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Preface

The theory of finite fields, whose origins can be traced back to
the works of Gauss and Galois, has played a part in various branches in
mathematics . In recent years we have witnessed a resurgence of interest
in finite fields, and this is partly due to important applications in coding
theory and cryptography. The purpose of this book is to introduce the
reader to some of these recent developments. It should be of interest to
a wide range of students , researchers and practitioners in the disciplines
of computer science, engineering and mathematics .

We shall focus our attention on some specific recent
developments in the theory and applications of finite fields . While the
topics selected are treated in some depth, we have not attempted to be
encyclopedic . Among the topics studied are different methods of
representing the elements of a finite field (including normal bases and
optimal normal bases), algorithms for factoring polynomials over finite
fields , methods for constructing irreducible polynomials , the discrete
logarithm problem and its implications to cryptography, the use of
elliptic curves in constructing public key cryptosystems, and the uses of
algebraic geometry in constructing good error-correcting codes. To limit
the size of the volume we have been forced to omit some important
applications of finite fields. Some of these missing applications are
briefly mentioned in the Appendix along with some key references .

This book grew out of a lO-week seminar on the applications of
finite fields held at the University of Waterloo, and organized by Ian
Blake. The lectures were delivered by the six authors of the book. The
purpose of the seminar was to bridge the knowledge of the participants
whose expertise and interests ranged from the purely theoretical to the
applied, and we believe this objective was successfully met. The seminar
was attended by students and professors from computer science,
engineering and mathematics.

ix



x PREFACE

We have attempted to keep each chapter as self-contained as
possible and for this reason we list the references by chapter rather than
as a collection at the end of the book. At the same time an effort has
been made to present the material in as logical and-coherent a fashion as
possible, given the nature of the topics covered.

Comments on the text would be welcome and may be sent by
electronicmailtotheaccountAMENEZES@DUCVAX.AUBURN.EDU .

Alfred Menezes
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Chapter 1

Introduction to Finite
Fields and Bases

1.1 Introduction

This introductory chapter contains some basic results on bases for fi­
nite fields that will be of interest or use throughout the book. The
concentration is on the existence of certain types of bases, their duals
and their enumeration. There has been considerable activity in this
area in the past decade and while many of the questions are resolved,
a few of the important ones remain open. The presentation here tries
to complement that of Lidl and Niederreiter [21] although there is some
unavoidable overlap . For a more extensive treatment of the topics cov­
ered in this chapter, we recommend the recent book by D. Jungnickel
[15]. For the remainder of this section some basic properties of the trace
and norm functions are recalled.

Let p be a prime and let q = pm, where m ~ 1. Let Fq be the
finite field with q elements and Fqn the n-dimensional extension. The
Galois group G of Fqn over Fq is cyclic, generated by the mapping
u( a) = aq, a E Fqn, and is of order n. The trace function of Fqn over
Fq is

and the norm funct ion is

L 11(a)
'lEG

1

1>-1

Laqi

;=0
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,,-1

Np.nlF.(a) = II 17(a) = II a
qi.

'lEG ; = 0

For brevity, we sometimes denote the trace function by T rqnlq or simply
Tr if the fields are clear from context. The trace of an element over its
characteristic subfield is called the absolute trace. For a, 13 E Fqn, c E
Fq , the trace and norm functions have the following properties:

(i) Tr(a +(3) = Tr(a) +Tr(f3)
(ii) Tr(ca) = cTr(a)

(iii) Tr(c) = nc
(iv) Tr(aq) = Tr(a)

N(af3) = N(a)N(f3)
N(ca) = c"N(a)
N(c) =c"
N(aq) = N(a).

Notice also the transitivity of the trace and norm in the sense that for
finite fields E ~ F ~ K, TrEIK(a) = TrpIK(TrEIF(a)) and NE1K(a) =
NpIK(NEIF(a)) for all a E E.

Define the polynomial

,,-1

10(Z) = II(z - a
qi

)
; = 0

"L li Z i, a E Fqn,
i=O

which is either the minimal polynomial of a over Fq or a power of it.
Then Tr(a) = -1"-1 and N(a) = (-1)"/0'

Viewing Fqn as a vector space of dimension n over Fq, the trace
function is clearly a linear functional of Fqn to Fq (i.e., a function map­
ping Fqn to Fq, linear over Fq) and it may be shown that every linear
functional from Fqn to Fq is of the form

Trl3(a) = Tr(f3a)

for some 13 E Fqn.

It is clear that as a ranges through Fqn, Tr(a) assumes each value
of Fq, q"-1 times. A primitive element of Fqn is a generator of the
multiplicative group F;n (which is cyclic). The question as to whether
there exist primitive elements whose trace achieves a given value in Fq

has also been studied. Moreno [25] showed that there always exists a
primitive element in F2 n with trace unity. More generally Cohen [8]
proved that if n 2: 2 and c is an element of Fq with c f. 0 if n = 2 or
if both n = 3 and q =4, then there exists a primitive element 13 E Fqn
such that Tr(f3) = c. Equivalently, except for the two exceptional cases
there always exists a primitive polynomial of degree n over Fq whose
coefficient of Z,, -1 assumes any desired value in Fq •
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1.2 Bases

3

In this section and the next, various aspects of bases of Fqn over Fq are
considered. Unless stated otherwise a basis will mean one of Fqn over
Fq • The treatment draws heavily on the work of Menezes [24]. Two
types of bases are of particular interest, polynomial bases of the form
{I, 0, 02, ... , on-1} and normal bases of the form {!3,!3q,!3q', ... ,!3qn-,}
for some elements 0,!3 E Fqn. The number of ways of choosing a basis
of Fqn over Fq is

n-1
II (s" _ s' )
i=O

n

q(n-1)n/2II(qi - 1),
i=l

which is the order of the group GL( n, q) of all n Xn nonsingular matrices
over Fq • Here a different ordering of a basis is counted as a distinct basis.

If a = {01,02, ... ,On} and 13 = {!31l!32, ... ,!3n} are bases, 13 is
referred to as the dual basis of a if

(Oij denotes the Kronecker delta function, i.e., Oij = 0 if i =1= i. and
Oij = 1 if i = j.) The following theorem ensures the existence and
uniqueness of the dual basis for any given basis.

Theorem 1.1. For any given basis a of Fqn over Fq there exists a
unique dual basis.

Proof: For any 0 E Fqn let

n

o LCi(O)Oi
i=l

be the unique representation with respect to the basis a. Since c,(.) is
a linear functional from Fqn to Fq there exists !3i E Fqn such that

That is
n

o LTr(j3io)oi
i=1
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for any a E Fqn. In particular, for a = aj then

..
aj = 2: Tr(f3i aj )ai

i=l

which implies that Tr(f3iaj) = hij. In addition, if "£Af3i = 0, d; E Fq ,

then ("£i dif3i)aj = 0 and Tr("£i dif3iaj) = o. Thus "£i diTr(f3;aj) = 0
implying that dj = 0, j = 1,2, ... , n. Thus 13 is a basis and is the
unique dual basis to a. 0

The following characterization of a basis will be useful.

Theorem 1.2. The set of elements a = {ai' a2, ... , a ..} is a basis of
Fqn over Fq if and only if the matrix A is nonsingular where

( a, a2

~ 1aL a q

a:~.
2

A=
..-1

a~ a~ a q..
Proof: If a is a basis then by the previous theorem there exists the
dual basis ~ = {.8t, .82' ... ,.8..} and if

(~, f3f ~f-' )
f3~

n-l

B=
f32

::~_.
.8.. f3: ...

then BA = I.., the n X n identity matrix, and A is nonsingular.

Conversely suppose that A is nonsingular. If "£~=1 Ciai = 0, c, E Fq ,

then raising both sides to the power qj gives "£~=1 Ciat = 0 implying
that Af =.0.. Since A is nonsingular, f = .0. and a is a basis. 0

The following two corollaries are immediate consequences of this
theorem. Tr(aTa) denotes the n X n matrix whose (i,j)-th entry is
Tr(aiaj).

Corollary 1.3. a is a basis if and only if Tr( aT a) is nonsingular.

Proof: If A is as defined in Theorem 1.2 then Tr( aT a) = AT A which
is nonsingular if and only if A is nonsingular, The result follows from
Theorem 1.2. 0
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Corollary 1.4. The dual basis of a normal basis is a normal basis.

5

{
• n-l}Proof: Let a = a, a q, a q , ••• , a q be a normal basis of Fqn over F q

and i3 = {f3I' f32' . .. , f3n} its dual. By definition

n- l

)[}, f32 f3n

)
a a q a q

a q aq' a f3~ f3~

AB= ( : =In'

a qn- l n-' n-l
f3f- l

a a q
f3~

and so BA = In. Furthermore,

(AB)T = BTAT = B
T

A = In'

since A is a symmetric matrix. Finally, from BA = In = BT A we
i-I -

conclude that B = BT . It follows that f3i = f3i and hence that f3 is a
normal basis. 0

Research Problem 1.1. If a generates a normal basis, characterize
in a simple way the elements f3 which generate the unique dual basis
(see also Theorem 4.7 in Chapter 4).

It will be proved in Chapter 4 that in Fqn there always exists an
element a which generates a normal basis over Fq (see also [21]). More
generally, Blessenohl and Johnsen [4] proved that in Fqn there always
exists an element a which generates a normal basis over Fq~ for each
positive divisor m of n. Davenport [9] showed that Fpn over F p always
contains a primitive element a which generates a normal basis. More
recently, Lenstra and Schoof [20] extended the work of Davenport [9]
and Carlitz [7] by showing that Fqn always contains a primitive element
a which generates a normal basis of Fqn over F q• Stepanov and Sh­
parlinski [28] showed that if () is a primitive element in Fqn then for
N ~ max(exp exp(cl ln

2(n)), C2nln(Q)) there is at least one element in
the set (), ()2, • • • , ()N which generates a primitive normal basis. Bshouty
and Seroussi [5] investigate conditions under which, for a given set of
integers .AI, .A2, ... , .An' at most one of which is zero, there exists an

F h h { A A q A qn-l} • basi f F Fa E qn sue t at aI, a', ... ,a n IS a asis 0 qn over s:

The dual of a polynomial basis turns out to be easier to determine.
The following simple proof of this result is due to Imamura [13].
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Theorem 1.5. Let a = {I, 0:,... , o:n-l} be a polynomial basis of Fq..

over Fq and let f (z) be the minimum polynomial of 0: over Fq • Let
f( z) = (z - 0:)(130 +131Z +...+13n_lZn-1), 13;, 0: E Fq... Then the dual
basis of a is '1 = {10, 11, .. · ,1n-d where

13;
1; = 1'(0:)' i = 0,1 , .. . , n - 1.

Proof: Let '1 = {10, 11l' .. , 1n-l} be the dual basis to a and define the
matrices

1

o:(n-l)q

and

B=
(

1~ 11 .. . 1nq_l)
10 1l .. . 1n-l
· .,· .· .
n-l n-l qn-J

7Z 7l 7n-1

Then AB = BA = In . If 1(Z) = 10 +11Z +...+1n_lZn-1 then the
identity B A = In yields

i = 0,
l~i~n-1.

It follows that

f(z)
(z - o:)fl(o:)

is the unique polynomial assuming these values. Thus

or
13;

1; = fl(o:) , O~i~n-1. o
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1.3 The Enumeration of Bases

7

There has been interest in the past decade on enumerating the number
of bases of various types and some of this work is reported on here.
In particular, the number of normal bases, self-dual bases and self-dual
normal bases is of interest .

As noted previously, the number of (ordered) bases of Fqn over Fq is

n-l

II (qn _ qi).
i=O

The number of polynomial bases, up to conjugacy, is simply the number
of irreducible polynomials of degree n over Fq ,

1- 2: JL(njd)qd,
n din

where JL(') is the Mobius function.

The number of normal bases will be closely related to the number
of non-singular circulant matrices and some notions on these are first
reviewed. A matrix of the following form

ao al a2 an-l
an-l ao al an-2
an-2 an-l ao an-3

al a2 a3 ao

is called a circulant matrix, denoted by c[ao,al, ... ,an-d. Let S(n,q)
denote the set of all n X n circulants over Fq • Denote the n X n permu­
tation matrix S = (Sij) where

S .. _ { 1, if j == i +1 (mod n), 0 ~ i ,j ~ n - 1,
'3 - 0, otherwise.

Then S" = In and if A = c[ao,at> ... ,an-d then A = L,~';olaiSi. It is
clear that S(n,q) is isomorphic to Rn , the ring of polynomials in Fq[x]
modulo xn - 1, under the mapping

p : S(n, q) ---+ R n
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defined by
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n-1

p (EaiSi) = Eai:z:i.
i=O

It is readily established that the nonsingular matrices of S (n, q) are in
one-to-one correspondence with the polynomials coprime to :z:n -1, i.e.,
the invertible elements in Rn • Thus if A E S(n, q), A nonsingular, and
p(A)b(:z:) == 1 [mod z" - 1) then A-1 = p-1(b(:z:)).

To establish the connection between circulants and normal bases,
let f3 be a normal basis generator of Fqn over Fq and suppose '1
ho, 'Y1,···, 'Yn-1} is a set of n elements of Fqn. Then we can write

i = 0, 1, ... , n - 1,

Theorem 1.6. '1 is a normal basis if and only if C = (Cij) is a non­
singular circulant.

Proof: Suppose C is a circulant with first row (co, Cll ••• , cn-d and so

n-l

E Cj_if3
qi

j=O

qi
'Yo

and thus '1 is a normal basis. Conversely if '1 is a normal basis with
qi h

'Yi = 'Yo t en

n-1

'Yo = E COjf3qi, and 'Yi
j=O

and so C is a circulant.

n-1

'" f3qi+jLJ COj
j=O

n-1

'" CO ' .f3qiLJ ,1-t

j=O

n-l

E Cijf3qi
j=O

o

Corollary 1.7. The number of (unordered) normal bases of Fqn over
r, is ; IC(n, q)I, where C(n, q) is the set of n X n nonsingular circulant
matrices over Fq •

To determine this number define if!q(f) to be the number of poly­
nomials in Fq[:z:] of degree less than the degree of f(:z:) E Fq[:z:] and
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relatively prime to fez). It follows that the number of normal bases
of Fqn over Fq is ~<lq(zn - 1) (see also Section 4.3) . The computa­
tion of <lq(f) for any given f( z) is relatively straight forward using the
following properties:

(i) If (f,g) = 1 then <lq(fg) = <lq(f)<lq(g).

(ii) If fez) is irreducible of degree n then <lq(f) = qn_1.

(iii) If fez) is irreducible of degree n then <lq(r) = qnc _ qn(c-l).

(iv) If the distinct irreducible factors of f( z) have degrees nl, n2, .. . , n,
then <lq(f) = qn(1 - q-n,) ... (1 _ q-n r ) .

To consider self-dual bases it is convenient to define concepts related
to self-duality. The basis Ci = {al' a2, ... , an} is said to be trace or­
thogonal if Tr(aiaj) = 0 for i f= j. If, in addition, Tr(ai 2

) = 1, i =
1,2, ... , n the basis is called self-dual.

Theorem 1.8. ([17]) There does not exist a self-dual polynomial basis
of Fqn over Fq, where n ~ 2.

Proof: Assume the contrary, that a self-dual polynomial basis Ci

{I, a, . .. , a n
-

1
} of Fqn over Fq exists so that Tr( aiaj) = 5ij , 0 ~ i, j ~

n - 1. Two cases are considered:

(i) If q is even then

while

Tr(a) Tr(1 . a) o

since q is even, which gives a contradiction.

(ii) If q is odd we first show that n - 1 ~ 2. Let the characteristic of Fq

be p > 2 and note that Tr(l) = 1 = L:~:Ol 1 which implies that n == 1
(mod pl. Since p > 2 this implies that n ~ 4. Now

which is a contradiction.

o

o
A stronger result than Theorem 1.8 is the following due to Gollmann

[l1J.
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Exercise 1.1. Let a = {I, a, .. . , an- 1
} be a polynomial basis of Fqn

over Fq , where n ~ 2. Prove that the dual basis ofa is also a polynomial
basis if and only if n =1 (mod p), where p is the characteristic of Fq ,

and the minimal polynomial of a is of the form z" +C.

The following theorem, stated without proof, establishes the exis­
tence of self-dual bases. The result was first proven by Seroussi and
Lempel [27]; a simpler proof can be found in [17].

Theorem 1.9. The finite field Fqn has a self-dual basis over Fq if and
only if either q is even or both q and n are odd.

Some explicit constructions of self-dual bases of Fqn over Fq where
n = p" are given in [18]. If the notion of self-duality is relaxed slightly
then the existence result becomes more complete. Specifically if a =
{a1,a2, ... ,an} satisfies T(aiaj) = 0, i i= i and Tr(a;) = 1, i =
1, 2, ... , n with possibly one exception, it is referred to as almost self­
dual. Notice that an almost self-dual basis is also a trace orthogonal
basis, as described earlier. It can then be shown [17] that every finite
field Fqn has an almost self-dual basis.

The enumeration of self-dual bases is briefly considered. It is first
noted that an orthogonal transformation of a self-dual basis is again
self-dual. The necessity that a linear transformation of such a basis
be orthogonal to yield a self-dual basis is established in the following
theorem. Recall that a matrix A is orthogonal if AAT = I .

Theorem 1.10. Let jj = {,8ll ,82" .. , ,8n} be a self-dual basis of Fqn
over Fq where either q is even or both q and n are odd. Let C =
(Cij) be a nonsingular n X n matrix over Fq and define the basis 1 =
{71,71, ... ,7n} by

n

7i = L Cij,8j, 1::; i ::; n.
j=l

Then 1 is a self-dual basis if and only if C is an orthogonal basis.

Proof: For 1 ::; i, j ::; n we have
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L L c.kcj ITr(f3kf3,)

k I

L C.kCjk = (CCT)'j'
k

11

Hence 1 is a self-dual basis if and only if C is an orthogonal basis. 0

Clearly there exists a nonsingular matrix that maps one basis to
another and if both are self-dual this matrix is orthogonal by the pre­
vious theorem. Thus any self-dual basis can be obtained by mapping a
fixed self-dual basis by an orthogonal matrix. The following corollary is
immediate.

Corollary 1.11. The number of self-dual bases of Fqn over Fq is

1
SD(n, q) = ,IO(n, q)1

n.

where 0 (n, q) denotes the group of orthogonal n X n matrices over Fq •

The number of such matrices is well known ([12], [22]):

Theorem 1.12. The number of self-dual bases of Fqn over Fq is

{

1rrn
-

1( • );J .=1 q - ai ,
SD(n, q) = ~ rr~;1\qi - as) ,

0,

where ai is 1 if i even and 0 otherwise.

q even,
q and n odd,
otherwise,

The enumeration of self-dual normal bases is a more involved prob­
lem. It is sufficient for our purposes to simply quote some results.

It is first noted that if, for a given nand q, the number of normal
bases is odd then there must exist a self-dual normal basis. This follows
since a basis can be paired with its dual and if the total number is odd
at least one of these bases must be self-dual. As a consequence of this
[23] there exists a self-dual normal basis of F2n over F2 when n is odd
since z" - 1 has no repeated factors over F2 , and hence the number of
normal bases is

which is odd, and where the factors of :en - 1 are of degrees n., i =
1,2, .. . , r . The following theorem of Imamura and Morii [14] is stated
without proof.
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Theorem 1.13. If (i) q is even and n == 0 (mod 4) or (ii) q is odd and
n is even, then there does not exist a self-dual normal basis of Fq.. over
~. .

On the positive side we have the following result of Lempel and
Weinberger [19].

Theorem 1.14. If n is odd, or if q is even and n == 2 (mod 4), then
there exists a self-dual normal basis of Fq.. over Fq •

Exercise 1.2. ([2, 17]) By a similar reasoning of Theorem 1.10 and
Corollary 1.11, prove that the number of self-dual normal bases of Fq..

over Fq , denoted SDN(n, q), is ~IOC(n, q)1 where OC(n, q) is the group
of n X n orthogonal circulant matrices over Fq •

The cardinality of the group OC(n, q) can be determined [3, 6] but
the result is involved and is omitted.

Exercise 1.3. ([16])Two bases a = {ao, a1' . . •, an-1} and:e = {f3o, 131,
.. . , f3n-1} of Fq.. over Fq are said to be equivalent if there exists e E Fq

such that ai = ef3;, 0 ::; i ::; n - 1. Prove that any trace-orthogonal
normal basis of Fq.. over Fq is equivalent to a self-dual basis .

1.4 Applications

In the remainder of this book we will encounter several applications of fi­
nite fields, especially to cryptography, coding theory, and computer alge­
bra. For these applications it is imperative that the field arithmetic (eg.
addition, subtraction, multiplication, inversion, exponentiation) can be
efficiently implemented. Depending on the demands of the particular
application (eg. field size, special arithmetical operations) and on the
physical limitations of the implement (eg. computer memory, chip size)
the choice for representation of field elements can be crucial.

We will study the advantages of using a normal basis representation
in Chapter 5. We now proceed to describe a bit-serial multiplier due to
Berlekamp [1] which uses a self-dual basis representation.

Let a = {1,a,a2
, • • _,an

-
1

} be a polynomial basis of F2 .. over F2 ,

and let :e = {f3o, 131, ..• , f3n-1} be its dual basis. Then for each x E F2.. ,

we have
n-1 n-1

E Xi ai = E Tr( xai)f3i =
i=O i=O

n-1

E (x)if3i'
i=O
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where (Z)i are the coordinates of Z with respect to the dual basis 73. It
is easy then to compute az from z in dual coordinates, since

_ i _ i+1 _(az)i - Tr(az. a) - Tr(a z) - (z)i+l' for 0 ~ i ~ n - 2,

and
n-1 n-1 n-1

(az)n_1 = Tr(anz) =Tr(L l iaiz) = L liTr(aiz) = L l i(Z)i'
i=O i=O i=O

where I(z) = z" + l:~:01 liZi is the minimum polynomial of a over F2•

This is easily accomplished by the circuit in Figure 1.1.

Figure 1.1: Multiplication by a.

(zY)t = (z~Yiai)t = ~Yi(aiz)t = ~Yi(atZ)i '

Thus the product of z and Y in dual coordinates can be obtained by the
circuit in Figure 1.2. The product digits are produced one at a time,
and one per clock cycle. Note that one of the multiplicands is in dual
coordinates, while the other is in primal coordinates.

To complete the multiplication, it is necessary to be able to trans­
form between primal and dual coordinates. Note that the transforma­
tion from primal to dual coordinates is easily achieved if the identity
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Figure 1.2: Bit-serial Multiplication of z and y in F2n .

is precomputed with respect to the dual basis, since then z . 1 gives z
in dual coordinates. In general, the circuitry required to perform this
transformation is complex and inefficient. In [26], the authors devise a
new bit-serial multiplier that is similar to the one just described, but
uses a different pair of bases that in general yield a simpler transforma­
tion between bases. In particular, when there does exist an irreducible
trinomial of degree n over F2 , the transformation between bases becomes
a cyclic shift, which is easy to implement. If there does not exist an ir­
reducible trinomial of degree n, then the method recently developed in
[31] always results in a simple and efficient multiplication scheme. For
a generalization of these methods, the reader is referred to Stinson [29].
For further discussions, see [11].

For applications of self-dual normal bases to the construction of finite
field multipliers see [10] and [30].
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Chapter 2

Factoring Polynomials over
Finite Fields

2.1 Introduction

A polynomial of degree n over a finite field Fq is an expression in an
indeterminate z having the form

n

f(z) = Eai z i
i=O

where n is a non-negative integer, ai E Fq , 0 :S i :S n and an ~ O. To be
more precise, f( z) is called a univariate polynomial to distinguish the
more general situation where more indeterminates are,involved. Most of
this chapter will deal with univariate polynomials but the multivariate
case will be briefly mentioned at the end .

The set of all polynomials over Fq, which is denoted Fq[z], is a unique
factorization domain where the irreducible elements are polynomials of
positive degree which cannot be written as the product of two polyno­
mials each of positive degree. Finding the complete factorization of a
polynomial f( z) in Fq [z] has many applications. We will briefly mention
a few of these.

Factoring polynomials of the form f( z) = z" - lover Fq is very
important in the study of cyclic codes. Of course , finding roots of poly­
nomials is a special case of the general factorization problem and this
problem has much interest for those studying decoding algorithms for
various classes of algebraic codes such as BCH codes [17] .

17
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In cryptography there are numerous examples where some form of
polynomial factorization is important. With regard to the discrete log­
arithm problem (this will be considered in more detail in Chapter 6),
polynomial factorization is used in the index calculus algorithms for
computing logarithms in Fqn. Finding roots of polynomials is useful for
the same problem in order to establish isomorphisms between different
representations of the same field. Several cryptosystems use polynomial
factorization for decryption. We describe two of these in what follows.

In 1984, Chor and Rivest [8] proposed the following public key cryp­
tosystem. Let q = pm where p is a prime and m 2: 2. Let Fq be the
finite field with q elements represented by the irreducible polynomial
f(-:c) E Fp[-:C] of degree m and let g(-:c) be a primitive element in Fq• For
each integer i, 0 ~ i ~ p - 1, determine ai, 0 ~ ai ~ pm - 2, such that

(-:c - i) == (g(-:c))CJi (mod f(-:c)) .

Let II be a permutation on the set {O, 1, 2, . . . ,p - I} and let

bi = an(.) , 0 ~ i ~ p - 1.

Messages are p-tuples of non-negative integers M = (Mo, M 1 , • • • , Mp-d
such that L:f~~ M, < m. The public key for the system is the set of
integers {bo, b1, • • • , bp - 1 } and the private key consists of polynomials
f( e], g(-:c) and the permutation II.

To encrypt message M in the system, we compute

p-1

E(M) = EbiMi (mod q -1).
i=O

If the reader is familiar with the knapsack cryptosystem, one sees some
resemblance to encryption in those schemes. To decrypt a ciphertext
c = E(M) we proceed as follows. Compute the polynomial

p-1

t(-:c) == g(-:cY == II(-:c - II(i))Mi (mod f(-:c)) •
•=0

Since L:f~~ M, < m, it follows that

p-1

t(-:c) = II(-:c - II(i))Mi
.=0

and by factoring t( -:c) and recording multiplicities of factors we recover
the message M.
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Another public key system which uses polynomial factorization in
the decoding phase has recently been proposed by H. Lenstra [16]. It is
somewhat similar to the Chor-Rivest scheme described above but does
not require the computation of discrete logarithms in the field.

Let q = pm, p a prime and m ~ 2. Let f(;v) be an irreducible
polynomial defining Fq and let g(;v) be a randomly chosen primitive
element in Fq • Let k be a random integer with 0 ::; k ::; q - 2 and
gcd( k, q - 1) = 1. For each i, 0 ::; i ::; p - 1, compute field elements

Wi == (g(;v)-i)k [mod j'(el)

and then let
Vi = Wn(i), 0::; i ::; p - 1,

for some permutation II of {O, 1,2, .. . ,p - 1}.

As in the Chor-Rivest system, messages are p-tuples of non-negative
integers M = (Mo, Mll ••• , Mp-d such that ~f~~ M, < m.

The public key for the system is f(;v) and the set of field elements
{VO,Vl, ...Vp-tl. To encrypt a message M = (Mo,Mll ... ,Mp - 1 ) we
compute

p-l

C = E(M) = II vri (mod f(;v))·
i=O

The private key is the integer k, the primitive polynomial g(;v) and the
permutation II. To decode

p-l p- l

C = II V~i = II (g(;v) - II(i))kMi (mod f(;v)),
i=O i=O

we first compute ck - ' where kk- 1 == 1 (mod q - 1). Hence

p-l

e: = C' = II (g(;v) - II(i))Mi (mod f(;v)).
i=O

We observe that 1, g(;v), g2(;V), ... , gm-l(;v) is a basis of Fq over Fp and
if we express c'(;v) in terms of this basis we get

m-l

c'(;v) = L Cigi(;V) (c, E Fp)
i=O
p-l

II (g(;v) - II(i))Mi
i=O
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since L:f::-~ Mi < m. Hence to decode the ciphertext we need to factor
the polynomial

m-l

F(z) = I: Ci Z i

i=O

over Fp and record multiplicities of roots.

The two examples cited above simply make use of root finding over
Fp • One can generalize these methods by using irreducible factors other
than the linear polynomials but this is at the expense of the size of the
message space .

2.2 A Few Basics

The problem which this chapter is addressing is to determine the com­
plete factorization of a polynomial f( z ) of degree n over a finite field Fq •

The goal is to obtain algorithms (either deterministic or probabilistic)
whose running times are bounded by a polynomial in the input size,
namely n log q. Without loss of generality we can assume that f( z) is a
monic polynomial and

t

f(z) = II h:'(z) ,
i=l

where the hi(z) are distinct monic irreducible polynomials in Fq[z] and
the e i are positive integers.

Without loss of generality, we can restrict our discussion even further
by assuming that each e i equals 1. To see this consider the following
argument.

If f( z) = L:~=o aizi is a polynomial of degree n, then the formal
derivative of f( z) is defined to be

n

f /( ) " . i - lZ = L.J tai z .
i=O

We should note at this point that if r (z) = 0 and p is the characteristic
of the field then f( z) has the form

f(z) = gP(z)

where
nip

g(z) I:bizi
i=O
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and

21

b, = aiip
, 0 ~ i ~ nip.

(Note that each element in Fq has a unique pth root.)

Now we consider d(:c) = gcd(f(:c), I'(:c)) and examine several cases.

(i) If d(:c) = 1 then it follows that e; = 1, 1 ~ i ~ t, and we have the
desired situation.

(ii) If d(:c) = f(:c) then I'(:c) = 0 and the problem is now reduced to
factoring g(:c) as described above .

(iii) If d(:c) ::f 1 or f(:c) then we consider the polynomials f(:c) I d(:c )
and d(:c). The polynomial f(:c)1 d(:c) has no repeated irreducible
factors and so is in the desired form. It is important to ob­
serve that some irreducible factors h,(:c) may not be factors of
f(:c) Id(:c). In fact if pie; then li; (:c) will not be a factor of f(:c)1 d(:c).
The polynomial d(:c) can be reduced by applying the same proto­
col.

In all cases, the factorization of an arbitrary polynomial can be reduced
to the factorization of a number of polynomials, each without repeated
factors .

Another basic technique which is frequently used is called a distinct
degree factorization. It is well known that the polynomial :cqd

- :c is the
product of all monic irreducible polynomials over Fq of degree dividing
d. It follows that

d

9d(:C) = gcd(:cq -:c, f(:c))

is a polynomial having each factor of degree dividing d and no factor
repeated. Assume that f(:c) has no repeated factors . By computing
91(:C)' 92(:C), . . . , 9n/2(:C ) in turn, and after each computation replacing
f(:c) by f(:c)/9;(:C), we can write

n

f(:c) = IT hd(:c),
d=l

(2.1)

where hd(:c) is the product of all monic irreducible factors of f(:c) having
degree exactly d. To factor f(:c) completely it suffices to factor each
hd(:c).

It is always possible to reduce factoring to finding roots in some
suitable extension of the underlying finite field. To be more precise,
suppose that we have a distinct degree factorization of f(:c) as in (2.1).
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Since the factors of hd ( x) are irreducible polynomials of degree d, each
of these factors has all of its roots in Fqd. Hence, factoring hd ( x) reduces
to finding the roots of hd(x) in Fqd. For, if a is one root of hd(x) in Fqd,

then an irreducible factor of hd ( x) is
d-I

(x-a)(x-aq) ... (x-aq ).

Although the general factoring problem can always be reduced to
finding roots in various field extensions, this is often inefficient and
more direct methods are much faster .

Typically, algorithms for factoring polynomials fall into various cat­
egories. There are those which apply when q is "small", and those which
apply when q is "large". For large values of q = pm there are algorithms
which work well when p is small and m is large. There are algorithms
which run in random polynomial time and those that are deterministic.
In the remainder of this chapter we will attempt to give the reader a
brief survey of the results which have so far been obtained. The next
section examines the problem of finding roots of polynomials.

2.3 Root Finding

The general root finding problem to be considered in this section is the
following. Given a finite field Fq and a polynomial

N

f( x) = L AiXi , Ai E Fq

i=O

determine the roots of f( x) in Fq • In light of the distinct degree factor­
ization described in the preceding section we can assume that f( x) has
N distinct roots in Fq •

If q is small then the problem is easily solved by doing an exhaustive
search for roots. For large values of q more sophisticated methods are
required. The first one we describe here is one due to E.R. Berlekamp
[3] and is a powerful randomized algorithm which can be used when
q = pm for any odd prime and any integer m ~ 1.

Since x q - x is the product of all monic linear factors over Fq , f( x)
divides

x q - x = X(X(q-l)/2 - 1)(X(q-l)/2 +1).

If f(O) :I 0, then

f(x) = gcd(f(x),x(q-l)/2 -1) .gcd(f(x),x(q-l)/2+1).
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It is easy to see that the roots of :e(q-l)/2 - 1 and :e(q-l)/2 +1 in Fq are
the quadratic residues and the quadratic non-residues respectively. It
follows that

g(:e) = gcd(f(:e),:e(q-l)/2 -1)

is a non-trivial factor of f(:e) if and only if f(:e) has at least one root
which is a residue and at least one which is a non-residue.

We can generalize this notion in the following way. For any 5 E Fq

we have that

(:e +5)q - (:e +5)

(:e +5) ((:e +5)(q-l)/2 - 1) ((:e +5)(q-l)/2 +1).

Note that the roots of (:e +5)(q-l) /2 - 1 are precisely the set f36 = {f3­
5 I f3 is a quadratic residue}. This observation suggests the following
randomized algorithm.
For randomly chosen 5 E Fq compute

g(:e) = gcd(f(:e), (:e +5)(q-l)/2 -1).

Rabin [19J has shown that with probability at least (q - 1)/2q :::::: 1/2,
g(:e) will be a non-trivial factor of f(:e) (of course, the degree of f(:e)
must be at least 2). Ben-Or [1J showed that this probability is at least
1-1/2N

-
1 +O(1/.jq) . Once a partial factorization of f(:e) is obtained

the algorithm can be repeated on g(z) and f(:e)/ g(:e) . This algorithm is
sometimes referred to as the Berlekamp-Rabin algorithm for root find­
ing. Its expected running time [1J is 0 (N2log N log q) Fq-operations
(assuming conventional arithmetic for multiplication of polynomials).

The next method of root finding that we want to discuss is one which
seems to work best for large extension fields Fqn, where q is "small" and
n is large.

Recall that the trace function Tr is a mapping from Fqn to F q defined
by

Tr(:e) = :e +:eq +...+xqn
- ' .

Since the degree of the polynomial Tr( x) is e:', the domain of Tr( x)
has qn elements, and the codomain has q elements, we conclude that for
each A E F q there are exactly «: elements a E Fqn with Tr( a) = A.
We thus have

IT (Tr(:e) - A) = :e
q n

- 2:.

>'EF.
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Now, let I(:z: ) be a polynomial of degree N over Fqn having N distinct
roots (N ~ 2) in Fqn. We see immediately that

II (Tr(:z:) - A) == 0 (mod I(:z:))
>'EF.

and hence

I(:z:) = II gcd(f(:z:),Tr(:z:)-A).
>'EF.

This leads to a non-trivial factorization of I(:z:) unless

Tr(:Z:)-A == 0 (mod/(:z:))

for some A E Fq • In this situation we can do something analogous to
the Berlekamp-Rabin algorithm described earlier.

Let a be a root of an irreducible polynomial of degree n over Fq • It
follows that {I, a, a 2, • • • , a"-l} is a linearly independent set over Fq •

Observe that
II (Tr(ai:z:) - A) = ai(:z:qn -:z:)

>'EF.

and, therefore,

I(:z:) = II gcd(f(:z:), Tr(ai:z:) - A).
>'EF.

(2.2)

We claim that for some choice of i, 0 :::; j :::; n - 1, (2.2) results in a
non-trivial factorization of I(:z:).

Suppose "1, TJ are distinct roots of I(:z:) and that I(:z:) ITr(ai:z:) - Ai
for each value of j and some Ai E Fq. This implies that

Therefore

Tr(ai (7 - TJ )) = 0, O:::;j:::;n-l.

Since {I, a,a\ ... , a"-l} is linearly independent and "1 - TJ :j; 0, then if
5 = "1 - TJ then {5, Sa; 5a2

, •• • , 5a" -1} is a basis of Fqn and since Tr(:z:)
is 0 on this basis we have that Tr(:z:) = 0 for all :z: E Fqn. This is
impossible since Tr(:z:) = 0 for exactly q"-l elements of the field.

The method just described is commonly referred to as the Berlekamp
trace algorithm. For q being "small" the method is quite efficient.
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Another concept which seems to be very useful in the study of fi­
nite fields and, in particular, root finding, is the idea of a linearized
polynomial.

A polynomial having the special form
t

L(x) = L.8iXqi
,=0

with coefficients .8i from Fqn is called a q-polynomial over Fqn . For fixed
q, L(x) is called a linearized polynomial over Fqn. A polynomial of the
form

A(x) = L(x) +.8, .8 E Fqn,

is called an affine polynomial over Fqn . For any polynomial f( x) over
Fqn, the least affine multiple of f( x) is defined to be the affine poly­
nomial A( x) over Fqn of least degree for which f( x) is a factor. It is
not difficult to see that such a polynomial must exist: by considering
the factorization of f( x) there exists an integer 1such that f( x) divides
x ql

- X. In fact, the following algorithm shows that the least affine
multiple of f( x) has degree at most qN - 1, for deg f( x) = N.

Let A(x) = a + l:f:~l aixqi, where a, ai E Fqn are to be found. For
each i, 0 :S i :S N - 1, we compute

N-l

x
qi

== L bY>xi (mod f(x)) .
i=O

If f( e ) divides A(e ), then we get

N-l N-l

a + La, L b)')xi == 0 (mod f(x)) .
,=0 i=O

Since the polynomial on the left of the congruence has degree at most
N - 1 we conclude that

N-l N-l

a + L ai L b)i) xi 0
i = O i=O

which gives rise to the system of equations

[!
b(O) b~l) b~N-'l )

a 0...
0 0

b~O) b(l) b(N-l) ao...
1 1

al 0

b(O) b(l) b(N-l)
0N -l N-l N-l aN-l
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This is a homogeneous system which has non-zero solutions since it
is consistent and is over specified. This proof of the existence of the
least affine multiple gives an effective method of finding it.

The roots of an affine polynomial are relatively easy to find by solv­
ing a system of linear equations. To see this , let A(:c) = L(:c) - {3 be an
affine q-polynomial over Fqn, and suppose that we wish to find all the
roots of A(:c) in the extension field Fqn•. If {-r1')'2' .. . , Int} is a basis of
Fqn. over Fq, and I = l:~~1 Ci/i E Fqn. , then I is a root of A(:c) if and
only if

nt
A(,) = L: CiL(,i) = {3.

i = l

Computing L(,i) for each i, 1 ~ i ~ nt, and expressing these elements
in terms of the basis {'1' 12, ... , Int} then yields the desired set of equa­
tions . From this observation it follows that one can find the roots of
a polynomial f(:c) by first computing the least affine multiple A(:c) of
f(:c), determining the roots of A(:c) by solving a linear system, and then
exhaustively searching these field elements for the roots of f(:c). The
technique was described by Berlekamp, Rumsey and Solomon [4] .

Another application of the least affine multiple is described by van
Oorschot and Vanstone [25] . The technique combines a generalization
of the Berlekamp trace algorithm with the least affine multiple A(:c)
of f(:c) . Since the trace function is a linearized polynomial there is
considerable advantage to computing the greatest common divisors of
these polynomials with A(:c) rather that with f(:c). We will not go into
any further details here, but refer the reader to [18] for a comparison of
these methods in an actual implementation.

2.4 Factoring

In this section we will consider the general factoring problem for univari­
ate polynomials. Before proceeding with an overview of several general
factorization algorithms, we will describe a representation which will
facilitate a basic understanding of these methods.

Let Fq be a finite field with q elements and let f(:c) E Fq [:c] be a
polynomial of degree n such that

t

f(:c) = II hi(:c)
i=l
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(2.3)

where the hi(z), 1 ::; i::; t, are distinct irreducible polynomials of Fq[z].
Let n = Fq[zJI(f(z)) be the ring of polynomials modulo /(z).

By the Chinese remainder theorem for polynomials, there exist unique
polynomials e, (z) of degree less than n, 1 ::; i ::; t, such that

ei(z) = 0 (mod hj(z)), j i= i,

ei(z) _ 1 (mod hi(z)).

From the first congruence we get that

/(z)
ei(z) = ai(z ) hi(Z )

for some polynomial ai(z) E Fq[z], with gcd(ai(z), hi(z)) = 1. From the
second congruence

ei(z) = 1 +bi(Z ) hi(z ) (2.4)

for some b,(z) E Fq [z]. By construction we have that the e,(x) 's are
pairwise orthogonal, i.e., ei(z)ej(z) == 0 (mod /(x)) if i i= j. An im­
portant property of these polynomials is that they are idempotent, i.e.,

Furthermore,

e;(z) == ei(x) (mod /(z)).

t

L ei(z) = 1.
i=l

(2.5)

(2.6)

To derive (2.5), multiply (2.4) by ei(z) and reduce modulo /(z). To
derive (2.6), observe that

t

Lei(Z) = 1 (mod hj(z)), 1::; j ::; t,
i=l

and hence that
t

Lei(Z) == 1 (mod /(x)).
i=l

Since deg 2::=1 ei(z) < deg /(e], we conclude that 2::=1 ei(x) = 1.

In order to avoid confusion, we will represent an element r(x) E n
by the polynomial of least degree in the corresponding congruence class
modulo /(z). Using (2.6) we have that

t

r(z) = r(z)·l = r(z)Lei(Z)
i=l

t

= Lr(z)e;(z) .
;=1
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If we let ri(z) == r(z) (mod hi(z)), 1 ~ i ~ t, then r(z) == E:=l ri(z)ei(z)
(mod I(z)). Hence every r(z) E n can be written as

t

r(z) = I>i(z)ei(z), degri(z) < deghi(z). (2.7)
i=l

We now show that this representation (2.7) of r(e ) is unique.

Suppose that r(z) = E:=l ri(z)ei(z) and r(z) = E:=l ai(z)ei(z),
where deg ai(z) < deg hi(z), 1 ~ i ~ t. Then

t

o = ~)ri(z) - ai(z)]ei(z)
i=l

and ri(z) == ai(z) (mod hi(z)), 1 ~ i ~ t. We conclude that ri(z) =
ai(z) and that the representation is unique. We can thus represent
an element r(z) by the vector of polynomials (rl (z), r2(e], ... , rt(z))
where deg ri(z) < deg hi(z). Ifn(i} = Fq[z]f(hi(z)) then by the Chinese
remainder theorem we have the following isomorphism of rings

Notice that if r(z) = 1 then the vector form is (1,1, ... , 1) and, in
general, if 0 E Fq , then 0 is represented by (0,0, ... ,0). Notice also
that r(z) is an idempotent if and only if each ri(z) E {O,l} .

Since

t

r(z) = Eri(z)ei(z) = (rl(z),r2(z), .. . ,rt(z)),
i=l

where ri(z) E n(i), 1 ~ i ~ t, it follows that rq(z) == r(z) (mod I(z))
if and only if ri(z) E Fq, 1 ~ i ~ t. Let B = {r(z) E n I rq(z) == r(z)
(mod I(z))}. If b(z) E B then b(z) = (b1,b2, ... ,bt ) where bi E Fq,
1 ~ i ~ t. An important observation at this point is that if some bi = 0
in b(z) then hi(z)1gcd(f(z), b(z)). With this in mind, the following
statement is easily proved:

I(z) = n gcd(f(z),b(z)-o).
aEF.

(2.8)

Since the ith component of b(z) is 0 in b(z) - 0 for exactly one value
of 0 (namely 0 = bi)' (2.8) follows trivially. We should also note that
(2.8) will give rise to a non-trivial factorization if and only if b(z) -I A



2.4. FACTORING 29

for some A E Fq [i.e., b(:z:) =I (A,A, ... ,A)). If b(:z:) has all distinct
components then (2.8) gives the complete factorization of I(:z:). The
following terminology will be useful for later discussions.

A set of 5 polynomials S = {ri(:Z:) 11 ::; i ::; 5, ri(:Z:) E B} where
ri(:Z:) = (ril,ri2, ... ,rit) is called a separating set for I(:z:) if for any
two distinct coordinate positions k and 1 there exists an i, 1 ::; i ::; 5,

such that r i" =I ril. Notice that if this is the case then the factors
h" (:z:) and h, (:z:) will be separated into distinct divisors of I(:z:) by using
r i(:Z:) for b(:z:) in (2.8). Since this is true for all coordinate positions we
are guaranteed to factor I(:z:) completely by applying (2.8) to only the
polynomials in S .

The preceding discussion tells us that a non-trivial factorization of
I(:z:) can be found if we can find an element b(:z:) E B that is not a
constant polynomial or the zero polynomial. The set B is commonly
referred to as the Berlekamp subalgebra. To make use of (2.8) above we
need to determine elements in B. It follows from our earlier discussion
and the structure of B that B is a linear subspace over Fq of dimension
t. The following is a method, known as Berlekamp 's Q-matrix method
[2J, to determine a basis for this subspace.

Recall that I(:z:) has degree n. For each i, 0 ::; i ::; n - 1, compute

n-l

:z:iq == L qii:z:i (mod I(:z:)),
i =O

and form the n x n matrix Q = [qiiJ. If b(:z:) = l:~:OI bi:z:i is in B, then
bq(:z:) == b(:z:) (mod I(:z:)) and, in matrix notation, we have that

or

Therefore, the elements of B can be determined by computing the or­
thogonal complement of Q - I. We already know that the orthogonal
complement has dimension t . Once we have a basis {Vi (:z:) I 1 ::; i ::; t}
of B, then we can factor I(:z:) completely by computing

II gcd(f(:z:) ,vi(:Z:) - a), for 1::; i::; t. (2.9)
a EF.

Exercise 2.1. Prove that {VI (:z:), V2(:Z: )' .. . , Vt(:Z:)} is a separating set
for I(:z:).
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The running time of the Berlekamp Q-matrix method is O(n3q) Fq ­

operations. The method is thus only efficient if q is small. There are
several methods to get around this problem.

The first method we will describe is due to P. Carnion [5] and is a ran­
domized algorithm for determining the so-called primitive idempotents
ei(:V)' 1 ~ i ~ t, described earlier (i.e., they are non-zero idempotents
which cannot be decomposed into a sum of two non-zero orthogonal
idempotents) . Observe that ei(:V) has vector representation with a 1
in position i and O's elsewhere. It is easy to see that the only primi­
tive idempotents in n are ei(:V)' 1 ~ i ~ t. Since 1 = (1,1, ... ,1),
then gcd(f(:v), 1- ei(:V)) = hi(:v). Therefore, a complete factorization of
f(:v) can be obtained if all of the primitive idempotents can be found.
Carnion has suggested the following method for doing this. We briefly
describe the technique for the case of q being odd.

Use the Berlekamp Q-matrix to find a basis for the null space of
Q - I (i.e., find a basis for the Berlekamp subalgebra B). From this
basis we can select a random non-scalar W in B. Now, let

t

w(:v) = EWiei(:V), Wi E Fq
i = l

and compute

t

1(:v) = W(q-l)/2(:v) = Ew~q-l)/2ei(:V) (mod f(:v)).
i=l

But w~q-l)/2 E {O, -1, I} since w~q-l)/2 is either 0 or is in the multiplica­
tive subgroup of F; of order 2. If 1(:v) f; ±1, then k(:v) = 1(:v )(l(:v)+1)/2
is an element of B with components in the vector representation com­
ing from {O, I} (and including both 0 and 1). Clearly, k(:v) is an
idempotent and k(:v), 1 - k(:v) are orthogonal idempotents. Hence
1 = k(:v) + (1 - k(:v)) is a non-trivial decomposition of 1 into a sum
of two orthogonal idempotents. Now, compute the dimension dk of the
Fq-span of {k(:V)Vi(:V) 11 ~ i ~ t}, where {Vi(:V) 11 ~ i ~ t} is a basis
for B. Note that dk equals the number of non-zero components in the
vector representation of k(:v) . Ifdk = 1 then k(:v) is primitive; otherwise,
decompose k(:v) in this subspace as follows. Choose a random Fq-linear
combination W of {k(:v )Vi(:V) I 1 ~ i ~ t} such that W is not an Fq­
multiple of k(:v). Let 1(:v) = W(Q-l)/2(:v), and let k(:v) = 1(:V)(1+1(:V))/2.
If l(:v) f; ±k(:v), then k(:v) = k(:v) + (k(:v) - k(:v)) is a decomposition of
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k(x) into a stun of 2 orthogonal idempotents. Continuing this process
will produce all of the primitive idempotents.

Another way to improve the situation when computing (2.8) is a
method due to H. Zassenhaus [27] . Rather than trying all a E Fq in
(2.8) we will try to find only those field elements which give rise to a
non-trivial factorization.

For a fixed b(x) = (a1' a2" ' " ad E B, let C be the set of all a E Fq

such that gcd(f( x), b( x) - a) =1= 1. (Note that C = {a1' a2, . .. , at}, but
the ai's are not necessarily distinct.) It follows from (2.8) that

/(x) = IT gcd(f(x), b(x) - a)
aEC

and, hence, that /(x)1 TIaEc(b(x) - a). Define the polynomial

G(y) = IT (y - a).
aEC

Clearly, /(x) divides G(b(x)). Moreover G(y) is the monic polynomial
ofleast degree in Fq[y] such that /(x)IG(b(x)). To see this we observe
that the set of all polynomials h(y) in Fq[y] such that /(x)lh(b(x)) is
an ideal of Fq[y] . This ideal is principal and is generated by a monic
polynomial g(y) and, hence, g(y)IG(y). Now, if g(y) =22j=ogi yi, then

Since f(x) divides g(b(x)) then h;(x) divides g(b(x)), implying that
g(a;) = 0, 1 ::; i ::; t. Since g(y) has the same roots as G(y) we conclude
that g(y) = G(y).

It follows from our discussion in the preceding paragraph that G(y)
can have at most t roots . If deg G(y) = s then

,
G(y) = IT (y - a) = Lg;y;, s. E r;

aEC ;=0

Since /(x)IG(b(x)), 22:=og;(b(x)); == 0 (mod f(x)) and we need only
find the smallest value of s for which 1, b(e], b2

( z}, . . . , b'(x) are linearly
dependent modulo /(x). Once G(y) is determined, we use one of the
methods from the previous section to determine its roots.
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Another randomized algorithm for factoring which does not rely on
the Berlekamp subalgebra was independently discovered by Carnion [6]
and Cantor and Zassenhaus [7].

Assume that f( z) E Fq [z] has no repeated factors and all factors
of f( z) have the same degree d [i.e., a distinct degree factorization has
been done previously). We will also assume that q is odd (the even case
needs to be considered separately but a similar procedure applies). If
f( z) has t distinct irreducible factors h1 (z ), h2 ( Z ), ••• , ht (z ), the degree
of f( z) is n, and a(z) is a randomly chosen polynomial of degree at
most n -1 in Fq[z], then using the primitive idempotent decomposition
we get that

a(z) = (a1 (z), a2(e}, ... , at(z)),

where a; (z) E nY>. In this case n}i> is isomorphic to the finite field Fqd.
If s = (qd - 1)/2 then

a'(z) (a~(z),a~(z),... ,a:(z))

where ex; E {O, 1, -I}, 1 :::; i :::; t. If there exist integers i and j, 1 :::; i :::;
j :::; n - 1, such that 0; t= OJ and one of 0; or OJ is 1, then a' (z) - 1 is a
polynomial divisible by one of hi(z) or hj (z) but not both. Therefore,
if we compute

gcd(f(z), a'(z) - 1)

a non-trivial factor of f( z) is found. The probability that an a(e], cho­
sen at random, does not lead to a non-trivial factor is easily determined
and can be shown [7] to be

st+(I+sy-q
qn _ q

or approximately 2/2t •

To complete our discussion of the general factorization problem we
describe a method proposed by V. Shoup [22]. This scheme is somewhat
similar to aspects of those considered above. It has the advantage that
it does not require a basis for the Berlekamp subalgebra (as does the
Cantor-Zassenhaus method) and is deterministic with the best theoret­
ical running time of any algorithm yet found.

As with the Cantor-Zassenhaus algorithm we assume that

t

f(z) = II h;(z)
;=1
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where deghi(z) = d, 1 ::; i ::; t, degf(z) = nand f(z) E Fq[z].
Recall that n = Fq[z]/U(z)), n(i) = Fq[z]/(hi(z)) and n(i) is iso­
morphic to Fqd, 1 ::; i ::; t, We will construct a set of polynomials
A = {go, gb . . . , gd-t} with the properties that (i) A ~ B and (ii) A
forms a separating set for f( z). ITwe compute the polynomial

d-t

H(y) = II(y-zqi)
i=O

in n[y] then the gi(Z) are defined as

d-l

H(y) = Lgi(Z)yi +yd.
i=O

We claim that gi(z) E B, 0 ::; i ::; d - 1. Since

d-t d-t

II(y - (zqiF) = II(y - zqj) = H(y)
i=O j=O

then H(y) = l::t::~ gHZ)yi + yd and the claim follows. Now if

( ) - (i) (i) (i)) 0 < . < d 1gi Z - at, a2 , ... , at, _ '/. _ - ,

(2.10)

is the primitive idempotent decomposition then we need to prove that
for any two distinct coordinate positions k and 1 we can find an i such
that a~i) :I a~'). Let Oi be the natural homomorphism from R: to n(i)
defined by Oi(b(z)) = b(z) (mod hi(z)). From (2.10) we have that

d-t

Oi(H(y)) = II(y - Oi(zF
i)

= hi(y) .
•=0

Selecting coordinate positions k and 1is equivalent to looking at factors
hdz) and h,(z). Since H(y) == hi(y) (mod hi(z)) and since hk(z) :I
h,(z) we have that for some i, the coefficients of yi in H (y) (mod hk(z ))
and H(y) (mod h,(z)) will be different. Therefore, in gi(Z) we have
a~i) :I a}i). It follows that the set A is a separating set of f( e}.

Using the elements of A in (2.8) will completely factor f( z). However
(2.8) requires that all q field elements be used and hence q gcd's are
required for each polynomial in A. ITp is an odd prime, then Shoup does
the following. Form a new set A' = {g(p-t)/2(Z) I g(z) E A}. For each
polynomial in A', Shoup proves that (2.8) need only be applied at most
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M +1 times where M < pl/21ogp to the field elements 0,1,2, ... , M.
This will give the complete factorization of f(:z:).

Shoup shows that his algorithm based on the discussion above will
completely factor a polynomial of degree n over Fq in O(ql/2(log q)2n2+<)
bit operations. Recently, Shparlinski [24] has shown that M = O(pl/2),
and hence the running time bound of Shoup's algorithm improves to
O(ql/2(logq)n2+<) bit operations.

We conclude this section by noting that a great deal of work has
been done in recent years on the problem of factoring polynomials over
finite fields. It is perhaps a little surprising that although at present
there is no known deterministic polynomial time algorithm for factor­
ing polynomials over finite fields, there is one for factoring polynomials
over the rational numbers [15] . In some special cases, deterministic
polynomial time factoring algorithms are known if one assumes the Ex­
tended Riemann Hypothesis (see [13] for cyclotomic polynomials, [20]
where the number of irreducible factors is bounded, and [10, 21, 23] if
all prime factors of q - 1 are small). We note that without assuming
the Extended Riemann Hypothesis, it is not even known whether the
quadratic polynomial :z:2 - a E Fp[:Z:], a being a quadratic residue in Fp ,

can be factored in deterministic polynomial time.

2.5 Factoring Multivariate Polynomials

In recent years more effort has been given to the problem of factoring
multivariate polynomials and a number of interesting and useful results
have appeared; for example, see [9, 11, 12, 14]. Here we would like to
give the reader a very brief introduction to this area of ongoing research.
To this end we will only consider the bivariate case and describe a recent
randomized algorithm for factoring due to D. Wan [26].

Bya bivariate polynomial f(x,y) over a finite field Fq we mean

f( z, y) = L aijXiyj
i,j~O

where only finitely many of the aij are non-zero. The degree of f( z , y)
(denoted deg f( e, y)) is max{ i +j I i 2: 0, j 2: 0, aij =f O}. A bivariate
polynomial f( z , y) is said to be homogeneous of degree n if for each
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aii i= 0, i +j = n. If

35

E aiiziyi,
i+i=1:
aij;CO

then fl:(z, y) is called the k-homogeneous part of f(z, y), and

n

f(z, y) = E !J:(z, y),
1:=0

(2.11)

where n = deg f( e, y).
For simplicity we will assume that t« (z, y) is monic in the variable

z (Le., zn is a term in fn (z, y)). A univariate polynomial g(e ) of degree
n is said to be homogenized if g(z) is replaced by yng(Z / y). A bivariate
homogeneous polynomial h(z , y) is dehomogenized if h(z , y) is replaced
by h(z, 1).

If f( e, y) is a bivariate homogeneous polynomial of degree n and is
monic in z then f( z, y) can be factored as follows.

Dehomogenize f( z , y) to f( z , 1). Factor the univariate polynomial
f( z , 1) by one of the methods outlined in the previous section. Complete
the factorization of f( z , y) by homogenizing the factors of f( z , 1).

This simple observation plays an important role in the factorization
of more general bivariate polynomials. ill particular, Wan shows that if

t

fn(z, y) = IIp;'(z, y)
i=l

is the prime factorization of i; (z , y) over Fq , then the expected time to
obtain the complete factorization of f( z , y) over Fq is O(n 4

•
s9log2 nlog q)

field operations for almost all polynomials f(z,y) E Fq[z,y] of degree
n. (Recently Shparlinski [24] has improved this running time bound to
o(n3

.7log q) field operations.) This result relies on the following impor­
tant observations.

For simplicity assume that fn(e, y) is square free (i.e., ei = 1, 1 s:
i s: t). (Actually, it is enough to assume that any repeated factor of
fn(z, y) is relatively prime to fn-l(Z, y) .) If f(:c, y) is reducible then

f(:c, y) = g(:c, y)h(:c, y)

for non-trivial polynomials g(z , y) and h( z , y) over Fq • If r = deg g(z , y)
and s = deg h(z , y) then as in (2.11) we can write g(z, y) = ~:=o gi(Z, y) ,
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h(z, y) = 2::=0 hi(z, y). Substituting these equations into I(z, y) and
comparing homogeneous parts gives

In

In-l

g..h,

h (9..-1 h'-l)g.. , + hg.. ,
(2.12)

where gk = hk = 0 for k < o. It can now be shown that g(z, y) and
h(e, y) are uniquely determined by their highest degree parts gr and h,.
From (2.12) we see that

In-l
In

In-2 - g..-lh,-l

In

In-k - 2:::11g.. -ih, -k+i
In

g..-l + h'_l
g.. h,

= g..-2 + h'_2
g.. h,

gr -k h'_k-+-
r h,

where 1 ~ k ~ n. From these expressions and a suitable application of
the Euclidean algorithm one can show (see below) that given g.. and h,
then gi, hi are uniquely determined for all i and j.

Therefore if I(z, y) = g(z, y)h(z, y) then g(z, y) and h(z, y) can be
constructed from simply knowing g.. (z,y) and h,(z,y) and, hence, by
trying all possible pairs g.. , h, with g.. h, = In we will find all pairs g(z, y)
and h(z,y) with I(z,y) = g(z,y)h(z,y). The core of the algorithm is
now easily described. Factor In(e, y) by factoring the corresponding
dehomogenized univariate polynomial. For each pair of divisors g.., h,
with In = g.. h" compute two sequence of polynomials gi, i = r, r ­
1, ... , r - n, and hi' j = s, s-1, ... , s- n using the Euclidean algorithm.
ITgi = gi = 0 for all i, j < 0 then we have found factors g(z , y), h(z , y)
with .. ,

g(z,y) = Lgi(Z,y) and h(z,y) = Lhi(z,y).
i=O i=O

The computation of the two sequence of polynomials is performed as
follows. Let g.. (z) =gr (z, 1) and h,(z) = h,(z, 1). Apply the Euclidean
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algorithm to find univariate polynomials u(:c) and v(:c) over Fq such
that

u(:c)gr(:C) +v(:c)h,(:c) = 1

where deg(u(:c)) < s and deg(v(:c)) < r , Now the sequence of polyno­
mials is given by

gr-k v(;c) (fn-k - ~ gr-ih,-k+i) (mod s- (;c))

h'-k = u(;c) (fn-k - ~gr-;h'-k+;) (mod h,(;c))

where fn-k = fn-k(:C, 1) and 1 ::; k ::; n. If deg(g;) > i or deg(hj ) > j
then f(;c, y) has no corresponding factors g(;c, y), h(;c, y).
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Chapter 3

Construction of Irreducible
Polynomials

3.1 Introduction

This chapter is devoted to the problem of constructing irreducible poly­
nomials over a given finite field. Such polynomials are used to implement
arithmetic in extension fields and are found in many applications, in­
cluding coding theory [5], cryptography [13], computer algebra systems
[11], multivariate polynomial factorization [21], and parallel polynomial
arithmetic [18].

In Section 3.2, the irreducibility of polynomials of certain forms are
discussed. Some of the irreducibility criteria date back to the late 1800's,
while some of them are quite recent discoveries. In Section 3.3, the
irreducibility of compositions of polynomials is considered, where the
polynomials are of the form (g(x))"P(f(x)/g(x)) with n being the de­
gree of P(x). In particular, it will be determined when polynomials of
types P(x t ) , x"P(x +x- 1 ) , and x"P(I(x)), are irreducible, where l(x)
is a linearized polynomial. In Section 3.4, several infinite families of
irreducible polynomials, based on the irreducibility criteria developed
in Section 3.3, are given. In Section 3.5, it is shown how to construct
irreducible polynomials of degree n = vt from irreducible polynomials
of degrees v and t with gcd(v, t) =1. In the final section, a systematic
way of constructing an irreducible polynomial of any given degree over
a given finite field is described.

An irreducible polynomial /(x) E Fq[x] of degree n is said to be a

39
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primitive polynomial if the roots of f( z) are primitive elements in Fqn .
We shall not consider primitive polynomials in this chapter, but refer
the reader to [17, 34].

3.2 Specific Irreducible Polynomials

In this section the irreducibility of binomials, trinomials and affine poly­
nomials is discussed.

A binomial is a polynomial with two non-zero terms, one of them
being the constant term. The following theorem is essentially due to
J.A. Serret [30] .

Theorem 3.1. Let a E F; with order e. Then the binomial zt - a is
irreducible in Fq [z] if and only if the integer t ;:::: 2 satisfies the following
conditions:
(i) gcd(t, (q - l)je) = 1,
(ii) each prime factor of t divides e,
(iii) if 41t then 41(q - 1).

Proof: A proof that the conditions are sufficient is sketched. For the
proof of the necessity the reader is referred to the proof of Theorem
3.75, pages 124-125, in [24].

Let () be a root of zt - a and m( z) be the minimal polynomial of ()
over Fq • Then m(z)l(zt - a) . Note that the degree d of m(z) is equal
to the smallest positive integer m such that ()q~ = (), that is, ()q~-l = l.
Now by the condition (ll), it can be proved that () has order et. So
()q~-l = 1 if and only if s" == 1 (mod et). Therefore d is equal to the
multiplicative order of q modulo et. One can prove using elementary
number theory that when t satisfies the conditions in the theorem, the
order of q modulo et is equal to t (refer to the proof of Lemma 3.34,
page 97, in [24]). Hence the minimal polynomial of () over Fq has degree
t , and thus m(z) = zt - a. Thus zt - a is irreducible over Fq • 0

Corollary 3.2. Let r be a prime factor of q - 1 and a E Fq have order
e such that r does not divide (q - l)je [i.e., a is an r-th nonresidue in
Fq) . Assume that q == 1 (mod 4) if r = 2 and k ;:::: 2. Then for any
integer k ;:::: 0,

is irreducible over Fq •
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Example 3.1. Using Corollary 3.2, it is easily checked that for any
integer k ~ 0,

(a) Z2· +2 and Z2· - 2 are irreducible over Fs,

(b) Z3· +3, Z3· - 3, Z3· +2 and Z3· - 2 are irreducible over F7 ,

(c) Z3· +w is irreducible over F4 where F4 = F2 (w) and w is a root of
Z2 + Z +1,

(d) and, from (c), Z2.3· + Z3· +1 = (Z3" +W)(Z3· +w2) is irreducible
over F2 • 0

Corollary 3.2 enables one to construct irreducible polynomials of
degree any power r k for every prime factor r of q -1, except in the case
that q == 3 (mod 4) and r = 2. For this exceptional case, Theorem 3.3
from [7J is sufficient. We first state, as an exercise, a useful result which
enables one to decide whether an irreducible polynomial over a finite
field remains irreducible over a finite extension field.

Exercise 3.1. Let f( z) E Fq [zJ be an irreducible polynomial of degree
n, and let k ~ O. Prove that f factors into d irreducible polynomials
in Fq.[zJ, each of the same degree nfd, where d = gcd(k,n) . Conclude
that f( z) is irreducible over Fq• if and only if gcd( k, n) = 1.

TheoreIll 3 .3. Let p == 3 (mod 4) be a prime and let p + 1 = 2"'Y s with
s odd. Then, for any integer k ~ 1,

is irreducible over Fp, hence irreducible over Fp~ for any odd integer m,
where a = a.; is obtained recursively as follows:
(i) a1 = 0;
(ii) for j from 2 to 1-1, set aj = (4j _; +l )(P+1)/4;

( " ') _ (41-1-1 )(P+l)/4nt a-y - 2 •

Example 3.2. For any integer k ~ 1, the following polynomials are
irreducible over the respective fields:

(a) Z2· +Z2·-
1

- 1 over F3 •

(b) Z2· +2z 2· -
1

- 1 over F7 • o
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A trinomial is a polynomial of the form a:z:n +b:z: k +c. For a survey of
the literature on trinomials, the reader is referred to the notes on pages
137-138 in [24]. In what follows we only consider the irreducibility
of trinomials of the form :z:P - a:z: - b, where a, b E Fq and p is the
characteristic of Fq ; this is a special kind of affine polynomial. Recall
from Chapter 2 that an affine polynomial over Fq, where q = v" is a
prime power, is a polynomial of the form l(:z:) - i « Fq[:z:] where b E Fq
and l(:z:) is of the form

1(:z:) is called a linearized polynomial over Fq •

It is easy to see that a linearized polynomial represents a linear
mapping on Fq , where Fq is considered as a vector space over Fp • Hence
1(0. +{3) = 1(0.) + 1({3) and l(ca) = cl(a) for any a,{3 E Fq and c E Fp •

Lemma 3.4. Suppose that the linearized polynomiall(:z:) has no non­
zero root in Fq • Then for any b E Fq, the affine polynomiall(:z:) - b has
a linear factor :z: - A, A E Fq •

Proof: 1(:z:) is an injective mapping on Fq since, if 0:, {3 E Fq are such
that 1(0.) = 1({3) then 1(0:) - 1({3) = 1(0: - {3) = 0, and so a = {3 by
hypothesis. Because Fq is finite, it follows that 1(:z:) is also surjective
which implies the result as stated. 0

Theorem 3.5. ([27, 31]) The trinomial

:z:P - :z: - b, b E Fq

where q is a prime power pm, is irreducible over Fq if and only if
Trqlp(b) =1= o.

Proof: Let (J be a root of :z:P - :z: - b. It follows that

(JP (J +b,

(JP' ((J + b)P = (JP + bP = (J + b+ bP,

«(J + b+ bP +...+ bP"'-')P
2 ~-1

(JP+bP+bP + .. ·+bP
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That is, (}q = () +Trqlp(b) and so Trqlp(b) = 0 if and only if (}q = (), i.e.,
every root of ,£p - '£ - P is in Fq • This implies that ,£p - '£ - b splits into
linear factors in Fq[zJ if and only if Trqlp(b) = o.

Now let T = Trqlp(b) :I O. Then T E Fp, and as above we have

(}q ' = () + ir, i = 1, 2, ....

Thus () has p distinct conjugates over Fq and the minimal polynomial of
() over Fq has degree p. Hence it must equal ,£p - z - b itself. Therefore
xP - x - b is irreducible over Fq • 0

Corollary 3.6. For a, b E F;, the trinomial xP - ax - b is irreducible
over Fq if and only if a =AP-l for some A E Fq and Trqlp(b/AP) :I o.

Proof: By Lemma 3.4, xP - ax - b can be irreducible over Fq only if
xp - 1 - a has a root in Fq. Let a = AP-l for some A E Fq. Then

The result now follows from Theorem 3.5. o

Example 3.3. For any b E F; , the trinomial xP - x - b is irreducible
over Fp • 0

In Lemma 3.17 of the next section, the irreducibility of l(x) - b will
be determined for any linearized polynomial l( e ). We will encounter
some more classes of irreducible polynomials in Chapter 5 when we
study optimal normal bases.

3.3 Irreducibility of Compositions ofPolynomi­
als

Let f(x),g(x) E Fq[xJ and let P(x) = E~=oCiXi E Fq[x] of degree n.
Then the following composition

P(f/g) = gn(x)p(f(x)/g(x))
n

:~::>it(z )gn-i(x)
;=0

is again a polynomial in Fq ['£ ]. The problem is to determine under what
conditions P(f / g) is irreducible over r; Obviously, for P(f / g) to be
irreducible, P( '£) must be irreducible and f( x) and g( '£) be relatively
prime. The next result is due to Cohen [14J.
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Theorem 3.7. Let f(z),g(z) E Fq[z], and let P(z) E Fq[z] be irre­
ducible of degree n. Then P{fjg) = gfL(Z)P{f(z)jg(z)) is irreducible
over Fq if and only if f( z) - Ag(z) is irreducible over Fqn for some root
AE Fqn of P(z).

Proof: Without loss of generality, assume that P(z) has degree n > 1.
Then P{f jg) has degree hn, where h = max( deg t, deg g). Let "I be a
root of P{fjg) (in its splitting field). Then clearly fb) = Agb) for
some root A of P(z), i.e., "I is a root of f(z) - Ag(Z), a polynomial
of degree h in Fqn[z]. Evidently also Fq(A) ~ Fqb), while, of course,
[Fq(A) : Fq] = n. Now

P{fjg) is irreducible in Fq[z] ¢} [Fqb): Fq] = hn,

¢} [Fqb): Fq(A)] = h,

¢} f(z) - Ag(Z) is irreducible in Fqn[z].

This completes the proof. 0

Some special cases are considered next. A trivial but useful case is
when both f(z) and g(z) are linear polynomials.

Corollary 3.8. Let P( z) E Fq[z] be irreducible of degree n. Then for
any a, b,e, d E Fq such that ad - be i= 0,

[ce +d)"P (az +b)
ce +d

is also irreducible over Fq.

Proof: One can prove this from Theorem 3.7. A direct way to see
it is that when ad - be i= 0, the substitution y = (az + b)j (ez + d)
is invertible. Hence the irreducible factors of P(z) and those of [cz +
d)fLP( (az +b)j (ez +d)) are in a one-to-one correspondence. 0

The next simple case is f( z) = zt and g(z) = 1. The irreducibility of
P(zt) has been studied by several people, for example [10,15, 28, 30, 31].

Theorem 3.9. Let t be a positive integer and P(z) E Fq[z] be irre­
ducible of degree n and exponent e (equal to the order of any root of
P(x)). Then P(zt) is irreducible over r; if and only if
(i) gcd(t, (qfL - l)je) = 1,
(ii) each prime factor of t divides e and
(iii) if 41t then 41(qfL - 1).
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Proof: The result is a direct consequence of Theorem 3.7 and Theo­
rem 3.1. 0

We next consider the irreducibility over Fq of :enP(:e + :e- 1 ) , which is
easily seen to be a self-reciprocal polynomial. (If f(:e) is a polynomial of
degree n, then its reciprocal is the polynomial I*(:e) = :enf(1/:e). f(:e)
is said to be self-reciprocalif f (:e) = 1* (:e ).) There are two cases: q even
and q odd .

Theorem 3.10. Let q = 2m and let P(:e) = L:~=o Ci:ei E Fq[:e] be irre­
ducible over Fq of degree n. Then
(i) z" P(:e + :e-1 ) is irreducible over Fq if and only if TrqI2(cdco) =f:. o.
(ii) :enP*(:e + :e-1 ) is irreducible over Fq if and only if Trql2(cn-dcn) =f:.
o.

Proof: Only (i) is proved here ; the proof of (ii) is similar and is left as an
exercise for the reader. Let a be a root of P(:e). Then, by Theorem 3.7,
:en P(:e+:e-1 ) is irreducible over Fq if and only if:e2 + 1-a:e is irreducible
over Fqn. By Corollary 3.6, this is true if and only if

(TrqnI2(a-1 ))2

(TrqI2(Trqnlq(a-1 ))?
(TrqI2(-cdco))2 = (TrqI2(cdco))2 =f:. O. o

Part (i) of Theorem 3.10 was obtained by Meyn [25] in the present
general form; in the case that q = 2, it was previously obtained by
Varshamov and Garakov [38].

Theorem 3.11. ([25]) Let q be an odd prime power. If P(:e) is an ir­
reducible polynomial of degree n over Fq then z"P(:e+:e- 1 ) is irreducible
over Fq if and only if the element P(2)P( -2) is a non-square in Fq.

Proof: By Theorem 3.7, z" P(:e+ :e-1 ) is irreducible over Fq if and only
if:e 2 - a:e + 1 is irreducible over Fqn where a is a root of P(:e). This is
equivalent to the condition

a 2
- 4 is a non-square in Fqn,

which is true if and only if
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{[(2- a)( -2 - a)J(qn_1)/(q-1)}(q-1)/2

OX[(2 - a)( -2 - a)]" } (,- ')/'

fg (2 - a")(-2 - a")}('-')/'

{P(2)P( _2)}(q-1)/2,

that is, P(2)P{ -2) is a non-square in Fq. o

Corollary 3.12. Let q be an odd prime power. Let P{:z:) be an irre­
ducible polynomial of degree n over Fq. Then 2n:z:np{{:z: + :z:-1)/2) is
irreducible over Fq if and only if P{I)P{ -1) is a non-square in Fq.

Proof: Let Po{:z:) = 2np{:z:/2) and apply Theorem 3.11 to Po{:z:). 0

The case f{:z:) = :z:P - z - b and g{:z:) = 1 is also simple to deal with.

Theorem 3.13. ([35, 36]) Let P{:z:) = :z:n +Cn_1:z:n- 1+...+ C1:Z: +Co
be an irreducible polynomial over Fq, and let b E Fq. Let p be the
characteristic of Fq. Then the polynomial P{:z:P - :z: - b) is irreducible
over Fq if and only if Trqlp{nb - cn-d::j:. o.

Proof: Let a be a root of P{:z:). Then by Theorem 3.7, P{:z:P - :z: - b) is
irreducible over Fq if and only if :z:P - :z: - b - a is irreducible over Fqn.
By Theorem 3.5, this is equivalent to requiring that

Trqlp{Trqnlq{b +a))

Trqlp{nb - cn-d ::j:. O. o

Finally, we consider the irreducibility of P{l{:z:)) where l{:z:) is a lin­
earized polynomial. The irreducibility of these types of polynomials was
established by Agou in a series of papers [2, 3, 4J. Following Cohen's
approach [15], we consider first the simple case l{:z:) = :z:P - a:z:.

Theorem 3.14. Let P{:z:) = z" +Cn_1:z:n-1+...+C1:Z: +Co be irreducible
over Fq, and let a be a root of P{:z:). Then for any non-zero a E Fq,
P{:z:P - a:z:) is irreducible over Fq if and only if

an,(q-1)/(p-1) = 1 and Trqnlp{a/AP)::j:. 0,

where n1 = gcd{n,p-l) and A E Fqn such that AP-1 = a. In particular,
if A E Fq then P{:z:P - AP-1:z:) is irreducible over Fq if and only if
TrqJp{cn-dAP) ::j:. O.
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Proof: By Theorem 3.7, P( xP- ax) is irreducible over Fq if and only if
xP - ax - a is irreducible over Fqn. Apply Corollary 3.6 to xP - ax - a
over Fqn. Now a = AP-1 for some A E Fqn if and only if

(3.1)

But, since aq
-

1 =1, then (3.1) holds if and only if ah = 1, where

h = gcd (qn -1\ q _ 1) = q - 1gcd (qn - 1,p _ 1) .
p- p-l q-l

Moreover , (qn -l)/(q -1) =c:: +qn-2 +...+1 == n (mod p -1) and
hence h = n1(q -l)/(p - 1).

Finally, if A E Fq then

Trqlp(Trqnlq( a/AP))

Trqlp(Trqnlq(a) / AP)

-Trqlp(cn_dAP).

The proof is complete. 0

To determine when P( l(x)) is irreducible for any linearized polyno­
miall(e ), some preliminary results are required.

Lemma 3.15. Given a linearized polynomial I(x) over Fq1 there exists
another linearized polynomial g( x) over Fq and an element r in Fq such
that

Proof: Let l(x ) = a..xP• +a.._1xp·-1 +...+ aox. The lemma is proved
by induction on v , the case v = 0 being trivial. Suppose v ~ 1 and put

another linearized polynomial but of degree (at most) p"-1. By induc­
tion, there is a linearized polynomial g(x) such that l( x) = g(xP-x )+rx,
and then g(x) = a..x p

· -
1 +g(x) is the required linearized polynomial for

the conclusion. 0

Lemma 3.16. Suppose the linearized polynomial l(x) over Fq has a
non-zero root A in Fq. Then there exists a linearized polynomial g(x)
such that l(x) = g(xP - AP-1 X ) .
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Proof: I(A:z:) is a linearized polynomial over Fq with 1 as a root. By
Lemma 3.15, there exists some linearized polynomial gl(:z:) and r E Fq

such that I(A:z:) = gl(:z:P -:z:)+r:z: . In fact, r = 0 because the substitution
:z: = 1 yields 0 = gl(O) + r = r, The result now follows with g(:z:) =
gl(:z:/AP). 0

Lemma 3.17. Suppose I(:z:) is a linearized polynomial over Fq of degree
p" with v ~ 2. Then for any b in Fq , I(:z:) - b is irreducible over Fq if
and only if (i) p = v = 2, and (ii) I(:z:) has the form

(3.2)

where A, B E Fq such that the quadratics :z:2 + A:z: + Band :z:2 + Be + b
are both irreducible over Fq •

Proof: By Lemma 3.4 it may be assumed that I(:z:) has a root A in Fq •

Using Lemma 3.16, write I(:z:) = g(:z:P - Ap-1:z:) and put g(:z:) = g(:z:) - b.
Then I(:z:) - b = g(:z:P - AP-l:z:). Next, apply the last assertion of The­
orem 3.14 with m = deg g = p..-l. Since g is a linearized polynomial,
the coefficient bm - 1 of :z:m-l in g is zero unless p..-l - 1 = p..- 2 which
occurs only if p = v = 2. Consequently I(:z:) - bis reducible except when
p = v = 2. Now suppose that p = v = 2 and g(:z:) = :z:2 + Be; whence
g(:z:) = :z:2 + Be + b. Then

I(:z:) = g(:z:2 - A:z:) = :z:(:z: - A)(:z:2 + A:z: + B).

By Theorem 3.14 again, I(:z:) + b is irreducible if and only ifg(:z:) is irre­
ducible over Fq and Trqlp(B/A2) :I O. The latter condition is equivalent
to :z:2 + A:z: + B being irreducible over Fq • This completes the proof. 0

Theorem 3.18. ([4, 15]) LetP(:z:) = l:~=oCi:z:i be a monic irreducible
polynomial of degree n over Fq , and let I(:z:) be a monic linearized poly­
nomial over Fq of degree p" with v ~ 2. Then P(l(:z:)) is irreducible over
Fq if and only if (i) p = v = 2, (ii) n is odd, and (iii) l(:z:) has the form
(3.2) where A, B E Fq and both :z:2 + A:z: + Band :z:2 + B e + Cn-l are
irreducible over Fq •

Proof: By Theorem 3.7, P(l(:z:)) is irreducible over Fq if and only
if f(:z:) - a is irreducible over Fqn, where P( a) = O. Now, apply
Lemma 3.17 to I(:z:) - a, where P(a) = O. We conclude that P(l(:z:)) is
irreducible over Fq if and only if p = v =2, and I(:z:) has the form (3.2)
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where A, B E Fqn with both :z:2 +A:z: +B and :z:2 +Be +a irreducible
over Fqn.

Assume now that p = v = 2. Note that 1(:z:)/:z: has degree 3, and if
it is irreducible or a product of linear factors over Fq then it remains so
over Fqn. So for 1(:z: )/:z: to have a quadratic irreducible factor over Fqn,
it must be a product of a linear factor and a quadratic irreducible factor
over Fq , and n must be odd so that the quadratic remains irreducible
over Fqn. Therefore, A, B E Fq, :z:2 + A:z: + B is irreducible over Fq, and
n is odd.

Finally, note that Trqnlp(a/B2) = Trqjp(cn_dB2) (as B E Fq).
By Corollary 3.6, :z:2 + Be + a is irreducible over Fqn if and only if
Trqnlp(a/B 2) -I 0 if and only if Trqlp(cn_d B 2) -I 0 and hence this is
true if and only if z? +Be +Cn-l is irreducible over Fq • This completes
the proof. 0

Exercise 3.2. Let r be an odd prime and q a prime power. Suppose
that q is primitive modulo rand r 2 does not divide qr-l - 1. Then the
polynomial

is irreducible over Fq for each k ~ o.
(Hint: use Corollary 3.2 and Theorem 3.9).

3.4 Recursive Constructions

Based on the irreducibility criteria developed in the previous section, we
show how to recursively construct irreducible polynomials of arbitrarily
large degrees. These constructions are useful in several cryptosystems
[23, Chapter 9] and iterated presentations ofinfinite algebraic extensions
of finite fields [9] .

The first construction is due to Varshamov [37], where no proof is
given.

Theorem 3.19. Let p be a prime and let f(:z:) = z" + L:~:01 Ci:z:i be
irreducible over Fp • Suppose that there exists an element a E Fp , a -10,
such that (na + cn-df'(a) -I O. Let g(:z:) = :z:P - :z: + a and define
fo(:Z:) = f(g(x)), and A(x) = lk_l(g(X)) for k ~ 1, where /*(x) is the
reciprocal polynomial of f (z ). Then for each k ~ 0, fd:z:) is irreducible
over Fp of degree npk+1 •
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[~]f0(~) =

Proof: The following proof can be found in [39]. From Theorem 3.13,
lo(~) = I(g(~)) is irreducible if and only if Trplp(na +cn-tl = na +
Cn-l f= O. Induction is used to show that the coefficient of z in !I,(~),

denoted [~]f,,(~), is not 0 and IHa) f= O. First consider lo(~):

d d (n . )
d~/o(~)I.,=o = d~ t;Ci9'(~) 1.,=0

n

= LCiil-l(~)g'(~)I.,=o
i=O

n

= - L ciiai- 1 (since g(O) = a, g'(O) = -1)
i=O

= -!,(a),

which by assumption is non-zero . Similarly note that

n

IMa) = L ciigi-1(a)g'(a)
i=O

n

= - L ciiai- 1 (since g(a) = a, g'(a) = -1)
i=O

= - !,(a),

which again by assumption is non-zero .

Now assume that h (~) is irreducible over Fp and that [~lh (~) f= 0
and I~(a):j; o. We prove the statement true for Ik+l(~) ' Note that both
h (~) and t:(~)have degree np"+! = n". When fk (~ ) is made monic, its
coefficient of ~n.-l is [~lh(~)/1,,(0) f= O. It follows from Theorem 3.13
that h+! (~) = fk (g(~)) is irreducible over Fq • Let

n.
h(~) = LUi~i.

i=O

Then n.
Ik+l(~) = LUign.-i(~),

i=O
and

n.
I~+!(~) = LUi(n" - i)gn.-i-l(~)g'(~)

i=On.
= - LUi(n" - i)gn.-i-l(~).

i=O



3.4. RECURSIVE CONSTRUCTIONS 51

Note that since g(x) is constant on Fp , so are fk (x) and f~ (x). Thus

[Xlfk+l(X) = f~+l(O) = f~(a-l)an.-l = f~(a)an.-l,

which is non-zero by the induction hypothesis. Similarly

f~+l(a) = an. -lf~(a-l) = an.-lf~(a),

which is again non-zero. This completes the proof. o

Example 3.4. Let p be an odd prime. Since xP - x-I is irreducible
over Fp , substituting z by 1/(x - 1), it is seen that

f(x) = (x-l)P+(x-l)P-l-1 = xP+xp
-
1+ " '+x-l

is irreducible over Fp • Let f-l = f( x), fo(x) = f(xP - x-I) and
A(x) = f;_I(X P - x-I) for k ~ 1. Then by Theorem 3.19, A(x) is
irreducible over Fp of degree pk+2 for every k ~ -1. Moreover, by the
results in Section 4.4, it is easy to see that the roots of f; (x) are linearly
independent over Fp • Thus a normal basis for Fpp• over Fp has been
constructed for every k ~ 1. This construction may be useful for the
arithmetical algorithms in [12]. 0

The next construction is over Fq for q being a power of 2, and is
based on Theorem 3.10.

Theorem 3.20. Let q = 2m and let f( x) = L:7=0 c;x' be irreducible over
Fq of degree n. Suppose that TrqI2(cdco) i= 0 and TrqI2(cn-dcn) i= o.
Define polynomials ak(x) and bk(x) recursively:

for k ~ O. Then

ao(x)=x,

ak+l(x)

bk+l(X)

bo(x) = 1,

ak(x)bk(x),

a~(x) + b~(x),

is irreducible over Fq of degree n2k for all k ~ O.

Proof: Note that for k ~ 0,

ak+l(x) ak(x)/bk(x)
bk+1(X) - 1 + (ak(x)/bk(x))2 '
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It is easily proved by induction that

ad;cj(1 + ;C2))

blc(;cj(1 + ;C2))

for k ~ o. Then one sees that flc (;c) satisfy the following recursive
relation:

f(;c),

(1 + ;c2t
2kt, (;cj(1 + ;C2)), k ~ O.

For the sake of convenience let nlc = n21c and !Ie (;c) = L:~~o C~Ic);Ci, k ~
o. By Theorem 3.10(ii), if flc(;c) is irreducible over Fq then flc+1(;C) is
irreducible over Fq if and only if

(3.3)

Since C~O!_l = Cn-1 and c~ol = Cn, (3.3) is true for k = 0 by assumption,
and so it(;c) is irreducible over Fq. To prove that flc (;c) is irreducible
over Fq for k > 1, by Theorem 3.10(ii) it suffices to prove that

(3.4)

since TrqI2(ctJco) i= 0 by assumption. To prove (3.4) it is enough to
observe that if M(;c) = L:~=o mi;ci is an arbitrary polynomial over Fq ,

then
I

(1+;C2)'M(;cj{1+;c2)) = Emi;Ci(I+;c2)'-i
i=O

is self-reciprocal of degree 21, the coefficients of e and ;C21-1 are both
m1, and the leading coefficient of ;C21 is mo. The proof is completed by
induction on k. 0

Corollary 3.21. Let a E F2~ be such that Tr2~12(a) i= o. Then

is irreducible over F2~ of degree 21c for all k ~ o.

Proof: Take f(;c) =;c +a and apply Theorem 3.20. 0

As a special case of Corollary 3.21, when m = 1 the following is true.
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Corollary 3.22. For any integer k ~ 0,

is irreducible over F2 of degree 2k.

53

When q = 2 in Theorem 3.20, the trace function is the identity map
on Fq • We obtain the following.

Corollary 3.23. Let f(:c) = 2::7=0 c;:c; be a monic irreducible polyno­
mial over F2 of degree n with C1Cn-1 f= O. Then

n

L c;a~ (:c )b~-;(:c)
;=0

is irreducible over F2 of degree n2k for all k ~ o.

We mention that Corollary 3.22 and Corollary 3.23 appear in Var­
shamov [37] without proof. Wiedemann [40] also obtains Corollary 3.22.
Niederreiter [26] proves that there is an irreducible polynomial f(:c) =
2::7=0 c;:c; over F2 such that C1Cn-1 f= 0 for all n f= 3.

The final construction is over Fq , for q odd, based on Corollary 3.12
and is due to Cohen [16].

Theorem 3.24. Let f(:c) be a monic irreducible polynomial of degree
n 2 lover F q , q odd, where n is even i/ q == 3 (mod 4). Suppose that
/(1)/( -1) is a non-square in Fq • Define

fo(:C) /(:c),
!k(:c) (2:cy·-' ik-1((:C + :c-1)/2), k ~ 1,

where tk = n2k denotes the degree of !k (:c). Then!k (:c) is an irreducible

polynomial over Fq of degree n2k for every k ~ 1.

Proof: It is easy to see that ik(:c) has degree t k = n2k
, k ~ o. By

induction

(-I)"cUo(l)fo(-I), for some Ck E r; k ~ 1,

dUo(l)fo( -1), for some dk E Fq ,

because either -1 is a square in Fq (when q == 1 (mod 4)) or n is even.
Hence !k(l)fk( -1) is always a non-square in Fq , for k ~ O. The result
now follows from Corollary 3.12. 0
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Cohen [16] also proves that there always exists a monic irreducible
polynomial of degree n over Fq required by the above theorem for any
odd q and integer n ~ 1.

Example 3.5. Applying Theorem 3.24 to the following special cases
gives several infinite families of irreducible polynomials over the respec­
tive fields:

(a) q = 3, f(z) = Z2 ± z - 1.

(b) q = 5, f( z) =z ± 2 or Z2 ± z +2.

(c) q == 1 (mod 4), f(z) = z - C or Z2 +2cz +1, where c is such that
c2 - 1 is a non-square in Fq •

(d) q == 3 (mod 4), f(z) = z - c or Z2 +2cz - 1, where c is such that
c2 +1 is a non-square in Fq • 0

The computation of the sequence fk(z) (k ~ 1) in Theorem 3.24 is
facilitated by the following observation. Define

co(z)=z, do(z) = 1,

Ck+l(Z) = c~(z) + d~(z), dk+1(Z) = 2Ck(Z)dk(z), k ~ O.

Then it is easy to prove that

A(z) = (dk(z)tf(Ck(Z)jdk(z)), k ~ O.

By the above example, we see immediately that cHz) ± ck(z)dk(z) ­
~ (z) is irreducible over Fs for all k ~ 0 and Ck (Z ) - 2dk(z ) is irreducible
over Fs for all k ~ O.

Research Problem 3.1. Let a be an element in an extension field of
F2 • Given the multiplicative order of a, determine the order of" where
, +,-1 = a . In particular, let ao = 1 and ak be defined such that
ak +a;;1 = ak-1 for k ~ 1. Prove or disprove that the multiplicative
order of ak is 22. -

1 +1 for k ~ 1. This has been verified to be true in [40]
for k ::; 9. Also note that ak is a root of the polynomial ak(z) + bk(z )
in Corollary 3.23.
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3.5 Composed Product of Irreducible Polyno­
mials

In this section it is shown how to obtain irreducible polynomials of
degree n = vt from irreducible polynomials of degree v and t with
gcd(v, t) = 1. Following Brawley and Carlitz [8], a binary operation
called the composed product, on a subset of Fq[z], will be defined. If f
and g are two monic polynomials of degrees v and t, respectively, then
their composed product, denoted by f<)g and defined in terms of the
roots of f and g, is also in Fq[z] and has degree vt. And, moreover,
if gcd(v, t) = 1 and both f and g are irreducible in Fq[z] then f<)g is
also irreducible. For example, the following two products are composed
products:

fog =IIII(z - a{3),
a f3

f *g = IIII(z - (a +{3)),
a f3

where the products are taken over all the roots a of f and {3 of g (includ­
ing multiplicities) . These two composed products are called composed
multiplication and composed addition, respectively.

Let r = Fq denote the algebraic closure of Fq so that every polyno­
mial in Fq[z] factors completely in r. It is well-known that r contains
all the fields Fqn, n = 1,2, . .. j indeed, r can be characterized as begin
the union of these fields. Let (7 denote the F'robenius automorphism of
r:

It is assumed in this section that

(i) G is a nonempty er-invariant subset of I', Le., 0 =I G ~ r and
(7(a) E G for all a E G.

(ii) There is defined on G a binary operation <) such that (G, <)) is a
group and for all a, {3 E G,

(7(a<){3) = (7(a)<)(7({3). (3.5)

It is easy to see that a is actually an automorphism of the group (G, <) ).

Some examples of such subsets G and operations <) are

1. G = r \ {O}, a<){3 = a{3 (ordinary field multiplication).

2. G = r, a<){3 = a +{3 (ordinary field addition).
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3. G = r, exOf3 = ex + f3 - c, where c is a fixed element in Fq.

4. G = r \ {I}, exOf3 = ex + f3 - exf3.

5. G = any o-invariant subset of r, exOf3 = f( ex , (3), where f( z , y) is any
fixed polynomial in Fq[z, y] such that f( ex, (3) E G for all ex, f3 E G
and (G, 0) is a group.

For the group (G,0), let MG[q, z] denote the set of all monic poly­
nomials f in Fq[z] such that deg f 2: 1 and all the roots of f lie in G.
Let t. 9 E MG[q , e], Then the composed product of f and 9 is defined as

fOg = IIII(z - exO(3),
a fJ

(3.6)

where the (ordinary) products II are over all roots ex, f3 of f and g,
respectively. Obviously, if deg f = v and deg 9 = t , then deg fOg = vt .

It is clear that the polynomial (3.6) has all its roots in G. Moreover,
since 0' permutes the roots of any polynomial in Fq[z], if h = fOg, it
follows that

(h(z))q = II(zq - exqOf3q) = II(zq - exO(3) = h(zq);
a,fJ a,fJ

thus, h(z) E Fq [:z:] and the following lemma has been established.

Lemma 3.25. The composedproduct is a binary operation on MG[q, z].

It is easy to see that the composed product is distributive with
respect to the ordinary product of polynomials, namely,

fO(gh) = (fOg)(fOh),

holds for all f, g, hE MG[q, z]. So if one of for 9 is reducible then fOg
is reducible. The following theorem from [8] indicates precisely when
the composed product is irreducible.

Theorem 3.26. Suppose that (G, 0) is a group and let f, 9 be two poly­
nomials in MG[q,z] with degf = v and degg = t. Then the composed
product fOg is irreducible over Fq if and only if f and 9 are both irre­
ducible over Fq and gcd(v, t) = 1.

Proof: Assume first that fOg is irreducible. Then, as noted above, f
and 9 are necessarily irreducible; hence it only remains to show that
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gcd(v, t) = 1. Assume the contrary, that gcd(v, t) = k > 1. Let r, s be
relatively prime integers such that v = rk, t = sk, and let a and /3 be
roots of I and g, respectively. Then, = aO/3 is a root of 109 and since
109 is irreducible of degree vt the least positive integer d such that
,qd = , is d = vt. But krs < vt and -: = a q

' " O/3q'" = aO/3 = "
which is a contradiction.

Conversely, suppose that I and g are irreducible with gcd( v, t) = 1.
Again, let, = aO/3 where a and /3 are respective roots of I and g.

Since, is a root of 109 whose degree is vt, it can be shown that
109 is irreducible by proving that the minimal polynomial of, over
Fq has degree vt, i.e., by proving that the smallest positive integer d
such that ,qd =, is d = ut. In order to prove this fact, note first that
,q" = a q" O/3q" = aO/3 =,i thus, d ::; ui, Secondly, since ,qd = " it
follows that a

qd O/3qd = aO/3. Raising both sides of this last equation
repeatedly to the power qd gives

(3.7)

for u =0,1,2, .... Taking u =v in (3.7) gives

thus, /3q,d =/3 since (G, 0) is a group. Consequently, tlvd and therefore
t id since gcd(v, t) = 1. Likewise, by taking u = tin (3.7) it is concluded
that vld. This means that vtld and thus d = vt. This completes the
prooL 0

Theorem 3.26 shows that the composed product of two monic irre­
ducible polynomials in Fq [:z:] is again an irreducible polynomial in Fq [e]
provided that gcd(v,t) = 1. But the computation of 109 using def­
inition (3.6) requires computing the products of the roots of I and g
which lie in an extension field of Fq , even though the following observa­
tion on composed multiplication and composed addition of polynomials
is noted:

a

and
I*g = 11g(:z:-a) 11/(:Z:-/3).

a f3

A connection between composed products of polynomials and Kronecker
products of matrices is noted which in many cases yields an algorithm
for computing 109 without explicitly going to extension fields; this is
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true when the operation 0 of G is of the form aO{3 = <1?( a, {3) where
<1?(z,y) = ~c'iz'yi is a polynomial in Fq[z,y).

Recall that if A and B are square matrices over Fq of sizes v and
t respectively, then the Kronecker product A 0 B = (a'iB) is a square
matrix over Fq of size vt. It is well known that the eigenvalues of
A 0 B are a{3 where a and {3 range over all the eigenvalues of A and B,
respectively. It follows that

det(zI - A 0 B) = IIII(z - a{3),
a {3

where I is the identity matrix of size vt and the products are over all
the eigenvalues of A and B, respectively. Now let I and g be arbitrary
polynomials in MG[q, z) and'A and B be their respective companion
matrices. Then the eigenvalues of A (B) are exactly the roots of I (g)
and thus

log = det(zI - A 0 B).

This equation enables the computation of the composed multiplication
without explicitly finding the roots of I and g.

More generally, let the composed product on G be defined by aO{3 =
i}(a, {3) where i}(z, y) = L, ci;z'yi is a polynomial in Fq[z, y). The eigen­
values of <1?(A,B) = ~c'iA' 0B; are the numbers <1?(a,{3) = ~c'ia'{3i,

where a,{3 range over the eigenvalues of A and B, respectively. Thus, if
I and g are arbitrary polynomials in MG[q, e], and if A and B are their
respective companion matrices, then

109 = det(zI - <1?(A, B))

is another formula which allows the computation of composed products
without computing roots. For example, for the composed addition,

I*g = det(zI-(A0 I +10B)).

The method of computing 109 indicated above is still rather ineffi­
cient, since it involves computing the determinant of a matrix of size vt.
ill the special cases of composed multiplication and composed addition
it can be reduced to computing the determinant of a matrix of size v or
t . The following result is due to Blake, Gao and Mullin [6].

Theorem 3.27. Letl(z) = ~:=oa.z' andg(z) = ~;=obiZi be two
irreducible polynomials over Fq of degrees v and t, respectively, with
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gcd(v, t) = 1. Let A and B be their respective companion matrices.
Then

log = det (t bizi At-i) =
)=0

and

(3.8)

are both irreducible polynomials over Fq 01 degree vt.

Proof: It is only required to prove the equations (3.8) and (3.9), the
irreducibility of log and 1* g follows from Theorem 3.26. Only (3.9)
is proved, as the proof of (3.8) is similar.

First recall that if A, B, C,D are matrices of appropriate sizes, then
one has

(A ® B)(C e D) = (AC) ® (BD)

and
(A ® Btl = A-1 ® B- 1

provided that A-1 and B-1 exist. Let the eigenvalues of A (i.e., the
roots of f) be a1, a2, •.• ,a" and let D be the diagonal matrix

D=C' a", J'
Then there is an invertible matrix P such that A = P D p- 1 and thus

= det(d-(A®I+I®B))
= det(d - [(PDP- 1) ® I + (PIP-1) ® B])

= det((P e IHzI - ((D ® I) + (I ® B))](P-1® I))

= det(d-[D®I+I®B])

(

(d - all - B)
(d - a21 - B)

= det
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v

II det(zI - B - oJ)
i=l

v

det II((zI - B) - oJ)
i=l

as required.

v

det Lai(:z:I - B)i,
i=O

o

3.6 A General Approach

In this section the following general problem is considered: if a finite
field Fp of prime order and an integer n are given, how can an irreducible
polynomial of degree n over Fp be constructed efficiently?

For this problem, there is presently no deterministic polynomial time
algorithm known . Here , by polynomial time, it is meant that the number
of operations in Fp required by the algorithm is bounded by a polynomial
in n and logp. We comment that using the next theorem, it can be
checked in deterministic polynomial time whether a given polynomial
1(:z:) E Fq [:z:] is irreducible over Fq •

Theorem 3.28. Let f(:z:) E Fq[:z:] be a polynomial 01 degree n, and let
rl ' r2' . . . , rt be the distinct prime divisors 01n . Then I(:z:) is irreducible
over Fq if and only if
(i) I(:z:) I :z:qR -:z:.
(ii) gcd(:z:qR/r, - :z:,/(:z:)) = 1 for each i, 1 ~ i ~ t .

Kaltofen [22] gives a deterministic polynomial time algorithm for
irreducibility testing of multivariate polynomials over finite fields.

Exercise 3.3. (i) Using the fact that the polynomial :z:qR - z is the
product of all monic irreducible polynomials over Fq of degree dividing
n, and using the Mobius inversion formula, show that the number of
monic irreducible polynomials in Fq[:z:] of degree n is

1
Nq(n) = - L Jl(d)qn/d.

n din

(Jl is the Mobius function.)
(ii) Hence (see [29]) show that

1 < Nq(n) ~ 1
2n - qn n
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By Exercise 3.3, the probability that a random monic polynomial of
degree n in Fq[z] is irreducible is nearly lin. Thus the simple algorithm
of picking random monic polynomials of degree n in Fq [z] until an irre­
ducible one is found is a probabilistic polynomial time algorithm. This
observation was made by Rabin [29]. Hence, for all practical purposes,
the problem of constructing irreducible polynomials is solved.

Adleman and Lenstra [1] give a deterministic algorithm that runs in
polynomial time assuming the Extended Riemann Hypothesis (ERH) is
true. The best known deterministic algorithm is due to Shoup [33], in
which he gives a deterministic algorithm that takes

(3.10)

Fp-operations. The result extends to non-prime finite fields, where an
irreducible polynomial of degree n over Fpm can be constructed deter­
ministically with

Fp-operations. Thus if p is fixed, then the algorithm runs in polynomial
time.

We will follow Shoup 's approach to this problem. Suppose that n

has the following factorization:

n = r~lr~"" r~',

where ri are distinct primes and e, ~ 1. IT for each i an irreducible
polynomial of degree r:' can be constructed, then Theorem 3.27 shows
that an irreducible polynomial of degree n can be constructed quickly.

The critical step then is to construct an irreducible polynomial of
prime power degree rO for any given prime r and positive integer e. We
consider some special cases first . ITr = p and p is odd, then the problem
is solved by Example 3.4. IT r = p = 2, then the problem is solved by
Corollary 3.22. IT r = 2 and p == 3 (mod 4), then Theorem 3.3 solves
the problem. IT r = 2 and p == 1 (mod 4), then the problem is solved
by Corollary 3.2, assuming that we are given a quadratic nonresidue in
r;

So from now on it is assumed that r is an odd prime not equal to p
and e is a positive integer. The problem is to construct an irreducible
polynomial over Fp of degree r': The next result is due to Shoup [33] .



62 CHAPTER 3. IRREDUCIBLE POLYNOMIALS

Theorem 3.29. Let p be a prime, r # p an odd prime, and let m be
the order of p modulo r . Assume that f( z) is an irreducible polynomial
in Fp[z] of degree m and a E Fp(a) = Fp~ is an r -tli nonresidue in Fp~,

where a is a root of f( z ). For any positive integer e, let [3 be a root of
ZT" - a. Then

m-l

i = Trp~'"lp'" ([3) = L: [3P""
i=O

(3.11)

has degree r' over Fp • Thus the minimal polynomial of i over Fp is an
irreducible polynomial over Fp of degree r" .

Proof: Let e be the order of a. Since a is an roth nonresidue in Fp~, r
does not divide (pm -l)/e. By Corollary 3.2, g(z) = ZT" -a is irreducible
over Fp~ for any e. So E = Fp~ ([3) = Fp~'" and i is in Fp'"'

Suppose to the contrary that i has degree r t over Fp where t <
e. Then it is easy to see that i has degree rt over K = Fp~, since
gcd(m, r") = 1. Now, [K([3) : K([3T)] = r, and so in particular, i lies in
K([3T). For each i, 0 ~ i ~ m - 1, let piT" = zir +Yi, where 0 < Yi < r.
From the fact the p, and hence also pT", has order m (mod r), it follows
that the Yi'S are distinct. Then (3.11) yields the equation

Thus, [3 is a root of a non-zero polynomial over K([3T) of degree less
than r. But this contradicts the fact that [3 has degree rover K([3T),
and so the theorem is proved. 0

Exercise 3.4. Show that the number of Fp-operations required to com­
pute the minimal polynomial of i over Fp can be bounded by a polyno­
mial in r" and log p.

Combining Theorem 3.29 and the remarks made before it, we have
the following from [33].

Theorem 3.30. Assume that for each prime rln, r # p, we have an ir­
reducible polynomial of degree mover Fp (m is the order ofp (mod r)),
and an roth nonresidue in Fp~. Then we can find an irreducible poly­
nomial of degree n over Fp in deterministic polynomial time, or more
precisely with

operations in Fp •
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Shoup then proceeds to show that given an oracle for factoring poly­
nomials over Fp , the irreducible polynomials and nonresidues required
in Theorem 3.30 can be constructed in deterministic polynomial time.
Using the fast deterministic factoring algorithm in [32] (which we dis­
cussed in Section 2.4), he thus obtains the running time (3.10) for the
problem of constructing irreducible polynomials. We outline the reduc­
tion to factoring below.

Let pm - 1 = Irlc where gcd{I, r) = 1. Then an element of order
ric will be an r-th nonresidue in Fp~. So an irreducible factor of (ZT· ­
1)/ (ZT·-

1
-1) over Fp gives an irreducible polynomial of degree m whose

roots have order ric. To obtain such an irreducible factor one may first
factor the cyclotomic polynomial

(ZT - 1)/{z - 1) = ZT-1 +...+z +1,

over Fp to obtain an irreducible polynomial f1{Z) of degree m. Then
II (z) has roots of order r, For i =2, ... , k, let fi{z) be any irreducible
factor of fi_1{ZT). Then the roots of fi{Z) have order r i , since the roots
of fi-1{Z) have order r i

- 1• Put f{z) = !Ic{z). Then any root 0: of f{z)
is an r-th nonresidue in Fp~' Consequently, the problem is reduced to
the problem of factoring polynomials fi{ZT) over Fp •

It is interesting to note the following theorem [19], which can be
viewed as a partial converse of Theorem 3.29.

Theorem 3.31. Let r, p and m be as in Theorem 3.29. Suppose that
an irreducible factor of (ZT - 1)/ (z - 1) and an irreducible polynomial
of degree r in Fp[z] are given. Then an r-tli nonresidue in Fp~ can be
found deterministically in time polynomial in rand logp. Thus ZT' - 1
can be factored over Fp deterministically in time polynomial in r, t and
logp for all positive integers t.

Proof: We only give a sketch of the proof. Let 0: be a root of the
given irreducible factor of (ZT - 1)/{z - 1), and f3 a root of the given
irreducible polynomial of degree r. Then

{ o:i f3i I0 ~ i ~ m - 1, 0 ~ j ~ r - I}

is a basis of Fp~r over Fp. Henceforth, we assume that elements in Fp~r

are represented with respect to this basis.

Let pm - 1 = rlcl with gcd{l, r) =1. Then rlc+1 divides pmT - 1. As
0: has multiplicative order r, the equation

(3.12)
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has at least one solution in F1'~r, say 10' It is easy to see that the order
of 10 is divisible by r k+1 • Hence 1= 1~1'~r-1)/T has order r" : Therefore
1 is an r-th nonresidue in F1'~' Note that (3.12) can be written as

(3.13)

Since (3.13) is a system of linear equations in the coordinates of e, it
can be solved in polynomial time. So an r-th nonresidue of order r k in
F1'~ can be obtained in polynomial time.

For the second statement of the theorem, observe that by comput­
ing the minimal polynomials of powers of 1, we can get a complete
factorization of ZT· - 1, say

T·+; ( T;) ( T;)
Z - 1 = f1 Z • • • fs z .

Thus ZT' - 1 can be factored in polynomial time. 0

As an application of Theorem 3.29 Gao [19] obtained the following:

in polynomial time. Then a complete factorization of ZT·+; - 1, for any
i 2:: 0, is just

Corollary 3.32. Let p == 2 or 5 (mod 9) be a prime. Then, for any
positive integer e, the following polynomial of degree 3· is irreducible
over F1' :

(3"-1)/2 3. (3. .)
1 + L --. -: J (_I);z3"-2; .

; =0 3· - J J
(3~14)

Proof: Apply Theorem 3.29. In this case, 3 divides p2 - 1 exactly
but does not divide p - 1. Since p (mod 3) has order 2, Z2 +Z +1 =
(Z3-1)/(z-1) is irreducible over F1'. Let 0: E F1'• be a root of Z2 +z+1.
Then 0: has order 3 and is thus a 3-th nonresidue in F1'(o:) = F1'•• Let
(3 be a root of Z3" - 0:. Then, by Theorem 3.29,

s"
1 = (3 +(31'

has degree 3· over F2 • Note that (3 has order 3·+1 and is a root of

It is easy to prove that p3" == -1 (mod 3.+1), so (31'
S

" = (3-1 and 1 =
(3 +(3-1.
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Now since 1({3) = 0, we have

But by Waring's formula [24, page 30], we have
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So "1 is a root of (3.14) . As (3.14) has degree 3·, it must be the minimal
polynomial of "1 over Fp and thus irreducible, as required. 0

Finally, we remark that Corollary 3.32 was recently generalized in
[20]. For a E Fq and n a positive integer, the Dickson polynomial
Dn(:l:, a) is defined to be

The polynomial in (3.14) is just Da.(:l:, 1) +1. In [20] the necessary and
sufficient conditions for Dn(:l: , a)+b, a, bE Fq , to be irreducible over Fq

are given.

Research Problem 3.2. Let rand p be prime numbers with r 1= p,
and let m the order of p (mod r). Assume that an irreducible polyno­
mial of degree m in Fp[:l:] is given. Find an efficient (polynomial in m,
logr and logp) algorithm for constructing an roth nonresidue in Fp~ .
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Chapter 4

Normal Bases

4.1 Introduction

Interest in normal bases over finite fields stems from both purely math­
ematical curiosity and practical applications. The practical aspects of
normal bases will be treated in Chapter 5. In the present chapter, we
discuss the theoretical aspects of normal bases over finite fields.

We have seen in Chapter 1 that a normal basis of Fqn over Fq is
a basis of the form N = {a, aq, ... , a

qn- . }. We say that a generates
the normal basis N, or a is a normal element of Fqn over Fq. In either

n-'case we are referring to the fact that the elements 0:, o:q, •.. , o:q are
linearly independent over Fq •

In the following context, when we mention a normal basis {ao, a1, ...,
a n - 1}, we always assume that it is in the order a. = a q' , i = 0,1, ... , n­
1.

Let N = {ao, a1" '" a n - 1} be a normal basis of Fqn over Fq. Then
for any i, i, 0 ::; i, j ::; n - 1, a.aj is a linear combination of ao, a1, ...,

a n - 1 with coefficients in Fq • In particular,

(4.1)

where T is an n X n matrix over Fq • We call (4.1) or T the multiplication
table of the normal basis N . If a is a normal element, the multiplica­
tion table of the normal basis generated by a is also referred to as the

69
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multiplication table of a. The number of non-zero entries in T is called
the complexity of the normal basis N, denoted by CN. If a generates
N, CN is also denoted as CO:.

We call a polynomial in Fq[x] an N-polynomial if it is irreducible
and its roots are linearly independent over Fq • It is easy to see that the
minimal polynomial of any element in a normal basis {ao, al' .. . ' an-I}
is m( x) = rr~:ol (x - a;) E Fq[x], which is irreducible over Fq. The
elements in a normal basis are exactly the roots of an N-polynomial.
Hence an N-polynomial is just another way of describing a normal basis.

The problem in general is: given an integer n and the ground field
Fq, construct a normal basis of Fqn over Fq, or, equivalently, construct
an N-polynomial in Fq[z] of degree n.

For practical applications, one needs to construct a normal basis of
complexity as low as possible. The problem of constructing low com­
plexity normal bases will be treated in Chapter 5, and so the complexity
issue of normal bases will be of incidental interest only in this chapter.

We will first focus our attention on the structural properties and
characterizations of normal elements and N-polynomials. In Section 4.2
we first show how to recursively construct normal bases, then give some
characterizations of normal bases and their dual bases. In Section 4.3,
we determine how the normal elements are distributed in the whole
space, and thus prove the normal basis theorem for finite fields. In Sec­
tion 4.4, we discuss when an irreducible polynomial is an N-polynomial,
i.e., an irreducible polynomial with linearly independent roots. In some
special cases, one can tell from some coefficients of an irreducible poly­
nomial whether it is an N-polynomial. In Section 4.5, we give some
algorithms for systematically constructing normal elements, hence nor­
mal bases.

We fix the characteristic of Fq to be p in the whole chapter.

4.2 Some Properties of Normal bases

It is reasonable to ask the following question: if we are given normal
bases of some fields, say Fq• over Fq and Fq• over Fq, how can we
construct a normal basis of a larger field, say Fq•• over Fq ? We start
with the opposite direction, that is, given a normal basis of Fq• • over
Fq to construct a normal basis for Fq• (or Fq.) over Fq• The results are
stated in terms of normal elements.
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Theorem 4.1. Let t and v be any positive integers. If a is a normal
element of Fqo. over Fq then I = TrqO'lq' (a) is a normal element of Fq•
over Fq •

Proof: Arrange the conjugates of a over Fq in the following array:

a aq' aq'(o-,)

aq aq'+' '(0-')+'
aq

,-. aq'+'-' aq'(o-,)+,-,
aq

which altogether are linearly independent over Fq • The conjugates of
I = l:;::-~ a q

" are just the row SlUnS of the above array, so they must
also be linearly independent over Fq • 0

Exercise 4.1. Given the multiplication table of a, find that of I in
Theorem 4.1.

Before we go to the next theorem, we prove a lemma which itself is
interesting.

Lemma 4.2. Let gcd( v, t) = 1. Let A = {all a2, ... , a,,} be a basis of
Fqo over Fq. Then A is also a basis of Fqo. over Fq•.

Proof: We just need to prove that al, a2, ... , a" are linearly indepen­
dent over Fq , . Suppose there are ai E Fq. , 1 ::; i ::; v, such that

Note that for any integer j,

"
Laiai = 0.
i=l

(4.2)

Since gcd( v, t) = 1, when j runs through 0,1, ... ,v-I modulo v, tj
also runs through 0,1, ... , v-I modulo v . Note that since ai E Fqo, we

o u'

have al = ai and thus al = al whenever u == k (mod v). So (4.2)
implies that

11

'" qj-LJ aiai - 0,
i=l

for each i, °::; i ::; v-I,
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that is,

( a,
a2

a. ) ("')

~~.
aq

a~ a22
= O. (4.3)· .· .· .

0 -1 0-1
aq aq

a~ av1 2

As alJ a2, . . . , av are linearly independent over Fq , the coefficient matrix
of(4.3) is nonsingular, by Theorem 1.2. Thus al' a2,.. . ,av must be 0,
which proves that al, a2, ... , av are linearly independent over Fq<. 0

Theorem 4.3. Let n = vt with v and t relatively prime. Then, for
a E Fqo and f3 E Fq<, ; = af3 E Fqn is a normal element of Fqn over Fq
if and only if a and f3 are normal elements of Fqo and Fq<, respectively,
over Fq.

Proof: First assume that; is a normal element of Fqn over Fq. Then
by Theorem 4.1,

is a normal element of Fq< over Fq. Note that Trqolq(a) must not be
zero (otherwise; would not be normal) and is in Fq • So f3 is a normal
element of Fq< over Fq. Similarly, a is a normal element of Fqo over Fq.

Now assume that both of a and f3 are normal elements of Fqo and
Fq<, respectively, over Fq. We prove that; = af3 is a normal element of
Fqn over Fq. As gcd(v, t) = 1, by the Chinese remainder theorem, for
any 0 ~ i ~ v - 1 and 0 ~ j ~ t - 1 there is a unique integer k such
that

k == i (mod v) and k == j (mod t),

and hence

Thus the conjugates of; are:

(4.4)

Now we prove that the elements of (4.4) are linearly independent over
Fq. Suppose there are aij E Fq such that

L aijaq'f3qi

O<i <v-l
O~l$t-l

o. (4.5)
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Let bj = L::';;-~ aijexq
' , 0 ~ j ~ t - 1. Then bj E Fq• and (4.5) implies

that
t-l

L bjf3qi = o.
j=O

But by Lemma 4.2, 13, f3q, ... , f3q'-' are linearly independent over Fq., so
bj = 0, 0 ~ j ~ t - 1. However ex, exq , ••• , exq· - ' are linearly independent
over Fq , and hence bj = 0 implies aij = 0 for all i, i. Therefore the
elements in (4.4) form a basis of Fqn over Fq and this completes the
prooL 0

Exercise 4.2. Let ex, 13 and I be as in Theorem 4.3.
(a) Prove that the multiplication table of I (with the elements of the ba­
sis generated by I in some appropriate order) is equal to the Kronecker
product of the multiplication tables of ex and 13. Thus deduce that the
complexity of I equals the product of the complexities of ex and 13.
(b) Prove that (the normal basis generated by) I is trace-orthogonal if
both ex and 13 are trace-orthogonal.

Theorem 4.3 gives us a way to recursively construct normal bases.
As indicated by the above exercise one can easily get a multiplication
table of a normal basis of Fq• • (with v and t relatively prime) from
multiplication tables of normal bases of Fq• and Fq. , respectively, over
Fq • If we are given two N-polynomials of degree v and t respectively
then the following corollary tells us how to construct an N-polynomial
of degree vt.

Corollary 4.4. Letf(~) = L::=oai~i, g(~) = L:;=obj~j E Fq[~] be
two N-polynomials of degree v and t respectively, with v and t relatively
prime. Let A, B be the companion matrices of f(~), g(~) respectively,
and let C = A @ B be the Kronecker product of A and B. Then the
characteristic polynomial

is an N-polynomial of degree vt over Fq •

Proof: Let ex be a root of f( ~) and 13 a root of g(e ). Then ex is a normal
element of Fq• over Fq and 13 a normal element of Fq• over Fq• Thus,
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by Theorem 4.3, i = af3 is a normal element of Fq•• over Fq • So the
minimal polynomial of i over Fq is an N-polynomial in Fq[z] of degree
vt. By Theorem 3.26 and Theorem 3.27 in Chapter 3, this minimal
polynomial is equal to det(Iz - C). 0

In the remaining part of this section we continue the characterization
of normal bases (or normal elements) noted in Chapter 1.

Theorem 4.5. For a E Fqn, a generates a normal basis of Fqn over
Fq if and only if the polynomial a qn-' zn-t +...+ aqz + a E Fqn[z] is

relatively prime to z" - 1.

Proof: Note that a generates a normal basis if and only if the elements
a, aq , •••, a qn

-
1

are linearly independent over Fq • By Theorem 1.2, this
is true if and only if

(~~.
aq a q' ...

0'7-- )a q' a q' ...
(4.6)

n-'aq a aq aq

is non-singular. Note that if we reverse the order of the rows in (4.6)
from the second row to the last row, we get the circulant matrix c[a, aq

,

. . . , a qn
-

1
] , which is non-singular if and only if (4.6) is non-singular. By

the observations about circulant matrices made in Chapter 1, e[a,aq ,

... , a qn-,] is non-singular if and only if zn - 1 and a qn-' zn-t +... +
a q z +a are relatively prime. 0

Theorem 4.6. Let a E Fqn, a, = a q', and t, = Trqnlq(aoa,), 0 ~ i ~
n - 1. Then a generates a normal basis of Fqn over Fq if and only if
the polynomial N(z) = L:~:ot t,z' E Fq[z] is relatively prime to z" - 1.

Proof: By Corollary 1.3, we know that ao, at, . .. , an-t form a basis if
and only if

(

Tr( aoao) Tr(aoad Tr(aoan_d )
Tr(atao) Tr(atad Tr(atan-d

A=

Tr(an_taO) Tr(an-tad Tr(an-tan-d

is non-singular. Since Tr( a.ai+j) = Tr( aOaj), we see that

tt
to
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The circulant matrix !1 is non-singular if and only if :z:n - 1 and N (:z:) =
2::;01t;:z:; are relatively prime. 0

The following theorem describes a method of computing the dual
basis of a normal basis (which by Corollary 1.4 is also a normal basis).

Theorem 4.7. Let N = {o:o, 0:1 "", O:n-d be a normal basis of Fqn
over Fq • Let t; = Trqnlq(O:oo:;), and N(:z:) = 2:::01 t; :z:; . Furthermore,
let D(:z:) = 2::;01d;:z:; , d; E Fq , be the unique polynomial such that
N(:z:)D(:z:) == 1 [mod z" - 1). Then the dual basis of N is generated by
f3 = 2::;01d;o:;.

Proof: It suffices to check that

Note that

N(:z:)D(:z:) ~ t ·d ·:z:i+i
L...J • 1

0~;,j~n-1

n-1n-1

- E E dkt; _k:Z:; [mod z" - 1).
;=0 k=O

It follows from N(z)D(z) == 1 (mod zn - 1) that

n-1 {1'f ' °dt ,It=,
{; k ; -k = 0, otherwise.

Thus

n -1

E dkTr(O:oO:;_i_k)
k=O

{
I , if i = i ,
0, otherwise.

n-1

E dkt;-i-k
k=O

That is, {f3, f3 q, .. . , f3qn-.} is the dual basis of N. o
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4.3 Distribution of Normal Elements

In this section we will show how normal elements are distributed in the
whole space. We prove that there is a basis of Fqn over Fq such that,
with respect to this basis representation, normal elements are just the
elements with some of the coordinates not zero. Consequently one can
easily count the total number of normal elements and hence the number
of normal bases of Fqn over Fq.

We view Fqn as a vector space of dimension n over Fq. Recall that
the Frobenius map:

(J': TJ I-t TJ
q, TJ E Fqn

is a linear transformation of Fqn over Fq. This linear transformation
plays an essential role in the following context.

Before proceeding we review some concepts from linear algebra. Let
T be a linear transformation on a finite-dimensional vector space V over
a (arbitrary) field F. A polynomial f(z) = L:~o a;z; in F[z] is said to
annihilate T if amTm +...+a1T +aoI = 0, where I is the identity map
and 0 is the zero map on V. The uniquely determined monic polynomial
of least degree with this property is called the minimal polynomial for
T. It divides any other polynomial in F[ z1annihilating T. In particular,
the minimal polynomial for T divides the characteristic polynomial for
T (Cayley-Hamilton Theorem).

A subspace W ~ V is called T-invariantifTu E W for every u E W.
For any vector u E V, the subspace spanned by u, Tu, T2U , ••• is a T­
invariant subspace of V, called the T -cyclic subspace generated by u,
denoted by Z(u, T). It is easily seen that Z(u, T) consists of all vectors
of the form g(T)u, g(z) in F[z]. If Z(u, T) = V, then u is called a cyclic
vector of V for T.

For any polynomial g(z) E F[z], g(T) is also a linear transformation
on V. The null space (or kernel) of g(T) consists of all vectors u such
that g(T)u = OJ we also call it the null space of g(e). On the other
hand, for any vector u E V, the monic polynomial g(z) E F[z] of
smallest degree such that g(T)u = 0 is called the T-Order of u (some
authors call it the T-annihilator, or minimal polynomial of u). We
denote this polynomial by Ord,..T(e ), or Ord, (z) if the transformation
T is clear from context. Note that Ord, (z) divides any polynomial h(z)
annihilating u (i.e., h(T)u = 0), in particular the minimal polynomial
for T or the characteristic polynomial for T. It is not difficult to see
that the degree of Ord,..T(z) is equal to the dimension of Z( u, T).
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Next we summarize the results we need from linear algebra in the
following lemma.

Lemma 4.8. Let T be a linear transformation on a finite-dimensional
vector space V over a field F. Assume that the minimal and character­
istic polynomials for T are the same, say f( e}.
(i) Let g(x) E F[x] and W be its null space. Let d(x) = gcd(f(x),g(x))
and e( x) = f( x) / d( x). Then the dimension of W is equal to the degree
of d(x) and

W {u E V I d(T)u = O} {e(T)u Iu E V} .

(ii) Let f( x) have the following factorization

T

f(x) = II fli(x),
.=1

where f .(x) E F[x] are the distinct irreducible factors of f(x). Let Vi be
the null space of fl i (x). Then

Furthermore, let 'Ii.(x) = f(x)/ fli(x). Then, for any Uj E Vj, Uj f= 0,

'Ii.(T)u . { of 0, if i = j,
, J = 0, otherwise.

Returning to our subject, we consider Fqn as a vector space of di­
mension n over Fq and the Frobenius map (T is a linear transformation.

Lemma 4.9. The minimal and characteristic polynomial for (T are iden­

tical, both being z" - 1.

Proof: We know that (TnTJ = TJqn = TJ for every TJ E Fqn. So a" - 1= O.
We prove that xn - 1 is the minimal polynomial of (T.

Assume there is a polynomial f(x) = 2:7:01 /(z} E Fq[x] of degree
less than n that annihilates (T, that is,

n-1

~ f.(T' 0.
•=0
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Then, for any 11 E Fqn,

CHAPTER 4. NORMAL BASES

,,-I

"f, qi_L.J il1 - 0,
i=O

(4.7)

i.e., 11 is a root of the polynomial F(z) = E~;OI fiZq;. This is impossible,
since F(z) has degree at most q"-1 and cannot have q" > q"-1 roots in
Fqn. Hence the minimal polynomial for a is z" - 1.

Since the characteristic polynomial of a is monic of degree n and is
divisible by the minimal polynomial for a , they must be identical, both
being z" - 1. 0

Our objective is to locate the normal elements in Fqn over Fq. Let
a E Fqn be a normal element. Then a, aa, ... , U"-la are linearly in­
dependent over Fq • So there is no polynomial of degree less than n
that annihilates a with respect to a, Hence the e-order of a must
be z" - 1, that is, a is a cyclic vector of Fqn over Fq with respect to
a, So an element a E Fqn is a normal element over Fq if and only if
Ord.;a ( z ) = z" - 1.

Let n = nIP· with gcd(p, nd = 1 and e 2: O. For convenience we
denote p. by t. Suppose that z" - 1 has the following factorization in
Fq[z]:

where It'i(Z) E Fq[z] are the distinct irreducible factors of z" - 1. We
assume that It'i(Z) has degree di , i = 1,2, ... ,r. Let

(4.8)

and
(4.9)

for i = 1,2, ... , r. Then we have a useful characterization of the normal
elements in Fqn.

Theorem 4.10. An element a E Fqn is a normal element if and only
if

~i(u)a :f:. 0, i = 1,2, ... ,r. (4.10)

Proof: By definition, a is normal over Fq ifand only if ai = aq; = ui (a),
i = 0,1, ... , n - 1, are linearly independent over Fq , that is, the e-order
of a is equal to z" - 1. This is true if and only if no proper factor of
z" - 1 annihilates a, hence if and only if (4.10) holds. 0
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Corollary 4.11 . Let n = p'. Then a E FqR is a normal element over
Fq if and only if TrqRlq(a) =I o.

Proof: When n = p', :z:n-1 = (:z:-l)n. So, in (4.7), r = 1, rp1(:Z:) = :z:-1
and t1?1(:Z:) =:z:n-l + . . . +:z: + 1. By Theorem 4.10, a E FqR is a normal
element over Fq if and only if

n-1
t1?1(er)a = L aq' = TrqRlq(a) =I o.

i=O

o

The following theorem decomposes FqR into a direct sum of sub­
spaces, half of which are e-invarlant subspaces. The theorem enables
us to see where the normal elements of FqR lie.

Theorem 4.12. Let Wi be the null space of rp~ (:z:) and Wi the null space
of rp: -1 (:z: ). Let Wi be any subspace of Wi such that Wi = Wi EEl Wi. Then

r

FqR = LWi EEl Wi
i=1

is a direct sum where Wi has dimension di and Wi has dimension (t ­

l)di. Furthermore, an element a E FqR with a =2::=1 (ai+ii;) , ai E Wi,
iii E Wi, is a normal element over Fq if and only if ai =I 0 for each
i = 1,2, ... ,r.

Proof: The first statement follows from Lemma 4.8. We only need to
prove the second statement. Note that if i =I j then rpj(:z: )lilii(:Z:). Hence
for any aj E Wj, t1?i(er)aj = O. So

as t1?i(:Z:) = Wi(:z:)rp: -l(:z:) is divisible by rp:-l(:z:). Therefore, by Theo­
rem 4.10, a is a normal element over Fq if and only if t1? i(a )ai =I 0 for
each i = 1,2, . . . ,r.

Now we prove that ilii(er)a; =I 0 if and only ifai =I o. Obviously, if
t1? i (er)a; =I 0 then ai =I o. Conversely, let ai =I o. Then ai E Wi \ Wi,
whence

rp:(er)a; = 0

and
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As Wi (:z:) and <Pi (:z:) are relatively prime, there exist polynomials a(:z:)
and b(:z:) in Fq[:z:] such that

a(:Z:)<Pi(:Z:) +b(:z:)wi(:z:) = 1.

Hence
ai = a(u)<pi(U)a; +b(U)Wi(U)a;,

and so

<p:-1(u)a; a(u)<p:(u)a; +b(u)<p:-1(u)Wi(U)a;

b(a )«Pi(u)a;

= b(U)(<<pi(U)a;).

Since <p!-l(u)a; f: 0, one must have that «Pi(u)ai f: O. This completes
the proof. 0

Since the dimension of the subspace Wi is d; 2: 1, the following is
immediate from Theorem 4.12.

Corollary 4.13. (Normal Basis Theorem) There always exists a
normal basis of Fqn over Fq.

As another consequence of Theorem 4.12, we count the number of
normal elements, and thus the number of normal bases of Fqn over Fq.
This number was established by Ore [18] by using his theory of linearized
polynomials (see also Corollary 1.7) .

Corollary 4.14. The total number of normal elements in Fqn over Fq
tS

T

v(n, q) = II qd;(t-1)(qd; - 1),
i=l

and the number of normal bases of Fqn over Fq is v(n, q)/n.

Proof: The first statement is obvious from Theorem 4.12 and the sec­
ond one follows from the fact that every element in a normal basis
generates the same basis. 0

We remark that computing v(n, q) does not require the factorization
of x n - 1. The only thing one needs is the degrees of all the irreducible
factors. Write n = n1P' as above. It is left as an exercise for the reader
to prove that

( ) «> II(qT(d) _ l)"'(d)/T(d),v n,q =
din,
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where the product is over all divisors d of nl with 1 ~ d ~ nl, r( d) is
the order of q modulo d, and ¢(d) is the Euler totient function (refer to
[10] and [1D.

In the special case that nand q are relatively prime, we have t = 1,
Wi = {O} and Wi = Wi in Theorem 4.12. We restate this as a corollary.

Corollary 4.15. Let gcd(n, q) = 1 and let

be a complete factorization in Fq[x] . Let Wi be the null space of <Pi (X).

Then
(4.11)

is a direct sum of (1-invariant subspaces; the dimension of Wi equals the

degree of <Pi(:Z:) ' Furthermore 0: = 2::;=1 o, E Fqn, O:i E Wi, is a normal
element of Fqn over Fq if and only if O:i :I 0 for each i .

Exercise 4.3. Let v, t > 1 be two integers. Let 0: E Fq• and f3 E Fq••

Prove that 0: + f3 can never be a normal element of Fq•• over Fq •

Exercise 4.4. Let 0: be a normal element in Fqn over Fq. For a, s« Fq,
show that a + bee is also a normal element in Fqn over Fq if and only if
na +bTr( 0:) :I o. Try to find some relations between the complexities
of 0: and a + ba , If 0: generates a self-dual normal basis, is it possible
for a + bee to generate a self-dual normal basis?

Assume now that gcd(n, q) = 1. Note that each Wi in the decom­
position (4.11) in Corollary 4.15 is a (1-invariant subspace and every
element in Wi is annihilated by <Pi ((1). As <Pi (x) is irreducible, Wi has
no proper (1-invariant subspaces. In this case, we say that Wi is an
irreducible rr-invarlant subspace. The decomposition (4.11) is unique
in the sense that if Fqn is decomposed into direct sum of irreducible
(1-invariant subspaces

then s = r and, after rearranging the order of Vi's if necessary, Vi =Wi
for i = 1,2, ... , r. As an application of the above observation, we look
at a special case of the degree n when there exists an element a E Fq

such that z" - a is irreducible over Fq •
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We first introduce some notation. A cyclotomic coset mod n that
contains an integer s is the set

M s = {s,sq, ... , sqm- l } modn

where m is the smallest positive integer such that sq": == s (mod n). Let
S be a subset of {O, 1, ... , n - I} such that Ms, and Ms. are disjoint
for any Sl, S2 E S, Sl i- S2, and

{O,I, ... ,n-l} = UMs .
SES

Any subset S satisfying this property is called a complete set of repre­
sentatives of all the cyclotomic cosets mod n.

Theorem 4.16. Let gcd(n, q) = 1, and assume that there exists a E Fq

such that z" - a is irreducible over Fq • Let a be a root of z" - a and S a
complete set of representatives of all the cyclotomic cosets mod n. For
s E S, let Vs be the subspace of Fqn spanned over Fq by the elements of
the set {am 1m EMs}. Then

(4.12)

is a direct sum of irreducible CT-invariant subspaces. Therefore an ele­
ment 0 = l:sES Os, Os E Vs , is a normal element if and only if Os i- °
for each s E S.

Proof: As {I, a, .. . , a"-l} is a basis of Fqn over Fq, (4.12) is a direct
sum. Obviously, each Vs is CT-invariant. We just need to prove that Vs
is irreducible. Let ns be the cardinality of Ms. Note that the number
of irreducible factors of z" - 1 of degree m is equal to the number of
s E S such that ns = m. If f s (z) is the characteristic polynomial of CT
on Vs, then

z"-1 = IIfs(z) .
SES

Hence, the polynomials fs(z) are irreducible over Fq • Therefore (4.12)
is an irreducible CT-invariant decomposition. 0

Corollary 4.17. Let gcd(n, q) = 1. Let a E F;, ai-I, be such that
z" - a is irreducible over Fq • Let a be a root of z" - a. Then {1- a)-l
is a normal element in Fqn over Fq.
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Proof: Since o:n = a, one can easily check that

1 1 ( n-1)-- = --1+0:+· · ·+0: .
1-0: 1-a

83

By Theorem 4.16, we see immediately that (1-0:)-1 is a normal element
in Fqn over r; 0

We remark that Corollary 4.17 gives an infinite family of normal
bases . More precisely, let a be a primitive element in Fq and rll r2,
• • •, rs be distinct prime factors of q- 1. We assume that q == 1 (mod 4)
if some ri = 2. Then, by Theorem 3.1, for any positive integers III 12,

... , Is and n = ITt=l r~', zn - a is irreducible over Fq • Hence (1 - 0:)-1
is a normal element in Fqn over Fq where 0: is a root of z" - a.

4.4 Characterization of N-Polynomials

In Section 4.1 we saw that irreducible polynomials with linearly inde­
pendent roots are called N-polynomials and the construction of normal
bases is equivalent to the construction of N-polynomials. A natural
problem: is: when is an irreducible polynomial an N-polynomial? This
section is devoted to the discussion of this problem.

A direct way to verify whether an irreducible polynomial f( z) is an
N-polynomial is as follows. Let 0: be a root of f(z). Then 1,0:, ... , o:n-1
form a polynomial basis of Fqn over Fq and 0:, o:q, ... , o:qn-. are all the
roots of f( z) in Fqn. Express each o:q', 0 :s: i :s: n - 1, in the polynomial
basis:

n-1

o:q' = L bi;a:1 , bi; E r;
;=0

(4.13)

If the n X n matrix B = (bi ; ) is nonsingular then 0:,o:q, ... , o:qn-. are
linearly independent, and hence f(z) is an N-polynomial.

This does give us a polynomial-time algorithm to test if f( z) is an
N-polynomial. However (4.13) requires a lot of computations. A natural
question is whether there is a simple criterion to identify N-polynomials.
The answer is yes in certain cases.

Actually, Theorem 4.10 gives us another way to check if an irre­
ducible polynomial is an N-polynomial. Noting that c(u)o: = E~o Cio:q

'

for any polynomial c(z) = E~oCiZi E Fq[z], we can restate Theo­
rem 4.10 as follows.
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Theorem 4.18. Let f(:e) be an irreducible polynomial of degree n over
Fq and a a root of it. Let e" - 1 factor as in (l. 7) and let ~ i ( :e) be as
in (4.8). Then f(:e) is an N-polynomial over Fq if and only if

L~i(a) =1= 0 for each i = 1,2, ... , r,

where L~i (:e) is the linearized polynomial, defined by L~i (:e) = l:?::o t, :e
qi

if~i(:e) = l:?::oti:ei .

In general, checking the conditions in Theorem 4.18 is equivalent to
computing (4.13). But, in certain cases, the conditions in Theorem 4.18
are very simple, as indicated by the following four corollaries.

Corollary 4.19. Let n = p. and f(:e) = z" + al:en
-
l + ... + an be an

irreducible polynomial over Fq. Then f(:e) is an N-polynomial if and
only if al =1= O.

Proof: It follows from Corollary 4.11 by noting that al = -Trqnlq(a)
for any root of f(:e). 0

For an application of Corollary 4.19, see Example 3.4 where an N­
polynomial of degree p" over Fp is constructed for every integer n ~ 1.

Corollary 4.20. Let f(x) = x 2 + alx + a2 be an irreducible quadratic
polynomial over Fq. Then f(:e) is an N-polynomial if and only if al =1= O.

Proof: Note that :e2 - 1 = (:e - 1)(x + 1) and apply Theorem 4.5. 0

Corollary 4.21. Let r be a prime different from p. Suppose that q is
a primitive element modulo r. Then an irreducible polynomial f(:e) =
z" + al:et'-l + . .. + at' is an N-polynomial over Fq if and only if al =1= o.

Proof: Note that

:et' - 1 = (:e - l)(:et'-l + ... +:e + 1).

Since q is primitive modulo r, :et'-l + '" + :e + 1 is irreducible over
Fq • Hence, in (4.7), If'l(:e) = :e - 1 and 1f'2(:e) = :et'-l + .. . + x + 1.
Thus ~l(:e) = 1f'2(:e) and ~2(:e) = If'l(:e) . Let a be a root of f(:e). By
Theorem 4.18, f(:e) is an N-polynomial if and only if

.-1
~l((T)a = a q + ... + aq + a = Trqrlq(a) = -al =1= 0 (4.14)

and
~2((T)a = aq - a =1= O.

But (4.15) is obviously true, since a rt Fq •

(4.15)

o
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Corollary 4.22. Let n =per where r is a prime different from p and q
is a primitive element modulo r. Let f( z) = z" + a1 Z,,-1 + ... + a" be an
irreducible polynomial over Fq and a a root of f( z ). Let u = ~f:~ 1 a q" •

Then f( z) is an N-polynomial if and only if a1 i- 0 and u rJ. Fq •

Proof: In this case, the following factorization is canonical:

z"-1 = (zT-l)P< = (z -I)P«zT-1 + ... + z+1)P<.

Hence
,,-1

Lz i
,

i=O

and

It follows that

ZT-1 + ... + z + 1

(z - 1) C~1 ZiT)

p<-1 p<-1

L z iT+! - L ZiT.
i =O i=O

ZP<T - 1
(z - 1)-z-T-_-l-

and

L-.,(a)

L-.,(a) (Pt
1aq··) q

,=0
uq

- u.

Note that uq
- u i- 0 if and only if u rJ. Fq • The result now follows

immediately from Theorem 4.18. 0

This should have given the reader a flavour of what one can say
about when an irreducible polynomial is an N-polynomial. One could
continue this list with any nand q for which the factorization of z" - 1
over Fq is known. The reader is encouraged to attempt the following
exercise. Try to simplify the conditions you get as much as possible and
compare with the corresponding results, when q = 2, in Pei et al. [19]
and Schwarz [24].

Exercise 4.5. Let p be the characteristic of Fq and r be an odd prime
different from p. Let n = perle, e ~ 0, k ~ 1. Suppose that q is a primi­
tive element modulo r . Characterize all the N-polynomials of degree n
over r;
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4.5 Construction of Normal Bases

The simplest algorithm which comes to mind for constructing a normal
basis is to repeatedly select a random element a in Fqn until {a, aq, ... ,
aqn-,} is a linearly independent set over Fq. This is a probabilistic
polynomial-time algorithm since von zur Gathen and Giesbrecht [10]
have shown that the probability, K" that a is normal over Fq satisfies
K, ~ 1/34 ifn ~ s', and K, > (16Io~n)-1 ifn ~ q4.

A better probabilistic algorithm is based on the following theorem
due to Artin [3].

Theorem 4.23. Let f(z) be an irreducible polynomial of degree n over
Fq and a a root of f(z). Let

f(z)
g(z) = (z - a)f'(a)'

Then there are at least q - n(n - 1) elements u in Fq such that g(u) is
a normal element of Fqn over Fq.

Proof: Let a; be the automorphism () -+ o«, () E Fqn, for i = 1, ... , n.
Then ai = ui(a) is also a root of f(z), 1 ~ i ~ n. Let

and note that UiUj(g(Z)) = Ui+j(g(z)). Then gi(Z) is a polynomial in
Fqn[z] having ak as a root for k i- i and gi(ai) = 1. Hence

Note that

gi(Z)gk(Z) == 0 (mod f(z)), for i i- k. (4.16)

(4.17)

since the left side is a polynomial of degree at most n - 1 and has aI,
a2, ... , an as roots. Multiplying (4.17) by gi(z) and using (4.16) yields

(4.18)

We next compute the determinant, D( z), of the matrix
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From (4.16), (4.17) and (4.18), we see that the entries of DTD modulo
I (z) are all 0, except on the main diagonal, where they are all 1. Hence

(D(Z))2 = det(DTD) == 1 (mod I(z)).

This proves that D(z) is a non-zero polynomial of degree at most n(n ­
1). Therefore D(z) has at most n(n - 1) roots in Fq • The proof is
completed by noting that , by Theorem 1.2, for u E Fq , g(u) is a normal
element of Fqn over Fq if and only if D( u) f o. 0

Now the algorithm is very simple. Choose u E Fq at random,
and let B = g(u). Then test if B is a normal element of Fqn over
Fq • Theorem 4.23 tells us that if q > 2n(n - 1), then B is a normal
element with probability at least 1/2. The entire computation takes
O((n + logq)(nlogq)2) bit operations.

Next we turn to deterministic algorithms for constructing normal
bases for Fqn over Fq. We will assume that an irreducible polynomial
I( z) of degree n over Fq is given. Let 0: be a root of I( z ]. Then
{I, 0:, •• • , o:n-t} is a basis of Fqn over Fq. Thus we may compute the
matrix representation of the Frobenius map a : z -+ zq, z E Fqn .

An obvious deterministic algorithm follows from Theorem 4.12. One
first factors z" - lover Fq to get the factorization (4.7). Then one
computes a basis for each subspace in the decomposition of Fqn in The­
orem 4.12. Thus one obtains a basis for the whole space Fqn over Fq
and normal elements are just those with some coordinates correspond­
ing to Wi being non-zero. One advantage of this algorithm is that it
produces all the normal elements. However it is not efficient, since there
is presently no deterministic polynomial time algorithm known to factor
z" - 1 when p is large, as discussed in Chapter 2.

In the following we will present two deterministic polynomial time
algorithms with the same complexity, due to Bach, Driscoll and Shallit
[5] and Lenstra [15]. In both algorithms we need to find the e-Order
Ords(z) of an arbitrary element B in Fqn. Note that the degree of
Ords]e ) is the least positive integer k such that u"B belongs to the Fq ­

linear span of {uiB I 0 ~ i < k} . If u"B = E~~~ CiUiB for that k, then
Ords(z) = z" - E~~~ CiZi. This shows that Ords(z) can be computed
in polynomial time (in n and logq).

Bach, Driscoll and Shallit's algorithm is very simple. For each
i =0,1, , n - 1, compute the o-Order Ii =Orda;(z) . Then zn -1 =
lcm(fo, III , In-d· Now apply factor refinement [5] to the list of poly-
nomials 10' It, ... , In-t . This will give pairwise relatively prime poly-
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nomials gl, g2, ... , e- and integers eii! °~ i ~ n - 1, 1 ~ j ~ r, such
that

Ii = II gji j
, i = 0,1, .. . , n - 1.

l~i~r

For each i, 1 ~ j ~ r, find an index i(j) for which eii is maximized. Let

_ / 'i(j)jhi - li(i) gi '

and take f3i = hi(u)ai(i). Then

r

f3 Lf3i
i:l

is a normal element of Fqn over Fq. The reason is that the er-Order of f3i
is g;'(j)j for j = 1, ... , r, As gl' g2, ... , gr are pairwise relatively prime,
the er-Order of f3 must be

r

II g,', i (j )j = zn - 1,
i:l

that is, f3 is a normal element. Bach, Driscoll and Shallit show that this
algorithm takes 0((n2+log q)(nlog q)2) bit operations.

Lenstra's algorithm is more complicated to describe, but has more
of a linear algebra flavour. Its complexity is the same as Bach, Driscoll
and Shallit's algorithm. Before proceeding to describe this algorithm,
we need two lemmas.

Lemma 4.24. Let 0 E Fqn with Orde(z) t= zn - 1. Let g(z) = (zn ­
1)/ Ord, (z ). Then there exists f3 E Fqn such that

g(u)f3 = O. (4.19)

Proof: Let "/ be a normal element of Fqn over Fq. Then there ex­
ists I(z) E Fq[z] such that I(uh = O. Since Orde(u)O = 0, we have
(Orde(u)f(u)h = O. So Ord6(z)/(z) is divisible by e" - 1. Therefore
I(z) is divisible by g(z). Let I(z) = g(z)h(z). Then

g(u)(h(uh) = O.

This proves that f3 = h(o h is a solution of (4.19). o
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Lemma 4.25. Let () E Fqn with Ord6(z) =1= z" - 1. Assume that there
exists a solution f3 of (4.19) such that deg(Ord,B(z)) ~ deg(Ord6(z)).

Then there exists a non-zero element 1] E Fqn such that

g(q)1] = 0, (4.20)

where g(z) = (zn - 1)jOrd6(z). Moreover any such 1] has the property
that

deg(Ord6+'1(z)) > deg(Ord6(z)). (4.21)

Proof: Let 1 be a normal element in Fqn over Fq. It is easy to see that
1] = Ord6 (qh =1= 0 is a solution of (4.20). We prove that (4.21) holds
for any non-zero solution 1] of (4.20).

From (4.19) it follows that Orde(z) divides Ord,B(z ), so the hypothe­
sis that deg(Ordj,(z )) ~ deg(Ord, (z )) implies that Ordj,(z) = Ord, (z ).
Hence g(z) must be relatively prime to Orde(z ], Note that Ord'1(z) is
a divisor of g(z), and consequently Orde(z) and Or~(z) are relatively
prime. This implies that

and then (4.21) follows from the fact that 1] =1= o. The proof is now
complete. 0

We are now ready to describe Lenstra's algorithm for finding a nor­
mal element of Fqn over Fq.

Algorithm Construct a normal element of Fqn over Fq.

Step 1. Take any element () E Fqn and determine Orde(z) .

Step 2. If Ord6(z) = zn - 1 then the algorithm stops.

Step 3. Calculate g(z) = (zn -l)jOrdg(z), and then solve the system
of linear equations g(q)f3 = () for {3 .

Step 4. Determine Ord,B(z). If deg(Ord,B(z)) > deg(Orde(z)) then
replace () by f3 and go to Step 2; otherwise if deg(Ord, (z )) ~

deg(Orde(x)) then find a non-zero element 1] such that g(q)1] = 0,
replace () by () +1] and determine the order of the new (), and go
to Step 2.

The correctness of the algorithm follows from Lemmas 4.24 and 4.25,
since with each replacement of () the degree of Orde(x) increases by at
least 1.
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4.6 Comments

In this section we give the sources of the main results presented in this
chapter.

The concept of complexity of a normal basis is due to Mullin, Onysz­
chuk, Vanstone and Wilson [17J; see Chapter 5.

In Section 4.2, Theorem 4.1 is from Pedis [20]. Theorem 4.3 is due
to Pincin [21J, Semaev [26] and Seguin [25]. Exercise 4.2 is due to the
latter two. Theorem 4.5 is from Pedis [20J. Theorems 4.6 and 4.7 are
due to Gao [9J.

In Section 4.3, our standard reference to linear algebra is Hoffman
and Kunze [l1J. It is interesting to note that the proof of Lemma 4.9
usually uses the Artin Lemma as in Lid! and Niederreiter [16J; the proof
given here is due to Gao [9J . Theorem 4.10 is due to Schwarz [23J; when
n is relatively prime to q, it also appears in Pincin [21J and Semaev [26J.
Corollary 4.11 is due to Perlis [20J. Theorem 4.12 is due to Blake, Gao
and Mullin [6J. The normal basis theorem appears in several algebra
textbooks, for example [2, 8, 12, 14, 22, 27J. Corollary 4.14 is due to
Ore [18J, obtained by using linearized q-polynomials. Corollary 4.15
appears in Pincin [21] and Semaev [26]. Exercise 4.4 is from [13]. The­
orem 4.16 is due to Semaev [26], while Corollary 4.17 is from Gao [9].

In Section 4.4, Theorem 4.18 is due to Schwarz [23]; when n is
relatively prime to q, it also appears in Pincin [21J. Corollary 4.19
is due to Perlis [20]. Corollary 4.21 and Corollary 4.22 are due to Pei,
Wang and Omura [19] .

For more constructions of normal bases, the reader is referred to Ash,
Blake and Vanstone [4J , Blake, Gao and Mullin [7], von zur Gathen and
Giesbrecht [10], Wang, Blake and Bhargava [28J.
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Chapter 5

Optimal Normal Bases

With the development of coding theory and the appearance of several
cryptosystems using finite fields, the implementation of finite field arith­
metic, in either hardware or software, is required. Work in this area has
resulted in several hardware and software designs or implementations
[7, 8, 22, 23, 24, 27J, including single-chip exponentiators for the fields
F 2 12T [28J, F2 1•• [3J, and F2m [l1J, and an encryption processor for F2•••

[20J for public key cryptography. These products are based on multipli­
cation schemes due to Massey and Omura [17J and Mullin, Onyszchuk
and Vanstone [18J by using normal bases to represent finite fields and
choosing appropriate algoritluns for the aritlunetic. Of course, the ad­
vantages of using a normal basis representation has been known for
many years (for example, see [12]). The complexity of the hardware de­
sign of such multiplication schemes is heavily dependent on the choice
of the normal bases used. Hence it is essential to find normal bases of
low complexity.

In this chapter, we first briefly examine the Massey-Omura scheme.
We then give some constructions for normal bases of low complexity. In
Section 5.3, we will determine all the optimal normal bases over finite
fields. We conclude in Section 5.4 with an open problem associated with
one class of optimal normal bases.

5.1 Introduction

Let us first look at how the addition and multiplication in Fqn can be
done in general. We view Fqn as a vector space of dimension n over

93
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Fq• Let 00, OIl' . . , 0n-i E Fqn be linearly independent over Fq. Then
every element A E Fqn can be represented as A = I:7':-01 aiOi, ai E Fq.
Thus Fqn can be identified as F;, the set of all n-tuples over Fq, and
A E Fqn can written as A = (ao, all' .. , an-d. Let B = (bo, bi, . . . , bn- i )

be another element in Fqn. Then addition is component-wise and is easy
to implement. Multiplication is more complicated. Let A · B = C =
(co, Cll' .. , Cn-i)' We wish to express the ci's as simply as possible in
terms of the ai's and bi'S. Suppose

n-i
OiQj = L:>~7)01"

10=0

(5.1)

Then it is easy to see that

Ck = L aibjt~7) = ATkBt
, 0::; k ::; n - 1,

i,;

where Tk = (t~7») is an n X n matrix over Fq and B' is the transpose
of B. The collection of matrices {Tk } is called a multiplication table for
Fqn over r;

Observe that the matrices {Tk } are independent of A and B. An
obvious implementation of multiplication in Fqn is to build n circuits
corresponding to the Tk's such that each circuit outputs a component
of C = A· B on input A and B. If n is big then this scheme is im­
practical. Fortunately, there are many bases available of Fqn over Fq.
For some bases the corresponding multiplication tables {Tk } are sim­
pler than others in the sense that they may have fewer non-zero entries
or they may have more regularities so that one may judiciously choose
some multiplication algorithm to make a hardware or software design
of a finite field feasible for large n. One example is the bit-serial multi­
plication scheme, examined in Chapter 1, using a polynomial basis and
its dual basis. In the following we examine the Massey-Omura scheme
which exploits the symmetry of normal bases.

Let N = {0o, OIl ' . . , on-d be a normal basis of Fqn over Fq where
. .

0i = oq·. Then 01 = OHio for any integer k, where indices of ° are re-
duced modulo n. Let us first consider the operation of exponentiation by
q. The element Aq has coordinate vector (an-i,aO,all" .,an - 2)' That
is, the coordinates of Aq are just a cyclic shift of the coordinates of A,
and so the cost of computing Aq is negligible. Consequently, exponen­
tiation using the repeated square and multiply method can be speeded
up , especially if q = 2. This is very important in the implementation of
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cryptosystems as the Diffie-Hellman key exchange and EIGamal cryp­
tosystem (see Chapter 6) where one needs to compute large powers of
elements in finite fields.

Let the t~:) terms be defined by (5.1). Raising both sides of equation
(5.1) to the q-t-th power, one finds that

(t) _ (0) c .. Itii - ti_t,j_t, lor any 0 ~ t, J, {, ~ n - 1.

Consequently, if a circuit is built to compute Co with inputs A and B,
then the same circuit with inputs Aq-l and »: yields the product term
Ct . (Aq-l and Bq-l are simply cyclic shifts of the vector representations
of A and B .) Thus each term of C is successively generated by shifting
the A and B vectors, and thus C is calculated in n clock cycles. The
number of gates required in this circuit equals the number of non-zero
entries in the matrix To. Clearly, to aid in implementation, one should
select a normal basis such that the number of non-zero entries in To is
the smallest possible.

Let
,,-1

aai = E tiiai' 0 ~ i ~ n - 1, tii E r; (5.2)
j=O

Let the n X n matrix (tii ) be denoted by T . It is easy to prove that

(k) _ r all " ktii - ti-i,k-i, lor t, J, •

Therefore the number of non-zero entries in To is equal to the number
of non-zero entries in T . Following Mullin, Onyszchuk, Vanstone and
Wilson [16], we call the number of non-zero entries in T the complexity
of the normal basis N, denoted by CN ' Since the matrices {Tk } are
uniquely determined by T, we call T the multiplication table of the
normal basis N . The following theorem gives us a lower bound for CN '

Theorem 5.1. For any normal basis N of Fqn over Fq, CN 2: 2n - 1.

Proof: Let N = {ao, all "" a,,_l} be a normal basis of Fqn over Fq.
Then b = l:~:~ ak =Tr(a) E Fq • Summing up the equations (5.2) and
comparing the coefficient of ak we find

~ {b' j = 0,
~ t ii = 0, 1 ~ i ~ n - 1.

Since a is non-zero and {(Wi : 0 ~ i ~ n - 1} is also a basis of Fqn over
Fq , the matrix T = (tii ) is invertible. Thus for each j there is at least
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one non-zero t i j • For each j i- 0, in order for each column j ofT to sum
to zero there must be at least two non-zero tij's. So there are at least
2n - 1 non-zero terms in T, with equality if and only if the element a
occurs with a non-zero coefficient in exactly one cross-product term aai

(with coefficient b) and every other member of N occurs in exactly two
such products, with coefficients that are additive inverses. 0

A normal basis N is called optimal if eN = 2n - 1. In the next
section we will give some constructions for optimal normal bases and
some normal bases of low complexity. In Section 5.3, we will determine
all the finite fields for which optimal normal bases exist.

A major concern for a hardware implementation is the intercon­
nections between registers containing the elements A, B and C. The
fanout of a cell is the number of connections to the cell, and should be
as small as possible. Agnew, Mullin, Onyszchuk and Vanstone [2J de­
signed a different architecture with a low fanout, and they successfully
implemented the field F2 593 in hardware (see [20]) . Since this scheme is
more complicated, we omit its description here. We only remark that
the complexity of this scheme also depends on the number of non-zero
entries in T.

5.2 Constructions

We have seen in the last section that normal bases of low complexity
are desirable in hardware or software implementation of finite fields.
Presently we do not have many techniques for finding normal bases of
a required complexity. In this section we will describe a quite general
construction that gives all the optimal normal bases and a large family
of normal bases of low complexity. We first present two constructions
of optimal normal bases due to Mullin, Onyszchuk, Vanstone and Wil­
son [16J.

Theorem 5.2. Suppose n +1 is a prime and q is primitive in Zn+11

where q is a prime or prime power. Then the n nonunit (n + 1)th roots
of unity are linearly independent and they form an optimal normal basis
of Fqn over Fq•

Theorem 5.3. Let 2n +1 be a prime and assume that either
(1) 2 is primitive in Z2n+11 or
(2) 2n+ 1 == 3 (mod 4) and 2 generates the quadratic residues in Z2n+l'
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Then a = 1 +1-1 generates an optimal normal basis of F 2n over F2 1

where 1 is a primitive (2n + l)th root of unity.

Theorem 5.2 and Theorem 5.3 will be proved as consequences of
Theorem 5.5. Here we just examine the multiplication tables of these
bases .

For Theorem 5.2, let a be a primitive (n +1)th root of unity. Then
a is a root of the polynomial z" +...+:e+1. As n +1 is a prime, n +1
divides qn - 1 and all the (n +1)th roots of unity are in Fqn. Since q is
primitive in In+!, there are n distinct conjugates of a, each of which is
also a nonunit (n +1)th root of unity, i.e.,

{
q qn-l} {2 n}N = a,a , . . . ,a = a,a , ... ,a .

Hence N is a normal basis of Fqn over Fq. Note that

and
n

oo" = 1 = -Tr(a) = - Lai
.

i=l

Therefore there are 2n - 1 non-zero terms in all the cross-products, and
thus N is optimal. The matrix T corresponding to this basis has the
following properties: there is exactly one 1 in each row, except for one
row where all the n entries are -1 's; all other entries are D's. We call
any optimal normal basis obtained by this construction a type I optimal
normal basis.

For Theorem 5.3, it will be proved that a E F2 n and a, a 2
, • • • , a 2 n

-
1

are linearly independent over F2 • So N = {a, a2
, ••• , a 2n

-
1

} is a normal
basis of F 2 n over F2 • By the conditions in Theorem 5.3, it is easy to see
that

N = b +1 -1,1 2 +1-2
, • • • ,1n +1-n

} .

The cross-product terms are

("'( +1-1 )("'(i +,-i)
(1(Hi) +1-(1+i») +("'((I-i) +1-(1-i)),

which is a sum of two distinct elements in N except when i = 1. If
i = 1, the sum is just a 2 which is in N. Thus N is an optimal normal
basis of F2 R over F2 • The matrix T corresponding to this basis has the
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following properties: there are exactly two 1's in each row, except for
the first row in which there is exactly one 1; all other entries are O's. We
call any optimal normal basis obtained by this construction a type II
optimal normal basis.

We next look at the minimal polynomials of these optimal normal
bases. For a type I optimal normal basis, its minimal polynomial is
obviously zn +...+ Z +1, which is irreducible over Fq if and only if
n +1 is a prime and q is primitive in Zn+l' For the minimal polynomial
of a type II optimal normal basis, we consider a more general situation.
Let n be any positive integer and i a (2n +1)th primitive root of unity
in an arbitrary field. Let

In(z)
n

II(z - ii - i-i).
i=1

(5.3)

(Note that In(z) is the minimal polynomial of ex = i +-c: under the
conditions of Theorem 5.3.) We will find an explicit formula for In(z).
For any 0 ~ j ~ n, ii is also a (2n +1)th root of unity. Hence

(5.4)

By Waring's formula, for any positive integer k,

Let
[k/2] k (k _')1, • k 2 '

Dk(z) = L k _ ' , (-1)'z - "
;=0 1, 1,

which is a special kind of Dickson polynomial or Chebychev polynomial.
Then by (5.4), we see that i i +i-i is a root of Dn+l(z) - Dn(z) for
j = 0,1, .. . , n. As Dn+l(z) - Dn(z) has degree n+ 1 and ii+(;i)-1 are
different for j = 0,1, .. . ,n, we see that Dn+1(z)-Dn(z) = In(z){z-2).
Therefore

We point out that In[z ) is irreducible over Fq if and only if the multi­
plicative group Z;n+l is generated by q and -1, and In(z) is irreducible
over the field of rational numbers whenever 2n +1 is a prime.
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Exercise 5.1. Prove that the polynomials fn( z) in (5.3) satisfy the
recurrence:

In practical applications, we need optimal normal bases over F2 • It
would be nice if we had simple rules to test the hypotheses in Theo­
rems 5.2 and 5.3. In this regard, the following results (see [14J, p. 68)
are useful:

(a) 2 is primitive in Z, for a prime r if r = 4s +1 and s is an odd prime.

(b) 2 is primitive in Z, for a prime r if r = 2s +1 where s is a prime
congruent to 1 modulo 4.

(c) 2 generates the quadratic residues in Z, for a prime r if r = 2s +1
where s is a prime congruent to 3 modulo 4.

For convenience, we list in Table 5.1 all the values of n ~ 2000 for
which there is an optimal normal basis of F2n over F2 • In the table, *
indicates the existence of a type I optimal normal basis, t indicates the
existence of both type I and type II optimal normal bases, otherwise
there exists only a type II optimal normal basis .

The constructions in Theorems 5.2 and 5.3 are generalized in [4J and
further in [26J to construct normal bases oflow complexity. To establish
this result, we first prove a lemma.

Lemma 5.4. Let k, n be integers such that nk + 1 is a prime, and let
the order of q modulo nk +1 be e. Suppose that gcd(nk / e, n) = 1. Let r
be a primitive k-th root of unity in Znk+l' Then every non-zero element
r in Znk+l can be written uniquely in the form

r = r i qi , 0 ~ i ~ k - 1, 0 ~ j ~ n - 1.

Proof: Let el = nk]«. There is a primitive element g in Z~k+l such
that q = g". As the order of g is nk and the order of r is k, there is an
integer a such that

r = gM, gcd(a, k) = L

Now suppose that there are 0 ~ i, s ~ k - 1, 0 ~ i. t ~ n - 1, such that

riqi == r'qt (modnk+1),
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2t 113 293 473 676* 873 1110 1310 1533 1790
3 119 299 483 683 876* 1116* 1323 1539 1791
4* 130* 303 490* 686 879 1118 1329 1541 1806
5 131 306 491 690 882* 1119 1331 1548* 1811
6 134 309 495 700* 891 1121 1338 1559 1818
9 135 316* 508* 708* 893 1122* 1341 1570* 1821
10* 138* 323 509 713 906* 1133 1346 1583 1829
11 146 326 515 719 911 1134 1349 1593 1835
12* 148* 329 519 723 923 1146 1353 1601 1838
14 155 330 522* 725 930 1154 1355 1618* 1845
18t 158 338 530 726 933 1155 1359 1620* 1850
23 162* 346* 531 741 935 1166 1370 1626 1854
26 172* 348* 540* 743 938 1169 1372* 1636* 1859
28* 173 350 543 746 939 1170* 1380* 1649 1860*
29 174 354 545 749 940* 1178 1394 1653 1863
30 178* 359 546* 755 946* 1185 1398 1659 1866t
33 179 371 554 756* 950 1186* 1401 1661 1876*
35 180* 372* 556* 761 953 1194 1409 1666* 1833
36* 183 375 558 765 965 1199 1418 1668* 1889
39 186 378t 561 771 974 1211 1421 1673 1898
41 189 378* 562* 772* 975 1212* 1425 1679 1900*
50 191 386 575 774 986 1218 1426* 1685 1901
51 194 388* 585 779 989 1223 1430 1692* 1906*
52* 196* 393 586* 783 993 1228* 1439 1703 1P23
53 209 398 593 785 998 1229 1443 1706 1925
58* 210t 410 606 786* 1013 1233 1450* 1730 1926
60* 221 411 611 791 1014 1236* 1451 1732* 1930*
65 226* 413 612* 796* 1018* 1238 1452* 1733 1931
66* 230 414 614 803 1019 1251 1454 1734 1938
69 231 418* 615 809 1026 1258* 1463 1740* 1948*
74 233 419 618t 810 1031 1265 1469 1745 1953
81 239 420* 629 818 1034 1269 1478 1746* 1955
82* 243 426 638 820* 1041 1271 1481 1749 1958
83 245 429 639 826* 1043 1274 1482* 1755 1959
86 251 431 641 828* 1049 1275 1492* 1758 1961
89 254 438 645 831 1055 1276* 1498* 1763 1965
90 261 441 650 833 1060* 1278 1499 1766 1972*
95 268* 442* 651 834 1065 1282* 1505 1769 1973
98 270 443 652* 846 1070 1289 1509 1773 1978*
99 273 453 653 852* 1090* 1290* 1511 1778 1983
100* 278 460* 658* 858* 1103 1295 1518 1779 1986*
105 281 466* 659 866 1106 1300* 1522* 1785 1994
106* 292* 470 660* 870 1108* 1306* 1530* 1786* 1996*

Table 5.1: Values of n ::; 2000 for which there exists an optimal normal
basis in F2 R .
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i.e.,

T
i
- . = qt-i (mod nk + 1),

gna(i-.) = g",(t-j) (mod nk + 1).

Then

101

na(i - s) == e1(t - j) (mod nk). (5.5)

As gcd(n, e1) = 1, equation (5.5) implies that n I (t - j). Hence t = j.
Thus from (5.5),

a(i-s) == 0 (modk).

But gcd( a, k) = 1, so k I (i - s). Therefore i = s, This proves that

Tiqi (modnk+1), i=0,1, . . . ,k-1, j=0,1, .. . ,n-1

are all distinct. As Tiqi ¢ 0 (mod nk + 1), every non-zero element in
I n k+ 1 can be expressed uniquely in the required form. 0

Theorem 5.5. Let q be a prime or prime power, and n, k be positive
integers such that nk +1 is a prime not dividing q. Let f3 be a primitive
(nk + 1) th root of unity in Fqn.. Suppose that gcd( nk / e, n) = 1 where
e is the order of q modulo nk +1. Then, for any primitive k-th root of
unity T in I n k+1,

k-1

a = Lf3T
'

i=O

generates a normal basis of Fqn over Fq with complexity at most (k +
l)n - k, and at most kn - 1 if k == 0 (mod p), where p is the charac­
teristic of Fq •

Proof: We first prove that a E Fqn. Since qnk == 1 (mod nk + 1), qn

is a k-th root of unity in Ink+!' Thus there is an integer l such that
qn = T L• Then

k-1

Lf3T
' = a.

i=O

Therefore a is in Fqn.

We next prove that
Fq • Suppose that

n-1

L Aia q'
i=O

q qn-'a,a , ... ,a

n-1 k-1

L x, L f3T j
q'

i=O i=o

are linearly independent over
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Note that there exist unique Ui E Fq , i = 1,2, .. . , kn such that the
following holds for all (2n +1)th roots 1 of unity:

since, by Lemma 5.4, Ti qi modulo nk +1 runs through Z~k+l for j =
0,1, ... , k -1 and i = 0,1, ... ,n-l. Let f(z) = :L:;~~l Ui+lZi . For any
1 ::; r ::; nk, there exist integers U and v such that r = TUq" . As f3T is
also a (nk +1)th primitive root of unity,

Therefore f3T is a root of f( z) for r = 1, 2, ... , nk, whence

divides f( z). But f( z) has degree at most nk - 1, and so this is impos­
sible. Thus a, a q , ••• , a qn

- . must be linearly independent over Fq , and
thus form a normal basis of Fqn over Fq.

Next we compute the multiplication table of this basis. Note that
for 0 ::; i ::; n - 1,

U=o,,=o

k-lk-lL Lf3T" {l +T"- Uq' )

1£=0,,=0

(5.6)

There is a unique pair (vo, i o), 0 ::; Vo ::; k - 1,0 ::; i o ::; n - 1 such that
1 + T"oqi o =0 (mod nk +1). If (v,i) =1= (vo,io), then 1 +T"qi =T"'qi

(mod nk + 1), for some 0 ::; w ::; k - 1,0 ::; j ::; n - 1, and

k-lL f3TU{l+T" q')

u=o
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If (v, i) = (vo, io), then

10:-1L f3 TU( l + T' q; ) = k,
u=o

103

which is 0 if k = 0 (mod p). So for all i t- i o, the sum (5.6) is a sum
of at most k basis elements. Therefore the complexity of the basis is at
most (n-l)k+n = (k+ 1)n-k. If k =0 (mod p) and i = i o, then (5.6)
is a sum of at most k - 1 basis elements. Therefore if k =0 (mod p)
then the complexity of the basis is at most (n - l)k + k - 1 = kn - 1.
The proof is complete. 0

We remark that the 0: in Theorem 5.5 has classical origins and is
called a Gauss period [25, 19J. Gauss periods are used to realize the
Galois correspondence between subfields of a cyclotomic field and sub­
groups of its Galois group. Gauss periods are also useful for integer
factorization [5J, and the construction of irreducible polynomials [1J.

As special cases of Theorem 5.5, when k = 1 we obtain Theorem 5.2,
and when k = 2 and q = 2 we have Theorem 5.3. When q is odd, k = 2,
it is easy to see that the complexity of the normal basis generated by the
0: in Theorem 5.5 is exactly 3n - 2. The exact complexity is in general
difficult to determine. Here we just quote the following result from [4J,
without proof.

Theorem 5.6. Let q = 2. Then the normal basis generated by the a of
Theorem 5.5 has complexity

(a) 4n - 7 if k = 3,4 and n > 1;

(b) 6n - 21 if k = 5, n > 2, or k = 6, n > 12;

(c) 8n - 43 if k = 7, n > 6.

Finally we mention two explicit constructions for normal bases of
complexity at most 3n - 2 from [6J.

Theorem 5.7. Let p be the characteristic of r; For any f3 E F; with
Trqlp(f3 ) = I, the polynomial

P p -1 f3p-1
X - X -

is irreducible over Fq and its roots form a self-dual normal basis of
complexity at most 3p - 2 of Fqp over Fq • The multiplication table of
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r: -ep_l -ep _ 2 -el
el ep_l

where el = f3, ei+l = <p{ei) for i ~ I, <p{z) = f3z/{z +f3) , and r " = 1 if
p::J 2 and r " = 1 - f3 if p = 2.

Theorem 5.8. Let n be any divisor of q - 1. Let f3 E Fq with order t
such that gcd{n, (q - 1)/t) = 1. Let a = f3(q-l)/n. Then the polynomial

zn - f3{z - a +It

is irreducible over Fq and its roots form a normal basis of Fqn over Fq
of complexity at most 3n - 2. The multiplication table of this normal
basis is

where el = a, ei+l = <p{ei) for i > I , <p{z) = az/{z + 1) and r : is
uniquely determined by n, a and f3.

We point out that the required f3 in Theorem 5.7 is easy to find.
If q = p is a prime then any nonzero element () in Fp can be taken to
be f3. If q = pm then, for any element () in Fq of degree mover Fp , at
least one of 1, (), ... , ()m-l has nonzero trace in Fp • The reason is that
1, (), ... , ()m-l form a basis of Fq~ over Fp and the trace function is a
nonzero linear transformation of Fq over Fp • For Theorem 5.8, the f3
can be taken to be a primitive element in Fq or any element that is an
r-th nonresiduein Fq for each prime factor r of n. For construction of
r-th nonresidues in Fq , the reader is referred to Theorem 3.31.

5.3 Determination of all Optimal Normal Bases

We have seen two constructions of optimal normal bases in the last
section. A natural question is whether there are any other optimal
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normal bases. In [16], complete computer searches were performed for
optimal normal bases in F2n, 2 ~ n ~ 30, and no new optimal normal
bases were found. This evidence led the authors to conjecture that if n
does not satisfy the criteria for Theorem 5.2 or Theorem 5.3, then F 2n

does not contain an optimal normal basis . Lenstra [13] proved that this
is indeed true. If the ground field Fq is not F2 we do have other optimal
normal bases. Suppose N is an optimal normal basis of Fqn over Fq and
a E Fq • Then aN = {aa : a E N} is also an optimal normal basis of
Fqn over Fq. The two bases N and aN are said to be equivalent. In
addition, by Lemma 4.2, for any positive integer v with gcd( v, n) = 1,
N remains a basis of Fqnw over Fq•. Therefore N is an optimal normal
basis of Fqnw over Fq• provided that gcd(v, n) =1. The problem now is
whether there are any other optimal normal bases. Mullin [15] proved
that if the distribution of the nonzero elements of the multiplication
table of an optimal normal basis is similar to a type I or a type II
optimal normal basis then the basis must be either of type I or type II.
Later Gao [9] proved that any optimal normal basis of a finite field must
be equivalent to a type I or a type II optimal normal basis. Finally, Gao
and Lenstra [10] extended the result to any finite Galois extension of an
arbitrary field.

In this section we prove that all the optimal normal bases in finite
fields are completely determined by Theorems 5.2 and 5.3. The proof
given here is a combination of the proofs in [9] and [10]. We first prove
some properties that hold for any normal basis.

Let N = {ao, all ... , an-I} be a normal basis of Fqn over Fq with
ai = a q' . Let

n-l

Ltiiai' 0 ~ i ~ n -1, tii E r;
i =O

Let T = (tii ). Raising (5.7) to the q-i-th power, we find that

tii = Li,j-i, for all 0 ~ i,i ~ n - 1.

(5.7)

(5.8)

From Chapter 1, we know that the dual of a normal basis is also a
normal basis. Let B = {,Bo, ,01, ... , ,on-I} be the dual basis of N with
,Bi = ,Bqi , 0 ~ i ~ n - 1. Suppose that

n-l

af3i = L dii f3i ' 0 ~ is; n - 1, dii E r; (5.9)
i =O
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We show that
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dij = t ji, for all 0 ::; i, j ::; n - 1, (5.10)

i.e., the matrix D = (dij) is the transpose of T = (t ij). The reason is as
follows. By definition of a dual basis, we have

T ( (./) {o, if i i= t.
r ail-'j = 1 'f' _ .

,It - J.

Consider the quantity Tr(a(3iak) ' On the one hand,

On the other hand,

n-1
= I>kjT r (a j(3i ) = tki ·

j=O

This proves (5.10).

Theorem 5.9. Let N = {a, a q, ... , o:q"-'} be an optimal normal basis
of Fqn over Fq. Let b = Trq"lq(a), the trace of a in Fq. Then either

(i) n + 1 is a prime, q is primitive in Zn+1 and -alb is a primitive
(n +1)th root of unity; or

(ii) (a) q = 2" for some integer v such that gcd(v,n) = 1,
(b) 2n +1 is a prime, 2 and -1 generate the multiplicative group

Z;n+11 and
(c) alb = (+ (-I for some primitive (2n + l)th root ( of unity.

Proof: Let ai = a
qi,

0 ::; i ::; n - 1, and {(30, (31" .. , (3n-1} be the dual
basis of N with (3i = s«. We assume (5.7) and (5.9) with the (i, j)-entry
of D denoted by d(i,j). Then, by (5.8) and (5.10), we have

d(i,j) = d(i - i, -j), for all 0 ::; i,j ::; n - 1. (5.11)

We saw from the proof of Theorem 5.1 that each row of D (or column
ofT) has exactly two non-zero entries which are additive inverses, except
the first row which has exactly one non-zero entry with value b. This
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is equivalent to saying that for each i # 0, af3i is of the form af3/c - af3l
for some a E Fq and integers 0 ::; k, l ::; n - 1, and 0.130 = bf3m for some
integer 0 ::; m ::; n - 1. Replacing a by -alb and 13 by -bf3 we may,
without loss of generality, assume that Tr(a) = -1. Then we have

(5.12)

Also, from Tr(a)Tr(f3) = L:i,i aif3j = L:/c Tr(af3/c) = 1 we see that we
have Tr(f3) = -1.

If m = 0 then from (5.12) we see that a = -1, so that n = 1, a
trivial case. Let it henceforth be assumed that m # o.

We first deal with the case that 2m == 0 (mod n). Raising (5.12) to
qm-th power we see that

-130

Therefore, we have

1
n-l

-Tr(a) = L -ai'
i=O

This shows that d(i, m) = -1 for all i =0, ... , n - 1. This implies that
for each i # 0 there is a unique i* # m such that

If i # j then 0.13; i af3j, so i* i j*. Therefore i ~ t: is a bijective
map from {O, 1, ... , n -I} - {O} to {O, 1, ... , n - I} - {m} . Hence each
i* # m occurs exactly once, and so

aai" ai for i" # m,

aam 1.

It follows that the set {I} U {ai Ii = 0,1, . .. , n - I} is closed under
multiplication by a. Since it is also closed under the Frobenius map, it
is a multiplicative group of order n + 1. This implies that a n +1 = 1,
and we also have a # 1. Hence a is a zero of z" +...+z +1. Since
a has degree n over Fq , the polynomial zn +...+z +1 is irreducible
over Fq • Therefore n + 1 is a prime number. This shows that we are in
case (i) of Theorem 5.9.
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(5.13)

For the remainder of the proof we assume that 2m ¢ 0 (mod n).
By (5.12) we have d(O, i) = -lor 0 according as i = m or i ::j; m. Hence
from (5.11) we find that

d(i, i) = { 0-
1, ~ff~: -m,
,It r: -m.

Therefore a{3-m has a term -{3-m. As -m ::j; 0, there exists 0 ::; L ::;
n - 1 such that

a{3-m = {3t - {3-m, l::j; -m.

We next prove that the characteristic of Fq is 2. Note that

(5.14)

On the other hand,

a(am{30) a(a{3_m)q~ = a({3t - {3-mF~

= a{3t+m - a{3o = a{3t+m +13m.

Since am(a{3o) =a( am{3o) we obtain

(5.15)

Now we compute aat{3-m in two ways. To this purpose, note that
d(-m - l, -l) = d(-m, l) = 1, by (5.14). Since l ::j; -m implies that
-m -l::j; 0, we may assume that

a{3-m-t = {3-t - {3i

for some j (j. {-l, -m -l} (hence j +l ::j; 0, -m). On the one hand,

at(a{3-m) at({3t - {3-m) = (a{3o - a{3_m_t)l

= (-13m - {3-t +{3i)l = -13m+! - {3o +{3i+!'

On the other hand,

a( a{3_m_tF
L

= a({3-t - {3i )qL

a{3o - a{3j+t = -13m - a{3i+!'

We have
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As j + l of -m, [3j+l does not appear in a[3i+L by (5.13). Thus -[3i+L
must cancel against one of the last two terms.

If -[3i+L +[3m+L = 0 then j +L=m + l and thus a[3m+L =[30 - [3m'
But by (5.15) , a[3m+L = [32m - [3m' Therefore [30 = [32m and 2m == 0
(mod n) , contradicting the assumption.

Consequently, - [3i+L - [3m = 0 and a[3i+L = [3m+L + [30' The first
relation implies that j +l = m and - 2 = O. Therefore the characteristic
of Fq is 2, and

(5.16)

From now on we assume that q = 2V for some integer v . The equa­
tions (5.12) and (5.14) can be rewritten as

a[3

a[3-m

(5.17)

(5.18)

Raising (5.18) to qm-th power and comparing the result to (5.16),
we find a m[3 = a[3m , which is the same as

(5.19)

Multiplying (5.19) and (5.17) we find that a 2 = am = aq~ . By induction
on k one deduces from this that aq~" = a 2" for every non-negative
integer k. Let k = n] gcd(m, n). Then a 2

" = a, which means that a
is in F2" and thus of degree at most k ~ n over the prime field F2 of
Fq • As a has degree n over Fq , it has degree at least n over F2 • Hence
k must equal to n, and thus gcd( m, n) = 1. Also from the fact that a
has the same degree over F2 and Fq for q = 2v

, we see immediately that
gcd(v, n) = 1 and the conjugates of a over Fq are the same as those over
l:' I 2 2n

-
1

.l'2, name y a , a , .. . , a

Let ml be a positive integer such that mml == 1 (mod n). Then by
repeatedly raising (5.19) to qm-th power we have

{Note that (al(3)qn = a][3.) This implies that a][3 E Fq, and since
Tr(a) =Tr([3) = - 1 we have in fact a =[3 . Thus by (5.10) we see that

d{ i, j) = d(j, i) for all 0 ~ i, j ~ n - 1. (5.20)
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Let now ( be a zero of Z2 - O:Z +1 in an extension Fq.n of Fqn, so that
( + (-1 = 0:. The multiplicative order of ( is a factor of s" - 1 and
is thus odd; let it be 2t + 1. For each integer i, write Ii = (i + (-i,

so that 10 = 0 and 11 = 0:. It can be seen directly that I i = Ii if
and only if i == ±j (mod 2t +1). Hence there are exactly t different
non-zero elements among the I i, namely 11, 12, ••• , It. Each of the n
conjugates of 0: is of the form 0:2; = (2; +(-2; =12; for some integer j ,
and therefore occurs among the Ii' This implies that n ::; t , We show
that n = t by proving that, conversely, every non-zero Ii is a conjugate
of 0:. This is done by induction on i . We have 11 = 0: and 12 = 0:2, so
it suffices to take 3 ::; i ::; t. We have

where by the induction hypothesis each of li-2' li-1 is conjugate to 0:,

and li-3 is either conjugate to 0: or equal to zero. Thus when 0:,i-2

is expressed in the normal basis {0:2'li = O,I, ... ,n -I}, then li-1

occurs with a coefficient 1. By (5.20), this implies that when 0:,i-1 is
expressed in the same basis, l i-2 likewise occurs with a coefficient 1.
Hence from the fact that f3 = 0: and li-1 :f 0: we see that 0:,i-1 is
equal to the sum of li-2 and some other conjugate of 0:. But since we
have 0: • l i-1 = li-2 + Ii, that other conjugate of 0: must be Ii' This
completes the inductive proof that all non-zero Ii are conjugate to 0:

and that n = t .

From the fact that each non-zero Ii equals a conjugate 0:2; of 0: it
follows that for each integer i that is not divisible by 2n +1, there is an
integer j such that i == ±2i (mod 2n+ 1). In particular, every integer i
that is not divisible by 2n +1 is relatively prime to 2n +1, so 2n +1 is a
prime nwnber, and Z;n+1 is generated by 2 and -1. Thus the conditions
(a) and (b) of the theorem are satisfied. All assertions of (ii) have been
proved. 0

5.4 An Open Problem

For cryptographic purposes it is important to have either a primitive
element or an element of high multiplicative order in F2 n . Table 5.2
indicates that the type II optimal normal basis generators have high
multiplicative orders in general and are quite often primitive. This
phenomenon was also noticed by Rybowicz [21].
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n Order n Order n Order n Order
(q =2n

) (q =2n
) (q =2n

) (q =2n
)

3 q -1 90 q-1 231 q-1 371 q-1
5 q -1 95 q-1 233 q-1 375 q-1
6 q -1 98 (q - 1}/3 239 q-1 378 (q - 1}/3
9 q-1 99 (q-1}/7 243 q-1 386 q-1

11 q -1 105 q-1 245 q-1 393 (q - 1}/ 7
14 q -1 113 q -1 251 q -1 398 q-1
18 (q - 1}/3 119 q -1 254 q -1 410 (q - 1}/11
23 q -1 131 q-1 261 q -1 411 q-1
26 q-1 134 (q - 1}/3 270 (q - 1}/7 413 q-1
29 q -1 135 q-1 273 q -1 414 (q - 1}/3
30 q -1 146 q-1 278 (q-1}/3 419 q-1
33 q -1 155 q-1 281 q -1 426 q-1
35 q-1 158 q-1 293 q - 1 429 q-1
39 q-1 173 q-1 299 q-1 431 q-1
41 q-1 174 (q - 1}/3 303 q-1 438 (q - 1}/3
50 (q - 1}/3 179 q-1 306 q-1 441 q-1
51 q-l 183 q-1 309 q-1 443 q-1
53 q - 1 186 (q - 1}/3 323 q-1 453 q-1
65 q -1 189 q-1 326 q - 1 470 q-1
69 q-1 191 q-1 329 q -1 473 q-1
74 q-1 194 (q - 1}/3 330 q - 1 483 q-1
81 q-1 209 q-1 338 (q - 1}/3 491 q -1
83 q -1 210 q-1 350 (q - 1}/3 495 ?
86 q-1 221 q-1 354 (q - 1}/3 509 q-1
89 q-1 230 q-1 359 q -1

Table 5.2: Order of type II optimal normal basis generators in F2n .
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Research Problem 5.1. Let n be a positive integer and ( a (2n+ l)th
primitive root of unity in some extension of F2 • Determine the order of
a = (+ (-1 .

We are interested in the case where 2n +1 is prime and Z;" +1 is gen­
erated by 2 and -1, i.e., when a generates an optimal normal basis of
F2 R over F2 • Significant progress will have been made if one can deter­
mine the exact order of a without knowing the complete factorization
of 2" - 1 for large n, say n > 509. Note that this problem is related to
Research problem 3.1 in Chapter 3.
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Chapter 6

The Discrete Logarithm
Problem

6.1 Introduction

Let G be a finite cyclic group , and let a be a generator for G. Then

G = {a i I 0 ~ i < #G} ,

where #G is the order of G. The discrete logarithm (logarithm) of an
element {3 to the base a in G is an integer z such that a'" = {3. If z is
restricted to the interval 0 ~ :c < # G then the discrete logarithm of {3
to the base a is unique. We typically write :c = log" {3.

The discrete logarithm problem is to find a computationally feasible
method to find logarithms in a given group G.

To compute logarithms in a finite group G, several methods come to
mind immediately. One is to precompute a table of logarithms once and
for all time. Another is to successively compute consecutive powers of
a and compare with (3 until a match is found. The following examples
illustrate this.

Example 6.1. If G = F;, the multiplicative group of the integer mod­
ulo 7, and we select a =3, then the following list is easily constructed:
log31 = 0, log32 =2, log33 =1, log34 =4, log35 =5, log36 = 3. 0

Example 6.2. Let G = F{6 where FI 6 is defined by the primitive irre­
ducible polynomial f(:c) = 1 + :c + :c4 in F2 [:c]. If f( a ) = 0 then a is a

115
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generator for G. If f3 = 1+a +a 3 then log, f3 can be found by comput­
ing successive powers of a: a 2 = a2

, a 3 = a3
, a 4 = 1 +a, as = a +a2 ,

a 6 = a 2 +a 3
, a 7 = 1 +a +a 3

• Thus log; f3 = 7. 0

Both of these methods are impractical when #G is sufficiently large. For
example, if #G is approximately 10100 and one had a machine which
could compute a billion consecutive powers of a and compare with f3
each second, then it would require about 1083 years to find a single
logarithm.

An interesting, but not very practical, result for computing loga­
rithms in a finite field is to exhibit polynomial representations for the
log function. We begin this discussion by proving that any function 1
from Fq to Fq can be represented by a polynomial over Fq •

Assume that I(;c) = L:?';;-~ a;;c;, where the a;'s are to be determined,
and let a be a generator for Fq • Substituting e = 0 and ;c = ai,
o::; j ::; q - 2, gives a system of q equations in q unknowns which can
be seen to have a unique solution. This proves the assertion.

Now, let q = pm and for each i, 0 ::; j ::; q - 2, let

m-1
. - ~,(j); ,(j) E{OIl}J - L.J"'; p, "'; " ... ,p-.

; =0

Viewing Fq as a vector space over Fp , we can represent the elements of
r, as m-tuples over Fp • If l(ai ) = i, 0 ::; j ::; q - 2, is the log function
then define

I(ai ) = (,(j) ,(j) ,(j») E F
"'0 , "'1 , • •• , "'m-1 q

1(0) (p - 1,p - 1, ... ,p - 1) E Fq •

Since 1 can be represented by a polynomial function, it now follows that
the log function can also be represented as a polynomial function.

Mullen and White [27] have given another more explicit formulation
of the log function as a polynomial. The description of this result which
we present is due to Niederreiter [28].

As above , let a be a generator for Fq , q =pm, and let y =log; a for
some a E Fq , a i- O. Then we can write

m-1

y L y;p\ Y; E {O, 1, .. . , p - I}.
;=0
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If we can find Yo, then let y = Yo +pt and we have

b = (a-YOa)1/P = (aPt)1/P = at.
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Repeating the procedure determines Y1, Y2,"" Ym-l' Therefore, it suf­
fices to show that we can find a polynomial representation for Ymodulo
p.

Niederreiter's proof requires the following straightforward results .
(Note that 0° = 1.)

Lemma 6.1. For integers j 2: 0 we have

L j = {o, if j = 0 or j ¢ 0 (mod q - 1),
, -1, otherwise.

'rEF.

Lemma 6.2. If q 2: 3 and k is any integer with 0 :S k :S q - 1, then

,IeL - = k EFp •
'r EF. 1-,
'r;tl

Proof: For k = 0 the result is straightforward. Let

,Ie
Sle = L -1--' k =0,1, ... , q - 1.

'rEF. -,
'r;tl

For 1 :S k :S q - 1 we have

Ie

s, = L(S; - S;-d
;=1

Ie

- L L ,;-1

;=1 'rEF.
'r;t1

Ie

- 2:(-1).
;=1

Ie (( ))- 2: 2: ,;-1 -1
;=1 'rEF.

The last equation follows from Lemma 6.1. Finally, Sle =- I:7=1( -1) =
k, and since k is an integer, we have k E Fp • 0

We now state and give Niederreiter's proof of the Mullen-White
result .
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Theorem 6.3. Let a be a generator for Fq • For any a = a Y E F;,
s >3, we have

q-2 a i

y = - 1 +~ a- i _ 1 (mod p).
•=1

Proof: If a = a Y and , = a i then ,Y = a
i y = ai

• Take k = 1 +Y in
Lemma 6.2 to get

,l+YL - = l+y (modp)
'YEF, 1-,
'Y;tO,l

or

y

o

6.2 Applications

Applications in coding theory typically only use finite fields with a rel­
atively small number of elements. In these situations the table method
may be preferable. One such method of particular interest is the Zech's
logarithm table. Let a be a generator for the finite field Fq and define
a CO = O. Construct a table of pairs (i, z(i)) such that 1 + a i = az(il,
i E {O, 1, ... , q - 2} U{oo}. To illustrate we consider an example.

Example 6.3. Consider the field F32 defined by the primitive irre­
ducible f(:e) = 1+:e2 +:e5 in F2 [:e] and let a be a root of this polynomial.
The Zech's logarithm table for this field is given in Table 6.1.

Using this table addition in the field is easily performed. For example

o
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i z(i) i z(i) t z(i)
0 00 11 19 22 7
1 18 12 23 23 12
2 5 13 14 24 15
3 29 14 13 25 21
4 10 15 24 26 28
5 2 16 9 27 6
6 27 17 30 28 26
7 22 18 1 29 3
8 20 19 11 30 17
9 16 20 8 00 0

10 4 21 25

Table 6.1: Zech's logarithm table for F3 2 •
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In the most practical case of q = 2m
, finding roots of quadratic

and cubic polynomials over Fq is relatively simple if we have a Zech's
logarithm table for the field. Any quadratic

a:z: 2 + bs: +c =0, a, b, c E Fq , a:j; 0, b:j; 0

can be transformed into a quadratic of the form

y2 + y +d = 0

by the substitution z = (b/a)y. If y = a i is a root of (6.1) then

a 2i + a t +d = 0 or a,+z(i) = d.

(6.1 )

If d = a" then i +z(i) == k (mod q - 1) and the roots of (6.1) can be
found by adding entries in the table. Similarly, any cubic equation

a:z:3 + b:z:2 + cz +d =0, a, b, c, d E Fq , a:j; 0, b2 +ac :j; 0

can be put in the form

by the substitution

o (6.2)

b (b2 +ac)1/2- + y.
a a
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If y = a i is a root of equation (6.2) and e = a k then

Using the Zech's logarithm table we check for

i + z(2i) = k (mod q - 1)

or, equivalently (since z(2i) = 2z(i)),

i+2z(i)=k (modq-l).

For a more detailed discussion of Zech's logarithm tables the reader is
referred to [19] and [37]. For large fields these methods are, of COUIse,
infeasible and one would resort to one of the root finding methods de­
scribed in Chapter 2.

If finding logarithms of elements in a finite cyclic group G is infea­
sible then we can use G as the basis for several cryptographic schemes.
We briefly describe two of these.

In 1976, Diffie and Hellman [13] in their seminal paper on public
key cryptography described a method for two people (A and B) to
share a common piece of information by exchanging information over
an insecure communication line. The protocol can be described in terms
of an arbitrary finite cyclic group and proceeds as follows: (It is public
knowledge that A and B are doing computations in G and that a is a
generator. )

(i) A generates a random integer a, computes a Cl in G, and sends a Cl

to B.

(ii) B generates a random integer b, computes a" in G, and sends a"
to A.

(iii) A receives a" and computes (a")CI .

(iv) B receives a Cl and computes (aCl)".

A and B now share the common group element a Cl" . Note that someone
listening to the communication channel might recover both a Cl and a"
but it is widely believed that the information is in general not enough to
find aCl" given that finding logarithms is infeasible. Some authors have
called this the Diffie-Hellman problem. For clarity, we restate it.

Given a finite cyclic group G and a generator a , the Diffie-Hellman
problem is to find an efficient algorithm to compute aCl" from a Cl and a".
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It is clear that a solution to the discrete logarithm problem in G
provides a solution to the Diffie-Hellman problem, but the converse is
unknown. There are a few very specialized results on the converse (see
[12]) but little is known for the general problem.

In 1985, T. ElGamal [14] described a method to exploit the in­
tractability of the discrete logarithm problem to construct a public key
encryption scheme. The method can be described for an arbitrary finite
cyclic group G.

Let a be a generator for G. Again it is assumed that G and a are
public knowledge. Suppose that messages are elements of G and that
user A wishes to send message m to user B. B generates a random
integer b (private key) , computes a b and makes it public (B's public
key). For A to send m to B, A follows the following protocol:

(i) A generates a random integer k and computes a k •

(ii) A looks up B's public key, a b, and computes (ab)k and mabk•

(iii) A sends to B the ordered pair of group elements (ak, mabk) .

It is easily seen that B can recover message m since B has knowledge
of the private key b and ak is the first component of the received pair.

Both the Diffie-Hellman scheme and the ElGamal scheme are widely
used in practice. Typically the group chosen is one of F;~, F; (p a
prime), or the group of points on an elliptic curve over a finite field
(elliptic curve cryptosystems are discussed in Chapter 8). These groups
are used due to their ease of implementation. Some other groups that
have been considered are the Jacobian of a hyperelliptic curve defined
over a finite field [20], the group of non-singular matrices over a finite
field [30], the class group of an imaginary quadratic field [9] , and the
group of units Z: where n is a composite integer [23].

Among the many other cryptosystems that base their security on
the presumed difficulty of the discrete logarithm problem, we mention
[3], [5], [7], [34], [35] .

For the remainder of this chapter we focus our attention on the
discrete logarithm problem.
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6.3 The Discrete Logarithm Problem: General
Remarks

The algorithms which are known for finding logarithms can be catego­
rized as follows.

(i) Algorithms which work in arbitrary groups .

(ii) Algorithms which work in arbitrary groups but exploit the sub­
group structure.

(iii) The index calculus methods.

(iv) Methods which exploit isomorphisms between groups.

Each of these categories will become clearer when they are discussed
in detail. We should mention that the index calculus method, when it
applies, appears to be the most powerful technique known. It does apply
directly to some of the commonly used groups such as F; and F;n and
because of this it is necessary when designing a cryptosystem to select
p and n larger than one would need to otherwise.

Category (iv) needs some elaboration at this point.

Even though any two cyclic groups of order n are isomorphic, an
efficient algorithm to compute logarithms in one does not necessarily
imply an efficient algorithm for the others. This statement is obvious
when one considers that any cyclic group of order n is isomorphic to
the additive group of Zn and computing logarithms in Zn is a triviality
by the extended Euclidean algorithm. In fact, the discrete logarithm
problem can be restated as follows:

Determine a computationally efficient algorithm for computing an
isomorphism from a cyclic group of order n to the additive cyclic group

Zn·

There are many ways to represent a finite field with qn elements all of
which are isomorphic. Let F 1 and F 2 be finite fields generated by prim­
itive irreducible polynomials f( ~) and g(~) respectively. Let f( a) = 0,
g({3) = 0, and suppose that elements in F 1 are represented with respect
to the basis {1,a,a2, ... ,an-1} and F 2 by {1,{3,{32,.. . ,{3n-1}. Given
that there is an efficient algorithm to compute logarithms in F 2 with
respect to the base {3 we can reduce the problem of finding logarithms
in F 1 to that of finding logarithms in F 2 in random polynomial time.
To do this, we need only find a root of the polynomial f( ~) in the field
F 2 • If r = 2:~:ol bi{3i and f(r) = 0, then we set T(a) = r and this
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can be used to define a linear transformation T from F 1 to F 2 • It fol­
lows that if 10g{3 T(o) = x, then log; w = (log{3 T(w)) j x. (Note that
gcd(x, q" - 1) = 1 since 0 is a generator.) .

A less obvious example of the role played by isomorphism will be
considered in Chapter 8 where we discuss the computation oflogarithms
on elliptic curves.

We recall some definitions from complexity theory. By a probabilis­
tic polynomial time algorithm, we mean a randomized algorithm whose
expected running time is bounded by a polynomial in the size of the
input. Let log z denote the natural logarithm of z , Define

L[z, 0 , c] = 0 (exp((c +o(I))(logzt(loglogx)l-a)),

where x is the size of the input space, 0 :::; 0 :::; 1, and c is a constant.
Note that if 0 = 0 then L[z, 0, c] is a polynomialin log z , while if 0 = 1
then L[z, 0, c] is fully exponential in log e. If 0 < 0 < 1, then L[x,0, c]
is said to be subexponential in log z ,

6.4 Square Root Methods

In this section we describe several methods for computing logarithms
in arbitrary cyclic groups. These methods are vast improvements over
the trivial algorithms described in the introduction, but they are also
infeasible if the order of the group is sufficiently large. The first one
we describe is the so-called "Baby-step Giant-step method" attributed
to Shanks. For the remainder of this section, G is a finite cyclic group
and 0 is a generator. We want to determine an algorithm to compute
10ga,8· Let m = rJ # G1-

Baby-Step Giant-Step Method

Precompute a list of pairs (i, Oi) for 0 :::; i < m (of course i = log; oi),
and sort this list by second component. For each j l 0 :::; j < m, compute
,8o-jm and see (by a binary search) if this element is the second com­
ponent of some pair in the list. If ,8o-jm = Oi for some i, 0 :::; i < m,
then ,8 = oi+jm and 10ga,8 = i + jm.

This algorithm requires a table with 0 (m) entries and to sort the
table and search the table for each value of j requires in total 0 (m log m)
operations (by operation here we mean either a group operation or a
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comparison). A group of approximately 1040 elements would render this
attack infeasible with current technology.

Pollard p-method

J. Pollard [32] gave a method to find logarithms which is probabilistic
but removes the necessity of precomputing a list of logarithms.

Divide the group G into three sets Sl' S2 and Sa of roughly equal
size. Define a sequence of group elements :1:0, :1:1' :1:2, ... by :1:0 = 1 and

for i ~ 1. It easily follows that the sequence of group elements defines a
sequence of integers {ail and {bi} where e, = /34· ab., i ~ 0, ao = bo = 0,
ai+! == ai +1, 2ai or ai (mod #G) and bi+! == bi, 2bi or b, +1 (mod #G)
depending of which set Sl' S2 or Sa contains :l:i-1. Making use of Floyd's
cycling algorithm (a faster cycling algorithm is due to Brent [6]), Pollard
computes the six tuple (:l:i ; ai, bi, :1:2;' a2i' b2i), i = 1,2, ... until :l:i = :l:2i­
At this stage, we have

where r == ai - a2i and s == b2i - bi (mod #G). This gives

r log, /3 == s (mod #G).

There are only d = gcd(r, #G) possible values for log, /3. If d is small
then each of these possibilities can be enumerated to find the correct
value.

If we make the heuristic assumption that the sequence {:l:i} is a
random sequence of elements of G, then the expected running time of
this method is O(m) group operations.

6.5 The Pohlig-Hellman Method

This method for computing logarithms in a cyclic group [31] takes ad­
vantage of the factorization of the order of the group. Let

t

#G = TIp;'
i=l
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where Pi is a prime number and >'i is a positive integer, for each 1 :::;
i :::; t. If' z = logo f3 then the approach is to determine :z: modulo p;i
for each i, 1 :::; i :::; t, and then use the Chinese remainder theorem to
compute z modulo #G. We begin by determining Z ==:z: (mod p~').

Suppose that
.\, -1

Z L ZiP~,
i=O

where 0 :::; z, :::; P1 - 1. Let / = a.#G/p, be a P1th root of unity in G.
Then

Using one of the square root methods described in the previous section
we determine the logarithm of /'. to the base / in the cyclic group of
order P1 in G. This gives us Z00 If >'1 > 1 then to determine Zl we
consider

Again Z l can be found by a square root method. In a similar manner
we can determine all Zi, 0 :::; i < >'1' and thus z modulo p~ ' .

This technique requires 0U::=l >'i(log#G + y'Pilogpi)) group op­
erations [31].

Example 6.4. Consider the cyclic group G = F;,•• . Using the square
root methods of the previous section, computing discrete logarithms in
G requires about 253 operations which is a formidable task. Using the
method of this section and observing that

#G = 72 .31. 71 . 127 ·151·337·29191·106681· 122921· 152041

we can compute logarithms in G by storing about 1300 precomputed
logarithms with individual logarithms being found with only a few thou­
sand operations. 0

Clearly, if one is going to design a cryptographic system (such as the
ones described in Section 6.2) based on a cyclic group, one must select a
group G with the property that #G is divisible by some suitably large
prime factor.
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6.6 The Index Calculus Method

The most powerful method for computing logarithms in a group is com­
monly referred to as the index calculus method. The teclmique does not
always apply to a given group, but when it does it often gives a subex­
ponential time algorithm for computing logarithms. The basic ideas of
the index calculus method appear in [38], and it was later rediscovered
by several authors. Adleman [1] described the method for the group F;
and analyzed the complexity of the algorithm. In the next few para­
graphs we will give a generic description of the index calculus approach
and then follow up with brief descriptions of some specific groups where
it has been successfully applied.

6.6.1 A Generic Description

Let G be a finite cyclic group of order n generated by a in which we
want to compute logarithms to the base a. Suppose S = {P1,P2' ... ,Pt}
is some subset of G with the property that a "significant" fraction of all
elements in G can be written as a product of elements from S. The set
S is usually called the factor base for the index calculus method.

In stage 1 of the index calculus method we attempt to find the
logarithms of all the elements of S as follows. We pick a random integer
a and attempt to write a Q as a product of elements in S :

t

a
Q = IIp;'.

;=1

If we are successful, then (6.3) yields a linear congruence

t

a == LA;log"p; (mod n).
;=1

(6.3)

(6.4)

After collecting a sufficient number [i.e., bigger than t) of relations of
the form (6.4), the corresponding system of equations can be expected
to have a unique solution for the indeterminates log" Pi, 1 ~ i ~ t.

In stage 2 of the algorithm we compute individual logarithms in G.
Given f3 E G we want to find an integer x such that a'" = f3. Repeatedly
pick random integers S until as f3 can be written as a product of elements
in S:

t

as f3 = lIp~'.
;=1

(6.5)
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We then have
t

loga,B == Lb;logaP; - s (mod n).
;=1
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To complete the description of the index calculus method, we need
to specify how to select an appropriate set S, and how to efficiently
generate the relations (6.3) and (6.5). By an appropriate S we mean a
set S that is small (so that the system of equations in stage 1 is not too
big), and at the same time the proportion of elements of G that factor in
S is large (so that the expected number of trials to generate a relation
(6.3) or (6.5) is not too big). At present such specifications are only
known for some finite fields and class groups of imaginary quadratic
fields [24] . In the next two sections we will outline the index calculus
method in some finite fields.

6.6.2 Logarithms in F;, p prime

We represent the elements of F; as the set of integers {1, 2, . .. ,P - 1},
with multiplication being performed modulo p. Let a be a generator of
F; . Let m be a positive integer determined as a function of p. The set
S is now the set of all prime numbers less than m. When we say that
an element a E F; factors in S, we mean that a factors as an integer
into a product of primes, each less than m. Factoring is accomplished
by trial division. Stages 1 and 2 of the index calculus algorithm for F;
are carried out just as in the generic case.

By considering the probability that a randomly chosen integer less
than P has all of its prime factors less than m, we can select a value of
m which optimizes both the pre computation (stage 1) and individual
logarithm finding times (stage 2). This leads to a heuristic but sub expo­
nential implementation of the index calculus method in this group with
expected running time of L[p, 1/2, c]. The running time is not rigorous
since the analysis assumes that the set of equations in stage 1 has full
rank. For more details about the analysis, a good reference is [25].

We shall return to the discrete logarithm problem in F; in the next
section.

6.6.3 Logarithms in F;.... , p a prime, n 2:: 2

A natural way to represent Fpn is by the set of all polynomials of degree
less than n with coefficients in Fp • Addition is ordinary polynomial
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addition and multiplication is modulo some fixed irreducible polynomial
I(z) E Fp[z] of degree n. (i.e., Fpn is isomorphic to Fp[zJ/(f(z)).)

With this representation of Fpn an obvious way to apply the index
calculus method is to let 5 be the set of all irreducible polynomials over
Fp with degree at most some prescribed positive integer b. Again, the
pre computation phase can be used to determine the logarithms of all el­
ements in the factor base. Determining the factorization of a polynomial
to see if it is smooth with respect to the set 5 can be done in polynomial
time for "small" p. It can be shown [29J when p is small that for a suit­
able choice of b the index calculus method provides a subexponential
algorithm with heuristic expected running time L[p", 1/2, cJ.

For the case p = 2 the situation can be improved. Using some ideas
introduced in [4J, Coppersmith [10J was able to exploit the fact that
squaring is a linear operator on F2[zJ and to show that the b value from
the preceding paragraph can be chosen much smaller without increasing
the work to find the logarithms of elements in the factor base. Although
not yet rigorously proved, the heuristic running time for the Copper­
smith algorithm is L[2",1/3, cJ for computing logarithms in F2n . The
case p = 2 has been studied in great depth by Odlyzko [29J. A practi­
cal analysis of the number of computer operations needed to compute
logarithms in some field F2 n is given in [36].

For the case where p is large, the index calculus method, as posed
at the beginning of this section, will not be efficient since the number
of irreducible polynomials of degree :s; b is O(pb/b). An alternate rep­
resentation of the field Fpn is needed. We briefly outline the method of
ElGamal [15] for computing logarithms in F;•.

The computation of discrete logarithms takes place in the ring of
algebraic integers V of a quadratic number field. Begin by computing
a suitable quadratic number field K = Q(JTii) such that the principal
ideal (p) generated by the prime integer p is a prime ideal (any m such
that m is a quadratic nonresidue modulo p will do). Then Fp' ~ V/(p),
and, hence, the elements of Fp' will be the cosets of the additive group
associated with (p). A set of distinct coset representatives is

C = {a+by!mI0:S;a,b:S;p-1}.

The factor base 5 is taken to be the set of all irreducibles in V whose
norm is a prime number less (in absolute value) than some preselected
value N. Moreover, we only include at most one irreducible from each
associate class in 5, and we also include the fundamental unit in 5 (i.e.,
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the algebraic integer which generates, up to sign, the group of units of
'D). The reason for this choice of S is that if any element Q E C factors
over S (Le., factors as an element in 'D), then in fact this factorization
is unique. With this choice of S, EIGamal shows that one can select N
so as to make the index calculus method run in time L[p, 1/2, c].

Inspired by the work of EIGamal, Coppersmith, Odlyzko and Schroe­
ppel [11] proposed an algorithm for computing logarithms in F;, p a
prime, which they refer to as the Gaussian integer method.

The setup for the algorithm is very similar to EIGamal's method,
and differs in the way equations to be used in solving for the logarithms
of elements in S are produced. To give the flavour of what is going on
we require a bit more detail.

Let us assume that p == 1 (mod 4). Select positive integers T and V
both less that yIP such that T 2 +V 2 =p (see [8]). Let K = Q(i), where
i2 = -1. The ring of integers of K is Z[i], the ring of Gaussian integers.
Let II = T +Vi. Since the norm of II is p, the principal ideal generated
by II is prime, and hence Z[i]/(II) ~ Fp ; it is this representation where
logarithms in F; will be taken. Let Q be a generator of F; . The factor
base S will be the set of all prime elements in Z[i] of norm ~ N, together
with all prime integers ~ N, and the integer V.

Coppersmith et al. [11] observe that for integers Cl and C2,

Cl V - C2T V(CI +c2i) - c2(T +Vi)

= V(CI + c2i) (mod T +Vi).

Therefore, if Cl V - C2T is smooth with respect to the prime integers in
5 and Cl +C2i is smooth with respect to the prime elements of Z[i] in 5,
then we get an equation which relates the logarithms of some elements
of 5. That is

With sufficient number of such equations we can determine the loga­
rithms of all elements in 5. For a suitable choice of N, and suitably
small Cl and C2, the running time of the Gaussian integer method is
heuristically shown to be L[p, 1/2, 1]. The algorithm is quite practical,
and its implementation is discussed in [21].

Recently, D. Gordon [17] has used the same idea as the Gaussian in­
teger method, generalized to use many different number fields, to com­
pute logarithms in F;. His algorithm uses the number field sieve and
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has a conjectured asymptotic running time of L[p, 1/3, 32
/

3J, which is
better than previously known algorithms. However, it has not as yet
been shown to be practical.

6.7 Best Algorithms

The best algorithms currently known with heuristic expected running
times for the discrete logarithm problem in finite fields are the following.

(i) For F2m: L[2m
, 1/3, cJ, where 1.3507::; c ::; 1.4047 (Coppersmith's

algorithm) [10J .

(ii) For Fp : L[p, 1/3, 32
/

3J (Number field sieve) [17J .

(iii) For Fpm, m fixed: L[pm, 1/3, cJ,where c depends only on m (num­
ber field sieve) [16J.

The best algorithms currently known with rigorously proved ex­
pected running times for the discrete logarithm problem in finite fields
are the following.

(i) For F2m: L[2"", 1/2,h] [33].

(ii) For Fp : L[p, 1/2, V2J [33J.

(iii) For Fp2 and Fpm with logp < m b for some constant b, 0 < b < 1:
L[pm, 1/2, cJ for some c > 0 [22J .

We conclude this section by noting that it is still unknown whether
there exists a subexponential algorithm (with either a heuristically or
rigorously proved running time) for the discrete logarithm problem in
Fpm as both p and m tend to infinity.

6.8 Computational Results

As previously mentioned, the most widely applied systems which use
discrete logarithms for security are based on the cyclic group obtained
from a finite field. The index calculus method applies to these groups
and many variants have been devised and refined. We briefly discuss
the computational results obtained so far .

In Z; where p is a prime, La Macchia and Odlyzko [21J have recently
applied the Gaussian integer variant of the index calculus method [11]
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to compute logarithms. Due to an actual implementation of a Diffie­
Hellman scheme in Z; for p a particular 192-bit prime, La Macchia and
Odlyzko demonstrated that such a system is completely insecure. With
a factor base size of about 100,000, individual logarithms in that field
can be computed in a matter of minutes on a DEC VAX 8850.

For F2 m recent results of Gordon and McCurley [18] at Sandia Na­
tional Laboratories indicate that computing logarithms in F2 m for m
about 500 is feasible. In particular, at the time of writing, they had
assembled about 360,000 equations for a factor base size of 210,000 for
computing logarithms in F2 5 0 . . It required about two months of com­
puting on a 1024-processor hypercube. The system of equations has not
yet been solved. They have been successful in computing logarithms in
F2 · ol .

6.9 Discrete Logarithms and Factoring

In this section we consider the discrete logarithm problem in the group
of units (Z~) of the ring of integers modulo n (Zn). We shall show
that solving the discrete logarithm problem in Z~ is computationally
equivalent to factoring n and solving the discrete logarithm problem
modulo the prime divisors of n . Our discussion is based on the work of
Eric Bach [2] . We begin by showing that if one can compute logarithms
in Z~ then one can factor n.

It can be checked in probabilistic polynomial time (we leave this as
an exercise for the reader) whether a positive integer n is a power of a
prime number. Henceforth we will assume n = IT:=l P:' where the Pi
are odd primes and t ~ 2. For notational convenience we will denote
P:' by Pi. By the Chinese remainder theorem we know that

1* ~ Zp' X Zp' x .. · X Zp'
n 1:3 t'

where each ZP. is a cyclic group of order <Pi = <p(Pi) = (Pi - 1)p;.-l . It
follows that every element in Z~ has order dividing the universal index

Lemma 6.4. The set A = {a E Z~ I a>./2 == ±1 (mod n)} is a proper
subgroup of Z~.

Proof: It is clear that A is a subgroup of Z~; we have to show that A
is proper. ITPi - 1 = 26'Qi where qi is odd then assume, without loss of
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generality, that 51 2:: 5., 1 ~ i ~ t , Let al be an integer of order </h in
Zp; and a. an integer of order </Jd2 in Zp;, 2 ~ i ~ t. By the Chinese
remainder theorem we can find an integer bE Z~ of order </Jl (mod Pi)
and order </Jd2 (mod Pd. It follows that

b>./2 _ -1 (mod Pd,
b>./2 _ 1 (mod Pd, 2 ~ i ~ t.

Thus b>./2 ¢ ±1 (mod n), and so b rf- A. 0

For an integer b, any integer z i- 0 is called an exponent for b if

b" == 1 (mod n).

Lemma 6.5. If logarithms in Z~ can be computed in polynomial time,
then an exponent of b E Z~ can be found in polynomial time.

Proof: Choose a prime p and assume that p does not divide </J(n).
We do not know </J(n) (since computing </J(n) is probabilistic polynomial
time equivalent to factoring n [26]), however such a p exists amongst
the first [log n] +1 primes. Since p is a unit mod </J(n) then there exists
y such that

(l1')Y == b (mod n).

Using the algorithm for computing discrete logarithms we can determine
y and, hence, z = py - 1. (If no solution to the logarithm problem
exists, then pl</J(n), and so we choose another p.) Clearly, z i- 0 and
b" == 1 (mod n). That is, we have found an exponent z for b. 0

We can now demonstrate the reduction of the problem of factoring
n to the discrete logarithm problem in Z~.

Theorem 6.6. ([2]) If the discrete logarithm problem in Z~ can be
solved in polynomial time, then n can be factored in probabilistic poly­
nomial time.

Proof: Select b E Z~, and assume that b rf- A. Determine an exponent
z for b. We observe that the order a of b is necessarily even and, in fact,

.A = a13o, 130 odd.

We can write
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Now, for each i, 1 ::; i ::; t, b>./2 == b, (mod Pi) where b, = 1 or -1 and at
least one value is 1 and one -1. Since b\ = b, for I odd, it follows that

b>.I/2 == b>./2 (mod n) and ba l
/
2 == ba / 2 (mod n)

for any odd integer 1. Therefore

It now follows that for some integer k, 0 ::; k ::; y , that

but
b"' /2· == 1 (mod n).

(Note that since z = a1312Y, if k = y +1 then :z:/2" = a13d2 where 131 is
odd.) Therefore, we must get a non-trivial factor of n by computing

/ .+'gcd(n, b" 2 - 1).

If the gcd is trivial, then b E A and so we select another b. By
Lemma 6.4, 11~/AI ~ 2 and hence IAI ::; ~11~1 . Thus the expected
number of trials before b rf. A is 2. 0

We now proceed to show the reduction of the logarithm problem in
1~ to the problem of factoring n and computing logarithms in Z; for
each prime divisor p of n . We begin by demonstrating a polynomial
time reduction of the logarithm problem in 1;. to finding logarithms in
1;, p a prime. We only describe the result for p > 2; a similar result
can be obtained for the case p = 2.

For a E 1 and p a prime, write a = p"b where gcd(b,p) = 1, and
define vp(a) = k.

Lemma 6.7. If a, b E 1 neither of which is divisible by p , vp(a - b) ~ 1
and t ~ I, then

Proof: Observe that
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Since a - b=0 (mod p) then b = a + lp for some I E Z. Hence

for some I' E Z. Since p la then

1

and
vp(aP -11') = vp(a - b) +1.

The result for general t now follows by induction.

It is well known that Z;< is a cyclic group and hence

Z* '" Z* Z+p< = p X p<_'.

o

Let ep : Z;< ---t Z; X Z;._, be an isomorphism. Since Z;<_, is the cyclic
additive group of integers modulo p'-l, logarithms in this system can be
determined by the extended Euclidean algorithm. Therefore, if we can
compute the isomorphism ep in polynomial time then computing loga­
rithms in Z;< is essentially no more difficult that computing logarithms
. Z*In p'

Observe first that there is a somewhat natural isomorphism

A : Z;< ---t Z; X U

where U = {x E Z;< Ix =1 (mod pH given by

A(a) = (a (mod p), aP-
1 (mod p')).

If we can display a polynomial time computable isomorphism

II : U ---t Z;<_,

we are done. If we let

(6.6)

(6.7)

II(a)
aP<-' - 1

p'

then we will show that II is such an isomorphism. Note that (aP<-' ­
l)/p' is an integer by Lemma 6.7. Moreover, we can compute II in
polynomial time by evaluating the numerator modulo p2'-1 and then
dividing the result by p",
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Lemma 6.8. The map II : U --t 1:._. defined in (6.7) is an isomor­
phism.

Proof: We first show that II is well defined on U. That is, if a == b
(mod pO) and a == b == 1 (mod p), we must prove that II(a) = II(b), or

=
p' p'

(mod p'-l).

Since vp(a - b) ~ e by Lemma 6.7 we have vp(aP'-' - bP'-') = vp(a ­
b)+e - 1. Hence vp ( aP' - ' - bP'-') ~ 2e - 1, and

aP' - ' - bP'-'
== 0 (mod p'-l)

p'

as required. In order to prove that II is a homomorphism we need to
show for all z , y E U that II( xy) = II( x) + II(y) or

Observe that the identity

uv-l = (u-l)+(v-l)+(u-l)(v-l)

with u = xp'-' , v = yp'-' , yields

(xy)p'-' - 1 = (x p'-' - 1) + o: - 1) + (x p'-' - 1)(yP'-' - 1).

Clearly, p'l(xP'-' -1), p'l(yP'-' - 1) and p2'!(XP'-' - l)(yP'-' - 1) and
hence (6.8) follows.

Finally, we show that II is an isomorphism. Notice that if x E U
then

Thus if II( x) =0 then

> e-l- ,

and so vp(x - 1) 2:: e. Hence x == 1 (mod pO) and we conclude that II is
an isomorphism. 0
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Theorem 6.9. ([2]) lfn can be factored in polynomial time, and loga­
rithms in Z; can be computed in polynomial time for each prime divisor
p of n, then we can compute logarithms in Z~ in polynomial time.

Proof: Suppose that we wish to solve the logarithm problem a" == b
(mod n) in Z~. We firstfactor n = rn, p:'. We then solve the logarithm
problems a"" == b (mod pd, 1 ::; i ::; t, and use the map A defined in
(6.6) to obtain the solution to the logarithm problems aY' == b (mod p:'),
1 ::; i ::; t. Finally, the Chinese remainder theorem yields a solution z
to the congruences z == Yo (mod P:'), 1 ::; i ::; t, and we have a'" == b
(mod n). 0
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Chapter 7

Elliptic Curves over Finite
Fields

Elliptic curves have been intensively studied in algebraic geometry and
number theory. Recently, they have been used in devising efficient algo­
rithms for factoring integers [8, 9], for primality proving [2, 11, 12] and
for the construction of pseudorandom bit generators [4]. In Chapter 8
we study how elliptic curves can be used in constructing efficient and
secure cryptosystems, while in Chapter 10 we will discuss how good
error-correcting codes may be obtained by using elliptic curves.

In this chapter, we introduce some basic notions about elliptic curves
and collect various results that will be used in the next chapter. Unless
otherwise stated, proofs of these results can be found in the book by
J. Silverman [15]. For an elementary introduction to elliptic curves, we
recommend Chapter 6 of Koblitz's book [6], and the notes by Charlap
and Robbins [1]. Other textbooks on elliptic curves are [3, 5, 7].

7.1 Definitions

Let K be a field, and let K denote its algebraic closure. The projective
plane P2(K) over K is the set of equivalence classes of the relation '"
acting on the set K 3

\ {(O, 0, On, where (Xl' Yllzd '" (X2' Y2, Z2) if and
only if there exists U E K * such that Xl = UX2' Yl = UY2 , and Zl = UZ2 '

We denote the equivalence class containing (x, Y, z) by (x : Y : z). A
Weierstrass equation is a homogeneous equation of degree 3 of the form

139
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where ai' a2, as, a4, aa E K. The Weierstrass equation is said to be
smooth or non-singular if for all projective points P = (X : Y : Z) E
p2(K) satisfying

F(X,Y,Z) = y2Z+alXYZ+asYZ2 -XS-a2X2Z-a4XZ2-aaZS = 0,

we have

(
8F 8F 8F )
8X (P), 8Y (P), 8Z (P) f: (0,0,0).

If all three partial derivatives vanish at P, then P is called a singular
point.

An elliptic curve E is the set of all solutions in p2(K) of a non­
singular Weierstrass equation. There is exactly one point in E with
Z-coordinate equal to 0, namely (0: 1 : 0). We call this point the point
at infinity and denote it by O.

For convenience, we will write the Weierstrass equation for an elliptic
curve using non-homogeneous (affine) coordinates z =X/Z, y =Y/Z,

(7.1)

An elliptic curve E is then the set of solutions to equation (7.1) in K X K,
together with the extra point at infinity O. If ai, a2, as, a4, aa E K, then
E is said to be defined over K, and we denote this by E / K. If E
is defined over K, then the set of K-rational points of E, denoted by
E(K), is the set of points both of whose coordinates lie in K, together
with the point O. We will abuse the notation slightly, and label the
defining equation (7.1) as E.

Two elliptic curves are said to be isomorphic if they are isomorphic
as projective varieties. Briefly, two projective varieties Vi' V2 defined
over K are isomorphic over K if there exist morphisms if> : Vi ---t

V2 , 'l/J : V2 ---t Vi (if>, 'l/J defined over K), such that 'l/J 0 if> and if> 0 'l/J
are the identity maps on Vi' V2 respectively. We will not define the
terms projective variety (but see Section 9.3) and morphism here. The
following result relates the notion of isomorphism of elliptic curves to
the coefficients of the Weierstrass equations that define the curves.

Theorem 7.1. Two elliptic curves EdK and E2/ K given by the non­
singular Weierstrass equations

E l y2 +alzy + asy = ZS + a2z2 +a4z + aa

E 2 y2 +alzy +asy = ZS +a2z2 +a4z +aa
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are isomorphic over K, denoted El ~ E2, if and only if there exists
u, r, s, t E K, u :/= 0, such that the change of variables

(7.2)

transforms equation E l to equation E2. The relationship of isomorphism
is an equivalence relation.

The change of variables (7.2) is referred to as an admissible change
of variables.

Now, if E l ~ E 2 over K, then the change of variables (7.2) trans­
forms equation E; to equation E 2 • This yields the following set of
equations:

ual
u2a2
u3a3
u4a4
u6a6

al +2s
a2 - sal + 3r - S2

a3 +ral +2t
a4 - sa3 + 2ra2 - (t + rs)al + 3r 2 - 2st
a6 + ra4 + r2a2 + r3 - ta3 - t2 - rta. ,

(7.3)

The next theorem is now clearly equivalent to Theorem 7.1.

Theorem 7.2. Two elliptic curves EdK and E2/ K are isomorphic
over K if and only if there exists u, r , s, t E K, u:/= 0, that satisfy (7.3) .

7.2 Group Law

It is well known that the points on an elliptic curve form an abelian
group under a certain addition. Let E be an elliptic curve given by the
Weierstrass equation (7.1). The addition rules are given below.

For all P, Q E E,

(i) 0 +P = P and P +0 = P.

(ii) -0 = O.

(iii) If P = (:ell yd :/= 0, then -P = (:el' -Yl - al:el - a3).

(iv) If Q = -P, then P +Q = o.
(v) If P :/= 0, Q :/= 0, Q :/= -P, then let R be the third point

of intersection (counting multiplicities) of either the line PQ (if
P :/= Q) or the tangent line to the curve at P (if P = Q), with the
curve. Then P +Q = - R.
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Theorem 7.3. (E, +) is an abelian group with identity element O. If
E is defined over K, then E(K) is a subgroup of E.

Explicit rational formulae for the coordinates of P +Q in terms of
the coordinates of P and Q for case (v) are easy to derive, and are given
below.

Let P = (Xl,Yl), Q = (X2,Y2), P +Q = (X3,Y3)' Let

Let f3 = Yl - AX1' Then

ifPi:Q,

if P = Q.

X3 A2+alA - a2 - Xl - X2

-(A +ad x3 - f3 - a3'

(7.4)

(7.5)

7.3 The Discriminant and j-Invariant

Let E be a curve given by a non-homogeneous Weierstrass equation
(7.1). Define the quantities

~

j(E)

ai +4a2

2a4 +ala3

a~ +4a6
2 4 2 2a l a6+ a2a6 - al a3a4 +a2a3 - a4

d~ - 24d4

= -d~d8 - 8d: - 27d~ +9d2d4de

c:/~.

(7.6)

(7.7)

The quantity ~ is called the discriminant of the Weierstrass equation,
while j (E) is called the j-invariant of E if~ i: O. The next two theorems
explain the significance of these quantities.

Theorem 7~4. Let E be given by a Weierstrass equation. Then E is
an elliptic curve, i.e., the Weierstrass equation is non-singular, if and
only if ~ i: o.
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Theorem 7.5. If two elliptic curves EdK and E21K are isomorphic
over K, then j(E1 ) = j(E2 ) . The converse is also true if K is an
algebraically closed field.

Note that if two elliptic curves are isomorphic then they are also
isomorphic as abelian groups. The converse statement is not true in
general (see Exercise 7.4).

7.4 Curves over K, char(K) f:. 2,3

Let ElK be an elliptic curve given by the Weierstrass equation (7.1).
If char(K) i= 2, then the admissible change of variables

(x,y)~ (x, u>: ~lX_ ~3)

transforms ElK to the curve

Note that E ~ E' over K.

If char(K) i= 2,3, then the admissible change of variables

(
X - 3b2 Y)

(x,y) ~ 36' 216

further transforms E' to the curve

Note again that E' ~ E" over K, and hence E ~ E" over K.

Hence if char(K) i= 2,3, we can assume that ElK has the form

E : y2 = x 3 + ax + b, a, b E K. (7.8)

For the remainder of this section, we will assume that K is a field
whose characteristic is neither 2 nor 3. We will not consider curves over
fields of characteristic 3 in this chapter.

Let ElK be an elliptic curve given by the Weierstrass equation (7.8).
The associated quantities, which specialize equations (7.6) and (7.7), are
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and
j(E) = -1728(4a)3/A.

Since E is assumed to be non-singular, we have A -1= O. Specializing
Theorem 7.2 gives the next result.

Theorem 7.6. The elliptic curves E1 / K : y2 = Z3 +az +b and EdK :
y2 = Z3 +az +1j are isomorphic over K if and only if there exists
u E K* such that u4a = a and u61j = b. If E 1 ~ E2 over K, then the
isomorphism is given by

or equivalently,

Addition Formula

If P = (z1,yd E E, then -P = (Z1, -yd. If Q = (Z2,Y2) E E,
Q -1= -P, then P +Q = (Z3,Y3), where

Z3 >..2 - Z1 - Z2

Y3 >"(Z1 - Z3) - Y1,

and

if P -1= Q,

if P = Q.

7.5 Curves over K, char(K) = 2

Let K be a field of characteristic 2, and let E / K be the curve given by
the Weierstrass equation

Specializing (7.7) we find that j(E) = (ad12 / A.
If j(E) -1= 0 (so a1 -1= 0), then the admissible change of variables
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transforms E to the curve

For E l , t1 = aa, and j(El ) = 1/aa.
If j (E) =0 (so al =0), then the admissible change of variables

transforms E to the curve

145

(7.9)

(7.10)

Addition Formula when j(E) =I 0

Let P = (Xl,Yl) EEl; then -P = (Xl,Yl +xd. If Q = (X2,Y2) E E l
and Q =J. -P, then P +Q = (X3, Y3), where

P =J. Q,

P=Q,

and

P:f; Q,

P=Q.

Addition Formula when j(E) = 0

Let P = (Xl1 yd E E2; then -P = (Xl1 Yl +a3)' If Q = (X2, Y2) E E2
and Q =J. -P, then P +Q = (X3' Y3), where

P:f; Q,

P=Q,
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and

Y3=! (~::~:)(Xl+X3)+Yl+a3' P:f;Q,

(X~ ~a4)
(Xl +X3) +Yl + a3, P = Q.

7.6 Group Structure

Let E be an elliptic curve defined over Fq , the finite field on q elements.
Let q = pm, where p is the characteristic of Fq • We denote the algebraic
closure of Fq by Fq• Let #E(Fq ) denote the number of points in E(Fq ) .

The next two results give a bound for #E(Fq ) , and determines the
possible values for #E(Fq ) as E varies over all elliptic curves defined
over Fq • Lemma 7.8 is from [14] .

Theorem 7.7. (Hasse) Let #E(Fq ) = q +1 - t. Then ItI ::; 2vq.

Lemma 7.8. Let q = pm. There exists an elliptic curve E / Fq such that
E(Fq ) has order q + 1 - t over Fq if and only if one of the following
conditions holds:
(i) t ¢ 0 (mod p) and t 2

::; 4q .
(ii) m is odd and one of the following holds:

(l)t=O .
(2) t2 = 2q and p = 2.
(3) t2 = 3q andp = 3.

(ii) m is even and one of the following holds:

(1) t 2 = 4q.
(2) t 2 = q and p ¢ 1 (mod 3).
(3) t =0 and p ¢ 1 (mod 4).

The curve E is said to be supersingularifp divides t, where #E(Fq ) =
q + 1 - t. Otherwise, it is called non-supersingular. It is well-known
that if p = 2 or if p = 3, then E is supersingular if and only if j(E) = O.
From the preceding result, we can easily deduce the following.

Corollary 7.9. Let E be an elliptic curve defined over Fq , and let
#E(Fq ) = q + 1 - t . Then E is supersingular if and only if t 2 =
0, q, 2q, 3q, or 4q.
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The following results give the group type of E(Fq ) , and the group
structure of E(Fq) in the case that E is a supersingular curve. In (or
l/n) denotes the cyclic group on n elements. Lemma 7.11 is from [14].

Theorem 7.10. Let E be an elliptic curve defined over Fq. Then E(Fq)
is an abelian group of rank 1 or 2. The type of the group is (nt, n2),
i.e., E(Fq) ~ In, $ In" where n2lnt, and furthermore n2!q - 1.

Lemma 7.11. Let #E(Fq) = q +1 - t ,

(i) Ift2 = q, 2q, or 3q, then E(Fq) is cyclic.
(ii) Ift2 = 4q, then either E(Fq) ~ l,;q_t $ l,;q_t or E(Fq) ~ l,;q+t $
l,;q+t, depending on whether t = 2yrq or t = - 2yrq respectively.
(iii) If t = 0 and q ¢ 3 (mod 4), then E(Fq) is cyclic. If t = 0 and
q == 3 (mod 4), then either E(Fq) is cyclic, or E(Fq) ~ l(q+t)/2 $ 12,

If I is a prime, then let vI(n) be the largest integer with I,,·(n)ln. We
can deduce from Theorem 7.10, that if #E(Fq) = N, then the group
E(Fq ) has the structure

l/p",(N) $ E9 (l/Ia. $ l/lb.)
l;tp

(7.11)

with al ~ bj, al + bl = vI(N), and bl ~ vI(q - 1). The next lemma
[13] determines all possible groups E(Fq) that occur as E varies over all
non-supersingular curves defined over Fq •

Lemma 7.12. Let N = q +1- t, where t ¢ 0 (mod p) and t2 ~ 4q . If
ai, b, are integers which satisfy a, ~ b

"
a, +b, = VI (N) and bl ~ VI (q - 1)

for each prime I :Ie p, then there exists a non-supersingular curve E
defined over Fq such that E(Fq) has group structure (7.11).

The curve E can also be viewed as an elliptic curve over any ex­
tension field L of Fq; E(Fq) is a subgroup of E(L) . The Weil conjec­
ture (which was proved for elliptic curves in 1934 by Hasse) enables
one to compute #E(Fq.), for k ~ 2, from #E(Fq) as follows. Let
t = q +1- #E(Fq). Then #E(Fq.) = qk +1- ak - 13k, where a, 13 are
complex numbers determined from the factorization of 1 - tT +qT2 =
(1 - aT)(l - f3T).

We now state a few results on the group structure of E = E(Fq).
An n-torsion point is a point P E E(Fq) satisfying nP = O. Let
E(Fq)[n] denote the subgroup of n-torsion points in E(Fq), where n :Ie o.
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We will write E[n] for E(Fq)[n]. If n and q are relatively prime, then
E[n] ~ 1"$1,,. lin = pe, then either E[pe] ~ {O} if E is supersingular,
or else E[pe] ~ 1p• if E is non-supersingular.

7.7 Supersingular Curves

Exercise 7.1. Verify the following statements about some families of
supersingular elliptic curves .

(i) Let EdFq be the curve y2 = :c3 +b, where q is odd and q == 2
(mod 3). Then E1(Fq ) ~ 1q+1 •

(ii) Let E 2/ Fq be the curve y2 = :c3
- e , where q == 3 (mod 4). Then

E2(Fq ) ~ 1(q+1)/2 $ 12 •

(iii) Let E3/ Fq be the curve y2 = :c3 +z , where q == 3 (mod 4). Then
E3(Fq ) ~ 1q+1 •

In Chapter 8, we will be especially interested in curves over fields
of characteristic two. In the next two tables from [10], we list, for
m odd and even, a representative curve from each of the isomorphism
classes of supersingular curves over F2~' together with the order and
group structure. We write q for 2m

• In Table 7.2, '"(, (x, f3, 5,w are any
elements in F2~ such that '"( is a non-cube, Tr('"(-2(X) =1, Tr('"(-4f3) = 1,
Te(5) i= 0 and Tr(w) = 1 (ifm is even then Te(5) = 5+5q'+.. .+ 5q~- · ) .

ICurve m Order I Group I
Type

y2 +Y = :c3 odd q+l cyclic
y2 + y = :c3 +:c m == 1,7 (mod 8) q+1+y'2q cyclic

m == 3,5 (mod 8) q+1 -y'2q cyclic
y2 + y = :c3 +:c+1 m == 1,7 (mod 8) q+1-y'2q cyclic

m == 3,5 (mod 8) q+1+y'2q cyclic

Table 7.1: Supersingular elliptic curves over F2~' where m is odd.

Exercise 7.2. Using Theorem 7.2, prove that there are 2(q - 1) iso­
morphism classes of non-supersingular elliptic curves over Fq , where
q = 2m •
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Group
Type

Orderm

y2 +,y = ;1:3 m=O (mod 4) q+1+vg cyclic
m =2 (mod 4) q+1-vq cyclic

y2 +,y =;1:3 +a m=0 (mod 4) q+1-vg cyclic
m=2 (mod 4) q+1+jq cyclic

y2 +,2y = ;1:3 m =0 (mod 4) q+1+vg cyclic
m=2 (mod 4) q+1-vq cyclic

y2 + ,2y = ;1:3 + f3 m=0 (mod 4) q+1-vg cyclic
m=2 (mod 4) q+1+,jq cyclic

y2 + y = ;1:3 + 5;1: m even q+1 cyclic
y2 +y =;1:3 m=O (mod 4) q +1- 2vg Z.,(q-l $ Z.,(q-l

m =2 (mod 4) q +1 +2,jq Z.lHl $ ZJq+l

y2 +y = ;1:3 +w m=0 (mod 4) q +1 +2vg Z.,(q+l $ Z.,(q+l

m=2 (mod 4) q +1- 2vq Z,Jq-l $ Z,Jq_l

ICurve

Table 7.2: Supersingular elliptic curves over F2m,where m is even.

Exercise 7.3. Using Theorem 7.2, prove that there are 3 isomorphism
classes of supersingular elliptic curves over F2m, where m is odd.

Exercise 7.4. Let Ell E 2 be the curves y2+,y = ;1:3, y2+,2 y = ;1:3 over
F2m, where m =0 (mod 4), and, is a non-cube in F2m. Using Theo­
rem 7.2, show that E 1 ':p E2. Note however that E1(F2m) ~ E2(F2m).

7.8 References

[1] L. CHARLAP AND D. ROBBINS, An Elementary Introduction to Elliptic
Curves, CRD Expository Report No. 31, Institute for Defense Analysis,
Princeton, December 1988.

[2] S. GOLDWASSER AND J. KILIAN, "Almost all primes can be quickly certi­
fied", Proceedings of the 18th Annual Symposium on Theory of Computing
(1986), 316-329.

[3] D . HUSEMOLLER, Elliptic Curves, Springer-Verlag, New York, 1987.

[4] B. KALISKI, "One-way permutations on elliptic curves", J. of Cryptology,
3 (1991), 187-199 .

[5] N. KOBLITZ, Introduction to Elliptic Curves and Modular Forms, Springer­
Verlag, New York , 1984.



150 REFERENCES

[6] N. KOBLITZ, A Course in Number Theory and Cryptography, Springer­
Verlag, New York, 1987.

[7] S. LANG Elliptic Curves: Diophantine Analysis, Springer-Verlag, Berlin,
1978.

[8] A. LENSTRA AND H. W. LENSTRA, "Algorithms in number theory", in
Handbook of Theoretical Compo Sci., 1990,673-715.

[9] H.W. LENSTRA, "Factoring integers with elliptic curves", Annals of Math­
ematics, 126 (1987), 649-673.

[10] A. MENEZES AND S. VANSTONE, "Isomorphism classes of elliptic curves
over finite fields of characteristic 2" , Utilitas Mathematica, 38 (1990), 135­
153.

[11] F. MORAIN, "Implementation of the Goldwasser-Kilian-Atkin primality
testing algorithm", INRIA Report 911, INRIA-Rocquencourt, 1988.

[12] C. POMERANCE, "Very short primality proofs", Math . Comp., 48 (1987),
315-322.

[13] H. RUCK, "A note on elliptic curves over finite fields", Math. Comp., 49
(1987), 301-304.

[14] R.J. SCHOOF, "Nonsingular plane cubic curves over finite fields", J. of
Combinatorial Theory, A 46 (1987), 183-211.

[15] J. SILVERMAN, The Arithmetic of Elliptic Curves, Springer-Verlag, New
York, 1986.



Chapter 8

Elliptic Curve
Cryptosystems

8.1 Introduction

As we have seen in Section 6.1 , the elements of a finite cyclic group
G may be used to implement several cryptographic schemes, provided
that finding logarithms of elements in G is infeasible. We may take
G to be a cyclic subgroup of E(Fq ) , the group of Fq-rational points of
an elliptic curve defined over Fq ; this was first suggested by N. Koblitz
[10] and V. Miller [17]. Since the addition in this group is relatively
simple, and moreover the discrete logarithm problem in G is believed
to be intractable, elliptic curve cryptosystems have the potential to
provide security equivalent to that of existing public key schemes, but
with shorter key leng ths. Having short key lengths is a factor that can
be crucial in some applications, for example the design of smart card
systems.

In Section 8.2, we show how the discrete logarithm problem in a
singular elliptic curve can be easily reduced to the logarithm problem
in some finite field. In Section 8.3, we survey the recent work [15]
on the elliptic curve logarithm problem. Finally, in Section 8.4, we
consider various issues that arise in the secure and efficient hardware
implementation of the ellip tic curve analogue of the EIGamal public key
cryptosystem.
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8.2 Singular Elliptic Curves

In this section, we elaborate on category (iv) of Section 6.3 on methods
for finding logarithms. The example we study here is the problem of
computing logarithms in a singular elliptic curve.

Let E be a singular elliptic curve defined over a field K, i.e., E is
given by a singular Weierstrass equation. Then it can be shown that E
has precisely one singular point, and we will assume that this point is
P = (:Z:o, Yo) E E(K). We note here that E is a curve of genus 0, and
that in some of the literature such a curve is not called an elliptic curve.
After the change of variables :z: -t :z:1 + :Z:o, Y -t yl + Yo, we can assume
that the Weierstrass equation for E is

with singular point P = (0,0).

Let

where 0:, {3 are in K or in K 1 (K 1 is the quadratic extension of K). Then
P is called a node if 0: =J {3, and a cusp if 0: = {3. Let En,(K) denote
the set of solutions (:z:,y) E K x K to (8.1), excluding the point P, and
including the point at infinity O. En,(K) is called the non-singular part
of E(K). One can define an addition on En,(K) given by the usual
chord-and-tangent law (see Section 7.2). The next result from [8] states
that En,(K) is a group , and determines the structure of this group . K*
denotes the multiplicative group of non-zero elements of K, while K+
denotes the additive group of K .

Theorem 8.1. (i) If P is a node, and 0:, {3 E K, then the map ifJ :
En,(K)~ K* defined by

ifJ : (:z:, y) I-t (y - {3:z: )/(y - o::z:)

is a group isomorphism.
(ii) If P is a node, and 0:, {3 rf. K, 0:, {3 E K 1 , then let L be the subgroup
of K; consisting of the elements of norm 1. The map"p : En,(K)~ L
defined by

"p: (:z:, y) I-t (y - {3:z: )/(y - o::z:)
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is a group isomorphism.
(iii) If P is a cusp, then the map w : En.(K) -----+ K+ defined by
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w: (:z:,y) t-t :z:/(y - a:z:)

is a group isomorphism.

Using the result above, we inunediately derive the following.

Theorem 8.2. Let E be a singular elliptic curve defined over the finite
field Fq with singular point P.
(i) If P is a node, then the logarithm problem in En.(Fq ) is reducible
in polynomial time to the logarithm problem in Fq or Fq. , depending on
whether a E Fq or a (j. Fq , respectively.
(ii) If P is a cusp, then the logarithm problem in En.(Fq ) is reducible
in polynomial time to the logarithm problem in Fq+.

Let q = pm, where p is the characteristic of Fq• Then

Fq+ ~ F/ $ . . . $ r; .
" Iv

m

Observe that the logaritlun problem in Fp+ can be efficiently solved in
polynomial time by the extended Euclidean algoritlun. Thus if we are
given a basis of Fq over Fp , then we can also compute logarithms in Fq+
in polynomial time. We thus obtain the following.

Corollary 8.3. If E is a singular elliptic curve defined over a field Fq

with a cusp, then logarithms in En.(Fq ) can be computed in polynomial
time.

The results of this section demonstrate that the logaritlun problem
in En.(Fq ) is no harder than the logaritlunproblem in Fq. , where k = 1
or k = 2, in the case where E has a node. Since the group operation
in En.(Fq ) is more expensive than the group operation in the fields Fq

or Fq. , the former group offers no advantage over finite fields for the
implementation of cryptographic protocols whose security is based on
the difficulty of computing discrete logaritluns in a group . If E has
a cusp, then logarithms in En.(Fq ) can be efficiently computed, and
thus these groups cannot be used to implement secure cryptographic
protocols.
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Exercise 8.1. Let q be odd and D E F;. Let C denote the set of
solutions (z, y) E Fq X Fq to the equation Z2 - Dy2 = 1. Define an
operation $ on the elements of C as follows. If (zl,Yd, (Z2,Y2) E C,
then

(i) Prove that (C,$) is an abelian group.

(ii) Prove that (C, $) is a cyclic group of order q - X(D) , where x(D)
denotes the quadratic character of D.

(iii) If X(D) = -1 then show that the logarithm problem in C is re­
ducible in constant time to the logarithm problem in Fqa ,

(iv) If X(D) = 1, then show that the logarithm problem in C is re­
ducible in probabilistic polynomial time to the logarithm problem
in Fq •

8.3 The Elliptic Curve Logarithm Problem

Let P E E(Fq ) be a point of order n, and let R E E(Fq ) . We assume
that n is known. The elliptic curve logarithm problem is the following:
Given P and R, determine the unique integer I, 0 ::; I ::; n -1, such that
R = IP, provided that such an integer exists.

The best algorithms that are known for solving this problem, are the
exponential square root attacks of Section 6.4 that apply to any finite
group and have a running time that is proportional to the square root of
the largest prime factor dividing the order of the group. Consequently,
if the elliptic curve is chosen so that its order is divisible by a .large
prime, then these attacks are avoided. In [17], Miller presents some ar­
guments that the index calculus methods described in Section 6.6, which
produced dramatic results in the computation of discrete logarithms in
(the multiplicative group of) a finite field (see [4], [19]), do not extend
to elliptic curve groups.

The method we describe here reduces the elliptic curve logarithm
problem in E(Fq ) to the discrete logarithm problem in a suitable ex­
tension field Fq• of Fq • This is achieved by establishing an isomorphism
between <P>, the subgroup of E generated by P, and the subgroup of
nth roots of unity in Fq•• The isomorphism is given by the Weil pairing,
and is efficiently computable provided that k is small. We begin with
some definitions.
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Let n be a positive integer relatively prime to q. The Weil pairing
en is a function

en : E[n] X E[n] --+ Fq •

We will not give the complete definition of en, but instead will list the
important properties which we shall use. For a definition of the Weil
pairing, see [23] or the Appendix of [15].

(i) Identity: For all P E E[n], en(P, P) = 1.

(ii) Alternation: For all PI,P2 E E[n], en(PI,P2) = en(P2,Pd- l.

(iii) Bilinearity: For all Pll P2,r, E E[n],

and
en(Pll P2 +Pa) = en(PI, P2 ) en(PI, Pa).

(iv) Non-degeneracy: If PI E E[n], then en(PI, 0) = 1. If en(PI, P2) =
1 for all P2 E E[n], then PI = O.

(v) If E [n] ~ E(Fq. ) , then en(PllP2) E Fq . , for all PllP2 E E[n].

Miller has developed an efficient probabilistic polynomial-time algo­
rithm for computing the Weil pairing [18]; the algorithm is summarized
in [15].

The following result from [9] provides a method of partitioning the
elements of an elliptic curve E(Fq ) into the cosets of <P>, the subgroup
of E(Fq ) generated by a point P of maximum order.

Lernrna 8.4. Let E(Fq ) be an elliptic curve having group structure
(nl' n2), and let P be an element of maximum order nl. Then for all
PI' P2 E E(Fq ) , PI and P2 are in the same coset of <P> within E(Fq )

if and only if en, (P, Pd =en, (P, P2).

The next result is similar to, and has a similar proof, as Lemma 8.4.
For completeness, we include it here.

Lemma 8.5. Let E(Fq ) be an elliptic curve such that E[n] ~ E(Fq ) ,

and where n is a positive integer coprime to q. Let P E E [n] be a point
of order n . Then for all Pll P2 E E[n] , PI and P2 are in the same coset
of <P> within E[n] if and only if en(P, Pd = en(P, P2).
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Proof: If PI = P2 +kP, then clearly

en(P, PI) = en(P, P2)en(P, P)"

= en (P, P2 ) .

Conversely, suppose that PI and P2 are in different cosets of < P >
within E[n]. Then we can write PI - P2 = tuP +a2Q, where (P, Q) is
a generating pair for E[n] ~ Zn EB Zn' and where a2Q ::fi O.
If biP +b2Q is any point in E[n], then

en(a2Q,b-P +b2Q) = en(a2Q, p)b'en(Q , Q)a.b.

= en(P,a2Qt
b, .

If en(P, a2Q) = 1 then by the non-degeneracy property of en, we have
that a2Q = 0, a contradiction. Thus en(P, a2Q) ::fi 1. Finally,

en(P, Pd en(P, P2+alP +a2Q)

en(P, P2)en(P, Pt'en(P, a2Q)

::fi en(P, P2).

Returning to the elliptic curve logarithm problem, recall that we
are given P E E(Fq) of order n, and R E E(Fq). We further assume
that gcd(n, q) = 1. Since en (P, P) = 1 we deduce from Lemma 8.5 that
R E<P> if and only if nR = 0 and en(P, R) = 1, conditions which can
be checked in probabilistic polynomial time. Henceforth we will assume
that R E<P>.

Let k be the smallest positive integer such that E[n] ~ E(Fqa); it is
clear that such an integer k exists.

Theorem 8.6. There exists Q E E[n], such that en(P, Q) is a primitive
nth root of unity in Fqa .

Proof: Let Q E E[n]. Then, by the bilinearity of the Wei! pairing, we
have that

en(P, Qt = en(P, nQ) = en(P,O) = 1.

Thus en(P, Q) E J.Ln, where J.Ln denotes the subgroup of the nth roots of
unity in Fqa.
There are n cosets of <P> within E[n], and by Lemma 8.5 we deduce
that as Q varies among the representatives of these n cosets, en(P, Q)
varies among all of the elements of J.Ln' The result now follows. 0

Let Q E E[n] such that en(P, Q) is a primitive nth root of unity. The
next result is easy to prove .
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Theorem 8.7. Let f : <P> ----t JLn be defined by f: R I-t en(R,Q).
Then f is a group isomorphism.

We can now describe the method of reducing the elliptic curve log­
arithm problem to the discrete logarithm problem in a finite field.

Algorithm 1

Input: An element P E E(Fq ) of order n, where gcd(n, q) = 1, and
R E<P>.

Output: An integer I such that R = IP.

Step 1. Determine the smallest integer k such that E[n] ~ E( Fq~) .

Step 2. Find Q E E[n] such that a = en(P, Q) has order n.

Step 3. Compute f3 = en(R, Q).

Step 4. Compute 1, the discrete logarithm of f3 to the base a in Fq~ .

Note that the output of Algorithm 1 is correct since

a/,

and a has order n.

Remarks
The reduction just described takes exponential time (in In q) in general,
as k is exponentially large in general. Algorithm 1 is incomplete as we
have not provided methods for determining k, and for finding the point
Q. We shall accomplish this next for the class of supersingular elliptic
curves.

8.3.1 Supersingular Curves

Let E(Fq ) be a supersingular elliptic curve of order q +1 - t over Fq,

and let q = p'", Let the type of E(Fq ) be (nbn2) ' By Lemmas 7.8
and 7.11, E lies in one of the following classes of curves.

(I) t = 0 and E(Fq ) ~ 1q+1 •

(II) t = 0 and E(Fq) ~ 1(q+l)/2 $ 12 (and q == 3 (mod 4)).

(III) t2 =q (and m is even) .

(IV) t2 = 2q (and p = 2 and m is odd) .
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(V) t 2 = 3q (and p = 3 and m is odd).

(VI) t 2 = 4q (and m is even).

Let P be a point of order n in E(Fq ) . Since ntl(q +1 - t) and pit,
we have gcd(nll q) = 1. By applying the Weil conjecture and using
Lemma 7.11, one can easily determine the smallest positive integer k
such that E[nd ~ E(Fqk), and hence E[n] ~ E(Fqk). We do a sample
calculation here.

Let q = 2m
, m odd, and let E / Fq be a supersingular curve in

class (IV) with #E(Fq) = q + 1 +,j2q. By Lemma 7.11, E(Fq) is
cyclic. By using the Weil conjecture, we find that #E(Fq.) = q2 + 1,
#E(Fq.) = q3+1-M, and #E(Fq.) = q4+1+2R. By Lemma 7.11
again, E(Fq.) and E(Fq.) are cyclic and consequently

and

it follows that E[nd ~ E(Fq.) and k = 4.

For convenience, we summarize the relevant information about su­
persingular curves in Table 8.1. Note that for each class of curves, the
structure of E(Fqk) is of the form len, ED len" for appropriate c. We now
proceed to give a detailed description of the reduction for supersingular
curves.

Algorithm 2

Input: An element P of order n in a supersingular curve E(Fq), and
R E<P> .

Output: An integer l such that R = [P.

Step 1. Determine k and c from Table 8.1.

Step 2. Pick a random point Q' E E(Fqk) and set Q = (cnI/n)Q'.

Step 3. Compute a: = €n(P, Q) and {3 = €n(R, Q).

Step 4. Compute the discrete logarithm l' of {3 to the base a: in Fqk .
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Class of t Group nl k

curve structure

I 0 cyclic q+1 2

II 0 l(q+l)/2 EEl l 2 (q +1)/2 2

III ±jq cyclic q+1:r=jq 3

IV ±y'2q cyclic q+1:r=y'2q 4

V ±J3q cyclic q+1:r=J3q 6

VI ±2jq l..;q'fl EEll..;q'fl jq:r= 1 1

c

I (q+1 ,q+1) 1

II (q+1,q+1) 2

III (H±l,H±l) jq± 1

IV (q2 +1, q2 +1) q±y'2q+1

V (q3 +1, q3 +1) (q+1)(q±J3q+1)

VI (y'q:r= 1, jq:r= 1) 1

Table 8.1: Some information about supersingular curves .
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Step 5. Check whether I'F = R. If this is so, then I = I' and we are
done. Otherwise, the order of 0: must be less than n, so go to Step
2.

Note that Q is a random point in E[nJ. Note also that the proba­
bility that the field element 0: has order n is 4J{n)/n. This follows from
Lemma 8.5 and the facts that there are 4J{n) elements of order n in Fql,
and there are n cosets of <P> within E[nJ.

Also note that we are able to pick points P uniformly and randomly
on an elliptic curve E(Fq) in probabilistic polynomial time. This can be
accomplished as follows. We first randomly choose an element :C1 E Fq •

If :C1 is the z-coordinate of some point in E(Fq ) , then we can find Y1
such that (:C1' yd E E (Fq ) by solving a root finding problem in Fq •

There are various techniques for finding the roots of a polynomial over
Fq in probabilistic polynomial time; for example, see [3J. We then set
P = {:C1 ,Yd or {:Cll-Yd if the curve has equation (7.8) {respectively,
P ={:Cllyd or (:C1'Y1 +:cd, and P = (:Cllyd or (:C1'Y1 +a3) if the curve
has equation (7.9) or (7.10)). From Hasse's theorem, the probability
that :C1 is the z-coordinate of some point in E{Fq ) is at least 1/2-1/.,fi.
Note that with the method just described the probability of picking a
point of order 2 is twice the probability of picking any other point,
however there are at most three points of order 2.

We now proceed to prove that the reduction of Algorithm 2 is a
probabilistic polynomial-time reduction.

Theorem 8.8. If E(Fq) is a supersingular curve, then the reduction of
the elliptic curve logarithm problem in E (Fq ) to the discrete logarithm
problem in Fql is a probabilistic polynomial-time (in In s) reduction.

Proof: We assume that a basis of the field Fq over its prime field
is explicitly given. To perform arithmetic in Fql, we need to find an
irreducible polynomial f(:c) of degree k over Fq • This can be done in
probabilistic polynomial time, for example by the method given in [3].
We then have Fql ~ Fq[:cJ/{/{:c)). Note that the constant polynomials
in Fq[:cJ form a subfield isomorphic to Fq •

The point Q' can be chosen in probabilistic polynomial time since Q' E

E(Fql) and k ::; 6, and then Q can be determined in polynomial time.
The elements 0: and {3 can be computed in probabilistic polynomial time
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by Miller's algorithm. Since

n
-- < 6Inlnn, for n >_ 5,
<jJ(n) -

(see [21]), the expected number of iterations before we find a Q such
that e,,(P, Q) has order n is o(In In n). Finally, observe that I'P = R
can be tested in polynomial time, and that n = O(q) . 0

Notice that the discrete logarithm problem in Fq• that we solve in
Step 4 of Algorithm 2 has a base element a of order n, where n <
q" - 1. The probabilistic subexponential algorithms of [4], [5] and [7]
for computing discrete logarithms in a finite field require that the base
element be primitive. Using these algorithms, we obtain the following.

Corollary 8.9. Let P be an element of order n in a supersingular ellip­
tic curve E(Fq ) , and let R = IP be a point in E(Fq ) . If q is a prime, or
if q is a prime power q =pm, where p is small, then the new algorithm
can determine 1 in probabilistic subexponential time .

Proof: The problem of finding the logarithm of f3 to the base a in Fq•

can be solved in probabilistic subexponential time as follows. We first
obtain the integer factorization of q" - 1 in probabilistic subexponential
time using one of the many techniques available for integer factoriza­
tion (for example [14] or [24] for practical algorithms with a heuristic
running time analysis, and [20] for an algorithm with a rigorous run­
ning time analysis). Observe that we a priori have the following partial
factorizations of q" - 1:

(I) q2_1 = (q+l)(q-l).

(II) q2 - 1 = (q+1)(q - 1).

(III) q3 - 1 = (q - 1)(q+1 - .jq)(q +1 + .jq).

(IV) q4 - 1 = (q - 1)(q+ l)(q +1 - J2q)(q +1 +J2q).

(V) q6 - 1 = (q - l)(q + l)(q +1 - j3q)(q +1 + j3q)(q2 +q+1).

We then select random elements, in Fq . , until, has order q" - 1; the
expected number of trials is (q" -1)/</J(q" -1) which is O(Inlnq) since
k ::; 6. The order of, can be checked in polynomial time using the
factorization of q" - 1. By solving two discrete logarithm problems in
Fq . , we find the unique integers s and t, 0 :::; 5, t :::; q" - 1, such that
a = " and f3 = ,t. Since f3 = a l / , we obtain the congruence 51' == t
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(mod qlc - 1). Let w = gcd(s, qlc - 1), and let v = (qlc - l)/w be the
order of Q. Then

l' == (s/wt1(t/w) (mod v).

The logarithms in Fq> can be computed in probabilistic subexponen­
tial time in In qlc (and consequently also subexponential in In q) using,
for example, the algorithm in [5] if q is prime and k = 1, [7] if q is prime
and k > 1, or [4] if q is the proper power of a small prime. 0

In solving the elliptic curve logarithm problem in practice, one would
first factor n. Using this factorization, we can easily check the order of
Q. Thus to find Q, we repeatedly choose random points in E[n] until
Q has order n. This avoids the possibility of having to solve several
discrete logarithm problems before l' is in fact equal to 1. Note however
that this modified reduction is different from the reduction described in
Algorithm 2, and in particular is no longer a probabilistic polynomial­
time reduction to the discrete logarithm problem in a finite field.

The dominant step of the algorithm as modified in the previous
paragraph is the final stage of computing discrete logarithms in Fq>.

The expected running time of the algorithm is thus L[qlc, 1/2, c] if q is
a prime, and L[qlc, 1/3, c] if q is the power of a small prime.

We conclude that for the supersingular curves, the elliptic curve
discrete logarithm problem is more tractable than previously believed.

8.3.2 Non-Supersingular Curves

Let E be a non-supersingular curve defined over the field Fq of charac­
teristic p. Let P E E(Fq ) be a point of order n, and R E<P>. The
reduction of Algorithm 1 for computing logj, R is only valid for the case
where gcd(n, q) = 1. However it can easily be extended to the case
gcd(n, q) f 1 as follows.

Let n = p'n', where s ~ 1, and gcd(n',p) = 1. Put P' = p'P and
R' = p'R. Then R' E<P'>, and Algorithm 1 can be applied to compute
logp, R'. Observe that

logp. R' == logj, R (mod n'). (8.2)

Now, let P" = n' P, R" =n' R . Note that ord(pIt) =p' and R" E<P">.
We may use the Pohlig-Hellman method to find logp" R". Observe that

logp" R" == logp R (mod p'). (8.3)
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The computation of logp" R" is only efficient if p is small (the extreme
case occurring when q = p). Finally, we can use the Chinese remainder
theorem to combine (8.2) and (8.3) and obtain logp R.

Let us now assume that gcd(n, q) = 1. We also assume that the
running time of the best algorithm for the discrete logarithm problem
in Fq is L[q,1/3, c]. Algorithm 1 reduces the logarithm problem in
E(Fq) to the logarithm problem in Fq~, which can be solved in time
L[qk, 1/3, c]. A necessary condition for the quantity L[qk, 1/3, c] to be
subexponential in Inq is that k ::; (Inq)2 . One necessary condition for
E[n] ~ E(Fq~) is that nlqk - 1, i.e., the order of q modulo n is a divisor
of k. For random n ~ q, it is highly unlikely that k ::; (Inq)2. This
statement is made precise for the case q and n primes in [12]. Thus
for most non-supersingular curves, the reduction of Algorithm 1 gives a
fully exponential algorithm for the elliptic curve logarithm problem.

In designing a cryptosystem, the reduction of Algorithm 1 can be
avoided by selecting a non-supersingular curve E(Fq ) such that the cor­
responding k value is sufficiently large, say k > c. (By sufficiently large
we mean a value k for which the discrete logarithm problem in Fq~ is
considered intractable.) Let E(Fq) be of type (nbn2). We assume that
nl is divisible by a large prime v. We further assume that the base
point P has order divisible by v. One can then ensure that k -=f. l, by
simply checking that either v does not divide q' - 1 or else v 2 does not
divide #E(Fq,) , To verify that k > c, one checks that k -=f. l, for each l,
1 ~ 1~ c. The quantity #E(Fq,) can be easily obtained from #E(Fq)
by applying the Wei! conjecture as described in Chapter 7. If these con­
ditions are satisfied, then the best known algorithm for the computing
logarithms is the exponential-time Pohlig-Hellman method.

Research Problem 8.1. Find a deterministic polynomial-time algo­
rithm for picking a random point on an elliptic curve.

Research Problem 8.2. Find a (probabilistic) subexponential algo­
rithm for the elliptic curve logarithm problem in an infinite class of
non-supersingular elliptic curves.

8.4 Implementation

We first review the elliptic curve analogue of the EIGamal cryptosystem
[6]. Let E be a curve defined over Fq , and let P be a publicly known
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point on E. We assume that messages are ordered pairs of elements in
Fq • The protocol for user B to send the message (Ml , M 2 ) to user A is
the following.

(i) User A randomly chooses an integer a and makes public the point
aP, while keeping a itself secret.

(ii) B chooses a random integer k and computes the points kP and
akP = (z,y).

(iii) Assuming z,y i- 0 (the event z = 0 or y = 0 occurs with very
small probability for random k), B then sends A the point kP,
and the field elements Mlz and M 2y.

(iv) To read the message, A multiplies the point kP by her secret key
a to obtain (z,y), from which she can recover M; and M 2 in two
divisions.

In this scheme, four field elements are transmitted in order to convey a
message consisting of two field elements. We say that there is message
expansion by a factor of 2.

We now explain why curves over finite fields of characteristic 2 are
favourable for implementation purposes. Recall that the field F2 m can
be viewed as a vector space of dimension mover F2 • Once a basis of
F2 m over F2 has been chosen, the elements of F2 m can be conveniently
represented as 0-1 vectors of length m. In hardware, a field element is
stored in a shift register of length m. Addition of field elements is per­
formed by bitwise XOR-ing the vector representations, and takes one
clock cycle. As explained in Chapter 5, a normal basis representation
of F2 m is preferred because squaring a field element can then be accom­
plished by a simple rotation of the vector representation, an operation
that is easily implemented in hardware; squaring an element also takes
one clock cycle. To minimize the hardware complexity in multiplying
field elements (i.e., to minimize the number of connections between the
cells of the shift registers holding the multiplicands), the normal basis
chosen has to belong to a special class called optimal normal bases. A
description of these special normal bases can be found in Chapter 5.
An associated architecture for a hardware implementation is given in
[2]. Using this architecture, a multiplication can be performed in m
clock cycles. Finally, the most efficient technique, from the point of
view of minimizing the number of multiplications, to compute an in­
verse was proposed by Itoh, Teechai and Tsujii, and is described in [1] .
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The method requires exactly llog2(m -1)J + w(m -1) - 1 field multi­
plications, where w(m - 1) denotes the Hamming weight of the binary
representation of m-1. However it is costly in terms of hardware imple­
mentation in that it requires the storage of several intermediate results.
An alternate method for inversion which is slower but which does not
require the storage of such intermediate results is also described in [IJ.

From the addition formulae in Sections 7.4 and 7.5, we see that
two distinct points on an elliptic curve can be added by means of three
multiplications and one inversion of field elements in the underlying field
K, while a point can be doubled in one inversion and four multiplications
in K. This is true regardless of whether the curve has equation (7.8),
(7.9) or (7.10). Additions and subtractions are not considered in this
count, since these operations are relatively inexpensive. Our intention
is to select a curve and field K so as to minimize the number of field
operations involved in adding two points. Supersingular curves over
K = F2 m are very attractive for the following three reasons.

(i) The arithmetic in F2 m is easier to implement in computer hardware
than the arithmetic in finite fields of characteristic greater that 2.

(ii) When using a normal basis representation for the elements of F2m,
squaring a field element becomes a simple cyclic shift of the vec­
tor representation, and thus reduces the multiplication count in
adding two points.

(iii) For supersingular curves over F2m, the inverse operation in dou­
bling a point can be eliminated by choosing a3 =1, further reduc­
ing the operation count.

8.4.1 Supersingular Curves

We first consider curves over F2m of the form y2 + y = Z3 + a4z + ae.

From Table 7.1, we see that there are precisely 3 isomorphism classes
of supersingular elliptic curves over F2m,m odd . A representative curve
from each class is

E1 y2 +Y =Z3

E2 y2 +Y = Z3 + Z

E3 y2 +Y = Z3 + Z +1.
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The addition formula for E2 and E3 simplifies to

and

Y3 = { (~::~: ) (Zl +Z3) +Y1 +1, P i' Q,

zt +yt +1, P = Q.

If a normal basis representation is chosen for the elements of F2~ '

we see that doubling a point in E 2 and E 3 is "free" I while adding two
distinct points can be accomplished in two multiplications and one in­
version. The multiple kP of the point P is computed by the repeated
doubling and add method. If w(k) = t + 1, then the exponentiation
takes 2t multiplications and t inversions. To increase the speed of the
system, and to place an upper bound on the time for encryption, one
may limit the Hamming weight of k to some integer d, where d :S m.
The integer d should be selected so that the key space is large enough
to prevent an exhaustive attack.

The "k" values for E 1 , E2 and E3 are 2, 4 and 4 respectively. Hence
by the reduction of Section 8.3, the curves E2(F2~) and E3(F2~) offer the
same level of security as that of systems based on the discrete logarithm
problem in F2'~'

A further advantage of using these curves is they can be used to
reduce the message expansion factor in the EIGamal scheme to 3/2.
User B only sends the e-coordinate Zl of kP and a single bit of the
y-coordinate Y1 of kP . Y1 can easily be recovered from this information
as follows. First ex = z~, z~ +Zl or z~ +Zl +1 is computed, depending
on whether E = E 1 , E 2 or E3 respectively, by a single multiplication of
Zl and z~ . Since the Trace of ex must be 0, we have that either

2' 2' 2~-1

Y1 = ex + ex + ex +...+ ex ,

or else
2' 2' 2~-1

Y1 = ex + ex + ex +...+ ex +1.

The identity 1 is represented by the vector of all 1's, and so the single
bit of Y1 that was sent enables one to make the correct choice for Y1'
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Notice that the computation of Y1 is inexpensive, since the terms in the
formula for Y1 may be obtained by successively squaring 0:.

Table 8.2 lists some fields F2 m for which an optimal normal basis
exists, and where either #E2(F2m) or #Es(F2m) contains a large prime
factor, precluding a square-root attack. Pn denotes an n-digit prime,
while PRPn denotes an n-digit probable prime. The approximate run­
ning time for an index calculus attack in F2'm is also included, using the
asymptotic running time estimate of

operations for computing discrete logarithms in F2 n [19] .

Exercise 8.2. Verify that the "k" values for the curves in Table 7.2 are
3, 3, 3, 3, 2, 1 and 1 respectively.

Exercise 8.3. By resorting to projective coordinates instead of affine
coordinates, the costly inverse operation needed when adding two dis­
tinct points can be eliminated. Using projective coordinates, derive
formulae for the addition of two points P = (2:1 : Y1 : 1) and Q = (2:2 :
Y2 : Z2) on the curves E 2 and Es such that the addition of two distinct
points can be done in 9 field multiplications.

8.4.2 Non-Supersingular Curves

The discussion here is restricted to elliptic curves over fields of char­
acteristic 2. However, it should be pointed out that non-supersingular
curves over fields of odd characteristic, and in particular prime fields,
can also be attractive for implementation.

Recall that there are precisely 2(q - 1) isomorphism classes of non­
supersingular elliptic curves over F2m,where q = 2m

• A set of represen­
tatives, one from each class, is

where a6 E F;, a2 E {O, I}, and 1 is any fixed element in Fq of trace
1. A non-supersingular curve that is suitable for cryptographic applica­
tions is one whose order is divisible by a large prime factor, say a prime
factor of at least 40 decimal digits. Consequently, the underlying field
should be of size at least 2130

• The underlying field should also have an
optimal normal basis, in order to achieve efficient field arithmetic. In
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Rough estimate of the

m Curve Order of curve over F2 - operations for index

calculus attack in F2 , -

173 E2 5 . 13625405957 . P42 1.4 x 1018

173 Ea 7152893721041 . P40 1.4 x 1018

179 Ea 1301260549 . P45 2.5 x 1018

191 E2 5 . 3821 . 89618875387061 · P40 8.6 x 1018

191 Ea 25212001 . 5972216269 . P41 8.6 x 1018

233 E2 5 . 3108221 . P63 4.3 x 1020

239 E2 5 . 77852679293 . P61 7.2 x 1020

239 Ea P72 7.2 x 1020

281 Ea 91568909 . PRP77 2.3 x 1022

323 Ea 137 . 953 . 525313 . P87 5.3 x 102a

Table 8.2: Some supersingular curves over F2- suitable for crypto­
graphic applications.
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addition, we prefer a curve whose group is cyclic; this will be the case if
#E(Fq ) has no repeated prime factors . From the addition formulae in
Section 7.5, we see that adding two distinct points takes 2field multipli­
cations and 1 inversion, while doubling a point takes 3 multiplications
and 1 inversion. Recall that doubling a point in a supersingular curve
was for "free".

The advantage of using a non-supersingular curve is that the same
security level can be attained as with a supersingular curve, but with a
much smaller underlying field. This results in smaller key lengths, faster
field arithmetic, and a smaller processor for performing the arithmetic.
Another advantage of using non-supersingular curves is that each user
of the system may select a different curve E, even though all users use
the same underlying field Fq • Thus, all users require the same hardware
for performing the field arithmetic.

If a random elliptic curve E is required, then #E(Fq) can be com­
puted in polynomial time by Schoof's algorithm [22], as suitably adapted
by Koblitz to curves over fields of characteristic 2 [11]. Recent work
[16] has shown that these algorithms are practical for fields of size up
to 2155 • Using heuristic arguments, Koblitz [11] showed the probabil­
ity of a random non-supersingular curve E(Fq ) having the property
that N = #E(Fq) is divisible by a prime factor ~ NIB to be about*log2(B 12). Thus, for example, the probability that #E(F2 155 ) is di­
visible by a 40-digit prime is approximately

1 (2155

)155 10g2 2. 1040 ~ 0.136,

and so one can expect to try 7 curves before a suitable one is found.

An alternative method for selecting curves is to choose a curve E de­
fined over Fq, where q is small enough so that #E(Fq) can be computed
directly, and then using the group E (Fqn) for suitable n. Note that
#E(Fqn) can easily be computed from #E(Fq), by the Weil conjecture.
Observe also that if I divides n, then #E(Fql) divides #E(Fqn), and so
we should select n such that it is prime, or else a product of a small
factor and a large prime.

In [13], Koblitz observed that if one uses exponents of a small Ham­
ming weight, then one gets doubling of points "almost 314 for free" for
the non-supersingular curves y2+xy = x3 +1 and y2+xy = x3 +x2+1.
Also in [13] is a list of curves defined over F2 (respectively F4 l Fs and
F16 ) such that #E(Fqn) has a prime factor of at least 30 digits, there
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exists an optimal normal basis in Fqn, and any string of ~ 4 zeros (re­
spectively exactly 2, 3, 4 zeros) can be handled by a single addition of
points.

Exercise 8.4. As with supersingular curves, show how message expan­
sion can also be reduced to a factor of 3/2 when using non-supersingular
curves.
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Chapter 9

Introduction to Algebraic
Geometry

In this chapter some of the basic concepts of algebraic geometry needed
for algebraic geometric codes will be presented. Since the theory of
algebraic geometry is both vast and deep, we can only give a rough
outline here. Emphasis will be placed on making the ideas intuitive and
clear enough to enable the reader to understand the algebraic geometric
codes. The majority of this chapter is based on the treatment of Fulton
[2J . For a more complete treatment of algebraic geometry the reader
should consult that reference , or the recent book by Moreno [4J. Some
other standard textbooks in algebraic geometry are [1, 3, 7, 9].

9.1 Affine Varieties

Let k be an algebraically closed field which for our purpose will be the
algebraic closure of a finite field. We denote by An the affine n dimen­
sional space over k which consists of all n-tuples over k. Let k[Zl"'" znJ
denote the ring of polynomials with n variables and coefficients from k.
A point P E An is a zero of a polynomial /(Zl"",Zn) E k[Zl" ",ZnJ
if /(P) = O. If S denotes a subset of k[Zl"'" znJ then let

V(S) = {P E An I /(P) = 0 for all / E S}

be the set of all common zeros of polynomials in S. V(S) is called an
affine algebraic set. If S consists of one polynomial F then V(F) is
called a hypersur/ace; a hypersurface in the affine plane A2 is called an

173
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affine plane curve. It is understood that if I is the ideal in k[Xl' ... , xn ]

generated by S then V(S) = V(I) . We can also associate an ideal to a
subset of the affine space; if X ~ An then the ideal of X in k[X1' ... ' xn],
denoted by I(X), is

I(X) = {f E k[X1 ' .. . ' xn ] I f(P) =0 for all P EX}.

In this way geometric concepts can be stated in algebraic form and vice
versa.

An algebraic set V ~ An is irreducible if it is not the union of two
smaller algebraic sets. Equivalently, V is irreducible if the ideal of V,
I(V), is a prime ideal. A plane curve V(F(x, y)) is irreducible if and
only if F(x,y) is an irreducible polynomial in k[x,y]. An irreducible
algebraic set is called an affine variety. Assume V ~ An is an affine
variety, and thus I(V) is a prime ideal, and then define the coordinate
rmgas

that is, the coordinate ring consists of the polynomials in n variables
modulo the ideal I(V) . Since I(V) is a prime ideal, r(V) is a domain,
and thus we define the function field of the affine variety V, denoted
k(V), to be the quotient field of I'(F}. The elements of k(V) are rational
functions, i.e., functions of the form alb where a and b are in r(V). If
f E k(V) is a rational function, then f is said to be defined at a point
P E V if there exist a, b E r(V) such that f = alb and b(P) i= O. Let
op(V) denote the ring of all rational functions which are defined at the
point P E V. Clearly, I'(V] is isomorphic to a subring of Op(V), and
we write r(V) ~ Op(V).

Thevalueofarationalfunctionf E Op(V) at Pis f(P) = a(P)lb(P),
where f = alb and b(P) i= OJ it can easily be checked that this is inde­
pendent of the choice of a and b. The maximal ideal of 0 p(V) is defined
by

Mp(V) = {f E 0 p(V) I f(P) = O}.

Mp(V) consists of all the non-units of 0 p(V); this is due to the fact
that if f E Mp(V) then II f ~ Op(V). In fact, Mp(V) is the kernel of
the surjective homomorphism ¢: Op(V) -4 k defined by ¢(f) = f(P),
and hence Op(V)IMp(V) is isomorphic to k,

We close this section with some definitions from algebra. A domain
R which is not a field is said to be a Discrete Valuation Ring (DVR) if
there exists an irreducible element t E R such that every non-zero z E R
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may be written uniquely as z = ut", where u is a unit in R, and n is a
non-negative integer. The element t is called a uniformizing parameter
for R. Any other uniformizing parameter for R is of the form ut, where
u is a unit in R. If K is the quotient field of R, that is,

K = {~ I r, s ERand s # O},
then we can write any non-zero element z E K as z =ui" where m is
an integer.

Example 9.1. Let V = Al . Then I(V) = {O}, f(V) = k[:v], and
k(V) = k(:v). Since I(V) is a prime ideal, V is an irreducible algebraic
set. For each a E V = k, the ring O.,(V) is a DVR with uniformizing
parameter t., = :v - a. If f E k(V) then for a E k we can write f(:v) =
u(:v)t:(:v), where u E O.,(V), and u(a) # o. We say f has a zero of
order n at a if n > 0 or f has a pole of order -n at a if n < O. 0

The notion of a DVR will be used to define the order of poles and
zeros of rational functions in the function field of an algebraic curve.

In the next section we will focus our attention on affine plane curves
and define some important concepts for them.

9.2 Plane Curves

Let V(F(:v, y)) be an affine plane curve . The degree of V(F) is defined
to be the degree of F(:v, y) . For example, a curve of degree one is a line.
By abuse of notation we will write f(F), k(F), and Op(F) instead of
f(V(F)), k(V(F)), and Op(V(F)), respectively. We will also refer to
F as a curve instead of V(F) .

For a curve F, the point P = (a, b) E F (i.e., P E V(F)) is said to
be simple (or non-singular) if F",(P) # 0 or if Fy(P) # 0, where F", and
Fy denote the derivatives of F(:v, y) with respect to z and y respectively.
The line

F",(P)(:v - a) +Fy(P)(y - b) =0 (9.1)

is called the tangent line to F at a simple point P = (a, b). A point
which is not simple is called multiple or singular. A plane curve is
non-singular if every point is a simple point.

We will need the notion of the multiplicity of a point P = (a, b) on
the curve F(:v, y). We will first define the multiplicity for P = (0,0) and
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then extend the definition to any point P = (a,b). For any curve F we
can write F = Fm +Fm +! +...+Fn where the Fi's are forms of degree
i in k[z, y] and Fm f. 0. (A monomial in k[Zl' ... ' zn] is a polynomial
of the form

with degree i1 +...+ in' where a E k. A form F of degree d in
k[Zl' ... ' zn] is a sum of monomials of the degree dj that is,

where each X(i) is a monomial of degree d and ai E k.) Then the
multiplicity of F(z,y) at P = (0,0) is defined to be mp(F) = m. For
example F(z, y) = zy + y3 has multiplicity 2 at P = (0,0). It is clear
that P = (0,0) is a simple point if and only if mp(F) = 1. Assume
F(z, y) = Fm +Fm +1 +...+Fn • Since Fm is a form it can be factored
into linear polynomials in k[z, Y]j that is,

where L; = aiz +f3iY, and ri are non-negative integers. The lines L, are
called the tangent lines to F at P = (0,0). IT F has m distinct tangent
lines at (0,0) then F is said to have an ordinary multiple point at P.

The multiplicity of F( z , y) at P = (a,b) E F is defined to be the
multiplicity of F(z + a,y + b) at (0,0). Let F(z + a,y + b) = Gm +
Gm +! + ... + Gn • Since Gm is a form it can be factored into linear
polynomials in k[z, Y]j that is,

where L, = aiz + f3iY, and ri are non-negative integers. The lines
ai (z - a) +f3i(y - b) are called the tangent lines to F at P = (a, b). The
reader should check that if m = 1, then the definition of the tangent
line at P made here agrees with the definition in (9.1).

Assume F is an irreducible plane curve and P E F. IT G E k[z, y]
we will denote its residue in r(F) = k[z, y]j(F) by g.

Theorem 9.1. Let P E F. Then P is a simple point if and only if
Op(F) is a DVR. Assume now that P is a simple point. Then if L =
az + by + c is any line through P which is not the tangent line to F at
P, the residue 1 of L in 0 p(F) is a uniformizing parameter for 0 p(F).
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Assume P is a simple point on the irreducible curve F. Then since
Op(F) is a DVR, for any f E Op(F) we can write f = utj, where
tp is a uniformizing parameter for Op(F), u E Op(F) \ Mp(F), and
n 2: OJ we define ord~(f) =n. We can extend the order function to the
function field k(F) as follows: for any f E k(F) write f = 9/ h, where
g,h E r(F) ~ Op(F), and define ord~(f) = ord~(g) - ord~(h). If
ord~(f) = n =1= 0, then we say that f has a zero (respectively, a pole) of
order n (-n) at P if n > 0 (n < 0). We make the following convention:
ifG E k[:e,y] and 9 is its residue in I'[F] , we will write ord~(G) instead
of ord~(g).

Suppose P is a simple point and L is any line through P. Then
ord~(L) = 1 if L is not tangent to F at P, and ord~(L) > 1 if L is
tangent to F at P.

We will now move on to projective space, projective varieties, and
irreducible projective curves . The importance of projective space in
algebraic geometry is that all the points on the curve, including the
points at infinity become visible. Some curves intersect each other at
points at infinity and in order to describe these points clearly we need to
work in projective space . Most of the underlying ideas of affine curves
remain unchanged.

9.3 Projective Varieties

The projective n space P" is defined to be the set of all lines passing
through the origin in An+!. If we consider two non-zero points e, y E
An+i to be equivalent whenever :e = >.y for some>' E k, then P" is
the set of equivalence classes of non-zero points in An+!. We proceed
with projective spaces in a similar fashion as for affine spaces with the
slight modification that a point in the projective space now represents an
equivalence class of all scalar multiples of a non-zero point in the affine
space. A line passing through the origin in An+! is uniquely determined
by a non-zero point (:ei" '" :en +!) in An+! j since this point determines
a point in P" it is called a set of homogeneous coordinates for the point
in r-.

Example 9.2. The projective space PO(k) is a point. The projective
space Pi(k) is

{(:e, 1) l:e E k} U{(I , On.
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The point (1,0) is referred to as the point at infinity. Pl(k) is the
projective line over k , 0

A point Pin P" is a zero of FE k[Xl" '" xn+d if F(al"'" an+d =
ofor every choice of homogeneous coordinates (al' ... , an+d for P. For a
set S of polynomials in k[Xl"'" xn+d we let V(S) , a projective algebraic
set, denote the points in P" which are zeros of all the polynomials in S.
It can be shown that a projective algebraic set V(S) is the set of zeros of
a finite number offorms. If S consists of a form F then V(F) is called a
projective hypersurfacej a projective hypersurface in the projective plane
p 2 is called a projective plane curve.

We also define for X ~ P" the ideal of X, denoted by I(X), to be the
set of polynomials in k[Xl' .. . , Xn+l] such that each polynomial in I(X)
has all the points of X as zeros. It can be shown that I(X) is generated
by a finite set of forms. A projective algebraic set is called irreducible if
it cannot be written as the union of two smaller projective algebraic sets;
equivalently a projective algebraic set V is irreducible if I(V) is a prime
ideal. A projective plane curve V(F( z , y, z)) is irreducible if and only if
F(x, y, z) is an irreducible form. An irreducible projective algebraic set
is called a projective variety. For a projective variety V we define the
homogeneous coordinate ring of V to be Th(V) = k[Xl" ",Xn+l]jI(V).

Let V be a projective variety. A polynomial in rh(V) is called a
form of degree d if it is the residue modulo I(V) of a form of degree d
in k[Xl"'" Xn+l]' Since rh(V) is a domain, we can form its quotient
field, kh(V), called the homogeneous function field of V. Note that the
elements of kh(V) are in general not functions on V. For example, the
only elements ofrh(V) which determine functions on V are the constant
functions. We define the function field of a projective variety V as

k(V) = {i I a, bE rh(V) and a, b are forms of the same degree} .

Observe that if a, b E rh(V) are forms of the same degree d, then
a(>.x)lb(>.x) = a(x)lb(x) for all >. E k"; and so alb determines a func­
tion on V. The elements of k(V) are called rational functions on V.
If f E k(V), then f is said to be defined at a point P E V if there
exist forms a, b E rh(V) of the same degree such that f = alb and
b(P) i= OJ in this case, the value of fat Pis f(P) = a(P)jb(P), and is
well-defined. Let 0 p(V) denote the ring of all rational functions which
are defined at the point P E V.



9.4. PROJECTIVE PLANE CURVES

Example 9.3. Let V = pl. Then

k(V) = {~ I a, b are forms in k[Xl ' X2 ] of the same degree} .
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Let 0 = (1,0). If a, b E k[Xl' X2 ] are forms of degree d, then let ao , bo
denote the coefficients of xt in a, b respectively. If1 = alb E k(V), then
1(0) = ao /bo, and hence

It can easily be verified that Oo(V) is a DVR with uniformizing param­

eter XdXl ' 0

9.4 Projective Plane Curves

Let V(F(x , y, z)) be a projective plane curve. The degree of the curve
V(F) is defined to be the degree of the form F(x, y, z). For example
curves of degree 1 are lines, curves of degree 2 are called conics, and
curves of degree 3 are called cubics. By abuse of notation we will write
rh(F) , k(F) , and Op(F) instead ofrh(V(F)) , k(V(F)) , and Op(V(F)),
respectively. We will also refer to F as a curve instead of V(F).

In order to make definitions similar to the ones made for affine plane
curves we will use the fact that given a form we can always reduce it to
a polynomial of two variables, and then use the definitions of the affine
plane curves. Given the form F(x,y ,z) , F. = F(x,y ,l) is said to be
the dehomogenized F with respect to z.

If P = (a,b,e) and e i- 0 we define the multiplicity of F(x,y,z)
at P to be mp(F) = mp(F.), where P = (a/e, b/c) . (If e = 0 then
we dehomogenize F with respect to z if a i- 0 or with respect to y if
b i- 0.) The point P is said to be simple if mp (F) = 1 and multiple if
mp(F) > 1. If every point on F(x, y, z) is simple then F is called a non­
singular projective plane curve. It can be shown that every non-singular
projective plane curve is irreducible. It can also be shown that a point P
is a multiple point if and only if F(P) = Fx(P) = Fy(P) = F,(P) = O.

The tangent lines to a projective plane curve F(x , y, z) at Pare
defined in terms of the tangent lines to the affine plane curve F. at P.
We will not go into further details here, but mention that if P is a simple
point then the tangent line to F at Pis Fx(P)x +Fy(P)y +F, (P)z = O.
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A point P is called an ordinary multiple point if F(:e, y, z) has mp(F)
distinct tangent lines at P.

In a very similar fashion to affine plane curves it can be shown that
if P is a simple point on an irreducible projective plane curve F(:e, y, z)
then Op(F) is a DVR. As with the affine case, the order function on
Op(V) can be extended to the function field k(F); we denote this by
ord~.

9.5 Dimension of X

Let K be a finitely generated field extension of k. The transcendence de­
gree of Kover k is written as tr, deg, K, and is defined to be the smallest
n such that K is algebraic over k(:el, .. . ,:en ) for some :el, ... ,:en E K .

For a (affin~ or projective) variety X, the function field k(X) is a
finitely generated extension of k. The dimension of X is defined to
be tr. deg, k(X) . A variety of dimension 1 is called an algebraic curve,
or simply a curve (no confusion should arise between curves , which
are assumed to be irreducible, and plane curves, which may not be
irreducible) . A variety of dimension 2 is called a surface.

Example 9.4. Let F E k[:e, y, z] be an irreducible homogeneous poly­
nomial of degree 2 1. We show that V(F) is an algebraic curve.

We will work in affine coordinates. Let G = F(:e, y, 1). Since G
is irreducible over k, V(G) is a variety. Also, k(V(G)) is an algebraic
extension of the field k(:e) and is obtained by adjoining the element
y to k(:e), where y satisfies a polynomial equation over k(:e), namely
G(:e,y) = O. Thus tr.degkk(V(G)) = 1, and so V(F) is an algebraic
curve. 0

Two varieties are said to be birationally equivalent if their function
fields are isomorphic. The significance of the notion of birational equiv­
alence can be seen from the following statement: if X is a non-singular
projective curve with function field k(X), then X is determined up to
"isomorphism" by k(X), i.e., all the properties of X can be recovered
from k(X). Hence if X and Yare birationally equivalent projective
curves, then their function fields k(X) and k(Y) are isomorphic, and
hence X and Yare "isomorphic" as projective curves (we will not ex­
plain any further what it means for two projective curves to be isomor­
phic, but refer the reader to [2]).
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For every projective curve C, there exists a non-singular projective
curve X such that C and X are birationally equivalent. It can be shown
that all algebraic curves are birationally equivalent to a plane curve (see
Fulton [2]).

9.6 Divisors on X

We will henceforth only deal with algebraic curves X which are non­
singular. For P EX, we denote the order function at P on the function
field of X, k(X), simply as ord»,

A divisor on X is a formal sum D = I:PEX npP where the coef­
ficients np are integers of which all but a finite number are zero. Di­
visors can be added term by term in the obvious manner. This op­
eration makes the set of all divisors on X , denoted Div( X), into an
abelian group (the free abelian group generated by X). The degree
of a divisor D is deg(D) = I:PEX Tt p, The support of D is the set
{P E Xlnp # O}. A divisor D = I:PEX npP is called effective, de­
noted D >- 0, if Ttp 2: 0 for all P E X. If D l , D. E Div(X), then we
write D', >- D. if D l-D2 >- O. Let f E k(X). Since the number of poles
and zeros of a rational function is finite, we can define the divisor of f
to be div(l) = (I) = I:PEX ordp(l)P. The degree of such a divisor is
zero. Essentially the divisor (I) is an "accounting" device to keep track
of the zeros and poles and their orders.

Two divisors D and D in Div(X) are said to be linearly equivalent
if D = D + (I) for some f E k(X)j we write D =- D. Note that
deg(D) = deg(D) .

Example 9.5. Assume X = pl . Note that functions in k(X) are ratios
of two forms of equal degree, and thus k(X) = k(t) where t = xI/';r,.
and Xl ' X. are homogeneous coordinates in pl. It follows that X is an
algebraic curve. From Example 9.2 we have that

pl(k) = {(x, 1) Ix E k}U{(l,O)},

and thus the rational function t has one zero at P = (0,1) and one
pole at 0 = (1,0) . From Example 9.1 we know that a uniformizing
parameter at P is t p = xI/x., while from Example 9.3 a uniformizing
parameter at 0 is to = 'J:.!'J:l ' Thus ordp(t) = 1 and ordo(t) = -l.
Thus div(t) = P - 0, and note that deg(div(t)) = O. 0
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Example 9.6. Assume X = V(F(X1' X2, X3)) where F(X1' X2' X3) =
X~X3 - Xl (Xl - X3)(X1 - >'X3) and>. =I 0,1. (We will later come to
know F as an elliptic curve.) Let the affine coordinates be x = xd X3
and y = XdX3' Since F is irreducible over k, X is an algebraic curve.
Note that every point of F is a simple point. We will now proceed to
find the uniformizing parameters for the dehomogenized curve F. (see
Theorem 9.1).

Case 1 P = (a , b, 1) and b =I 0. Then

F.(x, y) = F(X1' X2, X3)/X~ = y2 - x(x - l)(x - >.),

and
(F.).,(a, b) = -3a2+ 2(>' + l)a - >.,

(F.)y(a, b) = 2b,

and thus the tangent line to F. at Pis,

L = (-3a2+2(>' + l)a - >.)(x - a) +2b(y - b).

The line z - a = °has a zero at P and since b =I °this line is
not the tangent to F. at P; that is, t p = x - a is a uniformizing
parameter at P.

Case 2 Q = (a, 0, 1). Then just as above we have

(F.).,(a, 0)= -3a2+ 2(>' + l)a - >.,

(F.)y(a,O) = 0,

which implies that the tangent line to F. at Q is

L = (-3a2 +2(>' + l)a - >.)(x - a).

The line y =°has a zero at Q and is clearly not the tangent line
to F. at Qj that is, t Q = Y is a uniformizing parameter at Q.

Case 3 0 = (0,1 ,0) (0 is called the point at infinity). Then

F.(u,r) = F(X1,X2,X3)/x~=r-u(u-r)(u->.r),

(F.),,(O,O) = 0,
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(F.)r(O,O) = 1,

and thus the tangent to F. at (0,0) is the line
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The line u = 0 has a zero at 0 and is clearly distinct from L: that
is, to = u = x /y is a uniformizing parameter at O. 0

Example 9.7. Assume X is the non-singular cubic in Example 9.6.
Let Xl> X2, X3 be as above, the homogeneous coordinates in P2. Let
x = xtl X3 and y = X2 / X3' We will compute the divisors of the functions
z and y. The rational function z has a zero at P = (0,0,1). Now at P
the uniformizing parameter is tp = y. We express

y2
X = ,

(x - l)(x - A)

where it is clear that the denominator does not vanish at P. Thus
ordj-z = 2. The function x has a pole at 0 = (0,1,0); since the degree
of the divisor of a rational function is 0 we must have ordox = -2.
This can also be seen directly from the definitions as follows. We have
to = XI /X2, and

x = ~ = (Xl)-2 x~ Xl .
X3 X2 x 2 X3

Let 1 = XV(X~X3) E k(X) . Then since xr = X~X3 + (1 + .A)X~X3 - Ax1Xi
in r(X), we have

1 = X;X3 +(1 +~)XiX3 - AX1X~ = x; +(1+ A)xi - AXIX3

X2X3 x~

Hence 1(0) = 1:j:. 0, and so ordox = -2. Thus

(x) = 2P - 20.

The function y has three simple zeros PI = (0,0,1), P2 = (1,0,1),
P3 = (A, 0, 1) and also has a pole at 0 = (0,1,0). By the same reasoning
as above ordoY = -3. Thus

(y) = PI + P2 + P3 - 30.

Assume we are given a divisor D E Div(X). We form the set

L(D) = {f E k(X) I (I) +D ~ O} U {o}.

o
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If D = 2:::=1 m.P, - 2::;=1 njQj, where mi, nj > 0, then L(D) consists
of 0 and all functions in k(X ) that have zeros of order at least nj at
o; 1 :S j :S t , poles of order at most rn, at Pi, 1 :S i :S 5, and no other
poles. It is easily verified that L(D) is a vector space over k. Let the
dimension of L(D) over k be denoted by I(D).

Lemma 9.2. (i) L(D) = {O} if deg(D) < o.
(ii) L(O) = k.
(iii) L(D) is a fin it e dimen sional vector space over k. If deg(D) ~ 0
then I(D) :S 1 + deg(D).

In the next section we will introduce the concept of differentials
on algebraic curves. The concept of differentials will be needed in the
Riemann-Roch theorem as well as in algebraic geometric codes.

9.7 Differentials on X

We would like to introduce the notation df where fER = k[Xl' ... ' xn ] ,

and the symbol d is very much like the differential in calculus.

Let R be a ring containing k . Define the module of differentials of
R

where the sums are finite. Note that Ok(R) is indeed an R-module,
where addition and scalar multiplication are defined in the obvious way.
The symbol d is a map d: R -t Ok(R) with the following properties:

(i) di] +g) =df +dg, for all f,g E R;

(ii) dUg) = gdf + fdg, for all f,g E R;

(iii) d)' = 0, for all ). E k.

If R is a domain, then we can extend d uniquely to the quotient field K
of R by defining

gdf - fdg
g2

and we use this to define Ok(K). An element w of Ok(K) is called a
differential.
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Example 9.8. For R = k[X1' "'' Xn ], the map d : R ---+ Ok(R) de­
fined by dl = 2:7=1 lidxi, where t. denotes the partial derivative of I
with respect to Xi, shows that Ok(R) is generated as an R-module by
dXl> . .. , dxn • Moreover for K = k( Xl> ••• , Xn ), Ok (K) is a finite dimen­
sional vector space over K, generated by dX1, ... , dxn . 0

We will now use the above ideas to investigate the structure of
differentials on the function field k(X) of a non-singular projective
curve X . For a curve X we call Ok (k( X)) the space of differentials
on X, and a particular element w E Ok (k( X)) is called a differential on
X . Recall that for an algebraic curve, k(X) has dimension 1, that is,
tr. deg, k(X) = 1.

Theorem 9.3. If X is a non-singular projective curve, then the space
of differentials Ok(k(X)) is one dimensional as a vector space over
k(X).

Assume that X is a non-singular projective curve. The above the­
orem implies that if w is a (non-zero) differential in Ok (k(X)) then
any other differential wE Ok(k(X)) can be written as w= Iw, where
I E k(X). Thus the theorem says that

Ok(k(X)) = {fw I I E k(X)},

where w is a non-zero differential.

For simplicity we write 0 instead of Ok(k(X)). If wE 0 and P is a
simple point of X then we can write w = [dt. where t is a uniformizing
parameter at P and I E k(X) . The order of w at P is defined to be
ordj-]w) = ordp(f) . It can be checked that this definition is independent
of the uniformizing parameter chosen.

For 0 :I w E 0 we define the divisor of w as

div( w) = L ordj-]w)P.
PEX

It is shown in [2] that only a finitely many ordj-]w) are non-zero, and
thus div(w) is a well-defined divisor. If W = div(w) for some w E 0
then we call W a canonical divisor. Note that if W =div(w) is another
canonical divisor then w= [i», where I E k(X). Thus div(w) = div(f)+
div(w), which implies that W == W , and thus deg(W) = deg(W) . We
see that all canonical divisors have the same degree. This invariant of
the curve will be used to define the concept of the genus of X.
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Lemma 9.4. Let W = div(w) be a canonical divisor, where w E fl.
The degree of W is deg(W) = LPEX ordp(w) = 2g - 2, where g is a
non-negative integer. (The integer 9 will be called the genus of the curve
X .)

Example 9.9. Assume X = pI and t as in Example 9.5. We will
compute div( dt) and thus find the genus of the curve X . We recall
that for P = (0,1) and 0 = (1,0) we had the uniformizing parameters
t p = XdX2 and to = XdXI' respectively. Note that tpto = 1 which
implies that tpdto + todtp = o. Now we know that t = t p which
implies that at P, dt = 1 · dtp and thus ordp(dt) = ordp(l ) = o. We
also know that dtp = - (tp / to )dto = -tc/dto . Thus ordo(dt) = -2.
For any other point Q = (a,l) E X, a =1= 0, since t Q = t - a, it
follows that ordQ(dt) = o. Thus div(dt) = -20. This implies that
deg(div(dt)) = -2 = 2g - 2 and thus 9 = o. 0

The next theorem is one of the most important results of algebraic
geometry and is of fundamental importance in algebraic geometric cod­
ing.

Theorem 9.5. (Riemann-Roch) Let W be a canonical divisor on X ,
a non-singular projective curve . For G E Div(X), let l(G) be the dimen­
sion over k of the vector space L(G) = {f E k(X)IU) +G >- O} U{O} .
Then for any D E Div(X), I(D) = deg(D) +1 - 9 + I(W - D) .

The celebrated theorem of Riemann and Roch relates the dimension
of the vector space L(D) to the genus of the curve. An important
corollary is the following.

Corollary 9.6. Let D E Div(X), where X is a non-singular projective
curve. If deg(D) ~ 2g - I, then I(D) = deg(D) +1 - g.

The following theorem aids in the computation of the genus of a
projective plane curve.

Theorem 9.7. Assume X is a projective plane curve of degree n. As­
sume further that X has only ordinary multiple points. Then the genus
of the curve is given by,

9 = (n - l)(n - 2) _ L: mp(X)(mp(X) - 1).

2 PEX 2
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Note that if X is non-singular then the genus of X is g = (n-l)(n­
2) /2.

Example 9.10. A curve X has genus g = 0 if and only if X is bira­
tionally equivalent to pi , the projective line. 0

Example 9.11. A curve X has genus g = 1 if and only if X is bira­
tionally equivalent to a non-singular cubic with defining form

where ai E k. 0

A curve of genus g = 1 is called an elliptic curve; the homogeneous
equation (9.2) for the elliptic curve is called the homogenized Weier­

strass equation.

Example 9.12. Assume X = pi and that t = x as in Example 9.5.
We will compute L(r(t)o) explicitly where

(t)o = L ordp(t)P,
ordp (t»o

and r is a positive integer. If f E L(r(t)o) then since (t)o = P where
P = (0,1) we have that ordp(J) 2: -r. Since ordpt~ = i , f = t~ ,

i = 0, -1, ... , -r , will sa tisfy the constraint on f. By Corollary 9.6,
l(r(t)o} = r + 1 (since g = 0 from Example 9.9), and hence L(rP} is
spanned by t~ for i = 0, - 1, ... , -r. 0

Example 9.13. Assume X is the non-singular cubic and x and yare
as in Example 9.6. Let z = X-I and compute L(r(z}o) where

(z)o = L ordp(z)P,
ordp(z»o

and r > O. Note that ordp(z) = -ordp(x). We also recall that in
Example 9.6

div(x) = 2P - 20 , div(y) = Pi +P2 +P3 - 30.

Thus we have that r( z}o = 2rO. By Theorem 9.7, the genus of X is 1,
and hence by Corollary 9.6, l(r(z)o) = 2r. Now, if f E L(r(z)o) then
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ordo(f) ~ -2r. For example, if r = 1 then 1 and :z: are both in L(20)
since ord o(l ) =0 and ordo(:z:) = -2. Ifr = 2 then 1,:z:, :z:2, and yare
in L(40) since ord o(:z:2) = -4 and ordo(Y) = -3. It is easy to continue
in this manner to show that 1,:z:, . .. ,:z:r, y, y:z:, ... , y:z:r -2 span the vector
space L(2rO) . 0

Let D E Div(X), where X is a non-singular projective curve. We
define the following subspace over k of differentials on X

D(D) = {w ED I div(w) >- D } U {O}.

Let o(D) = dim, D(D), called the index of D. We define the map
¢J : L(W - D) -+ D(D) by ¢J(f) = Iw where w :p 0 is a differential, and
W = div(w). It is not hard to see that ¢J is an isomorphism and thus
we have the following result .

Lemma 9.8. L(W - D) is isomorphic to D(D), and thus I(W - D) =
o(D).

We need to define one more important concept of differentials which
is of value for studying algebraic geometric codes. Let P E X be a
simple point, and let tp be a uniformizing parameter for 0 p(X). Then
every function 9 E k(X) has a power series expansion

00

9 = L bit~, i, E k, n an integer.
i=n

In fact, it is easy to see that if m is the smallest integer with bm :p 0,
then ordj. (g) = m. If X is non-singular and w is a differential form,
then we write w = Idtp and express I as

00

I = L ait~, ai E k, n an integer.
i=n

Again, it can easily be seen that if m is the smallest integer with am :P 0,
then ordp(w) = ordp(f) = m. The residue of w at P is defined to be
Resp(w) = a_i' The following theorem is an important property of
residues [8].

Theorem 9.9. II w is a differential on a non-singular projective curve
X, then

L Resp(w) = O.
PEX
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Thus far we have assumed that the base field k is algebraically closed,
and in particular that k is the algebraic closure of a finite field. It will be
necessary for the study of algebraic geometric codes to consider algebraic
curves over a field k which is not algebraically closed; that is, we will
be interested in algebraic curves X over a finite field.

9.8 Algebraic Curves over a Finite Field

A few statements will be made regarding algebraic curves over a finite
field; we prefer to direct the reader to the numerous references concern­
ing the subject (for examples, see [8, 4]) . Assume k is the algebraic
closure of Fq , where Fq is the finite field with q elements . Most of what
has been said about algebraic curves over the field k holds for alge­
braic curves over Fq • For example, the genus of X over k and Fq are
equal. Some of the definitions will have to be modified. For example,
the definition of the residue of a differential w at P is modified to be

where Tr is the trace function from the extension of Fq containing a_I

to Fq •

Given a projective curve X over Fq we say the point P is Fq-rational
if all the components of P are in Fq • The number of Fq-rational points
of X is clearly finite. Let Nq(g) be the maximum number of Fq-rational
points on a curve of genus 9 over Fq •

Theorem 9.10. (Hasse-Wei!) The number N of Fq-rational points
on a non-singular projective curve X of genus 9 satisfies

IN - (q + 1)1 :::; 2gyq.

By the Hasse-Weil bound, one has Nq(g) :::; q +1 + l2gyqJ, where
InJ denotes the largest lnteger j, n. Serre [5, 6] showed that this can be
improved to Nq(g) :::; q +1 +9 l2yiqJ. For elliptic curves, Serre proved
the following .

Theorem 9.11. (Serre) Assume q = p' with e ;::: 1 and m = l2yqJ .
Then we have ,
(i) Nq(l) = q +m if e is odd, e ;::: 3, and p divides m,

(ii) N q(l) = q +m + 1 otherwise.
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It is hoped that the above sununary of some of the concepts from
algebraic geometry will aid the reader in the next chapter where codes
from algebraic geometries are introduced. Particular attention will be
given to codes from elliptic curves.
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Chapter 10

Codes From Algebraic
Geometry

Codes obtained from algebraic curves have attracted much attention
from mathematicians and engineers alike since the remarkable work
of Tsfasman et al. [17] who showed that the longstanding Gilbert­
Varshamov lower bound can be exceeded for alphabet sizes larger than
49. The Gilbert-Varshamov bound, established in 1952, is a lower bound
on the information rate of good codes. This lower bound was not im­
proved until 1982 with the discovery of good algebraic geometric codes.
These codes are obtained from modular curves [17], but consideration
of these curves is beyond the scope of this book. van Lint and Springer
[21] later derived the same results as Tsfasman et al., but by using less
complicated concepts from algebraic geometry. Recall that a linear code
with parameters [n, k, d]q is a linear subspace of F; of dimension k and
minimum distance d.

One important class of algebraic curve s that produces codes with
good properties are the Hermitian curves . To illustrate the point that
codes from Hermitian curves are good we compare them to the best
known codes (in the sense that for a given nand k these codes have the
largest possible minimum distance d = n - k+1) to date, namely Reed­
Solomon (RS) codes. Consider the Hermitian code with parameters
[64,32,27h6' An extended RS code with parameters [64,32,33]64 exists
and it only has a slightly better minimum distance for an increase in
the alphabet size by a factor of 4. To make the comparison better
we take the subfield sub code of the above extended RS code which
has parameters [64,32, ::; 14h6 and note that the maximum minimum

191
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distance of this code is 14 as compared to the minimum distance of the
Hermitian code which is 27.

We first give a brief introduction to coding theory and then to alge­
braic geometric codes. In Section 10.3, we describe an important class
of algebraic geometric codes known as Hermitian codes. In Sections lOA
and 10.5, we proceed to consider codes from elliptic curves . We then dis­
cuss decoding algorithms for algebraic geometric codes in Section 10.6.
In the final section we list some open problems. For further treatments
of the subject of algebraic-geometric codes, we refer the reader to the
books [4, 10, 16] and survey articles [9, 19].

10.1 Introduction to Coding Theory

We begin by introducing some elementary concepts from coding theory.
Good references on the subject are the books by Blahut [1], MacWilliams
and Sloane [8] and van Lint [18] .

Let C be a subset of S", where lSI = q. This subset C is called a
code, and the vectors in C are called codewords. The length of the code
is said to be n. The Hamming distance of two codewords z and y is
defined by

d(:e, y):= I{i 11 ~ i ~ n, :ei -:f Yi}l,

where I . I denotes cardinality. For a code C we define the minimum
distance d by

d := min{d(:e,y) I :e,y E C, :e -:f y}.

If C is used for error detection, then it can detect any pattern of at
most d - 1 errors, while if C is used for error correction, then it can
correct any pattern of at most ld;l J errors. An erasure is an error
whose location is known to the receiver; typically the demodulator in
a communication system decides that there is too much noise for it to
make a good decision and thus marks a certain location as an erasure
and passes it on to the rest of the receiver. If a code has minimum
distance d then it is capable of correcting t errors and T erasures as long
as 2t + T ~ d - 1.

Let K = Fq • A code C that is a linear subspace of K" of dimension
k and minimum distance d is said to be a linear code with parameters
[n, k, d]q . For the remainder of this chapter we will only deal with linear
codes. The information rate of C is k / n. If C is a linear code and w(:e)



10.2. ALGEBRAIC GEOMETRIC CODES 193

denotes the number of non-zero entries in the vector z , then it can easily
be shown that

d = min{w(x) I x E C, z oF O}.

Any matrix which has as its rows k basis vectors of C is called a gener­
ator matrix of C.

For a linear code C the dual code C' is defined as

C' = {y E K" I y . x = 0 for all x E C},

where the· operation denotes the usual inner product. The dual code
C' has parameters [n, n - k, d']q. A generator matrix for C' is called a
parity check matrix for the code C.

Example 10.1. Let a be a primitive element of K = Fq , so K = Fq =
{O, 1, a, ... , a q-

2
} . Take the following linear subspace of K":

C = {(J(aO), ... ,f(aq
-
2),f(0)) I f(x) E K[x], deg(J(x)) < k}.

It is easy to see that C is a code with parameters [n = q, k, d = n-k+1]q
where the minimum distance is n - k +1 because a polynomial of degree
k -1 can have at most k -1 zeros. The code C is known as the extended
Reed-Solomon code. 0

The Singleton bound for a linear code states that for a [n, k, d]q code
the minimum distance d is bounded above by n - k + 1. A code that
achieves the Singleton bound is called a maximum distance separable
(MDS) code. An example of an MDS code is the extended Reed­
Solomon code. Obviously MDS codes are the best possible codes in
the sense that they have the largest possible minimum distance for a
given length and dimension, and thus the search for MDS codes is an im­
portant problem in coding theory. Some results concerning MDS codes
from elliptic curves will be given in Section lOA.

10.2 Algebraic Geometric Codes

Let X be a non-singular projective curve over K = Fq of genus g. Let
K(X) be the function field of X. For a divisor G on X we define the
vector space

L(G) {f E K(X) I (I) +G >- O} U {O}.
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Basically, L(G) is the set of rational functions with poles of at most a
certain order and zeros of at least a certain order, both determined by
G.

Assume P1 , • • • , Pn are K -rational points on the curve X and let
D = P1 +... + Pn • Assume G is a divisor on X with support consisting
of only K -rational points and disjoint from D (i.e., G contains Pi for
i = 1, . .. , n with coefficient zero). We also restrict the degree of G to
the range 2g - 2 < deg( G) < n .

Definition The linear code C(D, G) over Fq is the im age of the linear
map

defined by

a : L(G) ---.. F;,

aU) = U(Pd,···,!(Pn ) ) .

(10.1)

The following theorem gives the parameters of the code C(D, G).
The proof is quite simple and uses the Riemann-Roch Theorem.

Theorem 10 .1. The code C(D, G) has parameters [n, k, d]q with

n = deg(D),

k = deg(G) - g +1,

d 2: d* = n - deg(G).

Proof: Observe that the kernel of the map a in (10.1) is L(G - D) .
Hence the dimension of the code is

k = dimC(D, G) = dimL(G) - dimL(G - D).

Since deg(G) < n = deg(D) , we have by Lemma 9.2 that dimL(G­
D) = O. The dimension of L(G) is given by Corollary 9.6 which implies
that

k = I(G) = deg(G) - g + 1.

Assume! E L( G) and aU) is non-zero at d positions, that is, aU) is
zero at n - d positions. This implies that! vanishes at the points
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and thus the divisor

(I) +G - p . - ... - P-
'1 '&n-d

195

is an effective divisor . Since deg(f) = 0, it follows that deg(G)-(n-d) ~

0, which implies that

d ~ d+ = n - deg( G). o

The parameter d: is called the designed minimum distance. For
a given field size q and genus g, the number of rational points on a
projective curve is bounded above up the Hasse-Weil bound (see The­
orem 9.10). It is clear that for a given field size q, genus g, and in­
formation rate k / n, the larger the n, the larger the designed minimum
distance of C(D, G) will be. Thus in designing algebraic geometric codes
we are interested in curves that have the maximum possible number of
rational points.

The linear codes obtained from algebraic curves include many well
known codes such as Reed-Solomon codes, BCH codes, and Goppa
codes. The following example shows how extended Reed-Solomon codes
are obtained from projective lines.

Example 10.2. Consider the projective line over K = Fq

v = p1(K) = {Pi Ii = 0, .. . ,q -1} U{O = (1,0)},

where Pi = (fJi, 1) for i = 0, ... , q - 2, where fJ is a primitive root in K,
and Pq - 1 = (0,1), The function field K(V) has the following form

K(V) = {~i:::j I a,b are forms in K[z,y], deg(a) = deg(b)}.

Let G = mO, m < q, and form the vector space L(G). L(G) consists of
functions in K(V) that have poles of order at most m at the point 0,
and no other poles. Consequently if 1 E L(G) then

1 = a(z,y),
yl

where a(z, y) is a form of degree 1and 1 ::; m. Let D =Po +...+Pq- 2 +
Pq- 1 and form the code C(D, G). By Theorem 10.1, the parameters of
the code C(D, G) are:

n = q, k = m +1, d ~ d+ = n - m = n - k + 1.
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If f = a('J:,y)jy' and g('J:) = a('J:,l), then g(O) = f(Pq-d and g({3i) =
f(Pi ) , and hence

C(D,G) = {(g({30),g({31), ... ,g({3q-2),g(0)) I deg(g('J:))::; m}.

This code is recognized as the extended Reed-Solomon code. 0

We define another class of codes obtained from the curve X. These
codes are a generalization of the classical Goppa codes [20]. In this case
recall that for a divisor D E Div(X),

O(D) = {w EO I div(w) >- D } U {O},

and that O(D) is a vector space over K. In the following definition,
assume D and G are as defined in the beginning of the section.

Definition The linear code C' (D, G) over Fq is the image of the linear
map

a' : O(G - D) -t F;,

defined by

a'(w) = (Resp,(w), ... ,RespJw)).

The following theorem gives the parameters of the code C'(D, G).
The proof is similar to the proof of Theorem 10.1 above and can be
established by using the fact that O(G - D) is isomorphic to L(W +
D - G), where W = div( 77) for a fixed differential form 77.

Theorem 10.2. The code C'(D, G) has parameters [n, k, d]q with

n = deg(D),

k = n - deg(G) +9 - 1,

d ~ d' = deg(G) +2 - 2g.

The following theorem states what might have been suspected.

Theorem 10.3. The codes C(D,G) and C'(D,G) are dual to each
other.
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Proof: Observe that dimC(D , G)+dimC*(D, G) = n, and so it suffices
to show that C(D, G) and C* (D, G) are orthogonal spaces .

Let f E L(G) and wE n(G-D). Since f E L(G), (I)+G >- O. Since
wE n(G-D), div(w)+D-G >- O. Consequently, (I)+div(w)+D >- 0,
and since div(lw) = (I) +div(w), we conclude that the differential fw
has no poles except possibly poles of order 1 at Pi' P2 , •• • , Pn • Thus
if P E X, P =1= Pi for 1 ~ i ~ n, then Resp(lw) = O. Also, since
ordpi(l) ~ 0, we have

Hence

a(l) . a*(w)
n

'L f(Pi)ResPi(w)
i=l

'L Resp(lw) = 0,
PEX

n

'L ResPi (lw)
i=l

by Theorem 9.9. 0

The next section is devoted to a special and important class of al­
gebraic geometric codes having very good parameters.

10.3 Hermitian Codes

The Hermitian curve over K = Fq2 in affine (u, v)-coordinates is

(10.2)

Tiersma [15] has studied codes obtained from Hermitian curves. Stichten­
oth [14] generalized and simplified Tiersma's results . Stichtenoth shows
that by the change of coordinates z = b/ (v - bu) and y = uz - a where
aq + a = bq+1 = -1, the Hermitian curve C is equivalent to the curve

(10.3)

which from now on will be referred to as the Hermitian curve. It is easy
to check that X is non-singular and hence, by Theorem 9.7, the genus
of X is g = (q2 - q)/2. There are q3 +1 rational points on X (as we shall
see below); q3 points satisfying (10.3) and a point at infinity which will
be denoted by O. Notice that the curve X has the maximum number
of rational points allowed by the Hasse-Weil bound (Theorem 9.10).

The following theorem from [14] is an important result.
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Theorem 10.4. For each m ~ 0, the set

{Ziyi lOS; i; 0 S; j S; q - 1; iq + j(q +1) S; m}.

is a basis of L(mO)

The Hermitian code is 1tm = C(D, mO), where D = PI +...+p...
with n = q3, and the Pi are the rational points on X excluding O. If
2g - 2 < m < n then the dimension of 1tm can be determined from
Theorem 10.1 of the previous section and is equal to m-9 +1. However,
by Theorem lOA, the dimension of the code 1tm can be determined for
any non-negative integer m (see [14]). The following theorem which is a
generalization of a well known result for algebraic geometric codes can
also be found in [14].

Theorem 10.5. For any non-negative integer m, the codes 1tm and
1t;;. are dual to each other where in = q3+q2 - q - 2 - m.

Stichtenoth [14] shows that not only is it possible to obtain a lower
bound on the minimum distance of 1tm (see Theorem 10.1) but that
for a large number of non-negative integers m it is possible to find the
exact minimum distance.

Theorem 10.6. Let m = iq+ j(q+ 1) S; q3-1 with 0 S; i, 0 S; j S; q-1
and either
(i) m == 0 (mod q), or
(ii) m S; q3 _ q2.

Then the minimum distance of 1tm is q3 - m .

In summary, the parameters of 1tm are [n, k, dlq. with n = q3,
k = m - 9 +1 (if 2g - 2 < m < n) and d ~ n - m, for 9 = (q2 - q) /2. If
m is not in the range (2g - 2 < m < n) then the dimension of 1tm can
be found by finding the number of basis elements of L(mO).

A complete description of the Fq.-rational points on the Hermitian
curve

X : yq + y = zq+1 (lOA)

is considered presently. Assume K = {O, 1, a , .. . , aq' - 2
} for a primitive

element a E K.

Lemma 10.7. yq +Y = 0 has q solutions in K = Fqa ,
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Proof: If char(Fq)=2 the solutions are the elements of the subfield
Fq • If char(Fq)#2 then 2(q - 1) divides q2 - 1 since q is odd. Thus
there exists a primitive 2(q - 1)th root of unity 'Y in K . It follows
that 'Y 2i +l , i = 0,1, ... , (q - 2), along with the zero element, are the
solutions to the equation. In either case, denote the set of solutions to
the equation as 8, 181= q. 0

Notice that if (z, y) is a particular solution to (1004) with z # 0,
then

(1]z,n":» +13), 13 E B, 1] E K

are the q3 solutions to (1004) . For the sequel, let Yo be the solution to
(1004) with z = 1. Then the q3 solutions can be written as a q2 by q

array
S = [S'l,/3]

with rows labeled by elements of 1] E K, columns by elements 13 E B
and s'l,/3 = (1], 1]

q+lyo +13)·

Example 10 .3. Let q = 4 and m = 37, then the parameters of1t37 are
[64, 32, 27h6 ' The base field is Fl6 = {O, 1, w, ... , w14

} where w4 +w3 +
1 = 0. The 64 = q3 rational points of the curve y4 + y = ZS are:

PI = (0,0)
P2 = (1, w7

)

P3 = (WI,WI)

P4 = (w2 , w2 )

Ps = (W
3,W7)

P6 = (w\w l
)

P7 = (W
S , w2)

P8 = (W
6,W7)

P9 = ( W
7

, W
I

)

P lO = (W
8,W2)

r.. = (w9
, w7

)

P12 = (wlO , WI)

Pl 3 = (wll
, w2

)

P14 = (wI 2
, W

7
)

P15 = (W
I 3,WI)

Pl 6 = (W
14,W2

)

Pl 7 = (0,1)
Pl 8 = (1, W

13)

Pl 9 = (W
1,WI 2)

P20 = (W
2,W9)

P21 = (W
3

,W
I 3)

P22 = (w\ W
12)

P23 = (W
S , w9)

P24 = (W
6,W I 3

)

P2S = (W7,W I 2
)

P26 = (w8
, w9

)

P27 = (W
9,W I 3

)

P28 = (wI O
, W

12)

P29 = (wll
, w9

)

P30 = (WI 2, wI 3)

P3 1 = (W
I 3

,W
I 2)

P3 2 = (W
I\W9)

P33 = (0, W
S)

P34 = (1, W
14)

P3 S = (wt,w4
)

P36 = (W
2,W6)

P37 = (w3
, w14

)

P38 = (W
4,W4)

P39 = (W
S , w6)

P40 = (W
6,W14

)

P41 = (W
7,W4)

P42 = (W
8,W6)

P43 = (w9
, w14

)

P44 = (W
I O,W4)

P4S = (W
ll,W6

)

P46 = (W
I 2,W14

)

P47 = (W I 3 , w4
)

P48 = (W
I\W6)

P49 = (0, WIO)

PSO = (1, w ll
)

PSI = (WI, w3
)

P52 = (w2
, w8

)

PS3 = (W
3,Wll)

PS4 = (w\w3
)

PSS = (W
S, w 8

)

PS6 = (W
6,Wll

)

PS7 = (W
7,W3)

PS8 = (W
8,W8)

PS9 = (W
9,Wll

)

P60 = (W
I O,W3)

P61 = (W
ll,W8)

P6 2 = (W
I 2,Wll)

P63 = (WI 3
, w3

)

P64 = (W
I\W8)

We find from Theorem 1004 that a basis of L(370) has the following
form

L(370) =
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{fo(Z) +yjl(Z) +y2j2(Z) +y3j3(Z) I degjj(z) < k(j), 0 ~ j ~ 3},

where k(O) = 10, k(l) = 9, k(2) = 7, k(3) = 6. Having determined a
basis of L(370), the generator matrix of 1t37 can be constructed. 0

Hermitian codes are one of a few classes of codes that have been well
studied. In [22] the structure of Hermitian codes is studied further and
it is shown that Hermitian codes are combinations of generalized Reed­
Solomon codes. This structure of Hermitian codes is used to derive
a new decoding algorithm that corrects up to the full error correcting
capability of the code and which has complexity comparable to existing
decoding algorithms that do not decode up to the full error correcting
capability.

In the next section some brief comments will be made about codes
obtained from elliptic curves for arbitrary characteristic. In Section 10.5,
we will consider elliptic codes over fields of characteristic equal to 2.

10.4 Codes From Elliptic Curves

In this section we will consider codes obtained from elliptic curves. Good
references on this topic are [2], [3], and [6].

Assume X is an elliptic curve over the field K = Fq given by the
homogenized Weierstrass equation

where aj E K .

Assume PI, ... ,Pn are K -rational points on X and let D = PI +
...+Pn • In order to pick a specific code we have to choose a divisor G
such that G has support disjoint from D. One possible choice for the
divisor G is G = mO, where 0 = (0,1,0) is the point at infinity on X,
and 0 < m < n.

Since X has genus g = 1, according to Theorem 10.1 the code
C(D, G) above has parameters [n, m, d 2: n- m]q . There are several im­
portant problems to be considered. In order to find the specific code we
need a method of determining a generating matrix of the code, or equiv­
alently determining a basis of L(mO). This problem for char(K) = 2
will be addressed in the next section. Another important problem is
under what conditions, if any, is the minimum distance d = n - m + 1;
that is, under what conditions will the code C(D, G) obtained from an
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elliptic curve yield an MDS code. We will address this problem presently
with some results of [6].

In [6], Katsman and Tsfasman prove the following two lemmas.

Lemma 10.8. For q < 13 there are no elliptic MDS codes with length
greater than the length of previously known codes.

Lemma 10.9. For q ~ 13 there exist no nontrivial elliptic MDS codes
of length n > q +1.

It is a well known property of MDS codes that their weight enu­
merator is completely known . Elliptic codes have minimum distance at
most one less than MDS codes and thus we are interested in knowing
whether any thing can be said about the weight enumerator of elliptic
codes. Katsman and Tsfasman [6] completely determined the weight
enumerator of elliptic codes.

10.5 Codes From Elliptic Curves over F2m

Assume that we have an elliptic curve X and that we have the code
C( D, G) with D and G defined as above, and additionally that char(K) =
2. It should be mentioned that from an implementation point of view
codes for which char(K) = 2 are important since arithmetic in these fi­
nite fields is efficient (see also Chapter 8). In this case a basis of L(mO)
can be found that has a very simple looking structure.

Theorem 10.10. (Driencourt and Michon) Let X be an elliptic cu­
rve over F2 m . Then L(mO) has as basis the following m polynomials

1 2 6 2 6',:c,:c , . .. ,:c ,y,y:c,y:c , ... ,y:c,

where 5 = l~J and '5 = lm;3J.

Example 10.4. Consider the elliptic curve

over F4 = {O, 1, a, a?}, where a 2 + a + 1 = o. There are N4(1) = 9,
F4-rational points on the curve. They are :

PI = (0,0) P, = (0,1)
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P2 = (1,a)
P3 = (a, a)
P4 = (a 2

, a)

r; = (1,( 2
)

P7 = (a, ( 2
)

Ps = (a 2,a2
)

and the point at infinity O. If we take D = P l +...+Ps and G =mO
where 0 < m < 8, then we know that the code C(D, G) has parameters
[8, m,d 2: 8 - mk By Theorem 10.10, the vector space L(40) has basis
{1,2:,2:2,y} and thus the code C(D,40) has the following generator
matrix:

(

1 1
o 1
o 1
o a

1 111
a 2 0 1
a 0 1
a 1 a 2

In the above matrix the first row is obtained by evaluating the function
1 on the 8 points Pl , •• • , Ps, the second row by evaluating 2:, the third
by evaluating 2:2 and the fourth by evaluating y. 0

There still remain some important problems associated with elliptic
codes. Assume that we wish to construct an elliptic code of length N.
We have to find an elliptic curve that has N +1 rational points on it; a
general solution for this problem is not known.

Assume that X is an elliptic curve with coefficients in Fq • If we
know the number of Fq-rational points on X, then it is very easy to find
the number N r of Fqr-rational points on X (see Section 7.6).

To focus our attention we will consider elliptic curves over K = F2 •

We will later find that in fact these curves achieve the bounds of Serre
(Theorem 9.11) for many extensions of F2 and thus these elliptic curves
can be used to construct codes for many extensions of F2 • As was stated
in Example 9.11 all elliptic curves over a field K with char(K) = 2 have
the form

y2 + al2:Y +a3Y = 2:
3 +a22:2+ a42: +aa,

where ai E K. There are 32 Weierstrass polynomials over F2 of which
16 are singular. The remaining 16 are all equivalent to one of the 5
curves below:

(i) y2 + y = 2:
3 + 2:

2 + 1,

(ii) y2 +2:y = 2:
3 +2:

2 + 2:,

(iii) y2 + y = 2:
3

,

(iv) y2 + 2:y = 2:
3 + 2:,

(v) y2 + y = 2:
3 + 2:

2
•
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Since it is easy to find the number of F2-rational points on any of the
5 types of elliptic curves, we can find the number points of these elliptic
curves over any finite extension of F2 • By the Wei! conjecture (Sec­
tion 7.6), we see that there are two parameters, WI and W2, associated
with each of the 5 types of curves such that the number of F2r-rational
points on a curve of the corresponding type is given by

NT = 2T - w~ - w; +1.

The parameters for the 5 types of curves above are :

(i) WI = 1 + i , W2 = 1 - i,

(ii) WI = (1+ iv7)/2, W2 = (1 - iv7)/ 2,
(iii) WI = iV2, W2 = -iV2,
(iv) WI = (-1 + iv7)/2, W2 = (-1 - iv7)/2,
(v) WI = - 1 + i, W2 = -1 - i.

Thus, for example, the curve of type (iii) above, y2 + y = x3, has 9
points over the field Fs since N 3 = 23- (iV2)3 - (-iV2)3 +1 = 9.

In obtaining codes from elliptic curves we are most interested in
curves that have the maximum number of points; that is, curves that
achieve the bounds of Theorem 9.11. Table 10.1 shows for different
finite extensions of F2 which one of the 5 types of curves above achieves
the bound set forth in Theorem 9.11. If an entry is a dash «,,» then that
indicates that none of the 5 types of curves above achieve the bounds
of Serre (Theorem 9.11) and thus in order to find such a curve, elliptic
curves with coefficients in some extension of F2 should be considered.

10 .6 Decoding Algebraic Geometric Codes

Decoding algebraic geometric codes is of fundamental importance both
from a theoretical and practical point of view. A brief history of the
development of the decoding algorithms is given below, and then the
decoding algorithm in [13] will be described.

Justesen et al. [5] introduced a decoding algorithm for algebraic geo­
metric codes arising from irreducible plane curves . This was generalized
by Skorobogatov and Vladut [13] to algebraic geometric codes arising
from arbitrary algebraic curves . The algorithm corrects l(d* - g - 1) /2J
errors with complexity 0 (n3

) field operations for an algebraic geomet­
ric code with length n, designed minimum distance d* and genus g.
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o Type of Curve 0 Type of Curve I
1 (v) 11 (-)
2 (iii) 12 (i)
3 (ii) 13 (ii)
4 (i) 14 (iii)
5 (iv) 15 (-)
6 (iii) 16 (-)
7 (-) 17 (-)
8 (iv) 18 (iii)
9 (-) 19 (-)
10 (iii) 20 (i)

Table 10.1: Maximal elliptic curves for char(K) =2.

The complexity is 0 (n3
) because the algoritlun involves solving matrix

equations. This algoritlun is too time consuming to be J)ractical and
furthermore it does not decode to the full error correcting capability of
the code l(d* - 1)/2J unless 9 = 0 or 9 = 1 and d* is even. Recently
Pellikaan [11] proved the existence of an algoritlun that corrects up to
l(d* - 1)/2J errors with complexity O(n4 ) for maximal curves. This al­
goritlun is essentially the application of the algoritlun of [13] a number
of times in parallel. The algoritlun relies on the existence of certain
divisors for which an efficient general algoritlun for finding them is not
available. In an example Pellikaan considers the Hermitian codes over
F16 for which it is still an open problem to find the needed divisors.
Recently, Le Brigand [7] showed how to perform Pellikaan's algoritlun
for some hyperelliptic curves, and Ratillon and Thiong Ly [12] did the
same for some codes on the Klein Quartic.

The decoding algoritlun generalized by Skorobogatov and Vladut
is similar to the decoding algoritlun of Peterson and Weldon for BCH
or Reed-Solomon codes [8] . We will use the notation of the previous
sections in describing this algoritlun.

Assume we have a non-singular projective curve X of genus 9 over
K = Fq • Assume D = P1 +...+ Pn where the points P1 , ••• , Pn are
K-rational points on the curve X. Also assume that G is a divisor with
support disjoint from D and 2g - 2 < deg(G) < n. We form the code
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C*(D, G) over Fq as the image of the linear map

at : O(G - D) 1-+ F;,

where
Q*(W) = (Resp, (w), ... ,RespJw)).

Assume we transmit a codeword c E C*(D, G) over the communi­
cation channel. The received word u may contain errors due to noise;
that is, u = c + e +T, where e is the error vector and T is the erasure
vector. Assume t errors have occurred in locations E1 , ••• , E; of val­
ues el, . • • , et, and T erasures at (known) locations R1, ••• , R; of values
Tl, ••• , T r • The task of the decoder is to recover c from u, or in other
words, to find the {E;}, {e;}, and {T;}.

Define the set P = {PI, ... , Pn}. Form a basis {II, . . ., 1m} of L(G)
and the parity check matrix (f;(Pj )) . Note that since C(D, G) and
C*(D, G) are dual codes, another description of C*(D, G) is

n

C*(D,G) = {c E F; I 2:J;(Pj ) Cj = 0, i = 1, .. .,m}.
j=l

From the received vector u we define
n

S(u,j) = LU;/(P;), for I E L(G).
;=1

We note that the S(u, j) are very much like the syndromes that are
used in decoding Reed-Solomon codes. It should also be noted that if
c E C*(D, G) then S(c, j) = 0 for all I E L(G).

Assume we have chosen a divisor F with support disjoint from D,
and which satisfies some additional properties to be stated later.

Data for the Decoding Algorithm

1. Parity check matrix (f;(Pj ) ) .

2. (k;(Pj ) ) where {kI, .. . ,k.} form a basis of L(F) .

3. (h;(Pj ) ) where {h1 , • • • , hd form a basis of L(G - F) .

4. R1 , • • • , R; erasure locators C P.

5. A received vector u = c + e + T, where c is a codeword and e the
error vector and T the erasure vector.
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Decoding Algorithm

Step 1. Compute the basis {gl"'" g,} of L(F - ~ R,) C L(F). This
step involves finding 1 independent solutions to the T X s system
of linear equations

,
L k,(Rj)G,
,=1

o for j =1, ... , T,

and thus 9 = ~:=1 G,k,.

Step 2. Compute syndromes S,j = S(u, g,hj) and note that g,hj E
L(G).

Step 3. Solve ~~=1 S,j(u)z, = 0 for j = 1, ... , k. Let (Yll"" YI) be a
non zero solution.

Step 4. Find error locations as follows: gy = Y1g1 +.. ,+y,g, is the error
locator. Note {R,} are already zeros of gy because the functions
gl,"" g, are all zero on the points {R,}. Find the set of zeros of
gy in P. Call the zeros of gy, Q1, ••• , Q10 (these include the {R,}).

Step 5. Compute S(u, Ii) for j = 1, ... , m.

Step 6. Find error and erasure values as follows: find a solution of
~~=1 Ii(Q,)z, = S(u, fj), j =1, ... , m (z = e +r) . Values of the
errors and erasures are the solutions to this equation.

There are steps in the above algorithm that constrain the choices of
the divisor F; for proofs of these statements refer to [13J. We must have
deg(F) ::; deg(G) since otherwise the vector space L(G - F) will only
contain the zero function. In order for a solution to exist in step 3 we
must have that l(F) > t +T (recalll(F) = dimL(F)) . In order for the
function gy found in step 4 to contain all the error locations and error
values as zeros we must have that (deg( G) - deg(F)) > t +2g - 2. This
condition is also required for there to be a unique solution z in step 6.

Theorem 10.11. Assume 2g-2 < deg(G) < n; the designed minimum
distance is d· = deg(G) - 2g + 2. Let t and T be non-negative integers
such that there exists a divisor F of degree deg(F) ::; deg(G), and where
(i) P and the support of F are disjoint.
(ii) dimL(F) > t +T,

(iii) deg(G) - deg(F) > t +2g - 2.
Then the algorithm corrects t errors and T erasures .
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In many situations the divisor G is chosen to be some multiple of
the point at infinity; that is, G = mO where m is a positive integer. In
this case let F = (t +T +g)O. Noticing that d* = deg(G) - 2g+2 and
condition (ii) of the above theorem we see that 2t+T ~ d* - g -1. Recall
that if a code has minimum distance d then it is capable of correcting t

errors and T erasures as long as 2t +T ~ d - 1. Thus the above decoding
algoritlun does not decode up to the full error correcting capability of
the code except when g = 0 or when g = 1 and d* is even. If g = 0
then the decoding algorithm is very similar to the decoding algoritlun
of Peterson and Weldon for BCH and Reed-Solomon codes. Recall that
if g = 1 then the curve X is an elliptic curve.

The complexity of the above decoding algorithm is 0(n3
) because

of the necessity of solving linear systems [i.e ., inverting matrices). It
should be noted that complexity is measured in terms of the number of
elementary operations over the field K . There exist other decoding algo­
ritluns that work for specific algebraic curves. For example, a decoding
algorithm for elliptic curves over fields of characteristic 2 is given in [2]
that has the same complexity as for Reed-Solomon codes, 0(nlog2 n),
and which can correct up to ld*/4J errors. In [22] a decoding algoritlun
for Hermitian codes is given that decodes up to the full error correcting
capability of the code, ld';- 1 J, and which in some cases has complexity
better than 0(n3

) .

10,7 Problems

There remain many important research problems for investigation in the
area of codes from algebraic geometry. Some of these research problems
that we find interesting are outlined below. These problems are stated
approximately in order of increasing difficulty as understood by the
authors.

Research Problem 10,1. Find a basis of L(mO) for elliptic curves
over K, char(K) f:. 2. Note that Theorem 10.10 gives a basis of the
vector space L(mO) for the case char(K) = 2.

Research Problem 10,2, Decrease the complexity of the decoding al­
goritlunfor algebraic geometric codes that was presented in this chapter.
Also increase the number of errors that can be corrected. Alternatively,
find a decoding algoritlun for algebraic geometric codes that has com­
plexity less than 0 (n3 ) and which can correct up to l d';- 1 J errors.
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Research Problem 10.3. Find a decoding algoritlunfor elliptic codes
that has complexity O(n2 ) and which can correct up to ld'

2-1
J errors.

Research Problem 10.4. Find the weight enumerator of other classes
of algebraic geometric codes which have g > 1; for example, find the
weight enumerator for Hermitian codes.

Research Problem 10.5. Prove or disprove the optimality of codes
obtained from curves for which the number of points on them achieves
the Hasse-Weil bound. For example Reed-Solomon codes are optimal
in the sense that they are MDS, and come from curves that achieve the
Hasse-Wen bound. Thus prove or disprove that given an [n, k, d)q code
coming from an algebraic curve that achieves the Hasse-Wen bound, it is
impossible to have a code which has parameters [n, k, djq with d> d. For
example, is the Hermitian code with 'parameters [6~ 32, 27h6 optimal or
is it possible to have a code [64,32, d)16 for which d > 27 ?

Research Problem 10.6. Generalize the Singleton bound to include
the genus of the curve from which the codes come. For example prove
or disprove the following statement: if we obtain a code [n, k, d)q from
a curve of genus g then d :S n - k +1 - g.

Research Problem 10.7. Find new classes of curves (codes) that have
a number of points that achieve the Hasse-Weil bound.
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Appendix

Other Applications

A very readable introduction to the theory of finite fields may be found
in McEliece's book [20]. For a definitive account on the theory of finite
fields, including a vast bibliography, we refer the reader to the book by
Lid! and Niederreiter [17]. A recent textbook on the structure of finite
fields is the book by Jungnickel [11] . The recent book by Shparlinski [32]
contains an encyclopedic account of computational problems in finite
fields, and has an extensive bibliography of over 1300 items.

Some applications of finite fields are discussed in the books by Lid!
and Pilz [18], Lid! and Niederreiter [16], Schroeder [31], and the recent
survey article [24]. Two recent articles of Lenstra [14] and Lid! [15]
survey some algorithmic and computational problems associated with
finite fields.

There are a number of applications of finite fields missing from this
book. An important area, namely combinatorial applications, has been
completely omitted. Finite fields are used in many branches of combina­
tories, including design theory [2, 34] and finite geometry [9]. Some re­
cent applications in combinatorics are to Costas arrays [6, 8], frequency
squares and hyperrectangles [21, 35], and the theory of nets [23].

A great deal of research has been conducted recently in the area of
permutation polynomials, which have applications in combinatorics and
cryptography. The interested reader is referred to the survey article by
Mullen [22] .

An important area in cryptography which we have omitted is that
of pseudorandom number generation using various aspects of finite field
theory. Good references on this subject include the book by Golomb
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[7], and the articles [13, 25, 26, 29].

Some references to public key cryptography are [5, 12, 30, 33, 38].
Among the standard textbooks in coding theory are [1, 3, 4, 10, 19, 27,
28,36,37].
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recursive constructions 49-54
trinomials 42

Iterated presentation 49

j-invariant 142

Knapsack cryptosystem
Chor-Rivest 18
Lenstra 19

Kronecker product 58

Least affine multiple 25
Length of code 192
Linear code 192
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Linearized polynomial 25, 42
Logarithm problem, see Discrete log­

arithm problem
Low complexity normal bases 99­

104

Massey-Omura multiplier 94
MDS code 193, 201
Miller's algorithm 155
Minimal polynomial

for linear operator 76
for normal bases, see N-polynomial
for optimal normal bases 98

Module of differentials 184
Multiple point 175, 179
Multiplication table 69, 94
Multiplicity of point 176, 179
Multivariate polynomial factoriza-

tion 34

N-polynomial 70, 73, 83-85
Node 152
Non-singular curve 175, 179
Non-supersingular elliptic curve 146
Normal basis

complexity 70, 95
construction

deterministic algorithms 87­
89

probabilistic algorithm 86
definition 3
low complexity 99-104
number 8, 80
optimal, see Optimal normal

basis
primitive 5

Normal basis theorem 80
Normal element 69, 78-82
Norm function 1
Number field sieve 129

Optimal normal basis
constructions 96
definition 96
determination of 104-110
equivalent 105
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minimal polynomials of 98
type 197
type II 98, 110

Order
of pole 177
of zero 177

Ordinary multiple point 176
Orthogonal matrix 10

Parity check matrix 193
Permutation polynomials 211
Plane curve

affine 174
projective 179

Pohlig-Hellman method 124
Poles of a function 177
Pollard p-method 124
Polynomial basis

definition 3
number 7

Polynomial factorization, see Fac-
toring polynomials

Primitive idempotent 30
Primitive normal basis 5
Primitive polynomial 2, 40
Projective

algebraic set 178
hypersurface 178
irreducible algebraic set 178
plane 139
plane curve 179
space 177
variety 178

Pseudorandom number generation
211

Rational function 174, 178
Reciprocal of a polynomial 45
Residue 188
Riemann-Roch theorem 186
Root finding algorithms

Berlekamp-Rabin 22
Berlekamp trace method 23
Berlekamp, Rumsey and Solomon

26

INDEX

Schoof's algorithm 169
Self-dual basis

almost 10
definition 9
existence 10
number 11
of a polynomial basis 9

Self-dual normal basis
existence 12
number 12

Self-reciprocal polynomial 45
Separating set 29
Simple point 175, 179
Singleton bound 193, 208
Singular elliptic curve 152
Space of differentials 185
Subexponential 123
Subspace

cyclic 76
invariant 76
irreducible invariant 81

Supersingular elliptic curve 146

Tangent line 175, 176, 179
Torsion point 147
Trace function 1
Trace orthogonal basis 9
Transcendence degree 180
Trinomial 42

Uniformizing parameter 175

Value ofa rational function 174, 178
Variety

affine 174
projective 178

Weierstrass equation
affine 140
homogeneous 139, 187
non-singular 140

Wei! conjecture 147
Wei! pairing 155

Zech's logarithm table 118
Zeros of a function 177




