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Student’s Introduction

Welcome to new territory: A course in probability models and statistical
inference. The concept of probability is not new to you of course. You’ve
encountered it since childhood in games of chance—card games, for
example, or games with dice or coins. And you know about the “90%
chance of rain” from weather reports. But once you get beyond simple
expressions of probability into more subtle analysis, it’s new territory.
And very foreign territory it is.

You must have encountered reports of statistical results in voter sur-
veys, opinion polls, and other such studies, but how are conclusions
from those studies obtained? How can you interview just a few voters
the day before an election and still determine fairly closely how HUN-
DREDS of THOUSANDS of voters will vote? That’s statistics. You’ll find it
very interesting during this first course to see how a properly designed
statistical study can achieve so much knowledge from such drastically
incomplete information. It really is possible—statistics works! But HOW
does it work? By the end of this course you’ll have understood that and
much more. Welcome to the enchanted forest.

So now, let’s think about the structure of this text. It’s designed to en-
gage you actively in an exploration of ideas and concepts, an exploration
that leads to understanding. Once you begin to understand what’s going
on, statistics becomes interesting. And once you find it interesting, you
don’t mind working at it. It does require work. Statistics is hard; there’s
no getting around that. But it’s interesting. Once it becomes interesting,
the “hard” part is not too onerous.

The text is divided into three parts. The first part presents some basic
information and definitions and leads you immediately to a set of exer-
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cises called “Try Your Hand.” The second and third parts of the text are
solutions to these exercises: “Solutions Level I” and “Solutions Level
I1.” Leaf through the text and you’ll see that the solutions comprise over
half the book. They’re much more than just “the right answer.” They
provide complete discussions for the issues raised in the exercises.

Over the first week or so you’ll develop your own method for working
with the Try Your Hand exercises. Different students learn in different
ways, after all, and so you must find what works best for you. Still, a
few words of orientation will help. First, it wWON’T work to just read the
problems and then read the solutions. As you read you’ll be saying, “Yes,
yes, yes. That sounds right. Yes, and that’s right too. Yes, yes, yes. . . . ”
But afterward, when your instructor mentions some item from that list
(on a quiz?), you’ll swear you’ve never seen anything like it! In one eye
and out the other.

Here’s something else that won’t work: Sometimes students are dili-
gent in an unproductive way. One form of wrong diligence is to think
you must master each step before going on to the next step. That’s possi-
ble alright—if you have 30 or 40 hours a week to devote to this course.
But it’s not an efficient way to learn. The human mind is not a linear
machine. Efficient learning is always grasping for the “total picture,”
grabbing something here and something there, leaving the details to be
filled in later. Think how a small child learns. How she learns to talk,
for example. Children are master learners, very efficient learners. They
don’t proceed in a logical step-by-step manner. They grab for everything
at once. Of course, there does come a time when you’re ready for careful
detail and when youw’ll go over each step with a fine-tooth comb. But
that’s the last step in the learning process. In the beginning, trying for
that kind of detail is counterproductive.

All of this tells you something about how to use this book. When you
begin a new section, read over the text material quickly just to get an
idea of what’s there. Aim for the next set of exercises. Read the first
question in the exercise set, reflect for a moment (30 seconds?) on what
that question wants from you. Try to grasp the meaning of the ques-
tion. Often you’ll go back into the text for some detail. Realize that
you may or may not be able to answer the question. Don’t worry about
that. Learning happens in the ATTEMPT. Whether or not you can answer
the question right then is secondary. When you’ve given the question as
much effort as seems appropriate, turn to the Level I solution. There
you’ll find help of some form—a hint, a clarification, the beginning of
a solution, further information, and so on. Now, process this Level I
information. Give a bit more time attempting to formulate a complete
answer. You’ll succeed if you’ve understood everything up to that point.
But . . . if you’re studying properly you woN’T have understood every-
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thing up to that point! That means even with the help of Level I, you
may or may not be able to give a complete answer to the question. Try.
Then turn to Level II for a complete solution.

So you see how the solutions are structured. Level I is help in some
form, Level II provides a complete solution. Don’t omit Level I! Level II
will be meaningless without Level I if for example, Level I helps you, by
providing a start on the solution, as sometimes it does. Or suppose Level
I provides more information. If you skip Level I, you’ll not have that
information. Occasionally (not often) the Try Your Hand exercises ask a
question that, as asked, CAN’T be answered. Ideally, you would respond
by saying, “This question can’t be answered.” And you would explain:
“It requires more information. We need to know this, this, and this.” Or
maybe you would say, “It’s ambiguous, it could mean A or could mean
B.” As a practical matter, you’ll struggle with questions like this, suffer-
ing a vague sense that something’s wrong. And maybe—just maybe—
after you’ve encountered a few such challenges, you’ll have gained
enough clarity to suspect something’s missing or that there’s an ambigu-
ity. Great! You’re learning. In any case, when you turn to the Level I solu-
tion, you’ll get the clarification you need. But notice, it’s in your struggle
with the question that you learn, even though you don’t “succeed” on
your own in giving an answer or even in understanding the question!

Remember the principle: Grasp for everything at once. If you find you
just can’t understand some problem, GO ON TO THE NEXT PROBLEM! You
can come back to this one later.

One more bit of advice: Find someone to study with! Better yet, form
a study group with two or three other students. You’ll be surprised how
much you learn from each other. And it takes less time because the very
point YOU get stuck on will be the thing that seems clear to someone else.
Then, just around the next bend, what some other student finds totally
mysterious seems clear to you. And both of you gain clarity trying to
explain to the other person. Studying should be a social enterprise!

So success in answering questions is not your goal. The goal is to de-
velop your understanding. And that happens as a result of your STRUG-
GLE to understand. That’s why the exercises are called “Try Your Hand”
instead of something like “Do It.” Maybe we should have called the
whole book “Try Your Hand,” that’s what it’s all about.

Finally, a word about the technical terms: You will notice that tech-
nical terms are given in boldface italics in the very sentence where they
first appear. Be sure you learn the definition for each such term pRE-
CISELY, otherwise your thinking will necessarily be vague and confused
everytime you encounter that term. Well, that’s it—that’s all the advice
I can give. Good luck and have fun!
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The concepts encountered in a first course in statistics are subtle, involv-
ing quite sophisticated logic. Understanding the statistical techniques
presented in that course, understanding their application and the real-
world meaning of the conclusions depends very critically on understand-
ing those concepts. This text is my attempt to structure an exploration
for the student leading to that kind of understanding.

The fundamental idea underlying the entire structure is the concept of
a probability distribution as a model for real-world situations, a concept
thatis not in any sense elementary. Probability itself is hardly elementary.
Still, even children grasp (naively!) the idea of probability as expressed in
phrases such as “a fair coin” or, in card games, “the chance of drawing
a spade.” That being true, games of chance seem a good place to begin.
That’s Chapter 1. And on the first page of Chapter 1 comes the idea
of a probability model. Thus the student has time—the entire course—
to assimilate this concept with all its subtlety and later mathematical
elaboration.

Before discussing chapter content in detail, a few general observations
will be helpful. This “first course” covers the standard topics of intro-
ductory precalculus statistics, but with a very nonstandard presentation.
The text itself is brief, leading the student quickly to “Try Your Hand”
exercises in which the student actively explores concepts and techniques.
Often, no more than a page or two passes before the student sees the
next set of exercises. Much of the exposition usually given discursively
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in the text itself is presented here through these Try Your Hand exercises.
This approach is possible only because the exercises have complete solu-
tions with full discussions. The solutions are given in two levels. Level I
gives hints, clarifications, further information, partial solutions, and so
on. Having completed Level I, the student turns to Level II to find a full
solution.! A number of problems with real data have been included to
give some idea of the variety of applications of statistics and some feel
for the unexpected questions which arise in specific situations.

By judicious use of the Try Your Hand exercises, the instructor can
focus the course according to the students’ needs and abilities. Some
exercises might be omitted altogether; others might be presented by the
instructor in class. For example, probability formulas for the discrete
distributions of Chapter 3 are derived in the exercises. The student is
led by the hand through the derivation with the help of Level I. An in-
structor who chooses to omit formula derivations can simply omit those
exercises. The student will be totally unencumbered by the derivations.
She won’t even see them because they are not included in the main body
of the text itself.

The presentation given in this text is more sophisticated with respect
to the underlying logic of statistics than most introductory books. In
Problem 6.2.21, for example, the student sees that two very different p-
values could arise from the same objective data, depending on how that
data is “modeled.” The ramifications of that are discussed in Level II.
In Problem 5.5.12, two different prediction intervals for the same prob-
lem—one parametric, the other nonparametric—are compared. The dis-
cussion of statistical testing in Chapter 6 is more thorough than in any
book I know of at this level. The presentation of regression in Chap-
ter 7 avoids the usual list of unmotivated assumptions. Instead, I give
a natural characterization which reveals simple linear regression as the
next logical increment in complexity beyond previous chapters. For fur-
ther detail on all of this, please see the individual chapter discussions
given below.

Finally, I give much in the way of informative heuristics, such as the
“elementary errors” interpretation for the normal distribution intro-
duced in Chapter 4. That criterion, which is just an intuitive formula-
tion of the Central Limit Theorem, is used systematically throughout
the course to explain many details otherwise left obscure. To give one
example, the criterion explains why only in the small sample case for
inferences about means we must assume we are sampling from a normal
distribution (see Problems 5.3.2 and 5.3.3).

! The instructor should remind the students (often) not to neglect the Level I solutions.
Level II will seldom be complete in itself.
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xiii

This text should be appropriate for students requiring an elementary
introduction to statistics, assuming little mathematical sophistication,
who anticipate more than a passive involvement with statistics and who
will be learning more sophisticated statistical techniques in later courses.
It should be appropriate for engineering, economics, computer science,
psychology, sociology, and education majors. It would probably be ap-
propriate for students in fields such as geography, ecology, and so on. It
certainly would be an ideal freshman introduction to statistics for math-
ematics majors with the expectation of later follow-up in a thorough
Mathematical Statistics course. In my experience, it is difficult to teach
a meaningful Mathematical Statistics course to students with no prior
exposure to statistics and, consequently, with no intuitive orientation.

The discussion above suggests that the probabililty distribution of a ran-
dom variable is a central idea. Certainly it is. It’s a sophisticated concept
atthe heart of virtually every technique of statistics. Even for exploratory
and nonparametric techniques a probability distribution often lurks in
the background (at least) as a standard of comparison. And, of course,
the prior probability distribution is fundamental to Bayesian statistics.

To ease the student’s initial exposure to this abstract concept, I in-
troduce probability distributions at the very beginning through simple
examples of real-world situations, namely, games of chance with coins,
dice, cards, and so on. This term “real world” is used throughout the
text in contrast to “abstract theory” (not in contrast to “artificial” or
“contrived”). Random variables and linear functions of random vari-
ables are used in this chapter to model these simple games of chance.
For example, if you receive two dollars for each dot on the uppermost
face of a die and pay six dollars to play, your gain/loss random variable
is G = 2X — 6, where X models the die. Thus, linear functions of ran-
dom variables are also explored in some depth with the simple examples
of Chapter 1. Most of this chapter relies on the student’s intuitive idea
of probability together with some simple ad hoc rules. After “remind-
ing” them of what they already know, a more rigorous development of
probability is presented in Section 1.4.

Betting games with dice, loaded in various ways, are effective for
investigating the mean and variance of a random variable and for un-
derstanding the variance as a measure of risk, predictability, accuracy,
and so on. The significance of the variance is much more readily appreci-
ated by students in the dynamic context of random variables than in the
static context of observed data, another reason for introducing random
variables at the very beginning of the course. The die—in general, the
random mechanism for the game—need not be fair. Loaded dice offer
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a variety of interesting situations and an opportunity to understand in-
teresting concepts. For example, we can ask the student to load a given
die differently so the mean stays the same, within a specified degree of
accuracy, but the standard deviation is smaller or larger by a specified
amount. Or again, we can ask which is more predictable, a die with a
given loading or a fair die? Which game would you prefer to play, the
one with the fair die or the one with the loaded die? The answer depends
not only on how the die is loaded but also on one’s motivation for play-
ing. Students readily appreciate the relevance of this kind of analysis
to more realistic situations such as portfolio analysis or variability in
a manufactured product, or variety within a genotype, or any of many
other situations of possible interest to the student.

Random variables are presented as providing a “bridge” from the
real-world situation with all its complexity to the relatively simple world
of theory (see the picture of this bridge on page 7). This metaphor is
much more than a clever hook—it is a significant pedagogical device. I
have the picture of this bridge on the blackboard every day for the first
half of the course and am constantly surprised, and surprised again,
how often misconceptions can be resolved by reference to this picture.
Many errors arise from confusing the outcomes with the values of the
random variable. I simply point to the picture and students catch their
error immediately (well, almost)! For example, isn’t a “constant random
variable” a contradiction in terms? After all, “it” is predictable! Look at
the picture: “It” (the value) is predictable, but “it” (the outcome) is not.
Or, if we have a pair of fair dice, isn’t the number of dots on the top faces
uniformly distributed? Since the dice are fair, “they” are equally likely.
Yes, “they” (the outcomes) are equally likely, but “they” (the values)
are not. The bridge metaphor is particularly helpful in resolving the
confusion of values with outcomes because it places them symmetrically
on opposite sides of the River Enigma.

This chapter covers topics of descriptive statistics, introducing frequency
and relative frequency distributions, their histograms, and related ideas.
In this chapter, we introduce random sampling: first sampling from a
probability distribution, then sampling from numeric and dichotomous
populations. After Chapter 1, sampling from a distribution seems quite
natural to students. It’s conceptually simpler than sampling from a pop-
ulation. The key question for sampling from a distribution is simply the
independence for repetitions of the underlying random experiment. For
example, if we’re interested in monitoring “fill” for cups from a soft
drink vending machine, 10 cups taken in succession will be a simple
random sample from the distribution of “fill” provided only that the
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XV

amount of drink dispensed is independent from one cup to the next.
Students are readily able to suggest how that might or might not be true
depending on the circumstances.

Most, if not all, introductory statistics texts seem to avoid sampling
from distributions—a wise choice if the students don’t understand what
a distribution is—and, consequently, many examples throughout such
a text force very artificial interpretations of sample data by reference to
some hypothetical nonexistent population where certainly the data was
NOT selected through any sampling plan. Did we use a random number
table to select 10 cups from a population of “all possible cups?” In ex-
actly what warehouse are “all possible cups” to be found? If that’s not
the procedure, what justifies calling those 10 cups a random sample?
Interpreting such examples as “sampling from a population” not only
does not help, it’s a serious obstacle to clarity. You dare not ask the stu-
dent if the assumption of randomness would, under the circumstances,
seem justified. The definition before them is so artificial that any prac-
tical discussion of its relevance is impossible. An intelligent student can
only conclude that one blindly assumes whatever one wants in order
to make the theory work. I prefer the idea that one makes assumptions
only where those assumptions seem reasonable and where they can later
be verified.

This chapter presents nine “models,” nine classes of discrete probability
distributions of varying degrees of concreteness, interrelated in various
ways. I strongly urge that none of these models be omitted. Understand-
ing a sophisticated, abstract concept—here, probability distributions—
requires more than one or two examples. The goal of this chapter, atleast
from the point of view of the statistical material to be presented later,
is to develop the student’s skill in recognizing an appropriate model for
a real-world problem. This requires experience with a number of dif-
ferent models. The instructor can mitigate the difficulty of this chapter
without compromising its principal thrust by omitting some or all of
the probability formulas, focusing instead on model recognition. Skill
at model recognition can be developed and tested without probability
questions per se, by simply restricting to questions about the mean and
variance, questions such as, “How many cups should we get from this
drink machine before the machine malfunctions?” (the mean of a geo-
metric random variable).

The statistical topics of this course—random sampling, sampling dis-
tributions, estimation, statistical testing, and the regression model—
cannot be understood if the underlying theoretical models are not under-
stood in their roles as models, models for the sampling process or for
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the more complex situation of regression. In my experience, Chapter 1
and the nine models of this chapter will indeed bring the students to
the requisite understanding of probability distributions as models for
real-world situations.

The discussion from Chapter 1 is continued at a more sophisticated
level with the nine models of this chapter. Constant and uniformly dis-
tributed random variables form two very simple classes, already familiar
from Chapter 1. In particular, Chapter 1 has already shown how con-
stant random variables arise very naturally through combinations of
other random variables. For example: X + Y = 7, where X and Y
are, respectively, the number of dots on the top and hidden faces of
a six-sided die. These two simple examples—constant and uniformly
distributed random variables—help us to establish what we mean by
a “class” of random variables and set the pattern for the rest of this
chapter.

The classes of this chapter are interrelated in various interesting ways.
There are two sampling distributions: Sampling with or without replace-
ment from a dichotomous population form one group. The binomial,
geometric, and negative binomial form another group (with the geomet-
ric a special case of the negative binomial). The binomial has the previous
“sampling with replacement” model as a special case. The Poisson model
is the most abstract of the models in this chapter, having been derived
abstractly through a purely mathematical process from the binomial. It
becomes a model for real-world situations only after the fact and for
that reason has a less concrete feel about it. The student is alerted to
this “abstract” versus “concrete” consideration. That idea is picked up
again in Chapter 4 where we introduce continuous distributions. The
understanding that some models are more abstract than others is help-
ful in understanding the normal and chi-squared distributions which are
indeed quite abstract.

An important challenge in this chapter (and again in Chapter 6) comes
in the set of mixed review problems at the end. In these problems, the
student is on her own to identify a correct model for a given problem.
A few problems can be correctly modeled in more than one way. This
review is very important and should not be omitted. A real difficulty for
students, which will show up in these review problems, is their single-
minded focus on the abstract part of the model. Students complain about
abstraction, but, in fact, they love it—it’s easier. The abstraction is pre-
cise and clear; equations and formulas can be learned. The real world,
by unhappy contrast, is messy, ambiguous, and confusing. However, to
identify an appropriate model for a real-world problem we have to look
where the problem is—in the real world. That requires focusing on the
real-world description of the random experiment, the real-world com-
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ponent of the model, and matching that description with what’s going
on in the problem. The skill to do this is developed through these review
problems at the end of the chapter.

This chapter extends the presentation of the previous chapter to contin-
uous distributions. First are the uniform and exponential distributions;
then the most abstract model so far encountered, the normal distribu-
tion, modeling random error or, by extension, any situation where the
difference in two values “looks like” random error (see the criterion for
normality on page 148. Finally, we see the chi-squared distribution, the
most abstract of all among the distributions of this text.

This chapter presents sampling distributions, the Central Limit Theo-
rem, and interval estimates as a unified topic. We do three types of in-
terval estimates: confidence intervals, prediction intervals, and tolerance
intervals.

For understanding sampling distributions, variability from one sam-
ple to the next is not the really difficult concept. People with no knowl-
edge at all of statistics see this variability very clearly. That’s why they’re
so ready to criticize statistical surveys, complaining that “it’s all just
based on a sample!” This is the thinking students come to us with. We
must show them that

They’re right if they think one sample alone can’t tell them
anything.

BUT . . . They’re wrong if they think sampling is useless or statistics
a sham or if they think only very large samples are legit-
imate. And they’re especially wrong if they think a very
large sample carries any information by itself.

BECAUSE . . . The missing ingredient which makes sense of one sample is
the entire context of that sample. That “entire context™ is
the sampling distribution, a sophisticated theoretical con-
struct not easily understood.

For example, a sample mean by itself tells you nothing. On the other
hand, a sample mean seen as just one of the many possible values of
a normal distribution centered on the unknown true mean, with most
of the probability concentrated there and with a standard deviation
intimately related to the standard deviation of the original distribution,
TELLS YOU A LOT!
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When asked, “What assumption must you make about the data here?”
(that it’s a random sample) students will respond, “That it’s more or
less typical of the population.” Well, if it’s typical, you don’t require
statistics! But, in fact, you’ll never know whether it’s typical or not and
YOU HAVE NO THEORY FOR THAT. There is, however, a theory for random
sampling and that theory controls the error which could arise from
a possibly atypical sample. Control of error is the theme, probability
distributions the tool.

There may be an objection to the presentation in this chapter which
treats only interval estimates and does not allow for point estimates.
But point estimates are only appropriate when the estimator is in some
sense “best” for the problem at hand. That more advanced discussion
involves everything in the discussion above and more. For this reason,
I present only interval estimates with the understanding that the point
estimate is incomplete to the point of being meaningless if no further
investigation is carried out.

There may also be an objection to interpretations of confidence in-
tervals which begin *There’s a 95% probability that. . .. ” The usual
argument tells the student to replace the wrong expression by another
one where the offending term “probability” is replaced by the unde-
fined term “confidence.” This just replaces error by ignorance, hardly
an improvement! No wonder highly intelligent people say they never
could understand statistics. I prefer to use a natural probability expres-
sion, but acknowledge openly that it’s ambiguous. One reading is wrong
(with the 95% probability referring to the parameter), the other correct
(it refers to the interval). The student is held responsible for under-
standing the two readings, understanding why the one is wrong and the
other correct.

This approach is consistent with my exposition throughout the text,
where I hold the student responsible for certain standard ambiguities
or misstatements. For example, the question ”What are the chances for
a female on this committee?” almost certainly is asking for P(X > 1),
although technically it asks for P(X = 1). Or I leave out the phrase
“on average” in situations where it’s clearly implied. Or, again, I ask
for a count where a proportion is all that’s possible. This significantly
challenges the student’s clarity of thought because she is on her own
to discriminate among possible meanings. “How many,” for example,
might mean “how many on average” or “what proportion.” There’s
no getting around it, she has to understand the context! In this way, the
student of this text grows accustomed to dealing with ambiguity and the
resolution of ambiguity as a part of the natural intellectual environment.
All of this is possible through judicious use of the Level I answers to the
Try Your Hand exercises.
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This chapter presents tests of statistical hypotheses. This vexed topic is
presented with in-depth discussion of the possible misinterpretations,
misuses, and limitations of the technique as well as a careful discussion
of the correct interpretation of p-values, conclusions, and errors. The
first section of the chapter gives an overview of two testing procedures,
the “test of significance” (p-values) and the “hypothesis test,” and in-
troduces some terminology and some comparisons (the details of which
are deferred until later sections). The second section presents tests of
significance, including chi-squared tests. The third section of the chap-
ter presents the “hypothesis test” as providing a decision procedure for
a monitoring process as, for example, in quality control.

So the “test of significance” is presented first, with its formal answer
(a p-value) and its not-so-straightforward real-world interpretation. The
logic of statistical testing is quite subtle, involving considerable contro-
versy. A significant amount of confusion has been introduced into the
topic by not distinguishing between the “test of significance” and the
“hypothesis test” proper, with its error probabilities, power considera-
tions, and so on. Consequently, I have separated these two approaches
to statistical testing.

The student’s understanding is enhanced by first clearly understand-
ing p-values as measuring consistency between the data and the hypoth-
esis. The p-value calculation is relatively easy. Nevertheless, the real-
world interpretation is not so straightforward. For instance, although
small p-values are usually what we look for, with not small p-values
being inconclusive, just the reverse may hold for the practical interpre-
taion. For cases of “discriminatory selection,” for example, where the
hypothesis to be challenged is “random choice,” a NOT small p-value is
quite conclusive—it’s impossible to maintain an accusation of discrim-
ination if the choice is consistent with having been random—whereas
a small p-value may be relatively conclusive or relatively inconclusive,
depending on the context. See the discussion beginning on page 245.

There are a number of advantages to presenting tests of significance
as a separate topic. Certain issues concerning statistical testing are more
clearly presented with reference to p-value calculations, unburdened by
the heavy-handed and irrelevant machinery of null and alternative hy-
potheses, error probabilities, rejection regions, decision rules, power,
and so on. For example, the test of significance already highlights the
distinction between practical and statistical significance. It also reveals
the asymmetry inherent in statistical testing, the asymmetry seen in the
difference between “small p-value” (the hypothesis is challenged) and
“not small p-value” (the data is inconclusive). Further, the test of signif-
icance, seen as a “probabilistic argument by contradiction,” clarifies the
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underlying logic of statistical tests in general. Again, chi-squared tests are
more appropriately introduced as tests of significance than as hypothe-
sis tests because there is often no meaningful “alternative” hypothesis.
Finally, by presenting tests of significance as a separate technique, in-
structors who prefer to spend less time on statistical testing can omit the
complexity of “hypothesis tests” altogether and confine their discussion
to this much simpler case.

Hypothesis tests are first studied without control of type Il error. Our
point of view is that when you “fail to reject Ho,” you take no action
based on the test itself since in that case you have exercised no control
over the possible error. This asymmetry is exactly parallel, of course, to
the asymmetry of “small” versus “not small” p-values. The important
new idea here as compared with tests of significance is the “control of
error” for type I error. Aside from the pedagogical advantages, leaving
discussion of type II error until later is justified by the impossibility in
some testing situations of finding a model for the alternative hypothesis.
In other words, there are, indeed, situations where control of type II
error is not practical.

This chapter gives an in-depth discussion of the role of hypothesis
tests. For example, we see how the logic of hypothesis tests compares
with classical inductive inference, leading to the distinction between null
hypotheses which are sometimes true and sometimes false (in monitoring
situations) and null hypotheses which are either always true or always
false (the classic situation of inductive inference, where “accumulation
of evidence” is the motivation for repetitions of the experiment).

There may be an objection to so much emphasis on the logic of testing.
It has even been suggested that statistical tests should be omitted alto-
gether because the same conclusions can be obtained from a confidence
interval.? But statistical testing is too pervasive in statistical practice to
justify omitting it. The student is not well served in being left ignorant
of terms like “p-value,” “null hypothesis,” and so on. Given that we’re
going to teach the topic at all, surely we must teach it clearly so that
common confusions and misunderstandings do not arise.

The distinction between tests of significance and hypothesis tests is
certainly not artificial. Failing to make that distinction leads to a number
of points of confusion. To name only one: Are you allowed to look at
the data before setting up the test? For a test of significance where the
question is “Does this data seem to challenge our hypothesis?” there is
no “setting up” of the test. The data is part of the original question.

2 As a matter of technical fact, this is not true in the case of proportions since the
standard error will differ. If the hypothesis to be tested is false that difference could be
significant.
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How can you avoid looking at it in advance? For an hypothesis test,
on the other hand, which is properly a monitoring procedure, the data
will change from one run of the test to the next, so, OF COURSE, you
have to set the test up without reference to the data. Most textbooks
tell the student not to look at the data and then, in every example and
problem, give the data in the problem statement. How can the student
avoid looking at it? To add insult to injury, the solution—which here
means simply choosing a direction for the test—will always be correct
if you base it on the data. Never does the student see data which would
be in the “wrong” tail of a properly determined test.

For other points of confusion which arise when the distinction be-
tween tests of significance and hypothesis tests is not made, see the text
of Chapter 6. None of this says the distinction remains necessary for
someone who clearly understands the entire logic of tests. But we should
distinguish between what is logically correct and what is pedagogically
clear.

At the end of this chapter, as at the end of Chapter 3, there is a
critically important set of mixed review problems, the most challenging
set of problems in the text. It should not be omitted. I give about a week
of class time to these problems. It is through this set of problems that
students assimilate the statistical techniques of Chapters 5 and 6.

This chapter is a brief introduction to simple linear regression. In Chap-
ter 4, anticipating the present chapter, the normal distribution is de-
scribed along these lines: Suppose you have a fixed systematic “effect”
for which any variation is due solely to something that “looks like”
random error. Then you should expect a normal distribution. Take, for
example, diameters of machine parts where the systematic “effect” is
the manufacturing process itself which attempts to meet specifications
(diameter 3.2 mm). The variability in diameters is purely random unless
there’s something wrong in the process. So diameters are D = u + e.
Here p = 3.2 is the systematic part with € being “like random error” so
that e = N(0, 02).

When we come to regression, we make ONE SIMPLE STEP FORWARD
IN COMPLEXITY for the model. The “effect” which determines the mean
is no longer fixed, but variable. But not variable in just any way at all;
that’s much too complex. Instead, the mean is determined through a
linear function of the effect, a linear function being the simplest nontriv-
ial function. So we obtain a model with a variable “effect,” X, which
is as simple as possible and which “affects” (not necessarily causally!)
only the mean of Y, not affecting Y in any other way. The usual long, in-



Instructor’s Introduction

timidating and unmotivated list of assumptions for the regression model
follows quite naturally from this characterization [see problem 7.1.4(c)].

Of course, one may object, X can certainly affect more than just the
mean of Y. For example, it can affect the percentiles. But that’s not a
different effect. If you tell me the effect on the mean of Y, I can determine
the effect on the percentiles. This is parallel to what we say about the
parameters of a model. For example, o and o2 are not two different
parameters; give me one I can calculate the other. For the hypergeometric
model, p is not a fourth parameter because I can calculate it from two
of the other three: p = R/N.

Here again, as in many other instances—confidence intervals in par-
ticular—I allow possibly ambiguous statements when it’s convenient
and natural, making a point of the ambiguity and its proper resolution.
Understanding comes in being clear about the ambiguity. So, in the re-
gression model, X affects only the mean of Y, but not in an absolute
sense, rather in the sense that any other effect from X can be calculated
from the effect on the mean.

With some hesitation, I will describe how I currently use this text in my
classroom. I hesitate simply because I would not want to prescribe a
“right” way to use the book. Indeed, I hope various instructors will find
various effective ways of using the text.

At the beginning of each class, I make an assignment for the next
class. The students are expected to read that material and process the
problems on their own with no preliminary in-class discussion. At the
beginning of the next class, there is a brief, very routine quiz on the
assignment. These quizzes serve many useful purposes, not the least of
which is to encourage students to actually do the assignment. Needless
to say, when the students have already thought about the material, the
class discussion can deal with issues in much greater depth and subtlety.
For sections which meet three days a week in 50 minute classes, there are
approximately 20 such quizzes per semester of which I drop the lowest
three or four. These quizzes count 20% of the course grade. The rest
of the course grade is determined by two 100-minute tests (each given
over two successive class periods) and the final examination.

The grading policy for the quizzes is very lenient because the material
is quite new at the time of the quiz. The quizzes provide an opportunity
for the students to catch errors or misunderstandings without incurring
a serious penalty. Thus I count off only for gross errors or completely
wrong approaches which would indicate that the student did not really
do the assignment. I often write “OKT” beside a mistake, meaning, “No
penalty THIS time, but be alerted: this is an error!”
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I allow questions before the quiz. If the question is relevant to the quiz,
I am obliged to answer. If the question is not specifically relevant to the
quiz, I may postpone discussion of that question until later. Attention
in the class is never quite so clear and focused as during that question
period before the quiz! In practice, the quiz is sometimes at the very
beginning of the class, sometimes fifteen or twenty minutes into the
period, sometimes not until the very end. Rarely—in the interests of
time—I may omit a quiz (unannounced in advance) to spend the entire
class going carefully over some topic or conducting a review.

There is always initial resistance from the students to this approach. It
seems to be quite a novelty that they should be expected to read material
and assimilate it on their own. But usually after a week or so they begin
to accept the responsibility to work on their own and begin as well
to appreciate the value of developing their skill for independent study.
The structure of this text, with its complete solutions to the problems,
facilitates this approach.

My experience shows that students coming through this course de-
velop valuable skills for independent study and for critical, analytical
thinking. In fact, for many students those are possibly the most valuable
results of the course.
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1.1 Probability Distributions of Random Variables

Probability Models

There are situations so complex—you might even think chaotic—that
any analysis would seem impossible. But often such situations yield to
the techniques of statistics. With proper data and with proper analysis
of that data, you may be able to say a lot. As this course proceeds, it
will be interesting for you to see exactly how statistics is able to deal
with these seemingly impossible situations. But it won’t be at all what
you expect. The answers provided by statistics are never exact; there’s
always error. Statistics does not eliminate error; rather, it controls it.
In short, statistics allows you to be precise about imprecision! It’s the
precise control of statistical error that’s at the heart of every statistical
technique.

Error in the statistical sense arises from uncertainty in the play of
chance, and so we’ll begin our study with some simple chance mechan-
isms—coin tosses, rolls of dice, and so on—and with abstract models
for those mechanisms. A roulette wheel is another such chance mechan-
ism. Again, there are games which depend on the draw of one or more
cards from a deck of 52 cards. If the cards are well shuffled, the draw
is, indeed, a chance mechanism.

All such games of chance illustrate simply and very concretely some
of the most basic concepts in statistics. Sometime in the period before
1600 in Europe, people who loved games of chance began to discover
and formulate the mathematical laws for those games. These origins of
statistics before 1600 are somewhat obscure, but from the time of Fermat
and Pascal in the mid-seventeenth century, there’s a continuous and
well-documented development of the mathematical theory for games of
chance. Let’s see how that theory goes. We’ll begin with

the fair die: X P(X)
1 1/6
2 1/6
3 ?
4 >
5 ?
6 >
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and

the fair coin: X ] P(X)
H ?
T ?

Obviously, what we’re giving here is not the physical object itself,
not a die nor a coin, but rather an abstract mathematical model of that
object—a table, in this case. A table like the ones above is an abstract
“probability model” for such a chance mechanism. For the moment, we
are asking you to guess how to interpret the models. In the tables, P(X) is
the probability that the variable X takes on the indicated value. As you
can see, the tables are not complete. We’ve left it to you to complete the
tables by filling in the missing probabilities. Think about a fair die. Or a
fair coin. What do these tables suggest to you in real-world terms? Try
to complete the tables before reading further (the answer is in Problem
1.1.1 below).

If the die is fair, each of the six faces comes up equally often on
average. That’s what the “one-sixth” in the table for the fair die means.
That “one-sixth” is the theoretical relative frequency with which we
would expect to roll each of the various faces of the die. It’s “theoretical”
because it’s based on the theory that the die is fair. If the die is not fair,
some one (or more) of the faces comes up too often—more than one-
sixth of the time on average. Of course, if one face comes up too often,
then some other one (or more) of the faces must come up less often.

The term “theoretical relative frequency” is just another name for
probability. The probability of an event is, by definition, the relative
frequency with which we expect, theoretically, to observe an occurrence
of that event. There are other possible definitions of probability, but
unless otherwise stated, we’ll always intend the theoretical relative fre-
quency definition. In Section 1.4 you’ll find a more detailed presentation
of probability. For now, your intuitive idea of probability, derived from
your understanding of games and other real-life situations involving the
idea of chance, will suffice.

But now, before we go any further, why don’t you just . . .

1.1.1 (a) In the tables above for the fair die and the fair coin, give a
verbal description of the variable X.

(b) Complete the tables by giving the probabilities for a fair die and a
fair coin.

(c) What does the word “probability” mean? Explain it in terms of the



1.1 — Probability Distributions of Random Variables 5

probability to draw the ace of spades when you take the top card from
a well-shuffled deck of 52 playing cards.

1.1.2 Later we’ll develop precise rules for working with probabilities,
but can you guess the probabilities of getting

(a) a number less than three on one roll of a fair die?

(b) a pair of sixes on a roll of two fair dice?

(c) a pair of heads on a toss of two fair coins?

1.1.3 Can you guess a rule that distinguishes a situation which requires
‘ adding probabilities from one which requires multiplying them?

Random Variables and Their Random Experiments

Rolling dice, tossing coins, drawing cards from a deck are all examples
of random experiments. It’s not easy to give a precise definition of the
term “random experiment” because the word “random” leads into a
deep (and fascinating) philosophical quagmire. But we can easily get
along without a precise definition. It’s enough to have a heuristic def-
inition which will not lead us astray. Here it is: a random experiment
is something you do that is repeatable, with clearly specified outcomes
which cannot be predicted in advance. Although we’re only giving a
heuristic definition of the term random experiment, it’s necessary to pay
careful attention to the details.
What you must verify to show that you have a random experiment:

e the doing

e the repeatability

e the clearly specified outcomes
e the unpredictability

If the “doing” is not repeatable, if it represents an entirely unique oc-
currence, statistics can provide no help at all. Now, because the phrase
“something you do” is hopelessly vague, it’s necessary to pin the “do-
ing” down more precisely. This is accomplished by specifying clearly
the outcomes. This much gives the definition of a scientific experiment:
something you do which is repeatable with clearly specified outcomes.
By insisting that the outcomes cannot be predicted in advance, we cap-
ture the idea of randomness. This is not a very adequate definition of
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randomness from a philosophical point of view of course, but you get
the idea!

For example, for the die, the “doing” is to “roll the die.” Clearly,
that’s repeatable. Suppose we specify TWO possible outcomes: either the
die lands on the table or it lands somewhere else—the floor, for example.
That’s probably not the random experiment you had in mind. But now
you see why it’s necessary to be clear about the outcomes. For this
experiment, the outcome may or may not be predictable, depending on
exactly how you roll the die. Suppose “rolling the die” means dropping
it from a height of about two feet above the table top. In that case, we
do indeed have a random experiment because the outcome would be
unpredictable: You can’t say in advance whether it will land on the table
or the floor. Notice how we’ve gone through each of the four items listed
above to verify that “rolling a die”—in the exact sense we’ve specified—
is a random experiment. This is what you must do if asked to “verify
that such and such is a random experiment.”

Of course, the usual random experiment with a die assumes the die
will remain on the table top. If not, you abort that attempt and do it
again. For that experiment, an outcome is “the die lying on the table top
in some position.” Notice that we are very physical in our description of
the outcomes. You should avoid any reference to numbers in describing
outcomes. By following this rule, you’ll have a much easier time in un-
derstanding random experiments and their random variables (which we
are about to define). So, if you were inclined to describe the outcomes
as “the numbers from one to six,” think again, THAT’S NOT IT!

A random variable is a rule which associates a number to each of the
possible outcomes of some random experiment. For a roll of the die,
we can define the random variable—let’s call it X —which assigns to an
outcome the number of dots on the uppermost face of the die. Here’s a
description of this random variable:

an outcome: the die resting in some position on the table top;

association of a number to outcome: look at the top face of the die,
count the number of dots on that face;

possible values: the positive integers one through six.

So you see, if you identified the outcomes of the experiment as the
numbers from one to six, you confused the outcomes with the values of
the random variable. The outcomes of the experiment are NOT the same
thing as the values of the random variable.

An outcome for a random experiment is the physical, real-world sit-
uation which results from performing the experiment once. Here, after
one roll of the die is completed, the real-world result, the outcome, is
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Real World

the die sitting in a certain position on the table. For that outcome (the
“sitting die”), X counts the number of dots on the uppermost face. That
count, that NUMBER, is the value of the random variable for that out-
come. This is why we say you should avoid giving numbers as outcomes.
If you never give numbers as outcomes, you won’t make the mistake of
confusing the outcomes with the values of the random variable.

The outcomes of the random experiment live in the real world; the
values of the random variable live in the theoretical world of numbers.
Again and again we’ll see this contrast between the real world and theory.
It’s the interplay between the real world and theory that makes statistics
such a powerful tool. Throughout this course, our point of view is that
questions and answers live in the real world whereas, statistical tools
live in the world of theory. What makes statistics interesting is to see
how those theoretical tools can be made to yield real-world answers to
real-world questions.

So random variables provide abstract mathematical models, proba-
bility models, for real-world situations. And they’re very useful models,
as you’ll see. In fact, random variables are at the center of everything we
do in this course. They provide a bridge between real-world situations
(the random experiment) and mathematics (the numeric values of the
random variable). For problems in the real world involving uncertainty,
an appropriately defined random variable may provide a bridge to the
powerful analytic tools of mathematics.

Here’s a picture of a random variable:
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Now let’s think about tossing a coin. Note that in the earlier table
for the toss of a fair coin, X is NOT a random variable because it’s not



Chapter 1 — Introduction to Frobability Models ot the Keal Vvorid

numeric-valued. There, X assigns the letters H and T to the outcomes.
Letters are not subject to the laws of mathematics. We’ve insisted that
random variables should be numeric-valued because we want to draw
on the powerful analytic possibilities of mathematics. Still, it’s easy to
invent a random variable for the toss of a coin. If we’re particularly
interested in “heads” when we toss the coin, we might let X = 1if a
head comes up, and otherwise let X = 0. Note that X has a simple
verbal description: It’s the number of heads on one toss of the coin.

Just to see how this X might be useful, suppose you toss the coin
ten times during some game and need to keep a record of the results
of these ten tosses. In terms of X, we can say that there are XX heads.
Here we’re showing you a simple notation which is very convenient in
statistical discussions. It’s not hard: ¥ X simply means sum the values
of X. You can read it “sigma X,” or just “sum X.” For example, if you
toss the sequence

H,H,T,H,T,H,HHT,H

X would be
1,1,0,1,0,1,1,1,0,1.

Because these zeros and ones add to seven, ¥ X is seven, telling us that
there are seven heads.

Note how so simple a random variable as X, taking only the values
zero and one, is a very convenient abstraction. Using it and the sum-
mation notation, we can write >X, a mathematical expression which
represents the number of heads tossed, no matter what that number
might be.

Before doing the exercises, let’s look at one final definition: The proba-
bility distribution of a random variable is a presentation of the possible
values of the random variable together with the corresponding probabil-
ities. The presentation may be in the form of a table, as we gave earlier
for the fair die or it may be in a graphical form, as we’ll see later. In
Chapters 4 and 5, we’ll have probability distributions presented through
a set of equations. Note that in a probability distribution, the sum of all
the probabilities must be exactly one; that is,

Y P(X)=1.

You actually already know this. Think about tossing a coin. Suppose
someone tells you a particular coin comes up heads a third of the time
and comes up tails a third of the time. What happens the other third of
the time? Does the coin land on its edge a third of the time? A strange coin
indeed! On the other hand, suppose you had been told simply that the



1.1 = Probability Distributions of Random Variables 9

Try Your Hand

coin comes up heads a third of the time. Wouldn’t you have immediately
concluded that it comes up tails two-thirds of the time? You should have.
Analytically,
P(heads) + P(tails) = 1,
1/3 + P(tails) = 1,
and so P(tails)=1 - 1/3 = 2/3. Now please . . .

1.1.4 (a) Compare and contrast the terms “scientific experiment” and
“random experiment.”

(b) What in the definition of the term “random experiment” captures
the idea of randomness?

1.1.5 Let X be the random variable which counts the number of dots
on the uppermost face for one roll of a die:

(a) Give the probability distribution for X assuming the die yields two
dots on the uppermost face 50% of the time on average, with all other
faces equally likely.

(b) Give the probability distribution for X assuming the die yields two
dots on the uppermost face 40% of the time and five dots 20% of the
time while the other faces are all equally likely.

(c) Note that we have two different random variables in parts (a) and
(b) although they have the same verbal description and, for convenience,
we’re using the same symbol, X. Now, look at the abstract definition of
the technical term “random variable” and pinpoint exactly what part
of the definition differs for these two random variables. You’ll get some
help if you think in terms of the picture of a random variable as a bridge.

1.1.6 Suppose you have a deck of playing cards which is missing two
hearts. So the deck contains only 50 cards. Give the probability distri-
bution for the random variable Y defined by the rule below for the draw
of one card from this deck after thorough shuffling.

spades — 1
clubs — 2
hearts — 3

diamonds — 4

1.1.7 Consider the six random experiments described in Problem 1.1.2
(a)—(c), Problem 1.1.5(a) and (b), and Problem 1.1.6.
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(a) Specify the “doing” for the random experiments and then state the
rule which defines the corresponding random variable.

(b) Now specify clearly the outcomes for each of the six random exper-
iments.

(c) For each random experiment, explain how the conditions in the
definition of the term “random experiment” are verified.

1.1.8 (a) Why is the table below not the probability distribution of a
random variable?

(b) Define a new X by letting X = 1 if a head comes up when you toss
the coin, and otherwise let X = 0. Is this new X a random variable?

(c) Give a probability distribution for X in part (b).

1.1.9 We need to develop some precise techniques for questions like
this, but based on your experience with games of chance, can you guess
the answers to these simple questions?

(a) If you roll a fair die repeatedly (n times, let’s say), how many dots
altogether would you expect to roll on average?

(b) Suppose you toss a fair coin many times, how many heads would
you expect on average?

(c) Suppose you toss a fair coin and that you’ll be given two dollars if
you toss a head and three dollars if you toss a tail. How much money
would you expect to take in on average?

(d) Now suppose you toss a coin which comes up heads 90% of the
time. If you’re given two dollars for a head and three dollars for a tail,
how much money would you expect to take in on average?

(e) Verify that your “take” in part (c) is a random variable.
(f) Intuitively speaking, why should you expect to take in less on average

for the loaded coin of part (d) than for the fair coin?

1.1.10 Here is a problem to help you understand the definition of the
term “random variable.” Look at the result of one toss of a fair coin;
if heads comes uppermost, call it H, otherwise call it T. Let X be the
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following rule which associates a number to each of the outcomes:

H—1
T—1

Is X a random variable? This looks like a simple question, but be sure
you address the question as it is put: Is X a random variable? Can you
predict in advance that X will take the value “1”?

1.1.11 Suppose you are betting with a die which comes up two, 40% of
the time and five, 20% of the time while the other faces are all equally
likely. Suppose further that you’ll be paid one dollar for each dot you
roll and that you pay four dollars to play the game. Make a probability
distribution for your gain/loss on one roll. Be sure to verify that your
gain/loss is really a random variable so that it makes sense to give a
probability distribution.

[With Problem 1.1.11, we introduce a new convention. The problem
itself has no parts, but the Level I solution does. In Level I, parts (a),
(b), (c), and (d) are introduced. The first three parts are intermediate
steps; part (d) is the answer to the question.]

1.1.12 In the very beginning of the chapter we referred to “. .. some
simple chance mechanisms—coin tosses, rolls of dice, and so on—and
abstract models for those mechanisms.”

(a) What’s the technical term for such a chance mechanism?

(b) What’s the technical term for the abstract models of those mechan-
i isms?

1.2 Parameters to Characterize a

Probability Distribution

The Expected Value or Mean of a Random Variable

In Problem 1.1.9, we asked about the number of dots to be expected
on average for one roll of a fair die, or the number of heads on one
toss of a coin. For a random variable, you would always want to know
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what value to expect in repetitions of the underlying experiment. You’re
asking for a kind of “average value” for the random variable.

Recall Problem 1.1.9(d) where you toss an unfair coin which comes
up heads 90% of the time and you’re paid $2.00 for a head and $3.00
for a tail. How much would you expect to take in per toss? If the coin
were fair, you’d expect on average $2.50 per roll. Half the time $2.00,
half the time $3.00, so you split the difference. But with the unfair coin,
you get $2.00 nine times as often as $3.00 and on average you’d expect
to take in only $2.10 per roll. To see this, you must weight the values
according to how often they occur:

2.00 x 0.9+ 3.00 x 0.1 =1.80+0.30

90% of 10% of
the time the time
X=2 X=3

And so, on average you expect to receive only $2.10, forty cents less
than for a fair coin. Here, of course, X is the amount of money you
receive on one toss of the coin—it’s a random variable which takes on
the values “two” or “three,” in units of “one dollar.”
This weighted average is called the expected value of X, denoted by
E(X). In symbols,
E(X) = S XP(X).

The expected value of a random variable is computed by adding the
values weighted by their theoretical relative frequencies of occurrence,
that is, weighted by their probabilities.

The computation can be very efficiently done by extending the proba-
bility distribution table of X to include a column for the weighted values
of X, for the products XP(X). Then the sum of that column is E(X),
the expected value:

X ( P(X) | XP(X)

2 0.9 1.8

3 0.1 0.3
1.0 2.1

so, E(X) = 2.1.

You’ll often hear the expected value referred to as the mean of the
random variable. In general, a mean is a kind of average value. There
are several types of mean as we’ll see in the next chapter. What most
people refer to as the average of a set of test scores, for example, is
technically the “arithmetic mean”—add the scores and divide by how
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many you have. Because both terms “expected value” and “mean” are
used interchangeably for random variables, we’ll also use both terms.

When we refer to the mean of a random variable, it’s customary to
use the symbol px (this is read: “mu sub X”), or simply p if X is
understood and there’s no danger of confusion. Thus, E(X) and px are
just two different symbols for the same number. If you are thinking in
terms of what you “should expect” on average, you might prefer the
term “expected value” and the symbol E(X). All this will come clear as
you . .

Some general advice: In solving problems, before doing any calculations
you should ATTEMPT TO GUESS THE ANSWER. An exact guess may be
impossible, but at least you can guess a ballpark figure. This guessing
is important for two reasons: First, it helps you to avoid errors—an
erroneous calculation may be obviously wrong from a commonsense
point of view. Second, by guessing on the basis of intuition and com-
paring your guess with the correctly calculated answer, you train your
intuition. And that, in turn, deepens your understanding.

Here’s some more advice: This is easy to do, but students often get
in trouble when they don’t to do it. Any time you’re working with a
random variable, be sure you’re clear about the possible values of that
random variable. For example, in Problem 1.2.1(b), when you toss two
coins, what are the possible number of heads?

1.2.1 Calculate the expected value, E(X), for the following random vari-
ables. Do this as we did above, by extending the table for the probability
distribution to include a column for the products XP(X).

(a) The number of dots on the uppermost face for one roll of a fair die.
(b) The number of heads on one toss of a pair of fair coins.

(c) The number of dots on the uppermost face for one roll of a die which
comes up five half the time, with the other faces equally likely.

(d) Your “take” when you toss a fair coin and you receive two dollars
for tossing a head and three dollars for a tail.

1.2.2 For the game described, if you want to break even in the long run,
what should you pay for one play (for one roll of the die or one toss of
the pair of coins)?

(a) You receive one dollar for each dot on the uppermost face for one
roll of a fair die.
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(b) You receive one dollar for each head on one toss of a pair of fair
coins.

(c) You receive one dollar for each dot on the uppermost face on one
roll of a die which comes up five half the time, with the other faces

| equally likely.

The Variance, Measuring the Accuracy of the Mean

We now come to a very important aspect of chance phenomena which is
often overlooked. Initially, we’ll consider only simple games of chance,
but remember: These ideas are relevant not only to games of chance,
but to all chance phenomena and so are really quite important!

The expected value of a random variable is far from telling the whole
story of what we “should expect.” To see why, consider a die loaded
to have the following probability distribution. This die has the same
expected value as a fair die because it’s loaded symmetrically. But the
die is far from fair even though the expected value is the same as for a
fair die!

X P(X) | XP(X)
1 0.3 0.3
2 0.1 0.2
3 0.1 0.3
4 0.1 0.4
5 0.1 0.5
6 0.3 1.8
1.0 3.5 pux =3.5.

Asyou can see, the smallest and largest of the possible values, X = 1 and
X = 6, carry most of the probability. There’s a 60% chance of getting
one of those two values: P(X = 1 or 6) = 0.6. This means there’s a high
probability of a roll with an outcome quite far from the expected value.
By contrast, on a fair die there’s roughly a 30% chance of rolling a one
or six.

This example shows very clearly how much information can be missed
by a single parameter for a mathematical model. Here, the parameter is
the expected value. Let’s define this term: a parameter is a fixed number,
such as the expected value, associated with a mathematical model. It’s
contrasted with the term “variable.” In the table above you see two
variable quantities, X and P(X), and one parameter, ux. The parameter
by definition is just a number, in this case it’s 3.5.
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The idea is to try to capture the model as far as possible in its para-
meters. We’d like to have a list of parameters that will serve as a nu-
meric summary of the model. Clearly, the expected value by itself will
not suffice. As we see in the loaded die above, the expected value misses
an important characteristic of the model for this die. It misses the fact
that the probability is “spread” to the extreme values of X. We need a
parameter to capture this characteristic of the model, the “spread” or
“dispersion” of the values from the mean.

The notion of spread or dispersion for a probability distribution is
well illustrated by the following graphs:

P(X)
L the possible
5 | | | i i i ‘gvoluesofX
the fair die:
1 2 3 45 6
f
35 =pux
P(X)
0.3 -
the possible
0.1 ' ' | i ‘SvduesofX
the loaded die:
1 23 456
3.5 =pux

We’ll discuss graphical presentations of distributions in more detail later,
but as you can see, the graph for the loaded die shows at a glance that
most of the probability for that die is concentrated at the extreme values
of X. The distribution is “dispersed” away from its expected value, 3.5.
We would like to capture this dispersion of the distribution in a numeric
measure. In other words, we need a parameter to measure “spread about
the mean” for a random variable.

The idea is to start with X — u, the deviation of X from its mean.
There’s one deviation for each possible value of X. These deviations
capture exactly what we wanted: the spread of X from the mean. But
we wanted one number not many. Here, we have many numbers, one
for each value of X. For the die, there are six deviations. One is —1.5.
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Which value of X does it arise from? What are the other deviations for
the die?

The natural thing is to combine these deviations from the mean into
one number by just averaging. That means we would take the “average
deviation from the mean” as our measure of spread. Don’t forget that
you must weight the numbers in an average according to the probability
with which each occurs. So first weight the deviations: (X — u)P(X).
Then just add these weighted deviations to obtain (X — u)P(X), the
average deviation. What is this for our weighted die? Well, this is the
right idea alright, BUT IT DOESN’T WORK! WE’LL HAVE TO DO SOME-
THING DIFFERENT. To see why it doesn’t work, please . . .

1.2.3 (a) What’s the probability of rolling a one or a six on a fair die?

(b) What’s the probability of rolling a one or a six on the loaded die
discussed in the text above?

(c) What’s the point of this problem?

1.2.4 Compute the average deviation from the mean for
(a) the fair die,

(b) the loaded die given in the text above.

1.2.5 Suppose X is any random variable at all with mean p.

(a) In constructing a parameter to measure “spread” or “dispersion”
about the mean, what’s the point of looking at the deviations from p?

(b) What does it mean if X — p is positive? Negative?

(c) Show that the average deviation from the mean for X is ZERO!

In Problem 1.2.5 you saw why the average deviation from the mean
won’t work as a measure of spread—you always get zero! The average of
the deviations tells you nothing! What went wrong? The basic idea was
right, but we inadvertently introduced a totally irrelevant consideration
which vitiated our attempt to get a meaningful parameter.

This is typical of what may happen in trying to develop a mathematical
model for real-world situations. The process of abstraction is a delicate
one. In constructing your model, you want to “abstract” from the real-
world situation everything which is relevant to your study and you want
to omit everything irrelevant. But if you leave out too much detail, the
model will be simplistic. If you include too much detail, your model will
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be too complex. You want to forget only what is IRRELEVANT to your
question and keep what is relevant.

By looking at the average deviation from the mean, we’ve carried
into the model an irrelevant consideration which, instead of making the
model more complex, has introduced a trivialization: The number we
thought would be a meaningful measure of dispersion about the mean
turns out to be zero. What was the irrelevant consideration? It’s just
this: When we take the deviations X — p, we capture the idea of spread
about the mean, but we also include the direction of spread. If a deviation
X — p is positive, that value of X is bigger than p, and if the deviation is
negative, that value of X is smaller than u. We want to know only How
FAR a value is from the mean. Whether it’s above or below the mean is
irrelevant to how far from the mean it may be.

There’s more than one way to solve this problem. One NOT very
common approach is to eliminate the irrelevant positive/negative con-
sideration by taking absolute values. Then average the absolute values
of the deviations. If you do that, you get the mean absolute deviation
from p: X|X — p|P(X).

However, the most common procedure is to square the deviations
to remove the irrelevant positive/negative consideration. Instead of the
average of the deviations, we take the average of the squared deviations
from p. This parameter is called the variance of the random variable
X and is denoted by . As with px, the subscript can be dropped if
the context makes it clear which random variable you’re talking about.
Here’s the formula

ok = S(X — p)?P(X).

To calculate the variance of a random variable X, you extend the proba-
bility distribution table for X by putting in one more column, a column
containing the weighted squared deviations from the mean, the products
(X — p)?P(X). Let’s compute the variance for the loaded die we were
discussing above:

X | PX) | XP(X) | (X - p?P(X)
1 0.3 0.3 1.875
2 0.1 0.2 0.225
3 0.1 0.3 0.025
4 0.1 0.4 0.025
5 0.1 0.5 0.225
6 0.3 1.8 1.875

1.0 3.5 4.250
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so, 02 = 4.25. As you see, this gives a variance of 4.25. When you
compute the variance for the fair die, you’ll find that it’s 2.9167, reflect-
ing the fact that the fair die is less spread about its mean than is the
loaded die.

You may be wondering how we can justify squaring the deviations.
After all, that significantly changes their values. True, but the variance is
used only in a comparative way to see that one distribution is more dis-
persed or less dispersed about its mean than another one. Because we’ll
always use the same procedure—squaring the deviations—it’s valid for
comparative purposes.

So the variance by itself means nothing. We can’t ask, for example,
what it means intuitively for the fair die to have a variance of 2.9167!
We cAN ask what it means that our loaded die has a variance bigger
than that of the fair die. The larger variance for the loaded die means
the distribution is more spread from its mean.

What does this mean in a practical sense? Simply this: The mean is the
number of dots you expect on average. The loaded die is further from
that, on average, than the fair die. To say it another way, because you
would use p to predict what “ought to happen,” the loaded die is more
unpredictable than the fair die. This unpredictability is reflected in the
larger variance.

Finally, we need one more term: The standard deviation, denoted
by o, is the square root of the variance. For the fair die, the variance
is 2.9167 and so the standard deviation is ¢ = 1.7078. The standard
deviation is not a different parameter; it measures exactly the same thing
as the variance: spread, or dispersion about the mean. And it does it in
exactly the same way as the variance. Given one of these two numbers,
you can immediately calculate the other; so you learn nothing new.

Then why have two numbers at all? Purely for convenience. Square
roots are algebraically a nuisance, and so, in computations, the variance
is easier to work with. On the other hand, the units of the variance
are squared. Therefore, in your final answer or in real-world discussions
where the units may be mentioned, the standard deviation is better. After
all, you don’t usually talk about “squared dollars” or “squared cities”!
For the fair die, you’d probably not feel completely comfortable talking
about a variance of about three “squared dots™!

Well, now please . . .

1.2.6 In the text above we saw a loaded die that’s less predictable than
a fair die.

(a) Is it true that any loaded die will be less predictable than a fair die?
Explain.
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(b) Sketch a graph to illustrate part (a).

1.2.7 What about the unfair coin we looked at earlier which comes up
heads 90% of the time? Compare it with a fair coin.

(a) Is the number of heads on the unfair coin more dispersed about its
mean than on a fair coin, or less so? As always, first try to guess. Then
compute the variance. Does this computed value confirm your guess?

(b) Draw and compare the graphs of the probability distributions for
the number of heads on one toss of the fair coin and then of the unfair
coin. Be sure to label the means.

(c) What’s the standard deviation for each case in part (b)?

(d) Now let’s be more general. Suppose we don’t know the probability
of heads on our coin. Denote that unknown probability by the symbol p.
Let X be the number of heads for one toss of this coin. Derive a formula
for the variance of X.

1.2.8 (a) Compute the variance for the random variables in Problem
1.1.5(a) and (b) and in Problem 1.1.6. Be sure to set up the complete
probability distribution table.

(b) Compute the three mean absolute deviations for part (a).

(c) Compute the three standard deviations for part (a).

1.2.9 What are the mean and variance of a constant random variable?
Be sure you first guess, then verify your guess with the formulas.

1.2.10 The variance may seem a bit abstract compared with the ex-
pected value. What’s the PRACTICAL meaning of the variance? What
does it mean in practical terms to say that a loaded die has a larger
variance than a fair die, or that an unfair coin has a smaller variance
than a fair coin?

The answer to this question may not be clear to you, but TRy ANYwWAY!
Think about the examples described in the text: What it would mean to
you in practical terms that the loaded die has a probability distribution
more dispersed about its mean than a fair die or that the unfair coin has
a probability distribution less dispersed than that of a fair coin?

1.2.11 What’s the difference between the variance and the standard
deviation for a random variable?

1.2.12 We describe below three different dice, any one of which might
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be used for the following game: You’ll be paid one dollar for each dot
on the uppermost face after you roll the die. To roll the die once, you
pay exactly your expected receipts, so that your expected gain/loss is
zero. Here are the dice:
e all faces are equally likely;
¢ two dots come up 50% of the time and the other faces are equally
likely;
e two dots come up 40% of the time, five dots 20% of the time,
and the other faces are equally likely.
(a) Compare the predictability of your gain/loss for each of the three
dice.

(b) In part (a), if the player breaks even in the long run, the gambling
house won’t be a profitable business! Suppose the house wants to make
an average profit of 50 cents per play; what should they charge to play?

l (c) In part (b), verify that the gain/loss is, indeed, a random variable.

1.3 Linear Functions of a Random Variable

It’s very common to have a random variable determined through an
equation involving another one which arises in a natural way from physi-
cal or real-world considerations. For example, the proportion of persons
in a survey, all of whom share a common characteristic—who belong to
a common ethnic group, for instance—is determined by the equation

b= (1/n)X.

Here, p (it’s called “p hat”) is the standard notation for such a propor-
tion and n represents the number of persons surveyed. X counts how
many persons in the survey had the characteristic of interest.

To give another example, monetary amounts are often determined
through an equation involving a random variable which describes some
physical situation. To see in a very simple instance how this could occur,
suppose you’re betting on one roll of a die and you receive three dollars
for each dot on the uppermost face. Then T, your “total receipts,” is
T = 3X, with X counting the number of dots on the uppermost face of
the die. Note how X is determined physically and T is derived from that.
Suppose you pay eight dollars per roll to play this game. Then Y, your
total gain/loss, is given by the equation: Y = 3X — 8. So, for example,
with one dot, you lose five dollars and with six dots you gain ten dollars.
Would you play this game?
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In a great variety of transactions like this one, your net result Y’ comes
through a linear equation from a physically determined random variable
X. A linear equation is an equation in which all variables appear added
together with coefficients, but without any powers, square roots, and so
on. For a linear equation, the standard notation is

Y =a+bX a, b constants,

in the example
Y =-8+43X a=—-8,b=3.

Because linear functions play such an important role in statistics, we’ll
take a moment right now to see how they work. These fundamental
equations will come up again and again in our work:

Fundamental equations for linearly related random variables:

IfY =a+bX, a,bconstants then

py =a+bux,
02 = blo%

To help you understand all this, please . . .

1.3.1 Think about the notation given in the text above for survey pro-
portions. Show how that notation works: Suppose you surveyed 150
randomly chosen persons of whom 72% were Hispanic. Put those num-

bers into the equation
h=(1/n)X.

1.3.2 You’re paid one dollar for each dot on the top face of a die after
one roll. To play—to roll the die once—you pay an amount equal to
your expected receipts. Let X be the number of dots on the top face of
the die after one roll and let G be the gain/loss random variable.

(a) Show that G is a linear function of X. That is, show that for some
constants a and b, G = a + bX. Be sure you identify a and b clearly.

(b) Show that the variance of the gain/loss random variable is the same
as the variance of X.

(c) Explain the result of part (b) on intuitive grounds.

(d) Now let’s change the game and make it more realistic. Suppose
the gambling house is making a profit of 50 cents per roll on average.
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Express this new gain/loss random variable as a linear function of X
and give its mean and the variance in terms of X.

1.3.3 Derive the “fundamental equations” for linear functions given in
the text above. In other words, for any Y having the form a + X, show
that

(a) py = a+bux.

(b) 0'%, = bza%(.

1.3.4 Based on data for the years 1919 to 1935, H.G. Wilm wanted to
set up a model to predict April to July water yield (WY) in the Snake
River watershed in Wyoming from the water content of snow (SC) on
April 1. We’ll study Wilm’s data in Chapter 7. His data leads to some
linear relationships. One analysis of the data suggests WY = 0.7254 +
0.4981 SC, measured in inches.

(a) The model gives WY as a linear function of SC. What are a and b
for that model?

(b) Assuming the model, what was the average April to July water yield
in the Snake River watershed over a ten-year period in which the water
content of snow averaged 22.3 inches?

(c) What is the real-world meaning of a for the model?

(d) A more careful analysis of Wilm’s data gives the model WY= 0.52
SC. Which model suggests more variability in April to July water yield?

(e) Why is the model in part (d) better than the original model?

1.3.5 Would you play the game described in the text where you receive
three dollars for each dot on the uppermost face of the die after one
roll and where you pay eight dollars per roll to play? Think about this
carefully.

(a) Would you expect to win or lose in the long run? Would you play
the game?

(b) Suppose on this die the face with one dot comes up half the time
and all the other faces are equally likely. How risky is the game?

(c) In part (b), because half the probability for the die is concentrated
on the single value “one dot,” this game should be LEss risky than the
same game with the fair die. But we showed that it’s MORE risky! What’s
wrong?
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1.4 The Fundamentals of Probability Theory

We’ve been using the intuitive notion of probability as captured in the
idea of “long run relative frequency.” A coin is fair if, “in the long
run,” heads should show uppermost half the time. This is justified if we
think the coin is symmetric. Of course, no physical object is perfectly
symmetrical, and for that reason, no physical coin is exactly fair. In
fact, a physical coin does not even pretend to be symmetrical. The face
is shaped differently from the tail. But such physical complications are
beside the point! We know what we mean by fair and most coins, if they
have not been damaged in some way, will be at least approximately fair.

In the previous paragraph, we’ve described two practically related
but logically distinct ideas of probability: probability as “long-run rela-
tive frequency” and probability as determined by symmetry. There are
other notions of probability. There is probability as “degree of rational
belief,” the degree of belief a rational person would invest in a given
statement. For example, if storm clouds are gathering on the horizon, a
rational person would invest little enthusiasm in a proposal for a picnic.
Probability has also been thought of as a kind of continuous truth func-
tion, where every statement has a certain probabililty to be true. With
perfect information, the probability is either zero or one, otherwise it’s
somewhere in between. In short, probability has been described in many
diverse ways. Philosophically, it’s a very thorny problem. Fortunately,
this is not a philosophy course! Fortunately also, the development of
statistics in an introductory course requires nothing of all this philo-
sophical complexity.

Three Basic Rules of Probability

All definitions of probability agree on three rules which probabilities
ought to obey. It’s those rules which we need to know. To state the
rules, we will think of probability in terms of “events.” We’ve used this
term before, but without giving a precise definition. An event is a set
of possible outcomes of some random experiment. For example, think
about event A, defined as “a number greater than two on one roll of a
die.” Here, A is the set of all outcomes for which a face with three or
more dots comes uppermost. If the die is fair, then P(4) = 4/6 = 2/3.
The probability rules are

1. P(not A) = 1 — P(A),
2. P(A or B) = P(A) + P(B) — P(A and B),
3. P(A and B) = P(A|B)P(B).
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In the third rule, you see the conditional probability of A given B,
denoted by the symbol P(A|B). This is the probability that event A oc-
curs, given that you know event B has already occurred. So the given
condition B represents INFORMATION relevant to A. Because you now
have more information, the conditional probability is often easier to un-
derstand than the unconditional probability. Note, by the way, because
you know B has occurred, you also know that P(B) is NOT zero! You
cannot “condition” on an impossible event.

For example, suppose you draw two cards from a well-shuffled deck
of 52 playing cards. Let H; be the event the second card is a heart. Then
P(H;) = 1/4. But that’s not obvious! When you go for the second card,
there are only 51 cards left and everything seems to depend on what the
first card was. You can’t calculate P(H;) because you don’t know how
many of the 51 cards are hearts. On the other hand, for event H; that the
FIRST card is a heart, everything is obvious: P(H;) = 13/52 = 1/4 and
P(H,|Hy) = 12/51. This last calculation, the conditional probability, is
easy: You know the first card was a heart. When you go for the second
card, there are 51 cards with 12 hearts left, giving a probability of 12/51.

From this, together with our three probability rules, we can calculate
P(H,). First analyze H, into two separate events:

case I: H, and Hy,
case II: H, and “not Hy.”

Note that H) is the event “case I or case II”: Either both cards are
hearts (case I) or only the second card is a heart, the first is not (case II).
The event “not H1” is called the complement of H,, denoted by the
symbol H{. By Rule 3 we get

P(case I) = P(H, and Hy) = P(H,|H1)P(H;) = (12/51) x (13/52),
P(case IT) = P(H, and HE) = P(Hy|HE)P(HE) = (13/51) x (39/52).

Now compute P(H>). The trick here is that events “case I” and “case II”
are mutually exclusive; they cannot occur together. In terms of proba-
bility, to say A and B are mutually exclusive simply means their joint
probability is 0: P(A and B) = 0. So for us, P(I and IT)= 0, and we get

P(H;) = P(case I or case II)
= P(case I) + P(case II) by Rule 2
=12/51 x 13/52+13/51 x 39/52  shown above
=12/51x1/44+1/51 x 39/4 cancelling 13 into 52
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Bayes’ Theorem

= [(12/51) + (39/51)] x (1/4)
—1x (1/4)
= 1/4.

After all this, you may be surprised to see that P(H,) = P(Hj)! It’s
an instance of a curious phenomenon in probability that allows you to
“average across your ignorance”! That’s possible if your “ignorance”
can be broken down into several cases with known probability. So you’re
not completely ignorant. You don’t know which case holds, but you do
know the probability of each case. In our example, when we ask about
the second card drawn with no information about the first card, the first
card is your “ignoranace.” First split H, into two cases according to
your ignorance. That’s (H, and Hi) and (H, and HY). Then average,
taking a WEIGHTED average, weighted according to your ignorance

P(H,) = P(case I) + P(case II)

= P(H,|H1)P(H1) + P(H|HY)P(HT).
T T

weights, according to
your ignorance

Finally, sometimes the conditional probability simplifies. Suppose
knowing that B has occurred does not affect the probability of A at
all. In that case, P(A|B) = P(A) and we say that A and B are inde-
pendent events. Note that on the draw of one card from a deck of 52,
the event “ace” is independent of the event “club” because P(ace) is
4/52 = 1/13 and so is P(ace|club). Because P(ace|club)=P(ace), the two
events are independent.

A very important equation in probability theory is derived from our
third probability rule. It’s called Bayes’ Theorem and is the beginning
of “Bayesian Statistics,” an entirely distinct and somewhat controversial
approach to statistics. Thomas Bayes (d. 1761) was, in Stigler’s words,
“...a minor figure in the history of science whose published works
show a spark of intelligence few of his contemporaries possessed.” The
theorem was not published until 1764, after Bayes’ death, and did not
receive any general recognition until about twenty years later. It’s amaz-
ing that such a—to our present eyes—seemingly simple theorem could
have had such a controversial history; not controversy about the theo-
rem itself, but rather about the uses which have been made of it. That
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story goes far beyond the topic at hand into fascinating philosophical
waters. We’ll leave it to your investigation. But don’t worry, in this text
we’ll keep away from any controversial uses! Recently, there has been a
rebirth of Bayesian statistics with significant progress in understanding
its proper use. It’s becoming an important tool, for example, in business
decision making. Here’s the theorem

Bayes’ Theorem:

P(B|A)P(A)

PAIB) = =5

Note that Bayes’ Theorem allows you to determine the conditional
probability in the reverse order. For example, there’s about a 24%
chance on two draws from a deck of cards that the first card is a heart
given that the second one is. The probability makes sense, but it can’t be
calculated directly from our rules. Try thinking about the second card
as “affecting” the first draw! It’s Bayes’ Theorem that saves the day:

P(H,|H1)P(Hq) _ (12/51) x (1/4) 12
P(H) (1/4) ST

P(H1|Hy) =

Of course, it’s very special to this example that P(H;) = P(H;) so that
they just cancel out. As you’ll see in the exercises, it’s not usually true
that P(A|B) = P(B|A).

Well, let’s pause for a moment while you . . .

1.4.1 (a) What is P(ace|club) on one draw of a card from a well-shuffled
deck of 52 playing cards? Do this from the definition of conditional
probability.

(b) Now do part (a) using some of our three probability rules. Let A be
the event that you draw an ace and C that you draw a club.

(c) How many outcomes are there for the event A of part (b)? For the
event C?

(d) Give an example of two independent events. Verify your answer!

(e) Show that for independence, order does not matter. In other words,
show that if A is independent of B, then B is independent of A.
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(f) Show that the simple product rule P(4 and B) = P(A)P(B) is equiv-
alent to independence.

(g) Does P(A|B) = P(B|A) imply that A and B are independent?
(h) Show that P(A|B) = P(B|A) is equivalent to P(4) = P(B).

1.4.2 Before now we were using simple addition and multiplication
rules for probabilities: “Or” means add. “And” means multiply. Of
course, we warned you that these rules don’t hold in complete generality.
Let’s explore these rules a bit. In what follows, let X be the number of
dots on the top face of a fair die:

(a) Under what conditions do these simple rules hold?

(b) Which simple rule calculates P(2 < X < 5)? Explain.

1.4.3 On one draw of a card from a well-shuffled deck of 52 playing
cards, what’s the probability that you do NOT draw an eight? Do this

(a) directly, by just counting,

(b) using one of our three probability rules.

1.4.4 Let D be the event a person has a certain disease. Let T' be the
event that a test for the disease is positive, indicating the person tested
has the disease. Suppose studies of the test itself indicate that 99% of
persons having the disease will test positive: P(T'| D) = 0.99. This is the
“sensitivity” of the test. In addition, suppose at the same time, that 98 %
of unafflicted persons will test negative: P(T¢|D¢) = 0.98. This is the
“specificity” of the test. Finally, suppose this disease occurs in only 3
persons in 100, P(D) = 0.03.

(a) What proportion of all persons tested would test positive?

(b) If you test postive, what are the chances you actually have the dis-
ease? This is the “predictive value of the test.”

(c) What happens to the predictive value of the test as the disease be-
comes less common? Suppose, for example, P(D) = 0.003.

(d) In 1987, a bill was introduced in the Senate of New York State
stipulating that any screening test must “have a degree of accuracy of
at least 95%” and “positive test results must then be confirmed by an
independent test, using a fundamentally different method and having a
degree of accuracy of 98%.” Assume “accuracy” refers to both sensitiv-
ity and specificity. What would be the predictive value of the combined
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test, where a positive reading on the first test is confirmed on the second
test? Assume P(D) = 0.003. (after [Finkelstein and Levin]).

(e) Show that the test and the disease are not independent. Of course
that must be true, but can you show it analytically?

1.4.5 In 1980, after a series of airline hijackings in which the hijacker
had passed through a magnetometer undetected with a plastic weapon,
the federal government reinstituted a screening program that had been
discontinued in 1973. The program attempted to identify potential air-
line highjackers on the basis of a behavioral “hijacker profile.” One issue
debated in the courts is whether such a profile gives “reasonable suspi-
cion” to justify investigative detention. Does it? Let’s look at an earlier
case.

In a 1971 case (United States v. Lopez), the defendant was identified as
fitting the hijacker profile and was subsequently arrested for possesion of
heroin (no weapon, apparently). Lopez moved to suppress the evidence
taken from his person. The court’s decision reviewed a study of 500,000
passengers, 20 of whom were actually denied boarding.

Did the fact that Lopez fit the profile give “reasonable suspicion” to
justify investigative detention? Suppose the sensitivity of the profile (see
Problem 1.4.4) is actually 90% and the specificity 99.95%. Further,
suppose we take the results of the court’s study as valid in general.
In other words, suppose 20 of any 500,000 passengers are carrying a
weapon (after [Finkelstein and Levin]).

1.4.6 According to recent studies, lie detector tests have a sensitivity of
0.88 and a specificity of 0.86. How accurate is the test (after [Finkelstein
and Levin])?

(a) Suppose one-fourth of all suspects will in fact lie.
(b) Suppose three-fourths of all suspects will in fact lie.

(c) What do parts (a) and (b) say about the predictive value of a screen-
ing test?

Random Experiments with Equally Likely Outcomes

To get some insight into our three probability rules, it’s very helpful
to take a careful look at a very special case: Distributions arising from
experiments with equally likely outcomes. In that case, the probability
of any event can be calculated just by counting. That was our procedure
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for analyzing the draw of a card from a deck of 52 playing cards. In
fact, we’ve often drawn on our intuitive understanding of this principle
of probability. Now we’ll make it precise. Let’s describe an outcome
for the “draw one card” experiment as simply “one card.” If the deck
is well shuffled, each card is as likely to be drawn as any other and so
the outcomes are “equally likely.” Thus P(ace) = 4/52 because there are
four aces among the 52 equally likely cards.

Suppose A is any event involving a random variable X for an ex-
periment with equally likely outcomes. Recall that an event is a set of
possible outcomes. Suppose there are N outcomes altogether and a of
them comprise the event A, then P(A) = a/N. Now you can see where
our first probability rule comes from: ‘

P(not A) = (N —a)/N = N/N —a/N =1-a/N
=1-P(A4).

Note how this works for our “draw one card” example:
P(not ace) = (52 — 4)/52 = 52/52 — 4/52 = 1 — P(ace)

The set of all possible outcomes of a random experiment is called the
sample space of the experiment. We’ll use the following notation: N is
the number of all possible outcomes and #A4 is the number of outcomes
which comprise an event A. Following normal usage in the English lan-
guage, we say an event A “occurs” if we perform the experiment once
and observe one of the outcomes comprising A. Otherwise, if we do the
experiment and observe an outcome not among those comprising A, we
say A did NOT occur.

Now for our second probability rule: Think how many outcomes
comprise the event “A or B.” In other words, what is #(A or B)? An
outcome is part of this event if it’s among the outcomes comprising A
(A occurs) or if it’s among those of B (“or” B occurs). So you might say,
“Oh, it’s easy, #(A or B) is just #A4 + #B.” Sorry, you fell into a trap!
What about those outcomes which make up the event “A and B”? You
counted them twice! Think of the event “ace or club.” There are four
aces and 13 clubs, but “ace or club” consists of 16 cardsnot4+13 = 17.
It consists of 13 clubs (including one ace) and the three (not four) other
aces. So #(A or B) is 16, not 17.

In general, to get #(A or B), count the number of outcomes in A,
the number in B, and then SUBTRACT ouT the ones which were double
counted, namely, the ones in “A and B”:

#(Aor B) =#A + #B — #(A and B).
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That, in essence, is our second probability rule. Just divide by N,

P(AorB):ﬂij‘\’;—@
_ #A+#B — #(Aand B)
= N
_ﬂ+#_B_#(AandB)
"N TN N

— P(A) + P(B) — P(A and B).

The third probability rule is obtained from P(A|B). With P(A|B), we
know that B occurred. So the total number of possible outcomes has
been reduced to #B. Given that, what’s the probability A occurred?
Well, of course, we only think about those outcomes in A which are
also in B because we know B occurred:

#(A and B)

P(A|B) = =—=

The rest is pure algebra. On the right-hand side, divide the numerator
and denominator by N:

#(A and B)/N
#B/N

_ P(Aand B)

~ T P(B)

P(A|B) =

Now multiply both sides by P(B) to get: P(A|B)P(B) = P(A and B).
This is nothing but our third probability rule!

So you see that our three rules hold in the special case of “equally
likely outcomes.” It’s not so easy to prove that they hold in general,
but they do. We’ll ask you to believe that! Before we introduce more
exercises, we’d like to tell you about a very surprising theorem.

We’ve said the standard deviation of a random variable is useful only as a
comparative measure of spread, useful to compare the dispersion about
the mean of one distribution with another. That statement cannot be
maintained as unequivocally true. For instance, the standard deviation
guarantees a minimum amount of spread in the sense that it’s impossi-
ble for all the values of the random variable to fall strictly within one
standard deviation of the mean.
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For example, in a betting situation, if you have an expected loss of
one dollar (x = —1) and a standard deviation for your gain/loss of two
dollars, then to be “within one standard deviation of the mean” is to
lose at most three dollars (x — ¢ = —3) and not more than one dollar
(n + o). But it’s impossible your net gain/loss would stay within that
range 100% of the time. It’s impossible, in other words, that your net
on any “go” of the game would always be within a loss of three dollars
and a gain of one dollar. So knowing the standard deviation does, in
fact, tell us a little something.

Chebyshev’s Theorem helps the standard deviation to tell us a little
more. It limits the chances for the values of the random variable to be
more than k standard deviations from the mean:

Chebyshev’s Theorem:

For any random variable X and positive integer k
P(IX — | > ko) < 1/k
or equivalently,

P(X — | < ko) > 1—1/K

Well, now please . . .

1.4.7 Show that the condition in Chebyshev’s Theorem, |X — u| < ko,
can be described verbally as “X is within k standard deviations of y.”
Note how we use the phrase “within”—when we mean | X — u| < ko,
we’ll say “STRICTLY within.”

1.4.8 Chebyshev’s Theorem is remarkable—we called it “surprising”
earlier—because you do not have to know anything about the random
variable. For any random variable at all:

(a) What’s the probability of being within two standard deviations of
the mean?

(b) What’s the probability of being more than one and a half standard
deviations away from the mean?

1.4.9 Suppose X counts the number of dots on the uppermost face of
a fair die.
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(a) What’s the probability of being within two standard deviations of
the mean?

(b) What’s the probability of being more than one and a half standard
deviations away from the mean?

1.4.10 Suppose X counts the number of dots on the uppermost face of
a die for which the face with two dots comes uppermost half the time
with all other faces equally likely.

(a) What’s the probability of being within two standard deviations of
the mean?

(b) What’s the probability of being more than 1.1 standard deviations
away from the mean?

(c) What does Chebyshev say about part (b)?
1.4.11 (a) Show that it’s impossible for a random variable to have all
its values strictly within one standard deviation of the mean.

(b) Show that if X counts the number of heads on one toss of a fair
coin, then all the values of X are within one standard deviation of the
mean.

(c) Why does Chebyshev’s Theorem not apply to parts (a) and (b)?

1.4.12 Give an example of a random experiment for which the out-

‘ comes are NOT equally likely.

1.5 Some Review Exercises

1.5.1 (a) If a random variable is constant, what justifies the word “ran-
dom™?

(b) Suppose X is any random variable whatsoever. Give a verbal de-
scription of XX, ¥P(X), LXP(X), (X — u)P(X), |X — pl.

1.5.2 Suppose you toss a thumbtack over a table and, after it comes to
rest on the top of the table, you assign U if the point of the tack points
up and you assign D if it points down.

(a) Show that we have a random experiment here.
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(b) Compute the mean and variance of

X |U|D
P(X)| 0.3 | 0.7

(c) Suppose you receive 40 dollars for tossing the tack so that the point
comes up and you lose 20 dollars if the point is down. Let X = 1 if
the tack falls with the point up and let X = 0 otherwise. Write your
gain/loss random variable as a function of X. Then compute the mean
and variance of X and use that information to compute the mean and
standard deviation of your gain/loss in this game.

(d) In part (c), you save a lot of work if you use the result of Problem
1.2.7(d). Show how.

(e) Would you play this game?

(f) Suppose you receive five dollars when the tack falls with the point
up and lose five dollars otherwise. Which game would you prefer, this
one or the one in part (c)?

1.5.3 The Scottish physicist James D. Forbes thought mountain climbers
could avoid carrying the clumsy barometers of that day if they could
determine altitude from the boiling point of water. He published data
in 1857 which suggested the following model relating the boiling point
(BP, degrees Fahrenheit) of water to barometric pressure (Pr, inches of
mercury): Pr = 0.5229 BP — 81.0637. We’ll consider Forbes’ data in
more detail in Chapter 7.

(a) Describe this model.

(b) Suppose atmospheric pressure at a particular altitude over a period
of three months as measured by a barometer averaged 26.7 inches of
mercury. What does the model suggest as the average boiling point of
water during that period of time?

(c) In part (b), would the boiling point of water be more or less variable
than barometric pressure?

(d) The question in part (c) does not reflect an absolute characteristic
of Pr and BP. It depends on the units of measurement. Explain.

1.5.4 (a) What are the two essential ingredients of any probability dis-
tribution?

(b) Name three modes of presentation for a probability distribution.
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1.5.5 Consider the following probability distribution

X P(X)
7 0.05
11 0.42
14 0.35
17 0.11
21 0.07

1.00

(a) Complete the table with appropriate columns to compute the aver-
age of the deviations from the mean. Remember, it must turn out to be
zero!

(b) Now set up a new table with appropriate columns to compute the
mean and variance.

(c) What proportion of this distribution falls within one standard devi-
ation of the mean? Think what “within” means: “Within one block of
my house” means “one block in either direction.”

(d) Make up a new random variable Y that’s like X but has a smaller
variance. By “like X” we mean Y has the same values and the same mean
as X. Choose probabilities for Y so that o3, is less than five. uy need
not be exactly the same as px, but it should be close. Don’t make any
of the probabilities zero, that would amount to changing the possible
values.

(e) What proportion of this distribution falls within one and a half
standard deviations of the mean?

(f) This random variable is abstract in a very specific sense: Why do we

say it’s “abstract”? The word “abstract” is used here in the sense of “to
abstract away from real-world complexities.”

1.5.6 You are throwing darts at a dart board having a “bull’s eye”
within two concentric rings. The bull’s eye is red, the innermost ring is
blue, and the outer ring is white. The game is scored as follows: bull’s
eye ten points, blue ring five points, white ring three points. Further,
there’s a penalty of two points if the dart misses the dart board entirely.

(a) Show that “score” is a random variable.

(b) Set up an appropriate probability distribution and use it to compute
the expected score and a measure of the predictability of the score.
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(c) How would you measure an individual player’s skill at this game?

(d) How would you measure an individual player’s reliability at this
game?

(e) If you want to compute the measures discussed in the previous two
parts, what further information would you require?

(f) How many random variables are implicit in this game?

(g) Setup a probability distribution for your game and use it to compute
your expected score and a measure of the predictability of your score.
Assume you hit the bull’s eye on average 65% of the time, the blue ring
23% of the time, the white ring 11% of the time, and that you miss the
board 1% of the time.

(h) Now let’s think about your opponent. We don’t know her game.
Make up probabilities for her game. Choose the probabilities so that
her expected score is less than yours, but still her game is more exact.
Make her “exactness” better by at least one point. Verify this.

(i) Who is more likely to be within one and a half standard deviations
of their expected score, you or your opponent?

(j) Who is more likely to be within two standard deviations of their
expected score, you or your opponent?

1.5.7 For a random variable X, suppose P(X = 3) = 0.07, what’s the
numeric value of ¥ x+3P(X)?

1.5.8 Let X be the number of dots on the uppermost face of a die which
shows four dots uppermost half the time with all other faces equally
likely. Let Y be the number of dots on the hidden face of that die (the
face on which the die comes to rest). Opposite faces of a die have seven
dots total—did you know that?

(a) What’s the random experiment for Y'? Compare it with the experi-
ment for X.

(b) Give the probability distribution of Y and use it to compute the
mean and variance.

(c) What’s the relationship between X and Y?

(d) Use the relationship in part (c) to obtain the mean and variance of
X from thatof Y.
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1.5.9 Suppose one face of a die comes up half the time with all other
faces equally likely. The mean and variance will depend, of course, on
which face it is that comes up half the time. For both parts (a) and (b)
below, try to guess first on intuitive grounds, then verify your guess by
an appropriate calculation.

(a) Which face would have to come up half the time to yield the smallest
variance?

(b) The largest variance?

(c) Is “the number of dots on the uppermost face” the same random
variable for each of parts (a) and (b)? Or is it a different random variable
each time?

1.5.10 For each of the following distributions, extend the distribution
with appropriate columns and calculate the mean and standard devia-
tion. Then specify what proportion of the distribution is within 1, 1.5,
2, and 2.8 standard deviations of the mean.

(a) X P(X) (b) X P(X) (c) X P(X)
22 0.13 0.2 0.01 1.7 | 0.22

23 0.62 0.5 0.08 1.8 0.17

24 0.09 0.8 0.34 1.9 0.14

25 0.16 1.1 0.42 2.0 0.17

1.4 | 0.15 2.1 0.12

2.2 0.18

1.5.11 For the distributions in parts (b) and (c) of the previous problem,
you could avoid the decimal point nuisance if you multiply X by ten. To
see how this would work, let Y = 10X. Set up distribution tables for
the two Y’s for parts (b) and (c) and use the table to calculate the mean
and standard deviation of Y. Then use the fundamental equations for
linearly related random variables to calculate the mean and variance of
X from that of Y. Note that, of course, you get the same answer you
calculated in the previous problem.

1.5.12 It’s often possible to simplify calculations by a shift of the values
such as you did in the previous problem. This is a common use of our
“fundamental equations” for linearly related random variables. Define
Y by the equation: Y = 100X — 2,147,810, where X is given in the
table below:
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X P(X)
21,478.14 0.17
21,478.15 0.22
21,478.16 0.37
21,478.17 0.14
21,478.18 0.10

(a) Describe Y verbally in terms of X.

(b) With Y = a + bX, what are the numeric values of a and b?
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(c) Set up a distribution table for Y and use it to calculate the mean and

standard deviation of Y.

(d) Reason intuitively using parts (a) and (c) to get the mean and stan-

dard deviation of X.

(e) Write X as a linear function of Y and use that relationship to calcu-

late the mean and variance of X.






2.1

Observed Data from the Real World

Presenting Data Graphically

In Chapter 1, we concentrated on random variables, abstract models
for the real world. By contrast, in this chapter, we’ll consider observed
data—observed in the real world of course, where else could you observe
something? The contrast and interplay between real-world observations
on the one hand and theoretical constructs on the other is one of the
principal themes of this course. Before coming to the interplay of obser-
vation and theory, however, we need first to consider some of the ways
of organizing, summarizing, and presenting observed data.

Graphs and charts are probably the easiest presentations of data to
understand and for that reason they are found everywhere—in newspa-
pers, magazines, advertisements, corporate reports, and so on. Because
graphical displays have become such an important means of summa-
rizing and communicating complex data, it’s important to understand
their use and misuse. Unfortunately, misuse of graphical presentations is
not at all rare. Edward R. Tufte in his fascinating and informative book
The Visual Display of Quantitative Information discusses this problem
which he believes to arise in part from the lack of statistical experience
among illustrators who are trained exclusively in the fine arts.

A great deal has been learned by psychologists about how the human
eye perceives visual presentations of data and how the mind interprets
these displays. We’re all familiar with the optical illusions which result
from the mind’s interpretation of what is seen. For example, which of
the following is the longer line:

The process of perception and interpretation is largely subconscious
and, consequently, the unwary reader is subject to deception by clever
graphic manipulation. One of the most basic principles underlying
graphic perception is the rule that

Numeric quantities are seen and interpreted
in terms of AREA not just height.
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This principle is commonly abused in deceptive data displays:

© 1978, The Washington Post. Reprinted with permission.

Here, the 1978 dollar is worth 44% of the 1958 dollar, but it’s rep-
resented in the chart by less than 20% of the area of the 1958 dollar!
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The height and width were both reduced to about 44% of the 1958
height and width, thus reducing the area to less than 20% of the 1958
area (measure them). You see the kind of exaggeration that results from
ignoring this principle that “the eye judges by area.” Sometimes this
exaggeration is heightened by other deceptive devices. Note how the
1958 dollar at the top of the chart sits out in front of the top margin,
giving it even further visual prominence and making the other dollars by
contrast seem still smaller. Here’s another chart on which youcan. . .

2.1.1 When you look at the graph below, what initial impression do
you get? Do you think “total budget expenditures and aid to localities”

Try Your Hand

in New York State have increased significantly in “recent years” (that
is, in the two or three years before 1977)?

© 1976, The New York Times Company. Reprinted with permission.
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The examples above should suffice to indicate the importance of clear
and informative data presentations. In this chapter, we’ll learn certain of
the standard graphic and tabular methods for organizing and displaying
data. So we leave aside theoretical considerations—random variables in
particular—and concentrate our attention on observed data. First, we
need to consider the question of data collection. Where does this data
come from? Is it there, ready for your study? Or do you have the task of
collecting the data yourself? Because the data-collection process can be
very expensive and time-consuming, you may want to make use of exist-
ing data. In fact, as a practical, matter you may have no choice—funds
may simply not be available for an expensive sample survey or other
appropriate data-collection process. You may have to rely on data from
some external source. Large databases from private and public agencies
are coming more and more to be “on line” and available to anyone with
access to a personal computer and modem. The federal government col-
lects, organizes, and publishes an enormous amount of data through
the census and other processes. For example, there’s the Statistical Ab-
stract of the United States, published annually by the Department of
Commerce, and there are publications from the Department of Health,
Education and Welfare such as Vital and Health Statistics. And many
more. International organizations such as UNESCO and agencies of
other governments also publish official data.

On the other hand, existing data relevant to the questions you’re ask-
ing may not be available. Or it may not exist in a form relevant to your
questions. Then you become involved in a major project—data collec-
tion. With the term “data collection,” we’re thinking, among other pos-
sibilities, of something like an opinion poll or some other kind of sample
survey. Such a survey is an example of a statistical experiment. A statis-
tical experiment is any random experiment which generates statistical
data. A sample survey is just one example; there are others. To study the
operation of a machine, or some more complex process, you may take
a sample from a probability distribution which models the machine. To
take a very simple example, you might take ten cups from a drink ma-
chine to study the operation of the fill mechanism of the machine. If
you’re trying to evaluate the effectiveness of several different fertilizers,
youw’ll design a statistical experiment to test those “treatments” (fertiliz-
ers) under varying conditions. For instance, you may choose a number
of different plots of ground across varying soil and climatic conditions
and observe the yield of a number of different crops. These “crop yields”
are then your data.
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Try Your Hand

Note how complex the situation has become. The data will be useless
if all you do is record numbers, the crop yields

12.3, 317.4, 3.7, 0, 63.2, and so on.

Do these numbers refer to pounds, bushels, tons, . . . ? Which plot had
ZERO yield? Why? If you got no yield at all, was it because of the soil?
The climate? The fertilizer? These numbers just listed this way tell us
nothing! You must organize the observations so that relevant aspects of
the experiment are captured in your data presentation.

Furthermore, you must design the experiment carefully to make sure
the questions you want answered can be analyzed on the basis of your
data. In a sample survey, for example, if you don’t frame the question
for your respondents carefully, you’ll have the right answer to the wrong
question and the resulting data will be useless. Or worse, the data may
seem quite clear in its implications and yet be WRONG!

Another problem is the failure to control for variables which might
be confounded with the effect you want to study. This problem arises
if your “effect” is not constant for some extraneous variable—if the
groups or categories you’re looking at are not homogeneous with regard
to that “effect.” When not controlled for, such a variable is said to be
confounded with the effect under study. That means you can’t separate
out your effect from the effect of that other variable. Problems 2.1.2 and
2.1.3 provide a couple of simple but rather startling cases.

2.1.2 You are considering two treatments for a disease. You observed
390 patients, 160 of whom took the first treatment while the rest took the
second treatment. Sixty of those who took the first treatment recovered,
and 65 who took the second treatment recovered. Which treatment is
better? [This is an example of Simpson’s paradox.]

2.1.3 Your company has 100 employees, 50 men and 50 women. The
average female employee earns $160,000 annually, while the average
male employee earns only $140,000. Now this seems like a good com-
pany to work for; these are not bad salaries. But then, these figures
suggest evidence of salary discrimination based on gender—men are
making less on average than women. Comment.

2.1.4 Here’s an example of how a statistical study can lead to gross
misinterpretation if the authors of the study are ignorant of, or insen-
sitive to, specific issues relevant to the study. It’s one more example to
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illustrate that numbers out of context mean nothing. Statistical results
require interpretation based on INFORMED judgment.

One widely reported and widely criticized conclusion of a 1991 fed-
erally funded study, the National Survey of Men (NSM),! claimed that
1.1% of men aged 20-39 in the United States were exclusively homo-
sexual during the prior ten years. This is in stark contrast to the 10% fig-
ure—that 10% of the general population is homosexual—current since
the Kinsey studies of the 1940s. In the NSM, respondents were asked a
wide variety of questions concerning their sexual attitudes, behaviors,
and relationships. The authors of the study claim that the “results pre-
sented here . . . can be generalized to the US population.” Furthermore,
the “privacy of the interview and the confidentiality of the information
collected were stressed, and respondents were assured of anonymity.”
To facilitate follow-up studies at a later time, respondents were asked
to provide full personal identification. In other words, for each respon-
dent, the interviewer knew the home address, business or school address,
social security number, and a reference to two persons—friends or rel-
atives—who did not live with him.

(a) Of 3224 men who responded to this question on the survey, 2.3%
reported some same-gender activity over the last ten years and 1.1%
reported exclusively same-gender activity during that time. How would
you interpret these percentages with respect to all men aged 20-39 in
the United States?

(b) Suppose, in fact, that 10% of all gay men aged 20-39 in the United
States are “out” enough to be willing to acknowledge their homosexu-
ality to a stranger who knows their home address, work address, social
security number, and so on. Based on the NSM, what percentage of U.S.
males aged 20-39 would you think are homosexual?

(c) The NSM results break down by age as follows:
age } 20-24 25-29 30-34 35-39
p | 23% 12% 04% 0.7%

where p is the percentage who reported exclusively same-gender activity
during the prior ten years. What do you make of these percentages?

(d) Of all men contacted for the NSM, 30% refused to participate. This

! The results of this study together with an account of the methodology is contained
in five articles in the journal Family Planning Perspectives, March/April 1993. Our
quotations are from these reports. The authors of the reports are John O.G. Billy, Koray
Tanfer, William R. Grady, and Daniel H. Klepinger, all of the Battelle Human Affairs
Research Centers in Seattle, Washington.
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is the problem of “nonresponse” which plagues every statistical survey.
How do you think this degree of nonresponse affects the validity of the
findings?

(e) The nonresponse problem has been studied extensively and tech-
niques have been devised to elicit truthful answers to sensitive ques-
tions. In 1965, S.L. Warner devised the “randomized response” tech-
nique whereby the respondent gets to choose between the survey
question and a dummy question. Would you like to guess how this
works?

The examples in Problems 2.1.2 and 2.1.3 pose a serious difficulty
for any statistical study. Can you ever be sure you’ve taken ALL the
relevant variables into consideration and controlled for them? Probably
not. The best you can do is to control for those variables which in your
best judgment you’re able to identify as relevant. But there’s always the
possibility that time and further experience will turn up other variables
which you overlooked, variables which, in fact, are confounded with
the effect you’re studying. This makes a very important point:

ONE CAN NEVER RELY ON NUMBERS TAKEN OUT OF CONTEXT

Numbers alone tell you nothing! Informed judgment is absolutely
unavoidable in any statistical analysis. This goes contrary to the common
ignorance which believes that statistics is “just a lot of numbers.” It’s
impossible to say you’ve learned statistics if you haven’t UNDERSTOOD
what you’ve learned. Informed judgment, after all, can only be based on
understanding.

Students are sometimes uneasy in a first statistics course, finding they
always have to think their way through a problem. They feel something
must be wrong because they can’t “just solve” the problem. But “solv-
ing the problem without thinking” is a wrong approach to statistics.
In real-world situations, it could lead to very wrong conclusions and
expensive errors. Unfortunately, grossly misleading statistical “studies”
are sometimes published. Often, it’s not so much ignorance as an intent
to mislead that produces such a smoke screen of disinformation. But
without an understanding of fundamental principles, you’ll never see
through these smoke screens! The most fundamental goal of this course
is to lay a foundation for that kind of understanding.

So we see in this section that designing a statistical experiment to
generate data can be a major undertaking. Data collection can require
a significant degree of expertise both in statistics and in the field under
investigation. For this reason, the design and execution of a statistical
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experiment is often a team effort, involving persons with significant
collective experience in statistics and in the field under study. It’s a so-
phisticated process. Even a first course in experimental design requires
a thorough grounding in the basics of statistics, a grounding such as
you’ll get from this text.

For that reason, the process of data collection is not treated in a first
course such as ours. Throughout this course, we’ll adopt the point of
view that data appropriate to our problem is already available. When
procedures for obtaining data go unmentioned, it’s not because “Oh,
you just go and get some data—everybody knows how to do that!,”
but rather because it’s a topic too advanced for an introductory course.
There’s one exception to this rule: We will take a look at “simple random
sampling.” Still, simple random sampling, as opposed to more sophis-
ticated sampling designs, is often not practical in real-world situations.
We introduce it because it’s a basic part of more complex experimental
designs and because it provides some concrete experience with the pro-
cess of sampling. We’ll begin with simple random samples drawn from
a probability distribution.

Simple Random Samples Drawn from a Probability Distribution

If you roll a die five times, let’s say, and record the result as an or-
dered set of integers representing the number of dots on the top face
of the die after each roll, for example, (4, 1, 4, 3, 3), then you’ve
generated a simple random sample of size n = § from the probabil-
ity distribution of the random variable X, where X is the number of
dots on the uppermost face of the die after one roll. In general, sup-
pose X is any random variable whatsovever, a simple random sam-
ple of size n from the probability distribution of X is an ordered set
of n values of X obtained from n independent repetitions of the ran-
dom experiment for X. The sample is “ordered” because you record
the values of X in the order they’re generated. We used parentheses
for the sample instead of the usual set notation to indicate the set is
“ordered.”

Independence is a key assumption here and is often problematic. It
means that any repetition of the experiment should be unaffected by
previous executions. In particular, the probabilities for the distribution
should not be affected by doing the experiment. In a sense, it shouldn’t
be necessary to say this. After all, if the probabilities change, you aren’t
repeating the “same” experiment. The independence condition holds for
rolls of a die, of course, assuming you believe the die is not physically
altered by rolling. Let’s think about this kind of sampling.
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Try Your Hand

2.1.5 We’ll begin with the simplest example of all. Let X be the random
variable which counts the number of heads for one toss of a coin. Just
to be concrete, let’s suppose heads comes up 70% of the time.

(a) Verify that three tosses of this coin generate a simple random sample
from the distribution of X.

(b) Write out all the possible random samples of size n = 3 for simple
random sampling from the distribution of X.

(c) How many samples of size 30 are there?
(d) What’s the probability of a sample of size four for which ¥ X = 4?
(e) What’s the probability of a sample of size four for which XX = 2?

(f) What’s the probability of a sample of size four having an average of
“half a head” per toss? Note that one toss has either zero or one head,
but the average for several tosses can be a fraction between zero and
one.

2.1.6 Suppose you'’re rolling a die for which the face with five dots
comes up half the time and all other faces are equally likely. As usual,
X is the number of dots on the uppermost face after one roll.

(a) Show that a simple random sample from the distribution of X is
generated by 10 rolls of this die.

(b) List all the possible simple random samples of size two from the
distribution of X.

(c) How many simple random samples of size ten are there?

(d) What’s the probability of a simple random sample of size three for
which XX = 4?

(e) What’s the probability of a sample of size three where you observe
1% dots on average per roll?

2.1.7 Suppose we have an industrial process that produces an item to
specification. Let’s say it’s a machine part which is to be 2.5 cm in di-
ameter. Because no physical process can be exact, each part will be off
slightly from the exact specification. This is called “specification error.”

(a) Show that specification error is a random variable.

(b) Show that the “next five parts” to be produced generate a simple
random sample from the distribution of specification error.
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(c) What might be a practical use of the sample in part (b)?

2.1.8 Another important kind of error arises in repeated measurement
of some object or situation: the slight error that’s always present when
one makes repeated measurements. “Measurement error” is an impor-
tant phenomenon which can be modeled by statistical techniques; there
are entire books on the subject! Safeguards of radioactive material often
involve periodic (repeated) measurement to assure that no material has
been diverted, for example, to a hostile foreign power. The Bureau of
Standards in Washington makes repeated measurements of its standard
weights, measuring rods, and so on. Three different IQ tests taken on
three different occasions could be regarded as repeated measurements of
your IQ. In repeated measurement, measurement error is always present
because of limitations in the accuracy of the measuring devices and be-
cause of limitations in the accuracy of observation or reading of those
devices by the person doing the measurement.

(a) Show that measurement error is a random variable.

(b) Show that the “next five measurements” generate a simple random
sample from the distribution of measurement error.

(c) How is “specification error” different from “measurement error”?

2.1.9 Here’s another way simple random sampling from a probability
distribution arises in industrial quality control. Suppose a manufactur-
ing process turns out lots consisting of 500 silicon wafers. In addition,
suppose 3% on average of all wafers being produced are defective. We’re
concerned with the percentage defective per lot. Let X denote the ran-
dom variable of part (a).

(a) What’s the appropriate random variable X for studying this manu-
facturing process?

(b) What are the mean and variance of the random variable X?

(c) Show that a lot generates a simple random sample from the distri-
bution of X.

(d) Express the percent defective per lot in terms of X.
(e) Show that “percent defective per lot” is a random variable.
2.1.10 A disease with complex causes whose etiology is not well under-

stood can be regarded as a random mechanism and studied with the
powerful tools of statistical analysis. Suppose, let’s say, a child is judged
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Populations

to have an 8% chance of contracting the disease. Then, trying to deter-
mine whether a particular child will contract the disease is like tossing
a coin for which there’s a probability p = 0.08 of heads.

(a) What’s the appropriate random variable for studying this disease—
the random variable that’s comparable to counting the number of heads
on one toss of a coin?

(b) Suppose you’re interested in the incidence of this disease among
children in a particular neighborhood of your city. Show that the children
of that neighborhood can be thought of as a “simple random sample”
from the distribution of the random variable of part (a). -

(c) Show that the percentage of children in that particular neighborhood
who contract the disease is one value of a random variable.

(d) How might you use the “sample” in part (b)?

(e) Give a symbol involving the random variable of part (a) that ex-
presses “incidence of this disease” in that neighborhood.

Sampling from a probability distribution is just one form of simple ran-
dom sampling. Another is to draw a sample from a population. This is
familiar to you from survey sampling—opinion polls, for example, or
surveys of voters, and so on. Before we discuss sampling from popula-
tions however, we need to look first at populations themselves.

Many statistical questions are questions or conjectures about some
underlying population. Here are some examples of populations:

e registered voters in San Francisco

e a given day’s output from a production line

e the San Francisco State University student body
e scores on the SAT test given on a particular date

e airplanes which are currently under the jurisdiction of the Federal
Aviation Administration

e persons exhibiting a certain clinical symptom of glaucoma

As you can see, the term “population” does not necessarily refer to a
population of persons. We can have any kind of objects whatsoever. Of
the populations listed above, only three are populations of persons. Note
that the fourth, SAT scores, may be a numeric population, a population



50

Chapter 2 — Understanding Observed Data

of numbers where it is the values of the numbers themselves that is
of interest. That example would NOT be a numeric population if you
were only interested, say, in scores above 1100 as compared with those
below.

The exact specification of a population will depend on the question
you want to ask. It’s important that the population be precisely defined.
A population is not well defined unless it’s entirely and unambiguously
clear which objects are and which are not members of the population.
Thus, the first example is not well defined until you specify a particular
time—voters registered by 5:00 p.M. on such and such a day, for instance.
The population of registered voters, after all, changes from day to day
up to the deadline for registration. Or should we say it changes from
hour to hour, or even minute to minute? You must be very specific about
such details.

Note also that a population may be well defined even though it’s not
easily accessible or known in any detail. In the last example given above,
if the clinical symptom of glaucoma in question is clearly specified, we
have a well-defined population—those persons who exhibit that symp-
tom. Still, we may not know such details as their average age or weight
or even how many persons are in the population. In fact, these might be
exactly the questions we need to answer.

So, an exact specification of the population as determined by the
question of interest is important. In the first population listed above, for
example, you may be concerned only with registered voters for the up-
coming election who do, in fact, vote. This partitions the population of
registered voters into two categories—into a dichotomous population—
depending on whether the person finally votes or not. A dichotomous
population is a population each member of which either does or does
not have some characteristic of interest—in our example, every regis-
tered voter either will or will not vote. Or, you may be interested in
which candidate a person ultimately votes for. If so, you’re not really
interested in the population specified, but rather the subpopulation of
those registered voters who do actually vote. This population, a subpop-
ulation of the larger population of all registered voters, is dichotomous
only if there are exactly two candidates. Otherwise, this subpopulation
splits into several categories—one category for each candidate. A cate-
gory for a particular candidate would consist of those registered voters
who vote for that candidate.

In the second population above, suppose you’re interested only in
whether an item from the production line is defective. Again, you have
a dichotomous population. If you’re interested in the length of the items
or in their diameters or some other numeric quantity, then you’ll consider
it to be a NUMERIC population with no question of categories. Unless,
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Statistical Questions

of course, you’re not really interested in the numbers themselves but
only, for example, in whether an item exceeds some limit, is “too long,”
say, or “too small.” In that case, the population of numbers is again a
DICHOTOMOUS population.

The third population listed above might restrict to the subpopulation
of undergraduate, full-time, regularly enrolled students and split into
four categories depending on the student’s class standing. Or it might
be dichotomous if you’re concerned about “first year” versus “not first
year.” The fourth example is dichotomous if you are interested only in
SAT scores above 1100 versus those below. The fifth example would
become a numeric population if you’re only interested in the age of an
airplane as measured by the number of flight hours. It would become
a dichotomous population if there is some standard which each plane
may or may not meet, such as “less than a hundred hours of flight time.”

Here are some examples of the types of statistical questions concerning
populations which one might ask. We give one example for each of the
populations given in the list of the previous section:

e What proportion of registered voters will vote for our candidate
in the upcoming election?

e What’s the average life of the electronic components which we
manufacture?

® What’s the average age of the student body at SFSU?
e What proportion of our students have SAT scores above 1000?

e What’s the average age of airplanes under the jurisdiction of the
Federal Aviation Administration?

e What proportion of patients exhibiting this clinical symptom of
glaucoma will respond to treatment?

Each of these questions asks for a mean or a proportion. In other words,
the question asks for the value of a population parameter. A population
parameter is a fixed number associated with a population. This is paral-
lel to the definition of the term “parameter” from the previous chapter as
a fixed number for a mathematical model. Another class of typical ques-
tions asks for the difference in two means or two proportions: “What’s
the value of the parameter for this pair of populations?” The difference
in two population means (or proportions) is a fixed number and so it’s,
indeed, a parameter for the pair of populations.
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Note that to ask about a mean, you must have a numeric population,
you must have numbers to be “averaged up.” To ask about a propor-
tion, you must have a dichotomous population. Only then can you make
sense of the “proportion having the characteristic of interest.” Be sure
you’re clear about this distinction between means of numeric popula-
tions on the one hand and proportions for dichotomous populations on
the other—we’ll come on it again and again.

There are many other types of statistical questions one might ask con-
cerning a population. For example, how variable is the population? Here
we’ll be asking for the value of a parameter which measures variability.
Is the quality of a manufacturer’s product highly reliable, or is there a
great deal of variation in quality? If you’re considering two suppliers for
an electronic component, where the mean life of the components of each
supplier is the same, you might want to consider the variability of the
lifetimes. Suppose the components from both suppliers have an average
life of 1200 hours, but for one supplier 5% of the components burn out
too early and for the other 15%. Which supplier would you prefer? Ob-
viously the first, the “expected lifetime” (1200 hours) is the same, but
the reliability of that expected lifetime is greater for the first supplier.

Statistics becomes relevant when you can’t answer your question di-
rectly from the population. If you can afford to interview every voter or
examine every item from a production line, you’ll give an exact answer
to your question with no recourse to statistics. However, populations
are typically NOT accessible, either because of cost or for some other
practical reason. Cost certainly prevents your interviewing every regis-
tered voter in an election. On the other hand, to take only one example,
inspecting items from a production line often involves destruction of the
item, you test the life of an electronic component by burning it until it
burns out or you test the strength of a seal by putting stress on it until it
breaks. So, to inspect every item means to destroy your entire inventory.
You’ll not get a promotion for that!

In cases such as these where the population is not accessible, we at-
tempt to answer our question on the basis of a random sample of the
population. On the basis of that one sample, we’ll attempt to speak for
the entire population. The naive idea is to obtain a sample which is “rep-
resentative” so that the answer from our sample will be equally valid for
the whole population. But how do we obtain a representative sample?
And how can we be sure our sample is, in fact, representative? After
all, to be sure the sample is representative, we must already know the
population. Or at least it must be completely accessible so we caN know
it. Otherwise, how could we compare the sample with the population
to say that it’s representative? So, we seem to travel in a circle and come
right back to our starting point
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THE POPULATION IS UNKNOWN; we need to know it; we take a
sample: Is the sample representative? To answer that we need to
know the population. But THE POPULATION IS UNKNOWN!

Back to square one, the circle is complete.

Well, it’s a theory of sampling that’s required. It’s the theory of ran-
dom sampling which provides specific, very powerful techniques which
break through this vicious circle. Using these techniques, we can obtain
answers to many questions about unknown and inaccessible popula-
tions. But don’t be misled. The answers are not as simple as the ques-
tions. A major part of our course will be focused on what this theory
of random sampling says and its very important and powerful applica-
tions to concrete real-world problems. It will be interesting for you to
see how such an abstract theory meets the challenge to say something
valid about an entire population on the basis of a very much smaller
sample, especially because any sample, no matter how carefully chosen,
may fail to be representative of the parent population.

This last observation is a basic fact which is often forgotten, so let’s
highlight it now:

NO MATTER HOW YOU CHOOSE YOUR SAMPLE, IT COULD END
UP BEING QUITE ATYPICAL OF THE PARENT POPULATION.

And furthermore . . .
YOU’LL NEVER KNOW WHETHER IT’S TYPICAL OR NOT!

If this makes the situation look entirely hopeless, oop! That means
you see the problem. So you’ll genuinely appreciate the power of the
statistical theory which we develop in this text and which brings the
situation under control.

In fact, the situation is not hopeless at all, but it does require an appro-
priate tool—the theory of random sampling. In keeping with the spirit
of this text, we’ll not develop the theory in a rigorous way. Rather we’ll
see what the theory says for a typical special case—simple random sam-
pling—and then focus our attention on how the theory works in solving
real-world problems. But for now, we need to learn the terminology and
notation for samples and their populations. And we need to learn ways
of organizing, summarizing, and presenting such data. The theory we’ll
leave to a later chapter. Let’s pause for a moment while you . . .

2.1.11 Whether a particular population is “numeric” or “dichotomous”
depends on the question being asked. For each of the six statistical ques-
tions listed in the text:
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(a) Identify the underlying population as either dichotomous or nu-
meric. If the population is dichotomous, identify the “characteristic of
interest.”

(b) Make up a different statistical question which would require think-
ing of the population as of the other type. If the question in the text
required the population to be numeric, your question should require
that it be dichotomous and vice versa.

2.1.12 In the example from the text where we were considering two
potential suppliers for an electronic component, we said “suppose the
components from both suppliers have an average life of 1200, hours
but for one supplier 5% of the components burn out too early and for
the other 15%.” Explain why the criterion for “too early” cannot mean
“burns out before 1200 hours.”

Simple Random Samples Drawn from a Population

A sample of size n from a population is just a subset of the popu-
lation, a selection of some n members of the population. A random
sampling experiment is a random experiment—just as we defined that
term in the previous chapter—which produces a sample as outcome.
The sample is called a random sample because, as outcome of a random
experiment, you cannot predict in advance which sample you’ll get.
More complex sampling designs allow for variable sample sizes, but
we’ll always assume a FIXED SAMPLE SIZE on repetitions of the experi-
ment. So, n is not variable here, rather it’s a parameter for the sampling
experiment.

Let’s verify that the deal of a five-card hand from a well-shuffled
deck of 52 playing cards is, indeed, a random sampling experiment.
The “doing” for the random experiment is to take the top five cards
from the deck. Obviously, that’s repeatable (be sure you replace the
first hand you dealt and reshuffle the deck). This “doing” produces a
five-card hand as outcome. Now, a “hand” is just a subset of the entire
deck; it’s a sample of size n = 5. Because the deck is well shuffled, you
cannot predict in advance what hand you’ll get, verifying that we have a
random experiment. It’s a random experiment which produces a sample
as outcome. So, the deal is, indeed, a random sampling experiment from
the whole deck of 52 cards as population, for which the parameter n
takes on the value five. ‘

The deal of a hand from a deck of playing cards is the prototypical
example of simple random sampling from a population:
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A simple random sample from a population . . .

is a random sample selected so that whenever you select a
sample element, each member of the population available
for selection has an equal chance to be drawn next.

One can show that for simple random sampling from a population, any
two samples have the same probability of being selected. By contrast,
this is not generally true for simple random sampling from a probability
distribution.

In dealing a five-card hand, once you have taken, say, the top two
cards, there are 50 left. But if the deck is really well shuffled, all of those
50 cards have the same chance to be on top, namely, one chance in 50. In
other words, as you prepare to draw the third card for your sample, each
of the remaining cards has an equal chance to be drawn, satisfying the
definition above for a simple random sample from a population. So, as
you deal the cards one by one, you’re selecting a simple random sample.
Sampling in this manner is called sampling without replacement.

By contrast, suppose each time you deal a card you record its value,
then replace the card into the deck, shuffle the deck many times and deal
again. When you repeat this process five times, you’re still selecting a
simple random sample of five cards (verify!). But this time you’re doing
sampling with replacement: Each element of the sample is selected at
random from the full original population. Sampling with replacement is
often much more convenient than sampling without replacement. Imag-
ine you’re going to select a sample of 1000 voters. What a nuisance if
you have to select names from a list one by one, making sure you don’t
select the same name twice. After all, the chances of selecting the same
name twice are very small, so small as to be negligible. Of course, in this
case, you’d want to sample wiTH replacement. On the other hand, in
many real-world situations sampling with replacement is absurd. If you
want a sample of items from your production line to check quality, you
certainly don’t want to select the same item twice. In short, we need to
allow for both types of simple random sampling.

Any random sampling experiment—simple or not—must be deter-
mined by some random mechanism to guarantee the randomness of the
samples (the outcomes). In our card-playing example, the random mech-
anism is the shuffling of the deck. But shuffling is very artificial for most
real-world situations. How do you shuffle registered voters?

Even for a deck of cards, shuffling may be an imperfect random mech-
anism. If you do it exactly—divide the deck exactly in half and recon-
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stitute the deck card by card, alternately taking cards from each half
so the top card goes to second place—the result is not random at all.
Fifty-two such perfect shuffles returns the deck exactly to its original or-
der (surprisingly, if the top card remains on top, only eight shuffles are
required). If the deck is only approximately divided in half and recom-
bined by cards falling randomly from each half—presumably that’s how
most card players shuffle—you’ll get something like a random mix. But
not until you’ve shuffled about seven times; fewer shuffles will probably
leave you with a very nonrandom mix. These results are not obvious.
The mathematics of card shuffling, which has been examined exten-
sively by the Harvard University statistician Persi Diaconis, is not triv-
ial. Most card players are accustomed to playing with poorly shuffled
decks because they usually shuffle only a few times. This fact? resulted in
much consternation among contract bridge players when computerized
dealing was introduced (the computer “deals” from an idealized well-
shuffled deck). Experienced bridge players were sure the odd-ball hands
they got were somehow bogus and they blamed it on the computer. In
fact, it’s just that they had become accustomed to hands conditioned by
the previous game. In all of their prior experience, decks were not prop-
erly shuffled and the cards reflected the order at the end of the previous
game with cards of the same suit grouped together.

Possibly the most common random mechanism for generating sam-
ples is a random number table or its computerized equivalent, a random
number generator. A random number generator is a random experiment
for which an outcome is a number (with a fixed length, five digits long,
say, or maybe 50 digits long) where all the numbers which can be gener-
ated are equally likely to occur. The numbers in a table or from a com-
puter are technically called “pseudorandom” because they’re generated
by a deterministic rather than a random process. It’s a very fundamen-
tal problem, still the subject of active research, to say exactly what the
word “random” means and to specify a mechanism for generating truly
random numbers. It may be impossible. Then we need some reasonable
approximation. Certainly, randomness should imply the absence of any
systematic pattern. But recently, sophisticated analysis has shown that
many of the most frequently used random number generators (in fact,
pseudorandom number generators) produce sequences which contain
subtly systematic patterns.’

2 The discussion in this and the next three paragraphs is largely based on the very
interesting New York Times article “The Quest for True Randomness Finally Appears
Successful,” 19 April 1988, p. 35.

3 See the New York Times article referred to above which has interesting illustrations
and a discussion of how these patterns have been discovered. Also see Ivars Peterson’s
article “Monte Carlo Physics: A Cautionary Lesson,” Science News, December 1992.
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One of the worst ways to generate “random” numbers is to ask some-
body to write down some numbers “at random.” It won’t work, even
if you make the process abstract by asking for a random series of zeros
and ones which you could then interpret as a base two number. In a
truly random sequence of, say, 100 zeros and ones, you’re likely to find
several strings five or six digits long of all zeros (or all ones). The term
“random™ here means the sequence of digits is like a sequence of zeros
and ones from tosses of a fair coin where on each toss you record the
number (zero or one) of heads. But psychologists have found that people
rarely repeat the same digit more than four times in such sequences of
zeros and ones, not five or six times as would be required. The human
mind is built for patterns; it doesn’t like boring repetitions.

Extensive experience has shown that any element of free human choice
in situations where a random choice is required can result in important
biases, seriously compromising the results of the study. In the previous
chapter, we mentioned one instance of this, the 1970 draft lottery [see
Problem 1.1.7(c), Level IT]. There are numerous others. In the 1940 draft
lottery, instead of the 366 capsules with birthdays as in the 1970 lottery,
they had 9000 numbers in capsules which they attempted to stir into
a random mix in a “fish bowl.” It was chaos. In the 1948 presidential
election, three major polls, Gallup, Roper for Fortune magazine, and
Crossley for the Hearst newspaper group, predicted Thomas Dewey to
be the winner over Harry Truman. They all were wrong by a significant
margin. All of these polls used a sampling design called “quota sam-
pling” which leaves a margin of choice for the interviewers. In quota
sampling, one determines the proportion of the population having var-
ious characteristics of importance to the question under study and then
chooses a sample having those characteristics in the same proportion as
the population. But the method of choice leaves room for human judg-
ment; it’s not random! For demographic and sociological reasons, this
led to a bias in favor of Republican voters. For a very interesting and
informative elementary account of the 1948 election and other issues
which arise in survey sampling, see Chapter 19 of Freedman, Pisani,
and Purves. Since the 1948 fiasco, quota sampling is no longer used by
major polling organizations.

Because an element of human choice is involved in quota sampling,
it’s NOT a case of random sampling. Two very commonly used random
sampling designs which we’ll only mention here are stratified random
sampling and cluster sampling. In stratified random sampling, the popu-
lation is divided into strata which are quite different with regard to some
characteristic, whereas within a stratum there’s relatively less variation
with regard to that characteristic. For example, with a physical charac-
teristic of persons such as height, you might want to stratify by gender,
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giving two strata, one for women and one for men. Then within each
stratum, you choose a simple random sample. These simple random
samples together, one for each stratum, make up your stratified random
sample. This method of sampling can offer greater precision than the
simple random sampling.

In cluster sampling, you divide the population into many relatively
small groups called “clusters”—for example, a city block—then you
choose a simple random sample of clusters. Your cluster sample consists
of all members of the population contained in the clusters you’ve cho-
sen. In the example, you’ll have randomly chosen, say, 100 city blocks
across the city and then you interview all the households within those100
blocks.* This method of sampling can be much more economical than
simple random sampling. After all, once you’re on the block, you might
as well interview everyone there. Both stratified random sampling and
cluster sampling ARE cases of random sampling.

To get some idea of the complexity of sampling plans, look at the
following description from the New York Times (1988) of a telephone
survey:

© 1988, The New York Times Company. Reprinted with permission.

Now, think a bit about this discussion of random sampling . . .

* It must NOT be left up to the interviewer to decide which member of the household
to interview; good experimental design requires that you give precise instructions about
which person in the household is interviewed, and precise instructions about alternates
if that person is not available. The principle: No element of human choice!
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Try Your Hand

2.1.13 Let’s explore “simple random sampling from a population.”

(a) Sampling with replacement does, indeed, satisfy the definition of
simple random sampling from a population. Let’s take a concrete ex-
ample: Show that drawing five cards from a deck of 52 with replacement
is a case of “simple random sampling from a population.”

(b) Show that sampling with replacement from a numeric population is
a special case of simple random sampling from a probability distribution.

(c) Show that any two samples from a population have the same prob-
ability of being drawn.

(d) Let X be the number of dots on the top face of a die. By contrast with
part (c), show that for simple random sampling from the distribution of
X, the condition “any two samples have the same probability of being
drawn” holds if and only if the die is fair.

2.1.14 In drawing a five-card hand from a deck of 52 playing cards,
when you think of it as random sampling

(a) What’s the random mechanism?
(b) Give a verbal description of the parameter n and give its value.

(c) Are you sampling with or without replacement?

2.1.15 If you could find a coin that was perfectly symmetric—either
face exactly as likely as the other one—and if you could find a way to
toss it so that even millions of tosses wouldn’t disturb this symmetry (a
physical impossibility), then you would have a perfect random number
generator. In fact, this is precisely what designers of pseudorandom
number generators try to emulate.

Well, just for purposes of instruction, suppose you’ve found such a
coin and such a way of tossing it. Let’s see how that random number
generator would work. Suppose you want to generate a set of random
numbers between, say, 0 and 125. If you toss your ideal coin repeatedly
seven times, recording zero for “tails” and one for “heads”, you’ll gen-
erate a string of seven zeros and ones. Such a string can be interpreted
as a binary number. For example, 1001011 would be the number

26423421 420—-644+8+2+1=75.

Note that our binary number has a “one” digit in the zeroth, first, third,
and sixth places (counting from the right). To evaluate the binary num-
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ber, you simply add together powers of two, a power of two for each
“one” digit in the binary number. The correct power is determined by
the place number of the “one” digit.

(a) Evaluate the following binary numbers: 10110, 01101, 010001,
and 0111.

(b) How many binary numbers are possible by tossing a coin seven times
and interpreting the results as we’ve described?

(c) Why do we need seven coin tosses in this problem?

(d) Show that each binary number of part (b) is a simple random sample
from the probability distribution of some random variable.

(e) Take out a coin and pretend it’s truly fair. Use that coin as a random
number generator to select a sample of size three from the numeric pop-
ulation consisting of the integers from 21 through 35 inclusive. There’s
not just one correct way to do this problem. There are some operational
decisions you’ll have to make and some imagination is required.

(f) Even if the coin were truly fair, part (e) actually is a very unrealistic,
though instructive, problem. Why is it unrealistic?

(g) In part (e), contrary to the solution given, you might have thought
to toss four coins once instead of one coin four times. This will work
alright, but there’s a slight hitch. Do you see what it is?

2.1.16 Suppose you’re studying word frequency in the English language
and have turned your attention to this very text. How would you deter-
mine the frequency of the word “the” as it’s used in this text? Certainly,
you would not just count. Why not? What would you do?

2.1.17 You’re interested in the computer skills required of workers in
the tourist industry in your city. Suggest a way to stratify this pop-
ulation for obtaining a stratified random sample. Remember that the
point of stratification is to have the strata be as varied as possible for
the characteristic in question, whereas a given stratum should be fairly
homogeneous for that characteristic.

2.1.18 (a) Are cluster sampling and stratified random sampling exam-
ples of random experiments?

(b) Are cluster sampling and stratified random sampling special cases
of simple random sampling?

(c) Suppose you have a given population and some random sampling
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plan. Name a random variable which would certainly be of interest in

many situations. (Hint: First, what type of population are you sampling?

Then, because you want to specify an example of a random variable, be

sure you’re clear about the underlying random experiment. In particular,
' what kinds of outcomes are you thinking about?)

2.2 Presenting and Summarizing Observed
Numeric Data

Measures of Centrality for Observed Numeric Data

A simple example of observed numeric data familiar to every student is
the list of scores on a test. Suppose the scores are

8, 4, 7,7,3,5 7,9, 10, 2, 7, 3, 9, 8 8§, S.

Even for such a small data set, this simple list is an inadequate presen-
tation of the data. At the very least, the data should be ranked:

2, 3,3, 45, 57,7, 7,7,8,8, 8,9, 9, 10.

Here we’ve ranked the data in ascending order. Descending order is also
possible. But still, too many questions are left open: How many points
were possible on this test? How many students were there? What was the
average score on the test? A good data presentation should provide im-
mediate answers to as many such obvious questions as possible. A good
presentation of this data would be an appropriately labeled frequency
distribution. Note how the following frequency distribution answers all
these questions at a glance:
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Test scores

Possible Observed (total of 10 points

score frequency possible)
2 1
3 2
4 1
S 2
7 4
8 3
9 2
10 1
mean = 6.375
16

Let X denote the test scores and f the frequency of occurrence of
any particular value of X. So f is the number of times the value X was
observed. Then X f is just the size of the data set (the total number of
observations). Here X f is 16, the number of students who took the test.
Note that 28 points come from the four students who scored seven.
Those 28 points can be written: X f = 7 x 4. In general, the score
weighted by its frequency of occurrence—the symbol is X f—is the
total number of points obtained by those students whose grade was
X. So then, ¥ X f is the total number of ALL points obtained by all the
students,

YXf = the total of all the data.

We get the average score on the test if we divide this by 16. But the word
“average” is not exact here. There are many different kinds of average.
This particular “average” is called the arithmetic mean:

(1/16)XX f = the mean of all the data
= 6.375.

At this point we need to introduce some notation. For any statisti-
cal study, there are two parallel sets of notation depending on whether
the notation refers to population data or sample data. For example, N
refers to population size, n to sample size. It’s important to learn the
correct notation from the beginning. Statistical notation soon becomes
quite complex and can pose a major problem for a beginning student
who is inattentive or inconsistent in using it. So, it’s important that you
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consistently use a capital letter N for the population size and a small
letter n for the sample size. Here’s some further notation: The arithmetic
mean is denoted

W for the population mean,

X for the sample mean.

The symbol X is read “X bar.” With this notation, we obtain the for-
mulas

N orn = Xf  (two notations for the same
calculation depending on
the type of data),

= (I/NEXf,
(1/n)cXf.

=l =

A frequency distribution like the one we’ve given above for the test
scores can be used efficiently to carry out calculations. This is just like
what we did with probability distributions in Chapter 1:

Xf

f

1 2
2 6
1 4
2 10
4

3

2

1

28
24
18
10

16 102 mean = 6.375.

[—y
NN I RV NI OUIY SR

Note that the mean comes from dividing the third column sum by
the second column sum. Another way of presenting this data is to give a
relative frequency distribution, where instead of frequencies, you record
the relative frequencies
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X rf X (rf)
2 1/16 2/16
3 2/16 6/16
4 1/16 | 4/16
5 2/16 | 10/16
7 4/16 28/16
8 3/16 24/16
9 2/16 18/16
10 1/16 | 10/16
1 102/16  mean = 6.375.

Now in this relative frequency (rf) distribution, the mean is exactly the
third column sum. Of course that’s true because the division by 16 has
already been done. The correct notation, if we have population data, is
p = 6.375. Otherwise, if the scores are from a simple random sample,
we write X = 6.375.

For sample data obtained by some other sampling process—other
than simple random sampling—this calculation would be wrong. For
more complex sampling plans, calculations like this must be appropri-
ately weighted according to the design of the sampling experiment. But
we’ll not be doing calculations for those more sophisticated sampling
plans.

The arithmetic mean for a numeric data set is a measure of centrality.
That’s exactly what any average is. An average is any number which in-
dicates the “center” of the data set. But center in what sense? In addition
to the arithmetic mean, we’ll introduce two more averages, the median
and the mode. The mode of a numeric data set is the most frequently
occurring value (it’s not necessarily unique). In our test scores above,
seven is the mode. The terms bimodal and trimodal refer, obviously,
to data sets with two and three modes, respectively. In other words, a
bimodal data set has two values with the same frequency and no other
values with the same or a larger frequency, so those two values are the
two modes. There’s no special notation for the mode.

The median of a numeric data set is the middle value after the data
have been ranked. Of course, if there are an even number of observa-
tions, there’s no “middle” value. This happens for the test scores given
above. When there are an even number of observations, the median is
simply the average of the two middle values. So, for our 16 test scores,
the median is the average of the eighth and ninth scores. Because both
of those values are seven, the median is just (7 4+ 7)/2 = 7.

For population data, the mean, median, and mode are just fixed num-
bers associated with the population, In other words, they’re examples
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of population parameters. We defined the term “parameter” for a pop-
ulation just as we did in Chapter 1 for a mathematical model. It’s a
fixed number associated with the population. For sample data on the
other hand, the mean, median, and mode vary from sample to sample.
They’re examples of what we call “statistics.” A statistic is a number
calculated from a random sample, usually for the purpose of estimating
a corresponding population parameter.
Before we go any further, why don’t you . . .

2.2.1 (a) Give a few integers with no repetitions (so, all the frequencies
will be 1) for which the mean is larger than the median.

Try Your Hand

(b) What’s the general condition under which the mean would be larger
than the median?

(c) Under what conditions would the median be preferred to the mean
as an average. Or, to say it differently, as a measure of centrality?

(d) For the data set you gave in part (a), give a verbal description and
the numeric value of N, n, Xf, XX f, ¥rf and X Xrf.
2.2.2 (a) Identify the median and mode(s) of the following data:

52,8,6,25,5,7,3,7,2,8.

(b) For the data in part (a), set up a frequency distribution, assuming
this to be population data, and use it to compute the mean.

(c) For the data in part (a), set up a relative frequency distribution,
assuming this to be population data, and use it to compute the mean.

(d) Redo each of parts (b) and (c) assuming you have sample data.
(e) In part (a), assume you have sample data. Give a verbal description
and the numeric value for each of: N, n, Xf, XX f, Xrf and X Xrf.

’ 2.2.3 Show that a statistic is a value of a random variable.

Measures of Spread for Observed Numeric Data

In the previous section, we defined three parameters which serve as aver-
ages for observed numeric data, the mean, median, and mode. Averages
are measures of “centrality,” but centrality is not the whole story. Just as
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with random variables, some numeric data sets will be tightly clustered
about their centers and some will be widely dispersed. Two data sets
with the same center could be quite different, depending on how they
spread about that center.

We’ll look at two parameters and their corresponding statistics which
serve to measure the spread of observed numeric data. The simplest
such measure is the range. The range of a numeric data set is the
largest minus the smallest value. For the test scores given in the pre-
vious section, the range is eight. The range is easy to compute and
carries a certain amount of information, but it’s determined by only
two values of the data set. It can’t tell us much. The range is use-
ful only as a quick and easy measure of spread. It has no special
notation.

For a more informative measure of spread we require the variance,
or its square root, the standard deviation. These are defined just as they
were in Chapter 1 for random variables. But remember: Don’t think
of the variance and standard deviation as two different measures of
spread. They’re two different numbers which measure spread in ex-
actly the same way. In other words, the variance and standard devia-
tion are one measure of spread which can be expressed in two different
numbers.

The variance of numeric data, just like the variance of a random
variable, is the average of the squared deviations from the mean:

o* = (YN)E(X — pPf

Here, we’ve used the notation for population data. If we have sample
data, the variance is denoted by 6%. Of course, the standard deviation
for population and sample data—the square root of the variance—are
denoted by o and &, respectively (the symbol & is read “sigma hat”).
The most efficient way to calculate the variance is by entering an ap-
propriate column into the frequency distribution for the data, a column
containing the squared deviations from the mean weighted according
to their frequency of occurrence. For the test scores introduced at the
beginning of the chapter
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Try Your Hand

X | f| Xf | X-wf
2 1 2 19.1406
3 2 6 22.7813
4 1 4 5.6406
5 2 10 3.7813
7 4 28 1.5625
8 3 24 7.9219
9 2 18 13.7813
10 1 10 13.1406
16 102 87.7500 pu=6.375,

0% = 5.4844.

Again, our notation implies we have population data. Here, to get
o2, you divide the fourth column sum by the second column sum. If this
were a relative frequency distribution, how would you calculate o2?
Well now, please . . .

2.2.4 Construct a relative frequency distribution for the data given just
above and use that relative frequency distribution to calculate the vari-
ance and standard deviation. To facilitate use of your calculator, give
the relative frequencies as decimal numbers.

2.2.5 (a) We began by saying: “In the previous section, we defined three
parameters which serve as averages for observed numeric data, the mean,
median, and mode.” But these three parameters refer to only one type
of observed data. If our data was of the “other type,” what word would
be appropriate?

(b) Explain why it would be wrong to identify the range by saying that
the test scores “range from two to ten.”

(c) What’s the formula for §2?
2.2.6 Construct a bimodal data set. Identify the modes and the median

and then compute the mean, variance, and standard deviation using a
frequency distribution table.

2.2.7 If the variance of observed data is “just like the variance of a
random variable,” why is the formula different?
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2.2.8 The variance measures spread about the mean. How does the
range relate to the mean?

2.2.9 Identify the mode, median and range for the following popula-
tion data. Then complete the table to compute the mean, variance, and
standard deviation.

X | 1.8 24 26 28 31 33
f 3.5 6 2 1 2

2.2.10 If you draw on your understanding of the relevant concepts, the
parts of this problem can be done quickly without too much trial and
error.

(a) Without changing the number of observations or the mean, change
the frequencies for the following data to make the standard deviation
larger than 1.1

X | 3 4 5 6

Fl79 42

(b) Replace the ?’s with numbers which make the median of this data
22 while making the mean more than 23

X|20212223.>
Fl1 6 @2 3 2

2.3 Grouped Data: Suppressing Irrelevant Detail

Grouped Distributions of Observed Real-World Data

In the previous section, we looked at a small data set, 16 test scores on a
ten-point test. With ten possible points, we had at most 11 distinct data
values and it was easy to construct a frequency distribution. This is not
typical of all (or even most) data sets which often are very large with
many possible values. For example, suppose you have a test taken by
1000 students where there are 100 possible points. So you have 1000
observed data points (the 1000 test scores) with 101 possible distinct
values (zero to 100). Maybe the data looks like . . .
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95
75
58
22
19
17
57
87
87

96 57 85
08 52 58
00 47 44
56 39 58
68 77 04
72 87 89
57 18 64
72 71 72
72 24 27

30 85
39 45
7275
76 26
27 92
78 35
62 06
17 79

69

02 84 92 09 88 08 85 08 05
83 96 48 83 49 27 38 50 87
92 40 40 75 38 59 87 52 34
85 76 76 68 65 31 71 17 71
17 97 16 74 17 72 23 47 17
75 97 37 28 45 88 28 33 23
41 65 83 28 22 13 47 29 27
19 87 87 32 34 98 54 56 87
65 96 24 41 12 67 67 38 75 87 63

This is only 135 of the 1000 scores! It goes on and on. To bring some
semblance of order to this chaos, you should, of course, rank the data
and put it into a frequency distribution, just as we did in the previous

section:

X | f X\ f X | f

0| 3 12 | 4 24 | 46

1| 8 13| 0 25| 19

2| 4 14 | 14 26 | 17

3|8 15| 8 27 | 31

4|5 16 | 15 28 | 36

S19 17 111 29 | 51

6| 7 18| 9 30 | 29

713 19 | 15 31|19

8| 4 20 | 16 20 | 41

91 2 21| 16 33| 27
10| 2 22 | 17 . Hmmmmm!
11| 6 23 | 35 And this is only one-third of them.

This is not clarity! The cardinal rule of any data presentation is CLARITY!!
You should be able to see the chief characteristics of the data at a glance.
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What we need here is a grouped frequency distribution, where the scores
are grouped into classes:

Class f X Xf (X — p)2f
0-19 137 9.5 1301.5 | 191490.7780
20-39 202 | 295 5959.0 61061.9548
40-59 411 | 49.5 | 20344.5 2807.5019
60-79 157 | 69.5 | 10911.5 80285.8601
80-100 93 | 90.0 8370.0 | 172866.7730
1000 46886.5  508512.8678

pn~46.8864, 0 ~ 22.5502.

The symbol X refers to what’s called the class mark, the midpoint of the
class. It’s not hard to understand how a grouped frequency distribution
like this one works. Instead of our boring you with the details, why don’t
you . .

In the two problems given here, we’re asking you to use your common-
sense and guess how to construct a grouped distribution. Try to guess,
even if you don’t succeed. That will significantly help you in understand-
ing the solutions. For this to work, you really must try for yourself to
see what ought to be done.

2.3.1 For the grouped frequency distribution above, there are a number
of points which require clarification. Try to identify them all on your
own and explain them. That is, try to identify and explain anything in
the table which—in any way whatsoever—is unlike what we’ve seen
before. Be careful. There are things in the table which at first glance
look the same as before but, in fact, require clarification. Give yourself
some time to think about this. Assume this to be population data.

2.3.2 In the grade distribution of the previous problem, each class was
19 points wide. But sometimes it’s more convenient to allow unequal
class widths. Suppose you’re looking at the employee salaries for a large
corporation with 1000 employees. Can you see why it would be conve-
nient to have unequal class widths?

2.3.3 Consider the following temperature readings:
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Temperature
(centigrade) f
0-15 6
15-30 12
30-45 8
45-60 2

Let X be the class mark for each class.
(a) What does the 12 in the second column mean?
(b) Why do the endpoints overlap?

(c) Give a verbal description for the MEANING (not the calculation) of

f,  3f, IXf and 1/2f[zx}.

(d) Complete the table above and use it to estimate the mean, mode(s),
variance, and standard deviation for these temperature readings.

(e) If we are to treat this data as a sample, what type of sampling is
’ involved?

Histograms: Graphical Display of Grouped Relative Frequency
Distributions

A histogram adheres to the principle stated at the beginning of this
chapter:

Numeric quantities are seen and interpreted
by the human eye in terms of area.

We’ll concern ourselves only with histograms for grouped relative fre-
quency distributions for which the area, the relative frequency, can be
interpreted as the percentage of the data falling in that class. If you’re
given a frequency distribution and asked for a histogram, first convert
it to a grouped relative frequency distribution and give the histogram of
that distribution. Here’s a histogram for the relative frequency distribu-
tion of the test scores from the previous section
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0 20 40 60 80 100

Note that we’ve not put in the vertical scale. The vertical scale can be
confusing if the class widths are not the same. The point is that the area
should represent the proportion or percentage of the data in each class.
Thus, the first rectangle contains just slightly under 15% of the area, the
second rectangle contains a little over 20% of the area, and so on.

Histograms can be very informative, revealing facts about the data
which might not otherwise come to light. This is very well illustrated by
the following example given by W. E. Deming. °

60 | i
B, |

> |
O 1
5 |
S 20 !
) I
[ ]
I

OJ‘/ 1 l ! Il : 1 1 1 1 1 Ill]l

0.996 0998 1.000 1.002 1.004 1.006 1.008

Diameter (cm)

Distribution of measurement on the diameters of 500 steel rods. The
inspection was obviously faulty. (LSL means lower specification limit.)

This histogram represents the diameters of 500 steel rods as measured
at the time of quality control inspection. Rods smaller than 1 cm are too
small; they would be too loose in their bearings and must be discarded.
So now please . . .

5 Judith H. Tanur et al., Statistics, a Guide to the Unknown, Holden-Day, San Francisco,
1972.
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2.3.4 Suppose the test scores from the previous section had been
grouped as in the following table. Note that the data is the same; we
just happened to have broken the first class into two classes, but now
the six resulting classes are of unequal width.

Class f
0-9 68
10-19 69
20-39 202
40-59 411
60-79 157
80-100 93
1000

Sketch the histogram for this data.

2.3.5 In Deming’s histogram given in the text, how would you interpret
the gap at 0.999 cm followed by a peak at 1 cm? These two character-
istics of this histogram have a very important real-world significance.
Can you guess what it is?

2.3.6 Draw a histogram for each of the following distributions, shading
the area within one standard deviation of the mean

(1) Class | f (3) Class | f

0-10 10 0-10 15

10-20 15 10-20 10

20-30 10 20-30 15

(2)  Class | f (4)  Class f

0-10 5 0-10 10

10-20 30 10-20 20
20-30 5 20-30 0
30-40 10
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(5) Class f
0-10 10

10-20 20
20-60 0
60-70 10

2.4 Using the Computer

The advent of electronic computers capable of carrying out calculations
and analyses of previously unimagined complexity has greatly increased
the range of application of statistical techniques. You might like to inves-
tigate what resources are available for statistical analysis in the computer
lab at your school. Minitab is a commonly available software package
for statistical analysis. Three other widely used packages are SPSS, SAS,
and BMDP. Because the focus of this text is not on data analysis and
exploration—where computers are really essential—but rather on un-
derstanding certain basic and fundamental statistical concepts, we’ll not
require the use of any of these statistical packages.

The discussion in the rest of this section is intended just to whet your
appetite for some independent explorations on your own. References
will be in terms of Minitab, but you should have no difficulty carry-
ing out the same exercises with other packages. The assistants at your
computer lab will show you how to log onto your system and access
Minitab or some other statistical program. They may also be able to
provide some documentation for the package.

A good student reference for Minitab is the MINITAB Handbook
[Ryan et al.]. It contains numerous exercises and suggestions for how
you might use Minitab to explore your own data sets or the data sets
included with the Minitab package. It also gives nine of the Minitab
data sets along with descriptions of the variables and some background
on the data.

Describing, Picturing, and Comparing Population and Sample Data

Minitab has a number of data sets which you can explore and from
which you can take samples. It will be interesting for you to see how
the samples which Minitab selects compare with the data set itself. Two
commands which will make that comparison possible are DESCRIBE
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and HISTOGRAM. The command HISTOGRAM, of course, provides
a histogram of your data, though not exactly in the format which was
described in this text.

The DESCRIBE command will give you basic numeric summaries
(parameters) for your data, including the population or sample size (us-
ing the symbol N for both cases), the mean, median, standard deviation,
and the 5% “trimmed mean.” The trimmed mean is the mean of that
90% of the data remaining after the largest 5% and smallest 5% have
been removed. The point of the trimmed mean is to have a “resistant”
version of the mean. A statistical procedure is resistant if it’s not overly
sensitive to a few extraordinary data values—values that are far out of
the range of the rest of the data. Such values are called “outliers.” The
median is, of course, a resistant measure. Resistant measures protect
against erroneous data values as well as against correct values that may
distort the overall picture. For example, “median income” is usually
reported to protect against the distortion resulting from a few excep-
tionally large income figures.

The DESCRIBE command also gives the smallest and largest obser-
vations and the first and third “quartiles.” The first quartile is the point
below which you find 25 % of the data. The second quartile is the median
because 50% of the data is below it. The third quartile is the point be-
low which you find 75% of the data. Finally, the DESCRIBE command
gives the “standard error of the mean” which we will not encounter
until Chapter 5.

Among the data sets included with Minitab is data from the 1980
Wisconsin Restaurant survey, conducted by the University of Wisconsin
Small Business Development Center. The data is saved in a Minitab
file named “restrnt.” That file contains 14 of the many variables in the
actual survey. Some restaurants failed to answer one or more ques-
tions—missing responses are denoted with an asterisk (*). At the end
of this section we have reproduced the screen output of our Minitab
session in which we investigated this data. We will now describe that
session in detail.

To explore the “restrnt” data, we first RETRIEVE the file (RETRIEVE
is a Minitab command). Here’s how we did that: After the Minitab
prompt (the prompt is: MTB >), we typed

retrieve “restrnt”.

In the screen output reproduced at the end of this section, you see how
the RETRIEVE command brings that file “restrnt” into a Minitab work-
sheet. We then typed in the Minitab INFO command (after the prompt,
we typed: info), which lists the variables in the file.



76

Chapter 2 — Understanding Observed Data

In the output at the end of the section, you see exactly what appeared
on our computer screen during the Minitab session we are describing.
Minitab gave most of what you see. We’ll tell you exactly what part
of that output we entered at the computer. Now we investigate the
variable “wages” contained in column seven. “Wages” is a percentage:
wages at the restaurant as a percentage of sales. We obtained a descrip-
tion of “wages” by typing: describe c7. Next, we obtained a histogram
of “wages” by typing: hist c7. Note that although the file contains re-
sponses from 279 restaurants, only 235 gave information on wages. This
is shown in the output by: N =235 N* = 44,

Note that “wages” is skewed to the right. This is not just the usual
problem which we expect with “a few large wages,” because our variable
is not actually wages at all; it’s a percentage. The skew of the distribu-
tion is not terribly significant. It pulls the mean up only by a quarter
of a percentage point. You might be suspicious of the accuracy of the
two largest values. Are there really two restaurants which pay over 80%
of sales in wages with less than 20% left for all other costs (including
food and overhead)? Of course, we don’t have enough information to
answer that question. There are usually many conceivable explanations
for such so-called “outliers.”

We then drew two samples of size n = 20 from “wages” using the
SAMPLE command, placing them in columns 15 and 16, respectively.
After obtaining each sample, we looked at a histogram of that sample.
It’s interesting to compare those histograms with each other and with
the histogram of the entire population of 235 values of the variable
“wages.” Note that only the first sample has picked up one of the out-
liers. Next, we described the two samples with one command by typing:
describe c15 c16. You can see how much the samples are affected by the
outliers. The first sample mean is more than five and a half percentage
points above the second!

Finally, we looked in detail at the second sample by obtaining a
“stem-and-leaf diagram” of the sample. This is a technique introduced
the 1960s by John Tukey, a statistician who has made numerous im-
portant contributions to graphical displays of statistical data. Forget
the first column for a moment. The second column gives the “stems.”
Here, our data consists of two-digit numbers; the stems are the leftmost
digit. The leaves are the rightmost digit. A stem-and-leaf display is more
informative than a histogram. It gives the histogram shape while at the
same time displaying the actual values of your data. For example, here’s
how the second sample begins:

o, 8, 10, 15, 20, 20, 20, 21, 21, ...

That’s interesting: One restaurant pays no wages! Wonder why?
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The first column of the stem-and-leaf display is called the “depth” of
a line. It tells how many leaves lie on that line or “beyond.” “Beyond”
means “beyond the middle.” For example, there are nine observations
on or before the fifth line. The parenthesis locates the line containing the
median. Within the parenthesis is the number of observations on that
line. If there are an even number of observations and the middle two are
on separate lines, the parenthesis is omitted. Stem-and-leaf displays are
very informative!

MTB > sample 20 from c7 into c15
MTB > hist c15

Histogram of C156 N =19 N* =1

Midpoint Count
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MTB > sample 20 from c7 into c16
MTB > hist c16

Histogram of C16 N =19 N* =1
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MTB > describe c15 c16

N N* MEAN MEDIAN TRMEAN STDEV SEMEAN

C15 19 1 28.47 25.00 26.24 16.07 3.69

C16 19 1 22.79 25.00 23.41 9.42 2.16
MIN MAX Q1 Q3

Cl15 10.00 85.00 19.00 34.00
Cci6 0.00 35.00 20.00 30.00

MTB >

MTB > retrieve ’restrnt’
WORKSHEET SAVED 10/24/1989



Chapter 2 = Understanding Observed Data

Worksheet retrieved from file: restrnt.MIW

MIB > info

COLUMN NAME COUNT MISSING
C1 ID 279

c2 OUTLOOK 279 1
Cc3 SALES 279 25
c4 NEWCAP 279 55
Cc5 VALUE 279 39
cé COSTGOOD 279 42
c7 WAGES 279 44
c8 ADS 279 44
c9 TYPEFOOD 279 12
Ci0 SEATS 279 11
C11 OWNER 279 10
C12 FT.EMPL 279 14
C13 PT.EMPL 279 13
Ci14 SIZE 279 16

CONSTANTS USED: NONE
MTB > describe c7

N N* MEAN MEDIAN  TRMEAN STDEV  SEMEAN
WAGES 235 44 25.251 25.000 24.972 10.886 0.710
MIN MAX Q1 Q3

WAGES 0.000 85.000 20.000 30.000
MTB > hist c7

Histogram of WAGES N = 235 N* = 44
Each * represents 2 obs.

Midpoint  Count

0 6 kxx

10 23 kkokkakokokokokokok ok

20 T3 kskckkokokokskokokokokskokokok skokokok ok ok 3k ok ko okokok ok ok ok

30 O8  kakakskkokokokokokskokok ok sk ok sk ok ok ook ook sk ok kS o o o R o K o ok o ok ok o o ok ok ok ok K ok
40 29 kkskokokokokokskokok kKK k

50 2 %

60 2 %

70 0

80 1 =%

90 1 %
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MTB > stem-and-leaf c16

Stem-and-leaf of C16
Leaf Unit = 1.0

1 00

2 08

3 10

4 15

9 2 00011

(4) 2 5579

6 3 0002

2 3 65

N
N*

19
1

79






3.1 Introduction

Try Your Hand

In Chapter 1, we explored the idea of a random variable and saw some
specific examples. Now it’s time to see some of the standard “classes” of
random variables. These classes serve as standard models for modeling
real-world problems. There’s an important advantage to having such
standard models: The theory’s already worked out! If you can match
your problem with a standard model, you can draw on previous expe-
rience, intuition, and an established theory.

It’s really a matter of classification. Many real-world problems fall
into certain clearly defined types for which the models (and theory) have
already been developed. That saves you a lot of work. When you’re faced
with such a problem, your first task is to “class”-ify the problem—to
find an appropriate model. In this chapter, we introduce some of the
standard classes of random variables and study the type of real-world
problems which they appropriately model. First please . . .

3.1.1 There’s a simple class of random variables for which we have
already seen examples. This class could be characterized by the condition
“the variance of X is zero.” Can you identify this class in terms of the
values of X?

3.2 The Discrete Uniform Distribution

We begin here with a particularly simple class of random variables. The
discrete uniformly distributed random variable with parameter n is
a random variable with n values, all of which are equally likely. We’ve
already seen some examples which we’ll recall in the exercises below. We
say “uniform” because the probabilities are all “uniformly the same.”
“Discrete” simply means the values of the random variable are discrete
points on the number line. You’ll see the significance of that more clearly
in Chapter 4 when we contrast “discrete” with “continuous.” We’ll not
need that distinction in this chapter.

Do you see what we mean by a “class” of random variables? It’s a
group of random variables all having some common set of character-
istics. For instance, the common characteristic “equally likely numeric
values” defines the class we’re studying in this section, the class of the
uniform distribution. In Problem 3.1.1, we looked at the class of random
variables characterized by the condition “the variance is zero,” a rather
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trivial class, but instructive nevertheless. We think of a class of random
variables as a “model”: It models all those real-world situations which
could be modeled by one of the random variables in the class. That’s
why we refer to such a class as a probability model.

Before going any further, you’d better . . .

3.2.1 In Chapter 1, you worked with the “conceptual formula” for the
variance of a random variable: 02 = X(X — p)?P(X). There’s a much
easier way to compute the variance, the so-called “computing formula”:

o = TXP(X) -

(a) Derive the computing formula from the conceptual formula.

(b) Use the computing formula to calculate the variance for the number
of dots on the hidden face of a fair four-sided die. Note it’s a FOUR-sided
die, just to make life easier for you.

(c) Why do you think the terms “computing” and “conceptual” have
been chosen for these two formulas?

(d) Develop a computing formula for the variance of observed data.
(e) For any random variable X, what’s the expected value of X?2?
3.2.2 Think back to the simple examples of random variables we studied

in Chapter 1 and find two examples of uniformly distributed random
variables. What’s the parameter in each case?

3.2.3 Suppose we have a uniformly distributed random variable X
which takes on the following values:

18.2, 18.7, 19.3, 19.7, 20.1.

What further information is required to compute the mean and standard
deviation of X?

3.2.4 It’s wrong to say: “Any real-world situation involving equally
likely outcomes will be modeled by a uniformly distributed random
variable.” Why is it wrong? Hint: Look carefully at the definition.

3.2.5 Complete the following line graph for a random variable W, as-
suming W to be uniformly distributed
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T T T T W
17 17.3 17.6 17.9

3.2.6 What information is required to specify one particular uniformly
distributed random variable?

3.2.7 If you know X to be a uniformly distributed random variable,
you can describe its mean without any reference to the probabilities.
How?

3.3 The Hypergeometric Distribution

Counting Rules

The next class we’ll study is called the “hypergeometric random vari-
able.” Note how the usual terminology for such classes could be con-
fusing. When we say “THE hypergeometric random variable,” it sounds
like just one random variable. In fact, it’s many, an entire class. And
why the term “hypergeometric”? The name, we’re sorry to say, is not
going to mean much to you. It derives from a connection between the
probability formula we develop later and a very arcane creature called
the “hypergeometric series.” Don’t worry about it.

Before we turn to this new model, we need some counting techniques.
All these techniques are derived from

the fundamental principle of counting:

Suppose task #1 can be done in m ways and task #2 in
n ways. Then you can accomplish task #1 followed by
task #2 in mn ways.
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This principle is reminiscent of the multiplication rule for probabilities
which we learned in Chapter 1. Roughly stated, “and” means multiply.
The probability rule, however, can’t be applied blindly; it’s only valid
when the events in question are independent. But for counts, the multi-
plication rule—the fundamental principle of counting—always holds.

Here’s how the fundamental principle of counting works: If there are
three ways to go from my office to my favorite bar and two ways to go
home from the bar, there are six ways to go home from the office by
way of the bar. You can see this diagramatically . . .

bar home
\__/ \_/

office

There are other counting rules based on the fundamental principle
of counting, you’ll derive them in Problem 3.3.1. They make use of the
factorial notation: The symbol is n!, read “n factorial.” It’s just the
product of n and all integers less than n:

S!1=5x4x3x2x1=120.

Of course, 1! = 1. We extend the definition by fixing the convention that
0! = 1. This allows us to avoid always having to make a special case
when zero shows up in a calculation. Now we’re ready for you to . . .

3.3.1 (a) How many arrangements are there of n objects?

(b) Let C(n,z) be the number of ways to choose X objects from a set
of n objects. This is the combinations of n objects taken X at a time.

Derive the formula \
n!

(c) Evaluate C(7, 3), C(7,1), C(7,7), C(120, 118).
(d) Evaluate C(n,0), C(n,1), C(n,n), C(n,n — 1).
(e) How many ways can you arrange seven books on one bookshelf?

(f) How many ways can you choose three books to take on vacation
from the 58 in your bookcase?

(g) How many ways can you seat six students in a class with six desks?

(h) How many ways can you seat 11 students in a class with 11 desks?
How about 80 students with 80 desks?
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(i How many ways can you seat six students in a class with 14 desks?

(j) Suppose there are 96 workers in a machine shop. How many distinct
committees of three could they form to represent them at an upcoming
meeting with management?

What is the Hypergeometric Model?

The hypergeometric random variable arises from sampling without re-
placement from a dichotomous population. It counts how many in the
sample have the characteristic of interest. Call it X; then

X = the number of observations in the sample
having the characteristic of interest.

Usually, this model is required only when the population is small, less
than 60 as a rule of thumb. In the next section, we’ll see why.

Recall from Chapter 2 that a “statistic” is a number calculated from a
sample. It will vary from sample to sample, of course, and so a statistic is
a random variable. You showed this in Problem 2.2.3. The hypergeomet-
ric random variable is an example of such a statistic and its distribution is
our first instance of a “sampling distribution.” If the underlying random
experiment for a random variable is random sampling, the probability
distribution of that random variable is called a sampling distribution.

If you’re going to be successful in using our models, it’s crucial that
you be attentive to the common characteristics shared by all the random
variables in the class. Only then will you be able to spot these charac-
teristics in a real-world context. If you can do this, you’ll be able to
recognize which model is appropriate for a particular problem. This is
probably the most difficult skill a beginning statistics student needs to
develop—the skill of modeling, the skill to recognize the appropriate
abstract model for a given real-world situation. So take careful note of
the following description:

The hypergeometric random variable
® is a count

e is associated with simple random sampling without
replacement from a dichotomous population

e is used only for small populations

e tells how many in the sample have the characteristic
of interest.
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Suppose, for example, you’re required to test the lifetimes of a batch of
50 electronic components, where the testing process is “destructive” —
you put the component into operation and record the time to burnout.
This is a common quality control situation which obviously requires
sampling without replacement. Even when the batch is small, you’re
constrained to sample as opposed to testing every component, other-
wise the entire batch is destroyed. And the sampling must necessarily be
without replacement because you can’t retest a component which you’ve
already destroyed! Now let’s explore the hypergeometric random vari-
able . ..

3.3.2 The electronic components example mentioned just above is in-
completely specified. What crucial piece of information is required be-
fore we can justify using the hypergeometric random variable as a
model?

3.3.3 For the hypergeometric random variable:

(a) What’s the underlying random experiment?

(b) What are the possible values?

3.3.4 From a pool of 40 candidates, the mayor has appointed a pow-
erful committee of five. Because none of the committee members are
women, there has been an accusation of prejudice. We might try to an-
alyze this situation by determining the probability of no women on the

committee if the committee had been chosen at random from among the
40 candidates. Discuss the suitability of the hypergeometric model here:

(a) What’s the population?

(b) What’s the underlying random experiment? Is it appropriate for the
hypergeometric model?

(c) What is an outcome of the random experiment? Be very specific to
the real-world situation.

(d) Exactly how many such committees are possible?
(e) What’s the random variable?
(f) Can the random variable be regarded as belonging to the class of the

hypergeometric random variable?

3.3.5 The neighborhood library wants to know how many books listed
in the catalog are lost, nowhere to be found. To address this problem,
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you might take a sample—a simple random sample, without replace-
ment—of the catalog listing and consider the number of listings which
correspond to lost books. Suppose you find that two among a sample
of 30 listings are for lost books. This situation can be modeled by the
hypergeometric random variable:

(a) What’s the population?

(b) What’s the underlying random experiment for the random variable?
Be sure you verify that it’s indeed a random experiment.

(c) What are the possible values of the random variable?

(d) What value of the random variable are we asked about?

(e) In fact, we should not use the hypergeometric model here. Why not?
3.3.6 To make use of the probability models we’re studying, it’s im-
portant to recognize the characteristics of the model. In the box above
this exercise set we gave a list of the characteristics of the hypergeomet-

ric random variable. Go back and give a similar list for the uniformly
distributed random variable defined in the previous section.

Calculating the Probabilities

Now let’s see how to calculate probabilities for the hypergeometric ran-
dom variable. It will be a straightforward application of the “theoretical
relative frequency” definition of probability. First some notation:

N = population size;

R = the number in the population which have the characteristic
of interest;

n = sample size;

X = the random variable, the number in the sample having the
characteristic;

p = R/N, the proportion of the population having the charac-
teristic;

q = 1 — p, the proportion of the population not having the char-
acteristic.

In our quality control example (Problem 3.3.2), there were 50 elec-
tronic components. Suppose four of the 50 don’t meet the specification
for a lifetime of “at least 1000 hours.” Of course, realistically, we would
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not know how many don’t meet specification; that’s exactly what we
we’re trying to study. But at the moment, we’re just THINKING about it
for purposes of developing the theory. Suppose we’re going to test three
components chosen at random. Then

N=50, R=4, n=3, and X =0,1,2, or 3.

[Hint: Always do this. Extract all numbers from the verbal descrip-

tion of a problem and write them down compactly in terms of the
formalism of the model. You’ll be amazed how much easier that
makes the solution.]

To construct a probability distribution for X, we must first compute
the probabilities. Because X = 0 or X = 1 may be less clear, let’s
start with the probability that X = 2. Using the “theoretical relative
frequency” definition, the denominator will be the number of ways to
get any sample (outcome) whatsoever and the numerator will be the
number of ways to get a sample for which X = 2. So the denominator
is

the number of ways to select a sample of n

and the numerator is

the number of ways to select a sample of n where
exactly two have the characteristic.

So
ways to select a sample of n where

exactly two have the characteristic

P(X=2) =
X=2) # ways to select a sample of n.

Now, why don’t you yourself just . . .

3.3.7 We’re calculating the expression above for P(X = 2).

(a) First calculate the denominator.

(b) Then calculate the numerator.

(c) Then combine them to obtain P(X = 2).

(d) Make up a probability distribution table for X and compute the

mean and variance.

3.3.8 In Problem 3.3.4:
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(a) If the mayor chooses her committee randomly, what’s the probability
of having no women on the committee?
(b) What’s the real-world meaning of the small probability in part (a)?

(c) Suppose the mayor’s choice puts one woman on the committee.
What’s the probability of such a committee? What’s the real-world
meaning?

3.3.9 Now write down a formula for P(X = z) by analogy with the case
for P(X = 2), where, instead of X = 2 we ask about X = z. Remember
that the uppercase letter, X, is a name for the random variable, whereas
the lowercase letter, x, is the symbol for one single unspecified value.

3.3.10 Take the case of a hypergeometric random variable X for which
N=10,R=4,and n = 4.

(a) Describe the underlying random experiment as completely as possi-

ble.
(b) Guess the mean and variance of X.
(c) Give the probability distribution of X.

\ (d) Compute the mean and standard deviation of X.

The Formulas

Now, here are the formulas for the probabilities of the hypergeometric
random variable together with its mean and variance:

the hypergeometric random variable:

If X is a hypergeometric random variable, then

C(R,z)C(N — R,n — )

P(X =x) CIN.)

with
po= np,
2 _ npg(N —n)
(N-1) ~
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The denominator of P(X = z), which is just C(N, n), is the total num-
ber of ways to draw a sample of n from this population of N members.
It does not depend on the value of X. And the numerator is the product
of

the number of ways to choose z members of the sample from the R
members of the population which have the characteristic of interest:
this number is C(R, x),

and

the number of ways to choose n — x members of the sample (the
rest of the sample) from the N — R members of the population
which do NoT have the characteristic: it’s C(N — R, n — z).

Remember, the symbol z (the lowercase letter) refers to a particular

but unspecified value of the random variable X. Here it refers to the
particular value of X for which we want the probability.

The parameters for the bypergeometric model are:

N = the population size;
the number in the population which have the
characteristic of interest;

=y
|

n = the sample size.

It’s not so easy to derive the formulas for the mean and variance. We’ll
not attempt it. In these formulas, we use the conventional notation for
population proportions:

p= R/N, the proportion of the population having
the characteristic of interest

and

g=1—p, the proportion of the population NOT
having the characteristic of interest.

Note that p and ¢ are not new parameters for the model because they
are derived from the basic parameters R and N.
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In Problem 3.3.10, you computed a mean of 1.6003. According to
the formulas above, the mean for that example is 4 x 0.4 = 1.6. It’s the
formula that’s exact; this 1.6 differs from your calculated value because
of the rounding error in the calculation. The variance for Problem 3.3.10
as calculated from the formula above is

0?2 =4x0.4x0.6x(6/9) =0.64,

agreeing exactly with your calculation.

In Problem 3.3.10, you saw that the formula for the mean is very
intuitive. It just says that the proportion of a sample having the char-
acteristic is, ON AVERAGE, the same as the proportion of the population
having the characteristic. To give another example, suppose that 15%
of the population has the characteristic of interest and you are taking
samples of size n = 20. Then, on average, you should expect about three
in the sample to have the characteristic—about 15% of your sample.
That’s the formula given above. Here it is again

px =np=20x0.15 = 3.

There are two observations we should make about the formula for
the variance. Note first that the variance gets larger as the sample size
increases. The variance has a factor of n in it, so n big means the variance
is big. This is very reasonable because the larger the sample the more
“room” there is for variability within the sample. More technically, when
n is large, X has a larger range of values. The values range from zero up
to n, inclusive. With a larger range, X has more potential variability.

Then there’s that mysterious factor: (N —n)/(N —1). This is called the
finite population correction factor. We'll look at this again in the next
section. The choice of name will become clear at that time (why “correc-
tion factor”?). The exact form of the finite population correction factor
arises from very technical considerations. But, intuitively, the expression
makes sense. To get that sense, think of the N — 1 in the denominator
as if it were just N, the population size. It’s one less than N for very
technical reasons only. Now, if we use N instead of N — 1, the finite
population correction factor would be

N~n_N_n n
N N N N’

So (N —n)/N is just the proportion of the population not in the sample.
Or,as 1 —n/N, it’s just one minus the proportion of the population that
is in the sample.
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The variance will be large when (N — n)/N is large, small when it’s
small. And that makes sense because when (N — n)/N is large, much
of the population is not in the sample. With much of the population
not in the sample, there’s less information in the sample. Less informa-
tion means more uncertainty. More uncertainty reflects more variability.
More variability means the variance should indeed be larger.

Now please . . .

3.3.11 Suppose you choose three light bulbs at random from a supply
of 30, four of which are burnt out.

(a) What’s the probability that at least one of the light bulbs you’ve
chosen is burnt out?

(b) Give the mean and variance for this situation. Discuss the finite
population correction factor.

(c) If only one of the 30 light bulbs is burnt out, what’s the probability
that the burnt-out light bulb will be among the three you choose?

(d) Now suppose two of the 30 light bulbs are burnt out. Make up
a probability distribution for X, the number of burnt out light bulbs
among your three. Give its mean and standard deviation (try to guess
first and then calculate).

(e) How large a sample would be required to have a finite population
correction factor of 90%? Of 80%?

3.3.12 In each part of this problem, try first to guess the answer on
intuitive grounds and then verify your answer by precise reference to
the model. Suppose you’re drawing a six-card hand dealt from a well-
shuffled deck of 52 playing cards . . .

(a) How many hearts would you expect?
(b) How many black cards would you expect?
(c) Which is more predictable, the color or the suit?

(d) Illustrate the previous parts of this problem by sketching possible
line graphs for the two random variables. Do not attempt to compute
any probabilities.

(e) Give a verbal description in terms of this problem for the finite pop-
ulation correction factor which appears in parts (a) and (b).

3.3.13 In the text just preceding this set of exercises, we have two anal-
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yses which work in opposing directions. We saw that when n is large,
the variance of the hypergeometric random variable is large. But from
another point of view, looking at the finite population correction fac-
tor, a SMALL n also makes the variance large because n small implies

‘ (N —n)/(N — 1) is large. Which effect dominates the variance?

3.4 Sampling with Replacement from a
Dichotomous Population

What is the Model?

Now let’s look at simple random sampling WITH replacement. Just as
before, we are considering a dichotomous population and our random
variable will be a count, counting how many in the sample have the
characteristic of interest. Of course, it’s another instance of a “statistic”
and its probability distribution another instance of a “sampling distribu-
tion.” Note that the real-world situation we’re discussing here is exactly
the same as for the hypergeometric random variable except that the sam-
pling is done WITH replacement instead of without. That does make a
significant difference in the models, however, as we’ll see. In particular,
the model is less computationally cumbersome. It’s an easier model!

This new model—for a reason which we explain later—doesn’t have
a name of its own. So we just refer to it as “sampling with replacement”
(the random experiment) and speak of “how many in the sample have
the characteristic” (the random variable). This is probably better than
relying on a name anyway. You won’t be able to forget so easily what it
refers to.

We learned in the previous section that the hypergeometric random
variable is not used as a model for sampling without replacement in
the case of large populations. Instead, we use this new, simpler model,
“sampling WITH replacement.”—even though we’re sampling without
replacement. What justifies this? It’s not the same model, after all, and
will not give the same “answers.” True. But if the population is large,
it gives a very good approximation. It’s clear why this should be the
case. Think about it: Sampling with replacement allows the possibility
of selecting the same population member twice. In sampling without
replacement, this is impossible. But so what? If the population is very,
very large, there’s only a very, very small probability of selecting the
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same member twice. It doesn’t happen, virtually speaking. So when the
population is large, there’s no significant difference between the two
models. Use the simpler one!

Now let’s think about constructing the probability distribution for
this new, simpler model. You can do it yourself with the help of the fol-
lowing exercises. But here, in contrast to the argument for the hyperge-
ometric random variable, you’ll not use the relative frequency definition
of probability. It’s easier than that! The formulas are more naturally
derived by analyzing the relevant events and using the following prob-
ability rules:

P(Aor B) = P(A)+P(B) if A and B are mutually exclusive
P(Aand B) = P(A)P(B) if A and B are independent.

As you carry out the details, you’ll need to justify the “mutually exclu-
sive” and “independence” assumptions. Please . . .

3.4.1 Before we attempt to derive formulas for calculating the proba-
bility distribution for sampling with replacement, you should first:

(a) Describe the underlying random experiment for the random vari-
able.

(b) Describe the outcomes of the experiment.

(c) Describe the possible values of the random variable.

3.4.2 Suppose we’re drawing a sample of n = 10. Let’s calculate P(X =
3). Recall the usual notation: p is the proportion of the population having

the characteristic of interest and 1 — p = ¢ is the proportion NOT having
the characteristic.

(a) First compute the probability of the event “the first three selected
for the sample have the characteristic, the rest do not.”

(b) The probability in part (a) is NoT P(X = 3). Why not?

(c) How many different ways can we have a sample with three having
the characteristic of interest and the rest not?

(d) What’s the formula for P(X = 3)?

(e) If 74% of the population have the characteristic of interest, what
are the chances to get a sample with three having that characteristic?

(f) What role does the population size play in the analysis of part (e)?
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The Formulas

3.4.3 (a) Give the formula for P(X = z).
\ (b) What role does the population size play in part (a)?

Here are the formulas for the random variable which counts how many
have the characteristic of interest when we are sampling with replace-
ment from a dichotomous population: :

sampling with replacement:

For sampling with replacement, if X is the number of
observations in the sample having the characteristic of

interest
P(X =z) = C(n,z)p“q"™"
with
H = np,
o = npq.

The parameters for sampling with replacement are just:

n = the sample size,

p = the proportion of the population having the char-
acteristic of interest.

Note that the mean is the same as for the hypergeometric random
variable and the formula for the variance is very similar. In fact, ex-
cept for the finite population correction factor, the variance is the same
also. Recall that the finite population correction factor was (approxi-
mately) just the proportion of the population not in the sample. So, if
the sample was not large compared with the population—if n was not
large compared with N—the finite population correction factor for the
hypergeometric random variable was almost one. In that case, the vari-
ances for that model and the model of this section are approximately
equal.
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That’s one reason why we said you don’t need the hypergeometric ran-
dom variable if you’re sampling from a large population—your sample
will not be a significant proportion of the population, the finite popu-
lation correction factor will be approximately equal to one, and so the
variance is essentially the same as with this new model. This explains
the term “finite population correction factor”—you think of it as “cor-
recting” the variance for the simpler model given in this section for large
(or infinite) populations. Of course, the mean is also the same. And the
probabilities will be approximately the same.

Here’s a rule of thumb: The model for sampling with replacement is
a good approximation for the hypergeometric distribution if

N >60 and N > 10n.

So, the population is large and the sample is small in
comparison.

Now please . . .

3.4.4 Describe verbally the meaning of the condition N > 10n given in
the box just above.

3.4.5 Here we recall the situation of Problem 3.3.5 which was not suit-
ably modeled by the hypergeometric random variable:

The neighborhood library wants to know how many books listed
in the catalog are lost, nowhere to be found. To address this prob-
lem, you might take a sample—a simple random sample, without
replacement—of the catalog listing and consider the number of
listings which correspond to lost books.

(a) What model is appropriate for this problem? Two explanations are
possible. To see the situation more clearly, suppose we’re going to take
quite a large sample of a couple of hundred listings and use several staff
people to carry out the work.

(b) Give a verbal description of the finite population correction factor.

(c) What’s the probability that your sample of 200 listings contains
three or more listings for lost books?

(d) Before doing part (b) you might have asked yourself how many lost
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books you should expect on average—just to get an idea of what kind
of answer to look for. Well, how many?

(e) In the original problem (Problem 3.3.5) we said: “Suppose you find
that two among a sample of 30 listings are for lost books.” What would
be the chances of that happening if, in fact, one percent of the listed
books are lost? What are the chances that more than two of the books
are lost?

(f) In part (e), how many lost books should you have expected to find
among the 30 observed catalog listings?

' (g) In part (e) what values of the parameters were specified?

3.5 The Bernoulli Trial

Try Your Hand

The very very simple model we’re introducing in this section is not of in-
terest in its own right. But it serves as the basic building block for three
other models and those models ARE of great importance. A Bernoulli
trial with parameter p is a random experiment with exactly two pos-
sible outcomes, where the outcome of interest has probability p. This
“outcome of interest” is referred to as “success” and is denoted by the
symbol S. Thus, P(S) = p. The other possible outcome is denoted F
for “failure.” Because there are only two possibilities, we can conclude
that P(F) = 1 — p, which is also denoted by q. The Bernoulli random
variable is the “number of successes” when you perform the trial once.
So it’s zero or one. You’re already quite familiar with this very simple
model, so please just . . .

3.5.1 (a) Give a simple example of a Bernoulli trial.

(b) Give a formula for the mean and variance of the Bernoulli random
variable.

3.5.2 (a) Show that “select one at random” from a dichotomous popu-
lation is an example of a Bernoulli trial.

(b) The mean and variance for the Bernoulli random variable in part (a)
are p and pg, respectively. Suppose instead of modeling this as a Bernoulli
trial, you modeled it as “sampling from a dichotomous population.”
Then what are the mean and variance?
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3.6 The Geometric Distribution

What Is the Model?

Suppose you’re attempting to locate someone with a rare blood type.
This very natural situation gives rise immediately to a random variable:
the number of persons you must test to find one who has the blood type
you seek. The underlying random experiment is the process of testing
individuals for blood type until you find someone with the desired blood
type. It can be described as “independent repetitions of a Bernoulli trial.”
In our example, the Bernoulli trial is “test one person for blood type.”
We can think of the outcomes as “yes” or “no,” depending on whether
the person tested does or does not have the desired blood type. The
outcome of interest is “has the blood type we seek.” The probability p
for this outcome is just the proportion of the population being tested
which have that blood type.

Now, if we assume the repetitions of this Bernoulli trial to be indepen-
dent—that blood type from one person to the next is independent—then
the probabilities for our random variable will be easy to compute. Re-
call the definition: X = # persons you must test to find one who has the
required blood type. Let’s calculate the probability we would first find
the desired blood type with the third person tested:

P(X =3) = P(1stpersonis “no” AND 2nd person
is “no” AND 3rd person is “yes”)

= P(1st person “no”) x P(2nd person “no”)
x P(3rd person “yes”)

= (1-p)x(1-p)xp
= ¢*p because ¢ = 1 — p.

In general, the geometric random variable is the number of inde-
pendent repetitions of a Bernoulli trial necessary to observe the first
“success.” The underlying random experiment for this random variable
is

independent repetitions of the Bernoulli trial,
stopping once you observe a “success.”

Now please . . .
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3.6.1 Verify that the “very natural situation” of attempting to locate
someone with a specific blood type is indeed a random experiment. If
it were not, we could hardly claim to have a random variable in the
number of persons required to be tested to find one having the desired

blood type.
3.6.2 In the previous problem, what is the Bernoulli trial?

3.6.3 Is the independence assumption reasonable in the “blood type”
example?

3.6.4 (a) Whatare the possible values of the geometric random variable?
(b) What are the parameters for the geometric random variable? Give

the symbols and verbal descriptions.

3.6.5 Suppose eight percent of the population you’re testing have the
blood type in question and that this population has no persons who are
blood relatives. What is the probability that

(a) you finally find a person of the desired blood type after 17 trials?
(b) the first person tested has the desired blood type?
(c) you never find anyone of the desired blood type?

Now, with X as the number of persons you must test before finding
one with the desired blood type, what is the probability that

(d) X =32
(€) X =72
(f) X =0?

3.6.6 What’s the significance for the geometric model of the assumption
in the previous problem about “no persons who are blood relatives”?

3.6.7 Why will it not be possible to summarize the geometric random
variable by means of a distribution table?

3.6.8 (a) Is the geometric random variable a statistic?

(b) Is its probability distribution a sampling distribution?
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From the exercises above, you may have guessed that there is a simple
formula for the probabilities of the geometric random variable:

PX =z = P( (z — 1) failures AND one success )

z—1

= q P

Because the repetitions of the Bernoulli trial are independent, we use the
multiplicative law in its simple special case—just multiply the probabil-
ities. To see how the formula above is derived, you need only recall that
the statement “the random variable X takes on the value z” just means
that the first success occurred on the zth repetition of the Bernoulli trial.
So the event that X = z is just the outcome

F, F, F, F, F, F, F, F,..., F, F, S
T

xth position

where this means

“failure” AND “failure” AND “failure” AND...
AND “failure” AND “success.”

Now, with independence, we can simply multiply probabilities.

We summarize the geometric random variable in the box below. Note,
however, that it would be difficult for you to derive the formulas for the
mean and variance because they involve infinite sums. For example,

px = LXP(X),

where X = 1,2,3, ... to infinity. We’re not assuming you’ve studied
the theory of such infinite sums, so-called “infinite series.” We’re just
asking you to accept that there’s an appropriate theory which produces
the formulas below.
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the geometric random variable:

The geometric random variable X is the number of inde-
pendent repetitions of a Bernoulli trial required to obtain
exactly one success,

OR EQUIVALENTLY X is the number of the repetition on
which the first success appears.

PX=z) = ¢"p,
PX<z) = 1-4°

Recursion formula:
PX=x2+1) = ¢P(X =1zx).

Finally:
p = 1/p,

o = q/p’.

The parameter for the geometric distribution is:

p = the probability of success on one repetition of the
Bernoulli trial

Because we will not have a complete table for the probabilities of X,
you will find the cumulative distribution function for X given above to
be useful. For any random variable, the cumulative probability distri-
bution function is P(X < z). For the geometric random variable, this is
the probability that X takes the value 1 OR 2 OR . .. OR z. Because X
cannot take on two different values at once—different values represent
mutually exclusive events—the cumulative distribution function is just
the sum (hence the word “cumulative”) of all the probabilities up to and
including z:

P(X<z) = PX=1)+PX=2)+PX=3)+ ---+P(X =1x).

For the geometric random variable, this is the probability for the first
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success to occur on or before the zth repetition of the Bernoulli trial. As
you see above, this probability is just 1 — ¢*. To understand all of this
better, please . . .

In the following problems, use the formulas in the box above.

3.6.9 You’re attempting to locate a person of a particular blood type.
Suppose eight percent of the population you’re testing have the blood
type in question and that this population has no persons who are blood
relatives.

(a) How many persons would you expect to have to test before finally
finding someone of the desired blood type?

(b) What’s the probability you finally find a person of the desired blood
type on the 15th trial?

(c) What’s the probability you do not need to test more than 15 persons
before finding the desired blood type?

(d) What’s the probability you find a person of the desired blood type
only after the 15th trial?

(e) What’s the probability the first person tested has the desired blood
type?

(f) What’s the probability you never find anyone of the desired blood
type?

(g) What’s the probability you do not find a person of the desired blood
type until sometime after the 10th person is tested?

Now, with X as the number of persons you must test before finding
one with the desired blood type, what’s the probability that

(h) X > 3?2
i) X=7°

(i) X >02

(k) X <222

3.6.10 By Chebyshev’s Theorem, for any random variable there is less
than one chance in nine to have a value more than three standard de-
viations away from the mean. Show that for the specific case of the

geometric random variable discussed in Problem 3.6.9, this probability
is actually MucH smaller than one in nine.
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3.6.11 This problem will be difficult as we’re stating it here. By analogy
with Chapter 2, think how the labor of dealing with 50 values can be
simplified. Check Level I of the answers before wasting too much time.

Make up a probability distribution for the geometric random variable
of Problem 3.6.9, for all values of X through 50. Present this distribution
as

(a) a table,

(b) a graph.

3.6.12 (a) You shouldn’t think of the mean of a random variable as the
“most likely value.” Explain.

(b) For the geometric random variable of Problem 3.6.9, what propor-
tion of the distribution falls on either side of the mean?

(c) What’s the point of parts (a) and (b)?

3.6.13 Would the number of persons you must test be more predictable
or less so if 12% instead of eight percent of the population have the
required blood type?

3.6.14 Derive the cumulative probability distribution formula for the
geometric random variable.

3.6.15 (a) Derive the recursion formula for the geometric random vari-
able.

(b) Use the recursion formula to generate the probabilities for X = 1
through X = 10. Assume p = 0.08.

(c) Compare part (b) with Problem 3.6.11 (a) .
(d) For any z > 10, P(X = z) is less than . . . ??

3.6.16 Various methods have been proposed for estimating the size of
wildlife populations. One technique is to trap animals periodically in
their home range. When an animal is caught, it’s marked and then re-
leased. As the trapping proceeds, a record is kept of the number of times
each animal is caught. W.R. Edwards and L.L. Eberhardt (1967) did an
experiment with 135 cottontail rabbits in a protected enclosed 40-acre
area where they repeated the trapping seven times. Here’s their data:

Frequency of capture, 0 1 2 3 4 S5 6 7
Number of rabbits | 59 43 16 8 6 0 2
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For example, 16 of the 135 rabbits were caught on two occasions.
The number 59 was not observed, of course; it was inferred from the
rest of the data by assuming none of the 135 rabbits died or escaped the
area or in some other way were lost from the population.

In a study of an extensive set of live-trapping data, Eberhardt together
with T.J. Peterle and R. Schofield (1963) had given several arguments
suggesting a geometric distribution as a good model for the capture—
recapture experiment with X being “the number of times a particular
animal is trapped.” This proposes a purely abstract model because there’s
no Bernoulli trial here to be repeated. Because X starts at zero, the
geometric random variable would be, let’s say, W = X + 1. So P(W =
w) = pg¥~! which means P(X = z) = pg® Edwards and Eberhardt
(1967) estimated p to be 0.4424. We’ll see later (Problem 7.2.12) how
they obtained this value and how they proposed using the model to
estimate an unknown population size.

Compare Edwards and Eberhardt’s data with what would be expected
if indeed the geometric model is valid. One decimal place of accuracy is

l adequate for comparison purposes.

3.7 The Binomial Distribution

The Binomial Experiment

There are three models based on “independent repetitions of a Bernoulli
trial.” The geometric random variable of the previous section is one such
model where the repetitions continue until we observe the first “success.”
In this section, we study the second of these models, the “binomial ran-
dom variable.” Its underlying random experiment, the binomial exper-
iment, consists of a FIXED number, n, of independent repetitions of the
Bernoulli trial. Of course, with a fixed number of repetitions, we might
have any number of successes. The binomial random variable will be
that “number of successes.” For the geometric model, the number of
successes is fixed and the number of trials is the random variable. For
the binomial model, it’s just the reverse.

As always, before thinking about the random variable, we should
make sure the random experiment is clear. The prototypical example
of a Bernoulli trial is a coin toss, so you should think of the binomial
experiment as a series of n coin tosses with n fixed. There are many
real-world situations that look abstractly just like this. For example, an
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electronics manufacturer may want to model a day’s output of 1500
electronic components where the manufacturing process is judged to
have one chance in 200 to produce a defective component. Producing
one component is like one toss of a coin where the probability for heads is
p = 0.005 (= 1/200). If it’s reasonable to assume defective components
occur independently, then the 1500 components look abstractly like a
series of 1500 coin tosses. Of course, the assumption of independence
must be checked carefully—if it’s not reasonable, the model is not valid.
To verify independence of defects, you may have to consult an engineer
who knows how defective components arise.

Note that our example assumes a day’s output consists of 1500 “iden-
tical” components—identical from the point of view of defect rate. Oth-
erwise, we’re not repeating the SAME Bernoulli trial. This same considera-
tion arises for the geometric random variable. But can we say “identical”
components? No two physical objects are ever exactly identical. If the
components are exactly identical, one component defective means they
ALL are. But “exactly identical” is completely unrealistic! That’s where
our probability models come in. We make use of a probability model to
account for the variability that inevitably exists among the components
even when they’re as identical as physically possible. That is, we assume
the components are identical EXCEPT FOR RANDOM VARIATION and we
account for the randomness by a probability model.

Here’s another example of the binomial experiment: We could model
a basketball player’s skill, in part, by her probability of sinking a basket
on one throw. If any one throw is unaffected by the success or failure of
other throws—if the repetitions are independent—her throws are like
repeated tosses of a coin.

For a binomial model, the actual value of the parameter p may be
unknown. In fact, that may have been the very question you wanted
to answer. Maybe the original question was “What’s the probability of
a defective component?” or “What’s the rate of successful throws for
this basketball player?” In other words, what’s the value of p? If the
assumptions seem appropriate, the model will be very useful for esti-
mating the value of p. In fact, one important inferential technique of
statistics (see Chapter 5) is for problems of just this type—to estimate
the unknown value of some parameter. That requires a model for the un-
derlying real-world situation and a theory for the model. Those models
and that theory are what we’re learning now.

One final caveat: See the difference between the Bernoulli trial—itself
a random experiment—and the binomial experiment, a series of inde-
pendent repetitions of the Bernoulli trial. It’s the difference between one
toss of a coin (the Bernoulli trial) and a series of n successive tosses (the
binomial experiment).
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To understand the binomial experiment better, please . . .

3.7.1 Let’s explore the binomial experiment further:

(a) For the binomial experiment, what is the “doing” and what does it
mean to repeat it?

(b) If n = 15 and you repeat the binomial experiment six times, how
many repetitions of the Bernoulli trial have you made?

(c) What exactly does an outcome of the binomial experiment look like?
Give a schematic description and a verbal description.

(d) Identify exactly where in the definition of the binomial experiment
we see that the outcomes are unpredictable.

(e) Give a verbal description of the parameters for the binomial exper-
iment in terms of a series of n coin tosses.

(f) How many of the outcomes of the binomial experiment have exactly
k successes?

(g) List all possible outcomes for the binomial experiment where n = 4.

3.7.2 (a) Suppose we toss 20 coins into the air. Can this be modeled as
a binomial experiment?

(b) Our example of the binomial model for 1500 electronic components
is more like part (a) than it is like a series of 1500 coins tosses. Explain.

(c) The binomial model has one assumption that’s automatically valid
for both coin toss analogies—for both “1500 tosses of one coin” and
“one toss of 1500 coins” —but which might fail for the electronics man-
ufacturer’s model. What is that assumption and is it reasonable for the
electronic components model?

3.7.3 Describe the occurrences of stillbirths in a hospital maternity ward
over the course of a week as the outcome of a binomial experiment.

3.7.4 Describe each of the following situations as the outcome of a
binomial experiment. You may have to complete the example by sup-
plying missing information. Discuss all aspects of the model with as
much completeness as the problem allows:

(a) 112 drillings for oil on a large tract of land,

(b) 25 throws of a dart at a dart board,
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(c) 15 telephone contacts by a telemarketing salesperson,

(d) truthful answers to a sensitive survey question (concerning drug
use, sexuality, or some other such sensitive issue which often yields an
untruthful answer) put to 1500 persons.

The Binomial Random

Try Your Hand

Variable Itself

As you saw in Problem 3.7.1, an outcome for the binomial experiment
consists of a string of n successes and failures:

s, F, S, F, F, F, S, S, S, S,
F, F, S, F, F, F, S, F, F, F.

The binomial random variable, assigns to each such outcome the num-
ber of successes. If we call the variable X, the outcome listed above is
assigned the value X = 8. There are lots of other possible outcomes.
For example,

F’ S’ SS F! F’ F’ S’ SS S’ S’
F, F, S, F, F, F, S, F, F, F.

If you look carefully, you will see that this new outcome is identical to
the first one except for the first two trials. Here also X = 8. Note that
there were 20 trials and so n = 20.

The expression, “X is a binomial random variable with parameters n
and p“ is captured briefly in the conventional symbols X ~ B(#n, p). This
is often a convenient shorthand. So now we’re ready for youto . ..

3.7.5 What are the possible values for a binomial random variable?

3.7.6 If X is a binomial random variable with n = 20 and p = 0.3,
X ~ B(20,0.3), what is P(X = 8)? Here’s some help:

(a) First calculate the probability of one outcome where X = 8. For
example, what’s the probability of

S, F,S, F, F, F, S, S, S, S,
F, F, S, F, F, F, S, F, F, F.

(b) Now, what’s the probability of
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(c) If Ais the outcome in part (a) and B is the outcome in part (b), then
P(A or B) =???

(d) How many ways can you have an outcome for which X = §?
(e) What’s the value of P(X = 8)?

(f) If you had rounded at intermediate steps in the calculation of part
(e), you would have obtained a very wrong answer! Explain.

3.7.7 In the previous problem, how many successes would you expect
on average? Try to guess on intuitive grounds.

3.7.8 Let X be the Bernoulli random variable for the kth repetition
of the Bernoulli trial (X, =“the number of successes”). There are n of
these X’s , one for each repetition. Let’s not be completely abstract,
suppose n = 20 and p = 0.3 as in Problem 3.7.6.

(a) What’s the relationship between the Xj’s and the binomial random
variable X.

(b) Use part (a) to derive a formula for the mean and variance of X.

3.7.9 For the binomial random variable:
(a) Derive a formula for P(X = z).

(b) Derive a recursion formula.

3.7.10 (a) Show that the binomial random variable can be described as
“the total or sum of a sample” for a certain kind of sampling.

(b) Show that X =“the number of observations in the sample having
the characeristic of interest” for sampling with replacement from a di-
chotomous population is a binomial random variable. Give a verbal
description of n and p.

(c) Part (b) answers a question we raised earlier. What was that ques-
tion?

(d) For sampling with or without replacement from a large dichotomous
population, we should use the binomial random variable for the num-
ber of observations in the sample having the characteristic of interest.
Explain why.

From Problem 3.7.9, we obtain this summary of
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the binomial random variable:

The binomial random variable X counts the number
of successes on n independent repetitions of the same
Bernoulli trial

X = the number of S’s

P(X =2) = C(n,z)p"¢""".

Recursion formula:

PX=241) EZ;T;ZP(X ).

And: L = np,
o = npq.
The parameters for the binomial distribution are:

n = the number of repetitions;
p = the probability for success on the Bernoulli trial.

Now you’re ready to use the binomial model. Please . . .

3.7.11 We can model a basketball player’s skill by the probability, p, of
sinking a basket on one throw. For Shu Wen, p = 0.17 and for Juan,
p=0.12.

(a) Who is more predictable in basketball at sinking baskets, Shu Wen
or Juan?

(b) How many baskets would Shu Wen have to attempt before sinking
one?

(c) How likely is Juan to sink a basket on at least three of his first ten
attempts?

(d) The further p is from one half, the more predictable that player is at
sinking baskets. Explain this by reference to the appropriate formula.

(e) Explain why part (d) is reasonable from an intuitive point of view.
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3.7.12 In 1953 (Avery v. Georgia), a black defendant was convicted by a
jury selected from a panel of 60 “veniremen” (potential jurors). None of
the 60 was black. They were chosen from the jury roll by drawing from a
box containing tickets with the names of potential jurors, yellow tickets
for blacks and white tickets for whites. Five percent of the tickets were
yellow. Justice Frankfurter of the U.S. Supreme Court wrote that the
“mind of justice, not merely its eyes, would have to be blind to attribute
such an occasion to mere fortuity.” Do you agree? (after [Finkelstein and
Levin], p. 114).

3.7.13 Use the recursion formula to generate the binomial distribution
with n = § for each of the following choices of the parameter p. Present
the distribution in two ways: with a table AND with a line graph. Use
the tables to compute the mean and variance and check that you get the
answer given by the formulas (which answer is more accurate?).

(a) p=0.,
(b) p=0.25,

‘ (c) p=0.1.

3.8 The Poisson Distribution

The Poisson distribution is a more abstract model than any we have
seen so far. It can be derived through a mathematical limiting process
from the binomial distribution by letting n get larger and larger as p gets
smaller and smaller. There are other derivations as well. We’ll not be
concerned with the technical details of the derivation, but you will want
to remember that the Poisson model was originally derived through an
abstract process, not by any real-world considerations. This insight will
clarify some of the discussion below.

The Poisson distribution seems to have first appeared in a treatise
on probability and the law published in 1837 by Siméon Denis Pois-
son, a French academician and scientist. It only came into its own as a
probability model 50 years later, with a publication in 1898 by Ladislaus
von Bortkiewicz, a Russian-born Pole working in Germany. Bortkiewicz
seems to have captured people’s imagination with his use of the Poisson
distribution as a model for the observed number of horsekick fatalities
in the Prussian army from 1875 to 1895—a problem of more minor
proportions in our own age! Since then, the Poisson distribution has



3.8 ~ The Poisson Distribution

111

proven useful in a wide variety of situations which we will illustrate as
we go along.

So unlike all the previous models we’ve seen, we do not derive the
abstract model from a real-world situation. Rather we “find” a model,
derived independently from theoretical considerations, which happens
to fit our data, a very common approach to model building. We’ll explain
this in more detail later when we take a look at Bortkiewicz’ data to
see how it “fits” the Poisson model, but first let’s see the model itself.
We’re not going to give you a formal definition of the Poisson random
variable—that would mean presenting the abstract derivation—rather
we will give a “rule of thumb” description of the kinds of real-world
situations in which the model has often been found appropriate.

The Poisson random variable is often appropriate for counting oc-
currences within some fixed interval of time (or space) for independent
events such as accidents—Bortkiewicz’ horsekick fatalities, for exam-
ple—or arrivals of customers at a checkout counter or of telephone
calls at a switchboard, and so on. It’s commonly used in biostatistics
as a model for the incidence of disease. The Poisson distribution also
models such situations as the number of defects in a bolt of cloth or
typographical errors in a magazine article. These last two examples in-
volve intervals of space: A bolt of cloth is a two-dimensional “interval
of space” as are the pages of a magazine article.

When might you expect a real-world situation to be appropriately
modeled by a Poisson distribution? The model should be valid for any
situation in which you are observing occurrences of something that looks
like an “accidental” event, an event where

® simultaneous occurrences are impossible,
® any two occurrences are independent,

e the expected number of occurrences in any interval is propor-
tional to the size of the interval (length, area, volume, depending
on the type of interval).

These three conditions would often be reasonable in examples like those
mentioned above. In a very broad sense, they capture what one means
by “accidental” occurrences. For example, the incidence of nonconta-
gious diseases or defects in a manufactured item are “accidents,” broadly
speaking. But certainly the model is not restricted to accidental occur-
rences. For example, these three conditions would often be satisfied for
customer arrivals or arriving telephone calls and yet these are not “ac-
cidents,” although in a certain sense they’re like accidents.

The formulas for the Poisson distribution involve the natural expo-
nential function, e*. Here e is a constant, approximately equal to 2.7183
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as you can see from your calculator using the e® key with z = 1. The
word “natural” refers to the especially simple character of this expo-
nential function from the point of view of differential calculus. We will
also have occasion later in this text to use the logarithm to the base e.
It’s called the natural logarithm, In(x) (pronounced “lin” z). It has the
same properties as the common logarithm (the logarithm to the base
ten). In particular,

In(1) =0, In(e) =1, In(zy) = In(z) + In(y), In(z¥) = y In(x).

The last property is very convenient for solving equations where the
unknown is in the exponent. To take a simple example, if 17 = 15% ,
what is z? Well, In(17) = zIn(15) and so, as your calculator will show
you, 2.8332 = 2.7081z. Solving for z, you find z = 1.0462.

As with the geometric distribution, there is, theoretically, no largest
value for the Poisson random variable. There’s one parameter for the
model, denoted by A (the Greek letter lambda). As you can see in the for-
mulas below, it’s the expected number of occurrences within the interval
in question. It just so happens—for no reason that could be obvious to
us—that the variance is also A, the same as the mean. The probability
distribution of the Poisson random variable—let’s call it X —is deter-
mined by these equations:

the Poisson random variable:

—A\z
PX=x = e
!
Recursion formula:
A
PX=z+1) = ;v-i—lP(X_—x)'
And: wo= A
or =

The parameter for the Poisson distribution is:

A = the expected number of occurrences in the inter-
val in question.

Now, to understand the model better, here are some exercises for you
to...



3.8 — The Poisson Distribution

Try Your Hand

113

3.8.1 Think about the number of automobile accidents per year at a
busy metropolitan intersection. Assume a Poisson model for this random
variable. Compute the probabilities asked for below two ways:

(i) use the first formula given in the box above;
(i1) use the recursion formula.

(a) Ifyoushould expect 4.2 accidents per year at this intersection, what’s
the probability of less than two accidents?

(b) What’s the probability of less than two accidents in a six-month
period?

3.8.2 Consider the number of telephone calls arriving at a telephone
switchboard in a five-minute interval. Again, assume the Poisson model
for this situation.

(a) If you should expect 2.3 calls in a five-minute period, what’s the
probability of more than two calls?

(b) What’s the probability of more than five calls? [Hint: Use part (a).]
(c) Do the calculation of part (b) again using the recursion formula.

(d) Give a verbal description of the Poisson recursion formula.

3.8.3 The Poisson distribution shares a characteristic in common with
the geometric distribution which none of our other distibutions (so far!)
exhibits. What is it?

3.8.4 The variance of the Poisson distribution is the same as the mean,
namely, A\. Why is this fact explained “for no reason that could be ob-
vious to us,” as we said in the text?

3.8.5 Why do we say “noncontagious” when we talk about the inci-
dence of disease being appropriately modeled by the Poisson distribu-
tion?

3.8.6 If observed data seems to fit the Poisson model, does that mean
the data arose from a situation which satisfies the three rules of thumb?

3.8.7 Bortkiewicz studied 14 Prussian Army corps over a period of 20
years. We eliminate four of the corps as atypical; they were organized
differently from the other ten. That leaves ten corps over 20 years, giving
us 200 “corps-years.” Let B be the number of fatalities in one year and
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let CY be the observed number of corps-years in which that number of
fatalities occurred. Here’s Borkiewicz’ data:

cY

109
65
22

3
1

200

W= o |l

(a) Give a verbal description of the number 109 from the table.
(b) Show that there were 122 fatalities over the 200 corps-years.

(c) What value of A should you use for the Poisson model, assuming the
model to be valid?

(d) Make up an “empirical” probability distribution for B, based on
Bortkiewicz’ observations. Compute the mean and 62 for Bortkiewicz’
observed data using this distribution.

(e) Make up a theoretical probability distribution for B, assuming B
to be Poisson, using the value of ) in part (c). Use this distribution to
approximate the mean and variance of B.

(f) Do you think Bortkiewicz’ data fit the Poisson model?

3.8.8 Assume the Poisson model suggested by Bortkiewicz’ data from
the previous problem:

(a) In how many years over a ten-year period would a Prussian army
corpsman have seen more than one of his comrades killed as a result of
a horsekick? [answer: about 1.3]

(b) After how many years in the army would a Prussian army corpsman
have first seen a year in which more than one of his comrades was killed
as a result of a horsekick? [about eight]

(c) If you randomly chose three of the ten corps studied in the previ-
ous problem and looked at records for a five-year period, what are the
chances you would observe more than four corps-years with no horse-
kick fatalities? [about 97%]

3.8.9 Solve the equation e2* = 14 for .
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3.8.10 Because the Poisson model is obtained from the binomial by
letting n get larger and larger, you won’t be surprised to learn that the
Poisson distribution provides a very good approximation to the binomial
when n is large. For this to work, however, p must be small. There is a
“rule of thumb” for the validity of the Poisson approximation

n > 20,
p < 0.05.

This approximation can be very useful if you are relying on tables for
your probabilities. A question involving binomial probabilities may take
you out of the table if n is quite large. After all, any table is finite and
will stop with some large value of n. Many tables stop with n = 25
or maybe n = 100. In these cases, the Poisson approximation will be
helpful if p is not too large (< 5%) and if your Poisson table contains
entries for A = np. On the other hand, in working binomial problems, if
p is too small you will again find yourself out of the table. The Poisson
approximation may help if n is large enough (> 20).

In other cases, you might prefer the Poisson approximation to the
binomial if you’re going to use the recursion formula—the Poisson re-
cursion formula is much easier to use with a hand calculator than the
binomial!

(a) For a given binomial distribution, which Poisson distribution should
you select as the approximation? Try to make a reasonable guess. Think
first about a specific case; for example, take the binomial random vari-
able B(300,0.01). Which Poisson distribution would you use?

(b) Show that a real-world situation which could be modeled by the
binomial distribution with very large n and small p would satisfy the
three rules of thumb which guide us in modeling real-world situations
by the Poisson distribution. [Hint: Think of the binomial experiment as
taking place over an interval of time.]

(c) Suppose n = 300 and p = 0.01. Compute the probability that the
binomial X is equal to two and compare that with the approximation
given by the Poisson distribution.

(d) To have the Poisson approximation be valid, we choose it so it has
the same mean as the given binomial. Of course, we would also want
the variances to be the same, but that’s not possible! Why not?

(e) Show that the variance of the approximating Poisson will be ap-
proximately the same as the given binomial variance 1F . . . 2??
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Here is a summary of Problem 3.8.10:

The Poisson approximation for the binomial distribution:

For a binomial random variable with . . .
n > 20,
p < 0.05,

the Poisson distribution with A = np will give a good
approximation.

The parameter n must be large so that the probability
formulas for the two models will give approximately the
same values and p must be small so that the variance of
the Poisson, ), will be approximately the same as the
variance of the binomial, npq.

3.9 The Negative Binomial Distribution

In this section we consider a generalization of the geometric distribution.
First, recall our example of a geometrically distributed random variable:

Suppose you’re attempting to locate someone with a rare blood
type. This very natural situation gives rise immediately to a random
variable: the number of persons you must test to find one who has
the blood type you seek. The underlying random experiment is the
process of testing individuals for blood type until you find someone
with the desired blood type.

But suppose instead of just one person having the desired blood type,
you want, say, eight. How many persons must you test before finding
EIGHT with the desired blood type? This requires the so-called “nega-
tive binomial” random variable with parameter k. Here, k = 8. For-
mally, the negative binomial random variable is the number of inde-
pendent repetitions of a Bermoulli trial necessary to observe exactly k
successes.

Compare the negative binomial model with the geometric model. The
geometric distribution has only one parameter, p, the probability of
success on one execution of the Bernoulli trial. For the negative binomial
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model there are two parameters, p and k, where k is the number of
successes you must observe before you end the experiment. Note that
for the special case k = 1, we have the geometric model. That’s why
we said the negative binomial model is a generalization of the geometric
model.

Your experience in working with the geometric and binomial random
variables will make it easy for you when you . . .

In the following problems, assume that X is a negative binomial random
variable with k£ = 8.

3.9.1 (a) What does an outcome of the underlying negative binomial
experiment look like? Give a verbal description.
) Give three specific outcomes.

c) For the examples in part (b), what are the values of X?

e) What are the probabilities for the three examples you gave in part

)?

(b
(
(d) In general, what are all the possible values of X?
(
(b

3.9.2 How many ways can you get an outcome with

(a) X =102
(b) X =122
() X =92
(d) X =82
() X =x?

3.9.3 Now assume p = 0.42. What is

(a) P(X =10)?
(b) P(X = 12)?
(c) P(X =9)2
(d) P(X =8)?
(e) P(X = z)?

3.9.4 Give the formula for P(X = z) for general k.
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Here’s a summary of

the negative binomial random variable:

The negative binomial random variable X counts the
number of independent repetitions of a Bernoulli trial
required to observe k successes.

PX =z) = Clz—1,k—1)pr¢%;

Recursion formula:

P X=zx+1) = a:—(k—l)P(X x).
k
And: = -
# b
2 kq
ot = —=.
P2

The parameters for the negative binomial distribution are:

p = the probability for success on the Bernoulli trial,

k = the number of successes to be observed, after
which you end the experiment.

The negative binomial model shows up in a wide variety of situations.
In biology, it has been used as a model for insect counts. R.A. Fisher
used it, for example, to model the number of ticks to be found on a
sheep. For extensive applications in marketing, see Ehrenberg’s book
Repeat Buying. An alternative characterization of the negative binomial
random variable as a sum of k independent geometric random variables
with the same p is often useful. Although that description is not obvious
in terms of “repetitions of a Bernoulli trial,” it can be justified abstractly
by showing it leads to the same probability formulas.

Well, now please . . .
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3.9.5 Show that if £ = 1 in the formulas above, you get the “correct
result.”

3.9.6 You’re attempting to locate six persons of a particular blood type.
Suppose eight percent of the population you are testing have the blood
type in question and that this population has no persons who are blood
relatives.

(a) How many persons would you expect to have to test before finally
finding six people of the desired blood type?

(b) What is the probability that you finally have six persons of the de-
sired blood type with the 15th trial?

(c) What is the probability that you do not need to test more than 15
persons before finding six persons with the desired blood type?

(d) What is the probability that you have found all six persons of the
desired blood type only after the 15th trial?

(e) How many persons would you expect to test before finding someone
having the desired blood type?

(f) How many persons would you expect to test before finding two
having the desired blood type?

3.9.7 By Chebyshev’s Theorem, for any random variable at all, there
is less than one chance in nine to have a value more than three stan-
dard deviations away from the mean. Show that for the specific case of
the negative binomial random variable discussed in Problem 3.9.6, this
probability is much smaller.

3.9.8 Suppose the cloth which your company buys has about 0.62 seri-
ous defects per bolt. How likely is it that you would receive five or more
bolts before getting three bolts with more than one serious defect?

3.9.9 In Problem 3.6.16, a negative binomial distribution for the fre-
quency of capture of cottontail rabbits would be appropriate if, as you
would expect, we have more than one trap per home range widely
enough dispersed to assume independence of capture from one trap to
another. Explain.
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3.10 Some Review Problems

For each problem, identify the model clearly by name and verify that
the model is appropriate for that situation. Most problems will involve
a formula from the model; show clearly how you get your answer from
that formula even though in a few cases the solution is obvious on
intuitive grounds without reference to the model. If a problem requires
an unstated assumption, work the problem under that assumption and
be prepared to comment on the appropriateness of the assumption for
that particular situation. We’re leaving you partly on your own with all
this. The solutions are rather sketchy. Sorry!

3.10.1 In a game of throwing darts at a dart board, your skill is such
that you hit the bull’s eye for a score of six points about ten percent
of the time, you hit the second ring for three points about 60% of the
time, the outer ring about 25% of the time for a score of two points,
and you miss the board entirely with a penalty of two points (you lose
two points) about five percent of the time. You’re eliminated from the
game if you miss the board more than three times. Suppose you play
with an opponent who uniformly attains each of the possible scores on
each throw. Suppose a “round” consists of one throw for each player,
two throws altogether.

(a) Assuming you don’t get eliminated before that, what’s the probabil-
ity you hit the bull’s eye for the first time on your fifth throw? [6.56%]

(b) Assuming you don’t get eliminated before that, what’s the probabil-
ity you don’t hit the bull’s eye before your fifth throw? [~ 66 %]

(c) Assuming you don’t get eliminated before that, what’s the probabil-
ity that you will hit the bull’s eye at least four times on your first ten
throws? [1.28%]

(d) Assuming you don’t get eliminated before that, how many times
would you expect to throw the dart to hit either the bull’s eye or the
second ring? [1.4286]

(e) Assuming you don’t get eliminated, which is more predictable for
you, the number of bull’s eyes in ten throws or the number of times you
actually miss the board entirely? [2nd]

(f) How many times would you expect to throw before being elimi-
nated? [80]

(g) What score should you expect from your opponent on each throw?
[2.25]
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(h) From the point of view of score, who is the more consistent player,
you or your opponent? [you]

(i) What’s the probabilty your opponent is eliminated from the game
on the 16th throw? [0.0563]

(j) How likely are we to see a bull’s eye in one round? [0.325]

(k) Assuming no one’s eliminated before that, how likely are you to see
four rounds out of ten in which there is a bull’s eye? [22.16%]

() Assuming you don’t get eliminated before that, what’s the probability
of at least one bull’s eye in your first six throws? [46.86 %]

(m) How likely is it you will be eliminated before your sixth throw?
This is possible but not likely, keep five decimal places in your answer
so you won’t report a probability of zero. [0.00003]

(n) What’s the probability you get at least one bull’s eye on your first
six throws?

[In part (n), being eliminated before you can make your sixth throw

is NOT independent of the event in question! So this is not the same
as part (l). But they’re almost the same; to see the difference, use
the 0.00003 answer from the previous part and give your answer
with all the accuracy of your calculator: 0.468544943 compared
with 0.468559 for part (1).]

3.10.2 (a) You're offering customers a gift of one box of a particular
brand of tea. Suppose there are 80 boxes of that brand on your shelves
in two flavors, one spicy and one not, with 30 boxes of spicy tea. You
believe your customers prefer the spicy tea, but only one of the first five
customers who arrive chooses spicy tea. If these customers really had no
preference at all and they choose at random, what’s the likelihood of a
result such as you observed? Interpret the phrase “such as you observed”
to mean “the result you observed or a result even more inconsistent with
your observation.” [0.3755]

(b) You are to select a committee of 50 from a group of which 18% are
Hispanic. What’s the probability of fewer than four Hispanics on the
committee? [~ 0.0137]

3.10.3 The city engineer’s data suggests that, on average, in a quarter
mile of city streets there are presently about two-tenths of a pothole
requiring repair. Assume repair teams of three workers are assigned to
two miles of streets.
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(a) How many repairs should a team be prepared to make? [1.6]

(b) If the city engineer sends out ten teams, how likely is it that fewer
than three of the teams will find more than two potholes to repair?
[62.72%]

(c) Martha’s team takes off for the beach on days when they find two
or fewer potholes—they repair them quickly and leave. If her team goes
out 20 days per month, what’re the chances they have to work five days
or more successively without going to the beach? [~ zero]

(d) What’s the probability Martha’s team enjoys no more than 16 days
at the beach per month? [65.78%)]

(e) How many beach days could Martha’s team anticipate each month?
[~ 16]

3.10.4 Suppose during any ten-minute period of the two hour lunch
rush about three customers on average come to our service window.

(a) What is the probability of exactly five customers in one such ten-
minute period?

(b) Which values of this random variable fall within two standard de-
viations of the mean?

3.10.5 Suppose you play a game in which you pay four dollars for each
roll of a die and you receive one dollar for each dot which shows on
the uppermost face when you roll. Suppose the die is loaded so the face
with three dots comes uppermost 40% of the time with all other faces
equally likely.

(a) What is your expected gain (loss) in this game?

(b) Is this game more or less predictable than playing with a fair die?
What does this mean in terms of your cost to play the game?

(c) Make a probability distribution for your gain/loss and compute its
mean and variance.

(d) Express G from part (c) in terms of X, the number of dots on the
uppermost face; that is, give a formula for G in terms of X.

(e) Compare the mean and variance of G and X.

(f) How many rolls would you expect to make before sustaining a loss?
[~ 1.5]
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(g) What’s the probability that your first loss would be on the third roll?
[~ 8%)]

(h) What’s the probability that your first loss would be only after the
third roll? [~ 5%]

(i) Suppose you’ve decided to quit playing once you have sustained a
loss five times. What’s the probability you will play for 15 rolls? [0.0039]

(j) In part (i), how many times would you expect to play before quitting?
~ eight times]

3.10.6 Twelve identical machines operating independently produce de-
fective parts randomly three percent of the time. A box of one dozen
parts contains one part from each machine:

(a) What’s the probability that in one box no more than one part will
be defective? [~ 95%]

(b) What’s the average number defective in one box? [less than one]

(c) Suppose the machines produce defectives only eight tenths of a per-
cent of the time. Is a box more or less reliable than before? [more]

(d) A quality control inspector passes a box only if none are defective.
With a three percent defect rate, when should you find the first box that
must be rejected? [about the third]

(e) With a three percent defect rate, what’s the probability the qual-
ity control inspector inspects exactly five boxes before rejecting one?
[~ 7%]

3.10.7 Suppose you draw the top five cards from a well-shuffled deck
of 52 cards.

(a) How many spades do you expect on average? [1.25]

(b) Which is more predictable, spade versus nonspade or black versus
red?

() What’s the predicted number of black cards among the five?
(d) What’s the probability of two spades? [~ 28%]
(e) What’s the probability of two red cards? [~ 33%]

(f) How many five-card hands would you expect to receive before get-
ting one with two red cards? [~ 3]
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(g) What’re the chances you get the first hand with two red cards only
after the third deal? [~ 31%]

3.10.8 Suppose you and a friend each bring a ball to the tennis court
and you find a third ball lying on the court. Suppose all three balls are
identical in appearance and you leave one ball on the court when you
go home. Thus, which ball each of you takes home is random.

(a) Make a probability distribution for the number of players, X, who
take home the same ball they brought. Use your distribution to compute
the mean and variance of X.

(b) What’re the chances you take home the ball you brought?

(c) What’re the chances at least one of you brings home the ball you
brought? [fifty-fifty]

(d) If you repeat the same ritual tomorrow, what’s the chance that on
both days you bring home your own ball? [one chance in nine]

(e) Suppose you play under these conditions every day for a week. What
are the chances you both bring home your own ball on four days or
more? [~ 2%]

(f) Again, playing every day for a week, on how many days should you
find yourselves both bringing home your own balls?

(g) If you’re playing under these conditions, how many days should pass
before you see yourselves both bringing home your own ball?

(h) Suppose there were two balls on the court instead of one. Now, is
the number of players who go home with their own ball more or less
predictable? Guess first and then do the appropriate calculation to verify
that your intuition was correct.

(i) Repeat parts (b)—(g) under the assumptions of (h); but each time
before calculating, guess whether the answer should be larger or smaller
than in the original situation.

3.10.9 Alaundromat has 17 washing machines which, according to the
manager’s estimate, have a 90% chance of trouble-free operation for
the first month after her maintenance check.

(a) How much trouble should she expect during one such month?
(b) What’s the probability of more than two such problems?

(c) If she brings in two more machines, would you guess that her oper-
ation would become more or less stable? Verify this guess.
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(d) After several years of operation, the manager’s new partner looks
over the records and finds that, in fact, there had been an average of
only 0.18 breakdowns within the first week after maintenance checks.
With this more accurate information, she now believes it’s unnecessary
for either of them to be in attendance during that first week. If this plan
is followed, what’s the probability of at least one problem during such
a week when no one is there to attend to it?

(e) If they make nine maintenance checks in one year, what is the prob-
ability of at least one problem in more than one of the weeks the two
women are gone (that is, in the first week after each check)?

(f) If they make a maintenance check each month, what’s the probability
they get through the first six monthly checks without having any problem
during the week following the inspection when they are gone? [~ 34 %]

(g) If they make a maintenance check each month, how many months
could they expect to go before having any problem during the week
they are gone following the inspection? [about five, they should expect
a problem in the sixth month after the sixth maintenance check.]

3.10.10 We know from records that we have about 1.73 serious defects
in ten yards of high-grade cloth which we market. Our bolt consists of
30 yards of cloth.

(a) How many serious defects would we expect in one bolt?
(b) What’s the probability of more than three such defects in one bolt?

(c) You buy ten yards of cloth each month for a special project which
requires an unbroken stretch of ten yards of cloth with no serious defect.
In one year of operation, how many times would you have to return your
ten yards as unusable? [~ ten times]

(d) For part (c), when would you expect to see the first bolt with a
serious defect? [in the first or second month]

3.10.11 For 120 employees in our company, 32% took no sick leave in
the last six months, 41% took one day sick leave, 20% took two days,
none took three, and the rest took four days.

(a) Find the median, mean, mode, range, and standard deviation for the
number of days sick leave taken over these six months.

(b) How many days sick leave were taken all together by our work
force?
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(c) If some of those who took four days had taken only three, would
that have increased or lowered the variability of this data? Guess, then
compute for the modified situation.

(d) If you took a random sample (with replacement) of ten of the em-
ployee records, what is the probability that more than one of the ten
would have been absent on sick leave for four days over the past six
months? [~ 15%]

(e) How many employee records should you have to sample before find-
ing one which showed four days of sick leave over the past four months?
[~ 14]

(f) What’s the probability you would have to sample more than 20
employee records before finding one which showed four days of sick
leave over the past four months? [~ 23%]

3.10.12 Three defective light bulbs inadvertently got mixed up with six
good ones. Suppose two bulbs are chosen at random for a ceiling lamp.

(a) What’s the probability they’re both good?
(b) How many good bulbs would you expect on average?

(c) Suppose one of the bulbs we thought to be good turns out to be
defective also. Is this a more or less predictable situation? First guess the
answer and then verify your guess by making the correct calculation. Be
sure you make your calculations from an appropriate distribution.

3.10.13 In tossing a fair coin, we will assign zero to heads and one
to tails. Let X be the assignment for the first of two tosses and Y the
assignment for the second. Now considering the two tosses together, let
Z=X+Y.

(a) Guessthe mean and variance of each of these three random variables.
(b) Do you expect Z to be more or less variable than X?

(c) Guess how you could obtain the mean and variance of Z from that
of X and Y without computing.

(d) Compute the mean and variance of each of the three random vari-
ables.

3.10.14 In Chapter 5, we will introduce the idea of a “confidence in-
terval” for an unknown parameter. It’s a range of possible values for
the parameter together with the probability—the “confidence coeffi-
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cient”—that the parameter actually falls within that range. Here, we’ll
look at a special case, a confidence interval for an unknown median.

Suppose we’ve taken a sample of size n from some probability dis-
tribution (or, as a special case, from a numeric population). Call the
median M and let min and max refer, respectively, to the smallest and
largest observations in the sample. Then the interval (min, max) can be
thought of as a range of possible values, a confidence interval, for M. In
this problem, we’ll determine the confidence coefficient for this interval.
That is, we’ll determine the probability that this interval contains the
median. For simplicity, assume a random observation has a zero chance
to actually equal M.

(a) Identify M, min, max, and the confidence coefficient. Here’s the

sample:
X 1.2 1.3 14 15

f 1l 3 7 11 2

(b) Let Y be the number of observations in the sample which are less
than M. What’s the model for Y?

(c) P(M < max) =?
(d) P(M > min) =?

(e) What’s the confidence coefficient for the interval (min, max) as a
confidence interval for M?

(f) What’s the confidence coefficient for part (a)?

(g) What’s the median weight of U.S. pennies? Here are the weights
W of 100 newly minted pennies, reported to the nearest 0.02 gram
(taken from W.J. Youden’s National Bureau of Standards Publication
672, Experimentation and Measurement):

W [ 2.99 3.01 3.03 3.05 3.07 3.09 3.11 3.13 3.15 3.17 3.19 3.21
Fl1 4 4 4 7 17 24 17 13 6 2 1

(h) In Chapter 4, we’ll see that (3.11, 3.13) is a 99 % confidence interval
for the median weight, M, of U.S. pennies. How do you interpret this
confidence interval? To what does the confidence coefficient refer?

(i) What’s wrong with interpreting the confidence interval in part (h)
by saying “ninty-nine percent of the time, M is between 3.11 and 3.13,
the rest of the time it’s not™?

(j) In part (g), what’s the relationship between the sample median
and M?






4.1 Continuous Distributions and the Continuous
Uniform Distribution

Continuous Distributions

Every probability model we’ve seen so far has been discrete—the pos-
sible values are separated from each other as “discrete points” on a
number line. With this section, we begin our study of the so-called “con-
tinuous” distributions. A continuously distributed random variable on
an interval [a, b)isarandom variable which takes on any possible value
in the interval [a, b] of real numbers. Random variables whose values
are measurements of time, weight, size, and so on, are typical examples
of situations which may give rise to continuous distributions.

We very consciously say “may” give rise to continuous distributions
because it is a question of interpretation. Weight measurements, for ex-
ample, might or might not be best represented as continuous. If you
measure only to within a quarter of a gram, let’s say, then your mea-
surements would be discrete:

0, 0.25, 0.50, 0.75, 1.00, 1.25, ...

[ TR A A A R

0 1/4 1/2 3/4 1

But very often, one measures with a high degree of accuracy, getting
numbers like

0.0340, 0.1357, 0.3649, 0.4002, ...

any number in this range
/\—/ is possible \/\
I [ [ [ l ... ele

0 0.0340 0.1357 0.3649 0.4002

where all the values in between are possible—at least theoretically. In
this case, a continuous interpretation of the measurements would be
more appropriate. Note that in point of fact, any physical measurement
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is discrete because an actual measuring device has finite accuracy. So
it’s not a question of the actual physical measurements. When we say
our model is continous and not discrete, it’s an assertion about what
measurements are THEORETICALLY possible.

Time measurements are often modeled as continuous. For example,
in the next section, we introduce the exponential distribution which,
among other applications, is typically used in industry to model lifetimes
of electronic components. For the exponential distribution, as we’ll see,
any real number value from zero to infinity is possible—a component
may go bad immediately, it may burn only a few seconds, or only a
few minutes, or it may, in fact, burn several hours, or possibly many,
many hours. The mean lifetime for the component in question may be
several thousand hours, but any number less than that is conceivable.
Furthermore, any number more than that is also conceivable. You cannot
fix a number and say “no component will burn longer than this!” So,
we choose a continuous model.

Before going further, please . . .

In these problems, assume X to be a continuously distributed random
variable.

4.1.1 If c is any one of the possible values of X, then P(X = ¢) is zero.
Can you explain why on intuitive grounds?

4.1.2 Because for any ¢, P(X = c) is zero, what DOEs have nonzero

‘ probability?

The Probability Density Function

Because P(X = z) is zero for any X when X is continuously distributed,
the representation of probabilities for X cannot parallel the approach
we have been taking for the discrete distributions. To avoid concepts
from integral calculus, we will confine ourselves to representing these
probabilities in graphical terms, in terms of pictures. In other words, for
continuous distributions, we will think of probabilities in terms of areas
in a specific graph.

The probability density function for a continuously distributed ran-
dom variable X is the function—usually denoted by a symbol such as
f(z)—whose graph determines the probabilities for X by means of “area
under the curve,” area under the graph of f(z). Thus, in the following



4.1 — Continuous Distributions and the Continuous Uniform Distribution 131

picture the shaded area represents the probability that X takes on a
value in the interval (c, d)

Now, please . . .

4.1.3 Assume X is continuously distributed with probability density
Tl'y Your Hand function f(z). Suppose X only takes on values between zero and 100;

thatis, a = 0, b = 100. What is the shaded area in each of the following
pictures?
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4.1.4 Suppose you have a sample of size n from a continuous distri-
bution. Let z; be the ith observation in the sample after having put
the sample in ascending order. Show that the probability for a random
future observation to fall in the interval between z}, and zy is

h—k
n+1

The Continuous Uniform Distribution

The uniform distribution is the simplest example of a continuous distri-
bution. A continuous uniformly distributed random variable is a con-
tinuous random variable for which all intervals of a given length have the
same probability. Be careful of the terminology being used here. When
we speak of “the probability of an interval,” we mean the probability
that the random variable takes on a value within the interval. Sometimes
for the phrase “the random variable X takes on a value in the interval
[c, d]” we’ll use the standard set notation: X €[c, d]. For example, the
probability of the interval [2, 3.5]is P(2 < X < 3.5), or using set no-
tation, P(X € [2,3.5]). If X is some kind of measurement, then we’re
talking about the probability of getting a measurement bigger than or
equal to two and smaller than or equal to three and a half.

Although one can be more general, we will only consider uniform dis-
tributions defined on a fixed, finite interval whose endpoints we denote
by a and b. This implies that X necessarily takes on a value somewhere
between a and b. Consequently,

Pe<X<bh =1
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As you’ll see in the exercises below, the uniform distribution is com-
pletely determined by a and b, the parameters of the uniform distribu-
tion.

Now, you will easily derive the basic properties of the uniform distri-
bution as you . . .

In the following problems, assume X is continuously distributed with
probability density function f(z).

4.1.5 For a continuous distribution, the graphical representation should
give the probabilities as area over the interval in question, like the
histograms we studied in Chapter 2. Suppose you have a continuous
and uniformly distributed random variable X on the interval [2, 3].
What would the graphical representation for P(2.25 < X < 2.5) look
like?

4.1.6 Suppose that X is uniformly distributed on the interval from two
to seven. With the notation above, this means a = 2, b = 7. Thus, X
only takes on values between two and seven. Draw some sketches and
see if you can guess what the probability density function for X must be.
This is not necessarily easy—you may see it or you may not. It requires
a little experimenting and a little good luck. Try!

4.1.7 Inthe previous problem, you saw that if X is uniformly distributed
on an interval [a, b] then its probability density function must be con-
stant:

flz)=c.
What is the value of ¢?
4.1.8 Suppose your random variable X is uniformly distributed on
[a, b].
(a) Try to guess the mean for X .

(b) If c and d are between a and b , what is the probability that X is in
the range [c, d]?

(c) Give a verbal description of the probability in part (b) . Describe it
as a certain proportion.

Again, we remind you that our treatment of continuously distributed
random variables cannot run parallel to the treatment of discrete ran-
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dom varibles because specific values now have probability zero. For a
continuous distribution, we focus on the probability for intervals, for

ranges of values.
Here is a summary of

the continuous uniform distribution:

A continuous random variable X taking on only values
between a and b is uniformly distributed on [a, b] with
parameters a and b if the probability of any interval is
proportional to the length of the interval.

1 )
flz) = 2 , a constant function,
—a

(2 — 1)

Plx1 < X <x) = b—a)

whenever a < 1 < 13 <b.

Also: p o= (a+9b)
2

, _ (b—a)?

7 T 12

So now, please . . .

In the following problems, suppose that X is uniformly distributed on
the interval [a, b].

4.1.9 (a) Show that the cumulative distribution function for X is
PX <z)=(x—a)/(b—a).

(b) Illustrate part (a) with a picture.

(c) Show that P(|X — u| < 20) = 1.

4.1.10 For each of the following, sketch the graph of f(z) showing the
desired probability and then evaluate the probability from the appro-

priate formula:
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a) P(X <2.5la=2,b=4);
b) P(7 < X < 9.5|a = 6,b=10);
P(X > pxla=2,b=4);

(
(
()
(d) P(X < ux) for any a, b.
(

e) For the X of part (b), what is the probability that X is within one

‘ and a half standard deviations of its mean?

4.2 The Exponential Distribution

Modelling the Reliability of a System

We’ll introduce the exponential distribution in terms of one of its most
typical applications, reliability theory. In reliability theory, one is con-
cerned with the “time to failure” of a system. The word “system” here is
broadly defined. It can refer to some kind of mechanical or electronic de-
vice or component, it can refer to a piece of industrial equipment (made
up of a number of components), or to an entire production or service
process. It could refer to a computer system of considerable complexity
or to something so simple as a single electronic component or even just
a household fuse. The reliability of such a system is the probability of
no failure in a specified time period under appropriate operating con-
ditions. Note that “reliability” is a numeric quantity, a probability for
satisfactory performance.
It’s usual to divide the lifetime of such systems into three phases:

e The “burn-in” (“early failure” or “infant mortality”) period in
which failure may occur because of some defect in the system
itself. A defective fuse, for example, may blow in the first few
hours of operation.

e The “useful life” (or “random failure”) period in which the sys-
tem is functioning properly.

® The “wear-out” period in which failure can be expected when
the system is used beyond its reasonable life.
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You see that for the first and third of these phases, failure is the result
of a problem with the system itself. We’re not going to consider these
two phases; instead, we will be concerned only with the second phase
which can often be modeled by the exponential distribution. During this
period of “useful life” —the period of random failure—the system may
fail due to some external cause. For example, a perfectly good household
fuse blows when there is a dangerous surge in the electrical current. Any
system, even though operating properly, will fail when there is some
unusual or unexpected demand which stresses the system beyond its
capacity. Thus, failure in the second phase is thought of as randomly
caused by independent factors external to the system itself.

This circle of ideas is really quite general, a series of checkout lines
in a large supermarket is a system which may be considered to “fail”
when a customer has to wait before checkout. Serving lines in a fast
food restaurant provide another example of such a system.

Before we continue, it will be helpful if you give some thought to how
we might model these systems. Here are some exercises for you to . . .

4.2.1 (a) How would you model the number of failures during the pe-
riod of useful life for a system such as we have discussed above?

(b) What’s the probability that the first failure occurs after some specific
time ¢? In other words, what’s P(T' > t)? Here, T is the time elapsed from
the beginning of the random failure period to the first failure.

4.2.2 For T as defined in the previous problem:

(a) Verify that T is indeed a random variable.

(b) Show that T is a continuous random variable.

’ (c) Give the cumulative probability distribution for T .

The Exponential Distribution

The random variable T of Problem 4.2.1 is an example of an exponen-
tially distributed random variable. We need not have defined T as the
time elapsed from the beginning of the period of useful life. T could
be the time elapsed between any two failures. Then exactly the same
analysis will carry through. We should then look at a period of time ¢
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after the first of the two failures:

the time elapsed
/\/ between two failures

| T 1
I T |
to t+to 121
time of the first no more failures fime of the
of two failures up to here second of
a distance of f two failures

time ¢

Saying there’s no failure (X = 0) in the period of time ¢ is to say the
time to the next failure is greater than ¢ (i.e. T' > t). So t is the length of
a time interval in which the number of failures, X , is zero. From this
we obtain

P(T >t)= P(X =0) with X as the number of failures
on the interval ¢y to t + g

="t where ) is the average number of

failures per unit of time

This gives us the cumulative probability function for T

PT<t)=1-P(T >1)
=1-P(X=0)
=1-¢

Now, because the probability for a continuously distributed random
variable like T is represented as area under the graph of its probability
density function, we have the following graph:
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What is the function f(t)? Without reference to calculus, this is not
obvious. But, believe it or not, the density function whose areas will
generate the probabilities for T is just

f(t) = xe

The probability distribution with this density function is called the ex-
ponential distribution.

The discussion above gives us a rule of thumb for when to expect the
exponential distribution to be appropriate: The exponential distribution
models “time between two failures” in a system where the NUMBER of
failures is appropriately modeled by the Poisson distribution. That is,
where two simultaneous failures are impossible, any two failures are
independent and the number of failures is proportional to the time in
which they occur.

Furthermore, there is nothing special about looking for “failures of
a system.” We might be looking for any kind of occurrence where
the number of occurrences follows the Poisson distribution. In that
case, the time between two occurrences would follow the exponen-
tial distribution. In the exercises, you’ll see some typical applications
of the exponential distribution other than its application to reliability
theory.

Here’s a summary of



4.2 - The Exponential Distribution

Try Your Hand

139

the exponential distribution:

A random variable T has the exponential distribution if
its density function is

fit) = de™™,
in which case
PT<t) = 1-e, t>0.
And p o= 1/\
or = 1/)2

With T as “time between two occurrences,” A is the “ex-
pected number of occurrences in a UNIT of time.”

It’s not important whether we write P(T' < t) or P(T < t) because T' =t

with probability zero. And it’s not surprising that ux is 1/\ when you

think of our reliability example. There, ) is the expected number of

failures per unit time and so 1/ should be the expected time per failure.

If you expect five failures per hour, for example, then you should expect

one-fifth of an hour between any two failures. Entirely understandable!
Here are some problems for youto . ..

4.2.3 Suppose one expects an average of 2.3 calls to be received at a
telephone switchboard in a five minute period.

(a) How many minutes would you expect on average to elapse between
any two calls?

(b) What’s the probability of more than seven calls in a quarter of an
hour?

(c) What’s the probability of as much as ten minutes between calls?
4.2.4 A particular electronic component is judged to have an average
life of about 2500 hours.

(a) What’s the probability that one component will burn out before
1000 hours?
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(b) How many components should we expect to purchase to run the
system using this component for 10,000 hours?

(c) Suppose we have a system which uses these components in pairs.
What’s the probability that the system will run for more than 1000
hours without a failure due to these components?

4.2.5 Show that an exponentially distributed random variable T has no
memory.

(a) Thatis, show that
P(T >t+s|T >t)=P(T > s).

It can be shown that any random variable satisfying this equation—any
memoryless random variable—must be exponentially distributed.

‘ (b) Give a verbal description of the equation in part (a).

4.3 The Normal Distribution

The Normal Distribution as a Model for Measurement Error

The normal distribution which we introduce in this section is certainly
the most important of the continuous distributions. Its discovery is a
fascinating story in the history of statistical theory—a story of struggle,
false starts, indulgent circular logic, and, finally, clarity, precision, and
triumph.

The story begins with the self-taught Thomas Simpson, who began
his career as a London weaver and part-time mathematics instructor.
By 1755, he was a professor at the Royal Military Academy and Fellow
of the Royal Society of London. In 1755, he read a paper before the
Royal Society entitled “On the Advantage of Taking the Mean of a
Number of Observations, in Practical Astronomy.” Simpson attempted
to justify taking the mean of several astronomical observations and to
refute those who “have been of the opinion, and even publickly (sic)
maintained, that one single observation, taken with due care, was as
much to be relied on as the Mean of a great number.” Simpson’s first
step toward the normal distribution “was his decision to focus, not on
the observations themselves or on the astronomical body being observed,
but on the errors made in the observations, on the differences between
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the recorded observations and the actual position of the body being
observed.” [Stigler]

The key idea here is that for repeated measurements, the measurement
error is a random variable and we need to know its distribution: What is
the appropriate probability distribution, the appropriate abstract model,
of measurement error? Assuming no systematic source of error, either
in the measuring instrument or the observer, it’s clear the mean of the
errors should be zero and that the distribution should be symmetric
about that mean. In a 1757 revision of his paper, Simpson described
the physical conditions which would imply a zero mean error and a
symmetric distribution about that mean in these terms:

That there is nothing in the construction, or position of the instru-
ment whereby the errors are constantly made to tend the same way,
but that the respective chances for their happening in excess, and
in defect, are either accurately, or nearly, the same.

He also described the physical conditions which should determine the
variability in the errors:

That there are certain assignable limits between which all these
errors may be supposed to fall; which limits depend on the goodness
of the instrument and the skill of the observer.

Simpson chose—somewhat naively and purely for convenience—a
triangular density function for his error distribution:

But any number of curves would satisfy the conditions described above.
Laplace, looking at this problem expressed it this way: “. . . of aninfinite
number of possible functions, which choice is to be preferred?”

The appropriate choice for an error distribution, the curve which
is now called the “normal density function,” was first used in a work
published in 1809 by Karl Friedrich Gauss. Gauss was one of the most
brilliant mathematicians the world has ever known, but his derivation
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of the normal density as an error distribution was suspicious to say the
least—his argument was essentially circular, giving no support at all for
his particular choice!

Don’t blame Gauss! Praise him. A common misconception holds that
great scientists thrive only on precision and exactness, but just the op-
posite is true. Advances in knowledge are born from the chaos of ig-
norance—if you already knew the answer, we wouldn’t call it an “ad-
vance.” Therefore, success in scientific discovery requires a high degree
of tolerance, prehaps relish, for being immersed in ignorance. And a
willingness to risk error, even foolish error. In fact, at the very moment
precision is obtained, the scientist abandons her problem, for it is ex-
actly at that moment the problem is solved. She may afford herself some
brief time to bask in the sunshine—the precision and exactness—of her
success, but further progress demands she plunge back into the ocean
of chaos and ignorance from which new discoveries will be born. This
being the situation, it’s inevitable that all sorts of crazy stuff will go on
before knowledge is attained.

Well, in the 1770s, before Gauss had given any consideration to it, the
French astronomer and mathematician Pierre Simon de Laplace (teacher
of Napoleon at the Ecole Militaire in Paris) had made two separate but
unsuccessful attacks on this problem, the problem of determining from
first principles a reasonable probability distribution for random error.
And it proved to be very difficult! Laplace seems to have encountered
Gauss” book for the first time in the early summer of 1810. In Stigler’s
words, “. . . it must have struck him like a bolt. Of course, Laplace may
have said, Gauss’s derivation was nonsense, but he, Laplace, already had
an alternative in hand that was not—the Central Limit Theorem” (see
[Stigler], p. 143). Laplace had presented this theorem in a paper delivered
to the Academy of Sciences in April of 1810. By the time it was published,
he had obviously seen Gauss’ book, for he appended a supplement using
his Central Limit Theorem to justify Gauss” choice of error distribution.

Laplace’s Central Limit Theorem is a major focus of Chapter 5. This
theorem, which Laplace had already proved in a completely different
context, gave him a perfect argument for his choice of error distribu-
tion, what is now called the “normal distribution.” This distribution
would indeed be the right choice if one could think of the errors as com-
pounded of many independent “elementary” errors (later known as the
“hypothesis of elementary errors”). If that were true, Laplace’s Central
Limit Theorem would give the appropriate density function. You’ll see
why this is true in the next chapter.

What does the normal density function look like? Here’s its graph,
the so-called “bell-shaped” curve:
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‘ Z
Because we’re assuming an ERROR distribution, the mean is zero. A mean
which is not zero is certainly also possible for a normal distribution, as

we’ll see later. ‘
The location of ¢ in the picture is determined by the following rule:

the possible errors

A fundamental fact of the normal distribution:

There’s about a 68% chance for a value within one stan-
dard deviation of the mean of a normally distributed
random variable. There’s about a 95% chance of a value
within two standard deviations of the mean and it’s vir-
tually certain for a value to fall within three standard
deviations of the mean.

The probabilities given by this rule are rounded to the nearest whole
percentage. We’ll treat these as approximations. When we refer to an
“exact” value, we’ll usually mean a value obtained from the normal
table in the appendix which gives percentages accurate to two decimal
places (hardly exact!).

Thus, about 68% of the area under the curve should be centered
between u — o and u + o. The standard normally distributed random
variable, denoted by the symbol Z, is the normally distributed random
variable for which 4 = 0 and ¢ = 1. So, if we’re talking about the
standard normal distribution, a little over two-thirds (about 68%) of
the area under the curve should lie between Z = -1 and Z = 1:
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This curve, the standard normal density function, is given by
f(2) = (1/V2m) exp[—2%/2].

It’s called the “Gaussian curve” and is defined for all values of Z, al-
though values outside of the range (-3, 3) are very unlikely (why?). The
symbol exp refers to the exponential function to the base e (see page 111)
and is introduced only for notational convenience. When the exponent
is complicated, as it is here, exp[u] is easier to write than e¥.

The standard normal distribution is only one of the large family of
normally distributed random variables. If X is a member of this fam-
ily, we write X ~ N(u, 0%), which is read “X is normally distributed
with mean y and variance o2.” This family consists of all random vari-
ables having the density function given below. The notation N(u, o2)
identifies the two parameters for the model, namely the mean  and the
variance 2. Any one member of this family is determined by its mean
and variance, which could be any real-numbers. Thus, Z is determined
as the unique member of this family having mean zero and variance one.
We think of the mean of a normally distributed random variable as the
result of a systematic “effect”, with any variation from that mean due
to “random error,” hence the “bell-shaped” curve. The density function
for N(u,02) is

flz) = (1/Vo22r) exp|—(z — p)*/20%].

If this equation looks forbidding, don’t worry! The model is mathe-
matically too sophisticated for us to do direct computations. We’ll use
either a picture or the normal table in the appendix to determine normal
distribution probabilities.

Here are some exercises for youto . . .

4.3.1 (a) Justify the statement made above for Z that “. . . values out-
side of the range (-3, 3) are very unlikely.”

(b) Recall that the notation for the family of normally distributed ran-
dom variables is N(u, o2). Using this notation, Z is . . . ??
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(c) Evaluate P(Z < —2) using the relevant picture.

(d) Evaluate the following probabilities:

P(Z>1), P0O<Z<1), P(-1<Z<2), P1<Z<?2).

4.3.2 Find the value of Z that will yield the required probability.
(a) P(—1 < Z <?) = 68%;

(b) P(Z <?) = 84%;

(c) P(Z <?)=16%;

(d) P(Z >?) =16%;

(e) P(Z >?) =2.5%;

(f) P(Z <?)=0;

(g) P(? < Z <?)=100%;

(h) P(Z >?) = 84%;

(1) P(? < Z < 0)=34%.

4.3.3 In the text we said “it’s clear the mean of the errors should be
zero.” Why should an error distribution have mean zero?

4.3.4 (a) Sketch the graph for X ~ N(2.5,3.24).

(b) Locate zero in the picture for part (a).

4.3.5 (a) Sketch the graph for X ~ N(2.5,0.0064).

(b) Locate zero in the picture for part (a).

4.3.6 Which, if any, of the following pictures could be the graphs of
the indicated density function? For those which obviously could not be,
explain why not and redraw the curve to make it correct. Leave the axis
and its labeling unchanged.
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4.3.7 Show that the formula for the density function of a normal dis-
tribution . . .

flz) = (1/Va22n)exp[—(z — p)*/25%],

gives the “right” result when you specialize it to the standard normal
distribution.
4.3.8 (a) In what sense is “measurement error” a random variable?

(b) If you make repeated measurements, what value would you expect
to get on average?

(c) How variable is the measurement error?

(d) What determines the variability of the measurement error?
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The Normal Distribution as an Abstract Model

As we have seen before, a probability distribution may serve to model
many situations besides the one for which it was originally intended.
This is emphatically true of the normal distribution. Under what real-
world circumstances should you expect the normal distribution to be an
appropriate model? This is not an easy question to answer. Historically,
the normal distribution has often been used where it was not appropri-
ate at all, as later experience (usually painful!) has shown. Nowadays,
there are sophisticated “tests for normality.” These are better guides than
were formerly available, but even with the most sophisticated tests, the
question is not easily resolved. We’ll not study these “tests for normal-
ity.” They’re too sophisticated for an introductory statistics course. Later
we’ll show you a simple graphical technique—the “normal probability
plot”—which is widely used as a rough “eyeball” test. But the normal
probability plot gives no insight into the conditions that characterize
normality. For that, we rely on the intuitive criterion presented below.
That rule-of-thumb criterion is closely related to the “measurement
error” interpretation of the normal distribution. To focus on the error—
this was Simpson’s insight—you need to eliminate the systematic part of
the measurement. The systematic part, of course, is the true value of the
object being measured. By looking at the DIFFERENCE of two measure-
ments, the systematic part gets eliminated: Suppose the measurement is
M, with E being the error. If M; and M, are two such measurements,

M = true value + E,

and
M, — M, = (true value + E;) — (true value + E»)

= E, - E.

Thus, the difference in two values of M is just the difference in two
random errors, but the difference in two random errors looks like ran-
dom error again. What do we mean, intuitively speaking, by “looks like
random error”? Simply, the net result of many small and uncontrollable
influences more or less independent of each other. So to say that a num-
ber like My — M, “looks like random error” is just to say it’s “due to
many independent random factors.” This last phrase—”due to many
independent random factors”—is a somewhat more complete way of
expressing our intuitive criterion for normality. It gives you an opera-
tional notion which you can actually apply to a situation to see if the
assumption of normality seems reasonable.
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Here’s our criterion . . .

a rule of thumb for when to use the normal distribution:

Any situation giving rise to numbers where the differ-
ence between any two values looks like random error (is
due to many independent random factors) will often be
modeled appropriately by a normal distribution.

When you’re using this intuitive criterion as a justification for assum-
ing normality, please remember that it’s only a rough rule of thumb
which might serve as a preliminary guide. The next step would be the
“normal probability plot” which we introduce later—it’s simple to use
if you have a computer statistical package. But even this criterion is rel-
atively weak. You would probably want to look into the matter more
carefully at some point. In this course, the tools for doing that are not
available. For a more subtle analysis, you should turn the question over
to the experts. Or become an expert yourself!

In fact, a lot of criticism has been aimed at the naive use of our rule of
thumb during the nineteenth century, especially in regard to social issues.
For that reason, presumably, all mention of the rule has disappeared
from current textbooks. Still, if taken in the proper spirit, it’s helpful
as a preliminary guide for understanding the normal distribution. We’ll
use it. Often.

Even in the nineteenth century this intuitive criterion was not used
uncritically. It was understood that certain phenomena would follow
other rules. Quantities such as income where changes are proportional
to the quantity itself—when you get a raise, for example, it’s deter-
mined as a percentage of your current income—will probably follow
a “lognormal” distribution. That is, the quantities themselves are not
normally distributed, rather their logarithms are. Much economic data
follow the lognormal distribution. This distribution was well known
in the nineteenth century. A full mathematical treatment was presented
in 1879 by the Cambridge mathematician Donald McAlister. Similarly,
it was recognized early on that certain quantities which are inherently
quadratic—surface areas of organisms, for example—become normally
distributed only after a square root transformation. Weights of organ-
isms, being determined by volume (a cubic quantity), will often become
normally distributed after a cube root transformation. Again, techniques
for identifying these transformations and checking their appropriateness
are beyond the scope of this course.
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Let’s stick to our rule of thumb! To explore the normal distribution
a bit further, please . . .

4.3.9 (a) Using our intuitive criterion as a guide, show that you should
expect repeated measurements of some object to be approximately nor-
mally distributed.

(b) You can think of the numbers in a numeric population as values of a
random variable. What’s the experiment? What’s the random variable?
How would you decide if it’s a normally distributed random variable?

4.3.10 (a) Explain why “specification error” should be normally dis-
tributed. Recall that specification error for a manufactured object is the
difference between the actual dimension of the object and the “ideal,”
the specified dimension (see page 47).

(b) In part (a), we said specification error “should be” normally dis-
tributed. What assumption does this make about the manufacturing
process?

4.3.11 (a) The prototypical example of a “normally distributed popula-
tion” is a set of scores for a test taken by a large homogeneous population
of test takers, for example, the SAT test in a given year. Explain why
test scores should be approximately normally distributed.

(b) Test scores will not always be normally distributed. How could it
happen that a test given to a large class would have a “bimodal” distri-
bution like

47 63 g

4.3.12 It’s always possible to model a real-world situation in more than
one way. What model you choose depends on your specific needs, the
specific kinds of questions you want to address. Test scores can be
thought of very simply as we did in Problem 4.3.11 or they can be
modeled with more detail as we do in this problem.

The SAT test for a particular year is a device for measuring a student’s

the possible
scores
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“ability” for college. Let S =“SAT test score.” Let T' be the “true ability”
for any student taking the SAT test that year and let E be the test’s error
in measuring that ability.

(a) How is S related to T and E?

Now explain the sense in which
(b) T should be thought of as a normally distributed random variable.
(c) E should be thought of as a normally distributed random variable.

(d) S should be thought of as a normally distributed random variable.

[Hint: Parts (b), (c), and (d) should be answered in different ways.
Think about that and then look at the solutions level 1.]

4.3.13 (a) Show that if X is normally distributed, then any linear func-
tion of X is normally distributed.

(b) Show that the rule in part (a) does not hold in general for all families
of distributions. Do this by showing that a linear function of a binomial
random variable is not necessarily binomial.

(c) Give the probability distribution of Y = 2X +1 where X ~ B(1, p).
Compute the mean and variance of Y in two ways.

(d) What’s the point of this problem?

(e) Suppose X and Y are normally distributed. Show that a X + bY is
normally distributed, where a, b are any two constants.

4.3.14 Suppose X is any normally distributed random variable with
mean g and standard deviation o; that is, X ~ N(u,0?).

(a) Show that X can be expressed as a linear function of Z with positive
slope.

(b) Show that Z can be expressed as a linear function of X with positive
slope.

4.3.15 Let M be the observed measurement for some measurement pro-
cess and let E be the measurement error.

(a) Show that M is a random variable.

(b) Identify the mean and variance of M.

(c) What is the distribution of M?
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(d) How is the situation for M and FE similar to the situation for X and
Y where X and Y are, respectively, the number of dots on the top face
‘ and on the hidden face on one roll of a die?

The Standardizing Transformation

When you look for values of the standard normal distribution in the
table of the appendix, you’ll find probabilities of the form

P(Z < z) forz>0.

For example, the table gives P(Z < 1.37) = 0.9147:

But, in fact, the standard normal table actually provides probabilities
of any form whatsoever for any normally distributed random variable,
not just for Z. Here’s how: Suppose X is any normally distributed ran-
dom variable with mean p and standard deviation ¢. Then Z is a linear
function of X with positive slope (Problem 4.3.14): Z = (X — u)/o.
The slope is 1/0. But a linear function with positive slope “preserves
inequalities,” and so X < z if and only if Z < 2. In other words, the
two conditions X < x and Z < z say exactly the same thing: one’s true
if and only if the other one is. Well if that’s so, they must have the same
probabilities: like P(X < ) = P(Z < z). This line of reasoning shows
that

If you compute Z by standardizing the normally distributed random
variable X:

If

then
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This is illustrated by the following:

Note that Z is a linear function of X : Z = a + bX, with a = —pu/o
and b = 1/0. This linear function is the standardizing transformation
for X which converts X into Z where Z is the “standard” normally
distributed random variable. This transformation allows you to find
probabilities for X from the corresponding probabilities in the Z table
of the appendix. If you understand the pictures properly and use the
symmetry of the distribution, you’ll be able to obtain any probability
whatsoever!
To see this, please . . .

Hint for calculating: As we did above, draw both the picture for X
and the corresponding picture for Z, then guess in advance what your
answer ought to look like (you can avoid a lot of grief this way; you’ll
catch obvious errors!). Then after guessing, go to the Z table and find
the exact value.

4.3.16 Suppose X ~ N(2,25). Compute the following probabilities.
(a) P(X < 7.4);

(b) P(X < 2);

(c) P(X >1);

(d) P(X > —-1);

(e) P(X < —1);

(f) P(X < 0);

(g8) P(1 <X< 7.4).
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4.3.17 Compute the probabilities:

(a) X ~ N(3.8,1.44).. P(X <35), P(X <2.6), P(X <2);

(b) X ~ N(12,4)... P(X < 14), P(X <10), P(X > 9);

(c) X ~ N(0.18,0.0001)... P(X <0), P(X <0.17), P(X > 0.16);
(d) X ~N(0,1).. P(X <1), P(X<2), P(X>1.5);

(e) X ~ N(-2,1.21)... P(X >1), P(X >0), P(X>-3);

(f) X ~ N(4,2.25)... P(4 <X<9), P(3<X<3$), P(X >3).
(8) Now explain the logic which justifies the calculation in part (f) where

you used the following equations:

P4<X<9)=PX<9) -PX<4)

and

P3<X <$§)=PX <5)-P(X >3).

4.3.18 In each of the following determine the value of X which yields
the required probability. First make a rough guess and then find the true
value from the table—if you don’t find it exactly, take the closest value.
[Hint: You’ll gain maximum benefit and spend the least time on this
exercise if you make a serious effort to answer the question BEFORE you
look at the answers.]

(a) X ~N(1.3,0.1764)... P(X <>)=o

(b) X ~ N(1.3,0.1764)... P(X >?)=0.1

(c) X ~ N(5,1)... P(X >?) =0.22

(d) X ~N(5,1)... P(X <>):0

(€) X ~N(-2,4.84)... P(X<?)=07

(f) X ~ N(—2,4.84)... P(X <?) = 0.51;

(g) X ~ N(14,5.29)... P(10 <X<?) = 0.38;

(h) X ~ N(14,5.29)... P(? <X< 12) = 0.49;
(i) X ~ N(—36,25)... P(—30 <X<?) = 7%;
() X ~ N(=36,25)... Pux <X<?) = 34%.
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The Normal Probability Plot

Here we present a simple graphical technique, the “normal probability
plot,” customarily used to check on the assumption that a given sample
was drawn from a normal distribution. The idea is simple, although the
work involved is quite tedious for large samples—in practice, you would
use a computer. Perhaps the most obvious graphical technique would be
to check if a histogram for some grouping of the data seems to have the
shape of a normal distribution. But, in fact, that doesn’t work well at
all. The shape of a histogram can change radically depending on exactly
how you group the data. The “normal probability plot” presented below
provides a more sensitive check on normality than does a histogram.

The normal probability plot for a sample of size n plots the obser-
vations in the sample against the corresponding percentiles of Z. We
will explain this in more detail below. But first we need to know that
a percentile for the probability distribution of a random variable is a
value of the random variable which “cuts off” a given percentage of
the distribution. For example, the term “median” can be defined as the
50th percentile because it cuts off half the distribution. In other words,
half the distribution is below the median. A “tenth percentile” would
be the value which cuts the distribution into 10% and 90%, so that ten
percent of the distribution is below that point. Here’s the picture for the
tenth percentile of Z:

10%

4 T
0
the possible

the 10th percentile values of Z

The idea behind the normal probability plot for a sample is to compare
that sample with an ideal random sample from N(u,o?). If you think
your sample came from N (u, 02), the comparison should be “favorable.”
Exactly what that means we’ll see below. An ideal sample should have
been evenly spread throughout the distribution it was drawn from. The
phrase “evenly spread,” however, does not refer to the observations in
the sample but rather to the probabilities of the distribution. In other
words, the sample should cut the distribution into equal probabilities.
For example, four “ideal observations” from Z cut the distribution into
five (FIVE notice, not four) equal probabilities:
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We obtained these four “ideal” observations of Z from the Z table by
looking up the appropriate probabilities. Now, if you have a sample
which you think came from the normal distribution N(u, o?), the first
thought is to compare it with the ideal sample from N (y, 02). But there’s
no way to determine the values of the ideal sample because we don’t
know the parameters p and o of N(u,0?). So, instead, we compare our
sample to the standardized version of the ideal sample. In other words,
we compare our sample to the ideal sample from the Z distribution
(shown in the picture above for n = 4). You’ll see the details of this
comparison as you . . .

4.3.19 We’ll lead you through the construction and interpretation of a
normal probability plot for the following sample:
{5.2, 0.4, 0.2, 2.5, 1.2, 3.5, 1.8, 4.8, 2.7}.

(a) There are nine numbers in the sample, so we’re talking about di-
viding the area under the curve of Z into ten equal probabilities. What
values of Z will do that?

(b) The percentiles of Z which you determined in part (a) are not evenly
spaced on the number line. Why not?

(c) What are the points we want to plot in our normal probability plot?

(d) Suppose our sample really is from a normal distribution, N(u,c?)
say, and that the sample is more or less like that distribution. What
should the normal probability plot look like?

(e) Give the normal probability plot for our sample.

(f) Interpret the normal probability plot for our sample in the light of
part (d).

(g) You should realize that there’s some variation in the method of
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obtaining the Z percentiles corresponding to a given sample size. Our
method determines them through the formula k/(n + 1). Explain.

4.3.20 The Stanford University geologist Kerry Sieh studied the occur-

rence of earthquakes at Pallett Creek northeast of Los Angeles on the
San Andreas fault. Sieh estimates that earthquakes occurred in the years

1857, 1720, 1550, 1350, 1080, 1015, 935, 845, 735, 590.

Based on Sieh’s estimates, do you think that “time between earthquakes”
‘ is normally distributed?

Continuous Approximations to Integer-Valued
Random Variables

We have typically used line graphs to picture the probability distribu-
tions for discrete random variables:

0 1 2 3 4 5

But there is nothing to keep us from replacing the vertical lines by rect-
angles of appropriate width so that area represents the probability of a
given value:

1

I T ] T T I
0 1 2 3 4 5

Now, imagine a discrete random variable with a very large number
of possible values. Suppose it takes on any integer value from zero to
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10,000. With probability represented by rectangles, the probability dis-
tribution will look like

H—’H_I-H_I—Hm—’ﬂ‘l‘l_l_’ . H-l_h-‘_ﬂ_ﬂefc.... 1
0 etc. ...

10,000

This picture would be visually easier to comprehend if we left out the
edges of the rectangles and just drew the outline:

Or, by making the values much closer together and the rectangles pro-
portionately smaller, you would get the whole picture on one page with-
out having to break it with a lot of “dot-dot-dots”

You may think this looks like a smooth curve, but it’s not—it’s just that
the many horizontal and vertical lines have become so small you can’t
see them! We drew a smooth curve, of course, but the point is that with
so many values, the probability distribution as a whole will look very
much like a continuous distribution.

This purely heuristic line of reasoning based on the pictures suggests
that we can approximate a discrete distribution by a continuous one if
the discrete random variable has a large number of values. When we
superimpose the continuous distribution over the discrete one, we get
the following picture:
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You can see that the area under the curve and the area enclosed by the
rectangles is not exactly the same, but the “errors” tend to cancel out:

Note also that a probability of the form P(X > 3) must be calculated
by area under the curve starting at X > 2.5, where X is the continuous
approximation to X:

This adjustment of moving to the edge of the rectangle as we pass from
X to its approximation X is called the continuity correction. In many



4.3 - The Normal Distribution

Try Your Hand

159

cases, the continuity correction will have little or no effect on the answer.
But you’ll never be wrong if you put it in—in some cases, it will make
a significant difference. You should use the continuity correction unless
specifically instructed to the contrary. But before we go any further, why
don’t you think about this a bit . . .

4.3.21 Each of the following conditions would be necessary for an
integer-valued random variable to be approximated by the normal dis-
tribution. Explain why.

(a) It must have a large number of possible values.
(b) It must be approximately symmetric about its mean.
(c) It should have only one mode, and the mean, median, and mode

should be approximately equal.

4.3.22 Suppose X is an integer-valued random variable which is ap-
proximately normally distributed with mean 32.8 and standard devia-
tion 10.3. What’s the probability that X is greater than 50?

4.3.23 Assuming X to be a continuous approximation to an integer
valued random variable X, what should be the limits on X to give the
correct approximation to the following probabilities:

(a) P(X >7);
(b) P(7<X);
(c) P2 < X < 8)?

The Normal Approximation to the Binomial

Now let’s take a look at the normal approximation to the binomial
distribution. It’s valid, as a rough rule, when both np and nq are greater
than or equal to five.

If X is binomially distributed, then X is approximately
N(np, npq) provided np and nq are at least five.
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Note, if the smaller of np and ngq is at least five, then, of course, the
larger one is. This rule requires n to be large compared with p: If p is
small, then n must be proportionately larger.

The normal approximation to the binomial is complementary to
the Poisson approximation. The Poisson approximation (see Prob-
lem 3.8.10) is valid for cases in which “success” looks like the occurrence
of a rare event. That means p should be quite small—our rule says “less
than five percent.” If p = 0.001 and n = 100, the Poisson approxi-
mation would be valid and the normal not because np = 0.1, much
less than five. On the other hand, the normal approximation does not
require p to be particularly small. It would be valid if n = 50 and p = }
orp = 3.

To see how the normal approximation can be useful, please . . .

4.3.24 Suppose you want to approximate a binomial X by a normal
distribution. How large must n be if p is

(a) 3; (d) 0.002
(b) 0.25; (€) 0.75?
(c) 5%

How small can p be if n is

(f) 125 (i) 1,000
(g) 100; (j) 10,0002
(h) 150;

4.3.25 Assume X is a binomial random variable. Evaluate the following
probabilities. You should use the normal approximation where appro-
priate.

(a) P(X > 4|n = 7,p = 0.4);

(b) P(X>137|n = 300,p = 0.4);
() PX <8In=12,p=1;

(d) P(X = 24|n = 200,p = 0.12).

4.3.26 Suppose the machine parts which you manufacture have an av-
erage diameter of 2.3 cm with a standard deviation of 0.1cm and an
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average life of about 6000 hours. Because this is a real-world question,
BE SURE TO GIVE REAL-WORLD ANSWERS AT THE END.

(a) If you choose 12 machine parts at random, what’s the probability
at least five of them will be more than 2.35 cm in diameter? [~ 30%]

(b) If one of the customers you supply purchases a lot of 500 parts,
what’s the probability at least half of them will last six months? Assume
the parts are in continual use. [~ 22%]

(c) In a lot of 500 machine parts, what are the chances more than five
will be unusable? A part is unusable if its diameter exceeds 2.55 cm. [~

‘ 9%]

4.4 The Chi-Squared Distribution

In Chapter 5, we’ll begin to see, by Laplace’s Central Limit Theorem,
how the normal distribution is the key to certain types of questions
concerning averages. Similar questions concerning variability involve the
chi-squared distribution, the model of this section. The simplest version
of this model is the chi-squared random variable with “one degree of
freedom.” It’s the square of the standard normally distributed random
variable: x3 = Z2.

Variability, of course, is not measured by just one squared quantity;
the variance of a random variable or of observed data involves a sum
of squares. We’ll postpone looking at that for now, but the model we’ll
need, the model for a sum of d squared Z’s , is

the chi-squared random variable with d degrees of freedom:

X3 = Z2+2723+273+---+ 75, dindependent Z's.

The mean is d and the variance 2d:

As with the normal distribution, the formulas for x? are too complex
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to work with and so a table of probabilities is provided in the appendix.
Note that the Z’s must be independent of each other. This assumption
is crucial: If it’s not at least approximately valid, the model will give
results which are also not valid. The term “degrees of freedom” is the
number of Z%’s in the sum—they’re “free” of each other in the sense of
being independent.

The chi-squared distribution is really the most abstract of all our
models. It arises from purely mathematical considerations; there’s no
“rule of thumb” for the type of real-world situation which it models. It
doesn’t model real-world situations. Rather, it’s an important theoreti-
cal tool for addressing certain types of real-world questions concerning
variability. We’ll see all this in later chapters. For now, we just ask you
to be familiar with the model and its terminology and learn how to use
the table in the appendix.

Unlike the table for Z,

* the BODY of the chi-squared table lists the values of x?2,
¢ the LEFT-HAND MARGIN gives d, the degrees of freedom (df),
* the TOP MARGIN gives the probabilities.

The probabilities are left-tail probabilities, as in the following picture
(d=12):

This picture shows there’s a one percent chance for the sum of 12 in-
dependent squared Z’s to take a value greater than 26.217. Note that
the curve peaks out just to the left of the mean. In fact, the peak always
occurs at d — 2. Because d = 12 in this picture, the peak is at ten. Also
note that the curve starts out tangent to the axis. That’s true provided
d is bigger than four.

Well, now it’s time for you to . . .
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4.4.1 Give the following probabilities:
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