solving the master equation. The master equation makes
no reference to scattering events. Detail of this kind is averaged away by
the trace (17.1). Quantum trajectory theory aims to bring it back. To arrive
at the quantum trajectory point of view, we recognize that one might con-
struct a scattering record—let us denote it by rec—by counting ingoing and
outgoing particles and noting the times and locations at which the particle
numbers change. This may clearly be done for all outputs by surrounding
the interaction region with detectors. It is also allowed for incoherent inputs,
because incoherent fields admit particle number as a good quantum number
(the phase noise induced by monitoring particle number does not upset the
coherence of an already incoherent field). Coherent light inputs are a different
matter, though. They are, by definition, in a state of uncertain particle num-
ber and well-defined phase. For them, the tracking of particle number is not
applicable, in principle. This presents no problem, however, since coherent in-
puts are boson quantum fields taken to the classical limit, and as such, may be
described by classical waves; they are external fields and may be introduced
as parameters of the system Hamiltonian HS .

Note 17.1. If one insists on not admitting the notion of an external field [17.20]
and asks for coherent inputs (laser inputs) to be described in a fully quantum-
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mechanical way, this may be done by coupling the laser source to the target
system S using the cascaded system version of quantum trajectory theory
(Sect. 19.2). The coherence of the input is then accounted for through an
entanglement of the source and target system states. It is expressed as a pre-
served relative phase between entangled states, rather than as a preserved
absolute phase of an external field. The situation is similar to that discussed
for recent BEC experiments [17.21,17.22,17.23]. As our aim is to disentangle—
to eliminate all operationally meaningless and cumbersome entanglement—we
accept the notion of an external field for coherent inputs as a complement to
the particle counting strategy for outputs and incoherent inputs.

Many-atom cavity QED provides an example of a quantum optics scattering
scenario. The master equation appears in (15.1). Inputs and outputs cor-
responding to this model are illustrated in Fig. 17.2 [except for the elastic
scattering represented in the master equation by the term proportional to
γp (Sect. 2.2.4), which we neglect]. The notation γjA = γ, j = 1, . . . , N , dis-
tinguishes the fluorescence output channels of different atoms; the form of
the master equation assumes the atoms are sufficiently far apart that the
scattering from individual atoms can be resolved (see Notes 6.3 and 15.4).
A particular scattering record is written in this notation as

rec ≡
{

0∅, γa2T1
, ∅, γ

j2
A

T2
, ∅, γ

j3
A

T3
, ∅, γa2

T4
, ∅, γa1

T5
, ∅, γ

j6
A

T6
, ∅, . . .

. . .

}
, (17.6)

with
Tk ≡ [tk, tk + dtk). (17.7)

The sequence of events is time-ordered, 0 < t1 < t2 . . ., and the entries indi-
cate the times and channels of photon detections in the far field, along with
the intervals without detection; the symbol ∅ indicates that no photons are
detected between the events to the left and the right in the sequence, while 0∅
denotes an interval without detection beginning at t = 0. The record (17.6)
is simpler than what we might write down more generally, since the photon
detections are not assigned spatial locations. It is important to state that it
is not the scattering record, but a feasible scattering record. We return to
this point, which is intimately tied up with the interpretation of quantum
trajectories, in Sect. 18.3.1.

Note 17.2. If the scattering from individual atoms is not resolvable, then a sim-
ple record like that of (17.6) cannot be given and the location of the detection
would replace the assignment to a particular atom. An example like this can
be found in the work of Carmichael and coworkers [17.24,17.25] who consider
how quantum trajectory theory applies to the superradiance master equation.
Spatially resolved detections are also important when the atomic center-of-
mass motion is quantized. In this situation the direction of the scattering is
correlated with the direction of the momentum recoil [17.26].
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Fig. 17.2. A specific scattering scenario in many-atom cavity QED. Output chan-
nels γa2 and γa1 carry the forwards and backwards scattering, respectively, of the
coherent input. Undirected scattering (fluorescence) from individual atoms is carried
by output channels γ1

A, γ2
A, . . . , γ7

A

Having recognized the possibility of making scattering records, the strategy
now is to construct an unraveling (decomposition) of the reduced density op-
erator to replace the trace (17.1). The reduced density operator is expanded
in the form

ρ(t) =
∑

REC

P (rec)|ψREC(t)〉〈ψREC(t)|. (17.8)

The unraveling disentangles the state of the system from that of its environ-
ment. The state |ψREC(t)〉 is a conditional state of the system S, the state
of the system given a particular scattering record. If the record is complete,
in so far as it accounts for every scattered particle, the conditional state is
pure. P (rec) is the probability (or probability density, Sect. 18.1.1) for the
particular scattering record to occur. Taking the trace of both sides of (17.8)
yields ∑

REC

P (rec) = 1, (17.9)

which must hold since scattering records are comprehensive and mutually
exclusive: some particular record must occur, and the probabilities of mutually
exclusive events add to unity in the usual way. Although |ψREC(t)〉 refers to
the Hilbert space of S alone, having added the label rec it provides a nonlocal
description of S plus R.

The question now is how to construct |ψREC(t)〉 and P (rec) so that
the expansion (17.8) holds—with ρ(t) satisfying master equation (17.2)—and
P (rec) gives the correct frequency of occurrence for every conceivable record.
The second point is important, because it is the records, or contaminated
versions of them (finite detection efficiency, technical noise, etc.) that must
account for the experimenter’s observations. Of course, agreement with obser-
vations can only be checked in a statistical sense. The statistical agreement
should be a sophisticated one, though, and go beyond the trivial statement
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that average quantities should agree with mean values computed from ρ(t).
The records define a stochastic process in their own right, a process to ac-
count for data sets recorded by an experimenter monitoring the environment.
This process, which is implicit in (17.8), should agree with actual data sets—
certainly with their means, but also with all their correlations. Thus, the aims
that are achieved through the three steps summarized by (17.1)–(17.5) are,
in a sense, all rolled into one when we build our treatment around P (rec)
and |ψREC(t)〉. Assuming we find a way to simulate the scattering records,
we can then, for example, calculate temporal correlation functions by directly
correlating simulated data sets, imitating what is done in the laboratory.

We should perhaps consider an obvious question at this point. Taking
a particular system observable Ô, we are familiar with its usual quantum
mechanical mean 〈Ô(t)〉 = trS [Ôρ(t)], but how should we refer to the quantity
〈ψREC(t)|Ô|ψREC(t)〉? Clearly it is a conditional average, contrasting with
〈Ô(t)〉, which is an unconditional average. We will refer to it as a conditional
expectation, where the word “expectation” is specifically appropriate, because
〈ψREC(t)|Ô|ψREC(t)〉 is an inference; it tells us what we might expect—what
we might expect the value of Ô to be under the condition that the particular
scattering record labeling the state has occurred.

Since the unraveling (17.8) hinges on P (rec), the natural place to start
is with the theory of photoelectron counting; scattering records are photo-
electron counting records. We discuss the photoelectron counting approach in
Sects. 18.1 and 18.2; but there are some new ideas to familiarize ourselves
with first. Although simple enough in conception, formulating a statistical
description in terms of conditional states is not usual in physics. Certainly, in
quantum optics, the traditional emphasis is on unconditional quantities like
ρ(t). It is therefore helpful to see how a simple stochastic evolution appears
using conditional states. It is also helpful to begin with an example that makes
it clear that the basic idea behind quantum trajectories is a shift in the mode
of description, and that this shift can be made for a classical process just as
well; specifically, it does not originate in technical manipulations involving
superoperators and quantum states.

We start from the old-fashioned idea of Bohr–Einstein quantum jumps.
These certainly provide a stochastic account that includes scattering events.
Their principle shortcoming is that they are unable to deal with coherence,
with superpositions of quantum states, though they work just fine for inco-
herent scattering. Let us see how these elementary quantum jump ideas can
be formulated in the language of scattering records and conditional states.
We will find that the language permits a generalization to include the missing
coherence.
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17.2 Generalizing the Bohr–Einstein Quantum Jump

The earliest version of quantum dynamics made no reference to deBroglie
waves, the Schrödinger equation, or Feynman diagrams. It grew out of a semi-
literal acceptance of Planck’s energy quanta [17.27], supported by Bohr’s
model of the hydrogen atom [17.28] and Einstein’s treatment of the photoelec-
tric effect [17.29]. The so-called quantum jump associated with the exchange
of an energy quantum between two systems captures the essence of every-
thing discrete and particle-like in quantum physics. So far as interpretation
goes, a dynamics of quantum jumps and quantum jumps alone, even if it were
stochastic, would be far less troubling than the quantum mechanics we actu-
ally have. The earliest useful quantum dynamics was precisely something of
this sort, proposed by Einstein to explain the approach to thermal equilibrium
of radiation interacting with matter [17.30].

17.2.1 The Einstein Stochastic Process

We are already familiar with Einstein A and B theory from Sects. 2.2.3
and 7.1. Consider a material resonance, a two-state system, coming to equilib-
rium with blackbody radiation. The Einstein stochastic process proposes an
evolution based on the quantum jump scheme illustrated in Fig. 17.3. In our
notation, the Einstein A coefficient is γ (Sect. 2.2.2) and n̄ is the mean photon
number for a mode of the electromagnetic field resonant with the |1〉 → |2〉
transition. The stochastic process is a random telegraph process [17.31] with
transitions between states |1〉 and |2〉 mediated by the absorption and re-
emission (resonant scattering) of thermal quanta. It is usual to ignore the
explicit stochastic character of Einstein theory and reduce the description
to a set of rate equations for state occupation probabilities. Denoting these
probabilities by p1 and p2, they obey the equations of motion

ṗ2 = −γ↓p2 + γ↑p1, (17.10a)
ṗ1 = −γ↑p1 + γ↓p2, (17.10b)

with
γ↓ ≡ γ(n̄+ 1), γ↑ ≡ γn̄. (17.11)

These ideas have remarkable power considering their simplicity. From them
alone, for example, one can write down a statistical theory of the laser, fully
equivalent to the Scully–Lamb master equation (Sect. 7.1.3). A first-principles
derivation of the master equation does little more than elaborate the phys-
ical conditions required for Einstein theory to be valid; we do get derived
expressions for jump rates, like γ, but nothing new emerges in the dynamics.

Filled out as a stochastic process, Einstein theory gives a detailed elabo-
ration of the absorptions and emissions, which may be summarized in a scat-
tering record of the sort defined above. It is straightforward to generate real-
izations of quantum trajectories consisting of a quantum state evolution and
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Fig. 17.3. Quantum jump scheme for the Einstein stochastic process

associated scattering record. We use Monte Carlo rules to decide whether or
not jumps take place within each of a series of time steps of length Δt. At time
t = kΔt, the rules for advancing the state turn on the value of a uniformly
distributed random number rk, 0 ≤ rk ≤ 1:

if state is |2〉 then: 1. compute p↓ = γ↓Δt
2. if p↓ > rk, then |2〉 → |1〉

else |2〉 → |2〉
else (state is |1〉): 1. compute p↑ = γ↑Δt

2. if p↑ > rk, then |1〉 → |2〉
else |1〉 → |1〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (17.12)

where p↓ and p↑ are the probabilities, respectively, for downward and upwards
jumps to take place. It is assumed that Δt is sufficiently small that both p↓
and p↑ are much less than unity. A single realization of this process is an
ongoing random telegraph signal, jumping between states |1〉 and |2〉, with
associated scattering record

rec ≡
{
. . .

. . .
, ∅, γ↑

Tk−1
, ∅, γ↓

Tk
, ∅, γ↑

Tk+1
, ∅, γ↓

Tk+2
, ∅, . . .

. . .

}
. (17.13)

The record is rather monotonous and trivial; only the times of the jumps
contain interesting information.

Bohr–Einstein quantum jumps are appealing because they describe real-
ized events occurring in time. Stochasticity might be unwelcome—“God does
not play dice”—but its status is surely debatable, and probabilities are defi-
nitely not the most curious thing about quantum mechanics. Its deep puzzles
stem from the inadequacy of any description that is either entirely discon-
tinuous (as here) or entirely continuous. Bohr, in particular, was a strong
opponent of the “energy quanta bookkeeping” offered by quantum jumps. His
view was that so much in optics calls for wave interference that one cannot
dispense with the idea of light as an electromagnetic wave. Where, though,
in the Einstein stochastic process is there room for electromagnetic waves?
Together with Kramers and Slater, Bohr attempted to make room by splicing
the electromagnetic waves onto Einstein A and B theory [17.32]. The pro-
posal was inadequate and quickly abandoned, although in retrospect it seems
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to have had more than a little in common with quantum trajectory theory
[17.33, 17.34]. We need not retrace this old ground, however. We simply note
that the limitation of Bohr–Einstein quantum jumps, as Bohr himself rec-
ognized, is the commitment to transitions between stationary states and the
consequent exclusion of any notion of coherence; there is no place for a phase,
of an electromagnetic wave or of anything else. From a modern point of view,
there is no way to retain the appeal of quantum jumps when the atom starts
out in a superposition of states |1〉 and |2〉—when it starts out with a non-
vanishing mean dipole moment. Quantum trajectory theory generalizes the
Bohr–Einstein jump so as to overcome this deficiency.

Before introducing anything new, we need to say something about the
contrasting languages that can be used when describing a stochastic process.
The probabilities p1(t) and p2(t) define the density operator ρ(t). For the
jump scheme of Fig. 17.3, we have

ρ(t) = p2(t)|2〉〈2| + p1(t)|1〉〈1|. (17.14)

This is not, however, a decomposition of the kind envisioned in (17.8). The
labels, 1 and 2, refer to stationary states—energy eigenstates—not to a scat-
tering record, and the probabilities p1(t) and p2(t) describe the unconditional
dynamics. We need to see how a description in terms of conditional dynamics
can be made. In order to keep the records as simple as possible, we set n̄ = 0;
thus, we specialize to the almost trivial example of spontaneous emission.

To illustrate the basic ideas, we have in mind an ensemble of atoms pre-
pared in state |2〉 with probability p2(0), and in state |1〉 with probability
p1(0) = 1 − p2(0). There are clearly two types of trajectories: a trajectory
of the first type (initial state |2〉) executes a quantum jump at some unpre-
dictable time; a trajectory of the second type (initial state |1〉) never executes
a quantum jump. We aim to find a decomposition of the unconditional prob-
abilities, p1(t) and p2(t), in terms of conditional probabilities p2|REC(t) and
p1|REC(t), where the sum over records covers realizations of both trajectory
types. As we will see, records can be defined in two ways: the first leads to
something familiar and serves only to start us thinking about conditional dy-
namics; the second leads to something unfamiliar—a flexible language that
can accommodate the generalization of the Bohr–Einstein jump to quantum
state superpositions.

17.2.2 Conditional Evolution: Trajectories for Known Initial States

The first definition considers the initial state to be included in the record. The
conditional probabilities are trivial since they are always 0 or 1; nevertheless,
we may still decompose the unconditional probabilities as a sum over these
trivial conditional probabilities. To this end, in the spirit of (17.8), we write
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p2(t) = P ({A})p2|{A}(t) + P ({B})p2|{B}(t)

+
∫ t

0

dt′P ({CT ′})p2|{CT ′}(t), (17.15a)

and

p1(t) = P ({A})p1|{A}(t) + P ({B})p1|{B}(t)

+
∫ t

0

dt′P ({CT ′})p1|{CT ′}(t), . (17.15b)

where the records appearing in these expressions are

{A} ≡
{|2〉

0
, ∅t

}
, (17.16a)

{B} ≡
{|1〉

0
, ∅t

}
, (17.16b)

{CT ′} ≡
{|2〉

0
, ∅, γ

T ′
, ∅t

}
. (17.16c)

The first entry of each record specifies the initial state, otherwise the notation
is the same as in (17.6). The record {CT ′}, for example, says the atom begins
at t = 0 in state |2〉, no photon is detected in the interval [0, t′), a photon is
detected at t′ ≤ t—in the interval T ′ ≡ [t′, t′+dt′), and no photon is detected
in the interval [t′ + dt′, t). Note that P ({A}) and P ({B}) are probabilities,
while P ({CT ′}) is a probability density.

Note 17.3. We consider scattering records to be made by detecting photons in
the far field. The time of a detection is therefore retarded relative to the time
of the quantum jump inferred from that detection. For simplicity, we neglect
this detail here, though the retardation is included in Sects. 18.1 and 18.2.

The goal now is to write explicit expressions for all of the pieces appearing in
expansions (17.15a) and (17.15b). The example is so trivial that for the most
part what is needed is obvious. Clearly, the conditional probabilities are

p2|{A}(t) = 1, p2|{B}(t) = 0, p2|{CT ′}(t) = 0, (17.17a)

and
p1|{A}(t) = 0, p1|{B}(t) = 1, p1|{CT ′}(t) = 1. (17.17b)

This leaves the record probabilities and probability densities. It is obvious
that

P ({A}) = p2(t), (17.18)

which is consistent with (17.15a) and the conditional probabilities (17.17a).
Then, since rate equations (17.10a) and (17.10b) (with n̄ = 0) have solution
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p2(t) = p2(0)e−γt, record {A} has probability

P ({A}) = p2(0)e−γt. (17.19a)

It is also obvious that

P ({B}) = p1(0) = 1 − p2(0). (17.19b)

What we should write down for the probability density of record {Ct′} is
possibly not so obvious. A simple way to arrive at the correct result is to
consider the sum over record probabilities (Eq. 17.9). The sum yields

P ({A}) + P ({B}) +
∫ t

0

dt′P ({CT ′}) = 1. (17.20)

So, differentiating with respect to t and making use of (17.19a) and (17.19b),
the probability density is

P ({CT ′}) = P ({CT })|t=t′ = γe−γt
′
p2(0). (17.21)

In fact P ({C′T })/p2(0) is simply the waiting-time distribution for a sponta-
neous emission, given that the atom was prepared in state |2〉 (see Sects. 2.3.6
and 17.3.5).

Let us now put all these pieces together. Introducing the expansions
(17.15a) and (17.15b) into (17.14), the density operator is written as

ρ(t) = P ({A})|ψ{A}(t)〉〈ψ{A}(t)| + P ({B})|ψ{B}(t)〉〈ψ{B}(t)|

+
∫ t

0

dt′P ({CT ′})|ψ{CT ′}(t)〉〈ψ{CT ′}(t)|, (17.22)

where the conditional probabilities have been made redundant by defining
conditional states

|ψ{A}(t)〉 = |2〉, |ψ{B}(t)〉 = |1〉, |ψ{CT ′}(t)〉 = |1〉. (17.23)

Equation 17.22 is an unraveling of the density operator of the sort envisaged
in (17.8). In this case the unraveling is rather obvious and may appear as
little more than so much confusing notation. It does add something to the
unconditional expansion (17.14), though, by explicitly separating out the two
kinds of paths, or trajectories, that may be taken to reach state |1〉: the atom
might be prepared in state |2〉 and at some time t′ jump to state |1〉, or the
atom might be prepared in state |1〉 and remain there forever. The paths are
illustrated in Fig. 17.4. The density operator is expanded as a sum over record
probabilities and conditional states that refer to these paths.

To include the initial state of the atom in the record is not strictly keeping
to the spirit of the scattering point of view. The initial state is a local property
of the atom and not something that can be directly detected in the environ-
ment. Certainly it might be inferred through some form of scattering, but it is
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Fig. 17.4. Two kinds of trajectories followed by the conditional state of a spon-
taneously emitting atom that has been selected from an ensemble with a fraction
p2(0) of the atoms prepared in the excited state. The conditioning is with respect
to records that specify the initial state of the atom (compare Fig. 17.5)

not the kind of primitive information from which scattering records are made
up. Nonetheless, this first way of defining records is useful as it reflects the
way in which we conventionally think; it is more natural to think in terms
of properties that are so than properties to be inferred. Of course, there is
a huge difference between the two, because inferences are rarely definite—they
generally come only with graded likelihoods that “this may be so” or “that
may be so.”

Thus, with our first way of defining records, having introduced definiteness
about the state at the start, it is translated throughout the entire trajectory;
in Fig. 17.4 the state of the atom, |1〉 or |2〉, is definite at every point in
time. In fact, Fig. 17.4a is just the picture we would draw naively to illustrate
a quantum jump between discrete states. Given, then, this built-in commit-
ment to a definite state at all times, this way of defining records leaves no
room at all for talking about superpositions of stationary states. Preparation
of a superposition requires a different way of talking, one that allows the state,
|1〉 or |2〉, to be left uncertain even as we follow the conditional evolution of
a particular atom.

17.2.3 Conditional Evolution: Trajectories for “Blind” Realizations

To set up this “different way of talking,” we remove the initial state from the
record and condition our description on the detection or nondetection of an
emitted photon alone. Consider the following scenario. An ensemble of many
realizations of the kind illustrated in Fig. 17.4 is laid out a priori, from which
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we pick one realization at random. We are not to look to see which kind of
realization we chose—an example like in Fig. 17.4a or the nonjumping case of
Fig. 17.4b. We are, however, told the probability, p2(0), that our choice begins
in state |2〉. We therefore start out with a measure of the likelihood that the
state is |2〉, but we do not definitely know the state.

There is a friend who does know the realization we chose, and he/she
steps through time, in steps of length Δt, telling us at each step whether or
not a spontaneous photon is detected (whether or not a quantum jump of
the atomic state occurs). Our job is to construct the conditional probabilities
p2|REC(t) and p1|REC(t), where in this case the record includes only the in-
formation provided by the friend. As a rule, the definite state of the chosen
realization remains unknown to us; although, perhaps we will come to know it
over time. In this scenario the conditional probabilities quite literally express
our evolving expectation of what the state of the atom is. The immediate
question is: how do these probabilities evolve over time? They surely differ
from those plotted in Fig. 17.4.

It is still possible to write the unconditional probabilities as a sum over
conditional probabilities, as in (17.15a) and (17.15b). We write

p2(t) = P ({D})p2|{D}(t) +
∫ t

0

dt′P ({ET ′})p2|{ET ′}(t), (17.24a)

p1(t) = P ({D})p1|{D}(t) +
∫ t

0

dt′P ({ET ′})p1|{ET ′}(t), (17.24b)

where the records are now

{D} ≡ {0∅t}, (17.25a)

{ET ′} ≡
{

0∅, γT ′, ∅t
}
. (17.25b)

The two records (17.16a) and (17.16b) have collapsed into the single record,
(17.25a), and record (17.25b) is essentially equivalent to (17.16c). The nota-
tion 0∅t indicates an interval [0, t) without a photon detection.

Our goal once again is to write explicit expressions for all the pieces in the
expansion. It is obvious that

p2|{ET ′}(t) = 0, (17.26a)

p1|{ET ′}(t) = 1, (17.26b)

since as soon as our friend tells us a photon has been detected we know
to set p2|REC = 0; thus, in this trivial example, one piece of information
makes the state of the chosen realization definite. What we should write for
the probabilities conditioned on {D} is less clear. Let us come back to this
question after writing down the two record probabilities.

These are straightforward to determine. The probability for no photon
being detected up to time t is the sum of two probabilities, one associated with
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each of the initial states. Using (17.19a) and (17.19b), we have the probability
for no photon detection

P ({D}) = P ({A}) + P ({B}) = e−γtp2(0) + p1(0). (17.27)

It is also clear that if a photon is detected at some time t′, the initial state
must have been |2〉; therefore, according to (17.21),

P ({ET ′}) = P ({CT ′}) = γe−γt
′
p2(0). (17.28)

The sum over record probabilities is of course unity once again:

P ({D}) +
∫ t

0

dt′P ({ET ′}) = 1, (17.29)

where the first term on the left-hand side accounts for the first two terms of
the sum (17.20).

We now come back to the conditional probabilities p2|{D}(t) and p1|{D}(t).
How should we update our expectation about the atomic state when we con-
tinue to hear that no spontaneous photon is detected—when apparently noth-
ing has happened? In quantum mechanics, a “nothing has happened” situation
like this is called a null measurement. It would be incorrect to say that nothing
is learned from hearing that nothing has happened. Something is learned, and
exactly what constitutes the null measurement conditioning to be built into
probabilities p2|{D}(t) and p1|{D}(t). In fact, this null measurement condition-
ing is going to develop into the core idea of quantum trajectory theory. It is
the one thing that makes the “blind” realizations we are considering different
from the conventional way of looking at the Einstein stochastic process, and
it is the essential ingredient that allows the Bohr–Einstein quantum jump to
be generalized to incorporate coherence.

Null measurements have a special place in quantum mechanics, but the
basic ideas are not uniquely quantum mechanical. Perhaps the words “null
measurement” are misleading. More correctly, it is the result of the measure-
ment that is null; the physical conditions to make a spontaneous emission pos-
sible are in place whether or not an emission actually occurs. The occurrence
of no emission in a given interval of time is one of two possible results—the
null result. Conditional evolution given the null result is a statistical notion
arising from the way in which statistical inferences are made. The evolution is
determined by Bayesian inference. There are two alternative ways to deduce
it. The first goes straight to the conditional probability, while the second goes
to an equation of motion for the probability. The first is quicker so we will use
it here; derivation of the equation of motion is postponed until Sect. 17.3.1.

In order to deduce the conditional probability p2|{D}(t), all we need do is
relate it to the joint probability p2∧{D}(t) using Bayes theorem [17.35]. We
write

p2∧{D}(t) = p2|{D}(t)P ({D}). (17.30)



418 17 Quantum Trajectories I: Background and Interpretation

Then clearly p2∧{D}(t) = p2(t), since p2∧{ET ′}(t) = 0; thus,

p2|{D}(t) =
e−γtp2(0)

e−γtp2(0) + p1(0)
, (17.31a)

and since the probabilities sum to unity,

p1|{D}(t) =
p1(0)

e−γtp2(0) + p1(0)
. (17.31b)

Notice how p2|{D}(t) decays to zero for t → ∞ in all cases except when
p2(0) = 0. This goes to the heart of the inference we are making; it expresses
the quite reasonable conclusion that the longer our friend continues to say
“no spontaneous emission is detected,” the more convinced we become that
the chosen realization started in state |1〉 and is never going to jump. Since
a fraction p1(0) of the atoms begin in state |1〉, for this fraction of our “blind”
realizations there will be no jump. Instead, our expectation that the atom is in
state |1〉 increases continuously, to eventually reach unity. For the remaining
fraction p2(0) of the realizations, our friend informs us that a spontaneous
photon is detected at some time t′, at which time our expectation that the
atom is in state |1〉 jumps discontinuously to unity. Thus, as before, there are
two kinds of paths, or trajectories, for the conditional probabilities, but now
they appear as in Fig. 17.5.

Note 17.4. The jumps in quantum trajectory theory are not strictly discon-
tinuous. There is an implied course-graining in time. Monte Carlo simula-
tions (Sect. 17.3.4) use a nonzero time step set by practical considerations.
It would normally be maximized, keeping in mind the constraint that the
net jump probability per time step (all outputs) be much less than unity. So
far as physics is concerned, however, the more important point is that there
is a loosely defined lower bound on the time step, which is assumed large
compared to the period of the transition resonance. This follows from the
separation of timescales assumed by the Markov approximation (Sect. 1.3.3).

Putting the pieces together for our “blind” realizations, we arrive at an alter-
native unraveling of the density operator. In this instance, we cannot write it
down in quite the same form as in (17.22) because the initial condition is not
known as a definite pure state, |1〉 or |2〉, but only as the probabilities p1(0)
and p2(0). The unraveling is made in terms of mixed states; thus, in place of
(17.8) we write

ρ(t) =
∑

REC

P (rec)ρREC(t). (17.32)

Its explicit form for “blind” realizations of spontaneous emission is

ρ(t) = P ({D})ρ{D}(t) +
∫ t

0

dt′P ({ET ′})ρ{ET ′}(t), (17.33)
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with
ρ{D}(t) = p2|{D}(t)|2〉〈2| + p1|{D}(t)|1〉〈1|, (17.34a)

and
ρ{ET ′}(t) = |1〉〈1|, (17.34b)

where the various probabilities and probability densities are given in (17.27),
(17.28), (17.31a), and (17.31b).

The principal difference between trajectories in the sense of Fig. 17.5 and
those in Fig. 17.4 is that in the former the atom is not assigned a definite
stationary state, so that a central physical property of the atom—its energy—
remains uncertain. The description is therefore given in terms of an expec-
tation for the energy instead of a definite energy value. Of course, for the
ensemble as constructed, the uncertainty arises by denying ourselves informa-
tion that could, in principle, be had.

The next step is to recognize that in quantum mechanics uncertainty is in-
trinsic; denied information cannot always, in principle, be had. If, for example,
we were to prepare an ensemble of atoms in a superposition of states,

|ψ(0)〉 = c1(0)|1〉 + c2(0)|2〉, (17.35)

these atoms would be polarized. Such an ensemble is not equivalent to one
with a fraction p1(0) = |c1(0)|2 of the atoms in state |1〉 and the others in

Fig. 17.5. Two kinds of trajectories followed by the conditional state of a spon-
taneously emitting atom that has been selected from an ensemble with a fraction
p2(0) = 0.7 of the atoms prepared in the excited state. The conditioning is with
respect to records that do not specify the initial state of the atom—i.e., for “blind”
realizations (compare Fig. 17.4). Note that trajectories of kind (b) are a limiting
case (γt′ → ∞) of those of kind (a)
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state |2〉. Polarization amplitude is another physical property, and in quantum
mechanics it and the energy cannot be assigned definite values at the same
time; indeed, if the energy is assigned a definite value the atom may not be
polarized at all. In this setting, there is a break between the notions of definite
property and definite state. We can imagine making a conditional description
in terms of a definite state

|ψREC(t)〉 = c1|REC(t)|1〉 + c2|REC(t)|2〉, (17.36)

where neither the energy nor the polarization amplitude take a definite value,
though we are in possession of conditional expectations for both. We aim
now for a generalization of the Bohr–Einstein quantum jump that is able to
accommodate such a description. Our “blind” realizations are just a short
step away from what we want. How that final step should be made will made
apparent by formalizing what we have just done.

17.2.4 The Master Equation

Spontaneous emission may be described by a master equation (Sect. 2.2), and
the unraveling of the density operator (17.33) can be arrived at by developing
its solution in a Dyson expansion. We met an example of this expansion in
Sect. 12.1.8, where the solution to master equation (12.97) was expanded as
(12.102). The expansion takes a far simpler form when there can be only
a single photon emission.

Introducing notation similar to that of (12.97)–(12.98c), let us write the
spontaneous emission master equation (Eq. 2.26 with n̄ = 0) as

ρ̇ = (LB + Lγ)ρ, (17.37)

with

LB ≡ −i[12ωAσz, · ] −
γ

2
(σ+σ− · + · σ+σ−), (17.38a)

Lγ ≡ γσ− · σ+. (17.38b)

By separating the right-hand side into two pieces, we are able to develop the
solution for ρ(t) in the manner of time-dependent perturbation theory. The
difference is that instead of evolving a pure state |ψ(t)〉, with Hamiltonian
H = H0 + HI , here we evolve a mixed state ρ(t) with the superoperator
L = LB + Lγ . The subscript B indicates the superoperator governing the
between jump evolution, while the superoperator that executes the quantum
jump carries the label of the associated output channel. The meaning will
become clearer as we proceed.

We now transform to the equivalent of the interaction picture, by writing

ρ = eLBtρ̄, (17.39)
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where ρ̄ satisfies the equation of motion

˙̄ρ = e−LBtLγeLBtρ̄. (17.40)

Then, integrating this equation formally and inverting the transformation
(17.39), the Dyson expansion of the density operator is

ρ(t) = eLBtρ(0) +
∫ t

0

dt′eLB(t−t′)LγeLBt
′
ρ(0). (17.41)

In this case there is no need for the usual iteration to obtain terms of higher
order in Lγ , since the expansion truncates after just one photon emission—
(Lγ)2 = 0.

It is straightforward to show that (17.41) is, in fact, precisely the quan-
tum trajectory unraveling of the density operator (17.33). Note first that the
elementary superoperator operations are trivial:

LB|2〉〈2| = −γ|2〉〈2|, LB|1〉〈1| = 0,
Lγ |2〉〈2| = γ|1〉〈1|, Lγ |1〉〈1| = 0.

(17.42a)

From these,
eLBtρ(0) = e−γtp2(0)|2〉〈2| + p1(0)|1〉〈1|, (17.43a)

and
eLB(t−t′)LγeLBt

′
ρ(0) = γe−γt

′
p2(0)|1〉〈1|. (17.43b)

Thus, on comparing these expressions with (17.27) and (17.28), apparently
the record probabilities and probability densities for “blind” realizations may
be written, more formally, as

P ({D}) = tr[eLBtρ(0)], (17.44a)

P ({ET ′}) = tr[eLB(t−t′)LγeLBt
′
ρ(0)]. (17.44b)

The Dyson expansion then takes the form (17.33) if the conditional states,
ρ{D}(t) and ρ{ET ′}(t), are written as

ρ{D}(t) =
eLBtρ(0)

tr[eLBtρ(0)]
, (17.45a)

ρ{ET ′}(t) =
eLB(t−t′)LγeLBt

′
ρ(0)

tr[eLB(t−t′)LγeLBt′ρ(0)]
. (17.45b)

Using (17.43a) and (17.43b), these expressions do indeed agree, respectively,
with (17.34a) and (17.34b).

In summary, the summation over records of (17.32) [equivalently (17.8)]
has emerged from the Dyson expansion through the simple expedient of nor-
malizing the state entering into each term of the expansion; the raw expansion
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(17.41) is simply rewritten as

ρ(t) = tr[eLBtρ(0)]
eLBtρ(0)

tr[eLBtρ(0)]

+
∫ t

0

dt′tr[eLB(t−t′)LγeLBt
′
ρ(0)]

eLB(t−t′)LγeLBt
′
ρ(0)

tr[eLB(t−t′)LγeLBt′ρ(0)]
.

(17.46)

The result separates the physically distinct roles played by the superoperators
LB and Lγ . The quantum jump, |2〉 → |1〉, is executed formally by Lγ , and
the probability for the record {Et′} containing the jump depends on Lγ . The
superoperator LB , on the other hand, generates the time evolution before
and after the jump—more generally, between jumps in a sequence, if many
photons are scattered. The evolution generated by LB , together with the
renormalization of the state, accounts for the null measurement conditioning;
thus, LB alone enters the expression for the record-{D} probability.

The formal structure will be clarified further when we develop unravelings
of the master equation and its density operator from photoelectron counting
theory in Sects. 18.1 and 18.2. For the time being we simply use it as an aid
to extend our quantum jump description to the more interesting case where
quantum coherence is present.

17.2.5 Quantum Jumps in the Presence of Coherence

Master equation (17.37) is valid whether the initial state is mixed or pure.
We may therefore take over (17.44a)–(17.46) more or less directly to arrive
at the desired generalization of the Bohr–Einstein quantum jump. There is,
however, one simplification we can make.

As we have already said, superposition states like (17.35) and (17.36) are
definite states, even though they assign an indefinite energy to the atom. For
a definite state we may get away from speaking about density operators and
superoperators, even if the realizations are “blind” so far as properties like
the energy are concerned. Consider how LB and Lγ act upon an arbitrary
pure state ρ = |Ψ〉〈Ψ |. From (17.38a), we may write

LB(|Ψ〉〈Ψ |) =
1
i�

(
HB |Ψ〉〈Ψ | − |Ψ〉〈Ψ |H†B

)
, (17.47)

where on the right-hand side we introduce the non-Hermitian Hamiltonian

HB ≡ 1
2�ωAσz − i�

γ

2
σ+σ−. (17.48)

It is then straightforward to show that

eLBt(|Ψ〉〈Ψ |) = |Ψt〉〈Ψt|, |Ψt〉 ≡ e−(i/�)HBt|Ψ〉, (17.49)
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or, equivalently, that the time evolving state between jumps, |Ψt〉, satisfies the
nonunitary Schrödinger equation

d|Ψt〉
dt

=
1
i�
HB|Ψt〉. (17.50)

In addition, following from the definition (17.38b), we may expand the action
of the jump superoperator as

Lγ(|Ψ〉〈Ψ |) = |Ψγ〉〈Ψγ |, |Ψγ〉 = Jγ |Ψ〉, (17.51)

with the introduction of the jump operator

Jγ ≡ √
γσ−. (17.52)

We see from (17.47)–(17.52) that if the initial state is pure, the actions of both
superoperators, LB and Lγ , may be replaced by the action of an ordinary
operator on a pure state. Thus, the pure state factorization of the initial
density operator is preserved in each term of the Dyson expansion (17.41),
even though ρ(t) does not factorize itself.

Note 17.5. The non-Hermitian Hamiltonian (17.48) is not as strange or unfa-
miliar as it might seem. We may alternatively write it as

HB =
(

1
2�ωA − i�γ/2

)|2〉〈2| − 1
2�ωA|1〉〈1|. (17.53)

Thus, the non-Hermitian Hamiltonian is obtained by adding an imaginary
term, −i�γ/2, to the energy of the unstable excited state. Such an addition
is a fairly common practice in the treatment of damped quantum systems.
Note that quantum trajectory theory shows the practice to be strictly valid
only if quantum jumps are also added to the description. In many applications,
however, the unstable states are excited so weakly that the jumps are rare and
may be omitted—at least to a good approximation. The pure-state expansion
of Sect. 16.1 provides an example of such an application (see Note 16.1).

Consider now the operations appearing in the record probabilities and prob-
ability densities, (17.44a) and (17.44b), and the conditional states, (17.45a)
and (17.45b). Using (17.49) and (17.51), for the initial superposition state
(17.35) the probabilities and probability densities are given in terms of pure
state norms:

P ({D}) = 〈ψ̄{D}|ψ̄{D}〉, (17.54a)
P ({ET ′}) = 〈ψ̄{ET ′}|ψ̄{ET ′}〉, (17.54b)

where the time dependence of the null measurement record follows from

|ψ̄{D}〉 = e−(i/�)HBt|ψ(0)〉
= ei(ωA/2)tc1(0)|1〉 + e−i(ωA/2)te−(γ/2)tc2(0)|2〉, (17.55)
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and that of record {ET ′} from

|ψ̄{ET ′}〉 = e−(i/�)HB(t−t′)Jγ |Ψt〉
= ei(ωA/2)(t−2t′)√γe−(γ/2)t′c2(0)|1〉. (17.56)

Equations 17.54a and 17.54b reproduce (17.27) and (17.28) with p1(0) =
|c1(0)|2 and p2(0) = |c2(0)|2; thus, the record probabilities are not changed
by the presence of coherence.

The conditional states do change, however, qualitatively, since now they
are pure rather than mixed. Specifically, from (17.45a), (17.45b), (17.49), and
(17.51), the conditional states in the presence of coherence are normalized
versions of (17.55) and (17.56):

|ψ{D}〉 =
|ψ̄{D}〉√

〈ψ̄{D}|ψ̄{D}〉
, (17.57a)

|ψ{ET ′}〉 =
|ψ̄{ET ′}〉√

〈ψ̄{ET ′}|ψ̄{ET ′}〉
. (17.57b)

Putting the pieces together, using (17.46), the unraveling of the density oper-
ator for an initial pure state superposition takes the form

ρ(t) = P ({D})|ψ{D}(t)〉〈ψ{D}(t)| +
∫ t

0

dt′P ({ET ′})|ψ{ET ′}(t)〉〈ψ{ET ′}(t)|,
(17.58)

with conditional states

|ψ{D}(t)〉 = c2|{D}(t)|2〉 + c1|{D}(t)|1〉, (17.59a)

and
|ψ{ET ′}〉 = ei(ωA/2)(t−2t′)|1〉, (17.59b)

where c2|{D}(t) and c1|{D}(t) are conditional probability amplitudes ; from
(17.55), (17.56), (17.57a), and (17.57b) they are given by

c2|{D}(t) =
e−i(ωA/2)te−(γ/2)tc2(0)
√
e−γt|c2(0)|2 + |c1(0)|2 , (17.60a)

c1|{D}(t) =
ei(ωA/2)tc1(0)

√
e−γt|c2(0)|2 + |c1(0)|2 . (17.60b)

We have thus arrived at our goal of unraveling the density operator into
a sum over scattering records for the simple example of spontaneous emission.
The unraveling is a straightforward generalization of the conditional evolution
for “blind” realizations of Bohr–Einstein quantum jumps. The generalization
does little more than accept the notion of a superposition state—the notion
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of a pure-state ensemble—and apply the idea of a stochastic evolution con-
ditioned on the detection of a scattered photon, just as it was applied to the
Einstein stochastic process (with its more conventional notion of ensemble).
There are the same two kinds of trajectories for conditional probabilities,
exactly as in Fig. 17.5.

A little extra is added, however, since the fundamental quantities are not
conditional probabilities but conditional probability amplitudes. These am-
plitudes provide us with expectations for physical attributes other than the
energy. In the present example, there is the conditional dipole amplitude ex-
pectation,

〈ψ{D}(t)|σ−|ψ{D}(t)〉 =
e−(γ/2)tc∗1(0)c2(0)

e−γt|c2(0)|2 + |c1(0)|2 . (17.61)

It is important to note that the null measurement conditioning takes on a new
physical significance here. When we met it in Sect. 17.2.3, it merely resolved
our ignorance about the actual initial state of the selected “blind” realization
—a state our friend knew about all along. In the present situation, the atom
is initially polarized, and for a fraction |c1(0)|2 of the realizations, under the
null-measurement evolution the polarization decays continuously all the way
to zero. Now an ensemble of polarized atoms is physically different from an
ensemble of unpolarized atoms, some initially in state |2〉 and some in state
|1〉. The quantum jumps of Bohr and Einstein can speak about the latter
but not the former. So we may summarize our progress as follows: by moving
away from the idea of states with definite properties and adopting the notion
of a conditional evolution for expectations, we have constructed a jump process
that can speak about both.

Note 17.6. The proposal of Bohr, Kramers, and Slater (BKS) [17.32] comes
very close to making the quantum trajectory generalization of Bohr–Einstein
quantum jumps. Motivated by Bohr’s insistence that coherence must have
a place in the interaction of light with matter, it also proposes a stochastic
process to generalize the quantum jump idea. Coherence is accounted for by
introducing so-called “virtual atomic oscillators” whose action is turned on
and off by jumps between stationary states. Virtual oscillator amplitudes are
similar to conditional dipole amplitude expectations in quantum trajectory
theory. Carmichael [17.33, 17.34] has discussed the similarities as they apply
to the process of amplification without inversion.

In the absence of coherence, a quantum trajectory reverts to a sequence of
jumps between stationary states. Thus, the only new part to the evolution
is the null-measurement conditioning in between the jumps, which attempts,
through Bayesian inference, to resolve the ambiguity of a superposition state.
Spontaneous emission is of course a trivial example; the initially prepared
coherence disappears as soon as the photon is emitted. Alternatively, we might
consider the Einstein stochastic process with n̄ �= 0 to keep the jumps going
on forever; any initially prepared coherence is still, however, eliminated at the
first jump.
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Initially prepared coherence in a multilevel system need not disappear in
such a trivial way. More interesting, however, are the examples of ongoing
scattering processes driven by a coherent external field, examples such as
resonance fluorescence or the cavity QED system shown in Fig. 17.2. In these
cases, coherence is continuously recreated to oppose the ongoing sequence of
quantum jumps which destroy it [17.36, 17.37]. Coherence can also enter in
other ways, without being prepared initially or induced by an external field. It
can take the form of entanglement between the interacting parts of a composite
system, or arise spontaneously from the quantum jumps themselves—when an
output channel collects, and thus interferes, the fields scattered by different
sources [17.22, 17.23]. In examples of collective emission like superradiance,
such interference is expressed through collective jump operators which leave
the individual atoms in entangled states [17.24, 17.25].

At this stage it is undoubtedly difficult to see how the quantum trajectory
idea is to be applied to these various situations. We need a more systematic
development. Before tackling that, though, it might be helpful to focus on
some observations arising out of what we have already done.

17.3 Miscellaneous Observations

17.3.1 Time Evolution Under Null Measurements

There is an alternative way to deduce the null-measurement conditioning ex-
pressed by (17.31a) and (17.31b). The idea is to find an equation of motion
for the conditional probabilities, p2|{D}(t) and p1|{D}(t). We consider p2|{D}(t)
explicitly; having treated it, the equation of motion for p1|{D}(t) will also be
known.

We assume that at time t we know the conditional probability p2|{D}(t)
and that at t+Δt we receive the null result “no jump occurred between t and
t+Δt.” From this information we aim to construct the conditional probability
p2|{D}(t + Δt). The desired equation of motion is then determined. In order
to be clear about how this works, it is helpful to introduce a slightly more
elaborate notation. Let us define the event

et ≡ atom in state |2〉 at time t, (17.62)

and write out the conditional probabilities in full as

p2|{D}(t) = P [et|{0∅t}], (17.63a)
p2|{D}(t+Δt) = P [et+Δt|{0∅t+Δt}], (17.63b)

where P [et|{0∅t}] is the probability that event et is true given that the record
up to time t is {0∅t} (Eq. 17.25a), and P [et+Δt|{0∅t+Δt}] is similarly defined
for the record up to time t+Δt.
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To begin, we use Bayesian inference to write the conditional probability
P [et+Δt|{0∅t+Δt}] in terms of the joint probability P [et+Δt ∧{0∅t+Δt}]; thus,
we write

P [et+Δt|{0∅t+Δt}] =
P [et+Δt ∧ {0∅t+Δt}]

P [{0∅t+Δt}] . (17.64)

Clearly et+Δt may be replaced by et on the right-hand side of this expression,
yielding

P [et+Δt|{0∅t+Δt}] =
P [et ∧ {0∅t+Δt}]
P [{0∅t+Δt}] =

P [{0∅t+Δt}|et]P [et]
P [{0∅t+Δt}] , (17.65)

where Bayesian inference is used for a second time to move the condition-
ing from the record {0∅t+Δt} to the event et. Three more results allow for
a rewriting of the right-hand side: the pair of results

P [{0∅t+Δt}|et] = P [{0∅t}|et]P [{t∅t+Δt}|et], (17.66a)
P [{0∅t+Δt}] = P [{t∅t+Δt}|{0∅t}]P [{0∅t}], (17.66b)

the first of which follows from P [A ∧ B] = P [A]P [B] for independent events
A and B, and

P [{0∅t}|et]P [et] = P [{0∅t} ∧ et] = P [et|{0∅t}]P [{0∅t}], (17.66c)

which follows by Bayesian inference, where we move the conditioning from the
event et back to the record {0∅t}. Now, substituting (17.66a) and (17.66b) on
the right-hand side of (17.65), and using (17.66c), we arrive at the expression

P [et+Δt|{0∅t+Δt}] =
P [et|{0∅t}]P [{t∅t+Δt}|et]

P [{t∅t+Δt}|{0∅t}] . (17.67)

Finally, the explicit probabilities are

P [{t∅t+Δt}|et] = (1 − γΔt), (17.68a)
P [{t∅t+Δt}|{0∅t}] = (1 − γΔt)p2|{D}(t) + p1|{D}(t). (17.68b)

The first of these is the probability for the excited atom not to emit a photon
in time step Δt, and the second composes the full null-measurement record
probability out of probabilities for the two conditions that yield a null result.
Thus, using (17.68a) and (17.68b) in (17.67), and returning to the simpler
notation (Eq. 17.63), we reach the result

p2|{D}(t+Δt) =
p2|{D}(t)(1 − γΔt)
1 − γΔt p2|{D}(t)

. (17.69)
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The desired equation of motion follows by expanding the right-hand side
of (17.69) to first order in Δt. This yields

ṗ2|{D} = −γp2|{D}
(
1 − p2|{D}

)
, (17.70)

or, alternatively, since p1|{D}(t) + p2|{D}(t) = 1, the coupled equations of
motion for null-measurement conditional probabilities

ṗ2|{D} = −γp2|{D}p1|{D}, (17.71a)
ṗ1|{D} = γp2|{D}p1|{D}. (17.71b)

When superposition states are considered, one can also write equations of
motion in the fancier Hilbert space language of Sect. 17.2.4. In place of the
explicit solution (17.55), we can clearly substitute the equation of motion

d|ψ̄{D}〉
dt

=
1
i�
HB|ψ̄{D}〉, (17.72)

and the state |ψ{D}〉 conditioned on the null-measurement record is just the
normalized version of this. An equation of motion for the normalized state
may be derived from (17.72). Recall first that the norm, 〈ψ̄{D}|ψ̄{D}〉, is the
probability for the null-measurement record (Eq. 17.54a). The equation of
motion for this probability is

d〈ψ̄{D}|ψ̄{D}〉
dt

=
1
i�
〈ψ̄{D}|(HB −H†B)|ψ̄{D}〉. (17.73)

Then, for the normalized state, we may write

d|ψ{D}〉
dt

=
1

〈ψ̄{D}|ψ̄{D}|〉1/2
d|ψ̄{D}〉
dt

− 1
2
d〈ψ̄{D}|ψ̄{D}〉/dt
〈ψ̄{D}|ψ̄{D}〉3/2

|ψ̄{D}〉. (17.74)

Thus, we arrive at the nonlinear Schrödinger equation for null-measurement
conditioning,

d|ψ{D}〉
dt

=
1
i�

[
HB − 1

2 〈ψ{D}|(HB −H†B)|ψ{D}〉
]
|ψ{D}〉. (17.75)

This equation generalizes (17.71a) and (17.71b), replacing the equations of
motion for conditional probabilities by an equation of motion for conditional
probability amplitudes.

Exercise 17.1. Show that with the non-Hermitian Hamiltonian given by
(17.48) and for a conditional state in the form (17.59a), the Schrödinger
equation (17.75) yields the same equations, (17.71a) and (17.71b), for the
conditional probabilities.
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17.3.2 Conditional States and Nonlinearity

When we compare (17.71a) and (17.71b) with the equations of motion for the
unconditional probabilities (Eqs. 17.10 with n̄ = 0), the most noticeable dif-
ference is that the former are nonlinear while the more familiar equations are
linear. The form of the nonlinearity ensures that the conditional probabilities
do not change if the energy expectation is definite—i.e., if either p1|{D}(t) or
p2|{D}(t) is zero. Thus, as we might expect, the null-measurement evolution is
trivial if there is no uncertainty to be resolved; the function of this evolution
is to update our expectation and through the continual updating eventually
resolve an uncertainty—was the atom at time t in fact in state |2〉, from which
it simply failed to emit up to time t + Δt, or was it in state |1〉 from which
it cannot emit? Strictly, we should avoid saying “in fact,” though, because if
the underlying state is a superposition state, the energy of the atom is not
to be seen as a matter of fact that is simply unknown to us; the energy un-
certainty is an intrinsic and necessary corollary to physical conditions that
assign another particular attribute to the atom—the atom is polarized.

The nonlinear equations (17.71a) and (17.71b) seem very foreign and cer-
tainly something new. Surprisingly though, they are not new to quantum
optics. They are precisely the equations of motion obtained for the radia-
tive damping of a two-state system in the so-called neoclassical radiation
theory, which was studied by Jaynes and coworkers in the late 1960s and
early 1970s [17.38, 17.39]. Bouwmeester and coworkers [17.40] were the first
to notice this curious fact. In hindsight, at a mathematical level, the reason
for the correspondence is clear. Neoclassical theory starts out by factoriz-
ing expectations involving products of radiation field and atomic operators
in the Heisenberg equations of motion describing the atom–field interaction.
Alternatively, one might say that the radiation field operators are replaced by
a classical c-number field; this is an equivalent statement, since the factored
Heisenberg equations involve only the mean value of the radiation field. With
this background, one might ask: what property must the quantum state of
the coupled atom and radiation field have to justify such a factorization? The
answer is that it must be a product state, a state for the atom multiplied by
a state for the field; the atom and its environment —the surrounding radiation
field—must not be entangled.

Now to make the connection with quantum trajectory theory. We saw in
Sect. 17.1 that disentanglement is precisely what quantum trajectory theory
sets out to achieve; in place of the usual trace over the environment, it aims to
disentangle the system from its environment. Thus, the product state required
by neoclassical radiation theory is satisfied throughout a quantum trajectory:
during the null-measurement evolution, the conditioning continuously verifies
that the state of the radiation field is the vacuum state, while once a scattered
photon is detected (counted) the vacuum state is replaced by a one-photon
state. The scattering record is nothing but a time-dependent label for the dis-
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entangled state of the radiation field. Of course, this interpretation envisages
photon detection, or counting, in the nondemolition sense.

Note 17.7. The nonlinearity introduced by conditioning can be used to con-
struct a continuous stochastic evolution that takes an initial superposition of
states to a state localized on one component of the superposition. To con-
sider the most famous example, in each realization an initial Schrödinger cat
state [17.41] localizes onto a state describing either a dead cat or an alive
cat [17.42,17.43]. More generally, one arrives at a dynamical description of the
state selection (decoherence) that in the standard treatment of quantum mea-
surements is accounted for by the formal projection hypothesis (Sect. 18.3.2).
With regard to these topics, the interpretation of the nonlinearity in quantum
trajectory theory differs from the proposal of others to modify the fundamen-
tal Schrödinger equation by adding nonlinear and stochastic terms tailored to
achieve localization [17.44,17.45,17.46,17.47,17.48,17.49]. The nonlinearity in
quantum trajectory theory is a straightforward consequence of conditioning
and is not considered to arise from any previously unknown intrinsic stochas-
ticity. It is perhaps a little surprising that the stochastic Schrödinger equations
reached from the two points of view can have identical form (see Note 18.9).
On the other hand, the convergence is no doubt imposed by the requirement
that any modification of the Schrödinger equation should not lead to a gross
disagreement with standard quantum mechanics—i.e., mean values should re-
main unchanged.

17.3.3 Record Probabilities and Norms

The notation of (17.8) is schematic and as a consequence a little loose. It
should be clear that the sum over records is a generalized sum—i.e., when
written out explicitly,

∑
REC expands as a series of sums and integrals. With

regard to the integrals, this leaves us with a choice as to where to place the
integration measure. If P (rec) is to be an actual probability, then the measure
must be included there, in the record probability. Alternatively, we can display
the integration measure explicitly inside the integral, in which case P (rec)
is a probability density. We opted for the latter choice when writing out the
unravelings of the density operator (17.22), (17.33), and (17.58). With this
convention in mind, the normalization of the states |ψ̄REC(t)〉 (Eqs. 17.55 and
17.56) is chosen so that

P (rec) = 〈ψ̄REC(t)|ψ̄REC(t)〉. (17.76)

Note that |ψ̄REC(t)〉 has units of t−n/2, where n is the number of photon
detection events in the record. Only for n = 0—the special case of the null-
measurement record—is P (rec) an actual probability. For simplicity, we will
refer to P (rec) as the record probability density.
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It follows from (17.76) that as an alternative to the unraveling of the density
operator (17.8), we might sum over unnormalized states, writing

ρ(t) =
∑

REC

|ψ̄REC(t)〉〈ψ̄REC(t)|, (17.77)

where
|ψ̄REC(t)〉 =

√
P (rec)|ψREC(t)〉. (17.78)

From a physical point of view, the normalized state |ψREC(t)〉 and the unnor-
malized state |ψ̄REC(t)〉 differ in a rather elementary way. As a conditional
state, |ψREC(t)〉 provides us with conditional probabilities; the probability
|〈2|ψREC(t)〉|2, for example, is the probability of finding the atom in state |2〉
at time t, given the record rec. In contrast, the unnormalized state |ψ̄REC(t)〉
yields joint probability densities; |〈2|ψ̄REC(t)〉|2 is the probability density of
finding the atom in state |2〉 at time t and the record rec. The distinction,
then, is one between “conditional” and “joint.”

To reiterate the comment at the beginning of Sect. (17.3.2), this differ-
ence carries over into a different character for the time evolutions: a nonlinear
evolution for the normalized state, |ψREC(t)〉, and its conditional probabil-
ity densities (Eq. 17.75), and a linear evolution for the unnormalized state,
|ψ̄REC(t)〉, and its joint probability densities (Eq. 17.72).

17.3.4 Monte Carlo Simulations

The fundamental content of the quantum trajectory approach is provided by
the record probability densities, P (rec), and conditional states, |ψREC(t)〉, or
equivalently the unnormalized states, |ψ̄REC(t)〉. To be useful, these quantities
must be evaluated explicitly, which for all but the simplest examples is not
possible analytically. At this point Monte Carlo simulations provide the most
useful implementation of quantum trajectory ideas.

Monte Carlo rules for simulating standard quantum jumps were given in
(17.12). Quantum trajectories for known initial states (Sect. 17.2.2) are sim-
ulated in precisely the same way. For the spontaneous emission example only
a single jump ever occurs and the simulation algorithm is trivial. Consider-
ing the evolution of p2|REC(t) (Fig. 17.4) over a sequence of discrete times
tk = kΔt, we follow the rules

if p2|REC(tk) = 1 then: 1. compute p↓ = γΔt

2. if p↓ > rk, then p2|REC(tk+1) = 0
else p2|REC(tk+1) = 1

else [p2|REC(tk) = 0]: 1. compute p↑ = 0
2. p2|REC(tk+1) = 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (17.79)

where rk is a uniformly distributed random number, 0 ≤ rk ≤ 1.
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Quantum trajectories for “blind” realizations (Sect. 17.2.3) may be simu-
lated in similar fashion, with the change that in this case the initial state, |1〉
or |2〉, is not known, so the mutually exclusive sets of rules for p2|REC(tk) = 1
or 0 are combined:

1. compute p↓ = γΔtp2|REC(tk)
2. if p↓ > rk, then p2|REC(tk+1) = 0

else p2|REC(tk+1) = p2|REC(tk){1 − γΔt[1 − p2|REC(tk)]}

⎫
⎪⎬

⎪⎭
. (17.80)

The changed rules still resolve the if/else of (17.79), but they do so through
the conditioning of the probabilities on the record, which plays out over an
extended period of time: in some realizations the uncertainty about the initial
state is resolved by a jump, as in Fig. 17.5a, in others through the continuous
decay of Fig. 17.5b.

Exercise 17.2. It may not be obvious from the algorithm (17.80) alone that
the two kinds of realizations occur in the correct proportion, p2(0) : p1(0),
for initial state p2|REC(0) = p2(0). Prove from the simulation rules alone that
this is indeed the case.

Exercise 17.3. Write a computer program to implement both algorithms,
(17.79) and (17.80). Show for both that a large ensemble of realizations gives
the correct exponential distribution of jump (spontaneous emission) times.
Show also that (17.80) realizes the correct proportion of discontinuous to
continuous trajectories, hence verifying your answer to Exercise 17.2.

Algorithm (17.80) holds in the absence of coherence. It is readily generalized
to account for an initial superposition of states, though. We use the results of
Sect. 17.2.4 and carry out the evolution in the interaction picture, first making
the transformation

|ψREC(t)〉 = e−i
1
2ωAσzt|ψ̃REC(t)〉, (17.81)

introducing the transformed non-Hermitian Hamiltonian

H̃B ≡ −i�γ
2
σ+σ−. (17.82)

The Monte Carlo rules replacing those of (17.80) are:

1. compute p↓ = Δt〈ψ̃REC(tk)|J†γJγ |ψ̃REC(tk)〉

2. if p↓ > rk, then |ψ̃REC(tk+1)〉 =
Jγ |ψ̃REC(tk)〉√

〈ψ̃REC(tk)|J†γJγ |ψ̃REC(tk)〉
else

|ψ̃REC(tk+1)〉
=

{
1 +Δt

1
i�

[
H̃B − 1

2 〈ψ̃REC(tk)|(H̃B − H̃†B)|ψ̃REC(tk)〉
]
|ψ̃REC(tk)〉

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(17.83)
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As given they make explicit use of the nonlinear Schrödinger evolution under
null-measurement conditioning (17.75). It is also possible, and often conve-
nient, to specify the rules in terms of the unnormalized state

|ψ̄REC(t)〉 = e−i
1
2ωAσzt| ˜̄ψREC(t)〉, (17.84)

which obeys the linear evolution equation (17.72). When written in terms of
| ˜̄ψREC(t)〉, the alternate Monte Carlo rules for spontaneous emission are:

1. compute p↓ = Δt
〈 ˜̄ψREC(tk)|J†γJγ | ˜̄ψREC(tk)〉

〈 ˜̄ψREC(tk)| ˜̄ψREC(tk)〉
2. if p↓ > rk, then | ˜̄ψREC(tk+1)〉 = Jγ | ˜̄ψREC(tk)〉

else | ˜̄ψREC(tk+1)〉 =
(

1 +Δt
1
i�
H̃B

)
| ˜̄ψREC(tk)〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (17.85)

Exercise 17.4. Write a computer program to implement algorithms (17.83)
and (17.84), and with it study the decay of initial superposition states under
spontaneous emission. Verify that the properties mentioned in Exercise 17.3
still hold. Show that the average over realizations reproduces the correct result
for the decay of the coherence between states |1〉 and |2〉.
A single quantum trajectory simulated using algorithm (17.85) provides us
with three things: (i) a realization of the scattering record, in this case the
time of at most one photon emission; (ii) the corresponding conditional state
|ψREC(t)〉; and (iii) the probability density, 〈ψ̄REC(t)|ψ̄REC(t)〉, for the realized
scattering record.

We might expect that the record probability densities must be known in
advance for each record to be realized with the correct frequency. This is not
so, however. The record probability densities are recovered “on the fly,” as it
were, as part of the simulation procedure. More to the point, explicit record
probability densities are used by neither algorithm, not by (17.83) nor (17.85);
the jump probability is calculated from the normalized conditional state. It
follows that in practice any normalization at all is permitted for the state used
in the second and third lines of (17.85). It is important to emphasize that the
different records are automatically realized at the relative frequencies dictated
by the probability density P (rec).

17.3.5 The Waiting-Time Distribution

When discussing photon antibunching in resonance fluorescence (Sect. 2.3.6),
we introduced the photoelectron waiting-time distribution, wss(τ), the dis-
tribution of time intervals τ between two successive photoelectric detections
for an atom in steady state. If the photoelectron detection efficiency is unity,
this may be read as the distribution of time intervals between two successive
photon emissions. For resonance fluorescence, the waiting-time distribution
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defines all record probabilities. Consider, for example, the record

rec ≡
{
. . .

. . .
, ∅, γ

Tk−1
, ∅, γ

Tk
, ∅, γ

Tk+1
, ∅, γ

Tk+2
, ∅, . . .

. . .

}
. (17.86)

The record probability density is given by the product of waiting-time distri-
butions

P (rec) = . . . wss(tk − tk−1)wss(tk+1 − tk)wss(tk+2 − tk+1) . . . ; (17.87)

thus, the scattering records are defined by the distribution of null measure-
ment intervals. Carmichael and coworkers [17.18] have analyzed resonance
fluorescence in some detail from this point of view.

Clearly, the record probability density might be built up in a similar way
for any scattering process. In general, however, we would find that the waiting-
time distribution does not depend only on the interval since the last scattering
event; the whole history of past events can affect the distribution of times to
be waited before the next. One way to say this is that, taken on their own, set
apart from the conditional quantum state, the probability densities for scat-
tering records do not generally define a Markov stochastic process. Of course,
Markov behavior holds for the complete process defined by the scattering
records and the conditional states. In the case of resonance fluorescence, the
records taken alone are Markov.

We have encountered two waiting-time distributions in our treatment of
spontaneous emission. When the initial state is known, and known to be the
upper state |2〉, the distribution of elapsed times before the photon emission is

wknown(t1) ≡ P ({Ct})|t=t1 = γe−γt1. (17.88)

On the other hand, for “blind” realizations the distribution is

w“blind”(t1) ≡ P ({Et})|t=t1 = γe−γt1p2(0). (17.89)

In the latter case there is a probability, p1(0) = 1− p2(0), that no photon will
be emitted; the waiting-time distribution therefore integrates to p2(0) rather
than to unity.

If we were to directly sample the distributions (17.88) and (17.89), we
would obtain realizations of the spontaneous emission time t1 in a single step.
Thus there is no need for the evolution, time-step by time-step, of the previous
algorithms. Of course, we are able do this only because the waiting-time dis-
tributions are known in closed form. In most situations of interest this will not
be the case. It is nonetheless always possible to build a Monte Carlo algorithm
based on waiting times by solving for the unknown waiting-time distributions
as the simulated trajectory unfolds. Let us assume we do not have access to
the explicit expressions (17.88) and (17.89). Note then that

wknown(t1) = 〈 ˜̄ψ{Ct}| ˜̄ψ{Ct}〉|t=t1 = 〈 ˜̄ψ{A}|J†γJγ | ˜̄ψ{A}〉|t=t1 , (17.90)

and

w“blind”(t1) = 〈 ˜̄ψ{Et}| ˜̄ψ{Et}〉|t=t1 = 〈 ˜̄ψ{D}|J†γJγ | ˜̄ψ{D}〉|t=t1 , (17.91)
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and introduce the cumulative distribution

Cw(t) =
∫ t

0

dt1w(t1), (17.92)

where either wknown(t1) or w“blind”(t1) is to be substituted for w(t1). Using
the cumulative waiting-time distribution, we may generate realizations of the
trajectories from a single random number r1 and the following rules:

1. compute Cw(tk+1) = Cw(tk) +Δt〈 ˜̄ψREC(tk)|J†γJγ | ˜̄ψREC(tk)〉
2. if Cw(tk+1) > r1, then | ˜̄ψREC(tk+1)〉 = Jγ | ˜̄ψREC(tk)〉

else | ˜̄ψREC(tk+1)〉 =
(

1 +Δt
1
i�
H̃B

)
| ˜̄ψREC(tk)〉

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (17.93)

The rules as written assume that the initial state is pure, so they apply to
“blind” realizations in the sense of the initial superposition state (17.35). If
the initial state is mixed, the same rules are used, restated in terms of the
conditional density operator.

To see how algorithm (17.93) works, consider the random number r1 to
be a function of the time t1 at which the emission is to take place, or more
precisely, consider dr1 to represent the fraction of realizations in which the
photon emission occurs in the interval [t1, t1 +dt1). From the definition of the
waiting time, it is then required that

dr1 = w(t1)dt1 ⇒ r1(t1) = Cw(t1). (17.94)

Algorithm (17.93) looks for the crossing of r1 by Cw(t1) while solving for
the distributions w(t1) and Cw(t1). Figure 17.6 illustrates the procedure for
choices of r1 that produce the realizations presented in Figs. 17.4 and 17.5.

Exercise 17.5. Write a computer program to implement (17.93), and use it
to repeat the calculations of Exercise 17.4.

Fig. 17.6. Implementation of the simulation algorithm (17.93). Crossing (or non-
crossing) of the cumulative waiting-time distribution, Cw(t1), with random number
r1 for: (a) a realization with known initial state |2〉 (Fig. 17.4), (b) a “blind” real-
ization with p2(0) = 0.7 [Fig. 17.5a], (c) a “blind” realization showing no quantum
jump [Fig. 17.5b]
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Quantum Trajectories II:

The Degenerate Parametric Oscillator

The last chapter has provided us with a general background to quantum
trajectory ideas. The central notion is to set up a conditional evolution for an
open system (the interaction region of Fig. 17.1) with the state of the system
conditioned on the record of scattered photons detected in the reservoir. The
scattering record may be made in practice by monitoring the incoherent inputs
and outputs to the system, and takes the form of a photoelectron counting
sequence. This counting sequence characterizes the inputs and outputs as
a classical stochastic process (Eq. 17.6 for example).

Up to this point our development of these ideas has been motivated more
by physics than mathematics and is perhaps not as systematic as one might
wish. The goal, formally, is to expand, or unravel, the reduced density of the
system in the form (17.8), where conditional states |ψREC〉 are labeled by
a scattering record with probability (density) P (rec). We demonstrated such
an unraveling by construction in Sect. 17.2.4, but only for the simplest exam-
ple of spontaneous emission. In this section we generalize the demonstration,
starting with an expression for scattering record probability densities taken
from photoelectron counting theory.

18.1 Scattering Records and Photoelectron Counting

It is again helpful to keep a specific example in view. We will work for definite-
ness with the degenerate parametric oscillator model of Chap. 9. It contains
sufficient generality to illustrate the principal ideas. To simplify just a lit-
tle, however, let us omit the thermal photons and crystal loss. Then, master
equation (9.97) is taken over in the form (n̄ = n̄p = 0, γaα = γbα = 0)

ρ̇ = Lρ, (18.1)
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with

L ≡ −iωC[a†a, · ] − i2ωC [b†b, · ]
+ (g/2)[a†2b− a2b†, · ] − i[Ē0e

−i2ωCtb† + Ē∗0 ei2ωC tb, · ]
+ 1

2 (γa1 + γa2)(2a · a† − a†a · − · a†a)
+ 1

2 (γb1 + γb2)(2b · b† − b†b · − · b†b), (18.2)

or in the interaction picture,
˙̃ρ = L̃ρ̃, (18.3)

with

L̃ = (g/2)[a†2b− a2b†, · ] − i[Ē0b
† + Ē∗0 b, · ]

+ 1
2 (γa1 + γa2)(2a · a† − a†a · − · a†a)

+ 1
2 (γb1 + γb2)(2b · b† − b†b · − · b†b), (18.4)

where the parameters g and Ē0 are defined by (9.80) and (9.81), and there are
loss rates γaμ and γbμ, μ = 1, 2, arising from the coupling of the intracavity
fields to vacuum-state reservoirs through the mirrors at either end of the
cavity; the mirrors are labeled mirror 1 and mirror 2 as in Figs. 9.1 and 9.4.
The output fields are specified in Sect. 9.2.5.

The scattering scenario corresponding to master equation (18.3) and (18.4)
is depicted in Fig. 18.1. There is a single coherent input—the field driving the
pump mode (the source of energy to the system)—and four output channels,
each labeled by a cavity loss rate. Scattering records are made by four ideal
(unit efficiency) photodetectors, as shown in the figure. A typical record is
written as

rec ≡
{

0∅, γ1

T1
, ∅, γ2

T2
, . . . ,

γn
Tn
, ∅t

}
, (18.5)

with
γk ∈ {γa1, γa2, γb1, γb2}. (18.6)

Note that in order to identify photodetections labeled by γb1, a coherent dis-
placement is introduced, whose magnitude is adjusted to cancel the back-
reflected external field. This strategy yields the simplest unraveling of the
density operator and its master equation evolution. With the displacement
the detector monitoring channel γb1 sees only the field transmitted at mir-
ror 1; the discarded coherent amplitude is omitted from the record-keeping
(see the discussion above Note 18.4).

18.1.1 Record Probabilities

When discussing photoelectron counting records we divide the time line into
intervals of equal length, Tk (Eq. 17.7), and seek the probability for a specific
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Fig. 18.1. Scattering scenario for the degenerate parametric oscillator model of
Figs. 9.1 and 9.4 with scattering records made by direct photoelectron counting

Fig. 18.2. Subdivision of the time line used in the construction of photoelectron
counting probabilities. Each interval Tk, k = 1, . . . , n, contains either no count or at
the most one count

sequence of counts within a subset of these intervals—for example at the
times t1, t2, . . . , tn, as shown in Fig. 18.2. The interval length is taken to be
sufficiently short that there is negligible probability for two or more counts
to occur in any one interval. Thus, the probability for one count to occur
within any interval is itself very small, and in an overwhelming majority of
the intervals there is no count at all.

Let us start out by considering the intracavity fields to be classical, with
complex amplitudes α(t) and β(t) for the subharmonic and pump modes,
respectively. Then the output channel photon fluxes are calculated as

F←(t) = γa1|α(t− τR)|2, F→(t) = γa2|α(t− τR)|2, (18.7a)

Fp←(t) = γb1|β(t− τR)|2, Fp→(t) = γb2|β(t− τR)|2, (18.7b)

where τR is the retardation time from the mirrors to the detectors. In the
limit of infinitesimal interval length (Eq. 17.7), the record probability is

P (rec)dt1dt2 · · · dtn = W (t− tn)[Fn(tn)dtn]W (tn − tn−1)

· · · [F2(t2)dt2]W (t2 − t1)[F1(t1)dt1]W (t1),
(18.8)
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where W (tk − tk−1) is the no-count probability for the continuous sequence
of intervals between count times tk−1 and tk (see Exercise 13.6), and

Fk(t) ∈ {F←(t), F→(t), Fp←, Fp→(t)}. (18.9)

Thus, the record probability is a product of probabilities for no count from
t = 0 to t1, a count in interval T1, no counts from t = t1 +dt1 to t2, a count in
interval T2, and so on. Alternatively, P (rec) may be subdivided as a product
of waiting-time distributions, w(tk − tk−1) = Fk(tk)W (tk − tk−1). The no-
count or null-measurement probability, W (tk − tk−1), is determined from the
total output flux

F (t) = F←(t) + F→(t) + Fp←(t) + Fp→(t). (18.10)

It is constructed as a product of elementary no-count probabilities, one for
each interval of length Δt containing no count. Following the derivation of the
waiting-time distribution in Note 2.9, we find

W (tk − tk−1) = lim
N→∞,Δt→0
NΔt=(tk−tk−1)

N−1∏

m=0

[
1 −ΔtF (tk−1 +mΔt)

]

= exp

[

−
∫ tk

tk−1

dt′F (t′)

]

. (18.11)

Of course, in a more general case, the field amplitudes α(t) and β(t) might be
stochastic. This requires an average over stochastic realizations to be added.
Record probabilities for classical intracavity fields are then given by

P (rec)dt1dt2 · · · dtn = W (t− tn)[Fn(tn)dtn]W (tn − tn−1)

· · · [F2(t2)dt2]W (t2 − t1)[F1(t1)dt1]W (t1).
(18.12)

Consider now the extension to quantized fields. Expression (18.12) may
hold in the quantum domain, but only if is possible to represent the system
state (at all times) by a Glauber–Sudarshan P distribution that is positive-
definite. Even then, the classical expression is the phase-space form of an
underlying expression involving field operators and a quantum (rather than
stochastic) average. The extension to the quantum form is straightforward
since the structure of the expression remains the same; thus, record probabil-
ities for quantized fields are given by

P (rec)dt1dt2 · · ·dtn =
〈
: e−Ω̂(t−tn)[F̂n(tn)dtn]e−Ω̂(tn−tn−1)

· · · [F̂2(t2)dt2]e−Ω̂(t2−t1)[F̂1(t1)dt1]e−Ω̂(t1) :
〉
,

(18.13)
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with

Ω̂(tk − tk−1) ≡
∫ tk

tk−1

dt′F̂ (t′), (18.14)

where, reexpressed in operator form, (18.9) and (18.10) carry over as

F̂k(t) ∈ {F̂←(t), F̂→(t), F̂p←(t), F̂p→(t)}, (18.15)

and
F̂ (t) = F̂←(t) + F̂→(t) + F̂p←(t) + F̂p→(t), (18.16)

and in place of (18.7a) and (18.7b), we now have photon flux operators

F̂←(t) = Ê†←(t)Ê←(t), F̂→(t) = Ê†→(t)Ê→(t),

F̂p←(t) = Ê†p←(t)Êp←(t), F̂p→(t) = Ê†p→(t)Êp→(t),
(18.17a)

with cavity output fields defined by (9.120a), (9.120b), (9.122a), and (9.122b).
Note that free fields enter as well as source fields into these expressions.
Also, like all other outputs, the free-field part of Êp← is a vacuum field, the
backscattered driving field amplitude having been removed—the displacement
in Fig. 18.1.

Passage from record probability (18.12) to record probability (18.13) has
been made by introducing two rather obvious changes: (i) field operators re-
place classical field amplitudes and (ii) an average over a classical random
process has been replaced by a quantum-mechanical average. We should note
that along with these changes comes the requirement for normal-ordering
and time-ordering of the operators; this is indicated in (18.13) by the two
dots. Actually, time-ordering is not strictly required at this stage, because the
total output field operators (free-field part plus source-field part) commute at
different times. Time-ordering is going to become important for us, though,
as we plan to manipulate (18.13) in a way that works only for time-ordered
operators. After the manipulation time-ordering will be locked in. This, along
with a few other formal steps, will cast the record probability into a form that
allows us to see the connection with an unraveling of master equation (18.3)
and (18.4).

Note 18.1. We have not derived the photoelectron counting probability (18.13),
only motivated its form. A few words about the derivation are in order. The
standard reference is to the work of Kelley and Kleiner [18.1]. The probability
on the left-hand side of (18.13) is an example of what is called an exclusive
counting probability; it corresponds to the quantity denoted P ′K(i1, i2, · · · , iK)
in that work (taken here withK = n). It is to be contrasted with the nonexclu-
sive counting probability, denoted there by PK(i1, i2, · · · , iK). The nonexclu-
sive probability is the probability that photoelectron counts occur in subin-
tervals T1, T2, . . . , Tn, without regard to the occurrence or not of counts at
other times; it is precisely the multicoincidence probability that forms the
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basis of the coherence theory of Glauber [18.2]. The two kinds of probability
can be expressed in terms of one another, and relationships between them are
given in [18.1], as well as in books on photoelectron counting statistics like
the one by Saleh [18.3]. Kelley and Kleiner are principally interested in the
photoelectron count probability, Pn(t, t+T )—the probability that some fixed
number, n, of photoionizations occurs during the interval from t to t + T .
For this quantity they ultimately find the formula (9.146). They comment
that “the natural definition of Pn(t, t + T ) is in terms of the exclusive prob-
ability function (2.7) rather than in terms of the nonexclusive probability
function (2.4).” Nevertheless, as nonexclusive probabilities—the multicoinci-
dence probabilities of Glauber’s theory—are the easiest to calculate, Kelley
and Kleiner aimed to express Pn(t, t+ T ) in terms of them. The core of their
work is a derivation from perturbation theory of a quantum-mechanical ex-
pression for the nonexclusive counting probabilities; thus, (18.13) does not
appear explicitly in their paper, although it is implied, through the stated
relationship between exclusive and nonexclusive probabilities.

Note 18.2. A certain amount of confusion has arisen around one aspect of
Kelley and Kleiner’s work. Its source is the assumption referenced in their
comment [18.1]: “With regard to assumption (2), our treatment does not
explicitly take account of modification of the field distribution engendered by
the presence of the detector, particularly in the region of the detector where,
for example, one may expect attenuation by the detector.” It was noted at
that time [18.4], and has been reemphasized more recently [18.5,18.6], that as
a consequence of the referenced assumption, formula (9.146) can yield unphys-
ical results if applied naively to situations where attenuation does in fact oc-
cur. A single-mode field in Fock state |N〉 illustrates the point clearly. Picture
exactly N photons trapped inside an optical cavity with perfectly reflecting
walls. If a photoelectric detector, a device that absorbs photons, is introduced
into the cavity, clearly the number of undetected photons decays as the num-
ber of photoelectron counts grows. Formula (9.146) does not account for this,
and, in fact, after a time produces negative probabilities and a mean number
of counts that exceeds the initial photon number. Recent comments on this
feature by Srinivas and Davies [18.5,18.6] and Srinivas [18.7] draw the Kelley–
Kleiner approach into question; but they can too easily mislead. It is too
easy to come away from the Srinvias and Davies papers with the impression
that the Kelley–Kleiner formula (also called the Mandel formula) is invalid at
a fundamental level because it leaves out the backaction of a quantum measur-
ing device (the photoelectric detector) on the system measured (the detected
field). We know, however, that the photoelectron counting theory developed
by Glauber, Kelley–Kleiner, and Mandel accounts successfully for numerous
experiments in quantum optics, including photon antibunching in resonance
fluorescence. The latter occurs precisely because the first detected photon is
no longer present after detection, to be detected a second time (Sect. 2.3.6).
How can a treatment that omits field attenuation by the detector get such
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an effect right? Part of the answer is that Kelley and Kleiner do actually ac-
count for field attenuation, but only to lowest order in perturbation theory;
in the above example, formula (9.146) gives zero probability to count more
than N photoelectrons. But the more important part of the answer was given
by Mandel [18.8] in his reply to Srinivas and Davies [18.5]: formula (9.146)
[by implication (18.13)] assumes an open system situation, one in which the
field from a photoemissive source propagates towards the detector, and if un-
detected, away to infinity never to return. If one inserts correlation functions
derived for the output field of a photoemissive source into (9.146) [or (18.13)],
the abovementioned problems will not occur. This assertion is demonstrated
explicitly by the development below, where the semi-group treatment of pho-
toelectron counting advocated by Srinivas and Davies emerges from (18.13)
[implicitly from the treatment of Glauber, Kelley–Kleiner, and Mandel]. In
order to see why everything should fit together so nicely, one need only think
about the physics. Are the fields impinging on the detectors in Fig. 18.1 altered
if the detectors are removed? Surely not. These are outgoing fields, destined to
be absorbed in the environment, if not by a detector, then elsewhere. Indeed,
a photoelectric detector is nothing but a part of the absorbing environment
that remembers what it absorbs and when. So we might return to the single
mode prepared in state |N〉 and ask how to treat it correctly using the Kelley–
Kleiner formula. Clearly one must recognize the presence of an absorber in
the cavity, write down a master equation to account for the absorption, solve
for correlation functions using it, and insert these correlation functions into
(9.146). This self-consistent program yields not only the answer, but also the
mathematical form of the Srinivas and Davies treatment.

Returning now to the development of the record probability density from
(18.13), we aim to cast this expression into a form that makes contact with
master equation (18.3) and (18.4). Our first task is to deal with the operator
ordering. To this end, we expand the exponentials. We write the expansion
out explicitly up to time t1 only, leaving the rest implicit. This yields

P (rec) =
∑∫ ∞∑

m=0

(−1)m
∫ t1

0

dξm · · ·
∫ ξ3

0

dξ2

∫ ξ2

0

dξ1

4∑

μm=1

· · ·
4∑

μ1=1

tr
[
Ê†μ1

(ξ1)Ê†μ2
(ξ2) · · · Ê†μm

(ξm)Ê†1(t1)
∏
Ê†

×
∏
Ê Ê1(t1)Êμm(ξm) · · · Êμ2(ξ2)Êμ1(ξ1)χ(0)

]
, (18.18)

with
Êk(t) ∈ {Ê←(t), Ê→(t), Êp←(t), Êp→(t)}. (18.19)

The symbols
∏
Ê† and

∏
Ê stand in for all operators Ê†k(tk) and Êk(tk) not

shown explicitly—those whose time arguments are larger than t1—and Σ
∫

rep-
resents the sums and integrals over these operators and their arguments, sim-
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ilar to those shown. From the cyclic property of the trace, we then have

P (rec) =
∑∫ ∞∑

m=0

(−1)m
∫ t1

0

dξm · · ·
∫ ξ3

0

dξ2

∫ ξ2

0

dξ1

4∑

μm=1

· · ·
4∑

μ1=1

tr
[∏

Ê Ê1(t1)Êμm(ξm) · · · Êμ2(ξ2)Êμ1(ξ1)χ(0)

×Ê†μ1
(ξ1)Ê†μ2

(ξ2) · · · Ê†μm
(ξm)Ê†1(t1)

∏
Ê†
]
. (18.20)

From this form it is clear that if the initial reservoir state is the vacuum, the
free fields may be dropped in the definitions (9.120a), (9.120b), (9.122a), and
(9.122b); thus, we may make the replacement

Êk(t) → Ŝk(t− τR), (18.21)

where in place of (18.19) we now have

Ŝk(t) ∈ {√γa1a(t),√γa2a(t),√γb1b(t),√γb2b(t)}. (18.22)

The replacement is justified because, although the free fields and source fields
do not commute at all times, they do commute when the source field is eval-
uated at an earlier time then the free field; at the level of commutator expec-
tations, this is shown explicitly by (9.124a)–(9.125b). With this commutation
rule, and explicit normal- and time-ordering of (18.20), it is possible to move
all free-field operators

√
c/2L′rkf (tk) to the immediate left of χ(0), and all

conjugate operators
√
c/2L′r†kf (tk) to the right. The free-field operators then

act on χ(0) to produce zero when the reservoir is in the vacuum state.
We now make the substitution (18.21), and at the same time introduce

a more compact superoperator notation, with

S← ≡ γa1a · a†, S→ ≡ γa2a · a†, (18.23a)

Sp← ≡ γb1b · b†, Sp→ ≡ γb2b · b†, (18.23b)

and L ≡ (1/i�)[H, · ], where H is the Hamiltonian of the system in interaction
with the reservoir (Sect. 9.2.4). Record probability density (18.20) is then
written as

P (rec)

=
∑∫ ∞∑

m=0

(−1)m
∫ t1

0

dξm · · ·
∫ ξ3

0

dξ2

∫ ξ2

0

dξ1

4∑

μm=1

· · ·
4∑

μ1=1

tr
{∏

S

[
S1e

L(t1−ξm)Sμme
L(ξm−ξm−1) · · · Sμ2e

L(ξ2−ξ1)Sμ1e
Lξ1χ(−τR)

]}
,

(18.24)
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with
Sk ∈ {S←,S→,Sp←,Sp→}, (18.25)

where
∏
S denotes the product of source superoperators and propagators

obtained from
∏
Ê ·

∏
Ê† through the substitution (18.21).

Two further steps take us to our final result. First, in the Born–Markov
approximation we may replace Liouvillian L by superoperator L, or, after
transforming to the interaction picture, by superoperator L̃; at the same time
χ(−τR) → ρ̃(−τR) and tr{} → trS{}. Second, the expanded exponentials are
resummed. Clearly, the sums over μ1, . . . , μm simply result in each Sk being
replaced by the summed source superoperator

S ≡ S← + S→ + Sp← + Sp→. (18.26)

The sum over m is then seen to be a Dyson expansion, which when resummed
gives

P (rec) =
∑∫

trS
{∏

S

[
S1e

(L̃−S)(t′1+τR)ρ̃(−τR)
]}
, (18.27)

where we introduce the retarded time t′1 = t1 − τR. There are n similar ex-
pansions hidden in the generalized sum over

∏
S which are treated in the

same way. Thus, after resumming all of these terms, we arrive at our final
expression for the probability density for scattering (photoelectron counting)
records in superoperator and density matrix form,

P (rec) = trS
[K̃REC(t′)ρ̃(−τR)

]
, (18.28)

with

K̃REC(t′) ≡ e(L̃−S)(t′−t′n)Sne(L̃−S)(t′n−t′n−1) · · · S2e
(L̃−S)(t′2−t′1)S1e

(L̃−S)(t′1+τR),
(18.29)

where t′k ≡ tk − τR.

Note 18.3. Time ordering is not strictly necessary in the starting expression
(18.13) because output field operators commute at different times. After sub-
stitution (18.21) is made, however, the time ordering is locked in; this substi-
tution is only possible after the field operators have been written out explicitly
in time order. The end result, record probability density (18.28) and (18.29), is
given in terms of source-field operators only, and clearly the quantum trajec-
tory approach envisages the detection of output fields that are coupled to their
sources. On the other hand, nothing in principle prevents us from moving the
detectors (Fig. 18.1) so far away from the cavity that the retardation time τR
is larger than the time for which the source is turned on. Then, when the out-
puts are eventually detected, they will be freely propagating fields. Another
comment of Kelley and Kleiner’s is pertinent here [18.1]: “We now discuss an
assumption made implicitly by other authors and which is of far reaching con-
sequence. The time evolution of the field operators under the full Hamiltonian
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of field-plus-sources is replaced by the evolution under the field Hamiltonian
alone. . . . The correlation functions used by Glauber,11−13 Sudarshan,14,15

and others are of this type. A question which remains unanswered is under
what circumstances and how this simplification can be justified.” In response,
we can say that the detected fields may indeed be considered freely propagat-
ing (“evolution under the field Hamiltonian alone”)—at least this is so within
the Born–Markov framework—so long as an appropriate description is used
for the state of the field: the correlation functions inserted into (18.13) should
describe a field that, sometime in the past (possibly the distant past), was
produced by a photoemissive source. This is consistent with the open system
aspect of Kelley–Kleiner theory commented upon by Mandel [18.8].

18.1.2 Factorization for Pure Initial States

Superoperators are convenient for deriving a result like (18.28), but now that
we have this expression, it is helpful to rewrite it in its factorized, pure-state
form. The factorization is made possible by the structure of the superoperator
L̃ − S, which defines the propagator entering (18.28); this structure follows
from the Lindblad form of the master equation (Eq. 18.4) and its relationship
to the source superoperators (Eqs. 18.23a, 18.23b, and 18.26). The central
point is that L̃−S decomposes as a sum of commutators and anticommutators.
Specifically, in the case of the degenerate parametric oscillator example,

L̃ − S = (g/2)[a†2b− a2b†, · ] − i[Ē0b
† + Ē∗0 b, · ]

− 1
2 (γa1 + γa2)[a†a, · ]+ − 1

2 (γb1 + γb2)[b†b, · ]+. (18.30)

where [ · , · ]+ denotes the anticommutator. It is thus possible to write

L̃ − S =
1
i�

(
H̃B · − · H̃†B

)
, (18.31)

with non-Hermitian Hamiltonian

H̃B ≡ −i� 1
2 (γa1 + γa2)a†a− i� 1

2 (γb1 + γb2)b†b

+ i�(g/2)(a†2b− a2b†) + �(Ē0b
† + Ē∗0 b). (18.32)

Evolution under the propagator e(L̃−S)t in-between the photoelectric counts
is then governed by the nonunitary Schrödinger equation with Hamiltonian
H̃B [generalizing (17.50)]. We write

e(L̃−S)t = B̃(t) · B̃†(t), (18.33)

with
B̃(t) ≡ exp[−(i/�)H̃Bt]. (18.34)
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To complete the rewriting, the source superoperators, (18.23a) and (18.23b),
are replaced by their corresponding jump operators [the generalization of
(17.52)],

J← ≡ √
γa1a, J→ ≡ √

γa2a, (18.35a)
Jp← ≡ √

γb1b, Jp→ ≡ √
γb2b. (18.35b)

Then with

K̃REC(t′) ≡ B̃(t′ − t′n)JnB̃(t′n − t′n−1) · · · J2B̃(t′2 − t′1)J1B̃(t′1 + τR), (18.36)

where Jk ∈ {J←, J→, Jp←, Jp→}, superoperator (18.29), which defines the
record probability density (18.28), takes the simpler factorized form

K̃REC(t′) = K̃REC(t′) · K̃†REC(t′). (18.37)

Thus, for any pure initial state,

ρ̃(−τR) = |ψ̃REC(−τR)〉〈ψ̃REC(−τR)|, (18.38)

the record probability density (18.28) and (18.29) may be rewritten as a con-
ditional state norm, the generalization of (17.76); we arrive at the probability
density for scattering (photoelectron counting) records in operator and pure-
state form:

P (rec) = 〈 ˜̄ψREC(t′)| ˜̄ψREC(t′)〉, (18.39)

with unnormalized conditional state

| ˜̄ψREC(t′)〉 = K̃REC(t′)|ψ̃(−τR)〉. (18.40)

18.2 Unraveling the Density Operator

18.2.1 Photoelectron Counting Records

It remains for us to demonstrate that the derived record probability density
and associated conditional state do, indeed, provide an unraveling of the den-
sity operator in the form (17.8) [equivalently (17.77)]. To show that this is
so we generalize the Dyson expansion approach applied to the example of
spontaneous emission in Sect. 17.2.4.

On the right-hand side of master equation (18.3) we write L̃ = (L̃−S)+S,
viewing L̃−S as the generator of “free” evolution and S as an interaction. For
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the degenerate parametric oscillator, S is the summed source superoperator
(18.26) and L̃ − S is given by (18.30). The Dyson expansion is

ρ̃(t′)

= e[(L̃−S)+S]tρ̃(−τR)

=
∞∑

n=0

∫ t′

−τR

dt′n · · ·
∫ t′3

−τR

dt′2

∫ t′2

−τR

dt′1

e(L̃−S)(t′−t′n)Se(L̃−S)(t′n−t′n−1) · · · Se(L̃−S)(t′2−t′1)Se(L̃−S)(t′1+τR)ρ̃(−τR)

=
∞∑

n=0

4∑

νn=1

· · ·
4∑

ν1=1

∫ t′

−τR

dt′n · · ·
∫ t′3

−τR

dt′2

∫ t′2

−τR

dt′1

e(L̃−S)(t′−t′n)Sνne
(L̃−S)(t′n−t′n−1)· · · Sν2e(L̃−S)(t′2−t′1)Sν1e(L̃−S)(t′1+τR)ρ̃(−τR),

(18.41)

with
Sνk

∈ {S←,S→,Sp←,Sp→}. (18.42)

The quantity inside the sums and integrals is K̃REC(t′)ρ̃(−τR), the argument
of the trace in the expression for the record probability (18.28). Thus, using
its factorized form (18.37), and assuming a pure initial pure state, the Dyson
expansion takes on the form

ρ̃(t′) =
∑

REC

| ˜̄ψREC(t′)〉〈 ˜̄ψREC(t′)|, (18.43)

where | ˜̄ψREC(t′)〉 is the unnormalized conditional state (18.40). The explicit
sums and integrals in (18.41) make up the generalized sum over records:
the sum over n is the sum over the number of photons emitted, sums over
ν1, ν2, . . . , νn cover the possible output channels for each emission, while the
integrals sum over possible emission times. The Dyson expansion is in effect
an unraveling of the density operator in the form (17.77). After normalizing
the conditional state, and using (18.39), the unraveling is converted to the
originally proposed form:

ρ̃(t′) =
∑

REC

P (rec)|ψ̃REC(t′)〉〈ψ̃REC(t′)|, (18.44)

with normalized conditional state

|ψ̃REC(t′)〉 =
| ˜̄ψREC(t′)〉

√
〈 ˜̄ψREC(t′)| ˜̄ψREC(t′)〉

. (18.45)
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Let us now address the practical matter of making use of such an unrav-
eling. As noted in Sect. 17.3.4, in most applications P (rec) and |ψ̃REC(t′)〉
are difficult to determine analytically, and in order to put the unraveling to
use it must be implemented numerically, as the basis of a Monte Carlo sim-
ulation scheme. The numerical approach generates stochastic realizations of
both the conditional state and its associated scattering record. The different
records are automatically realized in the correct proportions—with relative
frequency dictated by the probability density P (rec). The expansion of the
density operator is then evaluated as

ρ̃(t′) = N−1
∑

{REC}N

|ψ̃REC(t′)〉〈ψ̃REC(t′)|, (18.46)

where {REC}N denotes the realized ensemble of N simulated records.
In order to appreciate fully how the Monte Carlo evolution proceeds, let

us assume the unnormalized state | ˜̄ψREC(t′k)〉 has been reached after the first
k time steps (tk = kΔt). In the next time step, there is a five-way splitting
of the trajectory governed by the five probabilities for the next entry in the
record. The branching ratio is determined from the general record probability
density (18.39). With the help of (18.40) and (18.36), and (18.34)–(18.35b),
the five record probabilities up to time tk +Δt are

P

(
rec ∧

{
γa1
Tk

})
= Δt〈 ˜̄ψREC(t′k)|J†→J→| ˜̄ψREC(t′k)〉, (18.47a)

P

(
rec ∧

{
γa2
Tk

})
= Δt〈 ˜̄ψREC(t′k)|J†←J←| ˜̄ψREC(t′k)〉, (18.47b)

P

(
rec ∧

{
γb1
Tk

})
= Δt〈 ˜̄ψREC(t′k)|J†p→Jp→| ˜̄ψREC(t′k)〉, (18.47c)

P

(
rec ∧

{
γb2
Tk

})
= Δt〈 ˜̄ψREC(t′k)|J†p←Jp←| ˜̄ψREC(t′k)〉, (18.47d)

and

P
(
rec ∧ {∅tk+1

})
= 〈 ˜̄ψREC(t′k)|e−(i/�)(H̃B−H̃†

B)Δt| ˜̄ψREC(t′k)〉. (18.47e)

Then, using Bayesian inference, there are five conditional probabilities which
govern the choice of which branch along the splitting trajectory to follow:

p→ ≡ p

({
γa1
Tk

}
|rec

)
= Δt〈ψ̃REC(t′k)|J†→J→|ψ̃REC(t′k)〉, (18.48a)

p← ≡ p

({
γa2
Tk

}
|rec

)
= Δt〈ψ̃REC(t′k)|J†←J←|ψ̃REC(t′k)〉, (18.48b)

pp→ ≡ p

({
γb1
Tk

}
|rec

)
= Δt〈ψ̃REC(t′k)|J†p→Jp→|ψ̃REC(t′k)〉, (18.48c)

pp← ≡ p

({
γb2
Tk

}
|rec

)
= Δt〈ψ̃REC(t′k)|J†p←Jp←|ψ̃REC(t′k)〉, (18.48d)
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and

p
({∅tk+1

}|rec
)

= 〈ψ̃REC(t′k)|
[
1 +Δt

1
i�

(
H̃B − H̃†B

)
]
|ψ̃REC(t′k)〉. (18.48e)

One readily checks that the sum of (18.48a)–(18.48e) is unity, guaranteeing
that the probabilities sum to unity for all records extending over the entire
simulation. Given the conditional probabilities, the Monte Carlo algorithm for
quantum trajectory simulations of the degenerate parametric oscillator with
photoelectron counting records follows in a natural way:

1. compute p→, p←, pp→, pp←
and
pjump = p→ + p← + pp→ + pp←

2. if pjump > rk, then if
p→
pjump

> r′k

|ψ̃REC(t′k+1)〉 =
J→|ψ̃REC(t′k)〉√

〈ψ̃REC(t′k)|J†→J→|ψ̃REC(t′k)〉

else if
p→ + p←
pjump

> r′k

|ψ̃REC(t′k+1)〉 =
J←|ψ̃REC(t′k)〉√

〈ψ̃REC(t′k)|J†←J←|ψ̃REC(t′k)〉

else if
p→ + p← + pp→

pjump
> r′k

|ψ̃REC(t′k+1)〉 =
Jp→|ψ̃REC(t′k)〉√

〈ψ̃REC(t′k)|J†p→Jp→|ψ̃REC(t′k)〉
else

|ψ̃REC(t′k+1)〉 =
Jp←|ψ̃REC(t′k)〉√

〈ψ̃REC(t′k)|J†p←Jp←|ψ̃REC(t′k)〉
else

|ψ̃REC(t′k+1)〉
=

{
1 +Δt

1
i�

[
H̃B − 1

2 〈ψ̃REC(t′k)|(H̃B − H̃†B)|ψ̃REC(t′k)〉
]}

|ψ̃REC(t′k)〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(18.49)

This version of the algorithm uses two independent random numbers, rk and
r′k, each uniformly distributed on the unit line. The first is employed to decide
whether a jump or no-jump takes place and the second to decide which jump
to make. Alternatively, a single random number can be used, with the decision
between the five options made on the basis of where the random number falls
within a unit interval divided into five subintervals in accordance with the
conditional probabilities.
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A selection of results obtained from an implementation of (18.49) is shown
in Fig. 18.3. The steady-state Wigner distributions on the left are computed
from the time-averaged density operator,

ρ̃ss =
1
T

∫ T

0

dt|ψ̃REC(t)〉〈ψ̃REC(t)|, (18.50)

for a single trajectory run continuously in time. The time average is equivalent
to the ensemble average (18.46) since quantum trajectories are ergodic (with
a few exceptions) [18.9,18.10]. The parameters chosen yield nthr

p = γa2/2g = 2
and 〈a†a〉thr = 0.676 [from (10.102)]. Threshold occurs at

λ =
4g|Ē0|
γa2γb2

= 1 ⇒ 2|Ē0|
γa2

= 2;

thus, Figs. 18.3a, b, and c correspond to conditions below threshold, at thresh-
old, and above threshold, respectively. Although the system size is relatively
large and the threshold is not sharp, we still see the progression predicted
by the small-noise analysis of Sect. 10.2.4—from a single-peaked distribution
below threshold to a two-peaked distribution above (compare Fig. 12.5 where
〈a†a〉thr = 1.0 and 0.5).

Short segments of the subharmonic-mode photoelectron count records are
shown above each frame on the right in the figure. The records show intermit-
tent bursts of photon emissions—“bright intervals”—separated by intervals
where there are no emissions at all—“dark intervals;” the latter become less
and less frequent as the oscillator passes above threshold.

The photon statistics within the bright intervals exhibit a feature that
illustrates the kind of subtlety quantum trajectory simulations can extract.
The plotted distributions, pn, are probability distributions of bright-interval
photon numbers, where for the purposes of the figure, a bright interval has
been defined to be any continuous period of subharmonic-mode photoelectron
counts beginning and ending with a dark interval of duration 2.5γ−1

a2 or more.
Notice, now, that nonzero values of the probability fall almost entirely on the
even integers; though more difficult to see at the resolution of the figure, this is
true even for Fig. 18.3c, where typical bright intervals contain 50–100 counts.
Thus, near threshold, the degenerate parametric oscillator is producing bursts
of even numbers of photons, clearly a remnant of the pair production process.
This is a subtle quantum correlation when the photon numbers are large.
It would be very difficult to account for it using the phase-space approach
of Chaps. 10–12. It is nevertheless readily accessible to quantum trajectory
simulations.

18.2.2 Homodyne-Current Records

We have seen how the program of Sect. 17.1 can be formulated systematically
from a photoelectron counting point of view. Thus, our primary aim has been
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Fig. 18.3. Monte Carlo simulation of quantum trajectories with photoelectron
counting records for the degenerate parametric oscillator near threshold in the strong
coupling regime (for small system size); for γa1 = γb1 = 0, γa2 = γb2 = 4g, and (a)
2|Ē0|/γa2 = 1.4, (b) 2|Ē0|/γa2 = 2.0, and (c) 2|Ē0|/γa2 = 2.6. The steady-state
Wigner distribution is shown to the left and the probability distribution of “bright
interval” counts (see text) to the right. A typical record of subharmonic counts
appears above each frame on the right
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achieved and there are now new issues to consider. Central amongst them
is the observation that unravelings of the density operator are not unique—
different unravelings are defined by different strategies for making scattering
records. In all cases, ultimately the photoelectron counting scenario of the
previous section is invoked—ultimately scattered photons are detected and
recorded as photoelectron counts. The scattered field need not be directly
detected, though; it might, for example, pass first through a filter cavity to
effect a measurement of the optical spectrum, or be superposed with a local
oscillator to accomplish homodyne or heterodyne detection. In this section
we develop the unraveling of the density operator and its master equation
evolution for the homodyne detection case.

Let us first consider a simple example that illustrates the possibilities.
Returning to Fig. 18.1, we might ask what happens if the displacement which
subtracts the backscattered field amplitude before detection is removed. In this
case, the detector (lower left in the figure) sees output field

√
γb1b superposed

with a coherent amplitude iĒ0/
√
γb1. The source superoperator in (18.23b),

Sp← ≡ γb1b · b†, is replaced by

S′p← ≡
[
i

Ē0√
γb1

+
√
γb1b

]
·
[
−i Ē∗0√

γb1
+
√
γb1b

†
]
. (18.51)

From here the mathematical development carries through as before, but with
jump operator Jp← ≡ √

γb1b (Eq. 18.35b) replaced by

J ′p← ≡ i
Ē0√
γb1

+
√
γb1b, (18.52)

and altered non-Hermitian Hamiltonian [in place of (18.32)]

H̃ ′B ≡ H̃B − �Ē∗0 b− i�
|Ē0|2
2γb1

. (18.53)

The Monte Carlo algorithm still holds, but with Jp← → J ′p← and H̃B → H̃ ′B.
Thus we arrive at a different unraveling. In fact, the unraveling arrived at
in this way has much in common with the homodyne case. It differs in two
small, though important, respects: in homodyne detection the superposed field
is a local oscillator with (i) an adjustable phase and (ii) a very large amplitude
(photon flux) compared to that of the cavity output field.

Note 18.4. The driving field enters non-Hermitian Hamiltonian (18.53) through
a unidirectional coupling term, �(Ē0b

† + Ē∗0 b) − �Ē∗0 b = �Ē0b
†; there is an op-

erator to create, but not to annihilate, cavity photons. Such terms are met
more generally in the cascaded open systems formalism of Sect. 18.2. Note
also that the constant term, −i�|Ē0|2/2γb1 in H̃ ′B, has no effect on the nor-
malized conditional state since it cancels out in the last line of (18.49). Indeed,
in simulations, this term may be dropped; although if that is done the un-
normalized state norm [defined via (18.40) and (18.36)] no longer gives the
record probability density. We return to this point below (18.74).
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The homodyne detection unraveling is derived by applying photoelectron
counting theory to the scattering scenario depicted in Fig. 18.4. For simplic-
ity, we retain direct photoelectron counting for output channels γa1, γb1, and
γb2; only at the fourth output channel, γa2, are homodyne current records
made. The records are made by a balanced homodyne detector, as depicted
in the figure. Unbalanced detection was discussed in Sect 9.3.3, where it was
used to derive an expression for the spectrum of squeezing. Balanced detection
was proposed by Yuen and Chan [18.11] as the practical way to observe the
reduced quadrature phase amplitude fluctuations of squeezed light. In this
measurement, a strong local oscillator field is superposed at a 50/50 beam
splitter with the signal field to be measured. The two beam splitter outputs
are passed to photoelectric detectors whose photocurrents are subtracted and
filtered to produce the measured signal—the difference current i(t) in the
figure.

The analysis of the scattering scenario of Fig. 18.4 is carried out as before
(Sects. 18.1.1–18.2.1), but now there are five, rather than four, photoelectric
detectors to consider. The two that form the balanced detector see fields
that have been superposed with the local oscillator, so in place of source
superoperators (18.25) and (18.42), we now have

Sνk
∈ {S←,SP ,SM ,Sp←,Sp→}, (18.54)

Fig. 18.4. Scattering scenario for the degenerate parametric oscillator model of
Figs. 9.1 and 9.4 with scattering records made by direct photoelectron counting of
output channels γa1, γb1, and γb2, and balanced homodyne detection of channel γa2
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where superoperator S→ is replaced by the two superoperators

SP ≡ 1
2 (Elo + J→) · (E∗lo + J†→), (18.55a)

SM ≡ 1
2 (Elo − J→) · (E∗lo − J†→). (18.55b)

The local oscillator field is written as Eloe
−iωCt, with frequency tuned to the

cavity resonance and complex amplitude (in photon flux units)

Elo = |Elo|eiθ. (18.56)

The local oscillator phase, θ, determines the quadrature phase amplitude to
be measured. With the newly defined source superoperator sum, S ≡ S← +
SP +SM +Sp←+Sp→, we may again write the propagator between quantum
jumps as e(L̃−S)t = B̃(t) · B̃†(t), but with non-Hermitian Hamiltonian

H̃B → H̃B − i� 1
2 |Elo|2, (18.57)

an analogous change to that made in (18.53). In the balanced detection
scheme, the change arises from the detection of two superposed fields with
a π phase difference between the superpositions; hence, the two terms cor-
responding to −�Ē∗0 b in (18.53) cancel. In place of the single jump operator,
J→, there are now two,

JP =
1√
2
(Elo + J→), (18.58a)

and
JM =

1√
2
(Elo − J→). (18.58b)

Note 18.5. The local oscillator may be modeled as an additional source whose
field is in a coherent state. The system state, including this additional source,
is then written as | ˜̄ψREC(t)〉|αlo〉, where αlo is the complex amplitude of the
local oscillator mode and the local oscillator source field is

√
γloalo, with out-

put coupling rate γlo. Quantum jumps applied to the local oscillator mode
yield

√
γloalo|αlo〉 → Elo|αlo〉, with Elo =

√
γloαlo. Thus, as an eigenstate of

the jump operator, the coherent state |αlo〉 is superfluous and might just as
well be dropped.

We return now to the general quantum jump formalism of Sects. 18.1.1–18.2.1
and consider the propagator (18.36). In view of the assumed high local oscil-
lator photon flux, the two homodyne photodetectors will fire at a much faster
rate than the other three photodetectors, and the homodyne count records re-
quire special attention. To this end, we introduce notation to distinguish their
counts from the rest. Consider a record that contains m nonhomodyne counts,
at times td1 , td2 , . . . tdm , with n1 homodyne counts before the first, n2 after
the first and before the second, and so on. Firings of the three nonhomodyne
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detectors therefore have count indicators

d1 = n1 + 1
d2 = n1 + n2 + 2
...

...
dm = n1 + n2 + · · ·nm +m

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (18.59)

For the propagator, (18.36), we then write

K̃REC(t′) = K̃hom(t′ − t′dm
)JdmK̃hom(t′dm

− t′dm−1
) · · ·

· · ·Jd2K̃hom(t′d2 − t′d1)Jd1K̃hom(t′d1), (18.60)

with jump operators for the direct photoelectric detections

Jdl
∈ {J←, Jp←, Jp→}, (18.61)

and with

K̃hom(t′dl+1
− t′dl

) ≡ B̃(t′dl+1
− t′dl+nl+1

)Jdl+nl+1B̃(t′dl+nl+1
− t′dl+nl+1−1) · · ·

· · ·Jdl+2B̃(t′dl+2 − t′dl+1)Jdl+1B̃(t′dl+1 − t′dl
), (18.62)

where the homodyne detection jump operators are

Jdl+kl
∈ {JP , JM}. (18.63)

Our goal now is to derive a stochastic Schrödinger equation for the condi-
tional state that incorporates the effect of propagator K̃hom(t′dl+1

− t′dl
) at the

level of a course-graining over time. The course-grained evolution becomes
a continuous evolution in the limit of infinite local oscillator photon flux.

To begin, let us consider a time interval from t to t + Δt (retarded time
t′ to t′ + Δt) during which there are no nonhomodyne counts and qP + qM
homodyne counts occurring at times th1 , th2 , . . . thqP +qM

; during this interval,
the conditional state suffers qP jumps of type JP and qM jumps of type JM .
We locate the latter within the record by the indicator

hr = n+ r, r = 1, 2, . . . qP + qM , (18.64)

where n is the total number of jumps prior to time t. The associated jump
times are denoted by

thr = t+ τ1 + τ2 + · · · τr. (18.65)

The length of the interval, Δt, is assumed to be small compared with the
timescale for significant change of the conditional state, which is characterized
by the various rates |Ē0|, g, γa1, γa2, γb1, and γb2 from master equation (18.3)
and (18.4). The numbers qP and qM are nevertheless both extremely large,
and approach infinity in the limit of infinite local oscillator photon flux—
specifically, we have qP ∼ qM ∼ 1

2 |Elo|2Δt. Under these conditions, we expand
the propagator
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K̃hom(Δt) = B̃
(
Δt−∑qP +qM

s=1 τs

)
JhqP +qM

B̃(τqP +qM ) · · · Jh2B̃(τ2)Jh1B̃(τ1),

(18.66)

with
Jhr ∈ {JP , JM}, (18.67)

to dominant order in ξΔt, where ξ stands in for the aforementioned rates, but
including 1

2 |Elo|2Δt to all orders. Thus, using (18.34) and (18.57)–(18.58b),
we write

K̃hom(Δt) =
(Elo/

√
2
)qP +qM

e−
1
2 |Elo|2Δt

[
1 +

1
i�
H̃BΔt+

qP − qM
Elo

J→

+
1
2

(qP − qM )2 − (qP + qM )
E2
lo

J2
→

]
. (18.68)

The third and fourth terms in the square bracket come from an expansion
to second order of the product of jump operators in (18.66); the fourth is of
order γa2Δt [note, for example, that (qP + qM ) ∼ |Elo|2Δt], while the third
contains two contributions, one of order γa2Δt and one of order (γa2Δt)1/2.
To replace them by explicit expressions, we write the photoelectron count
numbers as sums of a mean and a fluctuation:

qP =
1
2
〈
(E∗lo + J†→)(Elo + J→)

〉
RECΔt+

1√
2
|Elo|ΔWP , (18.69a)

qM =
1
2
〈
(E∗lo − J†→)(Elo − J→)

〉
RECΔt+

1√
2
|Elo|ΔWM . (18.69b)

In these expressions photon flux conditional expectations are taken to deter-
mine the means—the operator averages 〈· · ·〉REC—while terms |Elo|ΔWP /

√
2

and |Elo|ΔWM

√
2 account for Poisson fluctuations in the count numbers (shot

noise) for a local oscillator photon flux 1
2 |Elo|2 at each detector; the Wiener

increments, ΔWP and ΔWM , are Gaussian-distributed random variables of
zero mean and variance Δt.

The propagator depends on the three quantities qP − qM , (qP − qM )2, and
qP + qM . From (18.69a) and (18.69b), we obtain

qP − qM = |Elo|
(〈
eiθJ†→ + e−iθJ→

〉
RECΔt+ΔW

)
, (18.70)

where
ΔW =

1√
2
(ΔWP −ΔWM ) (18.71)

is also Gaussian-distributed with zero mean and variance Δt. Then, since the
dominant term in this expression for the photoelectron count difference is



458 18 Quantum Trajectories II: The Degenerate Parametric Oscillator

ΔW ∼ √
Δt, we use the Ito rule to write

(qP − qM )2 = |Elo|2(ΔW )2 = |Elo|2Δt, (18.72)

where we replace (ΔW )2 by its mean. Keeping only the dominant term also
in the photoelectron count sum, from (18.69a) and (18.69b) we write

qP + qM = |Elo|2Δt. (18.73)

Now, substituting (18.70), (18.72), and (18.73) into (18.68), our expansion of
the propagator to dominant order in ξΔt takes the form

K̃hom(Δt) =
(Elo/

√
2
)qP +qM exp

(− 1
2 |Elo|2Δt

){
1 +

1
i�
H̃BΔt

+
(〈
eiθJ†→ + e−iθJ→

〉
RECΔt+ΔW

)
e−iθJ→

}
. (18.74)

Of course, the prefactor on the right-hand side does nothing more than
change the normalization of the state. It may be removed by introducing a new
unnormalized conditional state | ˜̄̄ψREC(t)〉, with

| ˜̄ψREC(t′)〉 =
(Elo/

√
2
)qP,M (t′) exp

(− 1
2 |Elo|2t′

)| ˜̄̄ψREC(t′)〉, (18.75)

where qP,M (t′) is the total number of homodyne counts up to time t (retarded
time T ′). While the new state serves our purpose of following the conditional
evolution just as well, it must be remembered that its norm does not give
the scattering record probability density. With the changed normalization, we
write

| ˜̄̄ψREC(t′ +Δt)〉
=

(Elo/
√

2
)−[qP +qM +qP,M (t′)] exp

[
1
2 |Elo|2(t′ +Δt)

]| ˜̄ψREC(t′ +Δt)〉

=
(Elo/

√
2
)−[qP +qM +qP,M (t′)]

exp
[
1
2 |Elo|2(t′ +Δt)

][
K̃hom(Δt)| ˜̄ψREC(t′)〉

]

=
[(Elo/

√
2
)−(qP +qM ) exp

(
1
2 |Elo|2Δt

)
K̃hom(Δt)

]
| ˜̄̄ψREC(t′)〉, (18.76)

and, using (18.74) and (18.76), arrive at the course-grained stochastic differ-
ential equation

Δ| ˜̄̄ψREC〉 =
[

1
i�
H̃BΔt+

(〈
eiθJ†→ + e−iθJ→

〉
RECΔt+ΔW

)
e−iθJ→

]
| ˜̄̄ψREC〉.
(18.77)

Finally, taking the limit of infinite local oscillator photon flux allows us
to adopt this equation at the level of infinitesimals, with Δt → dt and
ΔW → dW . The result is the stochastic Schrödinger equation within quan-
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tum trajectory theory for the degenerate parametric oscillator with homodyne-
current records :

d| ˜̄̄ψREC〉 =
[

1
i�
H̃Bdt+ (Ge|Elo|)−1e−iθJ→dq

]
| ˜̄̄ψREC〉, (18.78)

where
dq = Ge|Elo|

(〈
eiθJ†→ + e−iθJ→

〉
RECdt+ dW

)
(18.79)

is the charge deposited in the detector circuit in interval t to t+ dt; here e is
the electronic charge and G the detector gain. The filtered homodyne current,
i(t) in Fig. 18.4, satisfies the stochastic differential equation

di = −τ−1
d (idt− dq), (18.80)

where τ−1
d is the detection bandwidth.

Note 18.6. The claim that the conditional state norm, 〈 ˜̄ψREC(t′)| ˜̄ψREC(t′)〉, is
the scattering record probability density (Eq. 18.39) is verified by noting that
the scale factor in (18.75) yields the probability density for the record of local
oscillator photoelectric counts (with the signal field in the vacuum state). It
is a product of waiting-time distributions for coherent light:

(|Elo|2/2
)(qP +qM )

e−|Elo|
2Δt = exp

[
−|Elo|2

(
Δt−∑qP +qM

s=1 τs

)]qP +qM∏

s=1

1
2Wlo(τs),

(18.81)

where 1
2Wlo(τs) = 1

2 |Elo|2 exp
(−|Elo|2τs

)
is the product of the no-count (at

either detector) or null-measurement probability for an interval τs and the
probability density for a count at one of the detectors at the end of the τs
waiting time.

Note 18.7. The stochastic differential equation (18.78) propagates the condi-
tional state at the retarded time t′ = t − τR, while dq and di refer to charge
and current changes during the interval t to t+dt. The distinction is generally
inconsequential and often overlooked.

Exercise 18.1. Corresponding to (18.78) and (18.79), show that the normal-
ized conditional state satisfies the stochastic Schrödinger equation

d|ψ̃REC〉 =
{

1
i�

[
H̃B − 1

2 〈ψ̃REC|
(
H̃B − H̃†B + i�J†→J→

)|ψ̃REC〉
]
dt

− 1
2 〈ψ̃REC|Jθ→|ψ̃REC〉2dt+ 〈ψ̃REC|Jθ→|ψ̃REC〉e−iθJ→dt

+dW
(
e−iθJ→ − 〈ψ̃REC|Jθ→|ψ̃REC〉

)}|ψ̃REC〉, (18.82)

with
Jθ→ ≡ 1

2

(
e−iθJ→ + eiθJ†→

)
. (18.83)
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Fig. 18.5. Monte Carlo simulation of quantum trajectories with photoelectron
counting (output channels γa1, γb1, and γb2) and homodyne-current (output channel
γa2) records for the degenerate parametric oscillator near threshold in the strong
coupling regime; for γa1 = γb1 = 0, γa2 = γb2 = 4g, and 2|Ē0|/γa2 = 1.4 (a and
c) and 2|Ē0|/γa2 = 2.6 (b and d). Photocurrent correlation functions (to the left)
and squeezing spectra (to the right) are shown for X-quadrature (a and b) and
Y -quadrature (c and d) measurements, with detection bandwidth 2τ−1

d /γa2 = 10
[The definition of X and Y quadrature phase amplitudes appears above (10.54a).]

�

The stochastic Schrödinger equation propagates the conditional state in-
between the quantum jumps associated with photoelectron counts at output
channels γa1, γb1, and γb2 [jump operators (18.61)]. The Monte Carlo algo-
rithm (18.49) is therefore changed with the J→ jump removed and the evolu-
tion calculated from (18.78) (plus normalization) inserted in its place. Filtered
homodyne-current records are simultaneously obtained from the integration
of (18.80). They provide simulated data sets, in imitation of the data from
a squeezing experiment. Thus, the spectrum of squeezing (Sects. 9.3.2–9.3.5)
can be calculated by explicitly constructing the photocurrent autocorrelation
i(t)i(t+ τ)—as a time average for ergodic records [18.9, 18.10]—and taking
the Fourier transform. This gives the spectrum Sθ(ω) defined in (9.150) and
(9.155); the collection efficiency is ζ = γa2/(γa1 + γa2) and we have assumed
ideal detectors, detection efficiency η = 1. Non-unit detection efficiency can
be treated by introducing a beam splitter with reflectivity

√
η into the γa2

output channel; one makes homodyne-current records for the reflected light
and photoelectron counting records on the light transmitted.

Results are plotted in Fig. 18.5 for parameters corresponding to the below-
threshold operating conditions of Fig. 18.3a (a and c) and the above-threshold
conditions of Fig. 18.3c (b and d). The X-quadrature measurement (a and b)
shows a narrowing of the spectrum above threshold and evidence of the devel-
oping bimodality in the displayed sample homodyne-current records [compare
the Wigner function of Fig. 8.3c]. Here the fluctuations are amplified rather
than squeezed; they rise noticeably above the background shot noise level.
This is seen most clearly in the right frame of Fig. 18.5a, where the shot
noise level is the broad Lorentzian pedestal upon which the central peak of
amplified low-frequency fluctuations sits.

On the other hand, fluctuations of the Y -quadrature phase amplitude are
squeezed. In place of the peak in Figs. 18.5a and b, the squeezing spectra of
Figs. 18.5c and d show a clear central dip, while for long times the correlation
function makes a negative, rather than positive excursion.

18.2.3 Heterodyne-Current Records

In homodyne detection the frequency ω of the local oscillator matches the cen-
tral frequency of the source-field spectrum. Heterodyne detection uses a local
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oscillator that is far detuned. Having noted this difference, the analysis of the
last section then carries through with the addition of detuning factors e±iΔωt,
Δω ≡ ω − ωC , in the interference between the local oscillator and the source
field. Effectively, the local oscillator phase factor θ is replaced by −Δωt. In
place of stochastic Schrödinger equation (18.78), we obtain

d| ˜̄̄ψREC〉 =
[

1
i�
H̃Bdt+ (Ge|Elo|)−1eiΔωtJ→dq

]
| ˜̄̄ψREC〉, (18.84)

with
dq = Ge|Elo|

(〈
e−iΔωtJ†→ + eiΔωtJ→

〉
RECdt+ dW

)
. (18.85)

Assuming then that the frequency mismatch Δω is very large compared with
the bandwidth of the source-field fluctuations, we may introduce the slowly-
varying incremental charge

dq̃ ≡ eiΔωtdq, (18.86)

and neglect the rapidly oscillating term e2iΔωt〈J→〉 that enters on the right-
hand side of (18.85). We also make the substitution

eiΔωtdW → dZ, (18.87)

where dZ = (dWx + idWy)/
√

2 is a complex-valued Wiener increment with
covariances

dZdZ = dZ∗dZ∗ = 0, dZ∗dZ = dt, (18.88)

and dWx and dWy are statistically independent (real) Wiener increments,
with covariances

dWxdWx = dWydWy = dt, dWxdWy = 0. (18.89)

Thus, from (18.84) and (18.85), with the substitutions (18.86) and (18.87), we
arrive at the stochastic Schrödinger equation within quantum trajectory theory
for the degenerate parametric oscillator with heterodyne-current records :

d| ˜̄̄ψREC〉 =
[

1
i�
H̃Bdt+ (Ge|Elo|)−1J→dq̃

]
| ˜̄̄ψREC〉, (18.90)

where
dq̃ ≡ eiΔωtq = Ge|Elo|

(〈
J†→

〉
RECdt+ dZ

)
. (18.91)

There is now a complex-valued filtered heterodyne current, ĩ(t), satisfying the
stochastic differential equation

dĩ = −τ−1
d (̃idt− dq̃), (18.92)

where τ−1
d is the detection bandwidth. Of course the raw heterodyne current

is real. It takes the form of a modulated rf carrier oscillation with carrier
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Fig. 18.6. Monte Carlo simulation of quantum trajectories with photoelectron
counting (output channels γa1, γb1, and γb2) and heterodyne-current (output channel
γa2) records for the degenerate parametric oscillator near threshold in the strong
coupling regime; for γa1 = γb1 = 0, γa2 = γb2 = 4g, and 2|Ē0|/γa2 = 2.6. Sample
time series and probability distributions of the complex-valued heterodyne current
are shown for three detection bandwidths: (a) 2τ−1

d /γa2 = 4.0, (b) 2τ−1
d /γa2 = 1.0,

and (c) 2τ−1
d /γa2 = 0.25
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frequency Δω. The complex-valued heterodyne current ĩ(t) accounts for the
slowly-varying amplitude and phase of the modulation.

Through this complex-valued current, heterodyne detection provides us
with a measurement of the complex amplitude of the intracavity field. In the
presence of shot noise, dZ, the measurement is strongly affected by detection
bandwidth. Figure 18.6 illustrates these bandwidth effects for the conditions
of Fig. 18.3c (also Fig. 18.5b and d), where the degenerate parametric os-
cillator is just above threshold and a bimodal distribution for the real part
of the subharmonic-mode field amplitude begins to appear. To produce the
histograms shown to the left in the figure, ongoing time series, similar to the
examples shown, were sampled at regular intervals of time. The beginning
bimodality is clearly evident at the lowest detection bandwidth [Fig. 18.6c],
though lost in the shot noise at the highest [Fig. 18.6a].

It is clear that none of the computed histograms correspond precisely to
the Wigner distribution of Fig. 9.3c. In fact, heterodyne detection measures
the Q distribution, not the Wigner distribution, but the histograms do not
correspond to the Q distribution of the intracavity field either. This is because
the measurement is not mode-matched to the cavity; hence an additional con-
tamination by shot noise results [alternatively, contamination by the vacuum
fluctuations of the free output field]. A mode-matched measurement of the
intracavity Q distribution is possible, though, as shown in Sect. 18.3.2.

A final useful observation is that in the high-bandwidth limit, the Fourier
transform of the photocurrent autocorrelation ĩ∗(t)̃i(t+ τ) yields the optical
spectrum from simulated data sets. The spectrum sits on a pedestal of shot
noise just like the spectrum of squeezing in Fig. 18.5. Measurement of the
optical spectrum through heterodyne detection is treated in Sect. 19.3.3.

Exercise 18.2. Show that the stochastic Schrödinger equation conditioned
on heterodyne-current records may be derived from the equation conditioned
on homodyne-current records (Eqs. 18.78 and 19.79) by dividing the γa2 out-
put field at a 50/50 beam splitter and measuring the X-quadrature phase
amplitude at one beam splitter output and the Y -quadrature phase ampli-
tude at the other.

Exercise 18.3. Use the stochastic Schrödinger equation conditioned on homo-
dyne-current records (Eqs. 18.78 and 18.79) complemented by quantum jumps
at the γa1, γb1, and γb2 outputs to derive an expression for the net change,
d
(|ψ̃REC〉〈ψ̃REC|

)
, of the conditional density operator in time interval dt.

Hence show by taking the average over scattering records that the uncon-
ditional density operator satisfies master equation (18.3) and (18.4). Re-
peat the calculations for the stochastic Schrödinger equation conditioned on
heterodyne-current records (Eqs. 18.90 and 18.91).

Note 18.8. A stochastic differential equation conditioned on heterodyne-cur-
rent records and satisfied by the normalized conditional state follows from
(18.82) by making the replacement θ → −Δωt and neglecting rapidly oscil-
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lating terms. The resulting equation reads

d|ψ̃REC〉

=
{

1
i�

[
H̃B − 1

2 〈ψ̃REC|
(
H̃B − H̃†B + i�J†→J→

)|ψ̃REC〉
]
dt

− 1
4 〈ψ̃REC|J†→|ψ̃REC〉〈ψ̃REC|J→|ψ̃REC〉dt+ 1

2 〈ψ̃REC|J†→|ψ̃REC〉J→dt

+dZ
(
J→ − 1

2 〈ψ̃REC|J→|ψ̃REC〉
)− dZ∗ 1

2 〈ψ̃REC|J†→|ψ̃REC〉
}
|ψ̃REC〉,

(18.93)

and depends on both the complex Wiener increment dZ and its conjugate
dZ∗. The latter dependence may be removed by introducing a time-dependent
global phase shift of the conditional state. Thus, with

|ψ̃′REC(t)〉 ≡ eiφ(t)|ψ̃REC(t)〉, (18.94a)

|ψ̃′REC〉 + d|ψ̃′REC〉 = eidφeiφ(|ψ̃REC〉 + d|ψ̃REC〉), (18.94b)

and infinitesimal phase change

idφ ≡ −dZ 1
2 〈ψ̃REC|J→|ψ̃REC〉 + dZ∗ 1

2 〈ψ̃REC|J†→|ψ̃REC〉, (18.95)

we expand (18.94b) to second order in dφ and d|ψ̃REC〉:
|ψ̃′REC〉 + d|ψ̃′REC〉

=
[
1 + (idφ) + 1

2 (idφ)2
]|ψ̃′REC〉 + eiφ

[
d|ψ̃REC〉 + (idφ)d|ψ̃REC〉

]
.

(18.96)

Now, invoking the Ito rule, as in (18.72), we replace the second-order terms
1
2 (idφ)2 and (idφ)d|ψ̃REC〉 by their means with, from (18.95) and (18.93),

1
2 (idφ)2 = − 1

4 〈ψ̃REC|J†→|ψ̃REC〉〈ψ̃REC|J→|ψ̃REC〉dt, (18.97a)

and
(idφ)d|ψ̃REC〉 = 1

2 〈ψ̃REC|J†→|ψ̃REC〉J→dt. (18.97b)

Finally, using (18.96)–(18.97b) and (18.93), the stochastic differential equation
conditioned on heterodyne-current records and satisfied by the normalized
conditional state is

d|ψ̃′REC〉

=
{

1
i�

[
H̃B − 1

2 〈ψ̃′REC|
(
H̃B − H̃†B + i�J†→J→

)|ψ̃′REC〉
]
dt

− 1
2 〈ψ̃′REC|J†→|ψ̃′REC〉〈ψ̃′REC|J→|ψ̃′REC〉dt+ 〈ψ̃′REC|J†→|ψ̃′REC〉J→dt

+dZ
(
J→ − 〈ψ̃′REC|J→|ψ̃′REC〉

)
}
|ψ̃′REC〉. (18.98)
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Interestingly, this corresponds to the equation proposed by Gisin and Percival
in their quantum state diffusion model [18.12,18.13,18.14]. The connection is
notable, since these authors derived their equation from rather general consid-
erations, aiming only to decompose the deterministic evolution of a quantum
ensemble into a stochastic evolution obeyed by individual members of the en-
semble (stochastic realizations). They aim to do this in such a way that each
realization will localize, dynamically, onto an eigenstate of a specified ob-
servable (e.g., an energy eigenstate), thus resolving the dispersion within the
ensemble; in particular, an initial superposition state should localize onto one
state within the superposition. In essence, then, quantum state diffusion was
designed to model a dynamical wavefunction collapse. In light of this, its con-
nection with (18.98) represents a somewhat surprising convergence of ideas,
since the starting point of quantum trajectory theory is very different. Our
aim has been to set up a conditional dynamics, not to alter the Schrödinger
evolution “in reality.” The different starting points, and outlooks, become
particularly clear when we observe that within quantum state diffusion the
proposed stochastic Schrödinger equation is considered to be unique. In con-
trast, we have constructed three quite different unravelings of the same master
equation.

18.3 Physical Interpretation

The ideas upon which quantum trajectory theory are based were discussed in
Chap. 17. Nothing is said there, though, about the uniqueness of the proposed
unraveling of the density operator and its master equation evolution. From
the preceeding we have seen that it is not, in fact, unique. In light of this, some
additional words are called for on the question of physical interpretation.

18.3.1 Systems, Environments, and Complementarity

The difference between quantum trajectory theory and the standard mas-
ter equation point of view is summarized by the two observations made in
Sect. 17.1 (below Eq. 17.5); these may be restated as follows: (i) while the
standard master equation approach takes the trace over the reservoir (envi-
ronment) R, quantum trajectory theory disentangles system S from R; and
(ii) while the master equation is local in its dependence on R, quantum tra-
jectory theory relies on a nonlocal description.

First let us expand on the second point. Nonlocality enters through con-
ditioning: the system state is conditioned on a scattering record that is made
by detectors which, importantly, do not upset the local interaction between
S and R—i.e., are not placed within a wavelength or two of where S cou-
ples to R—although they alter R at some distance from S. The form of
the master equation depends on the local interaction only of S and R. It
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follows that there are infinitely many conditional evolutions (unravelings of
the density operator and its master equation evolution) because there are
infinitely many actual environments that appear locally (where S and R
couple) to be the same. The different arrays of detectors surrounding the cavity
in Figs. 18.1 and 18.2 constitute different actual environments, and the change
from the on-resonance local oscillator of homodyne detection (Sect. 18.2.2) to
the detuned local oscillator of heterodyne detection (Sect. 18.2.3) is again
a change in the actual environment.

In examples like these, upon which the most common quantum trajectory
unravelings are based, the introduced detectors may be said to constitute ide-
alized environments. An idealized environment could correspond to true ex-
perimental conditions; but more generally it should be viewed as a formal aid,
helping us conceptualize some aspect of the system quantum dynamics—by
putting the system output fields into specific action, by introducing a spe-
cific environment upon which the output fields can act. Of course, for any
particular experiment there is ultimately only one relevant environment—the
environment as it exists in fact.

While the quantum trajectory formalism provides us with ways to calcu-
late things—often where alternate methods fail—its main distinction is the
conceptual outlook just described—i.e., its many unravelings of an open sys-
tem evolution, each one matched to the (nonlocal) action of the system upon
a specific environment. No single unraveling suffices to account for every such
action. This is the essence of Bohr’s complementarity [18.15, 18.16, 18.17], or
to invoke another word often used, the contextuality of quantum mechanics.
A quantum trajectory does not tell us what the system actually does, as
a matter of fact. We do not argue that the system actually jumps between
stationary states as photoelectron counting records suggest, or, in opposi-
tion, that it evolves continuously in time as homodyne- or heterodyne-current
records suggest. Each of these visualizations is a statistical inference, a con-
ditional evolution. The scattering records, the measurement results, are the
actual happening, and the inference works backwards from this. We might
prefer to work forwards, from a stochastic description of the system state
independent of all nonlocal monitoring, and adopt, in effect, a local hidden
variables point of view. Quantum trajectories, however, do not provide us with
that.

In the following few pages we explore some of the subtleties that differ-
ent unravelings of the master equation reveal for the degenerate parametric
oscillator example. We consider the one-mode master equation obtained with
adiabatic elimination of the pump (Eq. 12.10). The simplification makes the
computations much more manageable. Before considering our first unraveling,
though, something needs to be said about how the adiabatic elimination of
the pump affects the making of scattering records.

Let us return to the photoelectron counting scheme of Fig. 18.1 and set
γa1 and γb1 to zero, thus simplifying our model by considering a single-ended
cavity. Note, then, that the master equation with adiabatic elimination of the
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pump (Eq. 12.10) possesses one- and two-photon damping terms, and jump
operators

Jone =
√

2κa =
√
γa2a, (18.99a)

Jtwo =
√
g2/2κpa2 =

√
g2/γb2a

2. (18.99b)

These terms account for losses from the γa2 and γb2 outputs, respectively.
Note, in particular, that after adiabatic elimination of the pump, the two-
photon loss from the subharmonic mode accounts for the loss of single pump-
mode photons at the γb2 output. The physical process accomplishing this is
explained below (12.10). In the present situation we must recognize, however,
that the entire γb2 output cannot be assigned in this way, since pump photons
are lost from the cavity even when the nonlinear crystal is absent—in the
absence of any two-photon loss. In fact, the field at the γb2 output is com-
prised of two pieces: a steady-state amplitude induced by coherent driving of
the cavity at frequency 2ωC , plus a term proportional to the square of the
subharmonic field. The latter only accounts for the two-photon loss.

The explicit decomposition of the γb2 output is shown at the input to the
beam splitter in Fig. 18.7 [compare (12.2)]. As the figure illustrates, the beam
splitter can be used to effect a displacement that removes the steady-state
amplitude, separating off the two-photon term; the scheme is similar to the
one used to remove the back-reflection in Fig. 18.1. The discussion that follows
refers to quantum trajectories conditioned on direct photoelectron counting of
the displaced γb2 output [with jump operator (18.99b)] and various detection
schemes for the γa2 output.

We aim to explore some of the subtlety associated with the dynamics
introduced in Sect. 12.1.8. The suggestion made there was that the state of the
intracavity field switches back and forth between even and odd coherent state
superpositions (Eqs. 18.90a and 18.90b) as successive photons are emitted
by the cavity. If the suggestion is correct, quantum trajectories conditioned
on photoelectron counting records should produce even and odd conditional
states correlated with an even and odd cumulative photoelectron count. This

Fig. 18.7. Subtraction of the coherent amplitude of the γb2 output in the limit
γb2 	 γa2 (adiabatic elimination of the pump with γa1 = γb1 = 0)
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is exactly what one finds. The result is shown in Fig. 18.8, which compares the
time-averaged conditional density operator for a single long-running trajectory
[frame (a)] with two partial time averages, one [frame (b)] averaging over
all time intervals preceeded by an even number of photoelectron counts and
the other [frame (c)] averaging over all time intervals preceeded by an odd
number of photoelectron counts. The Wigner distributions of frames (b) and
(c) exhibit phase-space interference, with different phases of interference. The
two interference patterns evidence the proposed change from even to odd
coherent state superposition—or vice versa—on each photon emission.

Plotting computed Wigner distributions tells us nothing about observed,
or observable physics, however. A more interesting question is whether the
scattering records themselves contain any indication of the even-odd switch-
ing. Certainly, photoelectron counting records will not show the interference
fringes of Figs. 18.8b and c. They do contain indirect evidence of the even–odd
dichotomy, however. One indication of this appears in Fig. 18.3, which shows
that “bright-interval” photoelectron count numbers are predominantly even.
Figure 18.9 looks a little more carefully at this feature. The distribution of
waiting times (between one count and the next) is plotted in Fig. 18.9d for
the two cases where the considered interval is preceeded by either an even or

Fig. 18.8. Monte Carlo simulation of quantum trajectories with photoelectron
counting records for the degenerate parametric oscillator with adiabatic elimination
of the pump. Wigner distributions are computed from the time-averaged conditional
density operator with the average taken over (a) all time intervals between photo-
electron counts, and (b) and (c) all time intervals preceded, respectively, by even
and odd numbers of photoelectron counts; for g|Ē0|/κκp = 1.15 and g2/4κκp = 10−2

(mean intracavity photon number 〈a†a〉ss = 6.6)
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Fig. 18.9. Time series and photoelectron waiting-time distributions computed from
the Monte Carlo simulations of Fig. 18.8: (a) sample photoelectron count record,
(b) corresponding conditional intracavity photon number expectation, (c) photo-
electron waiting-time distribution, and (d) distribution of waiting times for intervals
preceeded by (i) an even number and (ii) an odd number of counts; the dashed line
is the waiting-time distribution for coherent light of the same photon flux

odd number of counts. The distributions are not the same: very long waiting
times are far more likely to be preceeded by an even number of counts. This
occurs because, for the chosen parameters, gaps appear in the photoelectron
count record, as seen in Fig. 18.9a, and they are always preceeded by an even
number of counts (subharmonic photons are created in pairs). Of course, the
idealized record, by assumption, includes a count for every photon.

To carry our question one step further, we might ask whether the inter-
ference fringes appearing in Fig. 18.8 can be recovered from some other type
of scattering record. As noted, the phase of the interference fringe correlates
with the parity of the cumulative emitted photon number. Certainly, then,
a photoelectron counting record must be taken in order to sort the data sets,
after which, a complementary unraveling might reveal the fringes of the sep-
arated even and odd subensembles. Indeed, this may be accomplished in the
following way.

First, a photoelectron counting record is taken for set time T , and then
the pump is turned off (λ = 0) and the subharmonic field allowed to freely
decay. During the decay the record keeping is switched to homodyne detection,
with local oscillator phase θ and an exponentially decaying (temporally mode-
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matched) local oscillator amplitude. Throughout the decay the net charge
deposited in the detector is integrated over time, so that after all the light has
left the cavity the homodyne record is the real number

Q =
√
κ/2(Ge|Elo|)−1

∫ ∞

T

e−κ(t−T )dq, (18.100)

with dq defined in (18.79). Carmichael [18.18] has shown that the proba-
bility distribution, Pθ(Q), obtained in this way measures a marginal of the
Wigner distribution representing the state of the intracavity field immedi-
ately prior to the period of free decay. The similar result for temporally
mode-matched heterodyne detection—which measures the Q distribution—
is derived in Sect. 18.3.2.

Figure 8.10 shows the integrated-charge probability distributions, PX(Q)
and PY (Q), obtained from Monte Carlo simulations of X- and Y -quadrature
homodyne detection. In particular, frames (e) and (f) display the Y -quadrature
distributions for even and odd numbers, respectively, of prior photoelectron
counts. They directly reveal the different phase of the interference fringe for
even and odd coherent state superpositions (Figs. 18.8b and c). Notice that the
presence of the fringes also effects the X-quadrature distributions presented
in frames (b) and (c).

The point to note about this example is that three unravelings of master
equation (12.10) are used to produce the simulated data sets: an unraveling for
photoelectron counting record up to time T and an unraveling for either X-
or Y -quadrature homodyne-current records after that. Although all three un-
ravel master equation (12.10), each employs a distinct stochastic Schrödinger
evolution to produce records of a distinct character: a sequence of integers for
the cumulative photoelectron counts, and of real numbers for the charge Q.
The distributions over Q correlate with the parity of the cumulative photo-
electron count. Superficially, there appears to be nothing extraordinary about
the records. Below the surface, however, there is. We encounter the issue of
quantum contexuality. Within a classical measurement paradigm we could
view the records as simply “read-off” properties of the evolving system. The
suggestion from the quantum trajectory scheme, on the other hand, is that
there is no single system dynamics, expressible in terms of these properties
(and possibly others—hidden variables), not even a stochastic one, that is able
to generate records with distributions as displayed in Fig. 18.10—including
the subtle correlation distinguishing n from n+ 1 prior photoelectron counts.
Instead, the dynamics must adjust to the context, to recognize which record-
ing device exists (nonlocally) in the environment. It is not at all strange that
a conditional dynamics should be contextual in this way; indeed, a conditional
dynamics must be, since that is its very nature. What is strange, however, is
that quantum mechanics appears to have no other way of speaking about the
generation of data sets.

For completeness, Fig. 18.11 displays results for one final measurement
scheme: the same procedure to time T , followed by heterodyne rather than
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Fig. 18.10. Monte Carlo simulation of quantum trajectories with initial photoelec-
tron counting records followed by temporally mode-matched homodyne detection
records for the degenerate parametric oscillator with adiabatic elimination of the
pump. Histograms of the integrated charge, Q, are shown for X-quadrature (a–
c) and Y -quadrature (d–e) homodyne detection. A total of 105 samples are taken
and histograms are taken for: (a and d) all samples; (b and e) samples with the
homodyne detection preceeded by an even number of photoelectron counts (55%
of samples); (c and f) samples with the homodyne detection preceeded by an odd
number of photoelectric counts (45% of samples). Parameters are the same as for
Figs. 18.8 and 18.9

homodyne detection. The integrated heterodyne-current record is the complex
number

Q̃ =
√
κ/2(Ge|Elo|)−1

∫ ∞

T

e−κ(t−T )dq̃, (18.101)

with dq̃ defined in (18.91). As shown in Sect. 18.3.2, the distribution P (Q̃)
measures the Q distribution representing the state of the intracavity field
immediately prior to the free decay. Again, the distributions displayed in
Figs. 18.11b and c reveal a difference for even and odd numbers of prior pho-
toelectron counts; although interference fringes are not seen due to the broad-
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Fig. 18.11. Monte Carlo simulation of quantum trajectories with initial photoelec-
tron counting records followed by temporally mode-matched heterodyne detection
records for the degenerate parametric oscillator with adiabatic elimination of the
pump. Histograms of the integrated charge, Q̃, are shown. A total of 106 samples
were taken and histograms made for (a) all samples, (b) samples with the heterodyne
detection preceeded by an even number of photoelectron counts (55% of samples),
and (c) samples with the heterodyne detection preceeded by an odd number of pho-
toelectric counts (45% of samples). Parameters are the same as for Figs. 18.8–18.10

ening of the Q relative to the Wigner distribution (Eq. 4.35b)—alternatively,
the smaller signal-to-noise ratio of heterodyne detection.

18.3.2 Modeling Projective Measurements

As an approach to photoelectron counting, quantum trajectory theory ap-
pears as a quantum measurement theory. It deals, however, with destructive
measurements, rather than the projective measurements of the standard von
Neumann scheme. Whether or not the counted photons are in fact destroyed
(absorbed) on detection is not so much the point; photons are merely scat-
tered by system S, and while something might be learned about the system
state from the record of photon counts, one certainly does not read off an
eigenvalue a of observable Â, with the system state projected into the corre-
sponding eigenstate |a〉.

Measurements of the von Neumann type can be constructed from a quan-
tum trajectory evolution, though. In this section we explore one of the ways
in which this can be done. The example suggests that we view the standard
von Neumann measurement as a special case of the conditional evolution of



474 18 Quantum Trajectories II: The Degenerate Parametric Oscillator

dissipative quantum systems. It shows also how coherent states—as eigen-
states of the photon annihilation operator—have a special role to play as the
stationary states of the conditional evolution.

The idea is to use an optical cavity mode as a meter which having been
entangled with the eigenstates |aj〉, j = 1, 2, . . ., of some observable of a second
system (an atom for example) Â, reads out—through interaction with the
environment—a particular eigenvalue aj = a. The readout is performed by
temporally mode-matched heterodyne detection of the cavity output. When
complete, it leaves the second system in the eigenstate |aj〉 = |a〉. A full
summary of how the scheme works is given further on. A required result to be
proved first is the one claimed at the end of the last section: temporally mode-
matched heterodyne detection of a freely decaying cavity mode yields records
whose distribution of realizations Q̃ (Eq. 18.101) measures the Q distribution
of the initial state of the intracavity field.

Consider an empty cavity prepared in state |ψ(0)〉. From the stochastic
Schrödinger equation for heterodyne detection [Eqs. 18.90 and 18.91 with
J→ =

√
2κa], free decay of the quantum state of the intracavity field condi-

tioned on temporally mode-matched detection (|Elo| → e−κt|Elo|) is governed
by the equation

d| ˜̄̄ψREC〉 =
(− κa†adt+

√
2κa dξ

)| ˜̄̄ψREC〉, (18.102)

with

dξ ≡ eκt(Ge|Elo|)−1dq̃

=
√

2κ〈a†〉RECdt+ dZ. (18.103)

We wish to determine the distribution, call it P (Q̃, Q̃∗, t), of the cumulative
complex charge

Q̃ ≡
√

2κ(Ge|Elo|)−1

∫ t

0

dq̃ =
√

2κ
∫ t

0

e−κt
′
dξ′, (18.104)

where the incremental charge deposited in the detector in time step dt is

dQ̃ =
√

2κe−κtdξ

= eκt〈a†〉REC(2κe−2κtdt) +
√

2κe−κtdZ. (18.105)

Our program is to solve the stochastic Schrödinger equation, (18.102), com-
pute the conditional expectation 〈a†〉REC, substitute the result for 〈a†〉REC

into (18.105) to obtain a stochastic differential equation for Q̃, and finally to
solve the stochastic differential equation for Q̃.

We begin with the transformation

| ˜̄̄ψREC〉 = e−κa
†at|χ〉, (18.106)
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and, from (18.102), obtain the transformed equation

d|χ〉 =
√

2κeκa
†atae−κa

†atdξ|χ〉
=

√
2κe−κtadξ|χ〉

= adQ̃|χ〉. (18.107)

Thus, the solution to stochastic Schrödinger equation (18.102) is obtained as

| ˜̄̄ψREC(t)〉 = e−κa
†ateQ̃a|ψ(0)〉. (18.108)

Then the conditional expectation 〈a†〉REC is evaluated as

〈a†〉REC =
〈ψ(0)|eQ̃∗a†e−κa

†ata†e−κa
†ateQ̃a|ψ(0)〉

〈ψ(0)|eQ̃∗a†e−κa†ate−κa†ateQ̃a|ψ(0)〉

= e−κt
∂

∂Q̃∗
ln
[
〈ψ(0)|eQ̃∗a†e−2κa†ateQ̃a|ψ(0)〉

]
. (18.109)

Now, substituting result (18.109) into (18.105), the charge Q̃ deposited in the
heterodyne detector satisfies the stochastic differential equation

dQ̃ = − ∂

∂Q̃∗
V (Q̃, Q̃∗, t)

(
2κe−2κtdt

)
+
√

2κe−κtdZ, (18.110)

where we introduce the time-dependent “potential”

V (Q̃, Q̃∗, t) ≡ − ln
[
〈ψ(0)|eQ̃∗a†e−2κa†ateQ̃a|ψ(0)〉

]
. (18.111)

Making the change of variable from t to

η ≡ 1 − e−2κt, (18.112)

we arrive at the simpler equation for the deposited charge,

dQ̃ = − ∂

∂Q̃∗
V (Q̃, Q̃∗, η)dη + dζ, (18.113)

where

V (Q̃, Q̃∗, η) ≡ − ln
[
〈ψ(0)|eQ̃∗a†(1 − η)a

†aeQ̃a|ψ(0)〉
]
, (18.114)

and dζ is a Wiener increment with dζdζ = dζ∗dζ∗ = 0 and dζ∗dζ = dη. It
follows that the probability distribution over the cumulative complex charge,
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P ′(Q̃, Q̃∗, η) ≡ P (Q̃, Q̃∗, t), satisfies the Fokker–Planck equation (Sect. 5.3.5)

∂P ′

∂η
=
{
∂

∂Q̃

[
∂

∂Q̃∗
V (Q̃, Q̃∗, η)

]
+

∂

∂Q̃∗

[
∂

∂Q̃
V (Q̃, Q̃∗, η)

]
+

∂2

∂Q̃∂Q̃∗

}
P ′.

(18.115)

We now require the solution for t → ∞ (equivalently η → 1). This last step
is left as an exercise.

Exercise 18.4. Show by direct substitution or otherwise that the distribu-
tion of cumulative complex charge in temporally mode-matched heterodyne
detection is given by

P ′(Q̃, Q̃∗, η) =
1
πη
e−η

−1|Q̃|2e−V (Q̃,Q̃∗,η)

=
1
πη
e−η

−1|Q̃|2〈ψ(0)|eQ̃∗a†(1 − η)a
†aeQ̃a|ψ(0)〉. (18.116)

The proposed connection with the Q distribution follows immediately from
(18.116) by setting η = 1. We find

P (Q̃, Q̃∗,∞) =
1
π
e−|Q̃|

2〈ψ(0)|eQ̃∗a† |0〉〈0|eQ̃a|ψ(0)〉

=
1
π
〈ψ(0)|Q̃∗〉〈Q̃∗|ψ(0)〉, (18.117)

where |Q̃∗〉 = e−
1
2 |Q̃|2eQ̃

∗a† |0〉 is the coherent state of complex amplitude Q̃∗;
thus,

P (Q̃, Q̃∗,∞) = Q0(Q̃∗, Q̃), (18.118)

where the right-hand side is the Q distribution of the initial state of the intra-
cavity field—i.e., representing density operator ρ(0) = |ψ(0)〉〈ψ(0)| (Eq. 4.6).
Note that we have arrived at Q0(Q̃∗, Q̃) rather than Q0(Q̃, Q̃∗) because the
incremental charge (18.105) defines Q̃ in terms of the conditional expectation
of a† rather than of a.

The possibilities for modeling projective measurements follow directly from
this result. Consider now the entangled initial state

|χ(0)〉 =
N∑

j=1

cj |aj〉|ψj(0)〉, (18.119)

where |aj〉, j = 1, 2, . . . , N , are orthogonal eigenstates of an observable Â of
a second quantum system (a collection of atoms for example) and |ψj(0)〉 is
a meter state—some state of the cavity mode that is correlated with |aj〉.
Three observations take us from initial state (18.119) to a modeling of the
projective measurement of observable Â:
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1. The derivation of P (Q̃, Q̃∗,∞) carries through as before, leading us to the
generalized result for the distribution of cumulative charge

P (Q̃, Q̃∗,∞) =
N∑

j=1

|cj |2Q(j)
0 (Q̃∗, Q̃), (18.120)

where Q(j)
0 (Q̃∗, Q̃) is the Q distribution representing state |ψj(0)〉. Thus,

assuming the distributions Q(j)
0 (Q̃∗, Q̃), j = 1, 2, . . . , N , are localized in

phase space, the realized records Q̃ fall into distinct sets, each coordinated
with a particular eigenstate of Â. The probability of obtaining a record
coordinated with |aj〉 is as expected for a projective measurement, namely
given by the coefficient |cj |2 in sum (18.120).

2. Coherent states are particularly well suited to serve as the initial meter
states, |ψj(0)〉, j = 1, . . . , N , since, from (18.108), the meter states then
remain coherent as the cavity mode decays. Choosing coherent states |αj〉,
j = 1, 2, . . . , N , we find

| ˜̄̄ψREC(t)〉 =
N∑

j=1

cj exp
[− 1

2 |αj |2(1 − e−κt)
]
eQ̃αj |aj〉|e−κtαj〉|aj〉.

(18.121)

3. For the given choice of initial coherent states, the unnormalized state in
the long-time limit is

| ˜̄̄ψREC(∞)〉 =
N∑

j=1

cje
−1

2 |αj |2eQ̃αj |aj〉|0〉, (18.122)

where the relative weighting of the N components is determined by
∣∣
∣
∣cje

− 1
2 |αj |2eQ̃αj

∣∣
∣
∣

2

= |cj |2e−|αj−Q̃∗|2e|Q̃|
2
. (18.123)

Clearly, if the meter states |αj〉, j = 1, 2, . . . , N , are well-localized in
phase space (macroscopically distinct), then, from (18.120), Q̃∗ is close to
one initial amplitude (Q̃∗ ≈ αk) and far from all others. It follows from
(18.122) and (18.123), plus normalization, that

|ψ̃REC(∞)〉 = |ak〉|0〉; (18.124)

the standard state reduction (collapse of the wavefunction) has taken
place.

Exercise 18.5. Design a numerical simulation to demonstrate the proper-
ties of the described modeling of a projective measurement. Investigate the
dependence on the phase-space separation of the initial meter states.
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Quantum Trajectories III: More Examples

The examples met in previous chapters could now be reanalyzed from a quan-
tum trajectory point of view, opening up new perspectives on each—on the
laser, the degenerate parametric oscillator, on optical bistability and cavity
QED. In addition, much more could be said about methods of calculation
and simulation within the quantum trajectory approach. There is therefore
a great deal more that could be done. There is only one chapter left, however,
in which to do it, and many things must be set aside.

In this final chapter we explore just a small selection of the possible ex-
tensions and applications of quantum trajectory theory. For the most part,
topics are chosen not so much for their connection to examples treated in
earlier chapters, but because each teaches us something new about what can
be done with the quantum trajectory approach.

19.1 Photon Scattering in the Weak-Excitation Limit

We begin with the one topic that is, in fact, motivated by a calculation per-
formed previously. Quantum trajectory theory is the natural language for de-
veloping the weak-excitation expansion of Sect. 16.1. There, assuming weak
excitation, the density operator that satisfies the cavity QED master equation
is factorized in pure state form—for one atom, as the pure state (16.7), and
as (16.14) in the case of many atoms. While the factorization can be verified
through tedious algebra—by following the sketch of Sects. 16.1.1 and 16.1.2—
the physical basis and mathematical form of the approximation appear much
more clearly within a quantum trajectory treatment.

Figure 19.1 uses quantum trajectories to illustrate the argument for factor-
ization put forward in the opening paragraph of Sect. 16.1 (also see the para-
graph below Note 16.1). It plots the photon number expectation, conditioned
on photoelectron counting records, for a typical realization of the scattering
process in single-atom cavity QED. The important point to note is that in
the limit of weak excitation the quantum jumps are spaced very far apart in
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Fig. 19.1. Sample quantum trajectory with photoelectron counting records for the
weak-excitation limit of single-atom cavity QED (Eq. 13.57 with ωA = ωC = ω0).
The parameters are those of Fig. 16.1b: g/κ = 1.85, γ/2κ = 1, with driving field
strength |Ē0|/κ = 0.2. The smaller amplitude perturbations correspond to cavity
emissions (given as the inset) and the larger to atomic emissions

comparison with the short time taken to recover the steady state following
a quantum jump; thus, when averaging over scattering records, the dominant
term—in the summation (17.8)—comes from the steady state reached under
the nonunitary Schrödinger evolution between quantum jumps. This observa-
tion is verified by the equations for state amplitudes (Eqs. 16.8 and 16.15),
which are, indeed, precisely those obtained from the nonunitary Schrödinger
equation (Eq. 17.50). The conclusion is in fact apparent from the equation
of motion (16.19) for the factorized state, which, in anticipation of quantum
trajectory theory, is just the between-jump Schrödinger equation for master
equation (16.16) with the second-order term −iĒ∗0a neglected.

The treatment in Sects. 16.1.3 and 16.2 of forwards photon scattering in
cavity QED is also, in essence, a quantum trajectory calculation. The derived
correlation function is simply the response of the photon number expectation
to an isolated cavity emission—i.e., the response shown inset in Fig. 19.1.
The physical content of the weak-excitation approximation is then as we just
noted: one and only one term is kept in the sum over scattering records. The
approximation is acceptable so long as the recovery of the steady state after
a quantum jump (regression of the quantum fluctuation) is not interrupted—
or more correctly rarely interrupted—by another quantum jump, either of
cavity- or atomic-emission type. Of course, the experimental measurement of
the second-order correlation function [19.1, 19.2, 19.3] records only those rare
events where the first cavity emission is followed by a second; nevertheless, in
the weak-excitation limit, the probability of the second is determined by the
uninterrupted coherent evolution displayed by the inset in Fig. 19.1.

We see from this that our earlier calculation of g(2)(τ) is, at its root, based
upon a perturbation expansion, one in which the number of photon emissions
(quantum jumps) sets the order of each term in the expansion. To formulate
the approximation we used in a more precise way, we may start from the full



19.1 Photon Scattering in the Weak-Excitation Limit 481

quantum trajectory expansion of g(2)(τ). Thus, we define photon emission
events

{A} ≡
{
κ

T

}
, {B} ≡

{
κ

T ′

}
, (19.1)

to correspond to photoelectron counts in the respective intervals T ≡ [t, t+dt)
and T ′ ≡ [t′, t′+ dt′). Aside from an overall normalization, g(2)(τ) is the joint
probability P ({A} ∧ {B})—the probability for both events to occur. Now let
rec1 denote the photoelectron counting record (all output channels) up to
time t, and rec2 the record from t + dt to t′, t′ > t. The required joint
probability may then be expanded as

P ({A} ∧ {B})
=

∑

REC1

P
(
rec1 ∧ {A})

∑

REC2

P
(
rec2 ∧ {B}|rec1 ∧ {A})

=
∑

REC1

P
(
rec1

)[
2κ〈(a†a)(t)〉REC1dt

] ∑

REC2

P
(
rec2|rec1 ∧ {A})

×
[
2κ〈ψ̃REC2|REC1∧{A}(t′)|a†a|ψ̃REC2|REC1∧{A}(t′)〉dt′

]

=
∑

REC1

P
(
rec1

)[
2κ〈(a†a)(t)〉REC1dt

] ∑

REC2

P
(
rec2|rec1 ∧ {A})

× tr
[
a†a|ψ̃REC2|REC1∧{A}(t′)〉〈ψ̃REC2|REC1∧{A}(t′)|

]
2κdt′. (19.2)

The sum over rec2 yields the density operator, ρ̃REC1∧{A}(t′), reached from
the pure state (realized at time t+dt) with prior scattering record rec1∧{A}.
The unnormalized state at this time is a|ψ̃REC1(t)〉. Therefore, the sum over
rec2 yields

P ({A} ∧ {B}) =
∑

REC1

P
(
rec1

)[
2κ〈(a†a)(t)〉REC1dt

]

× tr

{

a†a eL̃(t′−t)
[
a|ψ̃REC1(t)〉〈ψ̃REC1(t)|a†
〈ψ̃REC1(t)|a†a|ψ̃REC1(t)〉

]}

2κdt′

= tr{a†a eL̃(t′−t)[aρ̃(t)a†]}(2κdt)(2κdt′), (19.3)

where we use

ρ̃(t) =
∑

REC1

P
(
rec1

)|ψ̃REC1(t)〉〈ψ̃REC1(t)|. (19.4)

The final result reproduces the expression for the joint photoelectron counting
probability given by the quantum regression formula (Eq. 1.102).

Returning to the second line of (19.2), the approximation for weak exci-
tation is made by retaining only dominant terms in the sums over scattering
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records. We assume first that for all records up to time t of non-negligible
probability, the conditional state reached is

|ψ̃REC1(t)〉 = |ψ̃ss〉, (19.5)

where |ψ̃ss〉 denotes the between-jump steady state, satisfying

H̃B|ψ̃ss〉 = 0. (19.6)

The approximation is a good one for a situation like that depicted Fig. 19.1,
where the vast majority of quantum jumps do occur out of the between-
jump steady state. Furthermore, we assume that between t+ dt to t′ only the
no-count record is realized with non-negligible probability. Under these two
assumptions, working from the second line of (19.2) we may write (τ ≡ t′− t)

g(2)(τ) = (2κdt)−1(2κdt′)−1P ({A} ∧ {B})
(〈a†a〉ss)2

=
〈ψ̃{t∅t+τ}(τ)|a†a|ψ̃{t∅t+τ}(τ)〉

〈a†a〉ss , (19.7)

where 〈a†a〉ss is the photon number expectation computed in state |ψ̃ss〉, and

|ψ̃{t∅t+τ}(τ)〉 =
| ˜̄ψ{t∅t+τ}(τ)〉√

〈 ˜̄ψ{t∅t+τ}(τ)| ˜̄ψ{t∅t+τ}(τ)〉
, (19.8)

with the unnormalized state at time t′ = t + τ , | ˜̄ψ{t∅t+τ}(τ)〉, satisfying the
between-jump nonunitary Schrödinger equation with initial condition

| ˜̄ψ{t∅t+τ}(0)〉 =
a|ψ̃ss〉√

〈ψ̃ss|a†a|ψ̃ss〉
. (19.9)

Equations 19.7–19.9 correspond to (16.24)–(16.26).
The procedure followed might be taken a step further by retaining higher-

order terms (records involving more quantum jumps) in the summations of
(19.2). In particular, it is important to note that the scenario just presented
does not always hold in the weak-excitation limit; for example, sometimes,
even for weak excitation, an additional term must be kept in order to obtain
the lowest-order nontrivial result. Such a situation is illustrated by Fig. 19.2,
where a typical trajectory for the degenerate parametric oscillator operated
well below threshold is plotted. In this case, because photons are created
inside the cavity in pairs, a first photon emission out of the between-jump
steady state is followed by a second photon emission before the steady state is
recovered. The first assumption above (Eq. 19.5) still holds, but we must now
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Fig. 19.2. Sample quantum trajectory with photoelectron counting records for
the degenerate parametric oscillator well below threshold (Eqs. 18.3 and 18.4); for
γa1 = γb1 = 0, γa2 = γb2 = 4g, and 2|Ē0|/γa2 = 0.5. The quantum jumps occur in
pairs, separated on average by the photon lifetime of the subharmonic mode

sum over two records between t + dt and t′: the no-count record, as before,
and all records of the form

{CT ′′} ≡
{

t∅, κT ′′, ∅t+τ
}

(19.10)

that include an additional photon emission in the interval

T ′′ ≡ [t′′, t′′ + dt′′) ≡ [t+ τ ′, t+ τ ′ + dτ ′). (19.11)

Working as before from the second line of (19.2), the correlation function is
written as

g(2)(τ) = (2κdt)−1(2κdt′)−1P ({A} ∧ {B})
(〈a†a〉ss)2

= P ({t∅t+τ})
〈ψ̃{t∅t+τ}(τ)|a†a|ψ̃{t∅t+τ}(τ)〉

〈a†a〉ss

+
∫ t+τ

t

dτ ′P ({CT ′′}) 〈ψ̃{CT ′′}(τ)|a†a|ψ̃{CT ′′}(τ)〉
〈a†a〉ss , (19.12)

where the quantum state conditioned on the record {CT ′′},

|ψ̃{CT ′′}(τ)〉 =
| ˜̄ψ{CT ′′}(τ)〉√

〈 ˜̄ψ{CT ′′}(τ)| ˜̄ψ{CT ′′}(τ)〉
, (19.13)

solves the between-jump nonunitary Schrödinger equation with initial condi-
tion

| ˜̄ψ{CT ′′}(τ
′)〉 = 2κa| ˜̄ψ{t∅t+τ′}(τ

′)〉. (19.14)
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Since record probabilities P ({t∅t+τ}) and P ({CT ′′}) are given by the cor-
responding state norms, the correlation function is most readily calculated
from

g(2)(τ)

=
〈 ˜̄ψ{t∅t+τ}(τ)|a†a| ˜̄ψ{t∅t+τ}(τ)〉

〈a†a〉ss +
∫ t+τ

t

dτ ′
〈 ˜̄ψ{CT ′′}(τ)|a†a| ˜̄ψ{CT ′′}(τ)〉

〈a†a〉ss .

(19.15)

Exercise 19.1. Show that for the degenerate parametric oscillator with weak
coupling and adiabatic elimination of the pump (Eq. 12.10 with g2/κκp � 1)

〈 ˜̄ψ{t∅t+τ}(τ)|a†a| ˜̄ψ{t∅t+τ}(τ)〉 = e−2κτ , (19.16a)

and

〈 ˜̄ψ{CT ′′}(τ)|a†a| ˜̄ψ{CT ′′}(τ)〉 = 2κ(λ/2)2[1 − e−2κ(τ−τ ′)]2e−2κτ ′
; (19.16b)

hence show that in the weak-excitation limit [〈a†a〉ss = (λ/2)2 � 1] the
second-order correlation function for the degenerate parametric oscillator ob-
tained from (19.15) is

g(2)(τ) = 1 + (2/λ)2e−2κτ . (19.17)

Note the extreme photon bunching as λ → 0.

19.2 Unraveling the Density Operator:
Cascaded Systems

In Chap. 18 we met the three principal unravelings of the density operator used
in quantum optics, those based on photoelectron counting, homodyne and
heterodyne detection. There are numerous other possibilities, many of which
involve combinations of these three. A good example is conditional homodyne
detection, which combines photoelectron counting with homodyne detection.
The scheme, introduced by Carmichael and Orozco [19.4], effects a direct mea-
surement of the spectrum of squeezing; it uncovers surprising aspects of the
weak squeezing limit, where, by an appropriate measure, both squeezed and
unsqueezed fluctuations are shown to be nonclassical—most surprisingly, the
degree of nonclassicality increases as the squeezing is reduced. Conditional
homodyne detection was implemented by Foster and coworkers [19.5, 19.6]
for many-atom cavity QED, where it provides a sensitive probe of field fluc-
tuations in forwards scattering, a complement to the intensity fluctuations
discussed in Sects. 16.1.3 and 16.2. An example in a somewhat different vein
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Fig. 19.3. A typical cascaded system. Light generated in the source subsystem, the
cavity on the left, is coupled into the target subsystem, the cavity on the right. The
coupling is unidirectional and mediated by the reservoir field Ê(z, t)

is provided by the quantum trajectory formalism for continuous variable quan-
tum teleportation [19.7]. It also is built upon the three standard unravelings.

The possibilities are in fact endless. But our aim in this book is not simply
to enumerate unravelings. We aim to gain an understanding of the principles
upon which they are built. In this regard one more unraveling, in particular,
should be mentioned, as it introduces principles for the treatment of a whole
new class of systems—cascaded systems, i.e., systems of the kind sketched in
Fig. 19.3.

The example sketched involves a source subsystem, represented by a ring-
cavity mode, with possible intracavity interaction (Hamiltonian Hsource),
whose output couples to a target subsystem, represented by a second ring-
cavity mode, also with possible intracavity interaction (Hamiltonian Htarget).
The source output field is carried to the target by the reservoir, which medi-
ates a unidirectional coupling. The reservoir field is expanded as

Ê(z, t) = Ê
(+)

(z, t) + Ê
(−)

(z, t), (19.18a)

with

Ê
(+)

(z, t) = iê0
∑

j

√
�ωj

2ε0AL′
rj(t)ei[(ωj/c)z+φ(z)], (19.18b)

Ê
(−)

(z, t) = Ê
(+)

(z, t)†, (19.18c)

where

φ(z) ≡

⎧
⎪⎨

⎪⎩

φaR + φbR z > d

φaR 0 > z ≤ d

0 z ≤ 0 ;
(19.19)
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φaR and φbR are the respective phase changes upon reflection from the source
output mirror at z = 0 and the target input mirror at z = d.

19.2.1 System–Reservoir Interaction Hamiltonian

Our aim is to derive a master equation for the composite system, S, of source
and target, and to decompose the field Ê(z, t) into free- and source-field com-
ponents, as was done in Sects. 7.3.1 and 9.2.5 [also see (13.19)–(13.21)]. We
begin from Hamiltonian (1.16) for the entire system S ⊗R; the pieces of the
Hamiltonian are

HS = Hsource +Htarget, (19.20a)

HR =
∑

j

�ωjr
†
jrj , (19.20b)

HSR = Hsource
SR +Htarget

SR , (19.20c)

with reservoir interactions

Hsource
SR =

∑

j

�(κ∗ajar
†
j + H.c.), (19.21a)

Htarget
SR =

∑

j

�
(
κ∗bjbr

†
je
−i[(ωj/c)d+φ

a
R] + H.c.

)
, (19.21b)

where a and b are photon annihilation operators for the source and target
modes, respectively. The reservoir interactions account for transmission and
reflection of the fields at z = 0 and z = d (Fig. 19.3). Thus, if κa and κb denote
the source and target mode decay rates, following (7.112), explicit expressions
for the reservoir coupling coefficients may be written as

κ∗aj = i
√

2κa

√
c

L′
ei(φ

a
T−φa

R) =
√

2κa

√
c

L′
, (19.22a)

κ∗bj = i
√

2κb

√
c

L′
ei(φ

b
T−φb

R) =
√

2κb

√
c

L′
, (19.22b)

where, as usual, in the Markov approximation, the coupling coefficients are
taken to be independent of the reservoir mode frequency ωj . Note also that the
phase changes on reflection and transmission satisfy φaR−φaT = φbR−φbT = π/2
(see Note 7.12). Then, expressing the reservoir field Ê(z, t) in units of the
square root of photon flux, with Heisenberg operator

Ê(z, t) ≡ −i
√

2ε0Ac
�

1
2 (ωa + ωb)

ê0 · Ê(+)
(z, t), (19.23)
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and setting ωj/ 1
2 (ωa+ωb) → 1, the system–reservoir interaction Hamiltonians

take the simple form

Hsource
SR = �

√
2κa

[
aÊ†(0) + H.c.

]
, (19.24a)

Htarget
SR = �

√
2κb

[
bÊ†(d) + H.c.

]
, (19.24b)

where we introduce the Schrödinger picture operator Ê(z) ≡ Ê(z, 0).

19.2.2 Reservoir Field

Solving Heisenberg equations of motion for the mode annihilation operators
rj(t) yields a decomposition of the reservoir field into free- and source-field
terms (Sect. 7.3.1). We write

Ê
(+)

(z, t) = Ê
(+)

f (z, t) + Ê
(+)

source(z, t) + Ê
(+)

target(z, t), (19.25)

where the free field is

Ê
(+)

f (z, t) = iê0
∑

j

√
�ωj

2ε0AL′
rj(0)e−i[ωj(t−z/c)−φ(z)], (19.26)

and the source fields are (Eq. 7.111)

Ê
(+)

source(z, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ê0

√
�ωa

2ε0Ac

√
L′

c
κ∗a(ωa)e

iφ(z)a(t′) ct > z > 0

1
2
ê0

√
�ωa

2ε0Ac

√
L′

c
κ∗a(ωa)a(t

′) z = 0

0 z < 0,

(19.27a)

for the source subsystem, with t′ = t− z/c, and

Ê
(+)

target(z, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ê0

√
�ωb

2ε0Ac

√
L′

c
κ∗b(ωb)e

iφb
Rb(t′′) ct > z > d

1
2
ê0

√
�ωb

2ε0Ac

√
L′

c
κ∗b(ωb)b(t

′′) z = d

0 z < d,

(19.27b)

for the target subsystem, with t′′ = t − (z − d)/c. Note that Ê
(+)

source(z, t)

and Ê
(+)

target(z, t) show strict discontinuities at z = 0 and z = d, respectively.
This arises from the δ-function in the integrand of (7.111), a result of the
Markov approximation; in this approximation, rapid changes of the field in
space—changes over a distance of a few wavelengths—appear as discontinu-
ities. What we have here is a spatial counterpart to the singular appearance of
rapid changes (on the order of the optical period) of the reservoir correlation
function in time (Sect. 1.3.3 and below Eq. 1.52).
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Alternatively, using the definition (19.23), written in units of the square
root of photon flux, the reservoir field is

Ê(z, t) = Êf (z, t) + Êsource(z, t) + Êtarget(z, t), (19.28)

with free field

Êf (z, t) =
√

c

L′
∑

j

√
2ωj

ωa + ωb
rj(0)e−i[ωj(t−z/c)−φ(z)], (19.29)

and source fields

Êsource(z, t) =

⎧
⎪⎨

⎪⎩

−ieiφ(z)
√

2κaa(t′) ct > z > 0
−i 12

√
2κaa(t′) z = 0

0 z < 0,
(19.30a)

with t′ = t− z/c, and

Êtarget(z, t) =

⎧
⎪⎨

⎪⎩

−ieiφb
R
√

2κbb(t′′) ct > z > d

−i 12
√

2κbb(t′′) z = d

0 z < d,

(19.30b)

with t′′ = t− (z − d)/c. Here, once again, on the basis of the Markov approx-
imation we can write 2ωa/(ωa + ωb) ≈ 2ωb/(ωa + ωb) ≈ 1.

19.2.3 The Cascaded Systems Master Equation

Three derivations of the cascaded systems master equation have been given,
the first by Kolobov and Sokolov [19.8], and the other two, independently
and more-or-less simultaneously, by Gardiner [19.9] and Carmichael [19.10].
We follow the approach of Carmichael, starting, as in Sect. 1.3.1, with the
Schrödinger equation for the complete system and reservoir S ⊗ R; thus,
with H = HS + HR + HSR defined by (19.20a)–(19.21b), we begin with the
Schrödinger equation

χ̇ =
1
i�

[H,χ]. (19.31)

From this point, the important difference from the development in Sects. 1.3
and 1.4 is that while the reservoirs seen by the source and target differ—they
couple to the different field operators Ê(0) and Ê(d)—they are, nevertheless,
clearly correlated, as the field at z = 0 freely propagates to z = d. Moreover,
the field seen by the target carries photons emitted by the source, so it hardly
constitutes a thermal reservoir as was assumed before.

To cope with these differences, our first step is to introduce the time-
retarded density operator

χret ≡ Usource(−d/c)χU †source(−d/c), (19.32)
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with

Usource(−d/c) ≡ exp
[

1
i�

(
Hsource +HR +Hsource

SR

)
(−d/c)

]
. (19.33)

The retardation applies to the source subsystem and its interaction with the
reservoir; it is introduced to formally undo the propagation of the output
field of the source to the target. The Schrödinger equation satisfied by the
time-retarded density operator is

χ̇ret =
1
i�

[Hret, χret], (19.34)

where Hret differs from H through the changed interaction term

(Htarget
SR )ret = �

√
2κb

[
bÊ†(d−, d/c) + H.c.

]
, (19.35)

with
Ê(d−, d/c) ≡ U †source(d/c)Ê(d)Usource(d/c). (19.36)

The field Ê(d−, d/c) is the formal solution, at retardation time d/c, to the
Heisenberg equation of motion for the reservoir field operator at the location of
the target z = d. It is important to note that the time evolution is generated by
Hamiltonian H−Htarget

SR = Hsource +HR+Hsource
SR ; hence we write Ê(d−, d/c),

rather than Ê(d, d/c), and have (Eqs. 19.28–19.30)

Ê(d−, d/c) = Êf (d, d/c) + Êsource(d, d/c), (19.37)

where there is no self-field term Êtarget(d, d/c), contrary to what might be
expected by looking at (19.28).

We may now use the fact that the reservoir field propagates freely from
the source output (z = 0+) to the target input (z = d−) to write

Ê(d−, d/c) = E(0+) = Êf (0+) − ieiφ
a
R
√

2κaa

= eiφ
a
R
[Ê(0) − i 12

√
2κaa

]
, (19.38)

where the first and second lines follow, respectively, from the first and second
lines of (19.30a). Now, after substituting (19.38) into (19.35), the Schrödinger
equation for the time-retarded density operator is to be solved using Hamil-
tonian

Hret = Hc
S +HR +Hc

SR, (19.39)

where

Hc
S = Hsource +Htarget + i�

√
κaκb

(
e−iφ

a
Rba† − H.c.), (19.40)

and
Hc
SR = �

[(√
2κaa+ e−iφ

a
R
√

2κbb
)Ê†(0) + H.c.

]
. (19.41)
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Thus, by introducing the retardation, the system–reservoir interaction is re-
cast in a form that allows the master equation to be derived from the standard
prescription of Sects. 1.3 and 1.4; both subsystems now couple to the same
reservoir operator—the field at the source Ê(0)—in (19.41). The only nov-
elty is that the coupling is collective—i.e., made through the sum of fields√

2κaa+ e−iφ
a
R
√

2κbb. Introducing the reduced density operator

ρret(t) ≡ tr[χret(t)], (19.42)

and following the steps in Sects. 1.3 and 1.4 (with n̄ = 0), we arrive at the
master equation for source subsystem, mode a, cascaded with target subsystem,
mode b, with retardation of the source:

ρ̇ret =
1
i�

[Hc
S , ρret] + (JcρretJ

†
c − 1

2J
†
cJcρret − 1

2ρretJ
†
cJc), (19.43)

with
Jc ≡

√
2κaa+ e−iφ

a
R
√

2κbb. (19.44)

Note 19.1. The density operator ρret(t) describes the target subsystem at time
t and the source subsystem at time t− d/c. Generally, the retardation d/c is
negligible on the timescale for significant change of the system state—apart,
of course, for changes due to the free evolution, which occur on the scale
of the optical period. An alternate derivation of the master equation makes
this observation at the outset and neglects all but the essential effects of
retardation. In place of the transformation (19.32), which leads to (19.38), we
simply write

Ê(d, 0) = ei[φ
a
R+(ωa/c)d]

[Ê(0) − i 12
√

2κaa
]
, (19.45)

where only the phase change under propagation (for a quasi-monochromatic
field) is taken into account when relating the Schrödinger operators Ê(d, 0) and
Ê(0, 0) ≡ Ê(0). The different approach amounts to the replacement eiφ

a
R →

ei[φ
a
R+(ωa/c)d], with the density operator now describing the source and target

states at the same time. Thus, in the alternate approach we arrive at the
master equation for source subsystem, mode a, cascaded with target subsystem,
mode b, without retardation of the source:

ρ̇ =
1
i�

[Hc′
S , ρ] + (J ′cρJ

′†
c − 1

2J
′†
c J
′
cρ− 1

2ρJ
′†
c J
′
c), (19.46)

where

Hc′
S = Hsource +Htarget + i�

√
κaκb

(
e−i[φ

a
R+(ωa/c)d]ba† − H.c.), (19.47)

and
J ′c ≡

√
2κaa+ e−i[φ

a
R+(ωa/c)d]

√
2κbb. (19.48)
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19.2.4 Photoelectron Counting Unraveling

Master equation (19.43) is in standard Lindblad form. Its distinction as the
master equation for a cascaded system is contained in the specific form of the
Hamiltonian (19.40) and jump operator (19.44). Given the explicitly displayed
Lindblad form, it is straightforward to write down any of the standard quan-
tum trajectory unravelings. For example, performing a Dyson expansion, as in
Sect. 18.2.1, but here in the Schrödinger rather than the interaction picture,
gives

ρret(t′)

= e[(L−S)+S]tρret(−τ)

=
∞∑

n=0

∫ t′

−τ
dt′n · · ·

∫ t′3

−τ
dt′2

∫ t′2

−τ
dt′1

e(L−S)(t′−t′n)Se(L−S)(t′n−t′n−1) · · · Se(L−S)(t′2−t′1)Se(L−S)(t′1+τ)ρret(−τ),
(19.49)

with source superoperator
S ≡ Jc · J†c , (19.50)

jump operator defined by (19.44), and between-jump propagator

L− S ≡ 1
i�

(Hc
B · − ·Hc†

B ) =
1
i�

[Hc
S , · ] − [ 12J

†
cJc, · ]+, (19.51)

where the non-Hermitian Hamiltonian is

Hc
B = Hc

S − i� 1
2J
†
cJc

= Hsource +Htarget + i�
√
κaκb(e−iφ

a
Rba† − eiφ

a
Rb†a)

− i� 1
2

(√
2κaa† + eiφ

a
R
√

2κbb†
)(√

2κaa+ e−iφ
a
R
√

2κbb
)

= Hsource +Htarget − i�κaa
†a− i�κbb

†b− 2i�
√
κaκbe

iφa
Rb†a.

(19.52)

Following the argument in Sect. 18.2.1, we may interpret the expansion in
terms of an unraveling of the density operator for photoelectron counting
records. In this instance the detector is located at some z = zd > d, where it
intercepts the output from the target subsystem (Fig. 19.3). Retardation from
source to detector, τ = (zd − d)/c, has been included in (19.49); thus, in the
adopted notation, 0 < t1 < t2 . . . < tn denotes the sequence of photoelectron
count times at the detector, while −τ < t′1 < t′2 . . . < t′n, t′k = tk − τ denotes
the corresponding times of photon emission at the source.
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Note 19.2. The photoelectron counting unraveling of master equation (19.46)
follows in the same way. The jump operator is given by (19.48) and the non-
Hermitian Hamiltonian is

Hc′
B = Hsource +Htarget − i�κaa

†a− i�κbb
†b − 2i�

√
κaκbe

i[φa
R+(ωa/c)d]b†a.

(19.53)

The one difference from (19.52) is the additional phase factor ei(ωa/c)d, which
compensates for the omitted retardation of the source subsystem.

Note 19.3. The Dyson expansion (19.49) provides the quickest and most trans-
parent way to unravel the density operator. More fundamentally, though, the
unraveling is again based upon the probability densities for photoelectron
counting records (Sect. 18.1.1). A development along these lines shows how
jump operators (19.44) and (19.48) arise from the Heisenberg operator for the
detected field. The field operator appearing in expansion (18.20) of the record
probability density is Ê(zd, τ) = Ê(d, 0). Using (19.28)–(19.30), it is expressed
as the sum of a free field and two source fields:

Ê(d, 0) = Êf (d, 0) − iei(φ
a
R+φb

R)
[√

2κaa(−d/c) + e−iφ
a
R
√

2κbb(0)
]
. (19.54)

Retardation of the source subsystem (Eq. 19.32) then takes us to the operator

Usource(d/c)Ê(d, 0)U †source(d/c)

= Êf (d, d/c) − iei(φ
a
R+φb

R)
[√

2κaa(0) + e−iφ
a
R
√

2κbb(0)
]
. (19.55)

Alternatively, with the retardation omitted (Note 19.1), we simply make the
substitution a(−d/c) = ei(ωa/c)da(0), to arrive at

Ê(d, 0) = Êf (d, 0) − iei[φ
a
R+φb

R+(ωa/c)d]
[√

2κaa(0) + e−i[φ
a
R+(ωa/c)d]b(0)

]
.

(19.56)

The free-field term may be dropped for the reasons given below (18.22), and
the unimportant overall phase factors −iei(φa

R+φb
R) and −iei[φa

R+φb
R(ωa/c)d] may

be dropped too. Hence jump operators (19.44) and (19.48), respectively, are
obtained from (19.55) and (19.56).

19.2.5 Coherent Driving Fields

By considering a coherent input to the source subsystem we readily verify that
the introduced formalism maps inputs to outputs with the correct amplitude
and phase shift. The example also illustrates how the time retardation works.
For simplicity, let us take the source and target cavities to be resonant, with
ωa = ωb = ω0. To provide the coherent input, one mode of the reservoir is in
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the coherent state |αin〉 and on-resonance with the cavities at frequency ω0;
thus, the free field has nonzero expectation value

〈Êf (z, t)〉 =
√

c

L′
αine

−i[ω0(t−z/c)−φ(z)]. (19.57)

A straightforward analysis of the steady-state boundary value problem shows
that the input field picks up the phase factor −eiφa

R on reflection from the first
cavity—for 0 < z ≤ d—and the additional factor −eiφb

R on reflection from the
second—for z > d. Thus, we expect to recover the expectation value for the
total field

〈Ê(z, t)〉 =
√

c

L′
αine

−iω0(t−z/c)

⎧
⎪⎨

⎪⎩

ei(φ
a
R+φb

R) ct > z > 0
−eiφa

R z = 0
1 z < 0.

(19.58)

To verify this, we first calculate 〈a(t′)〉 and 〈b(t′)〉 from the quantum trajectory
unraveling of the cascaded systems master equation, and then show that the
result follows from expansion (19.28)–(19.30) of the reservoir field.

Through their coupling to the reservoir both subsystems are driven by
the classical field (19.57). The non-Hermitian Hamiltonian (Eq. 19.52) is then
given by

Hc
B = �(ω0 − iκa)a†a+ �(ω0 − iκb)b†b− i�2

√
κaκbe

iφa
Rb†a

+ �

√
c

L′
√

2κa(αine
−iω0t

′
a† + H.c.)

+ �

√
c

L′
√

2κb(αine
−i[ω0(t−d/c)−φa

R]b† + H.c.), (19.59)

where the second and third lines are the driving field interactions for source
and target, respectively, taken from (19.24a) and (19.24b), with reservoir field
expectations 〈Êf (0, t′)〉 and 〈Êf (d, t)〉 (Eq. 19.57) in place of the operators Ê(0)
and Ê(d). Note that in the case of the source subsystem, the time dependence
of the interaction is expressed through the retarded time t′ = t− d/c. This is
required because the trajectory equations evolve the time-retarded state of the
source (Eqs. 19.32 and 19.33); of course, this brings the driving of source and
target subsystems into phase. If we now transform to the interaction picture,
with

|ψ̃ret
REC(t)〉 = eiω0a

†at′eiω0b
†b(t−d/c)|ψret

REC(t)〉, (19.60)

the non-Hermitian Hamiltonian is given by

H̃c
B = −i�κaa†a− i�κbb

†b − i�2
√
κaκbe

iφa
Rb†a

+ �

√
c

L′
√

2κa(αina
† + H.c.) + �

√
c

L′
√

2κb(αine
iφa

Rb† + H.c.).

(19.61)
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A special and convenient feature of coherent driving is that the conditional
state evolves out of the vacuum as a coherent state product, with |ψ̃ret

REC(t)〉 =
|α̃(t)〉a|β̃(t)〉b. The form is preserved by the quantum jumps as coherent states
are eigenstates of the jump operator Jc =

√
2κaa+ e−iφ

a
R
√

2κbb, and also by
the nonunitary Schrödinger equation between jumps, which causes only the
normalization of the state to change (Exercise 19.2). It follows that the steady
state is the coherent state product that satisfies

H̃c
B |α̃〉a|β̃〉b = λ|α̃〉a|β̃〉b, (19.62)

with λ a complex constant. Thus, substituting for H̃c
B from (19.61), we may

set the coefficients of a† and b† to zero to obtain a pair of coupled equations
for the complex amplitudes α̃ and β̃. The equations are

−κaα̃− i

√
c

L′
√

2κaαin = 0, (19.63a)

−κbβ̃ − 2
√
κaκbe

iφa
R α̃− i

√
c

L′
√

2κbαine
iφa

R = 0, (19.63b)

with solutions

α̃ = −i
√

c

L′
√

2/κaαin, (19.64a)

β̃ = i

√
c

L′
√

2/κbαine
iφa

R . (19.64b)

Inverting the transformation (19.60), the intracavity field expectations are
then given by

〈a(t′)〉 = −i
√

c

L′
√

2/κaαine
−iω0t

′
, (19.65a)

〈b(t)〉 = i

√
c

L′
√

2/κbαine
iφa

Re−iω0(t−d/c), (19.65b)

from which, using (19.28)–(19.30), we recover the anticipated result for the
expectation of the output field (19.58).

Exercise 19.2. For coherent driving the complete time-dependent solution
to the quantum trajectory equations can be found. Consider the more general
form of coherent driving with the constant amplitude αin of (19.57) replaced
by αin(t−z/c). Show that for an initial product of coherent states, the solution
to the nounitary Schrödinger equation between quantum jumps is given by

| ˜̄ψret
REC(t)〉 = A(t)|α̃(t)〉a|β̃(t)〉b, (19.66)
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where |α̃(t)〉a and |β̃(t)〉b are coherent states whose amplitudes satisfy

˙̃α = −κaα̃− i

√
c

L′
√

2κaαin(t− d/c), (19.67a)

˙̃
β = −κbβ̃ − 2

√
κaκbe

iφa
R α̃− i

√
c

L′
√

2κbαin(t− d/c)eiφ
a
R , (19.67b)

and

A(t)/A(tlast)

= exp
{
−

∫ t

tlast

dt′
[
κa|α̃(t′)|2 + κb|β̃(t′)|2 + 2

√
κaκbRe

[
e−iφ

a
R β̃(t′)α̃∗(t′)

]]
}
,

(19.68)

where tlast is the time of the last quantum jump.

Exercise 19.3. Verify that the total field expectation (19.58) can also be
recovered from the quantum trajectory unraveling of the master equation
without retardation (Notes 19.1 and 19.2).

To conclude, a few comments on quantum jumps for coherent driving are in
order. For the situation of Exercise 19.2, where the system state is a product
of coherent states, quantum jumps at times ti, i = 1, 2, . . ., change the state
norm, multiplying it by the factor ϑ(ti) =

√
2κaα̃(ti) + e−iφ

a
R
√

2κbβ̃(ti), the
eigenvalue of Jc; otherwise, they play no role in the evolution. The quantum
jumps play a substantial role, on the other hand, when the state is a super-
position of coherent state products or if something other than empty cavities
is involved. The former possibility, in particular, should be noted, as it is
related to what we learned in Sect. 18.3.2 about how a quantum trajectory
evolution can resolve an initial superposition of states, bringing about a dy-
namical localization, or wavefunction collapse, onto one or other component
of the superposition. The localization mechanism arises out of an interplay be-
tween the norm-changing factor (19.68), which operates between the quantum
jumps, and the norm change by ϑ(ti) at the time of a quantum jump.

Note first that the integrand in (19.68) is simply one half the square mod-
ulus of the eigenvalue ϑ(t′). Consider now a superposition of two coherent
state products with corresponding eigenvalues ϑ1(t) and ϑ2(t). The evolution
of the unnormalized state is linear. Therefore in-between the quantum jumps,
the conditional state remains as a superposition of coherent state products,
but with state amplitudes A1(t) and A2(t) that are decaying at different rates;
thus, one component of the superposition—that with the smaller |ϑj(t′)|—
grows at the expense of the other. Contrast the effect of a quantum jump: the
state amplitudes are multiplied, respectively, by ϑ1(ti) and ϑ2(ti), so the com-
ponent of the superposition with larger |ϑj(ti)| grows relative to the other.
In this way a competition between the components of the superposition is set
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up where the state amplitudes increase and decrease relative to one another
in response to fluctuations in the number of occurring quantum jumps. Ulti-
mately, a deficit (excess) of quantum jumps leads to the complete dominance
of the component with smaller (larger) |ϑj(t)|, and dynamical localization oc-
curs. Recognizing the Poisson fluctuation in the number of quantum jumps,
localization to a different component of the superposition is expected in each
stochastic realization.

It should be noted, finally, that jump operator (19.44) assumes that the
free-field expectation has been subtracted from the output before it reaches the
detector, in the manner of the subtraction of the coherent input in Fig. 18.1.
The more natural unraveling would use a jump operator derived from the full
output field, i.e., the operator

Jc =
√

c

L′
αin − i

√
2κaa− ie−iφ

a
R
√

2κbb. (19.69)

Then, to replace (19.61), the non-Hermitian Hamiltonian is given by

H̃c
B = −i�1

2
c

L′
|αin|2 − i�κaa

†a− i�κbb
†b

+ �
√

2κaa†
√

c

L′
αin + �

√
2κbeiφ

a
Rb†

(√
c

L′
αin − i

√
2κaa

)
.

(19.70)

A derivation of (19.69) and (19.70) can be given by modeling the input field as
the coherent output of a third cavity and applying the same cascaded system
ideas to the three-cavity cascade (Fig. 19.4). In this case, the Hamiltonian
Hsystem is that of an empty cavity driven by a classical current, with driv-
ing strength and cavity decay rate set to produce an output field matching
(19.57). The approach has been used by Carmichael [19.10] and Nha and
Carmichael [19.11] to model a two-state atom driven by a coherent field. The
physical origin of the unraveling is clear from the terms in the second line of
(19.70). Both show the non-Hermitian (unidirectional) coupling of a cascaded
system. The first describes the coupling of the output from the source into
target cavity A, while the second describes the coupling of the output of cavity
A into target cavity B. Of course, many examples of coherent driving involve
only one target system, in which case the second term is absent.

Exercise 19.4. Consider cascaded cavities with vacuum input (αin = 0) pre-
pared in a superposition of coherent state products. Write a computer program
to simulate quantum trajectories with non-Hermitian Hamiltonian (19.59) and
jump operator (19.44). Study the process of dynamical localization as a func-
tion of the complex amplitudes of the initial superposition state components,
first for κb = 0 (single cavity decay) and then for κb = κa (cascaded cavity
decay):

1. Does localization always occur? If not, determine the conditions under
which it does occur.
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Fig. 19.4. Three-cavity cascaded system used to model the coherent driving of the
two-cavity system of Fig. 19.3. The source outputs a coherent field that drives target
cavities A and B, designated, respectively, as source and target in Fig. 19.3

2. Verify that the frequency of localization to different components of the
initial superposition agrees with the usual quantum mechanical rule.

Exercise 19.5. By working backwards from the quantum trajectory formu-
lation, show that (19.69) and (19.70) unravel the same master equation as
(19.44) and (19.61).

19.2.6 Symmetric Irreversible Coupling

A natural extension of the cascaded system considered in Fig. 19.3 is the
system with symmetric irreversible coupling depicted in Fig. 19.5. To obtain
a master equation and its quantum trajectory unraveling in this case it is
necessary to neglect retardation (Note 19.1). Then, as a generalization of
(19.46)–(1948), adding cascaded system interactions in the two directions gives
the modified system Hamiltonian

Hc
S = HA +HB + i�

√
κaκb

(
e−i[φ

a
R+(ωa/c)d]ba† + e−i[φ

b
R−(ωb/c)d]ab† − H.c.

)
,

(19.71)

and master equation

ρ̇ =
1
i�

[Hc
S , ρ] + (J→ρJ†→ − 1

2J
†
→J→ρ− 1

2ρJ
†
→J→)

+ (J←ρJ†← − 1
2J
†
←J←ρ− 1

2ρJ
†
←J←), (19.72)
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Fig. 19.5. Two-cavity system with symmetric irreversible coupling. The reservoir
field Ê(z, t) = Ê→(z, t) + Ê←(z, t) is the sum of components traveling to the right
and to the left

where now there are two jump operators, which correspond to a record of
photoelectron counts collected now by two detectors, one intercepting the
right- and the other the left-going output field:

J→ = ei
1
2 (ωa/c)d

√
2κaa+ e−iφ

a
Re−i

1
2 (ωa/c)d

√
2κbb, (19.73a)

J← = e−i
1
2 (ωb/c)d

√
2κbb+ e−iφ

b
Rei

1
2 (ωb/c)d

√
2κaa. (19.73b)

The corresponding quantum trajectory unraveling has non-Hermitian Hamil-
tonian

Hc
B = HA +HB − i�2κaa†a− i�2κbb†b

− 2i�
√
κaκb

(
ei[φ

a
R+(ωa/c)d]b†a+ ei[φ

b
R−(ωb/c)d]a†b

)
, (19.74)

the generalization of (19.53).
Time reversal for a near-perfectly reflecting mirror requires φR = π; thus,

let us set φaR = φbR = π. It is then apparent that the case of exact resonance,
with ωa = ωb = ω0, is special, since the subsystem interactions cancel in
Hamiltonian (19.71) and non-Hermitian Hamiltonian (19.74) may be written
as

Hc
B = HA +HB − i� 1

2J
†
→J→ − i� 1

2J
†
←J←, (19.75)

with

J→ = ei
1
2 (ω0/c)d

√
2κaa− e−i

1
2 (ω0/c)d

√
2κbb, (19.76a)

J← = e−i
1
2 (ω0/c)d

√
2κbb− ei

1
2 (ω0/c)d

√
2κaa. (19.76b)

Of course the two jump operators are effectively the same, since their difference
in sign has no physical significance.
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When written in this form, our model provides an elementary example of
the sort of two-way scattering that underlies collective radiative phenomena
such as superradiance and superfluorescence. A quantum trajectory unravel-
ing of the superradiance master equation has been given by Carmichael and
Kim [19.12]. It has non-Hermitian Hamiltonian

HB =
N∑

j=1

1
2�ω0σjz +

N∑

k �=j=1

�Δkjσk+σj− − i�
1
2

∫

Ω

J†(θ, φ)J(θ, φ), (19.77)

where ω0 is the common resonance frequency of the N atoms, and �Δkj is
the dipole-dipole interaction energy between atom j and atom k, j �= k =
1, . . . , N . This Hamiltonian has the form of (19.75), except there are now not
two, but infinitely many jump operators,

J(θ, φ) =
√
γD(θ, φ)dΩ

N∑

j=1

e−i(ω0/c)R̂(θ,φ)·rjσj−, (19.78)

associated with an infinity of point-like detectors—the general detector is
located in the far field in direction (θ, φ) and subtends a solid angle dΩ at the
source. The phase factors e−i(ω0/c)R̂(θ,φ)·rj , j = 1, 2, . . . , N , account for the
different path lengths from the N scattering centers to the detector located
in direction (θ, φ); rj is the position of atom j and R̂(θ, φ) is a unit vector
in the direction (θ, φ). The factor before the sum in (19.78) determines the
overall emission rate; γ is the Einstein A coefficient for the atomic transition
and

D(θ, φ) ≡ (3/8π){1 − [d̂ · R̂(θ, φ)]2} (19.79)

is the dipole radiation pattern, where d̂ is a unit vector in the direction of the
atomic dipole moment.

19.3 Optical Spectra

Quantum trajectory simulations provide us with a way to calculate things.
Most directly they yield the density operator as the ensemble average (18.46);
thus, an operator average 〈Ô(t)〉 is computed as an ensemble average over the
conditional operator expectation 〈Ô(t)〉REC. The quantum trajectory method
is more than a set of tricks for computing averages, though. It provides a con-
nection to measurements—a connection to the averaged quantities that are
constructed experimentally from data sets. In Fig. 18.5, for example, the
squeezing spectra plotted were obtained as Fourier transforms of autocor-
relation functions computed from simulated photocurrents.
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In this section we set the squeezing example aside (see Sect. 9.3.3 for
the connection between squeezing spectra and measurements) and consider
measurements of the optical spectrum. We analyze two quantum trajectory
unravelings, one corresponding to a measurement of the spectrum by a scan-
ning interferometer and the other to a heterodyne measurement. Our aim is
to see how a computation of the spectrum from simulated data sets is related
to a standard calculation from the master equation and quantum regression
formula.

19.3.1 Optical Spectrum Using a Scanning Interferometer

For the sake of definiteness, let us return to the example of the degenerate
parametric oscillator treated in Sect. 18.1. The optical spectrum of the sub-
harmonic mode is to be measured by coupling a small fraction of the output
light into a scanning interferometer. The parametric oscillator (source) and
interferometer (target) comprise the cascaded system depicted in Fig. 19.6,
and we analyze its quantum trajectory unraveling with photoelectron count-
ing records. The nonHermitian Hamiltonian in the interaction picture is given
by

H̃c
B = H̃B + �(Δω − iΓ )c†c− i�

√
εΓeiθc†J→, (19.80)

where H̃B is the Hamiltonian (18.32), ε is the fraction of the γa2 output cou-
pled into the interferometer, c and c† are annihilation and creation operators
for the interferometer mode, Δω = ω−ωC is its detuning from the parametric
oscillator, and Γ is the interferometer half-width. The one-way coupling term
is taken from (19.52), with

√
2κaa→ √

εγa2a =
√
εJ→,

√
2κbb† →

√
Γc†, and

eiφ
a
R → eiθ, where θ = φR + Φ(	+ d) + φ follows from the expression for the

subharmonic mode output field given in Sect. 9.2.5 (Eqs. 9.115a and 9.117a).
We may assume, without loss of generality, that only a very small frac-

tion of the available photon flux enters the interferometer—i.e., ε � 1. Two
convenient simplifications follow from this: (i) the interferometer outputs may
be omitted from the making of records, and (ii) only zero- and one-photon
states of the interferometer mode need be considered; thus, we expand the
conditional state of the cascaded system as

| ˜̄ψREC(ω, t)〉 = | ˜̄ψ(0)
REC(t)〉|0〉c + eiθ| ˜̄ψ(1)

REC(ω, t)〉|1〉c, (19.81)

where the record rec is made according to the photoelectric detection scheme
of Fig. 18.1. For a particular record, up to time t, the conditional intracavity
photon number expectation of the interferometer is

Nt(ω|rec) =
〈 ˜̄ψ(1)

REC(ω, t)| ˜̄ψ(1)
REC(ω, t)〉

〈 ˜̄ψREC(ω, t)| ˜̄ψREC(ω, t)〉
, (19.82)



19.3 Optical Spectra 501

Fig. 19.6. Scattering scenario for the degenerate parametric oscillator with pho-
toelectron counting records (Fig. 18.1) cascaded with a scanning interferometer to
measure the optical spectrum of the subharmonic mode. The interferometer outputs
may be omitted from the making of records when ε 
 1

with record probability P (rec) = 〈 ˜̄ψREC(ω, t)| ˜̄ψREC(ω, t)〉 (Eq. 18.39). Then
the average photon number is given by

Nt(ω) =
∑

REC

Nt(ω|rec)〈 ˜̄ψREC(ω, t)| ˜̄ψREC(ω, t)〉

=
∑

REC

〈 ˜̄ψ(1)
REC(ω, t)| ˜̄ψ(1)

REC(ω, t)〉. (19.83)

This expression defines the spectrum. Note that it is generally a time-
dependent result. Our task is to solve for | ˜̄ψ(1)

REC(ω, t)〉 and perform the sum
over records.

We begin by noting that the assumption ε � 1 allows the zero-photon
component of the conditional state to follow the trajectory evolution of the
degenerate parametric oscillator alone—the presence of the cascaded interfer-
ometer may be ignored. Using (18.37) and (18.40), and omitting the retarda-
tion τR, we have

| ˜̄ψ(0)
REC(t)〉 = K̃

(0)
REC(t)|ψ(0)〉, (19.84)

with

K̃
(0)
REC(t) ≡ B̃(t− tn)JnB̃(tn − tn−1) · · ·J2B̃(t2 − t1)J1B̃(t1), (19.85)

where
B(t) ≡ exp[−(i/�)H̃Bt], (19.86)
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and Jk ∈ {J←, J→, Jp←, Jp→}. The presence of the interferometer affects the
evolution of the one-photon component of the conditional state, though. From
non-Hermitian Hamiltonian (19.80), the nonunitary Schrödinger evolution be-
tween jumps is given by

d| ˜̄ψ(1)
REC(ω)〉
dt

=
[

1
i�
H̃B − (Γ + iΔω)

]
| ˜̄ψ(1)

REC(ω)〉 −
√
εΓJ→| ˜̄ψ(0)

REC〉, (19.87)

whose formal solution for the interval tk < t < tk+1 is

| ˜̄ψ(1)
REC(ω, t)〉 = e−(Γ+iΔω)(t−tk)B̃(t− tk)Jk| ˜̄ψ(1)

REC(ω, t−k )〉

−
√
εΓ

∫ t

tk

dt′e−(Γ+iΔω)(t−t′)B̃(t− t′)J→| ˜̄ψ(0)
REC(t′)〉,

(19.88)

where | ˜̄ψ(1)
REC(ω, t−k )〉 denotes the one-photon component of the conditional

state immediately prior to the k-th quantum jump. Substituting | ˜̄ψ(0)
REC(t)〉

from (19.84) and (19.85), and defining

F tbta (ω, t) ≡ −
√
εΓ

∫ tb

ta

dt′e−(Γ+iΔω)(t−t′)B̃(tb − t′)J→B̃(t′ − ta), (19.89)

this solution may be written as

| ˜̄ψ(1)
REC(ω, t)〉 = e−(Γ+iΔω)(t−tk)B̃(t− tk)Jk| ˜̄ψ(1)

REC(ω, t−k )〉
+ F ttk(ω, t)JkB̃(tk − tk−1) · · · J2B̃(t2 − t1)J1B̃(t1)|ψ(0)〉.

(19.90)

The result holds between quantum jumps number k and number (k+ 1). It is
at this stage only an implicit solution, due to the appearance of | ˜̄ψ(1)

REC(ω, t−k )〉
on the right-hand side.

We now turn to the task of finding an explicit solution for times t > tn.
This is carried out by iterating backwards through the sequence of quantum
jumps. Beginning from (19.90), with k = n, we write

| ˜̄ψ(1)
REC(ω, t)〉 = e−(Γ+iΔω)(t−tn)B̃(t− tn)Jn| ˜̄ψ(1)

REC(ω, t−n )〉
+ F ttn(ω, t)JnB̃(tn − tn−1) · · · J2B̃(t2 − t1)J1B̃(t1)|ψ(0)〉.

(19.91)

The expression requires us to substitute for the state | ˜̄ψ(1)
REC(ω, t−n )〉 on the

right-hand side. We use (19.90) once again, this time with k = n − 1 and
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t = t−n , i.e.,

| ˜̄ψ(1)
REC(ω, t−n )〉

= e−(Γ+iΔω)(tn−tn−1)B̃(tn − tn−1)Jn−1| ˜̄ψ(1)
REC(ω, t−n−1)〉

+ F tntn−1
(ω, tn)Jn−1B̃(tn−1 − tn−2) · · · J2B̃(t2 − t1)J1B̃(t1)|ψ(0)〉;

(19.92)

thus, with
e−(Γ+iΔω)(t−tn)F tntn−1

(ω, tn) = F tntn−1
(ω, t), (19.93)

the substitution brings us to

| ˜̄ψ(1)
REC(ω, t)〉

= e−(Γ+iΔω)(t−tn)B̃(t− tn)JnB̃(tn − tn−1)Jn−1| ˜̄ψ(1)
REC(ω, t−n−1)〉

+ B̃(t− tn)JnF tntn−1
(ω, t)Jn−1B̃(tn−1 − tn−2) · · ·

· · · J2B̃(t2 − t1)J1B̃(t1)|ψ(0)〉
+ F ttn(ω, t)JnB̃(tn − tn−1) · · · J2B̃(t2 − t1)J1B̃(t1)|ψ(0)〉. (19.94)

The required explicit solution is reached by continuing to iterate in this way.
It may be written as

| ˜̄ψ(1)
REC(ω, t)〉 = K̃

(1)
REC(ω, t)|ψ(0)〉, (19.95)

where the propagator K(1)
REC(ω, t) is expanded in the series

K̃
(1)
REC(ω, t)

=
n+1∑

k=1

B̃(t− tn)JnB̃(tn − tn−1) · · · JkF tktk−1
(ω, t) · · · J2B̃(t2 − t1)J1B̃(t1).

(19.96)

Note the simple relationship between K̃
(1)
REC(ω, t) and K̃

(0)
REC(t): the general

term in the sum defining the former is obtained from the latter by replacing
B̃(tk − tk−1) by F tktk−1

(ω, t), while in the first and last terms of the sum the
replacements are B̃(t1) → F t10 (ω, t) and B̃(t− tn) → F ttn(ω, t).

The first part of our task is now complete. It remains only to carry out
the sum over records. Using (19.95), the expression for the average photon
number (Eq. 19.83) reads

Nt(ω) =
∑

REC

tr
[
K̃

(1)
REC(ω, t)|ψ(0)〉〈ψ(0)|K̃(1)†

REC(ω, t)
]
. (19.97)
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On introducing the explicit form of K̃(1)
REC(ω, t), it becomes convenient to work

with superoperators rather than the operators; we write

Nt(ω) =
∑

REC

n+1∑

k′=1

k′−1∑

k′′=1

εΓ

∫ tk′

tk′−1

dt′
∫ tk′′

tk′′−1

dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)

× tr
[
e(L̃−S)(t−tn)Sne(L̃−S)(tn−tn−1) · · ·

· · · Sk′e(L̃−S)(tk′−t′)J→e(L̃−S)(t′−tk′−1) · · ·

· · · Sk′′e(L̃−S)(tk′′−t′′)J+
→e

(L̃−S)(t′′−tk′′−1) · · ·

· · · S2e
(L̃−S)(t2−t1)S1e

(L̃−S)t1
(|ψ(0)〉〈ψ(0)|)

]
+

(
terms with
k′′ ≥ k′

)
,

(19.98)

with Sk ∈ {S←,S→,Sp←,Sp→}, where the source superoperators are defined
in (18.23a) and (18.23b), and we have introduced

J→ ≡ J→ · 1, J +
→ ≡ 1 · J†→. (19.99)

We proceed to carry out the summations. Our strategy is to compose the
sums over k′ and k′′ as a double integral over time between 0 and t. We write
the spectrum as a sum of two parts,

Nt(ω) = N
(+)
t (ω) +N

(−)
t (ω), (19.100)

where N (+)
t (ω) is the expression displayed explicitly in (19.98), including all

terms with k′′ < k′, and N (−)
t (ω) is the similar sum over terms with k′′ ≥ k′.

Composing the sums as integrals, we have

N
(+)
t (ω)

=
∑

REC

εΓ

∫ t

0

dt′
∫ t′

0

dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)tr
{
It′(J→)It′′ (J +

→)

×
[
e(L̃−S)(t−tn)Sne(L̃−S)(tn−tn−1) · · · S2e

(L̃−S)(t2−t1)S1e
(L̃−S)t1ρ(0)

]}
,

(19.101a)

with ρ(0) = |ψ(0)〉〈ψ(0)|, and

N
(−)
t (ω)

=
∑

REC

εΓ

∫ t

0

dt′
∫ t

t′
dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)tr

{
It′(J→)It′′(J +

→)

×
[
e(L̃−S)(t−tn)Sne(L̃−S)(tn−tn−1) · · · S2e

(L̃−S)(t2−t1)S1e
(L̃−S)t1ρ(0)

]}
,

(19.101b)
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where It′(J→) denotes an operator that inserts the superoperator J→ at loca-
tion t′ in the string of propagators to its right, and It′′(J +

→) makes the similar
insertion of J +→ at t′′. Written in this form, we see that the sum over records
simply reconstructs the propagator eL̃t, reversing the expansion in (18.41).
From (19.101a), we may write

N
(+)
t (ω)

= εΓ

∫ t

0

dt′
∫ t′

0

dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)tr
[
It′(J→)It′′ (J +

→)eL̃tρ(0)
]

= εΓ

∫ t

0

dt′
∫ t′

0

dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)tr
[
eL̃(t−t′)J→eL̃(t′−t′′)J +

→e
L̃t′′ρ(0)

]

= εΓ

∫ t

0

dt′
∫ t′

0

dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)tr
{
eL̃(t−t′)J→eL̃(t′−t′′)[ρ̃(t′′)J†→

]}
,

(19.102)

from which, noting that eL̃(t−t′) preserves the trace, we arrive at

N
(+)
t (ω) = εΓ

∫ t

0

dt′
∫ t′

0

dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)tr
{
J→eL̃(t′−t′′)[ρ̃(t′′)J†→

]}
.

(19.103a)

In a similar fashion, from (19.101b), we obtain

N
(−)
t (ω) = εΓ

∫ t

0

dt′
∫ t

t′
dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)tr

{
J†→e

L̃(t′′−t′)[J→ρ̃(t′)
]}
.

(19.103b)

Finally, adding the two pieces together, the optical spectrum measured with
a scanning interferometer of half-width Γ in time interval [0, t) is

Nt(ω) = εγa2Γ

∫ t

0

dt′
∫ t

0

dt′′e−Γ (2t−t′−t′′)eiΔω(t′−t′′)〈ã†(t′′)ã(t′)〉. (19.104)

Exercise 19.6. It is usual to define the spectrum by the asymptotic limit
t→ ∞, assuming a stationary correlation function 〈ã†(t′′)ã(t′)〉. Carry out the
limit and show that (19.104) reduces to the form familiar from the Wiener–
Kinchin theorem [19.13, 19.14]:

N∞(ω) =
εγa2
2

∫ ∞

−∞
dτe−Γ |τ |eiΔωτ 〈ã†(0)ã(τ)〉ss, (19.105)

where 〈ã†(0)ã(τ)〉ss ≡ limt→∞〈ã†(t)ã(t+ τ)〉.
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Note 19.4. The normalization of spectrum (19.105) follows from its defini-
tion as the mean photon number inside the interferometer. As a check on
this result, we might consider a monochromatic incident field with pho-
ton flux εγa2〈ã†ã〉ss. In this case, on resonance (ω = ωC), the transmit-
ted photon flux should equal the incident photon flux. This requirement—
ΓN∞(ωC) = εγa2〈ã†ã〉ss—agrees with (19.105). An alternative normalization
sets the integral over the spectrum to unity (Eq. 10.65) or to the incident pho-
ton flux (Eqs. 15.107 and 16.192). In the former case, for example, spectrum
(19.105) is replaced by

T (ω) =
(〈ã†ã〉ss

)−1 1
2π

∫ ∞

−∞
dτe−Γ |τ |eiΔωτ 〈ã†(0)ã(τ)〉ss. (19.106)

19.3.2 Spontaneous Emission from a Driven Excited-State Doublet

The preceeding analysis does not merely provide a path to standard results
for the optical spectrum. As an alternative to working from (19.104)–(19.106),
one may simulate quantum trajectories for the cascaded system—source plus
interferometer—to obtain the spectrum directly; Tian and Carmichael [19.15],
for example, have computed optical spectra for a cavity QED system in this
way. The method is time-consuming, however, since the simulations must be
carried out for many settings of the interferometer frequency. Generally, it
is faster to compute the source-field correlation function, 〈ã†(0)ã(τ)〉ss, and
obtain the spectrum by Fourier transform. Dalibard and coworkers [19.16]
provide an algorithm to obtain the correlation function from quantum trajec-
tories; alternatively, a method based on heterodyne detection trajectories can
be used (Sect. 19.3.3).

Some situations, however, are especially well-suited to the scanning inter-
ferometer approach, particularly when it is possible to carry an analytical cal-
culation through. The spontaneous emission spectrum for one atom in a cavity
worked out in Sect. 13.3.1 provides a case in point. Though the derivation of
this spectrum appears to follow the standard route—starting from expres-
sions like (19.104), which require a correlation function to be calculated first
(Eqs. 13.160a and 13.160b)—the method of solution takes it beyond this.
Specifically, we are now in a position to interpret the decomposition of the
density operator defined by (13.145)–(13.147). Although introduced merely as
a solution technique, we can see now that it amounts to a quantum trajec-
tory unraveling of the density operator for the simplest situation (spontaneous
emission) where one and only one quantum jump occurs. The unraveling fa-
cilitates an analysis in terms of pure rather than mixed states; thus, to obtain
the correlation function, and hence from it the spectrum, we need deal with
nothing more complicated than a pair of coupled equations of motion for
Schrödinger amplitudes (Eqs. 13.152a and 13.152b).

In this section we consider a similar example, working directly with the
quantum trajectory equations for a source plus interferometer to derive a spon-
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Fig. 19.7. Scattering scenario for measuring the spontaneous emission spectrum
on the |2〉 → |1〉 transition of the three-level atom shown at lower left. The atom is
driven on the |2〉 → |3〉 transition by a coherent field of Rabi frequency Ω. Output
channels are labeled by their source fields, which are written in units of the square
root of photon flux

taneous emission spectrum. The particular example is taken from the litera-
ture on quantum interference effects in spontaneous emission [19.17]. A three-
level atom is prepared in its intermediate state |2〉 (Fig. 19.7) and interacts
with a coherent external field, frequency ω0, driving the |2〉 → |3〉 transi-
tion. It simultaneously undergoes spontaneous emission to arrive eventually
in state |1〉. The spectrum of spontaneous emission is to be measured using
a scanning interferometer. The scattering scenario is illustrated in Fig. 19.7.
There are three distinct records, each corresponding to the recording of a sin-
gle photoelectric count. Ultimately, a single count is recorded in one of the
three detectors—D1, D2, or D3. The spectrum is given by the probability, as
a function of the frequency setting ω of the interferometer, that detector D3

records the count.
The analysis begins from the non-Hermitian Hamiltonian for the cascaded

system

Hc
B = E1|1〉〈1| +

(
E2 − i�

γ

2

)
|2〉〈2| + E3|3〉〈3| + �(ω − iΓ )c†c

+ �Ω
[
|3〉〈2|e−i(ω0t−φ) + |2〉〈3|ei(ω0t−φ)

]
− i�

√
εγΓc†|1〉〈2|,

(19.107)
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where Ω, ω0, and φ are the Rabi frequency, the frequency, and the phase of
the field driving the atom, respectively; E1, E2, and E3 are the energies of the
atomic states (Fig. 19.7); γ is the spontaneous emission rate for the |2〉 → |1〉
transition; and Γ is the interferometer half-width. Since only zero- and one-
photon states are involved, unlike in Sect. 19.3.1, the coupling fraction ε into
the interferometer need not be assumed to be very small. It is convenient to
introduce detunings δω and Δω, such that

E3 − E2 = �(ω0 + δω), E2 − E1 = �(ω −Δω). (19.108)

Then, working in the interaction picture, with

|ψ̃REC(t)〉 ≡ ei{[E1|1〉〈1|+E2|2〉〈2|+(E3−�δω)|3〉〈3|]/�}tei[(ω−Δω)c†c]t|ψREC(t)〉,
(19.109)

and absorbing the phase factor −ieiφ into the definition of basis state |3〉, the
non-Hermitian Hamiltonian is rewritten as

H̃B = −i�γ
2
|2〉〈2| + �δω|3〉〈3| + �(Δω − iΓ )c†c

+ i�Ω
(|3〉〈2| − |2〉〈3|)− i�

√
εγΓc†|1〉〈2|. (19.110)

Our task is to solve for the probability, P3(ω), that detector D3 records
a photoelectric count at some time in the interval [0,∞). With the conditional
state expanded as in (19.81) (with θ = 0), the probability is given by

P3(ω) = Γ

∫ ∞

0

dt〈 ˜̄ψ(1)
{0∅t}(ω)| ˜̄ψ(1)

{0∅t}(ω)〉, (19.111)

where the state label indicates the no-count record up to the time t when
detector D3 fires. This expression is the equivalent of (19.83) multiplied by
Γdt and summed over possible firing times t. No sum over records is required,
since only one record—the no-count record—can preceed the firing of D3.
With the conditional state expansion

| ˜̄ψ(0)
REC(t)〉 = ˜̄c2(t)|2〉 + ˜̄c3(t)|3〉, (19.112a)

| ˜̄ψ(1)
REC(ω, t)〉 = ˜̄c1(ω, t)|1〉, (19.112b)

the required probability is

P3(ω) = Γ

∫ ∞

0

dt|˜̄c1(ω, t)|2. (19.113)

We must determine the amplitude ˜̄c1(ω, t), for which we turn to the nonunitary
Schrödinger equation between quantum jumps.
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From Hamiltonian (19.110), the Schrödinger amplitudes of the upper two
atomic states obey the coupled equations of motion

d˜̄c2
dt

= −γ
2

˜̄c2 −Ω˜̄c3, (19.114a)

d˜̄c3
dt

= −iδω˜̄c3 +Ω˜̄c2. (19.114b)

Amplitude ˜̄c2 then provides the source term in the Schrödinger equation of
motion for ˜̄c1(ω):

d˜̄c1(ω)
dt

= −(Γ + iΔω)˜̄c1(ω) −
√
εγΓ ˜̄c2, (19.114c)

with formal solution

˜̄c1(ω, t) = −
√
εγΓ

∫ t

0

dt′e−(Γ+iΔω)(t−t′)˜̄c2(t′). (19.115)

Now, if the resolution of the interferometer is to be any good, Γ is required to
be very small compared to Ω and γ; thus, we may replace the upper integration
limit of (19.115) by infinity and set eΓt

′ ˜̄c2(t′) to ˜̄c2(t′). With this simplification,
combining (19.113) and (19.115), the spectrum is

P3(ω) =
εγΓ

2

∣
∣
∣
∣

∫ ∞

0

dt′eiΔω ˜̄c2(t′)
∣
∣
∣
∣

2

=
εγΓ

2

∣
∣∣˜̄C2(−iΔω)

∣
∣∣
2

, (19.116)

where ˜̄C2(s) is the Laplace transform of ˜̄c2(t).
Considering now the case where the atom is prepared in state |2〉, from

the Laplace transforms of (19.114a) and (19.114b), we have

s˜̄C2(s) − 1 = −γ
2

˜̄C2(s) −Ω ˜̄C3(s), (19.117a)

s˜̄C3(s) = −iδω ˜̄C3(s) +Ω ˜̄C2(s), (19.117b)

with solution
˜̄C2(s) =

s+ iδω

(s+ γ/2)(s+ iδω) +Ω2
. (19.118)

Thus, from (19.116) and (19.118), the spectrum of spontaneous emission from
a coherently driven atomic excited-state doublet and measured by an interfer-
ometer of negligible half-width Γ is given by the probability of detection at
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detector D3 (Fig. 19.7)

P3(ω) =
εΓ (γ/2)(Δω − δω)2

[(γ/2)(Δω − δω)]2 + [Ω2 −Δω(Δω − δω)]2
. (19.119)

Note how this result vanishes when Δω = δω. This is the so-called quantum
interference, or interference of probability amplitudes for emission from the
two atomic dressed states; see [19.17] for further discussion. It is readily shown
that preparation of atomic state |3〉 rather than |2〉 results in the replacement
of the interference minimum by an interference maximum.

Exercise 19.7. For an arbitrary interferometer half-width, the spectrum may
be calculated as P3(ω) = Γ ˜̄C11(ω, 0), where ˜̄C11(ω, s) is the Laplace transform
of |˜̄c1(ω, t)|2. Show that the spectrum of spontaneous emission from a coher-
ently driven atomic excited-state doublet and measured by an interferometer
of half-width Γ is

P3(ω)

=
εΓ (Γ + γ/2)(Δω − δω)2 + εΓ 2[Γ (Γ + γ/2) +Ω2]

[ΓΔω + (Γ + γ/2)(Δω − δω)]2 + [Γ (Γ + γ/2) +Ω2 −Δω(Δω − δω)]2
.

(19.120)

With Γ sufficiently small, the simpler expression (19.119) is recovered, while
in the large Γ limit the Lorentzian response of the detector is obtained—i.e.,
P3(ω) → εΓ 2/(Γ 2 +Δω2).

Note 19.5. We noted at the beginning of the section that this example shows
similarities to spontaneous emission in single-atom cavity QED (Sect. 13.3.1).
Indeed, if spontaneous decay from state |3〉 is added to the scheme of
Fig. 19.7, the examples correspond to one another one-to-one; coupled equa-
tions (19.114a) and (19.114b) correspond to (13.152a) and (13.152b), and the
spectrum given by (19.116)—i.e., for Γ � γ,Ω—corresponds to that obtained
from (13.169a). It follows that the earlier comment about a time-domain in-
terpretation of the quantum interference (Note 13.14) also applies here.

19.3.3 Optical Spectrum Using Heterodyne Detection

The squeezing spectra displayed in the column to the right in Fig. 18.5 are
Fourier transforms of the photocurrent autocorrelation functions shown in the
column to the left. The latter were computed as time averages of the product
i(t)i(t + τ), where i(t) is a simulated homodyne current record. The optical
spectrum can be computed in similar fashion, but from a simulated heterodyne
current record. Our goal in this section is to prove this result—to show how
the heterodyne current correlation function is related to the autocorrelation
of the source field.
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To this end, we return to the degenerate parametric oscillator example of
Sect. 18.1 and the quantum trajectory unraveling of Sect. 18.2.3. From (18.91)
and (18.92), the complex heterodyne current ĩ(t) satisfies the stochastic dif-
ferential equation

dĩ = −τ−1
d (̃idt− dq̃), (19.121)

with incremental charge

dq̃ = Ge|Elo|
(
〈J†→〉RECdt+ dZ

)
, (19.122)

where dZ is a complex-valued Wiener increment and the conditional expec-
tation 〈J†→(t)〉REC is taken with respect to quantum state |ψ̃REC(t)〉, which
satisfies the stochastic Schrödinger equation (18.90); jump operator J→ is
defined in (18.35a). Solving (19.121) formally for ĩ(t) yields

ĩ(t) = τ−1
d

∫ t

0

e−(t−t′)/τddq̃′. (19.123)

Thus, the heterodyne current autocorrelation function is to be calculated as

ĩ∗(t)̃i(t+ τ) =
(
Ge|Elo|
τd

)2 ∫ t

0

∫ t+τ

0

e−(2t+τ−t′−t′′)/τd(dq̄′)∗dq̄′′, (19.124)

with rescaled incremental charge

dq̄ ≡ (Ge|Elo|)−1dq̃ = 〈J†→〉RECdt+ dZ, (19.125)

and from (19.122),

(dq̄′)∗dq̄′′ = 〈J†→(t′′)〉REC〈J→(t′)〉RECdt
′dt′′ + 〈J†→(t′′)〉REC(dZ ′)∗dt′′

+ 〈J→(t′)〉RECdZ ′′dt′ + dZ ′′(dZ ′)∗. (19.126)

Our principal task is to evaluate the four stochastic averages on the right-hand
side of (19.126).

Two of the terms are easily dealt with. The last term describes shot noise.
It is simply the correlation function of the complex Wiener increment, for
which we may write

dZ ′′(dZ ′)∗ = δ(t′ − t′′)dt′dt′′. (19.127)

Substituting this result into the double integral of (19.124), we obtain the
shot noise autocorrelation function in heterodyne detection with detector half-
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width τ−1
d :

ĩ∗(t)̃i(t+ τ)shot =
(
Ge|Elo|
τd

)2 ∫ t

0

dt′
∫ t+τ

0

dt′′e−(2t+τ−t′−t′′)/τdδ(t′ − t′′)

=
(Ge)2|Elo|2

2τd
e−|τ |/τd

[
1 − e−2min(t,t+τ)/τd

]
. (19.128)

For the second easily dealt-with term we observe that either the second or
third term on the right-hand side of (19.126) vanishes. Note first that the
Wiener increment is δ-correlated (Eq. 19.127) and through the stochastic
Schrödinger equation, the conditional state—hence 〈J†→(t)〉REC—depends on
past Wiener increments only. It follows that

〈J†→(t′′)〉REC(dZ ′)∗ = 0 t′′ < t′, (19.129a)

〈J→(t′)〉RECdZ ′′ = 0 t′′ > t′. (19.129b)

The two terms that remain require just a little extra thought.
To assist with their evaluation, let us divide the full heterodyne current

record into two parts, with

rec = rec1 ∧ rec2, (19.130)

where rec1 covers the period of time from t = 0 up to min(t′, t′′), while rec2
covers the period between min(t′, t′′) and max(t′, t′′). The record probability
is

P (rec2 ∧ rec1) = P (rec2|rec1)P (rec1). (19.131)

Consider then the first term on the right-hand side of (19.126) and the case
where t′′ < t′. The average over records is developed as a double sum over
rec1 and rec2. We have

〈J†→(t′′)〉REC〈J→(t′)〉REC

=
∑

REC1

P (rec1)
∑

REC2

P (rec2|rec1)tr
[
J→|ψ̃REC(t′)〉〈ψ̃REC(t′)|〈J†→(t′′)〉REC1

]

=
∑

REC1

P (rec1)tr
{
J→eL̃(t′−t′′)

[
|ψ̃REC1(t′′)〉〈ψ̃REC1(t′′)|〈J†→(t′′)〉REC1

]}
,

(19.132)

where we have used the fundamental quantum trajectory expansion of the
density operator (17.8) to write
∑

REC2

P (rec2|rec1)|ψ̃REC(t′)〉〈ψ̃REC(t′)| = eL̃(t′−t′′)|ψ̃REC1(t′′)〉〈ψ̃REC1(t′′)|.

(19.133)
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Finally, the third term on the right-hand side of (19.126) is developed in
a similar fashion:

〈J→(t′)〉RECdZ ′′

=
∑

REC1

P (rec1)
∑

REC2

P (rec2|rec1)tr
[
J→|ψ̃REC(t′)〉〈ψ̃REC(t′)|

]
dZ ′′

=
∑

REC1

P (rec1)tr
{
J→eL̃(t′−t′′)

[
|ψ̃REC1(t′′)〉d〈ψ̃REC1(t′′)|dZ ′′

]}

=
∑

REC1

P (rec1)tr
{
J→eL̃(t′−t′′)

[
|ψ̃REC1(t′′)〉〈ψ̃REC1(t′′)|

×
(
J†→ − 〈J†→(t′′)〉REC1

)]}
dt′′, (19.134)

where we note that dZ ′′ is uncorrelated with |ψ̃REC1(t′′)〉, d|ψ̃REC1(t′′)〉,
and 〈ψ̃REC1t

′′)|, and we evaluate its correlation with d〈ψ̃REC1(t′′)| from the
stochastic Schrödinger equation using (18.90) and (18.91) [specifically using
(18.98)].

We now collect our various results together. Substituting the four expres-
sions (19.127), (19.129a), (19.133), and (19.134) on the right-hand side of
(19.126), the autocorrelation of incremental charge, t′′ < t′, is

(dq̄′)∗dq̄′′/dt′dt′′

=
∑

REC1

P (rec1)tr
{
J→eL̃(t′−t′′)

[
|ψ̃REC1(t′′)〉〈ψ̃REC1(t′′)|J†→

]}
+ δ(t′ − t′′)

= tr
{
J→eL̃(t′−t′′)[ρ̃(t′′)J†→

]}
+ δ(t′ − t′′), (19.135a)

where again the sum over records is taken using (17.8). A parallel calculation
gives the autocorrelation for t′′ > t′:

(dq̄′)∗dq̄′′/dt′dt′′ = tr
{
J†→e

L̃(t′′−t′)[J→ρ̃(t′′
]}

+ δ(t′ − t′′). (19.135b)

We are now in a position to prove the result asserted at the beginning of
the section—that the heterodyne current correlation function (19.124) yields
the source-field autocorrelation, 〈ã†(t)ã(t+τ)〉, and hence, via a Fourier trans-
form, the optical spectrum. First, we recognize the sequences of operators and
superoperators on the right-hand sides of (19.135a) and (19.135b) as those
appearing in quantum regression formulae (1.97) and (1.98); thus, using the
definition (18.35a) of J→, the autocorrelation of incremental charge may be
written as

(dq̄′)∗dq̄′′/dt′dt′′ = γa2〈ã†(t′′)ã(t′)〉 + δ(t′ − t′′). (19.136)
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Combining this result with (19.124) and (19.128), we arrive at an expression
for the photocurrent autocorrelation function in heterodyne detection with de-
tector half-width τ−1

d :

ĩ∗(t)̃i(t+ τ) − ĩ∗(t)̃i(t+ τ)shot

=
(
Ge|Elo|
τd

)2

γa2

∫ t

0

dt′
∫ t+τ

0

dt′′e−(2t+τ−t′−t′′)/τd〈ã†(t′′)ã(t′)〉.
(19.137)

Taking the limit of narrow detection bandwidth, τ−1
d → 0, the right-hand

side is proportional to the source-field autocorrelation. Its Fourier transform,
assuming stationarity, yields the optical spectrum in agreement with (19.105).
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Diffusion

– non-positive-semidefinite 121–123,
285

– – and phase-space variables outside
the Bloch sphere 305

– – consequences of 77, 96–98

– – for degenerate parametric oscillator
63–65, 69–71, 122

– – for optical bistability 303–306
– positive semidefinite 104, 189, 305

Diffusion matrix 107, 111, 113, 160,
293

– for optical bistability 304, 307

– – in the Q representation 297, 306
– – in the Glauber–Sudarshan P

representation 295, 306
– – in the positive P representation

308
– – in the Wigner representation 297,

304
– in the positive P representation

108–109, 116, 136
– positive (semi)definite 64

Dipole radiation pattern 499

Dispersion
– related to vacuum Rabi doublet 279

Displacement

– of coherent state reservoir 141
Displacement operator see Operator,

displacement
Distribution

– Gaussian

– – even-order moments of 122
Dressed Jaynes–Cummings eigenstates

383, 387
Dressed states 240, 245

– dressing of 245, 377

– self-consistent 374
Dyson expansion 171, 228

– of density operator 173, 421, 448,
491

Effective number of atoms, in cavity
QED 273, 281, 362, 367

– and actual number of interacting
atoms 275

Eigenvalue problem 270–271

Einstein A and B theory 410

Einstein A coefficient see Spontaneous
emission, rate

Entangled state 426, 476
Entanglement
– between system and environment

405
– of source and target system states

407
Euler method see Stochastic dif-

ferential equation, integration
of

External field
– in quantum trajectory theory 406

Fabry–Perot cavity see Optical cavity,
standing-wave

Field
– free and source 28, 201, 206,

487–488, 492
– nonclassical versus classical 3, 59, 96
– – and conditioning on photodetection

219
– TEM00 247
First passage time 148
Fluctuations
– cavity-enhanced resonance fluores-

cence 213–216
– degenerate parametric oscillator 94
– – at threshold 91–93, 146–148,

178–181
– – in quadrature phase amplitudes

above threshold 84
– – in quadrature phase amplitudes

below threshold 75, 79
– linearized treatment of see System

size expansion
– Poisson 457
– quantum
– – for small system size 164
– – size of 167
– regression of 336
– squeezed 10, 315
Fluorescence see Resonance fluores-

cence
Fokker–Planck equation
– consistency of in different phase-space

representations 299
– diffusion matrix see Diffusion

matrix
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– drift matrix 116, 136
– drift vector 107, 111, 160, 292
– – for optical bistability 294
– first- and second-order moments,

equations of motion for 293
– for cummulative charge in tem-

porarily mode-matched heterodyne
detection 476

– for degenerate parametric oscillator
74

– – above threshold 83
– – at threshold 89, 90
– – below threshold 75
– – in the positive P representation

109, 115
– – with adiabatic elimination of the

pump 135, 159
– for optical bistability 303
– – in the Q representation 291
– – in the Glauber–Sudarshan P

representation 289
– – in the positive P representation

308
– – in the Wigner representation 298
– generalized 105
– potential conditions 160
– solved by generalized function 121,

123

Gaussian distribution see Distribu-
tion, Gaussian

Gaussian moment theorem 351
Glauber–Sudarshan P representation

see P representation
Green function 123

Hamiltonian
– anharmonic oscillator 190
– cascaded system 486
– – symmetric irreversible coupling

497
– coupled harmonic oscillator 246
– degenerate parametric amplifier
– – without pump depletion 8
– degenerate parametric oscillator

196
– Jaynes–Cummings 198
– – analogy with trapped ion and

vibrational mode 376

– – dressed eigenstates of 376–383
– – driven 376, 392
– – eigenstates and eigenenergies of

245
– – related to

√
n anharmonic oscillator

392–393
– many-atom 273, 284
– non-Hermitian 220, 233, 343,

see Quantum trajectory theory,
non-Hermitian Hamiltonian

– of the driven Jaynes–Cummings
model

– – stationary states and quasienergies
382

– reservoir in cavity QED 199
– two-level atom interacting with

intracavity field 256
Heisenberg equation of motion
– adiabatic elimination through

205–208
– for degenerate parametric amplifier

8
– for field in cavity QED 206
Heisenberg uncertainty relation
– and spectrum of squeezing 39, 162
– for quadrature phase amplitudes

9–10
Heterodyne current 462
– autocorrelation function from

quantum trajectories 511–513
Heterodyne detection 460–466
– bandwidth 464
– measurement of the Q distribution

464, 473–476
– measurement of the optical spectrum

464, 510–514
– temporally mode-matched 471, 474
Homodyne current 459
Homodyne detection 40–44, 451–460
– balanced 453
– bandwidth 459
– conditional 219, 485
– – squeezing measurement with 322
– – violation of classical constraint

349
– measurement of the Wigner

distribution 471
– temporally mode-matched 471
Homogeneous width 257
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Ikeda instabilities 268
Indistinguishable particles
– contrasted with identical atoms 318
Input-output theory 118
Interference
– of probability amplitudes 242, 510
Inversion clamping (pinning) 225
Ito rule 458, 465

Jaynes–Cummings model see
Hamiltonian, Jaynes–Cummings

Jump operator see Operator, jump
Jump process 227–228

Kerr effect 253

Laser
– β factor 222
– one-atom
– – photon antibunching in 230
– – pump parameter 224
– – waiting-time distribution of photon

emissions 225–230
Lindblad form 404, 491
– and pure-state factorization in

quantum trajectory theory 446
Linewidth narrowing
– squeezing-induced 328, 391
Local oscillator
– modeled as additional source in

quantum trajectory theory 455
– shot noise 457
– temporally mode-matched 471

Markov approximation see Approxi-
mation, Markov

Master equation
– adiabatic elimination in 141–144,

202–205
– cascaded systems 490
– – with symmetric irreversible coupling

497
– dephasing term 273
– for cavity-enhanced resonance

fluorescence 211
– for cavity-enhanced spontaneous

emission 204
– for degenerate parametric oscillator

24, 437

– – with adiabatic elimination of the
pump 136, 467

– for many-atom cavity QED 342
– – two-quanta truncation of 342
– for one-atom laser 222
– for optical bistability 286, 342
– for single-atom cavity QED 200, 210
– – as density matrix equation 336,

384
– – two-quanta truncation of 339
– for spontaneous emission 420
– for the driven damped harmonic

oscillator 25
– – derivation of driving term 25–27
– for two-photon loss 137, 198
– in the Born approximation 143
– perturbation expansion for in powers

of the driving field 336–342
– Scully–Lamb 410
– secular approximation 384
– source of mixed-state character in

343
Matrix
– diffusion see Diffusion matrix
– drift see Fokker–Planck equation,

drift matrix
– Jacobian 113, 125, 308, 324
– – eigenvalues of in absorptive optical

bistability 309–311
– orthogonal 107
– symmetric
– – decomposition of with quadratic

form 107
Maxwell equation
– single-mode 268, 272
Maxwell equations
– coupled, for forwards- and backwards-

wave amplitudes 256, 264–265
– for slowly-varying amplitudes 7
Maxwell–Bloch equations 271–273,

279, 281, 294, 302
– for “zero system size” 370, 373
– – stability of stationary states 374
– for standing-wave cavity 268
– – derivation of 263–268
– instabilities of 268
– linear stability analysis 269–271
Mean-field limit see Optical bistabil-

ity, mean-field limit
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Measurement
– null 417
– – equation of motion for conditional

probabilities 428
– – in quantum trajectory theory 425
– – probability 227, 231, 427, 440, 459
– of Q distribution by heterodyne

detection 464, 473–476
– of optical spectrum by heterodyne

detection 464
– of Wigner distribution by homodyne

detection 471
– projective 473–477
Micromaser 222
Mollow triplet see Spectrum, Mollow
Monte Carlo wavefunction simula-

tion see Quantum Monte Carlo
wavefunction method

Neoclassical radiation theory
– related to quantum trajectory theory

429
No-count probability see Measure-

ment, null, probability
No-jump probability see Measure-

ment, null, probability
Non-classicality
– of squeezed light 321
Nonclassical field see Field, nonclassi-

cal versus classical
Normal modes
– of linearized Maxwell–Bloch equations

270, 279
– related to vacuum Rabi doublet 279
Normal-mode resonances 242
Null measurement see Measurement,

null

Operator
– cavity field 211
– collective atomic 286, 360
– displacement 12, 379
– free-field and source-field 404
– jump 228, see Quantum trajectory

theory, jump operator
– ladder 283, 392
– nesting 138
– quadrature phase 380
– – defined 9

– – Fourier decomposition of 34–35

– rotation 378

– squeeze 12, 379

Operator average

– normal-ordered

– – for anharmonic oscillator 190

– two-time 114

Operator ordering

– and dropping of free fields 207

– and equations of motion for
phase-space averages 293

– for two-time averages in the
phase-space representations 81–82

– in the spectrum of squeezing 39, 53

Optical bistability 247

– absorptive 251

– – and cavity-enhanced emission 312

– – and spontaneous dressed-state
polarization 397

– – eigenvalues of Jacobian matrix
309–311

– – like- and unlike-atom correlations in
318

– – lower and upper branch of 311

– – state equation 307

– – steady state unstable in regions of
negative slope 311

– – steady states compared with the
“zero system size” limit 372, 395

– cooperative branch 312, 317, 320

– cooperativity parameter 260, 274,
300, 317, 320, 362

– – threshold value of 262

– dispersive 253

– Fokker–Planck equation 303

– – in the Q representation 291

– – in the Glauber–Sudarshan P
representation 289

– – in the positive P representation
308

– – in the Wigner representation 298

– independent-atom branch 312, 317,
320

– mean-field limit 254

– mean-field single-mode limit 263

– photon antibunching in 332

– single-atom 320

– squeezing in 315, 320–322
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– state equation 250, 261–262, 279,
280, 307

– – negative slope regions unstable
271

– threshold condition 263

Optical Bloch equations 256
– for cavity-enhanced spontaneous

emission 208
– for medium in standing-wave field

264–265

– for one-atom “laser” 223

– magnetic analogy 374
– of collective resonance fluorescence

375

Optical cavity
– bad-cavity limit 203, 237, 275, 312,

374
– – intensity fluctuations in 349

– – unlike-atom correlations in 319
– damping rate 15, 200

– driving of by a coherent field 25–27,
141

– free spectral range 264
– good-cavity limit 223, 312

– – vanishing of unlike-atom correla-
tions in 319

– linewidth 200
– Q 239

– ring 251
– standing-wave 4, 198, 247

– – boundary conditions in 6, 249, 266
– – density of modes 27

– – equation of motion from round-trip
field change 6, 15–16

– – mode volume 199
– – relationship between input and

output 249
– – summing round trips 250

– TEM00 mode 198, 208, 272
– – traveling-wave 256

– ultra-high-finesse 209

P distribution 287

– as generalized function 122
P representation

– and non-classical fields 59, 96
– complex 106

– generalized 100

– positive see Positive P representa-
tion

– stochastic differential equations in
110–111

Period doubling 268

Perturbation expansion

– in number of photon emissions
480–484

Phase transition 298

Phase-space equation of motion see
Quantum-classical correspondence,
phase-space equation of motion

Phase-space interference 469

Phase-space methods

– limitations of for nonclassical fields
401

Photoelectric detection see Photoelec-
tron counting

Photoelectron counting 403, 438–446

– assumption of freely propagating field
445

– criticism of Kelly–Kleiner by Srinivas
and Davies 442–443

– detection efficiency 230

– distribution 41, 175

– – sub-Poissonian 230

– exclusive and nonexclusive probabili-
ties 441–442

– normal- and time-ordering of
operators in 441, 445

– – and dropping of free fields 444

– semiclassical simulation of 190

– theory of 41

– waiting-time distribution 225, 459

– – classical and nonclassical compared
229–230

– – for a Poisson process 230

– – for degenerate parametric oscilla-
tor, preceeded by even and odd
photoelectron counts 469

– – for resonance fluorescence 434

– – quantum efficiency in 229

– waiting-time probability 440

Photon antibunching 212, 216, 220,
230, 245, 332, 348

– of fluorescence in single-atom cavity
QED 352–356

Photon bunching 212, 221, 352, 484
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Photon counting see Photoelectron
counting

Photon flux
– coherent and incoherent 323
– conservation of in cavity-enhanced

resonance fluorescence 213
– of one-atom and conventional laser

compared 224–225
Photon pairs
– in parametric down conversion 177
Poisson distribution
– in photoelectron counting 41
Polariton see Cavity polaritons
Polariton frequencies 279
Polarization
– collective 281
– of two-level medium 256
Population grating 256
Positive P distribution
– conjugacy requirement 128
– construction of from Q distribution

100–101
– defined see Positive P representa-

tion, defined
– for a thermal state 102
– for degenerate parametric oscillator

in steady state 160
– – above threshold 163
– – at threshold 162, 178, 179
– – below threshold 161
– nonuniqueness of 102, 190
Positive P representation 77
– and analyticity of the characteristic

function 98, 104
– autocorrelation matrix in 116–117
– classical and non-classical phase

space 152
– – divergent trajectories 152–156,

309
– – linearized evolution in 127
– – physical and nonphysical steady

states 154
– – variables of 125
– classical and nonclassical phase space

124, 125, 188, 190
– – divergent trajectories 184–187
– – eigenvalues in 127
– – variables of 161
– defined 98–100, 106

– diffusion matrix in see Diffusion
matrix

– Fokker–Planck equation in 109, 189
– normal-ordered averages evaluated in

99, 168
– physical and nonphysical steady

states 309
– stochastic differential equations in

109
– – conjugacy requirement 128, 146
– – disagreement with master equation

182–189
– – for anharmonic oscillator 191
– – for degenerate parametric oscillator

113, 129, 135, 178
– – for two-photon damping 182
– – nonclassical character of noise

131–132
– – relationship to Glauber-Sudarshan

P representation 111
– – “spikes” in simulation of 150, 156,

158, 164, 181, 309
– – trajectories of 129, 130, 145
– stochastic gauge 189
– two-time averages in 114
Probability
– conditional 228
– – expansion of unconditional in terms

of 412, 416
– current 159
Probability amplitude
– conditional 424
Pump depletion 20, 137
– for degenerate parametric oscillator

at threshold 146

Q distribution
– for a squeezed vacuum state 12
– measured by heterodyne detection

464, 473–476
Q representation
– normal-ordered, time-ordered

averages in 82
Quadrature phase amplitudes
– defined 8
Quadrature phase operators see

Operator, quadrature phase
Quantum collapse and revival 191
Quantum contextuality 467, 471
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Quantum dynamical semigroup 402
– dilation of 403
Quantum jump see Bohr–Einstein

quantum jump
Quantum Langevin equation 32, 402
Quantum Monte Carlo wavefunction

method 402
Quantum regression formula 82, 217,

358, 405
– applied to phase-space and Maxwell–

Bloch equations 325
– for joint photoelectron counts from

quantum trajectory summation 481
Quantum state diffusion model 466
Quantum stochastic calculus 402
Quantum teleportation 485
Quantum trajectory theory 232, 402,

405
– applied to amplification without

inversion 425
– applied to superradiance master

equation 407
– conditional and joint probabilities

compared 431
– conditional expectation 409
– – for dipole amplitude 425
– – of field amplitude in temporally

mode-matched heterodyne detection
475

– conditional state 408, 414
– – in Dyson expansion of density

operator 421, 448
– – in the presence of coherence 424
– – norm 459
– – normalized 448
– – unnormalized 447
– ergodicity of trajectories 451
– for cascaded systems 406
– idealized environment 467
– jump operator 423, 447
– – cascaded systems 491, 492, 496,

498
– – collective 426
– – for superradiance 499
– – in balanced homodyne detection

455
– – two-photon, for degenerate para-

metric oscillator with adiabatic
elimination of the pump 468

– – without subtraction of the
backscattered coherent driving
453

– – without subtraction of the coherent
driving 496

– Monte Carlo simulation 431–433

– – based on waiting times 434

– – degenerate parametric oscillator
468–473

– – heterodyne-current records
463–464

– – homodyne-current records 459–
460

– Monte-Carlo simulation

– – photoelectron counting records
448–451

– non-Hermitian Hamiltonian 422

– – cascaded systems 491, 493, 496,
498

– – for degenerate parametric oscillator
446, 453

– – for source cascaded with a scanning
interferometer 500, 507

– – for superradiance 499

– – in balanced homodyne detection
455

– – unidirectional coupling in 453

– non-unitary Schrödinger equation
423, 446

– – with coherent driving, solved by
coherent states 494

– optical spectrum in 499–514

– – construction from simulated data
sets 464, 499, 510

– role of null measurement in 417, 425

– scattering record 406–409, 413

– – for degenerate parametric oscillator
438, 467

– – for Einstein stochastic process 411

– – for spontaneous emission 413, 416

– – no-count 482, 508

– – not generally Markov process 434

– – probability (density) for 408, 413,
419, 421, 423, 430–431, 438–447, 449,
458, 501

– second-order correlation function in
479–484

– source superoperator 444, 453, 455
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– spectrum of squeezing in
– – construction of from simulated data

sets 460, 510
– unraveling of the density operator
– – cascaded systems 491–492
– – defined 408
– – for initial pure state superposition

424
– – for spontaneous emission 414, 418
– – from Dyson expansion 421,

447–448
– – heterodyne-current records

460–466
– – homodyne-current records 451–

460
– – nonuniqueness of 466–473
– – photoelectron counting records

447–451
– – sum over unnormalized states 431
– – without subtraction of the

backscattered coherent driving
453

– – without subtraction of the coherent
driving 496

Quantum-classical correspondence
– for two-time averages in normal order

324
– phase-space equation of motion
– – dephasing term in 288, 291
– – Fokker–Planck truncation of 289,

291–298
– – for degenerate parametric oscillator

63, 68, 71, 73–74, 87–88
– – for optical bistability 287, 290
– – generalized 105
– – third-order derivatives in 69
Quasienergies 377
– of the driven Jaynes–Cummings

model 382
Quasimode 32, 202, 204, 206

R representation
– related to positive P representation

99
Rabi frequency 508
Radiation reaction 212
Random telegraph process 410
Rate equations 171, 226
– Einstein 410

– in the basis of dressed Jaynes–
Cummings eigenstates 385, 388

Reduced state 217, 225

Regression formula see Quantum
regression formula

Reservoir
– correlations for thermal state 34

– coupling coefficient

– – related to cavity damping rate 29,
486

– in coherent state 141

– mode density 33, 34

Resonance fluorescence 311, 403
– cavity-enhanced 210–216

– – and one-atom laser 223
– – forward- and backward-scattered

fields 212
– – Rabi oscillation in 216

– – second-order correlation function
216, 220

– – spectrum of 328
– – weak-excitation limit 221

– collective 375
– for atoms in a cavity 352

– output field 286

Retardation
– effects for cascaded systems 490,

492, 493

Saturation intensity 257
Saturation photon number 196, 212,

275

– related to number of atoms 302

Schrödinger cat state 176, 430
Schrödinger equation 11, 220, 233, 488

– for time-retarded density operator
489

– nonlinear
– – for null-measurement conditioning

428
– periodic solution of 377, 383

– stochastic
– – heterodyne-current records 462

– – homodyne-current records 459
– – satisfied by the normalized

conditional state 459, 465
– – temporally mode-matched hetero-

dyne detection 474
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Schwartz inequality
– for photon antibunching, generalized

348
Secular approximation see Master

equation, secular approximation
Shot noise 43, 457, 460, 464
– and vacuum fluctuations 53
– autocorrelation function 512
Solid angle
– subtended by TEM00 mode 209
Spectral hole
– squeezing-induced 329
Spectrum
– Mollow 245, 352, 384
– – squeezing-induced linewidth

narrowing in 330
– of photocurrent fluctuations in

homodyne detection 44
– of transmitted light for many atoms

in a cavity 322–330
– optical 79, 323, 388, 499–514
– – coherent and incoherent parts,

defined 323
– – constructed from photocurrent

autocorrelation 464
– – defined 501
– – effect of squeezing on 79–80
– – Lorentzian squared 80, 323,

328–330, 390
– – measured with a scanning

interferometer 505
– – normalization of 506
– spontaneous emission 237
– – from driven excited-state doublet

506–510
– weak-probe transmission 277
Spectrum of squeezing 39
– in the classical limit 39
– at a single cavity ouput 45
– constructed from photocurrent

autocorrelation 460
– for degenerate parametric oscillator

460
– – above threshold 85
– – at threshold 180
– – below threshold 49, 79
– for the forwards scattered light in

cavity QED 360
– in the Wigner representation 56

– including free-field term 47
– related to optical spectrum 80
– role of detection and collection

efficiencies 44
– source-field 44, 78, 85
– time ordering in 53
– with unit efficiency 47, 50
Spontaneous dressed-state polarization

374, 392, 395
– and absorptive optical bistability

397
– effect of spontaneous emission on

397–399
– Stern–Gerlach analogy 399
– threshold for 371
– – squeezing at 382
– two-atom generalization 400
Spontaneous emission
– cavity-enhanced 198, 202–210
– – and altered density of states 202
– – associated frequency shift 208
– – collective 276, 328
– – enhancement factor 204, 208–209,

221, 274, 328, 332
– – optical Bloch equations for 208
– – rate 208, 355
– – spectrum of 237–238
– cavity-inhibited 38, 210
– distinguishability of atoms through

318
– for collective (symmetrized) atomic

states 340–342
– from driven excited-state doublet

506–510
– – related to nonperturbative cavity

QED 510
– in cavity with spoiling of Q 239
– in nonperturbative cavity QED

232–239
– – and coupled oscillators 234, 237,

243
– – linewidth averaging 242
– – spectrum of 235–237
– master equation 420
– rate 200
– – subnatural 242
– related to weak-field absorption 259
Squeeze parameter
– defined 12
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– for degenerate parametric oscillator
78

– for intracavity parametric amplifica-
tion 17

– for single-pass parametric amplifica-
tion 14

– in dressing of the Jaynes-Cummings
eigenstates 382

Squeezed state see Vacuum (Coher-
ent) state, squeezed

Stochastic differential equation

– for anharmonic oscillator 191

– for cummulative charge in tem-
porarily mode-matched heterodyne
detection 475

– for degenerate parametric oscillator
113, 129, 135, 178

– for filtered heterodyne current 462

– for filtered homodyne current 459

– for two-photon damping 182

– integration of

– – Euler method 145, 182

– – sampling error 145

– Ito in positive P representation 109

Stochastic electrodynamics 58

Stochastic Schrödinger equation see
Schrödinger equation, stochastic

Superoperator 173, 203, 226, 232, 342

– associated 139

– commutator 139–140

– conjugate 139

– defined 138

– equation of motion for 140

– factorization in quantum trajectory
theory 446–447

– roles in quantum trajectory theory
422

– source, in quantum trajectory theory
444, 453, 455, 491

Superradiance

– cavity-assisted

– – and decay rate in absorptive optical
bistability 312

– quantum trajectory theory of 407,
499

Superradiance and superfluorescence
275, 499

Symmetrized atomic states 340, 360

– used for distinguishable atoms
340–342

Symmetry breaking 372, 395

System size expansion
– and Heisenberg uncertainty relation

162

– and many body quantum theory
148

– applied 71–74, 86–91, 299–306

– – to hierarchy of moment equations
119–120

– beyond lowest order 178–181
– limitations of 94, 133, 146–149,

273–275, 350–352, 395

– linearized treatment of fluctuations
– – divergence of fluctuations in 76,

86, 315

– – in operator form 118–120
– – recovered from exact results

160–163

– – using generalized functions
121–123

– scaling in
– – for degenerate parametric oscillator,

at threshold 86–90

– – for degenerate parametric oscillator,
away from threshold 72, 83

– – for optical bistability 299

System size parameter
– for degenerate parametric oscillator

72, 146, 164

– for optical bistability 300
– in good- and bad-cavity limits

compared 320, 352
– limit of “zero system size” 370, 376
– related to coupling strength 133,

172, 196, 222

Teleportation see Quantum teleporta-
tion

Two-photon loss see Master equation,
for two-photon loss

Uncertainty relation see Heisenberg
uncertainty relation

Unraveling see Quantum trajectory
theory, unraveling of the density
operator
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Vacuum fluctuations 237

– in spectrum of squeezing 39, 53–58

Vacuum noise see Vacuum fluctua-
tions

Vacuum Rabi doublet 240, 281, 339

– many-atom 277, 310, 332

– – with squeezing-induced linewidth
narrowing 330

– nonlinear extension of 279, 310

– of squared Lorentzians 323

– single-atom

– – with squeezing-induced linewidth
narrowing 391

Vacuum Rabi oscillation 332, 339, 355

– frequency of 367

Vacuum Rabi resonances 242, 284

– and coupled oscillators 243

– squeezing at 321

– two-state behavior of 243–246

Vacuum state

– squeezed

– – defined 12

– – mean photon number in 12–13

– – Q and Wigner distributions for 12

Variance

– negative 122

Volterra-Lotka cycles 395

von Neumann measurement see
Measurement, projective

Waiting-time distribution see Pho-
toelectron counting, waiting-time
distribution

Wavefunction collapse 466, 477
– mechanism for in quantum trajectory

evolution 495
Wiener increment 145, 457, 462, 475,

511
– correlation function 511
Wiener process 183
Wiener–Khinchin theorem 505
Wigner distribution
– for a squeezed vacuum state 12
– for degenerate parametric oscillator

452
– – conditioned on even and odd

photoelectron counts 469
– for spontaneous dressed-state

polarization 396, 398
– from time-averaged density operator

451
– measured by homodyne detection

471
– stochastic 399
Wigner representation
– Fokker–Planck truncation of the

phase-space equation of motion 289
– normal-ordered, time-ordered

averages in 82
– visualization of vacuum fluctuations

in 56–58, 166
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