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Student's Introduction

Welcome to new territory: A course in probability models and statistical
inference. The concept of probability is not new to you of course. You've
encountered it since childhood in games of chance-card games, for
example, or games with dice or coins. And you know about the "90%
chance of rain" from weather reports. But once you get beyond simple
expressions of probability into more subtle analysis, it's new territory.
And very foreign territory it is.

You must have encountered reports of statistical results in voter sur­
veys, opinion polls, and other such studies, but how are conclusions
from those studies obtained? How can you interview just a few voters
the day before an election and still determine fairly closely how HUN­

DREDS of THOUSANDS of voters will vote? That 's statistics. You'll find it
very interesting during this first course to see how a properly designed
statistical study can achieve so much knowledge from such drastically
incomplete information. It really is possible-statistics works! But HOW

does it work? By the end of this course you'll have understood that and
much more. Welcome to the enchanted forest.

So now, let's think about the structure of this text. It's designed to en­
gage you actively in an exploration of ideas and concepts, an exploration
that leads to understanding. Once you begin to understand what's going
on, statistics becomes interesting. And once you find it interesting, you
don't mind working at it. It does require work. Statistics is hard; there's
no getting around that. But it's interesting. Once it becomes interesting,
the "hard" part is not too onerous.

The text is divided into three parts. The first part presents some basic
information and definitions and leads you immediately to a set of exer-
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cises called "Try Your Hand." The second and third parts of the text are
solutions to these exercises: "Solutions Level I" and "Solutions Level
II." Leaf through the text and you'll see that the solutions comprise over
half the book. They're much more than just "the right answer." They
provide complete discussions for the issues raised in the exercises.

Over the first week or so you'll develop your own method for working
with the Try Your Hand exercises. Different students learn in different
ways, after all, and so you must find what works best for you. Still, a
few words of orientation will help. First, it WON'T work to just read the
problems and then read the solutions. As you read you'll be saying, "Yes,
yes, yes. That sounds right. Yes, and that's right too. Yes,yes, yes. . . . "
But afterward, when your instructor mentions some item from that list
(on a quiz?), you'll swear you've never seen anything like it! In one eye
and out the other.

Here's something else that won't work: Sometimes students are dili­
gent in an unproductive way. One form of wrong diligence is to think
you must master each step before going on to the next step. That's possi­
ble alright-if you have 30 or 40 hours a week to devote to this course.
But it's not an efficient way to learn . The human mind is not a linear
machine. Efficient learning is always grasping for the "total picture,"
grabbing something here and something there, leaving the details to be
filled in later. Think how a small child learns. How she learns to talk,
for example. Children are master learners, very efficient learners. They
don't proceed in a logical step-by-step manner. They grab for everything
at once. Of course, there does come a time when you're ready for careful
detail and when you'll go over each step with a fine-tooth comb. But
that's the last step in the learning process. In the beginning, trying for
that kind of detail is counterproductive.

All of this tells you something about how to use this book . When you
begin a new section, read over the text material quickly just to get an
idea of what's there. Aim for the next set of exercises. Read the first
question in the exercise set, reflect for a moment (30 seconds?) on what
that question wants from you. Try to grasp the meaning of the ques­
tion . Often you'll go back into the text for some detail. Realize that
you mayor may not be able to answer the question. Don't worry about
that. Learning happens in the ATTEMPT. Whether or not you can answer
the question right then is secondary. When you've given the question as
much effort as seems appropriate, turn to the Level I solution. There
you'll find help of some form-a hint, a clarification, the beginning of
a solution, further information, and so on. Now, process this Level I
information. Give a bit more time attempting to formulate a complete
answer. You'll succeed if you've understood everything up to that point.
But .. . if you're studying properly you WON'T have understood every-
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thing up to that point! That means even with the help of Level I, you
mayor may not be able to give a complete answer to the question. Try.
Then turn to Level II for a complete solution.

So you see how the solutions are structured. Level I is help in some
form, Level II provides a complete solution. Don't omit Level I! Level II
will be meaningless without Level I if for example, Level I helps you, by
providing a start on the solution, as sometimes it does. Or suppose Level
I provides more information. If you skip Level I, you'll not have that
information. Occasionally (not often) the Try Your Hand exercises ask a
question that, as asked, CAN'T be answered. Ideally, you would respond
by saying, "This question can't be answered." And you would explain:
"It requires more information. We need to know this, this, and this." Or
maybe you would say, "It's ambiguous, it could mean A or could mean
B." As a practical matter, you'll struggle with questions like this, suffer­
ing a vague sense that something's wrong. And maybe-just maybe­
after you've encountered a few such challenges, you'll have gained
enough clarity to suspect something's missing or that there's an ambigu­
ity. Great! You're learning . In any case, when you turn to the LevelI solu­
tion, you'll get the clarification you need. But notice, it's in your struggle
with the question that you learn, even though you don't "succeed" on
your own in giving an answer or even in understanding the question!

Remember the principle: Grasp for everything at once. If you find you
just can't understand some problem, GO ON TO THE NEXT PROBLEM! You
can come back to this one later.

One more bit of advice: Find someone to study with! Better yet, form
a study group with two or three other students. You'll be surprised how
much you learn from each other. And it takes less time because the very
point YOU get stuck on will be the thing that seems clear to someone else.
Then, just around the next bend, what some other student finds totally
mysterious seems clear to you. And both of you gain clarity trying to
explain to the other person. Studying should be a social enterprise!

So success in answering questions is not your goal. The goal is to de­
velop your understanding. And that happens as a result of your STRUG­
GLE to understand. That's why the exercises are called "Try Your Hand"
instead of something like "Do It." Maybe we should have called the
whole book "Try Your Hand," that's what it's all about.

Finally, a word about the technical terms: You will notice that tech­
nical terms are given in boldface italics in the very sentence where they
first appear. Be sure you learn the definition for each such term PRE­
CISELY, otherwise your thinking will necessarily be vague and confused
everytime you encounter that term . Well, that's it-that's all the advice
I can give. Good luck and have fun!
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The concepts encountered in a first course in statistics are subtle, involv­
ing quite sophisticated logic. Understanding the statistical techniques
presented in that course, understanding their application and the real­
world meaning of the conclusions depends very critically on understand­
ing those concepts. This text is my attempt to structure an exploration
for the student leading to that kind of understanding.

The fundamental idea underlying the entire structure is the concept of
a probability distribution as a model for real-world situations, a concept
that is not in any sense elementary. Probability itself is hardly elementary.
Still, even children grasp (naively!) the idea of probability as expressed in
phrases such as "a fair coin" or, in card games, "the chance of drawing
a spade." That being true, games of chance seem a good place to begin.
That's Chapter 1. And on the first page of Chapter 1 comes the idea
of a probability model. Thus the student has time-the entire course­
to assimilate this concept with all its subtlety and later mathematical
elaboration.

Before discussing chapter content in detail, a few general observations
will be helpful. This "first course" covers the standard topics of intro­
ductory precalculus statistics, but with a very nonstandard presentation.
The text itself is brief, leading the student quickly to "Try Your Hand"
exercises in which the student actively explores concepts and techniques.
Often, no more than a page or two passes before the student sees the
next set of exercises. Much of the exposition usually given discursively
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in the text itself is presented here through these Try Your Hand exercises.
This approach is possible only because the exercises have complete solu­
tions with full discussions. The solutions are given in two levels. Level I
gives hints, clarifications, further information, partial solutions, and so
on. Having completed Level I, the student turns to Level II to find a full
solution.' A number of problems with real data have been included to
give some idea of the variety of applications of statistics and some feel
for the unexpected questions which arise in specific situations.

By judicious use of the Try Your Hand exercises, the instructor can
focus the course according to the students' needs and abilities. Some
exercises might be omitted altogether; others might be presented by the
instructor in class. For example, probability formulas for the discrete
distributions of Chapter 3 are derived in the exercises. The student is
led by the hand through the derivation with the help of Levell. An in­
structor who chooses to omit formula derivations can simply omit those
exercises. The student will be totally unencumbered by the derivations.
She won't even see them because they are not included in the main body
of the text itself.

The presentation given in this text is more sophisticated with respect
to the underlying logic of statistics than most introductory books . In
Problem 6.2.21, for example, the student sees that two very different p­
values could arise from the same objective data, depending on how that
data is "modeled." The ramifications of that are discussed in Level II.
In Problem 5.5.12, two different prediction intervals for the same prob­
lem-one parametric, the other nonparametric-are compared. The dis­
cussion of statistical testing in Chapter 6 is more thorough than in any
book I know of at this level. The presentation of regression in Chap­
ter 7 avoids the usual list of unmotivated assumptions. Instead, I give
a natural characterization which reveals simple linear regression as the
next logical increment in complexity beyond previous chapters. For fur­
ther detail on all of this, please see the individual chapter discussions
given below.

Finally, I give much in the way of informative heuristics, such as the
"elementary errors" interpretation for the normal distribution intro­
duced in Chapter 4. That criterion, which is just an intuitive formula­
tion of the Central Limit Theorem, is used systematically throughout
the course to explain many details otherwise left obscure. To give one
example, the criterion explains why only in the small sample case for
inferences about means we must assume we are sampling from a normal
distribution (see Problems 5.3.2 and 5.3.3).

1 The instructor should remind the students (often) not to neglect the Level I solut ions.
Level II will seldom be complete in itself.
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Chapter 7

xiii

This text should be appropriate for students requiring an elementary
introduction to statistics, assuming little mathematical sophistication,
who anticipate more than a passive involvement with statistics and who
will be learning more sophisticated statistical techniques in later courses.
It should be appropriate for engineering, economics, computer science,
psychology, sociology, and education majors. It would probably be ap­
propriate for students in fields such as geography, ecology, and so on. It
certainly would be an ideal freshman introduction to statistics for math­
ematics majors with the expectation of later follow-up in a thorough
Mathematical Statistics course. In my experience, it is difficult to teach
a meaningful Mathematical Statistics course to students with no prior
exposure to statistics and, consequently, with no intuitive orientation.

The discussion above suggests that the probabililty distribution of a ran ­
dom variable is a central idea. Certainly it is. It's a sophisticated concept
at the heart of virtually every technique of statistics. Even for exploratory
and nonparametric techniques a probability distribution often lurks in
the background (at least) as a standard of comparison. And, of course,
the prior probability distribution is fundamental to Bayesian statistics .

To ease the student's initial exposure to this abstract concept, I in­
troduce probability distributions at the very beginning through simple
examples of real-world situations, namely, games of chance with coins,
dice, cards, and so on. This term "real world" is used throughout the
text in contrast to "abstract theory" (not in contrast to "artificial" or
"contrived"). Random variables and linear functions of random vari­
ables are used in this chapter to model these simple games of chance.
For example, if you receive two dollars for each dot on the uppermost
face of a die and pay six dollars to play, your gain/loss random variable
is G = 2X - 6, where X models the die. Thus, linear functions of ran­
dom variables are also explored in some depth with the simple examples
of Chapter 1. Most of this chapter relies on the student's intuitive idea
of probability together with some simple ad hoc rules. After "remind­
ing" them of what they already know, a more rigorous development of
probability is presented in Section 1.4.

Betting games with dice, loaded in various ways, are effective for
investigating the mean and variance of a random variable and for un­
derstanding the variance as a measure of risk, predictability, accuracy,
and so on. The significance of the variance is much more readily appreci­
ated by students in the dynamic context of random variables than in the
static context of observed data, another reason for introducing random
variables at the very beginning of the course. The die-in general, the
random mechanism for the game-need not be fair. Loaded dice offer



xiv

Chapter 2

Instructor's Introduction

a variety of interesting situations and an opportunity to understand in­
teresting concepts. For example, we can ask the student to load a given
die differently so the mean stays the same, within a specified degree of
accuracy, but the standard deviation is smaller or larger by a specified
amount. Or again, we can ask which is more predictable, a die with a
given loading or a fair die? Which game would you prefer to play, the
one with the fair die or the one with the loaded die? The answer depends
not only on how the die is loaded but also on one's motivation for play­
ing. Students readily appreciate the relevance of this kind of analysis
to more realistic situations such as portfolio analysis or variability in
a manufactured product, or variety within a genotype, or any of many
other situations of possible interest to the student.

Random variables are presented as providing a "bridge" from the
real-world situation with all its complexity to the relatively simple world
of theory (see the picture of this bridge on page 7). This metaphor is
much more than a clever hook-it is a significant pedagogical device. I
have the picture of this bridge on the blackboard every day for the first
half of the course and am constantly surprised, and surprised again,
how often misconceptions can be resolved by reference to this picture.
Many errors arise from confusing the outcomes with the values of the
random variable. I simply point to the picture and students catch their
error immediately (well, almost)! For example, isn't a "constant random
variable" a contradiction in terms? After all, "it" is predictable! Look at
the picture: "It" (the value) is predictable, but "it" (the outcome) is not.
Or, if we have a pair of fair dice, isn't the number of dots on the top faces
uniformly distributed? Since the dice are fair, "they" are equally likely.
Yes, "they" (the outcomes) are equally likely, but "they" (the values)
are not. The bridge metaphor is particularly helpful in resolving the
confusion of values with outcomes because it places them symmetrically
on opposite sides of the River Enigma.

This chapter covers topics of descriptive statistics, introducing frequency
and relative frequency distributions, their histograms, and related ideas.
In this chapter, we introduce random sampling: first sampling from a
probability distribution, then sampling from numeric and dichotomous
populations. After Chapter 1, sampling from a distribution seems quite
natural to students. It's conceptually simpler than sampling from a pop­
ulation. The key question for sampling from a distribution is simply the
independence for repetitions of the underlying random experiment. For
example, if we're interested in monitoring "fill" for cups from a soft
drink vending machine, 10 cups taken in succession will be a simple
random sample from the distribution of "fill" provided only that the
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Chapter 3

xv

amount of drink dispensed is independent from one cup to the next.
Students are readily able to suggest how that might or might not be true
depending on the circumstances.

Most, if not all, introductory statistics texts seem to avoid sampling
from distributions-a wise choice if the students don't understand what
a distribution is-and, consequently, many examples throughout such
a text force very artificial interpretations of sample data by reference to
some hypothetical nonexistent population where certainly the data was
NOT selected through any sampling plan. Did we use a random number
table to select 10 cups from a population of "all possible cups?" In ex­
actly what warehouse are "all possible cups" to be found? If that's not
the procedure, what justifies calling those 10 cups a random sample?
Interpreting such examples as "sampling from a population" not only
does not help, it's a serious obstacle to clarity. You dare not ask the stu­
dent if the assumption of randomness would, under the circumstances,
seem justified. The definition before them is so artificial that any prac­
tical discussion of its relevance is impossible. An intelligent student can
only conclude that one blindly assumes whatever one wants in order
to make the theory work. I prefer the idea that one makes assumptions
only where those assumptions seem reasonable and where they can later
be verified.

This chapter presents nine "models," nine classes of discrete probability
distributions of varying degrees of concreteness, interrelated in various
ways. I strongly urge that none of these models be omitted. Understand­
ing a sophisticated, abstract concept-here, probability distributions­
requires more than one or two examples. The goal of this chapter, at least
from the point of view of the statistical material to be presented later,
is to develop the student's skill in recognizing an appropriate model for
a real-world problem. This requires experience with a number of dif­
ferent models. The instructor can mitigate the difficulty of this chapter
without compromising its principal thrust by omitting some or all of
the probability formulas, focusing instead on model recognition. Skill
at model recognition can be developed and tested without probability
questions per se, by simply restricting to questions about the mean and
variance, questions such as, "How many cups should we get from this
drink machine before the machine malfunctions?" (the mean of a geo­
metric random variable).

The statistical topics of this course-random sampling, sampling dis­
tributions, estimation, statistical testing, and the regression model­
cannot be understood if the underlying theoretical models are not under ­
stood in their roles as models, models for the sampling process or for
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the more complex situation of regression. In my experience, Chapter 1
and the nine models of this chapter will indeed bring the students to
the requisite understanding of probability distributions as models for
real-world situations.

The discussion from Chapter 1 is continued at a more sophisticated
level with the nine models of this chapter. Constant and uniformly dis­
tributed random variables form two very simple classes, already familiar
from Chapter 1. In particular, Chapter 1 has already shown how con­
stant random variables arise very naturally through combinations of
other random variables. For example: X + Y = 7, where X and Y
are, respectively, the number of dots on the top and hidden faces of
a six-sided die. These two simple examples-constant and uniformly
distributed random variables-help us to establish what we mean by
a "class" of random variables and set the pattern for the rest of this
chapter.

The classes of this chapter are interrelated in various interesting ways.
There are two sampling distributions: Sampling with or without replace­
ment from a dichotomous population form one group. The binomial,
geometric, and negative binomial form another group (with the geomet­
ric a special case of the negative binomial). The binomial has the previous
"sampling with replacement" model as a special case. The Poisson model
is the most abstract of the models in this chapter, having been derived
abstractly through a purely mathematical process from the binomial. It
becomes a model for real-world situations only after the fact and for
that reason has a less concrete feel about it. The student is alerted to
this "abstract" versus "concrete" consideration. That idea is picked up
again in Chapter 4 where we introduce continuous distributions. The
understanding that some models are more abstract than others is help­
ful in understanding the normal and chi-squared distributions which are
indeed quite abstract.

An important challenge in this chapter (and again in Chapter 6) comes
in the set of mixed review problems at the end. In these problems, the
student is on her own to identify a correct model for a given problem.
A few problems can be correctly modeled in more than one way. This
review is very important and should not be omitted. A real difficulty for
students, which will show up in these review problems, is their single­
minded focus on the abstract part of the model. Students complain about
abstraction, but, in fact, they love it-it's easier. The abstraction is pre­
cise and clear; equations and formulas can be learned. The real world,
by unhappy contrast, is messy, ambiguous, and confusing. However, to
identify an appropriate model for a real-world problem we have to look
where the problem is-in the real world. That requires focusing on the
real-world description of the random experiment, the real-world com-
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Chapter 4

Chapter 5

XVII

ponent of the model, and matching that description with what's going
on in the problem. The skill to do this is developed through these review
problems at the end of the chapter.

This chapter extends the presentation of the previous chapter to contin­
uous distributions. First are the uniform and exponential distributions;
then the most abstract model so far encountered, the normal distribu­
tion, modeling random error or, by extension, any situation where the
difference in two values "looks like" random error (see the criterion for
normality on page 148. Finally, we see the chi-squared distribution, the
most abstract of all among the distributions of this text.

This chapter presents sampling distributions, the Central Limit Theo­
rem, and interval estimates as a unified topic. We do three types of in­
terval estimates: confidence intervals, prediction intervals, and tolerance
intervals.

For understanding sampling distributions, variability from one sam­
ple to the next is not the really difficult concept. People with no knowl­
edge at all of statistics see this variability very clearly. That's why they're
so ready to criticize statistical surveys, complaining that "it's all just
based on a sample!" This is the thinking students come to us with. We
must show them that

They're right if they think one sample alone can't tell them
anything.

BUT • • . They're wrong if they think sampling is useless or statistics
a sham or if they think only very large samples are legit­
imate . And they're especially wrong if they think a very
large sample carries any information by itself.

BECAUSE ••. The missing ingredient which makes sense of one sample is
the entire context of that sample. That "entire context" is
the sampling distribution, a sophisticated theoretical con­
struct not easily understood.

For example, a sample mean by itself tells you nothing. On the other
hand, a sample mean seen as just one of the many possible values of
a normal distribution centered on the unknown true mean, with most
of the probability concentrated there and with a standard deviation
intimately related to the standard deviation of the original distribution,
TELLS YOU A LOT!
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When asked, "What assumption must you make about the data here?"
(that it's a random sample) students will respond, "That it's more or
less typical of the population." Well, if it's typical, you don't require
statistics! But, in fact, you'll never know whether it's typical or not and
YOU HAVE NO THEORY FOR THAT. There is, however, a theory for random
sampling and that theory controls the error which could arise from
a possibly atypical sample . Control of error is the theme, probability
distributions the tool.

There may be an objection to the presentation in this chapter which
treats only interval estimates and does not allow for point estimates.
But point estimates are only appropriate when the estimator is in some
sense "best" for the problem at hand. That more advanced discussion
involves everything in the discussion above and more . For this reason,
I present only interval estimates with the understanding that the point
estimate is incomplete to the point of being meaningless if no further
investigation is carried out.

There may also be an objection to interpretations of confidence in­
tervals which begin "There's a 95% probability that. . . . " The usual
argument tells the student to replace the wrong expression by another
one where the offending term "probability" is replaced by the unde­
fined term "confidence." This just replaces error by ignorance, hardly
an improvement! No wonder highly intelligent people say they never
could understand statistics . I prefer to use a natural probability expres­
sion, but acknowledge openly that it's ambiguous . One reading is wrong
(with the 95% probability referring to the parameter), the other correct
(it refers to the interval). The student is held responsible for under­
standing the two readings, understanding why the one is wrong and the
other correct.

This approach is consistent with my exposition throughout the text,
where I hold the student responsible for certain standard ambiguities
or misstatements. For example, the question "What are the chances for
a female on this committee?" almost certainly is asking for P(X ~ 1),
although technically it asks for P(X = 1). Or I leave out the phrase
"on average" in situations where it's clearly implied . Or, again, I ask
for a count where a proportion is all that's possible. This significantly
challenges the student's clarity of thought because she is on her own
to discriminate among possible meanings. "How many," for example,
might mean "how many on average" or "what proportion." There's
no getting around it, she has to understand the context! In this way, the
student of this text grows accustomed to dealing with ambiguity and the
resolution of ambiguity as a part of the natural intellectual environment.
All of this is possible through judicious use of the Level I answers to the
Try Your Hand exercises.
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Chapter 6

xix

This chapter presents tests of statistical hypotheses. This vexed topic is
presented with in-depth discussion of the possible misinterpretations,
misuses, and limitations of the technique as well as a careful discussion
of the correct interpretation of p-values, conclusions, and errors. The
first section of the chapter gives an overview of two testing procedures,
the "test of significance" (p-values) and the "hypothesis test," and in­
troduces some terminology and some comparisons (the details of which
are deferred until later sections). The second section presents tests of
significance, including chi-squared tests. The third section of the chap­
ter presents the "hypothesis test" as providing a decision procedure for
a monitoring process as, for example, in quality control.

So the "test of significance" is presented first, with its formal answer
(a p-value) and its not-so -straightforward real-world interpretation. The
logic of statistical testing is quite subtle, involving considerable contro­
versy. A significant amount of confusion has been introduced into the
topic by not distinguishing between the "test of significance" and the
"hypothesis test" proper, with its error probabilities, power considera­
tions, and so on. Consequently, I have separated these two approaches
to statistical testing.

The student's understanding is enhanced by first clearly understand­
ing p-values as measuring consistency between the data and the hypoth­
esis. The p-value calculation is relatively easy. Nevertheless, the real­
world interpretation is not so straightforward. For instance, although
small p-values are usually what we look for, with not small p-values
being inconclusive, just the reverse may hold for the practical interpre­
taion. For cases of "discriminatory selection," for example, where the
hypothesis to be challenged is "random choice," a NOT small p-value is
quite conclusive-it's impossible to maintain an accusation of discrim­
ination if the choice is consistent with having been random-whereas
a small p-value may be relatively conclusive or relatively inconclusive,
depending on the context. See the discussion beginning on page 245.

There are a number of advantages to presenting tests of significance
as a separate topic. Certain issues concerning statistical testing are more
clearly presented with reference to p-value calculations, unburdened by
the heavy-handed and irrelevant machinery of null and alternative hy­
potheses, error probabilities, rejection regions, decision rules, power,
and so on. For example, the test of significance already highlights the
distinction between practical and statistical significance. It also reveals
the asymmetry inherent in statistical testing, the asymmetry seen in the
difference between "small p-value" (the hypothesis is challenged) and
"not small p-value" (the data is inconclusive). Further, the test of signif­
icance, seen as a "probabilistic argument by contradiction," clarifies the
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underlying logic of statistical tests in general. Again, chi-squared tests are
more appropriately introduced as tests of significance than as hypothe­
sis tests because there is often no meaningful "alternative" hypothesis.
Finally, by presenting tests of significance as a separate technique, in­
structors who prefer to spend less time on statistical testing can omit the
complexity of "hypothesis tests" altogether and confine their discussion
to this much simpler case.

Hypothesis tests are first studied without control of type II error. Our
point of view is that when you "fail to reject Ho ," you take no action
based on the test itself since in that case you have exercised no control
over the possible error. This asymmetry is exactly parallel, of course, to
the asymmetry of "small" versus "not small" p-values. The important
new idea here as compared with tests of significance is the "control of
error" for type I error. Aside from the pedagogical advantages, leaving
discussion of type II error until later is justified by the impossibility in
some testing situations of finding a model for the alternative hypothesis.
In other words, there are, indeed, situations where control of type II
error is not practical.

This chapter gives an in-depth discussion of the role of hypothesis
tests. For example, we see how the logic of hypothesis tests compares
with classical inductive inference, leading to the distinction between null
hypotheses which are sometimes true and sometimes false (in monitoring
situations) and null hypotheses which are either always true or always
false (the classic situation of inductive inference, where "accumulation
of evidence" is the motivation for repetitions of the experiment).

There may be an objection to so much emphasis on the logic of testing.
It has even been suggested that statistical tests should be omitted alto­
gether because the same conclusions can be obtained from a confidence
interval.r But statistical testing is too pervasive in statistical practice to
justify omitting it. The student is not well served in being left ignorant
of terms like "p-value," "null hypothesis," and so on. Given that we're
going to teach the topic at all, surely we must teach it clearly so that
common confusions and misunderstandings do not arise.

The distinction between tests of significance and hypothesis tests is
certainly not artificial. Failing to make that distinction leads to a number
of points of confusion. To name only one: Are you allowed to look at
the data before setting up the test? For a test of significance where the
question is "Does this data seem to challenge our hypothesis?" there is
no "setting up" of the test. The data is part of the original question.

2 As a matter of technical fact, this is not true in the case of proportions since the
standard error will differ. If the hypothesis to be tested is false that difference could be
significant.
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Chapter 7

xxi

How can you avoid looking at it in advance? For an hypothesis test,
on the other hand, which is properly a monitoring procedure, the data
will change from one run of the test to the next, so, OF COURSE, you
have to set the test up without reference to the data. Most textbooks
tell the student not to look at the data and then, in every example and
problem, give the data in the problem statement. How can the student
avoid looking at it? To add insult to injury, the solution-which here
means simply choosing a direction for the test-will always be correct
if you base it on the data. Never does the student see data which would
be in the "wrong" tail of a properly determined test.

For other points of confusion which arise when the distinction be­
tween tests of significance and hypothesis tests is not made, see the text
of Chapter 6. None of this says the distinction remains necessary for
someone who clearly understands the entire logic of tests. But we should
distinguish between what is logically correct and what is pedagogically
clear.

At the end of this chapter, as at the end of Chapter 3, there is a
critically important set of mixed review problems, the most challenging
set of problems in the text. It should not be omitted. I give about a week
of class time to these problems. It is through this set of problems that
students assimilate the statistical techniques of Chapters 5 and 6.

This chapter is a brief introduction to simple linear regression. In Chap­
ter 4, ant icipating the present chapter, the normal distribution is de­
scribed along these lines: Suppose you have a fixed systematic "effect"
for which any variation is due solely to something that "looks like"
random error. Then you should expect a normal distribution. Take, for
example, diameters of machine parts where the systematic "effect" is
the manufacturing process itself which attempts to meet specifications
(diameter 3.2 mm). The variability in diameters is purely random unless
there's something wrong in the process. So diameters are D = f.t + E.

Here f.t = 3.2 is the systematic part with E being "like random error" so
that E = N(O, (12) .

When we come to regression, we make ONE SIMPLE STEP FORWARD

IN COMPLEXITY for the model. The "effect" which determines the mean
is no longer fixed, but variable. But not variable in just any way at all;
that's much too complex. Instead, the mean is determined through a
linear function of the effect, a linear function being the simplest nontriv­
ial function. So we obtain a model with a variable "effect," X, which
is as simple as possible and which "affects" (not necessarily causally!)
only the mean of Y, not affecting Y in any other way. The usual long, in-
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timidating and unmotivated list of assumptions for the regression model
follows quite naturally from this characterization [seeproblem 7.l.4(c)).

Of course, one may object, X can certainly affect more than just the
mean of Y. For example, it can affect the percentiles. But that's not a
different effect. If you tell me the effect on the mean of Y, I can determine
the effect on the percentiles. This is parallel to what we say about the
parameters of a model. For example, (J and (J2 are not two different
parameters; give me one I can calculate the other. For the hypergeometric
model, p is not a fourth parameter because I can calculate it from two
of the other three: p = R/N.

Here again, as in many other instances-confidence intervals in par­
ticular-I allow possibly ambiguous statements when it 's convenient
and natural, making a point of the ambiguity and its proper resolution.
Understanding comes in being clear about the ambiguity. So, in the re­
gression model, X affects only the mean of Y, but not in an absolute
sense, rather in the sense that any other effect from X can be calculated
from the effect on the mean.

With some hesitation, I will describe how I currently use this text in my
classroom. I hesitate simply because I would not want to prescribe a
"right" way to use the book. Indeed, I hope various instructors will find
various effective ways of using the text.

At the beginning of each class, I make an assignment for the next
class. The students are expected to read that material and process the
problems on their own with no preliminary in-class discussion. At the
beginning of the next class, there is a brief, very routine quiz on the
assignment. These quizzes serve many useful purposes, not the least of
which is to encourage students to actually do the assignment. Needless
to say, when the students have already thought about the material, the
class discussion can deal with issues in much greater depth and subtlety.
For sections which meet three days a week in 50 minute classes, there are
approximately 20 such quizzes per semester of which I drop the lowest
three or four. These quizzes count 20% of the course grade. The rest
of the course grade is determined by two lOa-minute tests (each given
over two successive class periods) and the final examination.

The grading policy for the quizzes is very lenient because the material
is quite new at the time of the quiz. The quizzes provide an opportunity
for the students to catch errors or misunderstandings without incurring
a serious penalty. Thus I count off only for gross errors or completely
wrong approaches which would indicate that the student did not really
do the assignment. I often write "OKT" beside a mistake, meaning, "No
penalty THIS time, but be alerted: this is an error!"
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I allow questions before the quiz. If the question is relevant to the quiz,
I am obliged to answer. If the question is not specifically relevant to the
quiz, I may postpone discussion of that question until later. Attention
in the class is never quite so clear and focused as during that question
period before the quiz! In practice, the quiz is sometimes at the very
beginning of the class, sometimes fifteen or twenty minutes into the
period, sometimes not until the very end. Rarely-in the interests of
time-I may omit a quiz (unannounced in advance) to spend the entire
class going carefully over some topic or conducting a review.

There is always initial resistance from the students to this approach. It
seems to be quite a novelty that they should be expected to read material
and assimilate it on their own. But usually after a week or so they begin
to accept the responsibility to work on their own and begin as well
to appreciate the value of developing their skill for independent study.
The structure of this text, with its complete solutions to the problems,
facilitates this approach.

My experience shows that students coming through this course de­
velop valuable skills for independent study and for critical, analytical
thinking. In fact, for many students those are possibly the most valuable
results of the course.
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1.1 Probability Distributions of Random Variables

Probability Models
There are situations so complex-you might even think chaotic-that
any analysis would seem impossible. But often such situations yield to
the techniques of statistics. With proper data and with proper analysis
of that data, you may be able to say a lot. As this course proceeds, it
will be interesting for you to see exactly how statistics is able to deal
with these seemingly impossible situations. But it won't be at all what
you expect. The answers provided by statistics are never exact; there's
always error. Statistics does not eliminate error; rather, it controls it.
In short, statistics allows you to be precise about imprecision! It's the
precise control of statistical error that's at the heart of every statistical
technique.

Error in the statistical sense arises from uncertainty in the play of
chance, and so we'll begin our study with some simple chance mechan­
isms-coin tosses, rolls of dice, and so on-and with abstract models
for those mechanisms. A roulette wheel is another such chance mechan­
ism. Again, there are games which depend on the draw of one or more
cards from a deck of 52 cards. If the cards are well shuffled, the draw
is, indeed, a chance mechanism.

All such games of chance illustrate simply and very concretely some
of the most basic concepts in statistics. Sometime in the period before
1600 in Europe, people who loved games of chance began to discover
and formulate the mathematical laws for those games. These origins of
statistics before 1600 are somewhat obscure, but from the time of Fermat
and Pascal in the mid-seventeenth century, there's a continuous and
well-documented development of the mathematical theory for games of
chance. Let's see how that theory goes. We'll begin with

the fair die: x
1
2
3
4
5
6

P(X)

1/6
1/6
?
?
?
?
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and
the fair coin: x

H
T

P(X)

?
?

Try Your Hand

Obviously, what we're giving here is not the physical object itself,
not a die nor a coin, but rather an abstract mathematical model of that
object-a table , in this case. A table like the ones above is an abstract
"probability model" for such a chance mechanism. For the moment, we
are asking you to guess how to interpret the models. In the tables, P(X) is
the probability that the variable X takes on the indicated value. As you
can see, the tables are not complete. We've left it to you to complete the
tables by filling in the missing probabilities. Think about a fair die. Or a
fair coin. What do these tables suggest to you in real-world terms? Try
to complete the tables before reading further (the answer is in Problem
1.1.1 below).

If the die is fair, each of the six faces comes up equally often on
average. That's what the "one-sixth" in the table for the fair die means.
That "one-sixth" is the theoretical relative frequency with which we
would expect to roll each of the various faces of the die. It's "theoretical"
because it's based on the theory that the die is fair. If the die is not fair,
some one (or more) of the faces comes up too often-more than one­
sixth of the time on average. Of course, if one face comes up too often,
then some other one (or more) of the faces must come up less often.

The term "theoretical relative frequency" is just another name for
probability. The probability of an event is, by definition, the relative
frequency with which we expect, theoretically, to observe an occurrence
of that event. There are other possible definitions of probability, but
unless otherwise stated, we'll always intend the theoretical relative fre­
quency definition. In Section 1.4 you'll find a more detailed presentation
of probability. For now, your intuitive idea of probability, derived from
your understanding of games and other real-life situations involving the
idea of chance, will suffice.

But now, before we go any further, why don't you just ...

1.1.1 (a) In the tables above for the fair die and the fair coin, give a
verbal description of the variable X.

(b) Complete the tables by giving the probabilities for a fair die and a
fair coin.

(c) What does the word "probability" mean? Explain it in terms of the
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probability to draw the ace of spades when you take the top card from
a well-shuffled deck of 52 playing cards.

1.1.2 Later we'll develop precise rules for working with probabilities,
but can you guess the probabilities of getting

(a) a number less than three on one roll of a fair die?

(b) a pair of sixes on a roll of two fair dice?

(c) a pair of heads on a toss of two fair coins?

1.1.3 Can you guess a rule that distinguishes a situation which requires
adding probabilities from one which requires multiplying them?

Random Variables and Their Random Experiments

Rolling dice, tossing coins, drawing cards from a deck are all examples
of random experiments. It's not easy to give a precise definition of the
term "random experiment" because the word "random" leads into a
deep (and fascinating) philosophical quagmire. But we can easily get
along without a precise definition. It's enough to have a heuristic def­
inition which will not lead us astray. Here it is: a random experiment
is something you do that is repeatable, with clearly specified outcomes
which cannot be predicted in advance. Although we're only giving a
heuristic definition of the term random experiment, it's necessary to pay
careful attention to the details .

What you must verify to show that you have a random experiment:

• the doing
• the repeatability

• the clearly specified outcomes

• the unpredictability

If the "doing" is not repeatable, if it represents an entirely unique oc­
currence, statistics can provide no help at all. Now, because the phrase
"something you do" is hopelessly vague, it's necessary to pin the "do­
ing" down more precisely. This is accomplished by specifying clearly
the outcomes. This much gives the definition of a scientific experiment:
something you do which is repeatable with clearly specified outcomes.
By insisting that the outcomes cannot be predicted in advance, we cap­
ture the idea of randomness. This is not a very adequate definition of
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randomness from a philosophical point of view of course, but you get
the idea!

For example, for the die, the "doing" is to "roll the die." Clearly,
that's repeatable. Suppose we specify TWO possible outcomes: either the
die lands on the table or it lands somewhere else-the floor, for example.
That's probably not the random experiment you had in mind. But now
you see why it's necessary to be clear about the outcomes. For this
experiment, the outcome mayor may not be predictable, depending on
exactly how you roll the die. Suppose "rolling the die" means dropping
it from a height of about two feet above the table top. In that case, we
do indeed have a random experiment because the outcome would be
unpredictable: You can't say in advance whether it will land on the table
or the floor. Notice how we've gone through each of the four items listed
above to verify that "rolling a die"-in the exact sense we've specified­
is a random experiment. This is what you must do if asked to "verify
that such and such is a random experiment."

Of course, the usual random experiment with a die assumes the die
will remain on the table top. If not, you abort that attempt and do it
again. For that experiment, an outcome is "the die lying on the table top
in some position." Notice that we are very physical in our description of
the outcomes. You should avoid any reference to numbers in describing
outcomes. By following this rule, you'll have a much easier time in un­
derstanding random experiments and their random variables (which we
are about to define). So, if you were inclined to describe the outcomes
as "the numbers from one to six," think again, THAT'S NOT IT!

A random variable is a rule which associates a number to each of the
possible outcomes of some random experiment. For a roll of the die,
we can define the random variable-let's call it X -which assigns to an
outcome the number of dots on the uppermost face of the die. Here's a
description of this random variable:

an outcome: the die resting in some position on the table top;

association of a number to outcome: look at the top face of the die,
count the number of dots on that face;

possible values: the positive integers one through six.

So you see, if you identified the outcomes of the experiment as the
numbers from one to six, you confused the outcomes with the values of
the random variable. The outcomes of the experiment are NOT the same
thing as the values of the random variable.

An outcome for a random experiment is the physical, real-world sit­
uation which results from performing the experiment once. Here, after
one roll of the die is completed, the real-world result, the outcome, is
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the die sitting in a certain position on the table. For that outcome (the
"sitting die"), X counts the number of dots on the uppermost face. That
count, that NUMBER, is the value of the random variable for that out­
come. This is why we say you should avoid giving numbers as outcomes.
If you never give numbers as outcomes, you won't make the mistake of
confusing the outcomes with the values of the random variable.

The outcomes of the random experiment live in the real world; the
values of the random variable live in the theoretical world of numbers.
Again and again we'll see this contrast between the real world and theory.
It's the interplay between the real world and theory that makes statistics
such a powerful tool. Throughout this course, our point of view is that
questions and answers live in the real world whereas, statistical tools
live in the world of theory. What makes statistics interesting is to see
how those theoretical tools can be made to yield real-world answers to
real-world questions.

So random variables provide abstract mathematical models, proba­
bility models, for real-world situations. And they're very useful models,
as you'll see. In fact, random variables are at the center of everything we
do in this course. They provide a bridge between real-world situations
(the random experiment) and mathematics (the numeric values of the
random variable). For problems in the real world involving uncertainty,
an appropriately defined random variable may provide a bridge to the
powerful analytic tools of mathematics.

Here's a picture of a random variable:

Real World

Home of: uncertainty
striving
emotional
turmoil
and warm bodies

random variable

River Enigma "-'-

(
the mind/body SPlit )

- is it real?

World ofTheary

Home of : Precision
logic
intellectual repose
and
cool minds

Now let's think about tossing a coin. Note that in the earlier table
for the toss of a fair coin, X is NOT a random variable because it's not
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numeric-valued. There, X assigns the letters Hand T to the outcomes.
Letters are not subject to the laws of mathematics. We've insisted that
random variables should be numeric-valued because we want to draw
on the powerful analytic possibilities of mathematics. Still, it's easy to
invent a random variable for the toss of a coin. If we're particularly
interested in "heads" when we toss the coin, we might let X = 1 if a
head comes up, and otherwise let X = 0. Note that X has a simple
verbal description: It's the number of heads on one toss of the coin .

Just to see how this X might be useful, suppose you toss the coin
ten times during some game and need to keep a record of the results
of these ten tosses. In terms of X, we can say that there are ~X heads.
Here we're showing you a simple notation which is very convenient in
statistical discussions . It's not hard: ~X simply means sum the values
of X. You can read it "sigma X ," or just "sum X." For example, if you
toss the sequence

H,H, T,H, T,H,H,H, T,H

X would be
1,1,0,1,0,1,1,1,0,1.

Because these zeros and ones add to seven, ~X is seven, telling us that
there are seven heads.

Note how so simple a random variable as X, taking only the values
zero and one, is a very convenient abstraction. Using it and the sum­
mation notation, we can write ~X, a mathematical expression which
represents the number of heads tossed, no matter what that number
might be.

Beforedoing the exercises, let's look at one final definition: The proba­
bility distribution ofa random variable is a presentation of the possible
values of the random variable together with the corresponding probabil­
ities. The presentation may be in the form of a table, as we gave earlier
for the fair die or it may be in a graphical form, as we'll see later. In
Chapters 4 and 5, we'll have probability distributions presented through
a set of equations. Note that in a probability distribution, the sum of all
the probabilities must be exactly one; that is,

Z=P(X) = 1.

You actually already know this. Think about tossing a coin. Suppose
someone tells you a particular coin comes up heads a third of the time
and comes up tails a third of the time. What happens the other third of
the time? Does the coin land on its edge a third of the time? A strange coin
indeed! On the other hand, suppose you had been told simply that the



I. 1 - Probability Distributions of Random Variables 9

Try Your Hand

coin comes up heads a third of the time. Wouldn't you have immediately
concluded that it comes up tails two-thirds of the time? You should have.
Analytically,

P(heads) + P(tails) = 1,

1/3 + P(tails) = 1,

and so P(tails)= 1 - 1/3 = 2/3. Now please ...

1.1.4 (a) Compare and contrast the terms "scientific experiment" and
"random experiment."

(b) What in the definition of the term "random experiment" captures
the idea of randomness?

1.1.5 Let X be the random variable which counts the number of dots
on the uppermost face for one roll of a die:

(a) Give the probability distribution for X assuming the die yields two
dots on the uppermost face 50% of the time on average, with all other
faces equally likely.

(b) Give the probability distribution for X assuming the die yields two
dots on the uppermost face 40% of the time and five dots 20% of the
time while the other faces are all equally likely.

(c) Note that we have two different random variables in parts (a) and
(b) although they have the same verbal description and, for convenience,
we're using the same symbol, X. Now, look at the abstract definition of
the technical term "random variable" and pinpoint exactly what part
of the definition differs for these two random variables. You'll get some
help if you think in terms of the picture of a random variable as a bridge.

1.1.6 Suppose you have a deck of playing cards which is missing two
hearts. So the deck contains only 50 cards. Give the probability distri ­
bution for the random variable Y defined by the rule below for the draw
of one card from this deck after thorough shuffling.

spades

clubs

hearts

diamonds

---t 1

---t 2
---t 3

---t 4

1.1.7 Consider the six random experiments described in Problem 1.1.2
(a)-(c), Problem 1.1.5(a) and (b), and Problem 1.1.6.
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(a) Specify the "doing" for the random experiments and then state the
rule which defines the corresponding random variable.

(b) Now specify clearly the outcomes for each of the six random exper­
iments.

(c) For each random experiment, explain how the conditions in the
definition of the term "random experiment" are verified.

1.1.8 (a) Why is the table below not the probability distribution of a
random variable?

x P(X)

H 0.5
T 0.5

(b) Define a new X by letting X = 1 if a head comes up when you toss
the coin, and otherwise let X = O. Is this new X a random variable?

(c) Give a probability distribution for X in part (b).

1.1.9 We need to develop some precise techniques for questions like
this, but based on your experience with games of chance, can you guess
the answers to these simple questions?

(a) If you roll a fair die repeatedly (n times, let's say), how many dots
altogether would you expect to roll on average?

(b) Suppose you toss a fair coin many times, how many heads would
you expect on average?

(c) Suppose you toss a fair coin and that you'll be given two dollars if
you toss a head and three dollars if you toss a tail. How much money
would you expect to take in on average?

(d) Now suppose you toss a coin which comes up heads 90% of the
time. If you're given two dollars for a head and three dollars for a tail,
how much money would you expect to take in on average?

(e) Verify that your "take" in part (c) is a random variable.

(f) Intuitively speaking, why should you expect to take in less on average
for the loaded coin of part (d) than for the fair coin?

1.1.10 Here is a problem to help you understand the definition of the
term "random variable." Look at the result of one toss of a fair coin;
if heads comes uppermost, call it H, otherwise call it T. Let X be the
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following rule which associates a number to each of the outcomes:

11

1.2

Is X a random variable? This looks like a simple question, but be sure
you address the question as it is put: Is X a random variable? Can you
predict in advance that X will take the value" 1"?

1.1.11 Suppose you are betting with a die which comes up two, 40% of
the time and five, 20% of the time while the other faces are all equally
likely. Suppose further that you'll be paid one dollar for each dot you
roll and that you pay four dollars to play the game. Make a probability
distribution for your gain/loss on one roll. Be sure to verify that your
gain/loss is really a random variable so that it makes sense to give a
probability distribution.

[With Problem 1.1.11 , we introduce a new convention. The problem
itself has no parts, but the Level I solution does. In LevelI, parts (a),
(b), (c), and (d) are introduced. The first three parts are intermediate
steps; part (d) is the answer to the question.]

1.1.12 In the very beginning of the chapter we referred to "... some
simple chance mechanisms-coin tosses, rolls of dice, and so on-and
abstract models for those mechanisms ."

(a) What's the technical term for such a chance mechanism?

(b) What's the technical term for the abstract models of those mechan­
isms?

Parameters to Characterize a
Probability Distribution

The Expected Value or Mean of a Random Variable

In Problem 1.1.9, we asked about the number of dots to be expected
on average for one roll of a fair die, or the number of heads on one
toss of a coin. For a random variable, you would always want to know
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what value to expect in repetitions of the underlying experiment. You're
asking for a kind of "average value" for the random variable.

Recall Problem 1.1.9(d) where you toss an unfair coin which comes
up heads 90% of the time and you're paid $2.00 for a head and $3.00
for a tail. How much would you expect to take in per toss? If the coin
were fair, you'd expect on average $2.50 per roll. Half the time $2.00,
half the time $3.00, so you split the difference. But with the unfair coin,
you get $2.00 nine times as often as $3.00 and on average you'd expect
to take in only $2.10 per roll. To see this, you must weight the values
according to how often they occur:

2.00 x 0.9 +3.00 x 0.1 = 1.80 + 0.30
90% of
the time
X=2

10% of
the time
X=3

And so, on average you expect to receive only $2.10, forty cents less
than for a fair coin. Here, of course, X is the amount of money you
receive on one toss of the coin-it's a random variable which takes on
the values "two" or "three," in units of "one dollar."

This weighted average is called the expected value ofX, denoted by
E(X). In symbols,

E(X) = I:xP(X).

The expected value of a random variable is computed by adding the
values weighted by their theoretical relative frequencies of occurrence,
that is, weighted by their probabilities.

The computation can be very efficiently done by extending the proba­
bility distribution table of X to include a column for the weighted values
of X, for the products XP(X). Then the sum of that column is E(X),
the expected value:

X P(X) XP(X)

2 0.9 1.8
3 0.1 0.3

-- --
1.0 2.1

so, E(X) = 2.1.
You'll often hear the expected value referred to as the mean of the

random variable . In general, a mean is a kind of average value. There
are several types of mean as we'll see in the next chapter. What most
people refer to as the average of a set of test scores, for example, is
technically the "arithmetic mean" -add the scores and divide by how
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Try Your Hand

many you have. Because both terms "expected value" and "mean" are
used interchangeably for random variables, we'll also use both terms.

When we refer to the mean of a random variable, it's customary to
use the symbol /-Lx (this is read: "mu sub X"), or simply /-L if X is
understood and there's no danger of confusion. Thus, E(X) and J1x are
just two different symbols for the same number. If you are thinking in
terms of what you "should expect" on average, you might prefer the
term "expected value" and the symbol E(X). All this will come clear as
you ...

Some general advice: In solving problems, before doing any calculations
you should ATIEMPT TO GUESS THE ANSWER. An exact guess may be
impossible, but at least you can guess a ballpark figure. This guessing
is important for two reasons: First, it helps you to avoid errors-an
erroneous calculation may be obviously wrong from a commonsense
point of view. Second, by guessing on the basis of intuition and com­
paring your guess with the correctly calculated answer, you train your
intuition. And that, in turn, deepens your understanding.

Here's some more advice: This is easy to do, but students often get
in trouble when they don't to do it. Any time you're working with a
random variable, be sure you're clear about the possible values of that
random variable. For example, in Problem 1.2.1(b), when you toss two
coins, what are the possible number of heads?

1.2.1 Calculate the expected value, E(X), for the following random vari­
ables. Do this as we did above, by extending the table for the probability
distribution to include a column for the products XP(X).

(a) The number of dots on the uppermost face for one roll of a fair die.

(b) The number of heads on one toss of a pair of fair coins.

(c) The number of dots on the uppermost face for one roll of a die which
comes up five half the time, with the other faces equally likely.

(d) Your "take" when you toss a fair coin and you receive two dollars
for tossing a head and three dollars for a tail.

1.2.2 For the game described, if you want to break even in the long run,
what should you pay for one play (for one roll of the die or one toss of
the pair of coins)?

(a) You receive one dollar for each dot on the uppermost face for one
roll of a fair die.
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(b) You receive one dollar for each head on one toss of a pair of fair
coms.

(c) You receive one dollar for each dot on the uppermost face on one
roll of a die which comes up five half the time, with the other faces
equally likely.

The Variance, Measuring the Accuracy of the Mean

We now come to a very important aspect of chance phenomena which is
often overlooked. Initially, we'll consider only simple games of chance,
but remember: These ideas are relevant not only to games of chance,
but to all chance phenomena and so are really quite important!

The expected value of a random variable is far from telling the whole
story of what we "should expect." To see why, consider a die loaded
to have the following probability distribution. This die has the same
expected value as a fair die because it's loaded symmetrically. But the
die is far from fair even though the expected value is the same as for a
fair die!

x P(X) XP(X)

1 0.3 0.3
2 0.1 0.2
3 0.1 0.3
4 0.1 0.4
5 0.1 0.5
6 0.3 1.8--

1.0 3.5 ux = 3.5.

As you can see, the smallest and largest of the possible values, X = 1 and
X = 6, carry most of the probability. There's a 60% chance of getting
one of those two values: P(X = 1 or 6) = 0.6. This means there's a high
probability of a roll with an outcome quite far from the expected value.
By contrast, on a fair die there's roughly a 30% chance of rolling a one
or SIX.

This example shows very clearly how much information can be missed
by a single parameter for a mathematical model. Here, the parameter is
the expected value. Let's define this term: a parameter is a fixed number,
such as the expected value, associated with a mathematical model. It's
contrasted with the term "variable." In the table above you see two
variable quantities, X and P(X), and one parameter, ux .The parameter
by definition is just a number, in this case it's 3.5.
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The idea is to try to capture the model as far as possible in its para­
meters. We'd like to have a list of parameters that will serve as a nu­
meric summary of the model. Clearly, the expected value by itself will
not suffice. As we see in the loaded die above, the expected value misses
an important characteristic of the model for this die. It misses the fact
that the probability is "spread" to the extreme values of X. We need a
parameter to capture this characteristic of the model, the "spread" or
"dispersion" of the values from the mean.

The notion of spread or dispersion for a probability distribution is
well illustrated by the following graphs:

P(X)
1 S the possible
6 values of X

the fair die :

1 2 3 4 5 6

t
3.5=/-tx

P(X)

0.3

0.1
the possibleS va lues of X

the loaded die:

1 2 3 4 5 6

t
3.5=/-tx

We'll discuss graphical presentations of distributions in more detail later,
but as you can see, the graph for the loaded die shows at a glance that
most of the probability for that die is concentrated at the extreme values
of X. The distribution is "dispersed" away from its expected value, 3.5.
We would like to capture this dispersion of the distribution in a numeric
measure. In other words, we need a parameter to measure "spread about
the mean" for a random variable.

The idea is to start with X - /1, the deviation of X from its mean.
There's one deviation for each possible value of X. These deviations
capture exactly what we wanted: the spread of X from the mean. But
we wanted one number not many. Here, we have many numbers, one
for each value of X. For the die, there are six deviations. One is -1 .5.
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Which value of X does it arise from? What are the other deviations for
the die?

The natural thing is to combine these deviations from the mean into
one number by just averaging . That means we would take the "average
deviation from the mean" as our measure of spread. Don't forget that
you must weight the numbers in an average according to the probability
with which each occurs. So first weight the deviations: (X - J.L)P(X).
Then just add these weighted deviations to obtain I:(X - J.L)P(X), the
average deviation. What is this for our weighted die? Well, this is the
right idea alright, BUT IT DOESN'T WORK! WE'LL HAVE TO DO SOME­
THING DIFFERENT. To see why it doesn't work, please ...

1.2.3 (a) What's the probability of rolling a one or a six on a fair die?

(b) What's the probability of rolling a one or a six on the loaded die
discussed in the text above?

(c) What's the point of this problem?

1.2.4 Compute the average deviation from the mean for

(a) the fair die,

(b) the loaded die given in the text above.

1.2.5 Suppose X is any random variable at all with mean J.L.

(a) In constructing a parameter to measure "spread" or "dispersion"
about the mean, what's the point of looking at the deviations from J.L?

(b) What does it mean if X - J.L is positive? Negative?

(c) Show that the average deviation from the mean for X is ZERO!

In Problem 1.2.5 you saw why the average deviation from the mean
won't work as a measure of spread-you always get zero! The average of
the deviations tells you nothing! What went wrong? The basic idea was
right, but we inadvertently introduced a totally irrelevant consideration
which vitiated our attempt to get a meaningful parameter.

This is typical of what may happen in trying to develop a mathematical
model for real-world situations. The process of abstraction is a delicate
one. In constructing your model, you want to "abstract" from the real­
world situation everything which is relevant to your study and you want
to omit everything irrelevant. But if you leave out too much detail, the
model will be simplistic. If you include too much detail, your model will



1.2 - Parameters to Characterize a Probability Distribution 17

be too complex. You want to forget only what is IRRELEVANT to your
question and keep what is relevant.

By looking at the average deviation from the mean, we've carried
into the model an irrelevant consideration which, instead of making the
model more complex, has introduced a trivialization: The number we
thought would be a meaningful measure of dispersion about the mean
turns out to be zero. What was the irrelevant consideration? It's just
this: When we take the deviations X - J.L, we capture the idea of spread
about the mean, but we also include the direction of spread. If a deviation
X - J.L is positive, that value of X is bigger than J.L, and if the deviation is
negative, that value of X is smaller than J.L. We want to know only HOW

FAR a value is from the mean. Whether it's above or below the mean is
irrelevant to how far from the mean it may be.

There's more than one way to solve this problem. One NOT very
common approach is to eliminate the irrelevant positive/negative con­
sideration by taking absolute values. Then average the absolute values
of the deviations. If you do that, you get the mean absolute deviation
from J-t: ~IX - J.LIP(X).

However, the most common procedure is to square the deviations
to remove the irrelevant positive/negative consideration. Instead of the
average of the deviations, we take the average of the squared deviations
from J.L . This parameter is called the variance of the random variable
X and is denoted by ui. As with J.Lx, the subscript can be dropped if
the context makes it clear which random variable you're talking about.
Here's the formula

To calculate the variance of a random variable X, you extend the proba­
bility distribution table for X by putting in one more column, a column
containing the weighted squared deviations from the mean, the products
(X - J.L)2P(X) . Let's compute the variance for the loaded die we were
discussing above:

X P(X) XP(X) (X - J.L)2P(X)

1 0.3 0.3 1.875
2 0.1 0.2 0.225
3 0.1 0.3 0.025
4 0.1 0.4 0.025
5 0.1 0.5 0.225
6 0.3 1.8 1.875

1.0 3.5 4.250
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SO, (52 = 4.25. As you see, this gives a variance of 4.25. When you
compute the variance for the fair die, you'll find that it's 2.9167, reflect­
ing the fact that the fair die is less spread about its mean than is the
loaded die.

You may be wondering how we can justify squaring the deviations.
After all, that significantly changes their values. True, but the variance is
used only in a comparative way to see that one distribution is more dis­
persed or less dispersed about its mean than another one. Because we'll
always use the same procedure-squaring the deviations-it's valid for
comparative purposes.

So the variance by itself means nothing. We can't ask, for example,
what it means intuitively for the fair die to have a variance of 2.9167!
We CAN ask what it means that our loaded die has a variance bigger
than that of the fair die. The larger variance for the loaded die means
the distribution is more spread from its mean.

What does this mean in a practical sense? Simply this: The mean is the
number of dots you expect on average. The loaded die is further from
that, on average, than the fair die. To say it another way, because you
would use f1 to predict what "ought to happen," the loaded die is more
unpredictable than the fair die. This unpredictability is reflected in the
larger variance.

Finally, we need one more term: The standard deviation, denoted
by (5, is the square root of the variance. For the fair die, the variance
is 2.9167 and so the standard deviation is (5 = 1.7078 . The standard
deviation is not a different parameter; it measures exactly the same thing
as the variance: spread, or dispersion about the mean. And it does it in
exactly the same way as the variance. Given one of these two numbers,
you can immediately calculate the other; so you learn nothing new.

Then why have two numbers at all? Purely for convenience. Square
roots are algebraically a nuisance, and so, in computations, the variance
is easier to work with. On the other hand, the units of the variance
are squared. Therefore, in your final answer or in real-world discussions
where the units may be mentioned, the standard deviation is better. After
all, you don't usually talk about "squared dollars" or "squared cities"!
For the fair die, you'd probably not feel completely comfortable talking
about a variance of about three "squared dots"!

Well, now please . ..

1.2.6 In the text above we saw a loaded die that's less predictable than
a fair die.

(a) Is it true that any loaded die will be less predictable than a fair die?
Explain.
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(b) Sketch a graph to illustrate part (a).
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1.2.7 What about the unfair coin we looked at earlier which comes up
heads 90% of the time? Compare it with a fair coin.

(a) Is the number of heads on the unfair coin more dispersed about its
mean than on a fair coin, or less so? As always, first try to guess. Then
compute the variance. Does this computed value confirm your guess?

(b) Draw and compare the graphs of the probability distributions for
the number of heads on one toss of the fair coin and then of the unfair
coin. Be sure to label the means.

(c) What's the standard deviation for each case in part (b)?

(d) Now let's be more general. Suppose we don't know the probability
of heads on our coin. Denote that unknown probability by the symbol p.
Let X be the number of heads for one toss of this coin. Derive a formula
for the variance of X .

1.2.8 (a) Compute the variance for the random variables in Problem
l.1.5(a) and (b) and in Problem 1.1.6. Be sure to set up the complete
probability distribution table.

(b) Compute the three mean absolute deviations for part (a).

(c) Compute the three standard deviations for part (a).

1.2.9 What are the mean and variance of a constant random variable?
Be sure you first guess, then verify your guess with the formulas.

1.2.10 The variance may seem a bit abstract compared with the ex­
pected value. What's the PRACTICAL meaning of the variance? What
does it mean in practical terms to say that a loaded die has a larger
variance than a fair die, or that an unfair coin has a smaller variance
than a fair coin?

The answer to this question may not be clear to you, but TRY ANYWAY!

Think about the examples described in the text: What it would mean to
you in practical terms that the loaded die has a probability distribution
more dispersed about its mean than a fair die or that the unfair coin has
a probability distribution less dispersed than that of a fair coin?

1.2.11 What's the difference between the variance and the standard
deviation for a random variable?

1.2.12 We describe below three different dice, anyone of which might
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be used for the following game: You'll be paid one dollar for each dot
on the uppermost face after you roll the die. To roll the die once, you
pay exactly your expected receipts, so that your expected gain/loss is
zero. Here are the dice:

• all faces are equally likely;
• two dots come up 50% of the time and the other faces are equally

likely;

• two dots come up 40% of the time, five dots 20% of the time,
and the other faces are equally likely.

(a) Compare the predictability of your gain/loss for each of the three
dice.

(b) In part (a), if the player breaks even in the long run, the gambling
house won't be a profitable business! Suppose the house wants to make
an average profit of 50 cents per play; what should they charge to play?

(c) In part (b), verify that the gain/loss is, indeed, a random variable.

Linear Functions of a Random Variable

It's very common to have a random variable determined through an
equation involving another one which arises in a natural way from physi­
calor real-world considerations. For example, the proportion of persons
in a survey, all of whom share a common characteristic-who belong to
a common ethnic group, for instance-is determined by the equation

p= (ljn)X.

Here, p (it's called "p hat") is the standard notation for such a propor­
tion and n represents the number of persons surveyed. X counts how
many persons in the survey had the characteristic of interest.

To give another example, monetary amounts are often determined
through an equation involving a random variable which describes some
physical situation. To see in a very simple instance how this could occur,
suppose you're betting on one roll of a die and you receive three dollars
for each dot on the uppermost face. Then T, your "total receipts," is
T = 3X, with X counting the number of dots on the uppermost face of
the die. Note how X is determined physically and T is derived from that.
Suppose you pay eight dollars per roll to play this game. Then Y, your
total gain/loss, is given by the equation: Y = 3X - 8. So, for example,
with one dot, you lose five dollars and with six dots you gain ten dollars.
Would you play this game?
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In a great variety of transactions like this one, your net result Y comes
through a linear equation from a physically determined random variable
X. A linear equation is an equation in which all variables appear added
together with coefficients, but without any powers, square roots, and so
on. For a linear equation, the standard notation is

in the example

Y=a+bX

Y = -8+3X

a, b constants,

a = -8, b = 3.

Try Your Hand

Because linear functions play such an important role in statistics, we'll
take a moment right now to see how they work. These fundamental
equations will come up again and again in our work:

Fundamental equations for linearly related random variables:

If Y = a + bX, a, b constants then

J.Ly = a + bJ.Lx,

a~ = b2ai-
To help you understand all this, please ...

1.3.1 Think about the notation given in the text above for survey pro­
portions. Show how that notation works: Suppose you surveyed 150
randomly chosen persons of whom 72% were Hispanic. Put those num­
bers into the equation

p= (1jn)X.

1.3.2 You're paid one dollar for each dot on the top face of a die after
one roll. To play-to roll the die once-you pay an amount equal to
your expected receipts. Let X be the number of dots on the top face of
the die after one roll and let G be the gain/loss random variable.

(a) Show that G is a linear function of X. That is, show that for some
constants a and b, G = a + bX. Be sure you identify a and b clearly.

(b) Show that the variance of the gain/loss random variable is the same
as the variance of X.

(c) Explain the result of part (b) on intuitive grounds.

(d) Now let's change the game and make it more realistic. Suppose
the gambling house is making a profit of 50 cents per roll on average.
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Express this new gain/loss random variable as a linear function of X
and give its mean and the variance in terms of X.

1.3.3 Derive the "fundamental equations" for linear functions given in
the text above. In other words, for any Y having the form a + bX, show
that

(a) /-ly = a + bux .

(b) o-} = b2o-i .
1.3.4 Based on data for the years 1919 to 1935, H.G. Wilm wanted to
set up a model to predict April to July water yield (WY) in the Snake
River watershed in Wyoming from the water content of snow (SC) on
April 1. We'll study Wilm's data in Chapter 7. His data leads to some
linear relationships. One analysis of the data suggests WY = 0.7254 +
0.4981 SC, measured in inches.

(a) The model gives WY as a linear function of sc. What ,are a and b
for that model?

(b) Assuming the model, what was the average April to July water yield
in the Snake River watershed over a ten-year period in which the water
content of snow averaged 22.3 inches?

(c) What is the real-world meaning of a for the model?

(d) A more careful analysis of Wilm's data gives the model WY= 0.52
Sc. Which model suggests more variability in April to July water yield?

(e) Why is the model in part (d) better than the original model?

1.3.5 Would you play the game described in the text where you receive
three dollars for each dot on the uppermost face of the die after one
roll and where you pay eight dollars per roll to play? Think about this
carefully.

(a) Would you expect to win or lose in the long run? Would you play
the game?

(b) Suppose on this die the face with one dot comes up half the time
and all the other faces are equally likely. How risky is the game?

(c) In part (b), because half the probability for the die is concentrated
on the single value "one dot," this game should be LESS risky than the
same game with the fair die. But we showed that it's MORE risky! What's
wrong?
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1.4 The Fundamentals of Probability Theory
We've been using the intuitive notion of probability as captured in the
idea of "long run relative frequency." A coin is fair if, "in the long
run," heads should show uppermost half the time. This is justified if we
think the coin is symmetric. Of course, no physical object is perfectly
symmetrical, and for that reason, no physical coin is exactly fair. In
fact, a physical coin does not even pretend to be symmetrical. The face
is shaped differently from the tail. But such physical complications are
beside the point! We know what we mean by fair and most coins, if they
have not been damaged in some way, will be at least approximately fair.

In the previous paragraph, we've described two practically related
but logically distinct ideas of probability: probability as "long-run rela­
tive frequency" and probability as determined by symmetry. There are
other notions of probability. There is probability as "degree of rational
belief," the degree of belief a rational person would invest in a given
statement. For example, if storm clouds are gathering on the horizon, a
rational person would invest little enthusiasm in a proposal for a picnic.
Probability has also been thought of as a kind of continuous truth func­
tion, where every statement has a certain probabililty to be true. With
perfect information, the probability is either zero or one, otherwise it's
somewhere in between. In short, probability has been described in many
diverse ways. Philosophically, it's a very thorny problem. Fortunately,
this is not a philosophy course! Fortunately also, the development of
statistics in an introductory course requires nothing of all this philo­
sophical complexity.

Three Basic Rules of Probability

All definitions of probability agree on three rules which probabilities
ought to obey. It's those rules which we need to know. To state the
rules, we will think of probability in terms of "events." We've used this
term before, but without giving a precise definition. An event is a set
of possible outcomes of some random experiment. For example, think
about event A, defined as "a number greater than two on one roll of a
die." Here, A is the set of all outcomes for which a face with three or
more dots comes uppermost. If the die is fair, then P(A) = 4/6 = 2/3.

The probability rules are

1. P(not A) = 1 - P(A),

2. P(A or B) = P(A) + P(B) - P(A and B),

3. P(A and B) = P(AIB)P(B) .
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In the third rule, you see the conditional probability of A given B,
denoted by the symbol P(AIB) . This is the probability that event A oc­
curs, given that you know event B has already occurred . So the given
condition B represents INFORMATION relevant to A. Because you now
have more information, the conditional probability is often easier to un­
derstand than the unconditional probability. Note, by the way, because
you know B has occurred, you also know that P(B) is NOT zero! You
cannot "condition" on an impossible event.

For example, suppose you draw two cards from a well-shuffled deck
of 52 playing cards . Let H2 be the event the second card is a heart. Then
P(H2) = 1/4. But that's not obvious! When you go for the second card,
there are only 51 cards left and everything seems to depend on what the
first card was. You can't calculate P(H2) because you don't know how
many of the 51 cards are hearts. On the other hand, for event HI that the
FIRST card is a heart, everything is obvious: P(Hr) = 13/52 = 1/4 and
P(H2IHr) = 12/51. This last calculation, the conditional probability, is
easy: You know the first card was a heart. When you go for the second
card, there are 51 cards with 12 hearts left, giving a probability of 12/51.

From this, together with our three probability rules, we can calculate
P(H2). First analyze H2 into two separate events:

case I: H2 and HI,

case II: H2 and "not HI."

Note that H2 is the event "case I or case II": Either both cards are
hearts (case I) or only the second card is a heart, the first is not (case II).
The event "not HI" is called the complement of HI, denoted by the
symbol HI.By Rule 3 we get

P(case I) = P(H2 and HI) = P(H2IHr)P(Hr) = (12/51) x (13/52),
P(case II) = P(H2 and Hf) = P(H2IHf)P(Hf) = (13/51) x (39/52).

Now compute P(H2). The trick here is that events "case I" and "case II"
are mutually exclusive; they cannot occur together. In terms of proba­
bility, to say A and B are mutually exclusive simply means their joint
probability is 0: P(A and B) = 0. So for us, P(I and 11)= 0, and we get

P(H2) = P(case I or case II)

= P(case I) + P(case II)

= 12/51 x 13/52 + 13/51 x 39/52
= 12/51 x 1/4 + 1/51 x 39/4

by Rule 2

shown above

cancelling 13 into 52
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= [(12/51) + (39/51)] x (1/4)

= 1 x (1/4)

= 1/4.
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After all this, you may be surprised to see that P(H2) = P(H1 )! It's
an instance of a curious phenomenon in probability that allows you to
"average across your ignorance"! That's possible if your "ignorance"
can be broken down into several cases with known probability. So you're
not completely ignorant. You don't know which case holds, but you do
know the probability of each case. In our example, when we ask about
the second card drawn with no information about the first card, the first
card is your "ignoranace." First split H2 into two cases according to
your ignorance. That's (H2 and Htl and (H2 and Hf). Then average,
taking a WEIGHTED average, weighted according to your ignorance

P(H2) = P(case I) + P(case II)

= P(H2!HdP(H1 ) + P(H2I Hf)P(Hf)·
i i

weights, according to
your ignorance

Finally, sometimes the conditional probability simplifies. Suppose
knowing that B has occurred does not affect the probability of A at
all. In that case, P(A IB) = P(A) and we say that A and B are inde­
pendent events. Note that on the draw of one card from a deck of 52,
the event "ace" is independent of the event "club" because P(ace) is
4/52 = 1/13 and so is Ptacejclub). Because Ptacelclubie-Ptace), the two
events are independent.

BayesI Theorem

A very important equation in probability theory is derived from our
third probability rule. It 's called Bayes' Theorem and is the beginning
of "Bayesian Statistics," an entirely distinct and somewhat controversial
approach to statistics. Thomas Bayes (d. 1761) was, in Stigler's words,
"... a minor figure in the history of science whose published works
show a spark of intelligence few of his contemporaries possessed." The
theorem was not published until 1764, after Bayes' death, and did not
receive any general recognition until about twenty years later. It's amaz­
ing that such a-to our present eyes-seemingly simple theorem could
have had such a controversial history; not controversy about the theo­
rem itself, but rather about the uses which have been made of it. That
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story goes far beyond the topic at hand into fascinating philosophical
waters. We'll leave it to your investigation. But don't worry, in this text
we'll keep away from any controversial uses! Recently, there has been a
rebirth of Bayesian statistics with significant progress in understanding
its proper use. It's becoming an important tool, for example, in business
decision making. Here's the theorem

Bayes' Theorem:

P(AIB) = P(BIA)P(A)
P(B)

Note that Bayes' Theorem allows you to determine the conditional
probability in the reverse order. For example, there's about a 24 %
chance on two draws from a deck of cards that the first card is a heart
given that the second one is. The probability makes sense, but it can't be
calculated directly from our rules. Try thinking about the second card
as "affecting" the first draw! It's Bayes' Theorem that saves the day:

P(H IH ) = P(H2IHl)P(H}) = (12/51) x (1/4) = 12
1 2 P(H2) (1/4) 51'

Of course, it's very special to this example that P(Hl) = P(H2) so that
they just cancel out. As you'll see in the exercises, it's not usually true
that P(AIB) = P(BIA).

Well, let's pause for a moment while you . ..

1.4.1 (a) What is Ptacelclub) on one draw of a card from a well-shuffled
deck of 52 playing cards? Do this from the definition of conditional
probability.

(b) Now do part (a) using some of our three probability rules. Let A be
the event that you draw an ace and C that you draw a club.

(c) How many outcomes are there for the event A of part (b)? For the
event C?

(d) Give an example of two independent events. Verify your answer!

(e) Show that for independence, order does not matter. In other words,
show that if A is independent of B , then B is independent of A.
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(f) Show that the simple product rule P(A and B) = P(A)P(B) is equiv­
alent to independence.

(g) Does P(AIB) = P(BIA) imply that A and B are independent?

(h) Show that P(AIB) = P(B IA) is equivalent to P(A) = P(B).

1.4.2 Before now we were using simple addition and multiplication
rules for probabilities: "Or" means add. "And" means multiply. Of
course, we warned you that these rules don't hold in complete generality.
Let's explore these rules a bit. In what follows, let X be the number of
dots on the top face of a fair die:

(a) Under what conditions do these simple rules hold?

(b) Which simple rule calculates P(2 :S X :S 5)? Explain.

1.4.3 On one draw of a card from a well-shuffled deck of 52 playing
cards, what's the probability that you do NOT draw an eight? Do this

(a) directly, by just counting,

(b) using one of our three probability rules.

1.4.4 Let D be the event a person has a certain disease. Let T be the
event that a test for the disease is positive, indicating the person tested
has the disease. Suppose studies of the test itself indicate that 99 % of
persons having the disease will test positive: P(TID) = 0.99. This is the
"sensitivity" of the test. In addition, suppose at the same time, that 98 %
of unafflicted persons will test negative: P(TCIDC) = 0.98. This is the
"specificity" of the test. Finally, suppose this disease occurs in only 3
persons in 100, P(D) = 0.03.

(a) What proportion of all persons tested would test positive?

(b) If you test postive, what are the chances you actually have the dis­
ease? This is the "predictive value of the test."

(c) What happens to the predictive value of the test as the disease be­
comes less common? Suppose , for example, P(D) = 0.003 .

(d) In 1987, a bill was introduced in the Senate of New York State
stipulating that any screening test must "have a degree of accuracy of
at least 95 %" and "positive test results must then be confirmed by an
independent test, using a fundamentally different method and having a
degree of accuracy of 98 %." Assume "accuracy" refers to both sensitiv­
ity and specificity. What would be the predictive value of the combined



28 Chapter 1 - Introduction to ProbabilityModels of the Real World

test, where a positive reading on the first test is confirmed on the second
test? Assume P(D) = 0.003. (after [Finkelstein and Levin]).

(e) Show that the test and the disease are not independent. Of course
that must be true, but can you show it analytically?

1.4.5 In 1980, after a series of airline hijackings in which the hijacker
had passed through a magnetometer undetected with a plastic weapon,
the federal government reinstituted a screening program that had been
discontinued in 1973. The program attempted to identify potential air­
line highjackers on the basis of a behavioral "hijacker profile." One issue
debated in the courts is whether such a profile gives "reasonable suspi­
cion" to justify investigative detention. Does it? Let's look at an earlier
case.

In a 1971 case (United States v.Lopez), the defendant was identified as
fitting the hijacker profile and was subsequently arrested for possesion of
heroin (no weapon, apparently). Lopez moved to suppress the evidence
taken from his person. The court's decision reviewed a study of 500,000
passengers, 20 of whom were actually denied boarding.

Did the fact that Lopez fit the profile give "reasonable suspicion" to
justify investigative detention? Suppose the sensitivity of the profile (see
Problem 1.4.4) is actually 90% and the specificity 99.95%. Further,
suppose we take the results of the court's study as valid in general.
In other words, suppose 20 of any 500,000 passengers are carrying a
weapon (after [Finkelstein and Levin]).

1.4.6 According to recent studies, lie detector tests have a sensitivity of
0.88 and a specificity of 0.86. How accurate is the test (after [Finkelstein
and Levin])?

(a) Suppose one-fourth of all suspects will in fact lie.

(b) Suppose three -fourths of all suspects will in fact lie.

(c) What do parts (a) and (b) say about the predictive value of a screen­
ing test?

Random Experiments with Equally Likely Outcomes

To get some insight into our three probability rules, it's very helpful
to take a careful look at a very special case: Distributions arising from
experiments with equally likely outcomes. In that case, the probability
of any event can be calculated just by counting. That was our procedure



1.4 - The Fundamentals of Probability Theory 29

for analyzing the draw of a card from a deck of 52 playing cards. In
fact, we've often drawn on our intuitive understanding of this principle
of probability. Now we'll make it precise. Let's describe an outcome
for the "draw one card" experiment as simply "one card." If the deck
is well shuffled, each card is as likely to be drawn as any other and so
the outcomes are "equally likely." Thus P(ace) = 4/52 because there are
four aces among the 52 equally likely cards.

Suppose A is any event involving a random variable X for an ex­
periment with equally likely outcomes. Recall that an event is a set of
possible outcomes. Suppose there are N outcomes altogether and a of
them comprise the event A, then P(A) = a/NoNow you can see where
our first probability rule comes from:

P(not A) = (N - a)/N = N /N - afN = 1- afN

= 1-P(A).

Note how this works for our "draw one card" example:

P(not ace) = (52 - 4)/52 = 52 /52 - 4/52 = 1 - P(ace)

The set of all possible outcomes of a random experiment is called the
sample space of the experiment. We'll use the following notation: N is
the number of all possible outcomes and #A is the number of outcomes
which comprise an event A. Following normal usage in the English lan­
guage, we sayan event A "occurs" if we perform the experiment once
and observe one of the outcomes comprising A. Otherwise, if we do the
experiment and observe an outcome not among those comprising A, we
say A did NOT occur.

Now for our second probability rule: Think how many outcomes
comprise the event "A or B." In other words, what is #(A or B)? An
outcome is part of this event if it's among the outcomes comprising A
(A occurs) or if it's among those of B ("or" B occurs) . So you might say,
"Oh, it's easy, #(A or B) is just #A + #B." Sorry, you fell into a trap!
What about those outcomes which make up the event "A and B"? You
counted them twice! Think of the event "ace or club." There are four
aces and 13 clubs, but "ace or club" consists of 16 cards not 4+ 13 = 17.
It consists of 13 clubs (including one ace) and the three (not four) other
aces. So #(A or B) is 16, not 17.

In general, to get #(A or B), count the number of outcomes in A,
the number in B, and then SUBTRACT OUT the ones which were double
counted, namely, the ones in "A and B":

#(A or B) = #A + #B - #(A and B).
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That, in essence, is our second probability rule. Just divide by N,

P(A or B) = #(A or B)
N

#A +#B - #(A and B)

N
#A #B #(A and B)

= -N + -N- - ~-N-~

= P(A) + P(B) - P(A and B).

The third probability rule is obtained from P(AIB). With P(AIB), we
know that B occurred. So the total number of possible outcomes has
been reduced to #B. Given that, what's the probability A occurred?
Well, of course, we only think about those outcomes in A which are
also in B because we know B occurred:

P(AIB) = #(A :~d B) .

The rest is pure algebra. On the right-hand side, divide the numerator
and denominator by N:

P(AIB) = #(A and B)/N
#B/N

P(A and B)
P(B)

Now multiply both sides by P(B) to get: P(AIB)P(B) = P(A and B).
This is nothing but our third probability rule!

So you see that our three rules hold in the special case of "equally
likely outcomes." It 's not so easy to prove that they hold in general,
but they do. We'll ask you to believe that! Before we introduce more
exercises, we'd like to tell you about a very surprising theorem.

We've said the standard deviation of a random variable is useful only as a
comparative measure of spread, useful to compare the dispersion about
the mean of one distribution with another. That statement cannot be
maintained as unequivocally true. For instance, the standard deviation
guarantees a minimum amount of spread in the sense that it 's impossi­
ble for all the values of the random variable to fall strictly within one
standard deviation of the mean.
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For example, in a betting situation, if you have an expected loss of
one dollar (J-l = -1) and a standard deviation for your gain/loss of two
dollars, then to be "within one standard deviation of the mean" is to
lose at most three dollars (J-l - 0" = -3) and not more than one dollar
(J-l + 0"). But it's impossible your net gain/loss would stay within that
range 100% of the time. It's impossible, in other words, that your net
on any "go" of the game would always be within a loss of three dollars
and a gain of one dollar. So knowing the standard deviation does, in
fact, tell us a little something.

Chebyshev's Theorem helps the standard deviation to tell us a little
more. It limits the chances for the values of the random variable to be
more than k standard deviations from the mean:

Chebyshev's Theorem:

For any random variable X and positive integer k

or equivalently,

Well, now please ...

1.4.7 Show that the condition in Chebyshev's Theorem, IX - J-li ~ ko,
can be described verbally as "X is within k standard deviations of J-l ."
Note how we use the phrase "within"-when we mean IX - J-li < ko,
we'll say "STRICTLY within."

1.4.8 Chebyshev's Theorem is remarkable-we called it "surprising"
earlier-because you do not have to know anything about the random
variable. For any random variable at all:

(a) What's the probability of being within two standard deviations of
the mean?

(b) What's the probability of being more than one and a half standard
deviations away from the mean?

1.4.9 Suppose X counts the number of dots on the uppermost face of
a fair die.
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(a) What's the probability of being within two standard deviations of
the mean?

(b) What's the probability of being more than one and a half standard
deviations away from the mean?

1.4.10 Suppose X counts the number of dots on the uppermost face of
a die for which the face with two dots comes uppermost half the time
with all other faces equally likely.

(a) What's the probability of being within two standard deviations of
the mean?

(b) What's the probability of being more than 1.1 standard deviations
away from the mean?

(c) What does Chebyshev say about part (b)?

1.4.11 (a) Show that it's impossible for a random variable to have all
its values strictly within one standard deviation of the mean.

(b) Show that if X counts the number of heads on one toss of a fair
coin, then all the values of X are within one standard deviation of the
mean.

(c) Why does Chebyshev's Theorem not apply to parts (a) and (b)?

1.4.12 Give an example of a random experiment for which the out­
comes are NOT equally likely.

Some Review Exercises

1.5.1 (a) If a random variable is constant, what justifies the word "ran­
dom"?

(b) Suppose X is any random variable whatsoever. Give a verbal de­
scription of ~X, ~P(X), ~XP(X), ~(X - p,)P(X), IX - p,1.

1.5.2 Suppose you toss a thumbtack over a table and, after it comes to
rest on the top of the table, you assign U if the point of the tack points
up and you assign D if it points down.

(a) Show that we have a random experiment here.
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(b) Compute the mean and variance of

(c) Suppose you receive 40 dollars for tossing the tack so that the point
comes up and you lose 20 dollars if the point is down. Let X = 1 if
the tack falls with the point up and let X = 0 otherwise. Write your
gain/loss random variable as a function of X. Then compute the mean
and variance of X and use that information to compute the mean and
standard deviation of your gain/loss in this game.

(d) In part (c), you save a lot of work if you use the result of Problem
1.2.7(d). Show how.

(e) Would you play this game?

(f) Suppose you receive five dollars when the tack falls with the point
up and lose five dollars otherwise. Which game would you prefer, this
one or the one in part (c)?

1.5.3 The Scottish physicist james D. Forbes thought mountain climbers
could avoid carrying the clumsy barometers of that day if they could
determine altitude from the boiling point of water. He published data
in 1857 which suggested the following model relating the boiling point
(BP, degrees Fahrenheit) of water to barometric pressure (Pr, inches of
mercury): Pr = 0.5229 BP - 81.0637. We'll consider Forbes' data in
more detail in Chapter 7.

(a) Describe this model.

(b) Suppose atmospheric pressure at a particular altitude over a period
of three months as measured by a barometer averaged 26.7 inches of
mercury. What does the model suggest as the average boiling point of
water during that period of time?

(c) In part (b), would the boiling point of water be more or less variable
than barometric pressure?

(d) The question in part (c) does not reflect an absolute characteristic
of Pr and BP. It depends on the units of measurement. Explain.

1.5.4 (a) What are the two essential ingredients of any probability dis­
tribution?

(b) Name three modes of presentation for a probability distribution.
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1.5.5 Consider the following probability distribution

x P(X)

7 0.05
11 0.42
14 0.35
17 0.11
21 0.07

1.00

(a) Complete the table with appropriate columns to compute the aver­
age of the deviations from the mean. Remember, it must turn out to be
zero!

(b) Now set up a new table with appropriate columns to compute the
mean and variance.

(c) What proportion of this distribution falls within one standard devi­
ation of the mean? Think what "within" means: "Within one block of
my house" means "one block in either direction."

(d) Make up a new random variable Y that's like X but has a smaller
variance. By"like X" we mean Y has the same values and the same mean
as X. Choose probabilities for Y so that (j~ is less than five. /l-y need
not be exactly the same as ux, but it should be close. Don't make any
of the probabilities zero, that would amount to changing the possible
values.

(e) What proportion of this distribution falls within one and a half
standard deviations of the mean?

(f) This random variable is abstract in a very specific sense: Why do we
say it's "abstract"? The word "abstract" is used here in the sense of "to
abstract away from real-world complexities."

1.5.6 You are throwing darts at a dart board having a "bull's eye"
within two concentric rings. The bull's eye is red, the innermost ring is
blue, and the outer ring is white. The game is scored as follows: bull's
eye ten points, blue ring five points, white ring three points. Further,
there's a penalty of two points if the dart misses the dart board entirely.

(a) Show that "score" is a random variable.

(b) Set up an appropriate probability distribution and use it to compute
the expected score and a measure of the predictability of the score.
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(c) How would you measure an individual player's skill at this game?

(d) How would you measure an individual player's reliability at this
game?

(e) If you want to compute the measures discussed in the previous two
parts, what further information would you require?

(f) How many random variables are implicit in this game?

(g) Set up a probability distribution for your game and use it to compute
your expected score and a measure of the predictability of your score.
Assume you hit the bull's eye on average 65% of the time; the blue ring
23 % of the time, the white ring 11% of the time, and that you miss the
board 1% of the time.

(h) Now let's think about your opponent. We don't know her game.
Make up probabilities for her game. Choose the probabilities so that
her expected score is less than yours, but still her game is more exact.
Make her "exactness" better by at least one point. Verify this.

(i) Who is more likely to be within one and a half standard deviations
of their expected score, you or your opponent?

(j) Who is more likely to be within two standard deviations of their
expected score, you or your opponent?

1.5.7 For a random variable X, suppose P(X = 3) = 0.07, what's the
numeric value of EX~3P(X)?

1.5.8 Let X be the number of dots on the uppermost face of a die which
shows four dots uppermost half the time with all other faces equally
likely. Let Y be the number of dots on the hidden face of that die (the
face on which the die comes to rest). Opposite faces of a die have seven
dots total-did you know that?

(a) What's the random experiment for Y? Compare it with the experi­
ment for X.

(b) Give the probability distribution of Y and use it to compute the
mean and variance.

(c) What's the relationship between X and Y?

(d) Use the relationship in part (c) to obtain the mean and variance of
X from that of Y.
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1.5.9 Suppose one face of a die comes up half the time with all other
faces equally likely. The mean and variance will depend, of course, on
which face it is that comes up half the time. For both parts (a) and (b)
below, try to guess first on intuitive grounds, then verify your guess by
an appropriate calculation.

(a) Which face would have to come up half the time to yield the smallest
variance?

(b) The largest variance?

(c) Is "the number of dots on the uppermost face" the same random
variable for each of parts (a) and (b)? Or is it a different random variable
each time?

1.5.10 For each of the following distributions, extend the distribution
with appropriate columns and calculate the mean and standard devia­
tion. Then specify what proportion of the distribution is within 1, 1.5,
2, and 2.8 standard deviations of the mean.

(a) X P(X) (b) X P(X) (c) X P(X)

22 0.13 0.2 0.01 1.7 0.22
23 0.62 0.5 0.08 1.8 0.17
24 0.09 0.8 0.34 1.9 0.14
25 0.16 1.1 0.42 2.0 0.17

1.4 0.15 2.1 0.12
2.2 0.18

1.5.11 For the distributions in parts (b) and (c) of the previous problem,
you could avoid the decimal point nuisance if you multiply X by ten. To
see how this would work, let Y = lOX. Set up distribution tables for
the two Y's for parts (b) and (c) and use the table to calculate the mean
and standard deviation of Y. Then use the fundamental equations for
linearly related random variables to calculate the mean and variance of
X from that of Y. Note that, of course, you get the same answer you
calculated in the previous problem.

1.5.12 It's often possible to simplify calculations by a shift of the values
such as you did in the previous problem. This is a common use of our
"fundamental equations" for linearly related random variables . Define
Y by the equation: Y = 100X - 2,147,810, where X is given in the
table below:
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x
21,478.14
21,478.15
21,478.16
21,478.17
21,478.18

P(X)
0.17
0.22
0.37
0.14
0.10
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(a) Describe Y verbally in terms of X.

(b) With Y = a + bX, what are the numeric values of a and b?

(c) Set up a distribution table for Y and use it to calculate the mean and
standard deviation of Y.

(d) Reason intuitively using parts (a) and (c) to get the mean and stan­
dard deviation of X.

(e) Write X as a linear function of Y and use that relationship to calcu­
late the mean and variance of X.
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2.1 Observed Data from the Real World

Presenting Data Graphically

In Chapter 1, we concentrated on random variables, abstract models
for the real world. By contrast, in this chapter, we'll consider observed
data-observed in the real world of course, where else could you observe
something? The contrast and interplay between real-world observations
on the one hand and theoretical constructs on the other is one of the
principal themes of this course. Before coming to the interplay of obser­
vation and theory, however, we need first to consider some of the ways
of organizing, summarizing, and presenting observed data.

Graphs and charts are probably the easiest presentations of data to
understand and for that reason they are found everywhere-in newspa­
pers, magazines, advertisements, corporate reports, and so on. Because
graphical displays have become such an important means of summa­
rizing and communicating complex data, it's important to understand
their use and misuse. Unfortunately, misuse of graphical presentations is
not at all rare. Edward R. Tufte in his fascinating and informative book
The Visual Display of Quantitative Information discusses this problem
which he believes to arise in part from the lack of statistical experience
among illustrators who are trained exclusively in the fine arts.

A great deal has been learned by psychologists about how the human
eye perceives visual presentations of data and how the mind interprets
these displays. We're all familiar with the optical illusions which result
from the mind's interpretation of what is seen. For example, which of
the following is the longer line:

I 1
The process of perception and interpretation is largely subconscious

and, consequently, the unwary reader is subject to deception by clever
graphic manipulation. One of the most basic principles underlying
graphic perception is the rule that

Numeric quantities are seen and interpreted
in terms of AREA not just height.
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This principle is commonly abused in deceptive data displays:

Ptir~hasing
Power
of. the
~Dollar

C ree, Lobor Deportment

© 1978, The Washington Post. Reprinted with permission.

Here, the 1978 dollar is worth 44% of the 1958 dollar, but it's rep­
resented in the chart by less than 20% of the area of the 1958 dollar!
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Try Your Hand

The height and width were both reduced to about 44% of the 1958
height and width, thus reducing the area to less than 20% of the 1958
area (measure them). You see the kind of exaggeration that results from
ignoring this principle that "the eye judges by area." Sometimes this
exaggeration is heightened by other deceptive devices. Note how the
1958 dollar at the top of the chart sits out in front of the top margin,
giving it even further visual prominence and making the other dollars by
contrast seem still smaller. Here's another chart on which you can . ..

2.1.1 When you look at the graph below, what initial impression do
you get? Do you think "total budget expenditures and aid to localities"
in New York State have increased significantly in "recent years" (that
is, in the two or three years before 1977)?

New Vork State 510.7 510.8

Total Budget Expenditures and $9.7

Aidto Localities In billions01 dollars
$85

Fiscal 1966-1976
57.8

57.4

56.7
562

555

54.6

Total Budget -+ 54.0

Total Aid to -+
Localities"

'Vo!Y"QIromI low
of 561pr rcenl of
lhe'o,. I.. 19/0./1
10I hogh 0160'
pr rctnt 1ft 19n ·13 1966- '61· '68. '69. '70- 1 1- 12- '13· 1 4- ~ 16-

'61 '68 '69 '/0 1 1 -n 13 1 4 '7S 16 11

T T
EI.....,1d Aoc_

© 1976, The New York Times Company. Reprinted with permission.
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Collect;ng Data

Chapter2 - Understanding Observed Data

The examples above should suffice to indicate the importance of clear
and informative data presentations. In this chapter, we'll learn certain of
the standard graphic and tabular methods for organizing and displaying
data. So we leave aside theoretical considerations-random variables in
particular-and concentrate our attention on observed data. First, we
need to consider the question of data collection. Where does this data
come from? Is it there, ready for your study? Or do you have the task of
collecting the data yourself? Because the data-collection process can be
very expensive and time-consuming, you may want to make use of exist­
ing data. In fact, as a practical, matter you may have no choice-funds
may simply not be available for an expensive sample surveyor other
appropriate data-collection process. You may have to rely on data from
some external source. Large databases from private and public agencies
are coming more and more to be "on line" and available to anyone with
access to a personal computer and modem. The federal government col­
lects, organizes , and publishes an enormous amount of data through
the census and other processes. For example, there 's the Statistical Ab­
stract of the United States, published annually by the Department of
Commerce, and there are publications from the Department of Health,
Education and Welfare such as Vital and Health Statistics. And many
more. International organizations such as UNESCO and agencies of
other governments also publish official data.

On the other hand, existing data relevant to the questions you're ask­
ing may not be available. Or it may not exist in a form relevant to your
questions. Then you become involved in a major project-data collec­
tion. With the term "data collection," we're thinking, among other pos­
sibilities, of something like an opinion poll or some other kind of sample
survey. Such a survey is an example of a statistical experiment. A statis­
tical experiment is any random experiment which generates statistical
data. A sample survey is just one example; there are others. To study the
operation of a mach ine, or some more complex process, you may take
a sample from a probability distribution which models the machine. To
take a very simple example, you might take ten cups from a drink ma­
chine to study the operation of the fill mechanism of the machine. If
you're trying to evaluate the effectiveness of several different fertilizers ,
you'll design a statistical experiment to test those "treatments" (fertiliz­
ers) under varying conditions. For instance, you may choose a number
of different plots of ground across varying soil and climatic conditions
and observe the yield of a number of different crops. These "crop yields"
are then your data.
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Try Your Hand

Note how complex the situation has become. The data will be useless
if all you do is record numbers, the crop yields

12.3, 317.4, 3.7, 0, 63.2, and so on.

Do these numbers refer to pounds, bushels, tons, ... ? Which plot had
ZERO yield? Why? If you got no yield at all, was it because of the soil?
The climate? The fertilizer? These numbers just listed this way tell us
nothing! You must organize the observations so that relevant aspects of
the experiment are captured in your data presentation.

Furthermore, you must design the experiment carefully to make sure
the questions you want answered can be analyzed on the basis of your
data. In a sample survey, for example, if you don't frame the question
for your respondents carefully, you'll have the right answer to the wrong
question and the resulting data will be useless. Or worse, the data may
seem quite clear in its implications and yet be WRONG!

Another problem is the failure to control for variables which might
be confounded with the effect you want to study. This problem arises
if your "effect" is not constant for some extraneous variable-if the
groups or categories you're looking at are not homogeneous with regard
to that "effect." When not controlled for, such a variable is said to be
confounded with the effect under study. That means you can't separate
out your effect from the effect of that other variable. Problems 2.1 .2 and
2.1.3 provide a couple of simple but rather startling cases.

2.1.2 You are considering two treatments for a disease. You observed
390 patients, 160 of whom took the first treatment while the rest took the
second treatment. Sixty of those who took the first treatment recovered,
and 65 who took the second treatment recovered . Which treatment is
better? [This is an example of Simpson's paradox.]

2.1.3 Your company has 100 employees, 50 men and 50 women. The
average female employee earns $160,000 annually, while the average
male employee earns only $140,000. Now this seems like a good com­
pany to work for; these are not bad salaries. But then, these figures
suggest evidence of salary discrimination based on gender-men are
making less on average than women. Comment.

2.1.4 Here's an example of how a statistical study can lead to gross
misinterpretation if the authors of the study are ignorant of, or insen­
sitive to, specific issues relevant to the study. It's one more example to
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illustrate that numbers out of context mean nothing. Statistical results
require interpretation based on INFORMED judgment.

One widely reported and widely criticized conclusion of a 1991 fed­
erally funded study, the National Survey of Men (NSM), l claimed that
1.1 % of men aged 20-39 in the United States were exclusively homo­
sexual during the prior ten years. This is in stark contrast to the 10% fig­
ure-that 10% of the general population is homosexual-current since
the Kinsey studies of the 1940s. In the NSM, respondents were asked a
wide variety of questions concerning their sexual attitudes, behaviors,
and relationships. The authors of the study claim that the "results pre­
sented here ... can be generalized to the US population." Furthermore,
the "privacy of the interview and the confidentiality of the information
collected were stressed, and respondents were assured of anonymity."
To facilitate follow-up studies at a later time, respondents were asked
to provide full personal identification. In other words, for each respon­
dent, the interviewer knew the home address, business or school address,
social security number, and a reference to two persons-friends or rel­
atives-who did not live with him.

(a) Of 3224 men who responded to this question on the survey, 2.3%
reported some same-gender activity over the last ten years and 1.1 %
reported exclusively same-gender activity during that time. How would
you interpret these percentages with respect to all men aged 20-39 in
the United States?

(b) Suppose, in fact, that 10% of all gay men aged 20-39 in the United
States are "out" enough to be willing to acknowledge their homosexu­
ality to a stranger who knows their home address, work address, social
security number, and so on. Based on the NSM, what percentage of U.S.
males aged 20-39 would you think are homosexual?

(c) The NSM results break down by age as follows:

age 20-24 25-29 30-34 35-39

p 2.3% 1.2% 0.4% 0.7%

where p is the percentage who reported exclusively same-gender activity
during the prior ten years . What do you make of these percentages?

(d) Of all men contacted for the NSM, 30% refused to participate. This

1 The results of this study together with an account of the methodology is contained
in five articles in the journal Family Planning Perspectives, March/April 1993. Our
quotations are from these reports. The authors of the reports are John O.G. Billy, Koray
Tanfer, William R. Grady, and Daniel H. Klepinger, all of the Battelle Human Affairs
Research Centers in Seattle, Washington.
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is the problem of "nonresponse" which plagues every statistical survey.
How do you think this degree of nonresponse affects the validity of the
findings?

(e) The nonresponse problem has been studied extensively and tech­
niques have been devised to elicit truthful answers to sensitive ques­
tions. In 1965, S.L. Warner devised the "randomized response" tech­
nique whereby the respondent gets to choose between the survey
question and a dummy question. Would you like to guess how this
works?

The examples in Problems 2.1.2 and 2.1.3 pose a serious difficulty
for any statistical study. Can you ever be sure you've taken ALL the
relevant variables into consideration and controlled for them? Probably
not. The best you can do is to control for those variables which in your
best judgment you're able to identify as relevant. But there's always the
possibility that time and further experience will turn up other variables
which you overlooked, variables which, in fact, are confounded with
the effect you're studying. This makes a very important point:

ONE CAN NEVER RELYON NUMBERS TAKEN OUT OF CONTEXT

Numbers alone tell you nothing! Informed judgment is absolutely
unavoidable in any statistical analysis. This goes contrary to the common
ignorance which believes that statistics is "just a lot of numbers." It's
impossible to say you 've learned statistics if you haven't UNDERSTOOD

what you've learned. Informed judgment, after all, can only be based on
understanding.

Students are sometimes uneasy in a first statistics course, finding they
always have to think their way through a problem. They feel something
must be wrong because they can't "just solve" the problem. But "solv­
ing the problem without thinking" is a wrong approach to statistics.
In real-world situations, it could lead to very wrong conclusions and
expensive errors. Unfortunately, grossly misleading statistical "studies"
are sometimes published. Often, it's not so much ignorance as an intent
to mislead that produces such a smoke screen of disinformation. But
without an understanding of fundamental principles, you'll never see
through these smoke screens! The most fundamental goal of this course
is to lay a foundation for that kind of understanding.

So we see in this section that designing a statistical experiment to
generate data can be a major undertaking. Data collection can require
a significant degree of expertise both in statistics and in the field under
investigation. For this reason, the design and execution of a statistical
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experiment is often a team effort, involving persons with significant
collective experience in statistics and in the field under study. It's a so­
phisticated process. Even a first course in experimental design requires
a thorough grounding in the basics of statistics, a grounding such as
you'll get from this text.

For that reason, the process of data collection is not treated in a first
course such as ours. Throughout this course, we'll adopt the point of
view that data appropriate to our problem is already available. When
procedures for obtaining data go unmentioned, it's not because "Oh,
you just go and get some data-everybody knows how to do thatl,"
but rather because it's a topic too advanced for an introductory course.
There's one exception to this rule: We will take a look at "simple random
sampling." Still, simple random sampling, as opposed to more sophis­
ticated sampling designs, is often not practical in real-world situations.
We introduce it because it's a basic part of more complex experimental
designs and because it provides some concrete experience with the pro­
cess of sampling. We'll begin with simple random samples drawn from
a probability distribution.

Simple Random Samples Drawn from a Probability Distribution

If you roll a die five times, let's say, and record the result as an or­
dered set of integers representing the number of dots on the top face
of the die after each roll, for example, (4, 1, 4, 3, 3), then you've
generated a simple random sample of size n = 5 from the probabil­
ity distribution of the random variable X, where X is the number of
dots on the uppermost face of the die after one roll. In general, sup­
pose X is any random variable whatsovever, a simple random sam­
ple of size n from the probability distribution of X is an ordered set
of n values of X obtained from n independent repetitions of the ran­
dom experiment for X. The sample is "ordered" because you record
the values of X in the order they're generated. We used parentheses
for the sample instead of the usual set notation to indicate the set is
"ordered."

Independence is a key assumption here and is often problematic. It
means that any repetition of the experiment should be unaffected by
previous executions. In particular, the probabilities for the distribution
should not be affected by doing the experiment. In a sense, it shouldn't
be necessary to say this. After all, if the probabilities change, you aren't
repeating the "same" experiment. The independence condition holds for
rolls of a die, of course, assuming you believe the die is not physicall y
altered by rolling. Let's think about this kind of sampling.
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Try Your Hand 2.1.5 We'll begin with the simplest example of all. Let X be the random
variable which counts the number of heads for one toss of a coin. Just
to be concrete, let's suppose heads comes up 70% of the time.

(a) Verify that three tosses of this coin generate a simple random sample
from the distribution of X.

(b) Write out all the possible random samples of size n = 3 for simple
random sampling from the distribution of X .

(c) How many samples of size 30 are there?

(d) What's the probability of a sample of size four for which EX = 4?

(e) What's the probability of a sample of size four for which EX = 2?

(f) What's the probability of a sample of size four having an average of
"half a head" per toss? Note that one toss has either zero or one head,
but the average for several tosses can be a fraction between zero and
one.

2.1.6 Suppose you're rolling a die for which the face with five dots
comes up half the time and all other faces are equally likely. As usual,
X is the number of dots on the uppermost face after one roll.

(a) Show that a simple random sample from the distribution of X is
generated by 10 rolls of this die.

(b) List all the possible simple random samples of size two from the
distribution of X .

(c) How many simple random samples of size ten are there?

(d) What's the probability of a simple random sample of size three for
which EX = 4?

(e) What's the probability of a sample of size three where you observe
1t dots on average per roll?

2.1.7 Suppose we have an industrial process that produces an item to
specification. Let's say it's a machine part which is to be 2.5 em in di­
ameter. Because no physical process can be exact, each part will be off
slightly from the exact specification. This is called "specification error."

(a) Show that specification error is a random variable .

(b) Show that the "next five parts" to be produced generate a simple
random sample from the distribution of specification error.
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(c) What might be a practical use of the sample in part (b)?

2.1.8 Another important kind of error arises in repeated measurement
of some object or situation: the slight error that's always present when
one makes repeated measurements. "Measurement error" is an impor­
tant phenomenon which can be modeled by statistical techniques; there
are entire books on the subject! Safeguards of radioactive material often
involve periodic (repeated) measurement to assure that no material has
been diverted, for example, to a hostile foreign power. The Bureau of
Standards in Washington makes repeated measurements of its standard
weights, measuring rods, and so on. Three different IQ tests taken on
three different occasions could be regarded as repeated measurements of
your IQ. In repeated measurement, measurement error is always present
because of limitations in the accuracy of the measuring devices and be­
cause of limitations in the accuracy of observation or reading of those
devices by the person doing the measurement.

(a) Show that measurement error is a random variable.

(b) Show that the "next five measurements" generate a simple random
sample from the distribution of measurement error.

(c) How is "specification error" different from "measurement error"?

2.1.9 Here's another way simple random sampling from a probability
distribution arises in industrial quality control. Suppose a manufactur­
ing process turns out lots consisting of 500 silicon wafers. In addition,
suppose 3% on average of all wafers being produced are defective. We're
concerned with the percentage defective per lot. Let X denote the ran­
dom variable of part (a).

(a) What's the appropriate random variable X for studying this manu­
facturing process?

(b) What are the mean and variance of the random variable X?

(c) Show that a lot generates a simple random sample from the distri­
bution of X.

(d) Express the percent defective per lot in terms of X.

(e) Show that "percent defective per lot" is a random variable.

2.1.10 A disease with complex causes whose etiology is not well under­
stood can be regarded as a random mechanism and studied with the
powerful tools of statistical analysis. Suppose, let's say, a child is judged
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to have an 8% chance of contracting the disease. Then, trying to deter­
mine whether a particular child will contract the disease is like tossing
a coin for which there's a probability p = 0.08 of heads.

(a) What's the appropriate random variable for studying this disease­
the random variable that's comparable to counting the number of heads
on one toss of a coin?

(b) Suppose you're interested in the incidence of this disease among
children in a particular neighborhood of your city. Show that the children
of that neighborhood can be thought of as a "simple random sample"
from the distribution of the random variable of part (a).

(c) Show that the percentage of children in that particular neighborhood
who contract the disease is one value of a random variable.

(d) How might you use the "sample" in part (b)?

(e) Give a symbol involving the random variable of part (a) that ex­
presses "incidence of this disease" in that neighborhood.

Populations

Sampling from a probability distribution is just one form of simple ran­
dom sampling. Another is to draw a sample from a population. This is
familiar to you from survey sampling-opinion polls, for example, or
surveys of voters, and so on. Before we discuss sampling from popula­
tions however, we need to look first at populations themselves.

Many statistical questions are questions or conjectures about some
underlying population. Here are some examples of populations:

• registered voters in San Francisco

• a given day's output from a production line

• the San Francisco State University student body

• scores on the SAT test given on a particular date

• airplanes which are currently under the jurisdiction of the Federal
Aviation Administration

• persons exhibiting a certain clinical symptom of glaucoma

As you can see, the term "population" does not necessarily refer to a
population of persons. We can have any kind of objects whatsoever. Of
the populations listed above, only three are populations of persons . Note
that the fourth, SATscores, may be a numeric population, a population



50 Chapter 2 - Understanding Observed Data

of numbers where it is the values of the numbers themselves that is
of interest. That example would NOT be a numeric population if you
were only interested, say, in scores above 1100 as compared with those
below.

The exact specification of a population will depend on the question
you want to ask. It's important that the population be precisely defined.
A population is not well defined unless it's entirely and unambiguously
clear which objects are and which are not members of the population.
Thus, the first example is not well defined until you specify a particular
time-voters registered by 5:00 P.M. on such and such a day, for instance.
The population of registered voters, after all, changes from day to day
up to the deadline for registration. Or should we say it changes from
hour to hour, or even minute to minute? You must be very specific about
such details.

Note also that a population may be well defined even though it's not
easily accessible or known in any detail. In the last example given above,
if the clinical symptom of glaucoma in question is clearly specified, we
have a well-defined population-those persons who exhibit that symp­
tom. Still, we may not know such details as their average age or weight
or even how many persons are in the population. In fact, these might be
exactly the questions we need to answer.

So, an exact specification of the population as determined by the
question of interest is important. In the first population listed above, for
example, you may be concerned only with registered voters for the up­
coming election who do, in fact, vote. This partitions the population of
registered voters into two categories-into a dichotomous population­
depending on whether the person finally votes or not. A dichotomous
population is a population each member of which either does or does
not have some characteristic of interest-in our example, every regis­
tered voter either will or will not vote. Or, you may be interested in
which candidate a person ultimately votes for. If so, you're not really
interested in the population specified, but rather the subpopulation of
those registered voters who do actually vote. This population, a subpop­
ulation of the larger population of all registered voters, is dichotomous
only if there are exactly two candidates. Otherwise, this subpopulation
splits into several categories-one category for each candidate. A cate­
gory for a particular candidate would consist of those registered voters
who vote for that candidate.

In the second population above, suppose you're interested only in
whether an item from the production line is defective. Again, you have
a dichotomous population. If you're interested in the length of the items
or in their diameters or some other numeric quantity, then you'll consider
it to be a NUMERIC population with no question of categories. Unless,
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of course, you're not really interested in the numbers themselves but
only, for example, in whether an item exceeds some limit, is "too long,"
say, or "too small." In that case, the population of numbers is again a
DICHOTOMOUS population.

The third population listed above might restrict to the subpopulation
of undergraduate, full-time, regularly enrolled students and split into
four categories depending on the student's class standing. Or it might
be dichotomous if you're concerned about "first year" versus "not first
year." The fourth example is dichotomous if you are interested only in
SAT scores above 1100 versus those below. The fifth example would
become a numeric population if you're only interested in the age of an
airplane as measured by the number of flight hours. It would become
a dichotomous population if there is some standard which each plane
mayor may not meet, such as "less than a hundred hours of flight time."

Statistical Questions

Here are some examples of the types of statistical questions concerning
populations which one might ask. We give one example for each of the
populations given in the list of the previous section:

• What proportion of registered voters will vote for our candidate
in the upcoming election?

• What's the average life of the electronic components which we
manufacture?

• What's the average age of the student body at SFSU?

• What proportion of our students have SAT scores above lOOO?

• What's the average age of airplanes under the jurisdiction of the
Federal Aviation Administration?

• What proportion of patients exhibiting this clinical symptom of
glaucoma will respond to treatment?

Each of these questions asks for a mean or a proportion. In other words,
the question asks for the value of a population parameter. A population
parameter is a fixed number associated with a population. This is paral­
lel to the definition of the term "parameter" from the previous chapter as
a fixed number for a mathematical model. Another class of typical ques­
tions asks for the difference in two means or two proportions: "What's
the value of the parameter for this pair of populations?" The difference
in two population means (or proportions) is a fixed number and so it's,
indeed, a parameter for the pair of populations.
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Note that to ask about a mean, you must have a numeric population,
you must have numbers to be "averaged up." To ask about a propor­
tion, you must have a dichotomous population. Only then can you make
sense of the "proportion having the characteristic of interest." Be sure
you're clear about this distinction between means of numeric popula­
tions on the one hand and proportions for dichotomous populations on
the other-we'll come on it again and again.

There are many other types of statistical questions one might ask con­
cerning a population. For example, how variable is the population? Here
we'll be asking for the value of a parameter which measures variability.
Is the quality of a manufacturer's product highly reliable, or is there a
great deal of variation in quality? If you're considering two suppliers for
an electronic component, where the mean life of the components of each
supplier is the same, you might want to consider the variability of the
lifetimes. Suppose the components from both suppliers have an average
life of 1200 hours, but for one supplier 5% of the components burn out
too early and for the other 15 %. Which supplier would you prefer? Ob­
viously the first, the "expected lifetime" (1200 hours) is the same, but
the reliability of that expected lifetime is greater for the first supplier.

Statistics becomes relevant when you can't answer your question di­
rectly from the population. If you can afford to interview every voter or
examine every item from a production line, you' ll give an exact answer
to your question with no recourse to statistics. However, populations
are typically NOT accessible, either because of cost or for some other
practical reason. Cost certainly prevents your interviewing every regis­
tered voter in an election. On the other hand, to take only one example,
inspecting items from a production line often involves destruction of the
item, you test the life of an electronic component by burning it until it
burns out or you test the strength of a seal by putting stress on it until it
breaks. So, to inspect every item means to destroy your entire inventory.
You'll not get a promotion for that!

In cases such as these where the population is not accessible, we at­
tempt to answer our question on the basis of a random sample of the
population. On the basis of that one sample, we'll attempt to speak for
the entire population. The naive idea is to obtain a sample which is "rep­
resentative" so that the answer from our sample will be equally valid for
the whole population. But how do we obtain a representative sample?
And how can we be sure our sample is, in fact, representative? After
all, to be sure the sample is representative, we must already know the
population. Or at least it must be completely accessible so we CAN know
it. Otherwise, how could we compare the sample with the population
to say that it's representative? So, we seem to travel in a circle and come
right back to our starting point
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THE POPULATION IS UNKNOWN; we need to know it; we take a
sample: Is the sample representative? To answer that we need to
know the population. But THE POPULATION IS UNKNOWN!

Try Your Hand

Back to square one, the circle is complete.
Well, it's a theory of sampling that's required. It's the theory of ran­

dom sampling which provides specific, very powerful techniques which
break through this vicious circle. Using these techniques, we can obtain
answers to many questions about unknown and inaccessible popula­
tions. But don't be misled. The answers are not as simple as the ques­
tions. A major part of our course will be focused on what this theory
of random sampling says and its very important and powerful applica­
tions to concrete real-world problems. It will be interesting for you to
see how such an abstract theory meets the challenge to say something
valid about an entire population on the basis of a very much smaller
sample, especially because any sample, no matter how carefully chosen,
may fail to be representative of the parent population.

This last observation is a basic fact which is often forgotten, so let's
highlight it now:

NO MATTER HOW YOU CHOOSE YOUR SAMPLE, IT COULD END

UP BEING QUITE ATYPICAL OF THE PARENT POPULATION.

And furthermore . . .

YOU'LL NEVER KNOW WHETHER IT'S TYPICAL OR NOT!

If this makes the situation look entirely hopeless, GOOD! That means
you see the problem. So you'll genuinely appreciate the power of the
statistical theory which we develop in this text and which brings the
situation under control.

In fact, the situation is not hopeless at all, but it does require an appro­
priate tool-the theory of random sampling. In keeping with the spirit
of this text, we'll not develop the theory in a rigorous way. Rather we'll
see what the theory says for a typical special case-simple random sam­
pling-and then focus our attention on how the theory works in solving
real-world problems. But for now, we need to learn the terminology and
notation for samples and their populations. And we need to learn ways
of organizing, summarizing, and presenting such data. The theory we'll
leave to a later chapter. Let's pause for a moment while you ...

2.1.11 Whether a particular population is "numeric" or "dichotomous"
depends on the question being asked. For each of the six statistical ques­
tions listed in the text:
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(a) Identify the underlying population as either dichotomous or nu­
meric. If the population is dichotomous, identify the "characteristic of
interest."

(b) Make up a different stati stical question which would require think­
ing of the population as of the other type. If the question in the text
required the population to be numeric, your question should require
that it be dichotomous and vice versa.

2.1.12 In the example from the text where we were considering two
potential suppliers for an electronic component, we said "suppose the
components from both suppliers have an average life of 1200, hours
but for one supplier 5% of the components burn out too early and for
the other 15%." Explain why the criterion for "too early" cannot mean
" burns out before 1200 hours."

Simple Random Samples Drawn from a Population

A sample of size n from a population is just a subset of the popu­
lation, a selection of some n members of the population. A random
sampling experiment is a random experiment-just as we defined that
term in the previous chapter-which produces a sample as outcome.
The sample is called a random sample because, as outcome of a random
experiment, you cannot predict in advance which sample you'll get.
More complex sampling designs allow for variable sample sizes, but
we'll always assume a FIXED SAMPLE SIZE on repetitions of the experi­
ment. So, n is not variable here, rather it's a parameter for the sampling
experiment.

Let's verify that the deal of a five-card hand from a well-shuffled
deck of 52 playing cards is, indeed, a random sampling experiment.
The "doing" for the random experiment is to take the top five cards
from the deck. Obviously, that's repeatable (be sure you replace the
first hand you dealt and reshuffle the deck). This "doing" produces a
five-card hand as outcome. Now, a "hand" is just a subset of the entire
deck; it's a sample of size n = 5. Because the deck is well shuffled, you
cannot predict in advance what hand you 'll get, verifying that we have a
random experiment. It's a random experiment which produces a sample
as outcome. So, the deal is, indeed, a random sampling experiment from
the whole deck of 52 cards as population, for which the parameter n
takes on the value five.

The deal of a hand from a deck of playing cards is the prototypical
example of simple random sampling from a population:
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A simple random sample from a population ...

is a random sample selected so that whenever you select a
sample element, each member of the population available
for selection has an equal chance to be drawn next.

55

One can show that for simple random sampling from a population, any
two samples have the same probability of being selected. By contrast,
this is not generally true for simple random sampling from a probability
distribution.

In dealing a five-card hand, once you have taken, say, the top two
cards, there are 50 left. But if the deck is really well shuffled, all of those
50 cards have the same chance to be on top, namely, one chance in 50. In
other words, as you prepare to draw the third card for your sample, each
of the remaining cards has an equal chance to be drawn, satisfying the
definition above for a simple random sample from a population. So, as
you deal the cards one by one, you're selecting a simple random sample.
Sampling in this manner is called sampling without replacement.

By contrast, suppose each time you deal a card you record its value,
then replace the card into the deck, shuffle the deck many times and deal
again. When you repeat this process five times, you're still selecting a
simple random sample of five cards (verify!). But this time you're doing
sampling with replacement: Each element of the sample is selected at
random from the full original population. Sampling with replacement is
often much more convenient than sampling without replacement. Imag­
ine you're going to select a sample of 1000 voters. What a nuisance if
you have to select names from a list one by one, making sure you don't
select the same name twice. After all, the chances of selecting the same
name twice are very small, so small as to be negligible. Of course, in this
case, you'd want to sample WITH replacement. On the other hand, in
many real-world situations sampling with replacement is absurd. If you
want a sample of items from your production line to check quality, you
certainly don't want to select the same item twice. In short, we need to
allow for both types of simple random sampling.

Any random sampling experiment-simple or not-must be deter­
mined by some random mechanism to guarantee the randomness of the
samples (the outcomes). In our card-playing example, the random mech­
anism is the shuffling of the deck. But shuffling is very artificial for most
real-world situations. How do you shuffle registered voters?

Even for a deck of cards, shuffling may be an imperfect random mech­
anism. If you do it exactly-divide the deck exactly in half and recon-
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stitute the deck card by card, alternately taking cards from each half
so the top card goes to second place-the result is not random at all.
Fifty-two such perfect shuffles returns the deck exactly to its original or­
der (surprisingl y, if the top card remains on top, only eight shuffles are
required) . If the deck is only approximately divided in half and recom­
bined by cards falling randomly from each half-presumably that's how
most card players shuffle-you'll get something like a random mix . But
not until you've shuffled about seven times; fewer shuffles will probably
leave you with a very nonrandom mix. These results are not obvious.
The mathematics of card shuffling, which has been examined exten­
sively by the Harvard University statistician Persi Diaconis, is not triv­
ial. Most card players are accustomed to playing with poorly shuffled
decks because they usuall y shuffle only a few times. This facr' resulted in
much consternation among contract bridge players when computerized
dealing was introduced (the computer "deals" from an idealized well­
shuffled deck). Experienced bridge players were sure the odd-ball hands
they got were somehow bogus and they blamed it on the computer. In
fact, it's just that they had become accustomed to hands conditioned by
the previous game. In all of their prior experience, decks were not prop­
erly shuffled and the cards reflected the order at the end of the previous
game with cards of the same suit grouped together.

Possibly the most common random mechanism for generating sam­
ples is a random number table or its computerized equivalent, a random
number generator. A random numbergenerator is a random experiment
for which an outcome is a number (with a fixed length, five digits long,
say, or maybe 50 digits long) where all the numbers which can be gener­
ated are equally likely to occur. The numbers in a table or from a com­
puter are technically called "pseudorandom" because they're generated
by a deterministic rather than a random process. It's a very fundamen­
tal problem, still the subject of active research, to say exactly what the
word "random" means and to specify a mechanism for generating truly
random numbers. It may be impossible. Then we need some reasonable
approximation. Certainly, randomness should imply the absence of any
systematic pattern. But recently, sophisticated anal ysis has shown that
many of the most frequently used random number generators (in fact,
pseudorandom number generators) produce sequences which contain
subtly systematic parterns.:'

2 The discussion in this and the next three paragraphs is largely based on the very
interesting New York Times article "The Quest for True Randomness Finally Appears
Successful," 19 April 1988, p. 35.
3 See the New York Times article referred to above which has interesting illustrations
and a discussion of how these patt erns have been discovered. Also see Ivars Peterson's
article "Monte Carlo Physics: A Cautionary Lesson ," Science News, December 1992.
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One of the worst ways to generate "random" numbers is to ask some­
body to write down some numbers "at random." It won't work, even
if you make the process abstract by asking for a random series of zeros
and ones which you could then interpret as a base two number. In a
truly random sequence of, say, 100 zeros and ones, you're likely to find
several strings five or six digits long of all zeros (or all ones). The term
"random" here means the sequence of digits is like a sequence of zeros
and ones from tosses of a fair coin where on each toss you record the
number (zero or one) of heads. But psychologists have found that people
rarely repeat the same digit more than four times in such sequences of
zeros and ones, not five or six times as would be required. The human
mind is built for patterns; it doesn't like boring repetitions.

Extensive experience has shown that any element of free human choice
in situations where a random choice is required can result in important
biases, seriously compromising the results of the study. In the previous
chapter, we mentioned one instance of this, the 1970 draft lottery [see
Problem 1.1.7(c), Level II]. There are numerous others. In the 1940 draft
lottery, instead of the 366 capsules with birthdays as in the 1970 lottery,
they had 9000 numbers in capsules which they attempted to stir into
a random mix in a "fish bowl." It was chaos. In the 1948 presidential
election, three major polls, Gallup, Roper for Fortune magazine, and
Crossley for the Hearst newspaper group, predicted Thomas Dewey to
be the winner over Harry Truman. They all were wrong by a significant
margin. All of these polls used a sampling design called "quota sam­
pling" which leaves a margin of choice for the interviewers. In quota
sampling, one determines the proportion of the population having var­
ious characteristics of importance to the question under study and then
chooses a sample having those characteristics in the same proportion as
the population. But the method of choice leaves room for human judg­
ment; it's not random! For demographic and sociological reasons, this
led to a bias in favor of Republican voters. For a very interesting and
informative elementary account of the 1948 election and other issues
which arise in survey sampling, see Chapter 19 of Freedman, Pisani,
and Purves. Since the 1948 fiasco, quota sampling is no longer used by
major polling organizations.

Because an element of human choice is involved in quota sampling,
it's NOT a case of random sampling. Two very commonly used random
sampling designs which we'll only mention here are stratified random
sampling and cluster sampling. In stratified random sampling, the popu­
lation is divided into strata which are quite different with regard to some
characteristic, whereas within a stratum there's relatively less variation
with regard to that characteristic. For example, with a physical charac­
teristic of persons such as height, you might want to stratify by gender,
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giving two strata, one for women and one for men. Then within each
stratum, you choose a simple random sample. These simple random
samples together, one for each stratum, make up your stratified random
sample. This method of sampling can offer greater precision than the
simple random sampling.

In cluster sampling, you divide the population into many relatively
small groups called "clusters"-for example, a city block-then you
choose a simple random sample of clusters. Your cluster sample consists
of all members of the population contained in the clusters you've cho­
sen. In the example, you'll have randomly chosen, say, 100 city blocks
across the city and then you interview all the households within those100
blocks." This method of sampling can be much more economical than
simple random sampling. After all, once you're on the block, you might
as well interview everyone there. Both stratified random sampling and
cluster sampling ARE cases of random sampling.

To get some idea of the complexity of sampling plans, look at the
following description from the New York Times (1988) of a telephone
survey:

How the Poll Was Conducted
The latest New York Times/CBS News

Poll Is based on telephone Interviews con­
ducted Oct. 1-3 with 1,530 adults around
the United States, excluding Alaska and
HawaII. Interviews were conducted In
English and Spanish .

The sample oC telephone exchanges
called was selected by a com puler Croma
complete list oC exchanges In the country,
The exchanges were chosen so as to as­
sure that each region oC the country was
represented In proportion to Its popula­
lion. For each exchange, the telephone
numbers were lormed by random dlgltL.
thus permilling access 10both listed and
unlisted resldenllal numbers. The num­
bers were then screened 10 limit calls 10
res idences.

The results have been weighted 10take
account 01 household size and number 01
resldenllal lelephone lines and to adjust
lor variations In the SImple relallng 10
region, race, sex,ageandeducation.

Most 01 the Clndlngs are reponed in
terms 01 an overall "probable elector­
ate " 011,034 respondents, which uses reo
sponses to questions dealing with voter

registration. past voting history. and the
likelihood oC vollng In 1988as a measure
oC lhe probability 01 panicular respond­
ents' voting In November.

In theory. In 19 cases out 01 20 the reo
suits based on such SImples will diller by
no more then three percentage points In
either dlrecllon Crom what would have
been obtained by seeking out all Amer·
Ican adutts,

1lle percentages reponed are the
panlcular results most likely to match
what would be oblalned by seeking out all
American adults. Percentages are pro­
gressively less likely lhe more they diller
lrom lhe reponed results.

The polenllal Slmpllng error Cor
smaller subgroups Is larger. For exam­
pie, Cor registered men It is plus or minus
live percentage polnls and lor registered
women It Is plus or minus lour percent­
agepotnts,

In addition to sampling error, me
pracllcal dlllicuilles 01 conducllng any
survey 01 public opinion may Introduce
other sources 01error Into lhe poll.

© 1988, The New York Times Company. Reprinted with permission.

Now, think a bit about this discussion of random sampling ...

4 It must NOT be left up to the interviewer to decide which member of the household
to interview; good experimental design requires that you give precise instructions about
which person in the household is interviewed, and precise instructions about alternates
if that person is not available. The principle: No element of human choice!
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Try Your Hand 2.1.13 Let's explore "simple random sampling from a population."

(a) Sampling with replacement does, indeed, satisfy the definition of
simple random sampling from a population. Let's take a concrete ex­
ample: Show that drawing fivecards from a deck of 52 with replacement
is a case of "simple random sampling from a population."

(b) Show that sampling with replacement from a numeric population is
a special case of simple random sampling from a probability distribution.

(c) Show that any two samples from a population have the same prob­
ability of being drawn.

(d) Let X be the number of dots on the top face of a die. Bycontrast with
part (c), show that for simple random sampling from the distribution of
X, the condition "any two samples have the same probability of being
drawn" holds if and only if the die is fair.

2.1.14 In drawing a five-card hand from a deck of 52 playing cards,
when you think of it as random sampling

(a) What's the random mechanism?

(b) Give a verbal description of the parameter n and give its value.

(c) Are you sampling with or without replacement?

2.1.15 If you could find a coin that was perfectly symmetric-either
face exactly as likely as the other one-and if you could find a way to
toss it so that even millions of tosses wouldn't disturb this symmetry (a
physical impossibility), then you would have a perfect random number
generator. In fact, this is precisely what designers of pseudorandom
number generators try to emulate.

Well, just for purposes of instruction, suppose you've found such a
coin and such a way of tossing it. Let's see how that random number
generator would work. Suppose you want to generate a set of random
numbers between, say, 0 and 125. If you toss your ideal coin repeatedly
seven times, recording zero for "tails" and one for "heads", you'll gen­
erate a string of seven zeros and ones. Such a string can be interpreted
as a binary number. For example, 1001011 would be the number

Note that our binary number has a "one" digit in the zeroth, first, third,
and sixth places (counting from the right). To evaluate the binary num-
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ber, you simply add together powers of two, a power of two for each
"one" digit in the binary number. The correct power is determined by
the place number of the "one" digit.

(a) Evaluate the following binary numbers: 10110, 01101, 010001,
and 0111.

(b) How many binary numbers are possible by tossing a coin seven times
and interpreting the results as we've described?

(c) Why do we need seven coin tosses in this problem?

(d) Show that each binary number of part (b) is a simple random sample
from the probability distribution of some random variable.

(e) Take out a coin and pretend it's truly fair. Use that coin as a random
number generator to select a sample of size three from the numeric pop­
ulation consisting of the integers from 21 through 35 inclusive. There's
not just one correct way to do this problem. There are some operational
decisions you'll have to make and some imagination is required.

(f) Even if the coin were truly fair, part (e) actually is a very unrealistic,
though instructive, problem. Why is it unrealistic?

(g) In part (e), contrary to the solution given, you might have thought
to toss four coins once instead of one coin four times. This will work
alright, but there's a slight hitch. Do you see what it is?

2.1.16 Suppose you're studying word frequency in the English language
and have turned your attention to this very text. How would you deter­
mine the frequency of the word "the" as it's used in this text? Certainly,
you would not just count. Why not? What would you do?

2.1.17 You're interested in the computer skills required of workers in
the tourist industry in your city. Suggest a way to stratify this pop­
ulation for obtaining a stratified random sample. Remember that the
point of stratification is to have the strata be as varied as possible for
the characteristic in question, whereas a given stratum should be fairly
homogeneous for that characteristic.

2.1.18 (a) Are cluster sampling and stratified random sampling exam­
ples of random experiments?

(b) Are cluster sampling and stratified random sampling special cases
of simple random sampling?

(c) Suppose you have a given population and some random sampling
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2.2

plan. Name a random variable which would certainly be of interest in
many situations. (Hint: First, what type of population are you sampling?
Then, because you want to specify an example of a random variable, be
sure you're clear about the underlying random experiment. In particular,
what kinds of outcomes are you thinking about?)

Presenting and Summarizing Observed
Numeric Data

Measures ofCentrality for Observed Numeric Data

A simple example of observed numeric data familiar to every student is
the list of scores on a test. Suppose the scores are

8, 4, 7, 7, 3, 5, 7, 9, 10, 2, 7, 3, 9, 8, 8, 5.

Even for such a small data set, this simple list is an inadequate presen­
tation of the data. At the very least, the data should be ranked:

2, 3, 3, 4, 5, 5, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10.

Here we've ranked the data in ascending order. Descending order is also
possible. But still, too many questions are left open: How many points
were possible on this test? How many students were there? What was the
average score on the test? A good data presentation should provide im­
mediate answers to as many such obvious questions as possible. A good
presentation of this data would be an appropriately labeled frequency
distribution. Note how the following frequency distribution answers all
these questions at a glance:
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Test scores

Possible
score

2
3
4
5
7
8
9

10

Observed
frequency

1
2
1
2
4
3
2
1

16

(total of 10 points
possible)

mean = 6.375

Let X denote the test scores and f the frequency of occurrence of
any particular value of X. So f is the number of times the value X was
observed. Then "2:,f is just the size of the data set (the total number of
observations). Here "2:,f is 16, the number of students who took the test.
Note that 28 points come from the four students who scored seven.
Those 28 points can be written: X f = 7 x 4. In general, the score
weighted by its frequency of occurrence-the symbol is X f-is the
total number of points obtained by those students whose grade was
X. So then, "2:,X f is the total number of ALL points obtained by all the
students,

"2:, X f = the total of all the data.

We get the average score on the test if we divide this by 16. But the word
"average " is not exact here. There are many different kinds of average.
This particular "average" is called the arithmetic mean:

(1/16)"2:,Xf the mean of all the data

6.375.

At this point we need to introduce some notation. For any statisti­
cal study, there are two parallel sets of notation depending on whether
the notation refers to population data or sample data. For example, N
refers to population size, n to sample size. It's important to learn the
correct notation from the beginning. Statistical notation soon becomes
quite complex and can pose a major problem for a beginning student
who is inattentive or inconsistent in using it. So, it's important that you
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consistently use a capital letter N for the population size and a small
letter n for the sample size. Here's some further notation: The arithmetic
mean is denoted

/-l for the population mean,

X for the sample mean.

The symbol X is read "X bar." With this notation, we obtain the for­
mulas

N OR n Y:,f (two notations for the same
calculation depending on
the type of data),

/-l (1/N)y:'Xf ,
X (l/n)C5Xf .

A frequency distribution like the one we've given above for the test
scores can be used efficiently to carry out calculations. This is just like
what we did with probability distributions in Chapter 1:

X f Xf

2 1 2
3 2 6
4 1 4
5 2 10
7 4 28
8 3 24
9 2 18
10 1 10

- --
16 102 mean = 6.375.

Note that the mean comes from dividing the third column sum by
the second column sum. Another way of presenting this data is to give a
relative frequency distribution, where instead of frequencies, you record
the relative frequencies
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X rf X(rf)

2 1/16 2/16
3 2/16 6/16
4 1/16 4/16
5 2/16 10/16
7 4/16 28/16
8 3/16 24/16
9 2/16 18/16

10 1/16 10/16
--

1 102 /16 mean = 6.375.

Now in this relative frequency (rf) distribution, the mean is exactly the
third column sum. Of course that's true because the division by 16 has
already been done. The correct notation, if we have population data, is
f.l = 6.375. Otherwise, if the scores are from a simple random sample,
we write X = 6.375.

For sample data obtained by some other sampling process-other
than simple random sampling-this calculation would be wrong. For
more complex sampling plans, calculations like this must be appropri­
ately weighted according to the design of the sampling experiment. But
we'll not be doing calculations for those more sophisticated sampling
plans.

The arithmetic mean for a numeric data set is a measure ofcentrality.
That's exactly what any average is. An average is any number which in­
dicates the "center" of the data set. But center in what sense? In addition
to the arithmetic mean, we'll introduce two more averages, the median
and the mode. The mode of a numeric data set is the most frequently
occurring value (it's not necessarily unique). In our test scores above,
seven is the mode. The terms bimodal and trim odal refer, obviously,
to data sets with two and three modes, respectively. In other words, a
bimodal data set has two values with the same frequency and no other
values with the same or a larger frequency, so those two values are the
two modes. There's no special notation for the mode .

The median of a numeric data set is the middle value after the data
have been ranked. Of course, if there are an even number of observa­
tions, there's no "middle" value. This happens for the test scores given
above. When there are an even number of observations, the median is
simply the average of the two middle values. So, for our 16 test scores,
the median is the average of the eighth and ninth scores. Because both
of those values are seven, the median is just (7 + 7)/2 = 7.

For population data, the mean , median, and mode are just fixed num­
bers associated with the population, In other words, they're examples
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Try Your Hand

of population parameters. We defined the term "parameter" for a pop­
ulation just as we did in Chapter 1 for a mathematical model. It's a
fixed number associated with the population. For sample data on the
other hand, the mean, median, and mode vary from sample to sample.
They're examples of what we call "statistics." A statistic is a number
calculated from a random sample, usually for the purpose of estimating
a corresponding population parameter.

Before we go any further, why don't you ...

2.2.1 (a) Give a few integers with no repetitions (so, all the frequencies
will be 1) for which the mean is larger than the median.

(b) What's the general condition under which the mean would be larger
than the median?

(c) Under what conditions would the median be preferred to the mean
as an average. Or, to say it differently, as a measure of centrality?

(d) For the data set you gave in part (a), give a verbal description and
the numeric value of N, n, ~f, ~Xf, ~rf and ~Xrf.

2.2.2 (a) Identify the median and mode(s) of the following data:

5, 2, 8, 6, 2 5, 5, 7, 3, 7, 2, 8.

(b) For the data in part (a), set up a frequency distribution, assuming
this to be population data, and use it to compute the mean.

(c) For the data in part (a), set up a relative frequency distribution,
assuming this to be population data, and use it to compute the mean.

(d) Redo each of parts (b) and (c) assuming you have sample data.

(e) In part (a), assume you have sample data. Give a verbal description
and the numeric value for each of: N, n, ~f, ~Xf, ~rf and ~Xrf.

2.2.3 Show that a statistic is a value of a random variable.

Measures of Spread for Observed Numeric Data

In the previous section, we defined three parameters which serve as aver­
ages for observed numeric data, the mean, median, and mode. Averages
are measures of "centrality," but centrality is not the whole story. Just as
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with random variables, some numeric data sets will be tightly clustered
about their centers and some will be widely dispersed. Two data sets
with the same center could be quite different, depending on how they
spread about that center.

We'll look at two parameters and their corresponding statistics which
serve to measure the spread of observed numeric data. The simplest
such measure is the range. The range of a numeric data set is the
largest minus the smallest value. For the test scores given in the pre­
vious section, the range is eight. The range is easy to compute and
carries a certain amount of information, but it's determined by only
two values of the data set. It can't tell us much. The range is use­
ful only as a quick and easy measure of spread. It has no special
notation.

For a more informative measure of spread we require the variance,
or its square root, the standard deviation. These are defined just as they
were in Chapter 1 for random variables. But remember: Don't think
of the variance and standard deviation as two different measures of
spread. They're two different numbers which measure spread in ex­
actly the same way. In other words, the variance and standard devia­
tion are one measure of spread which can be expressed in two different
numbers.

The variance of numeric data, just like the variance of a random
variable, is the average of the squared deviations from the mean:

Here, we've used the notation for population data. If we have sample
data, the variance is denoted by fJ2. Of course, the standard deviation
for population and sample data-the square root of the variance-are
denoted by a and fJ, respectively (the symbol fJ is read "sigma hat").
The most efficient way to calculate the variance is by entering an ap­
propriate column into the frequency distribution for the data, a column
containing the squared deviations from the mean weighted according
to their frequency of occurrence. For the test scores introduced at the
beginning of the chapter
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x
2
3
4
5
7
8
9

10

f
1
2
1
2
4
3
2
1

16

Xf

2
6
4

10
28
24
18
10

102

(X - J.Lff
19.1406
22.7813

5.6406
3.7813
1.5625
7.9219

13.7813
13.1406

87.7500 J.L == 6.375,
(72 = 5.4844.
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Try Your Hand

Again, our notation implies we have population data. Here, to get
(72, you divide the fourth column sum by the second column sum. If this
were a relative frequency distribution, how would you calculate (72?
Well now, please ...

2.2.4 Construct a relative frequency distribution for the data given just
above and use that relative frequency distribution to calculate the vari­
ance and standard deviation. To facilitate use of your calculator, give
the relative frequencies as decimal numbers.

2.2.5 (a) We began by saying: "In the previous section, we defined three
parameters which serve as averages for observed numeric data, the mean,
median, and mode." But these three parameters refer to only one type
of observed data. If our data was of the "other type," what word would
be appropriate?

(b) Explain why it would be wrong to identify the range by saying that
the test scores "range from two to ten."

(c) What's the formula for a-2 ?

2.2.6 Construct a bimodal data set. Identify the modes and the median
and then compute the mean, variance, and standard deviation using a
frequency distribution table.

2.2.7 If the variance of observed data is "just like the variance of a
random variable," why is the formula different?
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2.2.8 The variance measures spread about the mean. How does the
range relate to the mean?

2.2.9 Identify the mode, median and range for the following popula­
tion data. Then complete the table to compute the mean, variance , and
standard deviation.

X 11.8 2.4 2.6 2.8 3.1 3.3

f 356212

2.2.10 If you draw on your understanding of the relevant concepts, the
parts of this problem can be done quickly without too much trial and
error.

(a) Without changing the number of observations or the mean, change
the frequencies for the following data to make the standard deviation
larger than 1.1

X 1 3 4 5 6
f 7 9 4 2

(b) Replace the ?'s with numbers which make the median of this data
22 while making the mean more than 23

X 20 21 22 23 ?

f 1 6 ? 3 2

Grouped Data: Suppressing Irrelevant Detail

Grouped Distributions of Observed Real-World Data

In the previous section, we looked at a small data set, 16 test scores on a
ten-point test. With ten possible points, we had at most 11 distinct data
values and it was easy to construct a frequency distribution. This is not
typical of all (or even most) data sets which often are very large with
many possible values. For example, suppose you have a test taken by
1000 students where there are 100 possible points. So you have 1000
observed data points (the 1000 test scores) with 101 possible distinct
values (zero to 100). Maybe the data looks like ...
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95 96 57 85 30 85 02 84 92 09 88 08 85 08 05
75 08 52 58 39 45 83 96 48 83 49 27 38 50 87
58 00 47 44 72 75 92 40 40 75 38 59 87 52 34
22 56 39 58 76 26 85 76 76 68 65 31 71 17 71
19 68 77 04 27 92 17 97 16 74 17 72 23 47 17

17 72 87 89 78 35 75 97 37 28 45 88 28 33 23
57 57 18 64 62 06 41 65 83 28 22 13 47 29 27
87 72 71 72 17 79 19 87 87 32 34 98 54 56 87
87 72 24 27 65 96 24 41 12 67 67 38 75 87 63
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This is only 135 of the 1000 scores! It goes on and on. To bring some
semblance of order to this chaos, you should, of course, rank the data
and put it into a frequency distribution, just as we did in the previous
section:

x f X f X f
0 3 12 4 24 46
1 8 13 0 25 19
2 4 14 14 26 17
3 8 15 8 27 31
4 5 16 15 28 36
5 9 17 11 29 51
6 7 18 9 30 29
7 3 19 15 31 19
8 4 20 16 20 41
9 2 21 16 33 27

10 2 22 17 Hmmmmm!
11 6 23 35 And this is only one-third of them.

This is not clarity! The cardinal rule of any data presentation is CLARITY!!
You should be able to see the chief characteristics of the data at a glance.
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What we need here is a grouped frequency distribution, where the scores
are grouped into classes:

Class ! X Xf (X - pi!
0-19 137 9.5 1301.5 191490.7780

20-39 202 29.5 5959.0 61061.9548
40-59 411 49.5 20344.5 2807.5019
60-79 157 69.5 10911.5 80285.8601

80-100 93 90.0 8370.0 172866.7730

1000 46886.5 508512.8678

J.L ~ 46.8864, o ~ 22.5502.

The symbol X refers to what 's called the class mark, the midpoint of the
class. It's not hard to understand how a grouped frequency distribution
like this one works. Instead of our boring you with the details, why don 't
you .. .

In the two problems given here, we're asking you to use your common­
sense and guess how to construct a grouped distribution. Try to guess,
even if you don 't succeed. That will significantly help you in understand­
ing the solutions. For this to work, you really must try for yourself to
see what ought to be done.

2.3 .1 For the grouped frequency distribution above, there are a number
of points which require clarification. Try to identify them all on your
own and explain them. That is, try to identify and explain anything in
the tab le which-in any way whatsoever-is unlike what we've seen
before. Be careful. There are things in the table which at first glance
look the same as before but, in fact, require clarification. Give yourself
some time to think about this . Assume this to be population data.

2.3.2 In the grade distribution of the previous problem, each class was
19 points wide. But sometimes it's more convenient to allow unequal
class widths. Suppose you're looking at the employee salaries for a large
corporation with 1000 employees. Can you see why it would be conve­
nient to have unequal class widths?

2.3.3 Consider the following temperature readings:
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Temperature
(centigrade)

0-15
15-30
30-45
45-60

f
6
12
8
2
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Let X be the class mark for each class.

(a) What does the 12 in the second column mean?

(b) Why do the endpoints overlap?

(c) Give a verbal description for the MEANING (not the calculation) of

f, Ef, EXf and liEf [EX].

(d) Complete the table above and use it to estimate the mean, mode(s),
variance, and standard deviation for these temperature readings.

(e) If we are to treat this data as a sample, what type of sampling is
involved?

Histograms: Graphical Display of Grouped Relative Frequency
Distributions

A histogram adheres to the principle stated at the beginning of this
chapter:

Numeric quantities are seen and interpreted
by the human eye in terms of area.

We'll concern ourselves only with histograms for grouped relative fre­
quency distributions for which the area, the relative frequency, can be
interpreted as the percentage of the data falling in that class. If you're
given a frequency distribution and asked for a histogram, first convert
it to a grouped relative frequency distribution and give the histogram of
that distribution. Here's a histogram for the relative frequency distribu­
tion of the test scores from the previous section
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o 20 40 60 80 100

Note that we've not put in the vertical scale. The vertical scale can be
confusing if the class widths are not the same. The point is that the area
should represent the proportion or percentage of the data in each class.
Thus , the first rectangl e conta ins just slightly under 15% of the area, the
second rectangle contains a little over 20 % of the area, and so on.

Histograms can be very informative, revealing facts about the data
which might not otherwise come to light. This is very well illustrated by
the following example given by W. E. Deming. 5

60
I

(7)1
-' I
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Q) 20::>
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0
0.996 0.998 1.000 1.002 1.004 1.006 1.008

Diameter (cm)

Distribution of measurement on the diameters of 500 steel rods. The
inspection was obviously faulty. (LSL means lower specification limit.)

This histogram represents the diameters of 500 steel rods as measured
at the time of quality control inspection. Rods smaller than 1 em are too
small; they would be too loose in their bearings and must be discarded.
So now please ...

5 judith H. Tanur et aI., Statistics, a Guide to the Unkn own , Holden-Day, San Francisco,
1972.
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Try Your Hand 2.3.4 Suppose the test scores from the previous section had been
grouped as in the following table. Note that the data is the same; we
just happened to have broken the first class into two classes, but now
the six resulting classes are of unequal width.

Class f
0-9 68

10-19 69
20-39 202
40-59 411
60-79 157
80-100 93

1000

Sketch the histogram for this data.

2.3.5 In Deming's histogram given in the text, how would you interpret
the gap at 0.999em followed by a peak at 1em? These two character­
istics of this histogram have a very important real-world significance.
Can you guess what it is?

2.3.6 Draw a histogram for each of the following distributions, shading
the area within one standard deviation of the mean

(1) Class

0-10
10-20
20-30

f
10
15
10

(3) Class

0-10
10-20
20-30

f
15
10
15

(2) Class f (4) Class f
0-10 5 0-10 10

10-20 30 10-20 20
20-30 5 20-30 0

30-40 10
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(5) Class f
0-10 10

10-20 20
20-60 0
60-70 10

Using the Computer

The advent of electronic computers capable of carrying out calculations
and analyses of previously unimagined complexity has greatly increased
the range of application of statistical techniques. Youmight like to inves­
tigate what resources are available for statistical analysis in the computer
lab at your school. Minitab is a commonly available software package
for statistical analysis. Three other widely used packages are SPSS, SAS,
and BMDP. Because the focus of this text is not on data analysis and
exploration-where computers are really essential-but rather on un­
derstanding certain basic and fundamental statistical concepts, we'll not
require the use of any of these statistical packages.

The discussion in the rest of this section is intended just to whet your
appetite for some independent explorations on your own. References
will be in terms of Minitab, but you should have no difficulty carry­
ing out the same exercises with other packages. The assistants at your
computer lab will show you how to log onto your system and access
Minitab or some other statistical program. They may also be able to
provide some documentation for the package.

A good student reference for Minitab is the MINITAB Handbook
[Ryan et al.]. It contains numerous exercises and suggestions for how
you might use Minitab to explore your own data sets or the data sets
included with the Minitab package. It also gives nine of the Minitab
data sets along with descriptions of the variables and some background
on the data.

Describing, Picturing, and Comparing Population and Sample Data

Minitab has a number of data sets which you can explore and from
which you can take samples. It will be interesting for you to see how
the samples which Minitab selects compare with the data set itself. Two
commands which will make that comparison possible are DESCRIBE
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and HISTOGRAM. The command HISTOGRAM, of course, provides
a histogram of your data, though not exactly in the format which was
described in this text.

The DESCRIBE command will give you basic numeric summaries
(parameters) for your data, including the population or sample size (us­
ing the symbol N for both cases), the mean, median, standard deviation,
and the 5% "trimmed mean." The trimmed mean is the mean of that
90 % of the data remaining after the largest 5% and smallest 5% have
been removed. The point of the trimmed mean is to have a "resistant"
version of the mean. A statistical procedure is resistant if it's not overly
sensitive to a few extraordinary data values-values that are far out of
the range of the rest of the data. Such values are called "outliers." The
median is, of course, a resistant measure. Resistant measures protect
against erroneous data values as well as against correct values that may
distort the overall picture. For example, "median income" is usually
reported to protect against the distortion resulting from a few excep­
tionally large income figures.

The DESCRIBE command also gives the smallest and largest obser­
vations and the first and third "quartiles." The first quartile is the point
below which you find 25 % of the data. The second quartile is the median
because 50 % of the data is below it. The third quartile is the point be­
low which you find 75 % of the data. Finally, the DESCRIBE command
gives the "standard error of the mean" which we will not encounter
until Chapter 5.

Among the data sets included with Minitab is data from the 1980
Wisconsin Restaurant survey, conducted by the University of Wisconsin
Small Business Development Center. The data is saved in a Minitab
file named "restrnt," That file contains 14 of the many variables in the
actual survey. Some restaurants failed to answer one or more ques­
tions-missing responses are denoted with an asterisk (*). At the end
of this section we have reproduced the screen output of our Minitab
session in which we investigated this data. We will now describe that
session in detail.

To explore the "restrnt" data, we first RETRIEVE the file (RETRIEVE
is a Minitab command). Here 's how we did that: After the Minitab
prompt (the prompt is: MTB » , we typed

retrieve "restrnt".

In the screen output reproduced at the end of this section, you see how
the RETRIEVE command brings that file "restrnt" into a Minitab work­
sheet. We then typed in the Minitab INFO command (after the prompt,
we typed: info), which lists the variables in the file.
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In the output at the end of the section, you see exactly what appeared
on our computer screen during the Minitab session we are describing.
Minitab gave most of what you see. We'll tell you exactly what part
of that output we entered at the computer. Now we investigate the
variable "wages" contained in column seven. "Wages" is a percentage:
wages at the restaurant as a percentage of sales. We obtained a descrip­
tion of "wages" by typing: describe c7. Next, we obtained a histogram
of "wages" by typing: hist c7. Note that although the file contains re­
sponses from 279 restaurants, only 235 gave information on wages. This
is shown in the output by: N = 235 N* = 44.

Note that "wages" is skewed to the right. This is not just the usual
problem which we expect with "a few large wages," because our variable
is not actually wages at all; it's a percentage. The skew of the distribu­
tion is not terribly significant. It pulls the mean up only by a quarter
of a percentage point. You might be suspicious of the accuracy of the
two largest values. Are there really two restaurants which pay over 80%
of sales in wages with less than 20% left for all other costs (including
food and overhead)? Of course, we don't have enough information to
answer that question. There are usually many conceivable explanations
for such so-called "outliers."

We then drew two samples of size n = 20 from "wages" using the
SAMPLE command, placing them in columns 15 and 16, respectively.
After obtaining each sample, we looked at a histogram of that sample.
It's interesting to compare those histograms with each other and with
the histogram of the entire population of 235 values of the variable
"wages." Note that only the first sample has picked up one of the out­
liers. Next, we described the two samples with one command by typing:
describe c15 c16. You can see how much the samples are affected by the
outliers. The first sample mean is more than five and a half percentage
points above the second!

Finally, we looked in detail at the second sample by obtaining a
"stem-and-Ieaf diagram" of the sample. This is a technique introduced
the 1960s by John Tukey, a statistician who has made numerous im­
portant contributions to graphical displays of statistical data. Forget
the first column for a moment. The second column gives the "stems."
Here, our data consists of two-digit numbers; the stems are the leftmost
digit. The leaves are the rightmost digit. A stern-and-leaf display is more
informative than a histogram. It gives the histogram shape while at the
same time displaying the actual values of your data. For example, here's
how the second sample begins:

0, 8, 10, 15, 20, 20, 20, 21, 21, . ..

That's interesting: One restaurant pays no wages! Wonder why?
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The first column of the stem-and-leaf display is called the "depth" of
a line. It tells how many leaves lie on that line or "beyond." "Beyond"
means "beyond the middle." For example, there are nine observations
on or before the fifth line. The parenthesis locates the line containing the
median. Within the parenthesis is the number of observations on that
line. If there are an even number of observations and the middle two are
on separate lines, the parenthesis is omitted. Stem-and-leaf displays are
very informative!

MTB > sample 20 from c7 into c15
MTB > hist c15

Histogram of C15 N = 19 N* = 1

Midpoint
10
20
30
40
50
60
70
80
90

Count
1 *
7 *******
7 *******
3 ***
o
o
o
o
1 *

MTB > sample 20 from c7 into c16
MTB > hist c16

Histogram of C16 N = 19 N* = 1

Midpoint
o
5

10
15
20
25
30
35

Count
1
o
2 **
1 *
5 *****
3 ***
5 *****
2 **

MTB > describe c15 c16

N N* MEAN MEDIAN TRMEAN STDEV SEMEAN
C15 19 1 28.47 25 .00 26.24 16.07 3.69
C16 19 1 22.79 25 .00 23.41 9 .42 2.16

MIN MAX Q1 Q3
Cl5 10 .00 85 .00 19.00 34.00
C16 0.00 35 .00 20.00 30.00

MTB>

MTB > retrieve 'restrnt'
WORKSHEET SAVED 10/24/1989
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Worksheet retrieved from file: restrnt.MTW
MTB > info

COLUMN NAME COUNT MISSING
C1 ID 279
C2 OUTLOOK 279 1
C3 SALES 279 25
C4 NEWCAP 279 55
C5 VALUE 279 39
C6 COSTGOOD 279 42
C7 WAGES 279 44
C8 ADS 279 44
C9 TYPEFOOD 279 12
C10 SEATS 279 11
C11 OWNER 279 10
C12 FT.EMPL 279 14
C13 PT.EMPL 279 13
C14 SIZE 279 16

CONSTANTS USED : NONE

MTB> describe c7

WAGES
N

235
N· MEAN MEDIAN TRMEAN STDEV SEMEAN
44 25 .251 25.000 24 .972 10.886 0.710

MIN MAX Q1 Q3
WAGES 0.000 85.000 20.000 30.000

MTB > hist c7

Histogram of WAGES N = 235 N· 44
Each * represents 2 obs.

Midpoint
o

10
20
30
40
50
60
70
80
90

Count
6 ***

23 ************
73 *************************************
98 *************************************************
29 ***************

2 *
2 *
o
1 *
1 *
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MTB > stem-and-leaf c16

Stem-and-leaf of C16 N 19
Leaf Unit = 1.0 N· 1

1 0 0
2 0 8
3 1 0
4 1 5
9 2 00011

(4) 2 5579
6 3 0002
2 3 55
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3. 1 Introduction

In Chapter 1, we explored the idea of a random variable and saw some
specificexamples . Now it' s time to see some of the standard "classes" of
random variables . These classes serve as standard models for modeling
real-world problems. There's an important advantage to having such
standard models: The theory's already worked out! If you can match
your problem with a standard model, you can draw on previous expe­
rience, intuition, and an established theory.

It's really a matter of classification. Many real-world problems fall
into certain clearly defined types for which the models (and theory) have
already been developed. That saves you a lot of work. When you're faced
with such a problem, your first task is to "class" -ify the problem-to
find an appropriate model. In this chapter, we introduce some of the
standard classes of random variables and study the type of real-world
problems which they appropriately model. First please . ..

Try Your Hand 3.1.1 There's a simple class of random variables for which we have
already seen examples. This class could be characterized by the condition
"the variance of X is zero." Can you identify this class in terms of the
values of X?

3.2 The Discrete Uniform Distribution
We begin here with a particularly simple class of random variables . The
discrete unifonnly distributed random variable with parameter n is
a random variable with n values, all of which are equally likely. We've
already seen some examples which we'll recall in the exercises below. We
say "uniform" because the probabilities are all "uniformly the same."
"Discrete" simply means the values of the random variable are discrete
points on the number line. You'll see the significance of that more clearly
in Chapter 4 when we contrast "discrete" with "continuous." We'll not
need that distinction in this chapter.

Do you see what we mean by a "class" of random variables? It's a
group of random variables all having some common set of character­
istics. For instance, the common characteristic "equally likely numeric
values" defines the class we're studying in this section, the class of the
uniform distribution. In Problem 3.1.1, we looked at the class of random
variables characterized by the condition "the variance is zero," a rather
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trivial class, but instructive nevertheless. We think of a class of random
variables as a "model" : It models all those real-world situations which
could be modeled by one of the random variables in the class. That 's
why we refer to such a class as a probability model.

Before going any further, you'd better ...

3.2.1 In Chapter 1, you worked with the "conceptual formula" for the
variance of a random variable: (52 = ~(X - /l)2p(X). There's a much
easier way to compute the variance, the so-called "computing formula":

(a) Derive the computing formula from the conceptual formula.

(b) Use the computing formula to calculate the variance for the number
of dots on the hidden face of a fair four-sided die. Note it's a rona-sided
die, just to make life easier for you.

(c) Why do you think the terms "computing" and "conceptual" have
been chosen for these two formulas?

(d) Develop a computing formula for the variance of observed data.

(e) For any random variable X, what's the expected value of X 2 ?

3.2.2 Think back to the simple examples of random variables we studied
in Chapter 1 and find two examples of uniformly distributed random
variables. What's the parameter in each case?

3.2.3 Suppose we have a uniformly distributed random variable X
which takes on the following values:

18.2, 18.7, 19.3, 19.7, 20.1.

What further information is required to compute the mean and standard
deviation of X?

3.2.4 It 's wrong to say: "Any real-world situation involving equally
likely outcomes will be modeled by a uniformly distributed random
variable." Why is it wrong? Hint: Look carefully at the definition.

3.2.5 Complete the following line graph for a random variable W, as­
suming W to be uniformly distributed
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3.2.6 What information is required to specify one particular uniformly
distributed random variable?

3.2.7 If you know X to be a uniformly distributed random variable,
you can describe its mean without any reference to the probabilities.
How?

The Hypergeometric Distribution

The next class we'll study is called the "hypergeometric random vari­
able." Note how the usual terminology for such classes could be con­
fusing. When we say "THE hypergeometric random variable," it sounds
like just one random variable. In fact, it's many, an entire class. And
why the term "hypergeometric"? The name, we're sorry to say, is not
going to mean much to you. It derives from a connection between the
probability formula we develop later and a very arcane creature called
the "hypergeometric series." Don't worry about it.

Counting Rules

Before we turn to this new model, we need some counting techniques.
All these techniques are derived from

the fundamental principle of counting:

Suppose task #1 can be done in m ways and task #2 in
n ways. Then you can accomplish task #1 followed by
task #2 in mn ways.
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This principle is reminiscent of the multiplication rule for probabilities
which we learned in Chapter 1. Roughly stated, "and" means multiply.
The probability rule, however, can't be applied blindly; it's only valid
when the events in question are independent. But for counts, the multi­
plication rule-the fundamental principle of counting-always holds.

Here's how the fundamental principle of counting works: If there are
three ways to go from my office to my favorite bar and two ways to go
home from the bar, there are six ways to go home from the office by
way of the bar. You can see this diagramatically ...

~ ~

office -- bar home

---------- ----------
There are other counting rules based on the fundamental principle

of counting, you'll derive them in Problem 3.3.1. They make use of the
factorial notation: The symbol is nt, read "n factorial." It's just the
product of n and all integers less than n:

5! = 5 x 4 x 3 x 2 x 1 = 120.

Of course, I! = 1. We extend the definition by fixing the convention that
O! = 1. This allows us to avoid always having to make a special case
when zero shows up in a calculation. Now we're ready for you to . . .

3.3.1 (a) How many arrangements are there of n objects?

(b) Let C(n, x) be the number of ways to choose X objects from a set
of n objects. This is the combinations of n objects taken X at a time.
Derive the formula

n!
C(n,x) = '( _ )'x. n x.

(c) Evaluate C(7,3), C(7,1), C(7,7), C(120, 118).

(d) Evaluate C(n,O), C(n,I), C(n, n), C(n, n - 1).

(e) How many ways can you arrange seven books on one bookshelf?

(f) How many ways can you choose three books to take on vacation
from the 58 in your bookcase?

(g) How many ways can you seat six students in a class with six desks?

(h) How many ways can you seat 11 students in a class with 11 desks?
How about 80 students with 80 desks?
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(i) How many ways can you seat six students in a class with 14 desks?

(j) Suppose there are 96 workers in a machine shop. How many distinct
committees of three could they form to represent them at an upcoming
meeting with management?

What is the Hypergeometric Model?

The hypergeometric random variable arises from sampling without re­
placement from a dichotomous population. It counts how many in the
sample have the characteristic of interest. Call it X; then

X = the number of observations in the sample
having the characteristic of interest.

Usually, this model is required only when the population is small, less
than 60 as a rule of thumb. In the next section, we'll see why.

Recall from Chapter 2 that a "statistic" is a number calculated from a
sample. It will vary from sample to sample, of course, and so a statistic is
a random variable. You showed this in Problem 2.2.3. The hypergeomet­
ric random variable is an example of such a statistic and its distribution is
our first instance of a "sampling distribution." If the underlying random
experiment for a random variable is random sampling, the probability
distribution of that random variable is called a sampling distribution.

If you're going to be successful in using our models, it's crucial that
you be attentive to the common characteristics shared by all the random
variables in the class. Only then will you be able to spot these charac­
teristics in a real-world context. If you can do this, you'll be able to
recognize which model is appropriate for a particular problem. This is
probably the most difficult skill a beginning statistics student needs to
develop-the skill of modeling, the skill to recognize the appropriate
abstract model for a given real-world situation. So take careful note of
the following description:

The hypergeometric random variable

• is a count
• is associated with simple random sampling without

replacement from a dichotomous population

• is used only for small populations

• tells how many in the sample have the characteristic
of interest.
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Suppose, for example, you're required to test the lifetimes of a batch of
50 electronic components, where the testing process is "destructive"­
you put the component into operation and record the time to burnout.
This is a common quality control situation which obviously requires
sampling without replacement. Even when the batch is small, you're
constrained to sample as opposed to testing every component, other­
wise the entire batch is destroyed. And the sampling must necessarily be
without replacement because you can't retest a component which you've
already destroyed! Now let's explore the hypergeometric random vari­
able . . .

3.3.2 The electronic components example mentioned just above is in­
completely specified. What crucial piece of information is required be­
fore we can justify using the hypergeometric random variable as a
model?

3.3.3 For the hypergeometric random variable:

(a) What's the underlying random experiment?

(b) What are the possible values?

3.3.4 From a pool of 40 candidates, the mayor has appointed a pow­
erful committee of five. Because none of the committee members are
women , there has been an accusation of prejudice. We might try to an­
alyze this situation by determining the probability of no women on the
committee if the committee had been chosen at random from among the
40 candidates. Discuss the suitability of the hypergeometric model here:

(a) What's the population?

(b) What's the underlying random experiment? Is it appropriate for the
hypergeometric model?

(c) What is an outcome of the random experiment? Be very specific to
the real-world situation.

(d) Exactly how many such committees are possible?

(e) What's the random variable?

(f) Can the random variable be regarded as belonging to the class of the
hypergeometric random variable?

3.3.5 The neighborhood library wants to know how many books listed
in the catalog are lost, nowhere to be found. To address this problem,
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you might take a sample-a simple random sample, without replace­
ment-of the catalog listing and consider the number of listings which
correspond to lost books. Suppose you find that two among a sample
of 30 listings are for lost books. This situation can be modeled by the
hypergeometric random variable :

(a) What's the population?

(b) What's the underlying random experiment for the random variable?
Be sure you verify that it's indeed a random experiment.

(c) What are the possible values of the random variable?

(d) What value of the random variable are we asked about?

(e) In fact, we should not use the hypergeometric model here. Why not?

3.3.6 To make use of the probability models we're studying, it's im­
portant to recognize the characteristics of the model. In the box above
this exercise set we gave a list of the characteristics of the hypergeomet­
ric random variable . Go back and give a similar list for the uniformly
distributed random variable defined in the previous section.

Calculating the Probabilities

Now let's see how to calculate probabilities for the hypergeometric ran­
dom variable. It will be a straightforward application of the "theoretical
relative frequency" definition of probability. First some notation:

N = population size;

R = the number in the population which have the characteristic
of interest;

n = sample size;

X = the random variable, the number in the sample having the
characteristic;

p = R/N, the proportion of the population having the charac­
teristic;

q = 1 - p, the proportion of the population not having the char­
acteristic.

In our quality control example (Problem 3.3.2), there were 50 elec­
tronic components. Suppose four of the 50 don't meet the specification
for a lifetime of "at least 1000 hours." Of course, realistically, we would
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not know how many don 't meet specification; that's exactly what we
we're trying to study. But at the moment, we're just THINKING about it
for purposes of developing the theory. Suppose we're going to test three
components chosen at random. Then

N = 50, R = 4, n = 3, and X = 0,1,2, or 3.

[Hint: Always do this. Extract all numbers from the verbal descrip­
tion of a problem and write them down compactly in terms of the
formalism of the model. You'll be amazed how much easier that
makes the solution.]

To construct a probability distribution for X, we must first compute
the probabilities. Because X = °or X = 1 may be less clear , let's
start with the probability that X = 2. Using the "theoretical relative
frequency " definition, the denominator will be the number of ways to
get any sample (outcome) whatsoever and the numerator will be the
number of ways to get a sample for which X = 2. So the denominator
IS

the number of ways to select a sample of n

and the numerator is

the number of ways to select a sample of n where
exactly two have the characteristic.

So

P(X = 2) =
ways to select a sample of n where
exactly two have the characteristic

# ways to select a sample of n.

Try Your Hand

Now, why don 't you yourself just ...

3.3.7 We're calculating the expression above for P(X = 2).

(a) First calculate the denominator.

(b) Then calculate the numerator.

(c) Then combine them to obtain P(X = 2).

(d) Make up a probability distribution table for X and compute the
mean and variance.

3.3.8 In Problem 3.3.4:
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(a) If the mayor chooses her committee randomly, what's the probability
of having no women on the committee?

(b) What's the real-world meaning of the small probability in part (a)?

(c) Suppose the mayor's choice puts one woman on the committee.
What's the probability of such a committee? What's the real-world
meaning?

3.3.9 Now write down a formula for P(X = x ) by analogy with the case
for P(X = 2), where, instead of X = 2 we ask about X = x. Remember
that the uppercase letter, X, is a name for the random variable, whereas
the lowercase letter, x, is the symbol for one single unspecified value.

3.3.10 Take the case of a hypergeometric random variable X for which
N = 10, R = 4, and n = 4.

(a) Describe the underlying random experiment as completely as possi­
ble.

(b) Guess the mean and variance of X.

(c) Give the probability distribution of X.

(d) Compute the mean and standard deviation of X.

The Formulas

Now, here are the formulas for the probabilities of the hypergeometric
random variable together with its mean and variance:

the hypergeometric random variable:

If X is a hypergeometric random variable, then

C(R, x)C(N - R,n - x )
P(X = x ) =

C(N,n)

with
np,

npq(N - n )
(N - 1) .
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The denominator ofP(X = x ), which is just C(N, n), is the total num­
ber of ways to draw a sample of n from this population of N members.
It does not depend on the value of X . And the numerator is the product
of

the number of ways to choose x members of the sample from the R
members of the population which have the characteristic of interest:
this number is C(R, x ),

and

the number of ways to choose n - x members of the sample (the
rest of the sample) from the N - R members of the population
which do NOT have the characteristic: it 's C(N - R, n - x ).

Remember, the symbol x (the lowercase letter) refers to a particular
but unspecified value of the random variable X. Here it refers to the
particular value of X for which we want the probability.

The parameters for the hypergeometric model are:

N the population size;

R the number in the population which have the
characteristic of interest;

n the sample size.

It's not so easy to derive the formulas for the mean and variance. We'll
not attempt it. In these formulas, we use the conventional notation for
population proportions:

p = R/N, the proportion of the population having
the characteristic of interest

and

q = 1 - p, the proportion of the population NOT

having the characteristic of interest.

Note that p and q are not new parameters for the model because they
are derived from the basic parameters Rand N.
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In Problem 3.3.10, you computed a mean of 1.6003. According to
the formulas above, the mean for that example is 4 x 0.4 = 1.6. It's the
formula that's exact; this 1.6 differs from your calculated value because
of the rounding error in the calculation. The variance for Problem 3.3.10
as calculated from the formula above is

(72 = 4 x 0.4 x 0.6 x (6/9) = 0.64,

agreeing exactly with your calculation.
In Problem 3.3.10, you saw that the formula for the mean is very

intuitive. It just says that the proportion of a sample having the char­
acteristic is, ON AVERAGE, the same as the proportion of the population
having the characteristic. To give another example, suppose that 15%
of the population has the characteristic of interest and you are taking
samples of size n = 20. Then, on average, you should expect about three
in the sample to have the characteristic-about 15% of your sample.
That's the formula given above. Here it is again

tix = np = 20 x 0.15 = 3.

There are two observations we should make about the formula for
the variance. Note first that the variance gets larger as the sample size
increases. The variance has a factor of n in it, so n big means the variance
is big. This is very reasonable because the larger the sample the more
"room" there is for variability within the sample. More technically, when
n is large, X has a larger range of values. The values range from zero up
to n, inclusive. With a larger range, X has more potential variability.

Then there's that mysterious factor: (N -n)/(N -1). This is called the
finite population correction factor. We'll look at this again in the next
section. The choice of name will become clear at that time (why "correc­
tion factor"?). The exact form of the finite population correction factor
arises from very technical considerations. But, intuitively, the expression
makes sense. To get that sense, think of the N - 1 in the denominator
as if it were just N, the population size. It's one less than N for very
technical reasons only. Now, if we use N instead of N - 1, the finite
population correction factor would be

N -n N n n
--=---=1--

N N N N'

So (N - n)/N is just the proportion of the population not in the sample.
Or, as 1-n]N, it's just one minus the proportion of the population that
is in the sample.
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The variance will be large when (N - n)/N is large, small when it's
small. And that makes sense because when (N - n)/N is large, much
of the population is not in the sample. With much of the population
not in the sample, there's less information in the sample. Less informa­
tion means more uncertainty. More uncertainty reflects more variability.
More variability means the variance should indeed be larger.

Now please ...

3.3.11 Suppose you choose three light bulbs at random from a supply
of 30, four of which are burnt out.

(a) What's the probability that at least one of the light bulbs you've
chosen is burnt out?

(b) Give the mean and variance for this situation. Discuss the finite
population correction factor.

(c) If only one of the 30 light bulbs is burnt out, what's the probability
that the burnt-out light bulb will be among the three you choose?

(d) Now suppose two of the 30 light bulbs are burnt out. Make up
a probability distribution for X, the number of burnt out light bulbs
among your three. Give its mean and standard deviation (try to guess
first and then calculate).

(e) How large a sample would be required to have a finite population
correction factor of 90%? Of 80%?

3.3.12 In each part of this problem, try first to guess the answer on
intuitive grounds and then verify your answer by precise reference to
the model. Suppose you're drawing a six-card hand dealt from a well­
shuffled deck of 52 playing cards ...

(a) How many hearts would you expect?

(b) How many black cards would you expect?

(c) Which is more predictable, the color or the suit?

(d) Illustrate the previous parts of this problem by sketching possible
line graphs for the two random variables. Do not attempt to compute
any probabilities.

(e) Give a verbal description in terms of this problem for the finite pop­
ulation correction factor which appears in parts (a) and (b).

3.3.13 In the text just preceding this set of exercises, we have two anal -
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3.4

yses which work in opposing directions. We saw that when n is large,
the variance of the hypergeometric random variable is large. But from
another point of view, looking at the finite population correction fac­
tor, a SMALL n also makes the variance large because n small implies
(N - n)/(N - 1) is large. Which effect dominates the variance?

Sampling with Replacement from a
Dichotomous Population

What is the Model?

Now let's look at simple random sampling WITH replacement. Just as
before, we are considering a dichotomous population and our random
variable will be a count, counting how many in the sample have the
characteristic of interest. Of course, it's another instance of a "statistic"
and its probability distribution another instance of a "sampling distribu­
tion." Note that the real-world situation we're discussing here is exactly
the same as for the hypergeometric random variable except that the sam­
pling is done WITH replacement instead of without. That does make a
significant difference in the models, however, as we'll see. In particular,
the model is less computationally cumbersome. It's an easier model!

This new model-for a reason which we explain later-doesn't have
a name of its own. So we just refer to it as "sampling with replacement"
(the random experiment) and speak of "how many in the sample have
the characteristic" (the random variable). This is probably better than
relying on a name anyway. You won't be able to forget so easily what it
refers to.

We learned in the previous section that the hypergeometric random
variable is not used as a model for sampling without replacement in
the case of large populations. Instead, we use this new, simpler model,
"sampling WITH replacement."-even though we're sampling without
replacement. What justifies this? It's not the same model, after all, and
will not give the same "answers." True. But if the population is large,
it gives a very good approximation. It's clear why this should be the
case. Think about it: Sampling with replacement allows the possibility
of selecting the same population member twice. In sampling without
replacement, this is impossible. But so what? If the population is very,
very large, there's only a very, very small probability of selecting the
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same member twice. It doesn't happen, virtually speaking . So when the
population is large, there's no significant difference between the two
models. Use the simpler one!

Now let's think about constructing the probability distribution for
this new, simpler model. You can do it yourself with the help of the fol­
lowing exercises. But here, in contrast to the argument for the hyperge­
ometric random variable, you'll not use the relative frequency definition
of probability. It's easier than that! The formulas are more naturally
derived by analyzing the relevant events and using the following prob­
ability rules:

P(A or B)

P(A and B)

P(A) + P(B)

P(A)P(B)

if A and B are mutually exclusive

if A and B are independent.

Try Your Hand

As you carry out the details, you'll need to justify the "mutually exclu­
sive" and "independence" assumptions. Please .. .

3.4 .1 Before we attempt to derive formulas for calculating the proba­
bility distribution for sampling with replacement, you should first:

(a) Describe the underlying random experiment for the random vari­
able.

(b) Describe the outcomes of the experiment.

(c) Describe the possible values of the random variable.

3.4.2 Suppose we're drawing a sample of n = 10. Let's calculate P(X =
3). Recall the usual notation: p is the proportion of the population having
the characteristic of interest and 1- p = q is the proportion NOT having
the characteristic.

(a) First compute the probability of the event "the first three selected
for the sample have the characteristic, the rest do not."

(b) The probability in part (a) is NOT P(X = 3). Why not?

(c) How many different ways can we have a sample with three having
the characteristic of interest and the rest not?

(d) What's the formula for P(X = 3)?

(e) If 74% of the population have the characteristic of interest, what
are the chances to get a sample with three having that characteristic?

(f) What role does the population size play in the analysis of part (e)?
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3.4.3 (a) Give the formula for P(X = x).

(b) What role does the population size play in part (a)?

The Formulas
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Here are the formulas for the random variable which counts how many
have the characteristic of interest when we are sampling with replace­
ment from a dichotomous population:

sampling with replacement:

For sampling with replacement, if X is the number of
observations in the sample having the characteristic of
interest

with
np,

npq.

The parameters for sampling with replacement are just:

n - the sample size,

p - the proportion of the population having the char­
acteristic of interest.

Note that the mean is the same as for the hypergeometric random
variable and the formula for the variance is very similar. In fact, ex­
cept for the finite population correction factor, the variance is the same
also. Recall that the finite population correction factor was (approxi­
mately) just the proportion of the population not in the sample. So, if
the sample was not large compared with the population-if n was not
large compared with N -the finite population correction factor for the
hypergeometric random variable was almost one. In that case, the vari­
ances for that model and the model of this section are approximately
equal.
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That's one reason why we said you don't need the hypergeometric ran­
dom variable if you're sampling from a large population-your sample
will not be a significant proportion of the population, the finite popu­
lation correction factor will be approximately equal to one, and so the
variance is essentially the same as with this new model. This explains
the term "finite population correction factor" -you think of it as "cor­
recting" the variance for the simpler model given in this section for large
(or infinite) populations. Of course, the mean is also the same. And the
probabilities will be approximately the same.

Here's a rule of thumb: The model for sampling with replacement is
a good approximation for the hypergeometric distribution if

N ~ 60 and N ~ 'lOn,

So, the population is large and the sample is small in
comparison.

Now please . ..

3.4.4 Describe verbally the meaning of the condition N ~ iOn given in
the box just above.

3.4.5 Here we recall the situation of Problem 3.3.5 which was not suit­
ably modeled by the hypergeometric random variable:

The neighborhood library wants to know how many books listed
in the catalog are lost, nowhere to be found. To address this prob­
lem, you might take a sample-a simple random sample, without
replacement-of the catalog listing and consider the number of
listings which correspond to lost books.

(a) What model is appropriate for this problem? Two explanations are
possible. To see the situation more clearly, suppose we're going to take
quite a large sample of a couple of hundred listings and use several staff
people to carry out the work.

(b) Give a verbal description of the finite population correction factor.

(c) What's the probability that your sample of 200 listings contains
three or more listings for lost books?

(d) Before doing part (b) you might have asked yourself how many lost
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books you should expect on average-just to get an idea of what kind
of answer to look for. Well, how many?

(e) In the original problem (Problem 3.3.5) we said: "Suppose you find
that two among a sample of 30 listings are for lost books." What would
be the chances of that happening if, in fact, one percent of the listed
books are lost? What are the chances that more than two of the books
are lost?

(f) In part (e), how many lost books should you have expected to find
among the 30 observed catalog listings?

(g) In part (e) what values of the parameters were specified?

3.5 The Bernoulli Trial
The very very simple model we're introducing in this section is not of in­
terest in its own right . But it serves as the basic building block for three
other models and those models ARE of great importance. A Bernoulli
trial with parameter p is a random experiment with exactly two pos­
sible outcomes, where the outcome of interest has probability p. This
"outcome of interest" is referred to as "success" and is denoted by the
symbol S. Thus, P(S) = p. The other possible outcome is denoted F
for "failure." Because there are only two possibilities, we can conclude
that P(F) = 1 - p, which is also denoted by q. The Bernoulli random
variable is the "number of successes" when you perform the trial once.
So it's zero or one. You're already quite familiar with this very simple
model, so please just ...

Try Your Hand 3.5.1 (a) Give a simple example of a Bernoulli trial.

(b) Give a formula for the mean and variance of the Bernoulli random
variable.

3.5.2 (a) Show that "select one at random" from a dichotomous popu­
lation is an example of a Bernoulli trial.

(b) The mean and variance for the Bernoulli random variable in part (a)
are p and pq, respectively.Suppose instead of modeling this as a Bernoulli
trial, you modeled it as "sampling from a dichotomous population."
Then what are the mean and variance?
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What Is the Model?
Suppose you're attempting to locate someone with a rare blood type.
This very natural situation gives rise immediately to a random variable:
the number of persons you must test to find one who has the blood type
you seek. The underlying random experiment is the process of test ing
individuals for blood type until you find someone with the desired blood
type. It can be described as "independent repetitions of a Bernoulli trial."
In our example, the Bernoulli trial is "test one person for blood type."
We can think of the outcomes as "yes" or "no," depending on whether
the person tested does or does not have the desired blood type. The
outcome of interest is "has the blood type we seek." The probability p
for this outcome is just the proportion of the population being tested
which have that blood type .

Now, if we assume the repetitions of this Bernoulli trial to be indepen­
dent-that blood type from one person to the next is independent-then
the probabilities for our random variable will be easy to compute. Re­
call the definition: X = # persons you must test to find one who has the
required blood type. Let's calculate the probability we would first find
the desired blood type with the third person tested :

P(X = 3) = P(lst person is "no" AND 2nd person

is "no" AND 3rd person is "yes")

P(1st person "no") x P(2nd person "no")

x P(3rd person "yes")

(1 - p) x (1 - p) x p

because q = 1 - p.

In general, the geometric random variable is the number of inde­
pendent repetitions of a Bernoulli trial necessary to observe the first
"success." The underlying random experiment for this random variable
is

independent repetitions of the Bernoulli trial,
stopping once you observe a "success."

Now please . ..
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3.6.1 Verify that the "very natural situation" of attempting to locate
someone with a specific blood type is indeed a random experiment. If
it were not, we could hardly claim to have a random variable in the
number of persons required to be tested to find one having the desired
blood type.

3.6.2 In the previous problem, what is the Bernoulli trial?

3.6.3 Is the independence assumption reasonable in the "blood type"
example?

3.6.4 (a) What are the possible values of the geometric random variable?

(b) What are the parameters for the geometric random variable? Give
the symbols and verbal descriptions.

3.6.5 Suppose eight percent of the population you're testing have the
blood type in question and that this population has no persons who are
blood relatives. What is the probability that

(a) you finally find a person of the desired blood type after 17 trials?

(b) the first person tested has the desired blood type?

(c) you never find anyone of the desired blood type?

Now, with X as the number of persons you must test before finding
one with the desired blood type, what is the probability that

(d) X = 3?

(e) X = 7?

(f) X = O?

3.6.6 What's the significance for the geometric model of the assumption
in the previous problem about "no persons who are blood relatives"?

3.6.7 Why will it not be possible to summarize the geometric random
variable by means of a distribution table?

3.6.8 (a) Is the geometric random variable a statistic?

(b) Is its probability distribution a sampling distribution?
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From the exercises above, you may have guessed that there is a simple
formula for the probabilities of the geometric random variable :

P(X= x) P( (x - 1) failures AND one success)

qx-lp.

Because the repetitions of the Bernoulli trial are independent, we use the
multiplicative law in its simple special case-just multiply the probabil­
ities. To see how the formula above is derived, you need only recall that
the statement "the random variable X takes on the value x " just means
that the first success occurred on the xth repetition of the Bernoulli trial.
So the event that X = x is just the outcome

F, F, F, F, F, F, F, F, ... , F, F, S

i
xth position

where this means

"failure" AND "failure" AND "failure" AND •••

AND "failure" AND "success."

Now, with independence, we can simply multiply probabilities.
Wesummarize the geometric random variable in the box below. Note,

however, that it would be difficult for you to derive the formulas for the
mean and variance because they involve infinite sums. For example,

ux = EXP(X),

where X = 1,2,3, .. . to infinity. We're not assuming you've studied
the theory of such infinite sums, so-called "infinite series." We're just
asking you to accept that there's an appropriate theory which produces
the formulas below.
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the geometric random variable:

The geometric random variable X is the number of inde­
pendent repetitions of a Bernoulli trial required to obtain
exactly one success,

OR EQUIVALENTLY X is the number of the repetition on
which the first success appears.

P(X = x} _ qX-lp,

P(X::; x } _ 1_ qx .

Recursion formula:

P(X = x + I}

Finally:

qP(X = x }.

The parameter for the geometric distribution is:

p - the probability of success on one repetition of the
Bernoulli trial

Because we will not have a complete table for the probabilities of X,
you will find the cumulative distribution function for X given above to
be useful. For any random variable, the cumulative probability distri­
bution function is P(X ::; x }. For the geometric random variable, this is
the probability that X takes the value 1 OR 2 OR ••. OR x. Because X
cannot take on two different values at once-different values represent
mutually exclusive events-the cumulative distribution function is just
the sum (hence the word "cumulative") of all the probabilities up to and
including x :

P(X ::;x} P(X = I} + P(X = 2} +P(X = 3}+ ...+ P(X = x }.

For the geometric random variable, this is the probability for the first
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success to occur on or before the xth repetition of the Bernoulli trial. As
you see above, this probability is just 1 - qX. To understand all of this
better, please .. .

In the following problems, use the formulas in the box above .

3.6.9 You're attempting to locate a person of a particular blood type.
Suppose eight percent of the population you're testing have the blood
type in question and that this population has no persons who are blood
relatives.

(a) How many persons would you expect to have to test before finally
finding someone of the desired blood type?

(b) What's the probability you finally find a person of the desired blood
type on the 15th trial?

(c) What 's the probability you do not need to test more than 15 persons
before finding the desired blood type?

(d) What's the probability you find a person of the desired blood type
only after the 15th trial?

(e) What's the probability the first person tested has the desired blood
type?

(f) What's the probability you never find anyone of the desired blood
type?

(g) What's the probability you do not find a person of the desired blood
type until sometime after the 10th person is tested?

Now, with X as the number of persons you must test before finding
one with the desired blood type, what's the probability that

(h) X ~ 3?

(i) X = 7?

(j) X ~ a?
(k) X :s 22?

3.6.10 By Chebyshev's Theorem, for any random variable there is less
than one chance in nine to have a value more than three standard de­
viations away from the mean. Show that for the specific case of the
geometric random variable discussed in Problem 3.6.9, this probability
is actually MUCH smaller than one in nine.
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3.6.11 This problem will be difficult as we're stating it here. Byanalogy
with Chapter 2, think how the labor of dealing with 50 values can be
simplified. Check Level I of the answers before wasting too much time.

Make up a probability distribution for the geometric random variable
of Problem 3.6.9, for all values of X through 50. Presentthis distribution
as

(a) a table,

(b) a graph.

3.6.12 (a) You shouldn't think of the mean of a random variable as the
"most likely value." Explain.

(b) For the geometric random variable of Problem 3.6.9, what propor­
tion of the distribution falls on either side of the mean?

(c) What's the point of parts (a) and (b)?

3.6.13 Would the number of persons you must test be more predictable
or less so if 12% instead of eight percent of the population have the
required blood type?

3.6.14 Derive the cumulative probability distribution formula for the
geometric random variable.

3.6.15 (a) Derive the recursion formula for the geometric random vari­
able.

(b) Use the recursion formula to generate the probabilities for X = 1
through X = 10. Assume p = 0.08.

(c) Compare part (b) with Problem 3.6.11 (a) .

(d) For any x > 10, P(X = x ) is less than ... ??

3.6.16 Various methods have been proposed for estimating the size of
wildlife populations. One technique is to trap animals periodically in
their home range. When an animal is caught, it 's marked and then re­
leased. As the trapping proceeds, a record is kept of the number of times
each animal is caught. W.R. Edwards and L.L. Eberhardt (1967) did an
experiment with 135 cottontail rabbits in a protected enclosed 40-acre
area where they repeated the trapping seven times. Here's their data:

Frequency of capture

Number of rabbits

o 1 2 3

59 43 16 8

456

602

7

1
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For example, 16 of the 135 rabbits were caught on two occasions.
The number 59 was not observed, of course; it was inferred from the
rest of the data by assuming none of the 135 rabbits died or escaped the
area or in some other way were lost from the population.

In a study of an extensive set of live-trapping data, Eberhardt together
with T.]. Peterle and R. Schofield (1963) had given several arguments
suggesting a geometric distribution as a good model for the capture­
recapture experiment with X being "the number of times a particular
animal is trapped." This proposes a purely abstract model because there's
no Bernoulli trial here to be repeated. Because X starts at zero, the
geometric random variable would be, let's say, W = X + 1. So P(W =
w) = pqw-l which means P(X = x) = pqx. Edwards and Eberhardt
(1967) estimated p to be 0.4424. We'll see later (Problem 7.2.12) how
they obtained this value and how they proposed using the model to
estimate an unknown population size.

Compare Edwards and Eberhardt's data with what would be expected
if indeed the geometric model is valid. One decimal place of accuracy is
adequate for comparison purposes.

The Binomial Distribution

The Binomial Experiment

There are three models based on "independent repetitions of a Bernoulli
trial." The geometric random variable of the previous section is one such
model where the repetitions continue until we observe the first "success."
In this section, we study the second of these models, the "binomial ran­
dom variable." Its underlying random experiment, the binomial exper­
iment, consists of a FIXED number, n, of independent repetitions of the
Bernoulli trial. Of course, with a fixed number of repetitions, we might
have any number of successes. The binomial random variable will be
that "number of successes." For the geometric model, the number of
successes is fixed and the number of trials is the random variable. For
the binomial model, it 's just the reverse.

As always, before thinking about the random variable, we should
make sure the random experiment is clear. The prototypical example
of a Bernoulli trial is a coin toss, so you should think of the binomial
experiment as a series of n coin tosses with n fixed. There are many
real-world situations that look abstractly just like this. For example, an
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electronics manufacturer may want to model a day's output of 1500
electronic components where the manufacturing process is judged to
have one chance in 200 to produce a defective component. Producing
one component is like one toss of a coin where the probability for heads is
p = 0.005 (= 1/200). If it's reasonable to assume defective components
occur independently, then the 1500 components look abstractly like a
series of 1500 coin tosses. Of course, the assumption of independence
must be checked carefully-if it's not reasonable, the model is not valid.
To verify independence of defects, you may have to consult an engineer
who knows how defective components arise.

Note that our example assumes a day's output consists of 1500 "iden­
tical" components-identical from the point of view of defect rate. Oth­
erwise, we're not repeating the SAME Bernoulli trial. This same considera­
tion arises for the geometric random variable. But can we say "identical"
components? No two physical objects are ever exactly identical. If the
components are exactly identical, one component defective means they
ALL are. But "exactly identical" is completely unrealistic! That's where
our probability models come in. We make use of a probability model to
account for the variability that inevitably exists among the components
even when they're as identical as physically possible. That is, we assume
the components are identical EXCEPT FOR RANDOM VARIATION and we
account for the randomness by a probability model.

Here's another example of the binomial experiment: We could model
a basketball player's skill, in part, by her probability of sinking a basket
on one throw. If anyone throw is unaffected by the success or failure of
other throws-if the repetitions are independent-her throws are like
repeated tosses of a coin.

For a binomial model, the actual value of the parameter p may be
unknown. In fact, that may have been the very question you wanted
to answer. Maybe the original question was "What's the probability of
a defective component?" or "What's the rate of successful throws for
this basketball player?" In other words, what's the value of p? If the
assumptions seem appropriate, the model will be very useful for esti­
mating the value of p. In fact, one important inferential technique of
statistics (see Chapter 5) is for problems of just this type-to estimate
the unknown value of some parameter. That requires a model for the un­
derlying real-world situation and a theory for the model. Those models
and that theory are what we're learning now.

One final caveat: Seethe difference between the Bernoulli trial-itself
a random experiment-and the binomial experiment, a series of inde­
pendent repetitions of the Bernoulli trial. It's the difference between one
toss of a coin (the Bernoulli trial) and a series of n successive tosses (the
binomial experiment).
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To understand the binomial experiment better, please ...

3.7.1 Let's explore the binomial experiment further:

(a) For the binomial experiment, what is the "doing" and what does it
mean to repeat it?

(b) If n = 15 and you repeat the binomial experiment six times, how
many repetitions of the Bernoulli trial have you made?

(c) What exactly does an outcome of the binomial experiment look like?
Give a schematic description and a verbal description.

(d) Identify exactly where in the definition of the binomial experiment
we see that the outcomes are unpredictable.

(e) Give a verbal description of the parameters for the binomial exper­
iment in terms of a series of n coin tosses.

(f) How many of the outcomes of the binomial experiment have exactly
k successes?

(g) List all possible outcomes for the binomial experiment where n = 4.

3.7.2 (a) Suppose we toss 20 coins into the air. Can this be modeled as
a binomial experiment?

(b) Our example of the binomial model for 1500 electronic components
is more like part (a) than it is like a series of 1500 coins tosses. Explain.

(c) The binomial model has one assumption that's automatically valid
for both coin toss analogies-for both "1500 tosses of one coin" and
"one toss of 1500 coins"-but which might fail for the electronics man­
ufacturer's model. What is that assumption and is it reasonable for the
electronic components model?

3.7.3 Describe the occurrences of stillbirths in a hospital maternity ward
over the course of a week as the outcome of a binomial experiment.

3.7.4 Describe each of the following situations as the outcome of a
binomial experiment. You may have to complete the example by sup­
plying missing information. Discuss all aspects of the model with as
much completeness as the problem allows:

(a) 112 drillings for oil on a large tract of land,

(b) 25 throws of a dart at a dart board,
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(c) 15 telephone contacts by a telemarketing salesperson,

(d) truthful answers to a sensitive survey question (concerning drug
use, sexuality, or some other such sensitive issue which often yields an
untruthful answer) put to 1500 persons.

The Binomial Random Variable Itself

As you saw in Problem 3.7.1, an outcome for the binomial experiment
consists of a string of n successes and failures:

S, F, S, F, F, F, S, S, S, S,
F, F, S, F, F, F, S, F, F, F.

The binomial random variable, assigns to each such outcome the num­
ber of successes. If we call the variable X, the outcome listed above is
assigned the value X = 8. There are lots of other possible outcomes.
For example,

F, S, S, F, F, F, S, S, S, S,
F, F, S, F, F, F, S, F, F, F.

If you look carefully, you will see that this new outcome is identical to
the first one except for the first two trials. Here also X = 8. Note that
there were 20 trials and so n = 20.

The expression, "X is a binomial random variable with parameters n
and p" is captured briefly in the conventional symbols X", B(n,p). This
is often a convenient shorthand. So now we're ready for you to ...

Try Your Hand 3.7.5 What are the possible values for a binomial random variable?

3.7.6 If X is a binomial random variable with n = 20 and p = 0.3,
X", B(20, 0.3), what is P(X = 8)? Here's some help:

(a) First calculate the probability of one outcome where X = 8. For
example, what's the probability of

S, F, S, F, F, F, S, S, S, S,
F, F, S, F, F, F, S, F, F, F.

(b) Now, what's the probability of

F, S, S, F, F, F, S, S, S, S,
F, F, S, F, F, F, S, F, F, F.
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(c) If A is the outcome in part (a) and B is the outcome in part (b), then
P(A or B) =???

(d) How many ways can you have an outcome for which X = 8?

(e) What's the value of P(X = 8)?

(f) If you had rounded at intermediate steps in the calculation of part
(e), you would have obtained a very wrong answer! Explain.

3.7.7 In the previous problem, how many successes would you expect
on average? Try to guess on intuitive grounds.

3.7.8 Let X k be the Bernoulli random variable for the kth repetition
of the Bernoulli trial (Xk = "the number of successes"). There are n of
these X k'S , one for each repetition. Let's not be completely abstract,
suppose n = 20 and p = 0.3 as in Problem 3.7.6.

(a) What's the relationship between the Xk 'S and the binomial random
variable X.

(b) Use part (a) to derive a formula for the mean and variance of X.

3.7.9 For the binomial random variable:

(a) Derive a formula for P(X = x ).

(b) Derive a recursion formula.

3.7.10 (a) Show that the binomial random variable can be described as
"the total or sum of a sample" for a certain kind of sampling.

(b) Show that X ="the number of observations in the sample having
the characeristic of interest" for sampling with replacement from a di­
chotomous population is a binomial random variable. Give a verbal
description of nand p.

(c) Part (b) answers a question we raised earlier. What was that ques­
tion?

(d) For sampling with or without replacement from a large dichotomous
population, we should use the binomial random variable for the num­
ber of observations in the sample having the characteristic of interest.
Explain why.

From Problem 3.7.9, we obtain this summary of
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the binomial random variable:

The binomial random variable X counts the number
of successes on n independent repetitions of the same
Bernoulli trial

X = the number of S's

Recursion formula:

And:

P(X = x + 1)

np,

npq.

_ (n - x)PP(X = x).
(x + l)q

Try Your Hand

The parameters for the binomial distribution are:

n = the number of repetitions;

p = the probability for success on the Bernoulli trial.

Now you're ready to use the binomial model. Please ...

3.7.11 We can model a basketball player's skill by the probability, p, of
sinking a basket on one throw. For Shu Wen, p = 0.17 and for Juan,
p = 0.12.

(a) Who is more predictable in basketball at sinking baskets, Shu Wen
or Juan?

(b) How many baskets would Shu Wen have to attempt before sinking
one?

(c) How likely is Juan to sink a basket on at least three of his first ten
attempts?

(d) The further p is from one half, the more predictable that player is at
sinking baskets. Explain this by reference to the appropriate formula.

(e) Explain why part (d) is reasonable from an intuitive point of view.
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3.7.12 In 1953 (Avery v. Georgia), a black defendant was convicted by a
jury selected from a panel of 60 "veniremen" (potential jurors). None of
the 60 was black. They were chosen from the jury roll by drawing from a
box containing tickets with the names of potential jurors, yellow tickets
for blacks and white tickets for whites. Five percent of the tickets were
yellow. Justice Frankfurter of the U.S. Supreme Court wrote that the
"mind of justice, not merely its eyes, would have to be blind to attribute
such an occasion to mere fortuity." Do you agree? (after [Finkelstein and
Levin], p. 114).

3.7.13 Use the recursion formula to generate the binomial distribution
with n = 5 for each of the following choices of the parameter p. Present
the distribution in two ways: with a table AND with a line graph. Use
the tables to compute the mean and variance and check that you get the
answer given by the formulas (which answer is more accurate?).

(a) p = 0.5,

(b) p = 0.25,

(c) p = 0.1.

The Poisson Distribution
The Poisson distribution is a more abstract model than any we have
seen so far. It can be derived through a mathematical limiting process
from the binomial distribution by letting n get larger and larger as p gets
smaller and smaller. There are other derivations as well. We'll not be
concerned with the technical details of the derivation, but you will want
to remember that the Poisson model was originally derived through an
abstract process, not by any real-world considerations. This insight will
clarify some of the discussion below.

The Poisson distribution seems to have first appeared in a treatise
on probability and the law published in 1837 by Simeon Denis Pois­
son, a French academician and scientist. It only came into its own as a
probability model 50 years later, with a publication in 1898 by Ladislaus
von Bortkiewicz, a Russian-born Pole working in Germany. Bortkiewicz
seems to have captured people 's imagination with his use of the Poisson
distribution as a model for the observed number of horsekick fatalities
in the Prussian army from 1875 to 1895-a problem of more minor
proportions in our own age! Since then, the Poisson distribution has
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proven useful in a wide variety of situations which we will illustrate as
we go along.

So unlike all the previous models we've seen, we do not derive the
abstract model from a real-world situation. Rather we "find" a model,
derived independently from theoretical considerations, which happens
to fit our data, a very common approach to model building. We'll explain
this in more detail later when we take a look at Bortkiewicz' data to
see how it "fits" the Poisson model, but first let's see the model itself.
We're not going to give you a formal definition of the Poisson random
variable-that would mean presenting the abstract derivation-rather
we will give a "rule of thumb" description of the kinds of real-world
situations in which the model has often been found appropriate.

The Poisson random variable is often appropriate for counting oc­
currences within some fixed interval of time (or space) for independent
events such as accidents-Bortkiewicz' horsekick fatalities, for exam­
ple-or arrivals of customers at a checkout counter or of telephone
calls at a switchboard, and so on. It's commonly used in biostatistics
as a model for the incidence of disease. The Poisson distribution also
models such situations as the number of defects in a bolt of cloth or
typographical errors in a magazine article. These last two examples in­
volve intervals of space: A bolt of cloth is a two-dimensional "interval
of space" as are the pages of a magazine article.

When might you expect a real-world situation to be appropriately
modeled by a Poisson distribution? The model should be valid for any
situation in which you are observing occurrences of something that looks
like an "accidental" event, an event where

• simultaneous occurrences are impossible,

• any two occurrences are independent,

• the expected number of occurrences in any interval is propor­
tional to the size of the interval (length, area, volume, depending
on the type of interval).

These three conditions would often be reasonable in examples like those
mentioned above. In a very broad sense, they capture what one means
by "accidental" occurrences. For example, the incidence of nonconta­
gious diseases or defects in a manufactured item are "accidents," broadly
speaking. But certainly the model is not restricted to accidental occur­
rences. For example, these three conditions would often be satisfied for
customer arrivals or arriving telephone calls and yet these are not "ac­
cidents," although in a certain sense they're like accidents.

The formulas for the Poisson distribution involve the natural expo­
nential function, e" ,Here e is a constant, approximately equal to 2.7183
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as you can see from your calculator using the eX key with x = 1. The
word "natural" refers to the especially simple character of this expo­
nential function from the point of view of differential calculus. We will
also have occasion later in this text to use the logarithm to the base e.
It's called the natural logarithm, In(x) (pronounced "lin" x). It has the
same properties as the common logarithm (the logarithm to the base
ten). In particular,

In(1) = 0, In(e) = 1, In(xy) = In(x) + In(y), In(xY ) = y In(x).

The last property is very convenient for solving equations where the
unknown is in the exponent. To take a simple example, if 17 = 15x ,

what is x? Well, In(17) = xln(15) and so, as your calculator will show
you, 2.8332 = 2.7081x. Solving for x, you find x = 1.0462.

As with the geometric distribution, there is, theoretically, no largest
value for the Poisson random variable . There's one parameter for the
model, denoted by A (the Greek letter lambda). As you can see in the for­
mulas below, it's the expected number of occurrences within the interval
in question. It just so happens-for no reason that could be obvious to
us-that the variance is also A, the same as the mean. The probability
distribution of the Poisson random variable-let's call it X -is deter­
mined by these equations:

the Poisson random variable:

P(X = x )

Recursion formula:

P(X = x+ 1)

And:

A
- --1P(X = x) .x+

A,
(J2 A.

The parameter for the Poisson distribution is:

A = the expected number of occurrences in the inter­
val in question.

Now, to understand the model better, here are some exercises for you
to ...
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3.8.1 Think about the number of automobile accidents per year at a
busy metropolitan intersection. Assume a Poisson model for this random
variable. Compute the probabilities asked for below two ways:

(i) use the first formula given in the box above;

(ii) use the recursion formula.

(a) Ifyou should expect 4.2 accidents per year at this intersection, what's
the probability of less than two accidents?

(b) What's the probability of less than two accidents in a six-month
period?

3.8.2 Consider the number of telephone calls arriving at a telephone
switchboard in a five-minute interval. Again, assume the Poisson model
for this situation.

(a) If you should expect 2.3 calls in a five-minute period, what's the
probability of more than two calls?

(b) What's the probability of more than five calls? [Hint: Use part (a).]

(c) Do the calculation of part (b) again using the recursion formula.

(d) Give a verbal description of the Poisson recursion formula.

3.8.3 The Poisson distribution shares a characteristic in common with
the geometric distribution which none of our other distibutions (so far!)
exhibits. What is it?

3.8.4 The variance of the Poisson distribution is the same as the mean,
namely, A. Why is this fact explained "for no reason that could be ob­
vious to us," as we said in the text?

3.8.5 Why do we say "noncontagious" when we talk about the inci­
dence of disease being appropriately modeled by the Poisson distribu­
tion?

3.8.6 If observed data seems to fit the Poisson model, does that mean
the data arose from a situation which satisfies the three rules of thumb?

3.8.7 Bortkiewicz studied 14 Prussian Army corps over a period of 20
years. We eliminate four of the corps as atypical; they were organized
differently from the other ten. That leaves ten corps over 20 years, giving
us 200 "corps-years." Let B be the number of fatalities in one year and
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let CY be the observed number of corps-years in which that number of
fatalities occurred. Here's Borkiewicz' data:

B CY
o 109
1 65
2 22
3 3
4 1

200

(a) Give a verbal description of the number 109 from the table.

(b) Show that there were 122 fatalities over the 200 corps-years.

(c) What value of Ashould you use for the Poisson model, assuming the
model to be valid?

(d) Make up an "empirical" probability distribution for B, based on
Bortkiewicz' observations. Compute the mean and 8-2 for Bortkiewicz'
observed data using this distribution.

(e) Make up a theoretical probability distribution for B, assuming B
to be Poisson, using the value of ,\ in part (c). Use this distribution to
approximate the mean and variance of B.

(f) Do you think Bortkiewicz' data fit the Poisson model?

3.8.8 Assume the Poisson model suggested by Bortkiewicz' data from
the previous problem:

(a) In how many years over a ten-year period would a Prussian army
corpsman have seen more than one of his comrades killed as a result of
a horsekick? [answer: about 1.3]

(b) After how many years in the army would a Prussian army corpsman
have first seen a year in which more than one of his comrades was killed
as a result of a horsekick? [about eight]

(c) If you randomly chose three of the ten corps studied in the previ­
ous problem and looked at records for a five-year period, what are the
chances you would observe more than four corps-years with no horse­
kick fatalities? [about 97%]

3.8.9 Solve the equation e2x = 14 for x.
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3.8.10 Because the Poisson model is obtained from the binomial by
letting n get larger and larger, you won't be surprised to learn that the
Poisson distribution provides a very good approximation to the binomial
when n is large. For this to work, however, p must be small. There is a
"rule of thumb" for the validity of the Poisson approximation

n > 20,

p < 0.05.

This approximation can be very useful if you are relying on tables for
your probabilities. A question involving binomial probabilities may take
you out of the table if n is quite large. After all, any table is finite and
will stop with some large value of n. Many tables stop with n = 25
or maybe n = 100. In these cases, the Poisson approximation will be
helpful if p is not too large (::; 5%) and if your Poisson table contains
entries for). = np. On the other hand, in working binomial problems, if
p is too small you will again find yourself out of the table. The Poisson
approximation may help if n is large enough (~ 20).

In other cases, you might prefer the Poisson approximation to the
binomial if you're going to use the recursion formula-the Poisson re­
cursion formula is much easier to use with a hand calculator than the
binomial!

(a) For a given binomial distribution, which Poisson distribution should
you select as the approximation? Try to make a reasonable guess. Think
first about a specific case; for example, take the binomial random vari­
able B(300, 0.01). Which Poisson distribution would you use?

(b) Show that a real-world situation which could be modeled by the
binomial distribution with very large n and small p would satisfy the
three rules of thumb which guide us in modeling real-world situations
by the Poisson distribution. [Hint: Think of the binomial experiment as
taking place over an interval of time.]

(c) Suppose n = 300 and p = 0.01. Compute the probability that the
binomial X is equal to two and compare that with the approximation
given by the Poisson distribution.

(d) To have the Poisson approximation be valid, we choose it so it has
the same mean as the given binomial. Of course, we would also want
the variances to be the same, but that's not possible! Why not?

(e) Show that the variance of the approximating Poisson will be ap­
proximately the same as the given binomial variance IF •.• ???
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Here is a summary of Problem 3.8.10:

The Poisson approximation for the binomial distribution:

For a binomial random variable with . . .

n > 20,

p < 0.05,

the Poisson distribution with .x = np will give a good
approximation.

The parameter n must be large so that the probability
formulas for the two models will give approximately the
same values and p must be small so that the variance of
the Poisson, .x, will be approximately the same as the
variance of the binomial, npq.

The Negative Binomial Distribution
In this section we consider a generalization of the geometric distribution.
First, recall our example of a geometrically distributed random variable:

Suppose you're attempting to locate someone with a rare blood
type. This very natural situation gives rise immediately to a random
variable: the number of persons you must test to find one who has
the blood type you seek. The underlying random experiment is the
process of testing individuals for blood type until you find someone
with the desired blood type.

But suppose instead of just one person having the desired blood type,
you want, say, eight. How many persons must you test before finding
EIGHT with the desired blood type? This requires the so-called "nega­
tive binomial" random variable with parameter k. Here, k = 8. For­
mally, the negative binomial random variable is the number of inde­
pendent repetitions of a Bermoulli trial necessary to observe exactly k
successes.

Compare the negative binomial model with the geometric model. The
geometric distribution has only one parameter, p, the probability of
success on one execution of the Bernoulli trial. For the negative binomial
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Try Your Hand

model there are two parameters, p and k, where k is the number of
successes you must observe before you end the experiment. Note that
for the special case k = 1, we have the geometric model. That's why
we said the negative binomial model is a generalization of the geometric
model.

Your experience in working with the geometric and binomial random
variables will make it easy for you when you ...

In the following problems, assume that X is a negative binomial random
variable with k = 8.

3.9.1 (a) What does an outcome of the underlying negative binomial
experiment look like? Give a verbal description.

(b) Give three specific outcomes.

(c) For the examples in part (b), what are the values of X?

(d) In general, what are all the possible values of X?

(e) What are the probabilities for the three examples you gave in part
(b)?

3.9.2 How many ways can you get an outcome with

(a) X = 10?

(b) X = 12?

(c) X = 9?

(d) X = 8?

(e) X = x ?

3.9.3 Now assume p = 0.42. What is

(a) P(X = 10)?

(b) P(X = 12)?

(c) P(X = 9)?

(d) P(X = 8)?

(e) P(X = x )?

3.9.4 Give the formula for P(X = x ) for general k.
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Here's a summary of

the negative binomial random variable:

The negative binomial random variable X counts the
number of independent repetitions of a Bernoulli trial
required to observe k successes.

Recursion formula:

P(X = x + 1)

And: /-l

x q
x _ (k _1)P(X = x).

k

p
kq
p1'

The parameters for the negative binomial distribution are:

p = the probability for success on the Bernoulli trial,

k = the number of successes to be observed, after
which you end the experiment.

The negative binomial model shows up in a wide variety of situations.
In biology, it has been used as a model for insect counts. R.A. Fisher
used it, for example, to model the number of ticks to be found on a
sheep. For extensive applications in marketing, see Ehrenberg's book
Repeat Buying. An alternative characterization of the negative binomial
random variable as a sum of k independent geometric random variables
with the same p is often useful. Although that description is not obvious
in terms of "repetitions of a Bernoulli trial," it can be justified abstractly
by showing it leads to the same probability formulas.

Well, now please ...
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Try Your Hand 3.9.5 Show that if k = 1 in the formulas above, you get the "correct
result."

3.9.6 You're attempting to locate six persons of a particular blood type.
Suppose eight percent of the population you are testing have the blood
type in question and that this population has no persons who are blood
relatives.

(a) How many persons would you expect to have to test before finally
finding six people of the desired blood type?

(b) What is the probability that you finally have six persons of the de­
sired blood type with the 15th trial?

(c) What is the probability that you do not need to test more than 15
persons before finding six persons with the desired blood type?

(d) What is the probability that you have found all six persons of the
desired blood type only after the 15th trial?

(e) How many persons would you expect to test before finding someone
having the desired blood type?

(f) How many persons would you expect to test before finding two
having the desired blood type?

3.9.7 By Chebyshev's Theorem, for any random variable at all, there
is less than one chance in nine to have a value more than three stan­
dard deviations away from the mean. Show that for the specificcase of
the negative binomial random variable discussed in Problem 3.9.6, this
probability is much smaller.

3.9.8 Suppose the cloth which your company buys has about 0.62 seri­
ous defects per bolt. How likely is it that you would receive fiveor more
bolts before getting three bolts with more than one serious defect?

3.9.9 In Problem 3.6.16, a negative binomial distribution for the fre­
quency of capture of cottontail rabbits would be appropriate if, as you
would expect , we have more than one trap per home range widely
enough dispersed to assume independence of capture from one trap to
another. Explain.
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Some Review Problems
For each problem, identify the model clearly by name and verify that
the model is appropriate for that situation. Most problems will involve
a formula from the model; show clearly how you get your answer from
that formula even though in a few cases the solution is obvious on
intuitive grounds without reference to the model. If a problem requires
an unstated assumption, work the problem under that assumption and
be prepared to comment on the appropriateness of the assumption for
that particular situation. We're leaving you partly on your own with all
this. The solutions are rather sketchy. Sorry!

3.10.1 In a game of throwing darts at a dart board, your skill is such
that you hit the bull's eye for a score of six points about ten percent
of the time, you hit the second ring for three points about 60% of the
time, the outer ring about 25% of the time for a score of two points,
and you miss the board entirely with a penalty of two points (you lose
two points) about five percent of the time. You're eliminated from the
game if you miss the board more than three times. Suppose you play
with an opponent who uniformly attains each of the possible scores on
each throw. Suppose a "round" consists of one throw for each player,
two throws altogether.

(a) Assuming you don't get eliminated before that, what's the probabil­
ity you hit the bull's eye for the first time on your fifth throw? [6.56%]

(b) Assuming you don't get eliminated before that, what's the probabil­
ity you don't hit the bull's eye before your fifth throw? [~ 66%]

(c) Assuming you don't get eliminated before that, what's the probabil­
ity that you will hit the bull's eye at least four times on your first ten
throws? [1.28%]

(d) Assuming you don't get eliminated before that, how many times
would you expect to throw the dart to hit either the bull's eye or the
second ring? [1.4286]

(e) Assuming you don't get eliminated, which is more predictable for
you, the number of bull's eyes in ten throws or the number of times you
actually miss the board entirely? [2nd]

(f) How many times would you expect to throw before being elimi­
nated? [80]

(g) What score should you expect from your opponent on each throw?
[2.25]
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(h) From the point of view of score, who is the more consistent player,
you or your opponent? [you]

(i) What's the probabilty your opponent is eliminated from the game
on the 16th throw? [0.0563]

(j) How likely are we to see a bull's eye in one round? [0.325]

(k) Assuming no one's eliminated before that, how likely are you to see
four rounds out of ten in which there is a bull's eye? [22.16%]

(I) Assuming you don't get eliminated before that, what's the probability
of at least one bull's eye in your first six throws? [46.86%]

(m) How likely is it you will be eliminated before your sixth throw?
This is possible but not likely, keep five decimal places in your answer
so you won't report a probability of zero. [0.00003]

(n) What's the probability you get at least one bull's eye on your first
six throws?

[In part (n), being eliminated before you can make your sixth throw
is NOT independent of the event in question! So this is not the same
as part (1) . But they're almost the same; to see the difference, use
the 0.00003 answer from the previous part and give your answer
with all the accuracy of your calculator: 0.468544943 compared
with 0.468559 for part (1) .]

3.10.2 (a) You're offering customers a gift of one box of a particular
brand of tea. Suppose there are 80 boxes of that brand on your shelves
in two flavors, one spicy and one not, with 30 boxes of spicy tea. You
believe your customers prefer the spicy tea, but only one of the first five
customers who arrive chooses spicy tea. If these customers really had no
preference at all and they choose at random, what's the likelihood of a
result such as you observed? Interpret the phrase "such as you observed "
to mean "the result you observed or a result even more inconsistent with
your observation." [0.3755]

(b) You are to select a committee of 50 from a group of which 18% are
Hispanic. What's the probability of fewer than four Hispanics on the
committee? [~ 0.0137]

3.10.3 The city engineer's data suggests that, on average, in a quarter
mile of city streets there are presently about two -tenths of a pothole
requiring repair. Assume repair teams of three workers are assigned to
two miles of streets.
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(a) How many repairs should a team be prepared to make? [1.6]

(b) If the city engineer sends out ten teams, how likely is it that fewer
than three of the teams will find more than two potholes to repair?
[62.72%]

(c) Martha's team takes off for the beach on days when they find two
or fewer potholes-they repair them quickly and leave. If her team goes
out 20 days per month, what're the chances they have to work five days
or more successively without going to the beach? [~zero]

(d) What's the probability Martha's team enjoys no more than 16 days
at the beach per month? [65.78%]

(e) How many beach days could Martha's team anticipate each month?
[~ 16]

3.10.4 Suppose during any ten-minute period of the two hour lunch
rush about three customers on average come to our service window.

(a) What is the probability of exactly five customers in one such ten­
minute period?

(b) Which values of this random variable fall within two standard de­
viations of the mean?

3.10.5 Suppose you playa game in which you pay four dollars for each
roll of a die and you receive one dollar for each dot which shows on
the uppermost face when you roll. Suppose the die is loaded so the face
with three dots comes uppermost 40% of the time with all other faces
equally likely.

(a) What is your expected gain (loss) in this game?

(b) Is this game more or less predictable than playing with a fair die?
What does this mean in terms of your cost to play the game?

(c) Make a probability distribution for your gain/loss and compute its
mean and variance.

(d) Express G from part (c) in terms of X, the number of dots on the
uppermost face; that is, give a formula for G in terms of X.

(e) Compare the mean and variance of G and X.

(f) How many rolls would you expect to make before sustaining a loss?
[~ 1.5]
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(g) What's the probability that your first loss would be on the third roll?
[:::::; 8%]

(h) What's the probability that your first loss would be only after the
third roll? [:::::; 5%]

(i) Suppose you've decided to quit playing once you have sustained a
loss five times. What's the probability you will play for 15 rolls? [0.0039]

(j) In part (i), how many times would you expect to play before quitting?
[:::::; eight times]

3.10.6 Twelve identical machines operating independently produce de­
fective parts randomly three percent of the time. A box of one dozen
parts contains one part from each machine:

(a) What's the probability that in one box no more than one part will
be defective? [:::::; 95%]

(b) What's the average number defective in one box? [less than one]

(c) Suppose the machines produce defectives only eight tenths of a per­
cent of the time. Is a box more or less reliable than before? [more]

(d) A quality control inspector passes a box only if none are defective.
With a three percent defect rate, when should you find the first box that
must be rejected? [about the third]

(e) With a three percent defect rate, what's the probability the qual­
ity control inspector inspects exactly five boxes before rejecting one?
[:::::; 7%]

3.10.7 Suppose you draw the top five cards from a well-shuffled deck
of 52 cards.

(a) How many spades do you expect on average? [1.25]

(b) Which is more predictable, spade versus nonspade or black versus
red?

(c) What's the predicted number of black cards among the five?

(d) What's the probability of two spades? [:::::; 28%]

(e) What's the probability of two red cards? [:::::; 33%]

(f) How many five-card hands would you expect to receive before get­
ting one with two red cards? [:::::; 3]
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(g) What're the chances you get the first hand with two red cards only
after the third deal? [~ 31 %]

3.10.8 Suppose you and a friend each bring a ball to the tennis court
and you find a third ball lying on the court. Suppose all three balls are
identical in appearance and you leave one ball on the court when you
go home. Thus, which ball each of you takes home is random.

(a) Make a probability distribution for the number of players, X, who
take home the same ball they brought. Use your distribution to compute
the mean and variance of X.

(b) What're the chances you take home the ball you brought?

(c) What're the chances at least one of you brings home the ball you
brought? [fifty-fifty]

(d) If you repeat the same ritual tomorrow, what's the chance that on
both days you bring home your own ball? [one chance in nine]

(e) Suppose you play under these conditions every day for a week. What
are the chances you both bring home your own ball on four days or
more? [~2%]

(f) Again, playing every day for a week, on how many days should you
find yourselves both bringing home your own balls?

(g) Ifyou're playing under these conditions, how many days should pass
before you see yourselves both bringing home your own ball?

(h) Suppose there were two balls on the court instead of one. Now, is
the number of players who go home with their own ball more or less
predictable? Guess first and then do the appropriate calculation to verify
that your intuition was correct.

(i) Repeat parts (b)-(g) under the assumptions of (h); but each time
before calculating, guess whether the answer should be larger or smaller
than in the original situation.

3.10.9 A laundromat has 17 washing machines which, according to the
manager's estimate, have a 90% chance of trouble-free operation for
the first month after her maintenance check.

(a) How much trouble should she expect during one such month?

(b) What's the probability of more than two such problems?

(c) If she brings in two more machines, would you guess that her oper­
ation would become more or less stable? Verify this guess.
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(d) After several years of operation, the manager's new partner looks
over the records and finds that, in fact, there had been an average of
only 0.18 breakdowns within the first week after maintenance checks.
With this more accurate information, she now believes it's unnecessary
for either of them to be in attendance during that first week. If this plan
is followed, what's the probability of at least one problem during such
a week when no one is there to attend to it?

(e) If they make nine maintenance checks in one year, what is the prob­
ability of at least one problem in more than one of the weeks the two
women are gone (that is, in the first week after each check)?

(f) If they make a maintenance check each month, what's the probability
they get through the first six monthly checks without having any problem
during the week following the inspection when they are gone? [~ 34%]

(g) If they make a maintenance check each month, how many months
could they expect to go before having any problem during the week
they are gone following the inspection? [about five, they should expect
a problem in the sixth month after the sixth maintenance check.]

3.10.10 We know from records that we have about 1.73 serious defects
in ten yards of high-grade cloth which we market. Our bolt consists of
30 yards of cloth.

(a) How many serious defects would we expect in one bolt?

(b) What's the probability of more than three such defects in one bolt?

(c) You buy ten yards of cloth each month for a special project which
requires an unbroken stretch of ten yards of cloth with no serious defect.
In one year of operation, how many times would you have to return your
ten yards as unusable? [~ ten times]

(d) For part (c), when would you expect to see the first bolt with a
serious defect? [in the first or second month]

3.10.11 For 120 employees in our company, 32% took no sick leave in
the last six months, 41 % took one day sick leave, 20% took two days,
none took three, and the rest took four days.

(a) Find the median, mean, mode, range, and standard deviation for the
number of days sick leave taken over these six months.

(b) How many days sick leave were taken all together by our work
force?
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(c) If some of those who took four days had taken only three, would
that have increased or lowered the variability of this data? Guess, then
compute for the modified situation.

(d) If you took a random sample (with replacement) of ten of the em­
ployee records, what is the probability that more than one of the ten
would have been absent on sick leave for four days over the past six
months? [~ 15%]

(e) How many employee records should you have to sample before find­
ing one which showed four days of sick leave over the past four months?
[~ 14]

(f) What's the probability you would have to sample more than 20
employee records before finding one which showed four days of sick
leave over the past four months? [~ 23 %]

3.10.12 Three defective light bulbs inadvertently got mixed up with six
good ones. Suppose two bulbs are chosen at random for a ceiling lamp.

(a) What's the probability they're both good?

(b) How many good bulbs would you expect on average?

(c) Suppose one of the bulbs we thought to be good turns out to be
defective also. Is this a more or less predictable situation? First guess the
answer and then verify your guess by making the correct calculation. Be
sure you make your calculations from an appropriate distribution.

3.10.13 In tossing a fair coin, we will assign zero to heads and one
to tails. Let X be the assignment for the first of two tosses and Y the
assignment for the second. Now considering the two tosses together, let
Z=X+Y.

(a) Guess the mean and variance of each of these three random variables.

(b) Do you expect Z to be more or less variable than X?

(c) Guess how you could obtain the mean and variance of Z from that
of X and Y without computing.

(d) Compute the mean and variance of each of the three random vari­
ables.

3.10.14 In Chapter 5, we will introduce the idea of a "confidence in­
terval" for an unknown parameter. It's a range of possible values for
the parameter together with the probability-the "confidence coeffi-
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cient"-that the parameter actually falls within that range. Here, we'll
look at a special case, a confidence interval for an unknown median.

Suppose we've taken a sample of size n from some probability dis­
tribution (or, as a special case, from a numeric population). Call the
median M and let min and max refer, respectively, to the smallest and
largest observations in the sample. Then the interval (min, max) can be
thought of as a range of possible values, a confidence interval, for M. In
this problem, we'll determine the confidence coefficient for this interval.
That is, we'll determine the probability that this interval contains the
median. For simplicity, assume a random observation has a zero chance
to actually equal M.

(a) Identify M, min, max, and the confidence coefficient. Here's the
sample:

(b) Let Y be the number of observations in the sample which are less
than M . What's the model for Y?

(c) P(M < max) =?

(d) P(M > min) =?

(e) What's the confidence coefficient for the interval (min, max) as a
confidence interval for M?

(f) What's the confidence coefficient for part (a)?

(g) What's the median weight of U.S. pennies? Here are the weights
W of 100 newly minted pennies, reported to the nearest 0.02 gram
(taken from W.]. Youden's National Bureau of Standards Publication
672, Experimentation and Measurement):

W 2.99 3.01 3.03 3.05 3.07 3.09 3.11 3.13 3.15 3.17 3.19 3.21

f 1 4 4 4 7 17 24 17 13 6 2 1

(h) In Chapter 4, we'll see that (3.11, 3.13) is a 99% confidence interval
for the median weight, M, of U.S. pennies. How do you interpret this
confidence interval? To what does the confidence coefficient refer?

(i) What's wrong with interpreting the confidence interval in part (h)
by saying "ninty-nine percent of the time, M is between 3.11 and 3.13,
the rest of the time it's not"?

(j) In part (g), what's the relationship between the sample median
andM?
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4.1 Continuous Distributions and the Continuous
Uniform Distribution

Continuous Distributions

Every probability model we've seen so far has been discrete-the pos­
sible values are separated from each other as "discrete points" on a
number line. With this section, we begin our study of the so-called "con­
tinuous" distributions. A continuously distributed random variable on
an interval [a, b) is a random variable which takes on any possible value
in the interval [a, b) of real numbers. Random variables whose values
are measurements of time, weight, size, and so on, are typical examples
of situations which may give rise to continuous distributions.

We very consciously say "may" give rise to continuous distributions
because it is a question of interpretation. Weight measurements, for ex­
ample, might or might not be best represented as continuous. If you
measure only to within a quarter of a gram, let's say, then your mea­
surements would be discrete:

0, 0.25, 0.50, 0.75, 1.00, 1.25, ...

o
I

1/4
I

1/2
I

3/4 1

I ... etc

But very often, one measures with a high degree of accuracy, getting
numbers like

0.0340, 0.1357, 0.3649, 0.4002, . ..

~ any number in this range~

I is possible \

l I I I .. etc

o 0.0340 0.1357 0.3649 0.4002

where all the values in between are possible-at least theoretically. In
this case, a continuous interpretation of the measurements would be
more appropriate. Note that in point of fact, any physical measurement
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is discrete because an actual measuring device has finite accuracy. So
it's not a question of the actual physical measurements. When we say
our model is continous and not discrete, it's an assertion about what
measurements are THEORETICALLY possible.

Time measurements are often modeled as continuous. For example,
in the next section, we introduce the exponential distribution which,
among other applications, is typically used in industry to model lifetimes
of electronic components. For the exponential distribution, as we'll see,
any real number value from zero to infinity is possible-a component
may go bad immediately, it may burn only a few seconds, or only a
few minutes, or it may, in fact, burn several hours, or possibly many,
many hours. The mean lifetime for the component in question may be
several thousand hours, but any number less than that is conceivable .
Furthermore, any number more than that is also conceivable. You cannot
fix a number and say "no component will burn longer than this!" So,
we choose a continuous model.

Before going further, please ...

In these problems, assume X to be a continuously distributed random
variable.

4.1.1 If c is anyone of the possible values of X, then P(X = c) is zero.
Can you explain why on intuitive grounds?

4.1.2 Because for any c, P(X = c) is zero, what DOES have nonzero
probability?

The Probability Density Function

Because P(X = x) is zero for any X when X is continuously distributed,
the representation of probabilities for X cannot parallel the approach
we have been taking for the discrete distributions. To avoid concepts
from integral calculus, we will confine ourselves to representing these
probabilities in graphical terms, in terms of pictures. In other words, for
continuous distributions, we will think of probabilities in terms of areas
in a specific graph.

The probability density function for a continuously distributed ran­
dom variable X is the function-usually denoted by a symbol such as
j(x)-whose graph determines the probabilities for X by means of "area
under the curve," area under the graph of j(x). Thus, in the following
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picture the shaded area represents the probability that X takes on a
value in the interval (c, d)

P(c < X < d)

c

Now, please ...

I
d

the graph of f (x )

( the possible
values of X

Try Your Hand 4.1.3 Assume X is continuously distributed with probability density
function f( x). Suppose X only takes on values between zero and 100;
that is, a = 0, b = 100. What is the shaded area in each of the following
pictures?

the graph of f (x )
the density function

the graph of f (x )
the density function

o

o 30

the median of X

100

100

( the possible
values of X

( the _ tble
values of X
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the graph of f{x)
the density function

a t
Jl - 317

t 100
( lhe possible

values of X

4.1.4 Suppose you have a sample of size n from a continuous distri­
bution. Let X i be the ith observation in the sample after having put
the sample in ascending order. Show that the probability for a random
future observation to fall in the interval between X h and X k is

h-k
n+l'

The Continuous Uniform Distribution

The uniform distribution is the simplest example of a continuous distri­
bution. A continuous uniformly distributed random variable is a con­
tinuous random variable for which all intervals of a given length have the
same probability. Be careful of the terminology being used here. When
we speak of "the probability of an interval," we mean the probability
that the random variable takes on a value within the interval. Sometimes
for the phrase "the random variable X takes on a value in the interval
[c, d]" we'll use the standard set notation: X E [c, d]. For example, the
probability of the interval [2, 3.5] is P(2 :::; X :::; 3.5), or using set no­
tation, P(X E [2,3.5]). If X is some kind of measurement, then we're
talking about the probability of getting a measurement bigger than or
equal to two and smaller than or equal to three and a half.

Although one can be more general, we will only consider uniform dis­
tributions defined on a fixed, finite interval whose endpoints we denote
by a and b. This implies that X necessarily takes on a value somewhere
between a and b. Consequently,

P(a :::; X :::; b) = 1.
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Try Your Hand

As you'll see in the exercises below, the uniform distribution is com­
pletely determined by a and b, the parameters of the uniform distribu­
tion.

Now, you will easily derive the basic properties of the uniform distri­
bution as you .. .

In the following problems, assume X is continuously distributed with
probability density function j(x).

4.1.5 For a continuous distribution, the graphical representation should
give the probabilities as area over the interval in question, like the
histograms we studied in Chapter 2. Suppose you have a continuous
and uniformly distributed random variable X on the interval [2, 3].
What would the graphical representation for P(2.25 ::; X ::; 2.5) look
like?

4.1.6 Suppose that X is uniformly distributed on the interval from two
to seven. With the notation above, this means a = 2, b = 7. Thus, X
only takes on values between two and seven. Draw some sketches and
see if you can guess what the probability density function for X must be.
This is not necessarily easy-you may see it or you may not. It requires
a little experimenting and a little good luck. Try!

4.1. 7 In the previous problem, you saw that if X is uniformly distributed
on an interval [a, b] then its probability density function must be con­
stant:

j(x) = c.

What is the value of c?

4.1.8 Suppose your random variable X is uniformly distributed on
[a, b].

(a) Try to guess the mean for X .

(b) If c and d are between a and b , what is the probability that X is in
the range [c, d]?

(c) Give a verbal description of the probability in part (b) . Describe it
as a certain proportion.

Again, we remind you that our treatment of continuously distributed
random variables cannot run parallel to the treatment of discrete ran-
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dom varibles because specific values now have probability zero. For a
continuous distribution, we focus on the probability for intervals, for
ranges of values.

Here is a summary of

the continuous uniform distribution:

A continuous random variable X taking on only values
between a and b is uniformly distributed on [a, b) with
parameters a and b if the probability of any interval is
proportional to the length of the interval.

f(x) -
1

b - a'
a constant function,

whenever a < Xl < X2 < b.

Also:

So now, please ...

p, -
(a+ b)

2
(b - a)2

12

Try Your Hand In the following problems, suppose that X is uniformly distributed on
the interval [a, b).

4.1.9 (a) Show that the cumulative distribution function for X is

P(X ~ x) = (x - a)/(b - a).

(b) Illustrate part (a) with a picture.

(c) Show that P(IX - p,1 < 20") = 1.

4.1.10 For each of the following, sketch the graph of f(x) showing the
desired probability and then evaluate the probability from the appro­
priate formula:
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(a) P(X < 2.51a = 2, b = 4);

(b) P(7 < X < 9.51a = 6, b = 10);

(c) P(X > Jlxla = 2,b = 4);

(d) P(X < iix) for any a, b.

(e) For the X of part (b), what is the probability that X is within one
and a half standard deviations of its mean?

4.2 The Exponential Distribution

Modelling the Reliability of a System

We'll introduce the exponential distribution in terms of one of its most
typical applications, reliability theory. In reliability theory, one is con­
cerned with the "time to failure" of a system. The word "system" here is
broadly defined. It can refer to some kind of mechanical or electronic de­
vice or component, it can refer to a piece of industrial equipment (made
up of a number of components), or to an entire production or service
process. It could refer to a computer system of considerable complexity
or to something so simple as a single electronic component or even just
a household fuse. The reliability of such a system is the probability of
no failure in a specified time period under appropriate operating con­
ditions. Note that "reliability" is a numeric quantity, a probability for
satisfactory performance.

It's usual to divide the lifetime of such systems into three phases:

• The "burn-in" ("early failure" or "infant mortality") period in
which failure may occur because of some defect in the system
itself. A defective fuse, for example, may blow in the first few
hours of operation.

• The "useful life" (or "random failure") period in which the sys­
tem is functioning properly.

• The "wear-out" period in which failure can be expected when
the system is used beyond its reasonable life.
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You see that for the first and third of these phases, failure is the result
of a problem with the system itself. We're not going to consider these
two phases; instead, we will be concerned only with the second phase
which can often be modeled by the exponential distribution. During this
period of "useful life" -the period of random failure-the system may
fail due to some external cause. For example, a perfectly good household
fuse blows when there is a dangerous surge in the electrical current. Any
system, even though operating properly, will fail when there is some
unusual or unexpected demand which stresses the system beyond its
capacity. Thus, failure in the second phase is thought of as randomly
caused by independent factors external to the system itself.

This circle of ideas is really quite general, a series of checkout lines
in a large supermarket is a system which may be considered to "fail"
when a customer has to wait before checkout. Serving lines in a fast
food restaurant provide another example of such a system.

Before we continue, it will be helpful if you give some thought to how
we might model these systems. Here are some exercises for you to .. .

4.2.1 (a) How would you model the number of failures during the pe­
riod of useful life for a system such as we have discussed above?

(b) What's the probability that the first failure occurs after some specific
time t? In other words, what's P(T > t)? Here, T is the time elapsed from
the beginning of the random failure period to the first failure.

4.2.2 For T as defined in the previous problem:

(a) Verify that T is indeed a random variable.

(b) Show that T is a continuous random variable.

(c) Give the cumulative probability distribution for T .

The Exponential Distribution

The random variable T of Problem 4.2.1 is an example of an exponen­
tially distributed random variable. We need not have defined T as the
time elapsed from the beginning of the period of useful life. T could
be the time elapsed between any two failures. Then exactly the same
analysis will carry through. We should then look at a period of time t
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after the first of the two failures:

/\/ the time elapsed
/ between two failures

T----------,

I
to

time of the first
of two failures

t__

I
t + to

no more failures
up to here

a distance of t
time t

I
tI

time of the
second of
two failures

Saying there's no failure (X = 0) in the period of time t is to say the
time to the next failure is greater than t (i.e. T > t). So t is the length of
a time interval in which the number of failures, X , is zero. From this
we obtain

P(T> t) = P(X = 0) with X as the number of failures
on the interval to to t + to

= e-t >. where>. is the average number of
failures per unit of time

This gives us the cumulative probability function for T:

P(T :s; t) = 1 - P(T > t)

= 1- P(X = 0)

Now, because the probability for a continuously distributed random
variable like T is represented as area under the graph of its probability
density function, we have the following graph:
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probability as area

o

the graph 01 f(t)
;'hedensity 1""'''00

( the possible
values of T

What is the function f(t)? Without reference to calculus, this is not
obvious. But, believe it or not, the density function whose areas will
generate the probabilities for T is just

f(t) = 'xe-t >. .

The probability distribution with this density function is called the ex­
ponential distribution.

The discussion above gives us a rule of thumb for when to expect the
exponential distribution to be appropriate: The exponential distribution
models "time between two failures" in a system where the NUMBER of
failures is appropriately modeled by the Poisson distribution. That is,
where two simultaneous failures are impossible, any two failures are
independent and the number of failures is proportional to the time in
which they occur.

Furthermore, there is nothing special about looking for "failures of
a system." We might be looking for any kind of occurrence where
the number of occurrences follows the Poisson distribution. In that
case, the time between two occurrences would follow the exponen­
tial distribution. In the exercises, you'll see some typical applications
of the exponential distribution other than its application to reliability
theory.

Here 's a summary of
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the exponential distribution:

A random variable T has the exponential distribution if
its density function is

f(t) = Ae-t>·,

in which case

P(T < t) - 1 - e-t>., t> o.

And

Try Your Hand

With T as "time between two occurrences," A is the "ex­
pected number of occurrences in a UNIT of time."

It's not important whether we write P(T < t) or P(T ~ t) because T = t
with probability zero. And it's not surprising that tix is 1/Awhen you
think of our reliability example. There, A is the expected number of
failures per unit time and so 1/Ashould be the expected time per failure.
If you expect five failures per hour, for example, then you should expect
one-fifth of an hour between any two failures. Entirely understandable!

Here are some problems for you to .. .

4.2.3 Suppose one expects an average of 2.3 calls to be received at a
telephone switchboard in a five minute period.

(a) How many minutes would you expect on average to elapse between
any two calls?

(b) What's the probability of more than seven calls in a quarter of an
hour?

(c) What's the probability of as much as ten minutes between calls?

4.2.4 A particular electronic component is judged to have an average
life of about 2500 hours.

(a) What's the probability that one component will burn out before
1000 hours?
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(b) How many components should we expect to purchase to run the
system using this component for 10,000 hours?

(c) Suppose we have a system which uses these components in pairs.
What's the probability that the system will run for more than 1000
hours without a failure due to these components?

4.2.5 Show that an exponentially distributed random variable T has no
memory.

(a) That is, show that

P(T > t + siT> t) = P(T > s),

It can be shown that any random variable satisfying this equation-any
memoryless random variable-must be exponentially distributed.

(b) Give a verbal description of the equation in part (a).

The Normal Distribution

The Normal Distribution as a Model for Measurement Error

The normal distribution which we introduce in this section is certainly
the most important of the continuous distributions. Its discovery is a
fascinating story in the history of statistical theory-a story of struggle,
false starts, indulgent circular logic, and, finally, clarity, precision, and
triumph.

The story begins with the self-taught Thomas Simpson, who began
his career as a London weaver and part-time mathematics instructor.
By 1755, he was a professor at the Royal Military Academy and Fellow
of the Royal Society of London. In 1755, he read a paper before the
Royal Society entitled "On the Advantage of Taking the Mean of a
Number of Observations, in Practical Astronomy." Simpson attempted
to justify taking the mean of several astronomical observations and to
refute those who "have been of the opinion, and even publickly (sic)
maintained, that one single observation, taken with due care, was as
much to be relied on as the Mean of a great number." Simpson's first
step toward the normal distribution "was his decision to focus, not on
the observations themselves or on the astronomical body being observed,
but on the errors made in the observations, on the .differences between
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the recorded observations and the actual position of the body being
observed." [Stigler]

The key idea here is that for repeated measurements, the measurement
error is a random variable and we need to know its distribution: What is
the appropriate probability distribution, the appropriate abstract model,
of measurement error? Assuming no systematic source of error, either
in the measuring instrument or the observer, it's clear the mean of the
errors should be zero and that the distribution should be symmetric
about that mean. In a 1757 revision of his paper, Simpson described
the physical conditions which would imply a zero mean error and a
symmetric distribution about that mean in these terms:

That there is nothing in the construction, or position of the instru­
ment whereby the errors are constantly made to tend the same way,
but that the respective chances for their happening in excess, and
in defect, are either accurately, or nearly, the same.

He also described the physical conditions which should determine the
variability in the errors:

That there are certain assignable limits between which all these
errors may be supposed to fall; which limits depend on the goodness
of the instrument and the skill of the observer.

Simpson chose-somewhat naively and purely for convenience-a
triangular density function for his error distribution:

P(C1 < error < b)

a o b
the possib le errors

But any number of curves would satisfy the conditions described above.
Laplace, looking at this problem expressed it this way: "... of an infinite
number of possible functions, which choice is to be preferred?"

The appropriate choice for an error distribution, the curve which
is now called the "normal density function," was first used in a work
published in 1809 by Karl Friedrich Gauss. Gauss was one of the most
brilliant mathematicians the world has ever known, but his derivation
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of the normal density as an error distribution was suspicious to say the
least-his argument was essentially circular, giving no support at all for
his particular choice!

Don't blame Gauss! Praise him. A common misconception holds that
great scientists thrive only on precision and exactness, but just the op­
posite is true. Advances in knowledge are born from the chaos of ig­
norance-if you already knew the answer, we wouldn't call it an "ad­
vance." Therefore, success in scientific discovery requires a high degree
of tolerance, prehaps relish, for being immersed in ignorance. And a
willingness to risk error, even foolish error. In fact, at the very moment
precision is obtained, the scientist abandons her problem, for it is ex­
actly at that moment the problem is solved. She may afford herself some
brief time to bask in the sunshine-the precision and exactness-of her
success, but further progress demands she plunge back into the ocean
of chaos and ignorance from which new discoveries will be born. This
being the situation, it's inevitable that all sorts of crazy stuff will go on
before knowledge is attained.

Well, in the 1770s, before Gauss had given any consideration to it, the
French astronomer and mathematician Pierre Simon de Laplace (teacher
of Napoleon at the Ecole Militaire in Paris) had made two separate but
unsuccessful attacks on this problem, the problem of determining from
first principles a reasonable probability distribution for random error.
And it proved to be very difficult! Laplace seems to have encountered
Gauss" book for the first time in the early summer of 1810. In Stigler's
words, "... it must have struck him like a bolt. Of course, Laplace may
have said, Gauss's derivation was nonsense, but he, Laplace, already had
an alternative in hand that was not-the Central Limit Theorem" (see
[Stigler],p. 143). Laplace had presented this theorem in a paper delivered
to the Academy of Sciencesin April of 1810. Bythe time it was published,
he had obviously seen Gauss' book, for he appended a supplement using
his Central Limit Theorem to justify Gauss" choice of error distribution.

Laplace's Central Limit Theorem is a major focus of Chapter 5. This
theorem, which Laplace had already proved in a completely different
context, gave him a perfect argument for his choice of error distribu­
tion, what is now called the "normal distribution." This distribution
would indeed be the right choice if one could think of the errors as com­
pounded of many independent "elementary" errors (later known as the
"hypothesis of elementary errors"). If that were true, Laplace's Central
Limit Theorem would give the appropriate density function. You'll see
why this is true in the next chapter.

What does the normal density function look like? Here's its graph,
the so-called "bell-shaped" curve:
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Because we're assuming an ERROR distribution, the mean is zero. A mean
which is not zero is certainly also possible for a normal distribution, as
we'll see later.

The location of (1 in the picture is determined by the following rule:

A fundamental fact of the normal distribution:

There's about a 68% chance for a value within one stan­
dard deviation of the mean of a normally distributed
random variable . There's about a 95% chance of a value
within two standard deviations of the mean and it's vir­
tually certain for a value to fall within three standard
deviations of the mean.

The probabilities given by this rule are rounded to the nearest whole
percentage. We'll treat these as approximations. When we refer to an
"exact" value, we'll usually mean a value obtained from the normal
table in the appendix which gives percentages accurate to two decimal
places (hardly exact!).

Thus, about 68% of the area under the curve should be centered
between f.l - (1 and f.l+ (1. The standard normally distributed random
variable, denoted by the symbol Z, is the normally distr ibuted random
variable for which f.l = 0 and (1 = 1. So, if we're talking about the
standard normal distribution, a little over two-thirds (about 68%) of
the area under the curve should lie between Z =-1 and Z =1:

I
- 1

Il - a
0-1

o
I
1

/l +a
0 +1
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This curve, the standard normal density function, is given by

f(z) = (l/Vh) exp[_z2/2].

It's called the "Gaussian curve" and is defined for all values of Z, al­
though values outside of the range (-3, 3) are very unlikely (why?). The
symbol exp refers to the exponential function to the base e (seepage 111)
and is introduced only for notational convenience. When the exponent
is complicated, as it is here, exp[u] is easier to write than e" .

The standard normal distribution is only one of the large family of
normally distributed random variables. If X is a member of this fam­
ily, we write X rv N(p" (1'2), which is read "X is normally distributed
with mean Jl and variance (72." This family consists of all random vari­
ables having the density function given below. The notation N(Jl, (72)

identifies the two parameters for the model , namely the mean Jl and the
variance (72. Anyone member of this family is determined by its mean
and variance, which could be any real-numbers. Thus, Z is determined
as the unique member of this family having mean zero and variance one.
We think of the mean of a normally distributed random variable as the
result of a systematic "effect", with any variation from that mean due
to "random error," hence the "bell-shaped" curve. The density function
for N (Jl, (72) is

If this equation looks forbidding, don't worry! The model is mathe­
matically too sophisticated for us to do direct computations. We'll use
either a picture or the normal table in the appendix to determine normal
distribution probabilities.

Here are some exercises for you to .. .

4.3.1 (a) Justify the statement made above for Z that "... values out­
side of the range (-3, 3) are very unlikely."

(b) Recall that the notation for the family of normally distributed ran ­
dom variables is N(Jl, (72) . Using this notation, Z is . .. ??
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(c) Evaluate P(Z < -2) using the relevant picture.

(d) Evaluate the following probabilities:

P(Z> 1), P(O < Z < 1), P(-l < Z < 2), P(l < Z < 2).

4.3.2 Find the value of Z that will yield the required probability.

(a) P(-l < Z <?) = 68%;

(b) P(Z <?) = 84%;

(c) P(Z <?) = 16%;

(d) P(Z >?) = 16%;

(e) P(Z >?) = 2.5%;

(f) P(Z <?) = 0;

(g) P(? < Z <?) = 100%;

(h) P(Z >?) = 84%;

(i) P(? < Z < 0) = 34%.

4.3.3 In the text we said "it's clear the mean of the errors should be
zero." Why should an error distribution have mean zero?

4.3.4 (a) Sketch the graph for X,....., N(2.5, 3.24).

(b) Locate zero in the picture for part (a).

4.3.5 (a) Sketch the graph for X,....., N(2.5, 0.0064).

(b) Locate zero in the picture for part (a).

4.3.6 Which, if any, of the following pictures could be the graphs of
the indicated density function? For those which obviously could not be,
explain why not and redraw the curve to make it correct. Leave the axis
and its labeling unchanged.
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(0) N(O,l)

(e) N(l,l)

I I
o 1

1
I
3

(b) N(l ,l)

ld) N(-2 ,9)

I
o

-2

I
1

Ie) N(O,l)

I I
o 1

(f) N(2,4)

2

4.3.7 Show that the formula for the density function of a normal dis­
tribution .. .

fIx) = ll/Va 22rr)exp[-(x - /.li /2172],

gives the "right" result when you specialize it to the standard normal
distribution.

4.3.8 (a) In what sense is "measurement error" a random variable?

(b) If you make repeated measurements, what value would you expect
to get on average?

(e) How variable is the measurement error?

(d) What determines the variability of the measurement error?
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As we have seen before, a probability distribution may serve to model
many situations besides the one for which it was originally intended.
This is emphatically true of the normal distribution. Under what real­
world circumstances should you expect the normal distribution to be an
appropriate model? This is not an easy question to answer. Historically,
the normal distribution has often been used where it was not appropri­
ate at all, as later experience (usually painful!) has shown. Nowadays,
there are sophisticated " tests for normality." These are better guides than
were formerly ava ilable, but even with the most sophisticated tests, the
question is not easily resolved. We'll not study these "tests for normal­
ity." They're too sophisticated for an introductory statistics course. Later
we'll show you a simple graphical technique-the "normal probability
plot"-which is widely used as a rough "eyeball" test. But the normal
probability plot gives no insight into the conditions that characterize
normality. For that, we rely on the intuitive criterion presented below.

That rule-of-thumb criterion is closely related to the "measurement
error" interpretation of the normal distribution. To focus on the error­
this was Simpson's insight-you need to eliminate the systematic part of
the measurement. The systematic part, of course, is the true value of the
object being measured. By looking at the DIFFERENCE of two measure­
ments, the systematic part gets eliminated: Suppose the measurement is
M, with E being the error. If Ml and M2 are two such measurements,

M = true value + E,

and
Ml - M2 = (true value + Ell - (true value + E2)

= El - E2.

Thus, the difference in two values of M is just the difference in two
random errors, but the difference in two random errors looks like ran­
dom error again. What do we mean, intuitively speaking, by "looks like
random error"? Simply, the net result of many small and uncontrollable
influences more or less independent of each other. So to say that a num­
ber like M; - M2 "looks like random error" is just to say it's "due to
many independent random factors." This last phrase-"due to many
independent random factors"-is a somewhat more complete way of
expressing our intuitive criterion for normality. It gives you an opera­
tional notion which you can actually apply to a situation to see if the
assumption of normality seems reasonable.
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Here's our criterion . ..

a rule of thumb for when to use the normal distribution:

Any situation giving rise to numbers where the differ­
ence between any two values looks like random error (is
due to many independent random factors) will often be
modeled appropriately by a normal distribution.

When you're using this intuitive criterion as a justification for assum­
ing normality, please remember that it's only a rough rule of thumb
which might serve as a preliminary guide. The next step would be the
"normal probability plot" which we introduce later-it's simple to use
if you have a computer statistical package. But even this criterion is rel­
atively weak. You would probably want to look into the matter more
carefully at some point. In this course, the tools for doing that are not
available. For a more subtle analysis, you should turn the question over
to the experts. Or become an expert yourself!

In fact, a lot of criticism has been aimed at the naive use of our rule of
thumb during the nineteenth century, especially in regard to social issues.
For that reason, presumably, all mention of the rule has disappeared
from current textbooks. Still, if taken in the proper spirit, it 's helpful
as a preliminary guide for understanding the normal distribution. We'll
use it. Often .

Even in the nineteenth century this intuitive criterion was not used
uncritically. It was understood that certain phenomena would follow
other rules. Quantities such as income where changes are proportional
to the quantity itself-when you get a raise, for example, it's deter­
mined as a percentage of your current income-will probably follow
a "lognormal" distribution. That is, the quantities themselves are not
normally distributed, rather their logarithms are. Much economic data
follow the lognormal distribution. This distribution was well known
in the nineteenth century. A full mathematical treatment was presented
in 1879 by the Cambridge mathematician Donald McAlister. Similarly,
it was recognized early on that certain quantities which are inherently
quadratic-surface areas of organisms, for example-become normally
distributed only after a square root transformation. Weights of organ­
isms, being determined by volume (a cubic quantity), will often become
normally distributed after a cube root transformation. Again, techniques
for identifying these transformations and checking their appropriateness
are beyond the scope of this course.
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Let's stick to our rule of thumb! To explore the normal distribution
a bit further, please . . .

4.3.9 (a) Using our intuitive criterion as a guide, show that you should
expect repeated measurements of some object to be approximately nor­
mally distributed.

(b) You can think of the numbers in a numeric population as values of a
random variable. What's the experiment? What's the random variable?
How would you decide if it's a normally distributed random variable?

4.3.10 (a) Explain why "specification error" should be normally dis­
tributed. Recall that specification error for a manufactured object is the
difference between the actual dimension of the object and the "ideal,"
the specified dimension (see page 47).

(b) In part (a), we said specification error "should be" normally dis­
tributed. What assumption does this make about the manufacturing
process?

4.3.11 (a) The prototypical example of a "normally distributed popula­
tion" is a set of scores for a test taken by a large homogeneous population
of test takers, for example, the SAT test in a given year. Explain why
test scores should be approximately normally distributed.

(b) Test scores will not always be normally distributed. How could it
happen that a test given to a large class would have a "bimodal" distri­
bution like

I
47

I
63

( ~e possible
scores

4.3.12 It's always possible to model a real-world situation in more than
one way. What model you choose depends on your specific needs, the
specific kinds of questions you want to address. Test scores can be
thought of very simply as we did in Problem 4.3.11 or they can be
modeled with more detail as we do in this problem.

The SATtest for a particular year is a device for measuring a student's
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"ability" for college. Let S ="SAT test score." Let T be the "true ability"
for any student taking the SATtest that year and let E be the test's error
in measuring that ability.

(a) How is S related to T and E?

Now explain the sense in which

(b) T should be thought of as a normally distributed random variable.

(c) E should be thought of as a normally distributed random variable.

(d) S should be thought of as a normally distributed random variable.

[Hint: Parts (b), (c), and (d) should be answered in different ways.
Think about that and then look at the solutions level 1.]

4.3.13 (a) Show that if X is normally distributed, then any linear func­
tion of X is normally distributed.

(b) Show that the rule in part (a) does not hold in general for all families
of distributions. Do this by showing that a linear function of a binomial
random variable is not necessarily binomial.

(c) Give the probability distribution ofY = 2X+1 where X rv B(l, p) .
Compute the mean and variance of Y in two ways.

(d) What's the point of this problem?

(e) Suppose X and Yare normally distributed. Show that aX + bY is
normally distributed, where a, b are any two constants.

4.3.14 Suppose X is any normally distributed random variable with
mean fl and standard deviation (7; that is, X rv Ntu, (72) .

(a) Show that X can be expressed as a linear function of Z with positive
slope.

(b) Show that Z can be expressed as a linear function of X with positive
slope.

4.3.15 Let M be the observed measurement for some measurement pro­
cess and let E be the measurement error.

(a) Show that M is a random variable.

(b) Identify the mean and variance of M .

(c) What is the distribution of M?
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(d) How is the situation for M and E similar to the situation for X and
Y where X and Yare, respectively, the number of dots on the top face
and on the hidden face on one roll of a die?

The Standardizing Transformation

When you look for values of the standard normal distribution in the
table of the appendix, you'll find probabilities of the form

P(Z < z) for z 2: O.

For example, the table gives P(Z < 1.37) = 0.9147:

0.9147

I
o 1.:37

But, in fact, the standard normal table actually provides probabilities
of any form whatsoever for any normally distributed random variable,
not just for Z. Here's how: Suppose X is any normally distributed ran­
dom variable with mean p and standard deviation a. Then Z is a linear
function of X with positive slope (Problem 4.3 .14): Z = (X - p)/a.
The slope is l/a. But a linear function with positive slope "preserves
inequalities," and so X < x if and only if Z < z. In other words, the
two conditions X < x and Z < z say exactly the same thing: one's true
if and only if the other one is. Well if that's so, they must have the same
probabilities: like P(X < x) = P(Z < z ). This line of reasoning shows
that

If you compute Z by standardizing the normally distributed random
variable X:

If
X-p

Z=--,
a

then
P(X < x) = P(Z < z).
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This is illustrated by the following:

the values of

z
I
o

z = (x - /.)
C1the values of X

the standardizat ion
transformation

x

P(X < x)

Note that Z is a linear function of X : Z = a + bX, with a = -fL/a
and b = 1/a. This linear function is the standardizing transformation
for X which converts X into Z where Z is the "standard" normally
distributed random variable. This transformation allows you to find
probabilities for X from the corresponding probabilities in the Z table
of the appendix. If you understand the pictures properly and use the
symmetry of the distribution, you'll be able to obtain any probability
whatsoever!

To see this, please ...

Try Your Hand Hint for calculating: As we did above, draw both the picture for X
and the corresponding picture for Z, then guess in advance what your
answer ought to look like (you can avoid a lot of grief this way; you'll
catch obvious errors!). Then after guessing, go to the Z table and find
the exact value.

4.3.16 Suppose X '" N(2, 25). Compute the following probabilities.

(a) P(X < 7.4);

(b) P(X < 2);

(c) P(X > 1);

(d) P(X> -1);

(e) P(X < -1);

(f) P(X < 0);

(g) P(l <X< 7.4).
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4.3.17 Compute the probabilities:

(a) X rv N(3.8, 1.44)... P(X < 5), P(X < 2.6), P(X < 2);

(b) X rv N(12,4). .. P(X < 14), P(X < 10), P(X > 9);

(c) X rv N(0.18, 0.0001) . . . P(X < 0), P(X < 0.17), P(X> 0.16);

(d) X rv N(O, 1)... P(X < 1), P(X < 2), P(X > 1.5);

(e) X rv N(-2, 1.21).. . P(X> 1), P(X > 0), P(X> -3);

(f) X rv N(4, 2.25)... P(4 <X< 9), P(3 <X< 5), P(X > 3).

(g) Now explain the logic which justifies the calculation in part (f)where
you used the following equations:

P(4 < X < 9) = P(X < 9) - P(X < 4)

and
P(3 < X < 5) = P(X < 5) - P(X > 3).

4.3.18 In each of the following determine the value of X which yields
the required probability. First make a rough guess and then find the true
value from the table-if you don't find it exactly, take the closest value.
[Hint: You'll gain maximum benefit and spend the least time on this
exercise if you make a serious effort to answer the question BEFORE you
look at the answers.]

(a) X rv N(1.3, 0.1764) .

(b) X rv N(1.3,0.1764) .

(c) X rv N(5, 1) .

(d) X rv N(5, 1) .

(e) X rv N(-2,4.84) .

(f) X rv N(-2,4.84) .

(g) X rv N(14, 5.29) .

(h) X rv N(14, 5.29) .

(i) X rv N( -36,25) .

(j) X rv N( -36,25) .

P(X <?) = 0.05;

P(X >?) = 0.18;

P(X >?) = 0.22;

P(X <?) = 0.22;

P(X <?) = 0.73;

P(X <?) = 0.51;

P(10 <X<?) = 0.38;

P(? <X< 12) = 0.49;

P(-30 <X<?) = 7%;

P(/l-x <X<?) = 34%.
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Here we present a simple graphical technique, the "normal probability
plot," customarily used to check on the assumption that a given sample
was drawn from a normal distribution. The idea is simple, although the
work involved is quite tedious for large samples-in practice, you would
use a computer. Perhaps the most obvious graphical technique would be
to check if a histogram for some grouping of the data seems to have the
shape of a normal distribution. But, in fact, that doesn't work well at
all. The shape of a histogram can change radically depending on exactly
how you group the data. The "normal probability plot" presented below
provides a more sensitive check on normality than does a histogram.

The normal probability plot for a sample of size n plots the obser­
vations in the sample against the corresponding percentiles of Z. We
will explain this in more detail below. But first we need to know that
a percentile for the probability distribution of a random variable is a
value of the random variable which "cuts off" a given percentage of
the distribution. For example, the term "median" can be defined as the
50th percentile because it cuts off half the distribution. In other words,
half the distribution is below the median . A "tenth percentile" would
be the value which cuts the distribution into 10% and 90%, so that ten
percent of the distribution is below that point. Here's the picture for the
tenth percentile of Z:

10%

( the possible

va lues of z

The idea behind the normal probability plot for a sample is to compare
that sample with an ideal random sample from N(J-l, (j2). If you think
your sample came from N(J-l, (j2), the comparison should be "favorable."
Exactly what that means we'll see below. An ideal sample should have
been evenly spread throughout the distribution it was drawn from. The
phrase "evenly spread," however, does not refer to the observations in
the sample but rather to the probabilities of the distribution. In other
words, the sample should cut the distribution into equal probabilities.
For example, four "ideal observations" from Z cut the distribution into
five (FIVE notice, not four) equal probabilities:



4.3 - The Normal Distribution

I

I
I
I

I 20% 20% 20%
I

I I
-OB4 -025 0.25

I
0.84

155
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We obtained these four "ideal" observations of Z from the Z table by
looking up the appropriate probabilities. Now, if you have a sample
which you think came from the normal distribution N (f1,(72), the first
thought is to compare it with the ideal sample from N(f1, (72). But there's
no way to determine the values of the ideal sample because we don't
know the parameters f1 and (7 of N(f1, (72). So, instead, we compare our
sample to the standardized version of the ideal sample. In other words,
we compare our sample to the ideal sample from the Z distribution
(shown in the picture above for n = 4). You'll see the details of this
companson as you ...

4.3.19 We'll lead you through the construction and interpretation of a
normal probability plot for the following sample:

{5.2, 0.4, 0.2, 2.5, 1.2, 3.5, 1.8, 4.8, 2.7}.

(a) There are nine numbers in the sample, so we're talking about di­
viding the area under the curve of Z into ten equal probabilities. What
values of Z will do that?

(b) The percentiles of Z which you determined in part (a) are not evenly
spaced on the number line. Why not?

(c) What are the points we want to plot in our normal probability plot?

(d) Suppose our sample really is from a normal distribution, N(f1, (72)

say, and that the sample is more or less like that distribution. What
should the normal probability plot look like?

(e) Give the normal probability plot for our sample.

(f) Interpret the normal probability plot for our sample in the light of
part (d).

(g) You should realize that there's some variation in the method of
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obtaining the Z percentiles corresponding to a given sample size. Our
method determines them through the formula k/(n + 1). Explain.

4.3.20 The Stanford University geologist Kerry Sieh studied the occur­
rence of earthquakes at Pallett Creek northeast of Los Angeles on the
San Andreas fault. Sieh estimates that earthquakes occurred in the years

1857, 1720, 1550, 1350, 1080, 1015, 935, 845, 735, 590.

Based on Sieh's estimates, do you think that "time between earthquakes"
is normally distributed?

Continuous Approximations to Integer-Valued
Random Variables

We have typically used line graphs to picture the probability distribu­
tions for discrete random variables:

o 1 2 3 4
I
5

But there is nothing to keep us from replacing the vertical lines by rect­
angles of appropriate width so that area represents the probability of a
given value:

o 1 2 3 4 5

Now, imagine a discrete random variable with a very large number
of possible values. Suppose it takes on any integer value from zero to
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10,000. With probability represented by rectangles, the probability dis­
tribution will look like

o etc . • • •

etc . • • • n
10,000

This picture would be visually easier to comprehend if we left out the
edges of the rectangles and just drew the outline:

o etc . • • •

etc . • • • J
10,000

Or, by making the values much closer together and the rectangles pro­
portionately smaller, you would get the whole picture on one page with­
out having to break it with a lot of "dot-dot-dots"

P{a < x < b)

o 1,000 a b 10,000

You may think this looks like a smooth curve, but it's not-it's just that
the many horizontal and vertical lines have become so small you can't
see them! We drew a smooth curve, of course, but the point is that with
so many values, the probability distribution as a whole will look very
much like a continuous distribution.

This purely heuristic line of reasoning based on the pictures suggests
that we can approximate a discrete distribution by a continuous one if
the discrete random variable has a large number of values. When we
superimpose the continuous distribution over the discrete one, we get
the following picture:
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a 2 3 4 5

You can see that the area under the curve and the area enclosed by the
rectangles is not exactly the same, but the "errors" tend to cancel out:

this area is
counted but
should not be

this area is
not counted
but should be

Note also that a probability of the form P(X 2: 3) must be calculated
by area under the curve starting at X > 2.5, where X is the continuous
approximation to X:

./ PIX > 2.5) ~ PIX ~ 3)

graph of the density
function for X

4

This adjustment of moving to the edge of the rectangle as we pass from
X to its approximation X is called the continuity correction. In many
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cases, the continuity correction will have little or no effect on the answer.
But you'll never be wrong if you put it in-in some cases, it will make
a significant difference. You should use the continuity correction unless
specifically instructed to the contrary. But before we go any further, why
don't you think about this a bit ...

4.3.21 Each of the following conditions would be necessary for an
integer-valued random variable to be approximated by the normal dis­
tribution. Explain why.

(a) It must have a large number of possible values.

(b) It must be approximately symmetric about its mean.

(c) It should have only one mode, and the mean, median, and mode
should be approximately equal.

4.3.22 Suppose X is an integer-valued random variable which is ap­
proximately normally distributed with mean 32.8 and standard devia­
tion 10.3. What's the probability that X is greater than 50?

4.3.23 Assuming X to be a continuous approximation to an integer
valued random variable X, what should be the limits on X to give the
correct approximation to the following probabilities:

(a) P(X > 7);

(b) P(7::;X);

(c) P(2 < X ::; 8)?

The Normal Approximation to the Binomial

Now let's take a look at the normal approximation to the binomial
distribution. It's valid, as a rough rule, when both np and nq are greater
than or equal to five.

If X is binomially distributed, then X is approximately
N(np, npq) provided np and nq are at least five.
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Note, if the smaller of np and nq is at least five, then, of course, the
larger one is. This rule requires n to be large compared with p: If p is
small, then n must be proportionately larger.

The normal approximation to the binomial is complementary to
the Poisson approximation. The Poisson approximation (see Prob­
lem 3.8.10) is valid for cases in which "success" looks like the occurrence
of a rare event. That means p should be quite small-our rule says "less
than five percent." If p = 0.001 and n = 100, the Poisson approxi­
mation would be valid and the normal not because np = 0.1, much
less than five. On the other hand, the normal approximation does not
require p to be particularly small. It would be valid if n = 50 and p = t
or p =!.

To see how the normal approximation can be useful, please .. .

4.3.24 Suppose you want to approximate a binomial X by a normal
distribution. How large must n be if p is

(a) t; (d) 0.002

(b) 0.25; (e) 0.75?

(c) 5%

How small can p be if n is

(f) 12;

(g) 100;

(h) 150;

(i) 1,000;

(j) 10,000?

4.3.25 Assume X is a binomial random variable. Evaluate the following
probabilities. You should use the normal approximation where appro­
priate.

(a) P(X > 41n = 7,p = 0.4);

(b) P(X~137In = 300,p = 0.4);

(e) P(X < 81n = 12,p = t;
(d) P(X = 241n = 200,p = 0.12).

4.3.26 Suppose the machine parts which you manufacture have an av­
erage diameter of 2.3 em with a standard deviation of 0.1 em and an
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average life of about 6000 hours. Because this is a real-world question,
BE SURE TO GIVE REAL-WORLD ANSWERS AT THE END.

(a) If you choose 12 machine parts at random, what's the probability
at least five of them will be more than 2.35 ern in diameter? [~ 30%]

(b) If one of the customers you supply purchases a lot of 500 parts,
what's the probability at least half of them will last six months? Assume
the parts are in continual use. [~ 22 %]

(c) In a lot of 500 machine parts, what are the chances more than five
will be unusable? A part is unusable if its diameter exceeds 2.55 ern. [~
9%]

4.4 The Chi-Squared Distribution
In Chapter 5, we'll begin to see, by Laplace's Central Limit Theorem,
how the normal distribution is the key to certain types of questions
concerning averages. Similar questions concerning variability involve the
chi-squared distribution, the model of this section. The simplest version
of this model is the chi-squared random variable with "one degree of
freedom." It's the square of the standard normally distributed random
variable: xi = Z2.

Variability, of course, is not measured by just one squared quantity;
the variance of a random variable or of observed data involves a sum
of squares. We'll postpone looking at that for now, but the model we'll
need, the model for a sum of d squared Z's , is

the chi-squared random variable with d degrees of freedom:

2 Z2 Z2 Z2 Z2Xd = 1 + 2 + 3 + ...+ d'

The mean is d and the variance 2d:

d independent Z' s.

As with the normal distribution, the formulas for x2 are too complex
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to work with and so a table of probabilities is provided in the appendix.
Note that the Z's must be independent of each other. This assumption
is crucial: If it's not at least approximately valid, the model will give
results which are also not valid. The term "degrees of freedom" is the
number of Z2's in the sum-they're "free" of each other in the sense of
being independent.

The chi-squared distribution is really the most abstract of all our
models. It arises from purely mathematical considerations; there's no
"rule of thumb" for the type of real-world situation which it models . It
doesn't model real-world situations. Rather, it's an important theoreti­
cal tool for addressing certain types of real-world questions concerning
variability. We'll see all this in later chapters. For now, we just ask you
to be familiar with the model and its terminology and learn how to use
the table in the appendix.

Unlike the table for Z,

• the BODY of the chi-squared table lists the values of X2,

• the LEFT-HAND MARGIN gives d, the degrees of freedom (df),

• the TOP MARGIN gives the probabilities.

The probabilities are left-tail probabilities, as in the following picture
(d = 12):

~
P(X' < 26'217)

~ ,-

This picture shows there's a one percent chance for the sum of 12 in­
dependent squared Z's to take a value greater than 26.217. Note that
the curve peaks out just to the left of the mean. In fact, the peak always
occurs at d - 2. Because d = 12 in this picture, the peak is at ten . Also
note that the curve starts out tangent to the axis. That's true provided
d is bigger than four.

Well, now it's time for you to . . .
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4.4.1 Give the following probabilities:

(a) With 12 degrees of freedom, P(X2 > 23.336) =??

(b) P(27.204 < X2 < 32.852) =?? Assume d = 19.

(c) Suppose you have a simple random sample of size 20 from the stan­
dard normal distribution. If you square all your observations, what's
the probability those squares will total more than 40?

(d) In part (c), how do you know the twenty Z's are independent?

(e) Suppose you obtain a simple random sample of 23 quiz scores and
you square each of those 23 scores. What's the probability the sum of
those squared scores would exceed 35.17?

4.4.2 Find the value of Xl which gives the required probability.

(a) P(Xl >??) = 0.01, with 19 degrees of freedom.

(b) P(27.587 < Xl <??) = 2.5%, with d = 17.

(c) P(zt + Zi +zj + Z~ + Zff + Z~ >??) = 10%.

4.4.3 (a) In the pictures of X2, why are there no values to the left of
zero?

(b) As the degrees of freedom increase for X2, should the mean increase
or decrease? Answer this heuristically and in terms of the formulas.

(c) In the pictures of X2, why does the tail go off to the right with no
limit but with smaller and smaller right-tailed probabilities? In other
words, why is X2 skewed to the right?

(d) Draw a picture of the Xl distribution with 14 degrees of freedom.
Be sure to label zz and J-L + (J.

4.5 A Few Review Problems
You should identify the model for each problem, even though in some
cases the solution is obvious on intuitive grounds without reference to
the model. Models from the previous chapter are fair game. If a prob­
lem requires an unstated assumption, work the problem under that
assumption and be prepared to comment on the appropriateness of the
assumption for that particular situation.
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4.5.1 Records show that 30% of the screws produced by a particular
machine are less than 1.3 ern and 40% more than 1.71 ern in diameter.

(a) What's the mean diameter and the standard deviation of diameters
for these screws?

(b) What assumption are you making to solve part (a) and is that as­
sumption justified?

(c) We want to report the maximum diameter for these screws. Of
course, there's no meaningful absolute maximum (explain!), a few
screws will be longer than our reported maximum. What value for the
maximum should be reported if it's understood that we allow no more
than one screw in 10,000 to be longer than the reported maximum?
[3.6324cm]

4.5.2 Reports from customers at your supermarket indicate that about
4.5% of them have to wait in line more than ten minutes during the
weekday rush from 4:30 to 6:00 P.M. How many minutes must the
average customer wait during that rush period? [~ 3 min 14 sec]

4.5.3 Suppose 32,753 students nationwide take a standardized test for
which the cutoff for passing is 1.2 standard deviations below the mean:

(a) About how many students will pass? [~29,000]

(b) Suppose we choose 100 students at random, what is the probability
exactly ten fail? [~ 11%]

4.5.4 In a 1983 report for the U.S. Air Force (New York Times 2/11/86),
R.K. Weatherwax estimated the probability of a catastrophic accident
involving the space shuttle's solid-fuel booster rockets to be about one
in 35 flights. On the other hand, in 1985 the National Aeronautics
and Space Administration estimated the probability of booster failure
to be one in 60,000 flights. On January 28, 1986 the shuttle exploded
on its 25th flight. If Weatherwax's estimate was correct, what was the
probability of at least one catastrophic accident of this sort in 25 flights?
[~ 52%]

4.5.5 You're thinking of maintaining a stock of semiprecious stones in
your shop. The supplier of these stones has informed you that her stones
weigh eight ounces on average with a standard deviation of 2.4 ounces .
A carton consists of a dozen randomly chosen stones.

(a) Make a probability distribution for stone size for five sizes deter­
mined as follows:
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Size

I
II
III
IV
V

Weight

.. . -3.2
3.2-5.6
5.6-10.4

10.4-12.8
12.8-·· .
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(b) How many stones of each size would you expect in each carton?

(c) How many stones in 110 cartons would be of size IV or V? [~209.5]

(d) Out of 110 cartons, what's the probability that more than 120 stones
will be size IV or V?

(e) A customer needs 24 size I stones. What's the minimum number of
cartons you would have to buy to guarantee at least a 90% chance of
getting enough size I stones? [68]

4.5.6 The photocopying machine in your office seems to do about two
and a half hours of more or less continuous copying before a malfunc­
tion.

(a) How many malfunctions should you expect in an eight hour day?
[3.2]

(b) How likely is it you will get through an entire eight hour day of
more or less continuous copying without such a malfunction? [~ 4%]

4.5.7 In discrimination cases, the question arises of what exactly is the
pool of candidates you're choosing from. In Hazelwood School District
v. United States (1977) only 15 of 405 teachers hired by the Hazelwood
district were black. An accusation of discrimination was based on the
proportion (15.4%) of blacks in St. Louis County which includes the city
of St. Louis. The Hazelwood district claimed their pool of candidates
should not include the city proper, in which case the proportion (5.7%)
of blacks was much smaller. In each case, what's the probability that
15 or fewer of 405 teachers would be black? (after [Finkelstein and
Levin])

4.5.8 Here we continue the discussion of Problem 3.10.14 by determin­
ing the endpoints of a confidence interval for an unknown median M. In
Problem 3.10.14 we calculated the confidence coefficient for a specific
confidence interval. That's the reverse of what one usually does. The
true power of the confidence interval technique is that you get to choose
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whatever confidence coefficient provides adequate certainty for your
purposes. Then you determine the confidence interval. Afterward, you
have an "interval estimate" for your parameter with a predetermined
degree of certainty.

Suppose you've taken a sample of size n from a probability distribu­
tion (or, as a special case, a numeric population) and arranged it in as­
cending order. So the sample looks like: x(1) ~ X(2) ~ X(3) ~ . • • ~ x(n)'

These Xli) 's are called the sample order statistics. Note that each one
of these is a number calculated from the sample and so, indeed, is a
"statistic." Thus, XlI) is the "first order statistic," X(2) the "second order
statistic," and so on. In general, X(k) is the kth-order statistic. We'll de­
termine the endpoints of our confidence interval for the median in terms
of the order statistics of a sample.

First, suppose we want a 90% confidence interval for the median M.
If the endpoints of the interval are to be the order statistics X(h) and X(kJ,

then just as in Problem 3.10 .14(e)

0.9 = P(X(h) < M < X(k)) = 1 - [P(M < X (h ) ) + P(M > X (k ) ) ] '

We assume the sample is drawn from a continuous distribution (or
very large population) so there's a zero chance for an observation in
the sample to equal M. Thus, we can ignore equal signs in the square
brackets .

(a) In Problem 3.10.14(a), show that the sample median is x(12)' In that
example, what's the value of X(6)?

(b) Express the square bracket in part (a) in terms ofY = # observations
in the sample which are less than M .

(c) Let Zo = 1.645. Show that if n 2: 10, the endpoints of the 90% con­
fidence interval for Mare X(h) and X(kJ, where hand k are determined by

h = n + 1 - zovn d k _ n + 1 + zovn
2 an - 2 .

(d) Give a 90% confidence interval for the median fill of cups from the
drink machine in the employee lounge. Here is the fill in ounces for ten
cups: 6.7, 6.4, 6.3, 6.4, 6.3, 6.5, 6.4, 6.2, 6.8, 6.5 .

(e) What assumption are you making in the analysis of part (d)?

(f) Explain the meaning of the 90% confidence coefficientfrom part (d).
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(g) Determine a 95% confidence interval for the median fill in part (d).

(h) Show how to calculate the 99% confidence interval for the median
weight of U.S. pennies given the data in Problem 3.10.14(g).

(i) How do you interpret the confidence interval of part (h)?
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5.1 Parameters and Their Estimators

Introduction
Among the most fundamental questions arising in statistics are ques­
tions which concern one or more unknown parameters. If you think a
particular population is normally distributed, for example, you'll need
to determine 1-£ and (5, the mean and variance for that population; or if
you're looking at a Poisson process, you'll need A, the average number
of occurrences in a unit of time. If you have a problem that involves
a Bernoulli trial (a geometric, binomial or negative binomial problem),
you'll need a value for the parameter p, the probability of success on
one repetition of the trial.

Typically, the parameter is not only unknown, it's unknowable! It
would be impossible, in other words, to obtain information sufficient
to calculate it. If that's the case, you have to estimate the parameter
based on partial information; for us that means information in the form
of a random sample. But this is not nearly so simple a solution as you
might think! Suppose a random sample gives a sample mean of 2.37.
What do you do with that information? Will you say the mean of the
population is 2.37? You shouldn't, a sample isn't going to be exactly like
the population it's drawn from. That's like saying 100 rolls of a fair die
should yield exactly 350 dots total-not 348 or 354 but exactly 350!

It 's usual to denote a population proportion by the symbol p, fol­
lowing the convention introduced in Chapter 3. For a sample from a
dichotomous population, the sample proportion, the proportion of the
sample having the characteristic of interest, is denoted by the symbol
p (read: "p-hat"). Sample proportions also arise in sampling from a
Bernoulli distribution, where the parameter p is the probability of ob­
serving the outcome of particular interest ("success"). For instance, if
you have a sample of 20 tosses of a coin, you may be interested in the
proportion of heads observed, p. Or you may be interested in the pro­
portion, p, of defectives among 40 silicon wafers produced in succession
by your manufacturing process; or the proportion, again p, of children
in your neighborhood who contract a particular disease. In each case,
your parameter is p, the probability of "success" for a Bernoulli random
variable, and p is the sample proportion for a simple random sample
from that probability distribution. You studied these three examples in
Problems 2.1.5, 2.1.9, and 2.1.10. They are not random choices from a
population, notice, but rather "n independent repetitions" of a Bernoulli
trial. So, they are simple random samples from the distribution of that
Bernoulli random variable .
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Let's look more carefully at samples and what they might tell us about
an unknown parameter. For simplicity, we'll confine our attention for
the time being to the special case of population means and proportions.
But there's nothing really special about this; everything we see here is
applicable to other parameters as well, in particular to parameters for
random variables and samples from their probability distributions. So
now please ...

In the following problems you will explore the relationship between
the question "What's the value of this unknown parameter?" and the
information for answering that question contained in one sample.

5.1.1 You need to know p" the mean of a distribution you're studying.
Maybe it's the mean of a population, maybe it's the mean of some
random variable . Because it's impossible to actually compute the value
of p" you obtain a simple random sample from which you compute a
sample mean of 2.37. Here's the situation ...

the question: p, = ?,

the information: X = 2.37.

(a) If it's a population you're studying, what kind of population is it?

(b) What information would be required to actually compute p,?

(c) What assumption are you making if you say p, = 2.37?

(d) What assumption are you making if you say p, ~ 2.37?

(e) Which of the assumptions in parts (c) and (d) is valid?

(f) At what point will you know whether your sample is typical of the
entire distribution you're sampling from?

(g) How do you make use of the information that X = 2.3 7 to answer
the question about p,?

5.1.2 Suppose you would like to know what proportion, p, of the popu­
lation of a particular geographical area is over 50 years of age. Suppose
further that you obtain a simple random sample for which 18% are over
50. Here's the situation ...

the question: p = ?,

the information: p = 0.18.
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(a) What kind of population are you studying?

(b) What information would be required to actually compute p?

(c) Your simple random sample was chosen according to the strictest
rules of sampling; the results were recorded carefully and doubled
checked to eliminate any possible recording error. So, from the fact
that p = 0.18, we can safely conclude that 18% of this population is
more than 50 years of age. Comment.

(d) How can you make use of the information that p = 0.18 to answer
the question about p?

5.1.3 Let's explore this idea of a "typical" sample in more detail. We'll
take a very simple example so every detail will be completely obvious.
Suppose you're sampling from a population which consists of the fol­
lowing numbers:

0, 1, 2, 3, 3, 4, 5.

Here, N = 7 and one value appears in the population twice. This is a
very unrealistic example, of course. There's no need to talk of estimating
the mean, in 15 seconds you compute it to be 2.5714. But the example
will be very useful for exploring the "typicality" of random samples.
Our example will be unrealistic in another sense also: We're going to
take samples of size two . Nobody would ever take samples of size two
because they don't contain enough information! Still this example is
useful because it's easy and it allows us to see all the detail.

But don't forget the point of the example: You're supposed to imagine
J.L is not known even though in the example we do know it and you're
supposed to imagine that computing its value would be impossible. In
other words, you're to imagine that the population as a whole is not ac­
cessible and is to be studied through sampling. Occasionally, we'll make
reference to the true value of J.L (it's 2.5714) to compare what's sug­
gested by a sample with what's really true. But in a real-world problem,
we don't know "what's really true"; we only know the sample!

(a) Write out all the possible samples of size two chosen without re­
placement. Be sure you distinguish between the two different three's
listed in the population.

(b) Compute the value of X for each of the samples in part (a).

(c) What kind of object is X?

(d) Make a probability distribution of the sample means for all the
possible samples of size two.
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(e) Complete the distribution of part (d) to compute the mean, Px' and
the variance, (7~, of the sample means. Compute the variance with the
conceptual formula (so you can see exactly what's going on)!

(f) Identify the mean of the sample means which you computed in part
(e) in terms of something simpler, something more immediate .

(g) Which is more variable, the various sample means or the various
numbers in the population? Answer this in three ways:

(i) Guess! Look at the population and at the set of sample means and
guess which is more variable.

(ii) Try to think of some general principle which would justify your
guess in (i).

(iii) Look at the appropriate measures of variability.

(h) Which of the samples listed in part (a) are typical of the population?
Which would you label as atypical?

(i) What could you say about the population mean based on one simple
random sample?

5.1.4 Here we're thinking about the same population as in the previ­
ous problem, but we're considering p, the proportion of positive even
numbers (of which there are two):

Here's the population: 0, 1, 2, 3, 3, 4, 5.

The sampling experiment will also be the same as in the previous prob­
lem-simple random sampling without replacement, n = 2. So, of
course, the outcomes (the samples) are the same as those listed in part
(a) of the previous problem.

(a) What's the value of p here?

(b) What kind of population are you studying?

(c) What kind of object is p?

(d) What are the possible values of p?
(e) Make up a probability distribution for p and use it to compute the
mean, Pi>' and the variance, (7~, of the random variable p. You should
try to guess the mean of p before you compute it.

(f) Which samples are typical of the population? Which would you label
as atypical?
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(g) Suppose you drew the sample {2, 4}, what would that sample say
about the proportion of the population which are positive even num­
bers?

(h) In this sampling experiment, what's the probability of drawing the
very atypical sample {2,4}?

Estimators-the Entire Context

For questions about unknown parameters, random variables like X or p
are the key. Such a random variable is called an estimator for the para­
meter. The underlying random experiment is random sampling, with
samples as outcomes. There's a very elaborate theory about such esti­
mators and there's much to be said about which estimator is best for a
particular parameter. What does "best" even mean?! But in this course,
we'll not be concerned with such questions. It's enough for you to accept
the sample mean as "estimator" for a population mean and the sample
proportion for a population proportion.

In Problems 5.1.3 and 5.1.4, just to see what happens, we had you
look at all possible samples from a very small population. That's very
unrealistic, of course. In most real-world situations, the population is
inaccessible (usually because it's too large) and looking at all possible
samples would be absurd. It would be even more difficult than looking
at the population as a whole because every member of the population is
part of some sample. Beyond that, sampling is very expensive. A prop­
erly designed sampling experiment requires time, resources, and trained
personnel. There's no question of taking many samples. One sample
alone may stretch your resources to the limit. That's not to say someone
else-or even you yourself at some later time-might not want to du­
plicate your study. Replication is essential for any study that's to have
lasting significance. But in our course, we're learning techniques appli­
cable to one single study. Therefore, throughout this text we'll assume
that

ONE SAMPLE AND ONE SAMPLE ALONE IS THE MOST THAT'S PRACTICAL.

But that should cause you some disgust! You've seen how useless one
sample alone would be for saying anything at all about the underlying
population. Your one sample might just happen, unluckily, to be one of
the atypical ones. After all; an atypical sample is just as likely to be drawn
as a typical sample. In Problem 5.1.4, the sample {2, 4} is atypical: Both
numbers in the sample are even and positive (p = 100%) when, in fact,
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only about 30% of the population have that characteristic. Here the
true value of the parameter (p ~ 30%) is nowhere near the calculated
value of the estimator (p = 100%). Yet, this very atypical sample has
the same probability to be drawn as any other sample: one chance in 21.

In looking at a particular sample, how do you determine if it's typical
or not? In fact, you have no way of knowing that! You would have to
compare the sample with the entire population. But if that were pos­
sible, you'd have all the information required to actually calculate the
parameter. There would be no need to estimate anything! Therefore,
contrary to what the suggestive term "estimator" might lead you to ex­
pect, one value of an estimator determined by one sample is meaningless
taken by itself because you have no way to know if that one sample is
typical or not.

In Problem 5.1.1, you had the question J.L = ? and the information
X = 2.37. It would be wrong to say J.L is 2.37-that's the sample mean,
it's not computed from the entire population. But to say the true value
of J.L is approximately 2.37 is also wrong. It's wrong not because of
some problem with the sampling experiment nor because of possible
human error. It 's wrong because even though everything was properly
done, a single random sample can be very misleading. The unknown true
mean could be very far from the observed sample mean. The conclusion
J.L = 2.37 is not justified and the conclusion J.L ~ 2.37 is also not jus­
tified-both conclusions are unjustified even though 2.37 is a correctly
computed value of the proper estimator for J.L!

Similarly, for Problem 5.1.2, we sought to answer the question p = ?,
based on the information: p = 0.18 . You would not be justified in
concluding that p is even approximately 18%. It could be quite far from
that observed value.

To make use of the information contained in one random sample,
more is required than just the one value of the estimator determined by
that one sample. What's required is the ENTIRE CONTEXT of the estima­
tor-the total picture for the estimator with our one sample seen in the
context of that whole picture. What do we mean by the "total picture"
or the "entire context" of an estimator?? To think about this, please ...

5.1.5 Because the conclusion "J.L is approximately 2.37" is not justified,
it seems that a sample mean of 2.37 must imply J.L is FAR from 2.37.
But that's absurd! How could the only evidence you have (the sample),
giving a mean of2.37, suggest a true mean of some other value far away?
What's wrong here?

5.1.6 Let's think about what an estimator really is:
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(a) What kind of object is an estimator?

(b) What information would you routinely want to know about such
an object?

5.1.7 (a) Give formulas for the mean and variance of the estimator p.
(b) Sketch a picture of the probability distribution for the estimator p,
labeling it as completely as possible. Assume you're sampling from a
very large population, taking samples of size n = 100. Assume also that
n is large enough so that np, nq 2: 5.

(c) Show that the conclusions of parts (a) and (b) still hold if p is associ­
ated with simple random sampling from the distribution of a Bernoulli
random variable.

5.1.8 a) What do we mean by "the entire context" or "the whole pic­
ture" for an estimator?

(b) What's the relationship between p and p? This is a crucial issue
because just one value such as p= 0.18 tells you nothing by itself.

5.1.9 As in Problem 5.1.2, suppose you would like to know what pro­
portion, p, of the population of a particular geographical area is over
50 years of age and that you obtain a simple random sample for which
18% are over 50. Here's the situation:

the question: p = ?,

the information: p = 0.18.

(a) Where does this particular value of the estimator fit into the total
picture?

(b) Based on the available information, which of the following are pos­
sible pictures for the probability distribution of p? [Hint: A picture is
possible unless there is something obviously wrong with it.]

il

I
0.18

I
p= ?

iiI

I
0.18

I
p =?
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iv)

v)

vii)

I
0.18

I
o

I
p= ?

I
0.18

I
0.18

vi)

viii)

I
0.18

I
o

I
0.18

I I
p =? 1.00

I
p= ?

5.2

5.1.10 (a) In the situation of the previous problem, p cannot possibly
be zero. Why not?

(b) When p is unknown, the population and the sample must be large
to justify drawing a normal curve as the distribution of the estimator p.
Why?

Estimating an Unknown Proportion

The Sampling Distribution for p
The probability distribution for an estimator like p is a sampling distri­
bution. The term "sampling distribution," remember, refers to any prob­
ability distribution where the underlying random experiment is random
sampling. An estimator for a parameter is called unbiased if its expected
value (its "on average" value, the "center" of its sampling distribution)
is the parameter in question. For example, J..L p = p, which means the
estimator p is unbiased for the parameter p. You showed this in Prob ­
lem 5.1.7(a) and (c). Later, we'll show that the sample mean is also an
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Here's the picture:

unbiased estimator for its parameter, J-L. You saw a special case of this in
Problem 5.1.3(f) where, for the particular population of that problem,
you discovered that J-Lx = J-L. The standard deviation of an estimator
is usually referred to as the standard error (sometimes abbreviated as
s.e.) because it measures the accuracy of the estimator-it measures the
variability from one sample to another.

In the exercises at the end of the previous section, you explored the
sampling distribution for pquite thoroughly. Here's a summary:

the sampling distribution for p:

If you are sampling with replacement from a dichoto­
mous population or taking a simple random sample
from the distribution of a Bernoulli random variable
and you're sure your sample size is large relative to
p (np, nq ~ 5), then p is approximately normally dis­
tributed. It's also unbiased,

J-Lp = p,

and its variance, its squared standard error, is

2_ /(J'p - pq n.

the possible

_______________V_O_lu_e's
J.1,p=p

Although for ease of understanding we've described two sampling
conditions in the box above, there's really only one. Sampling with re­
placement from a dichotomous population is modeled by the binomial
random variable, so it's also a case of "simple random sampling from
the distribution of a Bernoulli random variable ." And remember: For
very large populations-our typical case-the distinction between with
and without replacement for the sampling experiment is insignificant.
So even though in practice you may be sampling without replacement,
you can use the simpler "with replacement" model of the box above.

In the box above, we've described the only situation where we'll use
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p, the situation where the normal approximation is valid. Certainly it's
possible to deal with the other cases, but they introduce complications
which are not particularly instructive. For the same reason, we'll ignore
the continuity correction which in certain cases would become impor­
tant. For a thorough discussion of these details together with references,
please see [Larsen and Marx] or [Sachs].

It is helpful to remember, however, that pis (l/n)X for a binomial
X . This idea that p is essentially binomial is often the key to an easy
view of certain facts . That's how you know p is approximately normally
distributed. And that's also how you found formulas for its mean and
variance. Let's review the derivation of those formulas:

p= (l/n)X

r i count how many have the characteristic
divide by the sample size (X is binomial or hypergeometric)

So p = a + bX where a = 0 and b = l/n. From this, you obtain the
formulas for the mean and variance of p:

f-Lp = (l/n)f-Lx

(7~ = (1/n2)(7i

(l/n)np = p,

- (1/n2)npq = pqfn,

Try Your Hand

Now let's think a little more about our estimators. Please ...

5.2.1 In this problem, we want to use the estimator p to address the
question "What's the value of this unknown p?"

(a) The estimator p is unbiased. In fact, we would usually want any
estimator to be unbiased. Why?

(b) What's the relevance of the standard error of p for our question
about p?

(c) For the normal approximation of p to be valid, the condition
np, nq 2:: 5 is required. This means n must be large compared with the
smaller of p and q. In fact, that's true even if we're not using the normal
approximation. Here's an example to show you why: If p = 0.01 and
n = 10, no sample can ever give a decent approximation to p. Why?
[Hint: What are the possible values of p?]

(d) In working with proportions, sometimes surprisingly large samples
are required. Suppose p = 50% and you want the standard error to
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be no more than two percentage points. What size sample would be
required?

(e) Complete the following: In the situation of part (d), there's about a
95% percent chance to observe a sample proportion within __ per­
centage points of p.

5.2.2 Suppose that 42 % of morning commuters take public transporta­
tion and suppose a telephone survey interviews 50 of these commuters,
asking "Do you use public transportation?"

(a) What's the probability more than 60% of the persons interviewed
will report that they use public transportation?

(b) For a larger sample, would you expect more or less variability in
response?

(c) This problem is very unrealistic. How?

(d) What's the chance that of the persons interviewed between 15 and
20 will say they use public transportation?

(e) Would many of all morning commuters say they don't use public
transportation?

(f) What's the probability that more than two-thirds of your sample say
they do not use public transportation?

(g) What are the chances that somewhere between 20 and 23 of your
sample say they do not use public transportation?

(h) Draw the picture of p, the estimator for p, where p is the proportion
of the population which say they use public transportation.

5.2.3 The height of all ten-year-olds in our geographic region is 129 em
with a standard deviation of 17 em.

(a) "The height ... is 129 ern" doesn't make sense! It can only mean
.. . ?

(b) We're working with a class of 24 students, all ten-year-olds from
our geographic region. What's the probability fewer than 15 of these
students are less than 129 ern tall?

(c) In a group of 115 ten-year-olds from our region, what's the proba­
bility more than 25 of them are more than 145 ern tall?

(d) What assumptions did you make in parts (b) and (c)? Would they
seem reasonable?
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Estimating the Value of an Unknown p
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A confidence interval for an unknown parameter is a range of possible
values for the parameter together with the probability that the parameter
actually falls within that range . At this point, you might like to review
Problem 3.10.14 in which we anticipated the following discussion by
looking at confidence intervals for a median. A confidence interval for
any parameter serves to estimate the parameter. Note that although the
parameter is just a number, the confidence interval is not-it's a much
more sophisticated object. A confidence interval estimate for a parameter
has two "aspects" :

• a range of possible values,

• a probability.

What kind of solution does a confidence interval provide for the prob­
lem of estimating an unknown population proportion p? That's exactly
the question we want to answer now. What we'll say here for the para­
meter p is just as valid for any other parameter whose estimator is un­
biased and approximately normally distributed. We're restricting our
attention to p in this section just for simplicity and because we already
know the sampling distribution (the "entire context") for its estimator,
p. Once the case for p and p is clear, we'll turn to X as an estimator and
easily see how to obtain a confidence interval for its parameter p: Later
in the course, we'll have estimators for other parameters. In each case,
the idea of a confidence interval is the same. So ...

If it's a confidence interval for p:

The question we're asking is: p = ?? and the answer will
have the form

"We can be about 95 % sure that pis
at least 15 % and not more than 21 %."

The 95% probability is called the confidence coefficient of the confi­
dence interval. It's denoted by 1 - 0:. As we'll see later, you can choose
the confidence coefficient in advance and set it at whatever value seems
acceptable. But there are practical restrictions: A very high degree of
confidence (1 - 0: = 99 % for example, or even say 99.9%) is going to
be expensive! The symbol 0: is conventionally used to denote a small
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Try Your Hand

probability. Because the confidence coefficient should be large, we use
the symbol 1 - a.

The endpoints for the interval-15% and 21 % in the box above, just
by way of example-are determined by an observed value of p , the
midpoint of the interval. In this example, the midpoint is 0.18, so you
must have obtained a sample for which 18% had the characteristic of
interest (p = 0.18). Thus the endpoints of the interval, note, are of the
form

p ± a small "margin of error."

In our example, the endpoints are 18%±3 %. This three percent is called
the maximum error of the estimate, the error tolerance, or the margin
of error. That means the width of the interval is twice the maximum
error of the estimate.

We need to see how all this works of course, but before going fur­
ther, think about the type of answer which the confidence interval pro­
vides .. .

5.2.4 Show that the answer given in the box above satisfies the definition
of "confidence interval."

5.2.5 In the box above, the phrase "95% sure that .. . " is subject to
misinterpretation. It's wrong to interpret it as saying

"95% of the time p is in the interval with endpoints 0.15 and 0.21."

Let's see why this is wrong:

(a) What is it that varies here?

(b) Can you discover anything wrong with the interpretation given
above?

(c) Try to guess the correct interpretation of the 95% probability.

5.2.6 (a) What's the meaning of the word "confidence" for confidence
intervals?

(b) Why do you think a high degree of confidence will be very "expen­
sive," as we said above?

5.2.7 (a) In the box above we are asked for the unknown value of p.
What are the sources of uncertainty in the answer?
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(b) If you need an exact value of p for some computation or for some
other purpose, what value would you use?

(c) In part (b), you used your observed value of p , which involves two
possible errors. How do you control those errors?

5.2.8 (a) We have said many times that no conclusion can be drawn
from one sample alone. But a confidence interval is a conclusion, so it
must draw on more information than just one sample. What is that more
information?

(b) Suppose p = 0.18. We've seen in several places that "based on this
sample we believe p ~ 18%," is an unacceptable conclusion. Exactly
what does the confidence interval add to this conclusion? After all, a
confidence interval is a valid conclusion.

The picture below summarizes the insight contained in Problem
S.2.S-it shows eight different confidence intervals for an unknown p
obtained from eight different samples. Five of the eight intervals contain
the true value of p-that's only 621%. That proportion should theoreti­
cally be 1-a (9S% in our example) . But 1-a, the confidence coefficient,
is a theoretical, "on average" figure. So there's no surprise when a spe­
cific case of eight intervals exhibits a smaller (or larger) percentage of
"good" intervals.

Even so, for a 9S% confidence interval, there's a very small probabil­
ity that no more than five out of eight would contain the true parameter
value. We've chosen such an unlikely case only for purposes of illustra­
tion. Here's the picture:

Eight confidence levels for an unknown p
dete rmined by eight different random samples.

The interval . . .

misses the true p .

t
p

picks up the true p .

t
p

picks up the true p .

t
p
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misses the true p .

t
p

picks up the true p .

t
p

picks up the true p .

t
p

t
picks up the true p .

p

misses the true p .

t
p

CAVEAT:

In giving your real-world conclusion for a confidence in­
terval, you're "suppposed" to use the word "confident"
as in, "We're 95% 'confident' that . .. ." This is sup­
posed to mean you're not caught in the misinterpreta­
tion discussed in Problem 5.2 .5, as if you could .avoid a
conceptual error by changing from a defined term (prob­
able) to an undefined term (confident). Because the word
"confident" is never defined in textbooks this is a use­
less distinction, it 's inevitable a student will equate the
two terms. So don't be surprised in the future if someone
tries to catch you on your "misusage." If you understand
Problems 5.2.5 and 5.2 .6, you'll have no trouble defend­
ing yourself. Don't be too hard on them if they don 't seem
to understand. Be polite.
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Here's a table summarizing Problem 5.2.7(c):

The possible error you make in
estimating p from a value of p

You're uncertain of the exact
value of p within the confi­
dence interval.

The true value of p may not be
within the interval at all.

How you exercise control
over that error

You know the maximum error of
your estimate.

[In our example, you're off by at
most 3% in either direction. This
assumes p is in the interval, it may
not be. See below.]

You determine in advance the
probability of this error.

[In our example, 5%.]

Constructing the Confidence Interval for p

Now that we know what a confidence interval estimate for a parameter
is-what kind of question it addresses and what kind of answer it pro­
vides-it's time to see how one actually constructs the interval. There
are two aspects to a confidence interval:

• the range of possible values for the unknown parameter (the
interval),

• the probability that that range of values actually contains the
parameter (this is 1 - o, the confidence coefficient).

The confidence coefficient is determined in advance, balancing the
desired degree of certainty against the cost of attaining that certainty.
Greater certainty will require more information in the form of a larger
sample. That, of course, costs money! The standard choices for confi­
dence coefficient are 90%, 95%, and 99%. Rarely, under circumstances
where a high degree of certainty is mandatory, you may see a choice
of 99.5% or even 99.9% for the confidence coefficient. In our prob­
lems, just to secure a firm understanding, you'll sometimes be asked to
construct intervals with nonstandard confidence coefficients.

In practice, the confidence coefficient is either chosen by you or the
team you're working with or it's chosen in advance by some preset
standard. There may be, for example, a procedures manual for your
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company which specifies the degree of confidence required under spe­
cificcircumstances. Research journals may specify acceptable degrees of
confidence (confidence coefficients) for any research to be published in
their pages. For purposes of this course, unless otherwise specified, you
should make your own choice of confidence coefficient.

The construction of a confidence interval begins by looking at the
sampling distribution of the estimator, that "total context" for the data
apart from which nothing at all can be said. The procedure is the same
for all parameters and estimators as long as the sampling distribution is
at least approximately normal.

Let's continue the example we've been discussing. We want to con­
struct a 95% confidence interval for an unknown population propor­
tion, p, based on a sample of which 18% had the characteristic of interest
(p = 0.18). Let's suppose we took a sample of size n = 1000 and let's
assume the normal approximation for p is valid-it will be if we are
sure both p and q are at least 0.005 (which implies they're both less than
0.995).

We determine the length of the confidence interval first. It should be a
length which, centered in the distribution of p, cuts off an area equal to
1 - 0:, the confidence coefficient. To see how to do this, please now . . .

Try Your Hand 5.2.9 In the picture below, there's a 95% chance for pto take a value in
the interval between Land R. These are the left and right endpoints of
an interval cutting off 95% of the area in the center of the distribution
of p. That center is located, of course, at /1p = p. You cannot give a
numeric value for Land R since the value of p is unknown. But you can
identify Land R in terms of p and the standard error of p.
(a) Express L as p - 8 and R as p + 8 for some appropriate 8. That
puts Land R at the same distance (namely, 8) from the unknown p. The
quantity 8 will be expressed in terms of the standard error {jp.

R
( the possible

values of p

right endpoint

p

95%
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(b) You see from part (a) that we need to know the standard error of p.
But that raises a problem. What's the problem? [Hint: Try to evaluate
the standard error for our example: p= 0.18 and n = 1000.]

(c) Resolve the problem of the unknown standard error on a "worst
case" basis. Does "worst case" mean the standard error would be made
as large as possible or as small as possible? What value of p would
accomplish this?

5.2.10 Explain the following statement: The solution provided by a
confidence interval is much more complex than you would expect given
the question it addresses.

Continuing our example, we need a confidence interval for p where
we've obtained a sample of n = 1000, giving p = 0.18. Drawing on
Problem 5.2.9, we use the worst case estimate, 0.0158, for the standard
error so that 1.960"p is estimated by 0.0310. This gives the following
picture:

p - 0.0310

95%

p
p + 0.0310

I
( the possible

values of p

a d istance of 3.1
percentage paints of p

The values of p in the interval between these two endpoints are just
those p's that fall within 3.1 percentage points of the unknown p. This
means there 's a 95% chance that our observed value of p is within 3.1
percentage points of the unknown p.

For the moment, let's assume our observed p= 0.18 to be within this
interval. Now shift the interval from its center at p (value unknown) and
center it at pwhich is known to be 0.18 :
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~ .» a distance of 3 . 1
.-- ----"-~-----, ~ percentage points of p

I

i
0.18p

--1E~~-JI---

The first interval says "the observed 18% is within 3.1 percentage points
of p," whereas the second interval says "p is within 3.1 percentage points
of the observed 18%." Note that one of these statements is true if and
only if the other one is. The logic of this is quite simple. It's like saying
"If I live within 3.1 blocks of my friend, then my friend lives within 3.1
blocks of me and vice versa."

Note that the second interval is very concrete; it's the interval (0.1490,
0.2110). It has endpoints 18%±3.1 %.

Now there 's a 95 % chance our sample gives rise to an interval like the
first one, but if the first interval "happens," so does the second. So there's
a 95% chance for an interval like the second one. That, at last, gives a
completely concrete probability statement with no unknown quantities!
Looking at the second interval, we get

Our confidence interval for p:

There's a 95% chance that our unknown value of p is
somewhere in the interval

(0.1490, 0.2110) .

This really is a confidence interval for p: We have (1) a range of possible
values for the unknown p together with (2) the probability that p falls
within that range!

What happens if our sample with p = 0.18 happens to be one of
the atypical samples? As the picture below shows, there's a five percent
chance of such a sample. We don 't know, of course , where our observed
18% falls compared with p, but suppose it's actually much larger than p:
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95%

p

~jJ=O.18
Here our observed 18% is NOT in the interval centered at p, and so pis
not in the shifted interval

I
D.tHp

-{- r----J---r-- -

p
I

D.18

In 95% of the cases, the sample is more or less typical of the popu­
lation as a whole, giving us an interval which really does contain p. In
the other 5% of the cases, we obtain an interval which misses p. Which
case are we in? Is our sample "typical" or not? WE DON'T KNOW! For
the particular interval we obtain, we can't say whether it contains p or
not. All we know is that MOST samples give intervals containing p. We
can say nothing about our particular interval; we only know what hap­
pens on average with many intervals . Out of 100 such intervals, 95 on
average do contain p, five on average miss p.

Note how we control the uncertainty: We don't know whether our
interval contains p, but we control this uncertainty by specifying the
confidence coefficient in advance. In this discussion, our confidence co­
efficient is 95% with a 5% risk of error. In general, of course, it may be
90% with a 10% risk of error, or 99 % with a 1% risk or error, and so
on.

Try Your Hand 5.2.11 Suppose you constructed ten confidence intervals for an un­
known p. How many of those intervals would contain p?

5.2.12 In each of the following, assume p is an unknown parameter and
use the given information together with the sampling distribution for p
to construct the required confidence interval for p. In each case, use the
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worst case estimate for the standard error.

(a) n = 600, P= 43%, 1 - a = 0.8;

(b) n = 450, P= 0.71, 1 - a = 0.9;

(c) n = 280, P= 45%, 1 - a = 72%;

(d) n = 40, P= 43%, 1 - a = 92%.
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5.2.13 What is it about the normal distribution for p that allows us to
say most samples are more or less typical of the population as a whole?
This is a qualitative question-you should answer it without reference
to any numbers or formulas.

The Exact (Almost) Endpoints of a Confidence Interval for p

When the value of p is unknown and we seek to construct a confidence
interval, there's a problem: The standard error for the estimator p in­
volves that unknown value of p. The worst case approach which we saw
above approximates the term pq in the standard error by one-fourth be­
cause pq is maximum when p = 1. That's a crude approach, however,
and can give intervals so wide as to be useless. With a little more care,
it's possible to derive an exact formula for the endpoints of a confidence
interval without using an approximation for the standard error. We're
saying "exact" here, but in fact even these endpoints are based on an
approximation-the normal approximation for p.

In the previous section, you saw that the endpoints of a confidence
interval for pare p± zO"p. Let's call these endpoints Land U for "lower"
and "upper" confidence limits. Here the phrases lower confidence limit
and upper confidence limit refer to the left and right endpoints of the
confidence interval. Ifwe continue with our example for which p= 0.18,
1 - a = 95% and n = 1000, then

L = 0.18 - 1.96Vpq/n

U = 0.18 + 1.96Vpq/n.

These give a simple quadratic equation: Land U are those values of p
which satisfy

p = 0.18±1.96Vpq/n,
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that is,
p - 0.18 = ±1.96Vpq/n.

Look at this equation in its more general form, using pand z instead of
0.18 and 1.96:

If we square both sides and simplify the algegra (try it if you like!), we
get a quadratic equation, ap2+ bp+ c = 0, in p:

(1+z2/n)p2 + (-1)(2p+z2/n)p + p2=0,

a p2 + b P + c = O.

Using the quadratic formula we get the two roots, Land U:

exact formula for the upper and lower confidence limits for p:

p + z2/2n ± (z/yIn)Vpq+z2/4n
1 + z2/n

In our example, we get

0.18 + (1.96)2/2000 ± (1.96/VlOOO)VO .18 x 0.82 + (1.96)2/4000
1 + (1.962)/1000

which gives the confidence interval (0.1574, 0.2050). For the worst
case estimate of the standard error, we obtained the confidence interval
(0.1490,0.2110).

A Less Conservative Approach to the Standard Error for p
Now the amazing thing about the "exact endpoint formula" is how
it gives us a simple approximation when the sample size is very large.
In that case, we can just replace p by Pin the standard error formula
and write the endpoints as p± zO"p! This is truly surprising because we
know that pmight be really quite far from p and, therefore, not a good
approximation to p. Let's see how this simplification is possible.

Note that z2/n is negligible in the exact endpoint formula if n is
quite large. This is true because z is never more than three (for a 99%
confidence interval, z = 2.575). If z2/n is very small compared with p,
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we can neglect it. By omitting the terms involving only z2In, we obtain
the following formula for estimating the upper and lower confidence
limits:

p± zJPfJ./n.

Note that this formula seems to imply we're estimating the standard
error using p instead of p. But now the estimate is justified because we
know we can omit the negligible term z2In in the exact formula (z2/2n
and z2/4n are even more negligible than z2In, because they are smaller
still). Let's summarize:

The procedure for a confidence interval problem (large population
and large sample assumed) for an unknown p

1. Choose an appropriate confidence coefficient.

2. Use the Z table to find the value of z which cuts off a probability of
1 - o, centrally located

1-0

o z

3. Compute the endpoints of the confidence interval one of three ways:

either

(i) use the exact formula

or use the formula p± zap and use

(ii) the worst case estimate of ap (use p = ~)

or

(iii) the less conservative estimate of ap (use p = p) (justified by
neglecting z2In in the exact formula for the endpoints).

4. Give a real-world interpretation of the confidence interval with as
much detail as the original statement of the problem allows. Besure your
real-world interpretation accounts for both aspects of the confidence
interval: the range of possible values for p as well as the probability that
this range of values really does contain the unknown value of p.
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Our "less conservative" approach is the most commonly taught proce­
dure and it is the one you should use unless instructed otherwise. Now
please ...

5.2.14 Suppose that n = 240 and p = 0.18. Compute the upper and
lower confidence limits of a 90% confidence interval for p

(a) exactly;

(b) using the worst case estimate of the standard error;

(c) using the less conservative estimate of the standard error.

(d) Compare the three intervals generated above.

(e) Why is the word "exact" not really valid in referring to our "exact
formula for the endpoints of a confidence interval"?

5.2.15 Suppose that n = 580 and p = 0.22. Compute the upper and
lower confidence limits of a 92% confidence interval for p

(a) exactly;

(b) using the worst case estimate of the standard error;

(c) using the less conservative estimate of the standard error.

(d) Compare the three intervals generated above.

5.2.16 Show that when n is not particularly large, our three approaches
to confidence intervals can give substantially different intervals. To do
this, construct the three intervals which the three different approaches
yield if P= 0.08, n = 100 and 1 - a = 0.95.

5.2.17 A large corporation has installed in their printers 318 print­
heads manufactured by your company. Fourteen of those printheads
have failed within the warranty period. What is the probability a print­
head from your company will fail during the warranty period?

5.2.18 In the article "What Is Stuttering: Variations and Stereotypes"
Richard E. Ham [1990] reports that 120 of 563 respondents to a tele­
phone survey answered yes to the question "Have you ever stuttered?"
The respondents were chosen randomly from the Tallahassee, Florida
telephone directory.

(a) Basedon this information, what proportion of persons in Tallahassee
stutter?
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(b) Sixty-eight of Ham's respondents answered affirmatively to the ques­
tion "Do you stutter now?" How many people in Tallahassee stutter?

(c) Based on "qualifying remarks made by informants," in the judgment
of the interviewers, 48 of the 68 respondents of part (b) had "normal
dysfluencies" rather than "stuttered dysfluencies." Now how many peo­
ple stutter?

Too Many Approximations: Are They Valid?

By now you may be feeling uneasy about the validity of so many ap­
proximations: We may have as many as three approximations:

(i) the normal approximation for the distribution of p,

(ii) one of two possible approximations for the standard error, (7jJ,

(iii) the confidence interval itself, a "probable" approximation to p
specified by a range of possible values.

For (i), the standard rule of thumb is that np and nq both be at
least five. For the condition in (iii), the confidence coefficient and the
maximum error of the estimate measure how good the approximation is.

But what about (ii)? Well, the conservative standard error approxi­
mation is ALWAYS valid-that's why it's called "conservative." The less
conservative approximation depends upon z2 In being small. It depends
on having a large sample so that nwill be large and z2 In correspondingly
small. But how large is large? This is not an easy question to answer! It
depends on how small (or large) pis: The further p is from one half, the
larger n must be. You approach these questions by studying the "exact"
interval which we derived from the quadratic formula.

You could avoid (i) and (ii) entirely by taking a completely different
approach: Forget the normal approximation and return to the binomial
model. There are published tables of confidence intervals for an un­
known p which have been computed using the binomial model. There is
still another approximation, the so-called"F -distribution" approxima­
tion, which can be used instead of the normal approximation. For more
details on all of these approaches, see [Sachs], [Bickel and Doksum], or
[Larsen and Marx].

From this point on, unless otherwise stated, we will follow the usual
approach of introductory courses, the less conservative approach: We
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approximate the standard error for pby just replacing p by the observed
p. So from now on, the endpoints of a confidence interval for p will be
determined by the formula

p±zVPfJ./n.

5.2.19 (a) How is it that the confidence coefficient and the maximum
error of the estimate serve to "measure how good the approximation
is" for a confidence interval?

(b) In our example for which p = 0.18, 1 - a = 0.95, and n = 1000,
give the numeric value of the maximum error of the estimate.

(c) Why do we say the conservative standard error approximation is
ALWAYS valid?

5.2.20 Abbott Laboratories developed a test for the detection of anti­
bodies to the HIV virus in human blood. This virus is generally consid­
ered to cause AIDS in humans. For such a test where a false positive can
have serious consequences, a positive test result should be confirmed by
a second test. But even then, false positives are possible. The control for
this contingency is the "specificity" of the test (see Problem 1.4.4) . To
determine the specificity for persons who have already tested positive,
Abbott tested the blood of 17,054 random blood donors assumed not
to have the virus. Of those, 18 tested positive. It was later determined
that one of those blood samples probably was infected with the virus
after all and so that sample was omitted from the study. SeeAbbott Lab­
oratories' 1992 report #83 -7618/R3. Based on this information, what
is the specificity of Abbott's test for persons who have already tested
positive?

The Appropriate Sample Size for a Given Error Tolerance

In many situations, you want to control your estimate of a proportion
by specifying in advance the maximum error you're willing to tolerate.
Suppose, for example, you want to estimate the percentage of the vote
which will be cast for your candidate in an election and you require the
estimate to be correct to within four percentage points. This requirement
can be met if you're willing to expend the neccessary resources to obtain
a sufficiently large sample .
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Try Your Hand

So the maximum error of the estimate-the "error tolerance"-is
required to be 0.04:

this is the maximumc: distance ofany point
in the interval from p

.---__..L.-_---,

Because the endpoints of the interval are p± Z(Jp, the equation for the
maximum error of the estimate is

zJpqjn = 0.04.

This equation determines the sample size required to meet your four
percentage point error tolerance. In this formula, you control Z and n.
But Z is determined by your choice of confidence coefficient. That leaves
only n as a free variable. If you want a 95% confidence coefficient,
solving the equation for n, you obtain

(1.96)2pqjn = 0.0016,

and so

2401pq = n.

This means you must be prepared to obtain a sample of 601 voters.
Finally, if you're going to use the normal approximation, you should
check that 601p and 601q are both at least five. That means the smaller
of p and q should be at least 0.0083.

5.2.21 (a) In the discussion above, where did the figure 601 come from?
In other words, show how the equation 2401pq = n leads to the con­
clusion that n = 601.

(b) If you have more information, a smaller sample may be sufficient.
For example, suppose you're SURE no fewer than 70% of the votes will be
cast for your candidate. What sample size would you require to estimate
the true percentage to within four percentage points?

5.2.22 You're trying to determine what proportion of the population
of your state have a certain genetic defect and you're willing to have
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an error of no more than half of a percentage point. What sample size
should you take if you want a

(a) 99% confidence coefficient?

(b) 92% confidence coefficient?

(c) Redo part (a) assuming you know for sure that at most one percent
of the population have that defect.

(d) Redo part (a) assuming you know for sure that at most one tenth of
one percent of the population have that defect.

Estimating an Unknown Mean

The Estimator X

In the previous section, we have seen exactly how the sampling distribu­
tion of the estimator p together with the results of one sample allows us
to construct a confidence interval estimate for an unknown proportion,
p. We turn in this section to the corresponding problem for an unknown
mean, u, For that, we require the sampling distribution for the estima­
tor X. In most cases, but not all, X is at least approximately normally
distributed. In the first problem below, before discussing normality, we
ask you to derive the formulas for the mean and variance of X. These
formulas hold in all cases without exception. Then, in the next prob­
lem, we take one special case for which you can easily show that X is
normally distributed.

In these problems, we have a simple random sample of size n from
the probability distribution of a random variable X. That includes, as
a special, case sampling with replacement from a numeric population.
A simple random sample from the probability distribution of a random
variable X, as you'll recall from Chapter 2, is simply an ordered set of n
values of X obtained from n independent repetitions of the underlying
random experiment. The sample looks like

These numbers could be the result of rolling a die repeatedly n times.
That would be a sample from the probability distribution of the random
variable "number of dots on top face." The Xk's could be the measure­
ments of n independently chosen objects (heights of n children, weight
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of n boxes, etc). That's a sample drawn from a numeric population. Or
they could be n repeated measurements (presumably independent) of the
same object, a sample from the probability distribution of the random
variable "measurement." They could be the deviation from specifica­
tion of n items off a production line, a sample from the distribution of
"specification error."

Now please .. .

5.3.1 In this problem, you will show that X is an unbiased estimator
for J.L and derive a formula for the standard error. Let's employ the usual
notation for the mean of a simple random sample:

X = (l/n)(Xl + X2 + X3 + ...+ X n ) = (l/n)~Xk, k = 1,2, . . . , n.

(a) Explain why for each Xk, the mean and variance is just J.L and (72.

(b) Show that X is unbiased as an estimator for J.L .

(c) Derive a formula for the standard error of X.

5.3.2 Show that X is normally distributed if you're sampling from

(a) the distribution of a normally distributed random variable X;

(b) a normally distributed population.

The Central Limit Theorem

To make use of the estimator X, we need a description of its probability
distribution. In Problem 5.3 .2, we saw that X is normally distributed
provided the distribution we're sampling from is normal. But that special
case is very limiting. We're trying to estimate the value of an unknown J.L:
If we don't know J.L, we often wouldn't know enough about the underly­
ing situation to say whether we're sampling from a normal distribution
or not. We can do better provided we're taking large samples. That's
not a serious restriction because the sample size is within our control
(if our pockets are deep enough!) . We're appealing here to the Central
Limit Theorem of Laplace, mentioned in Chapter 4. It assures us that,
without knowing anything at all about the distribution we're sampling
from, X is approximately normally distributed for large samples. Here's
the theorem .. .
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The Central Limit Theorem:

For simple random sampling from the distribution of
any random variable;' as the sample size gets larger and
larger the random variable X comes closer and closer to
being normally distributed.

As a rule of thumb, n :2 30 is taken as a sufficiently large sample size to
guarantee that X is approximately normal. This is significantly smaller
than the sample sizes (hundreds or even thousands) typically required for
problems involving p. A more precise rule and more exact interpretation
of those terms in the theorem like "close to" requires a full mathematical
treatment appropriate to a more advanced course.

Because sampling with replacement from a numeric population is a
special case of sampling from a distribution, the Central Limit Theorem
applies to that case as well. Furthermore, sampling without replacement
from a numeric population, if the population is large, is essentially the
same as sampling with replacement: The chances are tiny on the second
draw (because the population is so large) of getting the same population
element you got on the first draw even if you do replace the first one.
So for sampling with or without replacement, if the sample size and the
population are both large, X is approximately normally distributed. In
summary, the Central Limit Theorem implies that X should be approxi­
mately normally distributed no matter what random sampling procedure
we use, if the sample size is large.

In the exercises below you'll see that we can easily "prove" the Central
Limit Theorem based on our heuristic criterion (see page 148) for a
normal distribution. In fact, this criterion is just a practical interpretation
of the Central Limit Theorem. All along, in using the criterion we've been
tacitly relying on this major theorem . So it's not a matter of proving the
theorem. Rather, we just want to see that our understanding derived
from the criterion in Chapter 4 is consistent with the Central Limit
Theorem. Before going on, let's see why this is true and explore the
distribution of X further. Won't you please . ..

5.3.3 Use our intuitive criterion for a normal distribution to show that
the Central Limit Theorem should be true. In other words, show that for

1 Well, not just any random variable . There's a techn ical restriction that the first two
moments must exist. We'll not try to explain what that means.
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simple random sampling from a distribution, if the sample size is large,
it's reasonable to expect X to be approximately normally distributed.

5.3.4 We derived our intuitive criterion for normality from the idea
of "random error." Let's use the Central Limit Theorem to show that
random error ought to be normally distributed.

(a) First, a preliminary fact. Use the Central Limit Theorem to show
that the sum or total of the numbers in a large sample should be ap­
proximately normally distributed.

(b) Show that random error is "like" the sum or total of allthe numbers
in a large simple random sample.

(c) Use the Central Limit Theorem to show that random error should
be approximately normally distributed.

5.3.5 Use the Central Limit Theorem to show that repeated measure­
ments of the same object should be approximately normally distributed.

The Sampling Distribution for X

The Central Limit Theorem together with Problems 5.3.1 and 5.3.2 gives
the following summary of the sampling distribution for X ...

The Sampling Distribution for X:

The estimator X is unbiased. It's approximately nor­
mally distributed if the sample size is large (n ~ 30) and
exactly normally distributed if the distribution you're
sampling from is normally distributed:

---==-- ----L .:~

Further: I1x = 11,

o-'!:- = 0-
2

/ n.x
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So there are two distinct situations where a normal distribution is ap­
propriate for X. First, the large sample case: This is the more useful case
because it makes no assumption about the distribution from which the
samples are being drawn. Second, the case in which your samples are
known to come from a normal distribution: Then X is normally dis­
tributed no matter what sample size you're working with. This case is
less common because detailed information about the distribution you're
sampling from is not usually available.

Constructing a Confidence Interval for J-l

Now let's return to the situation of Problem 5.1.1 where we wanted to
estimate an unknown J-L. There we had obtained a simple random sample
giving a sample mean of 2.37. Here was the situation:

the question: J-L = ?,

the information: X = 2.37.

With no other information to go on, our sample tells us nothing about
the unknown J-L, but taken in the total context of all possible samples,
this one sample tells a lot . The "total context" is the sampling distri­
bution of the estimator X as summarized in the box on the previous
page.

Let's recall how we can make use of the sampling distribution to
construct a confidence interval for this unknown J-L. We say "recall" be­
cause the procedure is identical to the procedure for proportions. The
questions are of the same type-what's the value of an unknown para­
meter-and the sampling distribution in each case is a normal distribu­
tion centered on the unknown parameter.

Suppose this time we require a 90% confidence interval estimate for
the unknown J-L. First, we turn to the Z distribution and find that value
of Z which cuts off 90% of the probability in the center of the distribu­
tion:
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90%

o Ui45

z

Now look at the corresponding picture for X. If we go 1.645 standard
errors above and below the center, we'll cut off 90% of the probability
centrally located in this distribution:

90%

I
J.L x = JL

I SX
\

This means there is a 90% chance that our observed sample mean of 2.37
is somewhere between the endpoints /1x ± 1.645£7x: Now if X = 2.37
is within 1.645 standard errors of the unknown value of /1, then, of
course, /1 is within 1.645 standard errors of 2.37. Here's a picture:

~ a distance of 1.645
r-----.c..~---, standard errors

Now shift the interval from a center at /1 to a center at 2.37, keeping the
width of the interval the same:

i
2.37

-------1E~---,.----Jf---
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The first interval says "2.37 is within 1.645 standard errors of J.L,"
whereas the second interval says, "J.L is within 1.645 standard errors
of 2.37." One of these statements is true if and only if the other one is
true. So, of course, 2.37 is in the original interval if and only if J.L is in
the second interval. Recall our earlier analogy: This logic is like saying
"my friend lives within 1.645 miles of me," or on the other hand, "I live
within 1.645 miles of my friend." One of these statements is true if and
only if the other one is.

The critical difference between the two situations is that you don't
know the value of J.L and so you don't know the endpoints of the first
interval. You do know the endpoints of the second interval because you
know X to be 2.37, those endpoints are just 2.37 ± 1.645l7x : If our
observed 2.3 7 was in the original interval, then the final picture looks
like

2.37 + 1.645ux

i
2.37

------l[.....,.-j -..,...--Jf-----­
I-l

2.37 - 1.645ux

This is the situation we hope for-the "typical" situation-where the
unknown J.L and the observed sample mean of 2.37 are close to each
other (within 1.645 standard errors of each other). The "bad" situation
occurs when J.L and the observed 2.37 are NOT close to each other. If
X = 2.37 is NOT in the original interval, we get

I
2.37

i
2.37

Here the first interval says "2.37 is NOT within 1.645 standard errors of
J.L" and the second interval says " J.L is NOT within 1.645 standard errors
of 2.37." As before, one of these statements is true if and only if the other
one is. With a confidence coefficient of 90%, this "bad" or "atypical"
situation happens only 10% of the time, on average. Ten out of 100
samples on average will generate values of X for which J.L is not in the
confidence interval. Those are the atypical samples: Their mean is too far
from the true J.L and so the interval centered on them misses the true J.L.
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The choice of confidence coefficient determines exactly what you want
the words "typical" and "atypical" to mean. The confidence coefficient
determines Z = z (in our example, Z = 1.645) and that, in turn, deter­
mines the "typical" samples: those samples for which the mean is within
z standard errors of the true value of u. Then in most cases (here, in 90%
of the cases), the sample is "typical" of the distribution you're sampling
from and gives a confidence interval which really does contain the un­
known value of u, But don't forget: You never know whether J-l is in
your particular interval or not! All you ever know is that MOST intervals
generated this way will contain u, Your particular interval mayor may
not, AND YOU NEVER KNOW WHETHER IT DOES OR NOT! You control this
inherent uncertainty by specifying the confidence coefficient in advance.
So, although you don't know whether the interval contains J-l or not,
you are 90% sure that it does.

Note that the entire discussion here is identical to the corresponding
discussion in the case of a confidence interval for an unknown pro­
portion. The logic of confidence intervals is not dependent on exactly
which parameter you're attempting to estimate as long as the sampling
distribution is at least approximately normally distributed and as long
as the estimator itself is unbiased so that the distribution is centered
on the unknown parameter. In that case, the procedures for construct­
ing confidence intervals are the same. By the end of this course, you'll
have a long list of parameters whose estimators are unbiased and ap­
proximately normally distributed. That means you already know how
to construct confidence intervals for all those parameters. You only need
the formula for the standard error in each case. That, of course, is not
known in advance: Standard error formulas do vary from one estimator
to the next.

In fact, the standard error is going to pose a problem in the example
we're working on here. We don't yet have a finished confidence inter­
val; the endpoints are in the form 2.37±1.6450'x ' But what is O'x? The
formula, of course, is (7i = (72In, where (72 is the variance of the dis­
tribution you're sampling from. But if we don't know the mean of that
distribution, it isn't likely we would know the variance . So, as in the
case of proportions, there arises the problem of estimating the standard
error because it involves an unknown parameter.

If the sample size is large, we can mimic our solution to the corre­
sponding problem with proportions and use the sample standard devi­
ation as an estimate for the unknown standard deviation, (7. However,
we don't use 0- as introduced in Chapter 2; for technical reasons, we
require an unbiased estimator for (72, but 0-2 is biased. Instead we use s2
as the unbiased estimator for (72 . It 's easy to obtain 82 from 0-2 using
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the relationship 8
2 = nj(n -1)8-2. From this point on, unless otherwise

stated, the phrase "sample variance" will refer to the unbiased estimator
8 2 and the phrase "sample standard deviation" to its square root, 8.

It's certainly not obvious that using 8 instead of (7 in the standard
error formula is acceptable. After all, because the sample could be quite
atypical of the distribution you're sampling from, just replacing (7 by 8

would seem very risky. But it works! How? Well, if you take a sufficiently
sophisticated course in mathematical statistics you might see a proof. It's
a difficult theorem. The idea is, intuitively, that a large n in the standard
error will predominate over 8 or (7. For the sketch of a proof, see page
343 of [Mendenhall, Scheaffer and Wackerly].

So, let's suppose we took a sample of two hundred which gave a
sample standard deviation of 8 = 0.8742. With that information our
confidence interval will be

2.2683 2.4717

Try Your Hand

We don't have a real-world problem here, so we can't give a real-world
conclusion. Still, the conclusion would have to take the form

We can be about 90% sure that the range of values from 2.2683
to 2.4717 contains our unknown mean u,

This conclusion provides "a range of possible values for an unknown
parameter" together with "the probability that that range of values ac­
tually does contain the parameter." Therefore, the conclusion fits our
description (see page 180) of what a confidence interval is supposed to
be.

Now, why don't you . . .

5.3.6 In the text above, the endpoints for our confidence interval are
2.2683 and 2.4717. Show how we obtained these endpoints.

5.3.7 (a) Derive the conceptual formula:

-2
2 ~(X -X) f

8 = l'n-
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(b) Derive the computing formula:

2 n ~X2 f - (~Xf)2s = -----=---:..--::.....:....-
n(n-1)

(c) Evaluate s using each of the two formulas above for the sample ...

{7,5,4,5,4,7,8,7}.

(d) Show that s is a random variable.

(e) Why do we use s instead of fr to estimate the standard error of the
estimator X ?

5.3.8 (a) In the case of proportions, we have to rely on an estimate of
the standard error because the true standard error formula involves an
unknown parameter. What is that parameter?

(b) In the case of proportions, what estimate do you use for the standard
error?

(c) We said"... we can mimic our solution to the corresponding prob­
lem with proportions" by using s instead of (J" . Explain this comment.

5.3.9 Based on the information given below, what are the endpoints of
the confidence interval for the parameter?

(a) n = 250, X = 6.4, s = 1.21, and 1 - a = 0.98;

(b) n = 400, (J"2 = 0.02, X = 0.32, s = 0.01, and 1 - a = 0.98;

(c) n = 400, X = 122.51, s = 12.00, and 1 - a = 0.92;

(d) n = 75, X = 1.7, s = 0.1, and 1 - a = 0.89;

(e) n = 850, P= 0.23, and 1 - a = 0.98.

5.3.10 (a) The manager of a ski resort would like to encourage the
parents of children too young to ski to take ski holidays at her resort.
With this goal in mind, she is planning a daycare center for such children
and would like to know their average age. You do a survey of visitors
to the resort who have altogether 50 small children and you find the
children's average age to be 34 months with a standard deviation of
eight months. What do you report to the manager? Give your answer in
months and years; for example, not as 26 months, but as two years and
two months (round to the nearest month).
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(b) The manager in part (a) comes to you several months later and
asks how many of the children coming to the newly established daycare
center are less than one year old. In looking at the data on the original
50 children you find that 11 were less than one year in age. What do
you report to the manager?

(c) There is something suspicious in our treatment of the question in
part (b), what is it?

5.3.11 Suppose you have reset the fill mechanism on a drink dispensing
machine and need to estimate the average fill. Suppose, in resetting the
mechanism, you don't change the variability of the fill as measured by
the standard deviation of 0.0341 ounces. You obtain the following data
from cups filled after resetting the fill mechanism:

Fill
(ounces)

7.23
7.24
7.25
7.26

Number of cups
with given fill

12
24
31

9

(a) Give a 90% confidence interval estimate of the new average fill.

(b) Give a 95% estimate of the new fill.

(c) How much drink is the machine dispensing per cup after you have
reset the fill mechanism? Assume you're willing to run a two percent
risk of error.

(d) How much drink is the machine dispensing per cup after you have
reset the fill mechanism? Assume you want to avoid any risk of error.

(e) After resetting the fill mechanism, how many cups will overflow?
Assume a cup overflows at 7.255 ounces.

(f) What percentage of cups were overflowing before you reset the fill
mechanism?

(g) Is this data from a random sample?

(h) Verify that "fill" is a random variable .

(i) In part (e), you used the normal distribution. Was that appropriate?
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5.3.12 Explain in what sense".. . choosing your confidence coefficient
determines exactly what you want the words 'typical' and 'atypical' to
mean."

5.3.13 Later, we'll have many other parameters besides means and pro­
portions for which we'll want to construct confidence interval estimates.
Let's think about those situations:

(a) For questions concerning an unknown parameter, one sample by
itself tells you nothing-what more is required?

(b) If the estimator for the parameter is unbiased and normally dis­
tributed, how will the procedure for constructing the confidence interval
differ from what you've already learned?

5.3.14 Compute the endpoints of a confidence interval for the unknown
mean of a normal distribution where

(a) n = 8, X = 3.78, a = 1.01, and 1 - a = 0.90.

(b) n = 50, X = 12.4, a2 = 3.6, and 1 - a = 0.95.

5.3.15 (a) From a normally distributed population with a about one,
you randomly select a sample of 12 from which you compute a mean of
17 and a standard deviation of 2. What's the mean of this population?
Assume you're willing to run about a fivepercent chance of being wrong.

(b) You have a normally distributed population whose variance is 3.6.
You know the mean of the population has increased and you believe the
variance has remained unchanged-what's the new mean? Assume you
got a sample mean of 12.4 from 50 observations with s = 1.7201.

(c) Suppose in part (a) it has been decided that you need a more accurate
estimate-your estimate should not be off by more than 0.4. What must
you do?

(d) What are the endpoints of the new interval in part (c)?

(e) Suppose in part (b) you require a high degree of accuracy. You want
your interval to be only half a point wide. You are willing to pay for
this in part by lowering the confidence coefficient to 90%. How large a
sample is required?
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Estimating the Standard Error [o]Vii ~ s]Vii), Using s
Instead of (J" Takes Us to Student's t-Distribution When
the Distribution You're Sampling from Is Normal

In the previous section, when sampling from a distribution whose stan­
dard deviation was unknown, in the formula for the standard error we
just substituted s in place of the unknown 0'. That worked for us only
because we assumed a large sample and because we were willing to ac­
cept a theorem from mathematical statistics which validates this in the
large sample case. Unlike the situation for proportions, however, in the
case of means there's a readily accessible theoretical tool for the small
sample case, IF WE'RE SAMPLING FROM A NORMAL DISTRIBUTION. It's
called "Student's t-distribution."

To understand Student's t-distribution, we should look more carefully
at the standardizing transformation applied to X:

This is a linear function of X . If X is normally distributed, because
linear functions "take normals to normals," this transformation of X
is just Z. But 0', which appears in the denominator, is unknown. And
replacing it by s introduces a major problem: The modified transfor­
mation will no longer be linear. For a linear function, variables should
appear in their simplest form: multiplied by constants and combined by
addition, nothing more complicated. But here, with 0' replaced by s, the
standardizing transformation has the VARIABLE s in the DENOMINATOR!

When you look at the formula, we seem to have made a fairly innocuous
change :

But this modified transformation is radically problematic: Not only does
it seem to draw on the fallacious assumption of a representative sample
in replacing 0' by s, but it involves two random variables, one of them
in the denominator.
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To think this new NONLINEAR, TWO-VARIABLE transformation of X
is Z would be naive indeed! Still, this naive approach was exactly the
practice of statisticians until the early 1900s. Of course, the science of
statistics was still in its infancy at that time. For us, with 100 years
or so of experience, such an assumption would be truly naive, but for
statisticians in the nineteenth century, it was just one of many unresolved
difficulties.

In any case, about the turn of the century a statistician with the Dublin
brewery of Arthur Guinness and Son began to notice discrepencies when
working with small samples-discrepencies which made clear the fal­
lacy of just replacing a by s in the standard error formula . This Guinness
statistician, one William Gosset by name, investigated the situation in
detail and worked out the correct probabilty distribution which he pub ­
lished in 1908 in a paper ent itled "The Probable Error of a Mean ."
Because the Guinness brewery had a policy against the publication of
in-house research, Gosset published his paper under the pseudonym
of "A Student." The probability distribution which he discovered and
published in this paper and which he denoted by the symbol t came
to be known as Student's t-distribution with n - 1 degrees of free­
dom. He computed a table of values for the t-distribution which you'll
find in the appendix. So now, with Gosset's results in hand we can
say

In summary, here's the problem Gosset's research resolved: It 's true
for X normally distributed, the standardizing transformation takes X
to Z:

But if we replace a by s in this formula, the resulting random variable is
no longer normally distributed. In particular, it 's NOT Z. Gosset really
had some work to do to obtain the tru e distribution of the modified
transformation of X. But he successfully completed that project and we
reap the benefits, a new and very useful probability distribution. Here
it is:
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Student's t-Distribution: The Sampling Distribution for X Using s
Instead of CT, Sampling from a Normal Distribution:

If the distribution you're sampling from is normal, then

where tn-l is Student's t-distribution with n -1 degrees
of freedom:

I
a

/-It = 0

crt = (n - 1)/(n - 3)

if n > 2,

if n > 3.

Let's highlight an important point: This is not just one probability distri­
bution. There's a different z-distribution for each of the possible "degrees
of freedom." So we have a whole family of t-distributions, indexed by
the degrees of freedom.

You may well wonder what the phrase "degrees of freedom" refers
to. This is really a very technical matter-we'll not go into it in de­
tail. Heuristically, you should imagine that the degrees of freedom for
an estimator starts with n , the sample size, and then decreases by one
for each unknown parameter in the standard error formula. Those un­
known parameters must be estimated from the sample . In the case of
the estimator X , there's only one such parameter in the standard error
formula. It 's the parameter a, estimated from the sample by s. For this
reason, the degrees of freedom for X is n - 1, one less than the sam­
ple size. By the end of this course, you will have estimators with two
such parameters in their standard error formulas resulting in n - 2 de­
grees of freedom. In other contexts, other degrees of freedom are also
possible .

Note that the distribution you're sampling from must be normal; oth­
erwise, the estimator s2 won't have the appropriate distribution. Gos-
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set's subtle analysis depends on the fact that 82 has a particularly inti­
mate relation to the chi-squared random variable, but that happens only
if we're sampling from a normal distribution. Otherwise,

If the distribution you're sampling from is NOT normal,

x - j1,

8/vn
is NOT t.

When the sample is small and you don't know if you're sampling from
a normal distribution or not, we have no technique for dealing with the
estimator X . There are techniques available for this case, but they have
a totally different flavor from the kinds of things we've been stud ying.

The t tabl e given in the appendix gives the value of t which cuts off a
given left tail area . With ten degrees of freedom, we get this picture:

97.5%

o
I

2.22 1

As you might expect, the larger the sample, the closer Student's t­
distribution comes to Z. As a rough rule of thumb, if n ~ 30 we can
approximate t by Z. For this reason, the t table is not required for large
sample sizes. You can use the Z table instead. When you look at the t
table, you 'll see that after 30, the degrees of freedom are incomplete. The
table begins to skip values because beyond 30 you can use Z instead.
Values like n - 1 = 50 are given in the table only so you can see that
t is getting closer and closer to Z. The values of Z are given in the last
row as n - 1 = 00. For example, with 97.5 % in the left tail,

n- l t

50 2.0086
100 1.9840
200 1.9719
00 1.96
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Note the familiar value 1.96. You already know that as the value
which cuts off 97 .5% of the area in the left tail of the Z-distribution:

97.5%

o 1.!l6
..( toe possible

values 01 Z

Since the logic of this situation has become rather complicated, it will
be helpful to have a chart to summarize ...

When to Use Z and When to Use Student's t-Distribution

SmallSample

A
Lorge Sample

G
sampling from 0

normol distribution

A
a known a unknown

80

not nown whether
sampling (rom a normal

distribution or not

Try Your Hand 5.3.16 We said that Gosset provided "a readily accessible theoretical
tool for the small sample case" to model the sample mean . That theo­
retical tool takes what form?

5.3.17 (a) Show that 82 is a random variable.

(b) Why must we assume the population to be normally distributed to
use Student's t-distribution?

5.3.18 In this problem, we will pin down some details about Student's
t-distribution.

(a) To the "naked eye" (the eye looking at the picture, not at the formu­
las) Student's z-distribution looks just like Z. Our formulas reveal one
way in which it's different from Z. What is that?

(b) Several times we've mentioned the "modified" standardizing trans­
formation of X. What modification are we talking about?
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(c) Just above we said "As you might expect, the larger the sample, the
closer Student's z-disrribution comes to Z." Why might you reasonably
expect that?

(d) So far in this third section of Chapter 5 we've discussed two dis­
tinct situations in which X would be at least approximately normally
distributed. What are they?

5.3.19 Calculate the endpoints of a confidence interval for fL under the
given conditions. State explicitly any unstated assumption which is re­
quired to solve the problem.

(a) n = 15, 1- a = 0.95, X = 1.2, s = 0.17;

(b) n= 9, 1- a = 0.95, X = 1.2, s = 0.17;

(c) n = 45, 1- a = 0.95, X = 1.2, S = 0.17;

(d) n = 9, 1- a = 0.95, X = 1.2, (J" = 0.17;

(e) n = 150, 1 - a = 0.95, X = 1.2, (J" = 0.17;

(f) n = 12, 1- a = 0.90, X = 3.4, S = 1.21;

(g) n = 8, 1- a = 0.99, X = 0.21, (J" = 0.03;

(h) n= 8, 1- a = 0.99, X = 0.21, S = 0.03;

(i) n = 150, 1- a = 0.95, X = 1.2, S = 0.17.

5.3.20 In the chart which indicates when to use Z and when to use
Student's z-distribution (page 212), justify the analysis of the

(a) small sample case;

(b) large sample case.

5.3.21 (a) You have a sample of size 40 from a population whose stan­
dard deviation is 5.23. In constructing a confidence interval for the un­
known mean of this population, your result will be more accurate if you
know for sure that the population is normally distributed. Explain why.

(b) The question in part (a) does not arise for small samples. Why?

5.3.22 Calculate the endpoints of an appropriate confidence interval
under the given conditions. State explicitly any unstated assumption
which is required to solve the problem. Finally, give a verbal conclusion
for the estimation problem.

(a) n = 5, 1 - a = 0.90, X = 0.42, S = 0.04;
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(b) n = 110, 1 - ex = 0.95, P= 0.2;

(c) n = 35, 1 - ex = 0.90, X = 23, 8 = 2.4 , (J = 2.1;

(d) n = 25, 1 - ex = 0.99, X = 1.27, 8 = 0.32;

(e) n = 14, 1 - ex = 0.99, X = 87, (J2 = 16;

(f) n = 12, 1 - ex = 0.90, P= 0.53 .

(g) Suppose in part (f) you recognized your mistake and supplemented
the original sample by sampling 20 more items of the population ob­
taining p= 0.49. What would be your estimate of the unknown p?

(h) n = 19, 1 - ex = 90%, X = 7.2, 8
2 = 2.73;

(i) n = 10, 1 - ex = 0.95, X = 44, 8 = 0.03.

A Confidence Interval Estimate for an
Unknown a

Using the fact that 82 is intimately related to the chi-squared distribution
if we're sampling from a normal distribution, we can construct confi­
dence intervals for an unknown (J2. Because the sampling distribution
of the estimator-the distribution of 82- is NOT normal, the analysis
will be different from what we've seen up to now, different but similar.

Suppose we need to estimate the variability in the amount of a con­
taminant present in the chemical solution we receive from a supplier.
For example, it may be that the effect of the contaminant is easily con­
trolled, provided the amount of contaminant is accurately predictable.
The "predictability," of course, is measured by the standard deviation
(J of the amount of contaminant. We model this situation by the ran ­
dom variable X, the measured amount of contaminant in a container of
solution of fixed size.

Now if X is at least approximately normally distributed, the following
linear function of 82 has a chi-squared distribution with n - 1 degrees
of freedom:

(n - 1)82 2
2 = Xn-l'

(J

It's not at all easy to prove this fact, please accept that it's true. In
Problem 5.3.17(b), you saw why X must be normally distributed.
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Suppose we want a 95% confidence interval for (T. We begin by setting
up the appropriate picture for the chi-squared distribution with n - 1
degrees of freedom. We need to determine numbers Land U to cut off
95% of the area in the middle of the distribution with the remaining five
percent equally divided into the two tails:

2.5o/c~ r205%
95%

2
I X7I-1

o L Jt = 11 - I U

Suppose we obtain a simple random sample of size n = 8 from the
distribution of X; that is, we make eight independent readings of the
amount of contaminant in containers of the solution. From the chi­
squared table in the appendix, with n - 1 = 7 degrees of freedom,
L = 1.690 and U = 16.013.

So there's a 95% chance that (n - l)82/(T2 falls between these two
numbers

1.690 < (n - l)82/(T2 < 16.013.

Dividing by (n - 1)82, we obtain an equivalent statement

1.690 1 16.013
< - <

(n - 1)82 (T2 (n - 1)82 '

The inequalities are preserved because you're dividing by a positive num­
ber. Then, inverting the fractions, we obtain

(n - 1)82 2 (n - 1)82

1.690 > (T > 16.013

Note that when you invert the terms of an inequality, if the terms are
positive, the inequality is reversed. Because one of these three strings of
inequalities holds if and only if the others do-they're logically equiv­
alent-each one can be preceded by saying "there's a 95% chance
that . . . ."

Now suppose our sample of eight readings on the amount of contam­
inant gave a sample variance of 82 = 1.0828. Then we can say

For the amount of contaminant in a container of the solution we
receive from our supplier, we can be about 95% sure that the stan­
dard deviation (T is between 0.6880 and 2.1178.
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Note the general rule:

the confidence interval for (12:

Assuming we're sampling from a normal distribution,
the endpoints of a confidence interval for (12, the variance
of that distribution, are

(n - 1)S2

U
(n- 1)S2

L

Try Your Hand

Note here that the lower number, L, obtained from the chi-squared
distribution table goes to the upper endpoint of the confidence interval,
and the larger number from the table, U, goes to the lower endpoint
of the confidence interval. This happens because of the reversing of
inequalities when you pass from 1/(12 to (12. Now please ...

5.4.1 (a) Show how we calculated the endpoints, 0.6880 and 2.1178,
of our confidence interval for (1.

(b) At the beginning of this section we said "... the sampling distribu­
tion of the estimator-the distribution of s2-is NOT normal." Explain.

(c) If it's true that "the effect of the contaminant is easily controlled,
provided the amount of contaminant is accurately predictable," which
supplier would you prefer: the one with ux = 8.4 and (1X = 0.8 or the
one with ux = 4.2 and (1X = 1.6?

(d) Verify that (n - 1)s2/(12 is a linear function of s2.

(e) How did we find Land U from the X2 table?

5.4.2 Calculate the endpoints of a confidence interval for:

(a) (12 with n = 15, 1 - a = 90%, and s2 = 0.9656;

(b) (1 with n = 12 and s = 1.0266;

(c) the variability in fill after resetting the fill mechanism for the drink
machine in Problem 5.3.11.
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5.5 One-Sided Intervals, Prediction Intervals,
Tolerance Intervals

So far, we've considered only two-sided confidence interval estimates
for an unknown parameter. But often ONE-sided interval estimates are
required and often they're required to estimate something other than a
parameter. We'll look at such estimates in this section.

One-Sided Confidence Intervals

A one-sided interval estimate is required if you're interested in a bound
on a numeric quantity in one direction only. For example, you may
be concerned to know if our drink machine is underfilling. You would
then like to have an estimate giving a minimum for fill. This is a lower
confidence interval. The endpoint would be X - zs / vn, the lower con­
fidence limit. Or perhaps you're concerned with the tensile strength of
steel wire, again you would want an estimate giving a minimum (you
don't care if the wire is "too strong"!). Or maybe you know /11 is greater
than /12, but you want to know by how much. Then you need an es­
timate giving a maximum for /11 - /12, an upper confidence interval,
whose endpoint is called the upper confidence limit. You can explore
these ideas as you . ..

Try Your Hand 5.5.1 Your company markets a gourmet candy apple wrapped in nice
tissue paper and packaged individually, with straw cushioning, into el­
egant, red cubical boxes. What's the largest dimension required for the
boxes to accommodate the maximum diameter of the apples?

We're concerned with "maximum diameter" because the apples are
not spherical. They have various diameters in various directions. We
measure in the direction that gives the maximum diameter (MD, in cen­
timeters). Because all apples are at least 3 em, for simplicity we record
only the "excess" diameter, X = 10(MD - 3). Note that X is in mil­
limeters. Here are the values of X for a random sample:

7

11

8 9

14 9

10

11

11

8

12

1

(a) Show how a confidence interval for /1x will yield a confidence in­
terval for /1MD.

(b) Give a 95% one-sided confidence interval for the mean of MD.
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(c) Give a 95% one-sided confidence interval for the median of MD.

(d) Neither of the intervals in parts (b) and (c)will be adequate to answer
the question posed at the beginning of the problem. Why not?

(e) Give a 90 % one-sided confidence interval for the proportion of ap­
ples with a maximum diameter below 3.7 ern.

5.5.2 Consider Youden's data on the weight of u.s. pennies given in
Problem 3.10.14. Allow a 99% certainty for your answers .

(a) You work for the U.S. Mint and have to move steel carts carrying
100,000 pennies. What's the maximum weight of such a cart? The steel
cart itself weighs 43 pounds.

(b) For a "Give a Penny " fund-raising drive, you're weighing bags of
pennies which are supposed to contain ten dollars each. Byweighing the
bags you want to determine if the pennies seem to have been miscounted.
If there has not been a miscount, how much should such a bag weigh?
Ignore the weight of paper for rolls of pennies.

5.5.3 Sketch a picture of X which illustrates the confidence coefficient
for a 95 % one-sided confidence interval for J-L.

Prediction Intervals for Observations from a
Normal Distribution

A confidence interval is required if we're asked how much drink a ma­
chine dispenses into a cup-the "typical" cup. But suppose it's a ques­
tion of how much drink the machine is going to give ME-right now.
I'm not average or typical. I'm ME! I require a "prediction interval," an
interval estimate for one particular numeric observation made at ran­
dom from this drink machine. In general, a prediction interval is a range
of possible values for one observation of a random process or of some
population together with the probability that that range of values actu ­
ally does contain the observation. More generally, a prediction interval
can provide a range of values for the average of several observations.
For example, there are three of us taking a drink break together. How
much drink will the three of us get, on average? In the problems below,
you'll see how to obtain prediction intervals.

As you'll see, the technique we introduce is only valid for observa­
tions from a normal distribution. It's very much a "distribution bound"
technique, analogous to our small sample confidence interval for the
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Try Your Hand

unknown mean of normal distribution. In both cases, if the distribution
you're sampling from is not normal, we have no technique. Of course,
one would like to have techniques that make no extraneous assumptions
beyond the actual data at hand. There's an entire branch of statistics
known as non-parametric statistics whose goal is exactly that. It pro­
vides techniques not heavily dependent on a distributional assumption
which would be difficult to verify. In the problems below, we'll develop
a simple non-parametric prediction interval which can sometimes be
useful. It's not hard to see how prediction intervals work. Please ...

5.5.4 The drink machine in the employee lounge puts 6.3 ounces into
a cup with a standard deviation of 0.26 ounces. How much drink am I
going to get from this machine? Right now!

5.5.5 Three of us are taking a break in the employee lounge referred to
in the previous problem. How much drink will the three of us get from
this machine?

5.5.6 Consider any random observation of some process or population.
Let this "random observation" be modeled by a normally distributed
random variable X with mean J1, and variance (52. Note that now, in con­
trast to the previous problem, we don't know the values of J1, and (5. We'll
get around this by taking a random sample from the distribution of X.

(a) What's the underlying random experiment for X?

(b) What was "the model" when we were generating a confidence in­
terval for an unknown mean?

(c) For a prediction interval, the model is X - X. Show that this model
is normally distributed with mean zero and with variance given by

(52(1+~).

(d) For part (c), show that there's a 95% chance for X to take a value
within 1.96 standard errors of X .

(e) Show that for a prediction interval, the endpoints are X ±z s.e. with
the standard error determined by the formula in part (c). Explain what
to do if (5 is unknown.

(f) Suppose the previous ten cups from the drink machine had a mean of
6.6 ounces with a standard deviation of 0.27 ounces. How much drink
should I anticipate when I drop my coins in the machine?
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(g) Now suppose you want a prediction interval for the mean of m
independent future observations of X. Now the model is A - X, where
A is the average of m observations. Show that the squared standard
error of the model is

(h) How much drink will three of us obtain from the machine given the
information in part (f)?

(i) If n is large, X is approximately normally distributed even if X is
not. That's the Central Limit Theorem. So why do we say our prediction
interval is not valid unless X is normally distributed? Why couldn't we
eliminate that assumption in the large sample case? Where have we used
the normality of X in an essential way (even if n is large)?

(j) The confidence coefficient, let's say 95%, for a confidence interval
says that, on average, 95 of 100 intervals obtained by the given tech­
nique will contain the parameter. What's the precise interpretation of
the confidence level for a prediction interval to predict one future ob­
servation?

5.5.7 In Problem 5.5.1, what should be the dimensions of the cubical
box for packaging your company's gourmet candy apples? Allow 5 mm
for the tissue paper and cushioning.

5.5.8 We answered the question in Problem 5.5.2 in terms of a "typical"
cart or bag of pennies. But now "typical" is not relevant:

(a) You've asked me to help you out so we can go to lunch early. You
want me to push this cart into the next room. What's the most it's going
to weigh?

(b) You want to weigh bags of pennies to see if they seem to have been
miscounted. When would you want to check a bag by actually recount­
ing?

(c) What assumption must we make about U.S. pennies which was not
required in Problem 5.5.2?

5.5.9 A nonparametric prediction interval can be obtained from the or­
der statistics of a sample (see Problem 4.5.8 for "order statistic"). Sup­
pose you have taken a sample of size n from a continuous distribution.

(a) Show that the interval from X(h) to X (k ) provides a 100(k - h)/(n +
1)% prediction interval for the next observation from that distribution.
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(b) Show that if the endpoints are to be symmetrically chosen within
the sample, then k = n - h + 1.

(c) Show that the endpoints of a 1- a prediction interval symmetrically
chosen within the sample are determined by h = i(n + l)a.

(d) For a sample of 100, what would be a 90 % prediction interval for
the next observation?

Tolerance Intervals

We're concerned that employees using the drink machine in the employee
lounge feel they've been cheated by getting too little drink. Of course,
we can set the fill mechanism on the machine to put any amount we wish
into a cup, but just how many cups are being adequately filled? Suppose
we're not really sure. We can't say NO cup will have too little drink, but
there is a technique whereby we can be "confident" that at least 93 %
of all cups will have adequate fill. We've chosen 93% because we're
prepared to offer the other seven percent of employees some kind of
compensation-four free cups-for being "cheated." Why are we only
"confident" instead of sure? The word "confident" reflects the fact that
we'll base our determination on a random sample which, if it happens to
be atypical of all cups, will mean less than 93 % of all cups having ade­
quate fill. In other words, there's the possibility our 93 % will not actually
be within the range specified. We control for that unhappy possibility
by choosing in advance an acceptable probabililty-Iet's say 10%-of
such error. Then we can be "confident at the 90 % level" that at least
93% of all cups will give adequate fill (fill within the range specified).

For this type of problem, a "tolerance interval" is required. A toler­
ance interval for the distribution of a random variable X is a range of
values which encompasses a given percentage of all the possible values
of X. In our situation, a "lower tolerance interval for 93 % of the val­
ues of X" is called for. We need to be 90 % certain-this is 1 - a , the
"confidence coefficient"-that 93% of all cups have a fill greater than
a given lower limit. So we take , let's say, 100 cups from our machine,
measure the fill of each cup, and calculate a 90 % lower tolerance limit,
a value for "fill" above which the fill of at least 93 % of cups will fall.
When that value turns out to be 6.4 ounces, we can conclude, with a
ten percent chance of being wrong, that 93 % of all cups dispensed will
contain at least 6.4 ounces. Now we can offer four free cups to anyone
who receives less than 6.4 ounces .

Note there are three elements for a tolerance interval:
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1. The confidence coefficient, 1 - 0:. In the example, it is 90%.
You choose this in advance. It's your "control of error." As usual,
your conclusion is subject to error because your sample could be
very atypical of what 's going on-could be, but PROBABLY isn't.
Through the probability distribution of the estimator, you control
this uncertainty by specifying in advance an acceptable probability
for the error.

2. The proportion of all values of X which must be encompassed
by the tolerance interval. In the example, it is 93 %. This is the
"percentage" in the phrase "given percentage of all the possible
values of X" from the definition of tolerance intervals.

3. The range of values. In the example, anything above 6.4 ounces.

In our analysis of tolerance intervals, we will use a binomial random
variable just as we did in Problem 3.10.14 and then, to actually gener­
ate a formula , we'll use the normal approximation as we did in Prob­
lem 4.5.8. Thus, our technique will only be valid if np, nq ~ 5. We'll
also need to assume that the relevant percentile of X has a zero chance
to show up in random sampling. That would be true, for example, if X
is continuously distributed.

In the example above, we've spoken of a one-sided tolerance inter­
val. Two-sided tolerance intervals are also possible, but they involve
considerations more technical than we're prepared to deal with, so we
omit them from our study. One-sided intervals, by contrast, are quite
accessible. To see how they work, please ...

5.5.10 (a) One-sided tolerance intervals for the distribution of a ran ­
dom variable X are reasonably accessible because, in fact, they're just
confidence intervals for the corresponding percentile. That's not true
for TWo-sided intervals which require a more subtle analysis . Show that
the 90 % tolerance interval for 93 % of the values of "fill" discussed in
the text above is just a one-sided 90 % confidence interval for the 93th
percentile of the distribution of "fill." Do this in terms of a picture for
the distribution of X = "fill."

(b) The endpoint of a one-sided tolerance interval to encompass a pro­
portion p of the values of any random variable X will be determined
by an order statistic, X( k), from a sample (see Problem 4.5.8). We'll as­
sume X has a negligible chance to take on any of the percentiles under
discussion and that np, nq ~ 5.

Show that k is determined by
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k

k

np + i + zy'npq

nq + i - zy'npq

for an upper tolerance limit,

for a lower tolerance limit.

where the value of Z is determined by P(Z < z) = 1 - Q.

(c) In the level II answer for part (b), why is the picture not a normal
curve? And if it's not a normal curve, how do we end up with a value
of Z in the formula?

(d) Show that the formula in part (b) gives the "right answer" if p = i.
(e) Show that the lower and upper tolerance limits taken together do
NOT give the endpoints of a two-sided tolerance interval.

5.5.11 In the text we said the lower tolerance limit for X = "fill" from
the drink machine in the employee lounge would be 6.4 ounces. Show
how we got that value. Here's the result of our study of 100 cups:

10(X - 6) I 3 4 5 6 7 8

f 2 18 37 33 9 1

5.5.12 Based on Youden's data given in Problem 3.10.14 (g):

(a) How much does a U.S. penny weigh?

(b) If I could weigh it, how much would this penny here in my hand
right now weigh?

(c) Below what weight would we expect to find 90% of all U.S. pennies?

(d) In part (b), we gave a prediction interval according to the theory de­
veloped in Problem 5.5.6, assuming a normal distribution for the weight
of U.S. pennies. But there's a nonparametric prediction interval possi­
ble (see Problem 5.5.9). Give the corresponding 95% nonparametric
prediction interval for part (b).

(e) In parts (b) and (d), we answered the same question using two dif­
ferent techniques. Which technique is better?

(f) What's the smallest sample size which will allow a 1 - Q nonpara­
metric prediction interval?

(g) Why might the nonparametric prediction interval be relatively
weak?
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6.1 Introduction

Chapter 5 addressed real-world questions of the form, "Based on this
sample data, what's the unknown value of our parameter?" A confidence
interval is required as an answer. In this chapter, we consider two other
types of real-world problem. Both types of problem involve a statistical
hypothesis and ask us, in a sense which we must make precise, to "test"
that hypothesis against sample data. First, we'll see exactly what a statis­
tical hypothesis is and then give an overview of these two new problems.

Statistical Hypotheses

An hypothesis is simply a statement which might or might not be true.
Sometimes it's believed to be true; sometimes not. Often, the hypothesis
is simply set up as a straw man in the hope of showing it false. Here's a
practical example of a situation where it could be said you were "testing
an hypothesis": Suppose as you drive by your mother's house at night,
you're hypothesizing that she's at home. You "test" your hypothesis
by observing that no lights are on, except the one light in the living
room which is always on. The evidence (no lights) seems to suggest your
hypothesis is false. But the evidence is not complete enough to draw
a certain conclusion. You might be more certain of your conclusion
if you didn't see your mother's car in the driveway. To be absolutely
certain your mother's not at home, you would have to actually stop,
enter the house, and see if she's there or not. But if you do that, you're no
longer "testing" the hypothesis; you're actually determining for certain
whether it's true or not. One speaks of "testing" an hypothesis only in
circumstances where a direct verification is not possible (or not practical)
but where partial information is available against which you can, indeed,
"test" the hypothesis.

A statistical hypothesis is an hypothesis which admits observations of
a statistical nature. This covers a lot of ground. Here are some real-world
examples:

(a) This is a fair die.

(b) Our parts supplier's claim is false.

(c) This new teaching method is superior to the old one.

(d) The air quality standard for our city is not being met.

(e) This employment data suggests a discriminatory hiring policy.

As statistical hypotheses, these can be formulated more precisely:
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(a) All the probabilities for this die are equal. That means we have
a uniform distribution for the random variable which counts the
number of dots on the uppermost face for one roll of the die.

(b) The mean length of the chain links from our supplier is greater
than claimed (or smaller than, or different than claimed, depending
on your particular concern) .

(c)The mean score on a standard test is greater for the population
taught by the new teaching method than for the population taught
by the old method.

(d) The parameter which measures air quality for our city (a per­
centage, a mean, etc.) is greater than the air-quality standard allows
(or less than, depending on what the standard is).

(e) For these employees, the variable "was hired" fails to be inde­
pendent of the variable "gender" (or "ethnic identity," or "religious
affiliation," etc.-the variable which defines the group in question).

The hypothesis in (a) is an hypothesis about an abstract model, the
probability distribution for a random variable which describes the die.
The hypothesis might be tested by observations of, say, 100 rolls of
the die. The next three hypotheses concern a parameter. They're tested
by obtaining sample data. That data must be understood through the
sampling distribution for the estimator of that particular parameter.
The last hypothesis asserts the independence of two qualitative (non­
numeric) variables. It's tested by comparing the observed data with what
would be true if the variables were really independent. Note that only
three of these five hypotheses involve a parameter; the other two are
statistical statements of a different sort.

For each of these examples, it will be impractical if not impossible to
determine the truth of the hypothesis directly. For example, the prob­
ability distribution for the die is a model for all possible rolls of the
die. You cannot observe "all possible" rolls . Before you finish, you
and the die will both be reduced to dust! Nor is it practical to mea­
sure exactly the length of each of several hundred chain links from
the incoming shipments of your supplier. For hypothesis (c), you can­
not test today all students to be taught in the coming 15 years by
a new teaching method. Many of those students have not even been
born! You can test the students over the years as you finish teaching
them, of course, but the point is to evaluate the method BEFORE imple­
menting it, not after. And for hypothesis (d), can you test every cubic
foot of air in your city? Finally, in (e), in employment discrimination,
what does "direct verification" even mean? Discrimination, after all,
is not usually a deliberate policy so much as a .result of subtle prej-
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udices and negative attitudes which are difficult to verify in a direct
way.

Because it's impossible to determine the truth of the hypothesis di­
rectly, you "test" the hypothesis. You collect data which you analyze
through an appropriate model. Because the data may not be typical
of the general situation (sampling error!), you will not be able to say
for certain whether the hypothesis is true or not. There always remains
the possibility you will be misled by atypical data. Still, you can con­
trol the possible error through your model by controlling the appropri­
ate probability. Exactly what this means you'll see as we develop our
testing procedures. In fact, understanding the sense in which one con­
trols sampling error is at the heart of understanding a statistical testing
procedure.

This is exactly parallel to the situation with confidence intervals . In
a confidence interval problem, you are asked for the unknown value
of a parameter in a situation where it 's impossible or impractical to
compute the value of that parameter exactly. So you do not answer the
question by giving a simple number. Sampling error in your data must
be taken into consideration. You do this by giving a range of possible
values for the parameter together with the probability that this range of
values actually contains the unknown parameter. Thus, you "control"
the sampling error in a probabilistic sense. In similar but subtly different
ways, one controls sampling error in statistical testing situations.

There are several procedures in statistics which are referred to as tests
of a statistical hypothesis. We study two very widely used such pro­
cedures which we denote by the standard terms "test of significance"
and "hypothesis test." However, the distinction between these two pro­
cedures is sometimes not clearly drawn in practical applications, with
confusion as a result. Because of this, we will be especially careful in our
initial presentation to distinguish between them. Once the procedures
are clear in their distinct forms, we will discuss how they are combined
in practice. There is a third procedure, sometimes called a "Bayesian test
of significance," which requires a very different probabilistic approach.
We will not attempt to deal with that procedure. And there are still other
important procedures which we will not mention at all.

What Are These Two Testing Procedures?

Our two procedures, the "test of significance" on the one hand and
the "hypothesis test" on the other, represent two distinct approaches to
testing a statistical hypothesis. These two approaches were developed
historically for two very different purposes. The procedure which we
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call a "test of significance" is conceptually straightforward and traces
back to the very beginnings of statistical inference in the eighteenth
century. The second procedure, the "hypothesis test," was only de­
veloped in the 1930s. It is most naturally conceived from a practical
point of view as a monitoring procedure for such situations as indus­
trial quality control. The procedure was developed originally by the
English statistician Egon Pearson and his Polish colleague Jerzy Ney­
man who spent the last decades of his career at the University of Cal­
ifornia at Berkeley. In the next decade, the 1940s, Abraham Wald ex­
tended the procedure into a sophisticated method of analysis called De­
cision Theory.

Let's get an overview of the two types of procedure, with an example
of each. For a test ofsignificance, the problem takes the form of a simple
question1: Does our data seem to challenge the hypothesis? For example,
we might ask, "Is it believable that this data came from a normally
distributed population?" Contrary to what you might think, the solution
to the problem is not a yes or no answer to the question. The solution,
formally speaking, is a number called the p-value which is calculated
from the data. We think of this number as measuring the consistency of
the data with the hypothesis. We'll see later how to actually calculate
the p-value.

Then, of course, one has to interpret that number to obtain a mean­
ingful real-world conclusion. The usual interpretation is as follows (later
we'll see other possibilities): If the p-value is small, the data seems in­
consistent with the hypothesis and we'll believe the hypothesis false. If
the p-value is not small, the data seems consistent with the hypothesis
and we draw NO CONCLUSION because the data could be consistent with
many other hypotheses as well! Again, we will see why this is true later.
Note that the conclusion you finally come to, if there is a conclusion at
all, is that the hypothesis is false. Thus, we think of a test of significance
as "trying" to conclude that the hypothesis is false. In the example of
the previous paragraph, the test of significance is "trying" to identify a
non-normal distribution.

An hypothesis test is a monitoring procedure. It attempts to flag an
"exceptional" situation calling for some alternative course of action and
specifies, in advance, the probability of error in taking that action. We
will see later how this is accomplished. Thus described, the hypothesis
test provides an action-oriented decision procedure for a repeating de­
cision, explicitly exercising control over the possible error which could
arise from sampling error in the data.

1 The exposition given here with the data as part of the question significantly clarifies
the roles of the data, of the p-value, and so on.
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Suppose, for example, we want to monitor incoming shipments of
chain links as they arrive each month from our supplier, where we re­
quire a mean length of, say, at least 1.2 ern. With anything less than that,
the chains we manufacture may be too short to function properly. If on
the basis of a random sample it appears some month's shipment fails
as a whole to meet specifications, it will be rejected. Note this is a "re­
peating decision ," repeated once a month. The hypothesis test provides
a procedure to "flag" a shipment which does not meet specifications.
We determine in advance an acceptable probability, say five percent, of
erroneously rejecting a shipment which, in fact, does meet specifications.
That is, out of 100 shipments which do meet specifications, we could
expect on average to erroneously reject five.

Contrasting the Two Testing Procedures

Now let's consider the various ways tests of significance and hypothesis
tests compare and contrast one with the other.

A test of significance provides a numeric measure of consistency be­
tween the hypothesis and the data. It provides a number by way of an­
swer. Of course, that number must be interpreted in real-world terms . An
hypothesis test, by contrast, is focused on action. It provides a decision
procedure controlling decision error. This is much more sophisticated
than the simple number you get from a test of significance.

Note also that for a test of significance, the hypothesis and the data
are on the same footing, they stare each other down (so to speakl). In
particular, the data is part of the question. For the hypothesis test on
the other hand, the data in a sense is secondary. The data is part of the
solution alright, but it's not part of the original question at all. In fact,
the hypothesis test must be set up without reference to the data. It's clear
why: The data is collected periodically only after the test is set up. And
the data changes from one repetition of the decision process to another.
So, for the hypothesis test, the data is a tool for answering the question;
it's not part of the question itself. For the test of significance, the data
is intrinsic to the question.

Because the data is part of the original question, a test of significance
can test for randomness of the data. We'll see later why this is true.
For example, a test of significance is often used in employment discrim­
ination cases to see if there appears to be a pattern of discrimination.
Here "nonrandom" equates to evidence of a "pattern." By contrast, the
secondary role of the data in an hypothesis test means an hypothesis
test cannot reasonably be used as a test of randomness (explanation
later!) .
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Further, for a test of significance, the hypothesis is either true or false.
For example, a population is either normally distributed or it is not.
For the hypothesis test, by contrast, the hypothesis is sometimes true
and sometimes false. In the example, sometimes our shipment will meet
specifications, sometimes not.

The distinction of the previous paragraph has important implications
for what it means to repeat a test. A test of significance is a classic case
of inductive inference in which you attempt to infer a general fact on the
basis of specificcases. In the test of significance, you attempt to infer that
the hypothesis is false ("general fact") based on our observed data (the
"specific cases"). For this to make sense, to have a "general fact", the
hypothesis must be either true or false. An hypothesis test, on the other
hand, is a monitoring procedure; it's monitoring an hypothesis which is
true on some repetitions and false on others. There is no "general fact."
So a test of significance is, in principle, a one-time inductive inference;
an hypothesis test is a repeating, action-oriented decision procedure.
Note that this discussion also suggests that repetition is intrinsic to an
hypothesis test, but not to a test of significance.

Because repetition is intrinsic to an hypothesis test, probabilities will
have very concrete meaning as "theoretical relative frequency." The
probability of error can be interpreted in terms, for example, of 100
runs of the test. Probabilities for a test of significance, because it is a
one-time inference, have a more tenuous meaning.

Of course, for a test of significance, you certainly could repeat the en­
tire argument with a new set of independently gathered data, accumulat­
ing more and more evidence relevant to that one unchanging hypothesis.
Typically, that's exactly what does happen. Often the repetition is made
by an independent team of investigators. This sort of exact replicabil ­
ity is required of a scientific experiment; it's essential to the "scientific
method." For an hypothesis test, by contrast, replication shows up as
part of the procedure. Because it's a procedure for a repeating decision
made under ever-changing circumstances, the replication is NOT exact.

You can see that a test of significance might be preferred in testing a
scientific hypothesis where you are concerned only with the hypothesis
itself. Is it false? Is it challenged by our data? There is no "decision" or
"decision error" in the sense of an hypothesis test. Bycontrast, in matters
of public policy, business management, politics, and so on where one is
constrained to take action under changing circumstances, an hypothesis
test might be preferred. In such cases, the nature of decision error is
often clear-cut and the consequences of error are of crucial importance.

But remember, the two distinct types of statistical test which we are
introducing here tend to be combined in practice . We are introducing
them in their original purity as distinct and separate procedures for
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purposes of clarity only. Once the logic of each procedure is clear to
you , the common practice of combining them will seem less confusing.
It fact, if one really understands the logic, there is no confusion.

So now, please .. .

6.1.1 Of the five examples of real-world hypotheses given at the be­
ginning of the chapter ("this die is fair," etc.), which one(s) would be
appropriately treated by a test of significance and which one(s) by an
hypothesis test?

6.1.2 Why do we think of a test of significance as "trying" to show that
the hypothesis is false?

6.1.3 (a) As in the discussion above, suppose you're monitoring in­
coming shipments of chain links as they arrive each month from your
supplier. You require a mean length for the links of at least 1.2 em and
will reject a shipment if, on the basis of a random sample, it appears not
to meet specifications. Suppose you decide in advance on a five percent
probability of error, how many out of 500 shipments would you expect
to be erroneously rejected?

(b) Suppose on second thought the five percent probability of error in
part (a) seems unacceptably large. What would you do?

6.1.4 (a) Contrast in detail the test of significance with the hypothesis
test.

(b) In terms of the examples we gave for each procedure, explain the
contrasts you identified in part (a). Make specific reference to the ex­
amples, with as much detail as the examples allow! Omit the "test for
randomness" contrast. It becomes clear for us only later.

6.2 Tests of Significance

When we were children we learned important things from the older kids,
but then sometimes you had to be wary!
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Big Kid: What'd ya mean I'm cheating?
Little Kid: Your coin is not fair!

BK: Huh ... ?
LK: It's not a fair coin! I know it's not a fair coin.

BK: Sure it is.
LK: Look-let's toss it 100 times and see how many times it comes up
heads.
BK: Huh . .. ?
LK: Watch [tosses the coin repeatedly] . .. 57 ... [toss, toss], ...
58 ... [toss, toss ... toss]. There! 58 heads!

BK: So what?
LK: Well, if the coin comes up heads as often as tails, we should get
about 50, not 58.
BK: On average. ON AVERAGE knucklehead! 58 heads out of a specific
series of 100 doesn't say anything. Haven't you ever heard of random
error?
LK: Yeah, ... well . .. random error THAT big?
BK: Big, schmig-random error can be big!
LK: It's VERY unlikely to be THAT big!!
BK: Who says?
LK: ME!!
BK: Prove it!
LK: If the coin is fair, on 100 tosses the standard error is only five
heads.
BK: How'd ya figure that?
LK: We're counting the number of heads in 100 tosses of a coin. That's
a binomial random variable with n = 100. If the coin is fair, p = 0.5.
So npq = 25 and the standard error is five.
BK: So what? Just because the standard error is five doesn't mean
anything! 58 heads is perfectly possible!
LK: Possible, but not likely. The p-value is going to be VERY small!
BK: P -value, p-value!!?? What's this p-value?? I never heard o'no p­
value!
LK: The p-value's a measure of how consistent your data is with your
hypothesis. For us it's the probability of 58 or more heads out of 100
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tosses, assuming your hypothesis true. You said the coin is fair right?
That's your hypothesis. If that's true, p = 0.5 and .. .

p-value - P[X 2: 581n = 100,p = 0.5]
~ P[Z> (57.5 - 50)/5]
- P[Z> 1.5]

- 0.0668.

Less than seven percent!!
BK: (weakly) Seven percent's not so small.

LK: Yeah, well . .. it's too small for ME! I'm not going to play with
this coin, I think it's biased.
BK: Awww .. . l didn't know it wasn't fair! Seven percent's not THAT

small.
LK: Okay, okay ... just gimme my marbles back! You didn't win
them fair and square.
BK: Even the BLUE one?

In this dialogue we see exactly how to do a test of significance. It's
really easy. You just assume the hypothesis true and then compute the
p-value of your data. Don't be misled by the light-hearted tone of our
example! Wechose it precisely because it really does illustrate the various
situations that arise in serious applications. You'll see how that's true as
we come to more realistic problems.

If the p-value is too small, the hypothesis doesn't stand . It seems in­
consistent with your observed data. Of course, there is a question of
what is meant by small here. The dialogue illustrates well what happens
in actual practice. If the test is just for your information, you decide
subjectively for yourself what is small. In the dialogue, the little kid
felt a seven percent p-value was too small and refused to play with the
coin. The big kid wasn't so sure but evidently didn't want to push the
issue.

If it's a question of making some public statement, then a more ob­
jective criterion is required. For example, if the kids wanted to publish
their results in a scientific research journal, they would have to see what
the requirements of that journal are. Some journals require a p-value of
no more than one percent others allow up to five percent. By either of
those criteria, the little kid would have been in trouble. Still other cri­
teria are sometimes imposed. If the criterion had been that p-values of
no more than ten percent are considered small, then the little kid would
have been on firm ground.
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But it was not a question of any public statement and apparently
even the big kid felt the data casts doubt on the fairness of the coin. So
the issue was resolved on the basis of a clear-cut, objective analysis of
the observed data (7% p-value ) with everyone involved knowing and
accepting the interpretation of that analysis.

Whether a p-value is to be considered small or not can depend very
much on the context. A p-value would have to be VERY small indeed to
convince most scientists that you had observed an instance of mental
telepathy. Scientists tend to be VERY sceptical about the possibility of
mental telepathy because it seems inconsistent with almost everything
else they know. In fact, there has been a lot of heated discussion about
certain controversial statistical studies of paranormal phenomena.

Now let's look more carefully at the p-value. The p-value is the prob­
ability of data as extreme as yours or worse if the hypothesis is true.
It's the probability of data that could cause you as much or more doubt
about the hypothesis as YOUR data. To compute the p-value you must
think what kind of data would be even worse than yours. Then you
compute the probability of those values together with your value ("as
extreme as yours or worse"). So the p-value has the form

p-value = P (data like yours or worse Ihypothesis)

For the kids, if the hypothesis of "fair coin" is true, they would expect
50 heads on 100 tosses. They observed 58 heads. What would be even
worse? Obviously, 59, 60, 61, .... Any number of heads more than 58
would be even more unbelievable (worse) IF THE COIN IS FAIR. SO the
p-value, just as the little kid said, is the probability of getting 58 or more
heads assuming a fair coin:

P{X ~ 58 1p = 0.5, n = 100) = 0.0668.

A small p-value suggests two possible explanations for your data:

• The hypothesis might be true and the data extreme just because
of sampling error. All heads on 100 tosses of a fair coin is possible
however unlikely it may be!

• The hypothesis might be wrong and the data not really extreme
at all. Suppose the coin really is biased with a 60% probability of

I

heads. Then 58 heads out of 100 tosses is certainly not extreme.



6.2 - Tests of Sig nificance

Try Your Hand

235

The p-value is calculated assuming the hypothesis correct and so it is like
taking a "look" at the first explanation. If the p-value is very small, the
first explanation seems unlikely. Not because atypical data is impossible,
but because there seems to be a more plausible explanation: It seems
more believable that the hypothesis is wrong. So we accept the second
explanation, thinking the hypothesis makes the data seem so extreme
that the hypothesis itself becomes unbelievable. Thus, the p-value serves
as a numeric measure of the consistency of our data with the hypothesis.
A small p-value suggests data inconsistent with the hypothesis.

The most unambiguous use of tests of significance are those for which
the p-value is very small indeed. Like one chance in 100,000. If the kids
had observed 100 heads in 100 tosses, we would not think the situation
in any way equivocal (the p-value has 30 zeros after the decimal before
the first nonzero digit!). Even less so if they had observed a billion heads
on a billion tosses! In actual practice, tests of significance often do lead
to unequivocal results. You might object that the hypothesis would be
obviously false in such a situation and that a test of significance would
be a futile exercise in proving the obvious. For something as simple as
a coin you're right. But for a highly complex problem, trying to get any
kind of intuitive conclusion from a large data set may be impossible.

Thus, for the kids, there is only about a seven percent chance of data
like theirs or worse if the coin is really fair. Are you going to believe the
coin fair or not? That's str ictly up to you. The test of significance only
provides you with a measure (the p-value) of the "statistical significance"
of the difference between the observed 58 heads and the 50 heads you
should theoretically expect if the coin is fair.

What happens if the p-value is not small? That means the difference
between the observed data and the hypothesized value (58 versus 50
heads) can be explained as "just due to chance," due to random error.
In that case, we can't conclude the coin is fair! It mayor may not be fair.
Problem 6.2.4 below shows why: An observed 53 heads gives the same
p-value for a biased coin as for a fair coin. In other words, the observed
data is just as consistent with the "fair coin" hypothesis as it is with the
"biased coin" hypothesis. It's true, when the p-value is not small the data
seems consistent with your hypothesis. But because the data will always
be consistent with many other hypotheses as well, that says nothing at
all! So admit it: When the p-value is not small, the data is inconclusive.

Now why don 't you please ...

6.2.1 In each part of this problem compute the p-value and state what
you think about the kids' hypothesis on the basis of their observed data.
For simplicity, use the proportion of heads instead of the count of heads
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and treat it as the normally distributed sample proportion, p (our con­
vention is to ignore the continuity correction with p ).
(a) The kids observed 58 heads on 100 tosses to see if the coin seems
fair, as in the dialogue. [Hint: Recalculate the little kid's p-value using
p. Your p-value will be slightly less accurate than hers because you're
ignoring the continuity correction.]

(b) The kids observe 62 heads on 100 tosses, wanting to check if the
coin seems fair.

(c) The kids observe 58 heads on 100 tosses just as in the dialogue, but
here they think the coin comes up heads only 40% of the time.

(d) The kids observe 44 heads on 100 tosses for a coin they think to be
fair.

6.2.2 In a test of significance, if the p-value is small, we conclude that
the data seems to challenge the hypothesis. In other words, the data
seems to support . . . ? [Hint: Think about Problem 6.2.1(c).]

6.2.3 Here are some general questions about tests of significance to help
you clarify your understanding:

(a) When in the light of the hypothesis the data seems extreme, there
are two possible explanations. What are they?

(b) If the data yields a very small p-value, which explanation from part
(a) do we accept?

(c) How do you justify the comment in the answer to part (b) that
random data might be atypical, but it probably is not?

(d) Give the meaning of the kids' seven percent p-value in terms specific
to their situation. Be as detailed as the situation allows.

(e) The kids' seven percent p-value means there's a seven percent chance
the die is actually fair. No, no, it means there's a seven percent chance
it is NOT fair. Comment.

6.2.4 Show that an observed 53 heads on 100 tosses is consistent with
anyone of the following hypotheses for the probability p of heads:

p = 0.5, p = 0.56, p = 0.53.

What does this fact tell you about tests of significance?
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6.2.5 Parts (a) and (b) of this problem are very similar; be sure you see
the difference.

(a) You know a certain population of numbers has variance 6.2 and
you thought the mean was 70.18. You take a sample of 50 and find a
sample mean of 69.3. What do you think now?

(b) You have good reason to think the mean of a certain population is
70.18. The variance is unknown. You take a sample of ten and obtain
a sample mean of 69.3 and sample variance of 6.2. Now what do you
think about the mean?

(c) Which yields a more certa in conclusion, part (a) or part (b)?

6.2.6 Suppose the kids are going to playa coin-tossing game almost
everyday during the summer. Making specific reference to this example,
discuss the issues of "repetition" and "accumulation of evidence" as
they relate to tests of significance and hypothesis tests.

Comparing Means and Comparing Proportions (Large Samples):
Two New Parameters and Their Estimators

Many problems which arise in practical applications seek to compare
two means or two proportions by looking at their difference. The prob­
lem may simply ask, "What is the difference?" (confidence interval) or
it may involve an hypothesis about the difference (test of significance or
hypothesis test). For example, you may think there's no difference in aca­
demic preparation for the student bodies at two schools. If you measure
"academic preparation" in terms of the mean score on some standard
test-the SAT test, for example-your hypothesis of "no difference in
academic preparation" becomes a statistical hypothesis by asserting that
f-LI - f-L2 = 0, where f-Li is for the mean score for the ith school. Of course,
academic preparation might be measured in a number of other ways as
well. Maybe "academically prepared" is determined by the proportion
of students with an SAT score above 800. If so, your hypothesis of "no
difference" becomes PI - P2 = 0, where Pi is the proportion of students
at the ith school with an SAT score above 800.

As you might guess, the estimator for the difference between two
parameters is just the difference between their estimators. For example,
for the parameter PI - P2, the estimator isPI - P2. In the problems, you'll
see that these estimators are unbiased and, in the large sample case,
approximately normally distributed. For the condition "large sample,"



238 Chapter 6 - Introduction to Tests of Statistical Hypotheses

the same rules hold as before: For means, a sample is large enough if
n ~ 30; for proportions we require np, nq ~ 5. We'll not introduce the
small sample case for differences because they involve technicalities that
are beyond the scope of this course.

You'll also see in the problems how easily one derives the standard
error formulas if the samples are chosen independently. All of this analy­
sis depends on the following not so trivial facts about sums of random
variables. We'll not attempt a proof:

for the sum of two random variables:

J.Lx+y = J.Lx + J.LY;

and if the random variables are independent

2 2 2
lTx + y = lTx + lTy

If the samples are chosen from two different populations, they would
usually be independent. We'll deal only with that case:

for large, independent samples:

Xl - X 2 is approximately normally distributed and
is an unbiased estimator for the parameter
J.LI - J.L2

and

PI - P2 is approximately normally distributed and is
is an unbiased estimator for the parameter
PI - P2·
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Here's a summary of our parameters and their estimators up to this
point. We'll have several more before the end of the course.

Parameter Estimator Standard error

P P vpq/n

/1 X v a 2/n

a2 82 We don't need-

PI - P2 PI - P2 VPlqI!nl + P2q2!n2

/11 - /12 X 1-X2 Jailnl + ai!n2

In the large sample case-the only case we treat-the standard errors
can be estimated if necessary from the samples, replacing p's and q's
by p's and q's and replacing a's by 8'S. Of course, if the true values are
known, this is not necessary. For an hypothesis of "no difference" in
two proportions, we can get a more sensitive estimate of the standard
error by "pooling" the samples. Because you're assuming the hypothesis
true, the two unknown proportions become equal. That means the two
populations look exactly alike from the point of view of the characteris­
tic of interest. If so, both samples can be thought of as coming from the
same population with unknown population proportion, p. By pooling
the samples, you obtain one sample of size nl + n2 from which you cal­
culate P, the proportion of the pooled sample having the characteristic.
That value of p is used in the standard error in place of the unknown PI
and P2. SO you estimate the standard error by the square root of

This "pooling" of the samples is not relevant in the case of /11 - /12
because the standard error involves al and a2 which may still be different
even when /11 = /12,

Just to give you some idea of the complications that arise in the small
sample case, using 8'S instead of a's in the standard error for the XI - X 2

may not lead to a t-distribution! As a consequence the small sample the­
ory becomes quite complex. An enormous amount of effort has been
devoted to this problem. If the samples are drawn from two normal
distributions having the same variance, life's not too hard. You'll get

2 Note that 8 2 is the only one of our estimators that is not normally distributed. Its
distribution is given by X2 and does not require "standardizing." So we don't need the
standard error.
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a t-distritution if you estimate the standard error by pooling the sam­
ples. But the solution is very sensitive, indeed, to that assumption of
equal variances, an assumption that's virtually unverifiable.:' So you
shouldn't assume the variances equal. But if the variances are not equal,
the problem is more complex still. It even has a name. It's called the
Behrens-Fisher problem." So please excuse us, we're omitting the small
sample case for differences. Such technicalities belong to a more ad­
vanced course!

Well now please ...

6.2.7 In the text above, we said, " . . . the standard errors can be esti­
mated if necessary from the samples, replacing p's and q's by p's and q's
and replacing (T'S by s's . Of course, if the true values are known, this is
not necessary." Under what circumstances would they be known so that
estimating the standard error would be unnecessary?

6.2.8 (a) What's the difference in height between second graders in the
suburbs of your city compared with second graders in the inner city?
Suppose a sample of 50 second graders from the inner city gave a mean
height of 92.5 ern with a standard deviation of 4.8 em and a sample of
42 second graders from the suburbs gave a mean height of 97.3 em with
a standard deviation of 5.2 cm.

(b) Is the observed difference in height in part (a) significant?

6.2.9 We thought that both populations we're interested in had the same
proportion for some characteristic of interest. A pair of samples each of
size 100 yield proportions of 0.22 and 0.31. Now what do you think?

6.2.10 Let W = X + Y where X and Yare the number of dots on the
top and bottom faces, respectively, of a die. So W is the constant random
variable which always takes the value seven. First, guess the mean and
variance of W. Then calculate the mean and variance of W from those
of X and Y using the appropriate formulas .

6.2.11 Show that each estimator described below is unbiased and ap­
proximately normally distributed with standard error as given in the
table of the text. Assume you have chosen independent samples.

(a) The estimator for the parameter J-ll - J-l2;

3 See Hoaglin and Moore, p. 14 and 15.
4 See Bickeland Doksum, p. 219 for a discussion of this.
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(b) The estimator for the parameter PI - Pl.

6.2.12 A legal challenge was brought against an employer alleging that
a job promotion test was racially biased. Of 48 blacks who took the
test, only 26 passed, whereas of 259 whites, 206 passed (Connecticut v.
Teal [457 US 440 (1982)] (after [Finkelstein and Levin]).

(a) Is it believable this difference is due just to chance and that racial
bias is not a factor?

(b) What exactly is the difference in pass rates for blacks and whites on
this test?

Practical Versus Statistical Significance

In the dialogue, if the kids were not playing for such high stakes (beau­
tiful marbles, even the blue one!), if they were playing for match sticks
or pebbles say, then the little kid might be convinced by a 7% p-value to
go ahead and play. This raises yet another question. If the kids go ahead
with the game, is it because they think the coin is fair or is it because
they think, "Well ... with a p-value of seven percent, even if the coin
is biased, it doesn't seem to be VERY biased!"? If this is how they think,
it means they accept that the coin may be biased, but the bias doesn't
seem significant in a practical sense.

They admit the data is "statistically significant"-that the data seems
to have detected a real bias-but they question whether the bias that's
been detected is of any "practical significance." This is an important
distinction. The p-value measures the significance of your data for chal­
lenging the truth of the hypothesis. It says something about the data
and the hypothesis; it doesn't say anything about the hypothesis and
the real world. It says nothing about the practical significance of the
hypothesis being false. These two types of "significance" are totally un­
related!

So when a small p-value suggests your hypothesis is false, the question
remains, "How false?" Once the kids decide there's more than a 50150
chance for heads on this coin, they may wonder just how serious that
bias really is. Suppose the probability of heads is 0.5001. That's bigger
than a 50150 chance, but few people would think it meant the coin was
seriously biased. Such a bias has no practical significance. On the other
hand, suppose there's an 85% chance of headS-THAT is of practical
significance! As you can see, the determination of what is or is not of
practical significance has nothing to do with statistics.
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Ofcourse, if we ask what's the probability of heads on a coin-for ex­
ample, to see if there's any practical significance to a bias which we have
detected (or for any other reason)-it's time to compute a confidence
interval. This is what happens in general for statistical tests involving
an hypothesis about a parameter: If you decide the hypothesis is false,
you may want to compute a confidence interval to see what is a proba­
ble range of values for the parameter (because your hypothesized value
seems wrong). Once you have that interval, you can decide whether
the difference between the true value and the hypothesized value of the
parameter is of any practical significance. That practical decision has
nothing to do with statistics-it uses the information provided by statis­
tics through the confidence interval, but the decision itself is a matter of
practical, not statistical, considerations.

So now, please . ..

6.2.13 On January 7, 1993 , the San Francisco Examiner reported on
California job losses for 1993 (projected) and the previous three years.
The information comes from a year-by-year report on job losses from the
Commission on State Finance. For example, in 1991, there were 12.43
million unemployed in the state, and in 1992,12.13 million unemployed,
a loss of 300,000 jobs. Is that a significant drop?

The Test of Significance as an Argumentby Contradiction

The basic logic of a test of significance is really quite familiar. It's a
form of logic we all use constantly in our daily lives-argument by
contradiction. It's the "monkey's uncle" reasoning: "If that's true, I'm
a monkey's uncle!" But I 'M NOT! Contradiction, therefore "that's not
true."

The test of significance is a probabilistic version of such an argument
by contradiction. The only difference is that instead of arriving at a
contradiction you arrive at a statement with small probability. You might
call that a "probabilistic contradiction." Instead of, "If this die's fair, I'm
a monkey's uncle," we get, "If this die's fair, I'm PROBABLY a monkey's
uncle." Well, it's highly unlikely I'm a monkey's uncle, so I don't BELIEVE
the die's fair. But maybe it is, after all I don't seem to be completely sure
whether I'm a monkey's uncle or not!

More exactly, "If this die's fair, there's only a seven percent chance
of seeing 58 heads or more in 100 tosses." Well, that's pretty unlikely;
therefore, I don't BELIEVE the die's fair. But maybe it is. After all, seven
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percent is not so terribly small. You'd feel more secure if it went like
this: "If this die's fair, there 's only one chance in a billion to get what
we got (or worse) on our 100 tosses." One chance in a billion is pretty
slim odds. Again, I don't believe the die's fair and I'm much more secure
in that belief than I was before with the seven percent probability.

What If the p-value 15 Not Small?

What happens if the p-value is not small? Such a p-value suggests the
data is entirely consistent with your hypothesis. But the data will be
consistent with many other hypotheses as well. This is what you saw in
Problem 6.2.4 where 53 heads on 100 tosses was consistent with having
a fair coin and equally consistent with having a coin which comes up
heads 56% of the time. In fact, 53 heads is consistent with a probability
for heads of anywhere between 50% and 56%! It's consistent with a
probability of 52.078%. Or 54.29402%. Well, that's what we said: 53
heads is consistent with many different hypotheses!

So, to say the data is consistent with the hypothesis (p-value not small)
really says nothing about the hypothesis . In such a case, the test of
significance should be considered inconclusive. In actual practice, one
of two situations usually arises:

• you had reason to believe the hypothesis and were using the test
of significance only as a double check;

• you had reason to doubt the hypothesis and were using the test
in an attempt to challenge the hypothesis.

Only rarely would you be totally indifferent about the hypothesis with
no reason either to believe or disbelieve.

Consider the first instance where you had reason to believe the hy­
pothesis. If the data seems consistent with your hypothesis (p-value not
small), then, of course, your original reason for believing it stands un­
challenged and you will proceed, confident that it's true. But only be­
cause your original reason looks good . The hypothesis is accepted as
true, not because the data shows it to be true but because your original
reason for believing it stands unchallenged by the data .

Now consider the second instance where you had reason to doubt the
hypothesis even though the data seems consistent with it. This simply
means you went in search of evidence against the hypothesis and failed
to find it. So you don't know whether the hypothesis is true or not; you
doubted it but you have no evidence against it.
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Thus, in both cases, when the p-value cannot be considered small
enough to say the data challenges the hypothesis, the test itself is incon­
clusive. But YOU are not necessarily inconclusive with regard to your
original question . Your conclusion or lack thereof depends on the prior
information you have concerning the hypothesis. Information support­
ing the hypothesis remains unchallenged; information causing doubt
about the hypothesis has not been corroborated by the data. The first
case is stronger: You believed and will continue to believe the hypoth­
esis. But not based on the data, the data has become irrelevant because
it's inconclusive. In the second case, not only is the data inconclu­
sive, so are you. You started out with reason to doubt the hypothe­
sis but that doubt is not supported by the data. You're back to square
one.

Here's one final point about tests where the p-value is not small,
rendering the data inconclusive. A very important point: It 's a FUNDA­

MENTAL FALLACY to repeat the test hoping on the second try to get data
that does finally challenge the hypothesis. Why is this a fallacy? Well,
even if the hypothesis is true, eventually you'll get an atypical sample
which seems to challenge it-erroneously seems to challenge it! After
all, atypical samples are possible, however unlikely they may be. The
moral to this story: Any true hypothesis can be deceptively rejected with
repeated testing if you test it often enough.

Of course, if your test is inconclusive, it's entirely reasonable you
might want to gather more data. That's fine, put that new data together
with the data you've already gathered. Now you have a larger sample.
See what the larger data set tells you. That's legitimate and you'll get a
more accurate result because the new, expanded sample contains more
information.

This discussion may suggest an idea which was introduced in the
1940s by Abraham Waldo Wald created a branch of statistics called
Sequential Analysis based on the idea of stopping after each sample el­
ement is selected and testing the sample accumulated up to that point.
Sequential Analysis was such an efficient technique for industrial quality
control it was held by the government as a military secret during World
War II. Such statistical techniques were more or less ignored by American
industry after the war, even though they were no longer secret. Ironi ­
cally, with the encouragement of American advisors, such techniques
of statistical quality control were adopted enthusiastically and to great
advantage after the war by the Japanese! American industry has recently
begun to play catch-up.
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It's important to keep in mind the distinction between the test of signif­
icance itself and the problem which gave rise to the test. Thinking only
of the test itself, "NOT small p-value" means the data seems consistent
with the hypothesis. "Small p-value" means the data seems INconsistent
with the hypothesis. But then so what? What exactly does that p-value
mean for the original problem?

This is well illustrated by Problem 3.3.8 which is typical of a kind of
anyalysis often employed in cases of purported discriminatory selection.
Let's look at part (c) of that problem. The mayor put only one woman
on a committee of five chosen from a pool of 40 candidates where 15
of the candidates were women. Usually with a test of significance the
population is what's in question; the data is given. Here, that usual
situation is reversed. Here, the population is completely known (N =
40, R = 15) and it 's the data that's in question. Specifically, the choice
mechanism for the data is what's in question: Was it a random choice?
So "randomness" is the hypothesis to be challenged by the data.

In this case, the data is the specific committee chosen by the mayor, a
committee with only one woman on it. The p-value for this data is the
probability of a committee with as few or fewer women than we ob­
served, P(X ~ 1). In Problem 3.3.8, you calculated P(X ~ 1) ~ 37%,
which is NOT small, so the data is entirely consistent with the hypoth­
esis. Up to this point the analysis is standard. But note what hap­
pens when we interpret our analysis in the real-world terms of the
problem. A NOT small p-value gives a very definite conclusion: If the
mayor's choice is "entirely consistent with a random choice," the ac­
cusation of discrimination cannot be maintained. This is exactly the
reverse of what usually happens. Usually to get a conclusion we look
for a small p-value, but here, "not small p-value" is the more conclusive
situation.

Bycontrast, in the situation of the mayor's committee, if the p-value is
SMALL-SO the data seems inconsistent with the hypothesis-we're led
to the "conclusion" that the mayor's choice does not seem random. But
this is NOT genuinely conclusive. Of course she didn't choose randomly!
Everybody knows that. The only question was whether her criteria of
choice were free of gender considerations, as they should have been.
It's true the choice doesn't look like a random choice and that certainly
puts the mayor on the defensive. But the argument is not over; those
who suspect bias must engage the mayor on the issue of her criteria of
choice. Were those criteria gender neutral? A small p-value is only the
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first step which establishes that the accusation has some basis on which
to proceed.l

Is this always the pattern when the hypothesis is "randomness"? No,
not exactly, that's why we keep telling you there's no substitute for gen­
uine understanding. Look at Problem 3.7.12 which again was a p-value
calculation (although you didn't know it at the time). Or Problem 6.2.22
below. In these problems the hypothesis is again "random choice," this
time for the panel of "veniremen" from which a jury will be selected.f In
these cases, the selection process SHOULD be random (the mayor's choice
presumably was not). Now, just as with the mayor, a NOT small p-value
is very conclusive. The accusation of bias in selection cannot be main­
tained if the choice is consistent with a random choice. The discussion
is over!

But a SMALL p-value carries a different implication than in the mayor's
case. Here, a small p-value is stronger evidence of bias. Nobody can say,
"Well, of course, the panel of veniremen wasn't chosen randomly." It
should have been! As Justice Frankfurter said in Avery v, Georgia, "the
mind of justice ... would have to be blind" to believe the hypothesis
of unbiased selection (see Problem 3.7.12, p-value < 0.05). We should
note that in this early case (1953) Justice Frankfurter apparently did not
rely on a p-value calculation. Such statistical analysis became common
in jury discrimination challenges only after 1967 with Whitus v. Georgia
(Problem 6.2.22).

There are other situations where one wants to test "randomness."
For example, the so-called "efficient market hypothesis" for the stock
market assumes that information is dispersed virtually instantaneously
into the market so that attempts by the ordinary investor to profit from
published information will necessarily fail. This hypothesis can be made
precise by asserting "randomness" for price movements in the market
after a major announcement is published.

Finally, in Problem 6.2.27, you'll see a very curious historical case of
"p-value only TOO, TOO small"! For now, we'll leave it to you to think
what THAT could mean.

With this discussion you see once again what we've emphasized often
in this course: Statistical techniques are not blind routines to be applied
with no understanding of the logic. The logic of p-values is that "small"

5 As you may imagine, there has been much discussion in the legal literature of the use
and misuse of statistical analysis. See Finkelstein and Levin, Statistics for Lawyers.
6 The jury itself is not chosen randomly; it's chosen after intensive question ing by both
parties to the litigation . Both sides can, without any justification, eliminate prospective
jurors they don't like. Here, we're discussing the panel of "veniremen," the panel of
prospective jurors from which the jury is selected. In the cases we're discussing, the
panel of veniremen was supposed to have been chosen randomly.
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means the data seems inconsistent with the hypothesis (there's a small
probability of such data given the hypothesis) and "not small" means it
seems consistent. But the interpretation of this in a given real-world con­
text cannot be described in advance. Therefore, you have to understand
the logic and the context!

Well, now we're ready for you to ...

For any real-world question involving a p-value calculation, you should
be able to do four things: (1) calculate the p-value, (2) identify it as
"small" or "not small," (3) state the real-world meaning of the p-value
for that problem, and (4) interpret the p-value in the real-world terms
of the problem with as much detail as the problem allows.

6.2.14 (a) Do you think the little kid would be likely to say, "Well ...
with a p-value of seven percent, even if the coin is biased, it doesn't seem
to be VERY biased!"?

(b) If the little kid is willing to play with a coin that's slightly biased in
favor of the big kid, how should they test the coin?

(c) In the situation of part (b), would the little kid be willing to play
once they have observed 58 heads on 100 trials? Recall, there are two
distinct situations [part (b), level II answer].

(d) What exactly is the difference between the two situations of part
(b)?

6.2.15 Our soft drink dispensing machine has a fill variance of 0.0324
ounces. Resetting the machine does not appreciably change the variance.
After resetting the machine, it is now supposed to dispense about 7.4
ounces of soft drink into the cups. We obtain a random sample of 35
filled cups and determine the mean fill to be 7.53 ounces. Does it appear
the resetting device is working properly?

6.2.16 Over the past year there have been 12 cancers of a certain type
in the southern part of your city. The expected number of such cancers
in a population of that size is 8.4. Could this difference be due just to
chance or does it appear there may be some environmental cause of
cancer present in your city?

6.2.17 (a) You observe 56 boarding passengers for your airline's New
York to San Francisco flight and find that four requested a vegetarian
lunch. On the New York to Chicago flight, only one passenger of 72 re-
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quested a vegetarian lunch . Does this suggest a pattern of any significant
difference in the number of such requests on the two flights?

(b) Your solution in part (a) fails on one important criterion. What is
it?

(c) How might you get around the problem identified in part (b)?

6.2.18 Suppose you have an hypothesis and some data and carry out a
test of significance. Technically, what's wrong with the following con­
clusion? "Our calculations from this data show that the hypothesis is
probably correct (we calculated a big probability)."

6.2.19 When the kids decided their p-value was small, we used the
phrase "the data seems to have detected a real bias." What would be
"illusory" bias?

6.2.20 (a) You work for a tire manufacturer. A random sample has
given a mean life of 28,204 miles. The head of marketing says, "That's
no good! We can't advertise a life of only 28,000 miles-it's got to be
at least 35,000 to 40,0001 Go get another sample!" Comment.

(b) What has the question in part (a) got to do with tests of significance?

6.2.21 (a) You are considering a coin which supposedly is fair. You're
told that it was tossed 12 times showing three heads, the third head oc­
curring on the last toss. This data could be modeled two ways. Compute
the p-value both ways. Assume a 5% criterion for "small p-value." Is it
a fair coin?

(b) What does the example in part (a) tell you about tests of significance?

6.2.22 (a) In Whitus v. Georgia (1967), a black defendant was convicted
by an all white jury. In considering the challenge of this jury, the U.S.
Supreme Court concluded, "Assuming that 27% of the list was made
up of the names of qualified Negroes, the mathematical probabilty of
having seven Negroes on a venire of 90 is 0.000006." Comment.

(b) To complete the level II discussion of part (a), show that even the
most probable value of a binomial distribution will have small proba­
bility. For example, if n = 90 and p = 0.5, what's the probability of the
most probable value?

6.2.23 On March 6, 1978, Newsweek reported on a study by Brigham
Young University sociologist Philip R. Kunz. He found that for a random



6.2 - Tests of Significance 249

sample of 747 persons whose obituaries were published in one year in
Salt Lake City, only eight percent had died in the three months prior
to their birthdays. From this we can see that dying people succeed in
holding out until after their birthday before giving up the ghost .

(a) Carry out an appropriate test of significance for this data to see if
the claim seems believable.

(b) In what ways would this seem to be more appropriate as a test of
significance than as an hypothesis test?

6.2.24 An accounting firm was taken to court because none, of 17 fraud­
ulent invoices, showed up in their sample of 100 taken in the course of
an audit. After the company failed, the accounting firm was sued by a
creditor who had relied on their certification of the company's financial
statements. Was the accounting firm negligent? Assume there were 1000
invoices total. (Ultramares Corporation v. Touche, 1931, after [Finkel­
stein and Levin]).

Chi-Squared Tests for Goodness of Fit, Homogeneity, and
Independence

Suppose we observe 100 rolls of a die to see if the die seems fair. This is
a version of the kids' problem, only more complicated-their coin had
only two faces, the die has six faces. Saying the die is fair means there's a
uniform distribution for the random variable which counts the number
of dots on the uppermost face after one roll. Because we're asking if
the data seems to "fit" a uniform distribution, this type of test is called
a "goodness of fit" test. Of course, there 's nothing sacred about the
uniform distribution. Maybe we think the die is loaded so that the face
with two dots comes up half the time with all other faces equally likely.
Then we're asking if the data seems to fit that distribution.

The trick for this test is an ingenious application of the Xl distribu­
tion. It was first developed in 1900 by Karl Pearson, the father of Egon
Pearson. It was Egon, you may recall, who in the 1930s with ]erzy Ney­
mann developed the procedure of hypothesis tests for industrial quality
control. Karl Pearson is not only the father of Egon, he's often referred
to as the father of modern statistics. Karl Pearson's Xl test is very widely
used. It won 't be difficult for us to understand because it follows exactly
the logic of any test of significance: Compare your data with what you
would expect to observe if the hypothesis were true.
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In the general pattern of the test, we have a fixed number, k, of "cells"
and an hypothesis which specifies the probability, Pi, to obtain an ob­
servation in cell number i. In our example, a cell is a "face of the die."
Because there are six cells, k = 6. If you thought the die fair, each Pi
would be 1/6. But if it's loaded the way we described earlier, P2 = 0.5
and each ofthe other Pi'S is 0.1. With n observations, tip; is the expected
number of observations which should fall in the ith cell. So, on 600 rolls
of a fair die, you expect 100 in each "cell"; that is, you expect each face
to come up 100 times. The expected number of observations for cell i
is usually denoted by E i , a theoretical number. The corresponding ob­
served number is denoted by Os, It's the number of observations which
fall in cell i. Then O, - Ei captures the discrepency between your ob­
servation and what should be expected if the hypothesis is true. Pearson
showed that the following statistic based on the squares of the various
(Oi - Ei)'s has approximately a chi-squared distribution with k - 1
degrees of freedom:

Note that X2 will be large if your observations are mostly quite far
from what you expect, suggesting that what you expect, and so the
hypothesized model, is wrong. Of course, if E is quite large, we should
be ready to allow the corresponding (0 - E)2 to be proportionately
large. That's why E enters the formula in the denominator. At the other
extreme, if each of your observations hit the mark exactly, if they were
each equal to what you expect, then X2 = O. Of course, that's highly
unlikely for random data. If such a suspicious set of data shows up,
fitting the model only too, too well with X2 close to zero, you might
suspect the data has been "massaged"-manipulated to fit the model.
That happens!

Let's continue with our example of the die which we think is loaded
so the face with two dots comes up half the time with all other faces
equally likely. Suppose we roll that die 100 times. Then 50 of the 100
rolls ought to show two dots on the top face. The other faces should
come up ten times each. That specifies the E/s. Suppose we recorded
the results of our 100 rolls in a table like the one below. We can extend
the table with two more columns, recording the expected frequencies
and the terms of Pearson's X2 statistic.
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Face Oi e. io, - Ei )2/ Ei

1 6 10 1.6
2 61 50 2.42
3 9 10 0.1
4 6 10 1.6
5 10 10 0.0
6 8 10 0.4

-- -
100 100 6.12

The sum of the last column is the value of Pearson's X2 statistic for this
data. From the X2 table with five degrees of freedom (k - 1 = 5), the p­
value for this data is greater than 10% . In fact, this observed X2 = 6.12
is not far above the mean of the distribution. The mean of x2, recall,
is the degrees of freedom. So our observations ("not small" p-value)
provide no reason to doubt our description for the loading of this die.

Pearson's X2 test is very flexible. It can be used to test not only for
goodness of fit but also for "homogeneity" and for independence. You
will see how all this works if you'll just ...

Try Your Hand 6.2.25 In the table of the text above, we recorded observations for what
we believed to be a loaded die. Suppose, instead, we had thought the die
fair. Would the data have suggested that, in fact, it was not fair?

6.2.26 With X2 we have a way to test fit to the Poisson distribution
for Bortkiewicz' data on horsekick fatalities . Bortkiewicz, you will re­
call, was the first person to realize that Poisson's abstractly derived
distribution would model real-world situations. In the leftmost table
below, we give Bortkiewicz' data (see Problem 3.8.7). Recall that we
estimated A, the average number of horsekick fatalities per corps-year,
from Bortkiewicz ' data. That gave A ~ 0.61. In the table on the right,
we give that Poisson distribution through X = 4.

B CY X P(X)

0 109 0 0.5434
1 65 1 0.3314
2 22 2 0.1011
3 3 3 0.0206
4 1 4 0.0031

-
200 0.9996
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(a) Calculate the expected number of corps-years for each of the five
values of B, assuming the Poisson distribution with A = 0.61.

(b) Evaluate Bortkiewicz ' observed value of X2•

(c) Does the Poisson model seem to fit Bortkiewicz' data?

(d) Give a verbal description of the p-value calculated in part (b).

6.2.27 In 1865, at the February and March meetings of the Natural
History Society of Brno, Gregor Mendel read his now famous paper
on the transmission of genetic characteristics of garden peas from one
generation to the next. In the table below, we present one set of Mendel's
observations (see [Mendel] p. 23) together with the values which are to
be expected in the light of his theory. Does this data seem consistent
with his theory?

Actually Theoretically
Type of pea observed expected

Smooth yellow 315 313
Wrinkled yellow 101 104
Smooth green 108 104
Wrinkled green 32 35

6.2.28 A test of "homogeneity." You believe that in each of three voting
precincts the proportion of voters for your candidate is more or less the
same. In other words, you believe the three precincts taken together are
"homogeneous." Suppose for the three precincts you observed,

PI = 253/587, P2 = 127/319, P3 = 296/647,

where Pi is the proportion of voters in precinct number i who support
your candidate.

(a) Calculate the Ei's .

(b) Evaluate Xl for this data.

(c) Does the data challenge your hypothesis?

6.2.29 A test for "independence." You want to know if death within
five years from a certain type of cancer is independent of gender. If
the patient survives the first five years, she is considered "recovered."
Consider the data:
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Male
Female

Recovered

127
42

169

Died within
five years

17
8

25

144
50

194

253

The logic for this test follows the pattern of the goodness-of-fit test.
Here's how you do it:

(a) Suppose that 84% of persons suffering from this type of cancer are
still living after five years and that half are male and half female. This is
our first approach to this data; the usual "test of independence" would
not make these two assumptions [see part (f)]. Determine the expected
number, E i , for each category under the assumption that recovery is
independent of gender.

(b) Evaluate Pearson's X2 statistic for part (a).

(c) Based on part (b), does the data suggest that death rate for this cancer
is independent of gender?

(d) In part (b), what else does the data suggest beyond just indepen­
dence?

(e) Suppose you had not known the recovery rate for this type of cancer.
What would you do?

(f) Now we'll do the usual "test of independence," where the recovery
rate and the proportion of male victims are estimated from the data .

Suppose the recovery rate for patients stricken with this type of cancer
is not known and you suspect the population of victims is not divided
SO/50 between men and women. Would the data still suggest that recov­
ery is independent of gender?

(g) Does the data really seem to suggest, as we noted in part (f), that
this type of cancer is dependent on gender?

6.2.30 In Problem 6.2.12, you tested "racial bias" for the Connecticut
v, Teal case by testing the difference in pass rates for blacks and whites.
A more complete analysis would test to see if passing the job promotion
test seems to be independent of race. Do that test (after [Finkelstein and
Levin]).

6.2.31 The X2 goodness-of-fit test cannot show that your data fits the
hypothesized distribution. What can it show?
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6.2.32 In Problem 6.2.23 we reported a study by the sociologist Phillip
R. Kunz who found that only 8% of a sample of 747 persons had died
in the three months prior to their birthday. In fact, his data was more
complete than that; he also found that 46% died within three months
after their birthday and 31 % within the next three months. Now what
do you think?

6.2.33 In Problem 3.6 .16, you gave a theoretical model for the capture­
recapture data of cottontail rabbits given by Edwards and Eberhardt.

(a) Does that data seem to fit the model?

(b) Edwards and Eberhardt also tried estimating p for the geometric
model using the "maximum likelihood estimate" (MLE), an important
technique for estimating unknown parameters. In many cases, MLE just
gives the obvious estimate. For example, MLE for the mean of a normal
or a Poisson model is X . In the geometric model, because J1 = l ip,
you'd expect to estimate p by 11X. Well, that 's the maximum likelihood
estimate! How well does Edwards and Eberhardt's data fit the geometric
distribution if you use the MLE estimate for p?

Hypothesis Tests

Introduction
We turn now to the Neyman-Pearson hypothesis test. Before you begin
this discussion, review Section 6.1 where we compared and contrasted
tests of significance with hypothesis tests. You need a clear map of the
territory before entering new jungles!

The prototypical example of an hypothesis test arises in industrial
quality control. For instance, in a manufacturing process, it may be
impossible or impractical to insist on absolutely no defectives. An hy­
pothesis test can be set up to monitor the proportion of defective items.
This situation arises for certain types of highly complex electronic com­
ponents, to name just one example. Or again, in the manufacture of
products which contain an undesirable contaminant-chemical com­
pounds, for example-it may be impractical to strive for a zero level of
contaminant. So you monitor the contaminant level. Such situations are
legion.

Let's think about the first of these examples. Of course, any real-world
situation will be more complex than our example; industrial quality con­
trol is not a matter of one simple hypothesis test! Because "zero defects"
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in the manufacturing process is often an unattainable goal, the propor­
tion of defects must be monitored. Suppose you monitor the output on
a daily basis by obtaining a random sample of that day's output. If the
sample provides evidence of an unacceptably high proportion of de­
fects, you will, let us say, stop production and take corrective action. So
you require a decision procedure to obtain and analyze daily a sample
of the day 's output and to decide if corrective action is required. The
hypothesis test provides that decision procedure.

To be specific, suppose the decision criterion is "with more than 1%
defects, take corrective action." The criterion, note, is formulated in
terms of a condition on the parameter p, the proportion of defective
items from the day's output. The condition is p > 0.01. If the condition
holds, corrective action is required.

There are a number of elements in this situation:

• TWO COURSES OF ACTIONS: "stop production and take corrective
action" or "stay in production."

• TWO ERRORS, correspondingly, which may occur: "stop produc­
tion unnecessarily" or "stay in production even though you're
producing too many defects."

• a CONDITION ON THE PARAMETER, P > 0.01, which signals a
problem calling for corrective action.

• a PERIODIC PROCEDURE of sampling day by day from that day's
output, analyzing the data, and deciding between the two possi­
ble courses of action.

Of course, it's not enough to just say "two errors" are possible. We'll
have to think about controlling those errors. But first let 's take a moment
for you to . . .

6.3.1 (a) Why would you ever make an error in the situation of the
text above? Why would you "stop production unnecessarily" or "stay
in production even though you're producing too many defects"?

(b) How might you control the error in part (a)?

(c) Although possible, it's not likely you would be misled into a wrong
decision by an atypical sample . Why is it not likely?
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Before looking further at the possible errors, let' s learn the standard
format for setting up an hypothesis test along with some standard ter­
minology and notation. In the example, one of the actions is routine
("stay in production"), the other exceptional ("take corrective action,"
if it's not exceptional, you'd better shut down production right now!).
The point of the test is to flag that "exceptional" or alternative action.
The condition on the parameter which flags the exceptional action is
called the alternative hypothesis, denoted HA. In the example, you'll
"stop production and take corrective action" only if there's evidence
the proportion of defective items exceeds one percent. That condition
on p is the alternative hypothesis: p > 0.01. The term "alternative hy­
pothesis" could be confusing. It's "alternative" only because it flags an
exceptional action. From the point of view of the test, the alternative
is, in fact, the main hypothesis. After all, it's precisely that "exceptional
action" that the test wants to flag.

The null hypothesis, Ho, simply asserts that the parameter takes on
the borderline value from the alternative hypothesis. It plays a purely
logical role in the hypothesis test by giving us a value of the parameter to
work with. By contrast, the alternative hypothesis plays a very practical
role. As we'll see later, the analysis of the data will be carried out by
assuming the null hypothesis. Here's the standard format:

H o : p = 0.01

H A : p > 0.01.

(p < 0.01 irrelevant),

The test given here is called a right-tailed test because evidence for HA
would be a large value of the estimator p, a value in the right tail of
the distribution of the estimator. At the side of the hypotheses we note
the irrelevant values of the parameter. In the example, fewer than one
percent defective items is irrelevant. Certainly, you're not going to stop
production because "not enough defectives" are being produced. That's
absurd!

Note how you set up the hypotheses. First, you identify the excep­
tional action the test is trying to flag and write down the alternative
hypothesis. It's the condition on your parameter which flags the excep­
tional (alternative) action. Then you write down the null hypothesis,
following the standard format by writing the null hypothesis above the
alternative. All other values of the parameter should be irrelevant. One
caveat: We're not following the standard practice exactly. Standard prac­
tice confuses the logic of the test somewhat-excuse our saying so-by



6.3 - Hypothesis Tests 257

combining the irrelevant values of the parameter into the null hypoth­
esis. We'll not do that. It will be much clearer if you follow the format
given above which writes the irrelevant values out to the side. And of
course, you should check that those values really are irrelevant.

There are other possibilities for the hypotheses. In "acceptance sam­
pling" for quality control, you inspect a sample from an incoming ship­
ment of items before you accept the shipment. If there's evidence from
the sample that too many items are defective, you refuse to accept the
shipment. By way of example, let's say you're receiving machine parts
from a supplier under a contract that specifies a diameter of 3.2 mm for
the parts. The contract may also specify that you will reject a shipment
if a sample provides evidence that the mean diameter is too small. "Too
small" might, for example, mean fL < 3.15 mm. Then we set up the
hypotheses as follows:

H o : fL = 3.15

HA : fL < 3.15.

(fL > 3.15 irrelevant),

This is call a left-tailed test because small values of the estimator will
be evidence for HA • Here, it's implicit in the statement of the problem
that we're looking for small values of fL, large values are irrelevant. In
another situation that might not be true.

We should note here that "acceptance sampling," although it illus­
trates well the logic of hypothesis tests, is much less common in modern
quality control than formerly. It has been largely replaced by the more
efficient (and more sophisticated) methods of statistical process control.
Instead of waiting until the end of the process, after you've already pro­
duced a number of defective items, you monitor the process itself. When
you see a problem developing, correct the situation BEFORE you produce
any defects.

Finally, suppose the contract with your supplier says the diameters are
to be 3.2 mm and you intend to reject a shipment if the average diameter
is NOT 3.2 mm. Then your hypotheses are

H, : fL = 3.2,

H A : fL i= 3.2.

This is a two-tailed test. In real-world problems, two-tailed tests will not
be common for the simple reason that you would usually contemplate
a different action depending on whether fL < 3.2 or fL > 3.2. They
are common for the difference of two parameters, if you're looking for
evidence they are NOT EQUAL. Now please ...
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6.3.2 Think about the left-tailed test in the text just above.

(a) What kind of "evidence" would indicate that /-l < 3.15?

(b) The contract was written for a mean diameter of 3.2 mm. Why didn't
we set the alternative hypothesis at /-l < 3.2 (instead of /-l < 3.15)?

(c) It's unrealistic that you would want to monitor only the mean di­
ameter of incoming machine parts. Why?

(d) Instead of monitoring the mean diameter, you might want to mon­
itor the diameters through a proportion. What proportion?

6.3.3 Suppose the contract with your parts supplier allows you to reject
a shipment if there's evidence of too much uncertainty in the diameters
of the parts. Let's explore this situation a bit.

(a) Assuming an hypothesis test is intended, the word "evidence" in the
phrase "... evidence of too much uncertainty" refers to what?

(b) What parameter will you be monitoring?

(c) If the mean diameter is exactly 3.2 mm and the standard deviation
exactly 0.025 mm, what proportion of the parts would be useless? As­
sume a part is useless if it has a diameter less than 3.15 mm.

(d) Redo part (c) assuming the standard deviation is 0.05.

(e) Suppose the contract allows for rejection of a shipment if there 's
evidence the standard deviation of diameters is greater than 0.025 mm.
Set up the hypotheses for this test.

(f) Why is rr2 < 0.000625 irrelevant in part (e)?

(g) Does a sample with 82 > 0.000625 provide evidence to support HA?

6.3.4 The two hypotheses of an hypothesis test do not play symmetric
roles. The roles of the two hypotheses can each be characterized by one
simple word-what are those two words?

6.3.5 Set up the hypotheses for each of the situations in parts (a)-(d).
Keep your notes for this problem, we'll return to it in several other
problems.

(a) Suppose that any machine part from your manufacturing process
with a diameter less than 3.15 mm is entirely useless, but otherwise the
part is functional. You want to monitor the process to avoid too many
useless parts. Assume you're willing to discard up to one in 50 parts.
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(b) You are campaign consultant for a presidential candidate. One par­
ticular district seems certain, with some 84% of voters supporting your
candidate. Nevertheless, over the coming year before the election you
will monitor support in that district on a monthly basis. If it ever ap­
pears that support in that district has fallen more than three percentage
points below the present level, you will step up the campaign effort in
that district.

(c) You're monitoring incoming shipments of chain links as they arrive
each month from your supplier. The contract with your supplier guar­
antees a mean length for the links of at least 1.2 ern and permits you to
reject a shipment if on the basis of a random sample it appears not to
meet specifications.

(d) The chains which you're manufacturing in part (c) contain 92 links.
You want to write a contract with your supplier of chain links that
guarantees no more than one percent of the chains vary in length by more
than a centimeter. So in the contract with the supplier you've guaranteed
that the standard deviation for the lengths of chains is at most one-third
of a centimeter. Why "one-third"? Set up your hypothesis test to reject
a shipment if it appears on the basis of a random sample not to meet
specifications.

(e) In part (d), the contract will not contain an "at most one-third of a
centimeter" condition. What condition will it contain?

Now let's take a more careful look at the possible errors involved in
an hypothesis test. For any real-world context, you'll find a bewildering
array of possible errors-human error, machine error, careless error,
intentional error (sabotage). Customer errors, billing errors, specifica­
tion errors. Errors of omission, errors of commission. Some trivial, some
serious. Some recognized, some not. Cruel errors, funny errors . . . !

But from a purely formal point of view, from the point of view of the
logic of an hypothesis test, there are only two possible errors, called
type I error and type II error, as displayed in the table below. The
table shows the four combinations of possible actions given the pos­
sible "states of the world." There are two "states of the world," either
HA is true or it's false ...
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State of the world
(unknown to us)

Our decision
(based on the data)

HA false
("Ho true") HA true

Act on Correct Type II
Ho decision error

Acton Type I Correct
HA error decision

We use the term "act on H;" as shorthand to mean "take the routine
action" as opposed to the alternative "exceptional" action. Similarly,
"act on HA" means "take the alternative action." Note that this table is
partly theoretical. After all, in real life we never know the true state of
the world. If we could know that, there would be no need of a statistical
analysis based on such partial and possibly misleading information as a
random sample!

Note the phrase "H, is true." It has two very distinct meanings, one
logical and the other practical. Think of our original example with H, :
P = 0.01 and HA: P > 0.01. Logically, H, means P EQUALS one percent;
it means we have EXACTLY one percent defectives. But from a practical
point of view, p won't be exactly one percent. It's either more or less. If
it's more, HA is true. If it's less, p takes one of the "irrelevant" values
written out to the side of H, and we say-in its practical sense-that
"H, is true". Those values are irrelevant only from the point of view of
the logic of the test; we do not claim they are irrelevant beyond the test
itself. Note how the logical meaning for "H; is true" is the worst case
of the practical meaning. Taken together, they're the negation of HA. In
other words, HAsays p is greater than 0.01, H, says it isn't.

Let's summarize the two types of error as described in the table. Type
I error is wrongly acting on HA-acting on HA when, in fact, H, is
true (although you didn't know that). Type II error is wrongly acting on
Ho-acting on H, when HAis true. These errors are conditional events,
conditioned on the unknown state of the world. This understanding
is important for interpreting the probability of error; it's a conditional
probability. Recall Problem 6.1.3 and you'll see the difference. The con­
ditional probabilities for the two types of error are denoted respectively
by Q and {3. In the example,

Q - P(type I error)

- P(act on HAIHo is true)
- P(act on HAlp = 0.01),
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f3 - P(type II error)

- P(act on HolHA is true)
- P(act on Holp =?).

Here the lack of symmetry of the hypotheses surfaces again (seeProblem
6.3.4). Note that a is completely specified, but f3 is not. For a, we have a
specific value for p given by the null hypothesis (in its logical meaning).
On the other hand, f3 remains indeterminant because the alternative
hypothesis does NOT give a specific value for p.

Because the null hypothesis gives a precise value of p, we can control
type I error by specifying a in advance. This means we're specifying an
acceptable probability of such error. We'll see later how it's possible to
do that. This is analogous to control of error in a confidence interval
problem by specifying the confidence coefficient in advance. There, even
though the interval may NOT contain the parameter, we believe it does.
If it doesn't, we're in error. We "control" this error because we avoid it
95% of the time (assuming a confidence coefficient of 95%).

By contrast, we cannot control type II error so easily because we
can't compute f3 exactly. That would require a specific value of p which
we don't have because now it's HA that's true and HA does NOT give
a specific value for the parameter. For most of our discussion in the
rest of this chapter, we take the point of view that type II error is not
controlled at all. At the end of the chapter we'll see how, in fact, it's
possible to exercise some rather hypothetical control over type II error.
Hypothetical, yes, but important from a theoretical point of view.

So the testing procedure is more conclusive when it decides in favor
of the alternative hypothesis. In that case, the probability of error is
completely under our control. Wecannot eliminate that error, but we can
specify its probability in advance. This is why the alternative hypothesis
is the principal hypothesis from a practical point of view. It's important
to bear this in mind when setting up an hypothesis test and in interpreting
the results of the test. We'll comment further on this in the text below
and in the exercises. In view of this privileged position of the alternative
hypothesis, the hypothesis test is thought of as "trying" to decide in
favor ofHA •

This discussion, remembering that type I error is the error we control,
suggests a second method of determining the direction of the test (left,
right, or two tailed). Obviously, if one error is more serious than the
other, the test should control for the serious error. For that to happen,
the serious error must be type I error. So you choose the alternative
hypothesis to force the more serious of the two errors to be type I error.
This is a different way of thinking about the hypothesis test. Now it's
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not a matter of focusing on an "alternative action" to be flagged by
the data; it's rather a question of setting up a decision procedure which
controls for a particular error.

Finally, two related technical terms: The significance level of the test
is the probability we're misled by the data to act on HA even though it 's
false. Note that the significance level is just a, the probability of type I
error. Significance levels of 1%,5%, and 10% are considered standard,
although we'll ask you to set up tests with other significance levels to
assure that you master the procedure.

There is also a special name for 1 - (3. It's called the power of the
test. It is NOT the probability of an error; it's the probability of a correct
decision. The hypothesis test is trying to decide in favor of HA , so the
power of the test is the probability to succeed in what you were trying
to do. It's the probability the data correctly leads you to act on HA:

1 - (3 = P(act on HAIHA is true)

= P(the test "succeeds").

Because we do not, for now, exercise control over type II error-over
(3- we also do not exercise control over the power.

Now you're ready to ...

6.3.6 Let's explore a bit.

(a) Why must the alternative hypothesis be the "principal" hypothesis
from a practical point of view?

(b) At what point in the monitoring procedure do we determine the
significance level?

(c) Why is the term "power of the test" very reasonable heuristically
speaking? That is, why does it make sense from a practical, real-world
point of view?

(d) What is an hypothesis test "trying" to do?

(e) By contrast, what is a test of significance "trying" to do?

(f) The table which defines the types of error at the beginning of this
subsection is unrealistic. What's unrealistic about that table?

(g) Why, from a practical point of view, should the proportion of de­
fective items from a production process be either more than one percent
or less, but not EQUAL to one percent?
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(h) In speaking about the "irrelevant" values of p, we said "those values
are irrelevant only from the point of view of the logic of the test, we do
not claim they are irrelevant beyond the test itself." Explain this.

(i) Which decision is more conclusive, "act on H,." or "act on HA"?

(j) What's wrong with this: HA : P> 0.01?

6.3.7 Let's think again about how to set up an hypothesis test.

(a) Given a real-world problem, how do you determine the direction of
an hypothesis test?

(b) Suppose you are testing a new medical procedure where you have a
choice between the two errors: "using the new procedure when it's not
really more effective than the old" and "using the old procedure when,
in fact, the new procedure is more effective." Describe a situation for
which the second of these errors would probably be considered more
crucial than the first.

(c) Suppose under the old treatment for a very serious disease the recov­
ery rate is one in 1000. Set up the hypotheses for testing a new treatment
to determine if it should be accepted for use. Suppose there is little risk
associated with the new treatment.

6.3.8 Let's return to the original quality control example, where we
were monitoring the proportion of defects, with HA : p > 0.01. If we
"control error" by specifying in advance a five percent chance of type I
error, then we can expect about five times out of 100 to halt production
for corrective action when it was not really necessary. True or false?

Real-World Interpretation of the Conclusions and Errors

As we've seen, there are two possible conclusions for an hypothesis test.
Formally, either you reject the null hypothesis ("reject H,") or you fail to
reject the null hypothesis ("fail to reject H;") . In any real-world context,
the meaning of each of these two conclusions and of the corresponding
errors must be clear. For the quality control example, we had these
hypotheses:

Ho : p = 0.01 (p < 0.01 irrelevant)

HA : p > 0.01 p is the proportion of defective items
from our production line
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Assuming a 5% significance level, here are the possible conclusions and
errors in their real-world interpretations:

Reject Ho : Our evidence suggests quality control has weakened,
stop production and take corrective action.

Fail to reject Ho : The test is inconclusive, there's no evidence that
quality control has weakened, stay in production.

Type I error: With a 5% risk of error, we stop production un­
necessarily. The proportion of defective items does not exceed our
criterion even though we believe it does based on misleading evi­
dence.

Type II error: With an unknown risk of error, we continue in
production when, although we didn't know it, we're producing
more defective items than our quality control criterion permits.

Note how the formal conclusions lead to action in the real world. "Reject
H;" means "act on HA," "fail to reject H;" means "act on Ho ."

Why does "failure to reject H," mean the test is inconclusive? Well, we
don't control the error (type II error) in that case. Because the error is not
controlled-because the probability of that error could be quite large­
we should draw no conclusion. But it's not that WE are inconclusive!
Even when the test is inconclusive, some action is required. In the real
world, you're always constrained to take action in some form or other.
Because the hypothesis test is inconclusive, our action is not based on
the test but rather on some other, prior information.

In the example, if there's no evidence of poor quality, you "stay in
production." But you've not proven quality is in control, it's just that
if there's a problem, you don't know about it! Your action ("stay in
production") is based on the fact ("prior information") that you have a
production process which is well designed, free of problems, and run by
well-trained workers. With no evidence to the contrary, it makes sense
to let the process go forward.

Now look at the acceptance sampling example:

Ho : J.L = 3.15 (J.L > 3.15 irrelevant),

HA : J.L < 3.15 J.L is the mean diameter of parts
in the present shipment.

Reject Ho: It appears the machine parts we just received from our
supplier are unacceptably small (mean diameter lessthan 3.15 mm).
There's a five percent chance for error here.
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Fail to reject Ho : The test is inconclusive. There's no evidence of
a problem with the present shipment of parts. Accept the shipment.

Type I error: There's a 5% risk that we reject this shipment of
parts even though, contrary to our misleading evidence, the mean
diameter is not below 3.15 mm.

Type IT error: We accept this shipment of parts even though on
average they are too small. We found no evidence of this problem.
There's an unknown risk of this error.

6.3.9 For the situations of Problem 6.3.5(a)-(d), you have already given
the parameters and hypotheses. Now, in real-world terms with as much
detail as the problem allows, state the possible conclusions and errors
for those situations.

6.3.10 Contrast the formal meaning and the real-world meaning for

(a) the two possible conclusions for an hypothesis test;

(b) the two possible errors;

(c) the statement "H, is true";

(d) the statement "HA is true";

(e) the statement "the test is inconclusive."

6.3.11 In the acceptance sampling example, you're checking only the
average diameter. That says nothing about individual parts and yet it's
the individual parts you finally have to work with. Doesn't that leave
open the possibility that an individual part will be much too big or much
too small?

Moving in the Direction of Commmon Practice

It is very common in actual practice to use an hypothesis test for a one­
time decision. So then we don't have a monitoring procedure at all and
there's no question of an "error rate" among many decisions, some of
which may be wrong. The justification for the error analysis is to think
of what WOULD happen if the decision were made many times.

In such a context, "control of error" must be based on a willingness to
consider the long-term odds as a relevant guide in a one-time situation.
Is it? Suppose you're going to place a bet on one toss of a biased coin.
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You'll never see this coin again, no bets at a later date. Would you
consider it relevant to know that the coin came up heads 824 times on
the last 1000 tosses? Some would say no-after all, either it comes up
heads on your one toss or it does not. Others would say yes. They would
say the past history of this coin seems to suggest about an 80% chance
of heads. But there 's a problem. The word "chance" referring to your
one bet does not refer to a theoretical relative frequency. You're using
some other definition of probability. What definition? At this point, we
turn you over to your local philosopher! A subjective interpretation of
probability is often used in such problems.

Well,we're not among the "some," we're among the "others." In other
words, from here on we'll assume the long-run odds are informative even
for a one-time decision. To see some examples please ...

In these problems, identify the parameter and its estimator in real-world
terms, set up the hypotheses, and then give the real-world conclusions
and errors. To identify HA' maybe you can recast the problem into the
form "follow routine action unless alternative action seems appropri­
ate." That would pick out HA • Or maybe you can identify H A by seeing
what type I error must be.

6.3.12 The purchasing department of your company must decide wheth­
er to continue with the same supplier for a certain machine part or possi­
bly to switch to a new supplier. After some questioning, you find they're
prepared to stay with the present supplier in the absence of strong ev­
idence to back the new supplier's advertising claim that their part has
a mean life of greater than 310 hours. The present supplier provides
process control documentation showing a mean life of 285 hours for
their part. You suggest to the purchasing department that they might
want to control the risk of unnecessarily switching to a new supplier.
Together, you decide to allow a one percent risk.

6.3.13 You are campaign manager for one of the mayoral candidates
in the upcoming election. Your candidate is under pressure by her sup­
porters to launch an expensive series of television spots. They claim that
more than 30% of the voters would see the spots. You have decided
to go ahead with the series of spots, but you want to do a preliminary
study at the five percent significance level to see if there is evidence that
fewer than 25% of the registered voters will see the spots, in which case
you will not launch the series.
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6.3.14 You are campaign manager for one of the mayoral candidates
in the upcoming election. Your candidate is under pressure by her sup­
porters to launch an expensive series of television spots. They claim
that more than 30% of the voters would see the spots. You have de­
cided to do a preliminary study. You decide to take a sample of the
registered voters and allow no more than a five percent risk of launch­
ing this series if fewer than 25 % of the registered voters will see the
spots.

6.3.15 By taking appropriate random samples, you want to see if the
students at your school have higher SAT scores than at Bad U. If your
study reveals a significant difference, that is, a difference of more than 15
points, you will publish the good news in the school newspaper. Allow
a ten percent risk of error.

6.3.16 By taking appropriate random samples, you want to see if the
students at your school have higher SAT scores by at least 15 points
than at Bad U. You have decided to allow a ten percent risk of missing
a chance to boast.

6.3.17 Bytaking appropriate random samples, you are going to attempt
to determine if the students at your school have higher SATscores by at
least 15 points than at Bad U. You have decided to allow a ten percent
risk of falsely publishing your school's superiority.

6.3.18 The Internal Revenue Service is considering auditing all income
tax returns which show a certain set of common characteristics on the
assumption that those characteristics in combination flag an attempt
at tax evasion. They want to test this hypothesis and want to run a
risk of no more than one percent of implementing this policy when the
proportion of returns which indeed reveal attempts at evasion is less
than ten percent.

6.3.19 The Internal Revenue Service is considering auditing all income
tax returns which show a certain set of common characteristics on the
assumption that those characteristics in combination flag an attempt at
tax evasion. They have decided not to implement this new policy unless
there is evidence at the ten percent significance level that more than 20%
of such returns reveal attempts at evasion.

6.3.20 We need to maintain strict control over the variability of the
thickness of the coating on the coated paper which we manufacture.
Our criterion for the variability is that the variance of the thick-
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ness should not exceed 0.3 mm. You are requested to set up a qual­
ity control procedure for this situation with five percent significance
level.

You've learned how to set up an hypothesis test and how to interpret the
possible conclusions and errors. Now it's time to see exactly how you
decide-based on the data-whether to reject H, or not. To see this, we
take up once more our quality control example:

n, : p = 0.01 (p < 0.01 irrelevant),

HA : p > 0.01 p is the proportion of defective parts
from the production line.

The probability of type I error is o, the significance level of the test .
Suppose we've specified it to be five percent. Here 's the picture for p:

Q = 0.05 = P (reject H; IH o is true)

we must put 5% of
the area here

0.01 pc= ?

.- - - - - - fail to reject H; I reject H; ------

The cutoff value of Pwhich separates "fail to reject H;" from "reject
H;" is called the critical p, denoted Pc. When P > Pc, we reject Ho ,

otherwise we fail to reject Ho• Those pvalues which reject H, are called
the rejection region for the test,

rejection region: {p IP> Pc}.

You determine the specific value of Pcthis way: Because Z = 1.645 puts
five percent of the area into the right tail of the Z distribution, Pc must
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standardize to 1.645:

1.645 = Pc - 0.01 .
s.e,

The standard error for Pis calculated using p = 0.01 because we assume
the null hypothesis true. To complete the calculation we need to know the
value of n. Suppose we have been given n = 700. Solving the equation
above, we find Pc = 0.0162, and so the rejection region is

rejection region: {p IP> 0.0162}.

Note how we guarantee a = 5%. We guarantee a 5% chance to reject
H, given that it's true. First, we assume the null hypothesis true. Then
the condition "given Ho true" is seen in the picture this way:

• the picture is centered on p because p is unbiased,

• p = 0.01 since we assume Ho true.

This is the logical role of the null hypothesis in an hypothesis test. It
provides a specific value of the parameter and so a specificcenter for the
distribution of the estimator because the estimator is unbiased.

The Decision Rule and Test Statistic

In an hypothesis test, the "decision rule" is for someone like a production
line supervisor. For the quality control example above, the decision rule
would be

On any day in which more than eleven items in the sample are
defective, stop production and take corrective action. [Hint: 1.62%
of 700.]

In general, the decision rule takes the form

If the value of the estimator computed from the sample falls in the
rejection region, then act on HA•

Sometimes it's convenient, as we just did, to express the decision
rule in terms of the estimator. But sometimes it's more conveniently
expressed in terms of the test statistic, the computed value of Z derived
from our sample. In the quality control example, the test statistic is this
value of Z:

p- 0.01
s.e.
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For a mean, the test statistic would be

x - 1-£0 X - 1-£0
O'/.,fii = Z or s/.,fii = t,

Here, 1-£0 is the value of 1-£ specified in the null hypothesis. For a variance,
the test statistic would be

(n-l)s2 2
2 = X,

0'0

where 0'5 is the value of the variance given in the null hypothesis.
In an hypothesis test for 1-£, if we must estimate 0' by s, the rejection

region will change from one sample to another because the standard
error now depends on s. In this case, you may want to express the
rejection region and associated decision rule in terms of the test statistic
instead of the sample mean. If the test statistic is t,

rejection region = {t It> tc },

where tc is the value of t which puts a into the right tail of the t­
distribution with n - 1 degrees of freedom . If a = 0.05 and n = 10,
say, then tc = 1.8331. In this case, the decision rule will be:

From the sample data calculate

X - 1-£0
s/.,fii = t,

If it's greater than 1.8331, act on HA•

So the rejection region and the decision rule can be given in two
ways, either in terms of the value of the estimator, or in terms of the test
statistic and its standard model (Z, t or X2 ). In more advanced courses,
you would see still other models for the test statistic.

Now please . ..

6.3.21 In each of the situations of Problem 6.3.5, set up the rejection
region and state the decision rule. Do this first with a 5% significance
level and then with a 10% significance level. Save your results for the
continuation in later problems.

(a) Each week, you'll be taking samples of 300 parts.
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(b) Each month, you'll interview 50 registered voters randomly chosen
from the registration list for that district .

(c) You'll take a sample of ten links each month from the incoming
shipment.

(d) Follow the same procedure as in part (c).

6.3.22 Here we provide periodically gathered data for Problem 6.3.5.
What conclusion would you draw in each case for the 5% significance
level test of that problem?

(a) In each of eight successive weeks, you observed the following num­
ber of useless parts: 2, 11,0,0, 1, 14,3, 7.

(b) Among the 50 voters interviewed in each of eight successivemonths
you found the following number who support your candidate: 41, 31,
44,42,38,27,29,46.

c) In each of eight successivemonths, you observed the following results
for the ten chain links which you sampled from that month's shipment:

1.28 1.24

0.09 0.11

(d) Same data as part (c).

1.17 1.26 1.22 1.02 1.11 1.21

0.10 0.09 0.08 0.09 0.09 0.10

6.3.23 For part (c) of the previous problem:

(a) Suppose in one month you had observed a sample mean of 1.02 ern
with 82 = 0.22. What conclusion would you have drawn?

(b) From a practical point of view,what's the problem with the shipment
described in part (a)?

Now we continue Problems 6.3.13 through 6.3.20 by providing data.
The problems below are numbered c6.3.13, and so on to show that
we're continuing previous problems. You'll find the hypotheses for each
situation stated in the level I answers to the original problems.

For each problem, you're given a summary of several sets of data. In
Problem c6.3.13(a), for example, 43 of the 130 registered voters would
seeyour television spot. In part (b), 30 of the 130 registered voters would
see the spot .

For each problem, first determine the rejection region and state the
decision rule in real-world terms. Then using the given data, determine
for each part of each problem whether you would reject Ho • Finally,
recall what that conclusion means in real-world terms.
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c6.3.12 You obtain a sample of 15 parts from the new supplier for
which the mean and standard deviation, respectively, are

(a) 287,35; (b) 326, 27; (c) 326,21; (d) 352,22; (e) 364, 82.

(f) What assumption are you making in this problem? Is it reasonable?

c6.3.13 You interview a randomly selected sample of 130 registered
voters and find that the number who would see your television spot is

(a) 43; (b) 30; (c) 27; (d) 22; (e) 16; (f) 11; (g) 8.

c6.3.14 Use the same data as in Problem c6.3.13.

c6.3.15 Suppose the standard deviation for SAT scores at your school
is 157 and at Bad U, 112. You obtain the SAT scores of 42 randomly
selected students from your school and 31 randomly selected Bad U
students from the Student Records Office of each school and find the
mean score of the samples from your school and from Bad U to be
respectively

(a) 1116,1143; (b) 1132, 1108; (c) 1148, 1093; (d) 1152, 1015 .

c6.3.16 Use the same data as in Problem c6.3.15.

c6.3.17 Use the same data as in Problem c6.3.15.

c6.3.18 The Internal Revenue Serviceobtains a random sample of 1215
tax returns and finds that the number which show evidence of attempts
at tax evasion is

(a) 280; (b) 260; (c) 215; (d) 170; (e) 145; (f) 130.

c6.3.19 Use the same data as in Problem c6.3 .18.

c6.3.20 Suppose on a weekly basis you measure the thickness of each
of a sample of seven pieces of paper from your manufacturing process.
Here are the observed standard deviations for the thicknesses:

(a) 0.28; (b) 0.54; (c) 0.98; (d) 1.05.

6.3.24 Aside from the parameter, Problem 6.3.20 is different logically
from Problems 6.3.12 through 6.3.19 in another important way. What
is it? What justifies that difference for the other problems?
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p-values for Hypothesis Tests
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Now that you're clear about the logic of tests of significance and hypoth­
esis tests, let's look at the question which we have alluded to so often:
How do those two logically distinct procedures come to be combined in
actual practice?

It's just a question of computing p-values for an hypothesis test, and
that's easy to do. Let's look again at the quality control example. Sup­
pose we obtain a sample for which p is 0.0391. Because this is bigger
than the critical p of 0.0162, we will "reject Hi;." The picture of the
sampling distribution is

0:= 5%

om pc= 0.0162

r p~ volue < 5%

<.> our p = 0.0391

-- - - - - - fail to reject H o - - - - - I ----- reject Ho - - - - - --

Note that the p-value for our observed 0.0391 is going to be less than
five percent because p falls in the rejection region. If it did not fall in
the rejection region, the p-value would be greater than five percent. So
the p-value provides a new way of expressing the decision rule: "If the
p-value is less than 0:, reject Ho ." But this works only if the observed
p falls in the right tail! On those days when you get a p less than one
percent, you do not need to compute a p-value at all-it's obvious that
such data does not support HA!

So we get ...

THE p-VALUE DECISION RULE (for a one-tailed test): If the data does
not fall in the wrong tail, compute the p-value. If this computed
p-value is less than 0:, reject Ho •

Here, the "wrong tail" is the left tail of a right-tailed test or the right
tail of a left-tailed test.

Finally, if you're doing a two-tailed test, you compare the p-value with
0:/2 instead of 0: because only half of 0: is in the tail with your observed
data. However, for two-tailed tests, it's customary to report a two-sided
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p-ualue, the usual p-value multiplied by two, and compare that with Q.

SO we get

THE p-VALUE DECISION RULE (for a two-tailed test): Compute the
two-sided p-value. If this computed p-value is less that Q, reject Ho •

Once more, please . ..

6.3.25 (a) For the data in Problems c6.3.13-c6.3.20, calculate p-values
and note how the p-value decision rule obtains the same conclusion
without reference to the rejection region. Well, OK, you don't have to
do it for ALL that data-just do enough to see how the p-value decision
rule works!

(b) When is the rejection region and its decision rule more appropriate
than the p-value decision rule?

Controlling Power and Type /I Error

The power of an hypothesis test is the probability your data correctly
leads you to act on HA:

1 - f3 = the power - P (act on HAIHA is true)

P (the test "succeeds").

This concept has both practical and theoretical importance. From a
theoretical point of view, the power is an important criterion for choos­
ing among possible tests . There 's an elaborate theory of optimal tests
in mathematical statistics that attempts to identify, for example, "uni­
formly most powerful" tests.

To see the practical importance of the concept of "power" for a test
and to see how we actually work with it, recall our original quality
control example:

n, :p = 0.01 (p < 0.01 irrelevant)

HA : p > 0.01.

Here, the power is P(act on HA Ip > 0.01), the probability we succeed in
catching a bad situation. It 's the probability we stop production and take
corrective action when we really were producing too many defectives.
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In the quality control example, the rejection region, assuming a 5%
significance level, is {p Ip > 0.0162}. Because we "act on HA" exactly
when the data gives a value of p in the rejection region, the power for
this test is

1 - (3 = P(p> 0.0162 Ip > 0.01).

Note that we don't know the value of p here; we only know it's greater
than one percent. To sketch a picture for the power, we need to pick
a value of p. Here's a picture centered on a value of p greater than the
critical 0.0162:

- - - - - -

I

pc= 0.0 162

fail to reject tt; I reject n;

p = ?

---- - -

the power

In this picture, clearly the power is greater than 50%. That's because we
centered the picture on a value of p in the rejection region. Of course,
it could be that p is only slightly bigger than 0.01, not big enough to be
in the rejection region. In that case, the power is less than 50%:

p =?

- - - - - - fail to reject Ho

I

~ 0.0162
I reject n; ----- -

Now let's compare the picture for the power with the picture we used
to determine the rejection region . To determine the rejection region, we
assumed H, true, centering the picture at p = 0.01. Here are the two
pictures, superimposed. The dotted picture is the one from which we
determined the rejection region:
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0 =5%

1 - (3 = the PO"~ ·

11 = o.or )
O.OW2

-- - - - - - foil to reject Jlo I

p =?

reject H0 - - - - - -

Try Your Hand

The difficulty in controlling the power-or equivalently, controlling
type II error-is that HA' unlike H o, does NOT give a specific value to
work with for the parameter. So we control the power only hypothet­
ically by supposing values for the parameter. Suppose p = 0.04 in the
quality control example, then with n = 700, the power is

P(p > 0.0162 Ip = 0.04) = P(Z > -3.21)

= 0.9993.

That's fairly strong power! If pis 0.025, the power is reduced to about
93%. Well, you should do some power calculations. Please just . ..

6.3.26 You're interested in the "power" a test has to flag a situation
in which HA is true. For the quality control example in the text above,
compute the power for the following values of p. Note that we've only
chosen values of p for which HA is true.

(a) p = 0.015; (b) p = 0.02; (c) p = 0.035; (d) p = 0.01;

(e) p = 1.

6.3.27 (a) In Problem 6.3.26, why did we only chose values of p for
which HA is true?

(b) Because it's the probability the test "succeeds," the power should
certainly be reasonably large. In the quality control example discussed
above, what's the smallest value of p which would give a power of at
least 75%? Give your conclusion in real-world terms.
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6.3.28 Calculate the power for each of the tests in Problem 6.3.5 (con­
tinued in Problem 6.3.21) at the following values of the parameter:

(a) p = 0.025, p = 0.035, p = 0.05 (recall: n = 300 and Pc= 0.0333);

(b) p = 0.75, p = 0.65 (recall: n = 50 and Pc= 0.7187);

(c) J.L = 1.1, J.L = 1.0 assume (J2 = 0.1 (recall: n = 10 and X c ­
1.0167);

(d) (J2 = 0.0065 (recall: n = 10 and s~ = (0.04752 ) = 0.0023).

The power of an hypothesis test depends on the true value of the para­
meter. But we don't know that true value; it could be any of the values
encompassed by HA• So we can plot the graph of the power. The graph
of the power as a function of p is called the operating characteristic
curue.

For the quality control example, the power can be computed for any
value of p above one percent. We've already computed the following
values:

p 0.01 0.015 0.02 0.025 0.035 0.04

1 - {3 5% 39.74% 76.42% 93% 99.66% 99.93%

This information gives the following operating characteristic curve
for our quality control example:

values of 1 - (3

~
100%

80%

40%

a = 5%

0.01 0.04
( ,hep=;ble

va lues of p

Note that the power is not defined for values less than one percent
because then HA is no longer true. It's clear this test has excellent power
to detect a defect rate of 2.5% or more. Below that, the power weakens
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rapidly. (You can control this situation, if it's a cause for concern, by
rethinking the design of your test (increase n).)

Considerations of power play an important role in the design of a
statistical study. There's much to be said on this topic, mostly far beyond
the scope of this text. But one simple fact is clear: a LARGER SAMPLE will
narrow the distribution of the estimator, clearly giving greater power.
Look again at the pictures of power for our quality control example:

5%

moderate
sa mple size :

- - - - - -

D. DI

fail to reject Hu

5%

reject /I" ----- --

I - {'J = the power
only moderate

much larger
sa mple size:

, , ,
I

I

I

I
I

I,

D.DI JI= '!

1 - 3 = the power, naw
much greater
(here ~ 100%)

Try Your Hand

- - - - - - fo il to reject II" reject fl u - - - - - --

To see how this permits some control of power, you should ...

6.3.29 Sketch the operating characteristic curve for each of the tests in
Problem 6.3.5.

6.3.30 In the quality control example, suppose you want to guarantee at
least a 60% chance to detect that you are producing too many defectives
once the proportion of defectives has reached as much as one and a half
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6.4

percen t. To achieve this without increasing the sample size beyond wha t
is practical, you're willing to relax the control of type I error by setting
the significance level at 10%.

(a) What sample size is required for your monitoring procedure?

(b) What is the decision rule now?

A Somewhat Comprehensive Review

Before attempting these review problems, go back and study the types
of question which you've learned to deal with. It's not enough to study
the solutions to problems-it's the QUESTI ONS you must study. Note
the distinction between the question and the information on the basis
of which you will answer that question. The same question may require
several distinct types of answer depending on the available information.
The first problem below illustrates this very concretely.

6.4.1 Question: How many cups from our drink machine will overflow
in one day of operation? Answer this on the basis of the following:

(a) Information: For X = fill in ounces per cup for this machine, J.L = 7
and (T = 0.12. A cup overflows at 7.3 ounces or more.

(b) Information: Let X = fill in ounces per cup for this machine. A cup
overflows at 7.3 ounces or more. You observed

X

I

6.9 7.0 7.1 7.2 7.3 7.4 7.5

f 4 9 14 11 7 3 1

(c) Information: For Y = # cups overflowing in one day, you observed

Y

I
0 1 2 3 4 5

# days 17 8 5 2 1 1

(d) With less than 30 observations in part (c), you could not answer the
question. Why not?

6.4.2 How much does the baggage in the storage compartment of to­
day's flight weigh? There are 118 bags stored on today's flight. Stored
baggage for our airline weighs 37.2 pounds per bag with a standard
deviation of 8.3 pounds.
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6.4.3 How much does a stored bag for one of our airline's passengers
weigh? There are 214 bags in the storage compartment for today's flight
weighing a total of 6425 pounds with a standard deviation per bag of
5.8 pounds.

6.4.4 How likely is the typical bag stored on today's flight to weigh less
than 36.5 pounds? There are 713 bags stored on today 's flight. Stored
baggage for our airline weighs 37.2 pounds per bag with a standard
deviation of 8.3 pounds.

6.4 .5 Cost considerations prohibit more than 6000 pounds in the stor­
age compartment for any flight of our airline. Based on today's flight, do
you think we are, at least on average, within the cost constraints? There
are 214 bags in the storage compartment on today's flight weighing a
total of 6425 pounds with a standard deviation per bag of 5.8 pounds.

6.4 .6 The Canadian province of New Brunswick and the state of Maine
share a common border and a similar economic base in fishing and
forestry. Being in different countries, however, they were subject to
different government policies in response to the energy crisis of 1973.
The United States provided funding for programs of energy education;
Canada did not. In 1984, a test consisting of 74 questions assessing at­
titudes and knowledge on energy issues was given to ninth graders in
19 randomly chosen schools. The average score for the 429 students in
Maine was 17.489 with a standard deviation of 4.269. The average for
the 452 students of New Brunswick was 13.966 with a standard devi­
ation of 4.761 (see [Barrow and Morrisey]). Was the energy education
program in Maine effective?

6.4.7 For each of Problems 6.4.1-6.4.6:

(a) What assumption(s) did you have to make? Is the assumption rea­
sonable? How might it fail?

(b) Which are statistical questions and which are exact calculations? A
statistical question draws a conclusion on the basis of partial informa­
tion in the form of data from a statistical experiment, such as a sampling
experiment.

(c) Describe in real-world terms all parameters and estimators.

6.4.8 You must be able to identify the PATIERN of questions . For any
numeric population, you can ask the following pattern of questions:
Suppose a chain consists of 81 links where the mean length of a link



6.4 - A Somewhat Comprehensive Review 281

is 0.7 ern with a standard deviation of 0.06 ern. What's the probability
that

(a) a link is more than 0.71 cm?

(b) a chain is more than 57.51 (~ 81 x 0.71) cm?

(c) at least ten links in a chain are more than 0.71 cm?

(d) at least ten of 100 chains are more than 57.51 cm?

(e) at least 20% of the links in a chain are too long (more than 0.71 cm)?

Or if you did NOT know that J.l = 0.7, you might get these questions:

(f) Based on the fact that one chain which you happen to have is
57.51 ern long, what's the length of a link (from among ALL links)?

(g) We believe the links are about 0.7 ern long. Does that seem to be
inconsistent with the fact that this chain is 57.51 ern long?

(h) We will be monitoring the lengths of the links to be sure they meet
specifications: The mean length of a link should be 0.7 em with a stan­
dard deviation of 0.06 ern.

6.4.9 An alphabet of problems:
You are hired as consultant for a fleetof small fishing boats which hire

out to amateur fishermen. You will consider one day's haul for the entire
fleet to be a simple random sample from an appropriate probability
distribution. Unless otherwise indicated, let a = 0.05.

Suppose the average weight of fish in the area of your fishingoperation
is 7.5202 pounds with a standard deviation of 2.5311 pounds. Further,
suppose there were 1756 fish in today's haul for the fleet with 547
flounder and with 368 fish weighing more than ten pounds.

(a) How likely is it a haul like today's of 1756 fish would weigh more
than 13,000 pounds total? [answer: 0.9738]

(b) Justify the distribution you used in part (a). Why do you not need
to assume the weight of fish to be normally distributed?

(c) What should today's haul weigh? Justify this precisely in terms of
our models. [a range around 13205.4712]

(d) What is the standard deviation for the total weight of a haul of 1756
fish? [106.0649]

(e) What is the random variable whose probability distribution is
being sampled in part (a)? Verify that it is, indeed, a random vari-
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able and that a "haul" is a simple random sample from its distribu­
tion .

(f) Explain how in part (e) "schools of fish" might cause the indepen­
dence assumption in the definition "simple random sampling from a
probability distribution" to fail and why for your operation it's reason­
able to think the assumption is approximately valid.

(g) The weight of a haul is ~X, where X is the weight of one fish in
the haul (sample). You used this in parts (a) and (d). Verify that ~X
is a random variable. What is its distribution? Give formulas for its
mean and its variance. [Hint: ~X is a linear function of the sample
mean.]

(h) A teenage girl goes out into the fleet's fishing waters with her new
boat. Her day's haul of four fish weighs a total of 23.2 pounds. The to­
tal squared deviations from the mean for her sample is 2.2707 squared
pounds. She wonders how much the fish in these waters weigh on
average. Based on her catch, what might she conclude? [Hint: 5.8 is
wrong!]

(i) The girl in part (h) returns to her fishing area the next day and decides
to stay until she gets one fish. How much will that fish weigh?

(j) What two assumptions must the girl in part (h) make? Are they
reasonable? How might they fail?

(k) What is it that tells us the girl in part (h) seems to be fishing in an
area where the fish are smaller than the fish of your fleet? Explain how
such a situation might actually arise.

(1) What proportion of the fish in the fleet's area of operations weigh
more than ten pounds? [20.96% is wrong. It's 16.35%.]

(m) What proportion of the fish in the fleet's area of operations are
flounder? [31.15% is wrong.]

(n) How large a haul would you have to get to estimate the proportion of
flounder in the fleet's waters to within 0.14 of a percentage point? Do a
worst case analysis because today's haul might be very unrepresentative.
[4900]

(0) The teenage girl in part (h) rented her boat from an old man who
said, "Waal, de fish 'round here don' weigh much more'n about five
pounds." Does the girl's catch call the old man's information into ques­
tion?

(p) Each month, you examine a sample of 400 fish from the month's
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haul for evidence of toxic contamination. How many of the fish in
your sample showing evidence of such contamination would cause
you to take action to identify and correct the contamination? Accord­
ing to the director of operations, fewer than one contaminated fish in
1000, on average, would be insignificant. [anything more than 3.6 per
1000]

(q) What are the chances an amateur fisherman on one of your boats
will haul in a fish weighing more than 15 pounds? [answer 15 to 10,000
chance]

(r) For your fleet, how much would a haul of 2000 fish weigh on aver­
age? [about 15,000 pounds]

(s) What's the probability the typical fish in a haul of 2000 fish would
weigh less than seven and a half pounds? [about 36%]

(t) For several days, a very large school of fish are in the vicinity of one
of your boats. How large a haul would be required to estimate the size
of these fish to within one pound? As a rough estimate, assume these
fish vary in size pretty much as all the fish in the area of your fleet's
operation. [25]

(u) In the previous part, why might one think about the z-distribution
and why in the last analysis would it not be required?

(v) You are watching the weight of the fish in your fleet's waters
from season to season to assure satisfaction of the fleet's customers
with the quality of fish they catch. If there is ever evidence that the
average weight of all fish in the fleet's area of operation has fallen
below seven pounds, you will suggest a study to identify any pos­
sible cause for a decrease in weight. What should be the criterion
for initiating such a study? Assume you monitor the fish each sea­
son by weighing a sample of 3500 fish. [sample mean below 6.9296
pounds]

(w) A year ago there were 601 flounder in a haul of 2144 fish from
these waters. Does today's haul support the contention there were fewer
flounder in these waters at that time? [yes]

(x) Each month you examine a sample of 400 fish from the month's
haul for evidence of toxic contamination. How much contamination in
your sample would cause you to take action to identify and correct the
contamination? "Toxic contamination" in this case means more than
0.23 g of the contaminant per fish. [0.4382 g]

(y) How many fish would you have to catch before getting one that
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weighed more than eight pounds? [1.3546 on average-one less than
2.3546]

(z) On one day, one of your boats made a haul of 52 fish. Seven of
those fish weighed more than eight pounds. Were there a surprising
number of large fish in that day's haul? [yes-what's the meaning of
this?]

6.4.10 At the end of World War II, the Germans initiated the "flying
bombs" attack on London. It was strategically important for the British
to know the aiming accuracy of these bombs. If they were highly accu­
rate, it would be best to spread key administrative and engineering sites
widely over the city. On the other hand, if the bombs were falling more
or less randomly, it would be best to maintain efficient operation with
closely clustered units.

For purposes of analysis, the city was divided into 576 regions of
equal area and the number of hits per region recorded as shown in the
following table (from [Clarke]). For example, 229 regions were not hit
at all, 211 suffered one hit, and so on.

No . of hits

o
1
2
3

~4

Observed
frequency

229
211

93
35

8

(a) What's the probability more than two bombs would fall into one
region if the bombs were falling more or less randomly? [~ 93%]

(b) Thinking of the solution to part (a), you might expect to answer
a question like "How much time would pass on average between the
falling of two bombs?" But that question cannot be answered from this
data. Explain.

(c) Should the British maintain "closely clustered units"?

6.4.11 The label on bags of frozen green peas from the distributor for
your supermarket chain indicates the weight to be 1.2 pounds. Be sure
you give real-world conclusions to these questions.
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(a) How many of the distributor's bags of peas weigh less than one
pound? Suppose the standard deviation of weight is 0.14 pounds.

(b) How many of the distributor's bags of peas weigh less than one
pound? Here you have no information about the standard deviation
of weight, but you do know that 13 of 124 bags were less than a
pound.

(c) Bags of peas are shipped to a store in cartons of 50. How many bags
per carton weigh less than one pound? Here you have the following
observations where X = # bags in a carton that weigh less than one
pound.

4

1

3

2

2

3

1

3X 1-0------­f 8

(d) Using the observations in part (c), estimate the proportion of bags
of peas from this distributor which weigh less than one pound.

(e) Identify the assumptions you made in each part of this problem.

6.4.12 Treat each of the following as hypothesis tests and set up the
hypotheses. Discuss the appropriateness of an hypothesis test here as
opposed to a test of significance.

(a) In trying to promote the city, the Chamber of Commerce funds a
study of air pollution. They hope to show the mean level of a certain
toxin in the downtown core is less than 4.9 parts per million.

(b) An ecologist wants to have pollution control devices imposed on
certain manufacturers. The question: Is air pollution too high, more
than 4.9 parts per million of a certain toxin in the downtown core?

(c) The local newspaper wants to do a study of air pollution in the
downtown core in view of the critical 4.9 parts per million which is
considered the maximum acceptable average level of a certain toxin.

6.4.13 All drugs must be approved by the Food and Drug Administra­
tion (FDA) before a drug manufacturer can market it. The FDA must
weigh the error of allowing an ineffective drug on the market with the
risks of side effects versus the consequences of blocking an effectivedrug.
Their analysis of a new drug might might well include an hypothesis test
for r, where r is the mortality rate under treatment with the new drug.
Set up such a test assuming

(a) the mortality rate without the new drug is 95%;
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(b) the mortality rate without the new drug is 5%.

6.4.14 We turn once again to the "birthday/deathday" problem which
we saw in Problems 6.2.23 and 6.2.32. David Phillips published an
interesting article on this subject in Statistics, a Guide to the Unknown
[Tanur et aI., 1972], entitled "Deathday and Birthday: An Unexpected
Connection." Phillips studies four samples taken from sources listing
famous persons. Here 's a summary of his four samples. Does it seem to
support the contention that some people, famous people at least, have
an ability to postpone their death until after their birthday?

Here, N is the number of months from the birth month (where a
negative sign means "before birth month") and X is the number of
deaths observed for that value of N .

N -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

X 90 100 87 96 101 86 119 118 121 114 113 106

(a) Graph this data and comment on the "delayed death" hypothesis.

(b) Do a goodness of fit test.

(c) Test the contention that there are no fewer deaths in the month prior
to the birth month than would be expected just through chance.

(d) In what other ways might you test the "delayed death" hypothesis
with this data?

6.4.15 We have an infinite numeric population which is NOT normally
distributed and which has a mean of 2.7. Match each of the following
with the appropriate picture (given below), taking that picture which
represents the most probable answer:

(a) the population distribution;

(b) the distribution of a large sample;

(c) the sampling distribution of sample means for large samples;

(d) the standard normal distribution;

(e) the distribution of sample proportions for the proportion of the
population below two;

(f) Student's z-distribution.
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Here are 12 pictures as possible answers ...
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7.1

Chapter 7 - Introduction to Simple Linear Regression

The Simple Linear Regression Model

So far, when we have studied a random variable, say Y, we've ruled out
any effect of other variables. In this chapter, we study a model which
accommodates the systematic effect on Y of one other variable , X­
the ONLY systematic effect on Y. We think of X as known or under
our control. This X is sometimes called the "explanatory" variable in
view of its role as a known or controlled "effect" on Y. So Y is the
variable in question and X plays the role of input information relevant
to Y. Sometimes, Y is described as the "response" to the "factor" X. In
itself, X might or might not be a random variable, but from the point
of view of the model, X is not random because the model focuses on
particular values of X which are known or in some sense controlled. In
other words, it's a model for the conditional distribution of Y given X.

One word of caution at the beginning: The model says nothing about
the real-world nature of the effect of X on Y. In particular, X mayor
may not be causally related to Y. We'll see a number of examples where
there is no causal relationship.

Our model, the simple linear regression model, assumes that X affects
only the mean of Y . In all other respects, Y is assumed to be independent
of X. In other words, our new model takes one careful step forward. It
admits only a very limited effect of X on Y. This is necessary as a first
step. After all, when you begin speaking of "effects" of one variable on
another, you introduce the potential for overwhelming complications!

In fact, the effect of X is restricted even further: For the simple lin­
ear regression model, the mean of Y should be determined by a linear
function of X. That's why the model is called "linear" regression . Other
models are possible. The mean of Y might, for example, be determined
from X by a quadratic or cubic polynomial or some other function.

Why is it "simple" linear regression? Because we allow only one X. By
contrast, there are "multiple" regression models which allow a number
of different explanatory variables accounting for a number of different
systematic effects on the mean of Y. Multiple regression works just like
simple regression from a theoretical point of view, but the mathemati­
cal complications have inspired us to stick to the case of simple linear
regression.

And why is it called "regression"? This name was given to the model
by its discoverer Francis Galton (1822-1911), known for his work in
heredity. Galton, first cousin of Charles Darwin, was a medical doc­
tor by training whose interests "ranged over psychology, anthropology,
sociology, education and fingerprints" [Stigler]. His discovery of the
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regression model was a gradual revelation over 20 years, starting with
hints in the book Hereditary Genius (1869, ten years after Darwin's Ori­
gin of the Species), a book "naive and flawed" [Stigler] which sought
to show that genius "runs in families." From this humble beginning
through numerous studies of extensive data on sweet peas and on hu­
man populations, studies culminating in his book Natural Inheritance
(1889), Galton gradually saw his way through to a clear articulation of
the regression model. His work in discovering one of the most powerful
mathematical tools in statistics is all the more remarkable for the fact
that he was a very indifferent mathematician, requiring help on rela­
tively simple details from a mathematician friend, J. Hamilton Dickson,
at St Peter's College, Cambridge. Galton chose the term "reversion,"
later "regression," from the effect which he observed in his sweet pea
data that the progeny of very large or very small peas would not have
the same average weight as the parent peas, but would "regress" to the
average of all peas.

Here are some examples of real-world situations which might reason­
ably be modeled by simple linear regression:

the variable Y is .•.

1. height of a bean plant
2. toxic chemical in plant
3. crop yield
4. household expenditures
5. manufacturer's production costs
6. a measure of on-job performance
7. percent of votes for a candidate
8. income at age 45
9. height of adult daughter

the "known" quantity X is ...

number of days since planting
amount of toxic chemical in soil
amount of fertilizer used
household income
number of units produced
score on a job-skills test
campaign expenditures
years of schooling completed
height of mother

There are four characteristics of the model which derive from our
description of X as the only systematic factor affecting Y, affecting the
mean of Y only, with that effect expressed through a linear function.
First, for a fixed value of X, Y is approximately normally distributed.
This normally distributed random variable is denoted YIX although it's
often just written as Y if the context makes it clear. Second, for different
X's these YIX's must be independent. If not, the effect of X on Y would
go beyond its effect on the mean of Y, contrary to our description of
the role of X.

Third, because X affects only the MEAN of Y, the variance must be
the same from one value of X to another. This is expressed by saying
the model is homoscedastic. For a fixed X, the variance of Y is denoted
by the symbol a~IX' This symbol is read "the-variance-of-Y-given-X,"
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or simply, "sigma-squared-sub-Y-given-X" (or some other variant). Be­
cause (7~IX is the same for every value of X, it's often denoted simply

by (72, as long as the context makes it clear we're speaking of this partic­
ular regression model for Y and not something else. Finally, the fourth
characteristic of the model implicit in our description is that j3 must not
be zero (why not?).

Here's a picture of the model:

x

.)---.::--------------y

~
----------~.

X2 ~_

--- -- ---- -- ------------~---- -yv J111X= 0: + f3x

Try Your Hand

In the picture, you see that the means of the YIX's-the centers of
the various normal curves-lie along a line, reflecting the assumption
that the mean of YIX is affected by X through a linear function of X.
The notation for this linear function is

j.lYIX = a + j3X.

The symbol j.lYIX can be read "mu-sub-Y-given-X" or, more com­
pletely, "the-mean-of-Y-given-X," Note that the slope of this line is
j3 and the y-intercept is a. With this notation, YIX can be expressed as

YIX a+j3X +E

where E is a normally distributed random variable with variance (72.

Now, to help you understand the model, we'll ask you to ...

7.1.1 In this problem, you should ignore the regression model until
you come to part (f). We're going to look again at what you know
about normally distributed random variables and then show you what's
meant by saying the simple linear regression model "takes one careful
step forward" beyond what we've already done.
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(a) Show that a normally distributed random variable Y has the form
Y = j1. + €, where € "looks like random error."

(b) What is the "systematic part" of a normally distributed random
variable?

(c) What's "variable" for a normally distributed random variable?

(d) Suppose you know Y has the form Y = j1. + €, where € rv N(O, (/2).
Show that, even though you may not have known it, Y is indeed normally
distributed.

(e) How does our Chapter 4 criterion for normality accommodate the
systematic part of a normally distributed random variable Y?

(f) Now, why do we say the simple linear regression model "takes one
careful step forward"?

7.1.2 For the nine examples listed in the text above, think about the
character of the simple linear regression model:

(a) In examples one and three some obvious restrictions would be re­
quired on X to make the model relevant. What restrictions?

(b) In which examples might the roles of X and Y be reversed? In which
examples would it be obviously absurd to reverse the roles of X and Y?

(c) In which examples might X reasonably be thought to CAUSE an effect
on Y? If the "effect" is not causal, what kind of effect is there?

(d) In which examples would X probably be a random variable?

7.1.3 Let's think some more about the personality of the simple linear
regression model.

(a) If it's really true that X is the only systematic factor affecting Y ,
then for a fixed value of X, YIX should be approximately normally
distributed. Explain.

(b) In the simple linear regression model, € rv N(O, (/2). Explain.

(c) Why must (3 not be zero?

7.1.4 For the simple linear regression model:

(a) What are the roles played by the variables X and Y?

(b) Identify the parameters for the model.
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(c) Identify the assumptions which underlie the model and the conse­
quences implicit in those assumptions.

7.1.5 For each of the nine examples listed in the text above, give the
real-world interpretation of the parameters a and f3.

7.1.6 Among the nine examples listed in the text, several would re­
quire restrictions on X because otherwise f3 almost certainly would not
be constant [see Problems 7.1.2(a) and 7.1.5] . Why does it violate the
assumptions of the model for f3 to be variable?

7.1.7 Give an example of a real-world situation which might be appro­
priately modeled by

(a) a multiple regression model,

(b) a simple linear regression model with f3 < o.

7.1.8 Sketch a picture of a quadratic regression model similar to the
picture given in the text above of the simple linear regression model.

7.1.9 One way to understand the assumptions of our model is to see
what the model would look like if one assumption fails while all the
others continue to hold. Sketch a picture like the one in the text for
which all the assumptions hold

(a) except that a~lx is NOT the same for all values of X,

(b) except that f3 IS zero,

(c) except that the relationship between X and /LYIX is NOT linear.

7.1.10 Sketch four pictures of the simple linear regression model, one
illustrating each of the following conditions ...

(a) a = 0;

(b) a = 1;

(c) f3 < 0;

(d) f3 = 0.5.

7.1.11 Now that we've got the model, what must we do next to actually
use the model?
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7.2 The least Squares Estimates for a and (3

Now that we understand what the simple linear regression model is, let's
see how we can estimate the parameters of the model. As usual in this
text, we assume the data for our estimators has been properly generated
by an appropriate random sampling experiment through which we have
obtained n random observations on the pair (X, Y).

For example, suppose a research worker is studying a certain type of
bamboo within the first three weeks of its growth cycle. Every second
day beginning with the tenth day after planting the rhizomes (the "stem"
which is put into the earth and which produces the roots and shoots of
the bamboo), she measures three bamboo shoots randomly chosen from
the hillside where they're growing. Continuing through the twentieth
day, she measures 16 shoots. Unfortunately, on each of two days, one
of the shoots was damaged and had to be discarded. Here's a record of
her observations:

Day # 10 12 14 16 18 20

Height 9 16 34 61 87 113
(em) 5 21 26 46 91 124

6 19 53 110

We'll see below how this data gives the "point estimates"

a = -112.7872 for the parameter a,

b = 11.0319 for the parameter {3.

A point estimate, as you can see, is the value of an estimator calculated
from a specificset of data. Taken by itself, a point estimate is meaningless
because it gives no indication at all of the accuracy of the estimate or
the certainty with which that accuracy is attained.

In the discussion which follows, we begin at the beginning by asking
how to calculate point estimates for the parameters of the simple linear
regression model. Once we know how to do that, we'll turn to a dis­
cussion of the "total context" of the numbers we've calculated. Then,
once we have the total context, we'll be able to draw some meaningful
real-world conclusions based on our model.

Before we turn to the actual calculation of these point estimates, you
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Try Your Hand

Chapter 7 - Introduction to Simple Linear Regression

should first think a little about what the estimates mean. In the exercises
which follow, you'll look at the values given above for a and b, the point
estimates for a and 13, and see how they relate to the simple linear regres­
sion model. To do this, you plot a "scatter diagram" for the observed
data. The scatter diagram is simply the observed (X, Y) values plotted
on (x, y) coordinates. Then, on the scatter diagram you'll plot the es­
timator for /LYlx. That estimator is denoted by the symbol Y. Finally,
we'll ask you to interpret the relationship of Y to the abstract model.

Please .. .

7.2.1 First, let's explore the researcher's bamboo data a bit:

(a) What does the symbol (12,21) refer to? Be as specific as possible.

(b) Assuming the data is recorded in the order of observation, how tall
was the shoot observed just after the observation (16, 46)?

(c) What's the value of n here?

(d) Assuming the notation (Xi, ¥i) for the ith observation, what are the
values of i? What's (Xg, Yg)? And what's (X3, Y16)?

(e) What is the average number of days after planting in this researcher's
observations?

(f) What is the average height of all the observed bamboo?

(g) Note that the average of the daily average heights is not the average
of all 16 observations. Why not?

7.2.2 For the bamboo data given in the text:

(a) Plot the scatter diagram.

(b) Give an equation for Y in terms of a and b (whose values are given
in the text above).

(c) What's Y for 13 days? For six days?

(d) Plot Yon the scatter diagram.

(e) How does the scatter diagram relate to the abstract simple linear
regression model?

(f) How does the line determined by Y in your scatter diagram relate to
the simple linear regression model?

7.2.3 Let's think about point estimates :
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(a) Explain the statement in the text: "A point estimate taken by itself
is meaningless ...."

(b) With specificreference to (3 explain the following phrase which com­
pletes the quote in part (a): "... because it gives no indication at all of
the accuracy of the estimate or the certainty with which that accuracy
is attained."

(c) If the data is atypical, that means there's something wrong. What
are some of the possibilities for what could be wrong?

(d) To make sense of a point estimate, we require something much more
than just that one number. What more is required?

7.2.4 Let's look again at our researcher's scatter diagram:

(a) Look carefully at the way the scatter diagram relates to the estimated
regression line which you drew in Problem 7.2.2(d). There appears to
be a difficulty with the model. What is it? [Hint: See Problem 7.1.6.]

(b) A difficulty such as we've identified in part (a) may have a number
of possible explanations. Suggest one possibility.

(c) How would you deal with the difficulty we found in part (a)?

(d) Restricting the model as suggested in part (c) would probably be
very unsatisfactory for our researcher. Why?

The Principle of Least Squares

Let's look at the scatter diagram for our observed data in more detail.
From that data, we'll determine the estimated regression line, the line
Y = a + bX. That line estimates J,LYIX = a + {3X, the model's true
regression line. What criterion should determine the line Y = a + bX?
It should be the line which best "fits" the data in a technical sense which
we explain below. You'll get the idea of "fit" if you look at the several
lines in the following picture, NONE of which fit the data:
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Now, if you try to draw a "good" line through this scatter diagram­
one that really seems to fit the data-you'll probably draw a line through
the point (X, Y) and that's perfectly correct. But still you may draw the
wrong line! In situations where X is generated randomly along with Y,
the scatter diagram often takes on a more or less elliptical shape. In that
case, most people would take the major axis of the ellipse as the best
fitting line, intuitively minimizing the perpendicular distance away from
the line. They're choosing the line for which the total of those distances is
as small as possible. Here's a picture, showing the line which minimizes
the "perpendicular distances":

.' .:,..:;':.;/:.~.::'.-:",,: >

y

The line indicated in the picture above is NOT the estimated regression
line; the regression line is slightly less steep. It's the line that passes
through the point on the ellipse where there is a vertical tangent:
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major axis, slope
greater than b

Y = a + bX [slope bl

This line is determined by the principle of least squares: It's the line
for which the SQUARES of the VERTICAL distances from the line are min­
imized:

y

the squares 01 vertical
distances are minimized

Y = a +bX

In the exercises, you'll see why it's the squares of the vertical distances
that are minimized rather than the distances themselves and why it's
the vertical distances rather than the perpendicular distances that are
relevant. Because the line minimizes the squares of those distances, it's
called the least squares estimate for the true regression line.

Before attempting to see how this line is actually determined-before
deriving formulas for a and b-we should think a bit more about what
we're trying to do. After you've done the following exercises, we'll see
how to actually calculate. So please ...
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7.2.5 Here, we figure out some algebraic facts related to the least squares
criterion. We're thinking about an observed point (x, y) in the scatter
diagram.

(a) Explain why the vertical distance of the point (x, y) from the esti­
mated regression line is Y - Y, provided the point is above the line.

(b) If the point (x, y) is below the line, Y - Y is NOT the vertical distance.
Why not?

(c) How can you get rid of the possible negativity in the expression
Y-Y?

(d) What would be an algebraic expression for the "total" of the squared
vertical distances away from the estimated regression line?

7.2.6 For the researcher's bamboo data, show that the point (X, Y) lies
on the estimated regression line.

7.2.7 In fitting the regression line to the data, why do you think we
would want to minimize the vertical distances away from the line rather
than the perpendicular distances?

7.2.8 The regression line is the key to the relationship between Y, the
variable in question, and the information about Y captured in X . So it's
the variability of Y about that line that's the key issue.

(a) Write out an algebraic formula for the total variability of the ob­
served Y's about the regression line Y = a + bX.

(b) The estimated regression line is determined by the principle of least
squares . What does that principle say about the formula from part (a)?

Calculating the Least Squares Estimates of a and j3

You just saw in Problem 7.2.8(b) how the principle of least squares finds
the line which minimizes variability away from the line in the direction
of Y for the observed data points. In other words, it minimizes the error
sum ofsquares, SSE.

SSE= ~(y - y)2 = ~(y - a - bx)2.

Note that everything in the formula for SSEis known except the values
of a and b. After all, the X's and Y's which appear in this sum are just
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our observed data values. They are specific numbers. For the bamboo
data, there are sixteen X values and sixteen Y values.

So, SSE is an algebraic expression involving two unknowns a and b.
Using techniques of calculus, one can show there is one and only one
choice for a and b which minimizes this expression as the principle of
least squares requires. Apply that technique from calculus and you get
the so-called nann-at equations

'Ey na + b'Ex,

'Exy a'Ex + b'Ex2.

Solving these equations gives formulas for a and b:

b -

a

n 'Exy - 'Ex 'Ey
n 'Ex 2 - ('Ex)2 '

Y-bX.

The equation for a requires knowing b. That's why we give the equation
for b first. You should calculate b first, then use it to get a.

It's certainly not obvious that these are the "correct" estimators for
0:: and (3. The principle of least squares has a long and complex history.
That story is one of the main themes in the first half of Stigler's The
History of Statistics. After some 50 years of struggling with problems
in geodesy and astronomy which really called for the principle of least
squares, scientists finally found that principle clearly enunciated for the
first time by the French mathematician Adrien Marie Legendre (1752­
1833) in an appendix dated March 6, 1805, an appendix to a brief
monograph on the determination of orbits of cornets.

Working out the theoretical justification of the technique required
another 20 or so years; work that was intimately bound up with the
discovery by Gauss and Laplace of the Central Limit Theorem and with
the discovery of the normal distribution as the appropriate model for
random error. And that was not the end of it! Our use of least squares for
the regression model was not discovered until around 1900. Since then,
further theoretical development of the theory of probability distributions
has found other, deeper relationships which justify the method. So if you
think it's not immediately clear why the a and b given above are good



302 Chapter7 - Introduction to Simple Linear Regression

estimates for Q: and {3, CONGRATULATIONS, you couldn 't be more right!
It wasn't immediate; it took about 150 years .

The distance between two points, given by the Pythagorean Theorem,
is the square root of a sum of squared differences. That's suggestive of
the formula SSE = ~(Y - Pi. In fact, if you take a sophisticated enough
mathematical view of our data, regarding the values of X as determining
one "point" in an n-dimensional space and Y another such "point,"
it turns out that the principle of least squares finds a "point" which
minimizes the distance between the observed Y and the "direction of X."
That gives us Y, the component of Y in the direction of X. It estimates
the systematic part of Y , the part determined by X. The component of
Y in the direction perpendicular to X estimates the purely random part
of Y, what we've denoted by cr.

By now you may be thinking, "Well again, not too clear!" Don't
worry, we're just trying to give you a feel for the wonderful geometric
ideas which back up the theory. Then maybe you'll get excited enough to
pursue a career in mathematical statistics. If it all sounds a bit impracti­
cal, that's alright too. You can take up a career in applied statistics using
all these powerful tools to answer real-world questions. Or-okay­
maybe you'd rather do something else.

Well, let's return to the bamboo study once again. Our research
worker, you'll recall, after looking at the scatter diagram for her data,
discovered that her original data had been distorted when fertilizer was
put on the bamboo halfway through her study (see Problem 7.2.4). Sup­
pose she repeated the study with newly planted rhizomes, generating the
following data:

X = day #

Y = height
(em)

10

7
11
6

12

22
21
25

14

43
38
33

16

62
48
50

18

70
74

20

84
82
68

To calculate a and b, rearrange the data into a table like the one below.
All the quantities in the formulas for a and b are just column sums from
this table.

X

10
10
10
12

Y

7
11

XY
70

y 2
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Try Your Hand

Note that there were no repetitions in our bamboo data. With con­
tinuous data, repetitions are typically rare and so a frequency column
becomes redundant. If a data observation should occur several times,
you can just list it separately in the table as many times as it occurs.

Before going further, you need to get some practice calculating. So
please ...

7.2.9 Set up a table for our researcher's new data on the height of
bamboo shoots with columns for X, Y, XY, X 2, and y 2 like the
table begun in the text just above. Then calculate a and b from the
column sums.

7.2.10 H.G. Wilm wanted to predict the April to July water yield (in
inches) in the Snake River watershed in Wyoming from water content
of snow on April 1. Here's Wilm's data (after [Weisberg]) for the years
1919 to 1935:

X Y X Y X Y

23.1 10.5 39.5 23.1 12.4 8.8
32.8 16.7 24.2 12.4 35.1 17.4
31.8 18.2 52.5 24.9 31.5 14.9
32.0 17.0 37.9 22.8 21.1 10.5
30.4 16.3 30.5 14.1 27.6 16.1
24.0 10.5 25.1 12.9

LX = 511.5, LY = 267.1, LXY = 8653.45,

LX2 = 16628.65, Ly2 = 4549.43.

(a) Evidently X refers to what? And Y? Explain.

(b) Give the estimated regression line for this data.

(c) The equation in part (b) is suspicious-it predicts three-quarters of
an inch of water yield when there was NO SNOW to yield that water!
In other words, we know a = 0, so the model is YIX = f3X + E.

For this special case of the model, the least squares estimate for f3 is
b = EXY/EX2• Give the estimated regression line for Wilm's data with
this more realistic version of the model.

(d) Plot a scatter diagram for the data with two regression lines, the
ones you gave in parts (b) and (c).
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7.2.11 Now, in the abstract, with no reference to specificdata, but using
the formulas for a and b:

(a) Show that the point (X, Y) is on the regression line.

(b) Show that ~(y - y) = o.
(c) What's the point of part (b)?

(d) Derive the formulas for a and b by solving the normal equations.

7.2.12 In Problems 3.6.16 and 6.2.33, you studied Edwards and Eber­
hardt's data on 135 cottontail rabbits observed in a protected enclosure.
They were studying various capture-recapture techniques for estimat­
ing the size of wildlife populations. Here's how one of the techniques
works:

In Problem 6.2.33 you showed that the geometric model which had
been proposed by Edwards and Eberhardt on the basis of several differ­
ent analyses is not unreasonable. Assuming a geometric model with Y as
the number of rabbits which will be recaptured X times, the proportion
of rabbits which will be captured X = x times is pq" , So if the model is
valid, the expected value of Y is Npq", We want N. Using logarithms;'
we can isolate N this way: In(Y) = In(Np) + x In(q) . This is a linear
equation in x and you can use your observed data to "fit" this equation
and then estimate N. First, transform the observed data from (x, y) to
(x, lny):

X

Y

InY

1

43

3.7612

2

16

2.7726

3

8

2.0794

4

6

1.7918

6

2

0.6931

7

1

o

When you look at the original data (Problem 3.6.16), you'll see we've
omitted the "observation" for X = 5. Because no rabbit was caught five
times, there was no such observation. Note that the 59 from the original
data is also not part of your data because you do NOT know how many
rabbits were never captured.

(a) We will use a regression model for In(Y) with X as explanatory
variable. What are (); and f3?

(b) Fit a least squares line to the transformed data.

1 For an explanation of the natural logarithm, In(x), see page 112 and Problem 3.8.9.
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7.3

(c) Use the line in part (a) to estimate In(Np). Then estimate exp[ln(Np)]
=Np.

(d) Use the regression line in part (a) to estimate In(q), then q, and,
finally, p.

(e) Use parts (c) and (d) to estimate N . Compare your estimate with
what in this study we know to be the true value: N = 135.

(f) Note that when X = 0, the model says Y = N p. In other words,
Np is the number of rabbits never captured. So then Nq = ~x;iOY. But
you would know that number from the data; here, N q = 76. So there
are two more ways to estimate N. What are they?

(g) Suppose in part (e) you had estimated p by its maximum likelihood
estimator (MLE) as you did in Problem 6.2.33(b). What happens and
why?

(h) Critique the analysis of this problem.

Using the Simple Linear Regression Model

As we saw in the first section of this chapter, the parameter (3 for the
simple linear regression model has a very concrete real-world mean­
ing. It's the change in the average of Y for a unit increase in X (see
Problem 7.1.5). For example, with our researcher's bamboo study, (3
is the daily increase in the mean height of all bamboo shoots of this
type grown under similar conditions during the first three weeks of the
growth cycle.

So the first real-world question we might think to ask is, "How
fast does this bamboo grow in the first weeks?" ((3 = ?). Because we
have only partial information in the form of sample data, we'll need
to construct a confidence interval for (3. That requires knowing the
total context, the sampling distribution, of its estimator b. After all,
taken out of context, the data by itself tells us nothing. That data could
be-though PROBABLY it isn't-quite atypical of what's actually hap­
pening. This probability assertion is the basis for our confidence in­
terval. To justify the assertion, we need a probability distribution­
the sampling distribution for b. That probability distribution puts our
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specific data into the context of all theoretically possible data. Here
it is:

the sampling distribution of b :

b is an approximately normally distributed, unbiased es­
timator for f3

/-lb = f3.

The squared standard error for b, crl, can be estimated
from the data (thus requiring the t-distribution) by

~(X - X)2

d.f.

(3

n-2.

~
valuesofb

The standard error for b is crb; we estimate it by Sb. As you see in the
box above, the numerator of s~ is s~lx (estimating cr~lx):

2 SSE
sYIX = n _ 2' where SSE = ~(y - fJ)2.

SSE, recall, is what's minimized when we find the regression line by the
principle of least squares. It's called the error sum of squares. We'll give
computing formulas below for the various parts of s~.

Now you see why there are n - 2 degrees of freedom for b: There are
TWO estimates in the standard error. In SSE, there's an estimate, a, for
the parameter o, and b for the parameter f3 (a and b appear in Y). This is
exactly parallel to the situation with the standard error for X. When a
is unknown, it's estimated from the data by s, so a / Vii ~ S / Vii. Then,
because one parameter was estimated, we had n - 1 degrees of freedom.
Here's the principle:
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In estimating a standard error, if some one other parameter is being
estimated from the data, you have n - 1 degrees of freedom; if two
other parameters are being estimated from the data, you have n - 2
degrees of freedom, and so on.

With a little algebra we get computing formulas for the pieces of the
standard error of b

the computing formulas:

SSE

"E,(X - X)2

"E,y2 - a "E,y - b "E,xy,

Putting these pieces together computes s~. With the data organized
into an appropriate table, the calculation uses only column sums.

Now, how fast does our researcher's bamboo grow? Let's construct
a confidence interval for f3 using the new data. First, estimate o'l:

(1/15)(43,566 - 744a - 12,484b)

3936 - (252)2/17

29.36744913
200.4705882 = 0.146492557.

We've departed from our usual convention of rounding to four dec­
imal places to emphasize that you should NOT round in the course of
a long calculation. Every time you round at an intermediate step, you
compound the roundoff error. Learn to use your calculator in a way
that minimizes the need to record a rounded result, reentering it later.

Taking the square root of s~, we get a standard error of 0.3827. Thus,
a 95% confidence interval estimate for f3 will have endpoints

b± tSb,

7.2594 ± 2.1315 x 0.3827 (d.f. = 15),

giving the interval (6.4436, 8.0752). So ...

Question: How fast does this bamboo grow in the beginning?
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Answer: With a 5% risk of error, based on our data we conclude
that under similar conditions this type of bamboo will grow be­
tween 6.4436 and 8.0752cm per day, on average, during the first
three weeks of the growth cycle.

In addition to the question "What's the value of (3 based on our data?"
we might also be asked for a test of significance or an hypothesis test
for (3. For example:

Question: Does our data seem to cast doubt on our previous con­
tention that in the early stages of its growth cycle bamboo of this
type gains about 9 ern per day?

Analysis:

p-value P(b < 7.2594) P(t < -4.5477)

< P(t < -2.9467)

- 0.005.

This means our p-value is quite small and so the data does seem to
challenge the hypothesis.

Answer: Based on our observations, contrary to our previous con­
tention it would seem bamboo of this type grown under similar
conditions gains less than 9 em per day in average height during
the first three weeks of its growth cycle.

Note that nothing new shows up here other than the specific formulas.
The ideas and techniques of confidence intervals, tests of significance,
and hypothesis tests are already firmly in your grasp!

Testing Hypotheses Concerning f3
We've seen seven characteristics of the simple linear regression model
anyone of which, if it did not hold, would invalidate the model [see
Problem 7.1.4(c)]. This problem of "diagnostics" is a topic in its own
right, usually presented in a second course. Most of the diagnostic tech­
niques are not within our ability to carry out in any rigorous way. The
one exception is the requirement that (3 not be zero. The hypothesis test
for linearity that is conventionally carried out is

Ho : (3 = 0,

H A : (3 t= o.
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Carrying out this test is going to be routine for you because the logic
is exactly the same as for any other two-tailed hypothesis test. For the
research worker's second set of bamboo data, we'll reject H, at the
5% significance level if our data standardizes to a value of t less than
-2.1315 or greaterthan 2.1315. Of course, this really should be a test of
significance (why?); we're just following the usual convention in treating
it as an hypothesis test.

Note that other hypothesis tests for fJ may arise which have nothing to
do with the validity of the model. The validity question for the model is a
theoretical question. But certainly there will also be real-world questions
about fJ requiring hypothesis tests. After all, fJ has a very concrete real­
world meaning as the change in the mean of Y for a unit increase in X .
So, for example you may be monitoring the height of bamboo shoots
once every three days during the early weeks of the growth cycle with
the intention of altering the watering schedule if it ever appears the daily
rate of growth falls below 8 ern

Ho : fJ=8

HA : fJ < 8.

Well it's past time for you to .. .

(fJ > 8 irrelevant),

Try Your Hand 7.3.1 (a) Use our researcher's bamboo data to test the appropriateness
of the linearity assumption for the simple linear regression model.

(b) In reference to the test in part (a), why did we say in the text, "Of
course, this really should be a test of significance"?

(c) Give the decision rule for the situation described in the text just above
where you are " . . . monitoring the height of bamboo shoots ... with
the intention of altering the watering schedule if it ever appears that the
daily rate of growth falls below 8 em." Assume- a = 5%.

(d) Would the research worker 's second set of data given in the text
cause you to alter the watering schedule?

(e) Compare the tests in parts (a) and (c). Why is the first a two-tailed
test and the second not?

2 This Q is the significance level of the test; it has NOTHING to do with the Q in j.tYIX =
Q + j3X!! And the j3 in the regression equation has nothing to do with the symbol j3 for
the probability of type II error in a hypothesis test. This is all just a sorrowful accident
of notation.
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7.3.2 A mountain climber can determine altitude above sea level by
using a barometer to measure atmospheric pressure-lower pressure
meaning higher altitude. However, the barometers available in the mid­
nineteenth century were very delicate and difficult to carryon expedi­
tions into mountaineous terrain. The Scottish physicist James D. Forbes
hoped to get around this difficulty by determining barometric pressure
from the boiling point of water . Forbes made measurements at 17 lo­
cations in the Alps and in Scotland. Here is the data as published in
his 1857 paper. See Weisberg for a very complete analysis of this data.
Boiling point (BP) is measured in degrees Fahrenheit and pressure (Pr')
in inches of mercury,

BP

194.5
194.3
197.9
198.4
199.4
199 .9
200.9
201.1
201.4
201.3
203.6
204.6
209.5
208.6
210.7
211.9
212.2

3450.2

Pr

20.79
20.79
22.40
22.67
23.25
23.35
23.89
23.99
24.02
24.01
25.14
26.57
28.49
27.76
29.04
29.88
30.06

426.10

~ BP x Pr= 86,755.435,
~(BP)2= 700,759.02,

~(Pr)2= 10,825.6366.

(a) If Forbes wants to use a regression model, which variable is X and
which Y? Explain .

(b) Without doing any calculations, should b be positive or negative?

(c) Give the estimated regression line for the model.

(d) Does this data support use of a linear model?

(e) How fast does the atmospheric pressure decrease as you climb?
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The Coefficient ofDetermination
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Here, we'll get a deeper insight into the test of the linearity assumption
presented above, by introducing a measure of the strength of the linear
relationship between the observed X's and Y's. We begin with an al­
gebraic fact about the observed data which is not at all easy to prove''
(you're welcome to try if you wish):

~(Y - Pi + ~cy - y)2,

SSE + SSR.

You've already encountered SSE,the error sum of squares. The notation
SSTis the total sum ofsquares and SSRis the regression sum ofsquares.
Note that SSR measures how far the estimated regression line is from
the mean of all observed values of Y. Now, if X were not available,
inferences about Y would all be based on Y with variability measured by
SST. Once we bring X into consideration, we'll use the more informative
Y and measure variability with SSE. You've already seen how this occurs:
SSE is the numerator for the standard error of b. It shows up in other
places as well, as we'll see later.

Note that SSRis the reduction in variability that becomes possible by
introducing the explanatory variable X through the regression model.
Without X, SST measures variability. With X, SSE measures variabil­
ity. SSR is the discrepancy between the two. For this reason, SSR is
sometimes called the "explained" variability-that much of the total
variability accounted for by X. Now, if you divide by SST, you get the
proportion of total variability explained by X, the so-called coefficient
ofdetermination, denoted by r2

2 SSR
r = SST.

The choice of symbol-writing it as a square-would suggest that r 2

must be non-negative. Indeed, it is because it's made up of squared
numbers. Furthermore, it's at most one, as you can see if you divide the

3 At least one book claims this fact is obtained by "squaring and adding the terms" of
the obvious identity: (Y - Y) = (Y - Y) + (Y - V). But that's completely fallacious:
Does 5 = 2 + 3 imply 52 = 22 + 32 ??!
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original equation by SST:

1 =
SSE
SST +

SSR
SST'

1 = positive + r 2 .

Because it's a number between zero and one, we're justified in describing
r2 as a proportion. Or multiply by 100 and interpret it as a percentage.
Then r 2 is the percentage of variability explained by X.

Now, the numerator of r2 contains Y - Y which simplifies alge­
braically to

Y-Y = a + bX - Y

So we get a useful identity:

(Y - bX) + bX - Y b(X - X).

2 b2 E(X - X) 2
r = E(Y _ y)2

For our researcher's new set of bamboo data, all the pieces of this ex­
pression have been calculated already except the denominator which is
E(Y - y)2 = Ey2 - (1/nHEy)2 = 11,005.0588. And we get

(7.2594)2 x 200.4706
11,005.0588

0.9600.

Thus, about 96% of the variability in the height of these bamboo shoots
is "explained" by elapsed time since planting. By introducing "number
of days since planting," we significantly reduce the observed variability
in the height of the bamboo shoots.

Ifyou've entered your data into the statistical mode of your calculator,
the variances for the two variables will be available at one or two key
strokes. So you may prefer to calculate using the following expression
for r2

To get this from the previous formula, divide the numerator and denom­
inator by n - 1. A similar analysis gives s~ = [(1 - r2 )/ (n - 2)]s~/s~,

which is convenient if your calculator gives r (or r2 ).

At first blush, one might expect the change in the average of the Y's
for a unit increase in X to be determined by Sy / sx. But it's not; it 's
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given by b instead. And Ibl :S sv lex- This inequality holds because
r2 = b2si/s} and r2 :S 1. So the change in the average of the Y's for
a unit increase in X is actually less than Sy / sx- This accounts for the
so-called "regression effect." It's the effect noticed by Galton, who saw
it as a tendency for the values of Y to "regress" toward the mean, Y. In
one study, Galton was "explaining" the heights of adult children from
the "midparent" height (essentially, the mean height of the two parents).
For that data (as well as for his sweet pea data), Sy / sx = 1. He seems to
have felt that a three-inch difference in midparent height should go with
a three-inch difference in average height for the children. In fact, there
was a difference of only two inches in the average children's heights.

You can see the "regression effect" in the picture below. Note how
points on the regression line are always closer to Y than are the points
on the line with slope Sy / sx .

{ Ihe line with slope ~

the regression line, slope b

this is the line Y = Y

You can see that r2 measures, in some sense, the correlation between
the observed X's and Y's. The degree of correlation between two vari­
ables is very important, as you can imagine. Think about these examples:
Is lung cancer correlated with smoking? Is high income correlated with
education? Is IQ determined by nurture or nature? Is it correlated with
parents' IQ or with factors in the early childhood environment? On and
on! We'll not pursue this topic further. Instead, we refer you to the ex­
cellent elementary presentation-explaining potential abuses-given in
Chapters 8 and 9 of [Freedman, Pisani, and Purves].

More often than not in actual practice, correlation is not expressed
through r2 , but rather through the correlation coefficient, r, which can
be calculated as the square root of r2 with the sign of b. Here's the
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formula: r = bsx / S y . This formula gives a deeper insight into the test
of the linearity assumption. Not only are you testing against {3 = 0, but
at the same time you're testing the parameter p (the Greek letter rho)
for the model. The parameter p is estimated by r and is for the model
what r is for the data-if there is such a parameter! The model doesn't
always have a parameter p. It does only if X is randomly generated along
with Y. In that case, p is a measure of the linear correlation between X
and Y. And if X and Yare "jointly normally distributed," our test for
{3 is simultaneously a test for p. So in some cases, the test for linearity
can be thought of as testing for a significant degree of linear correlation
between X and Y.

We don't study correlation in its own right. Freedman, Pisani, and
Purves give an excellent overview of this topic. Look at it! They
have a very interesting discussion of a well-known study by Skeels­
Skodak from the 1930s of IQ for adopted children, addressing the
nurture/nature question. This example also illustrates quite dramati­
cally how r taken by itself without the associated means and standard
deviations can be very misleading. Look at that discussion!

Note also the discussion by Freedman, Pisani, and Purves of the so­
called "fallacy of ecological correlations," correlations that appear with
rates or averages but vanish when the actual underlying numbers are
considered. For example, based on U.S. Census Bureau data from 1970,
they find a strong correlation (r = 0.7) between average age and average
income for the men in nine geographical regions of the United States,
but the correlation for the men as individuals is quite weak (r = 0.4).
Well, who cares about the regions?! It's individuals we're interested in!
By looking at r for rates or averages instead of r for the actual numbers,
you could be seriously misled into accepting a fallacious correlation
when, in fact, there is no correlation at all. The discussion of Freedman,
Pisani, and Purves shows quite clearly how this fallacy arises. Look at
it. Chapters 8 and 9 of their book. It's an easy read if you got THIS far
in THIS book.

Now please ...

7.3.3 We've seen thatr2 ~ 1. Show that equality holds if all the observed
values of Y actually lie on the line Y = a + bX.

7.3.4 Think of a test-retest situation. Let X and Y be the scores on the
first and second tests, respectively. You might expect to have ox = cry.
Assume that's true. Explain why, as a group, persons who score far
above average on the first test will, on average, score less on the second
test. What about low scorers?
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7.3.5 For each of the following pictures, guess the least squares line
(the estimated regression line) and guess a value for the coefficient of
determination. Verify your guess by computing a, b, and r2 and then
actually plotting the line.

a)

4

3

2

b)

4

2

c)

4

2

234 2 4 2 4

d)

8

4

e)

8

4

f)

4

2

4 8 4 8 234

g)

8

4

4 5 7 8

h)
200

100

1~~
101

6~0
199

i)

4

2

2 4
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7.3.6 Let's look at some real data.

(a) Is it reasonable to think the boiling point of water would serve to
guage altitude above sea level? Use Forbes' data from Problem 7.3.2.

(b) Why does the coefficient of determination not have much meaning
in the Edwards-Eberhardt study (Problems 3.6.16 and 7.2.12)?

(c) Why have we not asked about Wilm's study in Problem 7.2.10?

7.3.7 Let's look at some of the ways the coefficient of determination (or
the correlation coefficient) could be misleading as a measure of "strength
of correlation between X and Y."

(a) Show that r2 can be radically influenced by the number of obser­
vations, being relatively meaningless when n is small. Take an extreme
case-suppose n = 2.

(b) What does part (a) say about the coefficient of determination?

(c) If you have a large number of observations and r2 is quite close to
one, you can conclude that X and Y seem correlated. Then it's a question
of seeing which variable is actually causing the other. Comment.

(d) Plot a scatter diagram for the following data and compute r2• Then
for each X, replace the Y's observed at that level of X by their aver­
ages and plot that scatter diagram. Then compute r2• Comment on the
results.

X

Y

X

Average of y's

1

1
2
2
4

1

2.25

2

1
2
3
4

3

1
2
3
4

2

2.5

4

1
3
3
4

3

2.5

4

2.75
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(e) Plot the scatter diagram for the data in part (d) where instead of the
Y's, you record for each X the "proportion above two." Calculate r2•

Comment.

(f) For the following data, sketch a scatter diagram and then calculate
and interpret r2:

X

Y

o
o

1

1

2

2

3

3

4

2

5

1

6

o

Confidence Intervals to Predict !-lYIX or the Average of a Few Y's for
X p , a Particular Value of X

Now we fix attention on one particular value of X, denoted by X p • It
should fall within the range of X's covered by our observed data, of
course, but otherwise is unrestricted. So how can we use our model to
answer questions about Y when X is fixed at X p ? For example, what's
the average height 15 days after planting (Xp = 15) for all bamboo
shoots of the type studied by our researcher and grown under similar
conditions? Because your answer to this will be based on sample data,
a confidence interval is required with endpoints

Y± t x s.e.

What's the appropriate standard error for this problem? Well, in fact
there are two problems here: estimating the mean, j1YIX, is one. The
other is the "prediction" problem: estimating the average of a few, let's
say m, values of Y. The second includes the problem of predicting one
value of Y (m = 1). You'll see that the standard error in each case is
analogous to the standard error for the corresponding nonregression
prediction problems.
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the squared standard error for predicting /-LYIX at X p :

2 [1 (Xp - X)2 ]
sYIX :;; + E(X _ X)2' d.f. = n - 2.

Now, for the bamboo, what's the average height 15 days after plant­
ing? Here are the endpoints for a 95% confidence interval, using our
researcher's new (valid) bamboo data:

Y ± t x s.e.,

a + 15b ± 2.1315 x 1.3161,

45.0458 ± 2.8052.

So we can be about 95% sure that bamboo shoots of this type 15
days after planting will be, on average, between about 42 and 48 ern
tall. Note that we calculated s}lx and E(X - X)2 earlier when we
computed Sb. The value of t here is the same as we used earlier in the
95% confidence interval for {3. After all, it's the same data and the same
confidence coefficient and so we have the same degrees of freedom and
the same column of the t table.

The standard error is calculated as the square root of

(
1 (15 - 14.8235)2)

29.3674 17 + 200.4706 = 1.7321.

Finally, the last question we'll address using the regression model is
"What's the average of m values Y when X takes the value X p ?" For
the bamboo shoots: "How high will these four shoots be 15 days after
planting?" We use the estimator Y, the same as before. But we're asking
a harder question here-it's harder to predict the average of a few rather
than to predict the mean of all. For the overall mean, you can get a few
values wrong and still get the mean right if the errors cancel. But when
you're looking at only a few, you have little leeway.

Because the question is harder, you can expect to see a larger standard
error. The standard error for this problem is calculated from
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the squared standard error for predicting a particular Y at X p :
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[
1 1 (Xp - X)2 ]

s~IX m + n + ~(X - X)2 '
d.f. = n - 2.

Try Your Hand

Note that the only difference between this standard error and the
previous one is the addition of 11m within the large parentheses. To
understand this, suppose m = 1. That puts a "+1" in the square bracket.
It has the effect of adding s~IX to the squared standard error. That's

not surprising because s~lx is an estimate of (J~lx' which measures the

variability of YIX about its mean. So the "+s~lx" measures how much
harder it is to predict just one value of Y than it is to predict simply the
mean itself. To see the logic of this analysis more precisely, look at the
analogous nonregression model which we studied in Problem 5.5.6(g).

Well, now please ...

7.3.8 Based on the new set of bamboo data (see page 302 and Prob­
lem 7.2.9):

(a) See this little shoot? How tall will it be 15 days after planting?

(b) How high will this field of bamboo be 15 days after planting?

(c) See these seven little shoots of bamboo coming up? They were
planted just one week ago. How high do you think they'll be in eight
more days?

7.3.9 Let's think about the formulas for the standard errors given in the
text above:

(a) What's the difference between the standard error for predicting a
particular Y as opposed to the average of all Y's?

(b) Why does lin appear in each of the standard errors?

(c) Why does it make sense that (Xp - X)2 would be in the numerator?

(d) Why does it make sense that ~(X - X)2 would be in the denomi­
nator?
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7.3.10 Here are some simple sets of data just for your practice:

(a)

(c)

x
y

x
y

3

2

8

8

3

5

5

4

5

4

2

5

7

4

2

1

7

5
(b)

(d)

x
y

x
y

1

8

3

2

4

3

5

6

4

6

7

10

5

2

9

14

For each set of data, (i) draw the scatter diagram and plot the re­
gression line. Then calculate (guess first, if feasible): (ii) st1x; (iii) Sb;

(iv) the check for linearity; (v) a confidence interval for {3; (vi) r2; (vii) a
confidence interval for !L Y IX with X p = 3.5; (viii) a confidence interval
for Yp with X p = 3.5.

Besure you can do all of this by completing the tables with appropriate
columns and then calculating from the column sums . You can check your
work by entering the data into the statistical mode of your calculator.

7.3.11 The following data is from a report of the U.S. Department of
Agriculture entitled "Results of Fiber and Spinning Tests for Some Va­
rieties of Upland Cotton Grown in the United States, Crop of 1944."
We've significantly abbreviated the data for ease of analysis, see [Dun­
can], page 813, for a more complete description and analysis.

Here S is skein strength, "perhaps the most important single index
of spinnning quality" for cotton, and L is fiber length. S is measured in
pounds (to breaking point) and L in hundredths of an inch. See [Duncan]
for a more exact description of these measurements.

S

L

91

76

114

79

99

65

87

74

100

74

103

92

91

68

110

77

(a) Does this data suggest that a linear model would be appropriate to
study spinning quality on the basis of fiber length?

(b) How do the two approaches to part (a) relate? [Hint: Both S and
L are generated together randomly and it 's not unreasonable to think
they are "jointly" normally distributed.]
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(c) What was the change in average skein strength per hundredth of an
inch in fiber length for the 1944 crop of cotton sampled here?

(d) What would be the spinning quality of a batch of cotton from the
1944 cotton crop which had a fiber length of about 0.7 inch?

7.4 Some Review Problems

Here's a mixed set of problems covering this and the previous two chap­
ters. Give complete real-world answers to questions involving real-world
situations. For hypothesis tests, give a formal statement of the hypothe­
ses and the formal conclusion, "reject H,." or "fail to reject H;" as
well as the real-world conclusion and a statement of the possible error
you might be making with that conclusion. For tests of significance,
calculate the p-value, identify it as SMALL or NOT SMALL, and then in­
terpret that in real-world terms. It's very important that you be able to
identify the TYPE of each problem. You would do well to go through
the problems first just to identify the problem type. Before doing a
regression problem, evaluate the model by interpreting r2; you need
not do an hypothesis test of the linearity assumption unless requested
to.

All questions are based on the data described below. You will have to
determine what part of the data is relevant to each question.

The Data

For budget planning purposes, Residential Management, Inc. wants to
be able to estimate at the beginning of the quarter the quarterly mainte­
nance supply costs for anyone of their large apartment complexes. They
manage several hundred complexes. A complex is considered large if it
contains at least ten units. You are brought in as a consultant on this
and a number of other questions. Residential Management, Inc. rou­
tinely allows a ten percent risk of error in its statistical analyses. Using
an appropriate sampling process, you obtain the following information
from the corporations's records:
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A B e
#of units Quaterly maintenance # of residents on

in complex supply costs ($100) first day of quarter

38 17 110
62 19 125
51 18 140
72 23 150
32 22 165
64 20 170
91 25 190
87 24 200

115 27 210
102 29 215

-- --
714 224 1675

where LA2 = 57,672 LAB = 16,808

LB2 = 5,158 L Ae = 126, 800

L c' = 292,375 LBe = 38,700

7.4.1 Without any reference to the number of units or residents, how
would you answer Residential Management's original question? In other
words, what would you estimate to be the "quarterly maintenance sup­
ply costs for anyone of their large apartment complexes"?

7.4.2 The management is considering a tentative plan which it may put
into operation. Among other considerations, they would like to know if
this data seems to call into question the records from the Leasing Office
of two years ago that there are at least 200 residents per complex on
average in Residential Management's large apartment complexes.

7.4.3 For the management's tentative plan, it would also be helpful to
know if this data casts doubt on today's validity for the records of two
years ago, indicating that at least 90% of the large complexes have more
than 130 residents. Does it?

7.4.4 Give an equation to estimate the average quarterly maintenance
supply costs as a function of the number of residents in a complex on
the first day of the quarter.
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7.4.5 Do an hypothesis test to check if the linearity assumption of the
model in Problem 7.4.4 seems to be satisfied.

7.4.6 The manager of a complex with 130 residents asks for an estimate
of the probable maintenance supply costs for the coming quarter. What
do you report?

704.7 Estimate the increase in maintenance costs for one of the com­
plexes run by Residential Management, Inc. incurred with one new res­
ident .

704.8 How many units are there in one of the large apartment complexes
run by Residential Management, Inc., on average?

704.9 You are asked how many complexes have at least 200 residents
on the first day of a quarter.

(a) Because our sample has only ten observations, we cannot use our
normal distribution for the estimator. Why not?

(b) What minimum sample size would be required? [Hint: Use the
present observations.]

(c) What sample size would be required to estimate the percentage of
complexes with at least 200 residents to within ten percentage points
with no more than a one percent risk of error?

(d) If you use the sample size of part (c), what's the smallest value of p
for which the normal approximation would be valid?

7.4.10 What is the average number of residents in a complex with 50
units?

704.11 Management wants to make sure maintenance supply costs don't
get out of hand-they should remain below $2500 per complex per
month. Each month, they will examine the records from a small ran­
domly chosen sample of several complexes. If that data ever suggests
a problem, a careful examination of the records of all complexes will
take place. What would you suggest as a criterion for determining when
the more careful examination seems to be required? Suppose you have
decided on a sample of size ten.

7.4.12 The complex across fromthe maintenance building has 93 units.
How many residents do you suppose there are in that complex?
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7.4.13 Based on your data, how much must Residential Management
payout in maintenance supply costs per unit in one quarter for a given
complex?

7.4.14 At the beginning of the quarter, it was projected that this quar­
ter's average maintenance supply costs would be below $2500 per com­
plex on average. Does your data bear out this projection?

7.4.15 In this quarter, how many residents were there on average in
those complexes which incurred maintenance supply costs of $2000?

7.4.16 A procedure is in place with a ten percent risk of error which
alerts management to the need for a further investigation if the quar­
terly data ever suggests the maintenance supply costs have risen above
about $13 per resident. Is a further investigation called for this quar­
ter?

7.4.17 A journalist who wants to know how many units Residential
Management operates in all of their complexes has managed to get hold
of your data. What conclusion might she come to on the basis of this
data?

7.4.18 Is this quarter's data consistent with the report released earlier
that less than half of the complexes this quarter would incur maintenance
supply costs in excess of $2500?

7.4.19 One of the managers claims no more than 20% of the complexes
this quarter incurred maintenance supply costs in excess of $2500. Does
the data bear her out?

7.4.20 Another one of the managers says, "Well, surely no more than
30% incurred costs in excess of $2500!" Does the data bear her out?

7.4.21 Let's settle this once and for all! How many of the complexes
incurred maintenance supply costs in excess of $2500 this quarter?

7.4.22 How many residents would you expect on average this quarter
in those of Residential Management, Inc.'s complexes which reported
$2500 in quarterly maintenance supply costs?

7.4.23 Suppose, in fact, the maintenance supply costs this quarter for
all Residential Management, Inc.'s complexes averaged $2387 with a
standard deviation of $318. What's the probability of data like yours or
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worse for this variable? What assumption must you make here? How
might it fail?

7.4.24 How likely is it that less than half of a sample of 25 complexes
would report maintenance supply costs in excess of $2500 if, in fact,
the true proportion for all complexes is 37%?

7.4.25 Of the complexes you sampled this quarter, how many had more
than 150 residents?
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Chapter r
(a) For the die, X is the number of dots on the uppermost face after rolling the
die. For the coin, X is ... ?

(b) Each of the six possible values of X are equally likely (the die is fair), so all
the probabilities are the same. What are they?

(c) In the text, you find that "probability" means "theoretical relative fre­
quency." Explain this in terms of the probability (= 1/52) of drawing the ace
of spades. What's "theoretical" about it and what is the "relative frequency"?

(a) Here you want the probability that X is 1 or 2. Symbolically, you're asked
for P(X < 3). The condition X < 3 means X = 1 or X = 2. What is it?

(b) Here you want the probability of a six on the first die and a six on the
second die. The probabilities do not add here. Make a guess!

(c) Yes?

Addition corresponds logically to "or" and multiplication to "and." This rule
has important restrictions but is valid in our examples. Restate the examples in
Problem 1.1.2 in these terms.

(a) Both terms refer to a repeatable "something you do." This rather vague
expression is made more precise by ... ? What's the difference between the
two definitions?

(b) A random experiment is a kind of scientific experiment. What is it that
makes it "random"?

(a) Give the probability distribution in a table. This requires knowing the prob­
abilities for the other faces. Did you notice this information was missing? If so,
congratulations! Let's assume the other faces are all equally likely. Now give
the probability distribution for X.

(b) Yes?

(c) The verbal descriptions are the same: "The number of dots on the uppermost
face." And the two random variables have the same values: the positive integers
1 to 6. The random variables differ only because they are talking about two
different dice. Dice are physical objects. So the difference lives in the real world.
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1.1.6

1.1.7

Answers-Levell

The difference is in the underlying random experiments. But exactly what about
the experiments is different? After all, even the outcomes of the experiments have
the same verbal description: the die sitting on the table top in some position.
So, with specific reference to the definition of the term "random experiment,"
where's the difference? Think about the picture of a random variable as a bridge.
Be as exact as possible. You can specify the exact phrase in the definition which
accounts for the difference.

Y P(Y)

1 0.26 You should include the total of the
2 0.26 P(Y) column as a check on the con-
3 0.22 J dition I: P(Y) = 1. If that column
4 0.26 doesn t add to one, there s a mistake

1.00 somewhere.

What's the meaning of ~Y for this example?

(a) This problem will be very useful to help in understanding random variables.
Here's how you can organize the answer: Make a two-column table as shown
below. In the first column, show the "doing" of the random experiment and
in the second column give a verbal description of the rule which associates a
number to each outcome:

1.1.2 a

b

andom
experiment

andom
variable

c

1.1.5 a

b

1.1.6

[FILL IN THIS TABLE]

(b) and (c) If you didn't get these two parts of the problem, try again using the
information above . Don't forget, you should complete part (a) through level II
before trying parts (b) and (c).
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(a) It's a probability distribution alright, a presentation of the values of X
together with their probabilities, but it's not the probability distribution of a
random variable. Why is X not a random variable? Think about this carefully
before you read level II; it's an important point.

(b) This new X, is indeed, a random variable! Why? Note that X has a simple
verbal description. What is it?

(c) Yes?

(a) For n rolls, what's the fewest number of dots possible? The most number
of dots possible? After thinking about that you should be able to say how many
dots would you expect altogether for a typical n rolls.

(b) Yes?

(c) Half the time you get two dollars and half the time three. So what do you
get on average?

(d) Think this way: Nine times out of ten you get two dollars and once out
of ten, three dollars. This is theoretical, of course. On a specific ten tosses, the
results could be quite different. Theoretically, you get two dollars nine times
and three dollars once. So what's your "on average" take?

(e) Before you can talk about a random variable you must first identify clearly
the underlying random experiment AND ESPECIALLY THE OUTCOMES! Then you
can verify that you have a random variable by giving the rule which associates
a number to each outcome.

(f) Yes?

This X IS a random variable! X satisfies the definition of random variable
exactly in every detail: It's a rule which associates a number to each of the
possible outcomes of a random experiment. But then how do you account for
the fact that the value one is certain? What's random about that?

Let Y be your gain/loss on one roll with this die. For example if you roll five
dots, Y takes on the value one-you get five dollars for the five dots, but you
paid out four dollars to play. Because Y is a rule which assigns a number to
each of the possible outcomes of the random experiment, it's indeed a random
variable.
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1.1.12

1.2.1

Answers-Levell

(a) What's the random experiment? Verify each of the conditions in the defini­
tion of random experiment.

(b) What are the possible values of Y?

(c) Give an equation for Y in terms of X, where X is the number of dots on the
uppermost face. This may look hard, but don't get discouraged! Think exactly
how you would determine your gain/loss on any particular roll.

(d) Give the probability distribution for Y. This is easier than it looks! Which
outcome of the experiment corresponds to which value of Y? What's the prob­
ability of that outcome?

Yes?

(a) Yes?

(b) Did you guess that E(X) = 1? The phrase "on average" is crucial. For one
particular toss who knows what would happen?! The expected value only refers
to what happens on average when you toss the two coins many times. Thus,
for example, P(X = 2) = P(HH) = P(head AND head) = 0.5 x 0.5, and so on.
Now, fill in the table to compute E(X).

X P(X) XP(X)

0 ?? ??
1 ?? ??
2 0.25 ??

--
1.00 1.00 so E(X) = 1.

(c) Here 's how to guess: You should expect more dots on average than for a
fair die, more than 3.5. Five is the most likely number of dots (50% chance) and
there's only one value larger than five, but four smaller, so the expected value
should be something short of five. So guess that 3.5 < E(X) < 5. Now calculate
E(X).

(d) Answer: $2.50. You got this heuristically in Problem 1.1.9. Now calculate
it from the probability distribution for the appropriate random variable-the
random variable X which takes the value two for the outcome "coin lying on
table with heads up" and takes the value three for the "coin lying on table with
tails up."
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The key here is the phrase "in the long run." You have to think about ten plays
or 100 plays. Then think about n plays, the "general case." How much will you
payout and how much are you likely to take in? Of course, to come out even,
what you pay should equal what you expect to take in. So, what would you pay
to play?

(a) The question is, what's P(X = 1 or 6)? Use the "or" rule (see Problem
1.1.3). That rule doesn't always apply, but it's valid here. Later, we'll see the
general rule.

(b) and (c) Yes?

For the value X = 1, the deviation from the mean is X - p, = -2.5.

(a) Yes?

(b) For example, X - p, > a means the deviation is positive. Now, a simple
manipulation of this inequality will show you its heuristic meaning, its practical
meaning.

(c) Here you don't know anything specific about X, so you'll have to rely on
the abstract formula for the average deviation: E(X - p,)P(X). If you play with
this algebraically, you'll discover it's just zero. First, distribute the P(X) over
(X - p,) by writing it as XP(X) - p,P(X) and go from there.

(a) Not true! Give an example of a loaded die that's MORE predictable than a fair
die, keeping the expected number of dots per roll at 3.5. So you must "invent"
appropriate probabilities. Show that your example is valid by computing the
variance and then comparing it with the variance of a fair die. Make sure your
die has an expected value of 3.5.

(b) You should give a graph for the die which you constructed in part (a) similar
to the one below for the fair die. Be sure you see how your graph illustrates the
point made in part (a).

P(X)

the fair die :

1
6

1 2 3 4 5 6

t
3.5=J-tx

5
the possible
values of X
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1.2.7

1.2.8

1.2.9

1.2.10

Answers-Levell

Note that 90% of the probability for this coin is concentrated at one, very close
to the mean of 0.9. For the fair coin, both values, X = 0 and X = 1, are
comparatively far from the mean of 0.5. Thus, the unfair coin is less dispersed
about its mean than a fair coin.

(a) So, should the variance of our unfair coin to be larger or smaller than for a
fair coin?

(b) and (c) Yes?

(d) Note that X takes the value zero with probability 1 - p and the value one
with probability p. Set up the probability distribution table with these values.
You'll be able to show that the mean is p and the variance is p(1 - p).

(a) Yes?

(b) You can calculate the mean absolute deviation by just adding an appropriate
column just as you did to calculate a2•

(c) Here are the answers: 1.5133, 1.6, and 1.1356. How?

Here 's an example of a constant random variable : Every time you roll a die, I
give you two dollars no matter what face of the die comes up. For this random
variable, you get two dollars per roll, on average. Exactly two dollars per roll.
The phrase "on average" is just a technicality because you always get the same
amount.

Similarly, suppose the random variable X always takes on the constant value
c, so that X = c is true for all outcomes . Then we expect to get exactly c on
every repetition of the random experiment. So we guess that J.LX = c. Now, how
much variability is there in the values of X? NONE. So the variance ought to
be zero. Show analytically (use the formulas) that these values are correct: If
X = c, then J.Lx = c and ai- = o.

This is a very instructive problem. Give it some careful thought before you look
at the answer in level II. Let's think about the die described in the text for which
P(X = 1) and P(X = 6) are both 0.3, whereas all the rest of the faces are equally
likely. Consider these questions:

(a) The difference in the two dice is reflected in their variances. How?

(b) What does part (a) say about the expected number of dots for the loaded
die compared with the fair die?
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(c) What about the unfair coin which comes up heads 90% of the time? Which
is more predictable, the fair coin or the unfair coin?

(d) Use the result in the level II answer to Problem 1.2.7(d) to calculate the
variances for the coin which comes up heads 90% of the time and for the fair
com.

What does the variance measure? What does the standard deviation measure?
Exactly what is the difference?

(a) Call the gain/loss random variable G. Then if X is the number of dots on
the uppermost face,

G = X - E(X)
what you I i what you

receive pay to play

Because you get one dollar per dot, your "expected receipts" is exactly E(X),
the expected number of dots . If you pay that amount to play, your expected
gain/loss will be zero. You come out even in the long run; no gain, no loss
(Problem 1.2.2).

The predictability of your gain/loss is measured by how variable it is about
this "break even" value of zero. Ifyour gain/loss isconcentrated close to zero, the
game is highly predictable, otherwise not. Now complete part (a): For each of the
three dice described in the problem, compute the variance of the gain/loss ran­
dom variable. Then using these computed variances, compare the predictability
of that gain/loss for the three dice.

(b) For the three dice, the house should charge respectively $4.00, $3.40, and
$3.70 . How do you derive these numbers?

(c) First, identify clearly the underlying random experiment (there are four
things to verify) and then identify the random variable itself.

So p = 0.72 (NOT 72, Pis the proportion, not the percentage). Note that 72%
of 150 is 108. Now write out the equation with the correct numbers substituted
for the symbols.

(a) Let P be the amount you pay to play. Because you receive one dollar per
dot, your "expected receipts" is E(X). Thus, P = E(X) and so G = X - E(X).
Write this in the form G = a + bX. Note that in the general form for a linear
equation, Y = a + bX, a is the constant term and b is the coefficient on X .

(b) Use part (a) above together with the formula: ab = b2ai .
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(c) You must explain why it makes sense in this game that the variability of the
gain/loss would be the same as the variability of the die.

(d) It's obvious that /-LG = -0.5, why? Derive this formally using the funda ­
mental equations for linearly related random variables. What's the variance?

(a) /-Ly = r;yp(y) = r;yp(X) because, for the same outcome, the probabilities
of y and X are equal. Now, substitute Y = a + bX into this equation and
simplify.

(b) Again, just substitute Y = a + bX into the formula .

(a) WY = a + bSC. So . . . ?

(b) About 12 inches. How? Use the fundamental equations for linearly related
random variables.

(c) If Y = a + bX, we can get Y = a if . . . ?

(d) The second. Why?

(e) Think about SC = o.

(a) You may say you're not a gambler and wouldn't play such a game at all!
But suppose you ARE willing to play such games. Still, you can't say what will
happen because you don't know the probabilities for this die. Did you notice
the problem would require more information before you could say anything
meaningful?

Suppose the face with one dot comes up half the time and all the other faces
are equally likely. Would you play this game? In the long run, you should expect
about 2.5 dots on average. Why? What would be your long run gain/loss in this
game?

(b) How risky compared with what? If there's no other obvious comparison,
you might want to compare it with the game involving a fair die. But for the
comparison to make sense, the games should have the same expected gain/loss .
What would you have to pay in playing with the fair die to get the same net
result assuming that you still receive three dollars per dot? And which game is
riskier?

(c) You evaluate the risk by comparing what you get (that's X) with what you
expect to get (that's E(X)). So it's not just a question of half the probability
being on one value. What else must you consider?
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(a) You know a club was drawn. So forget the 52 cards; you need think only
about the clubs.

(b) P(A and C) = 1/52 because exactly one of the 52 cards is an ace of clubs.
Apply one of the rules to P(A and C) to get . .. ?

(c) An "event" is a set of possible outcomes of some random experiment. What
is the random experiment for the event A? For C? How many outcomes?

(d) "Ace" is independent of "club" on one draw from a deck. Explain.

(e) P(AIB)P(B) = P(BIA)P(A) because both are equal to P(A and B). So . . . ?

(f) "Equivalent" means when one condition holds so does the other. So you
have to do two things: First, show that when the simple product rule holds,
then A and B are independent. Second, show the "converse": Show that when
A and B are independent, then the simple product rule holds.

(g) We've already had an example like this. Were the events independent?

(h) Well, P(AIB)P(B) = P(BIA)P(A). Why? How does that help us?

(a) Under what conditions does P(A or B) = P(A) + P(B)? There is a very
specific technical term for this condition. What is it? What about the "and"
rule?

(b) You might interpret this probability as P(X = 2 OR 3 OR 4 OR 5) or you
might interpret it as P(X ~ 2 AND X ~ 5). One way is "natural" in the sense of
being easy and direct (using one of our simple rules). The other way is possible,
but hard. Which is which?

Yes?

(a) Use P(T) = P(T and D) + P(T and DC). In other words, analyze "tests
positive" into two mutually exclusive events "tests positive and has the disease"
and "tests positive and does NOT have the disease."

(b) Show that P(DIT) ~ 60% . Is this good or not?

(c) The predictive value declines as the disease becomes less common. Why?

(d) P(DITl and T2) ~ 74%. How? Independence means P(T1 and T2ID) is just:
P(TIID)P(T2ID) = 0.95 x 0.98, similarly for P(Tl and T2IDC).
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(e) You must show either that P(DIT) =I P(D) or that P(TID) =I P(T), whichever
is easier. If one is true, so is the other.

With T as "fits the profile" and D as "should be denied boarding," what is
P(DIT)?

(a) What is the predictive value of the test? In other words, how likely is it a
defendant is lying when the test says she is? In symbols, with L as "actually
lying" and T as "tests says lying," show that P(LIT) ~ 68% . Interpret this.

(b) ~ 95%.

(c) Yes?

The absolute value has the following meaning:

case I
case II

lui = u if u 2': 0;
lui = -u if u < o.

Now, apply that to IX- JLI. Note that "X is within k standard deviations of
JL" just means that X takes a value somewhere in the interval with endpoints
JL ± ka

x takes a value

someplace here~

J.L-ka~ ~J.L+ka

1.4.8

Think of JL as "my house" and a as "one block." IfJoe lives "within k blocks
of my house," to find Joe you first go k blocks below my house, JL - ka. Then­
all the while calling "Joe, Joe, Joe . . . "-walk toward my house and beyond
until you've gone k blocks above my house, JL + ka. That stretch of road is the
part of the road "within k blocks of my house." If Joe doesn't answer, either
he's not at home or he doesn't want to talk to you. Or he's deaf. Or you're not
calling loud enough. Because he lives somewhere in that stretch of road "within
k blocks of my house."

(a) You can't answer this question exactly. You can only say there's at least a
75% chance to be within one standard deviation of the mean. Explain.

(b) Yes?
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(a) and (b) Don't use Chebyshev here. Why not?

(a) 90%. This is still much stronger than what you would get from Chebyshev.

(b) 30% .

(c) Who knows what Chebyshev would say? But his theorem says the proba­
bility is at most about 83%. How? Why does this conflict with the 70% in part
(b)?

(a) Give a "proof by contradiction." That is, suppose for all X it's true that
IX - J.LI < a, Show this leads to a contradiction and, therefore, it CANNOT be
true.

(b) This does not contradict part (a) because it doesn't say "strictly."

(c) Parts (a) and (b) ask about "within one standard deviation of the mean." So
in Chebyshev's Theorem, k = 1. So what?

We've seen a number of such examples. If you didn't get this, try again!

(a) The values of a constant random variable are all the same. There's only one
value. What's random about such a variable? Suppose, for example, you toss a
coin and the random variable always assigns the number 735, no matter which
outcome you get. What's random about that? While you're thinking about this,
what's the mean and variance of a constant random variable?

(b) ~X is meaningless. Why? Each of the other expressions has a very specific
meaning. What is it?

(a) There are four conditions to verify-what are they? Note that the outcomes
could be described as "the tack lying on the table top in some position," but the
problem suggests a simpler description of the outcomes.

(b) You can't do this! Why not?

(c) Your gain/loss random variable is Y = 60X - 20. How do you get this?
Note that it gives the right result: $40 if X = 1 and minus $20 if X = O. Here's
the distribution of X:
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0.3
o
0.3
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1.5.3

1.5.4

Now, use this to compute the mean and standard deviation (it's $27.50) of your
gain/loss.

(d) Tossing this thumbtack is, in an abstract sense, no different than tossing a
coin which comes up heads 30% of the time. How do you use Problem 1.2.7(d)?

(e) Are you going to end up ahead in the long run? If not, would you play?

(f) Here your gain/loss is Y = lOX - 5 and your expected gain/loss is 10J,tx ­
5 = -2, a loss of two dollars per toss, just as before. The two games are identical
as far as your expected gain/loss is concerned. So, it's not a question of which
game costs more on average per toss. Rather it's a question of which game is
more exciting. In other words, which one offers the opportunity for big gains
(and, consequently, big losses). A true gambler would prefer the game which
is very exciting. A conservative or reluctant player would prefer the less risky
game. Which game is more exciting/risky?

(a) The model describes barometric pressure as a function of the
boiling point of water. The parameters of the model are ... ? Exactly what kind
of object is the model in this case?

(b) About 206 degrees Fahrenheit. How?

(c) The degree measure of the boiling point would be more variable than the
inches of mercury for barometric pressure. Why?

(d) For example, change BP from Fahrenheit to centigrade and show that now,
in the new units, Pr and BP have virtually the same degree of variability. The
relationship between Fahrenheit (F) and centigrade (C) is given by F = 32 +
1.8C.

(a) Look at the definition for the term "probability distribution"!

(b) We've given our distributions mostly in the form of a table. But two other
modes of presentation have been mentioned-what are they?
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(a) For each value of X, you must take the deviations from the mean, X - JL,
weight them by the appropriate probabilities, and then add that column. It
should give you zero.

(b) Yes?

(c) The answer is 77%. How? Here's a hint: "One standard deviation from JL
in either direction" means one a to the left of JL (that's JL - a) and one a to the
right of JL (JL + a). So you need to find which values of X fall with in that range:
JL - a < X < JL + a. This is just an interval centered at JL extending one a in
either direction:

(~epO"i~e
va lues of X

~ the values of X w ithin one

standard deviation of J.t

Now, first determine which values of X satisfy this condition and then answer
the question: What proportion of the distribution is represented by these X's ?

(d) This problem will have to be done in a spirit of exploration, by trial and
error. The statistical mode of your calculator will make the exploration go
faster . To get a smaller variance, make Y less spread about its mean than X by
putting less probability at the extreme values and more probability close to the
mean. To avoid changing the mean as you change the probabilities, make the
changes symmetric about the mean.

(e) This is like part (c). The answer is 88%. How?

(f) What is the real-world component of a random variable?

(a) You've got five things to verify. What are they?

(b) You cannot do this. Why not?

(c) You would want to know at least their "expected score." But that doesn't
tell the whole story-what else is required?

(d) "Reliability" can only mean how predictable their game is. A player whose
score on 100 throws is within one point of their expected score is much more
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reliable than a player who is only within ten points of their expected score.
What must you know to make this comparison?

(e) You want to compute f..l and <7 for the score of an individual player. What
information is required for that?

(f) Each player generates a different random variable. Explain.

(g) Your expected score is just shy of eight points with standard deviation a bit
less than three points. How?

(h) You must concentrate the probability closer to the mean, and it should be
a lower mean. What's meant by "improving" the measure of exactness?

(i) Your opponent. Why? Your score should fall between 3.6079 and 12.3121
for you to be within 1.5<7 of your expected score. And your opponent?

(j) You are, by a narrow margin. Why? The range for you is (2.1572,13.7628),
and for your opponent, (2.0082, 7.9118).

First of all, what does the symbol EX,=3P(X) mean? Make a guess!

(a) The repeatable "doing" is to roll the die. The outcomes? There is NO DIF­

FERENCE in the experiments for X and Y. Explain.

(b) Yes?

(c) Such a question could be quite vague. What kind of relationship are you
looking for? Ordinarily, the first thing to look for is a simple equation relating
the two random variables. There is such an equation for this X and Y -what
is it?

(d) X is a linear function of Y : X = a + bY. Use the fundamental equations
for linear functions of random variables.

(a) and (b) Here's how you could guess the answer: Suppose, for example, you
concentrate half the probability on X = 1. That makes the mean relatively close
to one. And the variance will be relatively large because the values 5 and 6 are
far from the mean and together carry 20% of the probability. Of course, you
could make up for that if you could put only a tiny amount of probability on
those extreme values far from the mean. But you're required to make all other
faces equally likely! Reasoning this way, you can see that for the variance to
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be small, you should concentrate the probability near the middle of the values
ofX.

(c) These are TWO DIFFERENT random variables. Go back through the definition
and say precisely where in the definition the difference occurs.

(a) J.1, = 23 .28 and a = 0.8841.

(b) J.1, = 0.986 and a = 0.2608.

(c) J.1, = 1.934 and a = 0.1790. What proportions of these distributions are
within the required distances of the mean?

Here are the tables. Complete them to calculate the mean and variance:

(b) X P(X) (c) X P(X)

2 0.01 17 0.22
5 0.08 18 0.17
8 0.34 19 0.14
11 0.42 20 0.17
14 0.15 21 0.12

22 0.18

(a) There's a simple and meaningful description of Y in terms of X. What is it?
To see that, first calculate a couple of values of Y.

(b) Yes?

(c) The values of Yare described in part (a) and have the corresponding prob­
abilities. Set up a table and compute J.1, and a for Y .

(d) Because Y is the last digit of X and because Y has mean 5.78, the mean of X
is 21,478.1578. Now, reasoning intuitively like this, what's the standard devia­
tion of X? By the way, should you round this to 21,478.16 to avoid suggesting
more decimal accuracy than the original numbers contained?

(e) Solve for X from the equation Y = 100X - 2,147,810. Then identify a
and b for the equation X = a + bY, and use our "fundamental equations" to
get the mean and variance of X.
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Chapter2
As Tufte says, "To generate the thoroughly false impression of a substantial and
continuous increase in spending, the chart deploys several visual and statistical
tricks-all working in the same direction, to exaggerate the growth in the bud­
get." You are not likely to identify the statistical "tricks," but see if you can spot
any of the graphical tricks which contribute to the misimpression of a "substan­
tial and continuous increase in spending." Note, in particular, the placement
and use of labels and arrows. Also, take a careful look at the last three years
and how they relate visually to the previous years-do you see the trick?

Oops! We forgot to record the control for gender:

Percentage Recovering

Gender
_____Treatment _

II

Female
Male

20% (20/100)
67% (40/60)

38% (60/160)

24% (50/210)
75% (15/20)

28% (65/230)

23% (70/310)
69% (55/80)

32% (125/390)

2.1.3

Note that 38% recover under the first treatment as opposed to only 28% under
the second. Without the control for gender, it's "obvious" that the first treatment
is better. Obvious, but WRONG! Once gender is taken into consideration, it
becomes obvious that just the opposite conclusion should be drawn. Both men
and women do better with the SECOND treatment!

(a) Explain why controlling for gender leads to exactly the opposite conclusion
for this data.

(b) State the basic principle involved in this example.

Oops! We forgot to record the control for on-job experience (measured by length
of employment):

Average Annual Salaries ($1000)
___Female Male _

No . of Average No. of Average
employees salary employees salary

Less than 5 years
on-job experience 10 100 40

More than 5 years
on-job experience 40 175 10

50 160 50

125

200

140
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(a) Is there evidence of salary discrimination? Identify and explain the anomaly.

(b) Here's a more technical question to help you understand the calculation of
weighted averages: Show how to obtain the 160 and 140, the total averages, as
weighted averages.

(a) The authors of the NSM seem to feel that a mere promise of confiden­
tially given by a total stranger would put to rest all concerns of a strictly
closeted gay man even though the stranger knows that man's home address,
place of work, social security number, and other very personal information.
But it's a well-known fact that being "out" as a gay man can have dias­
trous consequences-loss of employment, eviction from housing, violent phys­
ical assults, estrangement from family, friends, church, and community, and
so on. It is for that reason among others that public health officials are so
adamant that HIV test status remain strictly confidential. Otherwise, the AIDS
epidemic, which in the public mind in the United States is closely associated
with the gay community, would be forced underground and totally out of
control.

The authors of the NSM were evidently oblivious to the fact cited above.
With this fact taken into account, how would you interpret the 2.3 % and 1.1%
results of the NSM?

(b) Eleven percent of U.S. males would be gay under this assumption, based on
the results of the NSM. Show precisely how to obtain this.

(c) These percentages seem consistent with the interpretation given in level II
of part (a), but not with the interpretation given by the authors of the NSM.
Explain.

(d) Nonresponse is always a problem. But if the reasons for not responding are
unrelated to the issues under study, there's hope that the responses you actually
do obtain are not significantly biased. Is there any such hope here?

(e) In the NSM, a variation of Warner's technique would work like this: A
respondent is given two questions such as "Are you gay?" and "Do you like
ice cream?" Then, with the help of a spinner or some other random device, the
respondent privately makes a random choice of which question to answer. Why
does this work?

(a) Each time you toss the coin, record the number of heads. Then you'll have
a simple random sample as required. "Verify" means match each condition of
the definition exactly with the corresponding aspect of the example. Be sure to
identify the value of n.
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(b) You need to write down all possible ordered sets containing three values
ofX.

(c) There are 1.074 billion such samples! Analyze it this way: For a sample
of size 30, you have 30 blanks to fill with either a zero or a one. There are
two ways to fill each blank: two ways to fill the first blank AND two ways
to fill the second blank AND two ways, and so on. So how many ways alto­
gether? [Hint: Try to see the counting principle involved and check yourself
against simpler cases. For example, how many samples of size three are there?
Of size two?]

(d) 0.2401. How?

(e) There are several ways you could get a sample for which ~X = 2:

1100 1010 1001 0110 0101 0011.

You either get the first sample OR the second OR the third and so on.

(f) For "half a head" per toss, you expect two heads on four tosses. So ... ?

(a) There are two conditions in that definition. What are they?

(b) There are 36 possible samples . What are they?

(c) There are six possible values of X on each roll. That means there are well
over sixty million such samples! How do you show that?

(d) 0.003 . How? Which samples have ~X = 4? What's the probability of each
of those samples (use the "and" rule)? Finally, use the "or" rule to compute the
probability that ~X = 4.

(e) Yes?

(a) First specify the experiment, being clear about the possible outcomes. Ask
yourself, "What is the 'doing' here?" Once the experiment is clear, go for the
random variable. Give the rule which associates a number to the possible out­
comes. Don't make the mistake of saying the diameters are the values of the
random variable.
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(b) You'll have to make an assumption about this manufacturing process. What
assumption? This may not be obvious at first. Read the definition of "simple
random sample" carefully.

(c) Statistical Process Control makes use of samples like this to monitor the
production process. How might you detect something wrong in the process by
means of this sample?

(a) First specify the experiment, being clear about the possible outcomes. This
is an example where a physical (as opposed to numeric) description of the
outcomes will be artificial-the outcomes really are numbers. What numbers?
Once the experiment and its numeric outcomes are clear, specify the rule which
"associates a number" to the possible outcomes.

(b) Yes?

(c) The difference is to be found in the underlying random experiments. Bevery
precise in identifying what exactly the difference is.

(a) Have you noticed that in setting up an abstract model for a real-world prob­
lem as we're doing here, it 's not neccessary to describe what actually happens;
the point is to have a consistent way of THINKING about what happens. It's pos­
sible to describe the experiment here so that "one silicon wafer" is the outcome,
but a simpler description more relevant to the problem is possible, a description
which makes it more like a coin toss. What is it?

(b) You can obtain the mean and variance of X in two distinct ways: Calculate
from the probability distribution of X or use a known formula. Just as an
exercise, do it both ways (making sure, of course, you get the same answer).

(c) You'll have to assume a lot is made up from silicon wafers taken off the
production line in order (why?). And you'll have to make one other assumption
about this production process. What is it? Justify this assumption.

(d) It's O.2(~X). Explain.

(e) Be careful here. Work backward from the value of the random variable
(which is described in the problem statement) to the outcomes to the "doing"
which produces that outcome.

(a) What's the "doing" here? You can correctly describe the "doing" in more
than one way, but make it look like the toss of a coin by having just two
outcomes. Then, what's the random variable?
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(b) As always, independence is the crucial thing and requires an assumption
about this disease, an assumption we've not mentioned. What's the assumption?
Verify that if the assumption is satisfied, the children of that neighborhood
constitute a simple random sample.

(c) This is parallel to part (e) of the previous problem. Try to make your answer
very specific to this real-world situation with as much detail as the problem
statement allows.

(d) Under the assumption discussed in part (b), the incidence of this disease
is modeled by the Poisson distribution which we'll study in Chapter 3. What
practical conclusion might you be able to draw once you have the theoretical
model in hand? Here, the phrase "incidence of the disease" means "how many
children in the sample have contracted the disease." [Hint: You've probably
encountered news media accounts of conclusions like the one we're thinking
about. Apply common sense and imagination.]

(e) Reread the answer to part (c).

(a) It will be very helpful if you've got a clear verbal description of the popu­
lation in mind. Try to formulate that description on the basis of the question.
Then check yourself by referring to the original list of populations from the
previous section. Be careful; it's easy to get caught by specifying the wrong pop­
ulation. For example, the first question does NOT refer to the population of "all
voters in the upcoming election" nor even to "all eligible voters." What exactly
is the population? For the last question, the population is NOT "all glaucoma
patients."

(b) For the first population, you could ask for the average age or mean annual
income, and so on. What about the others?

What percentage would "burn out too early" if "too early" means before 1200
hours?

(a) Deal a card, record its value, replace the card, shuffle many times, and deal
again. Do this until you have five cards. Match this with the definition.

(b) First, what probability distribution are you sampling from? What's the ran­
dom variable X? And the experiment? Here's a hint: The experiment is "select
one member of the population at random." So, what is X? Then show that a
simple random sample of size n from the numeric population yields "an ordered
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set of n values of X obtained from n independent repetitions of the random ex­
periment for X." In other words, it yields a simple random sample from the
distribution of X .

(c) There are two cases: sampling with or without replacement. In each case,
you can give a formula for the probability of a sample. That formula involves
the population size, N, and the sample size, n. But the formula is the same
no matter which sample you're talking about, so any two samples have the
same probability. What are those formulas? [Hint: sampling WITH replacement
is easier, do it first!]

(d) You have to do two things: First, show that any two samples for a fair
die have the same probability. Then give an example to show that this won't
necessarily be true if the die is loaded. That means give a specific loading of the
die and then show us two samples with different probabilities. Make it easy,
take samples of size n = 2.

(a) There 's no random number generator here! What is the random mechanism?

(b) The sample size is denoted by n. Now, concretely in the terms of this prob­
lem, give a verbal description of n. What's its value?

(c) Well?

(a) The first one is 24 +22 +21 = 16+4+2 = 22. Here's how: Look at 10110.
Counting from the RIGHT starting with zero, there's a 1 in the first, second, and
fourth places (a zero in the zeroth place). Add those powers of two. The next
binary number is 13 (how?) and then .. . ?

(b) 128, how? First, think about how many numbers you could generate by
tossing the coin once. Twice?

(c) How many numbers did we need to generate?

(d) Be careful. This question does not say "simple random sample from a pop­
ulation." Go back and recall the definition of "simple random sampling from
the distribution of a random variable." What's the random variable here?

(e) You'll have to toss the coin four times-why? You also need to decide which
member of your population corresponds to which binary number. Suppose your
tosses result in the sequences: THTT, TTTT, HTHT. What will your sample be?

(f) What's the purpose of sampling?
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(g) To make this work, the coins have to be clearly distinguishable. Otherwise,
any of the following four base-two numbers is generated by three heads and a
tail:

0111, 1011, 1101, or 1110.

So toss a penny, a nickel, a dime, and a quarter. Or toss four quarters but from
different years, or paint them different colors, or . .. ! As a random number
generator, how is this different from tossing one coin four times as we did in
part (e)?

Counting all occurrences of the word "the" throughout the entire text would
be very tedious and time-consuming. Such a "census" of an entire population is
usually not feasible. Even if you could do it, a complete census would result in
a wrong count because it 's difficult if not impossible to control human error in
such an enormous project. The theory of random sampling, on the other hand,
provides precise control over SAMPLING error (by contrast with human error)
through the theory of random sampling. So you can control sampling error.
Furthermore, when you're sampling instead of attempting an entire census,
human error is a much more tractable problem. It's controlled through proper
training of the relatively small number of people involved and by giving them
small enough tasks and enough time so they can do the job with a high degree
of accuracy.

So, in this problem, you should take a random sample of the words of the
text and count occurrences of the word "the" in that sample. Here are some of
the questions that will arise:

(a) What's the population here and how do you classify it?

(b) What exactly do you mean by "a word"? Are you going to count numbers
such as 2403? What if they're simply written out numbers such as one or two?
What about proper names? What about parts of a date? Addresses? What's the
basic problem here? For any population, this problem will arise. Can you say
briefly and concisely what it is?

(c) How do you index the text for selecting the sample? If you're just going to
go through the text word by word, you might as well do a complete census. In
fact, cluster sampling would be better here. Why?

Stratifying by income should work. You might put all those workers making
more than 40,000 dollars per year in the top stratum,between 20,000 and
40,000 in the middle stratum and all those below 20,000 in the bottom stratum.
This is just a suggestion. After all, determining a truly appropriate stratification
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is a statistical problem in its own right, a problem in the design of experiments.
And that's a topic for your next statistics course.

(a) Can you suggest another possibility?

(b) Identify and classify this population.

(a) Yes, they're both examples of random sampling experiments. And a ran ­
dom sampling experiment is by definition a random experiment. What are the
outcomes of a random sampling experiment?

(b) No, why not? How are they different?

(c) Throughout most of this text, a population will be either numeric or di­
chotomous. So give one answer to this question for each of the two types of
population. Note that no matter what the design of your sampling plan, an
outcome is just ONE RANDOM SAMPLE.

(a) Here's one possibility : 3, 4, 5, 12. Alter one of these four values to make
the mean still larger without changing the median .

(b) The median is determined by the middle two data values alone; nothing else
affects it. So, if you keep the number of observations the same, you can change all
the other data values without affecting the median. What's the general condition
for the mean to be larger than the median?

(c) If one or two (or a few) of the data values are quite "out of range," quite
large, or quite small compared with all the rest, then the median will be a better
measure of centrality than the mean. Give an everyday example where this
would usually be true. Think about this carefully. Can you think of a real-world
situation where you would typically expect to find a few especially large (or
small) values which would distort the mean?

(d) Because each distinct value occurs only once, all the f's are just 1. Note that
the symbol f belongs to a frequency distribution; the symbol rf to a relative
frequency distribution.

(a) The median and mode (or modes, if there is more than one) will be easier
to identify after you organize the data into a frequency or relative frequency
distribution.

(b) All integers from two through eight were observed except four. Still, you
should list four as a "possible" value. Otherwise, someone looking at your data
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presentation might suspect four was omitted by mistake. Remember, the point
of a data presentation is to provide immediate answers to any questions that
might arise. By omitting the value four, you would raise an irrelevant question
without providing an answer. Of course, because the value four is missing, its
frequency is ... ?

(c) Yes?

(d) What exactly is different when you have sample data?

(e) Here are the answers : 12, 12,60, 1,5. Explain by giving the verbal descrip­
tions.

Think about this carefully. Remember that a random variable is a rule which
associates a number to each of the possible outcomes of some random experi­
ment.

(a) What's the random experiment?

(b) What are the outcomes?

(c) What number is associated with each outcome?

This calculation will be done exactly like the corresponding calculation for a
probability distribution. The difference is only that .. . ?

(a) The word "parameter" for observed data refers to a population. If we had
sample data instead, the corresponding calculations would give the value of a
___. This would vary from one sample to the next. That's why it's not called
a parameter. A parameter is a number. Because for sample data the
calculation gives a quantity which varies from sample to sample, it is a _

(b) Read the definition of the term "range" again.

(c) The calculation for 8-2 is the same as for (J2, but the notation in the formula
will be different. What is the formula exactly?

Here's one possibility:



2.3.1 351

X f
3 1
4 3
5 1
6 2
7 3
8 1

Now, compute the mean, variance, and standard deviation and identify the
mode(s) and the median.

2.2.7

2.2.8

2.2.9

2.2.10

2.3.1

The formula for the variance given in the text (52 = (l/N)~(X - /1)2f as­
sumes you have a frequency distribution for the data. For a relative frequency
distribution, the formula would be "essentially" the same as for a probability
distribution. What's that formula and why is it only "essentially" (not "exactly")
the same as for a probability distribution?

The mean could fall virtually anywhere between the largest and smallest values.
So the range has nothing to do with the mean.

(a) Show this by making up an example of two small data sets consisting of a
few integers. Let your two data sets have the same size, the same data values,
and the same range . Only the frequencies will be different. Then by choosing
appropriate frequencies, you can have the mean of one data set be close to the
smallest value in that data set, whereas the other mean is close to the largest
value of its data set. So with the same range you have two very different means.
[Hint: This problem will be useless if you don't at least TRY to do it without
looking first at the level II answer.]

(b) Guess which of your two data sets has the larger variance and then verify
your guess by calculating. [Hint: Draw a line graph for the data . We haven't
told you how to do this. Guess how it ought to be done by analogy with the
line graphs for random variables in Chapter 1.]

Yes?

(a) To make the standard deviation larger, you must make the data be more. . .?

(b) To make the mean large without changing the median, you should ... ?

Here are the issues you need to address:
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(a) What are the classes? Classes of what?

(b) Evidently the j means "frequency," but what does it mean to say, "The class
20 to 39 occurs 202 times"? How can a class "occur"?

(c) If you said X is the symbol for the data values, you were not careful enough.
Note that these X values are not even possible test scores because they're frac­
tional values. Test scores as we've given them here are integers.

We use X for grouped data in a way that's inconsistent with our earlier
usage and we depend on context to resolve the ambiguity. This is sometimes
whimsically referred to as "abuse of notation," but it's a very good way to
make USE of notation. After all, you should keep the context clear at all times.
If you're clear about the context, if you remember whether you're talking about
grouped data or ungrouped data, you'll not be confused by the two inconsistent
uses of the symbol X. So, for grouped data, the variable X refers to ... ?

For parts (d) through (g), give a verbal description of:

(d) the product X j is the number of ... ?

(e) the column sum, Ej, is ... ?

(f) the column sum, EX j, is ... ?

(g) if we let N = Ej, then (l/N)EXj is ... ?

(h) How would you use the grouped frequency distribution to calculate the
variance, median, and mode?

Suppose the salary distribution is

salary
(in thousands)

0-15
15-30
30-50
50-100

100-250

j

523
318

84
70

5

1000

Class intervals include the left endpoint but not the right. It would be wrong
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to indicate the first class by 0-14 because then incomes between 14,000 and
15,000 are not accounted for.

Why would it be desirable to avoid equal class widths?

(a) The second class was observed 12 times. But what does that mean exactly?

b) Why is the second class, for example, not "15 - 29"? Because the data is
not presented that way, presumably it's not appropriate. Under what conditions
would it be appropriate?

(c) and (d) Yes?

(e) This is simple random sampling from the probability distribution of tem­
perature readings. What's the random variable?

Note that, roughly speaking, the 137 scores in the original first class divide
evenly between the two new classes. Now, if the relative frequencies are repre­
sented by area, how does the area of the old first class divide into the two new
classes?

Suppose you were the quality control inspector. What would you think if your
measurement of a rod was 0.999 cm? Remember that discarding good rods
is expensive and a drag on the productivity of your plant. Furthermore, any
measuring procedure is subject to error.

2.3.6 (1) Class I X XI (X - fl)2 I

0-10 10 5 50 1000
10-20 15 15 225 0
20-30 10 25 250 1000

fl = 15,
35 525 2000 (1 = 7.5593.

o 10 20 30
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(2) Class f X Xf (X - /1)2 f

0-10 5 5 25 500
10-20 30 15 450 0
20-30 5 25 125 500

/1 = 15,
40 600 1000 0'=5.

I I

0 10 20 30

(3) Class f X Xf (X - /1)2 f

0-10 15 5 75 1500
10-20 10 15 150 0
20-30 15 25 375 1500

/1 = 15,
40 600 3000 0'=8.6603.

o 10 20 30

3.1.1

3.2.1

Now, try (4) and (5) on your own. For each histogram, be sure to indicate the
mean, the mean plus one standard deviation, and the mean minus one standard
deviation, and shade in the area of the histogram which represents the percentage
of the data within one standard deviation of the mean.

Chapter 3
"Variance zero" means 0'2 = 'E(X - /1)2p(X) = O. Thus, each (X - /1)2 must
be zero because a sum of positive numbers can add to zero only if each term is
zero. In other words, to get a sum of zero you need negative as well as positive
numbers so everything can cancel. Now, what can you say about the values of X?
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(b) Instead of a column for the (X - J.l)2p(X)'S you need a column for the
X 2P(X)'s. The EASY way to form this column is to multiply the X column
entries by the XP(X) column entries.

(c) Clearly, the computing formula is quicker for computation, hence its name.
But it's also more accurate in a certain sense. In what sense? Why the term
"conceptual" for the conceptual formula?

(d) There are eight cases here: frequency distributions or relative frequency
distributions for grouped or ungrouped data for population or sample data.
Relative frequency distributions introduce nothing new, nor do grouped data,
nor does the population/sample distinction. In all these cases, it's only the no­
tation and the interpretation of the numbers that's new. For grouped data, the
class mark estimates the actual observation and you calculate as if it really were
the actual observation, so there's nothing new in calculating. For a relative fre­
quency distribution, the computing formula is (}2 = ~X2(rf) - J.l2. Here, we
just replaced P(X), the theoretical relative frequency by rf, the observed relative
frequency. Notice how it's only the interpretation (and so, the notation) that
changes. For sample data the formula is (}2 = ~X2(rf) - X 2.

That leaves observed data organized into a frequency distribution. In this
case, the computing formula is a bit different. Derive the following formula for
the variance of population data organinzed into a frequency distribution:

2 N~Xf - (~Xff
a = N2

(e) Because X is a random variable, so is X 2. Why? So X 2 has an expected
value, the average of the values weighted by the corresponding probabilities:
E(X2) = ~X2p(X). This has another more interesting form. Do you see what
it is?

(a) We had dice and coins and cards and so on. So, for instance, give an example
of a uniformly distributed random variable associated with the roll of a die.
Specifically, what's required to make this be a UNIFORMLY distributed random
variable? What's the parameter?

(b) Give a second example of a uniformly distributed random variable.

(c) If you want to give an example of a uniformly distributed random variable
involving the roll of a pair of dice, you run into a problem. What is it?

(d) Now, just for review, recall the probability distribution for the number of
dots on the two uppermost faces for one roll of a pair of fair dice. First, guess
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the mean and then verify your guess by making up the distribution table and
computing the mean. While you're at it, compute the standard deviation also.
As you do this problem, keep in mind that it provides an example of a random
variable that's NOT uniformly distributed.

(e) Verify that the 36 possible outcomes described in part (d) are equally likely.
Where does independence come in? And where does the fairness of the dice
come in?

(f) The 36 possible outcomes described in part (d) are equally likely. So why is
this NOT a uniformly distributed random variable?

Nothing further is required! The mean should be somewhere around 19. What
about the standard deviation? Now, set up a distribution table and compute the
mean and standard deviation exactly.

(a) It's the VALUES of the random variable that must be equally likely, not the
outcomes of the experiment. Give an example of a real-world situation involving
equally likely outcomes modeled by a random variable which is NOT uniformly
distributed.

(b) What's the key fact that makes an example such as you gave in part (a)
possible? Think about the relation between the values and the outcomes .

Yes?

You require only one piece of information, a set of numbers. So ... ?

The mean of a uniformly distributed random variable is just the average of
its values because the probabilities are all the same. In other words, you don't
need a weighted average because the weights (the probabilities) are all the same.
Show that tix = (1/n)~X by using the formula ux = ~XP(X). [Hint: It's not
too hard. Give it a try!]

(a) Because there are n objects, think of n positions:

L...-_...J' , L-'_-" , '-'_--I' , • •• " ...._----', , '-----', ,
i

position #1
i
position #2

i
position #n
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An "arrangement" of the n objects is obtained by choosing one object for the
first position, another for the second, and so on. How many ways can you do
that?

(b) By the fundamental principle of counting, the number of ways to choose x
objects and then arrange them is the product of C(n, x) and xl. Do it this way:
Step 1, choose x from the n objects. There are C(n, x) ways to do that. Step
2, arrange them. There are x! ways to do that. Now write down a different
expression for this count and you'll be able to solve for C(n, x). This time think
about it like this: We have x positions to be filled from a set of n objects. So
there are n ways to fill the first position. And so ... ?

(c) Learn to do these calculations without the factorial key of your calcula­
tor. Factorials get large very fast. So much so that after about 70! the calcu­
lator will give you an error message. Let's do one of these now, then you do
the rest.

C(7 3) = ~ = 7 x 6 x 5 x 4! ( I h 41')
'3!4! 3!4! cance t e . s

= 7 x 6 x 5 = 35
3 x 2 .

(d) Yes?

(e) A lot! 5040 ways. How?

(f) 30,856 ways, how?

(g) 720 ways, how?

(h) About 40 million. Use the factorial key on your calculator. For 80 students
you probably get an error message on your calculator. Why?

(i) About two million ways. Do this in two steps, first choose six seats for your
six students. Then seat them. Use the fundamental principle of counting.

(j) There are about 143,000 committees possible.

(a) Think about the population. Seeif you can suggest a further condition which
would make the example into a true hypergeometric situation.
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(b) In this example, why would we sample at all? The population has only 50
members. Why not just deal with the entire population? After all, sampling is
used when the population is too large to deal with in its entirety. But this is NOT

a large population.

(a) It's a sampling experiment. Just for review, verify that sampling without
replacement is, in fact, a random experiment. Start with the outcomes and work
backward to the "doing." What else must be verified?

(b) First think what is the smallest possible value. Then think about the largest
possible value and go from there.

(a) The pool of 40 candidates. Is it a dichotomous population?

(b) Certainly the mayor does not choose the committee at random. However,
from the point of view of gender (our only consideration) and assuming no
gender bias, the choice should look random. So what's the underlying random
experiment? Is it appropriate for the hypergeometric model?

(c) For any sampling experiment, an outcome is one sample. Real world?

(d) 658,008. How?

(e) A random variable is a rule which assigns a number to an outcome. Now,
real world?

(a) If you said "the population of books," you missed it-what's wrong with
that answer? What is the population? Note that it's supposed to be dichoto­
mous. So, what are the objects which make up the population and what's the
characteristic of interest? Be specific to the real-world detail of the problem.

(b) Work backward. First, what's an outcome for the experiment? What kind
of object is it? Be very physical and real world in your description. Then work
backward to find out what the "doing" must be.

(c) What's the smallest possible value? The largest?

(d) Two. Write that symbolically (without words).

(e) One of the characteristics of this model is not characteristic of our real-world
example and so we shouldn't use the model. What characteristic is not satisfied
in this example?
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Don't be discouraged; it's a short list. Try to determine which are the really key
words and underline them, as we did in the hypergeometric list.

(a) How many ways can we select n = 3 of these 50 components?

(b) For the numerator, use the fundamental principle of counting. You get the
sample in two steps: first, select X = 2 components from the four which have
the characteristic. Then select the rest of the sample.

(c) P(X = 2) = 0.0141 , how?

(d) Yes?

(a) Wait a minute. We need more information. What's the representation of
women among the 40 candidates? Let's suppose 15 are women. Now, what's
the probability of no women on the committee? [8.07%]

(b) With only an eight percent chance of such a result, one might be suspicious
of the mayor's selection procedure. Of course, you'd better be careful about
what you have actually shown. What have you shown?

(c) We need to clarify the phrase "such a committee." It's natural to interpret
it as "a committee with one woman" until you remember the point of the
problem. The phrase "such a committee" really means "such a bad choice of
committee"-a choice reflecting discrimination. The usual interpretation is "a
choice of one woman or less" because "no women" would be an even worse
choice. So the question becomes: What's P(X ::; 1) if the choice was random?
What is this probability and what does it mean in real-world terms? [0.3691]

(a) Are you clear about the notation used here? What's the difference between
X and x? That is, what's the difference between the meaning of the uppercase
and lowercase letters for a random variable?

(b) What's the denominator of P(X = x)?

(c) For the numerator, you need a product of two numbers. Write the formula
for each of those two numbers.

(d) What's the formula for P(X = x)?

(a) Describe the experiment as completely as possible with the given informa­
tion. That means incorporate N = 10, R = 4, and n = 4 into your description.
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(b) First, guess what proportion of the sample you think ought to have the
characteristic on average. As for the variance ... ?

(c) and (d) Yes?

(a) There's about a 36% chance of at least one burnt out bulb among the three
you choose. [Hint: N = 30, R = 4, n = 3.]

(b) Yes?

(c) 10%. Show this. Now, give the mean and variance for this situation and
discuss the finite population correction factor . Compare this with the situation
in part (a).

(d) Explain from the formula and intuitively why P(X = 3) is zero.

X P(X) XP(X) X2p(X)

0 0.8069 0 0
1 0.1862 0.1862 0.1862
2 0.0069 0.0138 0.0276
3 0.0000 0 0

J-L = 0.2,
1 0.2000 0.2138 (1 = 0.4169.

(e) For 90%, n = 4. For 80%, n = 7. How?

(a) You should expect about one and a half hearts on average in a six card
hand. Of course "one and a half hearts" doesn't make real-world sense, it's an
average-a theoretical number. Just like the "average" family with 1.2 children .
Now give a verbal description, as specificas the problem allows, of the random
variable X including the possible values of X and a description of the underlying
random experiment (What's the "repeatable doing"? What's an outcome?).
Then justify our answer ("one and a half hearts") precisely by reference to the
model.

(b) About three. Justify this precisely by reference to the model just as in the
previous part.

(c) What's the appropriate measure of "predictability" for the values of a ran­
dom variable?

(d) Note how tedious it would be to actually compute the probabilities and
make up a probability distribution. There are seven values for each random
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variable and the formulas are a mess. Nevertheless, you can get a good qualita­
tive idea of the two random variables without actually computing any proba­
bilities. It's this qualitative information you can sketch in your graph. Get your
sketch by thinking about the mean, the standard deviation, symmetry consid­
erations, and so on. Think qualitatively. For example, values more than three
standard deviations from the mean should-in a rough sketch-be shown with
probability zero. Why?

(e) Remember, in the finite population correction factor you should think of
the denominator as if it were just N.

Put the two effects together: analyze that part of the variance determined by the
d f d (N-n )

pro uct 0 nan (N-I):

(
N - n) 2n N _ 1 = an + bn,

Here, a = -1/(N -1) and b = N/(N -1). Thus, a and b are constants because
N is a fixed number. In other words, the effect of n on the variance is through
a quadratic function of n. Because the coefficient on n2 is negative, the graph
of this quadratic is a parabola opening down:

/0
I

N
"2 N\ (

\ the possible
values of n

3.4.1

What does this tell you? Which effect dominates the variance? Note that the
sample size is the only thing allowed to vary here. N, p, and q are fixed numbers.

(a) Yes?

(b) As with any sampling experiment, an outcome is a sample. But here you
can describe the outcomes a little more precisely in terms of the characteristic
of interest: Label each sample member as either "yes" or "no," depending on
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whether it does or does not have the characteristic of interest. Now we get a
simple schematic form for anyone sample. What is it?

(c) What's the smallest possible value for this random variable? That is, what's
the smallest possible number of observations in the sample which could have
the characteristic? Then, what's the largest possible value?

(a) This is the event that our outcome looks like

yes, yes, yes, no, no, no, no, no, no, no.

.What's the probability of this event? Be sure to justify the probability rule you
use here.

(b) The event in part (a) is only ONE way to have X = 3. Explain.

(c) Think of your potential sample as consisting of ten blanks to be filled with
yes or no:

- -, --, --, --, --, - -, --, --, --, - _ .

For example,

How many ways can you choose three of these blanks to contain the three yes's
for your sample? All the rest must contain no.

(d) Put the results of the previous two parts together. You'll use the "or" rule
for mutually exclusive events. How?

(e) About four chances in 1000. How?

(f) No role at all. Explain .

(a) This is exactly like the argument of the previous problem, except that you
have x yes's instead of three. See if you can imitate the argument to get the more
abstract formula.

(b) No role. Explain.

Note that the condition is equivalent to 1/10 2: nfN;
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(a) Obviously, because the problem is in this section, we're going to use the
model of "sampling with replacement from a dichotomous population." But
what justifies that? Isn't it clear that you would NOT do sampling with replace­
ment? What would be the point of looking at the same catalog listing twice?
Do you see the two possible responses to this question?

(b) Yes?

(c) Hmmmmmm! You cannot answer this question because the model requires a
value for the parameter p. Suppose, in fact, one percent of the listings correspond
to lost books. Then there's about a 32 % chance for three or more lost books
among our 200. How?

Here 's a hint: P(X ~ 3) will require 198 calculations! Work with the com­
plementary event, it will only require three calculations:

P(X ~ 3) = 1 - P(X ::; 2).

This is a little messy to be sure, but TRY. Even if you don't get it, you'll benefit
from trying. Note that X cannot be both zero and one at the same time­
you can't say that a sample has no lost books AND at the same time has one
lost book! This is a general fact-the values of a random variable represent
mutually exclusive events. So we just add probabilities:

P(X ::; 2) = P(X = 0 OR X = 1 OR X = 2)

= P(X = 0) + P(X = 1) + P(X = 2).

(d) If, in fact, one percent of the listed books are lost, in our sample of 200 we
should expect to find about ?? lost books.

(e) P(X = 2) = 0.0328 and P(X > 2) = 0.0033. How?

(f) About three-tenths of a book. How?

(g) The parameters of the model are nand p. What values do they take?

(a) Something you do with two outcomes? Be specific in identifying S, F, p,
and q.

(b) Make up a table for the probability distribution, using p as the probability
for X = 1, and so on. Then calculate. You'll find that J-L = p and that (J2 = pq.
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They had better be the same. Or at least approximately the same. Otherwise,
one of the models is not valid. Are they the same?

(a) What's the "repeatable doing"?

(b) What are the outcomes? Can you give one instance?

(c) For the outcome you gave in part (b), what's the value of the geometric
random variable? Describe it verbally.

(d) Give another possible outcome in addition to the one given in part (b) and
give the value of X for that outcome together with a verbal description.

(e) How can you be sure the outcomes cannot be predicted in advance?

A Bernoulli trial is a random experiment with exactly two possible outcomes.
So ...

(a) What's the "repeatable doing"?

(b) What are the outcomes?

(c) How can you be sure the outcomes cannot be predicted in advance?

(d) Give a verbal description of the parameter p.

Is it true that the blood type of one person is totally unconnected with and
unaffected by the blood type of another person?

(a) Note that the geometric random variable is a COUNT and, thus, takes on
only positive integer values. What's the smallest possible value? The largest? Be
careful, there's a trick here!!

(b) A parameter for a model is a number associated with the model. What are
the parameters here? Give verbal descriptions.

(a) The answer is O.0211-How? Here, "after 17 trials" might be ambiguous.
Assume it means the person of the desired blood type was the seventeenth person
tested . Also note that there's an eight percent probability for a person to have
the desired blood type because eight percent of the population have that blood
type. But how do you obtain this result? If you didn't get the answer, try again.
It's not too hard.
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(b) This is P(X = 1) which is the probability of the outcome: "yes." You only
had to do the trial once. So what's the probability that you get the desired blood
type with anyone given person?

(c) This is not possible. Why?

(d) The outcome is no, no, yes. The probability is 0.0677. How?

(e) The outcome is no, no, no, no, no, no, yes. What's the probability?

(£) The outcome is ... ??

Well, what assumptions are required for the model?

Well, try to do it. You'll see it won't be possible. Why not? Think about the X
column.

(a) A "statistic" is a random variable for which the underlying random experi­
ment is a sampling experiment. Is that true here? Recall that the hypergeometric
random variable was our first example of a statistic.

(b) Again, the distribution of a random variable is a "sampling distribution"
provided the underlying random experiment is a sampling experiment, so here
and in part (a) we're asking the same question: Is the underlying experiment for
the geometric random variable a sampling experiment?

(a) 12.5, how?

For each of parts (b)-(k), here is the percentage chance for the event to occur.
Show how you justify these probabilities using the formulas.

(b) 2.5%; (c) 71.37%; (d) 28.63%; (e) 8%; (f) Yes?; (g) 43.44%; (h) 84.64%;
(i) 4.85%; (j) 100%; (k) 84.03%. Notice that part (j) is the same as P(X ~ 1).
Explain that.

Three standard deviations for us is about 36. The probability of being more than
three standard deviations from the mean is 1.83%. This is much smaller than
Chebyshev's one chance in nine (~ 11%). But we have much more information
here than is assumed by Chebyshev, so of course we should be able to come to
a stronger conclusion.

(a) Where did this 1.83 % come from? Besure you also verify that three standard
deviations is 36.
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(b) What information do we make use of beyond what's assumed by Cheby­
shev's Theorem?

(a) Group the values into classes. Ten classes would be more revealing, but, out
of compassion for the poor student, let's do only five classes:

Class P(X E class)

1-10
11-20
21-30
31-40
41-50

Hint: Use the relationship

P(a ~ X ~ b) = P(X ~ b) - P(X ~ a-i),

for example,

P(X E class #2) = P(X ~ 20) - P(X ~ 10).

(b) Instead of a line graph as we have been giving for random variables, give a
histogram.

(a) Look at the graph in Problem 3.6.11(b) .

(b) The mean is 12.5 . The graph in Problem 3.6.11(b) seems to suggest that
about 50% of the distribution falls on either side of the mean. However, the
value which cuts the distribution in half is the median, not the mean. Only if the
distribution is symmetric about the mean (or median) will they be equal. Show
that the mean splits the distribution by 63% below and 37% above.

(c) Parts (a) and (b) explain the "expected value" sense of the mean of a random
variable-it's the "typical value." But in what sense?

The variance for this new situation is much smaller and so the model will give
more accurate predictions. Explain all of this by

(a) telling what you would use for making predictions,

(b) computing the two variances and comparing them.
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P(X ~ x) = p + qp + q2p + + qX-lp

=P [1 + q + q2+ + qX-l] .

Does the sum in the square brackets look familar?

(a) Write down the formulas for P(X = x) and for P(X = x + 1).

(b) In using the recursion formula, be sure you do not reenter the result of each
calculation. You'll certainly round it off, losing significant accuracy in repeated
calculations. With many calculations, this would be a serious and unnecessary
source of error. You can store q in memory. This is convenient when q has so
many digits that reentering it for each calculation would be a nuisance.

So, start with P(X = 1) = p = 0.08. Then, with x = 1 calculate P(X = 2)
by the recursion formula : multiply by q = 0.92 to get 0.0736. Now, record
the rounded value in the table and continue your calculations to get the rest of
the probabilities. Here, in this particular case, 0.0736 doesn't require rounding,
but, in general, you will have to round. Now, please complete the rest of the
problem.

(c) Yes?

(d) For the geometric random variable, the probabilities decrease as X increases.
See the comment at the end of the Problem 3.6.11(b), level II. For example, if
p = 0.08, P(X = x) is less than 4%. How?

For example, P(X = 5) = pq5 = 0.0238. Because there were 135 rabbits, if
the model is valid you'd expect 3.2 (2.38% of 135) rabbits to be caught five
times. Finish the model and compare with what was observed. Note that you'll
truncate the model at X = 7 because the trapping was repeated only seven
times. The model itself assumes an infinite number of repetitions. [Hint: Use the
recursion formula.]

(a) Be careful here, there's a trick! The "doing" is NOT just to do the Bernoulli
trial. It's to do the Bernoulli trial once and then . .. ?

(b) If you don't see this, look again at part (a).

(c) A typical outcome looks like

Verbal desecription?
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(d) The unpredictability is in the Bernoulli trial. Explain.

(e) There are two parameters for the binomial experiment, nand p, where n
is the number of repetitions of the Bernoulli trial and p is the probability for
success on one trial. What does this mean for the coin?

(f) An outcome is a string of n S's and F's . For example, if n = 20, an outcome
could look like

Here k = 8. When you think about the possible outcomes, think about having
a string of n blanks to fill with S's and F's. So how many ways can you have k
successes? For n = 20 and k = 8, it's about 126,000. Explain.

(g) Be systematic. List all the possible outcomes which have no successes, then
the ones which have exactly one success, and so on.

(a) You must somehow code the coins so you can tell them apart, otherwise it's
hopeless. If you number them, you can model the toss of twenty coins this way:
Let the Bernoulli trial be "observe one coin." For example, the "third repetition"
would be "observe the third coin." Clearly, the repetitions are independent:
Whether one coin comes up heads is not affected in any way by whether some
other coin comes up heads. So we have n = 20 independent repetitions of a
Bernoulli trial as required. But still, there's a potential problem with the model.
Do you see what it is?

(b) With "1500 coin tosses," we're tossing the same coin 1500 times. Now
somebody might say we're producing the "same" electronic component, but
that "same" refers to design not to the physical objects. In fact, we get 1500
DIFFERENT physical objects. So the better analogy is "toss 1500 coins" like
part (a). This analogy is better specifically because it highlights an important
consideration that might otherwise be overlooked. What is that consideration?

(c) In both "coin" examples, independence is automatic. Is it reasonable for the
electronic components model?

(a) What's the Bernoulli trial? Describe it carefully as "something you do which
is repeatable, with TWO clearly specified outcomes which cannot be predicted
in advance."

(b) What is "success" on the Bernoulli trial?
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(c) How many repetitions of the trial are there?

(d) What else must you verify?

For each part of this problem you must, IN THE REAL -WORLD TERMS OF THE

PROBLEM:

(i) Identify the Bernoulli trial, a random experiment with exactly two possible
outcomes. What is S?

(ii) Verify that you're repeating the SAME trial.

(iii) Verify that the repetitions of the trial are independent.

(iv) Identify the parameters. Are their values known or unknown?

(v) Specify how the outcome corresponds to a string of S's and F's.
If any parts of this model verification look questionable, say so.

What is the smallest possible value? The largest?

(a) The outcome is a sequence of independent events connected by the word
"and":

SAND F AND SAND F AND F AND F AND

and so its probability is obtained by .. . ?

(b) This is the same as part (a). Explain.

(c) Note that A and B are mutually exclusive events. It's not possible to have
"success" on the first trial and at the same time have a "failure" on the same
first trial. So P(A or B) = ??

(d) About 126,000. It's how many ways you can pick eight positions for the
S's among the n =20 trials. Aren't you glad we didn't try to write them all out?
Exactly how many such outcomes are there?

(e) Show that P(X = 8) ~ 11%.

(f) Suppose you round p8q12 to four places. What answer would you get?

There's a 30% chance for a success (think "heads") on each trial. There are 20
trials. So how many successes would you expect? If a coin comes up heads 30%
of the time, how many heads would you expect on 20 tosses? It's the same of
course.
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(a) X = "the total number of successes on all the repetitions." Each Xk is the
number of successes on ONE repetition; so Xk takes on only two values, zero or
one. X is related to the Xk 'S in a simple way. Try to discover this for yourself
before you turn to level II. [Hint: The Xk'S relate to the outcomes this way:

F, S, S, F, F, F,S, S, S, S, F, F, S, F, F,F, S,F, F,F

0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, °
i
This is the value of X7, for example.]

(b) Because X = ~Xk, the expected value of X is just the sum of the expected
values of the Xk'S. What is that? To get the variance, use the fact that the
variance of a sum is the sum of the variances IF THE EVENTS IN QUESTION ARE

INDEPENDENT. SO what are the mean and variance of X?

(a) Work by analogy with Problem 3.7.6.

(b) Look at the quotient:

P(X = x + 1)

P(X = x )

Write this out using the formula from part (a) and then simplify algebraically
to obtain the recursion formula.

(a) Look at the definitions for various types of sampling in Chapter 2 and then
think how the Xk'S of Problem 3.7.8 are generated.

(b) First identify the random experiment: Work backward-What is an out­
come, then what is the "doing"? You're going to obtain an outcome by repeating
a Bernoulli trial. What is the Bernoulli trial (something you do with TWO possi­
ble outcomes)? What is "success"? How many times do you repeat it? Finally,
identify the random variable.

(c) Section 3.4 is "sampling with replacement from a dichotomous population."
We said we would see later why that model doesn't have a special name of its
own. Now we know. Why doesn 't it?

(d) Part (c) of this problem explains why we'd use the binomial model for
sampling with replacement, but what justifies that model when we're sampling
withOUT replacement?
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(a) A player's skill is modeled by the Bernoulli trial: "attempt a basket," where
S is "sinks a basket." Note that we give exactly the same verbal description for
each of our two players. But we have two different Bernoulli trials depending
on who is attempting the baskets. Two different "doers" means two different
"doings" even though the "doings" are described with the same words. So we
have two different "doings," therefore two different random experiments (two
different Bernoulli trials) . Now, by precise reference to the appropriate formula,
show that Juan's game is more predictable than Shu Wen's even though she's
more likely to be successful.

(b) We don't know! Reinterpret. This question only makes sense if we interpret
it to mean "on average ." It's like asking, "How many children in a San Francisco
family?" You would anticipate an answer like "On average, 1.2." (Don't worry
about the family with only two-tenths of a child! An average is a theoretical
number.)

Now, with this reinterpretation show that Shu Wen should expect to make
about five attempts before sinking a basket. Note the phrase "should expect";
it implies you're giving an average (an "expected value").

(c) There's about an 11% chance. Show how to get that. Note that Juan makes
n = 10 repetitions of his Bernoulli trial.

(d) How do you measure the predictability of a player's game?

(e) Take the extreme cases: Suppose p is zero or one, values as far from one-half
as you can get.

There's less than a five percent chance of such a result if the choice was random.
Explain. That's a pretty small probability to the "mind of justice."

(a) If you don't round at intermediate steps (and you shouldn't), if you do the
entire calculation with the calculator, you'll get

P(X = 0) = q5 = 0.03125

and
P(X = 1) = [(5 - 0)/1] x (1 x 0.03125) = 0.15625

and so on. You shouldn't round at intermediate stages because further calcula­
tions with rounded numbers will magnify the roundoff error. Of course, when
you record the probabilities in the distribution table, you should round them to
four places (that's our convention).
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(b) and (c) Yes?

Here are the answers. Show how you get them.

(a) 0.0780.

(b) 0.3796.

(a) 0.4040.

(b) 0.0300.

(c) Recursion may look harder, but when you see what's involved you'll see
it's really much easier. After all, the recursion formula just says, "Multiply by
>. and divide by the next value." As you calculate the various probabilities,
accumulate the sum in the memory of your calculator. That way you don't have
to write down intermediate values and waste time later adding them all together.
We could make use of part (a), but let's ignore that and do this from scratch .
Use recursion to calculate P(X ~ 5) and then get the required probability as
1 - P(X ~ 5) = P(X > 5).

(d) The recursion formula gives the probability of the next value from the prob­
ability of the current value, where x is the "current value" and x + 1 the "next
value." Now, give a verbal description of the formula.

(a) The Poisson distribution cannot be presented completely in a table. Why
not?

(b) But from a practical point of view, this is no serious restriction. Explain.

What kind of explanation or reason could you give for the equation a 2 = >.?
How could you understand the equations of the Poisson model?

Which condition of the Poisson model would be violated if the disease were
contagious?

There are certain mathematical conditions which are required to derive the
Poisson model from the binomial. The rules of thumb are attempts at real­
world formulations of those mathematical conditions. Now, if some observed
data seems to fit the Poisson model, does that mean the underlying situation
satisfies the three rules of thumb?

(a) What does it mean to say there were 109 corps-years with B = O?
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(b) Use the appropriate technique from Chapter 2.

(c) A is the expected value of B, the expected number of fatalities in anyone
year. Based on these observations, it should be 0.61. Why?

(d) The phrase "empirical probability distribution" means you calculate ob­
served relative frequencies rather than theoretical relative frequencies. Observed
relative frequencies are sometimes called "empirical probabilities." The word
"empirical," after all, means "based on observation." Before you do the com­
putations, guess what the mean and fJ2 should be.

(e) Assuming B has a Poisson distribution (theoryl), compute the theoretical
relative frequencies (the probabilities). There is one minor difficulty: B has an
infinite number of possible values, but your table cannot be infinite. So, take
B only through the values actually observed . Here, the approximations for the
mean and variance will be less than their true values. Why?

(f) What comparison should you make?

(a) Note that we can't answer the question as asked because it asks for the
value of a variable quantity. We must reinterpret the question as asking for the
"EXPECTED value" of that quantity. Call the variable quantity X. So we interpret
the question as asking for the mean of X. After some thought, you'll see that
X, verbally described, is "the number of years over a ten-year period in which
YES" where YES means "a Prussian army corpsman would have seen more than
one of his comrades killed as a result of a horsekick."

(b) Let X = the number of years the corpsman must observe before encoun­
tering a year in which YES.

(c) You're looking at a random sample of 15 corps-years chosen from the 200
observed by Bortkiewicz. Obviously, you're choosing without replacement. Be­
cause it's not given, we must assume the five years were chosen randomly;
otherwise, we have no technique for answering the question. So we make the
assumption remembering that we should check up on it before accepting the
answer. Finally, the question is P(X > 4) = ?

The answer is 1.3195. How? Note that-you can check this with your calcula­
tor-just as log(10) = 1, lnte) = 1, so ... ?

(a) Well, what information picks out a particular Poisson random variable from
the whole class? For B(300, 0.01), which Poisson random variable should you
use? What's the general rule?
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(b) Think of the n repetitions of the Bernoulli trial as taking place over time­
an hour, say. Any convenient period of time is acceptable here because we're just
trying to show that it's possible to think of the binomial situation as a Poisson
situation. Then divide the time into n equal subintervals of time. If n = 60, for
example, then each subinterval is one minute long.

"occurrences"

F F F S F
I I I I
o 1 2 3
minutes

F F F F S F F
I I I I I

56 57 58 59 60 = 1 hour

3.9.1

3.9.2

The binomial counts "successes" and the Poisson counts "occurrences of some
event," so, let the "event" be "observe a success in this one minute interval."

Now show that the three rules for the Poisson distribution will be satisfied:

• Simultaneous occurrences should be impossible,

• Any two occurrences should be independent,

• The expected number of occurrences in any interval should be propor­
tional to the size of the inteval (length, area, volume, depending on the
type of interval).

(c) 0.2244 and 0.2240. How?

(d) Write down the formulas for the two means and the two variances .

(e) Well, for the Poisson approximation, set A = np. You want to say that
A~ npq. What does that tell you?

(a)-(c) Yes?

(d) Becareful in specifying the smallest possible value of X; it's not zero or one.

(e) Remember, the repetitions of the Bernoulli trial are independent.

For each of these, think of X = x blanks in which you must put k S's and the
rest F's . Don't forget that the last blank MUST contain an S because you stop
exactly when you have observed that kth success. So you have no choice for the
last blank. Here are the answers, show how you get them:

(a) 36; (b) 330; (c) 8; (d) 1; (e) look for the pattern in the previous parts.
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Hint: Do part (c) first because it has the smallest number of different outcomes
without being trivial. Part (d) is trivial; there's only one outcome. Write out all
the ways you can have X = 9. Then compute P{X = 9).

This means "Don't set k = 8; let it be unspecified." So, go back to the previous
problem and, wherever eight refers to the number of successes you seek to
obtain, replace it by k.

Here, "correct result" means that if you set k = 1 in the formulas for the negative
binomial model, you should get the formulas for the geometric random variable.
Do you?

(a) 75; (b) 0.0002; (c) 0.0007; [Hint: Use recursion.]; (d) Oh, you know! (e)
12.5; (f) 25.

In fact, the probability is much less than one in 1000. Why?

This is a difficult problem until you see it breaks down into two separate prob­
lems, each of which by itself is straightforward.

(a) Let X = the number of bolts you must receive to get three with more than
one defect. So, X should be negative binomial. What is the Bernoulli trial? What
is "success" on the trial? What is p?

(b) Let Y = the number of defects in one bolt. What is the distribution for Y?

(c) The question is P{X 2: Sip = ?). What's the answer?

(d) There are two models here. What assumptions are required in each case?

Suppose, for example, you have three traps.

Yes?

Chapter 4

Think about all the possible values X can assume. How many are there? Sup­
pose just to simplify things all the values were equally likely. What would the
probability of each value have to be?
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This is important! If all probabilities are zero, it looks like the model is totally
trivial and useless. In fact, it's not. Think about the dart board mentioned in the
solution to the previous problem. You'll also get a hint from the definition of
the continuous uniformly distributed random variable. Look at that definition
again. After thinking about all this, you'll see that

although any specific value is virtually impossible (zero probability), it is
possible to have X fall within ... ??

(a) What does that shaded area represent? Write down an explicit expression
for this using the symbols X ,D, and 100.

(b) So far, we have only defined the median for observed data, but obviously
for a random variable, it should be defined in a similar way: that value of the
random variable which cuts the distribution in half. So here there is a 50%
chance to fall below 30 and a 50% chance to fall above 30 since 30 is the
median. What is the shaded area?

(c) Use Chebyshev's Theorem because you really do not have any other infor­
mation about this random variable.

First, an intuitive analysis: Because you know nothing at all about your sample,
making use of the principle of "indifference"-averaging "across your igno­
rance," as in Section lA-you should assume your sample is evenly distributed
across the distribution from which it's chosen. In other words, assume the sam­
ple cuts the distribution into n + 1 sections of equal probability each.

X( l) X(2) X (3) X( n+l ) X( n)

Note that there are n+ 1 segments. Also note that the members of the sample
are NOT evenly spaced in the distribution. It's the probabilities that are equal.
Now, how do you get the formula given in the problem statement? It's possible
to get this result just by counting, looking at just your one sample. How?
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(a) Use the fact that X is bound to take a value somewhere between two and
three and, therefore,

ONE - P(2 ~ X ~ 2.25) + P(2.25 ~ X ~ 2.5)

+ P(2.5 ~ X ~ 2.75) + P(2.75 ~ X ~ 3).

From this together with the definition of the uniform distribution, you can
compute P(2.25 ~ X ~ 2.5).

(b) Now draw a graphical representation of this probability.

(c) Explain how in part (a) we can get away with just adding the four proba­
bilities. What addition rule are we using?

Hey, don't be so impatient! A little calm exploration will show you the answer.
Take a deep breath, relax, and-now, try looking at just ANY CURVE and see why
it wouldn't be appropriate for a uniform distribution. Then you'll see what's
required for the density function of a uniform distribution. Don't forget that
any two subintervals of the same length must have the same probability. Try the
following curve just for starters

and note that even though they have the same length, the three subintervals we
have marked do not have the same probability. The associated shaded areas are
NOT the same.

Now do a few more sketches and see if your exploration doesn't show you
what's required to make all subintervals of the same length have the same prob­
ability.

X is certain to fall between a and b after all, and so P(X E [a,b]) = 1. Look at
the corresponding picture and you'll see what c must be:
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?? c

a b

4.1.8

4.1.9

4.1.10

(a) A uniform distribution is completely symmetric. So the mean and median
should be equal. Look at the graph of the density function (Problem 4.1.6) and
you'll see that the median, and therefore the mean, is .. . ?

(b) Look at the picture and figure out what the area should be. After all, for a
continuous distribution probability is given by area under the curve.

(c) When we say two things are proportional to each other, we mean

"thing one" = (a constant) x "thing two ."

Now, P(X E [c,d]) = (d - c)/(b - a) = K(d - c), where K = l/(b - a). Because
a and b are fixed, K is indeed a constant. Now what's the VERBAL description
of P(X E [c, d])?

(a) All you have to go on here is the probability formula in the box preceding
this "Try Your Hand" exercise set. For that, you need to interpret the event
X ::; x as X E [XI, X2]. SO, what is Xl and what is X2?

(b) Yes?

(c) Note that IX - ILl ::; (b - a)/2.

(a) The answer is 0.25-HOW?? Here's the picture of j(x). Where is this 0.25
in the picture? Show that the answer of 0.25 is obvious from the picture and
then show how to get this answer from the appropriate formula .

I
2

(b) The answer is 0.625. How? And the picture?

(c) Yes? Draw the picture.

I
4
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(d) Yes?

(e) About a 87% chance.

(a) Let X be the number of failures during the period of useful life. X should be
Poisson. Verify first that X really is a random variable. What's the "doing"? Is
it repeatable? What does an outcome look like? Are they unpredictable? Then
describe X as a rule assigning a number to each outcome. Finally, show that
the period of useful life (the random failure period) satisfies the three rules of
thumb for the Poisson distribution.

(b) This is just P(X = 0), where X is the number of failures from time zero
to time t. It's customary to express this in terms of A, the expected number of
failures during a unit of time. For example, if t is measured in hours, A is the
average number of failures per hour. Now, if failure is really due to random
causes, the expected number of failures over a period of t units of time will just
be t.): For example, for two hours, you would expect 2A failures; for half an
hour, !A failures. This should look familiar; it's the proportionality assumption
of the Poisson model. So, P(T > t) = P(X = 0) = ??

(a) What is the underlying random experiment? Is it really a random experi­
ment? And so on.

(b) What is a continuous random variable?

(c) It 's just 1 - «:": How? Recall that the cumulative probability distribution
for T is just P(T :::; t). Here's a hint:

Look at the complementary probability: P(T ~ t). What is this in terms of
the variable X from Problem 4.2.1(a)? Then use Problem 4.2.1(b).

(a) About 2.1739 minutes. How?

(b) About 39%. You'll have to assume that any five-minute period for this
telephone switchboard looks just like any other five-minute period. With that
assumption, the number of calls received in a quarter of an hour is a random
variable with what distribution?

(c) About one percent. Because the question is in terms of minutes, model this
with t in minutes. Use the exponential distribution with Aas the average number
of calls in one unit of time (one minute). Note that the question requires you to
evaluate P(T > 10).
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(a) About one chance in three. How? Define the random variable T be "time to
burn-out" for this component. What is the distribution of T? [Hint: Measure
time in thousands of hours.]

(b) Five. You can do this two ways: (1) in terms of the distribution for the
number of burn-outs in 10,000 hours or (2) in terms of the distribution of
lifetime (time to burn out) for the system where you have, say, M components.

(c) About 45%. For that to happen, both components must operate for at least
1000 hours. What's the probability of that? You'll have to make an assumption
about how these components operate within the system. Otherwise, there's not
enough information for you to answer the question. What's the assumption?

(a) Recall that P(AIB) is just P(A and B)jP(B). Apply that to P(T > t+slT > t),
making use of the cumulative probability formula.

(b) Take specific values for t and s and then say (verbally) what the equation
tells you about T and these values t and s. For example, start at noon and let
t = 1 and s = 1 (so t + s is 2:00 P.M.), measuring in hours.

(a) You'll have to use the "fundamental fact" in the box from the text. What
does it tell you about Z?

(b) Z r-..J N(?, ?). Explain.

(c) Here's the picture. Use the fact that a normally distributed random variable
is completely symmetric about its mean.

5% probability of
a value in either of

the two toils

- 2 o 2

Where did we get this picture? What is P(Z < -2)?

(d) P(Z > 1) = 16%, P(O < Z < 1) = 34%, P(-1 < Z < 2) = 81.5% ,
P(1 < Z < 2) = 13.5%. How?
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All of these are obvious from the appropriate picture. Do this carefully before
you look at the answers.

Suppose the unknown number you're trying to estimate is 2. The estimates
might be

2.18, 1.09, 1.37, 2.26, 2.08, ....

What are the errors here? What is it about the errors that should make the mean
of the errors zero? You'll have to make a certain assumption; otherwise, a mean
error of zero would NOT be reasonable.

(a) Besure you label J1 and J1+u taking into consideration the fundamental fact
that about 68% of the probability should fall within one standard deviation of
the mean.

(b) You don't have enough information to locate zero exactly, but you can do
it approximately. Think about how many standard deviations below the mean
you would have to go to find zero.

(a) This is like the previous problem.

(b) How many standard deviations below the mean is zero?

(a) Impossible, why? Redraw the curve.

(b) Impossible, why? Redraw the curve.

(c)-(f) Do you get the idea? What about these last four pictures?

What are the values of the parameters when you specialize to Z?

(a) The usual questions: What's the underlying experiment? Is it really a ran­
dom experiment? What are the outcomes? Then, once you have the random
experiment clear, what's the rule which assigns numbers to the outcomes?

(b) Suppose the measurements are called M; the question is "What's the value
of J1M?" You can guess on intuitive grounds what it ought to be and then you
can prove it analytically based on what you've understood about measurement
error.

(c) The measurement error is exactly as variable as the measurements them­
selves. Why?
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(d) Think physically! What did Simpson say? For the measurements, there are
two sources of variability. What about the errors?

(a) First, what's the "situation giving rise to numbers"? Then, what are the
"many independent random factors" which should determine the difference
between any two values? Why do we say "approximately" normally distributed;
isn't the criterion fulfilled exactly?

(b) What can you DO to get a randomly determined number from the popula­
tion?

(a) You can answer this in complete detail like the answer in Problem 4.3.9(a).
But briefly, in intuitive terms, specification error should be normally distributed
because it really is just a form of ... ??

(b) Under what circumstances would specification error not look like random
error?

(a) Apply our criterion for normality: Look at the difference in two tests scores.
There are, indeed, many independent random factors which would account for
why the score of one student might be different from that of another student.
Name some.

(b) It looks as if a small group of students did better than the rest of the class.
How could that have happened? There's more than one possible explanation of
course. How does our criterion fail in such a case?

(a) The "relationship" is through an equation. What is it?

(b) First, in what sense is T a random variable? Then, why should it be normally
distributed? Think about the population of all students who take the test that
year.

(c) E is just a certain kind of ... ??

(d) By part (a), T is the sum of two normally distributed random variables.
The general rule: The sum of any two normally distributed random variables is
normally distributed. Why is that true? In other words, show that if X and Y
are both normally distributed, then X + Y is. Use our "rule of thumb" criterion.

(a) You have to use our rule of thumb, of course, because you have no other
criterion for normality. So, assume X satisfies the conditions of the rule of thumb
and show that any linear function of X also satisfies those conditions. In other
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words, show that if Y = a + bX, then Y will satisfy the conditions if X does.
For this, you must look at the difference between any two values of Y. You can
write such a difference as Yl - Y2.

(b) Take a specific example like Y = 2X, or Y = X + 1, where X is binomial.
Then think about the possible values of a binomial random variable.

(c) First recall X; it's the Bernoulli random variable with parameter p. It takes
only the values zero and one, taking the value one with probability p. Now, first,
what are the values of Y? Then give the probability distribution for Y. You can
compute the mean and variance of Y two ways: (1) from the distribution and
(2) from the linear relationship with X. Remember, the mean of X is p and its
vanancepq.

(d) Yes?

(e) Use our criterion.

(a) X = J1+u Z. That's the answer. And the slope is a which is, indeed, positive.
How do you show that X really is J1 + a Z? First, assume for the moment that
X = a + bZ. You can discover that a = J1 and b = a by writing down the
equations for the mean and variance of X. You will get two equations in two
unknowns which you can solve for a and b. Once that's done, you can say that
IF X is a linear function of Z, then a = J1 and b = a, Next you should prove
that X = a + bZ for these values of a and b. That will complete part (a). Now
you carryall this out in detail.

(b) Recall that Z rv N(O, 1). Now write Z = c + dX. What are the constants c
and d? Note that d, the slope, is positive. Why?

(a) The random experiment is identical to the random experiment for the mea­
surement error, E. You described that in Problem 4.3.8. In other words, the
measurement and the error both arise from the same real-world situation. The
only difference is in the rule which assigns numbers to outcomes. For M, what
is that rule? Contrast it with the rule for E, the error.

(b) Use the fact that E is a linear function of M.

(c) Compare M with E. Sketch the curves for M and E.

(d) In both cases, the random experiments are identical. For E and M, the
experiment is "make a measurement"; for X and Y, it's "roll the die." Because
in each case the experiments are the same, of course the outcomes are also the
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same. For E and M, an outcome is ... ? For X and Y? So what's the difference
between E and M? Between X and Y? How is the situation for E, M similar to
the situation for X, Y? Finally, identify some differences between the two cases.

4.3.16 For X rv N(2, 25), a = 5. Just using the fundamentalfact aboutthe probabilities
of a normal distribution (draw a picture!), you can see that

P(X < -3) ~ 16%, P(X < 2) = 50%, P(X < 7) ~ 84%.

So, in this way, you can make approximate guesses before calculating the exact
probabilites from the Z table. For example, the answer to part (a) should be a
bit larger than 84%.

(a) P(X < 7.4) = 0.8599. X < 7.4 if and only if

Z < 7.4
5-

2 = 1.08

and P(Z < 1.08) = 0.8599 from the Z table. The corresponding pictures are
given below. You should always draw such pictures. ALWAYS! We, on the other
hand, will from now on usually omit the pictures, but only in the interests of
space. This book is already too expensive!

P (X < 7.40) = tt

I I
2 7.40

the values of X

1'(7. < 1.08)

1.0
I

o

the values ofz

--"'-----.-------i-- Jso ... P(X < 7.'10) = P(Z < 1.08)

= O. 599

(b) This one requires no calculation at all. Why?
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(c) P(X > 1) = 0.5793. Here's how to guess: This X value is only slightly
below the mean; so the probability to be above that should be slightly more
than 50%. Now get this precisely from the Z table.

(d) 0.7257. Here X = -1 is less than a full standard deviation below the mean.
So the probability should be larger than 50% but less than 84%. Now do it
precisely from the table.

(e) 0.2743. How?

(f) This probability is necessarily less than 50%. Bear this in mind as you do
your calculations.

(g) The answer is 0.4392. How? Here's the picture:

7.4

The answers for all of these can be read off the picture, making use of the
standardizing transformation and the Z table. However, you may have to go
through several steps to put the picture in the form of the Z table picture.

(a) Looking in the body of the Z table-probabilities are in the BODY of the
table-you discover that Z = 1.64 puts a probability of 0.0505 in the RIGHT

tail. And so, by symmetry, the corresponding negative value, Z = -1.64, puts
that same probability in the left tail. Or take Z = -1.65, because what you're
looking for is exactly halfway between 0.9495 and 0.9505. In fact, it's usual to
interpolate, taking Z = 1.645 because you're exactly halfway between the two
values from the table. Show: X = 0.6091.

(b) X = 1.6864, how?

(c) X = 5.77, how?

(d) X = 4.23, how?

(e) X = -0.6580, how?

(f) X = -1.9450, you should have guessed X to be just slightly bigger than -2.
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(g) X =13.54, how?

(h) This is not possible, do you see why?

(i) X = -30 standardizes to Z = 1.2. So, X = -27.525. Explain.

(j) X = -31.05, how?

(a) If you divide the picture for Z into ten equal probabilities, each probability
will be ten percent. So you're looking for the 10th, 20th, 30th, and so on,
percentiles of Z. The picture in the text shows how to obtain the tenth percentile
for Z. It's -1.28, because P(Z < -1.28) = 10%. Now go ahead and obtain
the others. Note that you're only looking for nine (not ten) values of Z. Why?

(b) Draw the bell-shaped curve for Z and label it with the probabilities and the
values of Z determined in part (a). Why are those values (the percentiles) not
evenly spaced?

(c) The text says you will plot the observations in the sample against the cor­
responding percentiles of Z. The "corresponding percentiles of Z" are given in
part (a). So the normal probability plot is a set of ordered pairs of the form
(z, x ), where z is a percentile of Z, and x is the "corresponding" observation
in our sample. The word "corresponding" means the smallest percentile of Z
should be matched with the smallest observation in the sample. List these (z, x )
points.

(d) First, suppose the sample is EXACTLY like the distribution N(f.L, cr2 ). That
means we have the "ideal" sample. So the points (z, x ) in our probability plot
lie on the graph of a linear function. In other words, they lie on a line. To
see this, remember that our percentiles for Z were obtained by standardizing
the "ideal observations"-here by standardizing our sample, the x's. So the
z's are just the standardized x's. Because the standardizing transformation is a
LINEAR transformation, the points (z, x ) lie on the line which is the graph of that
function. What if the sample is only "more or less" like the distribution of X?

(e) Plot the points from part (b).

(f) Yes?

(g) For us, n = 9, and the first value of Z was the tenth percentile, from
l/(n + 1) = 0.10. And then .. . ?

Because there are nine observations, you'll use the same percentiles of Z deter-
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mined in part (a) of the previous problem. Make a normal probability plot by
plotting the following points:

(-1.28,65), (-0.84,80),

(0.25,145), (0.52,170),

(-0.52,90),

(0.84,200),

(-0.25,110),

(1.28,270).

(0,137),

4.3.21

4.3.22

4.3.23

4.3.24

4.3.25

What does your plot tell you? [Hint: Increment the vertical scale by 15's.]

(a) This is given in the text. TRY TO RECALL IT!

(b) This is not mentioned in the text, try to guess.

(c) Yes?

Approximately 0.0475. How?

(a) P(X > 7.5). Explain.

(b) P(6.5 < X). Why < instead of ~?

(c) P(2.5 < X < 8.5). Explain.

(a) np = nl2 ~ 5 implies that n is . .. ?

(b) n ~ 20-how? (c) 100-how? (d) 2500-how?

(e) n ~ 20 (not n ~ 7); think about this before you look at the answer.

(f) p ~ 0.4167-how? (g) 0.05-how? (h)-(j) do these on your own.

(a) 0.0963. Why is it inappropriate to use the normal approximation here?

(b) P(X> ?1J.l = ?,O" = ?), this probability is about 2i%.

(c) 0.8062. If you got 0.8078, you used the normal approximation. What's
wrong with that?

(d) There's no hope to calculate this binomial probability directly because the
coefficient 0(200,24) would be ridiculous to attempt. However, the normal
approximation is appropriate here because np = 24 is larger than five. The
normal approximation gives 0.0876. How? Look carefully at the continuity
correction.
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(a) Because you have a large population, the "with-without replacement" dis­
tinction won't much matter. So use the simpler model, sampling WITH replace­
ment (binomial). You want P(X 2:: 51n = 12,p =?). The answer is 0.3032, but
HOW? First, determine p. That involves a bit of work! Think clearly about the
characteristic you're looking for. Then the probability of getting that character­
istic for ONE selection of a machine part is p:

p = P [one machine part has the characteristic] .

(b) Let X = the number of parts having the desired characteristic. State clearly
what the characteristic is. It involves the probability distribution for "lifetime"
of these parts. Now calculate the probability of having that characteristic. This
information about X is required before you can solve the original problem. The
original question is then of the form

P [condition on X I information about X] = ??

(c) This is similar to the previous parts.

(a) This value of X2 is found in the column headed 0.975. What does that mean?

(b) The answer is 7.5%. How? Draw the picture!

(c) The answer is one-half of a percent. You have 20 values of Z and you're
looking for the probability that Z2 + Z2 + Z2 + .. . + Z2 > 40. So ... ?

(d) Where did the 20 Z's come from?

(e) You can't answer this; why not?

(a) This is straight from the table!

(b) Draw the picture.

(c) Z2 + Z2 + Z2 + Z2 + Z2 + Z2 is X2 with d = ? Assuming what?

(a) Think about the definition of this random variable.

(b) If the degrees of freedom is seven, there are seven squared Z's; if ten, ten
squared Z's, and so on. What does that say about the expected value for your
sum of squared Z 's? Now, forget intuition. Do this precisely. Hint: See Prob­
lem 3.2.1(e).
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(c) Draw the picture for a particular Xl distribution, for say d = 4. What does
it mean to have a value in the far right tail?

(d) Yes?

(e) Hint: See Problem 3.2.1(e).

(a) f.l = 1.5769 ern, (J = 0.5325 ern. How?

(b) Assume the diameters normally distributed. Is that justified?

(c) You could report that no screw is more than 50 ern long, but that's not
meaningful. Think about the "average number of children in a San Fran­
cisco family." You could certainly say that no family has more than 100
children, but that's not meaningful. If you know the average is 1.6 chil­
dren with a standard deviation of 1.3, you know by Chebyshev's Theorem
that it's very unlikely you'll ever find a family with more than six chil­
dren (three standard deviations above the average). Now for the problem at
hand, you need not appeal to Chebyshev, you can reason in a more precise
way.

Assume an exponential distribution for "waiting time," T . Think of this as a
Poisson situation in which you are observing a period of time for the "occur­
rence" of a "free checkout clerk." You're given P(T > 10) = 0.045. That gives
an equation you can solve to find>. = 0.3101. Then?

(a) The cutoff for passing is f.l-1.2(J. The probability of a score above that can
be interpreted as the proportion of students who pass.

(b) P(X = lOin = 100 ,p = ?) = ?? Of course, the problem should be modeled
as "sampling withour replacement," but because N is large (N 2: 60) and n is
less than ten percent of the population (N 2: 10n), the sampling WITH replace­
ment model (a special case of the binomial) is a reasonable approximation.

P(X > Oln = 25,p = ?) = ??

(a) Use a normal distribution for weight of stones, W . Then, for example,

P(size = 2) = P(-2 < Z < -1) = 0.1359.

(b) For each size, you want the expected number in a sample of n = 12 taken
without replacement.
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(c) P(size 4 or 5) = P(size 4) + P(size 5). Explain. So ... ?

(d) Yes?

(e) P(X ~ 241n = ?,p = 0.0228) ~ 0.9.

Yes?

Zero, 0.052 .

(a) Because n = 23, the sample median will be the twelfth in succession once
the sample is ordered. So? What's X(6)?

(b) If M < X(h), how many observations in the sample are less than M? That
number is the value of Y. What if M > X(k)?

(c) The probability of "success" for Y is just the probability for one observation
to be below the median. Thus, Y is B(n, 1/2). So you can use a normal approx­
imation for Y with mean nl2 and variance n14. This approximation is valid,
provided np = nl2 ~ 5, in other words, provided n ~ 10. Now, we analyzed
the confidence coefficient in the problem statement [just above part (a)], and
in part (b), we expressed it in terms of Y. The two probabilities in the square
bracket add to ten percent. Because the endpoints play symmetric roles, divide
this 10% equally into two parts and determine values of hand k to satisfy

P(Y < h) = 5% and P(Y ~ k) = 5%.

(d) You should report to the Boss: "Boss, we can be about 90% sure the median
fillof cups from the drink machine in the employee lounge is somewhere between
6.3 and 6.5 ounces." Evaluate the formulas from part (b) to find the values of h
and k. Then identify the values of the corresponding order statistics. Those are
the required endpoints.

(e) Yes?

(f) The 90% probability cannot refer to the median, saying something like
"90% of the time the median is between 6.3 and 6.5, the rest of the time not."
Why not? What's wrong with this interpretation? What does the confidence
coefficient refer to?

(g) "Boss, we can be about 95% sure the median fill of cups from the drink
machine in the employee lounge is somewhere between 6.3 and 6.7 ounces."
To get this new report, look at the argument in part (b) and see how to modify
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it. You'll find that Zo should be 1.96. Explain. Use this Zo in the formulas from
part (b).

(h) You want a Zo for which P(Z < zo) = 99.5%, putting 0.5% in the right
tail. Because 0.995 is exactly halfway between two values in the table, we split
the difference. Thus, Zo = 2.575. How do you obtain the endpoints?

(i) Yes?

ChapterS

(a) So far, we've discussed two types of population. What are the two types? A
population in this problem must be of what type?

(b) Take the case of sampling from a population first, and take a specific exam­
ple-suppose you want to know the mean score on a test you've taken. What
information would be required?

Then take the case of sampling from the distribution of a random variable­
suppose you're trying to estimate the mean length of rods from a manufacturing
process. Here the manufacturing process is the random experiment, a rod is an
outcome, and the length of the rod is the number assigned to the outcome.

(c) You're asserting that the unknown true mean is the same as the sample
mean. The assumption must be that ... ?

(d) When you say the true mean is approximately the same as the sample mean,
what assumption must you be making? How is this different from part (c)?

(e) Just how typical of the original distribution is your random sample?

(f) A random sample might be typical; it might be atypical. How do you find
out whether it's typical or not? Think of sampling from a population first, then
think about sampling from the distribution of a random variable.

(g) What does this value of X tell you?

(a) It's a population of people of course, but we think only of the age of each
person-that's a number. Still, be careful-there's a trick here. Is this a numeric
or a dichotomous population?
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(b) Well? If you can't seem to focus on this question (it's easy, after all), you
should think about a simple example-just like you did in Problem 5.lo1(b).
Two pieces of information would be required to compute p-what are they?

(c) You certainly don't mean to assert that 18% is the exact percentage of the
population over 50 years of age; no sample is exactly like the population. If
the sample proportion is 0.18, you should say that approximately 18% of the
population is over 50. Comment.

(d) If the sample you obtained happens to be typical of the population as a
whole, then you would be justified in concluding that p ~ 0.18, but ...

(a) Write the second three as 3 to distinguish it from the first three; so the
population is

0, 1, 2, 3, 3, 4, 5.

There are seven objects in this population and so there are C(7,2) ways to
choose two of them for a sample of size two (without replacement) . Write out
all the possible samples of size two by writing first all the samples which contain
a (there are six), and then all the ones containing 1, and so on.

(b) This is easy! For example, the mean of the sample {1, 3} is just two.

(c) X starts out with samples and then . .. (does what?)? What role do the
samples play for X?

(d) With simple random sampling from a population, each sample has the same
chance to be chosen. For example, what's the probability that X takes the value
i.s:

(e) The mean of the sample means, J-Lx' is 2.5715 and the variance , O"i' is
1.0544-how?

(f) The mean of the sample means is 2.5715. You've seen a number like that
someplace else, it's just . . . ?

(g) This is subtle! It's a question of the variability in the population "averaging
out" in the samples. Will the sample means be more or less variable than the
numbers making up the population? Compare them.
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the sample means X f the population X f
0.5 1 0 1
1.0 1 1 1
1.5 3 2 1
2.0 3 3 2
2.5 4 4 1
3.0 3 5 1
3.5 3 -

4.0 2
7

4.5 1
-
21

(h) A sample is "typical" if its mean is close to the population mean, close to
2.5714. There are four samples which give a mean of 2.5-they seem to be
fairly typical. Of course, the term "typical" is not precise. Let's say you'd be
willing to include any sample whose mean was within one point of the true
population mean. By that criterion of "typical," there are 13 typical samples.
What are they?

(i) Well, of course, you will compute X for that sample. What would that value
of X tell you?

5.1.4 (a) p = 2/7. But, of course, you're supposed to pretend the population as a
whole is not accessible-you don't know that pis 2/7. So you choose a random
sample and compute a value of p. What does that value of p tell you about the
unknownp?

(b) Obviously it's a numeric population because ... ? (Careful ... !!)

(c) p looks at a random sample and ... ?

(d) There are only three possible values. What are they?

(e) Guess that on average the sample proportions should be 2/7. Why? Explain
on intuitive grounds and then show it by making up a probability distribution
for pand using it to compute the mean. Compute the variance as well, just for
review,

(f) This question is identical to part (h) of the previous problem. And you're
talking about exactly the same set of possible samples. So why do we ask the
same question twice? Because it's not the same QUESTION! How is it different?
Think about this carefully before you look at level II.
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(g) It could only say one thing : Becausep= 1 for that sample, it would have to
suggest that almost all the numbers in the population are even and positive! But
only about 30% of the population have that characteristic! What's wrong??

(h) 1/21. For simple random sampling, with or without replacement from a
population, all samples have the same probability of being drawn. This is one
of the 21 possible samples and it has one chance in 21 of being drawn-exactly
the same as any other sample! So what good is random sampling if atypical
samples are just as likely as typical samples?

Look again at the discussion in the text. See why we said the conclusion "p. ~
2.37" is not justified. Then you say, "So J-l must be far from 2.37." What's the
defect in that argument?

(a) Is it a number? A set? An interval of numbers? No, it's none of these. Think
about the estimators we've discussed (the sample mean, the sample proportion).
To evaluate an estimator, you obtain a sample and compute a number, for
example, X = 2.37 or p = 0.18. This number is one of the possible values of
the estimator. So an estimator is a ... ?

(b) For any random variable, we would always want . . . ?

(a) p is the proportion of a sample having a certain characteristic. To compute
it, you first must COUNT how many in the sample have that characteristic. And
then ... ? So Pis a + bX, where a, b, and X are ... ? Now use this linear
relationship to obtain the formulas.

(b) You cannot give a line graph for p; there are too many possible values.
What are the possible values? What kind of sketch should you give? As you
think about this, don't forget that p is "essentially" like a binomial random
variable.

(c) Simple random sampling from a Bernoulli distribution is just another name
for the binomial experiment. By definition such a sample is "n values of the
random variable," in this case n zeros and ones, "obtained from n independent
repetitions of the underlying random experiment." The experiment being re­
peated is a Bernoulli trial. But n independent repetitions of a Bernoulli trial is
the binomial experiment.

Now let X be the sum of the zeros and ones in the sample. Note that X can
be described as the "number of observed ones"

0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0.
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These add to six, which is exactly the "number of ones." So X is the number of
ones in the sample. How does X relate to p?

(a) We've led you up to this question, but we've not answered it. See if you
can guess what we mean by "the entire context" or "the whole picture" for an
estimator. Here's some help ...

For a question about a parameter like p, you're trying to find out what more
information is available beyond just one value computed from one sample. That
"more information" is the "entire context" of the estimator, "the total picture"
of the estimator. [Hint: Think about the previous problem.]

(b) There is a very specific answer to this question; you can see it in the solution
to the previous question.

(a) The "total picture" of the estimator is its probability distribution. So where
in the picture for the probability distribution of pdoes our 18% fall? There's a
trick to this question; see if you can avoid getting caught!

(b) Because the distribution of p is centered on p (/-Lp = p) and its value is
unknown, the pvalue of 18% could be anywhere. So the first picture is certainly
possible. What about the other pictures? The third one is highly unlikely, but
remotely possible. Why?

(a) p is a proportion, but proportions CAN be zero. But here, p cannot be zero.
Why not? This is not hard, but you have to be alert. Take another look at the
"situation" !

(b) Go back to Problem 5.1. 7(b) where you first saw that p is approximately
normally distributed. But first, try to recall on your own: What is it about p that
would justify a normal approximation, why should the population and sample
be large? In fact, there's one situation where the population need not be large,
but even then the sample would have to be large.

(a) Think about why it would be important to have /-Lp = P or to have /-Lx = /-L.
You saw this in some of the earlier problems! [Hint: What's the basic question
we're trying to answer in this chapter?]

(b) The standard error is a measure of the variability of the values of p from
one sample to the next. What does the standard error of p tell you about this
variability? Think about how this relates to the "typicality" of a sample. To
answer these questions, you should look very carefully at the standard error
formula.
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(c) The smallest possible value of p is zero, the next is 0.1, and so on. Why
does this make any reasonable approximation impossible with n = 10? What
happens if n = 100?

(d) The answer is n = 625. How? [Hint: You want a~ :S (0.02fl.

(e) The answer is four. Why? Draw the picture.

(a) About half of one percent. Draw the picture! Use a normal distribution with
center J.Lp = ?? and standard deviation ap = ??

(b) The phrase "variability in response" is ambiguous here. It's not clear
whether it refers to the number of yes's, or to the proportion of yes's. For a
larger sample the number of yes's should be more variable, but the propor­
tion less variable. Explain this intuitively and by reference to the appropriate
measure of variability.

(c) What is the real-world question being studied in this chapter? How is this
problem different? If the question is unrealistic, why do we ask it?

(d) A bit less than a 35% chance. This, as stated, is a binomial problem, but
you can convert it to a question about p.

(e) This is deceptively simple-be careful!

(f) A bit more than 10%. You can do this problem two ways: in terms of the
proportion of your sample who say "yes" or in terms of the proportion who say
"no." The question is asked in terms of those who say "no." Do the problem
both ways!

(g) About a four-percent chance.

(h) Yes?

(a) Are all these ten-year-olds the same height? Of course not. This information
can only mean that the average height is 129 em. Apart from just common sense,
we're also told that a = 17 which again means not all heights are the same. If
they were, the standard deviation would have to be zero! Show that when all
values are the same, then a = O.

(b) About 89%-how? This is stated as a binomial problem; it refers to how
many in the sample have the characteristic of interest. You can convert to a p
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problem and use the normal approximation. Why is the normal approximation
justified? You're asked about p = 15/24. Now look at the "total context" of
this value and calculate P(p < 15/24). Note that p = 1/2. Show why that's
true.

(c) About 11%-how? To get this, you need to know that p = 0.1736. How
do you get that value of p?

(d) You had to assume a normal distribution for the heights of all the ten­
year-olds in our geographic region. How exactly is that assumption used in
each of parts (b) and (c)? Would it seem reasonable? Besides the assumption of
normality, you made another important assumption in each of parts (b) and (c).
What was it?

There are two parts to the definition of a confidence interval. Show that both
parts are satisfied by the answer given in the box.

(a) A probability necessarily refers to something that's variable. Try to think of
the total situation and ask yourself what's variable.

(b) Ask yourself what's wrong in saying that p is sometimes in the interval
(0.15,0.21) and sometimes not.

(c) A probability is a theoretical relative frequency and so you should be able
to interpret the 95% by saying something like "On average, 95 times out of
100 ...." Remember what it is that varies here.

(a) This should be pretty obvious!

(b) To have a "high degree of confidence," you would have to choose a confi­
dence coefficient which is quite large. This means you'll be more sure of your
conclusion. But clearly, to be more sure of your conclusion, you would require
more ... ? And that costs money! Explain.

(a) The answer in the box does not provide an exact value for p; it contains
two sources of uncertainty. What are they?

(b) There's no way to say which values in the "range of possible values for p"
are more likely and which are less likely. So if you have to choose one value,
which one would you go for? Go ahead-guess!

(c) There are two "aspects" to a confidence interval. Each is a source of possible
error. What are they and how do you control the error?
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(a) Your interval consists of a range of possible values together with a proba­
bility, the confidence coefficient. Think about the confidence coefficient. What
information will be required to determine that?

(b) The conclusion, "Based on this sample, we believe p ~ 18%," is unaccept­
able because it's incomplete . What's missing to make it valid?

(a) The quantity 8 should be 1.960"p. To see this, standardize Land R and work
backward from the Z table. The Z picture is

95%

o

?? z

5.2.10

5.2.11

(b) If you could evaluate the standard error for p, you would have no need of
a confidence interval estimate for p. Why? The answer to this is obvious if you
think about the formula for O"p'

(c) Look at Problem 5.2.1(b). The standard error measures the accuracy of pas
an estimator. A high degree of accuracy means little variability in the estimator
from one sample to another and that means a small standard error.

You want O"p to be small; the "worst case" would be the value of p which
makes it large. Because O"p = vpq/n and n is fixed, the standard error will be
maximum when pq is maximum. Think of pq as p(l - p) = p - p2. For p very
small, this is close to zero; for p very large, close to one; again p - p2 will be
close to zero. Now, guess what value of p would make pq take on its maximum
possible value. Using that p and assuming n = 1000, show that the standard
error would be 0.0158.

Analytically, you can maximize pq = p - p2 by looking at the graph. Sketch a
graph of the parabola p - p2 and see what value of p gives the maximum value
for pq.

What is "the question it addresses "? Why would you expect a simple answer to
that question? What is the "complexity" of the confidence interval?

(a) YOU WILL NEVER KNOW! It could be that none of them do; it could be that
they ALL do! Still, you can say something-what?
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(b) This problem is very unrealistic! Why?

(a) We can be about 80% sure that the unknown value of p is at least 40.39%
and not more than 45.61 %. How did we obtain this?

(b) We can be about 90% sure that the unknown value of p is at least 67.12%
and not more than 74.88% . How did we obtain this?

(c) We can be about 72% sure that the unknown value of p is at least 41.77%
and not more than 48.23%. How?

(d) We can be about 92% sure that the unknown value of p is at least 29.17%
and not more than 56.83%.

When you look at the normal distribution, what is its most visually obvious
characteristic? What does that say about the samples?

(a) (0.1428,0.2243); (b) (0.1269,0.2331); (c) (0.1392,0.2208).

(d) Compare the centers and the interval widths. Which interval has the greatest
maximum error of the estimate and why? Smallest? Recall that the maximum
error of the estimate is half the width of the interval. The maximum error of
the estimate is also called the "error tolerance" because it's the maximum error
you will have to "tolerate." Which is better, a large error tolerance or a small
error tolerance?

(e) That "exact" formula was derived using an approximate model! So, in fact,
the endpoints are still only approximate. What model?

(a), (b), and (c) No hints this time!

(d) Compare the error tolerances (maximum error of the estimate); which is
largest and why? Which interval has the greatest uncertainty about the actual
value of p? Which interval has the greatest uncertainty to actually contain the
unknownp?

The answers are: CONSERVATIVE, (0, 0.1780); LESS CONSERVATIVE, (0.0268,
0.1332); EXACT ENDPOINT, (0.0411, 0.1500). Compare the centers of the less
conservative and exact intervals. What are some other relevant points of com­
parison? In particular, why exactly would you expect these intervals to be "sub­
stantially different," as we said in the problem statement?
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(a) What unstated assumption must you make to solve this problem? In fact,
there are two different possibilities for modeling the problem to account for
this assumption. What are they? [Hint: How did you get your data, the 318
printheads?]

(b) The "probability a printhead . .. will fail . . . " is just the proportion p of all
your printheads which have this characteristic. Just as the probability of drawing
a club from a deck of 52 playing cards is the proportion of clubs in that deck.
Remember that probabilities are theoretical relative frequencies (proportions) .

The question seems to ask for a number, but the available information is not
adequate to give a simple numeric answer. A confidence interval is required.
First, you must select 1 - Q because it was not given. If you choose 99%, the
interval is (0.0144, 0.0736). How? Then .. . ?

(a) You might wonder if a random sample from the telephone directory can
provide information about stuttering for ALL residents of Tallahassee. Suppose
it does. But still, the respondents were not asked if they stutter, so the question
we've asked you cannot be answered on the basis of this information. Give the
best answer possible. The answer is NOT 21.31 %.

(b) You don't know how many people in Tallahassee stutter. What can you say?

(c) You still don't know. What can you say? This time, for practice, let Q = 0.1.
The interval is (0.0227, 0.0484). How?

(a) What does the confidence coefficient measure? And the maximum error of
the estimate?

(b) The maximum error of the estimate will vary depending on which of the
three procedures you use to construct the interval. Give a numeric value for the
maximum error of the estimate assuming you use:

(i) the worst case estimate of the standard error,

(ii) the less conservative estimate of the standard error.

(c) Think how we choose that approximation.

The specificity of such a test is the probability an uninfected person would not
test positive, P(TCIDC). Ofcourse that should be a high probability. This problem
shows how difficult it is to get a reasonably high specificity even on repeated
tests when the condition you're testing for is rare . This is a serious problem for
employers wanting to do "workplace drug testing" (think about that!). And
it is particularly a problem for blood banks testing their blood supplies when
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infected persons have already been discouraged from donating blood. So, what
is the specificity here? Note that you have 17,053 persons tested, of whom 17
tested positive.

(a) Before you can solve this equation for n you will need some value for pq .
You might try to use the approximation pi], but that's not possible-you HAVE

NO SAMPLE! After all, you're trying to decide on an appropriate sample size so
clearly you have not yet obtained a sample. If you have no sample, you have
no value for pi]. You'll have to approximate pq somehow; what approximation
will you choose?

(b) The answer is n = 505. [Hint: You know for sure that n (it's 2401pq) is
greater than or equal to what?]

(a) n = 66,307.

(b) n = 30,625. For 1 - a = 0.92, z = 1.75.

(c) n = 2626.

(d) n = 5000. If you said n = 265, think again. Think about the conditions
required for the normal approximation to be valid.

(a) This is very straightforward if you think clearly about X k as the kth number
in the sample. But there are two ways to think of your sample: It's drawn
either (1) from the distribution of a random variable X or (2) from a numeric
population. The second is a special case of the first, but to understand Xk clearly
it helps to take the two cases separately. So take them separately and show in
each case that the mean and variance of Xk are f.L and a2.

(b) Here there's no need for two cases because you've already taken a clear look
at Xi; For X to be "unbiased" means it is, on average, equal to the parameter
it's estimating. In other words, you must show that . . . ??

(c) Yes?

(a) Any Xk is the value of X obtained on the kth repetition of the random
experiment. So, abstractly as an unknown variable, each Xk is just a version of
the normally distributed X. Why does that make X normally distributed?

(b) Using our criterion for normality, show that the difference between two
values of X is determined by "many independent random factors." To avoid
abstraction, take the specificcase with n = 2. When you see how the argument
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works in that case, you'll see how to make it work for any n, large or small. So
look at Xl - X 2, assuming each sample consists of two numbers, and account
for this difference as determined by many independent random factors.

Now go back through this argument and note that it would also work as an
alternative argument for part (a). Why?

The argument must be different from the argument in Problem 5.3.2 because
now the underlying situation may not be normally distributed. Suppose X 1 and
X 2 are two different values of X. If you write each of these sample means out
as a sum and think about the difference of the two sums, you'll see why that
difference is "accounted for by many independent random factors."

(a) The total of the sample, EXb is a linear function-it 's just a sum-of the
Xk'S. If the distribution you're sampling from is normal, the Xk'S are normal and
so their sum is normal [Problem 4.3.13(e)]. Then your argument is complete.

But the distribution you're sampling from may not be normal, so you must
argue differently. Here's one simple way to proceed: Show that EXk is a linear
function of the sample mean. In other words, show it has the form: a + bX for
some constants a and b. Then . . . ??

(b) Random error should be

THE RESULT OF MANY SMALL INFLUENCES FROM MANY DIFFERENT SOURCES.

Ifwe could exercise control over some or all of these influences and their sources,
the error would not be random. (We exercise control over something only if it
is to some extent systematic.) Match this description of random error-"the
result of many small influences from many different sources"-to the statement
you are to verify. Be precise: Do an item by item matching of this description
with the statement in the problem.

(c) Put parts (a) and (b) together!

What could you mean by the "true" measurement of an object apart from any
actual physical measurement you might make? After all, any two physical mea­
surements will differ slightly (measurement error). So what is the "true" mea­
sure of the object? This question could get us into deep philosophical problems.
Instead, please just accept the idea that

the "true" measurement of an object is the average
or mean of all possible such measurements.
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Philosophy comes in when you realize it's impossible to make "all possible"
measurements or even to make sense out of that phrase. You can't evaluate the
"true" measurement by averaging up "all possible" measurements! That's why
we have confidence intervals to estimate the "true" measurement.

Now, show that repeated measurements of the same object should be approx­
imately normally distributed. Call the measurements M and show that they are a
linear function of some normally distributed variable. Think about this carefully
before you look at the level II answer; it's not very hard. What is the "variable"
part of M?

The formula was 2.37 ± 1.645(1x' So how did we get the specific values?

(a) Use the relationship 82 = [n/(n - 1)](12.

(b) Do this in two steps. First, the computing formula for E(X - X)2:

then, to get 82, multiply by l/(n - 1) in the form n/n(n - 1).

(c) 1.5526. How?

(d) What is the underlying random experiment? Is it, indeed, a random experi­
ment? Identify the outcomes clearly. What is the "assignment of numbers to the
outcomes," the rule which defines the random variable?

(e) 8-2 is biased as an estimator of (12. Its expected value is not (12; rather it's
[(n -1)/n](12. Use this fact to show that 8

2 is an unbiased estimator of (12. Note
that the question was about 8 and (1, but it's the unbiasedness of 82 which is
critical (in fact, as an estimator of (1, 8 is biased, not unbiased).

(a) This is easy! Take another look at the standard error formula for p.

(b) There are three different ways to handle this. Briefly, what are they?

(c) In the case of both proportions and means, the standard error raises a prob­
lem because it contains an unknown parameter. In the case of proportions, the
unknown proportion itself appears in the standard error formula. In the case of
means, the standard deviation of the distribution you're sampling from appears
in the standard error formula. But if the mean of that distribution is unknown,
the standard deviation is probably also unknown. This is the difficulty we have
with the standard error: How, in each case, do the resolutions of this difficulty
"mimic" each other?
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Here are the answers: in level II we show you how to calculate them. But tryon
your own first!

(a) 6.2217 and 6.5783;

(b) 0.3035 and 0.3365;

(c) 121.46 and 123.56;

(d) 1.6815 and 1.7185;

(e) 0.1964 and 0.2636.

(a) First, of course, you must decide what degree of certainty you want to allow.
You might take this issue back to the manager and decide in consultation with
her or you might simply determine it on your own. Let's suppose you decide on
85% certainty; then your answer will be:

We can be about 85% sure that the children who would use the planned
daycare center are somewhere between two years eight months and three
years old, on average.

How do you get this answer?

(b) You can't say "how many"; you can only estimate the percentage of children
having the characteristic in question. What estimate would you give?

(c) Think about the data you're using.

When you enter the data into your calculator in the statistical mode, you'll
discover n = 76, X = 7.2449, and s = 0.0090. From this data you can obtain
the following answers:

(a) (7.2384, 7.2513); but this answer is not complete! Be sure you complete it.

(b) (7.2372, 7.2525); (c) (7.2358, 7.2540); (d) Yes?

(e) Did you note that a proportion (or percentage) is required here? But 0.1184
is not the right answer either. Try again!

(f) Yes?
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(g) The data is certainly not a sample from a population; there's no population
anywhere in sight. Presumably, you observed the first 76 cups and recorded the
amount of fill in each cup. So now think again, how could the resulting data be
considered a random sample?

(h) First identify the underlying random experiment, then the random variable.

(i) Are np and nq both at least five?

When you choose your confidence coefficient, you "choose" the following pic­
ture. In the picture, we're assuming your confidence coefficient to be 82 %:

82%

IL - 1.:3417.X IL IL+ 1.3417x

5.3.13

When you choose this 82 % confidence coefficient, this picture is your way of
saying:

Any sample which gives a sample mean within 1.34 standard errors of /-l
will be thought of as "typical."

In other words, the picture determines what you mean by "a sample whose
mean is close to the true mean." Those will be considered the "typical" samples.
They're the samples giving a mean close to the center of the picture.

But when you look at any particular observed sample, you'll never know
whether it's typical or not.

(a) Explain why not.

(b) Explain why this theoretical notion of a "typical sample" is useful even
though you 'll never know whether a particular sample is typical or not.

(a) You require the "total context" of that one sample. What is the "total
context"? Make your answer general; don't talk specifically about a mean or
a proportion, talk about "an unknown parameter" and "the estimator of the
parameter." Be as complete as possible in giving your answer. For example,
what is the connection between the "total context" and the parameter being
estimated?
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(b) It won't differ at all. If the estimator for the parameter is unbiased and
normally distributed, for a 90% confidence interval you'll have the following
picture:

I

~~e pororneter + 1.645 ' .ethe pororneter~

S
the estimator 's

possible va lues

---------t-------,-----

Suppose your data gives a value for the estimator of 3.12. Give the endpoints
for the confidence interval. You won't be able to give exact numbers, but you
can give the form of the endpoints. Look carefully at the picture and use the
terms and symbols in the picture.

5.3.14 (a) (3.1926,4.3674); (b) (11.8741, 12.9260).

5.3.15 (a) You shouldn't use s as an estimate here-why not (There are two reasons!)?
"With a five percent chance of being wrong, the mean of this population is at
least 16.4342, but not more than 17.5658."

(b) You cannot answer this question until you choose a confidence coefficient.
Because nothing has been specified, you get to choose anyone you like. Let's
choose 95%.

(c) To get a more accurate estimate, keeping the confidence coefficient at 1 ­
a = 0.95 will require more information. You should supplement the present
sample. What sample size is required? How many more must you select from
the population?

(d) 17 is no longer the correct center because the larger sample will give a new,
more accurate mean! Suppose your new sample mean is 16.7833; what is the
new interval estimate?

(e) n = 156.

5.3.16 That tool is Student's t-distribution, but what kind of theoretical object is it?
It's not a number. Not a set. It's a (two words!).
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(a) First, identify the underlying random experiment being clear about the out­
comes. Then specify the rule by which 82 assigns a number to that outcome.

(b) Gosset's analysis requires that 82 be intimately related to the chi-squared
distribution. That will only be true if you're sampling from a normal distribu­
tion. In the rest of this discussion, we'll attempt to make all this seem plausible,
at least.

Note that 82 does seem to be related to the chi-squared distribution, provided
the sample comes from a normal distribution. Recall that (n-1 )82 = ~(X - xf.
Divide this by the constant a 2• Now, if you replace X by /1, you get something
similar:

is similar to

5.3.18

5.3.19

Distribute the 1ja2 into the sum, getting ~[(X -/1)ja]2. How is this related to
the chi-squared random variable? Why does the sample have to come from a
normal distribution?

(a) Like Z, Student's t is "bell shaped" and centered on zero. The formulas tell
us it's centered on zero because /1t = O. That's how t and Z are alike. They are
different because the variance for Z is one, whereas for t the variance is larger
than one; this is to be expected because Student's t is a model for a less precise
situation. Why is the situation less precise?

(b) The "modified" standardizing transformation is

X -/1
8jvn = t;

what's been "modified'?

(c) Student's t-distribution arises in place of Z from uncertainty about the value
of a. As the sample size increases, that uncertainty is reduced-why?

(d) These two situations are discussed in Problems 5.3.2 and 5.3.3. But before
you look them up, see if you can't remember what they are! And also see if you
can remember how to justify the normality in each case using our criterion for
when to expect a normal distribution (page 148).

(a) (1.1059, 1.2941).
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(b) Guess whether this interval is wider or shorter than the one in the previous
part. Give an intuitive justification for your guess.

(c) (1.1503, 1.2497); this is the "correct" answer, but, in fact, a more accurate
answer would be the interval (1.1490, 1.2510). Where does this more accurate
answer come from? Why is it more accurate and why is the less accurate answer
considered correct?

(d) (1.0889,1.3111). Here, again, the population must be normally distributed,
but why?

(e) (1.1728, 1.2272). No assumptions are required-why?

(f) (2.7727,4.0273). Assumptions?

(g) (0.1827,0.2373).

(h) (0.1729,0.2471).

(i) Same as (e)-why? And what is the difference? Why does it not change the
answer?

(a) In other words, when the population is normally distributed, what justifies
using Z if a is known and using t otherwise?

(b) The justification for the large sample case is more complicated than the
small sample case. See if you can analyze the cases. There are four cases starting
with the distinction between"a known" and"a unknown"-then each of these
splits into two subcases.

(a) First, if the population is not normally distributed, what would you have to
do? How does that introduce less accuracy into the final answer?

(b) In any case, for small samples, we must assume the population to be nor­
mally distributed. Then there are two cases to consider, but in both cases, our
models are exact. Explain this.

5.3.22 (a) (0.3819, 0.4581);
(d) (1.0910, 1.4490);
large sample here-why?
(i) (43.9785,44.0215).

(b) (0.1252, 0.2748);
(e) (84.2472, 89.7528);

(g) (0.3446, 0.6354);

(c) (22.4161, 23.5839);
(f) Ouch! You need a
(h) (6.5427, 7.8573);
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(a) Recall that 8
2 = 1.0828. First, get the endpoints for a 95% confidence

interval for 0-2 • Then, taking square roots, you obtain the endpoints for our
interval.

(b) The estimator 82 is a constant times X2• What is that constant? So 82 has
"essentially" a X2 distribution, not a normal distribution.

(c) Even though the average amount of contaminant is twice as high for the
first supplier compared to the second, you should prefer the first supplier.
Why?

(d) You must show that (n - 1)82/0-2 is of the form a + b8 2•

(e) The X2 table is set up in terms of left-tail areas. Draw the picture for deter­
mining L.

(a) (0.5708,2.0573); (b) (0.7676, 1.5919).

(c) We can be about 95% sure that the standard deviation of fill after resetting
the fill mechanism is between 0.0073 and 0.0101 ounces.

(a) Any kind of interval estimate for JLMD is a probability statement involving
inequalities such as a < JL MD or JL MD < b. So ... ?

(b) With a 5% risk of error, your candy apples have an average maximum
diameter of at most 3.9 ern. How do you obtain this conclusion? Because we
want to find U so that 95% = P(JLMD < U), you need Zo so that 95% = P(Z <
zo).

(c) With a 5% risk of error, your candy apples have a median maximum diam­
eter of at most 3.9 em. Note that the analysis for the median and mean give the
same result. How do we obtain this solution? Study the analysis for the two­
sided confidence interval for a median given in Problem 4.5.8. What's required
here is considerably easier!

(d) First, the box certainly has to be a bit bigger than the apple to accommodate
the tissue paper and cushioning. But that's easily resolved; just determine how
much to add to the dimension of the box for that purpose. Beyond that, there's
a more serious problem. We've really used the wrong approach to answering
this problem. Do you see why?
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(e) We can be 90% sure that about 9.8% of your candy apples have a maximum
diameter below 3.7 em. How?

(a) We can be 99% sure that a steel cart of pennies will weigh on average less
than 725 pounds. Explain. A gram is 0.035 ounces.

(b) With a one percent risk of being wrong, a typical bag of pennies should
weigh between 3.0967 and 3.1189 kg. But in fact, this is not an appropriate
answer to the question. Why not?

For an upper confidence interval, the endpoint is X +1.645 8/..;n. The picture of
the normal distribution for X will have 95% of the area located in the RIGHT of
the distribution. Explain. How does the probability statement about X translate
into a statement about the interval?

(a) Naturally, we'll use J-l = 6.3 to predict with. But there's a zero chance
that I'll get exactly 6.3 ounces! That's not a reasonable answer. You should
choose a confidence coefficient, let's say 95%, and give a prediction interval.
So, "we can be 95 % sure I'll get somewhere between 5.8 and 6.8 ounces."
Explain.

(b) Verify that the conclusion in part (a) satisfies the definition of a "prediction
interval" for the question.

(c) What key information have we used here which ordinarily would not be
available?

We can be about 95% sure to obtain between 6 and 6.6 ounces each, on average.

(a) What's the "doing" here?

(b) In the cases accessible to us, it was normally distributed and allowed us to
discover that the endpoints of the confidence interval should be X ± zs.e. What
was the model?

(c) The model is a sum of two random variables. In Chapter 6 we'll officially
see that the mean of a sum is the sum of the means and that if the two ran­
dom variables are independent, the variance of the sum is the sum of the vari­
ances.

(d) Draw the picture for X - X:
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(e) Representing "an observation" by a value of X, a prediction interval is
defined as "a range of possible values" for X, "together with the probability
that that range of values actually does contain" that value of X. Does an interval
with endpoints X ± zs.e. satisfy this definition?

(f) I can be about 95% sure my drink will contain somewhere between 5.96
and 7.24 ounces. Explain. What assumptions are you making here which might
or might not be satisfied?

(g) Note that the standard error of A is (T / y'rii.

(h) Yes?

(i) Think back to the discussion of the model in part (c).

(j) It involves that future observation. Explain.

The box should be 4.6 ern on each side. There's a five percent chance that an
apple would be so atypical of our sample that it would be too tight in its box.

(a) We can be about 99% sure this cart will weigh no more than 725 pounds.
Explain.

(b) We should re-count any bag which weighs less than 3.0962 or more than
3.1194 kg. We've used a 99% prediction interval here, but the 99% does NOT

mean that "the re-count should be unnecessary for about one in a hundred
bags"-why not?

(c) The endpoints of our prediction interval incorporate a value of Z. That's
only justified if the model you're using is normally distributed. So what's the
model here and what was it in Problem 5.5.2? Why does one require X to be
normally distributed and the other not?
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(a) You did this problem earlier! See if you can remember how it goes.

(b) There are h segments below X(h), so there should be h segments above X(k).

So ... ?

(c) From part (a), 1 - Q; = [(n - h + 1) - hl/(n + 1). So ... ?

(d) The interval has endpoints X (45) and X (56). How?

(a) For the example in the text, we didn't actually calculate the tolerance in­
terval. We'll see later how to do that. But we told you it turned out to be the
interval (6.4, +00) . So we know it's very likely (90%) that the interval (6.4, +00)
contains 93% of all values of X . If that's true, here's the picture for X:

7%

93%

7 th pe rcentile

the possible
values of 'fill'

The 100pth percentile (seethe discussion of the normal probability plot in Chap­
ter 4) is that value of X which puts lOOp percent of the values of X to its left.
(If p is a proportion, lOOp is the corresponding percentage.) For example, the
median is the 50th percentile. In the picture, the seventh percentile puts seven
percent of the values of X to its left. Now, explain how all this answers the
question.

(b) This formula's derivation is parallel to the argument in Problem 4.5.8(c).
But now, instead of the median, you have either the 100pth percentile of X or
the 100qth percentile of X. To see the argument, DRAW THE PICTURE OF THE

DISTRIBUTION OF X. Let Y = # of observations in the sample which are less
than the appropriate percentile of X.

(c) It's the distribution of X which need NOT be normally distributed. All we
need to know about the probability distribution of X is that there's a negligible
chance for it to take the specific value p or Q. That's true, for example, if X
is continuous. That's how we've drawn the picture. So where does the z in
the formula for part (b) come from. Obviously there's a normal distribution
somewhere!

(d) The "one-half" percentile is the median.
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(e) Suppose the endpoints are a and b, respectively. Draw a picture of X showing
the 100pth percentile and showing a and b. Recall part (a) of this problem.

Yes?

First decide how certain you need to be. Let's say 95%.

(a) We can be about 95% sure that U.S. pennies weigh between 3.0993 and
3.1162g, on average.

(b) This penny should weigh between 3.02 and 3.19 g. But there's a fivepercent
chance that either Youden's data or our penny, one or the other, is sufficiently
atypical that the true weight is outside this range.

(c) We can be about 95% sure that 90% of all U.S. pennies weigh less than
3.17g.

(d) We can be 95% sure that this penny would weigh between 3.01 and 3.19 g.

(e) The information utilized in the two techniques is NOT the same. Part (d)
uses more information from the sample. Part (b) uses extraneous information.
Explain.

(f) n must be at least (2 - a)/a. Explain.

(g) Think about part (f).

Chapter 6
There is not one necessarily correct answer to each part of this question. The
choice of procedure depends not so much on the hypothesis as on the intention
of the person who poses the question or the situation in which the hypothesis
arises. It's a question of what exactly is being asked about the hypothesis. See
what you think for each one and compare with our discussion in level II.

With a test of significance, if your data seems inconsistent with the hypothesis,
you get a conclusion. The hypothesis seems false. On the other hand, if the data
seems consistent with the hypothesis, you get no conclusion. Why?

(a) Be careful. If you said 25, you went astray! In fact, to answer this question,
you need more information. That five percent "error rate" is five percent of
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what? Recall our description of this five percent error rate: "We determine in
advance an acceptable probability, say five percent, of erroneously rejecting a
shipment which, in fact, does meet specifications."

(b) Just make it smaller! Like one percent! Or better yet, one tenth of a percent.
After all, for an hypothesis test, you choose the probability of error. You set
it in advance. So why not make it ZERO?! That, obviously, would be the best.
Why not? [Hint: Think about how you control sampling error in a parallel
situation-in a confidence interval problem.]

(a) In the text, we listed nine pairs of contrasting characteristics for these two
procedures. See if you can identify them all. For example, a test of significance
provides a numeric measure of consistency, whereas an hypothesis test is a
decision procedure. Present the contrasts in a table with two columns, one for
each procedure.

(b) Recall our two examples: For the test of significance, the question was, "Is
it believable that this data came from a normally distributed population?" For
the hypothesis test, the example was monitoring incoming shipments of chain
links.

(a) Now z = 1.6 giving a p-value of ... ?

(b) Here z = 2.4, giving a p-value of 0.0082. The coin does not seem fair. What
do you think the probability of heads is?

(c) The standard error is 0.049. With confidence intervals, the standard error
poses a problem (The value of p is unknown). That problem does NOT arise here
because you're assuming the hypothesis to be true. The hypothesis gives you a
value ofp. We assume p = 0.4; so {s.e.)2 = (OA x 0.6)/100.

Thus, z = 3.67, giving a p-value of zero. This observation seems very unlikely
if the probability of heads is really 40%. Would you conclude that the coin is
fair?

(d) Here the kids' observation is below what 's expected if the hypothesis is
true. So the p-value is the probability of any data as far or further below what
is expected. What's the p-value? And what's the conclusion?

The data supports the negation of the hypothesis if the p- value is small. Further­
more, the data will suggest a "direction" for the negated hypothesis. Explain
that with reference to Problem 6.2.1{c).
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(a) The "data seems extreme" means: The data is very atypical of what you
should expect if the hypothesis is true. There are two possible explanations for
the discrepancy. What are they? [Hint: Look for the answer in the text!]

(b) Given a small p-value, either explanation in part (a) is possible. But one is
unlikely. Which one?

(c) Think about the probability models we use for our estimators.

(d) If you said something like "There's a 7% chance of data like theirs or worse
if the coin is fair," you're not being as detailed as the situation allows!

(e) Neither of these statements is correct. Why not?

"Consistent with" means "not small p-value." In the first case (p = 0.5), the
p-value is 0.2743 . In the second (p = 0.56), the p-value is almost the same. For
p = 0.53, z = 0 and the p-value is as large as a p-value can ever be, namely, one­
half. But here a p-value calculation is really unnecessary: With a probability of
0.53 for heads, 53 heads out of a hundred tosses is EXACTLY WHAT YOU EXPECT.

SO, OF COURSE, that observation is consistent with the hypothesis. What does
all this say about tests of significance?

(a) With a standard error of 0.3521, z = -2.5 and the p-value is 0.0062, about
half of a percent. That's small by almost any standard. Thus, it seems the mean
is smaller than 70.18. Do you see how to get the p-value? It's ...

- 2P(X < 69.3ln = 50, (7 = 6.2).

How much smaller than 70.18 is the mean?

(b) Unlike the previous problem, you have to estimate the standard error be­
cause (72 is unknown. That estimate is 0.7874, giving t = -1.12. So the p-value
is larger than ten percent, not small by any standard. This says the data is consis­
tent with a mean of 70.18. Your "good reason" stands unchallenged. Note that
you have not proven that the mean is 70.18. After all, your data is consistent
with many other hypotheses as well. Show that the data is also consistent with
means of 68.42,68.7, and 69.3.

(c) Part (a) yields a more certain conclusion. Why?

Are they going to play with the same coin every day or a different coin each
time?
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In the text above, we said" .. . the standard errors can be estimated if necessary
from the samples, replacing p's and q's by p's and q's and replacing a's by 8 ' S.

Of course, if the true values are known, this is not necessary." Under what
circumstances would they be known so that estimating the standard error would
be unnecessary?

(a) We can be 90% sure second graders in the inner city are 3 to 6.5 ern shorter
on average than their peers in the suburbs. Explain.

(b) Our two samples lead us to believe that second graders in the inner city are
shorter on average than their peers in the suburbs. In other words, the observed
difference between the two samples is "statistically significant" (the p-value is
small), so we don't accept that it's due just to sampling error-that's possible,
but highly unlikely.

You can get the same bare conclusion from the confidence interval of part (a)
because it does not contain the value zero and so precludes (with a 10% risk of
error) the possibility that J.LI - J.Lz = O. But the logic of the analysis is very differ­
ent. The p-value carries specific and direct meaning in comparing our hypothesis
with the observed data. It measures the consistency of the hypothesis with the
data. That insight is not available from the confidence interval. Throughout this
course, we follow the convention that a question of this type calls for a p-value
(Question type: "Does the data seem to challenge the hypothesis?') . What's the
p-value here?

Here, you'll have to estimate the standard error from the pooled sample pro­
portion. See the discussion in the text just after the table of parameters and their
estimators. This pooled proportion is 53/200 and it gives a standard error of
0.0624. How? Do you still think the two proportions are the same?

Clearly, the mean of W is seven because W always takes that value and only
that value. Show how J.Lw = 7 comes from the "appropriate formula." Then,
because W is constant, it 's variance should be zero (there's no variability at all).
But that does NOT follow from the formula aJe+y = aJe+a~ because no matter
how the die might be loaded, the variances for X and Y (which are equal) are
NOT zero. Explain why this formula for the variances is not applicable here.

(a) and (b) Let E I be the first estimator (PI or Xl) and Ez the negative of the
second. So, in each case, your estimator is E I + Ez. Then the mean is just the
sum of the means. Each Ei is approximately normally distributed (why?) and
so . .. ? Finally, if the samples are chosen independently, the variance is the sum
of the variances . All of this follows from the equations "for the sum of two
random variables" given in the text. Write this out in detail for each of parts (a)
and (b) separately.
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(a) There's only one chance in 10,000 that such a difference is due just to chance.
Explain.

(b) With a 5% risk of error, we conclude that the pass rate for blacks is below
that of whites by somewhere between 38.3 to 12.44 percentage points .

Statistical significance should be measured by a p-value.

(a) The little kid seems much too sharp to make this mistake. What exactly is
the mistake?

(b) There are two possibilities. Maybe they've already done a test of significance
as in the dialogue and concluded bias in favor of heads . Then, the question is,
"How biased?" How should they test the coin?

Or maybe the little kid thinks, "Well, I'd like to play this game. If it's just a
little biased in favor of heads, so what? That's of no significance." This means
practical significance! First, the little kid should decide how much bias there
would have to be to be significant in a practical sense. Then, they should do
a test of significance for more than that much bias. For example, she may feel
that one or two heads extra for the big kid in 100 tosses is not a reason to
walk out of the game. That is, she thinks a probability for heads of one or two
percent more than 50% is of no practical significance. What hypothesis should
they test?

(c) A 95% confidence interval for p would be go from 0.4833 up to 0.6767.
This actually includes p = 0.5. What would the little kid do?

On the other hand, if we do a test of significance to allow for one or two
percentage points bias above p = 0.5, the standard error is 0.0499. So Z = 1
for a p-value of about 16%. What would the little kid do?

(d) Yes?

(a) What parameter are we concerned with here?

(b) State the hypothesis which you seek to challenge in terms of the parameter.
That is, formulate an appropriate statistical hypothesis.

(c) Calculate the p-value.

(d) Interpret the p-value in real-world terms.

(e) Is the p-value small or not?
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(f) Give a real-world answer to the question . Be careful that you answer the
question asked, not some other related question!

Follow the format of the preceding question. You should think of the cancer
as the occurrence of a rare event. That is, the incidence of cancer is usually
modeled by a Poisson random variable. How will you deal with the fact that
the residents of the southern part of your city are not a random sample?

(a) Clearly, the word "number" here is intended to be relative to the total
number of passengers; that is, you are actually dealing with proportions.

The phrase "any pattern of significant difference" suggests that a small dif­
ference in the two proportions is of no practical significance. Thus, before the
hypothesis can be properly formulated, some further clarification is required.
Suppose it's decided that a difference of no more than two percent is of no
practical significance. Now follow through with the format of the previous two
questions.

(b) The model is only valid for the large sample case. The criterion for propor­
tions is that np and nq must be at least five. But you don't know the values PI
and P2, so . . . ?

(c) Gather more data! Suppose over many flights you observed 63 requests for
vegetarian meals out of 741 passengers going from New York to San Francisco
and 11 such requests among 1236 passengers going from New York to Chicago.
Do you think there's a significant difference in the number of such requests?

The only probability you obtain from a test of significance is the p-value. It does
NOT provide the probability that the hypothesis is true! Explain.

When the p-value is small, there are two possible explanations. The test of
significance goes for the second of the two: We accept the hypothesis as false.
Here, that suggests "real bias" in the coin. What's the other possibility?

(a) This is the fallacy of repeated sampling which we mentioned in the text.
Explain it for this particular example.

(b) In part (a), evidently you were NOT doing a test of significance. What were
you doing? So, what's this question got to do with tests of significance?

(a) With a negative binomial, the p-value is 0.037. With a binomial model, it's
0.073 . What's your conclusion about the coin?
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(b) This example is quite infamous among statisticians; it's very disturbing in
its implications. It shows that a p-value calculation is not independent of what's
in the mind of the person gathering the data. What was she thinking of when she
stopped tossing? Did she stop because she had obtained one head or because she
had completed 12 tosses? Note that the observable physical process of gathering
the data is the same in both cases. It is only what's in the mind of the coin tosser
that's different. Why is that disturbing?

(a) The p-value would be P(p < 7/90) = P(Z < -4.12) = 0, with a standard
error of 0.0468. However, this is NOT what the Court reported. Explain.

(b) When p = 0.5, the binomial distribution is symmetric about the mean and
so the mean is the most probable value, but yet when n is large, it has a SMALL

probability of occurring. Explain.

(a) Translate the real-world question into the standard form for a test of signifi­
cance: Does this data seem to challenge the claim that people are just as likely to
die in the three months preceding their birthdays as not? Express the question
in terms of an appropriate population parameter. Then calculate the p-value. Is
the p-value small or not small? What does the p-value mean in real-world terms?
Is the claim believable?

(b) In Problem 6.1.4(a), you compared and contrasted tests of significancewith
hypothesis tests. Carry out that comparison with reference to this particular
situation [see Problem 6.1.4(b)]. Omit comparison #3 (testing for randomness)
which we have not yet discussed.

The p-value is P(X = 0) = ql00 = 0.1800. So ... ?

When the face with two dots comes up more than half the time as it did in our
observations, it seems obvious the die is not fair. Still you might like to double
check with a X2 test. You're testing the hypothesis that the die is fair, so each
E; is .. . ? What's the p-value?

(a) Bortkiewicz observed 200 corps-years. Theoretically, if the Poisson model is
appropriate (if our hypothesis is true), 108.68 of those corps-years should have
been accident-free. How? You do the rest of the E~s.

(b) (00 - Eof / Eo = (109 - 108.68f/108.68. And X2 = 0.7197. How?

(c) There's a trick here! There are five cells, but there are only three degrees
of freedom, TWO less than the number of "cells." Because we had to estimate
A from the data, we lose one more degree of freedom. This is parallel to what
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happens with Student's t-distribution. There, you're estimating an unknown (J2

from the data by using 82, and the degrees of freedom is n - 1 instead of n. We
will see other cases of this principle in Chapter 7. The principle is that you lose
one degree of freedom for each unknown parameter which must be estimated
from the data.

(d) X2 = 0.7197 was calculated from Bortkiewicz' observed data. That data
was assumed to be a sample of 200 from the Poisson distribution with A= 0.61.
What does the p-value of 95% tell us?

x2 = 0.0128 + 0.0865 + 0.1538 + 0.2571 = 0.5103 . So . .. ?

(a) E, = niPi; for the first cell, it's 587pi . But the pi's for the three precincts are
unknown, although you know they're equal (Youassume the hypothesis true for
a test of significance). That means you can pool your three samples and estimate
the unknown common proportion by the observed p = 676/1553 = 0.4353.
So El = 587 x 0.4353 = 255.5132. You do the other Ei's.

(b) The first term is (253 - El f /El =?? And then?

(c) There are three cells, so the degrees of freedom starts with two. But because
you're estimating one parameter, you lose one more degree of freedom. This
brings you down to ONE degree of freedom. So ... ?

(a) Let M = male and R = recovers. Then assuming independence, P(M and
R) = P(M) x P(R) = 0.5 x 0.84 = 0.42. SO, IF THE HYPOTHESIS OF INDEPEN­

DENCE IS TRUE, 42% of our sample of 194 should be recovered males. That
means E; = 81.48. Now, you make a table for the Ei's.

(b) There are four cells here, a cell being one entry in the table. For the first cell,
we calculate (01 - Etl2 / E; = (127 - 81.48)2/81.48 = 25.4304 . Now, you do
the other three. So for our data, X2 = 48.3447. How?

(c) With three degrees of freedom, our observed value of X2 is far off the table .
The largest value in the table is 12.838. What does that suggest?

(d) Yes?

(e) If the 84% recovery rate were not known for the population, you would
have to estimate it from the data. Similarly, if you were doubtful about the
proportions of females versus males, you would have to estimate that also from
the data. How would such estimates affect the test?
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(f) Now E; = 194 x 0.7423 x 0.8711 = 125.4433. It's convenient to put
the observed and expected numbers together into one table, with the expected
numbers in parentheses.

Recovered
Died within
5 years

Male
Female

127 (125.4433) 17 (18.5567)
42 (43.5567) 8 (6.4433)

6.2.30

6.2.31

6.2.32

6.2.33

6.3.1

Now you calculate Xl and interpret the results.

(g) This is NOT the same as the questions in the previous parts! There, we asked
if recovery is independent of gender. Here, we're asking if incidence of this
cancer is independent of gender. If so, the population of persons who fall victim
should split about 50/50 between men and women . How would you test this
against our data?

It 's virtually impossible that we would observe such a result just by chance if
passing were truly independent of race.

Think generally; think about any test of significance. Suppose the p-value is
small; suppose it's not small. What conclusions can you draw?

You might do a Xl goodness of fit test. We cannot retrieve Kunz' exact numbers;
clearly he rounded his percentages. But the following numbers give his reported
percentages when rounded (beginning with the 8% figure): 60, 344, 231, and
112. That is, it appears that 60 of the 747 persons sampled by Kunz died in the
three months prior to their birthday, 344 in the three months after the birthday,
and so on. Now, you carry out this test and interpret the results.

(a) Xl is 6.9801. What's the p-value and what's your conclusion?

(b) First, set up the model (as in Problem 3.6.16), then compare with the data.
One-place decimal accuracy is adequate. MLE for pis 0.5352. How?

(a) The decision of whether to stop production is based on . . . ? Why might
that lead to error?

(b) How did you control error for confidence interval problems? How is that
similar to the situation of part (a)?

(c) You'll analyze the sample through the estimator p. That estimator is nor­
mally distributed. So ... ?
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(a) The evidence comes from a random sample, of course, summarized in this
case into the sample mean. So, if the sample mean is less than 3.15, we have
evidence that J-L is less than 3.15 . Comment.

(b) Would a mean diameter of 3.199999 mm be too small?

(c) The mean diameter might be right on target even though a significant per­
centage of the parts were unusable. How could that happen?

(d) It may be that any part with a diameter less than 3.15 mm is entirely use­
less, but otherwise the part is acceptable. Then you might want to monitor a
proportion. What proportion?

(a) For any hypothesis test, the "evidence" is . .. ?

(b) The uncertainty of the diameters is measured by ... ?

(c) Less than two percent. How?

(d) Now it's P(Z < -1) = 0.1587. What's the point of this and part (c)?

(e) Use (72, not (7. You don't want to work with square roots! What distribution
will we use? What are the hypotheses?

(f) Be specific to the real-world context!

(g) No-not necessarily! Even if 82 > 0.000625, we may not have evidence for
HA• Why not?

The words are "logical" and "practical"-which is which? Which characterizes
the null hypothesis and which the alternative hypothesis? Explain the charac­
terization in each case. What's "alternative" about the alternative hypothesis?

(a) See Problem 6.3.2(d). You want to monitor p, the proportion of parts with
a diameter less than 3.15 mm. Why would it be wrong to try monitoring the
mean diameter with HA : J-L < 3.15? What are the hypotheses?

(b) You're looking for evidence that p is too small. What's p? What's "too
small"? What are the hypotheses?

(c) Be careful! Is this a right- or left-tailed test?

(d) There are several questions to be answered here:
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(i) The "one-third" condition guarantees the "one percent" requirement. Ex­
plain. [Hint: How many chains would vary from the mean length by more
than 1 ern if oi. < 1/3 (with L = length of a chain)?]

(ii) In monitoring incoming shipments, you will be looking at the standard
deviation for the length of links, not the length of chains. You will reject a
shipment if lii > 0.0012 cm2• Explain.

(iii) What should your hypotheses be?

(iv) What assumption are you making in the analysis above?

(e) The contract is with a supplier of links, not chains . So ... ?

(a) We're attempting to flag the need for an exceptional or "alternative" course
of action. That's the focus of the monitoring procedure. Thus, HAbecomes the
focus of the hypothesis test. But this practical focus on the alternative hypothesis
is also reflected in the very structure of the test. What is it about the test itself
that puts a practical focus on the alternative hypothesis? There is a very specific
answer to this. If you can't think what it is, find it in the text!

(b) First, what is the significance level? It's a number, but that's vague. What
does it measure?

(c) The power of the test is the probability that the test succeeds in what it
attempts to do. It's the probability you're led by the data to act on HA when
indeed HA is true. It's a probability, but it is not a single number. It takes on
various values depending on ... ?

(d) and (e) Yes?

(f) Our action in each period of the monitoring process ("act on Ho," "act on
HA") is real world. Where else does action take place?! And it's based on the
sample data for that period. Sample data is observed in the real world! But
here's the unrealistic part: Any discussion of the "state of the world" is purely
theoretical. After all, we're using a statistical procedure only because the "state
of the world" is not known. So the table is partly realistic and partly theoretical.
To the extent that it's theoretical, the table cannot help us avoid error ("avoiding
error" happens in the real world). So what's the table for?

(g) Be realistic!

(h) Why are small values of p irrelevant from the point of view of the test itself?
And beyond the test?
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(i) "Act on HA" is the more conclusive decision. Why?

(j) What is the alternative hypothesis supposed to be, anyway?

(a) There are two possible ways to determine the direction-what are they?

(b) Think of the trade-off between risk and effectiveness. Take an extreme case
to see what happens. Suppose the disease is very serious and some kind of
treatment is urgent. Further, suppose the old procedure is hardly effective at
all-for example, suppose there's NO old procedure-and suppose the new
procedure poses little or no risk. Now which of the two errors given in this
problem is the more serious one?

(c) The alternative hypothesis here should be determined by the appropriate
choice of type I error.

The probability statement is vague. What are the specific instances we're talk ing
about? Five out of 100 of what? To make this clear, suppose we do this quality
control check once a week. Then out of 100 weeks we can expect to stop pro­
duct ion unnecessarily about five times. True or false? This is like Problem 6.1.3.

(a)-(c) Follow the pattern of the text. You must choose a significance level­
suppose you choose 5%. In your answer, be careful you're faithful to the details
of the problem!

(d) This is like part (c) because it 's a question of returning a shipment of chain
links when it doesn't meet specifications. But you'll have to change some of what
was said in part (c). What must be changed?

(a) Formally, you just have "formal terminology." In the real world, you take
a certain action. Contrast these.

(b) Follow the pattern of part (a) for the two possible errors.

(c) Take the quality control example where you're seeking evidence that p is
more than one percent.

(d) There's a catch here. Do you see what it is? What role does the alternative
hypothesis play?

(e) Yes?

It does unless you're also checking ... ??
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H, : /1 = 310
H A : /1 > 310.

Cutting through all the real-world complexity, in essence: You're prepared to
remain with the present supplier unless there's evidence the new supplier's part
has a mean life greater than 310 hours. What's the parameter? The estimator,
conclusions, errors? The rejection region?

Ho : p = 0.25
HA:p < 0.25.

Give the parameter, the estimator, the conclusions, and errors in real-world
terms.

H, : p = 0.25
H A : p > 0.25.

Here the direction of the test is determined by specifying type I error. It's
specified in the problem statement that you're willing to allow "no more than a
5% risk of launching this series if fewer than 25% of the registered voters will
see the spots." To have this be type I error, you must set up a right-tailed test.
The parameter and estimator are the same as in Problem 6.3.13. What are the
hypotheses, the conclusions and errors?

H, : /11 - /12 = 15
HA : /11 - /12 > 15.

You're going to act on the basis of the test if /11 - /12 > 15 where /11 and /12
are the average SATscores of students at your school and at Bad U, respectively.
In this problem, does the word "significant" refer to statistical significance or
practical significance? Finish the problem.

H, : /11 - /12 = 15 (/11 - /12 > 15 irrelevant),
H A : /11 - /12 < 15.

Why is this a left-tailed test? Finish the problem.

Here, HA : /11-/12 > 15. Do you see why? Can you finish the problem from here?

Let p be the proportion of returns that reveal attempts at tax evasion. Then
(why right tailed?):

H o : p = 0.1

HA : p > 0.1.

(p < 0.1 irrelevant),
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6.3.19 Ho:p = 0.2
HA:p> 0.2.

(p < 0.2 irrelevant),

Answers-Levell

6.3.20 Quality control should probably be interpreted as "continue in production UN­

LESS there is evidence of a weakening of quality control." Thus,

Ho : a 2 = 0.3

HA : a2 > 0.3.

(a 2 < 0.3 irrelevant),

6.3.21

6.3.22

6.3.23

c6.3.12

c6.3.13

(a) If a = 5%, the rejection region is {pip> Pc = 0.0333}. What's the decision
rule? What if a = 10%?

(b) At the 5% significance level, Pc= 0.7187. If a = 10%?

(c) Because you don't know the variance for the length of the chain links, you'll
have to give the decision rule in terms of the test statistic. State that decision rule
at the 5% and 10% significance levels. Then, as a separate problem, suppose
you DO know the variance for the length of links. Suppose it's about 0.1 em.
Give the decision rule.

(d) Recall that 82 = [a2j(n - 1)]X2• Because you're assuming the null hypoth­
esis, set a2 = 0.0012.

(a)-(d) You need only recall the decision rules from the previous problem.

(a) The sample mean standardizes to t = -1.2136. This does NOT reject Ho,

but surely there's a problem with this shipment. Explain.

(b) Too many chain links will be too short. Explain .

The test statistic is t. You should express the rejection region in terms of this
test statistic. Why? With a 1% significance level, you compare your observed
value of the test statistic with t = 2.624. Explain why part (e) is a bit sur­
prising. You are assuming the lifetimes of the machine parts in question are
normally distributed. That is NOT reasonable. Why? How could you avoid this
assumption?

The rejection region is {pip < 0.1875} at the 5% significance level. Identify
the decision rule in real-world terms and identify the test statistic. Note that in
part (a) the data obviously fails to reject Ho, no need looking at the rejection
region-why is this obvious? What about parts (b)-(g)?
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For a = 5%, Pc = 0.3125. What is the rejection region? Make sure you can
state the decision rule in real-world terms.

The standard error is 31.4885. Even if you had small samples, you would NOT

use the t-distribution here. Why not?

The critical value is -25.3052 at a 10% significance level.

The rejection region here is determined by 55.3053 (a = 0.1).

The standard error is 0.0086 and Pc is 0.1201.

The standard error is 0.0115; Pc is 0.2147.

At a 5% significance level with six degrees of freedom, the critical value of X2 is
12.592. Give the decision rule in terms of the value of s, the observed standard
deviation . Then determine your conclusion for each part.

Problem 6.3.20 is a true case of monitoring. The others are all one-time deci­
sions. What justifies treating a one-time decision as an hypothesis test instead
of a test of significance?

(a) We'll leave this to you.

(b) The p-value decision rule is redundant for a one-time decision. Explain why
and then answer the original question.

(a)-(d) For each of these parts, you'll have to recalculate the standard error,
because you have a different p each time. Before calculating, guess whether the
power will be greater or less than 50%.

(e) Here, the normal approximation is no longer valid (why?), but you can
easily determine what the power should be.

(a) Recall the definition of "power."

(b) For the power to be 75%, Z must be -0.675 (roughly halfway between
-0.67 and -0.68). That means

V700 0.0162 - p = -0.675.
Vp(l- p)
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Squaring and simplifying, you get this quadratic equation in p

0.183708 - 22.68p + 700p2 = 0.455625p(1 - p)

which gives
700.455625p2 - 23.135625p + 0.183708.

Using the quadratic equation, we getp = 0.016514697±0.003235109. This
gives p = 0.0133 or 0.0197. But to get power above 50%, we know p must
be greater than 0.0162, the critical p. So, to get power of at least 75%, the
unknown p would have to be at least 0.0197. Interpret this in real-world terms.

6.3.28

6.3.29

6.3.30

(a)-(c) Yes?

(d) The X2 table is too incomplete to actually calculate the power. But we can
see that for a-2 = 0.0065, the power is a bit above 95%. How?

We'll leave this to you. (Sorry!)

(a) n = 996. How? Draw the picture! The rejection region for the test as we've
been doing it was determined by a sample size of n=700. Now it will be different.
Here the 60% power at p = 0.015 gives an expression for the critical value, Pc,
of the rejection region. This expression has the unknown value of n in it. You'll
get a second expression for Pc from the picture centered at p = 0.01. Use these
to determine the sample size n. Be careful about the standard errors!

In fact, such a large sample is seldom practical in a quality control context.
But with smaller samples, the normal approximation for pwill often be invalid.
What should you do then?

(b) If more than 14 out of the observed 996 parts is defective, stop production
and take corrective action. How do you get this?

6.4.1 Yes?

6.4.2 We can be 95% sure the baggage in today's flight will weigh between 4213
and 4566 pounds total. But this is not the usual confidence interval problem.
Explain.

6.4.3{6.4.9 Yes?

6.4.10 (a) From the data, the average number of hits per region was 0.927083333.
You should obtain this from the statistical mode of your calculator; doing it by
hand will take about five times as long! Now, what's P(X > 2)?



6.4.12

6.4.11

6.4.12

429

(b) In fact, the answer would be 1/>.. = 1.0787, using the exponential model
for "time between two occurrences." What's wrong with this? What's the unit
of time? What information would be required to answer the question?

(c) Yes, because it would seem the bombs are falling more or less randomly.
In other words, the data does not seem to call into question the "randomness"
assumption. Explain.

(a) 0.0764.

(b) 90% (0.0596,0.1501). Real-world conclusion?

(c) 90% (0.5598, 1.6755).

(d) 90% (0.0140,0.0307).

(e) Yes?

Because all three of these situations are apparently one-time decisions, a test of
significancewould seem appropriate. And the conclusion would be very straight­
forward. First, you obtain an appropriate sample of air. Then for parts (a) and
(b), either you do obtain evidence (small p-value) or you do not obtain evidence
(not small p-value) to support your position. For part (c), if the data is statis­
tically significant (small p-value), see what the data suggests-"clean air" or
"problem with air pollution"-and report that in the newspaper.

However, it does make sense to treat such problems as hypothesis tests. That
allows you to think clearly about the possible errors and, in particular, to decide
on an appropriate sample size to guarantee good power for the test.

Still, these three problems together illustrate well how very self-serving an
hypothesis test could be. The Chamber of Commerce and the environmentalist
are only concerned with data favorable to their position. That would require a
one-tailed test. However, if the results are going to be made public or retained
for records, there is the possibility of misinterpretation if a one-tailed test is used.
A disinterested party would look for statistically significant data, whatever it
might suggest. From that point of view, a two-tailed test is required.

On the other hand, the analysis of error is confused by a two-tailed test
because you're involved with two distinct and very different practical errors
depending on whether you conclude air pollution is well under control or out
of control. Furthermore, you might prefer to assign different probabilities to
those two errors depending on the perceived seriousness of the errors. Note
that it's not just a question of whether there's too much toxin in the air. It's a
question of what you're going to DO about it. That's why we keep saying that
an hypothesis test is an action-oriented decision procedure.
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Possibly the best solution is to think in terms of two separate one-tailed tests
with appropriately chosen error probabilities and with good power.

This problem illustrates how in the real world an hypothesis test is just one
factor in a complex decision process. If you analyze the action appropriate to
HA and think about type I error, the situation will become much clearer. For
instance, the FDA might reason as follows:

(a) In view of the seriousness of the present mortality rate, we will allow the
drug on the market unless we find good reason to think the drug less effective
than present treatment. What are the hypotheses?

(b) In view of the side effects . . . ? Now what are the hypotheses?

(a) Yes?

(b) If there's nothing special going on, then the number of deaths should be
uniformly distributed over the year. Verify that the p-value is greater than 10%.
How do you interpret that?

(c) This is similar to Problem 6.2.23.

(d) Yes?

(a) This can only be picture number 5. Why? What are the others?

Chapter 7

(a) Let € be Y - jL, where jL is the mean of Y. Now, why does € have the required
form and why does e look like a random error?

(b) First, real-world: Think about any real-world situation giving rise to a nor­
mally distributed random variable. For example, a measurement process. Or
something like "fill" for a drink machine. In all such cases, there is a fixed
systematic factor determining the values of Y: For a measurement process, it's
the object being measured. For the drink machine, it's the setting on the fill
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mechanism. That systematic factor determines the values of Y. But not ex­
actly; there's some variability. That's the nature of real-world processes! Now
forget the real-world: Abstractly, what's the "systematic part" of a normally
distributed random variable Y?

(c) The only thing variable about a normally distributed random variable is
the random fluctuations about its mean. And that just looks like random error.
Explain.

(d) We have two ways to show a random variable normally distributed. What
are they? Which one is more natural here? Show how each of these two ap­
proaches will give that Y is normally distributed.

(e) The normality criterion eliminates the systematic part. How?

(f) For the regression model, the "one systematic effect" on Y is allowed to be
variable instead of fixed. Allowing a VARIABLE effect on Y could lead to very
wild complexities! To avoid that kind of chaos, our model restricts the effect
even further. How? [two further restrictions]

(a) Think how the average height or average crop yield would change as you
increase X . That average is J-tYIX and it should be a linear function of X, but
the relationship won't really be linear. To see this, try sketching a graph of Y as
a function of X . Conjecture what it should look like. How high is a shoot one
day after planting, for example?

Once you see why the mean of Y won't be a linear function of X, what
sort of restriction on X would correct the problem to make the model at least
approximately valid?

(b) Y is supposed to be the variable of interest about which we have a question.
And X is supposed to be known or controlled by us in some sense. It should
play the role of "input information" relevant to Y. So . . . ??

(c) In the first example, time does not CAUSE the height of the plant. The height
is caused by the growth process (a very complex system of causes) and that
process, like any process, takes place in time. The model makes use of the fact
that the height of the plant is correlated with time. And it's a positive correlation:
The height increases with increasing time (so in the model, f3 > 0). In the second
example, by contrast, the toxic chemical in the plant seems to be directly caused
by the chemical in the soil. Now, go through the rest of the nine examples and
think about the nature of the effect of X on the mean of Y.

(d) From the point of view of the model, X is given. It's not random. In other
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words, the model is conditional on X. So when we come to use the model for
answering real-world questions, those questions must give a value of X and then
ask about Y. However, in generating data to specify the model-to estimate
the parameters of the model-we may want to have the values of X generated
randomly along with Y. For which of our nine examples would this probably
be true?

(a) Recall the Chapter 5 criterion (page 148) for when to expect a normal
distribution.

(b) f. is a linear function of YIX. SO it takes the form f. = a +b(Y!X) Make this
explicit by saying what a and b are. Then use this linear function to show that
f. is normally distributed with mean zero and standard deviation (j2.

(c) What role does X play in the model and what happens to X if j3 = O?

(a) Which variable is in question? What's the role of the other variable?

(b) We've identified three parameters. What are they? Remember the definition
of the term "parameter"-it's a simple number associated with the model.

(c) There are three assumptions and there are four characteristics of the model
implicit in those assumptions.

The parameter a is the y-intercept. It's the value of j.LYIX when X is zero. If
X = 0 is outside of the meaningful range of X, then this parameter is not
meaningful in itself (i.e., in the real world).

The parameter j3 is the "slope" of the line on which the Y's are centered. The
slope of a line is the change in Y for a unit increase in X:

y

___==--------lJ ( the chonqe ;0 Y

L----------,-------,----X
x x+ l

~ a unit increase in X
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Yes?

(a) "Multiple" regression means there is more than one explanatory variable X.
[Hint: Modify one of the nine examples listed at the beginning of this section.]

(b) You need an example of a pair (X, Y) where the expected value of Y would
decrease as X increases. There are many, many instances of this. Give one.

A quadratic regression model would have j.LYIX given as a quadratic function
of X instead of a linear function of X . [Hint: The graph of a quadratic function
is a parabola.]

(a) O'~lx measures the spread of Y about its mean. So sketch a picture for which
one of the values of X has a Y distribution which is more (or less) spread than
at the other values of X.

(b) {3 = 0 means the slope of the line is zero, the line is parallel to the x-axis.

(c) Yes?

Think carefully about the given conditions. What exactly do they mean? [Hint:
Reconsider Problem 7.1.5 .]

Suppose you wanted to predict how high a bean plant will be ten days after
planting or to determine how much toxic chemical will be found in a plant for
a given level of the toxic chemical in the soil; what would be necessary before
you could use the simple linear regression model

Y = a + {3X + e,

7.2.1 (a) (12, 21) is (X, Y) where X is . .. ? And Y is ... ? Which observation is
this-first, second?

(b) The observation is (16, 53) and so .. . ?

(c) n is the number of observations. How many were there?

(d) There are 16 observations, so i = 1,2, ...,16. So, (Xs, Ys) is the eighth
observation-what is it? And-there's a trick here, don't get caught!-what is
(X3, Y16)?
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(e) X = 14.8750. The question is asking for X = 1/n~X. But there's a trick.
You can't just add the six values of X across the top of the table and divide by
six. Why not?

(f) ~Y = 821.

(g) To get the "average of the daily average heights," you average each day's
measurements and then average those averages. That's NOT the same as the
"average daily height" which is the average of all 16 observations. Why not?

(a) Draw (z, y) coordinates and plot the observed (X, Y) values.

(b) 17 is the esimator for j.tYlx . And so 17 =??

(c) The point estimate forthe average height 13 days after planting is 30.6675 em.
How? What about six days after planting? There's a trick; what is it?

(d) This is a line. The easiest way to plot a line is to find two points on the line.
Here, it's a good idea to evaluate 17 at X = 12 and X = 18 and plot those two
points. These are good points because they're near the extremes of the observed
X's. Choosing such X's minimizes the loss of accuracy in drawing.

(e) When we speak of "the model," we're thinking of the picture in three di­
mensions with the normal curves for Y marching along the regression line, the
line which gives j.tYlx. Now think about a particular X; for example, X = 12.
In the model, what is Y for X = 12? Then, in general, how do the observations
relate to the YIX of the model?

(f) In the model, what does 17 estimate?

(a) A point estimate is a simple number calculated from partial information
in the form of random data. If the data is atypical of the entire situation from
which it is generated, that one number by itself, taken as an estimate of the true
value of the parameter, could be very misleading.

Explain this in terms of our researcher's bamboo data by taking the parameter
(3 and explaining the previous paragraph as it pertains to (3. Be very specific to
the real-world meaning of (3 (see Problem 7.1.5).

(b) The point estimate for (3 is b = 11.0319. How can we use that number and
still indicate "the accuracy of the estimate" and "the certainty with which that
accuracy is attained'?
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(c) All kinds of things could go wrong in the data-collection process, but when
we gave the data, we specifically said, "As usual in this text, we assume the
data for our estimators has been properlygenerated by an appropriate random
sampling experiment ...." So what could go wrong?

(d) We require the "total context" of the point estimate-the "total context"
of that one number. What is that "total context"?

(a) Between the fourteenth and sixteenth days after planting, something seems
to have changed. Do you see the pattern in the scatter diagram? If the model is
valid, no such pattern should occur.

(b) Try to think of some practical situation which would cause the rate of
growth for the bamboo to suddenly increase. Remember that (3 is the increase
in the average height of the shoots corresponding to one more day of growth­
the "daily rate of growth."

(c) Either get new data or restrict the model somehow. How?

(d) Think about how the researcher might actually want to use the model.

(a) You need an expression for the vertical distance in a picture like this:

y

x

~Y=a+bX

The point at the top of this "vertical distance" is just our observed (x, y) in
the scatter diagram and the distance is just the difference in the y-values of this
point and the bottom point on the line. What are the coordinates of the point
at the bottom?

(b) Draw a picture like the one above, but with the observed point below the
line.
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(c) This is exactly like the problem we ran into in Chapter 1 when we wanted to
construct a measure of "spread about the mean" for a random variable. What
did we do in that case to avoid a possibly negative "distance" from the mean?

(d) Yes?

You sketched the graph of the bamboo data in Problem 7.2.2. Go back to that
picture and plot the point (X, Y) and you'll see that it lies on the line. Then
show this algebraically by showing that the point (X, Y) satisfies the equation
for the estimated regression line. [Hint: The data is summarized below the table
where it was presented. You need not do a lot of tedious calculations.]

Think about the role X and Y play in the model.

(a) Remember, you're only interested in the vertical variability of the observed
(x, y )'s away from the line (see Problem 7.2.7). What formula would capture
this "vertical" variability in the Y 's ?

(b) The principle of least squares says find the line for which :E(y - fJ)2 is as
small as possible. Explain the meaning of this.

Yes?

(a) What role do X and Y play in the model?

(b), (c), and (d) Yes?

(a) Show that the point (X, Y) satisfies the equation for the regression line. In
other words, show

This is easy! Try it before you look at the level II answer. Look at the formula
for a and you'll see what to do.

(b) Here 's how to get it started:

:E(y - fJ ) = :E[y - (a + bx)] =:Ey - na - b:Ex.

Now, you can make use of the fact that:EX = nX and:EY = nY.

(c) You might think to measure the variability of the Y's about the estimated
regression line by calculating the average deviation. But that won't work. Why
not?
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(d) The equation for a is immediate from the first of the normal equations. To
get the formula for b, multiply the first equation by ~x and the second equation
by n and then subtract. This will eliminate a from the equations.

(a) The model says In(Y) = In(Np) + x In(q), so . . . ?

(b) Use the statistical mode of your calculator to get a and b.

(c) In(Np)a = 4.0886 . Np ~??

(d) In(q) ~ b and so . . . ??

(e) N = Nplp, so N ~??

(f) N = (Np+ Nq) and so . .. ? Or Nq = ~x#oY and so . . . ?

(g) Recall: Assuming a geometric model for the data, the MLE for p is l/Y =
76/142. This gives a poor estimate for N. What is it? Why poor?

(h) The assumptions of the regression model have not been addressed at all.
For example .. . ?

(a) The critical values of t for the rejection region at the five percent significance
level FOR A TWO-TAILED TEST are tc = ±2.1315. Now standardize the observed
value of b, assuming the null hypothesis.

(b) Yes?

(c) Don't attempt to give the decision rule in terms of b. Why not? What should
it be?

(d) Yes?

(e) One of these tests is theoretical, the other real-world. Which is which?
So . . . ?

(a) What are the roles of X and Y in the model?

(b) As altitude increases, pressure will decrease. That would seem to suggest
that b is negative. But that's NOT right! What's wrong with this argument?

(c) b = 0.5222, and so Y =??
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(d) Yes, the p-value is zero. Explain. [Hint: Sb = 0.0101.]

(e) The question cannot be answered as asked! We have no information relating
altitude to pressure. However, we can say, "On average, as we increase altitude,
we should observe a decrease of between 0.4925 and 0.5520 inches in the
reading of mercury in a barometer for one degree Fahrenheit increase in the
boiling point of water. There is a one percent risk of error in this conclusion."

Note that when Y = a + bX, Y - Y = b(X - X).

This is the regression effect again. Note that b < 1.

b = rev l ex

=r

<1.

because ex = Sy

7.3.5

7.3.6

7.3.7

We say r is strictly less than one because equality holds only if there's an exact
linear relationship and, as a practical matter, that would not happen. Now, for
the second test, "how far above average" is captured by Y - Y. You need to
show that Y - Y < X - X. Sketch some possible scatter diagrams to see how
this works.

Yes?

(a) Altitude above sea level is measured by a barometer. Think about the vari­
ability in barometric reading for Forbes' data. What proportion of that vari­
ability is explained by the boiling point of water? [~ 99.5%]

(b) You're not "explaining" Y in terms of X. Clarify.

(c) The coefficient of determination does, indeed, make sense for Wilm's data
because X and Y were randomly generated together. But we don't know how
to compute it. Why not?

(a) If n = 2, then necessarily r 2 = 1. Explain . Look at the scatter diagram.

(b) Thinking of r 2 (or r) as measuring the strength of correlation between X
and Y, you could be misled by a small sample. Explain.

(c) It's true that for large n, the coefficient of determination is a reasonable
measure of strength of correlation. But even when there's a very strong correla­
tion between two variables, it's a fundamental fallacy to think there must be a
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cause-effect relationship between them. Explain. Think of some of the exam­
ples given at the beginning of the chapter. Or think about this example: X =
wife's age, Y = husband's age.

(d) For the original observations, without calculating we can see that r2 is close
to zero. But when we replace the Y's by their averages, we get r2 = 0.9, very
close to one. Explain what this tells us.

(e) 2

0.5

3

0.5

4

0.75

(f) Here, r2

Comment.
O. So that means there's no relationship between X and Y.

7.3.8

7.3.9

7.3.10

7.3.11

(a) You must give a confidence interval. Because no confidence coefficient was
specified, why not choose 95% because you already know, with 15 degrees of
freedom, t = 2.1315 for that case.

(b) Yes?

(c) Yes?

(a) Look at the squared standard error. Distribute the factor s}lx over the sum.
Explain the difference.

(b) When n is large, you have more information, and so .. . ?

(c) When you want to predict something about Y for a very atypical X , you
should expect your answer to be less accurate. Why? So . .. ?

(d) E(X - X)2 is a measure of the variability of the X's. Because it's in the
denominator, when it's large the standard error will be small. That means we
WANT E(X - xf to be large. Large? Don't we always want variability to be
SMALL? Explain.

Yes?

(a) You have two ways to answer this question, the quick way is to calculate
r2 • It is a bit harder to carry out the hypothesis test that f3 not be zero.

(b) If the variables are jointly normally distributed, the hypothesis test to es­
tablish that f3 "# 0 is equivalent to testing that p not be zero. So .. . ?
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(c) By part (a), the simple linear regression model with only fiber length as
regressor looks weak for answering this question. Still, if you must give an
answer based on that model, how would you do it? Let a = 95%.

(d) The question must be made more specific. Because spinning quality is mea­
sured by skein strength, interpret the question as asking for /-lsI?

See level II.
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Chapter J

(a) H for heads or T for tails, representing the face of the coin which shows
after one toss.

(b) For the die all the P(X)'s are 1/6. For the coin the probabilities are each
1/2.

(c) If the deck is well shuffled, then theoretically each card has an equal chance
to be drawn-that's what you mean by well shuffled! There are 52 cards, one
of which is the ace of spades, and so the relative frequency with which you
SHOULD (theoretically!) draw that card is one out of 52. That means there's
approximately a two-percent chance to draw the ace of spades: 1/52 ~ 0.0192.

(a) In this situation, you just add probabilities:

P(X < 3) = P(X = 1) +P(X = 2)

= 1/6 + 1/6 = 1/3.

(b) You just multiply probabilities:

P(six on each die) = P(six on the first die) x P(six on the second die)

= 1/6 x 1/6 = 1/36.

(c) (1/2) x (1/2) = 1/4.

(a) Roll a one OR a two on one roll of the die.

(b) Roll a six on the first die AND a six on the second die.

(c) Toss a head on the first coin AND a head on the second coin.

(a) The "something you do" is made precise by clearly specifying the outcomes.
Thus far, both definitions are the same: "Something you do which is repeatable,
with clearly specified outcomes." The difference is that for a random experiment,
the outcomes should be unpredictable. No such restriction is made for a scientific
experiment. So a random experiment is a scientific experiment, but not the
reverse. For many scientific experiments, there is a theory which predicts the
outcome exactly. If it isn't what's predicted, you'll suspect something wrong in
the theory or possibly in the performance of the experiment.
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(b) A scientific experiment is a random experiment if the outcomes cannot be
predicted in advance.

1.1.5 (a) X P(X) (b) X P(X)

1 0.1 1 0.1
2 0.5 2 0.4
3 0.1 3 0.1
4 0.1 4 0.1
5 0.1 5 0.2
6 0.1 6 0.1-- --

1.0 1.0

(c) The "doing" is different! Although the outcomes have the same verbal de­
scription, they're generated by two different random mechanisms, the two dice.
Because a random experiment is "something you do," it 's the "doing" that's
different, depending on which die you roll. Note how we've pinpointed the dif­
ference between these two random variables in the exact phrase ("something
you do") in the definition where the difference occurs.

1.1.6 ~Y, the total of the values of Y, has no meaning at all because it ignores
completely the fact that these values occur with differing probabilities. That's
why we don't put in the total of the Y column. Similarly for the die, the number
~X = 21 has no meaning if the faces don't occur with the same probabilities.

1.1.7 (a) Random Experiment

1.1.2 (a) Roll the die

(b) Roll the two dice

(c) Toss the two coins

1.1.5 (a), (b) roll the (unfair) die

1.1.6 Draw one card from the
shuffled deck of 50 cards

Random Variable

# dots on the uppermost face

# dots on the two uppermost faces

no r.v. given for this problem, but
# heads is one possibility

# dots on the uppermost face

1 for spades; 2 for clubs;
3 for hearts; 4 for diamonds

(b) For Problem 1.1.2 parts, (a), (b), and (c) and for Problem 1.1.5, an outcome
is the die or two dice or the coin in a particular position on some table top
after the roll or toss. For Problem 1.1.6, you could describe the outcome as
"me standing there holding a card in my hand." Or more simply, an outcome
can be described as one of the 50 cards, whichever one is drawn. This second
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description or "modeling" of the outcomes recognizes that "my position" is
probably irrelevant to the actual game.

Note, in each case, that the outcome is a real-world object or situation. On the
other hand, the values of the random variable are abstract, they 're the abstract
part of the model. The variable is a bridge from the experiment and its outcomes
in the real world to numbers in the world of theory. That's the picture in the
text. The random variable is shown as a bridge between the real world and
theory.

(c) There are four conditions in the definition for a random experiment. In part
(a), we described the "doing" for each example. That's condition one. Clearly,
in each case the "doing" is repeatable (condition two). In part (b), we "clearly
specified" the outcomes (condition three). Finally, in each case the outcomes
can't be predicted in advance (condition four).

To guarantee unpredictability for the draw of a card from the deck of 50,
we were careful to include the shuffling of the deck in the description of the
"doing." The idea of "shuffling" or "mixing thoroughly" is one of the most
basic intuitive formulations of "randomizing." In 1970, at the height of the
Vietnam War, a lottery was conducted to decide who would be drafted into the
U.S. army. This was intended to correct perceived inequities in the existing draft
procedures. Capsules representing the 366 possible birthdays (some people are
born on the extra day in leap years) were put into a large device for mixing
and then someone drew capsules "at random." All eligible men born on the
first birthday chosen, September 14, were to be the first inducted into the armed
forces in 1970, all born on the second birthday chosen were to be the next group
inducted, and so on. However, after the drawing, there were complaints of bias.
Subsequently, a careful study of the lottery results suggested the capsules were
put into the mixing device by month and were not thoroughly mixed. In other
words, the draw was not completely random. (See the article "The 1970 Draft
Lottery," Science, January 22, 1971.) This example will give you some idea of
the practical difficulties that arise in attempts to make the idea of randomness
precise and to implement it in a concrete instance. It's not a simple matter!

(a) X is not numeric valued, its values are the letters Hand T.

(b) When you flip the coin, an outcome is the coin sitting on the table top in
some position. To that outcome (the "sitting coin"), X assigns the number of
heads visible on the top face, none or one. This X is a random variable because
it is a rule which assigns a number to each of the possible outcomes of a random
experiment.

In fact, because X cares only about whether there is a head or a tail showing,
we can simplify the description of the outcomes. We can group all the positions
with heads uppermost together, calling it H for "heads." Then all other out-
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comes will be grouped together and called T for "tails." In this way, we have
exactly two possible outcomes. This is a perfectly acceptable way of modeling
this random experiment. And although it makes the outcomes seem somewhat
less physical and less real world, it makes the probabilities clearer. If the coin is
fair, clearly, Hand T are equally likely.

(c) x
a
1

P(X)

0.5
0.5

1.0

1.1.9 (a) On one roll of a die, we get anywhere from one to six dots; on 100 rolls,
anywhere from 100 to 600 dots; on n rolls, anywhere from n to 6n dots.

Because each of the faces are equally likely, you should expect 3.5 dots on
average for one roll of the die-the average of the integers one through six. This
does not mean we think there is a face with 3.5 dots! If the average family in our
city has 1.8 children, it does not mean we think some family has eight-tenths
of a child! You think of this expected 3.5 dots as the "middle" of the integers
from one to six. Now, if on one roll of the die we expect 3.5 dots, obviously on
100 rolls, we should expect 350 dots. And so for n rolls, you expect 3.5n dots
altogether, on average.

(b) On the "average" toss, we expect half of a head. That means on 100 tosses,
we expect 50 heads. This is an "on average" figure, of course. For a specific 100
tosses, you would be surprised to get exactly 50 heads, but you would expect
something close to that.

(c) Split the difference. Expect $2.50 on average. For example, the "typical"
result of ten tosses on a fair coin would be

H, H, H, H, H, T, T, T, T, T

for which you would collect $25 for an average of $2.50 per roll. Of course ,
this "typical" result would occur rarely, but it reflects what ought to happen on
average.

(d) Theoretically, on ten tosses you receive $21 and so the average is $2.10. On
100 tosses, you receive $210, for the same average.

(e) It's the same experiment we've been discussing all along. The "doing" is
"toss the coin once (in such a way that it stays on the table top)." Obviously,
that's repeatable. An "outcome" is the "sitting coin," the coin sitting on the
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table top in some position. That says we have a scientific experiment. Then,
because we can't predict in advance what position the coin will take, this is
a random experiment. Thus, we've verified the four conditions for having a
random experiment. The "take" is a random variable because it is a rule which
assigns a number to each possible outcome: "two" if the "sitting coin" has heads
visible, "three" if the tail is visible.

(f) The smaller payoff-$2.00-comes 90% of the time instead of 50% of the
time. Because 40% (90% - 50%) of the time you're getting less money, you
should expect less on average.

It's not whether you can predict the VALUES in advance! The definition requires
that the OUTCOMES be unpredictable. Can you predict in advance how the coin
will land on the table top when you toss it, where it will land and whether it will
come up heads or tails? Of course not. So the experiment is indeed a random
experiment.

Now, any rule which associates a number to the possible outcomes of the
experiment is by definition a random variable. So our X is a random variable.
Notice that ...

THE RANDOMNESS IS NOT IN THE VARIABLE, IT'S IN THE EXPERIMENT!!

This makes perfect sense. A random variable is supposed to model uncertainty
in real-world situations, so the randomness should be in the real-world part of
the model. The experiment is the real-world part of the model. The values, on
the other hand, are numbers; they're abstract, not real world. Because you're
modeling uncertainty in the real world, it makes sense that the randomness
would be in the experiment, not in the values.

Here's the very simple probability distribution for X:

X P(X)

1 1

1

(a) The experiment is to roll the die. We've already verified the four conditions
of the definition in our solution for Problem 1.1.7(c).

(b) The values of Yare -3, -2, -1, 0, 1,2. Make sure you see why. When you
roll one dot, what's your net gain/loss?

(c) Y = X - 4.
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(d) If you roll three dots, X = 3 and Y = -1 (you get three dollars for the
three dots you rolled, but you paid out four dollars). Thus,

when X is 12345 6

1.1.12

Y is - 3 - 2 -1 0 1 2

Now, because the value -3 corresponds to a roll of one dot and one dot shows
up with probability 10%, we get P(Y = -3) = 0.1.

The probability distribution is

Y P(Y)

-3 0.1
- 2 0.4
-1 0.1
o 0.1
1 0.2
2 0.1

1.0

Note that the probabilities for Yare exactly the same as the corresponding
probabilities for X. That should be true, after all the corresponding values of
the two random variables are determined by exactly the same outcome. It's
the outcomes which determine the probabilities. They're ultimately determined
by what happens in the real world-by the uncertainty of the situation being
modeled. That "situation" is in the real world.

(a) A chance mechanism is just a random experiment.

(b) For a random experiment, the abstract model is the probability distribution
for some appropriate random variable associated with the experiment.

1.2.1 (a) X P(X) XP(X)

1 1/6 1/6
2 1/6 2/6
3 1/6 3/6
4 1/6 4/6
5 1/6 5/6
6 1/6 6/6

--
I 21/6 so E(X) = 3.5.
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(b) P(X = 1) = P(HT or TH) = P(HT) + P(TH) = 0.25 + 0.25 and so

X P(X) XP(X)

0 0.25 0.00
1 0.50 0.50
2 0.25 0.50

--
1.00 1.00 E(X) = 1.

(c) X P(X) XP(X)

1 0.1 0.1
2 0.1 0.2
3 0.1 0.3
4 0.1 0.4
5 0.5 2.5
6 0.1 0.6

--
1.0 4.1 E(X) = 4.1.

(d) X P(X) XP(X)

2 0.5 1.0
3 0.5 1.5

--
1.0 2.5 E(X) = 2.5.

1.2.2

1.2.3

On one roll of a die, you expect E(X) dots . Because you get one dollar per dot,
you expect to take in E(X) dollars per roll. To break even, you should pay that
many dollars to play, E(X) dollars per roll. Thus, you should pay

(a) $3.50 per roll;

(b) $1 per toss;

(c) $4.10 per roll.

(a) "Or" means add, not always, but it 's valid here. So

P(X = 1 or 6) = P(X = 1) + P(X = 6) = 1/6 + 1/6 = 1/3.

(b) For the loaded die given in the text,

P(X = 1 or 6) = P(X = 1) + P(X = 6) = 0.3 + 0.3 = 0.6.
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For the loaded die, the probability of this event is almost twice as big as for the
fair die, 60% as compared with about 33% .

(c) The probability distribution for the loaded die is more spread about its mean
than the distribution for the fair die.

(a) The average deviation from the mean is ZERO! The deviations are -2.5,
-1.5, -0.5,0.5, 1.5,2.5. Weight them by 1/6 and then add.

(b) The systematic way to do a calculation like this is by extending the table to
include a column for the weighted deviations from the mean. Then the sum of
that column will be the required average. It's zero:

x P(X) XP(X) (X - p,)P(X)

1 0.3 0.3 -0.75
2 0.1 0.2 -0.15
3 0.1 0.3 -0.05
4 0.1 0.4 0.05
5 0.1 0.5 0.15
6 0.3 1.8 0.75

1.0 3.5 0.00

(a) For a particular value of X, the deviation, X - p" tells us HOW FAR that value
of X is from p,. So it's capturing the idea of "spread" or "dispersion" from the
mean, u.

(b) The deviation is positive exactly when X is larger than p, and is negative
when X is smaller than u, Here's why: X - p, > 0 is the same as X > u, Just
add p, to both sides of the first inequality. Doing that preserves the inequality.

(c) Watch:

I;(X - p,)P(X) = I; [XP(X) - p,P(X)]

= I;XP(X) - I;p,P(X)

p, - p,I;P(X) but I;P(X) = 1!

ZERO.

(a) Here's one possibility .. .
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X P(X) XP(X) (X - JL)2p(X)

1 0.1 0.1 0.625
2 0.1 0.2 0.225
3 0.3 0.9 0.075
4 0.3 1.2 0.075
5 0.1 0.5 0.225
6 0.1 0.6 0.625

--

1.0 3.5 1.850 JL = 3.5,
(J"2 = 1.85

Do you get the basic idea? The expected value must be 3.5, and we concentrate
the probability CLOSE TO 3.5. This way the die is closer to what's expected, on
average. To verify this analytically, just observe that the variance for this die,
1.85, is smaller than the variance of a fair die, 2.9167.

(b) Here's the graph:

P(X)

1 2

0.3

0.1

3 4 5 6

t
3.5 = J..tx

5
the possible
values of X

1.2.7

The probability is concentrated closer to the expected 3.5 than for the fair
die. Becausevalues close to what's expected are more probable, this die is MORE

PREDICTABLE than the fair die.

(a) Less dispersed about the mean implies a smaller variance. Here's the calcu­
lation :

X P(X) XP(X) (X - JL)2p(X)

0 0.1 0 0.92 x 0.1
1 0.9 0.9 0.12 x 0.9

--
1.0 0.9 0.09
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So (J2 = 0.09 , but for the fair coin (J2 = 0.25 (verify).

0.9

0.5

0.1

o 1

t
0.9 = J.L

unfair coin

o 1

1 t
"2 = J.L

fair coin

(c) The standard deviation is just the square root of the variance. For the fair
coin , it 's 0.5, and for the unfair coin, it's 0.3.

(d) X P(X) X P(X) (X - JL)2p(X )

0 I- p 0 p2(1 - p)
1 p p (1 _ p )2p

--
I p p(l - p) JL = p,

(J2 = p(l - pl.

To get p(1 - p), you'll have to simplify the sum p2(1- p) + (1 - pfp. Factor out
(1- pl.

1.2.8 (a) X P(X) X P(X ) (X - JL)2p(X )

1 0.1 0.1 0.361
2 0.5 1.0 00405
3 0.1 0.3 0.001
4 0.1 004 0.121
5 0.1 0.5 00441
6 0.1 0.6 0.961

--
1.0 2.9 2.290 so JL = 2.9 and (J2 = 2.29.
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X P(X) XP(X) (X - JL)2p(X)

1 0.1 0.1 0.484
2 0.4 0.8 0.576
3 0.1 0.3 0.004
4 0.1 0.4 0.064
5 0.2 1.0 0.648
6 0.1 0.6 0.784

--
1.0 3.2 2.560 JL = 3.2 and (J"2 = 2.56.

Y P(Y) YP(Y) (Y - JL)2p(y)

1 0.26 0.26 0.5695
2 0.26 0.52 0.0599
3 0.22 0.66 0.0595
4 0.26 1.04 0.6007

--
1.00 2.48 1.2896 JL = 2.48 and (J"2 = 1.2896.

(b) Here 's the table for first of these random variables:

X P(X) X P(X ) IX - JLIP( X)

1 0.1 0.1 0.19
2 0.5 1.0 0.45
3 0.1 0.3 0.01
4 0.1 0.4 0.11
5 0.1 0.5 0.21
6 0.1 0.6 0.31

1.0 2.9 1.28
For the second and third random variables, the MAD is just 1.44 and 1.0192,
respectively.

(c) The standard deviation is just the square root of the variance.

1.2.9 JLx = ~XP(X) = ~cP(X) since X = c

= c~P(X ) since c is constant, it can come
out in front of the sum

= c since ~P(X ) = 1

and
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(a) The variance is larger for the loaded die than for the fair die, 4.25 versus
2.9167. Here's how to understand what that means: For the loaded die, two
values far from the mean (1 and 6) carry 60% of the probability. Their weighted
squared deviations are quite large compared with the fair die. The other squared
deviations, the small ones, carry less weight. So for the loaded die, the small
squared deviations carry less weight and the large squared deviations carry more
weight . Because the variance is "the average of the squared deviations from the
mean," it will be larger for this loaded die.

(b) For both dice, the expected number of dots is the same, but for the loaded
die you're much further from that value, on average. So for the loaded die, the
expected number of dots is less certain. This is seen in its larger variance.

In general, the variance of a random variable is a measure of the ACCURACY

of the expected value for purposes of predicting what will happen in the long
run with many repetitions of the random experiment.

(c) With heads coming up 90% of the time, the unfair coin is obviously more
predictable; you're quite certain of getting heads. The variance tells you exactly
that. Of course, this is such a simple situation you really don't need to consider
the variance. Still, it's reassuring that the calculations work! For the unfair coin,
(72 = 0.09 compared with 0.25 for the fair coin. With a much smaller variance,
the unfair coin is more predictable, as we guessed.

(d) By Problem 1.2.7(d), (72 = p(l - p) and so the answers are 0.9 x 0.1 and
0.5 x 0.5.

The variance and the standard deviation measure the same thing . They mea­
sure "dispersion about the mean." They're not two different parameters! The
difference is only one of convenience . The variance is more convenient for com­
putational purposes because it doesn't involve the awkward square root. The
standard deviation is more convenient for reporting your final conclusions be­
cause it returns you to the original units. The variance for the die is in units of
"squared dots," the units for the standard deviation is "dots"-a more realistic
unit!

(a) Here E(X) = 3.5; for two dots, G = 2 - 3.5 = -1.5.
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G P(G) GP(G) (G - JL)2p(G)

-2.5 1/6 -5/12 1.0417
-1.5 1/6 -3/12 0.3750
-0.5 1/6 -1/12 0.0417

0.5 1/6 1/12 0.0417
1.5 1/6 3/12 0.3750
2.5 1/6 5/12 1.0417

--
I 0 2.9168

G P(G) GP(G) (G - JL)2p(G)

-1.9 0.1 -0.19 0.361
-0.9 0.5 -0045 00405

0.1 0.1 0.01 0.001
1.1 0.1 0.11 0.121
2.1 0.1 0.21 0.441
3.1 0.1 0.31 0.961

--
1.0 0 2.290

G P(G) GP(G) (G - JL)2p(G)

-2.2 0.1 -0.22 00484
-1.2 0.4 -0048 0.576
-0.2 0.1 -0.02 0.004

0.8 0.1 0.08 0.064
1.8 0.2 0.36 0.648
2.8 0.1 0.28 0.784

--
1.0 0 2.560

The gain/loss would be MOST PREDICTABLE for the second die because it has
the smallest variance. You might have guessed that because the second die has
fully half its probability concentrated on the value 2, not too far from the mean
of2.9.

The gain/loss is LEAST PREDICTABLE for the game with the fair die. Again,
you might have guessed this because more than 30% of the probability for that
die is on the two extreme values 1 and 6, far from the mean of 3.5. For each of
the other two dice the probability of the two most extreme values-the values
1 and 6-is only 20%.

(b) For the house to make a $0.50 profit, the player has to have a $0.50 loss.
That means the player should pay $0.50 more than the break-even charge,
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E(X). For the fair die, for example, you should pay $4, $0.50 more than the
break-even charge of $3.50 .

(c) In each case, the underlying random experiment is to roll the die once (the
"doing"). An outcome is the die sitting on the table top in some position (the
"clearly specified outcomes"). Obviously, the "doing" is repeatable and the
outcomes cannot be predicted in advance. That verifies the four conditions of
the definition of "random experiment."

The gain/loss is a random variable because it is a rule assigning a number to
each outcome. The rule is: one dollar for each of the dots on the uppermost face
minus what you pay to roll the die once.

The verbal description of the random experiment and of the gain/loss random
variable is EXACTLY THE SAME in each of the three cases. The only difference is
in the dice-which of the three dice you're playing with . These critical real­
world differences are seen at the abstract level when you write out a specific
"abstract model" in the form of a probability distribution for the gain/loss. In
the distribution tables, you see different gain/loss values, different probabilities,
and different parameter values (different means and variances).

Here's the equation: 0.72 = (1/150) x 108. If you had not already observed
that X is 108, you could have solved for X in this way:

p = 1/nX so X = np,

from which you conclude that X = 150 x 0.72 = 108.

(a) The coefficient on X is 1, so that's b. The constant term is -E(X) and so
that's a. The equation is G = - E(X) + lX.

(b) Because b = 1, (J'b = (J'i:-.

(c) You get exactly one dollar per dot, so your receipts look just like the num­
ber of dots . But that's the whole story as far as the variability of the game is
concerned. The variability of the gain/loss won't be affected by what you pay
to play because that's the same for every play; it's constant.

(d) The house gain is your loss, so, of course, J.LG represents a loss of $0.50 .
Formally, G = X - P, where P = [E(X) + 0.5]. So

J.LG = J.Lx - P = E(X) - E(X) - 0.5 = -0.5

because J.Lx is just another symbol for E(X). Finally, (J'b = (J'L because b = 1.
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=a+bpx since ~P(X) = 1, ~XP(X) = ux
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(b) a~ = ~(Y - py)2p(y)

= ~(Y - py)2p(X) since probabilities of Y and X for the
same outcome are equal

= ~[(a + bX) - (a + bpx)]P(X)

= ~[bX - bpxfp(X)

= ~b2[X - px ]2p(X)

= b2~(X - tix )2p(X)

(a) a = 0.7254, b = 0.4981.

(b) According to our model, the average April to July water yield over the
ten years in question was 0.7254 + 0.4981(22.3) = 11.8330. This uses the
fundamental equation: py = a + bpx.

(c) Y = a exactly when X = O. So, we = 0.7254 when se = O. In other
words, a is the April to July water yield when there is NO SNOW to yield any
water! So a should be zero. When you notice this fact, you realize the model is
not correct. See part (d).

(d) We need to compare aivy (or awy) for the two models. In each case it's
obtained from b2a~c. We don't know a~c, of course, but we don't need to. It's
the same for both models. aivy is larger for the model which has the larger b.
That's the second model.

(e) In the situation of this problem we know as a matter of physical fact that
a = 0 (see part (c)). The model in part (d) does have a = o.

(a) You'll lose $0.50 per roll, on average. You expect to take in $7.50. In other
words, $3.00 times the expected number of dots, E(X). But you pay $8.00 to
play. If you really like to gamble, you might be willing to run the risk of losing
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$0.50 per play with the hope of "beating the odds" and ending up ahead at
some point. On the other hand, if you're a conservative gambler, you might
NOT be willing to play. Suppose you're only in this casino to please a potential
client and you're really not willing to risk much money.

But this analysis is too simplistic. The long run is not completely described
by the "cost per roll" of $0.50. There's also a question of predictability. Maybe
your cumulative gain/loss is always very close to this expected $0.50 loss. For the
dedicated gambler, that would be a boring game because there's little chance to
beat the odds. On the other hand, if the gain/loss is highly variable-sometimes
you're $80 ahead (cumulative gain), sometimes $75 behind (cumulative loss)­
then the game will be very exciting and you do have a chance to "beat the odds."
This variability is a crucial consideration. A conservative player, by contrast,
might be willing to lose $0.50 per roll provided she can be fairly certain she'll
never be too far from that. Her concern is that the game not be too exciting.
Note that there's no correct answer to whether one should or shouldn't play the
game. It depends on your individual motivations.

(b) You expect 3.5 dots on average per roll on the fair die, so you expect to
take in 3 x 3.5 = $10.50 per roll. That says you should pay $11.00 to roll
once. Then you have an expected loss of $0.50 per roll, just as you did with the
loaded die.

The standard deviation for the loaded die is about 1.8 dots compared with
1.7 for the fair die. So our game is slightly more risky than the same game played
with a fair die. But is this correct? The risk of the game is not in the dots, after
all. It's in the gainlloss. Yes, but for both games, the gain/loss is determined by
the number of dots THROUGH A LINEAR FUNCTION WITH THE SAME b(b = 3). So
we can assess risk through the variability of just the dots.

Still, instead of the standard deviation for the number of dots let 's look at
the standard deviation of the gain/loss. It's about $5.41 for our game compared
with $5.13 for the game with the fair die. Same result: This game is slightly
more risky than the game with a fair die. Note that each of the two standard
deviations is determined by 3erx because b = 3 for both games. It's only ox
which differs from one game to the other. So the variability in the gain/loss
is determined by the variability in the number of dots. If b had differed, the
variability of dots would NOT have sufficed to assess risk for the two games.

(c) One value carries half the probability alright, but how far is that value from
the mean? "One dot" is NOT close to the expected 2.5 dots. So you have a large
deviation carrying half the probability. Consequently, this die is MORE variable
than a fair die. By contrast, the die with half the probability on "two dots" is
LESS variable than the fair die [see Problem 1.2.12(a)].
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(a) There are 13 clubs and one of them is an ace. So there's one chance in 13
to draw an ace.

(b) Using Rule 3:

1/52 = PtA and C) = P(AIC)P(C) = P(AIC)13/52.

Solve this equation for P(AIC):

P(AIC) = 1/52 x 52/13 = 1/13.

(c) How many outcomes there are depends on how you "model" the outcomes.
The "doing" here is "draw a card from a deck of 52." An outcome can be
described as "you standing there holding a card in your hand." Then every
position you might be standing in will give a different outcome, so there are an
infinite number of outcomes for the experiment and the events A and C as well
each consist of an infinite number of outcomes.

More simply, bearing in mind what's of interest in a card game, describe an
outcome as "one card." If you're trying to model a card game, this is clearly
better-it abstracts away from the irrelevant consideration of "your position."
This model gives 52 possible outcomes altogether for the experiment. Now,
because there are four aces in the deck, the event A is a set of four of the
possible outcomes and the event C, a set of thirteen.

(d) In part (b) of this problem, P(AIC) = 1/13 which is the same as P(A) =
1/13. So A and C are independent. If you're going to guess the top card is an
ace, would your chance to guess right be improved by knowing the suit? No! In
each case you have a one in 13 chance to be right. Information about the suit
tells you nothing about the face value.

(e) Suppose A is independent of B. Then P(A) = P(AIB). Multiplying by P(B),
you get P(A)P(B) = P(AIB)P(B) = P(BIA)P(A). Now cancelling P(A) from
both sides, we get P(B) = P(BIA). SO B is independent of A.

(f) First, suppose the simple product rule holds. Then

P(AIB)P(A) = P(A and B) by Rule 3

= P(A)P(B) by the simple product rule.

Cancel P(A) from each side and you get independence.
Now, supose A and B are independent, so P(AIB) = P(A). Multiply each side

by P(B) and you get P(AIB)P(B) = P(A)P(B). By Rule 3 the left hand side is
P(A and B), and so the simple product rule holds.
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(g) From the text, P(H1IH2) = P(H2IH}) = 12/51 =1= P(H}) = 13/52. So . . . ?

(h) P(AIB)P(B) = P(A and B) = P(BIA)P(A). Now, ifP(AIB) = P(BIA), cancel
from both sides and get P(A) = P(B). The converse is similar.

(a) The simple "or" rule holds if the events are mutually exclusive because then
P(A and B) = O. The simple "and" rule holds if the events are independent,
That's Problem 1.4.1 (f).

(b)

P(X = 2 OR 3 OR 4 OR 5) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)

= 1/6 + 1/6 + 1/6 + 1/6

= 2/3.

This is easy and natural. This calculation is always possible because the values
of a random variable are MUTUALLY EXCLUSIVE.

On the other hand, P(X 2: 2 AND X ~ 5) is not so obvious. You can't easily
use the "and" rule because these are DEPENDENT events. This probability is

P(X 2: 2 AND X ~ 5) = P(X 2: 21X ~ 5) x P(X ~ 5).

But recalling that (A and B) C= ACor BC, you can do it as follows:

P(X 2: 2 AND X ~ 5) = 1 - [P(X < 2) + P(X > 5)]

= 1 - [1/6 + 1/6]

= 2/3.

Here, of course, we've used the obvious fact that X < 2 and X > 5 are mutually
exclusive events.

(a) Since there are 48 non-eight's, there's a 48/52, or about a 92% chance that
you do not draw an eight.

(b) Let E be the event you draw an eight. Then

P(EC
) = 1 - P(E) = 1 - 4/52 = 48/52.
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(a)

So P(T) = P(TID)P(D) + P(TIDC)P(DC)

= 0.99 x 0.03 + 0.02 x 0.97 = 0.0491.

(b) By Bayes' Theorem, P(DIT) = P(TID)P(D)/P(T) = 0.99 x 0.03/0.0491 =
0.6049. You've little more than a 60% chance to have the disease when the test
says you do! This, of course, is NOT GOOD.

(c) Here P(T) = 0.02291 and so P(DIT) = 0.1296. This is even worse! Now
there's only a 13% chance to have the disease when the test says you do. Screen­
ing tests of this kind are very common, not only in medicine, but in education,
psychology, business (remember drug tests in the workplace?) ... on and on.

Various methods are used to get around the difficulty illustrated in this prob­
lem for such screening devices. First of all, the sensitivity and specificity of the
test should be as high as possible. Then it's also commonly required that a posi­
tive test result be confirmed by another, independent test. That can substantially
improve the predictive value of the test. It's important that the second test be
independent of the first. In particular, it should not be a repeat of the same test.
If some extraneous condition caused a false positve on the first test, it's highly
likely that a repeat of that test will have the same problem, giving a second false
positive.

(d)

0.95 x 0.98 x 0.003
P(DIT1 and T2) = 0.95 x 0.98 x 0.003 + 0.05 x 0.02 x 0.997

= 0.7369.

This is a significant improvement over the 13% for P(DIT1 ) you obtained in
part (c). But still, suppose this is a drug test: There are only three chances in
four that you really are a drug user given a positive test result on TWO such
independent tests! You may object that more than three in 1000 persons (our
assumption) are drug users. But really, are you so sure? Would there be so many
drug users on the job after management has already instituted penalties and
notified everyone of a testing program?

(e) From part (b), P(DIT) = 0.6049 =1= P(D) = 0.03 [or in part (c), =1= 0.003].
Alternatively, it's just as easy to show P(TID) =1= P(T). How?

20/500,000 = 0.00004 (do NOT round this to zero!). Then P(DIT)P(T) -
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P(TID)P(D) = 0.9 x 0.00004, but

P(T) = P(TID)P(D) + P(TIDC)P(DC)

= 0.000036 + 0.0005(1 - 0.00004).

Thus, P(DIT) = 0.000036/P(T) = 0.000036/0.00053598 = 0.0672, by
Bayes' Theorem. So less than seven percent of those who fit the profile should
actually be denied boarding. The court ruled against Lopez' motion while (in the
words of the court) "candidly recognizing the disquieting possibilities suggested
by the techniques of the anti-hijacking program."

(a) Bayes' Theorem states

I
0.88 x 0.25

P(L T) = 0.88 x 0.25 + 0.14 x 0.75 = 0.6769.

About 68% of those identified by the test as lying actually are.

(b) Now about 94.96% of those identified by the test as lying actually are.

(c) The predictive value of a screening test can decrease sharply as the condition
being screened becomes less common [see Problem 1.4.4(c)].

Case I: X - Il 2: 0 and Chebyshev's condition says IX - III = X - Il ::; ko.
Now add Il to both sides (you can add anything to both sides of an inequality
without changing it). So, X ::; Il + ka which says X is below the right endpoint
of the interval (Il - ka, Il + ka} .

Case II: X - Il < 0 and we get

IX - III = -(X - Il) < ka

X - Il > -k(J multiplying by -1 reverses the inequality.

Or, in other words, X 2: Il - ka, and we see that X is above the left endpoint
of the interval (Il- ka, Il + k(J). So X takes a value somewhere in that interval.
Thus"X is within k standard deviations of Il," as you were to show.

(a) According to Chebyshev's Theorem POX - Ill::; 2(J) 2: 1-1/22 = 3/4.

(b) There's at most a 44.44% (from 1/1.52 ) chance to be more than one and a
half standard deviations away from the mean.
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(a) Chebyshev's Theorem states that this probability is at least 75%, but, in
fact, it's 100%. If you know anything at all about your random variable, you
can usually do better than Chebyshev's Theorem. Here you actually know the
entire probability distribution of X. So which values fall within (Jl- a, Jl + a)?
The endpoints are 3.5 ± La with a = 1.7078. So which values fall within
(0.0843 , 6.9156)? Answer: ALL values of X are within two standard deviations
of the mean. So there 's a 100% chance to be within two standard deviations of
the mean.

(b) Now you're talking about the range (0.9383,6.0617) which again encom­
passes ALL the values of X . Because none of the values fall outside this range,
the answer is ZERO. There's a zero chance-it's impossible-to ever roll the die
and obtain a value more than one and a half standard deviations from the mean.

(a) The range is (-0.1265, 5.9265) which includes all values other than X = 6.
So P(X :f: 6) = 1 - P(X = 6) = 1 - 0.1 = 0.9.

(b) The range is (1.2354, 4.5646) which includes X
P(X = 1,5 or 6).

2,3,4. So we need

1.4.11

1.4.12

(c) (1/1.1f = 0.8264. This does not conflict with part (b). In part (b), we
utilized more information about X and so we were able to give a precise answer
to the question. Chebyshev's Theorem just gives an "upper bound" on the
probability in a case where you know nothing at all about the random variable.
It does not provide an exact answer.

(a) IX - JlI < a implies (X - Jl)2 < a2• If that's true for all the values of X,
then

because EP(X) = 1. This says a 2 < a 2 ! Impossible!

(b) For X, a and Jl are both 1/2, so Jl-a = 0 and Jl+a = 1. Are the two values
of X "within" the range zero to one? Yes, although not strictly. To express this
another way, X satisfies IX - JlI ~ a because, in fact, equality holds: 10 - JlI = a
and 11 - JlI = a. Be sure you see this! Substitute Jl = 1/2 and a = 1/2 to make
sure we're telling you the truth.

(c) When k = 1 in Chebyshev's Theorem, you learn nothing because it tells you
the probability is less than or equal to one. You already knew that!

Toss an unfair coin. Roll an unfair die; throw a dart at a dart board; and so
on. Of course, in each case, you can't say the outcomes aren't equally likely
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until you've clearly specified what the outcomes are. Maybe there's a way of
specifying the outcomes so they ARE equally likely. Think about that!

(a) The randomness is in the outcomes not in the values of the variable (see
Problem 1.1.10). It's the outcomes that must be unpredictable. For a constant
random variable, the value (there's only one) is predictable in advance, without
changing the fact that the outcomes are not. For the given example, p = 735
and (j2 = 0 (see Problem 1.2.9).

(b) Because EX does not take into account the probabilities with which the
X's occur, it is meaningless. EP(X) = 1, EXP(X) = p = E(X). Finally, for
any random variable X, the average of the deviations of X from its mean,
E(X - p)P(X), is ZERO [seeProblem 1.2.5(c)]. Of course, if you took the average
of the squared deviations of X from its mean, you would have (ji-, the variance
ofX.

(a) Condition 1, the "doing": toss the thumbtack over the table in such a way
that it stays on the table. That's clearly repeatable (condition 2). Youcan describe
the outcomes very simply as just U and D (condition 3). Clearly, these outcomes
cannot be predicted in advance (condition 4). And so yes, we do indeed have a
random experiment.

(b) This X is not a random variable-it takes on letters as values. A random
variable must have numeric values.

(c) Obtain the equation for the gain/loss, Y = a + bX, by solving for a and b in
the equations 40 = a +b(l) and -20 = a +b(O) . Then the expected gain/loss is
py = 60px - 20 = -2. So you lose two dollars per toss, on average. Because
(j~ = 602 x 0.21 = 756, the standard deviation is $27.50.

(d) Withp = 0.3, the mean is 0.3 and the variance is 0.21. ByProblem 1.2.7(d),
the mean is p and the variance is p(l - p).

(e) You lose two dollars per play on average. A true gambler might be willing
to pay that much per play. The real question is whether it's possible to get way
ahead of the game. If so, you might be able to walk away from the game with
a killing. See part (f) for a possible analysis.

(f) The variance of gain/loss for the new game is 102 x 0.21 = 21 giving a stan­
dard deviation of $4.58 compared with $27.50 for the original game. The first
game seems significantly more exciting! Personally, I would prefer the second
game (it's less risky). In fact, I'd rather see a movie.
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(a) Pr is given as a LINEAR function of BP. a = -81.0637 (don't omit the
negative sign!) and b = 0.5229. What kind of object? Answer: The model is AN

EQUATION relating two random variables.

(b) Use the fundamental equation j.Ly = a + bj.Lx:

26.7 = 0.5229j.LBP - 81.0637 and so j.LBP = (26.7 + 81.0637)/0.5229.

(c) Use the fundamental equation O"~ = b20"i .To get the standard deviation for
barometric pressure, you multiply the standard deviation of BP by a number
SMALLER THAN ONE (b = 0.5229). So, given the units we're using [see part (d)],
Pr is less variable than BP.

(d) Let BPC be the boiling point of water in centigrade. Then

Pr = a + b(32+ 1.8BPC) = a + 32b+ 1.8bBPC

= a' + b'BPC.

After changing units, b' = 1.8b and

O"pr = (1.8)(0.5229)liBPc = 0.9412O"BPc. So, O"Pr ~ O"BPC.

(a) A probability distribution for a random variable X is a "presentation of
the possible values of X together with their probabilities." The two essential
ingredients are (1) the POSSIBLE VALUES of X and (2) the PROBABILITIES of
those values.

(b) A probability distribution can be given by a table, a graph, or through a
set of equations. We've seen tabular and graphical presentations in this chapter.
In Chapter 3, we'll see distributions presented by equations. Chapter 4 relies
almost exclusively on graphical presentations.

1.5.5 (a) X P(X) XP(X) (X - j.L)P(X)

7 0.05 0.35 -0.3105
11 0.42 4.62 -0.9282
14 0.35 4.90 0.2765
17 0.11 1.87 0.4169
21 0.07 1.47 0.5453

--
1.00 13.21 0
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(b) X P(X) XP(X) (X - J.1)2P(X)

7 0.05 0.35 1.9282
11 0.42 4.62 2.0513
14 0.35 4.90 0.2184
17 0.11 1.87 1.5801
21 0.07 1.47 4.2479

1.00 13.21 10.0259 J.1 = 13.21,
(72 = 10.0259.

(c) Bypart (b), (7 = 3.1664 so the interval (J.1- (7, J.1 + (7) is (10.0436, 16.3764).
X = 11, 14 are the only values in this interval. So, 77% of the distribution falls
within one standard deviation of the mean.

(d) Here's one possibility:

Y P(Y) YP(Y) (Y - J.1)2p(y)

7 0.01 0.07 0.3684
11 0.42 4.62 1.7997
14 0.45 6.30 0.3892
17 0.11 1.87 1.6989
21 0.01 0.21 0.6288

--
1 13.07 4.8851

Now (72 < 5, whereas before it was more than ten. Note what happened-we
put more probability on the value 14, close to the mean, making the variance
smaller. How much probability to concentrate at 14 was determined by trial
and error.

(e) 1.5(7 = 4.7496. So the interval is (8.4604, 17.9596):

i
8.4604

i
13.21

i
17.9596

This includes the values 11, 14, 17, representing 88% of the distribution.

(f) The random experiment-the "doing" and its outcomes-is the real-world
component of a random variable. The random variable is a BRIDGE from the
real world to the world of theory :
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In this problem, X was defined by its probability distribution with no reference
to any underlying random experiment. We don't know what that experiment
might have been. The real-world component is totally lost from view. So the
random variable is "abstract."

1.5.6 (a) The "doing" (1) is to throw the dart once at the dart board. That's clearly
repeatable (2). An outcome (3) is the dart having come to rest someplace, hope­
fully lodged in the dart board. Clearly, the outcomes cannot be predicted in
advance (4). So we have a random experiment. "Score" looks at the location
of the dart (outcome) after one throw and assigns a number. This is a rule (5)
associating a number to each outcome, so we have a random variable .

(b) You don't know the probabilities for the various possible scores.

(c) You would want to know how predictable their game is.

(d) You need the standard deviation for the two players' scores.

(e) You need their probabilities, the probabilities for each of the four possible
scores. But they vary from one player to another; consequently, we don't have
just one random variable here.

(f) Each player determines a different random variable modeling that player's
game. The PLAYER is the random mechanism here. Different players give dif­
ferent mechanisms (different "doings" and so different random experiments).
The abstract description in part (a) is exactly the same for each player but be-
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cause the players are different, the realizations ("making real") of the game are
different.

(g) X P(X) XP(X) (X -/l,jlP(X)

10 0.65 6.50 2.7050
5 0.23 1.15 2.0152
3 0.11 0.33 2.7062

-2 0.01 -0.02 0.9920
--

1.00 7.96 8.4184 J-l = 7.96,
a = 2.9014.

(h) You measure exactness of the score by a. "Improvement" means a smaller a.
Here's one possibility:

X P(X) XP(X) (X - J-l)2P(X)

10 0.05 0.50 1.2701
5 0.83 4.15 0.0013
3 0.11 0.33 0.4226

-2 0.01 -0.02 0.4844
--
1.00 4.96 2.1784 J-l = 4.96,

a = 1.4759.

(i) You must have a score of 5 or 10 to be within 1.5a of u. There's an 88%
chance of this. Your opponent is within 1.5a of her expected score 94% of the
time because her score is within 1.5a of J-l if it falls between 2.7462 and 7.1739.
That means a score of 3 or 5.

(j) You're within La of your expected score 99% of the time and your opponent
94% of the time. For your opponent, the two conditions (to be within 1.5a or
2a of the expected score) mean the same thing, a score of 3 or 5.

L;X:;63P(X) means add the P(X)'s for all values of X except X = 3. It's the
probability for X to take any value other than three . Using the first probability
rule P(X =1= 3) = 1 - P(X = 3) = 1 - 0.07 = 0.93.

(a) For both X and Y, the "doing" is to roll the die. An outcome is the die in
some position on the table after one roll. So X and Yare two different random
variables for the SAME experiment. The difference is not in the experiment but
rather in the "rule" (the rule which assigns numbers to outcomes). One rule
looks at the top face, the other at the hidden face.



1.5.10

1.5.9

1.5.10

469

(b) Y P(Y) YP(Y) (Y - 1t)2p(y)

1 0.1 0.1 0.529
2 0.1 0.2 0.169
3 0.5 1.5 0.045
4 0.1 0.4 0.049
5 0.1 0.5 0.289
6 0.1 0.6 0.729

--
1.0 3.3 1.810 Ity = 3.3,

a~ = 1.81.

(c) X + Y = 7.

(d) H = 7 - Y, with a = 7, b = -1, and so

ux = 7 - Ity = 7 - 3.3 = 3.7

ai- = (-1)2a~ = 1.81.

(a) and (b) Think of changing the probabilities from those of the fair die. By
concentrating half the probability on X = 3, you pull the mean down from 3.5.
Byconcentrating it on X = 4, you pull the mean above 3.5. These two changes
are exactly symmetric and so will yield the same net effect on the variance.
Similarly, concentrating half the probability on 1 or 6 will yield the same net
effect on the variance. In fact,

IF •.• P(3) = 0.5, THEN • • • It = 3.3, a2 = 1.81 } smallest
P(4) = 0.5, It = 3.7, a2 = 1.81

P(l) = 0.5, It = 2.5, a2 = 3.25 } largest
P(6) = 0.5, It = 5.5, a2 = 3.25

P(2) = 0.5, It = 2.9, a2 = 2.29 } middle
P(5) = 0.5, It = 4.1, a2 = 2.29

(c) The "doing" of the experiment is different. In each case, a different face of
the die carries half the probability and so you're talking about TWO DIFFERENT

DICE. The random variable has the same verbal description in each case, but
that description refers to two different random mechanisms. This is similar to
part (f) of Problem 1.5.6 .

(a) It±a gives the interval (22.3959,24.1641) containing the values 23 and 24
which represent 71% of the distribution.
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j.l ± 1.5a gives (21.9539, 24.6061) containing the values 22, 23, and 24 and
representing 84% of the distribution.

j.l ± La gives (21.5118, 25.0482) containing 22, 23, 24, and 25 and repre­
senting ALL of the distribution, 100%.

j.l ± 2.8a gives an even larger interval and so, of course, it contains all of
the distribution too . Just to check your calculation, the interval is (20.8046,
25.7554).

(b) Within one standard deviation of the mean you'll find the values 0.8 and
1.1, representing 76% of the distribution. The interval is (0.7252, 1.2468).
Within 1.5 standard deviations, you'll find exactly the same values of X, so
it's still 76% of the distribution. Within two standard deviations, you'll find all
but the first value comprising 99% of the distribution. Finally, 2.8a below the
mean, 0.2558, still excludes the first value and so we still have only 99% of the
distribution.

(c) Within a of j.l is 60% of the distribution. All the other ranges contain 100%
of the distribution!

(a) Because Y = lOX, solving for X, you get X = O.lY. So X is a linear
function of Y. That is, X = a + bY, with a = 0 and b = 0.1, and so

(b)

tix = O.lj.ly = 0.986 since j.ly = 9.86,

ai = 0.12a} = 0.0680 since a} = 6.80.

(c)

j.lx = O.lj.lY = 1.934 since j.ly = 19.34,

ai = 0.12a} = 0.0320 since a} = 3.20 .

(a) Y is just the last digit of X.

(b) a = -2,147,810 and b = 100.
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(c) Y P(Y) YP(Y) (Y - J-l)2p(y)

4 0.17 0.68 0.5386
5 0.22 1.10 0.1338
6 0.37 2.22 0.0179
7 0.14 0.98 0.2084
8 0.10 0.80 0.4928

--
1.00 5.78 1.3915 J-ly = 5.78,

O"y = 1.1797.

(d) tix = 21,478.1578 and (7X = 0.0118. You should NOT round to conform
with the accuracy of the original numbers . A mean is a theoretical number
and does not represent a "possible value." For example, suppose a city has 1.4
children on average per family. It would be very misleading to round this number
to 1, even though it's true that no family has four-tenths of a child!

(e)
x = (1/100) [Y + 2, 147, 810]

= O.OlY + 21,478.10 a = 21,478.10,b = 0.01.

So
tix = O.OlJ-lY + 21,478.10

= 21,478.1578.

Similarly, the variance of X is (0.01)2 times the variance of Y, giving (7i- =
0.00013916, from which the standard deviation of X is 0.0118.
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Chapter 2
2.1.1 Here is Tufte's analysis :

Despite the appearance created by the hyperactive design, the state
budget actually did not increase during the last nine years shown.
To generate the thoroughly false impression of a substantial and
continuous increase in spending, the chart deploys several visual
and statistical tricks-all working in the same direction, to exag­
gerate the growth in the budget . These graph ical gimmicks :

These three parallelepiped s have been
placed on an optical plane in front
of the other eight, creatin g the image
that the newer budgets tower over the
older ones.

Total Budget -+

51D.l 5.OJ

'. 11· 11- liS 10 11· 'n "n ·u ?\ .•
~ U • ON "11 n ~ ~ ~ ~ ~

I ,I_-
Arrow s pointing straight up emphasize
recent gro wrh. Compare with horilont. l
arro ws ar lefl,

;.;.= 1/ -
~/

/
~

~
~/

~
~ 1/ "-

~
-, 1\ -

~ -"-
$4.0 I-- -

-
f- -
'-- '- - '-- - - '-- - - - '--

Total Aid to -+
localities"
"V~l,..._

of!l61,.rt"'01
NlOUiI lftl'1O-11
• • tI1tl01601
perc_lft l' U-1l

This squeezcd-down block of type
contributes to an image of small,
squeezed-down budg ets back in the
good old d. ys.

This cluster of type emphasizes and
stretches out the low value for t l)66­
'967, encouraging the impressio n rhar
rea m ye.n have sho t up from. small,
stable base. Horizontal arrows provi de
similar emphasis ,

Leaving behind the distortion in the chartjunk heap at the left
yields a calmer view:

Reprinted, with per­
mission, from Edward
Tufte, The Visual Dis­
play of Quantitative
Information, (Cheshire,
Connecticut: Graph ics
Press, 1982), AII30.
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Two statistical lapses also bias the chart. First, during the years
shown, the state's population increased by 1.7 million people, or
10 percent. Part of the budget growth simply paralleled population
growth. Second, the period was a time of substantial inflation;
those goods and services that cost state and local governments
$1.00 to purchase in 1967 cost $2.03 in 1977. By not deflating, the
graphic mixes up changes in the value of money with changes in
the budget.

Application of arithmetic makes it possible to take population
and inflation into account. Computing expenditures in constant
(real) dollars percapita reveals a quite different-and far more
accurate-picture :

Per capita
budget expenditures,
in constant dollars

473

$.400 -

$380 -

$340 -

$32.0 -

$300 -

--------------------------------------------------.-. e- -----------./.-...... ./ -,
.-......... • <, / '\.

/--------------- --------------------. ------------------------.---
•

/
./.

1967 1968 1969 1970 1971 1972. 1973 1974 1975 1976 1977

Thus, in terms of real spending per capita, the state budget in­
creased by about 20 percent from 1967 to 1970 and remained
relatively constant from 1970 through 1976. And the 1977 budget
represents a substantial decline in expenditures. That is the real news
story of these data, and it was completely missed by the Graph of
the Magical Parallelepipeds. Of course no small set of numbers is
going to capture the complexities of a large budget-but, at any
rate, why tell lies?

The principle :

In time-series displays of money, deflated and
standardized units of monetary measurement are
nearly always better than nominal units.
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(a) Women fare much worse than men with this disease. Less than 23% of the
women recover, whereas nearly 69% of the men recover. Taking both treatments
into account, only 70 out of 310 women recover, whereas 55 out of 80 men
recover.

(b) You must control for a variable if the effect you're studying is not constant
for that variable. Otherwise, such a variable is confounded with the effect under
study. As originally stated, the variable "gender" is confounded with "effective­
ness of treatment" as measured by the recovery rate . This happens because
the overall recovery rate is not the same-not constant-for different values
(malelfemale) of the variable "gender."

To express this in other terms: The group "persons" is not homogeneous for
the variable "recovery rate." The two genders within the group "persons" re­
spond differently. So, to avoid confounding "recovery rate" (the variable under
study) with the extraneous variable "gender," you must control for the variable
"gender." That means you break the data down according to gender as we've
done in the table from level I.

This is another example of Simpson's paradox.

(a) Disregarding the control for on-job experience, it looked as if women made
more on average than men. But it's clear that men are making more than women
for both categories of experience: for "less than five years" versus "more than
five years" on-job experience. In the problem as originally stated, the effect we
want to study-"salary level for men versus women"-was confounded with
the variable "experience on job." In other words, the employees as a group are
not homogeneous with regard to "salary level by gender," the picture looks very
different depending on on-job experience.

(b) The total salary (in $1000) for the ten women with less than five years on
the job is 10 x 100($1,000,000). The salary figure "100" is "weighted" by ten.
So the total salary for all the women is 10 x 100 + 40 x 175. To get the average,
divide by 50 (see below). This kind of "average" is called the arithmetic mean:
Take the total of all the observations and divide by how many you have.

Here's another way to obtain this same weighted average: 20% of the women
have less than five years of on-job experience and 80% more, so the weights for
those two categories are 0.2 and 0.8:

100 x 0.2 + 175 x 0.8 = 160.

Compare these two calculations. It's just a matter of factoring out the denomi­
nator. The first two equations below are two versions of the weighted average,
the second is just the usual "add and divide" average. Of course, they're the
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same, both yield the arithmetic mean:

100 x 0.2 + 175 x 0.8 = 160
100 x 10/50 + 175 x 40/50 = 160

1/50[100 x 10 + 175 x 40] = 160

and for the men, the weighted average is

}weighted average,

usual average

2.1.4

125 x 0.8 + 200 x 0.2 = 140.

Note how the weights make the nonhomogeneity clear. Eighty percent of the
men have less than fiveyears on-job experience, whereas only 20% of the women
fall into that category. Part of the effect under study is gender, but "gender"
is confounded with "experience on job" because "on-job experience" is not
constant for "salary by gender."

(a) The results should be interpreted as referring to OPENLY gay men, open to
the extent of being willing to acknowledge their homosexuality to a stranger
who knows their home address, work address, social security number, and so
on.

(b) Let M =U.S. male, G = gay, R = willing to respond and gay. Then by the
NSM, R = O.OllM and by the assumption of this problem R = O.lG. Putting
these together, O.lG = O.Ol1M and so G = (0.011/0.1)M = O.l1M.

Note that the assumption we're making here-that we know the percentage
of gay men who are OPENLY gay-is exactly what is not known. It's the missing
information that makes impossible the conclusion drawn by the authors of the
NSM about the proportion of the general population who are gay. Furthermore,
this information will be impossible to obtain. Would you do a survey that asks,
"Are you a gay man who doesn't admit to being gay?" Maybe you could get
more truthful answers if you say, "Don't worry, I promise not to tell."

(c) Young gays are much more likely to be open than their older counterparts,
given the increasing acceptance of homosexuality in the United States over the
past ten years. So if they refer to OPEN gay men, these percentages from the
NSM make perfect sense. They show that young gay men are more likely than
their older counterparts to be openly gay. On the other hand, if they are taken
to refer to all gay men, we would have to believe that homosexuality is ON THE

RISE! Indeed, some people would make that argument in view of what they see
as the "general decline in morality." They seem to believe that homosexuality is
so enticing an option that everyone would be homosexual if only they had the
chance-if only the authority of government and church didn't impose sanctions
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with heavy and burdensome penalties to keep everybody in line. Personally, I
find that hard to believe. I think a lot of people would be HETERosexual even if
they didn't have to be.

(d) It's obvious, and admitted by the authors of the NSM, that this very high
nonresponse rate is largely due to the sensitive and personal nature of the
questions being asked. Experts have become concerned about increasing non­
response rates for surveys of all kinds . For the ongoing "Current Population
Survey," a federal labor-force survey sampling over 60,000 households a month,
the nonresponse rate rose from 1.8% in 1968 to 2.4% in 1980.1 This rise was
considered cause for concern. For the Household Health Interview Survey, that
rate rose from 1.2% to 2.2% over the same period.i So you can see that non­
response rates of more than five percent are quite problematic. Here we have a
nonresponse rate of 30%! In reference to survey sampling in general, Stopher
and Meyburg.l say, " . . . when 30% of a sample fails to respond-particularly
when the failure is a reflection of a lack of interest in or opposition to the
survey objectives, or objection to being surveyed-a considerable bias will be
introduced."

The authors of the NSM say, "Seventy percent is a respectable response rate
for a survey of sexual and health behaviors, given the highly sensitive nature of
the questions." They then go on to cite comparable rates of other such studies to
conclude that their response rate is just as good as "others in the field." But this
doesn't say their study is good, what it really says is that the other studies are
just as meaningless as theirs. That's not to say all these studies are completely
useless. They may have a limited use in the absence of any better information,
provided they're understood IN CONTEXT and provided one does not lose sight
of how very weak the conclusions actually are.

But the fact that neither you nor anybody else can do better than a 70%
response rate doesn't make a 70% response rate good (or even "respectable").
And certainly it does not make your results valid for 100% of the population. To
use the results of such a questionable study to make very official and authorita­
tive sounding pronouncements-unqualified pronouncements-that will have
a significant effect on public policy and negatively impact the lives of numerous
individuals is irresponsible in the extreme.

(e) Only the respondent knows which question he's answering and so (we hope)
he answers truthfully. However, the probability for the spinner to choose our
question is determined in advance (it shouldn't be 50%, then the technique

1 See Madow, William G., et al. (eds.), Incomplete Data in Sample Surveys, Academic Press, New
York, 1983, Vol. 1, page 22.
2 Ibid.
3 See Stopher, Peter R., and Meyburg, Arnim H., Survey Sampling and Multivariate Analysis for
Social Scientists and Engineers, DC Heath, Lexington, MA, p. 112.
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"blows up"). With that information-even though we don't know any indi­
vidual's response-we can deduce the proportion of respondents who are gay
(assuming we get truthful answers). Probability theory can be a powerful tool!

The authors of the NSM did not use any such techniques to guard their
respondents' anonymity.' See the International Statistical Review, volume 44,
number 2 (1976) for a series of articles discussing extensions and refinements
of Warner's technique.

(a) There are two conditions to verify. Each toss yields a zero or a one, so on
three tosses we get three such values ordered according to the order of the toss.
For example (0, 1, 1), means we tossed a tail followed by two heads . So the three
tosses generate "an ordered set of n = 3 values of X" and the first condition
of the definition is satisfied. For the second condition: These values of X are
obtained from "independent repetitions" because one toss does not in any way
affect the outcome of the next toss.

(b) Here are the possible samples:

(0,0,0), (0,0,1), (0,1,0), (1,0,0),

(1,1,0), (1,0,1), (0,1,1), (1,1,1).

(c) "AND" means "multiply." We'll discuss such counting principles in more
detail in the next chapter. This multiplication rule is one of the most basic. We
think of the sample as 30 blanks

which can be filled with zeros and ones:

° ° 1 ° 1 1 (30 blanks)

Each blank can be filled in two ways, so there are 2 x 2 x 2 x ... x 2 = 230 ways
to fill the 30 blanks. In other words, there are 230 samples. Use your calculator:
That's over a billion samples!

You can check this counting procedure with the simpler cases. Using this
principle, there should be 23 samples of size three. And there are-you saw
those eight samples in part (b) of this problem. There should be 22 samples of
size two:

(0,0), (0,1), (1,0), (1,1).

4 I talked by phone with one of the authors, Koray Tanfer. He was reluctant to discuss the issue
of anonymity. When asked if randomized response techniques had been used, he said, "One
question, one question! It's all in the article." Evidently the answer is no because "the article"
makes no mention of any credible effort to assure anonymity.
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(d) ~X = 4 means you got four heads, heads on every toss. So, P(~X = 4) =
P(head AND head AND head AND head) = (0.7)4. The simple "and" rule for
probability works here because the tosses are independent (see Problem.1.4.2).

(e) Using the simple "and" rule, each of the six samples with two heads has
probability (0.3)2 x (0.7)2 = 0.0441. Then use the simple "or" rule:

P(~X = 2) = P(1100 OR 1010 OR 1001 OR 0110 OR 0101 OR 0011)

= 0.0441 + 0.0441 + 0.0441 + 0.0441 + 0.0441 + 0.0441

= 6(0.0441) = 0.2646.

The simple "or" rule works because you can't get two of these samples at the
same time. That is, any two samples are mutually exclusive.

(f) This is the same as part (e). The average is 1/2 = (1/4)~X. Multiplying by
four we get 2 = ~X.

(a) Ten rolls of this die constitute n = 10 independent repetitions of the random
experiment for X. If we record for each roll the number of dots on the top
face, we'll have an ordered set of n = 10 values of X, obtained from those n
repetitions. This verifies the definition as required. Note the two conditions that
must be verified: (1) You must have an ordered set of n values of X and (2) those
values must come from n independent repetitions of the random experiment for
X.

(b)
(1,1), (1,2), (1,3), (1,4), (1,5), (1, 6),

(2, 1), (2,2), (2,3), (2,4), (2,5), (2,6),

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),

(5, 1), (5,2), (5,3), (5,4), (5,5), (5,6),

(6, 1), (6,2), (6,3), (6,4), (6,5), (6,6).

(c) Think of a potential sample as ten blanks to fill in, each of which has six
possibilities. So, it's 610 = 60,466,176.

(d) ~X = 4 happens with three samples: (1,1,2) OR (1,2,1) OR (2,1,1) . Each of
the values in these samples has probability 0.1. So each one of the three samples
has probability 0.1 x 0.1 x 0.1 = (0.1)3 = 0.001, using the "and" rule. Adding
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that to itself three times-the "or" rule-gives a probability of 0.003 for the
event :EX = 4.

(e) If the average is four thirds, then 4/3 = 1/3:EX and so, multiplying by
three, the total number of dots is four: 4 = :EX. This is the same as part (d).

(a) The "doing" for the experiment can be described as "produce one machine
part." Of course, that's repeatable. Otherwise, you're out of business. So, pro­
duce one part: An outcome will be that one particular part. This outcome is
unpredictable in the sense that no two of these parts will be exactly alike. There
will be variations in weight, size, strength, and so on. So the production process
is a random experiment with a machine part as outcome. Then, the random
variable "specification error" is a rule which associates the error in diameter (a
number) to that machine part (an outcome). It tells how far off the diameter
actually is from the specified 2.5 cm.

(b) Producing the next five machine parts is n = 5 repetitions of the random
experiment (almost condition two, what about independence?), giving five spec­
ification errors, "an ordered set of n = 5 values of the random variable" (con­
dition one). So, if the repetitions are independent, we have a simple random
sample of size n = 5. But independence is not obvious. To have independence,
you must assume that errors in the diameters are due to purely random factors
and not to something wrong in the process . This will be true if the process is "in
statistical control." Statistical Process Control is an important part of industial
quality control.

(c) Suppose the average diameter for these five machine parts is significantly
above 2.5 em. That's evidence that the manufacturing process has moved "out
of control." The specification error has become unacceptably large. Of course,
the words "significant" and "unacceptable" must be defined more precisely.
We'll return to this later in Chapter 6.

(a) The "doing" for the random experiment is to make the measurement one
time. Clearly, that's repeatable. An outcome is "one measurement" (a number).
Now, that measurement involves a certain error. That's the value of the random
variable. To one measurement (one outcome), the random variable associates
the error. So, "measurement error" is indeed a random variable.

If you're uncomfortable because you feel the measurement error will never
be known, you're RIGHT. The whole point is to have a theoretical model for
the error. Once that model is in place, it provides a very powerful analytic
tool to help us understand and control measurement error. The abstract model
for measurement error and specification error is called the normal distribution.
We'll study that model in Chapter 4.
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(b) Assuming the measurements are truly independent of each other, the next
five measurements give us an ordered set of n = 5 measurement errors ("an
ordered set of n values of the random variable") "obtained from n = 5 inde­
pendent repetitions of the random experiment."

(c) In one case-specification error-the experiment produces many objects,
the outcomes of the experiment. In the other case-measurement error-there's
one object which is repeatedly measured. The outcomes are the many measure­
ments. In the first case, the outcomes are many different real-world objects. In
the second case, the outcomes are many different numbers associated with ONE

real-world object.

(a) The "doing" for the experiment can be thought of as "produce one silicon
wafer and examine it" (clearly repeatable) for which we can think of the outcome
as that one silicon wafer labeled either "good" or "defective." Because we can't
predict defects in advance, this is indeed a random experiment. Now, the random
variable X will count the number (zero or one) of defectives. Note that X is a
rule which associates a number to each outcome. If the silicon wafer is good,
X = 0, and if defective, X = 1.

(b) The formula for the mean and variance of X is in Problem 1.2.7(d). After
all, our X is just like counting the number of heads (= defect) for one toss of a
coin which comes up heads three percent of the time. So the mean of X is 0.03
and the variance is 0.0291(= 0.03 x 0.97) . Or

X

o
1

P(X)

0.97
0.03

1

XP(X)

o
0.03

0.03

0.0009
0.0282

0.0291

(c) We must assume "defective wafer" to be independent from wafer to wafer, a
reasonable assumption. If it doesn't hold, there must be something systematically
wrong in the production process. With this assumption, a "lot" comes from
n = 500 independent repetitions of the random experiment for X (condition
two). Further, each silicon wafer generates a value of X depending on whether
it's defective or not. So, the lot generates an ordered set of n = 500 values of
X (condition one). Because both conditions of the definition are satisfied, a lot
does indeed generate a simple random sample from the distribution of X .

(d) The proportion defective per lot is (l/n)EX where n = 500. To get the
percent defective we must multiply by 100: 100/500 = 0.2. The random vari-
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able EX is important in its own right. For independent repetitions of a random
experiment like tossing a coin, EX is the binomial random variable which we'll
study in detail in Chapter 3.

(e) This is just the sampling experiment described in part (c). The "doing" is
to produce and examine, one after the other (in order), 500 silicon wafers. Ob­
viously that's repeatable. The experiment produces a "lot" as outcome. This
outcome is unpredictable with regard to quality. To that lot (outcome), the ran­
dom variable assigns a number, the percent defective. Thus, "percent defective
per lot" is a random variable, a rule which associates a number to each of the
possible outcomes of a random experiment.

(a) You could describe the "doing" as "examine a child for this disease" with
two possible outcomes: The child is either "positive" or "negative" for having
the disease. Or you could describe the "doing" as "let the child live its life,"
again with two possible outcomes: "yes" if the child contracts the disease, or
"no" if the child does not contract the disease. Maybe you found another way
to describe this experiment. Then finally, let X count "incidence of the disease."
In other words, X = 1 if the child has the disease and X = 0 otherwise .

(b) If incidence of this disease is to be independent from child to child, it better
not be a contagious disease. A problem could also arise if the disease is ge­
netically determined, for then you would have dependency within families (in
some circumstances this dependency is weak enough to be ignored). Although,
in fact, independence can sometimes be assumed for contagious diseases as well
if everyone, for example, has been more or less equally exposed to the disease
so that "incidence" is not dependent on exposure. This question of modeling
epidemics of contagious diseases is quite complex and requires the informed
judgment of experts.

Now, suppose there are, say, 150 children in the neighborhood and suppose
they've all been examined, their names listed (ordered) and labeled 1 or 0 ac­
cording to whether they do or do not contract the disease. Then those 150
children constitute an ordered set of n = 150 values of X. If the independence
assumption holds, those values of X have been obtained from n = 150 inde­
pendent repetitions of the random experiment for X. Because we've verified the
two conditions of the definition, we do indeed have a simple random sample
from the distribution of X.

(c) The "doing" of the experiment can be thought of as "examine 150 chil­
dren for this disease and make a list labeling a child 1 if it has the disease and
ootherwise." This is repeatable by examining another group of 150 children.
An outcome would be a list of names labeled with zeros and ones. These out­
comes are unpredictable because before examining the children there's no way
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to predict incidence of the disease. That shows we have a legitimate random
experiment. Then, "percent who contract .. . " is a rule which assigns a num­
ber to anyone of those lists (outcomes), and so it 's a random variable. Finally,
in our particular neighborhood, the percentage of children who contract the
disease is one of the possible values of this random variable.

(d) With the help of the Poisson model, you might show that the number of
children who've contracted the disease in that neighborhood is much higher
than should be expected. You would then look for some extraordinary cause­
for example, environmental toxins-to account for the high incidence of the
disease among children within that neighborhood.

(e) The "incidence of the disease" in that neighborhood is the number of chil­
dren who've contracted the disease. The symbol for "incidence" is EX.

(a) The first population is dichotomous (characteristic of interest: " this regis­
tered voter will vote for our candidate in the upcoming election"). The second
and third populations are numeric; to compute an average, you must have
numbers. The fourth population consists of numbers (SAT scores), but it's NOT

a numeric population. It's a dichotomous population. You're only interested in
distinguishing those scores "above 1000" (the characteristic of interest) from
the rest . The fifth population is numeric and the sixth population is dichotomous
(characteristic of interest: "will respond to treatment," for a patient exhibiting
this clinical symptom of glaucoma). Note that the last population is not "all
glaucoma patients." It 's only those who exhibit the particular symptom of glau­
coma that we're interested in; there will be glaucoma patients who happen not
to have that symptom.

(b) For the second population, what proportion of a given day's output is defec­
tive? Do you see the pattern? Means require numeric populations, proportions
require dichotomous populations. We'll let you finish by giving questions for
each of the other four populations.

To say the average life is 1200 hours means the "typical" component will burn
about 1200 hours. As a practical matter, most components will burn out a bit
sooner or a bit later. You'd be very surprised if a component burned exactly
1200 hours (not a second longer or shorter)! Because many components­
maybe roughly half-will burn less than 1200 hours, that could hardly be a
criterion for "too early." If don't believe me, look at the problem: "for one
supplier, 5% of the components burn out too early and for the other 15%."
Clearly, more than five or even 15% would burn out before 1200 hours. Of
course, someone with expert judgment has to tell us what's meant by "a bit
less than 1200 hours" or "too far short of 1200 hours." She may say that "too
early" means the component burns less than 1050 hours.
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(a) Because you shuffle the deck after each draw, when you get ready to draw a
card (a sample element) any of the 52 cards has "an equal chance to be drawn
next." That's all the definition requires.

(b) An outcome of the random experiment is "one member of the population."
Because it's a numeric population, that's a number. Well, let X be that same
number. Now, when we repeat the selection process with replacement, we're
just repeating this same experiment. And each repetition is independent of the
previous one because we sample WITH REPLACEMENT. After we've done this n
times, we have "an ordered set." The order is the order of selection. And it's
a "set of n values of X," the possible values of X are just the numbers in this
numeric population. And those n values were "obtained from n independent
repetitions of the random experiment for X."

(c) For sampling with replacement, each member of the population has one
chance in N to be drawn. That means a probability of l/N. Because you're
sampling with replacement, each draw is identical to the previous one. So the
draws are independent and a sample of size n has probabilty (l/N)n. For sam­
pling withOUT replacement, after the kth draw the next member of the sample
has a probability of l/(N-k) to be drawn. So a sample of size n has a probability
given by the product of all these fractions.

(d) For a fair die, each value of X has probability 1/6. Thus , a sample of size
n has probability (1/6)n. Now, think of a die for which the face with two dots
comes up half the time, with all other faces equally likely. Then the sample (1,
1) has probability 0.01, but the sample (2,2) has probability 0.25.

(a) The random mechanism is the shuffling of the deck.

(b) Verbal description: n is the number of cards in a hand (in a sample). You're
choosing five cards, so n = 5.

(c) If you sample with replacement, you will end up with only one card . Who­
ever heard of a five-card hand with only one card?

2.1.15 (a)

(b) One toss generates two possible numbers, zero and one. Two tosses generate
four numbers: 0, 1,2,3 (in binary, 00, 01, 10, 11). There are two possibilities
for each toss, and so with two tosses you have 2 x 2 possibilities, with three
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tosses 2 x 2 x 2 possibilities, and so on. With seven tosses, there are 27 = 128
possibilities .

(c) We were to generate random numbers between 0 and 125. That's 126 num­
bers. With fewer than seven tosses, we would not have enough numbers. Six
tosses give only 26 = 64 possibilities. But seven tosses generate 128 random
numbers, 0 through 127, two more than we require. If we generate a number
out of the range 0-125 (126, for example) that number is aborted and we simply
generate another number.

(d) The random variable is the number of heads on ONE toss of this perfectly
balanced coin. So this is similar to Problem 2.1.5(a) . The only difference is that
here n = 7, there n = 3.

(e) Because the population size is 15, you need to generate at least 15 numbers.
Three tosses generates only eight numbers, four tosses generates 16 numbers,
zero through 15. So you'll have the possibility of one number which is out of
range. Now, index the population so that it's clear which random number selects
which population member . Here's one possibility:

This means if our toss generates 0110 (which evaluates to "six") then we select
the number 26, because it's indexed by the subscript "six."

Of course, you could have started the indexing with zero, in which case
the index "six" selects the number 27. The way we've indexed the population
above, if we toss four tails in a row generating the number 0000, we would abort
that series of tosses because we have no population member indexed by zero.
Operational decisions such as how to index the population have to be made
in advance as part of the sampling procedure. Those conventions will go into
some kind of "procedures manual" so that everyone involved is able to follow
exactly and consistently the same procedure. Our decision to count "heads"
instead of "tails" is another such operational decision which would have to go
into a procedures manual.

The three tosses suggested in level I give the following binary numbers: 0100,
0000, and 1010. Because the unusable number 0000 was generated, you should
abort that series of tosses. That leaves you with only two numbers . To get one
more random number, you need another series of four tosses. Suppose it turns
out to be TTHT giving the number 0010. Then your sequence of three random
numbers is 0100, 1010, and 0010 yielding the sample

{24,30,22} (sample size n = 3).
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With the index starting at zero, the sample is {25, 31, 23}. We're using { }'S in­
stead of ( )'s just because it's conventional to think of samples from a population
as unordered.

(f) Nobody in her right mind would ever sample from a population of only 16
members. The only reason for sampling is to say something about a population
which in some sense is inaccessible as a whole.

(g) Abstractly, it 's not different at all . The real-world "doing" is different, but
everything else is the same. Recall that a random number generator is a random
experiment which gives numbers as outcomes where all the numbers generated
are equally likely to occur. Both of our procedures give the same outcomes
(base-two numbers from zero to 15), all equally likely to occur (assuming the
coins are fair, of course). So they're the same random number generators. This
shows how different real-world situations may be modeled by the same abstract
model.

(a) The words of the text are the population, it's a dichotomous population.
Every word falls into one of two categories, either it is or it is not a instance of
the word "the."

(b) The problem is to identify the population clearly and unambiguously before
you begin to discuss sampling.

(c) An obvious case for cluster sampling: Just take a simple random sample
of page numbers (note that the pages are automatically "indexed") and count
occurrences of the word "the" on each of the pages selected.

Simple random sampling is possible, of course: Introduce an index like (17,
12, 6), meaning "take the sixth word on line 12 of page 17." So the index has
the form (page #, line #, word #). Using this index you could obtain a simple
random sample of the population of "all words" of the text. But a sample of
any reasonable size, say 500 words, would be very tedious to obtain and prone
to human error-a lot of it! And there's no theory for "human error," so we
have no way to control it. By contrast, there is a theory for random sampling
which allows us to control "sampling error." We'll see that later.

(a) Possibly stratifying by educational level would be appropriate.

(b) The term "computer skills" has not been made precise enough to identify
the population. If "computer skill" is measured by some test, the test scores
might be the population, a numeric population. Or possibly the population is
to be regarded as dichotomous-either a worker does or does not possess some
minimum criterion for "computer skill."
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(a) An outcome of a random sampling experiment is a random sample of some
fixed sample sizen. If you repeat the experiment, you will get a different sample,
also of size n. You could possibly get the same sample, but it is so unlikely as
to be virtually impossible.

(b) Cluster sampling and stratified random sampling are both more complex
than simple random sampling. Simple random sampling is the simplest form of
random sampling (hence, its name). Both cluster sampling and stratified random
sampling make use of simple random sampling as part of their design. How?
Here's how: cluster sampling uses simple random sampling to choose the clusters
in the sample. For example, in Problem 2.1.16, you choose a simple random sam­
ple of pages and then your cluster sample consists of all the words on those pages.

In stratified random sampling, you choose a simple random sample from each
of the strata. If you've stratified the population by gender, you choose a simple
random sample of males and another of females. These two simple random
samples together constitute your stratified sample. So a stratified random sample
consists of a set of simple random samples.

(c) The sample mean is a random variable. It 's a rule which associates a number
(the sample mean) to each outcome (each sample) of the random sampling ex­
periment. For sampling from a dichotomous population, the sample proportion
provides an example of a random variable, the proportion of the sample having
the characteristic of interest. It associates a number (the sample proportion) to
each outcome (each sample) of the random sampling experiment.

Note that in each case the random variable varies from sample to sample.
Neither the population mean nor the population proportion vary at all because
there is only one population. That's why the population mean for a numeric
population and the population proportion for a dichotomous population are
called parameters. Each is a fixed number associated with the population.

[Hint: For discussions like this you should always bare in mind a specific
simple example of what's being discussed. So, think of some specific examples
of numeric and dichotomous populations and compare what you read above
with those examples. That's how you learn concepts. That's what we did for
you in the part (b). We gave specific, simple examples.]

(a) Here's a possibility: 3,4,5, 75.

(b) The mean will be larger than the median if a few data values are very, very
large, causing the mean to be large without affecting the median.

(c) You probably thought of test scores. If, as sometimes happens, one or two
students already have significant knowledge of the material or for some other
reason do much better than the class as a whole, their scores will "ruin the
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curve" -they pull the average way up. But their scores would have no affect at
all on the median. Income figures are another case in point. Usually one or two
lucky slobs make enormous salaries while all the rest of us get along on ordinary
incomes. Suppose in a small company the boss makes $220,000 a year while
each of her nine underlings makes only $20,000 a year. The median salary is
$20,000 and is a reasonable measure of "average" salary for that company. But
the mean salary is $40,000 per year, twice as much as anybody makes other
than the boss.

(d) One of Nand n is "4," but they cannot both be applicable. If the data is
population data, n is not applicable and N = 4. If it's sample data, n = 4 and
N is not applicable.

Then 'L,f = 4, 'L,Xf = 87, 'L,rf = 1,'L,X(rf) = 21.75. Here are the verbal
descriptions: 'L,f is the "number of observations," 'L,X f is the "total of all
observations." The symbol 'L,rf has a simple verbal description, it's "the number
one." The sum of all the relative frequencies must necessarily add to 1. That
sum serves as a double check on your accuracy, if it's not 1, then you've made
a mistake. Finally, 'L,X(rf) is the "arithmetic mean of all the observations."

(a) There's no "middle" value because there are an even number of observa­
tions. So the median is the average of the middle two, the average of the 6th
and 7th values: (5 + 5)/2 = 5. The data is bimodal with modes 2 and 5.

(b) and (c)

X f Xf X rf X(rf)

2 3 6 2 0.2500 0.5000
3 1 3 3 0.0833 0.2499
4 0 0 4 0 0
5 3 15 5 0.2500 1.2500
6 1 6 6 0.0833 0.4998
7 2 14 7 0.1667 1.1669
8 2 16 8 0.1667 1.3336

--
12 60 J.l=5 1 5.0002 J.l = 5.0002

Note the round-off error. The second and fifth values in the X(rf) column
should be 0.2500 and 0.5000, respectively. They will be if you keep all the
accuracy of your calculator instead of rounding and then calculating again with
your rounded number. In fact, that's what you should do.

(d) The only difference is in the notation. Instead of J.l use X.

(e) N is not applicable here because we have sample data. Then, n is the "sample
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size," the "number of observations." If you've done everything correctly, ~f =
n, because it too is the "number of observations." ~Xf is the "total of all the
data," ~rfmust necessarily be "one" and finally, ~X(rf) is the "arithmetic mean
of all the data."

(a) A statistic is computed from a random sample. That sample comes from
some random sampling experiment. The sampling experiment is the random
experiment requested.

(b) An outcome of a sampling experiment is one sample.

(c) To each sample-to each outcome-is associated the calculated value of the
statistic.

There's no difference between this calculation and the calculation for a prob­
ability distribution. The difference is only in our understanding of what the
numbers refer to-probabilities are THEORETICAL relative frequencies, here we
have OBSERVED relative frequencies:

X rf X(rf) (X - JL)2(rf)

2 0.0625 0.1250 1.1963
3 0.1250 0.3750 1.4238
4 0.0625 0.2500 0.3525
5 0.1250 0.6250 0.2363
7 0.2500 1.7500 0.0977
8 0.1875 1.5000 0.4951
9 0.1250 1.1250 0.8613

10 0.0625 0.6250 0.8213

1 6.3750 5.4843 JL = 6.3750,
(52 = 5.4843,
(5 = 2.3419.

Note that the fourth column sum is already the variance-there's no need to
divide that column sum by anything because division by 16 has already been
done.

(a) For sample data, you calculate the value of a statistic. It varies from sample
to sample. By contrast, a parameter is a fixed number. A statistic is a random
variable (see Problem 2.2.3) which corresponds to a population parameter and
serves to estimate that parameter.
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(b) The range is supposed to be a single number, a parameter or a statistic (see
part(a)). Here you are giving an interval of numbers. Note that the technical
term "range" is more exact than its dictionary meaning.

(c) ;,2 = (ljn)E(X - X)2 f.

The two modes are four and seven. The median is the sixth value which by coin­
cidence takes the value 6. We'll assume in our notation that we have population
data

2.2.7

x
3
4
5
6
7
8

Distribute 1jN over the sum:

f
1
3
1
2
3
1

11

Xf

3
12
5
12
21
8

61

6.4796
7.1657
0.2976
0.4131
6.3467
6.0246

26.7273 J1 = 5.5455,
(72 = 2.4298.

2.2.8

This is the formula to use for a relative frequency distribution of observed data.
Now, a probability, P(X), is just a theoretical relative frequency (as opposed
to an "observed" relative frequency). Interpreting f jN as a theoretical relative
frequency, we get

the formula for the variance of a random variable.

(a) For both of the following data sets, there are only two distinct data values,
1 and 10. And in both cases, N = 6 and the range is nine. So they have the
same size, same values, and same range. But they have very different means:

x f Xf X f Xf

1 5 5 1 1 1
10 1 10 10 5 50

-- - --
6 15 J1 = 2.5 6 51 J1 = 8.5
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So the range has nothing to do with the mean. Note that you MUST use the
symbol J.L here because the problem used the symbol N, which implies this is
population data.

(b) For the two data sets we've given above-because they're symmetric to each
other-the line graphs are mirror images of one another. From that, you guess
that the two variances are the same. The variance ignores direction of spread
and addresses only the distance (squared) of data values from the mean. Your
two data sets may not have been symmetric like this, and so it might not have
been so easy to guess the relative sizes of the variances.

5

1

1 10

5

1

1 10

What's the difference between the line graph for observed data as we've given
it here and the line graph for a random variable? The difference is only in what's
recorded on the vertical axis. Here we've recorded the observed frequency of
occurrence. For a random variable, the vertical axis records the probabilities,
the theoretical relative frequency with which the values OUGHT (in theory) to
be observed. Note the contrast between "observed" and "theoretical."

Now let's calculate the variances for our data sets above. Note, just as we
guessed, they're the same:

x f Xf (X - J.L)2 f X f Xf (X - J.L)2 f

1 5 5 11.25 1 1 1 56.25
10 1 10 56.25 10 5 50 11.25

- -- - --
6 15 67.50 6 51 67.50

J.L = 2.5, J.L = 8.5,
(72 = 11.25. (72 = 11.25.
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2.2.9 X f Xf (X - J1ff

1.8 3 5.4 1.6521 J1 = 2.5421,
2.4 5 12.0 0.1010 (72 = 0.1772,
2.6 6 15.6 0.0201 (7 = 0.4209,
2.8 2 5.6 0.1330 mode = 2.6 ,
3.1 1 3.1 0.3113 median = 2.6,
3.3 2 6.6 1.1488 range = 1.5.

- --

19 48.3 3.3663

2.2.10 (a) ... spread about the mean. That's what the standard deviation measures.
Let the frequencies be 11, 1, 8, 2. Note what we've done. We have eight fewer
observations of the value X = 4, which is located right at the mean (X =
4.0455), and we spread those eight observations AWAY from the mean. That
makes the standard deviation larger. Furthermore, we did it SYMMETRICALLY

about the mean so as not to change the mean. Verify that this works.

(b) ... have one very large value. By putting a lot of data at X = 22, the
median becomes 22. Then put in one very large value to pull the mean up.
Verify that the following choices work:

2.3.1 (a) These are classes of test scores. For example, the second class is the class
of all those scores which fall between 20 and 39 inclusive. There are a lot of
practical considerations in grouping the data into classes. These problems are
not resolved by abstract rules, they're resolved by common sense. Usually several
attempts are necessary before you find a good solution. If there are too many
classes, for example, you defeat the purpose of grouping the data. A grouped
frequency distribution with 40 or 50 classes can't be readily understood. It's
just as clumsy as the ungrouped distribution.

On the other hand, if there are too few classes, you lose too much information.
The purpose of grouping the data is to wipe out irrelevant and confusing detail,
what's usually called "noise." But an appropriate balance is required. To take
an extreme example, suppose you have only ONE class as in the table below.
This is too few classes. Now, everything about the test scores is lost except the
fact that there were 1000 students:

(X - J1)2 f

o
Xf

50000
Class I f IXI-

0-100 1000 50
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(b) In the second class, there were 202 test scores, 202 students got scores
between 20 and 39 inclusive. So a class "occurs" by having a data value fall
within that class. Or we could say the class is "observed" 202 times.

(c) The symbol X refers to the class mark, the midpoint of the class. It 's the
average of the upper and lower class limits. For the second class, the class mark
is (20 + 39)/2 = 29.5. The class mark does not represent one of the actual,
observed data values. No student made a test score of 29.5. The class mark
is a substitute-an approximation-for the actual data values. An important
criterion for choosing the grouping of the data is that the class mark should
be a reasonable approximation to the actual data values within that class. If,
for example, all the grades in one class are above the class mark, you should
try another grouping to avoid this problem. Note that the class mark probably
won 't be a reasonable approximation to the data values in a class containing
only two or three values. That gives a clue to the inappropriateness of that
grouping. In other words, the classes should not be "spare," containing too
few data observations. The very fact that we're given this grouped frequency
distribution implies that the average of the 202 grades in the second class is
about 29.5. If we use the value 29.5 in place of each of those 202 scores, any
calculations we make will be good approximations on average.

(d) The product Xf is NOT the number of points earned by the students who
got a score of X (as it would be for ungrouped data). For the second class, X is
29.5, but no student made a score of 29.5. There are 202 scores in that class. If
each of those scores is approximated by the class mark, then

X f is an approximation to the number of points earned by the 202 students
in that class.

In other words, these 202 students earned about 5959 points altogether on the
test. This assumes, of course, that the grouping is reasonable for that class [see
part (c)].

(e) Because f is the number of scores within a class, 'Ef is just the total number
of data points. Here 'Ef = 1000, the number of students taking the test. Note
that this is NOT an approximation.

(f) 'EX f is an approximation to the total number of points earned on the test
by all one thousand students.

(g) Because 'Ef is not an approximation, N is the exact number of data ob­
servations. Here, N = 1000. And from part (f), we see that (l/N)'EXf is an
approximation to the mean of all the test scores. Here it's 46.8864. In the table,
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to compute the last column, we've used this value for fL, even though it's only
an approximation. So the heading of the last column has two approximations
in it: X to approximate the various test scores and fL to approximate the true
mean.

(h) You cannot calculate the variance, median, or mode because you do not
know the actual data values. However, the variance can be approximated. With
X approximating the various test scores, clearly we can estimate the variance
by the sum of the last column divided by the sum of the second column, giving
the approximation (72 ~ 508.5129.

Because you don't see the actual test scores, there's no way to even approxi­
mate the mode. It's usual to identify the "modal class," the class with the greatest
number of observations. Here it's the third class. But that doesn't tell you the
true mode. The true mode could even be in a class other than the modal class.
Furthermore, the actual data could be bimodal or trimodal even though there's
only one modal class. In other words, for grouped data we don't attempt to
approximate the actual mode; we cite the modal class instead.

The median can be approximated by identifying the class containing the
median and then assuming all the values of that class evenly spread across that
class. But the computation is somewhat awkward-we omit it.

If all classes are the same width, either you'll have many classes with one or no
data or you will have too few classes, losing too much information. For example,
if every class is 15 units wide, then the last class will become ten classes, ten
classes for only five salaries. If you make the classes, say, 100 units wide, then
virtually all the data falls into one class.

(a) Twelve of the temperature readings fell between 15° C and 30°C. Exactly
what those readings were, we cannot know. We have followed the usual con­
vention for interpreting the endpoints; the class includes the left endpoint and
excludes the right endpoint.

(b) Temperature readings are usually considered to be continuous. That means
a reading of 29.5° C should be possible, or 29.87, and so on. To allow for
such fractional readings, we follow the convention described in part (a). If your
readings did not include fractional degrees, then the data would have been given
without overlapping endpoints.

(c) !
E!

EX!
(liE !HEX f)

the number of temperature readings in the given class,
the total number of temperature readings altogether,
an ESTIMATE of the sum of all the temperature readings,
an ESTIMATE of the mean of all the temperature readings.
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Note that any symbol involving X is only an estimate because X itself is just an
estimate for the actual readings which are unknown.

(d) temperature
(centigrade) f X Xf (X - X)2f

0-15 6 7.5 45 1990.5612
15-30 12 22.5 270 123.9796
30-45 8 37.5 300 1111.2245
45-60 2 52.5 105 1434.9489

- --
28 720 4660.7143 X ~ 25.7143,

fT ~ 12.9017.

Be sure you do NOT put in irrelevant column sums. In particular, EX is not
meaningful. Also note that we've used the notation for sample data. We're
not told if the data was sample or population data, so we must choose one
interpretation. But be consistent, don't mix the notation for populations and
samples in the same presentation. The mode (or modes) cannot be estimated
from the grouped distribution. But we can identify the "modal class;" it's the
second class. We did not ask you to estimate the median because we have not
explained the details of that approximation, but it's approximated by 24.375
(in case you want to tryon your own!).
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It should divide evenly, of course. So the new histogram looks exactly like the
old one, you just add a line to divide the first rectangle equally into two (so the
total area remains the same):

o 20 40 60 80 100

2.3.5 Inspectors were passing rods which were just under the lower limit of 1 ern
thinking such measurements might be wrong and in any case would not be
significant. Thus, in the histogram, we find no observed diameters of 0.999 ern
and too many of 1.0000 ern. The inspectors thought to accommodate an "in­
significant" error. They were, as Deming says, "unaware of the trouble that an
undersized diameter would cause later on." When this fault in the inspection
procedure was corrected, it was discovered that an unacceptably large propor­
tion of the rods were undersized because of a faulty machine setting. That wrong
machine setting was easily corrected once recognized. Note how the histogram
led to the discovery of an important problem which otherwise would have gone
undetected.
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Chapter 3
If the square of a number is zero, the number itself is zero. So for each X,
X - J.L = 0, which means X = J.L. But then all the values of X are the same.
This is the class of constant random variables, random variables for which every
outcome of the random experiment is assigned the same number.

Don't forget, it's the outcomes of the underlying experiment which must be
"not predictable." Just because the values can be predicted in advance-as they
can in this case-doesn't mean it isn't a random variable. The "randomness"
of a random variable is in the outcomes of the experiment, not in the values of
the variable.

(a)
(,2 = ~(X - J.L)2p(X) = ~ [x2 - 2J.LX + J.L2] P(X)

= ~X2p(X) - 2J.L~XP(X) + J.L2~p(X)

= ~X2p(X) - 2J.L(J.L) + J.L2(1)

= ~X2p(X) - 2J.L2 + J.L2

= ~X2p(X) - J.L2.

(b) X P(X) XP(X) X 2P(X)

1 0.25 0.25 0.25
2 0.25 0.50 1.00
3 0.25 0.75 2.25
4 0.25 1.00 4.00

--
1.00 2.50 7.50 J.L = 2.5,

(12 = 1.25.
Here (12 = 7.5 - 2.52 = 1.25.

(c) The computing formula often involves less serious round-off error. The
conceptual formula contains J.L, often rounded. But calculation with a rounded
number compounds the round-off error.

The conceptual formula explains what the variance measures. Becausethe for­
mula explains the concept, it's called "conceptual." It explains that we're mea­
suring "spread about the mean" (Problem 1.2.10). The computing formula, by
contrast, doesn't even mention the mean. You would never know from looking
at that mysterious formula what it measures. It looks like some blind calcula­
tion. It does have its conceptual uses, however. You'll see an example of this in
part (e) of this problem and other instances later and in more advanced courses.
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(d)

17
2 = (l/N)~(X - Jiif

= (1/N)~X2 f - 2J.l~Xf + J.l2~f

= (1/N)~X2 f - 2NJ.l2 + NJ.l2, since ~Xf = NJ.l, ~f = N

= (1/N)~X2f - NJ.l2.

Now multiply the numerator and denominator by N and you get the required
formula because N 2J.l2 = (NJ.l)2 = (~Xf)2. For sample data, just change the
notation.

Youcan gain practice with these computing formulas by redoing the problems
of Chapters 1 and 2 where before you used the conceptual formula . Your answer
will sometimes differ slightly due to round-off error and, if different, is more
accurate.

(e) E(X2 ) = J.l2 + (J'2. This is just the computing formula all over again.

(a) Let X be the number of dots on the top face of a die. It will be uniformly
distributed if the die is FAIR. Otherwise, of course, you'll not have all values
equally likely. The parameter is n = 6.

(b) Toss a fair coin. Let X be the number of heads (zero or one). Because the
coin is fair, the two values are equally likely. Parameter: n = 2.

(c) When you roll a pair of dice, the most obvious random variable is the total
number of dots on the two top faces. However, even if the dice are both fair,
the values are not equally likely. Suppose we have two fair dice, one red and
one blue. Then for example, P(X = 2) =1= P(X = 3). Here's how you show that:

1/36 = P(X = 2) = P(one dot on each die)

= P( one on red) x P( one on blue)

= (1/6) x (1/6)
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but,

1/18 = P(X = 3) = P( one dot on the red die and two dots

on the blue die or vice versa)

= P( one on red and two on blue)

+ P( two on red and one on blue)

= (1/6) x (1/6) + (1/6) x (1/6)

So the probabilities for X = 2 and X = 3 are NOT the same. Because the values
are not all equally likely, X is not uniformly distributed.

(d) There can be from 2-12 dots on the top faces of two dice. Because the
situation is completely symmetric, we can guess the mean to be seven. Before
making up the probability distribution, recall the possible outcomes of one roll.
If you follow the pattern of Chapter 1, you might describe the outcomes as "the
pair of dice lying on the table top in some position." In the interest of simplicity,
however, now that you understand the distinction between "outcomes" and
"values," we'll take a simpler less physical view of the outcomes. In fact, the
outcomes can be identified by a pair of integers from one to six:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6),

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6),

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6),

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6),

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6),

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

Because the dice are fair, we have 36 equally likely outcomes each with prob­
ability 1/36. It seems obvious on intuitive grounds that these outcomes are
equally likely, but if you had to verify that by a computation, could you do it?
Try. You'll find the answer in part (e).

Here's the probability distribution:



500

x
2
3
4
5
6
7
8
9

10
11
12

P(X)

1/36
2/36
3/36
4/36
5/36
6/36
5/36
4/36
3/36
2/36
1/36

1

XP(X)

2/36
6/36

12/36
20/36
30/36
42/36
40/36
36/36
30/36
22/36
12/36

252/36

4/36
18/36
48/36

100/36
180/36
294/36
320/36
324/36
300/36
242/36
144/36

1974/36

Answers-Level II

p,=7

(J = 2.4152

(e) Take the outcome (3, 5). This is described verbally as "three on the red die
and five on the blue." Because the rolls are independent and the dice are fair,
the probability is

P(outcome (3,5)) = P(three on red) x P(five on blue)

(1/6) x (1/6).

3.2.3

Because the dice are fair, the probability on each die separately is 1/6. We
get to use the rule P(A and B) = P(A)P(B) because in our case A and Bare
independent.

(f) To be uniformly distributed, the values of the random variable must be
equally likely. Here it's the outcomes that are equally likely, but some outcomes
yield the same value for the random variable. Some values are more likely than
others because those values arise from MORE different outcomes. The value two
arises from only one outcome, but the value seven arises from six different
outcomes. Because the values are not equally likely, this is not a uniformly
distributed random variable.

You cannot guess the standard deviation without some calculations. After all,
the standard deviation is a comparative measure of spread, but here there's
nothing to compare with.
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X P(X) XP(X) X 2P(X)

18.2 0.2 3.64 66.248
18.7 0.2 3.74 69.938
19.3 0.2 3.86 74.498
19.7 0.2 3.94 77.618
20.1 0.2 4.02 80.802

--
1.0 19.20 369.104 J-l = 19.2,

a = 0.6818.

3.2.4

3.2.5

(a) Take the example in Problem 3.2.2 [see level II part (c)]. When you roll a
pair of fair dice, there are 36 equally likely outcomes (because the dice are fair),
but the obvious random variable-the number of dots on the two uppermost
faces-is NOT uniformly distributed.

(b) The key to such an example is that several different outcomes may corre­
spond to the same value. Here, only one outcome gives the value two, but the
value three corresponds to two different outcomes . The value four corresponds
to three outcomes (what are they?). And so on.

w
17 17.3 17.6 17.9

3.2.6 You require the values, nothing more. If there're 22 of them, the probabilities
are all 1/22. If there are n values, then the probabilities are all lin. So, if you
know the values, you also know all the probabilities. That's the whole story!
Everything else is calculated from this information.

3.2.7
tix = EXP(X)

= E(X x (lin))

= (lln)EX

= the average of the values of X.

since n is constant
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(a) There are n! ways to arrange n objects. Here's how to see that: There are
n ways to choose an object for the first position. For the second position, there
are n - 1 objects left to choose from and so n - 1 ways to fill that position. And
so on. From the fundamental principle of counting, we get the number of ways
to complete the arrangement:

n(n - l)(n - 2) ··· (3)(2)(1) = n!.

Note why it ends with 1. After filling the first n -1 positions, you have used up
n - 1 objects. So there's exactly one way to fill the last position.

(b) There are n(n - 1)(n - 2) .. . (n - x +1) ways to choose x objects and arrange
them. Note that you stop after choosing the xth object. When you get ready to
choose that object, there are n - (x - 1) = n - x + 1 objects left to choose from.
Because we have two expressions for the number of ways to choose x objects
from n objects and arrange them, those two expressions must be equal:

n(n - l)(n - 2)·· · (n - x + 1) = x!C(n, x).

So
n(n - l)(n - 2) · · . (n - x + 1)

C(n, x) = I .
x .

To obtain the required formula, use this more compact way to write the numer­
ator:

n(n - l)(n - 2) · · · (n - x + 1) = n!/(n - x )!.

(c) C(7, 1) = 7, C(7,7) = 1 and

C(120, 118) = 120 ;1~~: ;!118! = 60 x 119 = 7140.

(d) Here are the answers. How do you get them?

C(n, 0) = 1, C(n, 1) = n, C(n, n) = 1, C(n, n - 1) = n.

(e) 7!

(f) ....ill- - 58 x 57x56 - 29 x 19 x 563! 55! - 3x2 - •

(g) 6! = 720.

(h) 11! = 39,916,800. Factorials get large very fast. For most calculators the
factorial key will give an error message at 70! and beyond.
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(i) There are C(14, 6) ways to pick 6 from 14 seats. Then there are 6! ways to
seat 6 students in those 6 seats. The answer:

14! 6' = 14 x 13 x 12 x 11 x 10 x 9 x 8! 6' cancel 6! and 8!
6! 8! x . 6! 8! x .

= 14 x 13 x 12 x 11 x 10 x 9

= 2,162,160.

Our two-step procedure is one way to think about this problem. Or you could
just think in terms of the 6 seats with 14 ways to fill the first, 13 ways to fill
the second, and so on. Both are correct and both are instructive. Make sure you
understand BOTH analyses!

(j) C(93, 3) = 32 x 95 x 47 after canceling 6! and 93! giving 142,880 ways.

(a) The hypergeometric random variable models sampling without replacement
from a dichotomous population. For the model to be valid, there must be some
one characteristic of interest. In the example, "lifetime" is the issue but that
doesn't divide the population of 50 components into two categories.

Suppose we're interested in a quality control criterion which specifies that
each component should have a life of at least a 1000 hours. Then we're no
longer interested in ALL the various possible lifetimes. We're only interested
in "less than 1000 hours" versus "at least 1000 hours." Either of these might
be considered the characteristic of interest, depending on the exact question. If
we're trying to identify those components which do not meet the quality control
criterion, "less than 1000 hours" becomes the characteristic of interest.

(b) OK, go ahead! Test the entire 50 components by burning them until they
all burn out. Then report to the boss that none of the components are any good
because they've ALL been destroyed!

This is an example of "destructive" testing. Any time you have a testing pro­
cedure which actually destroys the item being tested, obviously you don't want
to test the entire population. We said sampling is used when the entire popula­
tion is not accessible to you. Often that's because the population is too large.
But there are other reasons why the entire population may not be accessible.
Destructive testing illustrates this.

(a) For any sampling experiment, an outcome is a sample. Here it 's a simple
random sample chosen without replacement. The "doing" is the random sam­
pling procedure. Such a procedure is designed to be repeatable and the random
choice mechanism (like tossing fair coins or using a random number generator)
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guarantees that the outcomes cannot be predicted in advance. In other words,
the procedure is a random experiment by definition.

(b) The smallest possible value is zero; maybe none of the elements in the sample
have the characteristic of interest. The largest possible value is n (the sample
size); maybe all the members of the sample have the characteristic of interest.
Any integer in between is also possible. So the possible values are

0,1,2,3, 4, ... ,n-1, n.

(a) Yes, every candidate is either a woman (the characteristic of interest) or not.

(b) If the mayor is choosing the committee at random, she's choosing a ran­
dom sample. So it's a sampling experiment. The sampling must, of course, be
without replacement. Otherwise, if the same person can be chosen twice, after
five selections we could end up with fewer than five members on the committee
(unless we introduce clones!). So we're thinking about "simple random sam­
pling withour replacement from a dichotomous population" as required by the
hypergeometric model.

(c) Here, the committee, the outcome of the mayor's selection process, is to
be regarded as a random sample. So a particular outcome in this instance is
one particular choice of five persons from the 40 candidates. The committee
actually chosen by the mayor is just one possible outcome. We're studying the
question of prejudice by thinking (rheoryl) about ALL POSSIBLE outcomes, by
thinking about all possible committees of five persons. This is necessarily the­
oretical-there are well over 600,000 such committees, it's impossible to deal
with ALL committees, except in thought (in theory). The theoretical model is the
hypergeometric random variable.

(d) This is the combinations of 40 things taken 5 at a time, C(40,5).

(e) To a particular choice of five candidates (an outcome), our random variable
assigns the "number of women chosen." Calling it X,

X = the number of women on the committee.

(f) Yes. Because X arises from simple random sampling without replacement
from a dichotomous population and because it counts the number in a sample
having the characteristic of interest, it satisfies all the required conditions for
the hypergeometric model.
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(a) If you sample from the books themselves, obviously you'll never get a lost
book! The point is to sample from the catalog listing. Thus, the population con­
sists of catalog entries (cards or entries in a computer file, etc.). Furthermore,
the population should be dichotomous; it should break down into exactly two
categories, those having the characteristic of interest and those not. The char­
acteristic of interest for a particular catalog listing is lists a lost book. Becareful
how you express yourself. The characteristic is not "lost book." That's a char­
acteristic of the books themselves, not of the catalog listings.

Note that multiple listings pose a problem. Anyone book may be listed
several times in a variety of ways: by author, title, subject, and so on. If there
are several authors, there will be several author listings. A careful design of our
sampling experiment will resolve this difficulty, but we're going to ignore it in
our discussion. Classroom examples are never completely realistic; after all, the
real world is much too complex!

(b) An outcome is a sample; it consists of 30 catalog listings, randomly chosen
without replacement. Therefore, we're talking about a sampling experiment. By
definition, it's a random experiment. The "doing" is simple random sampling
without replacement from the catalog listing.

(c) The integers 0-30. The smallest number of lost books possible is zero. The
largest is n = 30 (the sample size). Of course, it's ridiculous to imagine that ALL

the books in the sample would be lost, but logically it's possible.

(d) X = 2.

(e) The population is not small. It's not wrong to use the hypergeometric model
for large populations, but there's a BEITER way. See the next section.

It's a short list, there's only one characteristic: "all the values are equally likely."

(a) C(50, 3), the "combinations of 50 things taken three at a time":

~ = 50 x 49 x 48 = 50 49 8
3! 47! 6 x x .

Don't multiply this number out. Leave it factored like this so you can see what
will cancel when we put this denominator with the numerator.

(b) Step 1: There are 0(4,2) ways to select 2 from the 4 defective components.
Step 2: You've already selected X = 2 defective components. The rest of the
sample (one more component) comes from the 46 components which are NOT
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defective. There are 0(46,1) ways to select them. So the numerator is

4! 46!
C(4,2) x 0(46,1) = 2! 2! x 1! 45! = 6 x 46.

(c)
6 x 46

P(X = 2) = 50 x 49 x 8
3 x 23

25 x 49 x 4 = 0.0141.

(d)

3.3.8 (a)

x
o
1
2
3

P(X)

0.7745
0.2112
0.0141
0.0002

1

XP(X)

0.0000
0.2112
0.0282
0.0006

0.2400

0.0000
0.2112
0.0564
0.0018

0.2694 J.L = 0.2400,
(72 = 0.2118.

P(X = 0) = 0(15,0) x 0(25,5)
0(40,5)

and after some cancellation

5 x 23 x 11 x 7
= 2 x 39 x 38 x 37 = 0.0807.

(b) All you've shown is that the mayor's selection is unlikely to have been
made randomly. But everybody knows she didn't choose randomly! Maybe
she followed some perfectly legitimate nonrandom selection criterion that just
happened by accident to produce an all-male selection. An argument against the
mayor based on our analysis alone is incomplete. Our analysis is only the first
step, it justifies further investigation into the accusation against the mayor.

(c)

P(X = 1) = 5 x 25 x 23 x 11 = 0.2884.
39 x 38 x 37 x 2

which together with our answer from part (a) gives

P(X ~ 1) = 0.0807 + 0.2884 = 0.3691.

With a probability of more than 35% for such a result, one can hardly be
suspicious of the mayor. Her choice looks reasonable.
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This is much more conclusive than the argument in part (a). Now the accusa­
tion of bias against the mayor is demolished! She can unequivocally claim "no
prejudice" because the number of women selected is consistent with a random
selection. On the other hand, when the choice is NOT consistent with a random
selection, as happened in part (a), the argument is not over. In this case, we've
only established a reason to investigate further; we haven't proven bias. After
all, we know the mayor doesn't select the committee randomly. She uses some
systematic criteria, although GENDER shouldn't be among the criteria.

(a) The uppercase letter is the name of the random variable. It refers to the
random variable as a whole. The lowercase letter stands for one of the particular
values-an unknown or unspecified value.

(b) The denominator is the total number of ways to draw a sample of n from
this population of N members. Note that this does not depend on any value
of the random variable. So the formula does not contain the symbol x. The
formula is C(N, n).

(c) The numerator is the product of

the number of ways to choose x members of the sample from the R mem­
bers of the population which have the characteristic of interest: C(R, x )

and

the number of ways to choose n - x members of the sample (the rest of the
sample) from the N - R members of the population which do NOT have
the characteristic: C(N - R, n - x).

(d) Did you get this? Try again. We won't give the formula here. YOU try (don't
worry, we'll give it to you later).

(a) We're randomly drawing four without replacement-simple random sam­
pling without replacement-from a dichotomous population of ten objects, four
of which have the characteristic of interest.

(b) Because the sample size is four, you should guess the mean to be 4 x 0.4 =
1.6. After all, with forty percent of the population having the characteristic, it
would seem reasonable to guess that forty percent of the sample-on average
anyway-also ought to have the characteristic. And that's true. The variance,
on the other hand, is only a comparative measure of dispersion; its value does
not have any intrinsic intuitive meaning. So, we do not attempt to guess it.
There's nothing to compare it to.



508 Answers-Level"

(c) and (d) All the denominators are the same, the number of ways to choose
four of ten objects: 0(10,4), which is 210. Here's the probability distribution:

x P(X) XP(X) X 2P(X)

0 0.0714 0.0000 0.0000
1 0.3810 0.3810 0.3810
2 0.4286 0.8572 1.7144
3 0.1143 0.3429 1.0287
4 0.0048 0.0192 0.0768

1.0001 1.6003 3.2009 J-L = 1.6003,
a = 0.8000.

3.3.11 (a)
P(X ~ 1) = 1 - P(X = 0) = 1 - (780/1218)

= 1 - 0.6404 = 0.3596.

(b) The mean, J-LH = 0.4 and the variance, a2 = 0.3227. The finite population
correction factor is 0.9310. That's relatively close to one, reflecting the fact that
our sample is not particularly large compared with the population size. About
93% of the population is not in the sample.

(c) We'll leave P(X = 1) = 10% to you (sorry!). The mean of X is 0.1, the
variance 0.09. Because, compared with parts (a) and (b), there are now fewer
burnt out bulbs, we should not be surprised that the mean number of such bulbs
in the sample is lower. Also, there should be less variability with only one bad
bulb. This is reflected in the smaller variance. The finite population correction
factor is the same as in part (a) because it's not affected by how many in the
population have the characteristic of interest. The finite population correction
factor is determined entirely by Nand n with no reference to R.

(d) How could all three of the lightbulbs you selected be burnt out when there
were only two burnt out lightbulbs in the first place?! Impossible! From the
formulas, the numerator is the number C(2, 3). By definition that's the number
of ways to choose three from a collection of two. Clearly this number is zero.

(e) Solve (30 - n)/(30 - 1) = 0.9. So, 30 - n = 0.9 x 29. Now, what is it for
80%?

3.3.12 (a) X is the number of hearts in a six-card hand. The possible values of X are 0,
1,2,3,4,5,6. The underlying random experiment is "simple random sampling
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without replacement." In this case, "shuffle the deck well and take the top six
cards." An outcome for any sampling experiment is "one sample"-in this case,
a six-card hand. The "doing" is clearly repeatable and if we shuffle the deck
thoroughly, the outcomes cannot be predicted in advance.

X is hypergeometric because it's a COUNT of how many in the sample have the
characteristic. It counts how many cards in the hand are hearts. The expected
value of X is np = 6 x 1/4 = 1.5. One could guess this by thinking along
these lines: The "typical" hand should look more or less like the entire deck, so
about one-fourth of the hand should be hearts. Of course, this reasoning is only
one step away from using the formula which says you should expect the same
proportion of hearts in the sample as in the entire population. ON AVERAGE,

that is.

(b) X is the number of black cards in a six-card hand. The possible values, the
experiment, and the outcomes are all exactly the same as in part (a). And just as
in part (a), X is hypergeometric because it's a count of how many in the sample
have the characteristic; it counts how many cards in the hand are black. The
expected value is np = 6 x 1/2 = 3. You should expect the same proportion
(one-half) of black cards in the "typical" hand as in the entire population. Here,
"typical hand" means the "on average" hand.

(c) Because you use the mean for predicting (that's why it's also called the
"expected value"), the "predictability" of the values of a random variable is
measured by the variance. We can think of the two variances (for "color" and
for "suit") without the finite population correction factor (46/51) because it's
the same for both random variables and so will not affect the relative sizesof the
two variances. So using npq as if it were the variance, we get (72 = 9/8 for the
number of hearts. For the number of black cards we get (72 = 12/8. Of course,
to get the true variance, you multiply by 46/51 each time. Thus "suit" is more
predictable than "color." The finite population correction factor is 0.9020, so
the actual variances are, respectively, 1.0147 and 1.3530.

(d) They should look something like this ...
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1o 2 3
T

4 5 6 o 1 2 3 4 5 6

/1- = 1.5
(J" = 1.0073

# hearts in a six card hand

3.3.13

/1-=3
(J" = 1.1632

# black cards in a six card hand

The number of black cards, note, is completely symmetric about its mean,
reflecting the fact that there's a SO/50 chance of drawing such a card. Note
also that five or six hearts is virtually impossible. Those values are more than
three standard deviations away from the mean. By Chebyshev's Theorem, for
any random variable there's less than one chance in nine (1/32 ) of values more
than three standard deviations from the mean. Six is actually more than FOUR

standard deviations from the mean. By Chebyshev's Theorem, that occurs with
less than one chance in 16 (1/42 ). In fact, if you actually compute the probability
of six hearts, it's less than one chance in 10,000. Chebyshev's Theorem is very
conservative; it covers too much ground to yield very precise information (it's
a theorem valid for all random variables) .

(e) The finite population correction factor for both parts (a) and (b) is approx­
imately the proportion of cards remaining in the deck after the six-card hand
has been dealt, 46/52. The exact value is 46/51. We find 51 in the denominator
rather than the intuitively expected 52 for technical reasons only. That should
not affect your underctanding of what it means.

Up to the point where the sample becomes half the population, n, the sample
size, predominates, making the variance larger as n gets larger. Once the sample
is so large as to encompass MORE than half the population, the variance begins
to get smaller. At that point the "space" in the sample (large n) which allows
for variability is overwhelmed as a factor in the variance by the amount of in­
formation contained in the sample, the principle being: more information, more
certainty; more certainty, LESS variability. At the extreme when n = N, there's
no variability at all. After all, there's only ONE "sample of size N" (namely, the
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whole population). At the other extreme, when n = 0, you have no sample! So
again there's no variability and the variance is zero.

(a) The "doing" for the random experiment is "simple random sampling with
replacement" from a dichotomous population.

(b) We think of a sample as just a string of yes's and no's. Because the sample
contains n members, we represent it as, for example,

yes, yes, no, yes, . . . , no, no (n altogether),

(c) The smallest possible value is zero. What's the largest possible number in a
sample which could have the characteristic? ALL!! Because the sample size is n,
the possible values are

0, 1, 2, 3, .. . ,n - 1, n.

(a) Because we select with replacement, individual selections are independent.
What happens on the second draw will not be affected by the result of the first
draw. Because our events are independent, we can use the simple product rule

P(A and B) = P(A) x P(B)

P(yes and yes) = P(yes) x P(yes)

=pxp

=p2,

A, B independent

The probability of a "yes" is p because the probability of getting the char­
acteristic on any draw is just the proportion of the population having that
characteristic. So,

P(yes, yes, yes, no, no, no, no, no, no, no) = pppqqqqqqq

= p3q7.

(b) For X = 3, the three yes's could appear anywhere; they need not have been
the first three .

(c) 0(10,3) = 120.
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(d) List systematically all the outcomes of the event X = 3. The probability of
this event requires the "or" rule for mutually exclusive events.

OR

OR

yes, yes, yes, no, no, no, no, no, no, no,

yes, yes, no, yes, no, no, no, no, no, no,

yes, yes, no, no, yes, no,

and so on.

call it Al

call it A2

call it A3

3.4.3

3.4.4

3.4.5

There are 120 of these events: AI, A2, ... , Ano. And each of them has probabil­
ity p3q7. Because the events Ak are all mutually exclusive, we get the probability
by adding p3q7 to itself 120 times. Therefore, P(X = 3) = 120p3q7.

(e) 120 x 0.743 X 0.267 = 0.0039.

(f) The probability of part (e) requires knowing that n = 10 and p = 0.74,
nothing more.

(a) First we choose x of the n blanks to have yes's. There are C(n, x) ways to
do this. Then the probability for anyone of these choices is just the product of
x p's and n - x q's because the selections are independent. So the probability
for one such choice is pXqn-x . Now anyone such arrangement of yes's and no's
is mutually exclusive with any other. So we must add pxqn-x to itself C(n, x)
times to get the probability P(X = x) = C(n,x)pxqn-x.

(b) The only information required is the values of nand p, That's one reason this
model is more useful than the hypergeometric model. To work out probabilities
for sampling without replacement (the hypergeometric model), we needed much
more specific information. It was not enough to know p; we needed the two
pieces of p, namely Rand N (p = R/N, recall).

The condition means that at most 10% of the population is contained in the
sample. The proportion of the population contained in the sample is given by
n/N and the condition says it's at most 1/10.

(a) Our sampling process will be much easier to implement if we don't bother
trying to eliminate repetitions. This would seem reasonable given the large num­
ber of catalog listings because there's a very small chance the same listing will
be chosen twice. If we proceed in that manner, the model is sampling WITH

replacement.
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Or, maybe we do, in fact, sample without replacement. Still, the sampling
WITH replacement model is a good approximation because it will be virtually
identical to the WITHOUT replacement model (the hypergeometric model). For
such a large population-all of several hundred thousand catalog listings-the
probability of drawing the same listing twice in 200 draws is virtually zero.

(b) The finite population correction factor would be (approximately) the pro­
portion of library listings not in our sample of 200. Becausethere are presumably
thousands of books and we have only 200 listings in our sample, this proportion
is essentially one. If the library has 200,000 volumes listed in the catalog, the
finite population correction factor is .

200,000 - 200 = 0 999
200,000 -1 .

which means 99.9% of the population is not in the sample.

(c) p = 0.01 and q = 0.99 so

P(X ~ 3) = 1 - P(X ~ 2)

= 1 - [q200 + 200pq199 + 100 x 199p2q198]

= 1 - q198 [q2 + 200pq + 19, 900p2]

= 1- 0.6767

= 0.3233.

(d) The expected value of this random variable is np = 200 x 0.01. Thus we
should expect about two of our 200 listed books to be lost.

(e) Here n = 30 and p = 0.01:

P(X = 2) = C(30,2)p2q28 = 15 x 29p2q28 = 0.0328

and
P(X > 2) = 1 - P(X ~ 2)

= 1 - q28 [q2 + 30pq + (15 X 29)p2]

= 1- 0.9967

= 0.0033 .
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(f) The expected value here is np = 30 x 0.01 = 0.3. That is, we should expect
about one percent of the sample (three-tenths of a book) to be lost because, in
fact, one percent of all the listings are of lost books. The "three-tenths" answer
means that theoretically (on average), out of ten samples of 30 catalog listings
we should find three listings for books that are lost. Note the phrase "should
find," not "will find." The word "should" refects the theoretical nature of the
average.

(g) Here n = 30 and p = 0.01.

(a) Toss a coin, S = heads, F = tails, p = q = 0.5. Or another example: roll
a die, S = six dots on top face, F = not six dots, p = 1/6, q = 5/6. Or
draw one card from a well-shuffled deck of 52, S = spades, F = non-spade,
p = 0.25,q = 0.75. You could give numerous other examples.

(b) You did this problem long ago! See Problem 1.2.7(d). You can also obtain
the variance using the computing formula. Try it. You'll need to use: p _ p2 =
p(l - p) = pq.

Here n = 1, and there's no distinction between "with" and "without" replace­
ment (there's no "second draw " to require replacement). So technically, we have
THREE models. But all three models are the same. If you look carefully at the
definitions, you'll see that for n = 1 you're saying the same thing in each of the
three cases. So the formulas had better give the same result! For the sampling
models, the mean is np and, with n = 1, this is just p as it should be. The variance
for the hypergeometric random variable is npq(N - n)/(N - 1) = 1pq1 = pq.
For sampling with replacement, the variance is npq = 1pq = pq.

(a) The "doing" is to test persons for blood type until you find one who has
the type you seek.

(b) An outcome of this process would look like a string of no's followed by one
yes:

no, no, no, no, no, no, no, no, no, no, no, no, yes.

(c) Here X = 13, the number of persons tested before finding one with the
blood type you seek.

(d) Another string of no's followed by one yes:

no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, yes.
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Here you had to test 16 persons before finding the desired blood type. So,
X= 16.

(e) Ifyou could predict in advance whether a given person had the desired blood
type, there would be no need for testing in the first place.

(a) The "doing" is to test ONE person for the desired blood type.

(b) The two possible outcomes can be recorded as either "yes" or "no," depend­
ing upon whether the person tested does or does not have the desired blood type.

(c) This is part (e) of the previous problem.

(d) The parameter p is the probability of success on the Bernoulli trial. Here it's
the probability you find the desired blood type. So, p is the proportion of the
population having that blood type. This assumes, of course, that you choose
your test subjects randomly from the whole population; otherwise p may very
well have some other value.

Blood type is partly a matter of heredity. But by assuming you choose your test
subjects randomly from a large population, it's not likely you'll get two persons
who are blood relatives. So it's not likely you'll have any significant dependency
to worry about.

(a) The first success could occur on the first trial. It could hardly occur sooner.
In that case, X = 1. So one is the smallest possible value. On the other hand,
THERE IS NO MAXIMUM VALUE. If you can imagine that it might require seven
million trials to obtain the first success, why not seven million and one? So the
possible values are

1, 2, 3, 4, 5, 6, 7, ... ad infinitum.

(b) There's only one parameter, p. It's the parameter for the associated Bernoulli
trial: p = the probability for success on one repetition of the trial. So, once you
specify a value for p, you have picked out a particular geometric random variable
from the class.
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(a) It's just P(no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, yes)

= P(no) x P(no) x P(no) x . . . x P(no) x P(yes) (by independence)

= (1 - p)16 x P

= q16 X P

= 0.92 16 x 0.08 = 0.0211.

(b) It's just 0.08 because eight percent of the population have that blood type.

(c) Because eight percent of the population have the blood type you seek, even­
tually you will find one of them .

(d) 0.922 x 0.08 = 0.0677.

(e) 0.926 x 0.08 = 0.0485.

(f) This is the same as part (c).

The model assumes the repetitions of the Bernoulli trial are independent. By
assuming there are no persons in the population who are blood relatives, you
probably have assured that blood type is independent from one member of this
population to another. Of course, it's a very restrictive assumption. In a realistic
situation with a very large population from which you choose randomly, you
may be able to assume the independence assumption to be approximately valid
if blood relatives are fairly rare in the population. Or possibly you dismiss from
your study anyone who turns out to be a blood relative of someone already
tested.

There are an infinite number of possible values for X . I don't care how much
time you have, you won't have enough time to list them all!

(a) You test people randomly, but the result is not a random sample as we have
defined it. Our definition requires that you choose a FIXED number of population
members for your sample, but here you do not test a fixed number of persons.
This is a technicality, of course, but it's useful to think about if only to get clear
what we're talking about.

(b) No.

(a) J-l = l/p = 1/0.08 = 12.5.
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(b) P(X = 15) = q14p = 0.92 14 X 0.08 = 0.0249.

(c) P(X::; 15) = 1 - q15 = 0.7137.

(d) P(X 2 16) = 1 - 0.7137 = 0.2863.

(e)

P(X = 1) = probability that one person from this population has the
desired blood type

=8%

(f) Not possible; see Problem 3.6.5(c).

(g) P(X 2 11) = q10 = 0.4344.

(h) P(X 2 3) = q2 = 0.8464.

(i) P(X = 7) = q6p = 0.0485.

(by the problem's assumption).

(j) P(X 2 0) = P(X 2 1) = 100%. Because eight percent of the population
have the desired blood type, you're bound to find one eventually. Note that, in
fact, X cannot be zero, so P(X = 0) is zero. X doesn't take values less than one,
so this is the certain event (probability 100%).

(k) P(X ::; 22) = 1 - q22 = 0.8403.

3.6.10 (a)

(52 = q/p2 = 0.92/0.0064 = 143.75, so 3(5 = 35.9687.

The mean of X is l/p = 12.5 and so there are no values of X more than three
standard deviations below the mean. Thus we need only compute the probability
that X is more than three standard deviations above the mean:

P(X 2 J.L + 3(5) = P(X 2 49) = q48 = 0.0183.

Note that we make use of the following relation:

P(X 2 x) = 1- P(X::; x -1) = 1- [1- qX-1] = qX-l.

(b) We know the specific distribution of X . It 's a geometrically distributed
random variable with parameter p = 0.08 . Chebyshev's Theorem makes no
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assumption whatsoever about the distribution of the random variable. Cheby­
shev's Theorem is very general, it's valid for any random variable whatsoever
and so it cannot yield very precise information.

3.6.11 (a)

(b)

Class

1-10
11-20
21-30
31-40
41-50

P(XE class)

0.5656
0.2457
0.1067
0.0463
0.0201

0.9844

50% -

not 1.0000 because of rounding
and because X ~ 51 is omitted.

I
I

1 11 21 31 41 51

3.6.12

In fact, this graph is typical of what happens with the geometric distribution.
It's easy to show that X = 1 is the most likely value, X = 2 is the next most
likely value, and so on. In other words, the probabilities are strictly decreasing
as X increases. Here's how you show that: Observe that if x < y, then qX > qY
because q < 1. Thus,

pqX > pqY from which we obtain P(X = x ) > P(X = y).

(a) For any geometric random variable, X = 1 is the most likely value, but the
mean is lip which is always larger than one. In our blood type example, the
mean is 12.5.

The mean is the "expected" value in the sense of "middle," not in the sense
of "most likely." It's characterized by the fact that the average deviation from
the mean is zero. That is, if N is a number such that ~(X - N)P(X) = 0, then
N = /1. Would you like to prove that? It's not TOO hard. Watch:

o= ~(X - N)P(X) = ~XP(X) - N~P(X) = /1 - N, so N = /1.
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This algebraic characterization of the mean has a physical interpretation. If you
think of the distinct values of X along a number line as if they were physical
points of varying masses and if the probabilities are proportional to the masses,
then the mean is the point on the line at which this system of masses would
BALANCE. For engineers, this is the "center of mass" interpretation of the mean.

(b) P(X < /1) = P(X < 12.5) = P(X ~ 12) = 1 - q12 = 0.6323.

(c) The mean is a "middle" value, but not in the sense of splitting the distribution
50/50; that's the median. The mean is the "middle" of the distribution in the
sense that it 's the one and only number for which the deviations all cancel out
on average.

(a) You would predict the number of persons you must test by the expected
number, the mean of the random variable. So the "predictability" is measured
by how far away from that mean you are on average. We measure that with the
vanance.

(b) Ifp is 12%, then (72 = 0.88/0.122 = 61, compared with a variance of about
144 when p is eight percent. Because 61 is much smaller than 144, we conclude
that the new situation is much more predictable than the old one.

It's just the geometric series

P(X ~ x) = ~pqk-l, k = 1,2, . . . , x.

The "geometric series," you will recall, is the sum of powers of some number
(here q) with some coefficient (here p ). The cumulative probability formula,
P(X ~ x) = 1 - q", is obtained from the formula for the sum of a geometric
series. This analysis also explains the name of the model.

3.6.15 (a)

P(X = x + 1) = pqx = qpqx-l

= qP(X = x ) since P(X = x) = pqx-l
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(b) X P(X)

1 0.0800
2 0.0736
3 0.0677
4 0.0623
5 0.0573
6 0.0527
7 0.0485
8 0.0446
9 0.0411

10 0.0378

0.5656

(c) In Problem 3.6.11(a), you calculted P(X ::; 10) using the cumulative prob­
ability distribution function. Note that you get the same answer, of course .

(d) If x> 10, P(X = x ) < P(X = 10) = 0.0378, if p = 0.08.

3.6.16 Note that each entry of the table below is obtained from the preceding one if
you just multiply by q. This follows easily from the recursion formula .

Frequency of
capture o 1 2 3 4 5 6 7

Expected #
of rabbits 59.7 33.3 18.6 10.4 5.8 3.2 1.8 1

3.7.1

Most of these theoretically expected numbers are relatively close to the observed
numbers. So the model might seem reasonable. Later (Problem 6.2.33), we'll
have a more precise way to check the "goodness of fit" of this geometric model
to Edwards and Eberhardt's data.

(a) ... and then repeat it n -1 more times for a total of n repetitions. Those n
repetitions constitute ONE execution of the binomial experiment. We can repeat
this by doing n more repetitions of the Bernoulli trial. This constitutes ONE

REPETITION of the binomial experiment. We have now repeated the Bernoulli
trial2n times, yielding two repetitions of the binomial experiment. This can go
on indefinitely and so the binomial experiment is, indeed, repeatable.

(b) 90 repetitions . One execution of the binomial experiment consists of 15
repetitions of the Bernoulli trial, repeat that and you've done the Bernoulli trial
30 times. After six repetitions of the binomial experiment, you will have done
the Bernoulli trial 90 times.
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(c) A string of n successes and failures.

(d) Because the Bernoulli trial is a random experiment, its outcomes (the S's and
F's) cannot be predicted in advance. So, of course, the outcome of the binomial
experiment (a string of S's and F's) cannot be predicted in advance.

(e) For coin tosses, n is the number of tosses and p is the probability of heads
on one toss (assuming "success" means "heads").

(f) From the n blanks, choose k to contain the S's. That can be done in C(n, k)
ways. With n = 20 and k = 8, this is 125,970.

(g)
FFFF

SFFF FSFF FFSF FFFS

SSFF SFSF SFFS FSSF FSFS FFSS

SSSF SSFS SFSS FSSS

SSSS

(a) We may not have repetitions of the SAME Bernoulli trial-these are not the
same coin, after all. If the probability for heads varies so that p is not constant,
this is not a binomial experiment. On the other hand, if all the 20 coins have
the SAME probability to come up heads-if the coins are "identical" in this
sense-then the model is valid and we do, indeed, have 20 repetitions of the
same Bernoulli trial. A Bernoulli trial is completely characterized by Sand p .

(b) We require a fixed probability for one of these electronic components to be
defective. Otherwise, we're not repeating the SAME Bernoulli trial each time. So
if that probability increases as the day goes on, the model is not valid.

(c) We don't know. Ask an engineer who knows how defective components
anse.

(a) The Bernoulli trial can be described as "observe one birth in this maternity
ward during the week in question." To "repeat" the trial might mean "observe
the next birth in this maternity ward during the week in question." Each birth
is either a stillbirth or not, so we have exactly two possible outcomes.

Can stillbirths be predicted in advance? Yes, sometimes. But maybe no such
information is available for your study. For example, you may be trying to model
what will happen in this maternity ward for various weeks over the coming year.
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Then there's no information about the mothers-to-be, let alone their babies. So
yes, in appropriate circumstances "observe one birth in this maternity ward"
can be taken as a Bernoulli trial.

(b) "Success" is "this birth was a stillbirth." Note that the word "success" is
purely an abstract convention, it identifies the outcome of interest. It certainly
does not mean you like the result!

(c) The Bernoulli trial is "observe one birth," you do it as many times as there
are births over the one week in question. If there will be 34 births that week,
then n = 34.

(d) There are two more considerations: Are you repeating the SAME Bernoulli
trial each time (is p constant?) and are the repetitions independent?

The probability of a stillbirth from one birth to the next must be constant.
Otherwise you're not repeating the same Bernoulli trial. If you consider these
mothers as typical of their community, the probability of a stillbirth should be
taken as the relative frequency of stillbirths in that community. Records may
suggest that two percent of births in that community have in the past been
stillbirths, so you may take that OBSERVED two percent figure as a THEORETI­

CAL number, giving you the theoretical relative frequency of stillbirths for the
community. A theoretical relative frequency is just a probability, so p = 0.02.

The independence assumption is satisfied if one mother's stillbirth makes it
neither more nor less likely for another mother to have a stillbirth. That seems
to be a reasonable assumption.

(a) The Bernoulli trial is: Make one drilling for oil. Success, S, means "we
struck oil!" This clearly is a random experiment: It's something we do which is
repeatable with clearly specified outcomes (two of them: strike oil or not) which
cannot be predicted in advance. We repeat the trial n = 112 times. We must
assume a fixed probability, p, for anyone drilling to strike oil; the same p for
all drillings so we have the same Bernoulli trial each time.

For the trials to be independent, some realistic physical assumptions would
be required. Your local geologist will no doubt have something interesting to
say about this (and you should consult her before accepting this model as valid),
but at the very least the drillings would have to be spaced apart. Obviously, if
we drill three feet away from a dry hole, we will just get another dry hole!

The parameters are n = 112 and p = "the probability for one drilling on
this tract of land to stike oil," a measure of how oil-rich the land is (note how
we identify the real-world meaning of the parameter, "a measure of ...."). The
value of p is not given here and might very well be the question we want to
answer with our model. Our specific 112 drillings will yield a report (outcome)
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such as

dry, dry, dry, dry, oil, dry, oil, dry, dry, dry, dry, dry, ... and so on.

(h) The Bernoulli trial: Throw the dart once. Clearly it's a random experiment
(verify). Suppose we're interested in whether we hit a hull's eye or not. Then
we have two possihle outcomes: S = hit the hull's eye, F = miss the bull's eye.
Clearly, these cannot he predicted in advance. We repeat this trial n = 25 times.
To say we're repeating the same Bernoulli trial, we would have to assume the
same player throws the dart each time, otherwise p would change depending on
who throws the dart. The repetitions will he independent if we can assume that
fatigue and psychological "holdover" (intimidation from missing the bull's eye
or elation from hitting it) are negligible.

The parameters are n = 25 and p = "the probability of hitting the bull's eye
on anyone throw," a measure of the thrower's skill. Again, the value of p is
not given and might actually be the question of interest. An outcome will be a
record of hits and misses (25 of them):

hit, miss, hit, miss, miss, miss,

(c) The Bernoulli trial: one telephone contact by the saleperson. Clearly, it's a
random experiment (verify) with two possible outcomes: S = make a sale, F =
suffer a refusal (of course, there are other possiblilities for identifying Sand F ,
depending on the marketing goals). We repeat this trial n = 15 times. If the
probability of making a sale is constant from call to call (it may NOT be), then
you're repeating the same Bernoulli trial. The repetitions will be independent if
fatigue and "psychological holdover" for the salesperson are negligible and if
the calls are placed to prospective customers who are unrelated.

The parameters are n = 15 and p = "the probability of making a sale on any
one call," a measure of the salesperson's effectiveness. Once again, p is not given
and might actually be the question of interest. An outcome will be a record of
sales and refusals (15 of them):

sale, sale, sale, refusal, sale, sale, sale, refusal, ....

(d) The Bernoulli trial: Put the question to one interviewee. Clearly, that's a
random experiment (verify) with two possible outcomes: S = get a truthful
answer, F = get a deceptive answer. We repeat this trial n = 1500 times. The
repetitions would seem to be independent if we can assume the persons being
interviewed are unrelated in any way and are interviewed separately.

The parameters are n = 15 and p = "the probability of a truthful answer."
However, the probability of a truthful answer would certainly change from
person to person. What do we even mean by "the probability of a truthful
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answer" from one person? Such probabilities do not make sense from a relative
frequency point of view. On the other hand, if you're studying a well- defined
population, you might think in terms of the whole population and take p to
be the proportion of the population which will answer the question truthfully.
Then p becomes the "theoretical relative frequency" of a truthful answer for that
population. With this interpretation, p remains the same from person to person
and we can say we're repeating the same Bernoulli trial. Then the binomial
model models "truth of reponse" for that population.

An outcome can be described as a record of yes's and no's .

x = 0, 1,2,3, . .. ,n. There could be no successes at all or every trial could
result in a success. Or anything in between.

(a) By just multiplying: pqpq3p4q2pq3pq3 = p8q12 = 9.0813 X 10-7•

(b) qp2q3p4q2pq3pq3 = p8q12.

(c) Because the events are mutually exclusive, we can just add:

P(A or B) = P(A) +P(B) = p8q12 + p8q12

= 2p8q12 .

(d) Exactly C(20, 8) = 125,970.

(e) P(X = 8) = 125,970p8q12 = 0.1144.

(f) If you round p8q12, you get ZERO for answer in part (e). That's a pretty
serious error when the true value is over 11%!

Caveat Calculatorr'

During the process of calculating, avoid intermediate
rounding whenever possible .

About six, 30% of 20.

(a) X = ~Xk. In the outcome shown below, there are eight successes and each
one corresponds to a one. The failures contribute nothing to the sum because

5 The latin word "calculator" means "one who calculates."
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they correspond to zeros. So, EXk = 8. But that's exactly the value of X (the
number of successes):

F, 5, 5, F, F, F, 5, 5, 5, 5, F, F, 5, F, F, F, 5, F, F, F

01100011110010001000

(b) The mean of each Xk is just p (Problem 3.5.1). So tix is the sum of padded
to itself n times: ux = np. In the example, tix = 6.

The variance of each Xk is pq (Problem 3.5.1), so (7i is just pq added to
itself n times: (7i = npq. The example: (7i = 4.2. This is valid because the
Xk'S are all independent, their random experiments are just the repetitions of
the Bernoulli trial and those repetitions are required to be independent.

(a) P(X = x ) = C(n,x}pxqn-x. Here's how:

(i) each outcome with x successes has probability pxqn- x because the
Bernoulli trials are independent,

(ii) there are C(n, x } such outcomes,

(iii) the event X = x is composed of the events in (i) connected by the word
"or";

(iv) because the events of (i) are mutually exclusive, by (iii) we just add
pxqn- x to itself C(n, x } times to obtain P(X = x }.

(b) We get the recursion formula if we multiply the following equation by P(X =
x }:

P(X = x + 1}

P(X = x)

n-x p
x+ 1 q

Now, this equation is obtained by appropriate cancellation in

P(X = x + 1}
P(X = x}

x!(n - x )(n - x - 1}! n! px+lqn-x-l
n! (x + 1}x!(n - x - 1)! pxqn-x

3.7.10 (a) The Xk'S are just an "ordered set of n values" of the Bernoulli random
variable generated by "n independent repetitions of the random experiment"
for that Bernoulli random variable. So, the n values constitute a simple random
sample from that Bernoulli distribution (see Chapter 2 for "sampling from a
probability distribution"). Because X = EXk is the sum of those values, X is
the sum of the numbers in our sample as we were required to show.

(b) We're trying to model sampling with replacement from a dichotomous pop­
ulation. For any sampling experiment an outcome is "one sample." Here, a
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sample can be thought of as a string of yes's and no's. Obtaining ONE of these
sample elements is the result of "drawing one at random from the population."
That's the Bernoulli trial. Because the population is dichotomous, we have two
possible outcomes: S = "yes, has the characteristic of interest," F = "no, does
not ." To get our sample of size n, we repeat that Bernoulli trial n times. The rep­
etitions are independent because we're sampling WITH replacement. So we have
"n independent repetitions of a Bernoulli trial." That's a binomial experiment.

Now for the random variable: The binomial random variable is the number
of successes (here, it's the number of yes's) which is exactly our X = "the
number of observations in the sample having the characeristic of interest." So
X is binomial as we were to show.

Finally the parameters nand p: The parameter n for the binomial model is
"the number of repetitions." Here, that's exactly the sample size. The parameter
p for the binomial model is "the probability of success." Here, it's the probability
for one member of the population to have the characteristic of interest. Or you
can interpret p as the proportion of the population having the characteristic of
interest.

(c) Because it's a special case of the binomial model. That's why all the formulas
for the binomial model are exactly the same as the formulas in Section 3.4.

(d) Ifwe're sampling from a large population, the "with/without replacement"
distinction doesn't make any significant difference in the models. If the popu­
lation is large, the chances of drawing the same member twice is so negligible
for sampling with replacement that it looks just like (approximately) sampling
without replacement. Of course, for SMALL populations, sampling without re­
placement requires the hypergeometric model and in that case, the binomial
model would give erroneous answers.

(a) The "predictability" of a player's game is measured by the variance for the
Bernoulli random variable. For Shu Wen, it's 0.1411 and for Juan, it's 0.1056
[see Problem 3.5.1 (b)]. Because Juan has the smaller variance, his game is
more predictable. Shu Wen is more likely to be successful on anyone attempt,
however, because her p is larger.

(b) She keeps repeating her Bernoulli trial until the first success. The number of
attempts required to make the first basket is a geometric random variable with
mean l/p = 5.8824. SO BEFORE making a successful attempt, she should expect
five unsuccessful attempts. Of course, you could give the theoretical figure by
saying, "She should expect to require 5.9 attempts, on average, in order to sink
a basket." That gives a more precise answer to the question and emphasizes the
theoretical nature of the question because 5.9 is not actually possible.
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Note that we're careful not to say 5.9 attempts before sinking a basket. Those
words would refer to the number of uxsuccessful attempts which, on average,
would be 4.9. If X is the geometric random variable, the number of failures
before the first success is Y = X - 1. So the expected number of failures is
J.ly = lip - 1.

(c) Here X is binomial with p = 0.12 and n = 10:

P(X ~ 3) = 1 - q8[l + 10pq + 45p2] = 1 - 0.8913 = 0.1087.

(d) Predictability is measured by the variance of the Bernoulli random variable,
(12 = pq (see Problem 3.5.1). This is maximum when p = 0.5. You can see
this by looking at the graph of the quadratic polynomial p - p2 [that's just
pq = p(l - p)].

(e) Ifp = 0, the player never sinks a basket. That's very predictable, predictably
BAD! If p = 1, the player sinks a basket on every attempt. Again that's very
predictable. The most unpredictable case is when the player sinks a basket
exactly half the time. Then you never know what to expect.

P(X = 0) = q60 = 0.046. Of course, the selection was withour replacement,
but N ~ 60 and presumably N ~ 10n so the sampling WITH replacement
approximation is valid. That's a special case of the binomial. Because N is not
known, the hypergeometric calculation is not possible.

3.7.13 (a) X P(X) XP(X) X 2P(X)

0 0.0313 0.0000 0.0000
1 0.1563 0.1563 0.1563
2 0.3125 0.6240 1.2480
3 0.3125 0.9375 2.8125
4 0.1563 0.6252 2.5008
5 0.0313 0.1565 0.7825

1.0002 2.4995 7.4991 J.l = 2.4995,
(12 = 1.2516.
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30% -

15% -

r
o 1 2 3 4

r
5

The formulas, of course, give J-L = 2.5 and (J'2 = 1.25. These values are exact,
the values from the table suffer from rounding in the calculations.

(b) X P(X) XP(X) X 2P(X)

0 0.2373 0.0000 0.0000
1 0.3955 0.3955 0.3955
2 0.2637 0.5274 1.0548
3 0.0879 0.2637 0.7911
4 0.0146 0.0584 0.2336
5 0.0010 0.0050 0.0250

1.0000 1.2500 2.5000 J-L = 1.2500,
(J'2 = 0.9375 .

45% -

30% -

15% -

T

o 1 2 3 4 5

The formulas also give J-L = 1.25 and (J'2 = 0.9375.
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(c) X P(X) X P(X ) X 2P(X)

0 0.5905 0.0000 0.0000
1 0.3281 0.3281 0.3281
2 0.0729 0.1458 0.2916
3 0.0081 0.0243 0.0729
4 0.0005 0.0020 0.0080
5 0.0000 0.0000 0.0000

1.0001 0.5002 0.7006 J-L = 0.5002,
a2 = 0.4504.

50%

25%

o 1 2 3 4 5

The formulas give J-L = 0.5 and a2 = 0.45 . Again, these values are exact, the
values from the table suffer from rounding.

3.8.1 (a)

P(X < 2) = P(X :::; 1) = e- 4.2(4.2)o/ O! + e- 4.2 (4.2)1/1!

= e-4
.2 [1 + 4.2]

= 0.0780.
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with the recursion formula

P(X ~ 1) = e-4.2 + ['\/(0 + 1)]e-4.2

= 0.014995577 + 0.062981423

= 0.0780.

Note, you need not record the intermediate calculations. And certainly you
should not round them and then calculate with the rounded values. We have
recorded intermediate values here just so you can check your calculation. You
should do calculations continuously within the calculator, storing intermediate
values in memory if necessary. One of the principal advantages of the recursion
formula is that it facilitates continuous computation without rounding.

(b) This is the same calculation, but now ,\ = 2.1:

P(X < 2) = P(X ~ 1) = e-2.1 [1 + 2.1]

= 0.3796.

Note that it's always true that P(X ~ 1) = e-A (1 +,\]. With the recursion
formula,

P(X ~ 1) = 0.122456428 + 0.257158499 = 0.3796.

3.8.2 (a)

P(X > 2) = 1 - P(X ~ 2)

= 1 - e-2.3 [1 + 2.3 + 2.32/2]

= 1- 0.5960

= 0.4040.

(b) Youcould just imitate the calculation of part (a), but then you'll be repeating
a lot of work. So we'll use the value from part (a). Here's how to do that:

P(X > 5) = P(X > 2) - P(X = 3) - P(X = 4) - P(X = 5)

= 0.4040 - e-2.3 [2.33/3! + 2.34/4! + 2.35/5!]

= 0.4040 - 0.3740

= 0.0300.
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(c) Recursion requires a starting place. Start with

P(X = 0) = e-2.3 = 0.100258843 .

Store this in memory and do NOT clear it from the display. This sets the situation
up for recursion by calculating the initial probability which you feed into the
recursion formula. Now, comes the recursion formulae"

• The current value of X is zero, so the next value is one. To get the
probability of the next value, multiply the displayed number by 2.3 and
divide by the next value:

P(X = 1) = (2.3/1)P(X = 0) = 0.23059534.

Add this to memory (there's a button on your calculator that adds the
displayed value to memory). DO NOT CLEAR THE DISPLAY!

• Now, do it again. It's described just as before:To get the probability of the
next value (the current value of X is one, so the next value is two), multi­
ply the displayed number, P(X = 1), by 2.3 and divide by the next value:

P(X = 2) = 2.3/2P(X = 1) = 0.265184641.

Add this to memory.
• Do it again: To get the probability of the next value, multiply the dis­

played number by 2.3 and divide by the next value:

P(X = 3) = 2.3/3P(X = 2) = 0.203308225.

Add this to memory.

• Continue this process two more rounds until you've finished with the
"next value" being X = 5. Then add that last probability to memory.
The memory now contains the sum of the probabilities from X = 0
through and including X = 5. That sum is P(X ~ 5) = 0.970024306.

That completes the calculation with recursion for P(X ~ 5). We get the final
answer as 1 - P(X ~ 5) = P(X > 5) = 0.029975693. This rounds to the same
answer we got above, 0.0300.

When we write all this out, it looks very formidable and certainly takes up
a lot of space. But you aren't supposed to write ANY of this down . When you
do the calculation continuously in the calculator, the whole calculation requires
only 40 seconds! I just now did it and timed it with my favorite and only plastic
Casio wristwatch which I carry in my pocket but is now sitting on this desk.
No, THIS desk!

6 This process will not work on some calculators.
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(d) The Poisson recursion formula says: Multiply the probability of the current
value by A and divide by the next value. That gives the probability of the next
value.

(a) Like the geometric distribution, the Poisson distribution takes on an infinite
number of possible values. It's a count for which there is no upper limit­
theoretically, that is.

(b) If you can imagine 15 accidents at an intersection in a given year, you
can certainly imagine 16, and if you can imagine 16 you can imagine 17. So
there's no limit, you can always imagine one more accident. Yet, it's hard to
imagine 30,000 such accidents, say, or 30 million! There certainly cannot be
more accidents then there are automobiles passing through that intersection. So
there 's a practical limit, but no theoretical limit. The theoretical model says that
large values are possible, but highly unlikely.

You would have to look at the derivation of the formulas, but we don't study the
very technical, mathematical derivation of the Poisson formulas. Furthermore,
there 's nothing in the three "rules of thumb" to help us. That the variance is
the same as the mean should be considered a technical feature of the Poisson
model. We won't attempt to understand these technicalities.

The second and third. Clearly, the second condition would not be satisfied.
Furthermore, the incidence of contagious disease no longer looks random, so
the third condition might well fail also.

No, not necessarily. There are other ways of deriving the Poisson model. The
derivation from the binomial distribution-letting n go to infinity while p goes
to zero-is only one possibility. If the rules of thumb hold, the model might
work. But the model might still work from some very different justification.

(a) Over the 20 years from 1875 to 1895 for the ten Prussian army corps in
question, there were 109 cases of no horsekick fatalities at all for some one of
the corps over a one-year period.

(b) B CY BCY

0 109 0
1 65 65
2 22 44
3 3 9
4 1 4

-- --

200 122
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(c) In 200 corps-years, 122 accidents were observed, that's a per-year average
of 122/200 = 0.61.

(d) If this data really "fits" the Poisson model, the mean and variance should
be close to ). = 0.61, as indeed they are:

B rf B(rf) B 2(rf)

0 0.545 0.000 0.000
1 0.325 0.325 0.325
2 0.110 0.220 0.440
3 0.015 0.045 0.135
4 0.005 0.020 0.080

1.000 0.610 0.980 B = 0.6100,
(J2 = 0.6079.

(e) B P(B) BP(B)

0.0000
0.3314
0.4044
0.1854
0.0496

0.9708

0.0000
0.3314
0.2022
0.0618
0.0124

0.6078

0.5434
0.3314
0.1011
0.0206
0.0031

0.9996

o
1
2
3
4

It ~ 0.6078,
(J2 ~ 0.6014.

Note that P(B > 4) = 0.0004. So the missing values occur with very small
probability. For example, show that

P(B = 5) = 0.00038,

P(B = 6) = 0.00004.

(f) Compare the distribution of observed data with the theoretical distribution.
As you can see, the probabilities are very close. Such a comparison is not always
so obvious. Later, we'll introduce a statistical technique to determine in a more
precise way if observed data seems to fit a specific model. This is one of the
major problems of statistics-to find "goodness-of-fit" tests, as they're called.

3.8.8 (a) X f"V B(10,p). That is, X is binomial where n = 10 and p is the probability
of YES. That means p = P(YES) = P(Y > 1), where Y is "the number of
horsekick fatalities in one corps-year ." So Y is the Poisson random variable of
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the previous problem. From that Y we see that p = 1 - 0.8748 = 0.1252 and
so ux = np = 1.2520.

(b) YES is the same as in part (a). Here X is a geometric random variable with
p = 0.1252. Again, just as in part (a), we have to reinterpret the question as
asking for the mean of X. It 's l/p = 7.9872.

In parts (a) and (b), note how we suppress irrelevant detail into the word
"YES." By using just the word "YES" and ignoring the details of YES, we cast
the question into a form where we can recognize the model. Once we see it's
"repetitions of a Bernoulli trial" and once we've decided on the model (binomial
or geometric), we turn to the probability question:

What's the value of p = P(YES)? Now we focus on the meaning of YES and
suppress all the other detail. What before was relevant (the other detail)
is now suppressed; what before was suppressed (YES) is now relevant. The
value of p is a separate question (Poisson) which must be answered before
we can continue with the original question (binomial or geometric) .

So we have a question within a question :

the original question, binomial

Poisson

Don't get the two questions confused! Note that p is a probability, so there
are numerous possibilites for answering the question "what is p?" Here p was
calculated with the Poisson model but for some other situation p might be
obtained in a very different way. The ability to sort a complex question into its
component parts without confusing those parts is one of the important skills
you'll develop as this course continues. It gets possible but it never gets easy!
Sorry.

(c) X is hypergeometric, but that model is intractable here because it requires
five very intricate calculations. Instead, because N 2: 60, in other words N 2:
lOn, the sampling WITH replacement model is a good approximation. Of course,
that's just a special case of the binomial. So we take X to be B(15,p) where
p = 109/200. Then using recursion, P(X > 4) = 1-P(X ::; 4) = 1- 0.0279 =
0.9721.

In(14) = 2xln(e), so x = 2.6391/2.
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(a) The Poisson distribution is determined by the value of its one and only
parameter, A. In general, you should use the Poisson distribution having the
same mean as the binomial you are trying to approximate. That says you
should choose the Poisson distribution which has A = np. To approximate
B(300, 0.01), you should use the Poisson distribution with A= 3.

(b) In each one-minute interval, you execute the Bernoulli trial only once. That
says there can be at most one success observed in that interval. So no simulta­
neous occurrences.

The observance of a success in anyone-minute interval will be independent
of any other success because the Bernoulli trials are independent. So any two
occurrences are independent.

Over the entire hour, you should expect np successes, the expected value
of the binomial random variable. Now, in each subinterval, if you observe a
success, it comes from one execution of the Bernoulli trial, with expected value
p. So in anyone interval, you expect p successes. This is an "expected" value
don't forget, so it does not need to be an integer. In two intervals, you would
be looking at two repetitions of the Bernoulli trial with expected value 2p. The
time is twice as much and the expected number of successes is twice as much. So
you see the pattern: It says your expected number of occurrences in any interval
is proportional to the length of the interval.

(c) P(X = 2) = 0(300,2)p2q298 = 0.2244. If Y is the approximating Poisson
with A= 3, then P(Y = 2) = 0.2240.

(d) Binomial Poisson

np
npq

For the approximating Poisson to have the same mean AND the same variance
as the given binomial,

A = np AND A = npq

would both have to be equal to two different numbers. IMPOSSIBLE!! Unless
q = 1, which we assume is not true. Why?

(e) A = np and A ~ npq together say np ~ npq so that q ~ 1. This means
p ~ O. In other words, for the two variances to be approximately the same,
p must be small. Now you see why we say p should be small. Of course, that
corresponds to our idea that the Poisson distribution will be appropriate when
we are looking at occurrences of some accidental (or rare) event.
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(a) A specific outcome for this experiment will look like a string of 8's and F 's
ending in an 8, with exactly k = 88's .

(b)
F, 8,F, 8, 8,8, 8, 8,F,F,F,8,8

or
F,F,F, 8 , 8, 8,F,F,F,8,F,F, F, 8,F, 8, 8, 8

or
8,8,8,8,8,8,8,8

(c) X = 13, 18, 8.

(d) The smallest possible value of X is eight (why?). There is no largest possible
value. So, X = 8,9,10,11 ,12, ... to infinity.

(e) The outcomes in part (d) have probabilities p8qS,p8ql0,p8, respectively. In
other words, because the trials are independent you just multiply the probabil­
ities.

(a) X = 10 means we observed our eighth success on the tenth repetiton of
the Bernoulli trial. Because the tenth blank must contain an 8, we need think
only about the first nine blanks. How many ways can those nine blanks be filled
with SEVEN S's, the other two to be filled with F's? That means we must choose
seven of nine blanks for the S's, There are exactly C(9, 7) = 36 ways to do that.

(b) C(11,7) = 330; (c) C(8, 7) = 8 (d) C(7, 7) = 1 (e) C(x - 1,7)

Part (c) first:

(c) X = 9 means it takes us nine repetitions to obtain our eight successes. So we
have exactly one failure. Here are the C(8, 7) = 8 ways we could have X = 9:

E, 8 , 8, 8, 8, 8, 8 , 8, 8

8,E, 8, 8, 8, 8, 8, 8, 8

8, 8,E, 8, 8, 8 , 8 , 8, 8

8,8, 8,E, 8, 8, 8, 8 , 8

8,8,8, 8,E, 8 , 8, 8, 8

8,8,8,8, 8,E, 8, 8, 8

8,8,8,8,8, 8,E, 8, 8
8,8,8,8,8,8, 8,E, 8
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But, it's impossible for two of these to occur at the same time. In other words,
THESE ARE MUTUALLY EXCLUSIVE EVENTS. SO, we get the probability just by
adding p8q to itself C(8, 7) times:

C(8, 7)p8q = 8 x 0.42 8 x 0.58 = 0.004492751 (round to 0.0045).

Do you understand the coefficient

C(8,7)

i This 8 is really x - 1 = 9 - 1. There are x blanks, but the last one
MUST be filled with S. So, from the remaining x -1 blanks, choose
seven to put S's in. There are C( x - 1,7) ways to do this.

Now let's do the other parts of this problem.

(a) C(9,7)p8q2 = 36 x 0.42 8 x 0.58 2 = 0.0117.

(b) 330p8q4 = 0.0362; (d) 0.0010; (e) C( x -1, 7)p8qx-8.

With k = 1 we get

P(X = x ) = C(x -1, k _l)pkqX-k

= C(x - 1, O)pqx-l

= pqx-l CORRECT!

And

P(X = x + 1) = xqoP(X = x )
x-

= qP(X = x). . .. CORRECT!

Show that the formulas for the mean and variance give the "correct" result.

(a) J-L = kip = 610.08 = 75.

(b) 0(14,5)p6q9 = 2002 x 0.08 6 x 0.929 = 0.0002.
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(c)

P( X ::; 15) = P(X = 6) + P(X = 7) + ... + P(X = 15)

= 0.0007 [0.000695202].

The point here is to do a continuous calculation without stopping to write
down intermediate results, losing accuracy by rounding (all the intermediate
results would round to zero and you would get zero for an answer!). If you do a
continuous calculation, the procedure is fast. Otherwise it's very slow, tedious,
and inaccurate.

(d) P(X 2: 16) = 1 - P(X ::; 15) = 0.9993.

(e) Here, k = 1 and so you revert to the geometric random variable. You are
asked for its expected value which is just lip = 12.5 .

(f) Here, k = 2 and the expected value is 21p = 25.

For us, 30" = 88.1051. So, there are no values more than three standard devi­
ations below the mean. The values three standard deviations above the mean
are all values bigger than 75 + 88 = 163. Chebyshev says there's less than one
chance in nine for a value larger than 163, but the true probability is virtually
zero. After all, from part (d) of the previous problem, there's lessthan one chance
in 1000 of a value larger than 16. Chebyshev's Theorem is not appropriate here
because we have much more information than Chebyshev 's Theorem assumes.

(a) The Bernoulli trial is "receive one bolt" for which "success" is "more than
one defect." Thus, p = P(more than one defect in one bolt).

(b) Y is Poisson, a very typical case of the Poisson distribution. The parameter
is A = 0.62. Thus for the problem at hand, you find

p = P(Y > llA = 0.62) = 0.1285.

(c) P(X 2: 51p = 0.1285) = 0.9923, obtained as one minus

P(X < 5) = P(X = 3) + P(X = 4) [3 is the smallest possible value]

= p3 + 3p3q

= p3(1 + 3q)

= 0.0077.
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(d) You must assume that the bolts arrive "independently." That is, you must
assume that whether one bolt has"more than one defect" is unrelated to whether
another does, so that repetitions of the Bernoulli trial for X are independent.
You must also assume that occurrences of defects satisfy the three rules for a
Poisson distribution so that Y can be considered Poisson. But this is a very
typical Poisson situation. Experience shows the Poisson model is usually valid.
Both assumptions would seem reasonable under ordinary circumstances.

The number of rabbits caught in three traps, let's say, would be the sum of
the numbers caught in each individual trap. But a sum of three independent
geometric random variables with the same p is negative binomial. See the last
comment in the text just before this set of "Try Your Hand" exercises.

(a) Geometric, P(X = Sip = 0.1) = 0.0656.

(b) Geometric, P(X ~ 5) = 1 - (1 - q4); or binomial, P(X = Oln = 4).

(d) Geometric, p = 0.7, J1 =?

(e) Both are binomial, compare variances: 0.9 with 0.475.

(f) Negative binomial, p = 0.05, k = 4, J1 =?

(g) Uniform distribution of scores, p = 0.25, J1 =?

(h) Compare variances of scores: 2.36, 8.1875. Either you set up probability
distributions for your score and your opponent's score or you just enter the
distributions into the statistical mode of your calculator.

(i) Negative binomial, P(X = 161p = 0.25, k = 4) = 455p4q12.

(j) P(A or B) = P(A) +P(B) - P(A and B), A and B independent (reasonable?)

(k) Binomial, P(X = 41p = 0.325,n = 10) = 210p4q6.

(1) Binomial, P(X ~ lip = O.l,n = 6) = 1- P(X = 0) = 1- q6.

(m) This means your fourth miss occurs within the first five throws. So, negative
binomial, P(X S Sip = 0.05, k = 4) = P(X = 4 or X = 5) = p4(1 + 4q).
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(n) Let A = you don't get eliminated before that, B = at least one bull's eye in
the first six throws. So: P(A and B) = P(BIA)P(A) = 0.468559 x 0.99997.

Did you organize the given information for this problem appropriately? Oth­
erwise, you waste a lot of time rereading the problem. Here's how:

Board Points P(your points) P(opponent's points)

B 6 0.10 0.25
2nd 3 0.60 0.25
0 2 0.25 0.25
M -2 0.05 0.25

Eliminated: more than three misses. One round: one throw for each player.

3.10.2 (a) Hypergeometric,

5!
80 x 79 x 78 x 77 x 76

30 x 5!

P(X ~ liN = 80,R = 30,n = 5)

50 x 49 x 48 x 47 x 46
5!

50 x 49 x 48 x 47
+---4-!--- 80 x 79 x 78 x 77 x 76

= 0.088134717 + 0.287395815

However, because N ~ 60 and N ~ lOn, the sampling WITH replacement model
is a reasonable approximation (that's a special case of the binomial model, don't
forget). So if you wanted to save some effort and were willing to accept an
approximate answer,

P(X ~ lip = 0.375, n = 5) = q5 + 5pq4 = q4(q+ 5p) = 0.3815.

(b) q47 [q3 +50pq2+ 1225p2q+ 19600p3] = 0.0137. What unstated assumption
does this analysis require?

3.10.3 (a) If we can assume you won't find two potholes located on top of each other
(no "simultaneous occurrences"), that they occur independently and that the
number in any stretch of road is proportional to the length of the stretch, then
the Poisson model is appropriate. J1 = A = 8 x 0.2 because two miles is eight
"quarter-mile" stretches.

(b) Binomial, P(X < 31n = 10,p =?), where p = P(Y > 2) = 0.2166 for a
Poisson Y. So (without rounding p),
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(c) Geometric, P(X ~ 61p = 0.7834) = q5 = 0.0005. Here X is the number
of the first day when they find two or fewer potholes. So S is "two or fewer
potholes" and p = 1 - 0.2166 [from part (b)].

(d) Binomial, let X = # NONbeach days:

(e) Exactly: M= 15.668.

(a) P(X = 51,\ = 3) = 35 (e- 3)/120 = 0.1008.

(b) X = 0, 1,2,3,4,5,6. The condition in the problem gives all integer values
between -004641 and 604641. Note that 0"2 = ,\ = 3 and so M±20" = 3±3A641.

(a) Expect a loss of about $0.64 per roll. Set up a probability distribution table
for X = # dots on the top face. You'll find that ux = 3.36 and O"i = 2.1504.
So if G is your net gain/loss random variable, G = X - 4 and Me = 3.36 - 4 =
- 0.64. Or you can make a table for G directly.

(b) The game with the loaded die is more predictable because it has the smaller
variance . Either by setting up a distribution table or by using the statistical mode
of your calcu lator, you can find that with a fair die the variance of your gain/loss
is 2.9167 which is larger than for the game with the loaded die. This means with
the loaded die you're likely in the long run to come out closer to your expected
loss of $0 .64.

(c) G P(G) GP(G) G2P(G)

-3 0.12 -0.36 1.08
-2 0.12 -0.24 0048
-1 0040 -0040 0040
0 0.12 0 0
1 0.12 0.12 0.12
2 0.12 0.24 0048

- -
1.00 -0.64 2.56 Me = -0.64,

O"b = 2.1504.

(d) Done in part (a).

(e) ts»: - 4 = Me and O"i = O"b·
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(f) /-L = lip = 1.5625, where p = 0.64.

(g) X is geometric, P(X = 3) = q2p = 0.0829.

(h) P(X > 3) = q3 = 4.67%.

(i) X negative binomial with k = 5. P(X = 15) = C(14, 4)p5ql 0 = 0.0039.

(a) P(X:S lin = 12,p = 0.03) = q12 + 12pqll = 0.9514.

(b) /-L = np = 0.36.

(c) Before, the variance for "# defectives" was 0.3492, now it's 0.0952.

(d) Geometric, X = # boxes inspected to find one with a defective part. We
need ux = lip. Here p = 0.3062. How?

p = 1 - P(no defectives in box) = 1 - P(Y = 0) = 1 - q12 = 0.3062.

(e) Same X as in part (d), P(X = 5) = q4p = 0.0710.

(a) /-L = np.

(b) The variance is npq times the finite population correction factor. But that's
the same for both situations, and so is n = 5. Thus, we need only compare the
pq's. If you're looking for spades, pq = 3/16 which is smaller than pq = 1/4
for black versus red. So spades versus nonspades is more predictable. The exact
variances are 0.8640 and 1.1520.

(c) /-L = np = 2.5.

(d) Hypergeometric, P(X = 21 N = 52, R = 13, n = 5) = 0.2743.

(e) P(X = 21N = 52, R = 26, n = 5) = 0.3251.

(f) lip = 3.0760.

(g) Geometric, with X as the number of deals required to get a YES hand. So
P(X 2': 4) = q3 = 0.3074. Or interpret it as binomial with Y as the number
of YES hands in the first three deals. So you want P(Y = 0) = q3, giving the
same answer as with X. Of course, you have to get the same answer! With both
interpretations, a YES hand is a hand with two red cards [so p = 0.3251 from
part (e)].
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(a) First, write out all the possible matches of balls with the court and players,
where we number the balls as 1, your ball; 2, your friend's ball; 3, court's ball.
Then record X = # players with their own ball:

(b) P(I take my ball)= (# balls that are minely(total # of balls) = 1/3. This is
just the "theoretical relative frequency" definition of probability.

(c) P(X ~ 1) = 2/6 + 1/6 = 3/6.

(d) P(A and B) = P(A)P(B) = 1/9, because evidently the events are indepen­
dent. Otherwise you would need to know P(AIB).

(e) Binomial, P(X ~ 4Jn = 7,p = 1/6) = 1 - P(X :::; 3) = 0.0176.

(f) J.L = np = 1.1667.

(g) Geometric, J.L = l/p = 6.

(h) Now,
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X P(X) XP(X) X 2P(X)

0 7/12 0 0
1 4/12 4/12 4/12
2 1/12 2/12 4/12

--
1 1/2 2/3 (f2 = 2/3 -1/4 = 5/12.

Because5/12 < 5/9, this situation is MORE predictable. You might have guessed
that by thinking of an extreme case. Suppose there were several million balls on
the court. Then it's HIGHLY predictable that you and your friend both go home
with a different ball than you brought.

(i) Yes?

(iii) P(X > 61p = 0.1647) = q6,

(i) P(X = Oln = 6,p = 0.1647) = q6,

(ii) P(X = 61n = 6,p = 0.8353) = p6,

3.10.9 (a) Binomial, n = 17,p = 0.1, E(X) = 1.7.

(b) P(X > 2) = 1 - P(X ~ 2) = q15[q2 + 17pq + 136p2] = 0.2382.

(c) You should guess MORE unstable because there is more chance for a problem.
The stability is measured by the variance for the number of breakdowns in the
first month after the maintenance check (our X above). That variance is npq.
In the second case, it's larger because n is larger.

(d) You're looking for the occurrence of a breakdown in the operation in the
course of one week immediately following a maintenance check. It's Poisson,
P(X ~ 11'x = 0.18) = 1 - 0.8353 = 0.1647.

(e) P(X> lin = 9,p = 0.1647) = 1 - q8[q + 9p] = 0.4507.

(f) There are at least three ways you could model this. Two are binomial, the
third is geometric:

here X = # months with at
least one breakdown.

here X = # months with
NO breakdown.

now X = # of the first
month for which there 's
at least one breakdown.

In each case, you're computing (0.8353)6 = 0.3397.

(g) /l = l/p = 6.0716.
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(a) Poisson (lambda is 5.19 for one bolt), E(X) = 5.19.

(b) 1 - e-5.19 [1 + 5.19 + 13.4681 + 23.2997] = 0.7606.

(c) J.L = np = 12 x 0.8227 = 9.8726. Here p = 0.8227 is calculated as Poisson,
P(X = Oi>, = 1.73).

(d) J.L = l/p = 1.2155.

It's possible for you to make a frequency distribution, but because relative fre­
quencies are given, you should make up a relative frequency distribution. You'll
find: ~X(rf) = 1.09; ~X2(rf) = 2.33. From this distribution you get:

(a) median = 1; J.L = 1.09; (7 = 1.0686; mode = 1; range = 4.

(b) the answer to this question is ~Xf, but from the relative frequency distri­
bution you only get ~X(rf). If you multiply by N you will get ~Xf. Answer:
120 x 1.09. Note that this question asks for the "total of all the data." That
total divided by N is the mean, so "total of all the data" = N x J.L = ~Xf.

(c) Guess that the variance is lower because you're giving more weight to a
value relatively close to the mean. Of course the mean also becomes smaller, so
this is not obviously correct-still, the mean should not be lowered by much.
Now take a specific case: Suppose 7% of employees take three days and none
take four days: (7 = 0.8942. Don't waste a lot of time with these calcula­
tions. They can be done quickly with the statistical mode on your calcula­
tor. And a more sensitive case: Suppose only one-tenth of one percent took
three days. Now, (7 = 1.0663 and still it is lower than when none took three
days.

(d) P(X 2: 21n = 10,p = 0.07) = 1 - 0.8483 = 0.1517.

(e) J.L = l/p = 1/0.07 = 14.2857.

(f) Geometric, P(X > 20) = (0.93)20 = 0.2342.

(a) 5/12; (b) 4/3.

(c) The variance in each case is 2pq times the finite population correction factor,
7/8. For the second situation, pq = 20/81 is larger . Hence, that's the less
predictable situation.
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Each of the three random variables counts the number of tails for its random
experiment.

(a) ux, fly = 1/2; /lx+y = 1. It is not possible to guess the variance because
it's only a comparative measure of spread about the mean and you have nothing
to compare with.

(b) Z should be more variable just because it has a larger range of values,
although that doesn't GUARANTEE more variability. You have to think about
the concentration of probability. It's hard to make a meaningful comparison
between two random variables which do not take the same values.

(c) The variances of X and Yare each 1/4; the variance of Z is 1/2. You can
do this directly from the probabiliity distribution of Z or from the formulas
relating Z to X and Y . Here are the general formulas: If Z = aX + bY then
uz = a/lx + b/lY; and if X and Yare independent, a~ = a2(Ti + b2(T~ .

(d) Set up a probability distribution and compute.

(a) min = 1.2, max = 1.5. M t= 1.4, that's the SAMPLE median. M is the
population median. Or, if you're sampling from the probability distribution of
a random variable X, M is the value of X such that P(X < M) = 0.5. The
value of M is not known; we're talking about estimating that unknown number
from the sample.

So M is the QUESTION. As a first guess, we're going to estimate M to be some­
where between min and max, somewhere in the interval (1.2, 1.5). That interval
is our "confidence interval estimate" for M. The "confidence coefficient" is the
probability that M is actually in this interval. In part (f), we'll show that the
confidence coefficient is essentially 100%.

(b) Y is B(n, 0.5).

(c) If M < max, there must be at least one observation above the median . So,

P(M < max) = P(Y ~ n -1) = 1 - P(Y = n) = 1- 0.5n .

(d) P(M > min) = P(Y 2: 1) = 1 - P(Y = 0) = 1 - 0.5n .

(e) Let A be the event that min < M and let B be the event that M < max.
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Then the confidence coefficient is

P(A and B) = 1 - P(AC or B C
)

= 1 - [P(AC
) + P(B C

)]

= 1 - [0.5n + 0.5n ]

= 1 - 0.5n - 1

(A and B) C= ACor B C

Ac , B Care mutually exclusive

Note how the confidence coefficient depends only on the sample size. For a
sample of size three, we would be only 75% sure. It increases froin there.

(f) 1- 0.000000238 = 0.999999761. We've used the formula 1- 0.5n - 1 from
part (e) with n = 23. So we can be essentially 100% sure the true median is
somewhere between 1.2 and 1.5.

(g) It's virtually certain that the median weight of u.S. pennies is somewhere
between 2.99 and 3.21 grams. Note that 0.599 = 1.5772 x 10-3°,a number
with 29 zeros before the first significant digit after the decimal. This confidence
coefficient is very wasteful. A confidence coefficient of 90% or 95% would
usually be considered adequate and will yield a much more useful estimate for
M. In Chapter 4, we'll show you how to get that better estimate [see part (h)].

(h) We can be 99% sure that the median weight of u .S. pennies is somewhere
between 3.11 and 3.13 grams. However, this statement is subject to misunder­
standing. The median weight of U.S. pennies is a fixed number (a parameter) and
is NOT subject to probability statements. It's the INTERVAL which varies here-it
varies from sample to sample. A more careful interpretation of our confidence
interval would say, "We are confident that the median weight of u.S. pennies
is somewhere between 3.11 and 3.13 grams because, using our technique, 99%
of all samples of 100 pennies would yield an interval containing the median
weight." Of course, one percent of such samples would give an erroneous inter­
val. We cannot know if our interval is one of the erroneous ones or not. That's
why we say "confident" and not "certain." That's also why these are called
"confidence intervals"-we're "confident" the interval contains the parameter,
but not certain.

(i) M is a fixed number. It can't be sometimes one place and sometimes another!
The 99% confidence coefficient refers to the INTERVAL, not to the parameter.
It's the INTERVAL that's sometimes here and sometimes there-sometimes it
contains M and sometimes not. You see how this is true in the calculations
of parts (b) and (c) where the probabilities were calculated from a binomial
random variable associated with the sampling experiment, counting how many
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observations in the sample are greater than the median. So the probability-the
confidence coefficient-goes with the SAMPLE. It's the sample that varies, and
because the interval is calculated from the sample, the interval varies. See part
(h).

(j) It's virtually certain the sample median is less than the true median, M. After
all, the sample median is 3.11 and there's a 99% chance M is between 3.11 and
3.21 [see part (h)].

Chapter 4
There are infinitelymany values. If there were n equally likelyvalues, each would
have to have probability lin. As n gets larger and larger, this probability gets
smaller and smaller. So it seems reasonable to think that when n becomes "infi­
nite," the probability would have to be zero. For a continuous distribution, there
are so many possibilities that anyone value has probability zero. This intuitive
argument is helpful, but in fact, mathematically the situation is more sophisti­
cated than that. After all, you already know examples of random variables with
an infinite number of values where the probabilities of individual values are NOT

zero. When the values are discrete, this is possible. The geometric, Poisson, and
negative binomial distributions are examples.

But when the possible values of the random variable constitute a continuous
interval, it's not possible for specific individual values to have nonzero proba­
bility. There are just too many possible values. We're asking you to believe this,
it's not obvious and it's not easy to prove.

You'll get some idea of what's going on here if you recall that our discrete
models which are infinite-the geometric, Poisson and negative binomial distri­
butions-are all counts. So, although all counts are theoretically possible, after
some point, all the probabilities are so small they become zero from a practical
point of view. That leaves only a finite number of values with significant prob­
abilities. This is what does not happen for a continuously distributed random
variable.

So any specificvalue of a continuously distributed random variable has prob­
ability zero. It's a little like throwing a dart at a dart board. There are infinitely
many points on the board where the dart might lodge; the board is a continuous
two-dimensional "interval." Imagine marking one tiny point with a very sharp
pencil. What is the likelihood you will be able to hit that exact point with the
dart? ZERO!

... some SUBINTERVAL. Although any specific value of a continuously dis­
tributed random variable is virtually impossible, it IS possible to fall within
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some specified range of values, a subinterval. It is virtually impossible to have
the dart lodge in an exact tiny point. But if we encircle a small-or not so
small-region of the dart board, then there is a genuine possibility (nonzero
probability) of throwing the dart into that region. That's why the bull's eye on
a dart board is always a small region. It's never just a point.

If you encircle a small region of
a dart boord, it's indeed
possible (non-zero
probobility] to
throw the dart
info thot
region

Now, if I'm throwing darts at a one-dimensional interval of real numbers ,
any given point would be virtually impossible to hit, but a small subinterval
would be possible. In other words, there's a nonzero probability to succeed in
throwing the dart within some specified range of values. So within a specified
range of values, a continuously distr ibuted random variable can be thought of
as a mechanism for "throwing a dart at an interval of real numbers" with a
significant possibility to fall within any given subinterval. Thus, the nonzero
probabilities for a continuous distribution are associated with subintervals­
with ranges of values-not with specific values.

(a) The shaded area represents P(O < X < 100). That probability is necessarily
ONE because X only takes on values in that interval. In other words, it is certain
that X will fall within the interval (0,100).

(b) Obviously, the shaded area is 1/2 because it is P(X < median).

(c) By Chebyshev's Theorem, the probability that X is within three standard
deviations of its mean is at least 1 - 1/32 = 8/9. Because that's the indicated
range of values, the shaded area must be 8/9 or more.

The total probability is 1 and there are n + 1 segments. So each segment of the
distribution represents a probability of l/(n + 1). Now, between X(h) and X(k)

there are k - h segments. So the probability of being between these two values
is 1/(n + 1) added to itself k - h times.
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By direct counting, there are n + 1 ways for a future observation to dis­
tribute itself into a current sample of size n. Because all the observations are
independent-that is, the n observations in the sample and the one future ob­
servation-these n + 1 ways are equally likely. So the denominator of your
probability is n + 1. Now, among those n + 1 ways, how many correspond to
the future observation being smaller than the the ith member of the sample?
Answer: i. So, how ways can one future observation distribute itself into the
sample so that it's larger than the hth and smaller than the kth observation in
the sample. Answer: k - h. That's the numerator of your probability. In both
arguments, the continuity of the distribution from which you're sampling is
not essential; it just allows us to avoid dealing with the possibility that two
observations might be equal.

(a) Each of these intervals has length one-fourth. Because they all have the
same length, they must all have the same probability. That's the definition of
the uniform distribution. If that probability is denoted by p, then

p+p+p+p= 1, in other words, 4p = 1, so p = 1/4.

From this you can see that P(2.25 :S X :S 2.5) = 1/4.

(b)

I
2 2.25 2.5

I
2.75

I
3

(c) Because X is bound to take a value somewhere between two and three,

P(2 :S X :S 3) = 1.

But the "event" that 2 :S X :S 3 can be split into the four MUTUALLY EXCLUSIVE

events:

(2 :S X :S 2.25) OR (2.25 :S X :S 2.5) OR (2.5 :S X :S 2.75) OR (2.75 :S X :S 3),

and so the simple addition rule for mutually exclusive events holds. Note that the
events actually have endpoints in common, so technically they are not mutually
exclusive. But because the probability of a specific value-an endpoint-is zero,
we can ignore that. With a continuous distribution, you can always ignore an
equal sign!
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The curve will have to be a HORIZONTAL LINE!! Nothing else will work. In terms
of f(x), this means the density function must be a constant function.

( thegrophol /(xJ

---------------=------

I
2

I
7

( the posslble
values af X

Note how any two subintervals of the same length will have the same prob­
ability:

I
2

2

7

I
7

4.1.7 c = b~a' How? Well, P(XE[a,b]) = 1, and the probability is given by area, so

c

ONE

a b

Thus the area of this rectangle is ONE, but the area of a rectangle is "length
times height." The length here is b - a and the height is c. So

(b - a)c = 1

which just says that c is l/(b - a).
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(a) From the graph you can see that the median, the point on the z-axis that
divides the distribution 50/50, is the half-way point between a and b. Thus
ux = (a + b)/2.

Some people forget why the average of two numbers-here (a + b)/2, the
average of a and b-is exactly the half-way point between them. Well, half the
distance between a and b is just (b - a)/2, so the half-way point is just a plus
that: a + (b - a)/2. Here's the picture:

I
a

Now just simplify:

(b)

1
(b -a)

1
+ (b-a)

a 2

I

b - a 2a+ b- a
a+-2- = 2

a+b
--2-·

I
b

a e

P(Xe[c, dJ)
= ???

d b

4.1.9

P(XE[c, d]) is just the area of the shaded rectangle. Its height is l/(b - a), as you
saw in Problem 4.1.7 (just because the total area is ONE). The length of the base
is d - c. So the area is the product of those two numbers:

P(XE[c,d]) = (d - c)/(b - a).

(c) The probability that X takes on a value between c and d is proportional
to d - c. In other words, the probability that a uniformly distributed random
variable fallswithin a certain interval isproportional to the length of the interval.

(a) X :::; x means X takes a value somewhere less than or equal to x . But X 2: a
because all the values fall between a and b. So X :::; x means XE[a, x]. Now,
applying the probability formula with Xl = a and X2 = x gives P(X :::; x) =
P(XE[a, x]) = (x - a)/(b - a).
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(b)

Area = H X B = ~::

z

B = (x - a)

.--

_ _ --\- -:- L.-/"J_ the graph 01 f( x )~ P(X ~ x) \ L
' \H=S-;

Height = _----:.-: ...L- ,j_ (

1 a b
(b- a) the possible

values 01X

(c) IX-ILl :s; (b - a)/2 < 2{b - a)/JI2 = 2(7.

4.1.10 (a) Here's the picture:

~P(X< 2'5)

r-I
2 4

Here f(x) = l/{b - a) - 1/(4 - 2) - 1/2, and so its graph is just the
horizontal line y = 1/2 over the interval [2,4]. Because the shaded area is a
rectangle with sides of length one-half, clearly we get

1 1 1
P(X < 2.5) = 2: x 2: = 4'

This answer also comes from the formula of the previous problem:

P{X < 2.5) = (2.5 - 2)/{4 - 2) = 0.5/2 = 0.25.

Note that we need not be concerned that the formula in the previous problem
is for X :s; x instead of X < x because the probability that X = x is zero.
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j P(7 < x < 9.5)

~ I
!

10

Here it's obvious from the picture that the shaded area is 2t x ! = 5/8. Or
instead of the picture, look at the formula

P(XE[7,9.5]) = (9.5 - 7)/(10 - 6) = 2.5/4 = 0.625.

(c)

,I'-E: P(X > 3) = 0.5

~
i I
2 I 4

3 = J1. X

(d)

1
(b -a)

~P(X <"x) ~O.5

h-
I I
I

a b

4(a+ b) = J1.X
= the midpoint

between a and b

h f I b-!(a+b)
From t e ormu a, 6-a = 1/2.

(e) Here f.L = 8 and u2 = (6 - 10)2/12 = 16/12 = 4/3 and so a = 1.1547.
Thus we need

P(6.2679 < X < 9.7321) = 0.8661.
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This is a probability of the form P(XE[c, d]) where the endpoints are just

8 ± 1.5(j = 8 ± 1.7321.

(a) Here are the three rules of thumb:

(i) Two simultaneous failures are not possible because together they would
simply constitute one failure-the system fails.

(ii) Again, when we say that failures are due to external causes such as ran­
dom overloads, and so on, we are implicitly assuming the independence of
two failures. This independence assumption would not necessarily be true,
but often it is. If it 's true, our Poisson model will be appropriate. Think
about a household fuse blowing as a result of a current overload. Typically,
two such events would be independent of each other. Similarly, if you think
about other examples we have mentioned (or will mention), you will see that
this assumption of independence during the period of useful life would often
be satisfied.

(iii) The third rule of thumb, the proportionality rule, simply says that during
half of the period of useful life, we should expect half as many failures, during
one-third of the period, one-third as many failures, and so on. That kind of
porportionality assumption would be very reasonable in many situations.
When it's reasonable, our Poisson model will be valid.

(a) The real-world "doing" for the underlying experiment is the same as X in
Problem 4.2 .1, "operate the system during the period of useful life." However,
the outcomes are different. Here, an outcome would be a time period, the period
of time before the first failure. T assigns a number to that period of time, namely,
its length. Again, as above , the occurrence of a failure cannot be predicted in
advance. Thus, T is indeed a random variable.

(b) A continuous random variable is a random variable which takes on any
value in some interval of real numbers. Once our system enters its period of
useful life, any length of time whatsoever is theoretically possible as a value of
T . Because any value whatsoever in an interval of time is possible as a value of
T, it should be considered to be continuously distributed as a random variable.
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(c)

P(T ~ t) = 1 - P(T ~ t)

= 1 - P(X = 0)

the equals sign is irrelevant, why?

with X as the number of failures on the
interval 0 to t

4.2.3

4.2.4

(a) The number of calls received in a period of time is reasonably modeled by
the Poisson distribution with ,\ as the expected number of calls per minute.
So, ,\ = 1/5 x 2.3 = 0.46 because for the Poisson distribution we assume
the expected number of occurrences in any interval to be proportional to the
length of the interval. Now for the exponential distribution, the expected value
is 1/,\ = 1/0.46 = 2.1739.

(b) Poisson with ,\ = 3 x 2.3 = 6.9. So using recursion,

P(X > 7) = 1 - P(X ~ 7) = 1 - 0.6136 = 0.3864.

(c) P(T> 10) = e-0.46 x l O = 0.0101. Note that we're using the fact that

P(T > t) = e-t >.

because

P(T ~ t) = 1 - «:":

(a) J.LT = 2.5 (in thousands of hours). Here ,\ = 0.4 (notice that ,\ = 1/J.LT) and
we're asked for P(T ~ 1) = 1 - e- OA = 1 - 0.6703 = 0.3297.

(b) The number of burn outs has a Poisson distribution. The expected number
of burn outs per 1000 hours is ,\ = 1/2.5 = 0.4. So in 10,000 hours the
expected number should be 10 x 0.4 = 4 because the expected number should be
proportional to the length of time (assuming the Poisson model valid). Because
we expect four components to burn out, we will need five components to keep
our system running for 10,000 hours.

Or think in terms of the expected life of the system when you have M compo­
nents available. When M = 1, the expected life is given to be 2500 hours. You
require a value of M for which the expected life is greater than 10,000 hours:
J.L>. = 2.5M > 10. This implies M > 4, so buy M = 5 components.
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(c) Let Ti be the time to failure for the first component and Tz the time to failure
for the second component. So, we have

P(system runs for more than 1000 h) = P(TI > 1 AND Tz > 1)

= P(TI > 1) X P(Tz > 1)

= 0.4493.

But, to make use of the multiplication rule, we must assume the two components
of the pair operate INDEPENDENTLY of each other. That might or might not be
reasonable; you'd better ask the engineers. Without independence, you would
need the conditional probability of a burn out for one component, given that
the other one burns out. But we don 't know that.

(a)

P(T IT )
_ P(T > t + SAND T > t)

> t + s > t - P(T > t)

P(T>t+s)
P(T> t) .

The numerator simplifies as we've shown here because T > t + SAND T > t
represents redundant information. If the first condition holds, then of course
the second condition holds. You need not assert it separately.

But you have formulas for the numerator and denominator here:

P(T>t+ s)
P(T > t + siT> t) = P(T > t)

e->.(t+s)

e- >.t

e->.te->.s

e->.t

= e->'s

= P(T > s).

(b) The probability of no failures before 2 P.M. given no failures from noon
until 1 P.M. is the same as the probability of no failures from 1 P.M. to 2 P.M.

given no other information whatever. In other words, if you know there are
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no failures in the first hour, you might just as well start the model over again
beginning at 1 P.M., with no memory of what happened from noon to 1 P.M.

(a) According to the "fundamental fact" of the normal distribution, it's virtually
certain for a normally distributed X to be between fJ, - 3a and fJ, + 3a. In other
words, it's virtually certain X will fall with in three standard deviat ions of its
mean. Because for Z the mean is zero and the standard deviation is one, it's
virtually certain for Z to fall between -3 and 3, as asserted.

(b) Z is the symbol for the STANDARD normal random variable. By definition,
that's the normally distributed random variable with mean zero and standard
deviation one. Because the standard deviation is one, so is the variance. Thus,
Z rv N(O, 1).

(c) P(Z < -2) = 0.025. Here's why: According to the "fundamental fact,"
there's about a 95% chance for Z to fall within two standard deviations of the
mean (to fall between fJ, ± La = ±2). So there's about a five percent chance of
falling outside this interval. Because the picture is symmetric, this five percent
divides equally into the two tails :

2.5% probobiluv of
a value in the left tail

I
o

( ~e possible
values of z

Here's the analysis: P(-2 < Z < 2) = 95% and so P(Z < -2 OR Z > 2) = 5%.
But this probability involves two MUTUALLY EXCLUSIVE events: Z cannot be both
smaller than -2 and bigger than 2 at the same time. So,

0.05 = P(Z < -2 OR Z > 2) = P(Z < -2) +P(Z > 2).

Now, by symmetry these two probabilities are equal, which just says

P(Z < -2) = 0.025.
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(d) The pictures tell it all:

~(Z>I)~16%

16% : 6 % I

I

a 1

~Z<1)~34%

I 34% I
I I

a 1

P(-l < Z < 2) = 81.5%

-1

81.5%

a 2

2.5% = P(Z > 2)

13.5% = P(l < Z < 2)

2

34%

- - - - - -

a

For this last picture, subtract out the relevant areas:

50% - 34% - 2.5% = 50% - 36.5 % = 13.5 %.
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(a) Z = 1; (b) Z = 1; (c) Z = -1; (d) Z = 1; (e) Z = 2; (f) Z = -3;

(g) Z = -3 and 3 are possible answers, but many other pairs are also. For
example -3.84 and 4.96. Or -3 and 22.

(h) Z = -1; (i) Z = -1.

Assume there's no systematic source of error. Then you'd expect the errors to
cancel out on average. For the numbers suggested in Level I, the errors are

0.18, -0.91, -0.63, 0.26, 0.08;

some are positive and some are negative. Now, they do NOT average to zero, but,
after all, these are fivespecific observations. You were asked to explain why ALL

POSSIBLE errors should (theoretically!) be zero, on average. This is like the dif­
ference between saying a coin is fair (theory: half the time you should get heads)
and noting that on a specific sequence of ten tosses (real-world observation),
you don't get five heads .

So if there's no systematic source of error, the errors "in excess" and the
errors "in defect" (the positive and negative errors) ought, theoretically and on
average, to cancel out. Here's what Simpson said:

That there is nothing in the construction, or position of the instrument
whereby the errors are constantly made to tend the same way, but that the
respective chances for their happening in excess, and in defect, are either
accurately, or nearly, the same.

(a)

i
o 2.5 4.3 = I-t + a

(b) Because zero is roughly 1.5 standard deviations below the mean, zero should
be about as shown in part (a).
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(a)

I I I
2.1 2.5 2.58

1
p,+/j

(b) Zero is how many standard deviations below /-L?

0 - /-L = 0 - 2.5 = ka, so k = -31.25.
'-v-"

the distance of zero below /-Lx

Zero is more than 30 standard deviations below the mean. The leftmost point
on the graph looks like it might be four or five standard deviations below the
mean. In other words, zero is way out of the picture to the left. It's so far from
the mean that it's not even in the picture.
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4.3.6
a) Clearly less than 50% of the area is between -1
and 1. It should be more than 50%-about 68% as
in the picture...

N(O, I )

o

c) N ( I , 1)

~
a 2 3

No change-this looks OK . Notice that a little more
than two-thirds the area is centered between 1 and 2
as required.

(e) This picture was OK.

Answers-Level II

b) The picture was centered at zero but in fact the
mean is one. Here is a correct picture. ..

2

dl N( -2, 9)

~
- 5 - 2

Again, no change-this looks OK also. Here J.L + (J" = 1
and '1' is located to cut off a bit more than two-thirds
(about 68%) of the area between it and J.L - (J" = -5 .

(f) This picture was NOT OK. The point J-l + a = 4 was located way off in the
right tail with clearly less than the required area to the right of it-less than
16%. There should be about 32% in the two tails because the area between
zero and four (within one standard deviation of J-l = 2) should be about 68%
of the total area . Here's a correct picture:

N(2 ,4)

68%

a 2 4
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For Z the parameters are J-l = 0 and (J" = 1. With these values, the formula for
the density function becomes

1 ((x- J-l)2)
f(x) = ~exp - 2 2

(J"22~ (J"

= 1 ex (_ (x - 0)2)
J122~ P 2

= ~ exp ( - ~) , as required.

(a) The DOING is to "make a measurement." Clearly, we can REPEAT that pro­
cess. An OUTCOME is the resulting physical situation when you do the experiment
once (make one measurement). It can be described as a "state of the measuring
device." For example, you observe a measuring rod placed up against the edge
of a table, or you observe the dial in a certain position on a scale.

Are the outcomes PREDICTABLE? No, measurement always involves some
error. There's no such thing as a 100% exact measuring process. One time
when you place the measuring rod it's 1 mm to the left of where you placed it
the last time. Or at a very slight angle. When you weigh produce at the grocery
store, watch the dial on the scale-it wavers ever so slightly. And when you
read that dial, you get a slightly different reading depending on the position
of your head . In fact, the phenomenon of measurement error is common to
all attempts at measuring, that's why it 's such an important random variable
for us to understand. And that's also one reason the normal distribution is so
important as a model. If this discussion sounds vaguely familiar, take another
look at Problem 2.1.8.

So far we've verified that the measuring process is a random experiment.
Now, what's the random variable? What's the rule which assigns numbers to
the outcomes? As usual, if the outcomes are clearly specified, the rule will be
clear. Here, when you look at the "state of the measuring device" (an outcome),
you assign the observed measurement to that outcome. Here's the RULE which
assigns numbers to outcomes:

Read the measuring device and report your
observed measurement (a number).

(b) Intuitively, if there's nothing systematically wrong in the measuring process,
repeated measurements ought to give, on average, the true measurement of
the object being measured. Analytically, measurement error is the difference
between the observed measurement and the true value: E = M - true value. So
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it's a linear function of the observed measurement:

E=a+bM a = -(true value), b = 1.

4.3.9

Now unless there's something systematic wrong in the measuring process , the
"mean error" should be zero: f1E = O. This means f1M = true value.

(c) If Y = a + bX, then a~ = b2ai. For us, b = 1 as we saw in the previ­
ous part of this problem. That means the measurements and the errors have
the same variance. This conclusion makes perfect sense: The only reason the
measurements vary at all is because of the error!

(d) There are two sources of variability: the accuracy of the measuring device
and the skill of the person doing the measurement. Here's the quote from Simp­
son:

... there are certain assignable limits between which all these errors may
be supposed to fall; which limits depend on the goodness of the instrument
and the skill of the observer.

(a) The "numbers" in this case are the various possible values the measure­
ments could take on. The "situation" giving rise to these numbers is a random
experiment, the measuring process (see Problem 4.3.8).

What determines the difference between any two measurements of the same
object? Well, because it's the SAME object each time, the only reason you don't
get the same value, the "true value" being measured, is because of measurement
error. There are two categories of cause for error in a measuring process. Shades
of Simpson (see Problem 4.3.8):

(i) the accuracy of the measuring device is not absolute,
(ii) the skill of the observer is not absolute.

But why is the measuring device not absolutely accurate? If you think this
through, you'll realize there are going to be "many independent random factors"
accounting for this: environmental factors such as temperature, humidity, and so
on. Factors inherent in the measuring device are stress in some small component,
how well-lubricated the moving parts are, and so on. Of course, if the measuring
device is not operating properly, there will also be systematic error. But then
you'll no longer expect to see a normal distribution because now some of the
differences in measurements are due to something systematic-not due solely
to "many independent RANDOM factors."
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And why is the observer's skill not absolutely accurate? We'll leave this to
you. In brief: "many independent random factors." Spell out a few of the specific
possibilities-they're legion.

Thus, if the measuring device is operating properly, the difference between
any two measurements seems to be accounted for by "many independent ran­
dom factors." That means the measuring process is a "situation" like what's
required by our rule. Therefore, the measurements should be approximately
normally distributed. The word "approximately" is required because no real­
world situation ever fits an abstract model exactly.

(b) Choose one number from the population at random. This is something you
do which is repeatable. Outcomes: Usually we try to have our outcomes be
real-world objects, but, here, it's more natural to describe an outcome as simply
the "chosen number." You cannot predict in advance which number you'll get
(why?), so we've verified that this is a random experiment. Now, to an outcome
(the number chosen) the random variable assigns the number itself. Thus, we
have a random variable whose values are just the numbers of our numeric
population. To see if a normal distribution seems appropriate, you would apply
our difference-between-any-two-values criterion to these numbers.

(a) Specification error is just a form of random error. In other words, the error
will be due to many independent random factors.

(b) If there's something systematically wrong in the manufacturing process,
the difference between the actual dimension of the object and the specified
dimension would be determined in part by that systematic, nonrandom factor.

(a) There are categories of such factors. For example, there are environmental
factors : one student took the SAT test in San Diego with beautiful sunny weather,
the other in New York City where she had to fight a snow storm! One student
was stuck in a testing room which was too warm. You name some others.

Then there are factors connected to background of the student: One student
comes from a supportive family of highly educated intellectuals, the other from
a dysfunctional, economically disadvantaged family where she had to struggle
with part-time jobs and strife at home. Another student comes from a supportive
family, but of a minority culture and the test is subtly biased in favor of the
majority culture. You name other such "background" factors which would
account in part for some of the differences in scores.

There are personal factors: One student is smart, the other is not so smart.
One student had a good night's rest and a good breakfast before coming to the
test. Another student was up all night at a terrific party, woke up late, barely
got to the testing center on time, and took the test on an empty stomach. Name
some other such "personal" factors.
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Because the difference in two test scores will be due to "many independent
random factors"-note the independence in all our examples-you would ex­
pect to see a distribution of scores that is approximately normal. Note that the
scores are, in fact, discrete (they're all integers) and there're finitely many of
them, so they cannot fit the normal model exactly-it's a continuous model
after all.

(b) Maybe someone got the test in advance and shared it with a few of her
friends. Of course, that's always unpleasant to think about.

Maybe a small group of students have been meeting regularly and studying
together, encouraging each other and putting in a lot of time. As a result, they
might very well be significantly better as a group than the rest of the class.
Note that for this to work, you must be describing some systematic factor
which accounts for some of the differences in the scores. That's what makes
our criterion fail. It's no longer true that ALL differences are due to independent
random factors because there is this one systematic factor-the "study group"­
which accounts for SOME of the differences.

If only one student saw the test in advance, that would just become one
of the many random factors determining differences. It would not affect the
approximate normality of the distribution. Similarly, if you say, "Some students
studied harder than others," that would not disturb the normality; that seems
simply to say that "effort" is just one of the many random factors determining
differences in score. To make the distribution bimodal (non- normal), you must
identify something SYSTEMATIC which identifies a clear-cut group of students
who outperform the rest of the class.

Note that the bimodal distribution is really a combination of two normal
distributions: the scores for the study group and the scores for the rest of the
class. The difference in scores for two students in the study group is not affected
by "study group" because both students are in that group. Similarly, "study
group" is irrelevant for the scores of the rest of the class-none of them were
in the study group. So, for each group separately, the difference in two scores is
accounted for by "many independent random factors" with nothing systematic,
the systematic effect of "study group" being irrelevant. Here's the picture:

I
47

'----- rest of class ----'

L- study group~

( ~e possible
test scores
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(a) S=T+E.

(b) Think of the population of students as a numeric population-each student
is associated with a certain value of T . Then the various values of T are values
of a random variable as in Problem 4.3.9(b) . So, T should be approximately
normally distributed because the difference in two values will be due to many
independent random factors [analogous to Problem 4.3.11(a)].

(c) E is a form of measurement error. So it 's normally distributed.

(d) Look at the difference in two values of X + Y:

Because each of X and Y is normally distributed, each of Xt - X2 and Yi - Y2
is due to many independent random factors. Therefore, the criterion holds for
the difference in two values of X + Y.

(a) What accounts for the value of Yt - Y2? Well,

Yt - Y2 = (a + bXt) - (a + bX2)

= b(Xt - X2) .

Because b is just a constant, the difference Yt - Y2 will be accounted for by
exactly those factors which account for the difference in the X values. But X is
normally distributed, so the difference in two X values is determined by "many
independent random factors."

Because the difference between any two values of Y is determined by "many
independent random factors," the conditions of our rule of thumb are satisfied
and we should expect Y to be normally distributed.

(b) A binomial random variable takes on all the integer values between zero
and n . But Y = 2X will take on all the even values between zero and 2n. It
doesn't take on odd values as it must if it were binomial.

One example is enough to show that no general rule holds, but two examples
may make the point more clear: If Y = X + 1, Y never takes the value zero;
therefore, Y is not binomial.
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(c) Y

1
3

P(Y)

q

P

1

YP(Y)

q
3p

2p+ 1

q
9p

8p+ 1 Ji, = 2p + 1,
(72 = 4pq, how?

Answers-Level II

4.3.14

Or Ji,y = 2Ji,x + 1 = 2p+ 1.

(7~ = 22(7~ = 4pq.

Note that, of course, you get the same answer both ways.

(d) The point of this entire problem is to see that a linear function of a normally
distributed random variable is again a normally distributed random variable.
Part (b) shows there's no general rule like that: The rule fails for the binomial
model. Part (c) just invites you to recall in detail facts about binomial random
variables and linear functions thereof.

(e) The difference in two values will just reduce to the difference in two values of
X and then of Y. Becauseeach of X and Yare normally distributed, each of their
differences are "due to many independent random factors ." So the difference in
two values ofaX+bY is also. See the solution to Problem 4.3.12(d) where you
applied the criterion to S = T + E.

(a) Remember, in this problem Ji, and a refer specifically to the random variable
X . Now if X = a + bZ, then

Ji, = ux = a + btiz = a since Ji,z = 0,

. 2 1SInce o'z = .

Thus, if X is a linear function of Z, it must be that a = Ji, and b = a,
Now prove that Ji, + O'Z is indeed X. In other words, show that it's N(Ji" 0'2).

That it's normally distributed was shown in Problem 4.3.13(a). And we already
know it has the right mean and variance; that's how we found a and b. Once
again : the mean of Ji, + a Z is Ji, + o'Ji,z = Ji, +°= Ji,; the variance is O'2O'~ =
(721 = (72.

Because there's only one normally distributed random variable with mean Ji,
and variance 0'2 and because we have two candidates (X and Ji, + (7Z), these
two must, in fact, be equal.
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(b) Look at the equation in part (a): X = J.1 + (JZ. Solve for Z:

Z = X - J.1 = .!.X + (_ !!:.)
(J (J (J

= dX +c.

So, d = 1/(J and c = -J.1/(J. And d is positive because (J is.

(a) An outcome here is a "state of the measuring device." To that outcome, M
assigns the observed measurement, whereas E assigns the ERROR in the observed
measurement. That's a different number, of course. That's exactly the difference
between M and E . The experiment is the same and so the outcomes are the same,
but the values assigned by each of these two random variables differ. Therefore,
the random variables are different.

(b) The error is the difference between the measurement and the true value:
E = M - (true value). Thus, J.1E = J.1M- (true value). But J.1E = 0, so J.1M =
(true value). What about the variances? Because the only variable part of M is
the error, M should be exactly as variable as the error. That's true: E = 1 x M­
(true value) and so (J~ = 12 x (JL- = (JL-.

(c) M is normally distributed. This is the content of Problem 4.3.9. The normal
curve for M looks exactly like the normal curve for the errors, E, except that
the curve for M is centered at the true value being measured instead of being
centered at zero like E. Suppose, for example, the true value of the object being
measured is 1.830cm and the standard deviation of the measurement error is
0.025 ern. Then,

I I
I I
I I
I I
I M I EI I I I

1.83 1.855 0 0.025

These pictures have exactly the same shape. Only the center is different.

(d) For E and M, an outcome is a "state of the measuring device." For X and
Y, an outcome is the "die sitting on the table top." Further, E and M assign
different values to their outcome. E assigns the error in the measurement, M
assigns the measurement itself. Similarly, X and Y assign different values to
their common outcome, the "sitting die."

Each case provides an example of a pair of random variables defined for the
same random experiment where the only difference is the rule which assigns
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0.5793 = P(X > 1)

x= l
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numbers to the outcomes. Further, in each case, the relationship is linear: E =
M-(true value) and Y = 7 - X. There are differences between the two cases:
X and Yare discrete and take on the same possible values, the integers from
one through six. E and M are continuous and take on values from different
ranges. E takes values centered on zero; M takes on values clustered near the
true value of the object being measured.

(a) Done.

(b) P(X < 2) = 0.5. Because X is symmetric about its mean of two, there's
a 50/50 chance of a value less than two. Any normally distributed random
variable is symmetric about its mean. Draw the picture!

(c) Okay, once more we'll give you the picture:

standardization
transformation

o

z = - 0.2

The standardizing transformation here is (152) = -1/5 = -0.2.
But, by symmetry, the shaded right-tail area in the last picture is the same as the
shaded left-tail area in

I
o

P(X < 0.2)

. ..and you can find this probobility
from the table-it's 0 .5793

0.2 = z

(d) The standardizing transformation is [(-1) - 2]/5 = -3/5 = -0.6. And by
symmetry P(Z > -0.6) = P(Z < 0.6).
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(e) This comes from P(X > -1) which you just computed in the previous part:

P(X < -1) = 1 - P(X > -1) = 1 - 0.7257 = 0.2743.

Remember, we can ignore any equal signs because X is continuously distributed.

(f) The answer is 0.3446. Here's how:

P(Z < - 0.4)

P(X < 0) = 0.3446

I
2

This left-tail area is the same as the symmetric right-tail area:

P(Z > 0.4) = 1 - P(Z < 0.4) = 1 - 0.6554 = 0.3446.

In a calculation of this kind, you should remember what sort of answer you're
looking for, in this case LESS THAN 50%. It's easy in your thinking to flip-flop
back and forth between "right-tail area" and "left-tail area" too many or too
few times. If you remember you're looking for a probability of less than 50%
you won't make this mistake! Of course, you can't "remember" unless you keep
the PICTURE in mind.

(g) From the picture, clearly you've got to take the area in the right tail above
X = 1 and subtract off the area above X = 7.4.
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x= 1

this minus this

x = 7.4

equals. ..

[0.4392 = 0.5793 - 0.1401J

4.3.17

7.4

The area above X = 1 was computed in part (c) and the area above X = 7.4 is
1 - P(X < 7.4) from part (a). So,

P(l < X < 7.4) = 0.5793 - 0.1401 = 0.4392.

(a) P(X < 5) = 0.8413, P(X < 2.6) = 0.1587, P(X < 2) = 0.0668.

(b) P(X < 14) = 0.8413, P(X < 10) = 0.1587, P(X > 9) = 0.9332.

(c) P(X < 0) = ZERO, P(X < 0.17) = 0.1587, P(X > 0.16) = 0.9772.

(d) This X is just Z, of course. Here are the answers-you've computed all of
them in the previous parts:

P(Z < 1) = 0.8413, P(Z < 2) = 0.9772, P(Z> 1.5) = 0.0668.

(e) P(X> 1) = 0.0032, P(X > 0) = 0.0344, P(X > -3) = 0.8186.

(f) P(4 < X < 9) = 0.4996, P(3 < X < 5) = 0.4972, P(X > 3) = 0.7486.

(g) Take 4 < X < 9 for instance. The trick here is to observe that X less than
nine can be split into the two events A, B defined as

X < 9 if and only if A = X is between nine and four

OR B = X is less than four

(these are mutually exclusive)
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so

P(X < 9) = P(A or B) = P(A) + P(B)

= P(4 < X < 9) + P(X < 4)

since A and B are mutually exclusive. Now subtract P(X < 4) from both sides
to get the required equation.

(a) Solve the following equation to get X = 0.6091:

(X - 1.3)/0.42 = -1.645.

(b) Find the value of Z from the table which puts 0.18 in the right tail (0.92 is
as close as you can get). Then solve for X in (X - f.L)/a = 0.92.

(c) From the table, P(Z > 0.77) = 0.2206.

(d) (X - f.L)/a = (X - 5)/1 = -0.77.

(e) [X - (-2)]/2.2 = 0.61 from which X = 1.342 - 2 = -0.6580.

(f) Here Z = 0.025 because the value you're looking up falls exactly halfway
between the two values in the table.

(g) First, you need the area in the left tail below ten: 0.0409 = P(X < 10) found
from Z = -1.74. Now find X so that P(X <?) = 0.38 + 0.0409 = 0.4209.
DRAW THE PICTURES! The closest you can get is Z = -0.20 giving X = 13.54.

(h) Because 12 is roughly one standard deviation below the mean (a = 2.3),
you would have the following impossible picture:

P(X < 12) > 0.49

12 14

Or just calculate P(X < 12) = 0.1922. It's NOT greater than 0.49.

(i) P(X> -30) = P(Z > 1.2) = 0.1151 and so
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So P(X > X) = 0.1151 - 0.07 = 0.0451 and Z = 1.695 giving X = -27.525.

(j) This is the same as P(X <?) = 84%:

-36 '!

(a) Nine values of Z are required to cut the distribution into ten regions. These
nine values of Z are 0, ±1.28, ±0.84, ±0.52, ±0.25. For example, 40 % of the
Z distribution is below Z = -0.25 and 70% is below Z = 0.52 . If this is not
clear, you didn't draw the pictures. (Don't blame me! I told you long ago: DRAW

THE PICTURES!)

(b) The "ideal" sample is evenly spread in its distribution. However, the phrase
"evenly spread" does not refer to the observations in the sample, but rather
to the probabilities. Now if you had a uniform distr ibution, "evenly spread"
probabilities would mean evenly spread observations along the axis. But we're
talking about a NORMAL distribution where the probability is concentrated near
the center. So an area (probability) near the center representing ten percent will
lie over a shorter interval than an area of ten percent out in the tails:
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10%

10%

I
-1.28

I
o

- 0.25 the possible
values of Z

(c)
(-1.28,0.2), (-0.84,0.4), (-0.52,1.2), (-0.25,1.8 ), (0,2.5),

(0.25,2.7), (0.52,3.5), (0.84,4.8), (1.28,5.2).

(d) For the "ideal" sample-a sample that's distributed exactly like N(J-l , 0'2 )_
the normal probability plot would be a line. If the sample is distributed more
or less like N(J-l, 0'2) (but not exactly), the normal probability plot will lie more
or less along a line.

Of course, a random sample might not look anything at all like the distribu­
tion it's drawn from. Atypical samples are possible. In that case, we'll be led
astray by the normal probability plot-it doesn't take the possibility of atypical
samples into account. That's why earlier we referred to the normal probability
plot as a "relatively weak " check on normality. There are more powerful tests
for normality which do take into account the possibility of an atypical sample,
but those tests are too sophisticated for a first course. You might take some
comfort in remembering that although atypical samples are possible, they're
not probable. We'll justify that statement in the next chapter.
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(e)

5

4

3

2

-1.28 -0.84 -0.52 -0.25 o 0.25 0.52 0.84 1.28

(f) It would seem our sample is not from a normal distribution because the
normal probability plot strays away from a line at the extreme ends. This kind
of plot-one with a vague S shape-suggests a symmetric distribution that's
thicker in the tails than a normal distribution. A certain amount of experience
is required to become good at interpreting probability plots. Any book on Ex­
ploratory Data Analysis will give you further insight into this and many other
graphical techniques for exploring your data.

You can gain some experience on your own by playing with normal proba­
bility plots using any computer statistical package. Use the package to generate
samples from various distributions and then have the package graph a normal
probability plot . You'll learn a lot from this exercise.

(g) The second value of Z was the 20th percentile, determined by 2/(n + 1) =
0.20. The third was the 30th percentile given by 3/(n + 1) = 0.30. In other
words, the formula k/(n + 1) tells what percentage of the distribution should
be "cut off" by the percentile in question. Other formulas that are sometimes
used are (k - 0.5)/n or (k - O.3)/(n + 0.4). There are others! Minitab uses the
function: (k - 3/8)/(n + 1/4).
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When you draw your normal probability plot, you'll see that the plot veers
upward away from a line. That suggests that "time between earthquakes" is not
normally distributed. In fact, a better fit can be found in the family of Weibull
distributions (the exponential distribution is one member of this family) which
is often used to model "time until the next occurrence" in a series. A Weibull
distribution is skewed to the right. A Weibull probability plot for Sieh's data-it
plots the data against percentiles of the Weibull distribution-lies very tightly
along a line, suggesting a reasonable fit to that distribution. So it would seem that
"time between earthquakes" might better be modeled by a Weibull rather than a
normal distribution. The Weibull model can be used to estimate the probability
of an earthquake at Pallett Creek in, for example, the coming year. The Weibull
plot for Sieh's data along with further discussion is given in the interesting
article "Estimating the Chances of Large Earthquakes by Radiocarbon Dating
and Statistical Modeling" by David R Brillinger of the University of California
at Berkeley (Tanur et al.). Of course, ordinarily you would use a computer
package such as Minitab to generate a normal probability plot.

(a) The normal distribution is a CONTINUOUS probability distribution. So our
discrete random variable must look approximately continuous. For that, it must
have many possible values.

The example in the text was defined on the interval from 0 to 10,000. A
continuous random variable on this interval would take on any value from 0
to 10,000. Our discrete random variable takes on only 10,001 values in that
range. It doesn't take the value 1.2 for example, or 1.8, or any other fractional
value. Thus, it's not really continuous, but with so very many possible values
(10,001 of them) it's close!

(b) The normal distribution is symmetric about its mean. So anything that's
approximately normal would have to be approximately symmetric about its
mean.

(c) The normal distribution is symmetric about its mean, so the mean and me­
dian must be the same-50% of the area to the left and 50% to the right. And
there's only one "peak" point (it's unimodal), occurring at the mean. So to be ap­
proximately normal, a discrete random variable must be at least approximately
like that.
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4.3.22 Choose the normal distribution which has the same 11 and a 2 as our X :

X ~ X = N(32.8, 106.09).

Now calculate the required probability:

1.67

P(Z > J.(j7)

o

standardizing
transformation

P(X > 50)

I
32.8

The standardizing transformation is Z = (50 - 32.8)/10.3 = 1.6700. From
this, you find

P(Z > 1.67) = 0.0475 and so P(X > 50) ~ 0.0475.

4.3.23 (a) Because 7 is not included in X > 7, the rectangle over 7 must be excluded:

(b) With a continuous random variable an equals sign will make no difference
because the probability of anyone particular value is zero. Thus, P(6.5 < X) =

P(6.5 :::; X).For X 2: 7, the value 7 is included and 6 excluded, so the rectangle
over 7 must be included :

P(6.5 < X)

5 6 7 8
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You can ignore the equals sign for X because it's continuous but you CANNOT

ignore the equals sign for X. It's discrete.

(c) The value 2 is to be excluded, 8 included:

8!
2

4.3.24

4.3.25

(a) n;::: 10; (b) n/4 ;::: 5; (c) np = 0.05n;::: 5, so n ;::: 5/0.05.

(d) np = 0.002n;::: 5.

(e) nq is smaller than np. Because BOTH must be greater than or equal to five,
you check the smaller one. If it's big enough, of course the larger one is also.
So, nq = n/4 ;::: 5 says n ;::: 20.

(f) np = 12p;::: 5 saysp;::: 5/12 which is just 0.4167.

(g) np = lOOp;::: 5 says p ;::: 0.05.

(h) 150p;::: 5 says p is at least 0.0333; (i) 0.005; (j) 0.0005.

(a) Because np = 2.8 which is LESS THAN FIVE, the normal approximation is
not valid. Besides, you shouldn't use an approximation when the true value is
easily available.

(b) 0.0262 = P(X > 136.51/1 = 120, C7 = 8.4853).

(c) Because np = 6, the criterion for the normal approximation holds and the
approximation should be valid (just barely!). But it's not appropriate to use it.
Why should you settle for an approximate value when the exact value is easily
available?! So your answer should be 0.8062.

(d) You want to approximate the area of the rectangle centered at X = 24.
Here's the picture:
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the curve for the
density function of
the approximating X

4.3.26

and so

P(23.5 < X < 24.511-t = 24,(7 = 4.5957) = P(-O.l1 < Z < 0.11) = 0.0876.

(a) The characteristic is D > 2.35, where D is the diameter of a randomly
selected machine part. It's reasonable to assume D normally distributed. You
should be able to justify that assumption, of course. Remember, if an assumption
is required to work a problem, make that assumption and then go ahead and
solve the problem. You should be prepared to discuss the appropriateness of the
assumption if asked. Assuming D is normally distributed, we find that

p = Prone machine part has the characteristic]

= P(D > 2.3511-t = 2.3, (7 = 0.1)

= 0.3085.

With this value for p, we can answer the original question:

P(X ~ 51n= 12,p = 0.3085) = 1 - 0.7009 = 0.2991.

You get the value 0.7009 using either the binomial recursion formula, or calcu­
lating directly

The recursion formula is much faster, of course! I do it both ways just as a
double check. Here's the real-world answer:

There's about a 30.32% chance that when twelve of our machine parts are
chosen at random at least five will be more than 2.35 em in diameter.
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(b) Note that in six months there are 4380 hours (365/2 times 24). Now,
assuming the lot of machine parts is chosen randomly, X is binomial, just as in
part (a), but with a different characteristic of interest. The basic question is

P[X ~ 250!n = 500,p =??] =???

The characteristic of interest is that one part "lasts six months," meaning that it
operates at least six months. Let T be the time to failure for one of these parts.
Then "having the characteristic" means T ~ 4.38 (in thousands of hours) . It's
reasonable to assume an exponential distribution for T, a typical application of
that distribution. So,

p = P(T > 4.381oX =?) = e-t >.

= exp[-4.38/6]

= 0.4819.

in fact oX = i

We found the parameter oX for the exponential distribution from the formula
itT = l/oX. Because itT = 6 (thousand hours), oX = 1/6. So now the original
question becomes

P[X ~ 250ln = 500, p = 0.4819] =???

Use the normal approximation. It's valid here because np and nq are at least
five. In fact, np = 240.9545 and nq is even larger. So we must evaluate

P[X > 249 .511t = 240 .9545, (7 = 11.1730] = P(Z > 0.76) = 0.2236.

For the binomia!J.t = np and (72 = npq, so we took these values as the mean
and variance of X. The real-world answer is

There's about a 22.36% chance that at least half of our customer's
lot of five hundred machine parts will last six months or more.

(c) The pattern is the same as for part (a) because the characteristic of interest
concerns the diameters, but now the value of p is

p = P[one machine part has the characteristic]

= P(D > 2.5511t = 2.3,(7 = 0.1)

= 0.0062.
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We need to find P(X > Sin = 500,p = 0.0062). A direct computation would
be tedious (six calculations with some large numbers), but unfortunately the
normal approximation is not valid because np = 3.1 < 5. However, we CAN use
the Poisson approximation. Because p :s: 5% and n 2: 20, that approximation
is valid (see Problem 3.8.10).

Let X be the approximating Poisson random variable. Using the Poisson
recursion formula, we find that P(X :s: 5) = 0.9057 which gives our answer:
P(X > 51..\ = 3.1) = 0.0943. So, the real-world answer is

There's about a 9.43% chance that more than five of a
lot of five hundred machine parts will be unusable.

Of course, the binomial recursion formula itself is not much harder. And it gives
a somewhat more precise answer: 0.0937. Try if you like.

You might have saved yourself some work with the Poisson approximation
if there had been a Poisson table handy. Of course, a handbook with such a
table would also have a binomial table, but usually binomial tables don't go as
high as n = 500. They don't need to. When n is large, either p is small, so the
Poisson approximation is valid, or p is not so small, in which case the normal
approximation is valid. Note how the normal and Poisson approximations are
complementary to each other.

4.4.1 (a) The answer is 2.5 %. There's a 97.5% chance for Xl to take a value less than
23.336 and you need the probability to be greater than that.

(b) Here's the picture of Xl with 19 degrees of freedom :

the possible
values of x227.204 32. 52

-- - - - - -""'-_-,.,-....--..97.5% - - - -1
900/<

To the left of 32.852 is 97.5% of the area and to the left of 27.204, 90%. So
between those two is 97.5% - 90 % = 7.5 %.

(c) You want the probability that Xl > 40 , with d = 20. Answer: 0.005.

(d) Look at the definition of sampling from a probability distribution. You have
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a simple random sample of size 20 from the distribution of Z. That means the
values were generated by independent repetitions of the underlying random
experiment.

If the values of Z are from a numeric population and you're not thinking in
terms of a random experiment, then the sample should have been chosen with
replacement, making the Z's independent. If the sample was chosen withotrr
replacement, but the population was quite large compared with the sample size,
the distinction between with and without replacement doesn't much matter,
so still the Z's would be at least approximately independent. Unless otherwise
stated, we assume our populations large.

(e) While the scores would be normally distributed, they do not have mean zero
and standard deviation one. In other words, you do not have a sum of squared
Z's .

(a) X2 = 36.191.

(b) 97.5% of the area under the curve is to the left of X2 = 30.191. You have to
find the point to the left of 30.191 which removes the first 95% of the 97.5%.
It's 27.587.

(c) Assuming these Z's are independent, we want the value of X2 which cuts off
90% in the left tail (to put 10% to the right). Here d = 6 because there are six
Z's . The answer is X2 = 10.645.

(a) X2 is a sum of squared quantities. So it can't be negative.

(b) With more squared Z's in the sum, the expected value should be larger. This
also follows from the formula for the mean of X2-its just d. So of course, if d
(the degrees of freedom) increases, then the mean (it's just d) will increase.

(c) With d = 4, X2 = Z2 + Z2 + Z2 + Z2 . Now for this to take a large value (so
it falls in the "far right tail") at least some of these Z's must be quite extreme.
That's possible but unlikely. That it's possible says all values in the far right
tail are possible, so the curve must cover the entire positive axis all the way to
infinity. That it's unlikely says the area in the far right tail is small.

(d) Here J1, = 14 and (J' = 5.2915 ((J'2 = J28)
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(e) E(Z2) = (J2 + J-l2 = 1 + 0 = 1. Then since the mean of a sum is the sum of
the means, E(X2 ) = d.

(a) Draw the picture for the normal distribution of diameters and you'll see
that 1.3 must standardize to Z = -0.52 and 1.71 to Z = 0.25. That will give
you two equations (the standardizing transformation) in the unknowns J-l and
(J. Solve for J-l and (J.

(b) The assumption should be valid unless there is something systematically
wrong with the machine. See Problem 4.3.10.

(c) Draw the normal distribution for diameters. You want to put an area of
0.0001 in the right tail. Then diameters falling in the right tail will occur with a
probability of one in 10,000. The cutoff for that area is the desired maximum.
It must standardize to Z = 3.86 . Solve the standardizing transformation to get
the maximum.

So, 0.045 = P(T > 10) = e- 10A• The trick for getting variables out of the
exponent is to take logarithms

In(0.045) = -lOA

because for any a, In(e a ) = a [recall: lnte") = aln(e), but In(e) = 1]. Thus, the
mean of T, the average waiting time, is l/A = 3.2247 minutes . Now 0.2247
minutes is about 13.48 seconds.

(a) Z = 1.2 so 88.49% of the students pass. That's 28,983 students.

(b) p = 0.1151 from part (a). The exact probability is C(100, 10)plOq90, but
that coefficient will be difficult to calculate. Use the normal approximation; it's
valid here because np > 11 2:: 5 and nq is even bigger. So, with J-l = 11.51,
(J = 3.1914,

P(9.5 < X < 10.5) = P(-0.63 < Z < -0.32) = 0.1102.

p = 1/35, so P(X > 0) = 1 - P(X = 0) = 0.5155.
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I 0.0228
II 0.1359

III 0.6826
N 0.1359
V 0.0228

1

(b) The mean of the hypergeometric is np, so

Size

Expected #
in a carton

I

0.2736

II

1.6308

III

8.1912

IV

1.6308

V

0.2736

(c) The simple addition rule holds because the sizes are mutually exclusive.
Thus, 15.87% of all stones are of size IV or V. You will have a sample of
n = 12 x 110 stones . The expected number in a sample to have the characteristic
of interest is np = 209.484.

(d)

P(X> 120ln = 1320, p = 0.1587) ~ P(X > 120.5)

= P(Z > -6.70) = 1.

Here /-l = 209.484, U = 13.2755.

(e) Draw the picture! P(Z > 1.28) = 0.9, so (24 - /-l)/u = 1.28.

24 = 1.28u + /-l

= 1.28y1npq + np

You know p here, so you have an equation to be solved for the one unknown, n.
However, the equation involves the square root of n. Introduce the substitution
u = Vii. This gives the following quadratic equation in u which you solve using
the quadratic formula

24 = 0.1911u + 0.0228u2

or 0 = 0 .0228u2 + 0.1911u - 24.

You'll find u = 28.5230 (ignore the negative root because u cannot be negative).
And so n = u2 = 814, rounding UP to be conservative. Now if you need 814
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stones, you'll need 68 cartons (67 cartons would give you only 804 stones which
is not enough).

(a) J.1T = 2.5, so you would expect A = 1/2.5 malfunctions in one hour. Thus,
3.2 in eight hours (if the model is valid).

(b) P(X = 0) = e- 3.2 = 0.0408.

If p = 0.154, P(X :::; 15) ~ P(X < 15.5) = P(Z < -6.45) = O. If p = 0.057,
P(X:::; 15) ~ P(X < 15.5) = P(Z < -1.63) = 0.052. The case was remanded
to a lower court to determine what the pool of candidates should be.

(a) So it's the "twelfth order-statistic," denoted by X(12) . And X(6) = 1.3.

(b) M < X (h) means Y < h because h - 1 or fewer observations in the sample
are BELOW M. And M > X(k) means Y 2: k (Y is discrete, we cannot ignore
equals signs!), so

P(M < X(h)) + P(M > X(k)) = P(Y < h) +P(Y 2: k).

(c) Taking the continuity correction into consideration and taking Y as the
approximating normal, you want

From the pictures of Y and Z , you'll see that h - i must standardize to - 1.645
and k - i must standardize to 1.645. Write down those two standardizing
transformations and solve the first for h and the second for k. Remember that
the mean is nl2 and the variance n14.Letting Zo = 1.645, you'll get the formulas
given in the problem statement.

(d) Because n = 10, hand k are given by (11 ± ZoJIO)12. Thus, h = 2.9,
k = 8.1 and the endpoints are X(3) and X(8). The order statistics, X(3) and X(8),

are determined from the ordered sample

6.2, 6.3, 6.3, 6.4, 6.4, 6.4, 6.5, 6.5, 6.7, 6.8.

(e) You must assume your observations really are a simple random sample from
the distribution of "filL" They will be if the "fill" is independent from one cup
to the next. Ask an engineer who knows the fill mechanism!
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(f) The median is a fixed number (a parameter), it can't be sometimes here
and sometimes there! The 90% probability refers to the INTERVAL. A different
sample would yield a different interval. So it's the interval that's sometimes
here and sometimes there-sometimes it contains M, sometimes not. The 90%
confidence coefficient means that 90% of all intervals obtained in this way
would contain M. Of course, we'll never know whether our particular interval
is one of the 90% good intervals or not. So there's a ten percent risk of error in
our procedure.

(g) In the problem statement just before part (a), the confidence coefficient was
analyzed schematically this way: 0.9 = 1-0.1 = 1- (0.5 +0.5). In part (b), this
analysis led you to choose a value for Zo to locate the 90% confidence coefficient
in the middle of the Z-distribution. Now we have a 95% confidence coefficient.
We should locate this 95% in the middle of the Z-distribution. That requires
Zo = 1.96. So hand k are still given by (11 ± Zo V1O) /2, but with the new zoo

Thus, h = 2.4, k = 8.6, and the endpoints are X(2) = 6.3 and X(9) = 6.7.

(h) Now hand k are given by (101 ± zoV 100 )/2. So h = 37.6 and k = 63.4.
Thus, X(38) = 3.11 and X(63) = 3.13 are the endpoints.

(i) "With a one percent risk of error, we can be sure that U.S. pennies have a
median weight of between 3.11 and 3.13 grams." This is the formal conclusion.
However, it's subject to misinterpretation. See Problem 3.10.14(h), (i) and see
also part (f) of this problem.

ChapterS

(a) Populations are either dichotomous or numeric. Because you're asked about
a MEAN, clearly the population must be numeric -there's no way to speak of a
mean unless you have a set of numbers which could be averaged together.

(b) If you're going to compute the mean score of a test, you need all the test
scores. In general, to compute a population mean requires that you have the
entire population available to you.

To compute the mean of a random variable, you need some mathematical
description of the entire distribution of that random variable. For example, to
compute the mean length of all rods from a manufacturing process, you require
a description of the lengths and the corresponding probabilities. That's much
harder to know than just to find the mean itself. Note that there's no question of
computing the mean length from "all the rods that will every be manufactured."
The whole point is to know the mean length BEFORE we manufacture them!
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(c) You're assuming the random sample is exactly like the original distribution
and so gives the same mean.

(d) You are assuming that the random sample is more or less like the original
distribution and so gives approximately the same mean.

(e) A random sample is NOT necessarily typical of the distribution it's drawn
from-even approximately! In fact, it could be quite atypical, and so NEITHER
of the assumptions in (c) or (d) is acceptable. Do you remember this discussion
concerning populations from Chapter 2? It's in the subsection of Chapter 2
entitled "The Statistical Questions."

(f) You don't. For example, suppose you're sampling from a population. The
only way you would know if a sample is typical of the population it's drawn from
would be to actually compare it with the entire population. But if you knew the
population completely enough to make such a comparison you'd have enough
information to just compute the value of jL-that's exactly what we said was
not possible. In this chapter, we're asking what you can do if it's not possible
to actually compute the value of the parameter.

Similarly, if you're sampling from the distribution of a random variable, to
know if a sample is typical would require some complete description of the
distribution so you could compare the sample with the distribution as a whole.
But as a practical matter, no such complete description will exist.

(g) One particular value of X by itself tells you NOTHING. At this point the
situation looks hopeless. But it's not-READ ON!

(a) This is a dichotomous population. It's true that the population consists of
numbers, but we are not interested in the actual values of these numbers, we're
only interested in the fact that some have a certain characteristic of interest and
that others do not. It's a dichotomous population which happens to consist of
numbers.

(b) If you wanted to know the proportion of students on a test who had a
passing score, you would need two pieces of information-how many students
took the test and how many passed. The ratio of these two numbers is your
answer. If 30 took the test and 22 passed, then p = 22/30.

In our problem, you would need to know (1) how many persons reside in
the geographic area in question and (2) how many of them are over 50 years
of age. In other words, you would need to have some very specific information
about the total population. If the population as a whole is not readily accessible
to you, this information would not be available.
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(c) Wrong!! You are not justified in saying that the true proportion is even
approximately the same as your sample proportion. Why not?

(d) Your sample might be very unlike the population as a whole. Furthermore,
you'll never know whether it's a typical sample or not. That would require
comparing the sample with the whole population. If you could do that-if the
whole population were that accessible to you-there would be no need for
sampling or for estimating the value of p, you could just calculate the true value
of p from the whole population.

So what can you say about the population based on one simple random sam­
ple alone? NOTHING! If that makes the situation sound hopeless-i-xeen READ­

ING!

(a) There are 21 of these samples. They are:

{0,1} {0,2} {0,3} {0,3} {0,4} {0,5}

{1,2} {1,3} {1,3} {1,4} {1,5}

{2,3} {2,3} {2,4} {2,5}

{3,3} {3,4} {3,5}

{3,4} {3,5}

{4,5}

(b) Here are the corresponding values of X:

0.5 1.0 1.5 1.5 2.0 2.5

1.5 2.0 2.0 2.5 3.0

2.5 2.5 3.0 3.5

3.0 3.5 4.0

3.5 4.0

4.5

(c) X computes a number for each sample-its mean. So, X is just a random
variable. The random sampling process is indeed a random experiment, and
so the samples are outcomes of a random experiment. The sample mean is an
assignment of a number to each of these outcomes. Don't forget, by the way,
for us the sample size in random sampling must be fixed; in this case, it's fixed
at n = 2.
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(d) There are 21 samples, each occurring with probability 1/21. So if a value
of X occurs three times-if it's the mean for three different samples-it has
probability 3/21. Here's the probability distribution for X:

X P(X)

0.5 1/21
1.0 1/21
1.5 3/21
2.0 3/21
2.5 4/21
3.0 3/21
3.5 3/21
4.0 2/21
4.5 1/21

--
1

(e) X P(X) XP(X) (X - JL)2p(X)

0.5 0.0476 0.0238 0.2043
1.0 0.0476 0.0476 0.1176
1.5 0.1429 0.2143 0.1641
2.0 0.1429 0.2857 0.0467
2.5 0.1905 0.4762 0.0010
3.0 0.1429 0.4286 0.0262
3.5 0.1429 0.5000 0.1232
4.0 0.0952 0.3810 0.1943
4.5 0.0476 0.2143 0.1770

1.0001 2.5715 1.0544 so, JLx = 2.5715,
c2:. = 1.0544.x

(f) It's the answer to the original question! It's the value of the unknown JL.
Except for the last digit, which is off due to rounding, the mean of the sample
means is the same as the mean of the original population ...

(0 + 1 + 2 + 3 + 3 + 4 + 5)/7 = 2.5714.

General Fact: The "mean of the sample means" is just the mean of the original
population-not just for this one example; it's a general fact. This makes sense
too if you think about it -the average value of the numbers in a sample is on
average the same as the average value of the population of numbers it's drawn
from.
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(g) The sample means are less variable than the numbers making up the popu­
lation. Here are three ways of thinking about this:

(i) The sample means compared with the population: The sample means are
concentrated near their center-four of them take on the value 2.5. SIXTEEN
of the 21 samples give means within a range of only two points, 1.5to 3.5. By
contrast, the population is spread fairly evenly over its entire range, with only
one value duplicated. (Of course it's true the range is smaller-the sample
means have a range of only four, whereas the population has a range of five.
But this is just a fluke of our unrealistically small population. For a large
population, this difference in the range would be negligible.)

or

(ii) a general principle: You could observe that in looking at the means of
samples you are "averaging out" some of the variability by looking at several
population members at once.

or

(iii) variances compared: You can just compare the population variance with
the variance of the sample means: (72 = 2.5306, whereas (7~ = 1.0544, a
smaller number.

(h) The true population mean is f-L = 2.5714. The typical samples are the ones
in the box ...

{0,1} {0,2}
{1,2}

If "typical" means X is
within one point of u;
the "typical" samples are ---t

{O,3} {O,3} 1{0,4} {0,5}
{1,3} {1,3} {1,4} {1,5}
{2,3} {2,3} {2,4} {2,5}

{3,3} {3,4} {3,5}
{3,4} {3,5}

{4,5}

Let's say, in trying to estimate this unknown p.; you had drawn the sample
{3, 5}, with a mean of four. Based on this sample alone, you'd get a very wrong
idea of the true population mean. You can see that there are eight such atypical
samples and they're entirely possible as outcomes of your sampling experiment.

So remember, with simple random sampling from a population, each sample
is equally likely to be drawn. If you draw one sample and have nothing else to
go on, you could be very misled about the true nature of the population!

(i) By itself, absolutely NOTHING!
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(a) That random sample by itself would tell you NOTHING about p.

(b) NUMERIC population?! Ouch! That's not correct-it's a dichotomous pop­
ulation which just happens to consist of numbers. We're not interested in the
actual values of those numbers, rather we're interested in a certain characteris­
tic the numbers mayor may not have. Some of the numbers are "positive even
numbers," some are not .

(c) p looks at a random sample and assigns a number to it. In other words, p is
a random variable-it's an assignment of a number to each of the possible out­
comes (the samples) of a random experiment. What's the random experiment?

(d) p = 0, i or 1.

(e) The proportion of a sample having the characteristic of interest should on
average be the same as the proportion of the population having that character­
istic. Watch:

p P(P) PP(p) p2 P(P)

0 10121 0 0
1/2 10121 5/21 5/42
1 1/21 1/21 2/42

1 6/21 7/42 so J-lp = 2/7,

(1~ = 0.0850.

So the mean of pis 2/7 which equals the proportion of the population having
the characteristic of interest. In other words, J-lp = p. The variance of p is

7/42 - (6/21)2 which is just 0.0850.

(f) The word "typical" now refers to a different aspect of the population. Before,
we were thinking of it as a numeric population and asking about the mean. Now
it's a dichotomous population and we're asking about the proportion which
have a certain characteristic of interest-being positive and even. So different
samples look typical because we've changed the meaning of "typical."

The word "typical" now means the sample proportion is close to the popula­
tion proportion of 2/7. Because 2/7 ~ 30% and the closest sample proportion
is 50%, you might want to say that none of the samples is typical! But this hap­
pens only because we've taken such a small sample. Let's not be too restrictive;
let's agree that a sample is typical if p is within 25 percentage points of the true
p. So a sample is typical if p falls between 2/7 - 1/4 and 2/7 + 1/4. In that
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case, those samples for which p= 1/2 are the "typical" samples-there are ten
of them:

{O,l} {O,2}
{1,2}

5.1.5

5.1.6

If "typical" means p is
within 1/4 of p, the "typical"
samples are the ten in the boxes .

(g) On the basis of one random sample by itself with nothing else to go on, you
can say NOTHING AT ALL about the population.

(h) In fact, one random sample by itself, with no other information to go on, tells
you NOTHING about the population as a whole. So what's the use of sampling
experiments? Isn't this whole discussion just a waste of time? NOT AT ALL-READ

ON!

Statistics can involve a "three valued logic." Statements taken abstractly are
either true or false, yes. But taken in the light of given information there are
not just two possibilities, there are three: justified, inconclusive, or unjustified.
In light of the information X = 2.37, with nothing else to go on, the statement
/.L ~ 2.37 is inconclusive.

So the defect we're discussing is to think some conclusion must be possible
based just on our one sample. You're drawing a conclusion where no conclusion
is possible. It's true that /.L is either close to 2.37 or it 's not. But the argument goes
further-it tries to decide between these two alternatives. That's NOT possible;
no such conclusion can be justified based on one sample alone.

(a) An estimator is a random variable. The underlying random experiment is
"random sampling." An outcome is one random sample. To that outcome (the
sample), the estimator assigns a number-the value of the estimator computed
from that sample. So the estimator is "an assignment of a number to each of
the possible outcomes of some random experiment."

(b) ... its probability distribution. For any random variable, we would want,
at the very least, the mean and variance. Beyond that, we would want some way
(formulas, tables, pictures, etc.) to get hold of the probabilities. In other words,
we would want the probability distribution for that random variable.
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(a) The variable, X, is either hypergeometric or binomial depending upon
whether you sample with or without replacement. But even if the sampling
is without replacement, the binomial model is still a reasonable approximation
if the population is large. Let's assume the binomial model for X. Here's how
you obtain p from X . . .

p= ljnX.

r Jount how many have the charactersitic
divide by the sample size

Now use your familiar formulas

If Y = a+bX,
then j.J,y = a + bj.J,x

O"~ = b20";'

Here a =°and b = 1jn. So the formulas for the mean and variance of pbecome

j.J,p = (ljn)j.J,x = (ljn)np = p,

O"~ = (ljn2 )0";' = (ljn2)npq = pqjn.

This result is consistent with the answer to Problem 5.1.4(e) where, for that
specific example, you calculated that j.J,p = p. Now you see there was nothing
special about that example, it's a general fact:

When sampling from a dichotomous population, the expected value of p,
j.J,p, is just p, the proportion of the population having the characteristic of
interest.

(b) As above, p= (ljn)X for a binomial X. X counts how many in the sample
have the characteristic of interest. Its possible values are

0, 1, 2, 3, ... , n - 1, n.

So the possible values of pare

0, ljn, 2jn, 3/n, . .. , (n - l)jn, 1.
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Here, because n = 100, Ptakes the values

0, 0.01, 0.02, 0.03, ... , 0.99, 1.00

There are 101 values, too many to attempt drawing a line graph.
But the normal approximation is appropriate for X because np, nq ~ 5.

Becausepis a linear function of X, pis itself approximately normally distributed
(using Problem 4.3.13). Here's the picture:

/V probabilities for p
/ determined by area

p= ??

( ~e possible
values of p

5.1.8

In the picture, you seep as the mean and you see that its exact value is unknown.
We didn't label J..L + (J" because it's algebraically too complicated to carry much
intuitive meaning (p + Vpqjn).

(c) X is the binomial random variable! Everytime you observe the characteristic
of interest ("success"), you record a one, otherwise a zero. So X, "the number
of ones," is the number of successes. That's the binomial X. Thus, once again,
p= (ljn)X, with X binomial. Now the argument is exactly the same as before.

(a) The "total context" of the estimator is its probability distribution as a ran­
dom variable. You can summarize that distribution in a picture such as the one
for pgiven just above. So the "whole picture" becomes a picture in the literal
sense!

The important, subtle point here is that a random variable-in this case,
an estimator-is much more than just a number, or even a set of numbers.
Random variables are very sophisticated theoretical models. You've spent a lot
of time learning all about them! The "total picture" or "entire context" of a
random variable is summarized in its probability distribution which displays all
its possible values together with the associated probabilities and other relevant
information (the mean, etc.).

(b) Look at the total context of the estimator p. In other words, look at the
normal distribution of pgiven in the previous problem. You see the unknown
parameter p-it's the center (the mean) of that probability distribution.
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The relationship of p to p is the sampling distribution pictured in the previous
problem together with the pair of equations

J-Lp = p,

2_ /(J"p - pq n.

(a) You don't know and never will know where to locate p= 0.18 in the picture
because the picture is centered on p and you don't know its value. Furthermore,
in any practical situation, the true value of a parameter like p is not knowable!
But if you don't know the center of the distribution, you can't locate a specific
value.

Think about this: The population is much too large to actually compute the
true proportion of persons over 50 years of age. Even if you had enough money
to survey the entire population, such a large survey would contain unknown
and uncontrollable errors of various kinds. Furthermore, the survey requires
time to complete, so the proportion of the population over 50 would certainly
change before you were finished. People are born and die and people move in
and out. Many practical problems will prevent your ever knowing the center
for the probability distribution of an estimator.

(b) (i) Done.

(ii) This picture is entirely possible. The only difference between it and the
first is the spread; the second is a little less spread about its center. But that's
possible because we don't know the standard deviation ofp (it requires know­
ing p).

(iii) Because J-Lp = p and this picture is centered on the observed p, we would
have to accept that p = 0.18 . Exactly 18% of the entire population is over 50
and we observed a random sample also having exactly 18% over 50! This is
possible alright, but we'd be very surprised if it did, in fact, happen. It's like
tossing a coin 1002 times and getting exactly 501 heads!

(iv) This picture is silly-it implies that 0.18 is a negative number!

(v) This picture is not possible either, for essentially two reasons . First of all,
it implies that p = 0, which is not likely. If none of the population have the
characteristic of interest, you wouldn't have been asking about it in the first
place. In this problem, however, we KNOW that p is not zero! How?

Second, even if p could be zero, this picture is not possible because it's
symmetric about its mean. That implies there 's a 50/50 chance for a sample
proportion which is negative, but proportions are necessarily non-negative.
Could you have MINUS three percent over 50 years of age?
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(vi) This picture is not possible because it's not centered on p, contradicting
the fact that /1-p = p.

(vii) This picture is entirely possible.

(viii) This picture is impossible. It implies pcould be larger than one. Could
more than 100% of your sample be over 50 years of age? Of course not,
proportions can't be larger than one!

(a) If p = 0, then none of the population are over 50 years of age. But you
obtained a sample with 18% having that characteristic, so even if nobody else
is over 50, those people are! For example, if n = 200, then at least 36 people
in that geographical area are over 50-you've seen them and interviewed them
for your sample!

(b) The estimator p is "essentially" a binomial random variable. It's p =
(l/n)X, a linear function of a binomial X. If you're sampling without replace­
ment, X is really hypergeometric. But even so, it's approximately binomial if
the population is quite large so that the "with-without replacement" distinction
doesn't much matter.

Now if tip, nq ~ 5, the binomial random variable is approximately normally
distributed. But this is tricky because you don't know the value of p and the
condition tip, nq ~ 5 involves p. To guarantee validity for the normal approx­
imation, you would explore "worst-case" scenarios: If you're sure p is at least
80%, for example, then q < 0.2, so you would have to choose n = 25. In
general, the further p is from a half, the larger n would have to be to guarantee
the condition np, nq ~ 5. This means the sample would have to be large.

Here's how you analyze this: 5 ~ nq and q < 0.2 together give

5 ~ nq < 0.2n,

and so 5/0.2 < n, where 5/0.2 = 25.

(a) The question we're trying to study in this chapter is of the form "What's
the value of this unknown parameter?"-"What is p" for example, or "What
is /1-?" When the estimator is unbiased, its "on average" value (its mean) is the
parameter in question. That's the connection between the question being asked
and the estimator being used to answer the question. For pand p, the connection
is the equation /1-p = p; for X and /1-, it's the equation /1-x = /1-. SeeProblem 5.1.8.

Of course, there are other important connections between the estimator and
the unknown parameter-through the equations for the variance, for example.
These various "connections" of p to p are aspects of the "whole context" of
the estimator which we talked about in Problem 5.1.8. That "context" is the
sampling distribution taken as a whole. By the way, note that we've not yet seen
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how the sampling distribution actually allows us to say something meaningful
about the parameter-in the very next section, we'll do that!

(b) The standard error is vpq/n; it measures the accuracy of pas an estimator.
Because n is in the denominator, as n increases, the standard error gets smaller.
This fact is what controls variability in the model from sample to sample : When
n is large, there's less variability from sample to sample; when n is small, there's
relatively more variability from sample to sample.

To say "most samples are typical" is just to say that most pvalues are concen­
trated near p . Because we have a normal distribution centered at p, that's true.
Most of the probability is concentrated near the center, but that center: /-ljJ = p.
Suppose, for example, a "typical" sample is a sample which gives a value of p
that's within, say, ten percentage points of the true p. The picture will be:

p= ?

p- 0.1
I

the 'typical' V's

Suppose the standard error is smaller:

p= ?

p- 0.1
I

the ' typica l' V's

p+D.1
I

p+D.1
I

( the po..ible
values of V

The second picture shows that a much larger percentage of the p values fall
within the range of "typical" p's. So we see that

SMALLER STANDARD ERROR .••

IMPLIES •••

IMPLIES • • •

IMPLIES .• •

more values of pclose to p,

more samples are typical,

Pis a more accurate estimator of the unknown p.

This gives the conclusion we stated above-the standard error measures the
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accuracy of the estimator. Here's another way to think of all this: The estimator
will become more accurate if we take larger samples because

• "larger sample" means "more information,"

• "more information" means "more accurate estimate."

(c) The smallest value, zero, is too far below the true value of p (one percent).
And ten percent, the very next value of p, is already too far ABOVE the true
value! Even when n = 100, the situation is not much improved.

(d) Choose n to make equality hold: pq/n = (0.02)2. With p = 0.5, we get
0.25/0.0004 = n so let n = 625. A larger n would make the standard error
even smaller, because n is in the denominator. So we've made the standard error
be "no more than two percentage points," as required.

(e) Here 's the picture:

?? the possible
values of p

5.2.2

For this picture to hold, you must be looking at all values of pwithin about two
standard deviations of the center (two "standard errors') . That means 2 x 0.02
(four percentage points).

(a) Here's the picture:

I
0.42

P( p > 0.6 ) P(Z > 2.58)

i
2.58

The square of the standard error (the variance of the sampling distribution) is
tn!» = 0.42 x 0.58/50 = 0.004872 (you should not round until you have
completed your calculations). So p = 0.6 standardizes to

0.6 - 0.42
s.e.
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which is just z = 2.58. Then P(Z > 2.58) = 0.0049.
Real-world conclusion:

There's a 0.5 % chance of a sample of 50 morning commuters
where more than 60% say they use public transportation.

(b) The number of possible "yes" responses increases with the sample size. In a
sample of 50, you could have 50 yes's, in a sample of 100, you could have 100.
On the other hand, the proportion of yes's in a sample is relative to the sample
size. No matter what the sample size, the proportion can be anywhere between
zero and one (or, as a percentage, between 0% and 100%).

In each case, the appropriate measure of variability is the variance. For the
number of "yes" responses, the variance is npq (binomial model). It increases
with the sample size, so the number of yes's is more variable for a larger sam­
ple. For the proportion of yes's, the variance is pq/n (the variance of p). That
decreases with the sample size.

(c) Real-world problems in this chapter ask for the value of an unknown para­
meter such as p or 1£. But in this problem, we KNOW p-it's 0.42. We're exploring
what could be said about the estimator p based on a random sample. So the
population seems to be known quite well (we know what proportion use public
transportation) and we ask a question about what ought, in theory, to be true
of a random sample. That's theoretical and "unrealistic," but it's very useful for
understanding how the theory works.

(d)

P(15 < X < 20) = P(O.3 < p < 0.4) = P(-1.72 < Z < - 0.29)

= 0.3859 - 0.0427 = 0.3432.

(e) You know exactly what proportion of morning commuters, if asked, would
say they don't use public transportation. You were given that, it's 58%!

(f) If Pcontinues to be the proportion of the sample who say "yes" as we've
been doing it, then 1 - Pis the proportion who say "no." So

1 - P> 2/3 if and only if 1/3 > p.

The original question is P(p < 1/3) =??, and the answer is

P(p < 1/3) = P(Z < -1.24) = 0.1075.
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Now change the problem around. Do it in terms of the parameter q, the
proportion of all morning commuters (58%) who would say "no." With this
new parameter, p is the proportion of your sample who say "no." So now,
P(p> 2/3) = P(Z > 1.24) = 0.1075.

(g) The question here asks for P(O.4 < q < 0.46). Let's stick with p = 0.42
and convert the question to a question about p. First, multiply by -1 (inverting
the inequality): -0.4 > -1 + P> -0.46, then add one: 0.6 > p > 0.54. This
converts the inequality in qto one in p. So you need

P(0.54 < p < 0.6) = P(1.72 < Z < 2.58)

= 0.9951 - 0.9573 = 0.0378.

Or you can do this problem with q = 0.58. You have to find the probability:
P(-2.58 < Z < -1.72). It's exactly the same probability, of course: 0.0378.
It must be the same because it answers the same question, just taking another
point of view.

(h) Here's the picture of p:

0.42

( ~e possible
values of p

5.2.3

Knowing there's about a 68% chance that pfalls within one standard error (one
standard deviation) of the mean, we locate the point I-" + 0". Between it and the
symmetrically placed point, I-" - 0", we should find a bit more than two- thirds
the area .

(a) If all values (call them X) are the same, the mean takes that same value also.
So X = I-" for all X. But then the deviations from the mean, X-I-", are all zero.
So 0"2 = 0, because it's the average of the squared deviations from the mean.

(b) The normal approximation is justified because np, nq 2:: 5. The total context
of p= 15/24 is the probability distribution of p:
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pep < 0.625)

I I
0.5 0.625

s. e . = 0.1021

( the possible
va lues ofp

The standard error is the square root of m!» = 0.5 x 0.5/24. Applying the
standardizing transformation to 0.625, we obtain our answer from the Z table:
P(Z < 1.22) = 0.8888.

Why isp = 0.5? The parameter p is the probability of having the characteristic
of interest. It's the probability that any ten-year-old is less than 129 em tall,
shorter than average: P(H < J..LH) . It's should be about one-half. You can obtain
this from the probability distribution of H (height).

(c) p = 0.1736 is obtained as follows:

, I

184 200

P(R > 200) = 0.1736

and so pep > 0.2174) = 0.017 5 .. .

I
0.1736

the possible
heights

----==--- - - --i- - - ----- - - Z

0.217 '1

here the standard error is 0.0353

1.24

(d) In part (b) the normal distribution for height is symmetric about its mean
of 129. That means there's a 50-50 chance (p = 0.5) for a ten-year-old to be
shorter than 129 em. In part (c) you use the normal distribution to calculate
p = 0.1736.
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A variable like height will often be normally distributed-the difference be­
tween any two heights would be determined by many independent random
factors with nothing systematic going on. But it would not be true, for ex­
ample, if you were speaking of the ten-year-olds and their parents. In such a
case, there's a relevant systematic consideration-adult versus child-which
accounts for some of the differences in height. The population of children and
parents should have a bimodal distribution.

In addition to the normality assumption, in parts (b) and (c) you had to
assume the students were "like" a random sample. Otherwise, the theory you
used is not valid. This assumption might fail in many ways. Name some.

We are given: (1) a range of possible values for p:

~ ./ P is likely to be somew here
~ - between 15 and 21 percent

i
0.15

I
0.21

5.2.5

and (2) a 95% probability that the range of values actually does include the
unknown p. These are the two "parts" of a confidence interval-the range of
possible values and the probability for the parameter to fall within that range.

(a) The "total situation" consists of a question about an unknown parameter p
together with the tool for answering that question-the probability distribution
for p. This shows what's variable: the possible values of p(a random variable) as
determined by the various samples. The center of the interval and its width are
determined by the observed value of p (in our example, 18%). With a different
sample you'll have a different value of p and, so a different interval (different
center and different endpoints).

Therefore, for a confidence interval, IT'S THE RANGE OF VALUES THAT
VARIES-the range of values is determined by the sample and varies from sample
to sample . Exactly how all this happens can't be clear to you yet. We need to
see how the range of values for a confidence interval is actually determined by
the sample data.

(b) It's impossible for p to be sometimes here and sometimes there! After all,
p is not variable. It 's some fixed quantity which, in the case we're looking at,
happens to be unknown.

(c) It's the interval itself which varies [see part (a)]. So the probability of 95%
means
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Of 100 samples, about 95 on average will yield a confidence interval con­
taining the unknown p and about five will generate an interval that fails to
contain p.

Of course, in any real-world situation, you get one sample only, so this proba­
bility remains theoretical. It's a way of measuring your "risk of error" in using
this estimation technique.

So of 100 intervals, 95 should be "good" and five "bad." You probably could
guess that the five bad intervals are the ones generated by the atypical samples.
This should sound familiar-you saw in Problem 5.2.1 (b) that most samples are
typical. In other words, most p's are close to p. This is because p is a normally
distributed random variable centered on p: The probability is concentrated near
p, the mean. Here's the picture:

I
p~?

mosl i/s ore
concentrated
near p

the possible
values ofp

5.2.6

5.2.7

Now you see the tremendous significance of having a sampling distribution
which is symmetric and "mound-shaped" and which is centered on p: Very
atypical samples giving p values far from the true p are possible but not likely.

(a) Different samples would give different intervals for p. As a practical matter,
you obtain only one such interval. There's a 95% chance that your particular
interval, in fact, does contain p. So, you can be confident that p is in the interval­
it may not be, but it probably is. The usual terminology is to say, "We are 95%
confident that p is in the interval (0.15, 0.21)."

(b) More certainty in your conclusion would require more information on
which to base the conclusion. Information is never free. In the present con­
text, "more information" means you would have to take a LARGER SAMPLE.

And that costs-sampling is an expensive process!

(a) Instead of an exact value for p, you are given a range of possible values.
You never know which of these possible values is the true value of p. So there
is inexactness in the value of p .

But not only that, there's a small probability (5% in this case) that the true
value of p isn't within that range at all. That's true if you were unlucky enough
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to obtain an atypical sample. So another source of inexactness in the answer
is the possibility of highly atypical samples which generate "bad" confidence
intervals . Here, we use the word "bad" as we did above in the answer to Prob­
lem 5.2.5(c)-a confidence interval is "bad" if the true value of the parameter
is not in the interval at all. This is not standard terminology by the way; we use
it here to help focus on the effect of very atypical samples.

Of course, in any realistic situation there are many sources of error, not just
two! Principal among them are human errors of various forms-improperly
collected or recorded data, computational errors in summarizing the data, and
so on! All we've done in this problem is to identify the two sources of error that
are formally accounted for and controlled in our procedure for constructing a
confidence interval.

(b) Use the midpoint of the interval; that's the observed value of pwhich you
obtained from your sample. In the example, it's 18% because that's halfway
between 15% and 21 %.

So, in fact, you'll be acting as if p were approximately 18%-as if p ~ p. But
you know exactly how it could be wrong. There are two sources of error and
you exercise control over the those two possible errors.

(c) First of all, there is the range of possible values, 0.18 ± 0.03 . The observed
18% which you will use for p could be off by three percentage points either way.
Second, there's a chance (in this example, a 5% chance) you could have been
seriously misled by an atypical sample so that the true value of p is nowhere
near 18%! The true value of p may not be in the "range of possible values" at
all.

You control both of these possible errors. The first you control by knowing
the upper and lower limits of the range of possible values for p (21% and 15%,
respectively). You control the second by choosing an acceptable probability (5%
in our example) that your range of values doesn't contain the true value of pat
all.

(a) The confidence coefficient is a probability. A probability assertion about p
requires its probability distribution! You will need the following picture:

p= ?

In other words, to construct a confidence interval for an unknown p, you require
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more than just one sample and one value of p. You require the "entire context"
of p-its sampling distribution.

(b) When you say, "Based on this sample we believe, p ~ 18%," you're trying
to draw a conclusion from one sample alone. That's not possible. Complete the
conclusion by giving (1) the probabilty that the estimate is valid (in our example,
95%) and (2) the maximum error of the estimate (3% in our example). Here's
a corrected version of the conclusion:

Based on this sample, with a five percent risk of being wrong, we believe
p to be approximately 18% with a margin of error of three percentage
points.

(a) Here 's the picture:

95%

I

11

I
R

Ihe possible
values 01 jJ

Now standardize R

and solve to find

r values

) 01Z
___L.-_ _ ....,.-__--+ ..-

This Z value of 1.9 6 is
found in the table from:

P(Z < 1.96} = 0.975

1.96 = R - !-Lp
{7 "p

R = !-Lp + 1.96{7p

= p + 1.96CTp because rzj, = p.

Similarly find
L = p - 1.96{7p.

So, {) = 1.96CTp.

(b) The standard error of pis Jpq/1000. Ifyou can evaluate the standard error,
you must already know the value of p. But if you already know p, why would
you want to estimate it?
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(c) Here's the parabola, p _ p2:

the graph of...
'-- pq = p( 1 _ p) = p _ p2

1
4

/
/ 1

2
' )
l' C

possibilities for
the unknown p
(between 0 and 11

5.2.10

5.2.11

5.2.12

When p = 0.5, pq is as large as possible. Then, of course, q = 0.5 also. If we
assume this "worst-case" scenario, the standard error for pwill be approximated
by 0.0158. This is the square root of

pq/n = 0.5 x 0.5/1000.

A confidence interval answers a question of the form: "What is the value of
this unknown parameter?" Because a parameter is just a number, you would
expect a very simple answer: a number! But a confidence interval is much more
complex than that. It's based on partial information in the form of ONE random
sample, information that could be very misleading. To account for the possi­
bility of a misleading sample, a theory is required-the theory of ALL random
samples. That theory provides the sampling distribution of the estimator. Using
the sampling distribution, we can obtain (1) a range of possible values for the
parameter and (2) the probability that that range of values actually does con­
tain the unknown parameter value. These two items constitute the confidence
interval. It's not just a number! And it's derived from some very sophisticated
considerations.

(a) If the confidence coefficient is 95%, then you should expect 9.5 out of ten
intervals on average to contain the unknown p. If the confidence coefficient is
80%, then eight out of ten intervals should contain the unknown p, on average.
Note that you cannot make any assertion about a SPECIFIC ten intervals-you
can say what ought to happen on average. That's what the confidence coefficient
is all about. It's a probability, a theoretical relative frequency.

(b) In the real world, ONE SAMPLE ALONE is all that's practical.

(a) (Jj = m!» ~ 0.25/600 = 0.000416667 (giving all the accuracy of the
calculator), so that the standard error is 0.0204. From the Z table we find
Z = 1.28 will give the required 1 - a:



608 Answers-Level II

80%

p

and so the endpoints of our interval are

p± 1.280"p = 0.43 ± 1.28 x 0.0204,

where we are approximating the standard error by assuming the worst case. The
worst case occurs when p = 0.5-that's when the standard error will assumes
its largest possible value.

(b) Here the picture to determine Z is

90%

p 1.645

The probability we must find in the body of the table is exactly halfway between
the probabilities for Z = 1.64 and Z = 1.65. Thus, we interpolate in the table
by assuming the required value of Z to be exactly halfway between 1.64 and
1.65.

Now the standard error is obtained from aj :s 0.25/450. So the endpoints
of our interval are

p± 1.6450"p = 0.71 ± 1.645 x 0.0236.

(c) Z = 1.08 and O"j = 0.25/280 giving endpoints

p± 1.08av = 0.45 ± 1.08 x 0.0299.

(d) Z = 1.75 and O"j = 0.25/40.
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This is like Problems 5.2.1(b) and 5.2.5(c). The normal distribution is "mound
shaped" with most of the probability concentrated at the center. Because pis
unbiased, that center is the unknown p. So most of the p's are close to p, meaning
most samples are more or less typical.

Atypical samples (p far from p) are possible, but their p's are in the tails of
the distribution and only a small part of the probability is in the tails-again
the "mound" shape of the normal distribution. Atypical samples are possible,
alright, but they're not probable! Here's the picture:

5
the possib le
values of f;

--------.;...-----~"-------
]I

the probability
is concen trated

near p
these are from the
'typical' samples

5.2.14 (a)

0.18 + 1.6452/480 ± (1.645/v'240)VO.18 x 0.82 + (1.645)2/960
1 + (1.645)2/240

0.185637552 ± 0.041182367
1.011275104

(b) 0.18 ± 1.645 x 0.0323, approximating (J~ = pq/n by 0.5 x 0.5/240.

(c) 0.18 ± 1.645 x 0.0248, approximating (J~ by 0.18 x 0.82/240.

(d) The conservative and the less conservative approaches are always centered
on the observed value of p; here 18%. The exact endpoint approach will have
a center slightly off from that, the larger n is the more slight is that difference.
Here, the "exact" interval is centered at 18.355%.

The center of an interval (a, b), by the way, is just the average of its endpoints.
Draw a number-line picture: The center is a+ "half the width of the interval,"
a + (b - a)/2, which is easily seen to be (a + b)/2 .

The error tolerance of the first interval is 0.0408, of the second, 0.0526, and
of the third, 0.0408. The error tolerances for the first and third intervals look
the same, but they're not really the same. The difference is in the negligible term
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z2/4n = 0.0028-this term is so negligible that in the first four decimal places
of the standard error we don't even see the difference!

The second interval has a larger error tolerance, reflecting the conservative
approach of approximating the standard error by its largest possible value. It's
good for the error tolerance to be as small as possible-that means we locate
the unknown value of p somewhere within a very narrow range of values. So, of
course, a conservative estimate (a "worst-case" estimate) will allow a relatively
large error tolerance.

(e) The "exact" formula is derived using as model the normal approximation
for the distribution of p.

(a) (0.1914,0.2515); (b) (0.1837,0.2563); (c) (0.1899,0.2501) .

(d) The error tolerances: 0.0301, 0.0363, and 0.0301. Again, the second in­
terval is the widest (it has the largest error tolerance), reflecting a conservative
estimation procedure-it has the greatest uncertainty as to the actual value of
p. The other two are centered at 22 %. Of course, all three intervals have a 92 %
probability of containing p.

The conservative approach gives an interval which is very crude. You observed
8% having the characteristic, but all you're able to say is that p is less than about
18%. And you get no information at all about the smallest value because the
calculated left endpoint is a negative number, but p cannot be negative. That's
why we give zero as the left endpoint.

The less conservative approach gives an interval of more or less the same
length as the exact interval, but it's centered 1.55 percentage points too low­
it 's centered at 8%, but the exact interval is centered at 9.55%. That could be
a significant distortion.

This sample of n=100 is really too small because z2 In = 0.0384, that's almost
four percentage points and it's not negligiblewhen the sample proportion is 8%!

(a) You might assume these 318 printheads form a random sample of all print­
heads from your company-a simple random sample chosen withotrr replace­
ment from a dichotomous population. Because, presumably, you produce thou­
sands of printheads, the population is very large compared with the sample size
of 318 and so our normal model of p should be approximately valid. But you
would have to look carefully at the process by which these 318 printheads were
chosen to see if "random choice" seems at all reasonable. If not, the real-world
conclusion given in part (b) could be very wrong.

A second way to model this problem is to think of the production process as a
Bernoulli trial with "success" being "produce a printhead which will fail within
the warranty period." If "fails within warranty period" seems to be independent
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from one printhead off the production line to the next, you have a simple random
sample of 318 from the distribution of that Bernoulli random variable, the
variable being X = 1 if "failure within warranty," X = 0 otherwise.

This second way of modeling the problem focuses the unstated assumption
more clearly. You should consult with one of your engineers to see if "fails within
warranty" could be reasonably considered independent from one printhead to
the next as they are produced.

On the other hand, if the engineer says, "No, that's not reasonable. That
kind of problem tends to come in runs," then the second way of modeling the
problem is not valid. But note that these 318 printheads almost certainly were
not taken from the production line successively one after the other. If you look
carefully at exactly how they were selected, you may feel satisfied that "random
choice" seems a reasonable assumption. Then you are back to the first model.

Note how these two ways of modeling the sampling process are not equiv­
alent-they are in a sense complementary. If one is not reasonable, the other
may be!

(b) For 1 - a = 0.99, we look up 0.995 in the body of the Z table. It's exactly
halfway between two values in the table: 0.9949 and 0.9951. So select the
midpoint between the two corresponding Z's, select Z = 2.575. Because you
were not told otherwise, use the less conservative approach. Then, the real-world
answer IS

We believe there is somewhere between a 1.44% and a 7.36% chance for
one of our printheads to fail during the warranty period. There is a one
percent risk of error in this conclusion.

Or you could say, "We are 99% sure that ...." Any formulation of the real­
world answer is fine as long as it accounts for both the range of possible values
of p and the probability that that range of values actually does contain p.

(a) Ham interviewed 563 people. The only meaningful answer would be a con­
fidence interval: "We can be about 95% sure that between 18% and 25% of
residents of Tallahassee consider themselves to have stuttered at some point." We
do not claim they are "stutterers." We only say that they considered themselves
to have stuttered at sometime in the past (maybe only once!). The standard error
is 0.0176.

(b) "With a 5% chance of error, somewhere between about nine and fifteen
percent of Tallahassee residents considered themselves to be stutterers at the
time of the interview." The interval: (0.0939,0.1477).

(c) "Accepting the judgments of the interviewers, we can be about 90% sure



612

5.2.19

Answers-Level"

that between two and five percent of Tallahassee residents were true stutterers
at the time of the interview." Note that 48 respondents were judged to have
normal speech with only "normal dysfluencies," so only 20 were judged to be
true stutterers. The standard error: 0.0078.

(a) IfP= 0.18 and 1 - a = 0.95, there is a 95% chance the confidence interval
actually does contain p, so the confidence coefficient measures our certainty
that the interval estimate is really valid. Here's how it works: If we need a value
of p for some computation, we'll use 18%, the observed p-the center of the
interval. The maximum error of the estimate is the maximum distance between
our estimate and any point in the interval-between p = 0.18 and any point
which we think might be the true value of p:

~ / this distance is the
r-r- ...::.11-, - 'maximum error of

I the estimate'

i
L

i
U

(b) (i) The "worst case" interval was (14.9%, 21.1 %), so the maximum error
of the estimate was 3.1 percentage points:

0.211 ; 0.149 = 0.031.

~ / a d istance of 3. 1 percentage
.----__-----'11:.., - poi nts, the 'maximum error

I of the estimate'

14.9 21.1

Because the endpoints of the interval are p± z(Jp, it's clear that the general
formula for the maximum error of the estimate is just z(Jp. Here Z is 1.96 and
the standard error is estimated by the square root of 0.25/1000, so we get
1.96 x 0.0158 = 0.0310.

(ii) The less conservative estimate of the standard error is obtained by using
p= 0.18 in place of p in the standard error formula:

y'0.18 x 0.82/1000.

With this, the maximum error of the estimate is 1.96 x 0.0121 = 0.0238,
about 2.4 percentage points (compared with 3.1). This seems to be a better
error tolerance (maximum error of the estimate) but it comes at the cost of less
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certainty-we know the true standard error is no larger than our estimate in
the conservative case. In the less conservative case, we can't be sure.

(c) The conservative estimate for the standard error takes the largest possible
value it could ever have. That Occurs when p = 0.5. So the true standard error
is smaller than our estimate of it. But the standard error should be small; so if
our estimate is always bigger than the true value, the estimate is always valid.

5.2.20 A 95% confidence interval for the specificity: (0.9985, 0.9995). The standard
error here is estimated to be 0.000241661, calculated using ji = 0.999003108.
Don't calculate with a rounded value, these numbers are all too sensitive to
loose accuracy like that! Note that p = 17/17053.

5.2.21 (a) We've shown that pq is maximum when p = 0.5. So, we know for sure that

2401pq ::; 2401 x 0.25 = 600.25.

But n must be an integer. Here you should round UP to 601 just to make
absolutely sure your sample is large enough.

(b) You know that pq ::; 0.21. Here's how: We know that pq = p - p2 is a
parabola where the maximum value occurs at p = 0.5:

,
1 ' ,,

1
2

( the 9<aph at pq ~ p - p'

~------

I
I- 1 _

I

pq

}L------------<-----I.~-p

/ / 0
/

/

0.21

withp > 0.7
pq<0.21

You were given that p > 0.7. Now from the picture, it's clear that pq (on the
vertical axis) gets smaller and smaller as p moves above 0.7. So pq::; 0.21 and

2401pq ::; 2401 x 0.21 = 504.21.

With n = 505, you can be sure n is larger than 2401pq, as required. Now q
is the smaller of p and q and you know it's AT MOST 30%, but you have no
limit on how small it could be (the larger p, the smaller q). So to use the normal
approximation, you would require q to be at least about 1% (505/5 = 0.0099).
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(a) You require that z2pq/ n ::; (0.005)2 and so n must be at least (2.575)2 x
0.25/(0.005)2 = 66,306.25.

(b) n 2: (1.75)2 x 0.25/(0.005)2 = 30,625.

(c) n 2: (2.575)2 x 0.0099/(0.005)2 = 2625.7275.

(d) n 2: (2.575)2 x 0.000999/(0.005)2 = 264.9598. If you do this with your
calculator as a continuous calculation, it's not necessary to round. That's why
we show more than four decimals in the intermediate steps.

But there are two conditions to be met here. One is the specified error toler­
ance-you've just taken care of that. The other is the condition for validity of
the normal approximation which you are using, that's where the 2.575 came
from! For it to be valid, you must also have np 2: 5. With n = 265 and with
the worst case of p (p = 0.001), np would be less than one. Taking the worst
case of p, you find that n must also be at least 5000. To satisfy both conditions,
you 'll have to choose n = 5000. In part (c), this problem does not arise because
there, 2626 x 0.01 2: 5.

(a) First, sampling from the distribution of the random variable X: Because X k
is a value of X, the "on average" value is J.Lx, which we're writing more simply
as J.L. Similarly, its variance is (Ti = (T2.

Suppose X k is the number obtained on the kth draw from a numeric popula­
tion. Then its "on average" value is just the mean of the population it's drawn
from, J.L, and its variance would be (T2, the variance of that population.

(b) You must show that J.Lx is just J.L, the parameter to be estimated. But because

you get

J.Lx = (l/n)(J.L + J.L + J.L + ...+ J.L) .

This is true because the mean of each Xk is just J.L by part (a) and because "the
mean of a sum is the sum of the means." Now, J.L added to itself n times is just
n J.L and so

J.Lx = (l/n)(nJ.L) = lJ.L = J.L.

(c) Now, the variance of a sum is the sum of variances only if the random
variables are independent, but our Xk's are all independent. That's guaranteed
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by the definition of a "simple random sample." So,

(T~ = (1/n)2((T2 + (T2 + (T2 + ... + (T2)
X

= (1/n)2(n(T2)

= (T2 In.

Thus, the standard error is (TIVii.

(a) X = (l/n)~Xk is a linear function of the Xk'S which are normally dis­
tributed random variables (they're "versions" of X). But linear functions pre­
serve normality [see Problem 4.3.13(e)] and so we get our required result,
namely: X is normally distributed because it's a linear function of normally
distributed random variables. A linear function, recall, is one which involves
only sums and multiplication by constants-that's true for X.

Clearly, the difference between these two X's is determined by the differences
among the four numbers in the numerator. But those four numbers come from
the underlying population. Because that population is normally distributed, the
differences among those four numbers are determined by "many independent
random factors." So, Xl - X 2 is determined by the same "many independent
random factors." Note how the criterion transfers from the population to the
sample means.

Now think again about part (a). If those Xk's are values of a normally dis­
tributed random variable X, still the differences among the numbers in the sum
are accounted for by many independent random factors because X is normally
distributed-the same argument. So, part (a) can be done two ways.

But sampling from a population is a special case of sampling from the distri­
bution of a normally distributed random variable; so the argument in part (a)
can be made to work in part (b). In short, there are two arguments for each
part of this problem: the linear function argument and the "rule of thumb"
criterion. Both are instructive and helpful in understanding the sample mean as
a normally distributed and unbiased estimator for an unknown mean.



616

5.3.3

5.3.4

Answers-Level"

Here are the two sample means:

Xl = l/n(XI +X2 +X3 + ,..+Xn },

X2 = l/n(XI + X 2 + X3 + .,.+ X n }.

For simplicity, we write them with the same notation, but don't forget that they
come from different samples and so the Xk's are different.

We have MANY RANDOM FACTORS:

The difference between these two sample means is determined by the differ­
ent Xk'S from which they're computed. There are 2n of these Xk'S. Now,
we're assuming n large; suppose, for example, n = 100. Then there are
100 X k's in the first sample and 100 in the second; 200 altogether. That
means there are MANY Xk'S. And they're randomly generated because these
are random samples.

which are INDEPENDENT:

The values of any two of the Xk'S are independent. That's how the sample
is chosen: either through (1) independent repetitions of the experiment for
the random variable X or through (2) sampling from a numeric population,
with replacement (i.e., the choices are independent).

So if n is large, the sample mean should be approximately normally dis­
tributed (our criterion holds): The difference between any two sample means is
"determined by many independent random factors." Note the critical use of the
condition that n be large; it gives us the required many of "many independent
random factors." In Problem 5.3.2, that "many" came from the fact that the
underlying situation was itself normally distributed.

(a) There's a simple and very basic relationship between the total of a sample
and its mean: ~Xk = nX. It 's a linear relat ionship. So ~Xk is just a + bX,
where a = aand b = n.

Now, a linear function of a normally distributed random variable is itself
normally distributed (Problem 4.3.13). Here, X is approximately normally dis­
tributed because we have a large sample (the Central Limit Theorem). And
~Xk is a linear function of X. So ~Xk must also be approximately normally
distributed.

By the way, you could also obtain this result using our heuristic criterion for
normality, but you were asked to use the Central Limit Theorem instead.

(b) Here's the matching
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But the right-hand column is just what we need: Random error can be thought of
as the sum or total of many independently and randomly chosen numbers-the
sum or total of a large simple random sample.

(c) Random error is "like" the sum of a large sample. By part (a) such a sum is
approximately normally distributed.

The "true" measurement is a constant (although unknown). It's only the errors
that vary. So M is a linear function of random error:

one measurement = true measurement + random error

M a + E

5.3.6

5.3.7

By the previous problem, random error should be approximately normally dis­
tributed. Because M is a linear function of random error, M also should be
approximately normally distributed (Problem 4.3.13).

We estimate (T x' the standard error, by sj..;n = 0.0618. Then we compute the
endpoints as 2.37 ± 1.645 x 0.0618 = 2.37 ± 0.1017.

(a) Cancel the n in the denominator:

S2 = _n_a-2 = _n_ (.!. I;(X _ X)2 f) = _1_ I;(X - X)2 f.
n-1 n-1 n n-1

(b) I;(X - X)2 f = I;[X2f - 2XXf +x 2f] = I;X2f - 2XI;Xf + X 2I;f.

Now use I;f = nand X = (ljn)I;Xf:

I;(X -X/f=I;X2f-~(I;Xf)2+n(~I;Xf)2=I;X2f-~(I;Xf)2.

Now when you multiply by 1j(n - 1) you get the required formula for s2.

(c) First set up a frequency distribution for the data:
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X f Xf X 2f

4 2 8 32
5 2 10 50
7 3 21 147
8 1 8 64

8 47 293

Now..s = 1.5526 is the square root of 82 = 2.4107 = (8 x 293 - 472)/(8 x 7).

(d) A value of 8 is calculated from the numbers in a random sample, so the
random experiment, the "doing," is just "random sampling." There's no need
to verify that it's a random experiment-that's true by definition: "random
sampling" is any random experiment which produces a sample as outcome.
This also identifies the outcomes: An outcome is one sample. Now, 8 assigns a
number to an outcome according to the rule given by the formula in part (a). So
8 satisfies the definition of "random variable"-it's an assignment of numbers
to the outcomes of some random experiment. Clearly, from that formula, 8 is
a measure of spread about the sample mean exactly in the same sense that (J is
a measure of spread about the population mean, so 8 is an "estimator" for the
parameter (J.

(e) Note that 82 is a linear function of a-2 : 82 = [n/(n-l)]a-2 : You just multiply
a-2 by the constant n/(n - 1). So the expected value of 82 is that same function
applied to the expected value of a-2 :

5.3.8 (a) For proportion problems, your original question is, "What is the value of
this UNKNOWN proportion, p?" But that same unknown p appears in the standard
error formula (the squared standard error is (J~ = pq/n).

(b) You can get around the unknown p entirely by using the "exact" formula
for the endpoints of the confidence interval. That formula does not involve p
at all. Then there's the conservative estimate that replaces p by 0.5. This is
conservative in the sense that the standard error is larger for that value of p
than for any other possible value. Finally, there's the less conservative approach
based on the "exact" formula that replaces the unknown p by the observed p.
This depends on the fact that for large samples, the term z2/ n in the "exact"
formula is negligible.



5.3 .10

5.3.9

5.3.10

619

(c) In each case, you replace the unknown parameter by a value calculated from
the sample itself. This is not obviously valid-in each case it requires careful
justification.

For proportions, the justification comes from looking at the "exact" formula
and observing that all the z2/ n terms are negligible if n is large. When you omit
these negligible terms, you get a formula for the endpoints which just replaces
the unknown p in the standard error formula by p. In the case of means, we use
s in place of (J" when n is large. So far we have not justified using the sample in
this way-we will see that later when we study the small sample case.

(a) z = 2.33, (J"x = 1.21/V250 = 0.0765 and so the endpoints are determined
by 6.4 ± 2.33 x 0.0765.

(b) Now (J"x = 0.0071 and the endpoints are: 0.32 ± 2.33 x 0.0071. Note that
you're given the population variance and so there is no need to estimate the
standard error (The squared standard error: (J"2/n = 0.02/400).

(c) z = 1.75, (J"x = 0.6 giving endpoints of 122.51 ± 1.75 x 0.6.

(d) z = 1.60, (J"x = 0.0115.

(e) Here (J"p is to be estimated by vpq/n = 0.0144 with endpoints determined
by p± 2.33(J"p = 0.23 ± 2.33 x 0.0144.

(a) If 1 - 0: = 0.85, then z = 1.44. The standard error here is approximated
by 1.1314, calculated from s]vn = 8/J50. So the endpoints of the 85%
confidence interval expressed in months are

32.3708 and 35.6292.

Now, 32.3708 months is 2.6976 years-two years plus 69.76% of a year. Well,
69.76% of a year is 0.6976 x 12 = 8.3708 months-but you were to round to
the nearest month. So you get two years and eight months. Similarly, 35.6292
rounds to two years and 11.6292 months which rounds to two years and 12
months, in other words, three years.

(b) "We can be about 85% sure that between 14% and 30 % of the children
coming to the daycare center are under one year in age." The endpoints to four
decimal places are 0.1356 and 0.3044, and the standard error is 0.0586.

(c) Your sample came from the population of children brought to the ski resort
by their parents even though no daycare facility was available. Now with the
daycare center set up, it's entirely possible, even likely, that more small children
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come to the resort. In that case, your question is about a different population
than the population from which you drew your sample. Of course, the manager
may feel her question is not important enough to warrant the time and expense
of obtaining a new sample. That decision is her responsibilty.

There is no need to estimate the standard error because you know CT to be
0.0341. The sample standard deviation (8 = 0.0090) is irrelevant. So your
standard error for this data is CT/y'ri = 0.0341/v76 = 0.0039 .

(a) The endpoints of the interval are 7.2449 ± 1.645 x 0.0039. The final con­
clusion of the problem is

We can be about 90% sure that the average fill per cup after resetting the
fill mechanism is at least 7.2384 ounces and not more than 7.2513 ounces.

(b) This is exactly like part (a), but with z = 1.96. You were asked about the
"fill" not the "average fill," but evidently the person asking the question means
fill for the "typical" cup. This situation is very common in real-world questions
where the actual question is not exactly the intended question. So the question
must be interpereted. So far, the only interpretation possible for us is "typical
fill" in the sense of average. So we give a confidence interval for the average fill
and state the answer accordingly

We can be about 95% sure that the AVERAGE fill per cup after resetting the
fill mechanism is at least 7.2428 ounces and not more than 7.2491 ounces.

Later, in section 5.5 we'll see how to answer the question where it's interpreted
as asking for the "predicted" fill of one particular cup. For that we give a so­
called "prediction interval" as answer.

(c) Again, this is exactly like part (a), but now z = 2.33. A question of, "How
much drink is dispensed per cup?" must be taken to mean "What's the average
fill per cup?"

We can be about 98% sure that the average fill per cup after resetting the
fill mechanism is at least 7.2358 ounces and not more than 7.2540 ounces.

(d) You cannot provide the required answer! The only information available
is the observation of 76 random cups of drink dispensed after resetting the fill
mechanism. Because this is only a random selection of all possibilities and could
be misleading, any conclusion you draw is open to error. The most you can do is
control the error by specifying in advance an acceptable NON-ZERO probability
of that error.



5.3 .12

5.3.12

621

(e) "We can be about 90% sure that somewhere between six and eighteen per­
cent of all cups will overflow after resetting the fill mechanism ." The endpoints
to four decimal places are 0.0575 and 0.1794. The standard error is 0.0371.

(f) You have no information about fill before resetting the fill mechanism.

(g) Assume the fill mechanism of the dispensing machine to be a random mech­
anism and assume repetitions to be independent. The data is a random sample
from the probability distribution of the random variable "fill': We have an or­
dered set of 76 values of "fill" obtained from 76 independent repetitions of the
random experiment.

(h) The "doing" of the underlying experiment is "operate the fill mechanism,"
clearly this is repeatable. An outcome is "one filled cup." Evidently one cup will
have a bit more or less than another cup-we cannot predict the outcome in
advance. This identifies the random experiment. Then "fill" assigns a number
to such an outcome by measuring the amount of fill. That number, the amount
of fill, is assigned to the outcome "filled cup." So "fill" is an assignment of a
number to each outcome of a random experiment and is, therefore, a random
variable.

(i) You don't know the value of p, but np = 76p 2:: 5 implies p 2:: 6.58%.
Because your observed proportion is close to 12%, it might seem you have
nothing to worry about. But in fact, the lower endpoint of your confidence
interval allows for p to be less than 6.58%. So, the normal approximation may
well be invalid. To avoid this uncertainty, measure the fill of a few more cups.

Or, if you're willing to accept a bit more uncertainty, scale down your original
requirements: Do an 80% confidence interval. Then the lower endpoint is above
7%, and there's no suggestion of a problem with the normal approximation.
Now you report that with a 20% risk of error between seven and seventeen
percent of cups will overflow.

Ignoring the problem and staying with the original 90% interval introduces
an unmentioned and uncontrolled uncertainty. By reducing the confidence co­
efficient and recalculating the interval, you accommodate that uncertainty into
your answer in an explicit, controlled way.

(a) The picture determines which samples are going to be considered "typical,"
but the range of "typical" X 's is determined by J-L± 1.34ax and you don't know
the value of J-L.

(b) Still, you know that a particular value of X has an 82% chance to be
within 1.34 standard errors of J-L. By using this theoretical information about
the sampling distribution of X, you can construct an interval centered on your
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observed sample mean. That particular interval mayor may not contain u.
However, you have controlled for this uncertainty-you know that 82 % of all
such intervals will contain the unknown value of u,

(a) The "total context" is the sampling distribution of the estimator. If the
estimator is unbiased, the sampling distribution is centered on the unknown
parameter. If the sampling distribution of the estimator is normally distributed
(at least approximately), then the value of the estimator computed from your
one sample is found somewhere in a picture such as

I

YO" vc lue computed~
from your one sample

I

~ the unknown

parameter

5.3.14

5.3.15

Finally, there will be a standard error formula which will measure the accuracy
of our estimate. It measures how spread this picture is about the unknown
parameter. But the more spread the picture, the less accurate the estimate-the
more spread the picture, the greater the probability of observing values far from
the unknown parameter.

(b) The endpoints will have the form 3.12 ± 1.645 s.e. To give actual values to
these endpoints, you'll need the formula for the standard error of that particular
estimator. The standard error formula will depend on which parameter and
which estimator you're working with .

The standard error may itself involve some unknown parameter. If so, you
have a problem. For proportions, the standard error involves the proportion
itself-we've studied that case in detail. The standard error for means involves
the population standard deviation, CT, which mayor may not be known.

(a) The endpoints are X ± 1.645CTX , (Tx = 1.01/V8 = 0.3571.

(b) Here the endpoints are X ± 1.96CTx> lTi = 3.6/50 = 0.0720.

(a) The standard error is 1/JIT = 0.2887. You should not use s = 2 which was
computed from the sample because CT is known. Why introduce an estimate for
the standard error when you have enough information to compute it exactly?!
Even if you didn 't know CT you couldn't use s as an estimate here because the
sample size is not large. The endpoints of the interval are 17 ± 1.96 x 0.2886.
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(b) "We can be 95% sure that the new mean of this population is something
greater than 11.8741 butless than 12.9259 ." This is just part (b) of the previous
problem. Don't use 8 here!

(c) We require a "maximum error of the estimate" of 0.4. That means 1.962a 2I
n:S: 0.42. With a = 1, n 2: (1.96)2/(0.4)2 = 24.01, so let n = 25. We need to
select 13 more from the population to complete our sample. Note this will give
a new, more accurate sample mean.

(d) 16.7833 ± 0.4 . Note that you don't need any calculations-e-your sample
size was chosen to force the 0.4 error tolerance.

(e) Note that for the interval to be half a point wide, the error tolerance (max­
imum error of the estimate) should be half that: it should be 0.25. So now we
have 1.6452a2I n :s: 0.252, with a2 = 3.6.

It 's a probability distribution-the distribution of the random variable t.

(a) The underlying random experiment is the random sampling experiment
which produced our sample. An outcome of that experiment is just one particu­
lar sample. Now 8 assigns a number to that outcome. That number is calculated
from the sample data according to either the conceptual or the computing for­
mula as given in Problem 5.3 .7.

(b) If X comes from a normal distribution (and only then), (X - J-l)/a = Z. So
if the sample comes from a normal distribution,

is just a sum of squared Z's. That's chi squared if all the Z's are independent
just from the definition of chi square. Because our sampling procedure obtains
the X's through independent repetitions of the random selection process, these
Z's are independent. Well 82 is not equal to that sum of squared Z's, but it's
closely related to it. So, as we claimed, 82 is intimately related to the chi-squared
distribution. Gosset made ingenious use of this relationship to derive the i­
distribution and the table of values which we use.

(a) The standardizing transformation takes X to Z . Student's t-distribution
arises when-not knowing the true population standard deviation, a-we es­
timate the standard error. So the variance of Z accounts for uncertainty among
values of X . The variance of Student's t-distribution must account for still more
uncertainty-in addition to the uncertainty about the value of u, there is uncer­
tainty about the value of a which is estimated from the sample by 8 . So Student's
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t-distribution is a model for a less precise situation than Z and, hence, has a
larger variance.

(b) The true standardizing transformation should take X to Z. That trans­
formation requires the true standard error in the denominator-here we have
modified that. We have estimated the true standard error:

(c) With a larger sample, we have more information. With more information,
the estimate s for (J' should be more accurate. Thus, if we use Student's t we
should get closer to Z (the "true" model) as the sample gets larger and larger.

(d) Situation 1: The sample size is large. The many independently and randomly
chosen numbers in the sample provide the "many independent random factors"
of our criterion.

Situation 2: The population is normally distributed. Between any two num­
bers from the population, there are "many independent random factors" ac­
counting for the difference. These same factors will account for the difference
between two values of X.

See the solutions to Problems 5.3.2(b) and 5.3.3 for complete details.

(a) 1.2 ± 2.1448 x 0.17/m. Assume the population normally distributed in
order to use t.

(b) A smaller sample yields less information and so there should be less certainty
in the estimate-that means a wider interval. This arises from a larger standard
error. The interval is (1.0693, 1.3307)-here you have t = 2.3060 and standard
error 0.0567. Assume the population normally distributed in order to use t.

(c) 1.2 ± 1.96 x 0.17/AS. The population need not be normally distributed!
With a large sample, even though you have to estimate the standard error, the
standardizing transformation takes you to Z, approximately.

In this situation, you might have tried to use the t-distribution. That's not
wrong, but, for large samples, t is approximately Z. That's why you didn't find
your required 44 degrees of freedom in the t table-the usual procedure is to
approximate t by Z if n ~ 30. Still, if you use 45 degrees of freedom (for which
t = 2.0141), you will get a slightly more accurate interval-that t is closer to
the true t than our approximating Z = 1.96.

(d) 1.2 ± 1.96 x 0.17/V9. With a small sample size, the population must be
normally distributed so that X will be normally distributed-but then the stan-
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dardizing transformation takes X to Z because the standard error is known
exactly.

(e) 1.2 ± 1.96 x 0.17/v'150. No special assumptions are required-here you
invoke the Central Limit Theorem. You are not estimating the standard error
because (T is known.

(f) 3.4 ± 1.7959 x lo21/VIT. The population must be normally distributed in
order to use the t-distribution.

(g) 0.21 ± 2.575 x 0.03/y'g". Assume the population to be normally distributed,
otherwise X is not normally distributed. Because you are not estimating the
standard error here, the standardizing transformation takes X to Z.

(h) O.21±3.4995 x O.03/y'g". Assume the population to be normally distributed
in order to use Student's t-distribution. You require Student's t because you are
estimating the standard error.

(i) The difference is that we don't know (T here, whereas in part (e) we did. But
the sample size is large, so estimating the standard error using s as calculated
from the sample in place of (T does not have a significant effect on the standardiz­
ing transformation-it still takes X to a random variable that is approximately
Z. This is the "difficult theorem of mathematical statistics" we have referred
to several times. You can think in these terms: The great amount of informa­
tion contained in the large sample "swamps" the uncertainty introduced by
estimating (T with s.

(a) When the population is normally distributed (Problem 5.3.2(b)), X is too.
But when X is normally distributed, it standardizes to Z. However, if (T is not
known, the standardizing transformation must be "modified" by estimating (T

using s as calculated from the sample. This modification takes us to Student's
t-distribution instead of to Z.

(b) (T known: If the population is normally distributed, X is normally distributed
(Problem 5.3.2) and so standardizes to Z. So use Z.

If the population is not known to be normally distributed, the Central Limit
Theorem tells us that X is approximately normally distributed and the stan­
dardizing transformation takes us to what is approximately Z. So use Z.

(T not known: If the population is normally distributed, use s instead of (T.

This modification of the standardizing transformation then takes us to t, but
because the sample size is large, t is approximately Z. So use Z.

If the population is not known to be normally distributed, because the sample
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size is large, the modified standardizing transfromation using s instead of (T still
takes us to a model that is approximately Z (a "difficult theorem of mathematical
statistics"). So use Z.

(a) If the population is not normally distributed, you will have to rely on the
Central Limit Theorem which guarantees that X is approximately normally
distributed for large samples. But then, the standardizing transformation trans­
forms X into a random variable which is only approximately Z. If the popula­
tion is exactly normally distributed, then X is exactly normally distributed and
we don't have this uncontrolled approximation. In other words, our calculations
with the Z-distribution are now exact and not approximate.

(b) If (T is known, then the standardizing transformation takes us to Z exactly.
This is true because X is normally distributed (and that's true because the
population is normally distributed).

If (T is NOT known, we use Student's t which requires the population to be
normally distributed-again, this model is exact. Student's t-distribution was
derived to account exactly for the uncertainty introduced by estimating the
standard error formula using s instead of (T.

(a) 0.42 ± 2.1318 x 0.04/VS. The population must be normally distributed in
order to use t.

With a ten percent risk of being wrong, the true mean of this population
should be at least 0.3819 but not more than 0.4581, provided we can
assume the population normally distributed.

(b) 0.2 ± 1.96 x 0.0381, the square of the standard error is 0.2 x 0.8/110.

There's a 95% chance that the true proportion of this population which
have the characteristic of interest is at least 12.52% and not more than
27.48%.

(c) 23 ± 1.645 x 2.1/v'35. No special assumptions are required because the
sample size is large. Furthermore, we have the exact standard error.

We can be 90% sure that the mean of this population falls somewhere
between 22.4161 and 23.5839.

(d) 1.27 ± 2.7969 x 0.064. The population must be normally distributed in
order to use t .
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With a one percent risk of error, we can assert that the mean of this pop­
ulation falls between 1.0910 and 1.4490.

(e) 87 ± 2.575 x J16/14. The underlying population must be normally dis­
tributed, otherwise we have no technique for this situation. If the population
is normally distributed, then X is normally distributed and the standardizing
transformation takes us to Z.

We can be 99% sure that the mean of this population is at least 84.2472
but not more than 89.7528.

(f) The estimator p is approximately normally distributed if the sample size is
large! When the sample size is small, you have to revert to interpreting pas X/n
for a binomial X . But this makes the confidence interval problem difficult and
we don't do this case.

(g) 0.49 ± 1.645 s.e. where the s.e. is estimated to be 0.0884.

We believe the unknown proportion of this population which have the
characteristic of interest is somewhere between 34.46% and 63.54%.
There's about a ten percent chance of error in this conclusion.

(h) 7.2 ± 1.7341 x J2.73/19 . The population must be normally distributed in
order to use Student's z-distribution.

There's a 90% chance that the typical value to be expected from this pop­
ulation is at least 6.5427 and not more than 7.8573.

(i) 44 ± 2.2622 s.e., with the standard error estimated at 0.0095. To use t, the
population must be normally distributed.

The mean of this population should be between 43.9785 and 44.0215
where we run a five percent risk of being wrong in this assertion.

(a) The lower endpoint for (72 is 7 82/U= 7.5796/16.013 = 0.4733. The upper
endpoint is 4.4850. Now, there's a 95% chance that (72 falls between these two
points. But that happens if and only if (7 falls between the square roots of these
points. So there's a 95% chance that (7 falls between 0.6880 and 2.1178, as
required.

(b) Because (n - 1)82/(72 = X;-l' solving, we find that 82 is just chi-squared
multiplied by (72/(n - 1).
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(c) You control the contaminant best when the amount is predictable. It's twice
as predictable for the first supplier as for the second. You wouldn't mind having
more contaminant provided it's controllable. It's certainly not desirable to have
less contaminant and be unable to control it!

(d) a = 0 and b = (n - 1)/(72.

(e)

2 5%~__

5.4.2

o L

(a) U = 23.685, L = 6.571.

f.l=7

5.5.1

(b) Because not told otherwise, you make your own choice of confidence coef­
ficient. We'll choose 1 - a = 0.90, giving U = 19.675 and L = 4.575. Here
(n - 1)82 = 11.59298316 and so the endpoints for (72 are (0.5892, 2.5340).

(c) Using the statistical mode of your calculator, you find 82 for your 76 cups to
be 0.000071494. Don't round this number or you'll get zero, trivializing your
answer. The endpoints for the variance of fill are 7582 divided by U = 100.826
and L = 52.9555, respectively (with 75 degrees of freedom, we're exactly
halfway between two values in the table: Take the average). For (72, this gives the
interval (0.000053181, 0.000101256). Of course, for your solution you need
not write down these large numbers; you obtain them in your calculator and
then take the square roots. Only when you complete the calculation should you
round the answer .

(a) Because MD = O.lX + 3, /-LMD = O.l/-Lx + 3. But linear functions with
positive slope preserve inequalties. So a < ux < b is valid if and only if O.la +
3 < /-LM D < O.lb + 3 is valid . Thus, any probability statement involving such a
sequence of inequalities must assign the same probability to each sequence . Of
course, this is also true if it's a one-sided inequality.

(b) Let Z = 1.645. Note that n = 64, X = 8.3906,82 = 3.1307, and so a 95%
upper confidence interval for u.x has the endpoint 8.3906 + 1.6458/8, giving
endpoint 3.8754 for /-LM D.
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(c) Let M be the population median for all values of X. Let Y = # of observa­
tions in the sample above M. We must find X(h) to satisfy 95% = P(M < X(k)) =
P(Y ~ k). Using the normal approximation for Y, we see that k - ! must stan­
dardize to 1.645. Thus, recalling the mean and variance of Y (respectively,n12,
nI4),

k = n + 1 + zo..;n
2 .

Because k = 39.08, the endpoint of our confidence interval is X(39) = 9. This is
transformed from X to M D [justified as in part (a)] to give 3.9 as the endpoint
of our interval for I-£MD.

(d) It's useless to have the box designed for either the average or "median"
apple! The box must accommodate an INDIVIDUAL apple . We'll see how to deal
with such a problem in the next part of this section-we need a "prediction
interval," not a confidence interval.

(e) Now the endpoint is p - 1.28s .e - 0.0982, with p - 0.1563 and s.e.
= 0.0454.

(a) Z = 2.33, X = 3.1078, and s = 0.0431. The upper confidence limit for the
mean weight of ONE penny is 3.117842644 g, so for 100,000 pennies, it will be
311,784.2644 g, which is 682 .0281 pounds. Now add the weight of the cart.

(b) Here a two-sided confidence interval is required because if there's a mis­
count, it could mean either too many or too few pennies. So Z = 2.575 and the
mean weight of one penny should be between 3.0967 and 3.1189 grams. Now,
each bag has 1000 pennies. Note, however, that knowing the range for a "typi­
cal" bag is not relevant to determining whether a particular bag is miscounted.
Again, we need a "prediction interval." See the next part of this section. Note
that a confidence interval estimate for the average WAS appropriate for part (a)
of this problem. The question was about "such a cart."

In the picture below, there's a 95% chance to obtain an X in the indicated
range. Note that for the X's in that range, the confidence interval will contain
1-£, otherwise not:
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(a) Unless there's something wrong with the machine, it's reasonable to assume
a normal distribution for "fill." Draw a picture of the distribution of "fill" and
you'll see that the interval J-l ± 1.960" encompasses 95% of all possible values of
"fill." So there's a 95% chance to get a "fill" in the interval (5.7904, 6.8096).

(b) We've given a range of possible values for a numeric observation-my
"amount of drink"-together with the probability that that range of values
actually does contain the observation.

(c) Ordinarily, you would not know the mean and standard deviation of "fill."
When we speak of an "interval estimate," we ordinarily are thinking of a sit­
uation where the context of the numeric quantity you're estimating is largely
unknown. In other words, an interval estimate is ordinarily based on a sample in
lieu of complete information about the process (or population) you're studying.

The model is X for samples of size n = 3 with s.e. = 0.2942. The interval is
(6.0058, 6.5942). Of course, just as in the previous problem, we would ordi ­
narily not know J-l and 0" for the drink machine. In that case, an answer to our
question would require the results of a prior sample taken from the machine.
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(a) Make a "random observation." For example, get one cup of drink from
a drink machine (observe a process) or measure the diameter of a randomly
chosen machine part (observe a population).

(b) The model was X.

(c) The model is X + (-X). In Problem 4.3.13(e), you saw that the sum of two
normally distributed random variables is normally distributed. So our model is
normally distributed. Now the mean of X is f-L and the mean of -X is -f-L. So
the mean of our model is f-L - f-L = O. Finally, the variance of X is (J2 and for
-X is (_1)2(J2 In. Because we assume observations of X to be independent, we
obtain the variance for the model. It's just (J2 + (J2 In = (J2(1 + lin).

(d) There's a 95% chance for X - X to take a value between Land U. So,
standardizing, there's a 95 % chance for

-1.96 < (X - X) - 0 < 1.96
s.e.

which just says there's a 95 % chance for -1.96 s.e. < X - X < 1.96 s.e. Or
equivalently, there's a 95% chance for

X - 1.96s.e. < X < X + 1.96s.e.

(e) With z = 1.96, part (d) shows that the range of values from

X -1.96s.e. up to X - 1.96s.e.

has a 95% chance to contain X. If we choose an appropriate value of Z, the
range with endpoints X ± zs.e. will have a 1 - a probability to contain X. This
is exactly what's required for a prediction interval.

If (J is unknown, we should use s instead. If the sample size is small, that
requires using the t-distribution with degrees of freedom n - 1, following the
principle that each parameter in the standard error which must be estimated
from the data decreases the degrees of freedom by one. Here, (J is estimated
from the data by s.

(f) Because (J is unknown, we will have to use s instead. With nine degrees of
freedom, t = 2.2622. Using the formula from part (c), the standard error is the
square root of 0.272 x 1.1. The endpoints are 6.6 ± 0.6406. Of course, all this
assumes (1) that the previous ten cups provide a simple random sample from
the machine. They do if, when we operate this machine repeatedly, the amount
of drink dispensed is independent from one cup to the next. This analysis also
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assumes (2) that "fill" from this drink machine is normally distributed, a rea­
sonable assumption if the machine is not malfunctioning. For both assumptions,
consult an engineer who knows the machine!

(g) Because X and A are independent, the variance of the sum is the sum of the
variances. So the model A - X has variance (72 [tri +(72In, estimated if necessary
by s2(11m + lin). Note that if m = 1, you get the "right answer." That is, you
get the formula in part (c).

(h) We can be about 95% sure that the three of us will get an average of between
6.1979 and 7.0021 ounces each.

(i) It's not enough for X to be normally distributed. The model for one future
observation is X - X. This model is normally distributed if each term in the
sum is normally distributed [see Problem 4.3.13(e)] . So if X is not normally
distributed, the model won't be either and our analysis in parts (d) and (e) fails.

(j) The model is X - X, where X models the future observation we want to
predict and X models our data. And so a 95% confidence level involves both of
these variables-the sample mean AND our future observation. For a confidence
interval you are estimating a parameter, NOT a variable.

So for a 95% prediction interval five out of 100 times, on average, either
our data or our future observation-one or the other (or both)-will be suffi­
ciently atypical that our interval will not contain that future observation. Here,
"atypical" means "far from the true value of u", Note that our sample might be
quite typical, with a sample mean quite close to u; and still give an interval that
misses our future observation. That would happen if our future observation is
quite atypical (draw a picture of the sampling distribution of X to see this).

But "typicality" is not really the issue here because the true value of J-l is
irrelevant to our question. We're asking about a future observation not about
u, It's just a question of how far that future observation is from our sample
mean. So here's a more direct interpretation of the 95 %: There's a five percent
chance that the sample mean and our future observation will be so far apart
that our interval does not contain that observation.

Here the squared standard error is 3.1307 x 1.0156 and the right endpoint of an
upper 95% prediction interval for X is 11.3239. So the maximum diameter will
be estimated at 4.1324 ern. Add 0.5 ern for paper and straw. We must assume the
maximum diameters of all the candy apples is at least approximately normally
distributed, probably a reasonable assumption. Of course, this solution ignores
the possibility that a particular apple might fit better by putting the maximum
diameter at an angle in the box, thus requiring less than the estimated dimension.
Note the interpretation given to the 95% confidence coefficient in level I: if the
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maximum diameter of an apple is far from the average of our sample, the box
will be too tight for that apple.

(a) Here the standard error to predict the average weight of 100,000 pennies is
0.0043, the square root of 0.0431 2 x 0.01001. The right endpoint of an upper
99% prediction interval for the weight of the pennies in a cart will be 682.0292
pounds. Recall: Z = 2.33, X = 3.1078, s = 0.0431. Now add 43 pounds, the
weight of the cart.

(b) Here, a two-sided prediction interval is required because we would suspect
a miscount if the bag is either too heavy or too light. So Z = 2.575 for a 99%
prediction interval. But now we start with a prediction interval for the average
weight of 1000 pennies ($10) and then convert that to an interval for the weight
of a bag. The standard error is the square root of (0.0431)2 x 0.011. Do you
see why the answer in level I is given in kilograms and not grams?

The "one percent risk of error" does NOT refer to how atypical this bag is,
yet a recount is required when the bag itself is atypical, when it's heavy or light
enough to suggest it contains too many or too few pennies . Note that if Youden's
data really is atypical, you would begin to note after awhile that you would be
constantly recounting bags which had the right number of pennies.

(c) We have to assume the weight of U.S. pennies is normally distributed, an
entirely reasonable assumption. That assumption was not required in Prob­
lem 5.5.2 because there the model is X and the sample is large (n = 100). That
model is normally distributed even if X is not. But here the model is X - X and
this model is normally distributed only if X is.

(a) This is the result of Problem 4.1.4. Note that it makes no assumption at all
about the shape of the distribution from which you are sampling. That's why
it's a "non-parametric" technique.

(b) There's one segment above X (n ), two above X(n-l), and so on. So there would
be h above X(n-h+l)'

(c) Solve the equation for h and you'll get

1 1
h = "2 [n + 1 - (1 - a)(n + 1)] = "2(n + l)a.

(d) h = 5.05 and so k = 95.95.

(a) Saying there's a 90% chance the interval (6.4, +(0) encompasses 93% of
the values of X, as in the picture, is the same as saying there's a 90% chance



634 Answers-Level II

(6.4, +00) contains the seventh percentile of the distribution of X. In other
words, our 90 % tolerance interval for 93% of the values of X is a 90% CON­

FIDENCE interval for the seventh percentile of X .
Of course, if we had constructed an UPPER tolerance limit for 93% of the

values of X, say (-00,7.1), that would be a confidence interval for the 93rd
percentile of the distribution of X. Draw the picture to see this.

(b) Let's do the upper endpoint first. Let P be the 100pth percentile of X. We
want X (k ) so that a proportion p of values of X is below X(k). Let Y = # of
observations in the sample which are less than P. Then Y is binomial, Y '"
B(n,p). We want to find k so that

1 - a = P(P < X (k ) ) .

For example, if 1 - a = 0.9 and P = 93%, this means we'll be 90% sure that
at least 93 % of the values of X are below X( k) . This is exactly what's required if
X(k) is to be our upper endpoint. But the condition P < X( k) simply says"k - 1
or fewer observations in the sample are below p," so

P(P < X(k) ) = P(Y < k).

Using the normal approximation to Y (with continuity correction), we see that
k - ! must standardize to Z,

k _1 - np
2 = z .

vnpq

Solve this equation for k and you obtain the formula in the problem statement.
A similar argument will derive the lower endpoint. However, now you should

let Y = # of observations in the sample which are less than Q, where Q is the
100qth percentile. To see why we switch from P to Q, look at the picture of X
below. This Y has a B(n, q) distribution. And the condition that a proportion p
of all values of X are greater than X (k ) translates into Y 2: k. Here's the picture
of X with lOOp= 93 and 100q = 7, so that Q is the seventh percentile:
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7%

For 93% of all values10 be
greater than x( k). x( k) must
be less than Q . Thus Y ~ k.

the possible
valuesof X

Because the mean of Y is now nq (NOT np), we see that k - t (continuity
correction!) must standardize to a negative value of Z:

k _ 1 _ nq
2 = -z.

.jnpq

Now solve to obtain the required equation for the lower endpoint.

(c) Our analysis is based on the binomial random variable Y. We've used a
normal approximation to Y to get our formula for k.

(d) The corresponding formula for the median is given in Problem 4.5.8(c). You
get that formula if you set p = 0.5 in the formula from part (b) of this problem.

(e) Suppose p = 0.95 :

5
rhepossible
valuesof X

-------------_..........-

a b
95rh percentile

Here, (a, b) is a confidence interval for the 95th percentile, but it's NOT true that
95% of all values of X are encompassed within that interval.

5.5.11 Put n = 100, p = 0.93, and Z = 1.28 into the formula from Problem 5.5.10(b).
Then, k = 4.2 and the lower limit is X (4 ) = 6.4.
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(a) This problem clearly is asking about the "typical" U.S. penny, so we've given
a confidence interval for J-L, the mean weight of all U.S. pennies.

(b) This requires a prediction interval for one observation of the variable X =
weight of a U.S. penny. The standard error is 0.0433, the square root of 1.0182 .

The interval is (3.0229, 3.1927).

(c) Here, we require a tolerance interval. For an upper tolerance limit with a
confidence coefficient of 95%, Z = 1.645. Thus, y'npq = 3, np = 90, and,
using the formula from Problem 5.5.10(b), k = 95.4. So the upper limit is
X(95) = 3.17.

(d) h = 2.525 and k = 98.475.

(e) Part (b) uses the normality of the weight of U.S. pennies (a reasonable as­
sumption, but we have not actually tried to verify it). In other words, that tech­
nique uses information extraneous to the actual observed data. Part (d) makes
no assumptions beyond the data but rather utilizes the information contained
in the order statistics of the sample. This information is ignored in part (b).

That's the idea of a nonparametric technique: "no assumptions beyond the
data." In fact, in our case we did make an the assumption that no two observa­
tions could be exactly equal. In Youden's data, we see many observations which
are equal, but that's only because we rounded to two places. Youden, in fact,
made measurements accurate to four places.

Which technique is better? Because they make no assumptions beyond the
data-or in any case, very weak assumptions-nonparametric techniques might
be preferred if they give reasonably strong conclusions. That's the case here
because our nonparametric interval is virtually the same as the parametric one.

(f) I-a = (k-h)/(n+ 1) :::; (n-l)/(n+ 1); solve for n, Or, ifthe interval is to
be centered in the sample, h = (n + l)al2 and so n = (2h - a)/a :::; (2 - a)/a.
This second analysis shows that when n equals (2 - a)/a, your endpoints will
be just the largest and smallest observations in the sample, thus making little
use of the information contained in the order statistics. To have the endpoints
be into the sample by, let's say, three observations would require an even larger
sample: n = (6 - a)/a.

(g) For example, a 95% nonparametric prediction interval requires a sample of
at least 39 observations. And, with n = 39, the endpoints of your interval will
be the smallest and largest observations, not making much use of information
contained in the order statistics of the sample. So the nonparametric interval
is not useful for small samples. The parametric interval is valid for any sample
size, BUT you must be sampling from a normal distribution.
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Chapter 6
(a) The hypothesis about the fairness of the die certainly is a simple test of
significance. You're making a one-time inference: You roll the die 100 times,
say, and try to determine if the observed result seems to suggest the die is unfair.
You ask: Does the data seem to challenge the hypothesis (the fairness of the
die)?

(b) Are you going to monitor your parts supplier's claim periodically as you
receive shipments? That should be a hypothesis test. Or are you simply trying
to find out if the claim is true (should you sign a contract with that supplier or
not?)? In that case, you're making a one-time inference and so you should just
do a test of significance.

(c) Almost certainly this is not a monitoring process. A test of significance is
probably called for.

(d) This mayor may not be a monitoring situation.

(e) This also mayor may not be a monitoring situation.

When the data seems consistent with the hypothesis, you learn nothing because
it will be consistent with many other hypotheses as well. We'll see this with
some specific examples later.

(a) This is a point frequently misunderstood, so let's get it clear now. It's five
percent of GOOD shipments that will be rejected. That's what "erroneously
rejected" means. Thus, you need to know how many of the 500 shipments were
good. Five percent of that number is the answer. But the answer can only be
hypothetical because we don't know how many shipments were good. Suppose
(hypothetically!) 418 of the shipments actually meet specifications. Then you
would expect to reject about 20 or 21 of them. Note that the answer to the
question is necessarily no more than than 25 (it's 5% of a number that's at
most 500).

(b) For a confidence interval problem, making the procedure more exact re­
quires increasing the sample size. And that costs MONEY! Sampling is an expen­
sive process. Furthermore, a zero probability would require an infinite sample
size! Similarly, while you can make the probability of erroneously rejecting a
good shipment as small as you like (but is it worth the cost?), you cannot make
it zero. Just as with a confidence interval, you balance the precision of your
technique against the cost.
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6.1.4 (a) Test ofSignificance

1. provides a numeric measure
of consistency between ... ?

2. hypothesis and data on the
same footing (in what sense?)

3. can test for randomness
4. hypothesis either true or

false
5. a case of inductive inference
6. replication not intrinsic
7. meaning of probability

rather tenuous
8. implies exact replicability
9. often preferred for testing a

scientific hypothesis

Answers-Level II

Hypothesis Test

-is a decision procedure which
seeks to control . . . ?

-the data is secondary (in what
sense?)

-cannot test for randomness
-hypothesis sometimes true,

sometimes false (usually ... ?)
-a monitoring procedure
-replication intrinsic
-meaning of probability

very concrete
-replication not exact
-often preferred for matters of

public policy, business, and so on

(b)

This last is the weakest contrast by far. Both tests of significance and hypothesis
tests are used in scientific investigations and in more practical areas as well. In
analyzing complex random experiments, a scientist will, indeed, use the hypoth­
esis test as a tool. However, if it's just a question of evaluating the consistency
of data with a hypothesis, the test of significance will be more suitable.

1. A test of significancecomputes a NUMBER from the data, the p-value.The
p-value measures the CONSISTENCY of the data with the hypothesis. If the
p-value is interpreted as "small," we conclude that the data does not seem
to be consistent with the hypothesis (it seems to challenge the hypothesis).
In our example, if the p-value is small, it appears the population is not
normally distributed. If the p-value is not small, we get no conclusion
(we'll see later why this is true).

The hypothesis test is more complicated. It monitors incoming shipments
of chain links on a month by month basis, sometimes rejecting a shipment
as not meeting specifications. It bases its DECISION each month on a sample
of that month's shipments. The procedure seeks to CONTROL THE ERROR

which we will make if the sample from that month's shipment happens to
be very atypical of the shipment as a whole (sampling error!).

2. The question addressed by our test of significance asks if "this data"
seems to challenge the hypothesis that "the population is normally dis­
tributed." So the data and the hypothesis stand in opposition to each other
in the original question.

For the hypothesis test, there is originally no data. The original problem
just presents a situation which requires monitoring on a monthly basis.
The data is secondary: Each month we decide if that month's shipment of
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chain links should be rejected. The data comes in month by month-then
only-as a basis for the decision of that month. The data is part of the
solution; it's not part of the original problem.

3. Omit.

4. Either the population is normally distributed or it isn't! Sometimes a
shipment of chain links will meet specifications, sometimes it won't (usually
it will, otherwise we'd better change suppliers!).

5. In trying to challenge our hypothesis, we're trying to deduce a general
fact ('non-normal population') from "specific cases" (the observed data).
That's exactly inductive inference in the classic sense. And it's very differ­
ent from the monitoring process of our hypothesis test with its monthly
decision of whether or not to reject that month's shipment of chain links
('repeating decision').

6. If our study gets repeated by other investigators, fine. But that repetition
is not part of OUR study! On the other hand, the month-by-month repetition
of the hypothesis test (examining a sample from that month's shipment to
see if the shipment seems to meet specifications) is an integral part of the
test procedure.

7. Our hypothesis test will be run every month. So, for example, we can
ask how many times in two years will we not have to reject a shipment? If
the probability of that event is 2/3, the answer would be 16, on average
(2/3 of 24). For a test of significance, a probability will have to take a more
theoretical meaning because it is a one-time inference.

8. Other investigators at other times and places may obtain other data on
this SAME population by way of repeating our study. So if they obtain their
data through the same procedure we used, they're repeating our study ex­
actly.

By contrast, with the month by month repetition of our hypothesis test,
when we take a sample of next month's shipment of chain links, we're
sampling a DIFFERENT shipment than we did this month. Here, the cir­
cumstances change on each repetition. Some months the shipment meets
specifications, some months not. It's not the same shipment from month to
month, after all. So next month, we are NOT repeating this month's process
exactly.

9. Often a scientific hypothesis takes the form of a simple statement just
like ours ("this population is normally distributed"). By contrast, a mon­
itoring procedure, as opposed to a detached scientific question, often en­
tails practical interests just like the concern our engineers have about short
chain links. Let's remember, however, that this contrast is not a clear-cut
distinction. It's at best a very rough "rule of thumb."
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(a) 0.0548.

(b) The test of significance does not tell you the probability of heads! But it's
obvious that the coin seems biased in favor of heads. How biased? To answer
that question you should compute a confidence interval, of course.

(c) You can't conclude the coin is fair! With a p-value of zero, all the test shows
is that it seems wrong to think heads comes up 40% of the time. The correct
conclusion is: "Based on our observations of this coin, one would think heads
should come up on average more than four times in ten tosses."

(d) The p-value is P(p ~ 0.441p = 0.5, n = 100). Thus z = -1.2 for a p-value of
0.1151. By no criterion is this a small p-value (it's bigger than 10%), so the test
is inconclusive. If the kids had good reason to believe the coin fair, that reason
stands unchallenged. In that case they should accept the coin as fair. But NOT

because of the data, rather because their "good reason" stands unchallenged by
the data. If they thought the coin unfair, or just didn't know, all they can say
is, "Well, we found no evidence to suggest the coin is biased. Maybe it is. We
don't know. Maybe it isn't."

The hypothesis was "40% chance of heads" in Problem 6.2.1(c). But we don't
just say the data supports "not 40% chance of heads." In fact, the data suggests
heads MORE than 40% of the time because 58% was observed. If the kids had
observed only 10 heads in 100 tosses, they should say the data supports LESS

than 40% chance of heads.

(a) Here's one possible explanation: It can be the data that's discrepant. Ran­
domly generated data need not be typical of the situation from which it is drawn.
As we said in the text : "The hypothesis might be true and the data extreme just
because of sampling error. All heads on a hundred tosses of a fair coin is possible
however unlikely it may be!"

Or: Maybe the hypothesis is false. That could certainly explain why the data
looks extreme-you're comparing it with the wrong hypothesis! From the text:
"The hypothesis might be wrong and the data not really extreme at all. Suppose
the coin really is biased with a probability of heads of 60%. Then, 58 heads out
of 100 tosses is certainly not extreme."

(b) Randomly generated data can be discrepant (atypical), but it's not likely
to be! The smaller the p-value, the less likely that seems. On the other hand,
from the very beginning, we thought the hypothesis might be false. So, having
to choose between these two, it's reasonable to believe the hypothesis false.
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But don't forget: As always in a statistical analysis, THERE'S A POSSIBILITY

OF ERROR. If the first explanation is the valid one-if the data really is atypical
(even though that's not likely)-our conclusion will be erroroneous.

(c) The data is summarized into an unbiased estimator which is normally dis­
tributed. "Unbiased" says the mound in the normal curve is centered on the
parameter being estimated. So although atypical values of the estimator (val­
ues in the tail of the distribution) are possible, they are not likely. Most of the
probability is concentrated near the true value of the parameter, meaning most
samples are more or less typical:

toil values0/
are atypical

true value 01
the parameter

possible values
ol the estimaler

6.2.4

6.2.5

values here ore 'more
or less typical '

Now you see what the mound of the normal distribution means: It assures that
most values of the estimator are concentrated near the center. Because that
center is the true value of the paramter, those values (and so "most data") are
more or less typical. Even when the estimator is only approximately normal,
this qualitative understanding is still valid.

(d) There's a seven percent chance of obtaining 58 or more heads on 100 tosses
of a fair coin.

(e) The p-value is NOT the probability the hypothesis is true, nor that it's false.
The p-value as a probability concerns the data-it's the probability of data like
ours or worse if the hypothesis is true. See part (d).

"Consistent with the hypothesis" does not mean "proves the hypothesis"; it
means "the test is inconclusive." In this problem, you see that data consistent
with one hypothesis will always be consistent with many other hypotheses as
well. On the other hand, when data is INconsistent with an hypothesis (small
p-value), that hypothesis is ruled out. So we do get a conclusion.

(a) It seems the mean is smaller than 70.18, but how much smaller? The test of
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significance does not answer that. That question asks for the unknown value of
your parameter and the answer should be a confidence interval.

(b) For a mean of 68.42, t = 1.12 and the p-value is the same-greater than
ten percent. For a mean of 68.7, t = 0.762, so you get a still larger p-value. For
a mean of 69.3, t = 0 and the p-value is as large as a p-value can get: 50%.
After all, a sample mean of 69.3 is more consistent with a population mean of
69.3 than it is with any other possible value!

(c) The sample in part (a) is five times larger than the sample in part (b). Fur­
thermore, in part (b), you're estimating the variance from the sample. So there
are two ways in which part (b) has lost information. Not surprisingly, in part
(b), with little information, your analysis is inconclusive. In part (a), with much
more information, you get a conclusion-that your mean is less than 70.18.

If they're playing with the same coin every day, the coin is either fair or not
fair-the hypothesis "fair coin" is either true or false. If it's a different coin
each day, the hypothesis is sometimes true and sometimes false because the
coin is sometimes fair and sometimes not. When they play with the same coin
every day, data from one day can be meaningfully compared with any such
data collected on other days because they're always talking about the same
coin. Otherwise, data from one day has no relevance whatsoever for other days
because they have different coins. If the question is, "Is our coin-tossing game
fair?," the answer in the first case is either "yes" or "no"; in the second case,
the answer is sometimes "yes" and sometimes "no."

Suppose every day before they play, the kids do a series of ten tosses, record­
ing the results. If they always play with the same coin, at the end of the summer
they'll have accumulated the results of over 1000 tosses. If it's a different coin
each time, at the end all they have is ten tosses on each coin-there's no accu­
mulation of evidence.

The role of repetition is entirely different for the two procedures. An hypoth­
esis test is a monitoring procedure and so the repetition is part of the procedure.
You're monitoring an hypothesis that's sometimes true and sometimes false.
The point of the procedure is to "flag" the occasions when the hypothesis is
false. There's no accumulation of evidence from one repetition to the next just
as there would not be for the kids if they play with a different coin each day.

Ifyou're calculating a p-value for a single proportion p, that calculation is carried
out assuming the hypothesis. But the hypothesis gives you a value of p, and that's
the value you use. So you're not estimating the standard error from the sample.
This will not work for a difference of two proportions. Yesthe hypothesis gives a
value of PI - P2, but that doesn't provide a value for the individual proportions.
So you have to estimate them from the sample.
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(a) We estimate the standard error as 1.0510, the square root of (4.8)2/50 +
(5.2f /42. So a 90% confidence interval is (-6.5289, -3.0711), where the end­
points are obtained from -4.8 ± 1.645 s.e.. The parameter is Jil - Ji2 where
Jil is the average height of second graders from the inner city and Ji2 from the
suburbs. You could just as well have taken this in the reverse order obtaining
the interval (3.0711, 6.5289). Of course the interpretation is the same.

(b) The assumption of "no difference" implies that the mean of the estimator
is zero (Jil - Ji2 = 0), so our observed difference in means of -4.8 standardizes
to (-4.8 - 0)/1.051 = -4.56:

p-value = P(X1 - X2 < -4.8IJil = Ji2) = P(Z < -4.56) = O.

This zero p-value is not evident from the confidence interval of part (a).

In the standard error formula put 53/200 = 0.265 in place of each of PI and
P2. You get an estimated standard error of 0.0624 obtained from the square
root of (0.265)(0.735)(1/50). So,

p-value = P(PI - P2 < 0.22 - 0.311PI = P2) = P(Z < -1.44) = 0.0749.

Or if you took the difference in the other order,

p-value = P(PI - P2 > 0.31 - 0.221PI = P2) = P(Z > 1.44) = 0.0749.

As you can see, it doesn't matter which way you do this, you'll get the same
answer. Note how the observed values standardize: Because the mean of the
estimator is zero (PI - P2 = 0), the standardizing transformation is just [(0.22­
0.31) - Ol/ s.e..

So the p-value is about seven percent. If you think that's a small p-value, then
based on our observations it seems the two proportions are indeed different. If
you think the p-value is NOT small, you have to say the data is inconclusive.

First, because Y = 7 - X, Jiw = Jix+y = ux + Jiy = ux + (7 - Jix) = 7.
The variance formula is not applicable here because it requires that X and Y
be INDEPENDENT. Clearly, they are not.

(a) Each Pi is unbiased, so the mean in each case is Pi. Thus, the mean of -P2 is
-P2. Adding, we find the mean of PI - P2 is PI - P2. Thus, the estimator PI - P2
is unbiased. Next, PI is approximately normally distributed and so is -P2; thus,
their sum PI - P2 is also approximately normally distributed. Finally, each Pi has
variance Piqi!ni, so we getthe variance formula for PI -P2 : PIqt!nI +P2q2ln2.
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For this, we use the fact that the samples are independent and, therefore, the
two random variables Pi are independent.

(b) This argument is identical to part (a); just change the symbols!

(a) Here we observed PI -P2 = (0.5417 -0.7954) = -0.2537, with a standard
error of 0.0675 (we pooled the samples, see Problem 6.2.9). Now if the test is not
biased in some way, there should be no difference in pass rates. So we calculate

p-value = P(PI - P2 < -0.2537IPI = P2) = P(Z < -3.76) = O.

Note how we stated the conclusion of this analysis in level I. Any interpretation
going beyond the conclusion not "due just to chance" is exactly that, interpre­
tation. For example, without further information, you cannot conclude that the
employer is biased. It's the TEST that seems to be biased. Even in the absence
of biased intention, subtle bias can creep into a test. Our point: The real-world
interpretation of a p-value is not a STATISTICAL question, it's a judgment call.

(b) Here, we cannot estimate the standard error by pooling the samples because
we have no reason to think the two proportions-the two pass rates-are the
same. We estimate the standard error to be 0.0659, from the square root of
PI(ll/nl + P2(12/n2. The endpoints of a 95% confidence interval are given by
-0.2537 ± 1.96 s.e.

Note that the left endpoint gives the condition PI - P2 > -0.3830 which is
the same as PI > P2 - 0.3830. This gives our interpretation of the left endpoint:
The pass rate for blacks is more than 38.3 percentage points below the pass rate
for whites. We interpret the right endpoint similarly.

But this is not a case of statistical significance! The figures given are the total
number of jobs lost, not a sample. Statistical significance compares the difference
between what's observed in a sample and what is hypothesized to be true. If
that difference is large enough (statistically significant), you will abandon the
hypothesis.

This question can only refer to PRACTICAL significance. Is a loss of 300,000
jobs of any practical significance? Most people would say YES.

(a) The mistake is to confuse "practical significance" and "statistical signifi­
cance." The p-value of seven percent is a measure of statistical significance. It
says nothing about practical significance. The p-value says nothing about how
serious the bias might be from a practical point of view if there really is a bias.
If the little kid thinks there 's no practical significance to some small bias, then
she should reason as in part (b).
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(b) For the question, "How biased?," they should construct a confidence in­
terval for the probability of heads. It should be centered at p = 0.58. For the
second situation, they should test the hypothesis p = 0.53.

(c) It's not clear what the little kid would do! But at least it's clear what range
to think about when she thinks about the bias. At worst, there's about a 68%
chance for heads. Assuming, of course, the interval contains the parameter
(there's a 5% chance it doesn't).

A p-value of 16% is not small by any standards. So the little kid should be
willing to play! Note that, here, an acceptable level of bias has been specified
very clearly in advance. .

(d) In the first situation, we simply ask, "What's the bias?" In the second situ­
ation, we set an acceptable level of bias in advance. Then we look at the data
to see if the bias seems greater than that. A very different question.

Is it, "What's the parameter?" or is it, "Here's what's acceptable, does our
data suggest 'unacceptable'?" The first is a confidence interval, the second a test
of significance ("does our data challenge the hypothesis?").

(a) The parameter is u; the mean number of ounces of soft-drink dispensed by
our machine into the cups.

(b) The hypothesis is j.L = 7.4.

(c) The p-value is P(X > 7.531j.L = 7.4) = P(z > 4.27) = O.

(d) It would be virtually impossible to get 35 cups with an average of 7.53
ounces per cup if the resetting device is working properly. Note, once again, that
the p-value is NOT the probability the hypothesis is true (it's not the probability
the resetting device is working properly).

(e) Because the p-value is very small (as far as we can see from our table, it's
zero) we should conclude that the hypothesis is false.

(f) Real-world conclusion: "Based on this data, it seems the resetting device is
not operating properly. It seems to cause overfilling."

Note that the question concerns the resetting device, so your report must
answer that question. If you said the machine is not working properly, then
you didn't answer the question asked. Such confusion could have important
consequences in the real world.

It's not necessary to think of the residents of the southern part of the city as a
random sample. We think of an incidence of cancer as the outcome of a random
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process . That is, the randomness here does not come from sampling; it's inherent
in the situation itself.

(a) The parameter is the mean (>') of the Poisson random variable.

(b) The hypothesis is that>' = 8A-that the rate of cancer in the southern part
of our city is the same as what would be expected in any population of that size.

(c) The p-value is P(X 2: 121>' = 804), which with the recursion formula is
1 - 0.8571 = 0.1429.

(d) There's about a 15% chance to observe 12 or more such cancers in a pop ­
ulation like ours if there is nothing exceptional happening. It's NOT correct to
say, "There's a 15% chance nothing exceptional's happening."

(e) A p-value of 15% is not small by any criterion. So the test is inconclusive.

(f) Real-world conclusion: "The incidence of 12 such cancers does not by itself
suggest any extraordinary environmental cause of cancer in the southern part
of this city. Twelve such cancers in a year appears to be consistent with what
would be expected in any population of this size."

(a) The parameter is Pl - P2; the hypothesis, Pl - P2 = 0.02. Then, Pl - P2 =
0.0575 with an estimated standard error of 0.0371 (using the observed p's).
This gives a p-value of

P(Pl - P2 > 0.0575) = P(z > 1.01) = 1 - 0.8438 = 0.1562.

By any standard, this is NOT a small p-value.
Real-world conclusion: "This data provides no evidence of a significant differ­

ence between the proportion of passengers on our New York to San Francisco
flight requesting a vegetarian meal and the proportion on the New York to
Chicago flight making such a request."

(b) You know estimates: Pl and P2 . Multiplying each by their respective n's
gives, respectively, four and one. Neither is at least five. And the true value
could well be even smaller! Because the model you've used is not valid, your
conclusion is meaningless. An exact test might give a very different result, but
such a test is very complex .

(c) Now s.e = 0.01059 giving z = (0.0761 - 0.02)/s.e. = 5.30. So the p-value
is zero. Real-world conclusion: "Based on this more complete data, it appears
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there is, indeed, a significant difference in the number of such requests on the
two flights."

The p-value is: P(data like ours or worse Ihypothesis);

it's NOT: P(hypothesis I the data).

As strict frequentists-that's our point of view: probability means "theoretical
relative frequency" -we must say the second probability is either zero or one. In
other words, either the hypothesis is true or it's false; there's nothing in between.

But for a Bayesian statistician, the second probability is, indeed,meaningful.
It can be interpreted, for example, as a measure of our "degree of belief" in the
hypothesis. And there are other possible interpretations. The Bayesians think
p-values are a poor substitute for what's really required and have developed
their own Bayesian test specifically to evaluate P(hypothesis I the data) . This
is better in two ways. First, because it's the hypothesis we're interested in, the
probability should refer to that hypothesis. Second, what's the point of talking
about data "worse than ours"? We didn't observe any such data! So (say the
Bayesians), you've got the wrong probability and you're talking about totally
irrelevant data which you never observe!

Ah! ... the probability the hypothesis is true given the data! So much more
satisfying than a p-value! BUT (guess what) ... this Bayesian procedure is not
without its own pitfalls. Unfortunately, to take a look at those interesting pitfalls
and the wonderful flora and fauna which surround them would require more
than we can do in this course.

Yes, you're right: None of the statistical testing procedures is entirely satis­
factory. If that bothers you a lot, GOOD! It means you'll become a statistician
yourself, or maybe a philosopher, and spend your career helping to find im­
proved methods. Maybe you'll even discover a completely satisfactory way of
testing statistical hypotheses! If this situation does NOT bother you much, that's
also good. You'll find other interesting things to do. Thank goddess for diversity.
We're not all alike! Anyway-for now-why don't you just go on to the next
problem.

It could be that the hypothesis is really true even though the p-value is small. This
could happen if our data is very atypical. One should never forget that statistical
techniques based on randomly generated data can be misleading because the
data can be very atypical of the distribution from which it was obtained. See
Problem 6.2.3(b).

(a) However unlikely they may be, atypical samples are possible. Even if the
mean life of these tires is around 28,000 miles, keep taking samples and even­
tually you'll get a sample with a much higher mean. Such repeated sampling is
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very deceptive and, unfortunately, has been known to be used by unscrupulous
advertisers.

(b) It would seem the question is: What's the mean life of the tires? So you
wanted a confidence interval estimate for that parameter, not a test of sig­
nificance. But we're trying to illustrate the fallacy involved in looking for a
specific predetermined result through repeated sampling . No matter what the
technique-confidence interval, test of significance or any other statistical tech­
nique based on random data-that's a fallacy.

(a) Two contradictory conclusions! With the negative binomial model you con­
clude the coin is biased in favor of tails (p-value less than 5%). But with the
binomial model you conclude the coin is fair-not based on the data of course,
but rather on your prior belief which was not challenged by the data .

(b) This is very disturbing because the fairness of the coin has nothing to do
with what was in the mind of the experimenter when the coin was being tossed.
It has nothing to do with whether she was thinking of a binomial or negative
binomial model. In other words, there seems to be a subjective element in the
method of tests of significance. That's uncomfortable because in any branch
of science we think conclusions drawn from data should be entirely objective.
Bayesians love this example because it shows, so they claim, that Bayesian tests
of significance are superior. But their tests have other weaknesses. We're all
hoping your generation of statisticians will come along and help resolve some
of these problems!

This example reveals a definite weakness for tests of significance. Still, the
example seems to depend on having a p-value that was small but not unequiv­
ocally small. We've already pointed out that when the hypothesis is false, we
ordinarily expect (or at least hope for) a very extreme p-value, one representing
a probability of one chance in one billion, say. In such a case it seems unlikely
some other model could yield a "not small p-value." This statement would be
difficult to prove because it requires having a model for "all possible models ."

The problem of this example will not arise for hypothesis tests because they
involve data gathered repeatedly. Note that if the experimenter were to repeat
the test many times, we would soon know objectively from the data which
model was being used. You'd probably know by the first repetition! If it 's 12
tosses with seven heads, you know she's using a binomial model. Why?

(a) The Court calculated P(X = 71n = 90,p = 0.27). Now it's alright to calcu­
late the p-value from the binomial distribution (in fact, it's more accurate; our
calculation with puses the normal approximation); however, it's not appropri­
ate to calculate the probability that X is EXACTLY seven. When n is large, the
probability of any exact value will always be small-there're too many values.
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That's why a p-value is the probability of data like ours OR WORSE. That's a
more meaningful probability.

(b)
P(X = 45) ~ P(44.5 < X < 45.5) j.t = 45, (T = 4.7434

= P(-O.l1 < Z < 0.11)

= 0.0876.

(a) Let p be the probability a person dies in the three months prior to their
birthday. In the absence of some special power to postpone death, p = 0.25 .
But p= 0.08, giving a p-value of zero (z = -10.7302). That's small! Here's the
real-world meaning of the p-value: It's virtually impossible as a purely random
phenomenon to observe obituaries of 747 randomly chosen persons and find
that only eight percent or fewer died in the three months prior to their birthdays.

So it does, indeed, appear from this data that "people" are less likely to die
in the three months prior to their birthday than in the other nine months. There
is a problem, however: Exactly to what "people" is this conclusion applicable?
From exactly what population was the sample drawn? The Newsweek article
does not tell us that. Still, without that information, the data does suggest that,
at least for some people, there exists a power to postpone one's death until after
a birthday.

If this effect is real and not just due to chance error, how is it brought about?
That's NOT indicated by the test. That question-what causes the observed ef­
fect?-requires an interpretation having nothing to do with statistics. It's natural
to speculate, of course. The most obvious speculation is that attitudes affect our
physical state. Is it mind over matter? Does attitude have a significant effect on
health in general? Hmmm! We'll look at this question again in later problems.

(b)

1. We don't require a decision procedure. We want a measure of consis­
tency between our observed 8% and the hypothesized 25%.

2. The hypothesis and the data are on the same footing, our 8% is very
much part of the question.

3. Omit.

4. Either there is or there is not a potential to hold onto life until you pass
an upcoming birthday. Our hypothesis is either true or false. We're not
monitoring a hypothesis which is sometimes true and sometimes false.

5. This is a classic case of inductive inference. We want to establish a
general fact (people have a certain power to postpone death) on the basis
of particular instances (our observed 747 persons).
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6. We don't have any plans to repeat this test. You may see some such
study later and so may I, but we won't be doing it together! Those "rep­
etitions" are not part of our study. An hypothesis test, by contrast, is a
monitoring procedure collecting data periodically. So, repetition is part of
the procedure. In fact, we will see another study of the same question at
the end of this chapter.

7. The p-value is the probability of data like ours, or worse if people
have no special powers to postpone death. But our specific data (our 747
persons) is all we have and it's all we're ever going to have. We don't see
any "or worse" data. So our probability is somewhat tenuous. It refers to
something we've never observed and never will observe. For an hypothesis
test by contrast, you gather data repeatedly on a periodic basis for purposes
of monitoring. So probability has a very concrete meaning as "expected
relative frequency."

8. If someone wants to repeat our "study," they'll be testing the same
population (human beings in general) with the same hypothesis (p =25%
in the absence of special powers to postpone death). So if they obtain their
data through simple random sampling (as we're assuming for our data)
they'll be repeating our study exactly. For an hypothesis test, on some
repetitions the hypothesis is true, on others false, and so the repetitions are
not exact .

9. We are testing a scientific hypothesis. Only a few years ago our hypoth­
esis would have been labeled "pseudoscientific"; however, there's an in­
creasing awareness among scientists of the important connection between
mental and physical states.

This is NOT a small p-value and so there's no reason to accuse the accounting
firm of collusion. It's entirely believable their sample was chosen randomly.
However, our analysis assumes simple random sampling. In fact, accountants
ought to control for "size;" they should stratify their samples according to the
invoiced amount. We don't know if they did that or not.

6.2.25 Face Oi Ei (Oi - Ed2/Ei

1 6 16.6667 6.8267
2 61 16.6667 117.9267
3 9 16.6667 3.5267
4 6 16.6667 6.8267
5 10 16.6667 2.6667
6 8 16.6667 4.5067

--
100 ::::J 100 142.2802



6.2.27

6.2.26

6.2.27

651

The largest value in the Xl table at five degrees of freedom is 16.75, so our
observed Xl ~ 142 is far off the table. That means the p-value is essentially
zero. The test does suggest bias in this die, very clearly and unambiguously.

(a) Accident free means X = O. Theoretically, that should occur, according
to the Poisson model, for 54.34% of the corps-years: 200 x 0.5434 = 108.68.
Let's call the cell for X = 0 the Othcell. So Eo = 108.68. Similarly,E 1 = 66.28,
El = 20.22, E3 = 4.12, E4 = 0.62.

(b) Xl = 0.0009 + 0.0247 + 0.1567 + 0.3045 + 0.2329 = 0.7197.

(c) Bortkiewicz' observed value of Xl is certainly not large because it's below
the mean (with df = 3, /-l x2 = 3). So there is no evidence for "lack of fit."
The p-value for "lack of fit" is close to 95%, as you see from the Xl table
because there 's a 5% chance for Xl to fall below 0.352, and 0.7197 is only
slightly above that. Note that unlike the tests we've done up to now based on
the normal distribution, for Xl tests a p-value can be greater than 50%.

The fit of Bortkiewicz' data to the Poisson model seems to be exceptionally
good. Of course, that should be true; the data had to call loud and clear to
Bortkiewicz to make him think of a Poisson model. The Poisson distribution
had never been used like that before, after all.

(d) Only about 5% of all simple random samples of size n = 200 from a
Poisson distribution with A = 0.61 would fit that distribution as well as or
better than Bortkiewicz ' data. In other words , of all simple random samples
from the Poisson distribution with A = 0.61,95% would be less typical of the
parent distribution than Bortkiewicz' data.

With Xl = 0.5, three degrees of freedom, we see the fit appears to be very good.
In fact, really TOO good. Thinking again of the meaning of the Xl probability,
we realize there 's only (roughly) a five percent chance of data so close to what
Mendel's theory predicts [a more complete table would give P(Xl < 0.5) as
approximately 0.08]. This is too good to be true .

Mendel's brilliant new theory which postulated the existence of genes and
explained the laws of genetic transmission did not receive the recognition it
deserved and lay dormant until 1900 when it was "rediscovered." Evidently,
Mendel was aware that the radically new understanding embodied in his theory
might not be appreciated, for, in fact, clearly he altered his data. This fact was
discovered by Ronald Fisher (see [Mendel]) from the Xl test as we've used it
here. Fisher showed that the fit of Mendel's various sets of data is literally too
good to be true. Much too good to be true! In one case, his computation of the
theoretically expected values is wrong; yet STILL his "observed" values are very
close!
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But don't be too hard on Mendel! He had a highly significant and important
scientific discovery to give to the world. And the historical record shows that he
was, indeed, right if he thought the general ignorance of the day would make
it difficult for his theory to be recognized. Even with his "improved" data, it
wasn't recognized. It took 35 years to be appreciated! In no way does this make
Mendel comparable to those unscrupulous persons who've begun to show up
in the newpapers these days; people who "cook" their data merely to advance
their careers and to hide their own incompetence!

(a) E2 = 138.8564, E3 = 281.6304.

(b) X2 = 0.0247 + 1.0124 + 0.7332 = 1.7703.

(c) The p-value is greater than ten percent. This data is consistent with our
contention that the three precincts are pretty much alike as far as support for
our candidate is concerned; the data provides no reason to think otherwise.

6.2.29 (a) Died within
Recovered five years

Male
female

81.48
81.48

15.52
15.52

(b) X2 = 25.4304 + 0.1411 + 19.1295 + 3.6437 = 48.3447.

(c) The p-value is essentially zero and so our hypothesis looks very doubtful
in the light of our data. We conclude that recovery for this type of cancer is
dependent on gender.

(d) Because about 88% of the men in the sample versus 84% of the women
recovered, clearly IF THE DATA SUGGESTS ANYTHING AT ALL, it suggests women
are less likely to recover than men. We justifiably draw this conclusion because
our zero p-value says the data does, indeed, seem to suggest something, namely,
a dependence of recovery on gender.

If this analysis looks suspicious to you, you're right. After all, there are almost
three times as many men in the sample as women, but our analysis was based on
the rather dubious assumption that this disease affects men and women equally.
See parts (e) and (f).

(e) Each parameter estimated from the data results in a loss of one degree
of freedom. Thus, if the 84% recovery rate is unknown and estimated by the
observed 169/194:::::; 87.11 %, the degrees of freedom would be two . If you also
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have to estimate the proportion of females by the observed 50/194 ~ 25.77%,
the degrees of freedom would be reduced to one.

(f) X2 = 0.0193 + 0.1306 + 0.0556 + 0.3761 = 0.5816. With one degree of
freedom, this gives a p-value above ten percent. So this data seems to provide
no evidence for dependence of recovery on gender (if the recovery rate and the
effect on gender are not known).

(g) The p-value is P(j) > 0.74231p = 0.5) = P(Z > 6.75) = O. Here, p is the
proportion of men in the population at large who fall victim to this type of
cancer. With such a small p-value, it would seem on the basis of this data that
men fall victim to this type of cancer more often than women. This test for inde­
pendence does not use x2 because we have an either/or situation which reduces
to a simple proportion. As a technical consideration however, you really should
not use the same data set to test two related hypothesis as we're suggesting here.
Get some new data!

El = (307)(48/307)(232/307) = 36.2736, and so on. So,

Black
White

Totals

Pass

26 (36.2736)
206 (195.7264)

232

Fail

22 (11.7264)
53 (63.2736)

75

Totals

48
259

307

6.2.31

Note how there's a shortcut for the expected values. The 307 figure cancels so
you get El as just 48 x 232/307. The rule would be "multiply corresponding
totals and divide by the grand total." Thus,

x2 = 2.9098 + 0.5393 + 9.0008 + 1.6681 = 14.1179.

With one degree of freedom, we're off the table, giving a p-value of zero.

For a test of significance, you get a conclusion only when the p-value is small.
Otherwise, the test is inconclusive-the data is consistent with the hypothesis,
but it's always consistent with other hypotheses as well. So, for a goodness of fit
test, if the p-value is small, we conclude we have the wrong distribution. That
means the data does NOT fit the distribution. This is what we can conclude-we
cannot show "fit," only "nonfit."

In the nineteenth century, the normal distribution was used for everything in
sight. Gradually people began to understand that this crude approach was not
working. In the 1890s, Karl Pearson developed many new distributions in the
course of his work on the book Mathematical Contributions to the Theory of
Evolution. In 1900, he derived the X2 test to see which of those distributions fit
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his data. But it was a process of elimination because the test only shows which
distributions do NOT fit.

The expected number for each quarter year is 186 .75. This gives X2 = 258.84
which, with three degrees of freedom, is far off the table, giving a zero p-value.
This analysis confirms our analysis in Problem 6.2.23. There appear to be too
few deaths in the three months prior to the birthday and too many in the three
months afterward.

(a) There are eight cells and one parameter which was estimated. In fact, there
can be technical difficulties depending on how the parameter was estimated.
Let's ignore that technicality. So we have six degrees of freedom for x2 and
obtain a p-value greater than ten percent . Based on that analysis, there is no
reason to doubt the model.

(b) MLE = 1/1.8684.

Frequency of
capture 0 1 2 3 4 5 6 7

Expected #
of rabbits 72.3 33.6 15.6 7.3 3.4 1.6 0.7 0.3

Here X2 = 12.8 with six degrees of freedom, giving a p-value a bit less than 5%.
This does not seem to challenge the model.

Still the model from part (a) with a much smaller p-value is not necessarily
better: In a X2 test, the parameters should be estimated by the so-called "min­
imum chi-squared estimator" which is often well approximated by the MLE.
But the estimator we used in part (a) is neither of these!

(a) The decision is based on a random sample of the day's output. That sample
could be quite atypical of the entire day's output. If so, you will be misled into
the wrong decision. Of course, although this is possible, it's not likely.

(b) You would hope the error could be controlled by specifying IN ADVANCE

an acceptable probability for such error. That's how you control error for con­
fidence intervals. In that case, even though the interval may not contain the
parameter, you believe and act as if it does. That's an error! You "control"
that error by choosing a confidence coefficient of, say, 95%. The error is still
possible, but you avoid it 95% of the time. As you'll see, one of the two errors
of an hypothesis test can be controlled this way. The other cannot.

(c) The normal distribution for p is centered on p and so the "mound" of the
normal curve says the probability is concentrated near p. That says exactly that
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typical values of p are more likely than atypical ones. Look at the picture for p
[see the level II solution to Problems 5.2.5(c) and 6.2.3(c)].

(a) Wrong! Even if /.L = 3.15, you don't expect X to be exactly 3.15. If it's
just slightly below 3.15, that says nothing about /.L. Only if X is SIGNIFICANTLY

below 3.15 do you have "evidence" that /.L < 3.15. This, of course, is a case of
statisticalsignificance.

(b) You can't expect the mean diameter to attain an exact value! Evidently, the
engineers thought a mean as low as 3.15 would not be a problem; that's why
they said "too small" means less than 3.15 mm. In other words, they're saying
a difference of less than 0.05 mm is of no practical significance.

(c) If the spread of diameters about the mean is too great, many diameters will
be far from the mean even though the mean itself is "right on target ." You would
want to monitor the spread of diameters also.

(d) Monitor the proportion of parts with a diameter less than 3.15 mm.

(a) The evidence is the sample which is drawn periodically. In this problem, it's
a sample drawn from an incoming shipment of machine parts.

(b) The diameters are "uncertain" if the spread of diameters about the mean is
too great. That's measured by the variance of the diameters.

(c) P(D < 3.151/.L = 3.2, (7 = 0.025) = P(Z < -2) = 0.0228. That assumes a
normal distribution for diameters. Under ordinary circumstances, that should
be reasonable. Check with the engineers!

(d) With the same /.L, less than 2% of the parts would be useless if (7 = 0.025
as compared with nearly 16% if (7 = 0.05. The point is: If there's too much
variability in the diameters, a large proportion of the parts will be useless, even
when the mean diameter is "in control" (even when /.L meets the specification
of 3.2 mm). See Problem 6.3.2(c).

(e) The estimator is s2 and we use the chi-squared distribution for this test.
Recall that X2 = cs2, where c = (n -1)/(72 (a constant). The hypotheses will be

H, : (72 = 0.000625 ((72 < 0.000625 irrelevant),

HA : (72 > 0.000625.
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(f) You're not going to reject a shipment because the diameters are too close to
the specified value!

(g) To provide evidence that (12 > 0.000625, 82 must be significantly larger
than 0.000625. Is this practical or statistical significance?

We quote from the text: " . .. (the null hypothesis) plays a purely logical role
in the hypothesis test by giving us a value of the parameter to work with." On
the other hand, the alternative hypothesis plays the practical role of specifying
an "exceptional" situation calling for some alternative course of action. Action,
after all, is a practical matter. The alternative hypothesis" ... is "alternative"
only because it flags an exceptional action. From the point of view of the test,
the alternative hypothesis is, in fact, the main hypothesis. After all, it's precisely
the exceptional action that the test wants to flag."

(a) Your concern is whether a particular part is functional or not. The mean says
nothing about a particular parts. So you monitor the proportion of functional
parts:

Ho : p = 0.02 (p < 0.02 irrelevant),

H A : p > 0.02.

Note that p < 0.02 is irrelevant because you're willing to discard as many as one
in 50 parts. Only when more than 2% of the parts would have to be scrapped
is the expense of "corrective action" justified. This kind of trade off is typical
in any analysis seeking to minimize costs. Evidently, the cost of "corrective
action" is greater than the cost of scrapping one in 50 parts. Abraham Wald's
Decision Theory provides a more detailed and rigorous way to incorporate costs
of possible decisions into the analysis of this kind of situation.

(b)

Ho : p = 0.81 (p> 0.81 irrelevant),

HA : P < 0.81.

Can you give a real-world description of p?

(c)

H, : /-L = 1.2 (/-L > 1.2 irrelevant),

HA : /-L < 1.2.
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The test attempts to flag an unacceptable shipment. That means you're "trying"
to flag a shipment for which the mean length is too small. This is an example
of "acceptance sampling." Give a real-world description of u,

(d)

(i) It's reasonable to assume the lengths of chains approximately normally
distributed. So P(L > 1) = P(L > 3(1L) ~ 99%, as required.

(ii) L = ~X, the sum over the 92 links of a chain. Because (1i = 92(1i­
and because we want (1i < 1/9, (1i- < (1/9)(1/92) = 0.0012.
(iii)

Ho : (1i- = 0.0012 ((1i- < 0.0012 irrelevant),

HA : (1i- > 0.0012.

(iv) We're assuming the links making up a chain form a simple random
sample. The "monitoring procedure" of the hypothesis test uses the theory
of simple random sampling. We'll see that later. And in (iii), we used the
equation (1i = n(1i- which is true only if the X's for the 92 links making
up a chain are independent. That's true if the links making up a chain form
a simple random sample from the distribution of X.

(e) The standard deviation for the length of links should be specified in the
contract to be "no more than 0.0348 ern" (the square root of 0.0012).

(a) We control type I error by specifying the significance level in advance. That's
the error which could be made when we act on HA • The error for H, is controlled
only in a rather unsatisfactory sense.

Our comment in the text was, "the testing procedure is more conclusive when
it decides in favor of the alternative hypothesis. In that case the probability of
error is completely under our control. We cannot eliminate that error, but we
can specify its probability in advance. This is why the alternative hypothesis is
the principal hypothesis from a practical point of view."

(b) The significance level is the probability of type I error. You determine it in
advance before you ever look at any data.

(c) The power of the test is 1 - f3 = P(act on HAIHA is true). But H A does not
provide a particular value of the parameter. So the power of the test depends on
the various parameter values allowed in the alternative hypothesis. The power
is a function of the parameter.
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(d) A hypothesis test is trying to spot the times when H Ais true.

(e) A test of significance is trying to spot data which challenges the hypothesis.
Note that a hypothesis test can be thought of as trying to challenge H o •

(f) The table helps us understand the logical structure of the test. It sorts out the
four situations which arise. Two involve correct decisions, two involve errors.
Because the "state of the world" is unknown, we'll never know whether we're
making a correct decision or an error. That means any discussion of correct
decisions and errors is theoretical. This is always true in making a statistical
inference based on sample data-you'll be misled into error if the data is atypical
of the general situation, but YOU DON'T KNOW THE GENERAL SITUATION! SO you
don't know whether your data is typical or not. All you know is the data is
probably typical. Thus, you cannot avoid error, but you can hope to control
it. You control error by specifying the probability of the error in advance. In
an hypothesis test, only one of the two errors can be controlled in a completely
satisfactory way. See Problem 6.3.1.

(g) As a practical matter, no physically determined number ever takes exactly
a predetermined value.

(h) The test tries to flag "too many defectives." "Too few defectives" doesn't
make sense. So small values of p are irrelevant. Beyond the test itself is the
entire production process. Certainly, from that perspective "few defectives" is
of critical importance! Don't tell your stockholders that "few defectives" is
irrelevant. You'll cause a Wall Street crash!

(i) From the text: " ... the testing procedure is more conclusive when it decides
in favor of the alternative hypothesis. In that case, the probability of error is
completely under our control. We cannot eliminate that error, but we can specify
its probability in advance."

(j) HAgives a condition on the parameter, NOT on the estimator.

(a) Either by identifying the "alternative" action or by forcing the more serious
of the two possible errors be type I error.

(b) The first error is inconsequential and the second quite serious! The first error
is to use the new procedure even though it's ineffective. So no harm is done;
after all, there's no risk. The second error is to do nothing, even though the new
procedure is effective. In light of the seriousness of the disease, this is a crucial
error. Of course, you could take an extreme case in the "other direction" and
you would reverse the seriousness of the two errors.
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(c)

Ho : R = 0.001 (R > 0.001 irrelevant),

HA : R < 0.001.

Here, R is the recovery rate for the new treatment. Note that believing and
acting on HA means believing the new treatment is not as good as the old, so
you'll use the old procedure. Thus, type I error is "using the old procedure when,
in fact, the new procedure is more effective." Bypart (b), that's the more serious
error.

False. The fivepercent "error rate" refers to five percent ofthose weeks in which
quality was really in control (it's conditional on that "state of the world'). Sup­
pose quality was really in control for only 70 of the 100 weeks. Then we would
expect to have unnecessarily halted production for corrective action about three
or four times (5% of 70). We are not talking about five percent of all runs of
the hypothesis test; we're talking about five percent of those runs for which, in
fact, although we didn't know it, there was no need for corrective action. The
five percent "error rate" refers only to those cases for which the null hypothesis
was in fact (unbeknownst to usl), true. It's "conditional" on the null hypothesis.
We'll see why this is true later when we discuss how the data is analyzed.

(a) Reject Ho : On the basis of our evidence, it appears we are producing too
many useless parts. Take corrective action.
Fail to reject Ho : The test is inconclusive. There's no evidence we are producing
useless parts at a rate of more than one in 50; continue in production.
Type I error: There's about a five percent risk that we interrupt production to
take corrective action when, in fact, that's not necessary. Although the evidence
suggests otherwise, we are not producing more than one in fifty useless parts.
Type II error: There's an unknown risk that we are continuing in production
even though more than one in 50 parts is entirely useless.

(b) Reject Ho : It appears we have lost more than three points for the month in
question. We must step up the campaign effort in that district.
Fail to Reject Ho : The test is inconclusive. There's no evidence our support in
that district for the month in question has weakened. We will cont inue at the
present level of campaign activity.
Type I error: We increase the campaign effort in that district when in fact,
although we didn't know it, our level of support for the month in question has
not fallen more than three percentage points. There's a five percent chance of
this error.
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Type II error: With an unknown risk of error, we continue at the present level
of campaign activity when, in fact, our support in that district for the month in
question has slipped more than three points.

(c) Reject Ho : Our evidence seems to indicate this month's shipment of chain
links does not meet specifications. Following the terms of our contract, we return
this shipment to the supplier.
Fail to Reject Ho: The test is inconclusive. Because there's no evidence, it does
not meet specifications; accept this month's shipment of chain links.
Type I error: There's a five percent risk that we return the shipment of chain
links this month when, in fact, it does meet the specified mean length per link
of at least 1.2 ern.
Type II error: There's an unknown risk that we accept, for the month in question,
a shipment of chain links which does not meet specifications.

(d) You'll have to change the reference to the specification in the statement of
type I error. Here you not talking about "mean length per link."

(a) Formally, either you "reject Ho," which in real-world terms means "act on
HA," or you "fail to reject H;" meaning you "act on H;."

(b) Formally, you have either "type I error," which in the real world means you
"act on HAwhen, in fact, Ho is true." Or you have "type II error" which means
you "act on Ho when, in fact, HAis true."

(c) Logically, "H, is true" means p = 0.01, practically (in real-world terms) it
means p < 0.01. These are the "irrelevant" values, but they are NOT irrelevant
from a practical point of view! See Problem 6.3.6(h) .

(d) The alternative hypothesis plays a practical role in the test. So its "logi­
cal meaning" is exactly the same as its practical, real-world meaning. In the
example, it says you're producing too many defectives: p > 0.01.

(e) Logically, to say "the test is inconclusive" means your data provides no
evidence that HAis true . In other words, "the data is consistent with Ho." But
it will be consistent with many other hypotheses as well. So the data proves
nothing. By contrast, in real-world terms some course of action is required.
Because the test is inconclusive, that action cannot be based on the test and must,
instead, be based on some prior information. In the quality control example, if
there's no evidence of a problem, you "stay in production." That action, as we
said in the text

... is based on the fact ("prior information") that you have a production
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process which is well designed, free of problems, and run by well trained
workers. With no evidence to the contrary, it makes sense to let the process
go forward.

It does unless you're also checking the VARIANCE of the diameters! See Prob­
lem 6.3.2(d).

The parameter is /1, the mean life of ALL the new supplier's part. The estimator
is X, the mean life of a SAMPLE of the new supplier's part.

Reject Ho : We should write a contract with the new supplier. It appears the
average life of their part is significantly higher than for the present supplier.
Fail to reject Ho : The test is inconclusive; the sample provides no new infor­
mation. In particular, the evidence obtained from our sample does not support
switching to the new supplier. We should remain with our present supplier.
Type I error: There's a 1% risk that we switch to the new supplier when, in fact,
the mean life of their part is not significantly greater than that of the present
supplier.
Type Il error: There's an unknown risk that we remain with the old supplier
even though the new supplier's part has a significantly longer life.

Note the use of the word "significant" in stating the error. That's practical
significance. It has nothing to do with the significance level of the test which is
a form of statistical significance. For example, the present supplier's part has
a mean life of 285 hours. Suppose the new supplier's part has a mean life of
286 hours. Then it has a longer life-by one hour! Evidently, in the judgment
of the purchasing department, such a small difference would have no practical
significance. That's why they gave you a criterion of "greater than 310 hours."

The parameter is p, the proportion of ALL registered voters who will see the
spots. The estimator is p, the proportion of a SAMPLE of registered voters who
will see the spots.

Reject Ho : Your study suggests that fewer than 25% of registered voters will see
the spots. So, with a 5% risk of error, you do not launch the series of television
spots.
Fail to reject Ho : Your study is inconclusive. Therefore, you go ahead with
the series of television spots as previously planned (NOT on the basis of the
hypothesis test, but on the basis that "you have decided to go ahead with the
series of spots, but .. . .").
Type I error: There is a 5% chance that you will fail to launch the series of
television spots when, in fact, it would be effective (i.e., it would reach at least
25% of the registered voters).
Type Il error: There is an unknown risk of launching the series of television
spots even though they will reach fewer than 25 % of the registered voters.
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Reject Ho : Your study suggests that more than 25% of the registered voters will
see the series of television spots. So with a 5% risk of being in error, you go
forward with the series.
Fail to reject Ho : Your study is inconclusive. You tell your candidate's supporters
that the preliminary study provides no evidence to support launching such an
expensive television series. You do not launch the series.
Type I error: There is at most a 5% risk that you go forward with the series of
television spots when, in fact, it would not be effective (i.e., when fewer than
25% of registered voters would see it).
Type II error: There is an unknown risk that you will fail to launch the series of
television spots when, in fact, it would be effective.

It's a question of practical significance. The word "significant" refers to the
difference between two population means. If the average SAT score at your
school is one point higher than at Bad U, you hardly have anything to brag
about. A difference of one point makes no practical difference. Evidently, only
a difference of 15 or more points will be considered of practical significance.

In this situation, data is statistically significant only if it leads us to reject Ho •

Statistical significance compares the data, as summarized in a value of Xl - X 2,
with the hypothesis, J.Ll - J.L2 = 15. Here, this means Xl - X 2 is significantly
far above 15, too far to explain the difference as due just to sampling error.

Reject Ho: Your data suggests that there is at least a 15-point superiority of your
school over Bad U in SAT scores. So with a 10% chance of being wrong, you go
ahead with publication of the "good news."
Fail to reject Ho: Your data is inconclusive. Your study revealed no evidence
to support the contention that there is a significant superiority of SAT scores at
your school compared to those of Bad U. Do not publish-there is no "good
news." What does the word "significant" mean here?
Type I error: There is a 10% chance that you will go ahead with publishing
what you take to be the "good news" about SAT scores at your school being
significantly superior to those at Bad U when, in fact, that is not the case. What
does the word 'significantly" mean here?
Type II error: There is an unknown risk of missing out on a chance to publish
that there is a significant superiority of SAT scores at your school over those at
Bad U when, in fact, such an article would be consonant with the facts.

Did you identify in real-world terms the parameter (J.Ll - J.L2) and its estimator?

This is a left-tailed test because "missing a chance to boast" will have to be
type I error and that's the error we control. Be sure to identify the parameter
and its estimator! We leave it to you to give the real-world interpretation of the
conclusions and errors.
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For these problems, we leave it to you to give the real-world interpretation of
the conclusions and errors.

(a) If in any week your sample gives more than nine useless parts, assume the
process is producing too many useless parts. Take corrective action. For a 10%
significance level, Z = 1.28 and Pc= 0.0303 and the decision rule is the same.

(b) Step up the campaign effort in that voting district during any month in which
you found fewer than 36 voters among the 50 interviewed who support your
candidate. If a = 10%, Pc = 0.7390. Now the decision rule says" ... fewer
than 37 voters."

(c) The decision rule is: "Each month, compute t, the test statistic. It's (X - f..lo)
divided by 8/ VlO. Compare it with -1.8331. Reject that month's shipment if
the number you compute is less than - 1.8331." Of course, you'll have to explain
to the person carrying out this rule how to calculate X and 8 by entering the
data into a calculator in statistical mode. For a = 10 %, reject the shipment if
the computed value of t is less than -1.383.

When you know that (J2 = 0.1, the decision rule can be more simply stated:
"Reject the shipment in any month when the average length of the ten links
you've measured is less than 1.0355 em." For a = 10%, say, " . .. less than
1.072 em."

(d) Reject the shipment in any month when s is greater than 0.0475 em. Here's
how you get this number: First, DON'T USE (J = 1/3. That was for the length
of chains not links [see Problem 6.3.5{e)]. For the links, you test (J2 = 0.0012
[see Problem 6.3.5(d)]. That means H, specifies (J2 to be 0.0012. Because you
assume H, true, from the chi-squared table with nine degrees of freedom you
get

16.919 = {n - 1)8
2

/(J2 = 982/0.0012.

Solve to find the value we gave above: 8 = 0.0475. For a = 10%, your decision
rule should say, " ... greater than 0.0442 em."

(a) In the second and sixth weeks, you had to take corrective action because ten
or more useless parts were observed. In the other weeks no action was required.

(b) In months two, six, and seven you found fewer than 36 voters among the
50 interviewed who supported your candidate. In those months you "stepped
up the campaign effort in that district." In all other months, support for your
candidate seemed adequate and no special campaign effort was required.
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(c) Here are the observed values for t, your test statistic:

0.8433, 0.3814, -0.3, 0.6325, 0.2236, -1.8974, -0.9487, 0.1.

Only the sixth is below -1.8331, so only in that month did you return the ship­
ment as unacceptable. Note that the five positive values of t were unnecessary
because in those months the sample mean was ABOVE 1.2 ern which could hardly
be evidence that the true mean was BELOW 1.2 ern ..

(d) The largest observed 82 was 0.11 (8 = 0.3317), but that's not large enough
to suggest a problem (8 is NOT greater than 0.4570).

(a) It's not just the mean length of these chain links you want to monitor. The
variability in length is also important. Because your observed 8 = v'0.22 is too
large-it's larger than 0.0475-you should reject this month's shipment.

(b) Even if the average length for the chain links is acceptable (1.2 ern or more),
when the standard deviation is too big, the distribution for length (approxi­
mately normal) will be too spread, giving a large number of links that are too
long. Draw the picture!

The rejection region is {tit> 2.624}. It's given in terms of t because it would
change with each sample if given in terms of the sample mean. After all, the
standard deviation for the life of these parts is not known. Be sure to recall the
real-world meaning of your conclusions in each case.

(a) Fail to reject Ho , the observed mean is in the wrong tail of the distritution.
There's no wayan observed mean of 287 could be evidence that the true mean
is MORE than 310!

(b) Fail to reject Ho • The observed value of the test statistic is less than 2.624;
it's 2.2951.

(c) Reject Ho • The observed value of the test statistic is t = 2.9508.

(d) Reject Ho • The observed value of the test statistic is t = 7.3939.

(e) FAIL to reject Ho • Now t = 2.5505. Although the observed mean for this
sample is greater than for all the others, the observed standard deviation is also
much larger, degrading the value of the data. The standard deviation is so large
we have to say "no evidence" for the true mean being above 310. Such a large
standard deviation might suggest that, instead of worrying about the average
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life, you should look more carefully at the unpredictability of life for the new
supplier's parts.

(f) "Lifetime" should be exponentially distributed. To have X be normally dis­
tributed, you would have to take a large sample.

You need not look at the decision rule in part (a) because 43/130 is greater than
0.25. Fail to reject Ho • A value of p larger than 0.25 could hardly be evidence
that p is smaller than 0.25!

The decision rule is in terms of "25 of the 130." That 25 is NOT the 0.25
of the hypothesis!! The 25 of the decision rule is 18.75% of 130. The decision
rule: "Do not launch the series of television spots if fewer than 25 of the 130
registered voters interviewed say they will see the series of spots." For parts
(a)-(c), fail to reject Ho • For parts (d)-(g), reject Ho • What do these conclusions
mean in real-world terms?

The rejection region is {pip> 0.3125}. You state the decision rule in real-world
terms.

(a) Reject Ho; (b)-(g) fail to reject Ho • Real-world meaning?

The t-distribution is irrelevant here because you know the standard deviations
of the two populations. The decision rule at the 10% significance level says to
reject H, if the difference in sample means is greater than 55.3053. What's the
real-world decision rule?

(a) A sample from your school which is worse than the Bad U sample could not
possibly be evidence that your school as a whole is better!

(b) and (c) Fail to reject Ho; (d) Reject Ho • Real-world meaning?

(a) Reject Ho ; (b)-(d) fail to reject Ho . Real-world meaning? Parts (b)-(d) are
not even candidates to reject Ho • Part (a) is the only case where your school's
score was less than Bad U's.

This, note, is the same test as in Problem 6.3.15.

The decision rule is: "If more than 145 of the 1215 tax returns examined show
evidence of attempts at tax evasion, then the IRS should audit all income tax
returns which show these characteristics of evasion."

(a)-(d) Reject Ho; (e) and (f) fail to reject Ho • Real-world meaning?
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The decision rule is: "If more than 260 of the 1215 tax returns examined show
evidence of attempts at tax evasion, then the IRS should audit all income tax
returns which show these characteristics of evasion ."

(a) reject Ho; (b)-(f) fail to reject Ho. Real- world meaning?

We will reject H, if X2 = 682/0.3 > 12.592. That says that 82 must be greater
than 0.6296 mm2, so 8 must be greater than 0.7935 mm. So the decision rule is:
"Any week in which the standard deviation of thickness for the seven observed
pieces of paper from our production process exceeds 0.7935 mm, you should
assume the process is no longer in control and take appropriate corrective ac­
tion."

(a) and (b) Fail to reject Ho; (c) and (d) reject Ho . Real-world meaning?

Treating one-time decisions as hypothesis tests instead of tests of significance
provides a clearer analysis of the possible errors. In fact, Problems 6.3.14,
6.3 .16,6.3.17, and 6.3 .18 were all formulated in terms of "risk of error." So
treatment as tests of significance would have entailed a translation from the
hypothesis testing concept of error.

(a) Done!

(b) For a one-time decision, all you need is a conclusion. One conclusion! Cal­
culate the p-value and interpret it to get the conclusion. Finished!

For a true hypothesis testing situation-a monitoring situation-the decision
rule determined by the rejection region can be given in real-world terms to
someone like a production line supervisor. It's a rule to decide between two
possible courses of action depending on the data for the particular sampling
period. Because the data changes from one period to the next, such a decision
rule is NOT redundant.

(a) P(Z > 0.26) = 0.3974. You knew this would be smaller than 50 % because
you're calculating the power at a value of p which is between 0.01 and the
crictical p.

(b) P(Z > -0.72) = 0.7642. How could you see in advance that the power
would be greater than 50 %?

(c) P(Z> -2.71) = 0.9966.

(d) Necessarily the power is a = 0.01. Draw the picture and you'll see why.
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(e) The power is one. If p = 1, every item is defective, so you know for certain
that any sample givesP= 1, which is in the rejection region. Becauseyou always
reject Ho, the power is one:

power = P(act on HAIHAis true) = 1.

The normal approximation for p is not valid because nq ~ 5 doesn't hold (it's
zero!).

(a) The power is the probability of acting on HA when you should have. That
means H A is the condition that's true . The power is a conditional probability,
conditional on HA being true

power = P(act on HAIHA is true).

So to calculate power, we must choose a parameter value where HA is true.

(b) In real-world terms, the test has decent power to detect too many defectives
only if 2% or more are defective. In other words, even when we have an un­
acceptable defect rate above 1%, there's less than a 75% chance for the test to
actually detect that fact when less than 2% are defective.

(a) P(Z > 0.92) = 17.88%, P(Z > -0.16) = 56.36%, and P(Z > -1.33) =
90.82%.

(b) 30.5%,84.61 %.

(c) 20.33%,56.75%.

(d) Because 982/(72 = X2, the power is

P(82 > 0.04752 1(72 = 0.0065) = P(X2 > 9 X 0.04752/0.0065)

= P(X2 > 3.124)

~ P(X2 > 3.325)

=95%.

Sorry.

(a) The picture for pcentered at p = 0.015 with 40% of the area in the left tail
(Z ~ -0.25) gives Pc= 0.015 - 0.25 s.e. With the picture centered at p = 0.01,
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we get Pc = 0.01 + 1.28 s.e. Note that the standard error is different in each
case. The first has p = 0.015; the second p = 0.01. So you get

0.015 - 0.25 x 0.1216/vn = 0.01 + 1.28 x 0.0995/vn

from which we see that you must take a sample of n = 996 parts. If the normal
approximation for p is invalid, you must revert to the binomial model.

(b) The rejection region is {pip> 0.0140}.

(a) 0.62% of all cups overflow on average.

(b) 90% chance that somewhere between 12.64% and 32.25% of all cups
overflow (s.e. ~ 0.0596).

(c) 90% chance that 1 to 2~ cups overflow on average pertwo days (8 = 1.2906,
s.e. ~ 0.2213). The 90% confidence interval: (0.6065, 1.3347).

(d) For the small sample case you would use Student's t-distribution, but that
requires that you're sampling from a normal distribution. Here Y certainly
would NOT be normally distributed. What's a reasonable distribution for Y?
Think about it.7

Here you have complete information about the "population," all baggage for
this airline. The question is about ~X for a "sample." This reverses the usual
pattern. The problem is just a calculation using the sampling distribution of the
estimator X, recalling that ~X = nX. To four places, the interval is (4212.8843,
4566.3157).

95% (18.6288,41.4179), a prediction interval.

1.22% chance.

The p-value is

P(~X > 64251J-tl;x = 6000, n = 214) = P(X > 30 .02341J-tx = 28.0374)

=0

with Z = 5.01. Zero is SMALL as a p-value and so the answer is NO.

7 The data itself indicates that Y is skewed to the right . The reasonable model is Poisson! If >. is
more than about nine, the Poisson distribution is approximately normal. But the data in part (c)
would suggest>. is LESS THAN ONE.
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The standard error for the difference in our two means is 0.3044, the square
root of

4.2692/429 + 4.7612/452 = 0.0926.

So
p-value = P(Xl - X2 > 3.523) = P(Z > 11.58) = O.

There is a criticism to be made here: Evidently, Barrow and Morrisey tested
all students in the selected schools. Taking all students from randomly chosen
schools does NOT provide a simple random sample of students, although they
seem to have treated it as such. What kind of sample is that?

We're leaving this to you. Make sure you can do them!

Let X ="length of link."

(a) P(X > 0.71), where X '" N(0.7,0.06). Note, you're assuming a normal
distribution for X. Justify that assumption and be prepared to give an example
of how it might fail.

(b) P(L > 57.51) = P(X > 0.71), where X '" N(0.7, 0.06/9). Justify using a
normal distribution for X.

(c) P(Y 2: 10), where Y '" B(81,p) with p calculated in part (a). This assumes
a chain is a random sample of links, so our data becomes a sample from the
distribution of "length" X.

(d) P(Y 2: 10), where Y '" B(100,p) withp = answer in (b). Assume the chains
are randomly chosen.

(e) PCP> 0.2) or P(X > 161n = 81,p =?).

(f) Give a confidence interval based on one chain of 81 links as a sample, giving
a sample mean of 0.71 ern. You must interpret the question as asking for the
mean length of a link.

(g) Do a test of significance: Does the data (the chain) seem to challenge the
hypothesis?

(h) Set up hypothesis tests for J.L and (72. This is like Problem 6.3.5 parts (c)
and (d). But here the problem is vaguely stated. You would need to clarify-the
"boss" needs to clarify-exactly what is meant by "meets specifications" (at
most?, at least? etc). You explore the possibilities.
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(a) This is a problem about ~X, convert it into a sample mean problem.

(b) CLT, n is large.

(c) H = "weight of haul" is ~X, so H nX from which /-LH = tu» and
on = ncr. Or forget X, the mean of ~X is just ~/-Lx; /-L is added to itself n
times, which is tui. And with independence the variance of ~X is ncr2. Here,
you have complete information about all fish in these waters, so this is not the
usual confidence interval. It's a question about a "sample" (seeProblem 6.4.3).
Conclusion: "We can be 95% sure today's haul will weigh between 12,998 and
13,413 pounds." To four places: (12,997.5841, 13,413.3583).

(d) ~X = H = nX, so cr~ = n2cr~ = n2(cr2In) = ncr2. Or forget the sam­

ple mean, the variance of ~X is just ~cr~ which is just cr~ added to itself n
times. For this second approach, the various values of X in the sample must be
independent-why is it true here that the values are independent?

(e) You're sampling from W = "weight of one fish." Random experiment: the
DOING: "fish until you catch one"; clearly repeatable; an OUTCOME: a fish; clearly
you cannot predict in advance what fish you'll get. W assigns to each fish (each
outcome) its weight.

The weights of the fish in a haul can be written down in a list (an "ordered set
of n values of W") and are generated by n repetitions of "fishing until you catch
one," the random experiment for W. If these repetitions are independent, the
definition of a "simple random sample from the distribution of W" is satisfied.

(f) If there are only, say, two kinds of fish and they travel in large schools,
any single fish caught is likely to be the same type of fish as the previous one,
the independence assumption would fail. But here you have a fleet of many
boats presumably covering a large area with fish of many different types. This
would seem to make the independence assumption more or less valid. For this
situation, the "doing" would have to be more precisely defined as "a fisherman
in some boat somewhere in the large area of your operations catches a fish." Note
that for a fleet of commercial fishing boats where the fish are caught in large
nets, this assumption of independence becomes more problematic. The same
considerations will come up in considering the possibility that W is normally
distributed-so far we've not needed that assumption.

(g) ~X = nX; it's of the form Y = a + bX with a = 0 and b = n, So
the underlying experiment is the same as for the sample mean. What is that
experiment? ~X is approximately normally distributed, why? Its mean is n
times the mean of the sample means-what's the formula? The variance? Note
that this is all just redoing the analysis in part (d).
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(h) The girl can be about 95% sure that the fish in these waters weigh some­
where between 41bs. 70z. and 71bs. 3 oz. on average. [Hint: t = 3.1825,82 =
2.2707/3].

(i) With a five percent risk of error, we can suppose her fish will weigh between
21bs. 11 oz. and 81bs. 14 oz. This is NOT "on average"! We've done a prediction
interval. Our nonparametric prediction interval is not helpful here because it
would give at most a confidence coefficient of 60%. Explain! Furthermore, to
give that 60% interval would require more information (what?) than we have.

(j) First, her four fish must be assumed to be a random sample of all the fish
in the waters of her area. Second, because n is small, the weight of ALL the fish
(the population) must be normally distributed. Both of these assumptions might
be questionable [see part (f)]-even if the assumptions are valid for the fleet's
operation, the restricted area of the girl's fishing might make the assumptions
fail in her case. Reread part (f) and see why this is true. Remember, for the
weight of fish to be normally distributed, the difference in the weight of two
fish must "look like random error." That is, the difference must be due to many
independent random factors . This will fail if there is some systematic factor (one
or more) systematically accounting for some of the differences.

But still, the assumption of normality might hold under appropriate condi­
tions: Salmon, for example, live in the ocean waters for about two years and
then return upstream to spawn. If the girl is fishing near the mouth of their
river when they're there, preparing to enter the river and return to the spawning
grounds, and if other fish are by comparison negligible in numbers, then the
normality assumption would be quite reasonable: These salmon are virtually all
about the same age and the differences in their weights would be due simply to
many independent random factors.

You see here why we keep saying that statistics is NOT just a matter of num­
bers. The numbers taken out of context are meaningless! Informed judgment is
unavoidable.

(k) The average weight of fish for the fleet is 7.5202 pounds. This number is
out of the probable range for weight in the girl's area [see part (h)]. Maybe she
fishes only in shallow water where the really big fish don't go, to name just one
possibility.

(1) It's reasonable to assume that W = "weight of fish" to be normally dis­
tributed in this case (why?). So a confidence interval is NOT required because
the population in question is completely described: normally distributed with
f.L = 7.5202, (J' = 2.5311. P(W > 10) = P(Z > 0.98) = 0.1635.

(m) Real world: "We can be about 95% sure that between 29% and 33% of
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the fish in the fleet's area of operation are flounder ." Note that the real-world
answer is as complete in detail as the problem allows.

(n) 1.962pqj n = 0.01402 . For the worst case, pq = 0.25.

(0) At 4.5 pounds, t = 2.9885 giving a p-value between 2.5% and 5%. Because
this is less than our given fivepercent criterion, the p-value IS SMALL. Real world:
"Based on the girl's catch, it appears the old man's information is wrong. The
fish in these waters ("around here") would seem to weigh more than fivepounds,
on average."

Note that for a test of significance you're required to do three things: calculate
the p-value, say explicitly "small" or "not small," and then give the real-world
interpretation. If no criterion of "small" is given, you decide. Of course, a p­
value more than ten percent is never considered small and one less than one
percent would almost certainly be considered small. Otherwise, either choice is
possible .

(p) H, : p = 0.001, and so on. The rejection region is {pip> 0.0036}. The
standard error here is 0.0016. For a significancelevel of FIVE percent, Z = 1.645.
Make sure you can set up the hypotheses correctly with correct formal notation
and can draw the pictures of the estimator and of Z .

(q) P(Z > 2.96) = 0.0015. Assumption? Reasonable? How could it fail?

(r) rui = 2000 x 7.5202 = 15,040.4, so 15,040 ± 1.96 x 113.1942 (95%
sure).

(s) s.e, = 0.0566. P(Z < - 0.36) = 0.3594. Draw the pictures!

(t) 1.962(j2j n = 12• Assume a = 2.5311.

(u) The sample size is small. But then, a is known.

(v) HA : /-l < 7, the s.e. = 0.0428, and z = 1.645. Be sure you could set up the
hypotheses completely and state the possible conclusions and errors both for­
mally and in real-world terms. Also, you must be able to draw the pictures both
of the estimator and of Z, indicating clearly in the picture the rejection region.

(w) "Today's haul does indeed suggest that there were fewer flounder in these
waters a year ago." The p-value is small.

You have to reframe the question as: Does today's haul seem to challenge the
contention that PI - P2 = O? Here, PI and P2 are the proportion of flounder,
respectively, last year and this year. Because you will assume the contention true
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to compute a p-value, that means the two p's will be assumed equal. Call that
value just p . Then the squared standard error for the estimator Pi - P2 is just

pq/2144 + pq/1756 = 0.0010pq.

Thus, in the worst case, s.e. :S 0.0003 (pq :S 0.25) .
In the less conservative approach, because you are assuming Pi = P2, you can

estimate p by "pooling" the two samples (see Problems 6.2.9 and 6.2.12). Here,
there are 601 +547 flounder out of 2144+ 1756 fish, that is, p ~ 1148/3900 =
0.2944. This gives an estimate of 0.2077 for pq and so an estimate of the squared
standard error of 0.2077 x 0.0010 = 0.0002.

Now, let's follow the less conservative approach. We'll see that the observed
difference is "statistically significant." In other words, the p-value is small: Pi ­
P2 = 0.2803 - 0.3115 = -0.0312, so Z = -2.13. Here, we've done the s.e.
calculations and stored it in memory without rounding-if you round the s.e,
to four places, z = -2.21. Of course, -2.13 is more accurate (note the loss of
accuracy from intermediate rounding!). This gives a p-value of 0.0136. By our
criterion (0: = 0.05) this is small.

(x) H A : f1 > 0.23, s.e.= 0.1266, z = 1.645. Be sure ... [see part (u)] .

(y) We need the expected value of X - 1 where X = number of fish you catch
to obtain the first one which . . . . X is geometric with mean l/p, where p =
P(W > 8) = P(Z > 0.19) = 0.4247. That's p, so l/p = 2.3546.

(z) In part (y), we saw that the proportion of fish over eight pounds in these
waters is 0.4247. This is known (assuming normality of weight). So the question
does not ask us to compare the data with an "hypothesis about p" because pis
known. The question just says "compare the data with the fact that p = 0.4247".
So we do a p-value calculation. This is another form of the test of significance
where the question takes the form: "Does the true value of the parameter make
our data look nonrandom?" Here P= 7/52, s.e.= 0.0685, z = -4.23 . This
gives a p-value of zero.

Thus, we have far fewer fish weighing more than eight pounds than is rea­
sonable for a random sample of fish from these waters. You should doubt that
the 52 fish are a random sample and look for an explanation [see parts (f) and
(j)]. Of course, the whole analysis is also based on an assumption of normality;
maybe THAT'S the assumption which is wrong! Or maybe we really did just get
a very unusual sample! Note how the test of significance can be generalized to
a number of different kinds of question.

(a) P(X > 2) = 1 - e- ,), [l + >. + >.2/2] = 0.9326, with the expected number of
bombs to fall in one region being>. = 0.927083333.
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(b) There's no "unit of time" given in the problem. You're not observing a pe­
riod of TIME, but rather of SPACE (a geographical region). The exponential model
doesn't make sense here. To answer the question, you would need information
about the number of bombs falling in a given period of time.

(c) For example, P(X = 2) = e- >' (>,2/ 2 ) = 0.1701, with>. = 0.927083333.
Thus, the expected number of regions suffering two hits is seventeen percent of
576 (211 regions, exactly what was observed) . So:

No. of Observed Expected (O-E)2

hits frequency frequency -E-

O 229 227 0.0176
1 211 211 0
2 93 98 0.2551
3 35 31 0.5161
~4 8 9 0.1111

576 576 0.8999

To measure the "goodness of fit" of the expected frequencies to the observed
frequencies, you calculate X2 = 0.9000 (this differs from the 0.8999 of the table
because we preserved all the accuracy of the calculator). But with three degrees
of freedom (see Problem 6.2.26), to get a p-value of 10% or less would require
a X2 larger than 6.251. So the p-value is NOT SMALL and there's no evidence for
lack of fit. Note, as always with goodness-of-fit tests, you do not "prove" fit,
rather you simply show there's no evidence in the data for lack of fit.

This problem is treated by McPherson [Problem 16.5, page 474] using Analy­
sis of Deviance [McPherson, p. 355], a test procedure that's more sensitive than
X2

•

(a)-(d) You complete these. Be sure you give the real-world conclusions.

(e) In part (a), you assumed a normal distribution for the weight of bags of
frozen green peas from this distributor and you assumed a mean weight of 1.2
pounds (taking that as implicit from the label). Note that it's NOT correct to
say "the peas are normally distributed." First, it's the BAGS we're talking about,
not the peas. Second, physical objects (bags) cannot have "distributions." What
assumptions did you make in the other parts of this problem? Be careful about
assumptions of "randomness."

You complete this.
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(a) HA : r > 0.95. This controls the error of blocking an effective drug from
the market. Surely in view of the seriousness of the present situation, this would
be the error to control.

(b) HA : r < 0.05. This controls the error of admitting an ineffective drug to
market. Given the risk of side effects and the relative effectiveness of present
treatment, this might well be the error to control.

(a) We leave this to you; the graph is very suggestive (see Phillips' article for a
discussion).

(b) X2 = 1.9478+0.1733+ --- = 17.19 (11 degrees of freedom). With ap-value
greater than 10%, no one would say this data suggests any special "power" to
postpone one's death.

Phillips has a different analysis of the data and draws a different conclusion!
There's a discussion unfavorable to Phillips' analysis in the text Statistical Rea­
soning by Gary Smith (p. 442). But what about the strongly suggestive data of
the sociologist Kunz in Problem 6.2.23? We need a much broader study in much
greater depth than either of these!

(c) The p-value is about 3%, not dramatically conclusive!

(d) In Problem 6.2.23, we looked at the three months prior to the birthday.
There are certainly other possibilities as well [see Phillips].

(a) 5; (b) 7; (c) 6; (d) 3; (e) 10; (f) 2.

Chapter 7

(a) Y has the right form because if € = Y - 1-", then Y = I-" + €, as required.
Note, because I-" is a constant, € is a linear function of Y.

Now to say that € is "like random error" just means it's normally distributed
with mean zero. But the mean of € = Y - I-" is just I-"Y - 1-". And that's zero because
I-" IS I-"Y (we just used an abreviated notation) . Once again, as so often before,
we've used the fundamental equations for linearly related random variables
from Section 1.3 of Chapter 1. We can take this further, the same argument
says the variance of € is equal to the variance of Y . So the variability in €, the
"error," is exactly the variability in Y. This makes perfect sense, see parts (b)
and (c).
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(b) The systematic part of Y is its mean. Note how this comes out in the exam­
ples: The systematic part of a measurement is the true dimension of the object
being measured. Unless there's something wrong in the measurement process,
the measurements should on average give that true dimension. For the drink
machine, the systematic part of "fill" is the amount at which the fill mechanism
is set. Again, if there's not something wrong with the fill mechanism, the on
average fill (the mean) should be the amount at which the fill mechanism is set
(the systematic part) .

(c) If Y is normally distributed, the variability around its mean is just due to
many independent random factors, many small independent influences which
prevent the systematic effect from being completely exact. That inexactness is
seen in the E of part (a).

(d) Either show that the difference in two values of Y "looks like random error"
or show that Y is a linear function of a normally distributed random variable.
The second approach is more direct here: Y = a + be, where a = f.-i and b = 1.
Done!

Or use the first approach which is more basic: Y} - Y2 = (f.-i +EJ) - (f.-i +E2) =
E} - E2. But E} - E2 is just a normally distributed random variable with mean
zero! Why? So this difference "looks like random error."

(e) By looking at the difference in two values, our normality criterion wipes
out the one fixed systematic effect-the mean-leaving only the purely random
part. Seepart (d). That's why the difference in two values will "look like random
error."

(f) First, the variable effect on Y, expressed by X, is required to affect only the
mean of Y. It shouldn't affect Y in any other way. Second, that effect should be
only through a linear function.
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(a) The height of the plant is constant for the first few days after planting (it's
zero!). Once the plant's fully grown, the height is again constant. A graph might
look roughly something like:

average height

Similarly, a tiny amount of fertilizer should have no noticeable effect on crop
yield. And there should be an optimal amount after which too much fertilizer
might actually decrease the yield:

average yield

(fertilizer

So, in both cases, to have a LINEAR relationship, you must restrict X to a smaller
range of values over which these graphs seem to be approximately linear. We'll
develop an hypothesis test later that serves as a check on the linearity of this
relationship.

In the first example, you may have to restrict X to be somewhere between,
let's say, five to 20 days. This would be appropriate if this particular type of
bamboo attains a measurable height within five days and does not attain its
full growth before 20 days. In the third example, you would restrict X to take
values within the range of normal usage for this fertilizer.

(b) In the first example, the number of days since planting is certainly known
and relevant to the height a given plant will attain. Also, it would seem that
"height" would be the variable in question, not "number of days after planting."
So it seems unlikely that we would want to reverse the roles of X and Y.

Similarly, you can possibly control the amount of chemical in the soil, but it's
not likely you can control how much of that chemical gets into the plant. In all
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likelihood, it's the amount of chemical in the plant that would be in question,
with the amount in the soil as relevant information. Again the roles of X and
Y seem fairly clear-cut.

So also, for each of the other examples the role of X seems clear as "known" or
in some sense "controlled," providing information about Y, whereas Y would
be the variable of interest, in some way affected by X. Still, for none of the
examples can we dogmatically rule out as impossible a situation in which the
roles would be reversed.

(c)

3. The fertilizer by itself does not cause the crop yield-there will be some
yield even with no fertilizer. But it certainly should be a cause for an increase
in yield. So, X is not the cause of Y, but it does exercise a causal effect on
the mean of Y.
4. Income does not cause expenditure! But it does make the expenditures
possible. Moreover, there almost certainly would be a positive correlation
of income with expenditure in the sense that, as income increases, we would
expect to see household expenditures increase also (f3 > 0).

5. Obviously X, the production level (how many units you're producing),
is one cause of production cost, Y.
6. Did an employee's outstanding test score cause her excellent perfor­
mance on the job? Of course not! This is very typical: X and Yare cor­
related because they're both caused by some common third factor. In this
case, both the test score and the job performance are caused by the em­
ployee's actual skill for that job.

7. Campaign expenditures make possible certain campaign strategies.
Those strategies are themselves partial causes of the success of the can­
didate. Here you might say X is a secondary cause of Y-a cause of a
cause.

8. This is like Example 7. Education is a cause of certain skills, capacities,
knowledge, and so on, which are themselves partial causes of a later income
level.

9. This is like Example 6. The height of the mother and the height of the
daughter are both caused, in part, by common hereditary factors.

(d) In none of these examples can we dogmatically claim that X MUST be or
CANNOT be random. It's always conceivable someone carries out an experiment
in which X is the opposite of what we thought. Still, here's what one would
think for our nine examples:

In Examples one, three, five, and eight, you would probably choose your
sample data by determining in advance the values of X and then generating
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random values of Y. If so, X is not random. For example, you might go into
the field every other day (X determined) and measure the height (Y random)
of 15 randomly chosen bean plants. Or you might put a determined amount of
fertilizer onto plots of ground and then observe the (random) crop yield. Note
how this same principle would probably hold for Examples five and eight.

By contrast, in Example two the amount of toxic chemical in the plant and
in the surrounding soil will probably be observed together, varying randomly
from one observation to another. Similarly, the data available for Example nine
may have resulted from a survey in which mother and daughter were chosen
randomly and their heights recorded together. Example six is also probably like
this. Examples four and seven might be of either type.

(a) Look at the difference in two values of YIX. Because the effect of X is
identical for both values (X is fixed), there's nothing systematic to account for
this difference (X is the only systematic factor affecting YIX) . Heuristically,
that says the difference is purely random, "due to many independent random
factors ." So by the normality criterion, YIX should be normally distributed.

(b) Because € = Y!X - J.1.YIX, a = -J.1.YIX, b = 1. As a linear function of a
normally distributed random variable, € is normallly distributed. Then,

and

J.1.~ = a + bJ.1.YIX = 0

2 b2 2 2 b 2 2
(J"~ = (J"YIX = (J" remem er (J" means (J"YIX .

7.1.4

(c) X is the only systematic factor affecting the values of Y and it affects the
mean Y only, through a linear function: J.1.YIX = a + (3X. If (3 = 0, the only
effect X has on Y has been completely wiped out:

J.1.YIX = a + ZERO, no X in sight!

(a) Y is the variable in question. X plays the role of a known "effect" on Y
and so it plays the role of "input information" relevant to Y, the variable in
question. Go through the nine examples given in the text to see the real-world
meaning of this characterization of the roles of X and Y.

(b) The parameters are: a, (3, and (J"~lx . Of course, (J"~lx may be denoted simply

by (J"2 if the context makes the reference clear.
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First Assumption: There's one and only one X, which expresses a system­
atic effect on Y. Because there's only one X, the model is called "simple"
linear regression.

Second Assumption: X is the only systematic effect on Y.

Third Assumption: The mean of Y is a linear function of X :

P,YIX = 0: + (3 X .

Consequences:

• For a fixed level of X, Y/X is normally distributed. This is another way
of saying X is the only systematic effect on Y.

• From one level of X to another, the YIX's are independent. This is
implicit in saying X affects only the mean of Y .

• The variances of the different YIX's for different levels of X are the
same. If we call that common variance (T2, then (T~lx = (T2 for all X.
This too is implicit in the assumption that X affects only the mean of Y.

• The parameter (3 is not zero. Otherwise, X is wiped out of the model
entirely! This is a consequence of the assumption that X is relevant at
all. See Problem 7.1.3(c) .

1. 0: is not meaningful in itself (why?). (3 is the daily increase in the average
height of the plants. The word "daily" translates the phrase "unit increase
in X." Briefly, (3 is "how fast the plants grow."

2. 0: should be zero. Presumably when there is no toxic chemical in the soil
(X = 0), there would be none in the plants . (3 is the increase in the average
amount of toxic chemical in the plants for a t -kg increase of that chemical
in the soil (assuming the chemical is measured in kilograms) . You could
express (3 as the average amount of chemical in the plant per kilogram of
chemical in the soil.

3. 0: is the average crop yield when you use no fertilizer. (3 is the increase in
average yield for a one-ton increase in fertilizer (assume fertilizer measured
in tons). In other words, (3 is the average yield per ton of fertilizer.

4. 0: is the average household expenditure for those households which
report no income (0: might not be zero, depending on exactly what is meant
by "expenditure" and "income"). If our data is in terms of "hundreds of
dollars," (3 is the average increase in household expenditure for a $100
increase in household income.

Note that (3 would not seem to be constant over a large range of incomes.
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This suggests you would have to restrict this model to a fairly narrow range
of household incomes to have the linearity condition hold.

5. a is the "fixed cost" of production, the costs incurred when you produce
nothing. (3 is the increase in average cost of production when you increase
production by one "unit." A unit of production might be "one machine
part" if it's machine parts you're producing. Or a dozen machine parts if,
for example, you market the parts in packages of 12.

6. a is the measure of average on-job performance of persons who score
zero on the job-skills test. (3 is the increase in average on-job performance
for each point increase on the job-skills test.

Note that here, as in all the previous examples, (3 would seem to be
positive! But sometimes there are surprises! You might actually discover
that your job-skills test is testing the wrong skills. This would certainly be
the case if (3 were negative!

7. a is the percent of the vote captured on average by those candidates
who spend nothing on their campaign. Of course, in most elections, this
is a meaningless number-zero campaign expenditure is unheard of! (3 is
the change (presumably an increase) in the percentage of the vote going
to a candidate on average for a $1000 increase in campaign expenditure
(assuming expenditures are measured in thousands of dollars).

8. a is the average income at age 45 for persons who have never attented
school. (3 is the increase in the average income at age 45 for one more year
of schooling.

9. a is meaningless! (3 is the increase in the average height of an adult
daughter for a I-in. increase in the height of her mother. That does NOT

mean the mother grows an inch taller, by the way! It means if you look at
two women whose mothers' heights differ by I-in., then you would expect
the daughters to differ in height by (3 inches.

Again, as in Example 4, for (3 to be constant you almost certainly would
have to restrict the model to certain homogeneous groups of females. It
seems likely that such a parameter might change its value depending on
some cultural or ethnic factors, just to name two possibilities.

If (3 is variable, the mean of Y is affected by TWO variables, not one. So we're not
talking about SIMPLE linear regression. And if you multiply (3 and X together,
you would not even be talking about a linear relationship. Linear functions
don't multiply the variables together.

(a) Suppose we're attempting to model "yield per acre" of a crop on the basis of
two X's: "fertilizer level" and "rainfall." because there are two X's, the model
would not be SIMPLE linear regression.
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(b) Let Y be "daily household power consumption in January and Feburary"
with X as "average daily temperature." Certainly, as the temperature rises,
power consumption will decrease on average. As X increases, j.lYIX should
decrease, meaning: f3 < o.

7.1.8 A quadratic regression model would have the means of the normal distributions
lying along a parabola instead of along a line:

y
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(c) This is just like Problem 7.1.8. There the relationship was not linear, it was
quadratic.
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7.1.11 First, you have to determine if a simple linear regression model seems appropri­
ate. Then you must fully specify the model. That means you must estimate the
parameters of the model. After all, you can't actually do anything with

you need something with specific numbers in it, like

Y = 7 + 3X + €, € rv N(O, 1.2).

Then for a given X you can say something about Y.
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(a) Given the roles of X and Y in the regression model, we should let the
height of the shoots be Y and the number of days since planting be X. For (12,
21), go to the second column of the data where X = 12. You see 21 in the
second position. That means (12, 21) refers to the second shoot observed on
the twelveth day after planting. It had a height of 21 em (Y = 21). And it's the
fifth observation.

(b) The shoot was 53 em tall.

(c) n = 16.

(d) (Xg, Yg) is just (14, 26); the eighth observation was the second observation
on the 14th day after planting. (X3,Y16) is nonsense! The notation requires that
the two subscripts be the same. You could have (X3, Y3) or (X16, Y16). They are
(10,6) and (20, 110), respectively.

(e) Not all the values of X occur with the same frequency. The value X=10
occurs three times, X = 12 THREE times, X = 14 TWO times, and so on. There
are 16 of these observations altogether. So X = (l/16)EXf.

(f) Y = 51.3125.

(g) The average daily height is Y = (1/16) x 821 = 51.3125. The daily total
heights, respectively, are 20, 56, 60, 160, 178, and 347. To obtain the daily
average heights, you must divide each daily total by THREE or TWO, depending
on how many observations were obtained on that day. Then average these:

(1/6) [20/3 + 56/3 + 60/2 + 160/3 + 178/2 + 347/3]
= 52.2222, which is NOT 51.3125.

In this calculation, some of the 16 observations are weighted by 1/18 and some
are weighted by 1/12. In the average daily height, each observation is weighted
by 1/16. That's why they are not the same.

(a) The scatter diagram is
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(b) Y = a + bX, because a is the estimator for a and b is the estimator for (3.

(c) Y = a + 13b = 30.6275. But if X = 6, Y = a + 6b = -46.5958. Six days
after planting, we had a NEGATIVE average height! This is because X = 6 is
out of the range of meaningful X's. The model is not valid for such X's. After
all, why did you start making observations only on the tenth day? Precisely
because only then had the shoots achieved a measurable height. Look again at
Problem 7.1.2(a).

(d) The points (12, 19.5956) and (18, 85.7870) are on the line. When you
plot these two points, use a different notation so they don't look like observed
points. Note how we've used dots for the observed points and small crosses for
these two theoretical points. Of course, a professionally drawn diagram or a
diagram from a computer software package would not show them at all; they're
eliminated once the line is obtained.
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(e) For X = 12, the scatter diagram gives three actual heights 12 days after
planting. By contrast, the model at X = 12 pictures a normal distribution for
ALL POSSIBLE heights 12 days after planting. In general , the scatter diagram
gives, for each X, several observations from the normal distribution of YI X­
several actual observations from all theoretically possible heights of this type
of bamboo X days after planting. Note how theoretical the model is. Only in
theory can you speak of "all possible " heights of such bamboo shoots.

(f) Y estimates /-LYl x, So the line in your scatter diagram is an estimate for the
line in the simple linear regression model. Look at the picture of the model. The
line in the model is the line containing the means of the normal distributions of
the YIX's. It 's a theoretical line estimated by a line which you've drawn based
on actual observed data.

(a) Out of hundreds or even thousands of bamboo shoots on the hillside, our
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researcher has observed only two or three on any given day, only 16 altogether.
Now the point estimate for {3 is b = 11.0319. If we took that as the approximate
value of {3, we would be saying that, on average, the shoots gain about 11 em
of height per day. But the 16 bamboo shoots this researcher observed could
be very atypical of the hundreds or even thousands of such shoots. It could be
that such bamboo shoots growing under similar conditions only gain on average
about three centimeters per day and that the 16 shoots observed happened to be
especially vigorous and fast growing. Of course, the researcher does not know
{3, and so she has no way to know if the observed 16 bamboo shoots were typical
or not.

(b) Givea confidence interval estimate for {3. The maximum error of the estimate
(half the width of the interval) will measure "the accuracy of the estimate" and
the confidence coefficient will measure "the certainty with which that accuracy
is attained." We'll have an interval with (ideally) endpoints of the form

11.0319 ± Z CTb,

where CTb is the standard error of the estimator b. Here, ZCTb is the maximum
error of the estimate and Z is determined by the confidence coefficient. We said
"ideally" these are the endpoints because, in fact, the standard error will typi­
cally have to be estimated from the data and with fewer than 30 observations,
we'll have to use t instead of Z.

(c) You might think that "properly generated" random data must be "typical"
data! THAT'S NOT TRUE! Thinking that is precisely what could "go wrong."

(d) The total context of a point estimate is the sampling distribution of the es­
timator. One set of observed data by itself is meaningless; we require the entire
THEORY of all possible such data sets. That theory is the probability distribu­
tion of the estimator, the sampling distribution. We'll see later that under the
assumptions of our model the estimator b is normally distributed and unbiased
(f-Lb = {3) and we'll have a formula for estimating its standard error.

(a) Looking carefully at the scatter diagram, you'll see that TWO different lines
seem to be suggested. The observations of the last three days seem to lie along
a line with steeper slope than the first three days.

Compare the actual observations with the estimated regression line. Note
how all three observations for day ten lie above that line and both observations
for day 14 lie below the line. In other words, for the first three days observed,
the average daily increase in height-the slope of the regression line for those
three days-seems to be less than our b of 11.0319. Similarly, for the-last three
days observed, the daily rate of growth seems to be greater than our b. Look at
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the last three observed days, the observations for day 16 are all BELOW the line,
and for day 20 are all ABOVE the line. So it appears there may be TWO DIFFERENT

{3's for the model.

(b) In fact-or so we can imagine for our fictitious data-when our researcher
investigated this problem, she discovered that about two weeks after planting,
the gardener had received some fertilizer which had been on order. With great
relief that finally it had arrived, he immmediately spread the hillside with that
fertilizer. Of course, this increased the rate of growth for the bamboo. And so
after day 14, we have a different {3.

(c) You could restrict the model so that there's a constant {3. Restrict either to
days before the fertilizer was spread on the hillside or to the days after that.

(d) Our research worker wanted to study growth of this type of bamboo during
the first three weeks of its growth cycle, yet the restricted model would only be
valid for the first two weeks.

Remember why the model must be restricted . You can only use the model
after you have collected data to estimate the unknown parameters of the model,
0:, {3, (T~lx' But these estimates are not valid outside the range of X's you've
actually observed. So you cannot use the model to draw conclusions beyond
those observed X's. The researcher had better start over!

(a) The bottom point is (x, y) and the vertical distance is the difference in the
y-values. That distance is just y - y.

(b) Here's the picture:

Y=a+bX

x

Note that y is larger than y here, so y - Y is negative. But distances are never
negative.
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(c) We squared it! So here we should look at (y_y)2. This will change its value, of
course. This is no longer the distance between y and y; it's the squared distance.
But it still serves as a measure of how far apart they are without introducing
those awful absolute values!

(d) "Total" means "add." Here's the total: I;(y - y)2.

x = 14.875, Y = 51.3125. We only need to verify that

?

51.3125 = -112.7872 + 11.0319 x 14.875.

The right-hand side is not exactly 51.3125; the difference is due to rounding
error. But you can't know that for sure at this point. You should be very suspi­
cious!

The variable X is a known quantity which is supposed to help us say something
about Y. It plays the role of "input information" relevant to Y. Y is the variable
in question. So it's the variability of Y that's important. By looking only in the
vertical direction, we're ignoring changes in X and concentrate on changes in
Yonly.

(a) I;(y - y)2, the total squared deviations away from the line (see Prob­
lem 7.2.5).

(b) I;(y - y)2 measures the variability of Y about the line. So the principle
of least squares finds the line which "best fits" the data in this sense: For the
observed values, the variability away from the line in the vertical direction (the
direction of Y) is as small as possible.
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7.2.9 X Y XY X 2 y 2

10 7 70 100 49
10 11 110 100 121
10 6 60 100 36
12 22 264 144 484
12 21
12 25
14 43
14 38
14 33
16 62
16 48
16 50
18 70
18 74
20 84
20 82
20 68 1360 400 4624

252 744 12484 3936 43566

b =
17 x 12484 - 252 x 744

17 x 3936 - 2522

= 7.259389671

and

a = 43.76470588 - 14.82352941 b

= -63.84507042

7.2.10 (a) Y is the "variable in question," X is input information relevant for answer­
ing that question. So X must be "water content of snow on April 1" and Y
must be "April to July water yield in the Snake River watershed in Wyoming."

(b) Y = 0.7254 + 0.4981X.

(c) Y = 0.52X .

(d) We leave th is to you.
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(a) Because a = Y - bX , we get

a + bX = (Y - bX) + bX = Y since the bX's cancel!

So the equation is satisfied.

(b) E(y - fJ ) = E [y - (a + bx)] = E y - na - bEx

= Ey - bEx -na

= nY - bnX -na

= n(Y - bX) - na

= na -na

= ZERO.

(c) It 's useless to try measuring the variability of the Y's around the estimated
mean Y (the regression line) by looking at the average deviations, (ljn)E(y - fJ ).
That 's always zero! We get around this problem by looking at the squared
deviations. That brings in SSE. The regression line is the line for which SSE is
as small as possible. You'll soon see how SSE comes into consideration as a
measure of spread for the Y's.

This is parallel to the characterization of the arithmetic mean as that number
for which the squared deviations are minimum. Using techniques of calculus,
you can prove that E(X - e)2 takes on its smallest possible value when c is just
X .

(d) The first of the normal equations gives

na = Ey - bE x ,

so when you divide by n you get the equation a = Y - bX.
To obtain the equation for b mult iply the first equation by Ex and the second

equation by n and then subtract

E yEx = naEx + b(Ex)2

n Exy = na Ex + nbEx2
•

When you subtract the second from the first, you get
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so
b _ EyEy - nExy

- (E x)2 - nEx2'

Now, if you just multiply the numerator and denominator by -1, you'll get the
formula in the text.

(a) So 0: = In(Np) and (3 = In(q).

(b) Y= 4.0886 - 0.5841X.

(c) Np ~ ea = 59.6563.

(d) q ~ eb = 0.5576 and p ~ 0.4424. This is the estimate for p we gave you to
use in Problem 3.6.16.

(e) N ~ 59.6563/0.4424 = 134.8470. That's pretty close to the true 135!

(f) N = Np + Nq = Np + 76 ~ ea + 76 = 135.6551. Or Nq = E x:;eoY = 76
and so N = 76/q ~ 76/eb = 136.2910. Still pretty close to the true 135.

(g) N ~ e"/p = 111.5, farfrom 135. Why? Because we've mixed two unrelated
ways of estimating the parameters. We've used the MLE for p by itself, assuming
a geometric model, and we've used (a, b), the least squares estimate (and so, it 's
the MLE) for (0:,(3), assuming a regression model. No wonder the estimate is
off! Note one interesting fact which is beyond us to prove: The least squares
estimate for the regression model is the MLE.

(h) We're doing regression for In(Y), associating the random error E with In(Y).
But it's Y not In(Y) that would be subject to random fluctuation about the pro­
jected model. Furthermore, there's no reason to think the YIX's are independent.
Also, because we have only one value of In(Y) for each X, it's impossible to get
any sense from the data for whether the variance is constant from one level of X
to another. There are other problems as well. For example, (a, b) is the maximum
likelihood estimator for (0:,(3), so we're using a standard estimation procedure
known to be "good" in a number of senses. But we're not actually using a and
b; we're using e" and eb• Do those estimators have any decent properties? Are
they reasonable?

The study by Edwards and Eberhardt was just exploratory, looking at a num­
ber of different models. Of all the models they considered for their specific data,
this analysis gave the best estimate for N. We can say that only because we
know the value of N. But with new data, one of the other models might give
a closer approximation. Justifying one of Edwards and Eberhardt's models as
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"good" (let alone "best') would require extensive further study. There has been
an enormous amount of work since then on the question of estimating popula­
tion size for animal populations, in particular on capture-recapture techniques.
See the many books in your library on "population biology." We've shown you
Edwards and Eberhardt's analysis just by way of an introduction.

(a) The observed value of the estimator b standardizes to t = 15.9643, much
larger than the critical tc of 2.1315. So you should reject Ho •

With a fivepercent risk of error, we conclude that there is a linear relationship
between height of bamboo shoots and the number of days after planting, at least
within the range of ten to twenty days after planting.

(b) This is not a monitoring situation. You've got a set of data and a hypothesis
((3 t= 0) and you want to see if the data "seems to challenge the hypothesis ."
That's a test of significance.

(c) Becausethe standard error will change with each new set of data, it's easier to
state the decision rule in terms of t. The decision rule is: Calculate t = (b- 8)/ Sb

from the data for that three-day period. If the result is less than -1.753, alter
the watering schedule.

(d) Alter the watering schedule, t = - ~.935 < -1.753.

(e) Testing the "linearity assumption" of the model is theoretical. We'll use the
model provided (3 t= O. If it is positive or negative, still we'll use the model. The
test in part (c) is real world. Usually, a real-world test will involve a different
action when you think the parameter is small from the action you would take
if the parameter is large. So a real-world test will usually be one-tailed. In part
(c), you're not worried about the bamboo growing too fast; if (3 is large, that's
fine. No action required.

(a) Y is the variable in question; X is information relevant to answering that
question. So for Forbes, X should be "boiling point" and Y "atmospheric pres­
sure."

(b) The model is not using altitude to predict pressure . As altitude increases,
boiling point decreases and so does pressure. So, boiling point and pressure
increase and decrease together. Therefore, b should be positive.

(c) Y = 0.5222X - 80.9220.

(d) p-value = P(b > 0.52221(3 = 0) = P(t > 51.7073Id.f. = 15) = o.
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(e) We give a confidence interval for - (3, the average decrease in pressure for
a one degree decrease in boiling point. Note that we're interested in increas­
ing altitude and, therefore we're interested in decreases in boiling point and
pressure. So get the endpoints of a confidence interval for (3 and, then, convert­
ing to -(3, answer the question. The endpoints for a 99% confidence interval
for (3 are 0.5222 ± 2.9467 x 0.0101. This gives the on average increase in
pressure for one degree increase in boiling point, so for - (3 you get the inter­
val (-0.5520, -0.4925). This translates into a decrease of between 0.4925 and
0.552 inches. in the reading of mercury on a barometer for a one degree decrease
in boiling point.

r2 = b2~(X - X)2/~(Y - y)2 = b2~(X - X)2 ;[b2~(X - X)2] = 1.

In fact, more can be said: If the observed values of Y all lie along ANY line, it
will be the line a + bX and so still r2 = 1. And conversely, if r2 = 1, then all
the points lie along a line (not so easy to prove). This explains why r 2 or rare
properly described as measures of LINEAR correlation.

y - Y a + bX - Y - Y - bX + bX - Y b(X - X). Recall
that the averages on the individual tests are X and Y, respectively, for the first
and second tests. Because b < 1, you expect the second test score to be "less far
above average" than the first score was. For low scorers, the situation is just the
reverse. You would expect their scores on the second test to be higher.

We're leaving this to you. Be sure you do it, it's very instructive! By way of a
hint, here's the appropriate table for the computations for picture (f)

X Y XY X 2 y 2

2 2 4 4 4
3 2 6 9 4
3 4 12 9 16
4 4 16 16 16

-- -- -- -- --

12 12 38 38 40

7.3.6 (a) r2 = 0.52292 x 530 .7824/145.9378 = 0.9945. For the observed data,
almost all the variability in barometric reading is accounted for by the boiling
point of water. One might suspect a deterministic relationship, in which case
the observed variability is only due to measurement error. Yet neither variable
is determined exactly by altitude; they're determined largely by atmospheric
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pressure which itself varies with weather conditions. Still, an essentially de­
terministic relation may exist between our two variables through atmospheric
pressure, as opposed to altitude. Further study is required.

(b) Edwards and Eberhardt were using the regression model in a very abstract
way. Itwas just a tool to estimate the parameters of another model, the geometric
random variable. They were not interested in "explaining" the number of rabbits
caught five times by the number five, or two times by the number two, and so
on. That doesn't even make sense!

(c) For Wilm's situation, a = 0 and so special formulas are required.

(a) If there are only two observations in the scatter diagram, the observations
will "fit" a line perfectly! When you go for the "best-fitting" line, you'll just get
the line determined by your two observations. Because all observations lie on a
line, r2 = 1.

(b) With n = 2, you would think ANY X and Y were perfectly correlated even
though they might be totally unrelated. To generalize, with a small sample, r2

might be close to one even though X and Y were not meaningfully related.

(c) Two variables might be strongly correlated because of some third variable.
For example, a high score on a job-skills test does not CAUSE a worker to do well
on the job. Rather both effects are the result of the worker's skill. Or think of
"height of mother" and "height of daughter." They should be strongly correlated
but the mother's height does not CAUSE the daughter's height. Both are the result
of certain common genes. See Problem 7.1.2(c). Again, for a large number of
married couples, no doubt there would be a strong correlation between the ages
of spouses. But the wife's age does not cause the husband's age or vice versa!

(d) This is an example of the "fallacy of ecological correlation." The grouping
together that occurs with the averages introduces a completely spurious corre­
lation. Clearly, the original data has very little correlation. Y is pretty much the
same, no matter what value of X you're looking at. But the scatter diagram
of averages lies very tightly along a line, just because of the grouping effect.
The moral to this story is: The coefficient of determination (or the correlation
coefficient) is misleading when applied to averages or percentages.

(e) Again, r2 = 0.9, suggesting a strong correlation. A SPURIOUS correlation.
This is the ecological fallacy again, now with proportions instead of averages.
You can see some real-life examples of this kind of fallacy in the text of Freed­
man, Pisani, and Purves.
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(f) Wrong! r 2 = 0 suggests there's no LINEAR relationship between X and Y.
Some NONlinear relationship might exist. With the given data, evidently there 's
a relationship; it just isn't given by one single line. A quadratic relationship
might provide a reasonable approximation. The point is: The coefficient of
determination (or the correlation coefficient) is a measure of LINEAR correlation.
Higher-order correlations-quadratic, cubic, and so on-will not be detected
by r2• They'll give an r2 close to zero because the relationship isn't LINEAR.

(a) The standard error here is 5.5767. We can be about 95% sure that 15 days
after planting, this little shoot will be between 33.1591 em and 56.9325 ern tall.

(b) We did this in the text!

(c) Now the standard error is 2.4346. So we can be about 95% sure that in
another eight days (15 days after planting), these seven little shoots will average
somewhere between 39.8564cm and 50.2352cm tall.

(a) For predicting the mean of all Y's, the squared standard error is given by (1)
below. For a particular Y, Yp , it's given by (2). The difference is exactly sir1x'
And for the average of a sample of m it's given by (3):

1/n(sir,x) + etc.,

sir1x + 1/n(sir,x) + etc.,

1/m(sir,x) + Iln(sir,x) + etc.

(1)

(2)

(3)

This all makes perfect sense: How much harder is it to predict a particular value
of Y than the average of all Y's? That's measured by sir ,x ' the estimate for the
spread of the normal distribution of Y!X. If you're predicting the average of a
sample of m, the problem will be correspondingly easier, so you have to add in
only a fraction of sir1x: add in (llm)(sir,x)'

(b) More information, more accurate solution, smaller standard error! The con­
tribution to the standard error from n is lin. When n is large, lin will be small
and the standard error correspondingly smaller.

(c) X is input information relevant to Y. If the particular X you're asking
about, X p , is far from what's typical, X, of the information available, your
answer should be correspondingly less accurate. So if (Xp - X)2 is large, the
standard error should be correspondingly large, as it will be.
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(d) No, you don't always want variability to be small! A gambler who wants
to beat the odds wants lots of varibility in the game so she has a good chance
to get far ahead of the odds. That's when she'll quit (or so she says!). A testing
service wants a test with good variability in the scores, otherwise, the test is
useless. Suppose everybody makes the same score. That tells you nothing about
the ability of the testees!

Here , X is input information relevant to Y. Clearly, the more ground your
information covers-the more variable X is-the better.

We will leave this to you.

(a) Only about 15% of spinning quality as measured by skein strength is ac­
counted for by fiber length, indicating a weak relationship (r2 = 0.1478). Think­
ing of a hypothesis test with H, : 13 = 0, we get b]Sb = 1.0202, giving a p-value
greater than 10%. Again a weak relationship, it's entirely possible 13 = O. A
helpful equation: b/Sb = J(n - 2) r/J(l- r2 ).

In fact, the government's full data set of 183 measurements still gives a fairly
weak relationship: r2 ~ 36%. It would appear that fiber length by itself is not
a very adequate measure of skein strength. A much stronger model (r2 ~ 80%)
is obtained if, in addition to length, you introduce fiber tensile strength. See
Duncan for a study of the multiple regression model with three regressors for
fiber: length, tensile strength, and fineness.

(b) Calculating r2 amounts to giving a point estimate for p, whereas the hy­
pothesis test is a more complete analysis which takes into account sampling
error in the data (see Problem 7.2.3) .

(c) You're asked for a confidence interval for 13. The endpoints are 0.4524 ±
2.4469 x 0.4434. Real-world answer?

(d) 68.3317 ±2.4469 x 30.6144. The interval is (0,143) . We round the answer
to an integer because the data was given in integers. The interval must begin at
zero because S is evidently not negative. Note that the answer in part (b) could
be negative. Why? What would that mean?

"We can be about 90% sure that quarterly maintenance supply costs for one of
Residential Management, Inc.'s large apartment complexes would be between
$1480 and $3000 ." [s.e. = 4.1425 for a prediction interval]

The data standardizes to t = -2.84, giving a p-value between a half and one
percent (s.e. = 11.4564 with S = 36.2284). This p-value is SMALL (less than
10%) and, so, "It would seem based on this data there are fewer than 200
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residents per complex on average in Residential Management's large apartment
complexes."

p-value 0.2639 from the BINOMIAL model. Because nq = 1 (NOT ~ 5), the
normal approximation is not valid. This is a NOT SMALL p-value, so, "This data
provides no evidence that fewer than 90% of the large complexes have more than
130 residents." Here's a hint: P(X :S 8) = 1 - P(X ~ 9) = 1 - [10qp9+ pIO] =
1 - p9[10q + p] = 1 - 1.9p9.

iJ = 5.6677 + 0.0999C. Or you can say Y = 5.6677 + 0.0999X. This model
seems good because 84% of quarterly maintenance supply costs for our ten
observations is explained by the number of residents on the first day of the
quarter.

H; : {3 = 0, tc = 1.8595 (10% two -tailed test puts 5% in right tail); HA :

{3 t= 0, b standardizes to 6.4870 (Sb = 0.0154) so REJECT Ho •

Here ~(X - X)2 = 11,812.5, st1x = 2.8163. There's no reason to doubt
the linearity assumption of the model. However, there 's a ten percent chance
to obtain data like ours even though "number of residents" does not determine
"average maintenance supply costs" through a linear function .

Here 18.6547 ± 1.8595 s.e. st1x [1.1 + (130 - 167.5f/11812.5] = 3.4332.
"Based on this quarter's data, maintenance supply costs for this complex in the
coming quarter should, with a ten percent risk of error, be between $1521 and
$2210."

"We can be about 90% sure that the maintenance supply costs incurred with
one new resident for one of the complexes run by Residential Management, Inc.
should increase by at least $7.13 and not more than $12.85."

"We can be about 90% sure there are, on average, between 55 and 88 units
in anyone of the large apartment complexes run by Residential Management,
Inc." (55.5928,87.2072)

(a) np = 3; so we can't say np > 5.

(b) Estimating p with p= 0.3, n = 17 is required.

(c) n = 140. Round UP from 139.2 (Z = 2.575).

(d) The normal approximation is good for p as small as 0.0357.
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Here E(X _X)2 = 6692.4, s~lx = 506.8575, Y = 90.6312+50 x 1.0766 =
144.4609, s~lx[O.l + (50 - 71.4)2/6692.4] = 85.3699. So the answer:
(127.2799, 161.6419). You give the real-world answer. The model seems mod­
erately good with an r 2 of only 66%.

H, : J.L = 25 (J.L < 25 irrelevant) [here, tc = 1.383]. HA : J.L > 25. "If the
data standardizes to a value larger than 1.383, then a careful examination of
the records of all complexes should be made. There's a ten percent risk of doing
this when, in fact, it's unnecessary."

Same variables as in Problem 7.4.10, but X p = 93. So Y = 190.7550 and
the standard error squared is 592.8788. Answer: (145.4778,236.0322). Real­
world??

"We can be about 90% sure that the increase in average quarterly maintenance
supply costs for one more unit is at least $7 and not more than $17.34." b±tsb;
s~IX = 5.1619, Sb = 0.0278. The model looks good because about 71% of
the observed quarterly maintenance supply costs is explained by the number of
units. Note (you were not asked for this) that the p-value for 13 = 0 is less than
half a percent, confirming that the linearity assumption seems valid (this test
takes sampling error in the data into consideration, r: does not).

(22.4 - 25)/s.e. = -2.0817 = t with df = 9 and s.e. = s/v'IO = 1.2490.
The p-value is SMALL, between two and a half and five percent (less than 10%).
"Yes, on the basis of this data, it looks as if this quarter's average maintenance
supply costs are below $2500 per complex on average."

x = Band Y = C; X p = 20. s~lx[O.l + (20 - 22.4)2/140.4] with s~lx =
236 .8901. "We can be about 90% sure that as of this quarter there are 136­
158 residents on average in those of Residential Management's large apartment
complexes which incurred maintenance supply costs of $2000."

The model seems fine because r 2 = 84% . Note that this is the same value of
r2 as computed in Problem 7.4.4. Interchanging the roles of the two variables
in simple linear regression gives the same r2• Look carefully at the formula; you
can see that it's symmetric in the two variables .

H, : 13 = 0.13, t = (0.0999 - O.13)/sb = -1.95, and so on; HA : 13 > 0.13
this is not needed because b = 0.0999 is less than 0.13.

Note that 0.0999 in real-world terms means $10. Now, observed costs of $10
per resident in the sample could hardly suggest that the true cost per resident
has risen MORE than $13! Report: "No further investigation is required. Our
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data provides no evidence that the increase in average maintenance supply costs
this quarter for one more resident has risen above $13."

7104 ± 1.8331s/vn "She can be about 90% sure that there are on average
between 55 and 88 units per complex among the large apartment complexes
managed by Residential Management, Inc." This is the same as Problem 704.8.
You don't know the total number of complexes managed by Residential Man­
agement and so you can only answer on a "per complex" basis.

p-value = P(p :S 0.21p = 0.5). The normal approximation is valid here (just
barely, np = 5), but there's no need to use it because you can easily calculate

SMALL p-value (less than 10%): "Our data does seem to suggest that less than
half of the complexes this quarter incurred maintenance supply costs in excess
of $2500."

p = 0.2 is certainly consistent with p = 0.2. But it's also consistent with lots
of other possible values of p. "The data is inconclusive as to whether no more
than twenty percent of the complexes this quarter incurred maintenance supply
costs in excess of $2500." This is equivalent, of course, to saying, "This data
provides no evidence for the manager's claim that no more than 20% .. . "

p-value = P(X :s 21n = 10,p = 0.3) = 0.3828. The normal approximation is
not valid (why?). The p-value is NOT SMALL. "The data provides no evidence
that no more than 30% of the complexes this quarter incurred maintenance
supply costs in excess of $2500."

We require a confidence interval for p with p = 0.2, n = 10. Because this
suggests as a rough approximation that np is around TWO, we cannot justify the
normal approximation. But we have no technique for generating a confidence
interval using the binomial tables. We have NO TECHNIQUE.

Most of the calculations are in Problem 704.15. X p = 25 and s~ lx [O. l + (25 ­

2204)2/14004] = 35.0948. The endpoints are 189.3529 ± 1.8595s.e. "We can
be about 90% sure that there are between 178 and 200 residents on average this
quarter in those of Residential Management, Inc.'s complexes which reported
$2500 in quarterly maintenance supply costs."

P(X :s 22AIJ.L = 23.87,a = 3.18) = P(Z < -1.46) = 0.0721. No real­
world answer is required because the question just asked to calculate a certain
probabilry, Because n < 30, you must assume that the quarterly maintenance
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supply costs per complex for Residential Management Inc.'s large apartment
complexes are normally distributed (population normally distributed so that the
sample mean will be normally distributed). This could fail if-just to give one
possible example-some of these complexes have garden maintenance counted
into these costs and some don't.

Here, the normal approximation is valid because nq > np = 9.25 > 5. P(p <
0.51n = 25,p = 0.37) = P(Z < 1.35) = 0.9115. "There's about a 91% chance
that less than half of a sample of 25 complexes would report maintenance supply
costs in excess of $2500 if, in fact, the true proportion for all complexes is 37%,"

Six.
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Table A. Cumulative
probability distribution
for Z, giving P (Z < z).

703

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 z

0.00 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.00
0.10 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 0.10
0.20 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 0.20
0.30 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.30
0040 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0040
0.50 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 0.50
0.60 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 0.60
0.70 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7764 .7823 .7852 0.70
0.80 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 0.80
0.90 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 0.90
1.00 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.00
1.10 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.10
1.20 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 1.20
1.30 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.30
lAO .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 lAO
1.50 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1.50
1.60 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1.60
1.70 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 1.70
1.80 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 1.80
1.90 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 1.90
2.00 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 2.00
2.10 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2.10
2.20 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2.20
2.30 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.30
2040 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 2040
2.50 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 2.50
2.60 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 2.60
2.70 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 2.70
2.80 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 2.80
2.90 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 2.90
3.00 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 3.00
3.10 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 3.10
3.20 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 3.20
3.30 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 3.30
3040 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 3040
3.50 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 3.50
3.60 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 3.60
3.70 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 3.70
3.80 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 3.80
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Table B. Cumulative

~
probability distribution
for Xl . Degrees of free-
dom are given in the left
column, and cumulative
probabilities across the x;= 13.362
top row.

d.f. 0.005 0.025 0.05 0.90 0.95 0.975 0.99 0.995

1 0.0000393 0.000982 0.00393 2.706 3.841 5.024 6.635 7.879
2 0.0100 0.0506 0.103 4.605 5.991 7.378 9.210 10.597
3 0.0717 0.216 0.352 6.251 7.815 9.348 11.345 12.838
4 0.207 0.484 0.711 7.779 9.488 11.143 13.277 14.860
5 0.412 0.831 1.145 9.236 11.070 12.832 15.086 16.750
6 0.676 1.237 1.635 10.645 12.592 14.449 16.812 18.548
7 0.989 1.690 2.167 12.017 14.067 16.013 18.475 20.278
8 1.344 2.180 2.733 13.362 15.507 17.535 20.090 21.955
9 1.735 2.700 3.325 14.684 16.919 19.023 21.666 23.589

10 2.156 3.247 3.940 15.987 18.307 20.483 23.209 25.188
11 2.603 3.816 4.575 17.275 19.675 21.920 24.725 26.757
12 3.074 4.404 5.226 18.549 21.026 23.336 26.217 28.300
13 3.565 5.009 5.892 19.812 22.362 24.736 27.688 29.819
14 4.075 5.629 6.571 21.064 23.685 26.119 29.141 31.319
15 4.601 6.262 7.261 22.307 24.996 27.488 30.578 32.801
16 5.142 6.908 7.962 23.542 26.296 28.845 32.000 34.267
17 5.697 7.564 8.672 24.769 27.587 30.191 33.409 35.718
18 6.265 8.231 9.390 25.989 28.869 31.526 34.805 37.156
19 6.844 8.907 10.117 27.204 30.144 32.852 36.191 38.582
20 7.434 9.591 10.851 28.412 31.410 34.170 37.566 39.997
21 8.034 10.283 11.591 29.615 32.671 35.479 38.932 41.401
22 8.643 10.982 12.338 30.813 33.924 36.781 40.289 42.796
23 9.260 11.688 13.091 32.007 35.172 38.076 41.638 44.181
24 9.886 12.401 13.848 33.196 36.415 39.364 42.980 45.558
25 10.520 13.120 14.611 34.382 37.652 40.646 44.314 46.928
26 11.160 13.844 15.379 35.563 38.885 41.923 45.642 48.290
27 11.808 14.573 16.151 36.741 40.113 43.194 46.963 49.645
28 12.461 15.308 16.928 37.916 41.337 44.461 48.278 50.993
29 13.121 16.047 17.708 39.087 42.557 45.722 49.588 52.336
30 13.787 16.791 18.493 40.256 43.773 46.9 79 50.892 53.672
35 17.192 20.569 22.465 46.059 49.802 53.203 57.342 60.275
40 20.707 24.433 26.509 51.805 55.758 59.342 63.691 66.766
45 24.311 28.366 30.612 57.505 61.656 65.410 69.957 73.166
50 27.991 32.357 34.764 63.167 67.505 71.420 76.154 79.490
60 35.535 40.482 43.188 74.397 79.082 83.298 88.379 91.952
70 43.275 48.758 51.739 85.527 90.531 95.023 100.425 104.215
80 51.172 57.153 60.391 96.578 101.879 106.629 112.329 116.321
90 59.196 65.647 69.126 107.565 113.145 118.136 124.116 128.299

100 67.328 74.222 77.929 118.498 124.342 129.561 135.807 140.169
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Table C. Cumulative
probability distribution
for Student 's t. Degrees 90%

of freedom are given in
the left column, and cu- i t, ~ 1.:197
mulative probabilities
across the top row.

d.f, 0.90 0.95 0.975 0.99 0.995

1 3.078 6.3138 12.706 31.821 63.657
2 1.886 2.9200 4.3027 6.965 9.9248
3 1.638 2.3534 3.1825 4.541 5.8409
4 1.533 2.1318 2.7764 3.747 4.6041
5 1.476 2.0150 2.5706 3.365 4.0321
6 1.440 1.9432 2.4469 3.143 3.7074
7 1.415 1.8946 2.3646 2.998 3.4995
8 1.397 1.8595 2.3060 2.896 3.3554
9 1.383 1.8331 2.2622 2.821 3.2498

10 1.372 1.8125 2.2281 2.764 3.1693
11 1.363 1.7959 2.2010 2.718 3.1058
12 1.356 1.7823 2.1788 2.681 3.0545
13 1.350 1.7709 2.1604 2.650 3.0123
14 1.345 1.7613 2.1448 2.624 2.9768
15 1.341 1.7530 2.1315 2.602 2.9467
16 1.337 1.7459 2.1199 2.583 2.9208
17 1.333 1.7396 2.1098 2.567 2.8982
18 1.330 1.7341 2.1009 2.552 2.8784
19 1.328 1.7291 2.0930 2.539 2.8609
20 1.325 1.7247 2.0860 2.528 2.8453
21 1.323 1.7207 2.0796 2.518 2.8314
22 1.321 1.7171 2.0739 2.508 2.8188
23 1.319 1.7139 2.0687 2.500 2.8073
24 1.318 1.7109 2.0639 2.492 2.7969
25 1.316 1.7081 2.0595 2.485 2.7874
26 1.315 1.7056 2.0555 2.479 2.7787
27 1.314 1.7033 2.0518 2.473 2.7707
28 1.313 1.7011 2.0484 2.467 2.7633
29 1.311 1.6991 2.0452 2.462 2.7564
30 1310 1.6973 2.0423 2.457 2.7500
35 1.3062 1.6896 2.0301 2.438 2.7239
40 1.3031 1.6839 2.0211 2.423 2.7045
45 1.3007 1.6794 2.0141 2.412 2.6896
50 1.2987 1.6759 2.0086 2.403 2.6778

100 1.2901 1.6602 1.9840 2.364 2.6260
160 1.2869 1.6545 1.9749 2.350 2.6070
200 1.2858 1.6525 1.9719 2.345 2.6006

z 1.282 1.645 1.96 2.326 2.576
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barometric pressure 33,310
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Bernoulli trial 97, 104
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racial 241,248,253
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178 (see also Poisson
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approximation)

birthday (see postponing death)
blood donors 194
BMDP 74
boiling point of water 33,310,316
Brigham Young University 248
burn -in period 135

c
capture-recapture 104, 119,254, 304
cell (for goodness of fit test) 250
census, of a population 348
center of mass (interpretation of mean)

519
Central Limit Theorem 142, 161,

197, 198,301
centrality 64, 65
chance mechanism 3, 11
characteristic of interest 50
Chebyshev's Theorem 31, 119,510
chi-squared distribution 161,214
class 70 (seegrouped frequency

distribution)
class mark 70
class of a random variable 81
class width 70
coefficient of determination 311,312,

316
combinations 84
Commission on State Finance

(California) 242

computer 74, 576
computing formula (see variance)
conceptual formula (see variance)
concepts (see learning concepts)
cond itional distribution 290
conditional probability 24, 260
confidence coefficient 126, 180, 202,

207 (see also confidence interval )
confidence inter val

for a median 126, 165,409
for 11 196,200
for 11 (small sample case) 208
for p 180, 185
for (J (or (J2) 214,216
one-sided (lower or upper) 217
(for differences of means and

proportions, see sampling
distributions)

confidence limit 189
confidentiality 343
confounded (effect)
Connecticut v. Teal
contagious disease
continuity correction
continuous 129
continuous approximation 158
control of error (see error)
controlled (variable) 43, 45
correlation 313,431

linear 314
strength of 316

correlation coefficient 313,316
cottontail rabbit 103, 119,254,304
counting 83
critical value (for a hypothesis test) 268
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cumulative probability distribution
function 101, 135, 136, 137

Current Population Survey 476

D
data analysis 74
data collection 42,46,229
data exploration 74 (see also

exploratory data analysis)
decision error (see error)
decision procedure 228,255,262
decision rule 269

p-value 273,274
decision theory 228,656
degrees of freedom 161, 162,210,

250,419,420
delayed death hypothesis (see

postponing death)
density function 130
Department of Commerce 42
Department of Health, Education and

Welfare 42
depth 76
deviance (see analysis of)
deviation 15
diagnostics for the regression model 308
dichotomous (see population)
difference of two means (see sampling

distribution)
difference of two proportions (see

sampling distribution)
discrete 81, 129
discrimination 165,245,246 (see also

bias, racial)
dispersion 15
distribution

empirical probability 114
frequency 61
grouped frequency 70
grouped relative frequency 72
probability 8, 46, 48, 59
relative frequency 63
(see also sampling distribution)

draft lottery 57, 443

E
earthquakes 156
Ecole Militaire 142
ecological correlation (see fallacy of)

effect 43, 45
efficient market hypothesis 246
elementary errors 142
empirical probability 373 (see

distribution)
energy crisis of 1973 280
energy education 280
epidemic 479
error

control of 1, 185, 188,222,228,
229,348,421

decision 230
for a confidence interval 184,261,

414
for a hypothesis test 255,261,262,

265
random 199,232,235,402
(seealso type I type II error; sampling

error; human error)
error sum of squares (SSE) 300, 306
error tolerance 181, 195, 399
estimator 169, 173

unbiased 176, 197,203,207,238
event 23

compement of 24
independent 25
mutually exclusive 24
occurs 29

evidence, accumulation of 230,237
evidence of uncertainty 258
expected value (random variable) 12
experiment

random 5
scientific 5,230
statistical 42

experimental design 46, 57
explained variability 312
explanatory variable 290,312
exploratory data analysis 574 (see

also data exploration)
exponential distribution 130, 135, 138
exponential function 111
extraneous variable 42

F
factorial 84
fail to reject the null hypothesis 263
fallacy of ecological correlation 314,

695

Subiect Index

false positive (see screening test)
father of modern statistics (Karl

Pearson) 249
finite population correction factor 91,

92,95
flying bombs 284
fraudulent invoices 249
frequency distribution 61, 70
frequency 61 (see also relative

frequency)
fundamental principle of counting 83

G
Gaussian curve 144
gay men 44
genetic characteristic 252
geometric distribution 98, 104, 116,

254,304
goodness of fit test 249
graphical display 39
grouped data 70
Guinness Brewery (Arthur Guinness

and Son) 209

H
Hazelwood School District v. US 165
height of adult children 313
hijacker profile 28
histogram 71, 75, 76, 77, 78
HIV virus 194

test status for 343
homogeneity, test for 251,252
homogeneous 43
homoscedastic 291
homosexuality 44
Household Health Interview Survey

474
human error 348
hypergeometric distribution 83
hypothesis 225
hypothesis of elementary errors 142
hypothesis of randomness 246
hypothesis test 228,229,254

direction of (determining HA) 256,
261,263,266

p-values for 273
hypothesis test for linearity 308
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ignorance 142
incidence of disease 48
independence 25,46

test for 251,252
index, for a population 348
inductive inference 230
informed judgment 44, 45
International Statistical Review 477
interval estimate 165,180

J
joint probability 24
jointly normally distributed 314
jury 246, 248
just a lot of numbers 45

K
kth-order statistic (see order statistic)

L
leaf 76
learning concepts 486
least squares 299

principle of 299
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