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Preface

It was a pleasant surprise when we were asked by our original publisher to come up with
a revised second edition within three years of publication of the first edition. The first
edition was warmly received by the intended audiences. However, over the last three years
we ourselves had critically examined the book and had come to realize that in view of
certain newer approaches to the analyses (such as the mixed models approach), a revision
could make the book even more useful. It is our pleasure to present to our audiences a
second revised edition, which is now copublished by SAS Institute Inc. and John Wiley &
Sons.

Applied multivariate techniques are routinely used in a variety of disciplines such
as agriculture, anthropology, applied statistics, biological sciences, business, chemistry,
econometrics, education, engineering, marketing, medicine, psychology, quality control,
and sociology. With such a diverse readership, we thought it essential to present multivari-
ate techniques in a general context while at the same time keeping the mathematical and
statistical requirements to a bare minimum. We have sincerely attempted to achieve this
objective.

Audience

The book is written both as a handy reference for researchers and practitioners as well as
a supplementary college text. Researchers and practitioners can also adapt the material for
a self-taught tutorial. Students and their instructors in senior undergraduate or beginning
graduate classes in applied statistics will find the book useful as an accompanying compu-
tational supplement to a more advanced book on applied multivariate statistics. The book
can also be adapted for a statistics service course for graduate students from the nonstatis-
tical disciplines.

Approach

Primary emphasis is on statistical methodology as applied to various scientific disciplines.
SAS software is used as the crucial computational aid to carry out various intensive calcu-
lations which so naturally occur in any typical multivariate analysis application. Discussion
in this volume is limited to only the normal theory-based multivariate analysis.

We believe that those who use multivariate methods should not only understand appro-
priate statistical techniques useful in their particular situation but should also be able to
discern the appropriate approach and distinguish it from an approach that seems correct
but is completely inappropriate in a particular context. Quite often, these differences are
subtle, and there are scenarios where the presumably best approach may be completely
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invalid due to one reason or the other. The problem is further compounded by the under-
standable temptation to take the shortest route by choosing the analysis that can be readily
performed using a particular software package or a canned computer program, regardless
of its appropriateness, over a more appropriate analysis not so readily available. This book
attempts to demonstrate this process of discernment, problem definition, selection of an
appropriate analysis or a combination of many, while providing both the needed SAS code
to achieve these goals and the subsequent interpretation of the SAS output.

This approach largely eliminates the need for two books, one for learning multivariate
techniques and another for mastering the software usage. Instead of taking various multi-
variate procedures in SAS one at a time and demonstrating their potential to solve a large
number of different problems, we have chosen to discuss various multivariate situations
one by one and then identify the most appropriate SAS analyses for them. Many of these
analyses may occasionally result from the combined applications of two or more SAS pro-
cedures. All multivariate methods are illustrated by appropriate examples. In most cases,
the data sets considered are real and are adapted from the published literature from a variety
of disciplines.

Prerequisites

A course in applied statistics dealing with the essentials of the (univariate) experimen-
tal designs and regression theory and some familiarity with matrix algebra (just enough to
interpret the notationally presented statistical models and linear hypotheses) provide an ad-
equate preparation to read this book. Some familiarity with SAS programming (the DATA
step and the basic rules of the SAS language) will also be helpful. See the References for
a list of SAS documentation.

Overview of Chapters

Chapter 1 provides a summary of important multivariate results. In Chapter 2, various
graphical methods for the exploratory multivariate analysis are presented. In Chapter 3, a
brief review of the theory of multivariate regression models is provided, which is followed
by a number of applications. Chapter 4 deals with the analysis of experimental data. Since
the underlying theory, though a bit more complex, is essentially parallel to that presented
in Chapter 3, we have largely confined our discussion here to modeling and applications in
a variety of experimental designs.

Chapter 5, “Analysis of Repeated Measures Data” and Chapter 6, “Analysis of Repeated
Measures Using Mixed Models,” occupy a relatively larger space than other chapters in
the book. This emphasis requires some further explanation. The repeated measures data
are multivariate in nature but are often analyzed using some of the univariate techniques.
Both the univariate and multivariate approaches have their own advantages and shortcom-
ings and both are important in their own rights. Both of these approaches are discussed
in these chapters. Complexity of models is inherent in the repeated measures data; variety
in terms of models is plentiful, and many of these models are commonly used in differ-
ent disciplines. As a result, we have decided to provide a careful systematic discussion of
some of the most commonly used models with an appropriate explanation of the analyses
performed by various SAS procedures. However, our coverage, though extensive, is still
by no means exhaustive.

The book also contains two appendices. The first of these contains some of the com-
monly needed and useful multivariate matrix manipulation statements from the SAS IML
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procedure. It is included so that researchers who wish to perform some further nonstan-
dard analyses of the data should be able to do so with minimal effort using PROC IML.
Of course, no attempt is made to be exhaustive, and we readily admit that our selection of
items here is purely due to our personal preference and our own exposure and experience
with similar analyses. The second appendix contains all the data sets used in the book but
not included as part of the corresponding SAS codes due to their large sizes.

Several errors of the first edition have been fixed in the second edition. However, in
a work of this size, integrating various aspects of statistical methods and data analysis,
there are bound to be some errors and gaps which we may have unintentionally introduced
while adding the new material. We will greatly appreciate any comments, suggestions or
criticisms which will help us improve this work further.

Acknowledgments
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Commonly Used Notation

In The n by n identity matrix

1n The n by 1 vector of unit elements

O A matrix of appropriate order with all zero entries

λi The i th largest eigenvalue of the matrix under consideration

|A| The determinant of the square matrix A

tr(A) The trace of the square matrix A

A−1 The inverse of the matrix A

A1/2 The symmetric square root of the matrix A

A− A generalized inverse of the matrix A

E(y) Expected value of a random variable or vector y

v(y), var(y) Variance of a random variable y

cov(x, y) Covariance of random variable (vector) x with random variable
(or vector) y

D(y) The variance covariance or the dispersion matrix of y

Np(µ, Σ) A p-dimensional normal distribution with mean µ and the variance co-
variance matrix Σ

Wp( f, Σ) A p-(matrix) variate Wishart distribution with f degrees of freedom
and parameter Σ (that is, with expected value f Σ)

ε Error vector

E Error matrix

Y n by p matrix of data on dependent variables

X Regression/Design matrix in the linear model

β Regression/Design parameter vector

B Regression/Design parameter matrix

Σ (usually) The Dispersion matrix of errors

d f Degrees of freedom

SS&CP Matrix Matrix of the sums of squares and crossproducts

E Error SS&CP matrix

H Hypothesis SS&CP matrix

ȳ The sample mean vector

S Sample dispersion matrix (with d f as denominator)

Sn Sample dispersion matrix (with sample size as denominator)

P The Projection or Hat matrix

T 2 Hotelling’s T 2
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� Wilks’ Lambda

β1,p Coefficient of multivariate skewness

β2,p Coefficient of multivariate kurtosis

⊗ Kronecker product

AIC Akaike’s information criterion

BIC Swartz’s Bayesian information criterion
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1.7 Random Vector and Matrix Generation 17

1.1 Introduction

The subject of multivariate analysis deals with the statistical analysis of the data collected
on more than one (response) variable. These variables may be correlated with each other,
and their statistical dependence is often taken into account when analyzing such data. In
fact, this consideration of statistical dependence makes multivariate analysis somewhat
different in approach and considerably more complex than the corresponding univariate
analysis, when there is only one response variable under consideration.

Response variables under consideration are often described as random variables and
since their dependence is one of the things to be accounted for in the analyses, these re-
sponse variables are often described by their joint probability distribution. This considera-
tion makes the modeling issue relatively manageable and provides a convenient framework
for scientific analysis of the data. Multivariate normal distribution is one of the most fre-
quently made distributional assumptions for the analysis of multivariate data. However,
if possible, any such consideration should ideally be dictated by the particular context.
Also, in many cases, such as when the data are collected on a nominal or ordinal scales,
multivariate normality may not be an appropriate or even viable assumption.

In the real world, most data collection schemes or designed experiments will result in
multivariate data. A few examples of such situations are given below.

• During a survey of households, several measurements on each household are taken.
These measurements, being taken on the same household, will be dependent. For ex-
ample, the education level of the head of the household and the annual income of the
family are related.

• During a production process, a number of different measurements such as the tensile
strength, brittleness, diameter, etc. are taken on the same unit. Collectively such data are
viewed as multivariate data.

• On a sample of 100 cars, various measurements such as the average gas mileage, number
of major repairs, noise level, etc. are taken. Also each car is followed for the first 50,000
miles and these measurements are taken after every 10,000 miles. Measurements taken
on the same car at the same mileage and those taken at different mileage are going to be
correlated. In fact, these data represent a very complex multivariate analysis problem.
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• An engineer wishes to set up a control chart to identify the instances when the produc-
tion process may have gone out of control. Since an out of control process may produce
an excessively large number of out of specification items, detection at an early stage is
important. In order to do so, she may wish to monitor several process characteristics
on the same units. However, since these characteristics are functions of process param-
eters (conditions), they are likely to be correlated leading to a set of multivariate data.
Thus many times, it is appropriate to set up a single (or only a few) multivariate control
chart(s) to detect the occurrence of any out of control conditions. On the other hand, if
several univariate control charts are separately set up and individually monitored, one
may witness too many false alarms, which is clearly an undesirable situation.

• A new drug is to be compared with a control for its effectiveness. Two different groups of
patients are assigned to each of the two treatments and they are observed weekly for next
two months. The periodic measurements on the same patient will exhibit dependence
and thus the basic problem is multivariate in nature. Additionally, if the measurements
on various possible side-effects of the drugs are also considered, the subsequent analysis
will have to be done under several carefully chosen models.

• In a designed experiment conducted in a research and development center, various fac-
tors are set up at desired levels and a number of response variables are measured for
each of these treatment combinations. The problem is to find a combination of the lev-
els of these factors where all the responses are at their ‘optimum’. Since a treatment
combination which optimizes one response variable may not result in the optimum for
the other response variable, one has a problem of conflicting objectives especially when
the problem is treated as collection of several univariate optimization problems. Due to
dependence among responses, it may be more meaningful to analyze response variables
simultaneously.

• In many situations, it is more economical to collect a large number of measurements on
the same unit but such measurements are made only on a few units. Such a situation is
quite common in many remote sensing data collection plans. Obviously, it is practically
impossible to collectively interpret hundreds of univariate analyses to come up with
some definite conclusions. A better approach may be that of data reduction by using
some meaningful approach. One may eliminate some of the variables which are deemed
redundant in the presence of others. Better yet, one may eliminate some of the linear
combinations of all variables which contain little or no information and then concentrate
only on a few important ones. Which linear combinations of the variables should be
retained can be decided using certain multivariate methods such as principal component
analysis. Such methods are not discussed in this book, however.

Most of the problems stated above require (at least for the convenience of modeling and
for performing statistical tests) the assumption of multivariate normality. There are how-
ever, several other aspects of multivariate analysis such as factor analysis, cluster analysis,
etc. which are largely distribution free in nature. In this volume, we will only consider
the problems of the former class, where multivariate normality assumption may be needed.
Therefore, in the next few sections, we will briefly review the theory of multivariate normal
and other related distributions. This theory is essential for a proper understanding of vari-
ous multivariate statistical techniques, notation, and nomenclature. The material presented
here is meant to be only a refresher and is far from complete. A more complete discussion
of this topic can be found in Kshirsagar (1972), Seber (1984) or Rencher (1995).

1.2 Random Vectors, Means, Variances, and Covariances

Suppose y1, . . . , yp are p possibly correlated random variables with respective means (ex-
pected values) µ1, . . . , µp . Let us arrange these random variables as a column vector de-
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noted by y, that is, let

y =




y1
y2
...

yp


 .

We do the same for µ1, µ2, . . . , µp and denote the corresponding vector by µ. Then we
say that the vector y has the mean µ or in notation E(y) = µ.

Let us denote the covariance between yi and y j by σi j , i, j = 1, . . . , p, that is

σi j = cov(yi , y j ) = E[(yi − µi )(y j − µ j )] = E[(yi − µi )y j ] = E(yi y j ) − µiµ j

and let

Σ = (σi j ) =




σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p

σp1 σp2 . . . σpp


 .

Since cov(yi , y j ) = cov(y j , yi ), we have σi j = σ j i . Therefore, Σ is symmetric with
(i, j)th and ( j, i)th elements representing the covariance between yi and y j . Further, since
var(yi ) = cov(yi , yi ) = σi i , the i th diagonal place of Σ contains the variance of yi . The
matrix Σ is called the dispersion or the variance-covariance matrix of y. In notation, we
write this fact as D(y) = Σ. Various books follow alternative notations for D(y) such as
cov(y) or var(y). However, we adopt the less ambiguous notation of D(y).

Thus,

Σ = D(y) = E[(y − µ)(y − µ)′] = E[(y − µ)y′] = E(yy′) − µµ′,

where for any matrix (vector) A, the notation A′ represents its transpose.
The quantity tr(Σ) = ∑p

i=1 σi i is called total variance and a determinant of Σ, denoted
by |Σ|, is often referred to as the generalized variance. The two are often taken as the
overall measures of the variability of the random vector y. However, both of these two
measures suffer from certain shortcomings. For example, the total variance tr(Σ) being the
sum of only diagonal elements, essentially ignores all covariance terms. On the other hand,
the generalized variance |Σ| can be misleading since two very different variance covariance
structures can sometimes result in the same value of generalized variance. Johnson and
Wichern (1998) provide certain interesting illustrations of such situations.

Let up×1 and zq×1 be two random vectors, with respective means µu and µz . Then the
covariance of u with z is defined as

Σuz = cov(u, z) = E[(u − µu)(z − µz)
′] = E[(u − µu)z′] = E(uz′) − µuµ′

z .

Note that as matrices, the p by q matrix Σuz = cov(u, z) is not the same as the q by p
matrix Σz u = cov(z, u), the covariance of z with u. They are, however, related in that

Σuz = Σ′
zu .

Notice that for a vector y, cov(y, y) = D(y). Thus, when there is no possibility of con-
fusion, we interchangeably use D(y) and cov(y)(= cov(y, y)) to represent the variance-
covariance matrix of y.

A variance-covariance matrix is always positive semidefinite (that is, all its eigenvalues
are nonnegative). However, in most of the discussion in this text we encounter dispersion
matrices which are positive definite, a condition stronger than positive semidefiniteness
in that all eigenvalues are strictly positive. Consequently, such dispersion matrices would
also admit an inverse. In the subsequent discussion, we assume our dispersion matrix to be
positive definite.
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Let us partition the vector y into two subvectors as

y =
[

y1p1×1

y2(p−p1)×1

]

and partition Σ as

Σ =
[

Σ11p1×p1
Σ12p1×(p−p1)

Σ21(p−p1)×p1
Σ22(p−p1)×(p−p1)

]
.

Then, E(y1) = µ1, E(y2) = µ2, D(y1) = Σ11, D(y2) = Σ22, cov(y1, y2) = Σ12,
cov(y2, y1) = Σ21. We also observe that Σ12 = Σ′

21.
The Pearson’s correlation coefficient between yi and y j , denoted by ρi j , is defined

by

ρi j = cov(yi , y j )√
var(yi ) var(y j )

= σi j√
σi iσ j j

,

and accordingly, we define the correlation coefficient matrix of y as

R =




ρ11 ρ12 . . . ρ1p

ρ21 ρ22 . . . ρ2p

ρp1 ρp2 . . . ρpp




It is easy to verify that the correlation coefficient matrix R is a symmetric positive definite
matrix in which all the diagonal elements are unity. The matrix R can be written, in terms
of matrix Σ, as

R = [diag (Σ)]−1/2Σ[diag (Σ)]−1/2,

where diag (Σ) is the diagonal matrix obtained by retaining the diagonal elements of Σ and
by replacing all the nondiagonal elements by zero. Further, the square root of any matrix
A, denoted by A

1
2 , is a symmetric matrix satisfying the condition, A = A

1
2 A

1
2 .

The probability distribution (density) of a vector y, denoted by f (y), is the same as
the joint probability distribution of y1, . . . , yp . The marginal distribution f1(y1) of y1 =
(y1, . . . , yp1)

′, a subvector of y, is obtained by integrating out y2 = (yp1+1, . . . , yp)
′ from

the density f (y). The conditional distribution of y2, when y1 has been held fixed, is denoted
by g(y2|y1) and is given by

g(y2|y1) = f (y)/ f1(y1).

An important concept arising from conditional distribution is the partial correlation co-
efficient. If we partition y as (y′

1, y′
2)

′ where y1 is a p1 by 1 vector and y2 is a (p − p1)

by 1 vector, then the partial correlation coefficient between two components of y1, say yi

and y j , is defined as the Pearson’s correlation coefficient between yi and y j conditional
on y2 (that is, for a given y2). If Σ11·2 = (ai j ) is the p1 by p1 variance-covariance ma-
trix of y1 given y2, then the population partial correlation coefficient between yi and y j ,
i, j = 1, . . . , p1 is given by

ρi j ·p1+1,...,p = ai j/
√

aii a j j .

The matrix of all partial correlation coefficients ρi j,p1+1,...,p, i, j = 1, . . . , p1 is denoted
by R11·2. More simply, using the matrix notations, R11·2 can be computed as

[diag (Σ11.2)]− 1
2 Σ11.2[diag (Σ11.2)]− 1

2 ,

where diag (Σ11.2) is a diagonal matrix with respective diagonal entries the same as those
in Σ11.2.
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Many times it is of interest to find the correlation coefficients between yi and y j , i, j =
1, . . . , p, conditional on all yk, k = 1, . . . , p, k �= i, k �= j . In this case, the partial
correlation between yi and y j can be interpreted as the strength of correlation between the
two variables after eliminating the effects of all the remaining variables.

In many linear model situations, we would like to examine the overall association of a
set of variables with a given variable. This is often done by finding the correlation between
the variable and a particular linear combination of other variables. The Multiple correlation
coefficient is an index measuring the association between a random variable y1 and the
set of remaining variables represented by a (p − 1) by 1 vector y2. It is defined as the
maximum correlation between y1 and c′y2, a linear combination of y2, where the maximum
is taken over all possible nonzero vectors c. This maximum value, representing the multiple
correlation coefficient between y1 and y2, is given by

(
Σ12Σ−1

22 Σ21

) 1
2
/	

1
2
11

where

D

[
y1
y2

]
=
[

	11 Σ12
Σ21 Σ22

]
,

and the maximum is attained for the choice c = Σ−1
22 Σ21. The multiple correlation coeffi-

cient always lies between zero and one. The square of the multiple correlation coefficient,
often referred to as the population coefficient of determination, is generally used to indicate
the power of prediction or the effect of regression.

The concept of multiple correlation can be extended to the case in which the random
variable y1 is replaced by a random vector. This leads to what are called canonical corre-
lation coefficients.

1.3 Multivariate Normal Distribution

A probability distribution that plays a pivotal role in multivariate analysis is multivariate
normal distribution. We say that y has a multivariate normal distribution (with a mean
vector µ and the variance-covariance matrix Σ) if its density is given by

f (y) = 1

(2π)p/2|Σ|1/2
· exp

(
−1

2
(y − µ)′Σ−1(y − µ)

)
.

In notation, we state this fact as y ∼ Np(µ,Σ). Observe that the above density is a straight-
forward extension of the univariate normal density to which it will reduce when p = 1.

Important properties of the multivariate normal distribution include some of the follow-
ing:

• Let Ar×p be a fixed matrix, then Ay ∼ Nr (Aµ, AΣA′)(r ≤ p). It may be added that
Ay will admit the density if AΣA′ is nonsingular, which will happen if and only if all
rows of A are linearly independent. Further, in principle, r can also be greater than p.
However, in that case, the matrix AΣA′ will not be nonsingular. Consequently, the vector
Ay will not admit a density function.

• Let G be such that Σ−1 = GG′, then G′y ∼ Np(G′µ, I ) and G′(y − µ) ∼ Np(0, I ).
• Any fixed linear combination of y1, . . . , yp , say c′y, cp×1 �= 0 is also normally dis-

tributed. Specifically, c′y ∼ N1(c′µ, c′Σc).
• The subvectors y1 and y2 are also normally distributed, specifically, y1 ∼ Np1(µ1,Σ11)

and y2 ∼ Np−p1(µ2,Σ22).
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• Individual components y1, . . . , yp are all normally distributed. That is, yi ∼ N1(µi , σi i ),
i = 1, . . . , p.

• The conditional distribution of y1 given y2, written as y1|y2, is also normal. Specifically,

y1|y2 ∼ Np1

(
µ1 + Σ12Σ−1

22 (y2 − µ2), Σ11 − Σ12Σ−1
22 Σ21

)
.

Let µ1 + Σ12Σ−1
22 (y2 − µ2) = µ1 − Σ12Σ−1

22 µ2 + Σ12Σ−1
22 y2 = B0 + B1y2, and

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21. The conditional expectation of y1 for given values of y2

or the regression function of y1 on y2 is B0 + B1y2, which is linear in y2. This is a key
fact for multivariate multiple linear regression modeling. The matrix Σ11.2 is usually
represented by the variance-covariance matrix of error components in these models. An
analogous result (and the interpretation) can be stated for the conditional distribution of
y2 given y1.

• Let δ be a fixed p × 1 vector, then

y + δ ∼ Np(µ + δ,Σ).

• The random components y1, . . . , yp are all independent if and only if Σ is a diagonal
matrix; that is, when all the covariances (or correlations) are zero.

• Let u1 and u2 be respectively distributed as Np(µu1
,Σu1) and Np(µu2

,Σu2), then

u1 ± u2 ∼ Np(µu1
± µu2

,Σu1 + Σu2 ± (cov(u1, u2) + cov(u2, u1))).

Note that if u1 and u2 were independent, the last two covariance terms would drop out.

There is a vast amount of literature available on multivariate normal distribution, its
properties, and the evaluations of multivariate normal probabilities. See Kshirsagar (1972),
Rao (1973), and Tong (1990) among many others for further details.

1.4 Sampling from Multivariate Normal Populations

Suppose we have a random sample of size n, say y1, . . . , yn , from the p dimensional mul-
tivariate normal population Np(µ,Σ). Since y1, . . . , yn are independently and identically
distributed (iid), their sample mean

ȳ = 1

n
[y1 + · · · + yn] = 1

n

n∑
i=1

yi (1.1)

is also normally distributed as Np(µ,Σ/n). Thus, ȳ is an unbiased estimator of µ. Also,
observe that ȳ has a dispersion matrix which is a 1

n multiple of the original population
variance-covariance matrix. These results are straightforward generalizations of the corre-
sponding well known univariate results.

The sample variance of the univariate normal theory is generalized to the sample
variance-covariance matrix in the multivariate context. Accordingly, the chi-square distri-
bution is generalized to a matrix distribution known as the Wishart distribution.

The p by p sample variance-covariance matrix is obtained as

S = 1

n − 1

n∑
i=1

(yi − ȳ)(yi − ȳ)′ = 1

n − 1

{
n∑

i=1

yi y′
i − nȳȳ′

}
. (1.2)

The matrix S is an unbiased estimator of Σ. Note that S is a p by p symmetric matrix.
Thus, it contains only p(p+1)

2 different random variables.
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Let

Y =




y′
1

y′
2
...

y′
n




be the n by p data matrix obtained by stacking y′
1, . . . , y′

n one atop the other. Let In stand
for an n by n identity matrix and 1n be an n by 1 column vector with all elements as 1.
Then, in terms of Y, the sample mean ȳ can be written as

ȳ = 1

n
Y′1n

and the sample variance-covariance matrix can be written as

S = 1

n − 1

{
Y′
(

In − 1

n
1n1′

n

)
Y
}

= 1

n − 1

{
Y′Y − 1

n
Y′1n1′

nY
}

= 1

n − 1
{Y′Y − nȳȳ′}.

It is known that (n − 1)S follows a p-(matrix) variate Wishart distribution with (n − 1)

degrees of freedom and expectation (n −1)Σ. We denote this as (n −1)S ∼ Wp(n −1,Σ).
Also, S is an unbiased estimator of Σ (as mentioned earlier, this is always true regardless of
the underlying multivariate normality assumption and consequently, without any specific
reference to the Wishart distribution).

Since (n − 1)S has a Wishart distribution, the sample variance-covariance matrix S
possesses certain other important properties. Many of these properties are used to obtain
the distributions of various estimators and test statistics. Some of these properties are listed
as follows.

• (n − 1)sii/σi i ∼ χ2(n − 1), i = 1, . . . , p.
• Let

S =
[

S11 S12
S21 S22

]
, Σ =

[
Σ11 Σ12
Σ21 Σ22

]
,

S11.2 = S11 − S12S−1
22 S21,Σ11.2 = Σ11 − Σ12Σ−1

22 Σ21, S22.1 = S22 − S21S−1
11 S12 and

Σ22.1 = Σ22 − Σ21Σ−1
11 Σ12, then

(a) (n − 1)S11 ∼ Wp1((n − 1),Σ11).

(b) (n − 1)S22 ∼ Wp2((n − 1),Σ22).

(c) (n − 1)S11.2 ∼ Wp1((n − p + p1 − 1),Σ11.2).

(d) (n − 1)S22.1 ∼ Wp2((n − p1 − 1),Σ22.1).

(e) S11 and S22.1 are independently distributed.

(f) S22 and S11.2 are independently distributed.
• Let sii and σ i i be the i th diagonal elements of S−1 and Σ−1 respectively, then

(n − 1)σ i i/sii ∼ χ2(n − p).

• Let c �= 0 be an arbitrary but fixed vector, then

(n − 1)
c′Sc
c′Σc

∼ χ2(n − 1),

and (n − 1)
c′Σ−1c
c′S−1c

∼ χ2(n − p).

• Let H be an arbitrary but fixed k × p matrix (k ≤ p), then

(n − 1)HSH′ ∼ Wk(n − 1, HΣH′).

In principle, k can also be greater than p but in such a case, the matrix (n − 1)HSH′
does not admit a probability density.
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As a consequence of the above result, if we take k = p and H = G′ where Σ−1 = GG′,
then (n − 1) S∗ = (n − 1)G′SG ∼ Wp(n − 1, I).

In the above discussion, we observed that the Wishart distribution arises naturally in
the multivariate normal theory as the distribution of the sample variance-covariance matrix
(of course, apart from a scaling by (n − 1)). Another distribution which is closely related
to the Wishart distribution and is useful in various associated hypothesis testing problems
is the matrix variate Beta (Type 1) distribution. For example, if A1 and A2 are two in-
dependent random matrices with A1 ∼ Wp(n1 − 1,Σ) and A2 ∼ Wp(n2 − 1,Σ), then
B = (A1 + A2)

− 1
2 A1(A1 + A2)

− 1
2 follows a matrix variate Beta Type 1 distribution, de-

noted by Bp(
n1−1

2 ,
n2−1

2 , Type 1). Similarly, B∗ = A− 1
2

2 A1A− 1
2

2 follows Bp(
n1−1

2 ,
n2−1

2 ,
Type 2), a matrix variate Beta Type 2 (or a matrix variate F apart from a constant) dis-
tribution. The matrices A− 1

2
2 and (A1 + A2)

− 1
2 respectively are the symmetric “square

root” matrices of A−1
2 and (A1 + A2)

−1 in the sense that A−1
2 = (A2)

− 1
2 (A2)

− 1
2 and

(A1 + A2)
−1 = (A1 + A2)

− 1
2 (A1 + A2)

− 1
2 . The eigenvalues of the matrices B and B∗

appear in the expressions of various test statistics used in hypothesis testing problems in
multivariate analysis of variance.

Another important fact about the sample mean ȳ and the sample variance-covariance
matrix S is that they are statistically independent under the multivariate normal sampling
theory. This fact plays an important role in constructing test statistics for certain statistical
hypotheses. For details, see Kshirsagar (1972), Timm (1975), or Muirhead (1982).

1.5 Some Important Sample Statistics and Their Distributions

We have already encountered two important sample statistics in the previous section,
namely the sample mean vector ȳ in Equation 1.1 and the sample variance-covariance
matrix S in Equation 1.2. These quantities play a pivotal role in defining the test statistics
useful in various hypothesis testing problems. The underlying assumption of multivariate
normal population is crucial in obtaining the distribution of these test statistics. There-
fore, we will assume that the sample y1, . . . , yn of size n is obtained from a multivariate
population Np(µ,Σ).

As we have already indicated, ȳ ∼ Np(µ,Σ/n) and (n − 1)S ∼ Wp(n − 1,Σ). Con-
sequently, any linear combination of ȳ, say c′ȳ, c �= 0, follows N1(c′µ, c′Σc/n) and the
quadratic form (n − 1)c′Sc/c′Σc ∼ χ2(n − 1). Further, as pointed out earlier, ȳ and S are
independently distributed and hence the quantity

t = √
nc′(ȳ − µ)/

√
c′Sc

follows a t-distribution with (n − 1) degrees of freedom. A useful application of this fact
is in testing problems for certain contrasts or in testing problems involving a given linear
combination of the components of the mean vector.

Often interest may be in testing a hypothesis if the population has its mean vector equal
to a given vector, say µ0. Since ȳ ∼ Np(µ,Σ/n), it follows that z = √

nΣ− 1
2 (ȳ − µ)

follows Np(0, I). This implies that the components of z are independent and have the
standard normal distribution. As a result, if µ is equal to µ0 the quantity, z2

1 + · · · + z2
p =

z′z = n(ȳ−µ0)
′Σ−1(ȳ−µ0) follows a chi-square distribution with p degrees of freedom.

On the other hand, if µ is not equal to µ0, then this quantity will not have a chi-square
distribution. This observation provides a way of testing the hypothesis that the mean of
the normal population is equal to a given vector µ0. However, the assumption of known
Σ is needed to actually perform this test. If Σ is unknown, it seems natural to replace it in
n(ȳ − µ)′Σ−1(ȳ − µ) by its unbiased estimator S, leading to Hotelling’s T 2 test statistic
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defined as

T 2 = n(ȳ − µ0)
′S−1(ȳ − µ0),

where we assume that n ≥ p + 1. This assumption ensures that S admits an inverse. Under
the hypothesis mentioned above, namely µ = µ0, the quantity n−p

p(n−1)
T 2 follows an F

distribution with degrees of freedom p and n − p.
Assuming normality, the maximum likelihood estimates of µ and Σ are known to be

µ̂ml = ȳ

and

Σ̂ml = Sn = 1

n
Y′
(

In − 1

n
1n1′

n

)
Y = n − 1

n
S.

While µ̂ml = ȳ is unbiased for µ, Σ̂ml = Sn is a (negatively) biased estimator of Σ. These
quantities are also needed in the process of deriving various maximum likelihood-based
tests for the hypothesis testing problems. In general, to test a hypothesis H0, the likelihood
ratio test based on the maximum likelihood estimates is obtained by first maximizing the
likelihood within the parameter space restricted by H0. The next step is maximizing it over
the entire parameter space (that is, by evaluating the likelihood at µ̂ml and Σ̂ml ), and then
taking the ratio of the two. Thus, the likelihood ratio test statistic can be written as

L =
max

H0
f (Y)

max
unrestricted

f (Y)
=

max
H0

g(µ,Σ|Y)

max
unrestricted

g(µ,Σ|Y)
,

where for optimization purposes the function g(µ,Σ|Y) = f (Y) is viewed as a function
of µ and Σ given data Y. A related test statistic is the Wilks’ �, which is the (2/n)th power
of L . For large n, the quantity −2 log L approximately follows a chi-square distribution,
with degrees of freedom ν, which is a function of the sample size n, the number of param-
eters estimated, and the number of restrictions imposed by the parameters involved under
H0.

A detailed discussion of various likelihood ratio tests in multivariate analysis context
can be found in Kshirsagar (1972), Muirhead (1982) or in Anderson (1984). A brief re-
view of some of the relevant likelihood ratio tests is given in Chapter 6. There are certain
other intuitive statistical tests which have been proposed in various contexts and used in
applications instead of the likelihood ratio tests. Some of these tests have been discussed
in Chapter 3.

1.6 Tests for Multivariate Normality

Often before doing any statistical modeling, it is crucial to verify if the data at hand sat-
isfy the underlying distributional assumptions. Many times such an examination may be
needed for the residuals after fitting various models. For most multivariate analyses, it is
thus very important that the data indeed follow the multivariate normal, or if not exactly at
least approximately. If the answer to such a query is affirmative, it can often reduce the task
of searching for procedures which are robust to the departures from multivariate normal-
ity. There are many possibilities for departure from multivariate normality and no single
procedure is likely to be robust with respect to all such departures from the multivariate
normality assumption. Gnanadesikan (1980) and Mardia (1980) provide excellent reviews
of various procedures to verify this assumption.

This assumption is often checked by individually examining the univariate normality
through various Q-Q plots or some other plots and can at times be very subjective. One
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of the relatively simpler and mathematically tractable ways to find a support for the as-
sumption of multivariate normality is by using the tests based on Mardia’s multivariate
skewness and kurtosis measures. For any general multivariate distribution we define these
respectively as

β1,p = E
{
(y − µ)′Σ−1(x − µ)

}3
,

provided that x is independent of y but has the same distribution and

β2,p = E
{
(y − µ)′Σ−1(y − µ)

}2
,

provided that the expectations in the expressions of β1,p and β2,p exist. For the multivariate
normal distribution, β1,p = 0 and β2,p = p(p + 2).

For a sample of size n, the estimates of β1,p and β2,p can be obtained as

β̂1,p = 1

n2

n∑
i=1

n∑
j=1

g3
i j

β̂2,p = 1

n

n∑
i=1

g2
i i = 1

n

n∑
i=1

d4
i

where gi j = (yi − ȳ)′S−1
n (y j − ȳ), and di = √

gii is the sample version of the squared
Mahalanobis distance (Mahalanobis, 1936) between yi and (µ which is approximated by)
ȳ (Mardia, 1970).

The quantity β̂1,p (which is the same as the square of sample skewness coefficient when
p = 1) as well as β̂2,p (which is the same as the sample kurtosis coefficient when p = 1)
are nonnegative. For the multivariate normal data, we would expect β̂1,p to be close to zero.
If there is a departure from the spherical symmetry (that is, zero correlation and equal
variance), β̂2,p will be large. The quantity β̂2,p is also useful in indicating the extreme
behavior in the squared Mahalanobis distance of the observations from the sample mean.

Thus, β̂1,p and β̂2,p can be utilized to detect departure from multivariate normality. Mar-
dia (1970) has shown that for large samples, κ1 = nβ̂1,p/6 follows a chi-square distribution
with degrees of freedom p(p + 1)(p + 2)/6, and κ2 = {β̂2,p − p(p + 2)}/{8p(p + 2)/n} 1

2

follows a standard normal distribution. Thus, we can use the quantities κ1 and κ2 to test the
null hypothesis of multivariate normality. For small n, see the tables for the critical values
for these test statistics given by Mardia (1974). He also recommends (Mardia, Kent, and
Bibby, 1979, p. 149) that if both the hypotheses are accepted, the normal theory for various
tests on the mean vector or the covariance matrix can be used. However, in the presence of
nonnormality, the normal theory tests on the mean are sensitive to β1,p , whereas tests on
the covariance matrix are influenced by β2,p .

For a given data set, the multivariate kurtosis can be computed using the CALIS pro-
cedure in SAS/STAT software. Notice that the quantities reported in the corresponding
SAS output are the centered quantity (β̂2,p − p(p + 2)) (shown in Output 1.1 as Mardia’s
Multivariate Kurtosis) and κ2 (shown in Output 1.1 as Normalized Multivariate Kurtosis).

EXAMPLE 1 Testing Multivariate Normality, Cork Data As an illustration, we consider the cork bor-
ing data of Rao (1948) given in Table 1.1, and test the hypothesis that this data set can be
considered as a random sample from a multivariate normal population. The data set pro-
vided in Table 1.1 consists of the weights of cork borings in four directions (north, east,
south, and west) for 28 trees in a block of plantations.

E. S. Pearson had pointed out to C. R. Rao, apparently without any formal statistical
testing, that the data are exceedingly asymmetrically distributed. It is therefore of interest
to formally test if the data can be assumed to have come from an N4(µ,Σ).



Chapter 1 Multivariate Analysis Concepts 11

TABLE 1.1 Weights of Cork Boring (in Centigrams) in Four Directions for 28 Trees

Tree N E S W Tree N E S W

1 72 66 76 77 15 91 79 100 75
2 60 53 66 63 16 56 68 47 50
3 56 57 64 58 17 79 65 70 61
4 41 29 36 38 18 81 80 68 58
5 32 32 35 36 19 78 55 67 60
6 30 35 34 26 20 46 38 37 38
7 39 39 31 27 21 39 35 34 37
8 42 43 31 25 22 32 30 30 32
9 37 40 31 25 23 60 50 67 54

10 33 29 27 36 24 35 37 48 39
11 32 30 34 28 25 39 36 39 31
12 63 45 74 63 26 50 34 37 40
13 54 46 60 52 27 43 37 39 50
14 47 51 52 43 28 48 54 57 43

The SAS statements required to compute the multivariate kurtosis using PROC CALIS
are given in Program 1.1. A part of the output giving the value of Mardia’s multivariate
kurtosis (= −1.0431) and normalized multivariate kurtosis (= −0.3984) is shown as Out-
put 1.1. The output also indicates the observations which are most influential. Although the
procedure does not provide the value of multivariate skewness, the IML procedure state-
ments given in Program 1.2 perform all the necessary calculations to compute the mul-
tivariate skewness and kurtosis. The results are shown in Output 1.2, which also reports
Mardia’s test statistics κ1 and κ2 described above along with the corresponding p values.

In this program, for the 28 by 4 data matrix Y, we first compute the maximum likelihood
estimate of the variance-covariance matrix. This estimate is given by Sn = 1

n Y′QY, where
Q = In − 1

n 1n1′
n . Also, since the quantities gi j , i, j = 1, . . . , n needed in the expressions

of multivariate skewness and kurtosis are the elements of matrix G = QYS−1
n Y′Q, we

compute the matrix G, using this formula. Their p values are then reported as PVALSKEW
and PVALKURT in Output 1.2. It may be remarked that in Program 1.2 the raw data are
presented as a matrix entity. One can alternatively read the raw data (as done in Program
1.1) as a data set and then convert it to a matrix. In Appendix 1, we have provided the SAS
code to perform this conversion.

/* Program 1.1 */

options ls=64 ps=45 nodate nonumber;
data cork;
infile ’cork.dat’ firstobs = 1;
input north east south west;
proc calis data = cork kurtosis;
title1 "Output 1.1";
title2 "Computation of Mardia’s Kurtosis";
lineqs
north = e1,
east = e2,
south = e3,
west = e4;
std
e1=eps1, e2=eps2, e3=eps3, e4=eps4;
cov
e1=eps1, e2=eps2, e3=eps3, e4=eps4;
run ;
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Output 1.1 Output 1.1
Computation of Mardia’s Kurtosis

Mardia’s Multivariate Kurtosis . . . . . . . . -1.0431
Relative Multivariate Kurtosis . . . . . . . . 0.9565
Normalized Multivariate Kurtosis . . . . . . . -0.3984
Mardia Based Kappa (Browne, 1982). . . . . . . -0.0435
Mean Scaled Univariate Kurtosis . . . . . . . -0.0770
Adjusted Mean Scaled Univariate Kurtosis . . . -0.0770

/* Program 1.2 */

title ’Output 1.2’;
options ls = 64 ps=45 nodate nonumber;

/* This program is for testing the multivariate
normality using Mardia’s skewness and kurtosis measures.
Application on C. R. Rao’s cork data */

proc iml ;
y ={
72 66 76 77,
60 53 66 63,
56 57 64 58,
41 29 36 38,
32 32 35 36,
30 35 34 26,
39 39 31 27,
42 43 31 25,
37 40 31 25,
33 29 27 36,
32 30 34 28,
63 45 74 63,
54 46 60 52,
47 51 52 43,
91 79 100 75,
56 68 47 50,
79 65 70 61,
81 80 68 58,
78 55 67 60,
46 38 37 38,
39 35 34 37,
32 30 30 32,
60 50 67 54,
35 37 48 39,
39 36 39 31,
50 34 37 40,
43 37 39 50,
48 54 57 43} ;
/* Matrix y can be created from a SAS data set as follows:
data cork;
infile ’cork.dat’;
input y1 y2 y3 y4;
run;
proc iml;
use cork;
read all into y;
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See Appendix 1 for details.
*/
/* Here we determine the number of data points and the dimension
of the vector. The variable dfchi is the degrees of freedom for
the chi square approximation of Multivariate skewness. */

n = nrow(y) ;
p = ncol(y) ;
dfchi = p*(p+1)*(p+2)/6 ;

/* q is projection matrix, s is the maximum likelihood estimate
of the variance covariance matrix, g_matrix is n by n the matrix
of g(i,j) elements, beta1hat and beta2hat are respectively the
Mardia’s sample skewness and kurtosis measures, kappa1 and kappa2
are the test statistics based on skewness and kurtosis to test
for normality and pvalskew and pvalkurt are corresponding p
values. */

q = i(n) - (1/n)*j(n,n,1);
s = (1/(n))*y‘*q*y ; s_inv = inv(s) ;
g_matrix = q*y*s_inv*y‘*q;
beta1hat = ( sum(g_matrix#g_matrix#g_matrix) )/(n*n);
beta2hat =trace( g_matrix#g_matrix )/n ;

kappa1 = n*beta1hat/6 ;
kappa2 = (beta2hat - p*(p+2) ) /sqrt(8*p*(p+2)/n) ;

pvalskew = 1 - probchi(kappa1,dfchi) ;
pvalkurt = 2*( 1 - probnorm(abs(kappa2)) );
print s ;
print s_inv ;
print ’TESTS:’;
print ’Based on skewness: ’ beta1hat kappa1 pvalskew ;
print ’Based on kurtosis: ’ beta2hat kappa2 pvalkurt;

Output 1.2 Output 1.2

S
280.03444 215.76148 278.13648 218.19005
215.76148 212.07526 220.87883 165.25383
278.13648 220.87883 337.50383 250.27168
218.19005 165.25383 250.27168 217.9324

S_INV
0.0332462 -0.016361 -0.008139 -0.011533
-0.016361 0.0228758 -0.005199 0.0050046
-0.008139 -0.005199 0.0276698 -0.019685
-0.011533 0.0050046 -0.019685 0.0349464

TESTS:

BETA1HAT KAPPA1 PVALSKEW
Based on skewness: 4.4763816 20.889781 0.4036454

BETA2HAT KAPPA2 PVALKURT
Based on kurtosis: 22.95687 -0.398352 0.6903709
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For this particular data set with its large p values, neither skewness is significantly differ-
ent from zero, nor is the value of kurtosis significantly different from that for the 4-variate
multivariate normal distribution. Consequently, we may assume multivariate normality for
testing the various hypotheses on the mean vector and the covariance matrix as far as the
present data set is concerned. This particular data set is extensively analyzed in the later
chapters under the assumption of normality.

Often we are less interested in the multivariate normality of the original data and more
interested in the joint normality of contrasts or any other set of linear combinations of the
variables y1, . . . , yp. If C is the corresponding p by r matrix of linear transformations,
then the transformed data can be obtained as Z = YC. Consequently, the only change in
Program 1.2 is to replace the earlier definition of G by QYC(C′SnC)−1C′Y′Q and replace
p by r in the expressions for κ1, κ2 and the degrees of freedom corresponding to κ1.

EXAMPLE 1 Testing for Contrasts, Cork Data (continued) Returning to the cork data, if the inter-
est is in testing if the bark deposit is uniform in all four directions, an appropriate set of
transformations would be

z1 = y1 − y2 + y3 − y4, z2 = y3 − y4, z3 = y1 − y3,

where y1, y2, y3, y4 represent the deposit in four directions listed clockwise and starting
from north. The 4 by 3 matrix C for these transformations will be

C =




1 0 1
−1 0 0

1 1 −1
−1 −1 0


 .

It is easy to verify that for these contrasts the assumption of symmetry holds rather more
strongly, since the p values corresponding to the skewness are relatively larger. Specifically
for these contrasts

β̂1 = 1.1770, β̂2 = 13.5584, κ1 = 5.4928, κ2 = −0.6964

and the respective p values for skewness and kurtosis tests are 0.8559 and 0.4862. As Rao
(1948) points out, this symmetry is not surprising since these are linear combinations, and
the contrasts are likely to fit the multivariate normality better than the original data. Since
one can easily modify Program 1.1 or Program 1.2 to perform the above analysis on the
contrasts z1, z2, and z3, we have not provided the corresponding SAS code or the output.

Mudholkar, McDermott and Srivastava (1992) suggest another simple test of multivari-
ate normality. The idea is based on the facts that (i) the cube root of a chi-square random
variable can be approximated by a normal random variable and (i i) the sample mean vec-
tor and the sample variance covariance matrix are independent if and only if the underlying
distribution is multivariate normal. Lin and Mudholkar (1980) had earlier used these ideas
to obtain a test for the univariate normality.

To test multivariate normality (of dimension say p) on the population with mean vector
µ and a variance covariance matrix Σ, let y1, . . . , yn be a random sample of size n then
the unbiased estimators of µ and Σ are respectively given by ȳ and S. Corresponding to i th

observation we define,

D2
i = (yi − ȳ)′S−1(yi − ȳ),

Wi = (D2
i )h,

and

Ui =


∑
j �=i

W 2
j −

[∑
j �=i

W j

]2

/(n − 1)




1/3

, i = 1, . . . , n,
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where

h = 1

3
− 0.11

p
.

Let r be the sample correlation coefficient between (Wi , Ui ), i = 1, . . . , n. Under the
null hypothesis of multivariate normality of the data, the quantity, Z p = tanh−1(r) =
1
2 ln{ 1+r

1−r }, is approximately normal with mean µn,p = E(Z p) = A1(p)
n − A2(p)

n2 , where

A1(p) = −1
p − .52p and A2(p) = 0.8p2 and variance, σ 2

n,p = var(Z p) = B1(p)
n − B2(p)

n2 ,

where B1(p) = 3 − 1.67
p + .52

p2 and B2(p) = 1.8p − 9.75
p2 . Thus, the test based on Z p

to test the null hypothesis of multivariate normality rejects it at α level of significance if
|zn,p| = |Z p−µn,p |

σn,p
≥ z α

2
, where z α

2
is the right α

2 cutoff point from the standard normal
distribution.

EXAMPLE 1 Testing Multivariate Normality, Cork Data (continued) In Program 1.3, we reconsider
the cork data of C. R. Rao (1948) and test the hypothesis of the multivariate normality of
the tree population.

/* Program 1.3 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 1.3’;
title2 ’Testing Multivariate Normality (Cube Root Transformation)’;

data D1;
infile ’cork.dat’;
input t1 t2 t3 t4 ;
/*
t1=north, t2=east, t3=south, t4=west
n is the number of observations
p is the number of variables
*/
data D2(keep=t1 t2 t3 t4 n p);
set D1;
n=28;
p=4;
run;
data D3(keep=n p);
set D2;
if _n_ > 1 then delete;
run;
proc princomp data=D2 cov std out=D4 noprint;
var t1-t4;
data D5(keep=n1 dsq n p);
set D4;
n1=_n_;
dsq=uss(of prin1-prin4);
run;
data D6(keep=dsq1 n1 );
set D5;
dsq1=dsq**((1.0/3.0)-(0.11/p));
run;

proc iml;
use D3;
read all var {n p};
u=j(n,1,1);
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use D6;
do k=1 to n;
setin D6 point 0;
sum1=0;
sum2=0;
do data;
read next var{dsq1 n1} ;
if n1 = k then dsq1=0;
sum1=sum1+dsq1**2;
sum2=sum2+dsq1;
end;
u[k]=(sum1-((sum2**2)/(n-1)))**(1.0/3);
end;
varnames={y};
create tyy from u (|colname=varnames|);
append from u;
close tyy;
run;
quit;

data D7;
set D6; set tyy;
run;
proc corr data=D7 noprint outp=D8;
var dsq1;
with y;
run;
data D9;
set D8;
if _TYPE_ ^=’CORR’ then delete;
run;
data D10(keep=zp r tnp pvalue);
set D9(rename=(dsq1=r));
set D3;
zp=0.5*log((1+r)/(1-r));
b1p=3-1.67/p+0.52/(p**2);
a1p=-1.0/p-0.52*p;
a2p=0.8*p**2;
mnp=(a1p/n)-(a2p/(n**2));
b2p=1.8*p-9.75/(p**2);
ssq1=b1p/n-b2p/(n**2);
snp=ssq1**0.5;
tnp=abs(abs(zp-mnp)/snp);
pvalue=2*(1-probnorm(tnp));
run;
proc print data=D10;
run;

The SAS Program 1.3 (adopted from Apprey and Naik (1998)) computes the quantities,
Z p , µn,p , and σn.p using the expressions listed above. Using these, the test statistic |zn,p|
and corresponding p value are computed. A run of the program results in a p value of
0.2216. We thus accept the hypothesis of multivariate normality. This conclusion is con-
sistent with our earlier conclusion using the Mardia’s tests for the same data set. Output
corresponding to Program 1.3 is suppressed in order to save space.
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1.7 Random Vector and Matrix Generation

For various simulation or power studies, it is often necessary to generate a set of random
vectors or random matrices. It is therefore of interest to generate these quantities for the
probability distributions which arise naturally in the multivariate normal theory. The fol-
lowing sections consider the most common multivariate probability distributions.

1.7.1 Random Vector Generation from Np(µ, Σ)

To generate a random vector from Np(µ,Σ) use the following steps:

1. Find a matrix G such that Σ = G′G. This is obtained using the Cholesky decomposition
of the symmetric matrix Σ. The functions ROOT of Half in PROC IML can perform this
decomposition.

2. Generate p independent standard univariate normal random variables z1, . . . , z p and let
z = (z1, . . . , z p)

′.
3. Let y = µ + G′z.

The resulting vector y is an observation from a Np(µ,Σ) population. To obtain a sample
of size n, we repeat the above-mentioned steps n times within a loop.

1.7.2 Generation of Wishart Random Matrix

To generate a matrix A1 ∼ Wp( f,Σ), use the following steps:

1. Find a matrix G such that Σ = G′G.

2. Generate a random sample of size f , say z1, . . . , z f from Np(0, I). Let A2 =∑ f
i=1 zi z′

i .

3. Define A1 = G′A2G.

The generation of Beta matrices can easily be done by first generating two independent
Wishart matrices with appropriate degrees of freedom and then forming the appropriate
products using these matrices as defined in Section 1.4.

EXAMPLE 2 Random Samples from Normal and Wishart Distributions In the following example we
will illustrate the use of PROC IML for generating samples from the multivariate normal
and Wishart distributions respectively. These programs are respectively given as Program
1.4 and Program 1.5. The corresponding outputs have been omitted to save space.

As an example, suppose we want to generate four vectors from N3(µ,Σ) where

µ = (1 3 0)′

and

Σ =

 4 2 1

2 3 1
1 1 5


 .

Then save these four vectors as the rows of 4 by 3 matrix Y. It is easy to see that

E(Y) =




µ′
µ′
µ′
µ′


 = M.
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Also, let G be a matrix such that Σ = G′G. This matrix is obtained using the ROOT
function which performs the Cholesky decomposition of a symmetric matrix.

/* Program 1.4 */

options ls = 64 ps=45 nodate nonumber;
title1 ’Output 1.4’;

/* Generate n random vector from a p dimensional population
with mean mu and the variance covariance matrix sigma */

proc iml ;
seed = 549065467 ;
n = 4 ;
sigma = { 4 2 1,

2 3 1,
1 1 5 };

mu = {1, 3, 0};
p = nrow(sigma);
m = repeat(mu‘,n,1) ;

g =root(sigma);
z =normal(repeat(seed,n,p)) ;
y = z*g + m ;
print ’Multivariate Normal Sample’;
print y;

We first generate a 4 by 3 random matrix Z, with all its entries distributed as N (0, 1).
To do this, we use the normal random number generator (NORMAL) repeated for all the
entries of Z, through the REPEAT function. Consequently, if we define Y = ZG+M, then
the i th row of Y, say y′

i , can be written in terms of the i th row of Z, say z′
i , as

y′
i = z′

i G + µ′

or when written as a column vector

yi = G′zi + µ.

Consequently, yi , i = 1, . . . , n (= 4 here) are normally distributed with the mean E(yi ) =
G′E(zi ) + µ = µ and the variance covariance matrix D(yi ) = G′D(zi )G + 0 = G′IG =
G′G = Σ.

Program 1.5 illustrates the generation of n = 4 Wishart matrices from Wp( f,Σ) with
f = 7, p = 3, and Σ as given in the previous program. After obtaining the matrix G,
as earlier, we generate a 7 by 3 matrix T, for which all the elements are distributed as
the standard normal. Consequently, the matrix W = G′T′TG, (written as X′X, where
X = TG) follows W3(7,Σ) distribution. We have used a DO loop to repeat the process
n = 4 times to obtain four such matrices.

/* Program 1.5 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 1.5’;
/* Generate n Wishart matrices of order p by p
with degrees of freedom f */

proc iml;
n = 4 ;
f = 7 ;
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seed = 4509049 ;
sigma = {4 2 1,

2 3 1,
1 1 5 } ;
g = root(sigma);

p = nrow(sigma) ;
print ’Wishart Random Matrix’;
do i = 1 to n ;
t = normal(repeat(seed,f,p)) ;
x = t*g ;
w = x‘*x ;
print w ;
end ;

These programs can be easily modified to generate the Beta matrices of either Type 1
or Type 2, as the generation of such matrices essentially amounts to generating the pairs
of Wishart matrices with appropriate degrees of freedom and then combining them as per
their definitions.

More efficient algorithms, especially for large values of f − p are available in the
literature. One such convenient method based on Bartlett’s decomposition can be found in
Smith and Hocking (1972). Certain other methods are briefly summarized in Kennedy and
Gentle (1980, p. 231).
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2.1 Introduction

Graphical techniques have become an integral part of any data analysis, especially now
due to a tremendous increase in the accessibility to computing facilities. In general it is
easy to use graphical methods for data with one, two, or even three variables. However, for
multivariate data in dimensions higher than three, data reduction to two or three variables
is needed before it is possible to plot them. Several methods to represent multivariate data
are available in the literature. This chapter covers four of these methods in Sections 2.2
through 2.5. It may be mentioned that Section 2.5 may require a slightly higher level of
familiarity with matrix decompositions and may be skipped at first reading. See Friendly
(1991) for details on various other graphical methods.

The multivariate normal distribution is a basis for most of the theory on testing of
hypotheses in multivariate analysis. Often graphical methods are used to assess the multi-
variate normality and to detect multivariate outliers. These methods are covered in Sections
2.6 and 2.7 respectively.

The probability density function of a bivariate normal distribution and the contours of
the probability density function drawn graphically give information about the magnitude of
the variances and correlation between the two variables. Section 2.8 discusses these graphs
briefly. SAS/INSIGHT software, an interactive tool for graphical data analysis, is briefly
discussed at the end of the chapter.

For illustration purposes, we have confined ourselves to the data set from Rao (1948).
This data set, given in Table 1.1, consists of weights of cork boring taken from the north
(N), east (E), south (S), and west (W) directions of the trunks of 28 trees in a block of
plantations.
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2.2 Scatter Plots

Scatter plots are among the most basic and useful of graphical representation techniques. A
scatter plot of two sets of variables is simply a two-dimensional representation of the points
in a plane to show the relationship between two variables. The scatter plot is most useful
in identifying the type of relationship (linear or nonlinear) between two sets of variables.
Further, if the relationship is linear they help determine the negative or positive relationship
between the two variables. This section uses various SAS procedures to plot scatter plots
in two and three dimensions. When there are more than two variables, scatter plots of two
variables at a time are displayed in a matrix of plots.

2.2.1 Two-Dimensional Scatter Plots

Two-dimensional scatter plots can be drawn using the PLOT or GPLOT procedures. The
SAS code shown in the first two parts of Program 2.1 produces two scatter plots using
the GPLOT procedure. The first of several optional statements of the GPLOT procedure
in the program specifies the file name where the graphics will be stored as a postscript file
(PROG21a.GRAPH in our program). The second statement is essentially used to specify
the device name (DEV=PSLMONO in our program). The DEV=PSLMONO specification
in that statement instructs SAS to store the graph in black and white in postscript form. The
choice of DEV=PS can be used for a color graph. Of course if the PLOT procedure is used
to produce the plots then there is no need to include any of the GOPTIONS statements in
the program.

/* Program 2.1 */

filename gsasfile "prog21a.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=40 nodate nonumber;
title1 h=1.5 ’Two Dimensional Scatter Plot ’;
title2 j=l ’Output 2.1’;
title3 ’Cork Data: Source C.R. Rao (1948)’;
data cork;
infile ’cork.dat’;
input n e s w; * n:north,e:east,s:south,w:west;
run;
proc gplot data=cork;
plot n*e=’star’;
label n=’Direction: North’

e=’Direction: East’;
run;

data d1;
set cork;
y1=n-s;
y2=e-w;
run;
filename gsasfile "prog21b.graph";
title1 h=1.5 ’Two Dimensional Scatter Plot of Contrasts’;
title2 j=l ’Output 2.1’;
title3 ’Cork Data: Source C.R. Rao (1948)’;
proc gplot data=d1;
plot y1*y2=’star’;
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label y1=’Contrast: North-South’
y2=’Contrast: East-West’;

run;

data d2 d3;
set cork;
proc sort data=d2;
by n;
data d3;
set d3;
n_decr=n;
drop n;
proc sort data=d3;
by descending n_decr;
data both;
merge d2 d3;
filename gsasfile "prog21c.graph";
title1 h=1.5 ’Testing Symmetry of Data on North Direction’;
title2 j=l ’Output 2.1’;
title3 ’Cork Data: Source C.R. Rao (1948)’;
proc gplot data=both;
plot n_decr*n=’star’;
label n_decr=’Descending Ordered Data’

n=’Ascending Ordered Data’;
run;

The first part of the program plots the data corresponding to the directions of north (N)
and east (E), and the second part plots the contrasts of the directions north (N) and south
(S) (Y1=N-S) against those of the directions east (E) and west (W) (Y2=E-W). These are
shown in Output 2.1. The statement PLOT Y1*Y2 in the program plots the variable Y1
versus variable Y2. That is, the variable listed first in the PLOT statement is plotted on the
vertical axis and the other variable is plotted on the horizontal axis. The code

proc gplot;
plot y1*y2;

uses the default symbols +, in the plot. A statement of the form

plot y1*y2=’char’;

can be used to specify a plotting symbol where ‘CHAR’ stands for the user-specified char-
acters or symbols. The choice of ’star’ for ‘CHAR’ is used in the Output 2.1. The appropri-
ate size of the plot can be determined by the PAGESIZE= (or simply, PS=) and LINESIZE=
(or LS=) options.

In a scatter plot, if the points follow an increasing straight line pattern then there may be
a positive correlation between the two variables. This pattern indicates that as one variable
increases the other increases also. On the other hand, if the points follow a decreasing
straight line pattern then there may be a negative correlation indicating that one variable
is decreasing as the other variable is increasing. If the points are randomly scattered in
the plane then there may be only a weak or no correlation between the two variables. The
first scatter plot in Output 2.1 indicates that there is a positive correlation between the cork
weights in the directions of north and east. On the other hand, the second scatter plot in
Output 2.1 suggests the possibility of a weak or no correlation between the two contrasts,
Y1=N-S and Y2=E-W.

There are various variations of scatter plots for a variety of special purposes. For
example, scatter plots have been used to examine the symmetry of distribution of the
univariate data (Gnanadesikan, 1997). We will briefly discuss this approach. Suppose
y1, . . . , yn are n observations on a variable y. To examine if the distribution of y is sym-
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Output 2.1
O u t p u t 2 . 1
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metric, we order the data from smallest to largest as y(1) ≤, . . . ,≤ y(n). Then, if the
distribution of y is symmetric about a number, say µ, then the scatter plot of the paired
data, (y(1), y(n)), (y(2), y(n−1)), . . . , (y(n), y(1)) should approximately fall around a line
with slope −1 and intercept 2µ.

In Program 2.1, using the last few SAS statements we examine the symmetry of the cork
data in the north direction (N) only. Using the sorted data sets D2 and D3 which arrange the
observations on N in increasing and decreasing orders, we create a data set termed BOTH,
which pairs the observations as (y(1), y(n)), (y(2), y(n−1)), . . . , (y(n), y(1)). These are then
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plotted using the GPLOT procedure. The scatter plot shows a certain degree of departure
from symmetry.

Gnanadesikan also suggests another scatter plot for symmetry where the pairs are de-
fined not in terms of the original observations but in terms of deviations from the median,
say m, of the data. Specifically, the paired values (m − y(1), y(n) −m), (m − y(2), y(n−1) −
m), . . . , (y(n) − m, m − y(1)), are plotted. If the original distribution is symmetric, the
points should form a linear pattern along a line with slope 1 and intercept zero. The SAS
code of Program 2.1 can be easily modified for this plot.
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Output 2.1
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2.2.2 Three-Dimensional Scatter Plots

A three-dimensional scatter plot is needed to simultaneously display the relationships be-
tween three variables. The SCATTER statement in the G3D procedure can be used to draw
a three-dimensional scatter plot. The code given in Program 2.2 produces a scatter plot of
the variables N, E, and S by taking the variables N and S on the horizontal plane and E on
the axis perpendicular to the plane as displayed in Output 2.2.
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/* Program 2.2 */

filename gsasfile "prog22.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=45 nodate nonumber;
data cork;
infile ’cork.dat’;
input n e s w;
title1 h=1.5 ’Three-D Scatter Plot for Cork Data’;
title2 j=l ’Output 2.2’;

Output 2.2

3 0 . 0 0

5 0 . 3 3

7 0 . 6 7

9 1 . 0 0

N
2 7 . 0 0

5 1 . 3 3

7 5 . 6 7

1 0 0 . 0 0

S2 9

4 6

6 3

8 0

E

O u t p u t 2 . 2
b y w e i g h t o f c o r k b o r i n g
S o u r c e : C . R . R a o ( 1 9 4 8 )

S : C o r k b o r i n g i n S o u t h W : W e s t b o r i n g i s n o t s h o w n
N : C o r k b o r i n g i n N o r t h E : C o r k b o r i n g i n E a s t
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title3 ’by weight of cork boring’;
title4 ’Source: C.R. Rao (1948)’;
footnote1 j=l ’N:Cork boring in North’

j=r ’E:Cork boring in East’;
footnote2 j=l ’S:Cork boring in South’

j=r ’W:West boring is not shown’;
proc g3d data=cork;
scatter n*s=e;
run;

Notice the SCATTER statement in Program 2.2 that plots the values of variables N and
S on the horizontal plane and those of E on the axis perpendicular to that plane. The options
J=L and J=R in the FOOTNOTE and TITLE statements indicate that the footnote or the
title should be written on the left and on the right side of the page, respectively.

As in the two-dimensional scatter plot, if the points follow a pattern in the space then
there may be correlations between any two or all three variables. If the points are scattered
in the space then there is a weak or no correlation between any of the three variables.
For example, the scatter plot of the three variables N, S, and E indicates that the points
have an increasing pattern not only in the horizontal plane but also in the perpendicular
direction. This seems to indicate that there is a positive correlation between the variables
(N,S), between (S,E), and between (N, E).

Program 2.3 generates a three-dimensional scatter plot for the three contrasts C1=N-E-
W+S, C2=N-S, and C3=E-W shown in Output 2.3.

/* Program 2.3 */

filename gsasfile "prog23.graph";
goptions gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=40 nodate nonumber;
data cork;
infile ’cork.dat’;
input n e s w;
c1=n-e-w+s;
c2=n-s;
c3=e-w;
title1 h=1.5 ’Three-Dimensional Scatter Plot for Cork Data’;
title2 j=l ’Output 2.3’;
title3 ’Contrasts of weights of cork boring’;
title4 ’Source: C.R. Rao (1948)’;
footnote1 j=l ’C1:Contrast N-E-W+S’

j=r ’C2:Contrast N-S’;
footnote2 j=r ’C3:Contrast E-W’;
proc g3d data=cork;
scatter c1*c2=c3;
run;

This scatter plot seems to show weak or no correlation among the three contrasts except
perhaps between C2 and C3.

2.2.3 Scatter Plot Matrix

For multivariate data with p variables, y1, . . . , yp, a scatter plot of each pair of variables
can be displayed in a p by p matrix of scatter plots. In this matrix the scatter plot of two
different variables yi and y j is in the (i, j)th position of the matrix. The diagonal positions
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Output 2.3
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C 3 : C o n t r a s t E - W
C 1 : C o n t r a s t N - E - W + S C 2 : C o n t r a s t N - S

are usually used for writing descriptive comments. The scatter plot matrix is a useful way
of representing multivariate data on a single two-dimensional display. It simultaneously
identifies the relationships between various variables. In this sense it is a graphic analog of
a correlation matrix. However, it may sometimes be more effective in that apart from the
strength of linear relationships, any nonlinearities can also be easily spotted.

A macro for drawing a scatter plot matrix is given in Friendly (1991). However, a ver-
sion of a scatter plot matrix can also be drawn very easily using SAS/INSIGHT software.
See Section 2.9 for a brief description of the software. Program 2.4 produces a scatter plot
matrix in a compact lower triangular form presented in Output 2.4.
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/* Program 2.4 */

filename gsasfile "prog24.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=40 nodate nonumber;
title1 h=1.5 ’Scatter Plot Matrix for Cork Data’;
title2 ’Output 2.4’;
data cork;
infile ’cork.dat’;
input n e s w;
proc insight data=cork;
scatter n e s w * n e s w;
run;

Output 2.4
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The plot indicates that there is a positive correlation between every pair of variables in
the four directions. The correlation seems to be strongest between the variables S and W,
but weakest between the variables E and W.

It may sometimes be cumbersome to represent all the variables on a matrix plot, espe-
cially if the number of variables is large. In order to visually extract the maximum infor-
mation possible from these plots it may be necessary to restrict the choice to a moderate
number of variables (say 5 or 6) at a time.

2.3 Profile Plots

One of the simplest ways of representing p-dimensional measurements is by using profile
plots. These plots are the polygonal representations of p-dimensional observation vectors.
Each p-dimensional observation vector is represented by p points with the vertical coordi-
nate of each point proportional to the value of the corresponding variable. The successive
points are joined using straight line segments. The resulting curve is called the profile of
that observation. These plots can be very helpful in identifying clusters of the observations
and outliers. Many times it may be more meaningful to plot the standardized variables in
order to have a uniform scale for each variable. The standardization of variables can easily
be achieved using the STANDARD procedure. See the SAS Procedures Guide for details
on PROC STANDARD. Hartigan (1975) has suggested more effective displays of profile
by optimally smoothing (linearizing) each profile as much as possible.

Program 2.5 produces a profile plot, as shown in Output 2.5. In the program, the features
of the TRANSPOSE procedure have been utilized for data manipulation. The new variable
DIRECTN placed in the first column is used in the PLOT statement to plot the tree profiles
for each of the four directions. An alternative set of SAS code for drawing the profiles,
using the ARRAY statement instead of PROC TRANSPOSE, is commented out in Program
2.5. By removing the comment delimiters, here as well as in all the programs to come, it is
possible to use this alternative. In Output 2.5 the profile plot of the fifteenth tree (denoted
by the letter M) stands out. This tree may possibly be an outlier. An examination of the data
indicates that this tree has bark deposit measurements that are unusually large in magnitude
compared to the rest. The profile plots also seem to indicate that there is a cluster of 12 to
14 trees, with relatively smaller measurements. A profile plot of standardized values also
depicts similar conclusions about the data.

/* Program 2.5 */

filename gsasfile "prog25.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
options ls=64 ps=45 nodate nonumber;
data cork;
infile ’cork.dat’;
input y1 y2 y3 y4; /*y1=north, y2=east, y3=south, y4=west*/
tree=_n_;
proc transpose data=cork
out=cork2 name=directn;
by tree;
proc gplot data=cork2(rename=(col1=weight));
/*

data plot;
set cork;
array y{4} y1 y2 y3 y4;
do directn=1 to 4;
weight =y(directn);
output;
end;
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drop y1 y2 y3 y4;
proc gplot data=plot;

*/
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
plot weight*directn=tree/
vaxis=axis1 haxis=axis2 legend=legend1;
axis1 label=(a=90 h=1.2 ’Standardized Weight of Cork Boring’);
axis2 offset=(2) label=(h=1.2 ’Direction’);

symbol1 i=join v=star;
symbol2 i=join v=+;
symbol3 i=join v=A;
symbol4 i=join v=B;
symbol5 i=join v=C;
symbol6 i=join v=D;
symbol7 i=join v=E;
symbol8 i=join v=F;
symbol9 i=join v=G;
symbol10 i=join v=H;
symbol11 i=join v=I;
symbol12 i=join v=J;
symbol13 i=join v=K;
symbol14 i=join v=L;
symbol15 i=join v=M;
symbol16 i=join v=N;
symbol17 i=join v=O;
symbol18 i=join v=P;
symbol19 i=join v=Q;
symbol20 i=join v=R;
symbol21 i=join v=S;
symbol22 i=join v=T;
symbol23 i=join v=U;
symbol24 i=join v=V;
symbol25 i=join v=W;
symbol26 i=join v=X;
symbol27 i=join v=Y;
symbol28 i=join v=Z;
legend1 across=4;
title1 h=1.5 ’Profiles of Standardized Cork Data’;
title2 j=l ’Output 2.5’;
title3 ’Source: C.R. Rao (1948)’;
run;

Profile plots of a large data set may be too cumbersome to be practically useful. Diggle,
Liang and Zeger (1995), in the context of repeated measures data, suggested displaying
the profiles of few systematically selected individuals (observations). The observations
corresponding to certain quantiles of a meaningful summary statistic (of an observation)
may be selected for displaying. For example, if we take the average of cork weights of a tree
as the summary statistic, we will have 28 averages for the present data set, corresponding to
28 trees. The idea is to display the profiles of the trees having the minimum average weight,
the maximum average weight, the 10th percentile average weight and so on. Such a plot
may not be able to determine the clusters in the data set, but should be able to determine
the outliers.
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Output 2.5
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Plotting the profiles of sample mean vectors for different groups helps one to see
whether the profiles are parallel. These profile plots serve as convenient graphical tools to
explore the data before any formal multivariate statistical analysis techniques, like profile
analysis (see Section 5.3.2), are applied to a data set.

2.4 Andrews Function Plots

Andrews (1972) suggests an innovative method to pictorially display the multivariate data
points as curves. This pictorial representation can sometimes be very helpful in visually
grouping similar objects together and in searching for any striking dissimilarities between
the objects or the groups of the objects on which the multivariate data are collected.
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Andrews’ approach consists of representing a p-dimensional vector y = (y1, . . . , yp)
′

by a function fy(t) of a single variable t . This function when plotted on a two-dimensional
space over t leads to a periodic curve. Andrews suggested the function fy(t) to be the finite
Fourier series

fy(t) = y1/
√

2 + y2sin(t) + y3cos(t) + y4sin(2t) + y5cos(2t) + · · · .

By storing the coefficients of y1, y2, . . . in a column vector

a(t) =
(

1√
2
, sin(t), cos(t), sin(2t), cos(2t), . . .

)′
,

we can write fy = a′(t)y as a linear combination of y, for a fixed t. Thus for a given
t = t0, (t0, fy(t0)) represents a point on the curve, and by varying t between −π and π ,
an Andrews curve of y is obtained as a collection of all such points. Corresponding to n
different multivariate observations y1, . . . , yn , there will be n different Andrews curves. A
plot consisting of such curves is called an Andrews plot.

The Andrews function, fy(t), has certain useful properties. Specifically,

(i) If the vector ȳ represents the mean of n multivariate observations, y1, y2, . . ., yn , then

fȳ(t) = f̄y(t) = 1

n

n∑
i=1

fyi (t).

Thus, the function fy(t) preserves the mean and as a result, in the Andrews plots the
average of the data will be represented by the average of the corresponding Andrews
curves in the plot.

(ii) Apart from a constant, the L2-distance between two curves fyi (t) and fyi ′ (t), defined
as,
∫ π

−π
( fyi (t) − fyi ′ (t))

2dt is preserved as the squared Euclidean distance between
the multidimensional points yi = (yi1, yi2, . . .)

′ and yi ′ = (yi ′1, yi ′2, . . .)′, that is,∑
l(yil − yi ′l)2. Specifically,∫ π

−π

( fyi (t) − fyi ′ (t))
2dt = π

∑
l

(yil − yi ′l)
2.

Thus, the points which are closer to each other are represented as curves which are
nearer to each other and vice versa. Therefore, these plots can be used to detect the
clusters and the outliers within the data set.

(iii) Apart from a constant, the curves also (almost) preserve the variances provided the
variables are uncorrelated with a common variance σ 2. In particular,

V ar( fy(t)) = σ 2
(

1

2
+ sin2t + cos2t + sin22t + cos22t + · · ·

)
.

If the number of components in y is odd, then the variance of fy(t) is a constant,
1
2 pσ 2. In case of even number of components, say p, the variance satisfies

σ 2
(

p − 1

2

)
≤ V ar( fy(t)) ≤ σ 2

(
p + 1

2

)
.

(iv) The function preserves linear relationships. If y lies on the line joining x and z, the
curve fy(t) is also sandwiched between the curves fx(t) and fz(t).

(v) The representation yields one-dimensional projections. For a fixed t = t0 the value,
fy(t0), of the function represents, apart from a constant, the length of the projection
of y on the vector a(t0). Such projections may reveal patterns, groupings or outliers
in the data, in this particular one-dimensional subspace.
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Program 2.6 draws Andrews function plots for the cork data. For each observation yi ,
the values of the function fyi (t) are generated for various values of t between −π and π

at the steps of 2π/100 = π/50 units. These are denoted by the variable Z in Program 2.6.
The OUTPUT statement writes the values of the function for each value of t in the SAS
data set ANDREWS. A two-dimensional plot of Z versus t is obtained by using PROC
GPLOT. Output 2.6a is the result of this program.

/* Program 2.6 */

filename gsasfile "prog26.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=40 nodate nonumber;
title1 h=1.5 ’Andrews Function Plot for Cork Data’;
*title1 h=1.5 ’Modified Andrews Function Plot for Cork Data’;
title2 j=l ’Output 2.6’;
data andrews;
infile ’cork.dat’;
input y1-y4;
tree=_n_;
pi=3.14159265;
s=1/sqrt(2);
inc=2*pi/100;
/* The function z defines the Andrews function and is used for
plotting Andrews plot. The function mz defines the Modified Andrews
function and is used for plotting Modified Andrews plot. */

do t=-pi to pi by inc;
z=s*y1+sin(t)*y2+cos(t)*y3+sin(2*t)*y4;
*mz=s*(y1+(sin(t)+cos(t))*y2+(sin(t)-cos(t))*y3+
(sin(2*t)+cos(2*t))*y4);
output;
end;

symbol1 i=join v=star;
symbol2 i=join v=+;
symbol3 i=join v=A;
symbol4 i=join v=B;
symbol5 i=join v=C;
symbol6 i=join v=D;
symbol7 i=join v=E;
symbol8 i=join v=F;
symbol9 i=join v=G;
symbol10 i=join v=H;
symbol11 i=join v=I;
symbol12 i=join v=J;
symbol13 i=join v=K;
symbol14 i=join v=L;
symbol15 i=join v=M;
symbol16 i=join v=N;
symbol17 i=join v=O;
symbol18 i=join v=P;
symbol19 i=join v=Q;
symbol20 i=join v=R;
symbol21 i=join v=S;
symbol22 i=join v=T;
symbol23 i=join v=U;
symbol24 i=join v=V;
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symbol25 i=join v=W;
symbol26 i=join v=X;
symbol27 i=join v=Y;
symbol28 i=join v=Z;
legend1 across=4;
proc gplot data=andrews;
plot z*t=tree/vaxis=axis1 haxis=axis2 legend=legend1;
*plot mz*t=tree/vaxis=axis1 haxis=axis2 legend=legend1;
axis1 label=(a=90 h=1.5 f=duplex ’f(t)’);
axis2 label=(h=1.5 f=duplex ’t’)offset=(2);
run;

Output 2.6a
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Output 2.6
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An examination of the Andrews plot indicates that the fifteenth tree (M) again stands
out from the rest. As noted in the profile plot from the last section, this tree may be an
outlier. As earlier, there is also a group of 12 to 14 trees that are clumped together.

One of the major shortcomings of an Andrews plot is that while it is able to preserve
the distance and the average, it does not preserve order. Consequently, its shapes, patterns
and clusterings, etc., may be affected by interchanging the coefficients of the terms in the
Fourier series. Specifically, if y(p) is a permutation of y, then fy(p)(t) = a′(t)y(p) and
fy(t) = a′(t)y will represent different curves and their shapes and/or specific patterns may
be drastically altered or get hidden.

Since low frequencies (that is, high periodicities) in any curve are more readily caught
by the human eye than the high frequencies, the effects of the variables listed first in the
multivariate vector will be more prominently displayed in the graph. Hence it is useful
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to associate the most important variables with the low frequencies and thus arrange the
variables in a multivariate vector y in the decreasing order of their importance. Such an
arrangement will also minimize to some extent, the effects of the above mentioned short-
comings of these plots. Another shortcoming of the Andrews’ functions is the fact that at
t = 0, the terms indexed with the even numbers vanish. Thus, around t = 0, which consti-
tutes the visual center of the plot, the behavior of only odd numbered terms is illustrated.
The same can also be said about the left and right ends of the plots—that is, around t = −π

and t = π .
Several variations of Andrews plots are available in the literature. Khattree and Naik

(1998) give a list of these and also provide a new alternative to Andrews plot. This al-
ternative modification of the Andrews plot is more descriptive and informative. Since in
Andrews functions, variables y j are used as the coefficients of the trigonometric functions,
the statistical variation of the data gets intermixed with the periodic variation of the sine and
cosine waves, thereby making the plots sometimes harder to interpret. This is an important
issue since for multivariate data, there may be several additional complex problems such as
dealing with scaling (or lack of it) of variables, correlated variables, unequal variances, etc.
These problems make the interpretation difficult. Since the trigonometric functions form a
natural choice, they cannot be completely discarded. Khattree and Naik (1998) suggest the
modified Andrews’ functions,

gy(t) = 1√
2
{y1 + y2(sin(t) + cos(t)) + y3(sin(t) − cos(t)) +

y4(sin(2t) + cos(2t)) + y5(sin(2t) − cos(2t)) + · · · },−π ≤ t ≤ π.

The coefficient 1√
2

in the above expression is really not needed. We will however include
it to provide the plot (Output 2.6b, following) which is essentially on the same scale as the
Andrews plot and hence the more readily comparable. Note that the addition and difference
of the functions sin( j t) and cos( j t) result in each y j being exposed to a sine function as
well as a cosine function. Consequently, from a statistical point of view, these plots may be
more informative. Also, unlike the case of the Andrews original function, the trigonometric
terms in gy(t) do not simultaneously vanish at any given t . Moreover, this function still
retains all five properties of the Andrews function listed above.

In Program 2.6 the values of the function gyi (t) are also computed and plotted. The
second Output 2.6 contains the modified Andrews plot as well. A similar structure of the
data is observed in this plot as well. However, this plot seems to display these findings
more prominently.

Although we have not illustrated it here, like in the profile plots, one can use the stan-
dardized variables for computing and plotting either the Andrews plots or the modified
Andrews plots.

2.5 Biplots: Plotting Observations and Variables Together

The biplot, introduced by Gabriel (1971) and discussed extensively in Gower and Hand
(1996), is a graphical representation of a data matrix by means of two sets of markers rep-
resenting its rows and columns respectively. These graphs describe relationships between
the observations, by helping to form groups and clusters, as well as between the variables.

Suppose we have a set of n observations on p variables. A biplot describes the rela-
tionships among the p variables and the n observations. It is based on the fact (commonly
referred to as a QR decomposition) that any n by p matrix Y of rank r can be expressed as

Y = GH′, (2.1)

where G and H respectively are n by r and p by r matrices of rank r . Each yi j the (i, j)th

element of Y is thus expressed as yi j = g′
i h j , where g′

i is the i th row of G, and h j is the
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j th column of H′. Thus each element yi j of Y is represented by two r -dimensional vectors,
g′

i , corresponding to the i th row and h j , corresponding to the j th column of the matrix Y.
It may be remarked that in applications the matrix Y is often corrected for the means.

When the rank of the data matrix Y is r = 2, the vectors gi and h j are all of size 2 by 1.
Therefore, the n + p points, g1, . . . , gn and h1, . . . , hp can be plotted on the plane to get
the biplot. The same procedure can be adopted if r = 3, and in that case the corresponding
biplot will be in a three-dimensional space. For the data matrix Y with the rank r > 3, an
approximation matrix of the lower rank, say of rank 2 or 3, can be constructed, and it can
be used for plotting the biplot yielding an approximate biplot for Y.

To obtain meaningful properties for the vectors gi and h j Gabriel (1971) suggests that
the singular value decomposition (SVD) (Rao, 1973, p. 42) of the data matrix be used for
the representation (Equation 2.1). That is, write Y as

Y = U
V′ =
r∑

i=1

λi ui v′
i ,

where 
 is an r by r diagonal matrix with positive diagonal elements in sorted order λ1 ≥
λ2 ≥ · · · ≥ λr > 0, U, an n by r matrix with columns u1, . . . , ur , is such that U′U = Ir and
V, a p by r matrix with columns v1, . . . , vr , is such that V′V = Ir . The values λ1, . . . , λr

are called the singular values of Y. In fact, λ2
1, . . . , λ

2
r are the nonzero eigenvalues of the

matrix YY′ or Y′Y, the vectors u1, . . . , ur are the corresponding eigenvectors of YY′, and
v1, . . . , vr are those corresponding to Y′Y.

For the rest of the discussions in this section suppose that the data matrix Y is already
centered to have zero column means. Then λ2

1, . . . , λ
2
r respectively represent the portion

of the total variation accounted for by the dimensions 1, . . . , r . If an approximation of
dimension two is used for Y, that is, if

Y ≈ λ1u1v′
1 + λ2u2v′

2, (2.2)

then we get an approximate biplot for Y and the corresponding goodness of fit is measured
by

η = λ2
1 + λ2

2∑r
i=1 λ2

i

.

If the actual dimension of Y is 2, then η = 1. If r ≥ 3, η < 1. Thus if η is near one, the
two-dimensional biplot will give a good visual approximation of the data matrix Y which
has dimension r .

Gabriel (1971) suggested these choices for the coordinates of the biplot. Although some
of these choices have better statistical interpretations, the interpretation of biplots is essen-
tially the same except that the plotting coordinates are scaled differently.

a.

g′
i =

(√
λ1u1i ,

√
λ2u2i

)
, i = 1, . . . , n,

h′
j =

(√
λ1v1 j ,

√
λ2v2 j

)
, j = 1, . . . , p.

This perhaps is the most common representation that is used in practice as it seemingly
provides an equal division of weights through λ1 and λ2.

b.

g′
i = (u1i , u2i ), i = 1, . . . , n,

h′
j = (λ1v1 j , λ2v2 j ), j = 1, . . . , p.

This representation has some interesting interpretations. For example, the distance be-
tween any two gi ’s, say gi and gi ′ , approximates the squared Mahalanobis distance
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between the observation vectors (that is, the i th and the i ′th rows of the data matrix Y).
Further, since Y′Y = HH′ is n times the variance covariance matrix, the inner product
h j ′h j ′ between the j th and j ′th rows is the covariance between the corresponding vari-
ables y j and y j ′ and the squared length of the j th row of H is the variance of variable
y j . Also the angle (cosine of the angle) between any two h j ’s, say h j and h j ′ , approxi-
mates the angle between the corresponding columns of the data matrix Y (approximates
to the correlation between variables y j and y j ′).

c.

g′
i = (λ1u1i , λ2u2i ), i = 1, . . . , n, (2.3)

h′
j = (v1 j , v2 j ), j = 1, . . . , p. (2.4)

In this representation the usual Euclidean distance between gi and gi ′ approximates the
Euclidean distance between the i th and the i ′th rows of the data matrix Y. This is also
the same as the principal components’ representation of the data. The gi ’s are the same
as the principal component scores and the h j ’s are the principal component loadings or
weights (see the PRINCOMP procedure in SAS/STAT User’s Guide).

The macro BIPLOT in Friendly (1991) is designed to draw a biplot of any of the above
three types (a), (b), or (c). For completeness’ sake we have given this macro below, with
some minor notational changes. Program 2.7 is used to draw a biplot of cork data after
correcting for the corresponding means using choice (a), as shown in Output 2.7. It gives
the biplot coordinates and the plot using PROC GPLOT.

/* Program 2.7 */

filename gsasfile "prog27.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=7in vsize=8in;
options ls=64 ps=45 nodate nonumber;
title1 ’Output 2.7’;
data cork;
infile ’newcork.dat’;
input tree$ north east south west;
%include biplot; /* Include the macro "biplot.sas" */
%biplot( data = cork, var = North East South West,

id = TREE, factype=SYM, std =STD );
proc gplot data=biplot;
plot dim2 * dim1 /anno=bianno frame

href=0 vref=0 lvref=3 lhref=3
vaxis=axis2 haxis=axis1 vminor=1 hminor=1;

axis1 length=6 in order=(-.8 to .8 by .2)
offset=(2) label = (h=1.3 ’Dimension 1’);

axis2 length=6 in order =(-.8 to .8 by .2)
offset=(2) label=(h=1.3 a=90 r=0 ’Dimension 2’);

symbol v=none;
title1 h=1.5 ’Biplot of Cork Data ’;
title2 j=l ’Output 2.7’;
title3 ’Observations are points, Variables are vectors’;
run;

/* The BIPLOT Macro: biplot.sas */

%macro BIPLOT(
data=_LAST_,
var =_NUMERIC_,
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id = ID,
dim = 2,

factype=SYM,
scale=1,
out=BIPLOT,
anno=BIANNO,
std=MEAN,

pplot=YES);

%let factype=%upcase(&factype);
%if &factype=GH %then %let p=0;

%else %if &factype=SYM %then %let p=.5;
%else %if &factype=JK %then %let p=1;
%else %do;

%put BIPLOT: FACTYPE must be GH, SYM, or JK.
"&factype" is not valid.;

%goto done;
%end;

Proc IML;
Start BIPLOT(Y,ID,VARS,OUT,power,scale);

N = nrow(Y);
P = ncol(Y);
%if &std = NONE

%then Y = Y - Y[:] %str(;); /*remove grand mean */
%else Y = Y - J(N,1,1)*Y[:,] %str(;); /*remove column means*/

%if &std = STD %then %do;
S = sqrt(Y[##,]);
Y = Y * diag (1/S);

%end;

*_ _ Singular value decomposition:
Y is expressed as U diag(Q) V prime
Q contains singular values in descending order;

call svd(u,q,v,y);

reset fw=8 noname;
percent = 100*q##2 / q[##];

*__ cumulate by multiplying by lower
triangular matrix of 1s;

j = nrow(q);
tri = (1:j)‘ * repeat(1,1,j) >= repeat(1,j,1)*(1:j);
cum = tri*percent;
Print "Singular values and variance accounted for",,

q [colname={’Singular Values’} format=9.4]
percent [colname={’Percent’} format=8.2]
cum [colname={’cum % ’} format = 8.2];

d = &dim;
*__extract first d columns of U & V,and first d elements of Q;

U=U[,1:d];
V=V[,1:d];
Q=Q[1:d];

*__ scale the vectors by QL ,QR;

QL= diag(Q ## power);
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QR= diag(Q ## (1-power));
A = U * QL;
B = V * QR # scale;
OUT=A // B;

*__ Create observation labels;
id = id // vars‘;
type = repeat({"OBS "},n,1) // repeat({"VAR "},p,1);
id = concat(type,id);

factype = {"GH" "Symmetric" "JK"}[1+2#power];
print "Biplot Factor Type",factype;
cvar = concat(shape({"DIM"},1,d),char(1:d,1.));
print "Biplot coordinates",

out[rowname=id colname=cvar];
%if &pplot = YES %then
call pgraf(out,substr(id,5),’Dimension 1’,’Dimension 2’,’Biplot’);
;
create &out from out[rowname=id colname=cvar];
append from out[rowname=id];
finish;

use &data;
read all var{&var} into y[colname=vars rowname=&id];
power=&p;
scale=&scale;
run biplot(y,&id,vars,out,power,scale);
quit;

/*__ split id into _type_ and _Name_*/

data &out;
set &out;
drop id;
length _type_ $3 _name_ $16;
_type_ = scan(id,1);
_name_ = scan(id,2);

/*Annotate observation labels and variable vectors */
data &anno;

set &out;
length function text $8;
xsys=’2’; ysys=’2’;
text=_name_;

if _type_=’OBS’ then do;
color = ’BLACK’;
x = dim1;y = dim2;
position=’5’;
function=’LABEL ’;output;
end;

if _type_ =’VAR’ then do; /*Draw line from*/
color=’RED ’;
x=0; y=0; /*the origin to*/
function =’MOVE’ ;output;
x=dim1;y=dim2; /* the variable point*/
function =’DRAW’ ;output;
if dim1>=0
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then position =’6’; /*left justify*/
else position =’2’; /*right justify*/

function=’LABEL ’;output; /* variable name */
end;

%done:
%mend BIPLOT;
run;

Output 2.7 Output 2.7

Singular values and variance accounted for

Singular Values Percent cum %

1.8965 89.92 89.92
0.5036 6.34 96.26
0.2830 2.00 98.27
0.2634 1.73 100.00

Biplot Factor Type
Symmetric

Biplot coordinates
DIM1 DIM2

OBS T1 0.427188 -0.11806
OBS T2 0.215056 -0.13767
OBS T3 0.185794 -0.03076
OBS T4 -0.20326 -0.1258
OBS T5 -0.24035 -0.07762
OBS T6 -0.2851 0.065699
OBS T7 -0.23596 0.142421
OBS T8 -0.21443 0.224351
OBS T9 -0.24903 0.172549
OBS T10 -0.28019 -0.08246
OBS T11 -0.29024 -0.02005
OBS T12 0.221587 -0.27774
OBS T13 0.084425 -0.10957
OBS T14 0.005872 0.071865
OBS T15 0.64783 0.016692
OBS T16 0.134329 0.277319
OBS T17 0.355213 0.070339
OBS T18 0.410399 0.322066
OBS T19 0.289498 -0.04754
OBS T20 -0.13755 0.005078
OBS T21 -0.19654 -0.02756
OBS T22 -0.28693 -0.04313
OBS T23 0.16359 -0.0926
OBS T24 -0.1418 -0.08908
OBS T25 -0.20075 0.025326
OBS T26 -0.12975 -0.06274
OBS T27 -0.0916 -0.14513
OBS T28 0.042699 0.093809
VAR NORTH 0.703585 0.089931
VAR EAST 0.665153 0.539686
VAR SOUTH 0.699975 -0.21337
VAR WEST 0.684921 -0.39843
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Output 2.7
continued
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The first two dimensions together account for more than 96% of the variation in the data
(see Output 2.7, column corresponding to cum %). Dimension 1 (the horizontal axis) in
Output 2.7 is interpreted as the overall score (weighted average), corrected for the mean, of
an observation vector corresponding to a tree. This is so since the coefficients of the linear
combination of the variables that are used to form the value corresponding to Dimension
1 are all positive and are approximately of the same magnitude (see the first coordinates
of the four variables). Hence the trees whose corresponding values fall at the right in the
positive direction have an overall larger score. For example, the fifteenth tree (T15) seems
to have the largest weighted average after correcting for the mean. The trees T1 and T18
have the next largest averages. There is a group of trees (as noted previously) that have
smaller weighted averages than the overall mean and are clustered together. Dimension
2 (the vertical axis) represents a contrast between the cork weight by direction, that is,
the contrast N+E-S-W. This is so since the second coordinates of the four variables have
positive signs for north and east directions, but negative signs for south and west directions.
The trees T12 and T18 seem to have the greatest difference in the cork weights in those
directions.

The vectors in the biplot represent various variables (four directions in the present ex-
ample). The cosines of the angles between these vectors indicate the degree of correlations
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between the variables. Variables corresponding to the pair of vectors with small angles be-
tween them are highly positively correlated. Variables corresponding to the vectors at right
angles are uncorrelated, and those with angles more than 90◦ are negatively correlated.
An examination of these vectors in the biplot indicates that the correlation between the
measurements in the directions of west and south is the highest followed by the correla-
tion between south and north, and then between west and north. The weakest correlation is
observed between the measurements in the east and west directions.

2.6 Q-Q Plots for Assessing Multivariate Normality

We present a simple method of assessing multivariate normality using a Q-Q plot. A Q-Q
plot is a quantile-quantile comparison of two distributions either or both of which may be
empirical or theoretical. When we compare the probability distributions of two random
variables, the Q-Q plot will result in a straight line if the two variables are linearly related.
These plots are especially good for discriminating in the tail areas of the distributions since
the quantiles change more rapidly there and hence the larger distances will occur between
consecutive quantiles. Often to assess the multivariate normality of a set of multivariate
data, the marginal univariate normality of each component is assessed using the normal
Q-Q plots. However, marginal normality of each component does not imply their joint
multivariate normality.

In the other approach to assess multivariate normality, Q-Q plots are used rather indi-
rectly. Since for multivariate normal data certain quantiles (as described below) approxi-
mately follow a chi-square distribution, the empirical quantiles obtained from the data are
therefore plotted against the theoretical quantiles of certain chi-square distributions. The
details are described below.

Let yi , i = 1, . . . , n, be a random sample presumably from a multivariate normal dis-
tribution Np(µ,Σ). Then zi = Σ−1/2(yi − µ), i = 1, . . . , n are iid Np(0, I) and hence

δ2
i = z′

i zi = (yi − µ)′Σ−1(yi − µ), i = 1, . . . , n,

follows a chi-square distribution with p degrees of freedom. The quantity δ2
i is the squared

Mahalanobis distance (Mahalanobis, 1936) between yi and its expectation µ. If the ob-
servations, yi ’s, are indeed from an Np(µ,Σ) then the distances (the sample versions of
squared Mahalanobis distances)

d2
i = (yi − ȳ)′S−1(yi − ȳ), i = 1, . . . , n,

where ȳ = 1
n

∑n
i=1 yi and S = 1

n−1

∑n
i=1(yi − ȳ)(yi − ȳ)′ will approximately be dis-

tributed as a chi-square on p degrees of freedom. Hence the suggestion is to plot ordered
d2

i values against the quantiles of chi-square distribution on p degrees of freedom. If the as-
sumed normality holds, then the plot should approximately resemble a straight line passing
through the origin at a 45◦ angle with the horizontal axis.

An efficient program using the IML procedure to plot the above Q-Q plot is provided
by Friendly (1991). Program 2.8 uses the PRINCOMP procedure to compute d2

i , and then
produces the Q-Q plot shown in Output 2.8. The cork data has been used for illustration.

/* Program 2.8 */

filename gsasfile "prog28.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=45 nodate nonumber;
title1 h=1.5 ’Q-Q Plot for Assessing Normality’;
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title2 j=l ’Output 2.8’;
title3 ’Cork Data’;
data a;
infile ’cork.dat’;
input y1-y4;
proc princomp data=a cov std out=b noprint;
var y1-y4;
data chiq;
set b;
dsq=uss(of prin1-prin4);
proc sort;
by dsq;
proc means noprint;
var dsq;
output out=chiqn n=totn;
data chiqq;
if(_n_=1) then set chiqn;
set chiq;
novar=4; /* novar=number of variables. */
chisq=cinv(((_n_-.5)/ totn),novar);
if mod(_n_,2)=0 then chiline=chisq;
proc gplot;
plot dsq*chisq chiline*chisq/overlay;
label dsq=’Mahalanobis D Square’

chisq=’Chi-Square Quantile’;
symbol1 v=star;
symbol2 i=join v=+;
run;

In order to explain the computations performed in Program 2.8, let u1, . . . , u p be the
p sample principal components with estimated means ū1, . . . , ū p and the estimated vari-
ances l1, . . . , l p respectively. Then for each i = 1, . . . , n the standardized variables (ui j −
ū j )/

√
l j , j = 1, . . . , p approximately follow independent standard normal distributions.

This yields the approximate distribution of

d2
i = (yi − ȳ)′S−1(yi − ȳ) =

p∑
j=1

(
ui j − ū j√

l j

)2

,

i = 1, . . . , n as a chi-square on p degrees of freedom. The values of d2
i can be easily com-

puted using the right-most expression in the equation given above. In SAS/STAT software,
this can be achieved by using the STD option (to standardize the principal components)
in the PROC PRINCOMP statement. Then the SAS function USS can be used to compute
their (uncorrected) sums of squares. The automatic variable N created by SAS is used
in the process of computing the probabilities at which the quantiles of the chi-square vari-
able (on p = 4 degrees of freedom) are generated. The function CINV computes these
quantiles for the given probabilities. For this program these probability values are chosen
as (i − 0.5)/28, i = 1, . . . , 28 and these are specified as ( N − 0.5)/TOTN within the
function CINV.

A 45◦ angle line passing through the origin on the same graph using the OVERLAY
option in the PLOT statement has also been included. These points denoted by a plus sign
(+) in Output 2.8 are joined to form a line. In addition, to avoid counting the number
of observations and explicitly specifying the number of observations as TOTN=28.0, we
have used the MEANS procedure to calculate the total number of observations (TOTN)
in the program. Examination of the plot in Output 2.8 indicates that most of the points
are around the 45◦ angle line passing through the origin. Hence it can be assumed that the
observations are coming from a multivariate normal population. This is not surprising since
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Output 2.8
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the two tests for multivariate normality for the data described in Chapter 1 also resulted in
the acceptance of multivariate normality assumption.

The above procedure requires the use of only SAS/STAT and SAS/GRAPH soft-
ware. If SAS/QC software is available, as an alternative, the QQPLOT statement in the
CAPABILITY procedure can be used to draw a Q-Q plot. Since the chi-square distribution
on p degrees of freedom is the same as the gamma distribution with a shape parameter
α = p/2, a scale parameter σ = 2, and a shift parameter θ = 0, we can use the Q-Q plot
corresponding to the gamma distribution in the CAPABILITY procedure. The appropriate
SAS statements for Q-Q plot of DSQ, which has an approximate chi-square distribution
with p = 4 degrees of freedom, are
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proc capability graphics noprint;
qqplot dsq/gamma(alpha=2 sigma=2 theta=0);
run;

The GRAPHICS option results in a graphic plot instead of a simpler line printer plot.
The quantiles of data are plotted against the theoretical quantiles of gamma distribution
with the specified shape parameter α and shift parameter θ , but with the standardized scale
parameter σ = 1.

As an alternative to a Q-Q plot one may also use the probability plot (using the
PROBPLOT statement), which is a plot of quantiles of data against the corresponding
theoretical cumulative probabilities for the distribution under consideration. The plot is
made on a probability paper where the points on the horizontal axis are not equally spaced,
but are spaced in such a way that if the data indeed come from the assumed probability
distribution then a straight line pattern will be observed in the probability plot.

Another choice for the same purpose is a probability-probability or simply P-P plot,
which is a plot of empirical cumulative probabilities against the theoretical cumulative
probabilities under the assumed distribution, corresponding to the respective quantiles
computed from the data. If the data indeed come from the assumed probability distribution,
the P-P plot will show a linear pattern of the points. This plot can be obtained using the
PPPLOT statement of the CAPABILITY procedure.

For the cork data, all three plots have been presented in Output 2.9 and all seem to sup-
port (graphically) the hypothesis of multivariate normality of the data. However, a natural
question is: which one of the above three plots is preferred? Gnanadesikan (1997) favors
the Q-Q plot because it is invariant of any location shift or any scaling of the data and
because it is able to detect any departure from the theoretical distribution in the tail areas
more effectively than the other two plots.

To assess the multivariate normality, in addition to Q-Q plots of d2
i , Gnanadesikan

(1997) suggests Q-Q plots of certain other beta distributed quantities as well. For details
about these and other graphical and numerical methods for assessing or testing for multi-
variate normality see Gnanadesikan (1997).

/* Program 2.9 */

filename gsasfile "prog29a.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=45 nodate nonumber;
data a;
infile ’cork.dat’;
input y1-y4;
run;
proc princomp data=a cov std out=b noprint;
var y1-y4;
run;
data qq;
set b;
dsq=uss(of prin1-prin4);
run;
title1 h=1.5 ’Q-Q Plot for Assessing Normality’;
title2 j=l ’Output 2.9’;
title3 ’Cork Data’;
proc capability data=qq noprint graphics;
qqplot dsq/gamma(alpha=2 sigma=2 theta=0);
run;
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filename gsasfile "prog29b.graph";
title1 h=1.5 ’PROB Plot for Assessing Normality’;
title2 j=l ’Output 2.9’;
title3 ’Cork Data’;
proc capability data=qq noprint graphics;
probplot dsq/gamma(alpha=2 sigma=2 theta=0);
run;

filename gsasfile "prog29c.graph";
title1 h=1.5 ’P-P Plot for Assessing Normality’;
title2 j=l ’Output 2.9’;
title3 ’Cork Data’;
proc capability data=qq noprint graphics;
ppplot dsq/gamma(alpha=2 sigma=2 theta=0);
run;

Output 2.9
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Output 2.9
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2.7 Plots for Detection of Multivariate Outliers

Sometimes a set of observations may violate certain model assumptions (e.g., data fol-
lows multivariate normal distribution). These observations are called outliers. The plots
explained in the previous section can be used to detect possible outliers in the multivariate
data. If one or more points fall outside the majority of the points on the Q-Q plot, then
those points are suspected to be outliers. However, it is known that the statistics ȳ and S
are both sensitive to the presence of outliers. Hence the squared Mahalanobis distance d2

i
calculated using the formula d2

i = (yi − ȳ)′S−1(yi − ȳ) may not indicate yi to be an outlier
even when it actually is. An alternative is to use other more robust estimators of µ and Σ
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in place of ȳ and S to compute d2
i . One such procedure is to use ȳ(i) and S(i) in place of ȳ

and S in the definition of d2
i , where ȳ(i) and S(i) are the values of the sample mean vector

and the sample variance covariance matrix without using the i th observation vector. Thus
for every i = 1, . . . , n we compute the robust squared distances

D2
i = (yi − ȳ(i))

′S−1
(i) (yi − ȳ(i)).

To get a Q-Q plot similar to that in the previous section, plot the values of D2
i against the

quantiles of chi-square distribution with p degrees of freedom. Fortunately, the quantities
d2

i and D2
i are functionally related as

D2
i =

(
n

n − 1

)2 (n − 2)
d2

i
n−1

1 −
(

n
n−1

)
d2

i
n−1

.
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This relationship between d2
i and D2

i can be established using the functional relationship
that exists between ȳ(i) and ȳ and that between S(i) and S. See Cook and Weisberg (1982)
for these functional relationships in an univariate context. Program 2.8 can be suitably
modified, as shown in Program 2.10, by adding a few additional commands to compute D2

i
from d2

i . As earlier, the CAPABILITY procedure can also be used as an alternative.
The robust squared distances (RDSQ), the chi-square quantiles (CHISQ), and the plot

are presented in Output 2.10.

/* Program 2.10 */

filename gsasfile "prog210.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=45 nodate nonumber;
title1 ’Output 2.10’;
data a;
infile ’cork.dat’;
input y1-y4;
totn=28.0; * totn is the no. of observations;
novar=4.0; * novar=number of variables;
proc princomp data=a cov std out=b noprint;
var y1-y4;
data chiq;
set b;
tree=_n_;
dsq=uss(of prin1-prin4);
rdsq=(totn/(totn-1))**2*(((totn-2)*dsq/(totn-1))/
(1-(totn*dsq/(totn-1)**2)));
proc sort;
by rdsq;
data chiq;
set chiq;
chisq=cinv(((_n_-.5)/ totn),novar);
if mod(_n_,2)=0 then chiline=chisq;
run;
proc print data=chiq;
var tree rdsq chisq;
run;
proc gplot;
plot rdsq*chisq chiline*chisq/overlay;
label rdsq=’Robust Mahalanobis D Square’

chisq=’Chi-Square Quantile’;
symbol1 v=star;
symbol2 i=join v=+;
title1 h=1.5 ’Chi-square Q-Q Plot of Robust Squared Distances’;
title2 j=l ’Output 2.10’;
run;

Output 2.10 Output 2.10

OBS TREE RDSQ CHISQ

1 13 1.1471 0.4041
2 21 1.1740 0.7390
3 22 1.5008 0.9939
4 20 1.5727 1.2188
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5 25 1.8211 1.4282
6 14 1.8729 1.6290
7 5 1.9360 1.8253
8 11 2.3652 2.0197
9 23 2.3789 2.2142
10 7 2.5047 2.4106
11 2 2.8762 2.6103
12 4 2.8910 2.8148
13 3 3.1381 3.0255
14 9 3.2502 3.2440
15 6 3.6033 3.4720
16 10 3.9346 3.7117
17 28 4.6177 3.9654
18 24 4.7694 4.2361
19 17 5.0041 4.5276
20 8 5.0601 4.8450
21 26 5.8892 5.1951
22 27 7.0757 5.5875
23 12 7.8851 6.0366
24 19 10.1572 6.5654
25 1 11.1555 7.2140
26 18 13.2461 8.0633
27 15 14.2371 9.3204
28 16 17.9606 11.9329

The plot indicates that there is definitely one point, and possibly more, that stands out
from the rest. The points that stand separate are those with high robust distance. As shown
by the RDSQ values presented in Output 2.10, the highest distance turns out to be for
observation 16 (not 15, as we may have expected). The squared distance D2

16 for this ob-
servation is 17.32 which is considerably larger compared to the corresponding chi-square
value of 11.93. Observation 15 with a D2

i value of 13.73, observation 18 with 12.77, and
observation 1 with 10.76 also stand apart from the majority of the data vectors. As we
have previously seen, observation 15 is different from the rest because of the magnitudes
of its individual components. A closer look at observation 16 reveals that this particular
tree is unique in the sense that its measurement in the direction of south is unusually low
compared to those in the other directions. This phenomenon is markedly different from the
majority of the trees for which the measurement in the direction of south is higher. See the
profile plot in Output 2.5. Hence the sixteenth tree may be classified as an outlier. Trees
15, 18, and 1 may be classified as outliers also.

Detection of outliers from a set of multivariate data is a difficult problem. Rao (1964) has
suggested another method for detection of outliers using a distance measure based on the
last few principal components. It has also been observed that Mardia’s multivariate kurtosis
can be used as a measure to detect any outliers in the data that are supposedly distributed
as the multivariate normal. See Schwager and Margolin (1982), Das and Sinha (1986), and
Naik (1989) for details. Further elaborate discussions of outlier detection methods may be
found in Barnett and Lewis (1994).

2.8 Bivariate Normal Distribution

One of the most commonly used distributions in multivariate data analysis is multivariate
normal distribution. This distribution has been briefly discussed in Chapter 1. The p-variate
normal distribution with p = 2 is often referred to as a bivariate normal distribution. For
a bivariate normal distribution, it is possible to present much of the information about
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the distribution very effectively in a graph. In this section we consider a bivariate normal
distribution and give plots for its probability density function (pdf) as well as its contours.
Contours of a function on the higher dimension are the graphs of the projections of the
function on a plane at the fixed values of the function. In the present context, these plots
can help us visualize the shape of the pdf of the multivariate normal distribution by helping
us to examine its various bivariate marginal pdfs and their contour plots.



Chapter 2 Graphical Representation of Multivariate Data 55

2.8.1 Probability Density Function Plotting

The pdf of a p-variate normal distribution with mean vector µ and variance covariance
matrix Σ is given by

f (y) = 1

(2π)p/2|Σ|1/2
exp

{
−1

2
(y − µ)′Σ−1(y − µ)

}
.

When p = 2, the mean vector of y = (y1, y2)
′ is µ = (µ1, µ2)

′ and the dispersion matrix
is a 2 by 2 matrix

Σ =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
,

where σ 2
1 = var(y1), σ 2

2 = var(y2) and ρ is the correlation coefficient between y1 and
y2. In Program 2.11 we use PROC G3D to plot the pdf of the bivariate normal distribution
for specific values of µ1 = 0.0, µ2 = 0.0, σ 2

1 = 2.0, σ 2
2 = 1.0, and ρ = 0.5. The KEEP

statement in the program saves the variables that are listed in that statement. Alternatively,
a DROP statement could be used to drop the variables not needed. The output of Program
2.11 is shown in Output 2.11.

/* Program 2.11 */

filename gsasfile "prog211.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=45 nodate nonumber;
title1 h=1.5 ’PDF of Bivariate Normal Distribution’;
title2 j=l ’Output 2.11’;
title3 ’Mu_1=0, Mu_2=0, Sigma_1^2=2, Sigma_2^2=1 and Rho=0.5’;
data normal;
mu_1=0.0;
mu_2=0.0;
vy1=2;
vy2=1;
rho=.5;
keep y1 y2 z;
label z=’Density’;
con=1/(2*3.141592654*sqrt(vy1*vy2*(1-rho*rho)));
do y1=-4 to 4 by 0.10;
do y2=-3 to 3 by 0.10;
zy1=(y1-mu_1)/sqrt(vy1);
zy2=(y2-mu_2)/sqrt(vy2);
hy=zy1**2+zy2**2-2*rho*zy1*zy2;
z=con*exp(-hy/(2*(1-rho**2)));
if z>.001 then output;
end;
end;
proc g3d data=normal;
plot y1*y2=z;
*plot y1*y2=z/ rotate=30;
run;

An examination of the pdf plot in Output 2.11 shows how the variance of y1 being larger
than that of y2 affects the density plot. That is, the spread of the plot on the axis representing
the variable y1 is more than that on the axis representing y2. Further, the effect of positive
correlation between these two variables on the density plot can be seen from the shape of
the density surface which is concentrated along the line y1 = y2 in the horizontal plane.
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2.8.2 Contour Plot of Density

The contour plots of a bivariate probability density function show the degrees of association
between the two random variables. For the same data as Program 2.11 we draw the contours
of the pdf using the GCONTOUR procedure. By adding a few more SAS statements to
Program 2.11 we have Program 2.12 which achieves the desired objective. The output is
shown in Output 2.12.
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/* Program 2.12 */

filename gsasfile "prog212.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
options ls=64 ps=45 nodate nonumber;
title1 h=1.5 ’Contours of Bivariate Normal Distribution’;
title2 j=l ’Output 2.12’;
title3 ’Mu_1=0, Mu_2=0, Sigma_1^2=2, Sigma_2^2=1 and Rho=0.5’;
data normal;
vy1=2;
vy2=1;
rho=.5;
keep y1 y2 z;
label z=’Density’;
con=1/(2*3.141592654*sqrt(vy1*vy2*(1-rho*rho)));
do y1=-4 to 4 by 0.3;
do y2=-3 to 3 by 0.10;
zy1=y1/sqrt(vy1);
zy2=y2/sqrt(vy2);
hy=zy1**2+zy2**2-2*rho*zy1*zy2;
z=con*exp(-hy/(2*(1-rho**2)));
if z>.001 then output;
end;
end;
proc gcontour data=normal;
plot y2*y1=z/levels=.02 .03 .04 .05 .06 .07 .08;
run;

The LEVELS option in the PLOT statement of the program is used to specify the fixed
values of the pdf for which the contours are to be drawn. These values should be the plau-
sible values of the function and hence should be between zero and the maximum possible
value of the pdf. Noting that the maximum value of the pdf of a bivariate normal distribu-
tion corresponds to y1 = µ1 and y2 = µ2, we can determine the maximum value that can
be given in the LEVELS option, for the given values of σ 2

1 , σ 2
2 , and ρ. For example, the

maximum value of the pdf is 1
2π

√
1.5

for the choices µ1 = µ2 = 0, σ 2
1 = 2.0, σ 2

2 = 1.0,

and ρ = 0.5.
The contours of a bivariate probability density function have the following interpreta-

tions.

• For a zero correlation between the variables and equal variances, the contours are circles
centered at (µ1, µ2).

• For zero correlation and the variance of y1 greater than that of y2, the contours are
ellipses whose major axes are parallel to the horizontal axis. (If the variance of y2 is
greater than that of y1 then the major axis will be parallel to vertical axis.)

• If the correlation between the variables is nonzero, then the contours are ellipses.

• Additionally if the two variances are equal then for any contour, the major axis is at
an angle (with the horizontal axis) whose cosine is same as the correlation coefficient
between the two variables.

The contours in Output 2.12 indicate the positive correlation between the two variables
y1 and y2.
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2.9 SAS/INSIGHT Software

SAS/INSIGHT software is an interactive tool for data exploration and analysis. We can
use it to explore data through a variety of interactive graphs and analyses linked across
multiple windows. In addition, it can be used to analyze univariate distributions, investigate
multivariate distributions, and fit explanatory models using analysis of variance, regression,
and the generalized linear model. The following summary of features is adapted from the
SAS/INSIGHT User’s Guide, Version 6, First Edition published by SAS Institute.

SAS/INSIGHT software offers a comprehensive set of graphical tools. For example,
it can rotate data in three-dimensional plots; create Q-Q (quantile-quantile) plots; apply
transformation to data; fit curves including polynomials, provide kernel density estimates,
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and smoothing techniques using spline curves; and create residual and leverage plots. Be-
cause it is a part of the SAS System, SAS/INSIGHT software can explore results from any
SAS procedure.

The statements given in Program 2.4 invoke SAS/INSIGHT software. Once
SAS/INSIGHT is invoked, there are several options for extensive data analysis to choose
from just by clicking the button on the mouse. The scatter plot matrix given in Output 2.4
was obtained using SAS/INSIGHT.

2.10 Concluding Remarks

Finally it may be remarked that multivariate graphical methodology is an area which is
still evolving. A variety of other techniques such as Chernoff faces, star plots, and Wegman
plots also exist. Further variations of techniques provided in this chapter can be developed
to fit the specific type of problems. Books by Chambers, Cleveland, Kleiner, and Tukey
(1983) and Gnanadesikan (1997) provide elaborate discussions of various other methods
and Friendly (1991) gives SAS macros for many of these methods.
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3.1 Introduction

Regression analysis primarily deals with the issues related to estimating or predicting the
expected value of the dependent or response variable using the known values of one or
more independent or predictor variables. Usually a model is postulated relating the re-
sponse variable to the predictor variables with certain unknown coefficients. A model that
is linear in these coefficients is often referred to as a linear regression model or simply a
linear model.

The multivariate linear regression model is a natural generalization of a (univariate)
linear regression model. That is, two or more possibly correlated dependent variables are
simultaneously modeled as the linear functions of the same set of predictor variables. For
reasons of mathematical convenience in developing an appropriate theory, it is required
that the particular model for each response variable be in exactly the same functional form.
For example, if y1 and y2 are the response variables and x1 and x2 are the predictors, then
the univariate models y1 = a0 + a1x1 + a2x2 + ε1 and y2 = b0 + b1x1 + b2x2 + ε2
have the same functional forms, whereas the models y1 = a0 + a1x1 + a2x2 + ε1 and
y2 = b0 + b1x1 + ε2 do not. It is possible to argue that the last model (for y2) has the same
functional form as the model for y1 with the choice b2 = 0. However, this suggests that
b2 is completely known and hence its estimation is irrelevant. But multivariate regression
theory assumes that all the coefficients in the model are unknown and are to be estimated.

In the univariate regression models, we assume that there are n observations available
on a response variable y as well as on predictors x1, . . . , xk . Suppose these n data values
on y are stored in an n by 1 column vector y and values on xi , i = 1, . . . , k are stacked,
in the same order, in an n by 1 vector xi . Then the complete linear model for the data can
be expressed as the linear relation between these column vectors

y = β0 1n + β1 x1 + · · · + βk xk + ε.
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In multivariate situations, that is, when there are two or more response variables, the
functional form of the linear model for each of these response variables is assumed to be
the same as above. However, each model will have a different set of unknown coefficients
β0, . . . , βk and a different error vector.

3.2 Statistical Background

A multivariate linear model in p (possibly correlated) response variables y1, . . . , yp and
k independent or predictor variables x1, . . . , xk is represented by a system of p univariate
linear models

y1 = β011n + β11x1 + β21x2 + · · · + βk1xk + ε1
y2 = β021n + β12x1 + β22x2 + · · · + βk2xk + ε2
...

yp = β0p1n + β1px1 + β2px2 + · · · + βkpxk + εp




, (3.1)

where yi , xi , and εi are all n by 1 vectors. The vectors yi and xi are respectively the data
vectors on the variables yi and xi . These equations can compactly be represented using
matrix notation as

Y = XB + E, (3.2)

where

Yn×p = (y1 : y2 : . . . : yp),

Xn×(k+1) = (1n : x1 : x2 : . . . : xk),

B =




β01 β02 . . . β0p

β11 β12 . . . β1p

.

.

βk1 βk2 . . . βkp




and E = (ε1 : ε2 : . . . : εp). The vector 1n here represents an n by 1 column vector with
all elements as unity. Assume that n > (k + 1).

In case we wish to deal with a model without an intercept term, we could still write the
corresponding model as in Equation 3.2 by omitting the first columns of the matrix X and
the first row of matrix B defined above. The only additional change would be to replace
k + 1 by k in what follows. One such situation where models without intercept terms are
encountered is the analysis of mixture experiment data.

A typical equation in Equation 3.1, say the i th one,

yi = β0i 1n + β1i x1 + · · · + βki xk + εi

represents a univariate regression model, which can be written as yi = Xβi + εi with
βi = (β0i , β1i , . . . , βki )

′ and hence could be analyzed independently of the other re-
gression models in Equation 3.1. However, since the response variables may themselves
be correlated with each other, this dependence should also be taken into account when
drawing the statistical conclusions using the inferential methods. This suggests the need
for using the model in Equation 3.2, where the collection of all the dependent variables is
analyzed as a single data set.
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Similarly, because observations or responses on different units are assumed to be inde-
pendent, each εi is assumed to be distributed with zero mean and the variance-covariance
matrix D(εi ) = σi i In , where In is an n by n identity matrix. However, to incorporate
the dependence between the response variables, it is assumed that for i, j = 1, . . . , p,
cov(yi , y j |X) = cov(εi , ε j ) = σi j In . In other words, while the i th column of E has the
variance-covariance matrix σi i In , a typical row of E has that as Σ = (σi j ), a symmetric p
by p matrix that is assumed to be positive definite.

As in the univariate linear regression setup, assume that the regression matrix X is of
full column rank (that is all columns of X are linearly independent), thereby implying
that Rank(X′X) = Rank(X) = k + 1. This, in turn, ensures the existence of the inverse of
X′X. If X is not of full rank, (X′X)−, a generalized inverse (Rao, 1973) of X′X, will replace
(X′X)−1 in most situations. However, extra care is needed in interpreting the results of the
data analysis in such instances.

An assumption of multivariate normality for error vectors is needed for hypothesis test-
ing problems and construction of confidence regions, even though it is not needed for the
linear estimation problems. Most of the resulting exact and approximate statistical tests for
the multivariate linear regression models are the consequences of this assumption.

3.3 Least Squares Estimation

A natural criterion to obtain some meaningful estimators of B is to minimize
∑p

i=1 ε′
iεi =∑p

i=1(yi − Xβi )
′(yi − Xβi ) with respect to the matrix B = (β1 : β2 : . . . : βp). This

is merely the sum of the squared deviations from the corresponding means over all obser-
vations and over all responses or dependent variables. This criterion is the same as that of
minimizing tr(Y − XB)′(Y − XB), the trace (the sum of the diagonal elements) of the p
by p matrix (Y − XB)′(Y − XB), resulting in the system of normal (matrix) equations

(X′X)B̂ = X′Y (3.3)

and yielding

B̂ = (X′X)−1X′Y (3.4)

as the least squares estimator of matrix B. It means that β̂i , the i th column of B̂, which
estimates βi , the i th column of B, is given by

β̂i = (X′X)−1X′yi , i = 1, . . . , p.

It is easy to demonstrate that B̂ given by Equation 3.4 is unbiased for B, that is, E(B̂) = B.
Further, cov(β̂i , β̂ j ) = σi j (X′X)−1 for all i, j = 1, . . . , p. In addition, under the as-
sumption of the model in Equation 3.2, B̂ is the Best Linear Unbiased Estimator (BLUE)
of B in the sense that it has the smallest total variance among all linear unbiased estimators.
By total variance we mean the sum of the variances of all elements of the matrix used as
the estimator.

When the matrix X is not of full rank, a least squares solution to the system of normal
equations, Equation 3.3, is given by

B̂(g) = (X′X)−X′Y (3.5)

and

β̂
(g)

i = (X′X)−X′yi , i = 1, . . . , p.
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The matrix B̂(g) defined in Equation 3.5

• is not unique,
• depends on the particular choice of the generalized inverse used, and
• merely represents one of the many solutions to a singular (that is where at least one

linear equation is redundant and is implied by the others) system of normal equations.

In this sense, B̂(g) is really not an estimator and one or more components of B̂(g) may
be biased for their counterparts in B. However, as indicated in Searle (1971), certain linear
functions of B can still be uniquely estimated. Such functions are called the estimable
functions. Specifically, as shown by Bose (1951), and Searle (1971), a linear function c′B,
where c �= 0 is a nonrandom (k + 1) by 1 vector, is estimable if and only if

(X′X)(X′X)−c = c.

Accordingly, a linear hypothesis on the regression parameters will be a “testable hypothe-
sis” if and only if it involves only the estimable functions of B.

3.4 ANOVA Partitioning

In the multivariate context, the role of the total sum of squares is played by the p by p
positive definite matrix of (corrected) total sums of squares and crossproducts (SS&CP)
defined as

T = Y′Y − 1

n
Y′1n1′

nY = Y′
(

In − 1

n
1n1′

n

)
Y. (3.6)

Apart from the dividing factor, a typical element of the matrix in Equation 3.6, say the
one corresponding to the i th row and j th column, is the same as the sample covariance
between the i th and j th dependent variables. Consequently, the diagonal elements of T are
the (corrected) total sums of squares for the respective dependent variables.

Assuming that Rank(X) = k + 1, this matrix can be partitioned as the sum of the two
p by p positive definite matrices

T = R + E,

where

R = Y′
[

X(X′X)−1X′ − 1

n
1n1′

n

]
Y = Y′XB̂ − 1

n
Y′1n1′

nY, (3.7)

E = Y′[I − X(X′X)−1X′]Y = Y′Y − Y′X(X′X)−1X′Y

= Y′Y − Y′XB̂ = (Y − Ŷ)′(Y − Ŷ), (3.8)

and Ŷ = XB̂ is the matrix of the predicted values of matrix Y. The matrix R represents
the matrix of model or regression sums of squares and crossproducts, while the matrix E
represents that corresponding to error. Note that the diagonal elements of these matrices
respectively represent the usual regression and error sums of squares for the corresponding
dependent variables in the univariate linear regression setup.

Table 3.1 summarizes the partitioning explained above, along with a similar partitioning
for the degrees of freedom (df).

An unbiased estimator of Σ is given by

Σ̂ = E/(n − k − 1). (3.9)
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TABLE 3.1 Multivariate Analysis of Variance (Manova)

Source d f SS & CP E(SS & CP)

Regression k R kΣ + B′X′(In − 1
n 11′)XB

Error n − k − 1 E (n − k − 1)Σ

Corrected Total n − 1 T

When X is not of full rank, (X′X)−1 is replaced by (X′X)−, a generalized inverse of X′X
in the formulas in Equations 3.7 and 3.8, but the matrices R, E and Ŷ are invariant of
the choice of a particular generalized inverse and remain the same regardless of which
generalized inverse is used. However, in this case the unbiased estimator of Σ is given by
E/(n − Rank(X)), which differs from Equation 3.9 in its denominator.

Depending on the rank of R, the matrix R can further be partitioned into two or more
positive definite matrices. This fact is useful in developing the tests for various linear hy-
potheses on B. If needed, for example, as in the lack-of-fit analysis, a further partitioning
of matrix E is also possible.

The matrix R, of regression sums of squares and crossproducts, measures the effect of
the part of the model involving the independent variables. By contrast, E, the error sums
of squares and product matrix, measures the effect due to random error or the variation not
explained by the independent variables. Further partitioning of R and E can also be given
certain similar interpretations.

In univariate regression models, the coefficient of determination R2, which is the ratio
of regression sum of squares to total sum of squares, is taken as an index to measure the
adequacy of the fitted model. Analogously, in the present context, it is possible to define

|R|/|R + E|

and

1

p
tr [R(R + E)−1]

as two possible generalizations of R2. In the hypothesis testing context, the latter measure
is often referred to as Pillai’s trace statistic. These indices can be interpreted in essentially
the same way as the univariate coefficient of determination R2.

Another useful measure of the strength of the relationship or the adequacy of the model
can be defined as 1 − |E|/|R + E| = 1 − �, where � = |E|/|R + E| is called the Wilks’
ratio. However, this index of association is strongly biased. Jobson (1992) provides two
modifications of 1 −�, one of which has considerably less bias while another provided by
Tatsuoka (1988) is approximately unbiased. These are respectively given by

ω = 1 − n�

� + n − k − 1

and

ωc = ω −
(

p2 + k2

3n

)
(1 − ω)

As the value of � is produced by several SAS procedures performing multivariate anal-
yses, these two measures are easily computable. It may be remarked that ω and ωc can be
negative.
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3.5 Testing Hypotheses: Linear Hypotheses

One important aspect of statistical inference is testing the hypothesis of interest. In the
context of multivariate linear models, the hypotheses may be functions of

• matrix B only,
• matrix Σ only, or
• both B and Σ.

In this section, we will confine the discussion to hypotheses that are functions of B only.
Certain hypotheses involving the matrix Σ are discussed in Chapters 5 and 6.

A hypothesis on B may be of interest in a variety of situations. It may be needed in
the context of data reduction, to test the redundancy of certain variables, or in connection
with model reduction schemes as in the process of selecting variables. Of course a number
of hypotheses are important in their own right, e.g., when a comparison of two or more
populations is needed.

Most of the hypotheses of interest on B can be expressed as the general linear hypothesis

H0 : LB = D vs. H1 : LB �= D (3.10)

with known full row rank matrix L of order r by (k + 1) and known D. The matrix D is
usually a zero matrix for most linear hypotheses; in the cases when D is not a zero matrix, a
suitable transformation of data on dependent variables would provide an equivalent linear
hypothesis with zero matrix on the right-hand side in terms of the reparameterization of B,
as indicated below.

Suppose D �= 0. Since L is of full row rank, LL′ admits the inverse. Consequently, by
subtracting XL′(LL′)−1D from both sides of Equation 3.2, we have,

Y − XL′(LL′)−1D = X(B − L′(LL′)−1D) + E
or equivalently

Y∗ = XΓ + E,

where Y∗ = Y − XL′(LL′)−1D, Γ = B − L′(LL′)−1D, and the hypothesis in Equation
3.10 can be equivalently written as

H0 : LΓ = 0 vs. H1 : LΓ �= 0.

Hence, it suffices to consider the hypotheses of type

H0 : LB = 0 vs. H1 : LB �= 0 (3.11)

for the discussion that follows. In the following subsections, we present some statistical
tests for various hypotheses. For this purpose, multivariate normality for the rows of E is
assumed.

3.5.1 Multivariate Tests

To test the null hypothesis in Equation 3.11, various test criteria based on the eigenvalues
of certain matrices (which may be the functions of L and B̂) are available. Specifically, let

H = B̂′L′[L(X′X)−1L′]−1LB̂, (3.12)

and define λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 as the ordered eigenvalues of E−1H. As E is
assumed to be positive definite, the existence of E−1 is ensured. Various test statistics for
the hypothesis in Equation 3.11 are given below.
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Wilks’ Λ Criterion

� = |(H + E)−1E| = |E−1H + I|−1 =
p∏

i=1

(1 + λi )
−1 (3.13)

Pillai’s Trace Criterion (Bartlett-Nanda-Pillai’s Trace)

V = tr [(H + E)−1H] =
p∑

i=1

λi/(1 + λi ) (3.14)

Hotelling-Lawley Trace Criterion (Bartlett-Hotelling-Lawley Trace)

U = tr(E−1H) =
p∑

i=1

λi (3.15)

Roy’s Maximum Root Criterion

λmax = max (λ1, λ2, . . . , λp) = λ1. (3.16)

For tables of critical values for these test statistics, see Pillai (1960). However, approxi-
mations to F statistics are summarized in Table 3.2.

TABLE 3.2 F Approximations for Various Tests

Approximate Distribution
Criterion F of F under H0

Wilks (�) gt−2u
rrt

1−�1/t

�1/t F(rrt , gt − 2u)

Pillai (V) 2m2+s+1
2m1+s+1

V
s−V F(s(2m1 + s + 1), s(2m2 + s + 1))

Hotelling - Lawley (U) 2(sm2+1)

s2(2m1+s+1)
U F(s(2m1 + s + 1), 2(sm2 + 1))

Roy (λmax ) n−k−h+r−1
h λmax F(h, n − k − h + r − 1)∗

� This F statistic is an upper bound on the F statistic that provides a lower bound on the assumed level of
significance.

Various quantities used in Table 3.2 are defined below.

rt = Rank (H + E)

r = Rank (L)

s = min (r, rt )

h = max (r, rt )

m1 = [|r − rt | − 1]/2

m2 = (n − k − rt − 2)/2

g = (n − k − 1) − (rt − r + 1)

2
u = (rrt − 2)/4

t =
{√

(r2r2
t − 4)/(r2

t + r2 − 5) if (r2
t + r2 − 5) > 0

1 otherwise

The SAS/STAT User’s Guide, pp. 18–19 provides these formulas with a slightly differ-
ent notation. Specifically, quantities (rt , r, h, m1, m2, g) defined above are the same as
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quantities (p, q, r∗, m, n, r) defined in the User’s Guide. It may be noted that r∗ has
been referred as just r on page 19 of the Guide.

The F approximation to Wilks’ � is often referred to as Rao’s F (Rao, 1951). Table 3.3
(Reprinted by permission of John Wiley & Sons, Inc.) adapted from Rao (1973, p. 555)
shows that in certain special cases a transformation of Wilks’ � to F statistic is exact:

TABLE 3.3 The Exact F in Special Cases

Values of r and p F Exact F Under H0

r = 1 for any p n−k+r−p−1
p

1−�
�

F(p, n − k + r − p − 1)

r = 2 for any p n−k+r−p−2
p

1−√
�√

�
F(2p, 2(n − k + r − p − 2))

p = 1 for any r n−k−1
r

1−�
�

F(r, n − k − 1)

p = 2 for any r n−k−1
r

1−√
�√

�
F(2r, 2(n − k − 1))

Two considerably more accurate approximations than those given in Table 3.2 of the
distribution of Wilks’ � are suggested by Gupta and Richards (1983). The simpler of the
two approximates the distribution of −ln(�) by a chi-square distribution. Specifically,

Pr [−ln(�) < u] = Pr [χ2
pdH

< u/ζ ]
where,

ζ = [2(dE − p + 1)]−1 + [dE + dH − 2]−1,

dE = degrees of freedom of E,

dH = degrees of freedom of H

and χ2
pdH

is a chi-square random variable with degrees of freedom pdH. The value of � is
readily available in the SAS output and dH and dE can be calculated from the appropriate
partitioning of the total SS&CP matrix. Therefore, the probabilities corresponding to the
Wilks’ � statistic can be more accurately estimated via this approximation.

In general, none of the tests based on the criteria defined in Equations 3.13 through 3.16
is uniformly best. Giri (1977, p. 219) provides a review of various optimality properties
of these tests. Based on the power studies by Pillai and Jayachandran (1967, 1968), the
following general recommendations can be made (Seber, 1984, p. 415, Muirhead, 1982,
p. 484).

• For p = 2 and for small departures from H0 or for large deviations from H0 with the two
nonzero eigenvalues of HE−1 nearly equal, Pillai’s test is superior to Wilks’ � which in
turn is better than Hotelling-Lawley’s U .

• For p = 2 and for large departures from H0 and when the two nonzero eigenvalues of
HE−1 are very different, the order of preference given above is reversed.

• For general p, and for small departures from H0, the order of preference is the same as
that in the first item above.

Asymptotically, all the three tests are equivalent. Specifically, as n → ∞, and under
H0, {n − k − 1

2 (p − r + 3)}ln �, (n − k − 1)U , and (n − k − 1)V are all asymptotically
distributed as central chi-square distributions with degrees of freedom pr . When p = 1,
these tests and also Roy’s λmax test are all identical.

The four multivariate tests described above are available as options in the GLM proce-
dure as well as in the REG procedure. Both of these perform various aspects of multivariate
regression analysis. However, on occasion, one may be superior to the other in achieving
certain specific tasks. PROC GLM is more general in that it can be used for analyzing the
regression as well as the experimental design models and can also be applied with little ef-
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fort to situations involving the blocking effects or covariables. In contrast, PROC REG is
more convenient for regression analysis and provides certain options for specialized anal-
yses in the regression context. In the examples that follow, we will utilize both choices
depending on the context as well as the convenience and we occasionally also comment on
the specific differences as well as their relative merits.

EXAMPLE 1 Hotelling T2 Test for Cork Data The cork data in Rao (1948) presented in Table 1.1
consist of the weights of cork boring from the north, east, south, and west directions of the
trunks for 28 trees. The problem is to test whether the cork deposit varies, in thickness and
hence in weight, in the four directions. We therefore set up the null hypothesis as “the cork
deposit is uniform along all four directions”. The multivariate tests illustrated above will be
described for this null hypothesis. If we denote the 28 by 1 column vectors of cork deposits
in four directions by y1, y2, y3 and y4 respectively, then, with Y = (y1 : y2 : y3 : y4), we
have the model

(y1 : y2 : y3 : y4) = (µ11 : µ21 : µ31 : µ41) + (ε1 : ε2 : ε3 : ε4),

i.e. Y = 1B + E,

where B = (µ1 : µ2 : µ3 : µ4) is a 1 by 4 matrix of mean bark deposit in four directions.
The null hypothesis µ1 = µ2 = µ3 = µ4 can be presented as

H0 :




µ1 − µ2 = 0

µ1 − µ3 = 0

µ1 − µ4 = 0.

If we accordingly define three variables

DNE = y1 − y2 (difference between north and east measurements)

DNS = y1 − y3 (difference between north and south measurements)

and
DNW = y1 − y4 (difference between north and west measurements)

then under H0, the three variables defined above have zero means. Since there are no in-
dependent variables, the linear model in the three variables has the matrix of regression
coefficients, say Bd , consisting of only one row of intercepts. In this case, our null hy-
pothesis is equivalent to testing the hypothesis that Bd = 0. This hypothesis can be tested
by performing multivariate significance tests on the model with only an intercept and no
independent variables. The SAS code given in Program 3.1 performs these tests, and the
results are shown in Ouput 3.1.

/* Program 3.1 */

options ls=64 ps=45 nodate nonumber;
data cork;
infile ’cork.dat’ firstobs = 1 ;
input north east south west;
y1=north;
y2=east;
y3=south;
y4=west;
/* Hotelling’s T-square by creating the differences */
dne=y1-y2;
dns=y1-y3;
dnw=y1-y4;
proc glm data=cork;
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model dne dns dnw= /nouni;
manova h=intercept;
title1 ’ Output 3.1 ’;
title2 ’ Equality of the Components of the Mean Vector ’;
title3 ’ Cork Data’;
run;

First, within the data set named CORK.DAT we create three new variables DNE, DNS,
and DNW as defined in Program 3.1. The NOUNI option suppresses the univariate analysis
of individual variables. Finally, the statement

manova h=intercept;

performs multivariate hypothesis testing, when the hypothesis of interest is on the intercept
vector.

Output 3.1 Output 3.1
Equality of the Components of the Mean Vector

Cork Data

General Linear Models Procedure

Number of observations in data set = 28

General Linear Models Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

Characteristic Percent Characteristic Vector V’EV=1
Root

DNE DNS
DNW

0.76822288 100.00 0.01256587 -0.01086704
0.02243791

0.00000000 0.00 -0.00378101 0.02474866
-0.00088456

0.00000000 0.00 -0.02093912 -0.01046880
0.01870549

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0.5 N=11.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.56554 6.4019 3 25 0.0023
Pillai’s Trace 0.43446 6.4019 3 25 0.0023
Hotelling-Lawley Trace 0.768223 6.4019 3 25 0.0023
Roy’s Greatest Root 0.768223 6.4019 3 25 0.0023
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In Output 3.1 note that since the model has only an intercept vector and no other inde-
pendent variables, the matrix E−1H is of rank 1. Consequently, only the first eigenvalue
is nonzero and is 0.7682. The four test statistics �, V , U and λmax are reported next. All
four tests are equivalent in this case, and lead to the same observed value of the F statistic.
With n = 28, k = 0, p = 3, and r = 1, the observed value of exact F statistic is given
by F = n−k+r−p−1

p ( 1−�
�

) = 6.4019 (see Table 3.3). It follows an F distribution with (3,
25) degrees of freedom, leading to the p value of 0.0023. Consequently, in view of small p
value, we reject the null hypothesis of the uniform cork deposits in the four directions.

The value of Hotelling’s T 2 can be easily obtained from the value of Wilks’ �. Specif-
ically,

T 2 = (n − 1)

(
1 − �

�

)
,

which is equal to 20.7420 for this particular data set.
There is another way of testing the same hypothesis, yet without directly creating the

data on the differences, and that is to use the SAS option M=. These alternative statements
are given in Program 3.2.

/* Program 3.2 */

options ls=64 ps=45 nodate nonumber;
data cork;
infile ’cork.dat’ firstobs=1;
input north east south west;
y1=north;
y2=east;
y3=south;
y4=west;
/* Hotelling’s T-square using m = option*/
proc glm data=cork;
model y1 y2 y3 y4= /nouni;
manova h=intercept
m=y2-y1, y3-y1, y4-y1
mnames=d1 d2 d3;
title1 ’ Output 3.2 ’ ;
title2 ’Use of m=option for Testing Equal Means for Cork Data’;
run;

Program 3.2 attempts to directly fit the model Y = XB + E with X = 1n , an n by 1
column vector of ones. Through the MANOVA statement, we specify the null hypothesis
of interest; the intercepts of the variables indicated in the M=specification are zero. In the
M= specification, we essentially define the variables DNE, DNS, and DNW from Program
3.1, but without any such explicit assignment. This, in turn, defines a matrix

M =

 −1 1 0 0

−1 0 1 0
−1 0 0 1




′
,

and with L = I = 1, the hypothesis of interest is written as H0 : LBM = 0, the general
linear hypothesis which is further described in Section 3.8. The corresponding SAS code
is

proc glm;
model y1 y2 y3 y4= /nouni;
manova h=intercept m=y2-y1,

y3-y1,
y4-y1

mnames=d1 d2 d3;
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Thus in the M= specification, three variables earlier denoted by DNE, DNS, and DNW re-
spectively are defined and are subsequently named D1, D2, and D3 using the MNAMES=
specification. The NOUNI option on the MODEL statement suppresses the output cor-
responding to the univariate models in y1, y2, y3, and y4. Output 3.2 first prints the M
matrix (in fact, its transpose M’) indicated above and then produces the output which is
essentially identical to Output 3.1. An alternative to the M = specification indicated above
is to explicitly specify the M matrix column by column. That is, by specifying

m = (-1 1 0 0,
-1 0 1 0,
-1 0 0 1);

Since the specification is by columns, the representation above resembles M′ and not M.
The resulting output and the corresponding interpretations are essentially the same as those
for Output 3.1.

Output 3.2 Output 3.2
Use of m=option for Testing Equal Means for Cork Data

General Linear Models Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

Y1 Y2 Y3 Y4

D1 -1 1 0 0
D2 -1 0 1 0
D3 -1 0 0 1

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

Variables have been transformed by the M Matrix

Characteristic Percent Characteristic Vector V’EV=1
Root

D1 D2
D3

0.76822288 100.00 0.01256587 -0.01086704
0.02243791

0.00000000 0.00 -0.00378101 0.02474866
-0.00088456

0.00000000 0.00 -0.02093912 -0.01046880
0.01870549

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0.5 N=11.5
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Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.56554 6.4019 3 25 0.0023
Pillai’s Trace 0.43446 6.4019 3 25 0.0023
Hotelling-Lawley Trace 0.768223 6.4019 3 25 0.0023
Roy’s Greatest Root 0.768223 6.4019 3 25 0.0023

EXAMPLE 2 Multivariate Regression for Fish Data The data for the illustration of multivariate re-
gression are taken from Srivastava and Carter (1983). This toxicity study was conducted
to determine the effect of copper on fish mortality. Twenty-five tanks of twenty trout were
given various doses (DOSE) of copper in mg. per liter. The average weight of the fish (WT)
was also recorded and used as one of the covariables. The proportions of dead fish after 8,
14, 24, 36, and 48 hours were recorded and an arcsine transformation was used to obtain
the transformed variables yi , i = 1, . . . , 5. Such a transformation was used to stabilize
the variances. Further, in keeping with the standard practice in many dose response studies,
the various doses were converted into logarithmic scale. This transformation in turn made
the spacing between the various levels more uniform.

The problems of interest are to
• fit a multivariate model expressing yi as the linear functions of weights and the natural

logarithm of the dose, which are to be treated as the independent variables,
• test the significance of the dose as a variable,
• test the significance of the fish weight as a variable, and
• test the overall significance of the model.

The SAS statements presented in Program 3.3 are used to obtain the appropriate output
presented as Output 3.3. Only selected parts of output are presented.

After reading the raw data on proportions p1 (corresponding to t =8), . . . , p5 (corre-
sponding to t =48), we obtain the variables y1, . . . , y5 by defining

yi = sin−1{√pi }, i = 1, . . . , 5.

This is done in the DATA step. We denote the natural logarithm of dose by X1 and the
weight of the fish by X2. In PROC GLM, the MODEL statement fits the model

Y25×5 = X25×3B3×5 + E25×5,

where B =

β0

β1
β2


. The 1 by 5 row vector β0 contains the intercepts of the five differ-

ent models corresponding to the five time points. Similarly, the row vectors β1 and β2
respectively contain the slope parameters in these models for the independent variables X1
(logarithms of DOSE) and X2 (WT). To test the significance of the model, we have the

null hypothesis H0 :
[

β1
β2

]
= 0. Assuming the multivariate normality of the error, this

null hypothesis can be tested using Wilks’ � test. This test statistic cannot be computed
using PROC GLM. However, we will describe its computation later using PROC REG.
The statement

manova h=x1 x2;

is used to test the other two hypotheses of interest, namely H (1)
0 : β1 = 0 (no dose ef-

fect) and H (2)
0 : β2 = 0 (no weight effect). The options PRINTE and PRINTH are used

to print the error sums of squares and products matrix E and the appropriate H matrix
corresponding to the desired hypothesis.

Output 3.3 first presents the error sums of squares and crossproducts matrix E. The
sums of squares due to error in the case of individual variables yi can be obtained as the
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diagonal elements of this matrix. The output then presents the analysis corresponding to
variable X1, the natural logarithm of the variable DOSE. By default, Type III sums of
squares and crossproducts are used and hence these are adjusted for the other variable
X2 which represents the initial weight of the fish. Various types of sums of squares are
discussed in some detail in Chapter 4 and in relatively greater detail in SAS/STAT User’s
Guide.

All four multivariate tests (all of which are exact in this case) indicate that the variable
X1 does indeed have a very significant effect on the variables Y 1, . . . , Y 5. At the same
time, a similar test for X2 shows that initial weight does not significantly contribute to the
death rate. Thus, the null hypothesis corresponding to the significance of dose is rejected
while that corresponding to the significance of weight is not rejected. It may be pointed
out that the data analyzed here represent repeated measurements. See Chapters 5 and 6 for
extensive analyses of repeated measures data.

/* Program 3.3 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 3.3’;
data fish;
infile ’fish.dat’ firstobs = 1;
input p1 p2 p3 p4 p5 dose wt @@;
y1=arsin(sqrt(p1));
y2=arsin(sqrt(p2));
y3=arsin(sqrt(p3));
y4=arsin(sqrt(p4));
y5=arsin(sqrt(p5));
x1=log(dose);
x2=wt;
proc print data=fish;
var p1 p2 p3 p4 p5 dose x2;
title2 ’Data on Proportions of Dead Fish’;
run;
proc print data=fish;
var y1 y2 y3 y4 y5 x1 x2;
title2 ’Transformed Fish Data’;
run;
proc glm data=fish;
model y1 y2 y3 y4 y5=x1 x2/nouni;
manova h=x1 x2/printe printh;
title2 ’Multivariate Regression for Fish Data’;
run;
/*
mtest option of proc reg can be used instead of manova
option of proc glm to get the same results. This is done
using the last two statements of the following program.
*/
proc reg data=fish;
model y1 y2 y3 y4 y5=x1 x2;
Model: mtest x1, x2/print;
Onlyx1: mtest x1/print;
Onlyx2: mtest x2/print;

The PROC GLM code in Program 3.3 does not provide any test for H (3)
0 :

[
β1
β2

]
= 0.

This is an important hypothesis which simultaneously tests that responses neither depend
on the dose nor depend on the weights of the fish (and therefore, for any given response, the
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mean response for all fish is constant and is not affected by these two variables). Since the
hypothesis is on the entire deterministic part of the model, the problem is also commonly
referred to as testing for the model. The above test can be completed by using the MTEST
statement in PROC REG. Specifically, for the null hypothesis of the type indicated above,
that is, those on all the regression coefficients, the corresponding MTEST statement should
include all the independent variables separated by commas. If the intercept is also one of
the parameters in the null hypothesis, it is specified using the keyword INTERCEPT in the
MTEST statement. In our case the SAS code is

proc reg;
y1 y2 y3 y4 y5=x1 x2;
mtest x1, x2/print;

The PRINT option prints the corresponding H matrix and the error SS&CP matrix E. The
output contains the value of Wilks’ � as well as the other three statistics. For our data set,
the p value for each of the four tests is quite small, and consequently the null hypothesis
can be rejected. Hence we conclude that the death rate does indeed depend on the average
weight or the dose or both.

The MTEST statement in PROC REG can also be used to test the individual hypotheses
on X1 and X2. The corresponding SAS statements are

mtest x1/print;
mtest x2/print;

Thus, it is possible to use the MTEST statement in PROC REG as an alternative to the
MANOVA statement in PROC GLM. In addition using MTEST is a useful way of per-
forming partial tests, the multivariate versions of univariate partial F tests, on the subsets
of independent variables; that task is not easy to accomplish with PROC GLM. To per-
form a partial test, we list these independent variables and separate them by commas in the
MTEST statement. On the other hand, unlike PROC GLM, PROC REG does not provide
any facility to suppress the accompanying univariate analyses, and hence its use may not
always be an optimal way of performing multivariate analysis of the data.

The MTEST statement is also useful for a variety of other multivariate null hypotheses.
For example, null hypotheses stating any interrelationships between independent variables
can be included as equations in the MTEST statement. For example, a hypothesis of the
form H0 : β1 − β2 = c0, where c0 is a specified constant vector, can be tested using the
statement

mtest x1-x2=c0/print;

The dependent variables can also be included in the MTEST statement. It is a very useful
feature for situations where two or more univariate regression models are to be compared.
We will address these issues in Section 3.8.

Output 3.3 Output 3.3
Data on Proportions of Dead Fish

OBS P1 P2 P3 P4 P5 DOSE X2

1 0.00 0.00 0.25 0.25 0.25 270 0.6695
2 0.00 0.10 0.30 0.30 0.30 410 0.6405
3 0.00 0.50 0.75 0.90 0.90 610 0.7290
4 0.15 0.65 1.00 1.00 1.00 940 0.7700
5 0.45 1.00 1.00 1.00 1.00 1450 0.5655
6 0.00 0.05 0.20 0.20 0.20 270 0.7820
7 0.05 0.10 0.30 0.30 0.30 410 0.8120
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8 0.05 0.45 0.95 1.00 1.00 610 0.8215
9 0.10 0.70 1.00 1.00 1.00 940 0.8690
10 0.20 0.85 1.00 1.00 1.00 1450 0.8395
11 0.00 0.00 0.00 0.00 0.05 270 0.8615
12 0.00 0.05 0.15 0.25 0.30 410 0.9045
13 0.00 0.15 0.95 0.95 0.95 610 1.0280
14 0.00 0.55 0.95 1.00 1.00 940 1.0445
15 0.10 0.85 1.00 1.00 1.00 1450 1.0455
16 0.00 0.00 0.00 0.05 0.10 270 0.6195
17 0.00 0.05 0.15 0.20 0.25 410 0.5305
18 0.10 0.45 0.95 0.95 0.95 610 0.5970
19 0.10 0.70 1.00 1.00 1.00 940 0.6385
20 0.35 0.95 1.00 1.00 1.00 1450 0.6645
21 0.00 0.05 0.20 0.20 0.20 270 0.5685
22 0.00 0.00 0.15 0.25 0.25 410 0.6040
23 0.00 0.40 0.90 1.00 1.00 610 0.6325
24 0.05 0.65 1.00 1.00 1.00 940 0.6845
25 0.30 0.85 1.00 1.00 1.00 1450 0.7230

Output 3.3
continued Output 3.3

Transformed Fish Data

OBS Y1 Y2 Y3 Y4 Y5 X1 X2

1 0.00000 0.00000 0.52360 0.52360 0.52360 5.59842 0.6695
2 0.00000 0.32175 0.57964 0.57964 0.57964 6.01616 0.6405
3 0.00000 0.78540 1.04720 1.24905 1.24905 6.41346 0.7290
4 0.39770 0.93774 1.57080 1.57080 1.57080 6.84588 0.7700
5 0.73531 1.57080 1.57080 1.57080 1.57080 7.27932 0.5655
6 0.00000 0.22551 0.46365 0.46365 0.46365 5.59842 0.7820
7 0.22551 0.32175 0.57964 0.57964 0.57964 6.01616 0.8120
8 0.22551 0.73531 1.34528 1.57080 1.57080 6.41346 0.8215
9 0.32175 0.99116 1.57080 1.57080 1.57080 6.84588 0.8690
10 0.46365 1.17310 1.57080 1.57080 1.57080 7.27932 0.8395
11 0.00000 0.00000 0.00000 0.00000 0.22551 5.59842 0.8615
12 0.00000 0.22551 0.39770 0.52360 0.57964 6.01616 0.9045
13 0.00000 0.39770 1.34528 1.34528 1.34528 6.41346 1.0280
14 0.00000 0.83548 1.34528 1.57080 1.57080 6.84588 1.0445
15 0.32175 1.17310 1.57080 1.57080 1.57080 7.27932 1.0455
16 0.00000 0.00000 0.00000 0.22551 0.32175 5.59842 0.6195
17 0.00000 0.22551 0.39770 0.46365 0.52360 6.01616 0.5305
18 0.32175 0.73531 1.34528 1.34528 1.34528 6.41346 0.5970
19 0.32175 0.99116 1.57080 1.57080 1.57080 6.84588 0.6385
20 0.63305 1.34528 1.57080 1.57080 1.57080 7.27932 0.6645
21 0.00000 0.22551 0.46365 0.46365 0.46365 5.59842 0.5685
22 0.00000 0.00000 0.39770 0.52360 0.52360 6.01616 0.6040
23 0.00000 0.68472 1.24905 1.57080 1.57080 6.41346 0.6325
24 0.22551 0.93774 1.57080 1.57080 1.57080 6.84588 0.6845
25 0.57964 1.17310 1.57080 1.57080 1.57080 7.27932 0.7230
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Output 3.3
Multivariate Regression for Fish Data

General Linear Models Procedure
Number of observations in data set=25

E = Error SS&CP Matrix

Y1 Y2 Y3 Y4 Y5

Y1 0.35212077 0.13237233 -0.0815826 -0.2385054 -0.2115503
Y2 0.13237233 0.3986007 0.24790465 0.23529861 0.2252679
Y3 -0.0815826 0.24790465 1.22735578 1.22213318 1.08918722
Y4 -0.2385054 0.23529861 1.22213318 1.45057752 1.3142694
Y5 -0.2115503 0.2252679 1.08918722 1.3142694 1.2243379

H = Type III SS&CP Matrix for X1

Y1 Y2 Y3 Y4 Y5

Y1 0.94443317 2.13966069 2.40045274 2.31897003 2.20973844
Y2 2.13966069 4.84750856 5.43834602 5.25374286 5.00627322
Y3 2.40045274 5.43834602 6.10119756 5.89409409 5.61646167
Y4 2.31897003 5.25374286 5.89409409 5.69402069 5.42581243
Y5 2.20973844 5.00627322 5.61646167 5.42581243 5.17023771

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall X1 Effect

H = Type III SS&CP Matrix for X1 E = Error SS&CP Matrix

S=1 M=1.5 N=8

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.065585 51.29 5 18 0.0001
Pillai’s Trace 0.934415 51.29 5 18 0.0001
Hotelling-Lawley Trace 14.24729 51.29 5 18 0.0001
Roy’s Greatest Root 14.24729 51.29 5 18 0.0001

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall X2 Effect

H = Type III SS&CP Matrix for X2 E = Error SS&CP Matrix

S=1 M=1.5 N=8

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.654906 1.897 5 18 0.1449
Pillai’s Trace 0.345094 1.897 5 18 0.1449
Hotelling-Lawley Trace 0.526938 1.897 5 18 0.1449
Roy’s Greatest Root 0.526938 1.897 5 18 0.1449

Multivariate Test: MODEL

E, the Error Matrix

0.3521207721 0.1323723295 -0.081582595
0.1323723295 0.3986006993 0.2479046457
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-0.081582595 0.2479046457 1.2273557756
-0.238505417 0.2352986084 1.2221331781
-0.211550264 0.2252678955 1.0891872222

-0.238505417 -0.211550264
0.2352986084 0.2252678955
1.2221331781 1.0891872222
1.4505775203 1.3142693993
1.3142693993 1.2243378999

H, the Hypothesis Matrix

0.9538786705 2.1157383555 2.3410489485
2.1157383555 4.9080959325 5.58879619
2.3410489485 5.58879619 6.4747944636
2.2590396342 5.4055267572 6.2710028881
2.1485124778 5.1613383564 6.0015184245

2.2590396342 2.1485124778
5.4055267572 5.1613383564
6.2710028881 6.0015184245
6.0742707424 5.8142826656
5.8142826656 5.567105838

Multivariate Statistics and F Approximations

S=2 M=1 N=8

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.046688 13.061 10 36 0.0001
Pillai’s Trace 1.2132 5.8594 10 38 0.0001
Hotelling-Lawley Trace 14.85233 25.249 10 34 0.0001
Roy’s Greatest Root 14.46758 54.977 5 19 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Multivariate Test: ONLYX1

E, the Error Matrix

0.3521207721 0.1323723295 -0.081582595
0.1323723295 0.3986006993 0.2479046457
-0.081582595 0.2479046457 1.2273557756
-0.238505417 0.2352986084 1.2221331781
-0.211550264 0.2252678955 1.0891872222
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-0.238505417 -0.211550264
0.2352986084 0.2252678955
1.2221331781 1.0891872222
1.4505775203 1.3142693993
1.3142693993 1.2243378999

H, the Hypothesis Matrix

0.9444331687 2.1396606906 2.4004527379
2.1396606906 4.8475085618 5.4383460192
2.4004527379 5.4383460192 6.1011975631
2.3189700315 5.2537428628 5.8940940938
2.2097384417 5.0062732199 5.6164616708

2.3189700315 2.2097384417
5.2537428628 5.0062732199
5.8940940938 5.6164616708
5.6940206946 5.4258124278
5.4258124278 5.1702377073

Multivariate Statistics and Exact F Statistics

S=1 M=1.5 N=8

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.065585 51.29 5 18 0.0001
Pillai’s Trace 0.934415 51.29 5 18 0.0001
Hotelling-Lawley Trace 14.24729 51.29 5 18 0.0001
Roy’s Greatest Root 14.24729 51.29 5 18 0.0001

Multivariate Test: ONLYX2

E, the Error Matrix

0.3521207721 0.1323723295 -0.081582595
0.1323723295 0.3986006993 0.2479046457
-0.081582595 0.2479046457 1.2273557756
-0.238505417 0.2352986084 1.2221331781
-0.211550264 0.2252678955 1.0891872222

-0.238505417 -0.211550264
0.2352986084 0.2252678955
1.2221331781 1.0891872222
1.4505775203 1.3142693993
1.3142693993 1.2243378999
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H, the Hypothesis Matrix

0.0976730369 0.0792504059 -0.01314736
0.0792504059 0.0643025654 -0.010667567
-0.01314736 -0.010667567 0.0017697113
-0.020670718 -0.016771904 0.0027823991
-0.032603961 -0.026454355 0.0043886832

-0.020670718 -0.032603961
-0.016771904 -0.026454355
0.0027823991 0.0043886832
0.0043745806 0.0069000341
0.0069000341 0.0108834365

Multivariate Statistics and Exact F Statistics

S=1 M=1.5 N=8

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.654906 1.897 5 18 0.1449
Pillai’s Trace 0.345094 1.897 5 18 0.1449
Hotelling-Lawley Trace 0.526938 1.897 5 18 0.1449
Roy’s Greatest Root 0.526938 1.897 5 18 0.1449

A few comments may be made about the possible alternative approaches to the analy-
sis presented here for the fish data. The actual raw data deal with the counts, namely the
number, of dead fish and are multinomial in nature. The normality was obtained by apply-
ing the variance stabilizing transformation which in general may or may not stabilize the
correlations between the variables. Although for this particular data set the transformation
works well, there may be some extreme cases with 0% and 100% mortalities that cannot be
transformed to normality. In such instances, it is advisable to use the iteratively reweighted
least squares analysis which can be done using the NLIN procedure of SAS involving the
nonlinear regression techniques. However, we will not pursue this analysis here.

3.5.2 Stepdown Analysis

Another linear hypothesis test, which is especially useful when there is a certain order
among the response variables due to some physical interpretation of such ordering, is
based on what is commonly referred to as stepdown analysis. To perform the analysis,
let the physically meaningful ordering for consideration among the dependent variables,
for a particular situation, be y1, y2, . . . , yp. The essential idea behind this procedure is to
sequentially perform univariate tests on the univariate models associated with dependent
variables, y j conditional on (that is, fixing), y1, y2, . . . , y j−1. As a result, the hypotheses
in Equation 3.11

H0 : LB = 0 vs. H1 : LB �= 0
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can be written in terms of the intersection and union of univariate subhypotheses Hi1,
Hi2, . . . , Hip , i = 0 or 1 as

H0 =
p⋂

j=1

H0 j and H1 =
p⋃

j=1

H1 j .

Thus, the null hypothesis H0 is not rejected if and only if all H0 j : Lη j = 0, j =
1, . . . , p, are not rejected and is rejected if at any stage a rejection occurs. The hypothesis
H0 j is the null hypothesis on parameters η j of the j th model E(y j ) = Xη j + γ1y1 +
· · ·+γp−1yp−1. That is, the model which corresponds to y j , conditional on y1, . . . , y j−1.
By definition, if j = 1, it is unconditional. Further, H0 j can be reduced to Lβ j = 0
assuming that H01, . . . , H0, j−1 have been not rejected at previous stages. This is so since
in this case Lη j = 0 implies Lβ j = 0. The F statistic, Fj for testing H0 j , conditional
on y1, . . . , y j−1 follows an F(r, n − k − j) distribution when H0 j is true. As before,
r = Rank(L). Further, F1, . . . , Fk are all independently distributed of each other, since
the conditional distributions are the same as the unconditional ones. We therefore test H0
at the significance level α by sequentially testing H01, . . . , H0p using α1, . . . , αp as the
levels of significance, where

P

[
p⋂

j=1

(Fj < Fα j (r, n − k − j))

]
=

p∏
j=1

(1 − α j ) = 1 − α.

Thus the stepdown analysis can be easily implemented using successive univariate re-
gression models by including at every stage all the dependent variables previously tested in
the list of independent variables. Note that at any particular stage, except the first one, the
matrix L has to be augmented by additional zero columns corresponding to the dependent
variables added to the set of independent variables. The levels of significance α1, . . . , αp

are to be chosen so as to satisfy (1 − α1)(1 − α2) · · · (1 − αp) = (1 − α). For example,
choosing α j to be equal to, say, α∗ leads to α∗ = 1 − (1 − α)1/p .

EXAMPLE 3 Stepdown Analysis for Fish Data We again consider the fish data, given in Srivastava and
Carter (1983). As shown in Example 2, the original proportions of dead fish after 8, 14,
24, 36, and 48 hours are transformed into new variables y1 through y5 respectively using
the arcsine transformation. Since there is a definite natural ordering among the dependent
variables y1, . . . , y5 (through time), stepdown analysis is a meaningful possibility. Fol-
lowing the natural time ordering, we perform stepwise tests on y j conditional on all yi ,
i < j . If the problem is to see the significance of the effects of x1 = ln(DOSE) and
x2 = average weight, on y1, . . . , y5, then the null hypothesis H0 of no significant effect
of either x1 or x2 on y1, . . . , y5, can be written as

H0 = H01

⋂
H02

⋂
H03

⋂
H04

⋂
H05,

where

• H01: x1 and x2 do not have any effect on y1,

• H02: x1 and x2 do not have any effect on y2 given y1,

• H03: x1 and x2 do not have any effect on y3 given y1 and y2,

• H04: x1 and x2 do not have any effect on y4 given y1, y2 and y3, and
• H05: x1 and x2 do not have any effect on y5 given y1, y2, y3 and y4.

We test all five null hypotheses listed above in the natural time order. If the total level
of significance is desired to be α = 0.05, then for any individual null hypothesis, the
significance level, assuming it to be the same for all subhypotheses, will be α∗ = 1 − (1 −
0.05)1/5 ∼= .010. Since at the j th stage all yi , i < j are conditioned, they would appear in
the right side of the model as independent variables (or covariates) along with x1 and x2.
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For example, to test the hypothesis, say H03, the corresponding SAS statements are

proc reg;
model y3 = x1 x2 y1 y2;
test x1 = 0.0, x2=0.0;

and the MODEL statement in the above SAS code corresponds to the univariate linear
model

y3 = β0 + β1x1 + β2x2 + γ1y1 + γ2y2 + ε3.

The TEST statement tests the null hypothesis

H03 : β1 = β2 = 0

in the presence of the conditioned variables y1 and y2 as the other independent variables
in the model. A complete SAS program, which specifically tests the statistical significance
of x1 = ln (DOSE) and of x2 = average weight using the stepdown analysis, is given in
Program 3.4. Output 3.4 shows the results.

/* Program 3.4 */

options ls=64 ps=45 nodate nonumber;
data fish;
infile ’fish.dat’;
input p1 p2 p3 p4 p5 dose wt @@;
y1=arsin(sqrt(p1));
y2=arsin(sqrt(p2));
y3=arsin(sqrt(p3));
y4=arsin(sqrt(p4));
y5=arsin(sqrt(p5));
x1=log(dose);
x2=wt;
title1 ’Output 3.4 ’;
title2 ’ Stepdown Analysis’;
/*The following program performs the Stepdown Analysis */
proc reg data=fish;
model y1=x1 x2;
fishwt: test x2=0.0;
fmodel: test x1=0.0,x2=0.0;
proc reg data=fish;
model y2=x1 x2 y1;
fishwt: test x2=0.0;
fmodel: test x1=0.0,x2=0.0;
proc reg data=fish;
model y3=x1 x2 y1 y2;
fishwt: test x2=0.0;
fmodel: test x1=0.0,x2=0.0;
proc reg data=fish;
model y4=x1 x2 y1 y2 y3;
fishwt: test x2=0.0;
fmodel: test x1=0.0,x2=0.0;
proc reg data=fish;
model y5=x1 x2 y1 y2 y3 y4;
fishwt: test x2=0.0;
fmodel: test x1=0.0,x2=0.0;
run;
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Output 3.4 Output 3.4
Stepdown Analysis

Model: MODEL1
Dependent Variable: Y1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value
Prob>F

Model 2 0.95388 0.47694 29.798
0.0001
Error 22 0.35212 0.01601
C Total 24 1.30600

Root MSE 0.12651 R-square 0.7304
Dep Mean 0.19092 Adj R-sq 0.7059
C.V. 66.26628

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0

INTERCEP 1 -1.651099 0.28363283 -5.821
X1 1 0.336405 0.04379362 7.682
X2 1 -0.430791 0.17438706 -2.470

Variable DF Prob > |T|

INTERCEP 1 0.0001
X1 1 0.0001
X2 1 0.0217

Dependent Variable: Y1
Test: FISHWT Numerator: 0.0977 DF: 1 F value: 6.1025

Denominator: 0.016005 DF: 22 Prob>F: 0.0217

Dependent Variable: Y1
Test: FMODEL Numerator: 0.4769 DF: 2 F value: 29.7985

Denominator: 0.016005 DF: 22 Prob>F: 0.0001

The rejection of H0 is attained as soon as any subhypothesis H0 j is rejected at the
desired significance level α∗(� .010). In view of the very small p value, which is 0.0001
(see Output 3.4), for the very first model (for y1) we reject the null hypothesis H0 and
conclude that the fish death rates do indeed depend on either dose or weight of the fish or
both.
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3.6 Simultaneous Confidence Intervals

If H0 : LB = 0 is rejected, it may be of interest to provide the confidence intervals for the
individual components of LB (or B if L = Ik+1) or the linear functions of these compo-
nents. Under the assumption of the full rank of X, a set of simultaneous confidence inter-
vals for the linear combinations of the type c′LBd corresponding to the linear hypothesis
H0 : LB = 0 can be constructed.

Noting that H (c,d)
0 : c′LBd = 0 is true for all c and d if and only if H0 is true, we can

write H0 as the intersection of all such H (c,d)
0 : c′LBd = 0. Testing of H (c,d)

0 : c′LBd = 0
can be done using the appropriate F test. Let the corresponding F statistic be F (c,d) and let
Fα be the cutoff point. Then, H0 is not rejected if and only if all H (c,d)

0 are not rejected,
that is, if and only if maxc,d F (c,d) ≤ Fα . In fact, the maxc,d F (c,d) is equal to (n − k −
1)λmax, where λmax is the Roy’s largest root test statistic, defined earlier, corresponding
to H0 indicated above. Thus 100(1 − α)% simultaneous confidence intervals for all linear
combinations c′LBd are given by

c′LB̂d ± {λαc′L(X′X)−1L′c · d′Ed}1/2,

where E is the error sums of squares and product matrix and λα , the cutoff point for λmax,
is such that P[λmax ≤ λα] = 1 − α.

The tables for the cutoff points λα are available in Pillai (1960). Alternatively, the F
statistics approximation from λmax which is reported in Table 3.2 can be used. For Pro-
gram 3.5, we follow the latter alternative. Thus the (1 − α)100% cutoff point λα can be
approximated by

λα = h

n − k − h + r − 1
Fα(h, n − k − h + r − 1). (3.17)

The calculations of the confidence intervals for a choice of c and d are illustrated in
the following example using the IML procedure (see Program 3.5). Note that the matrices
B̂, (X′X)−1 and E are available as the outputs of PROC REG or PROC GLM. Selected
parts of the output of Program 3.5 are shown in Output 3.5.

EXAMPLE 4 Confidence Intervals for Cork Deposits in Cork Data Chapter 1 states that our interest
in these data is in discovering if cork deposits are uniform in all four directions. Also, recall
that an appropriate set of transformations of variables to do this would be

z1 = y1 − y2 + y3 − y4, z2 = y3 − y4, z3 = y1 − y3.

To construct the (1 − α)100% simultaneous confidence intervals on the corresponding
means µ1 − µ2 + µ3 − µ4, µ3 − µ4 and µ1 − µ3, we write each of these means as c′LBd
with the respective choices of d as the columns of


1 0 1

−1 0 0
1 1 −1

−1 −1 0




and with c = 1, L = 1, and B = (µ1 µ2 µ3 µ4).

In Program 3.5 the matrices c, d, L and matrices B̂, X′X (both obtained from the
output of PROC REG) and the matrix E (obtained from the output of PROC GLM) are
explicitly specified.

In the present context,

rt = Rank(H + E) = p = 4,

r = Rank(L) = Rank([1]) = 1,
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n = 28,

k = 0,

s = min(r, rt ) = 1,

h = max(r, rt ) = 4,

m1 = (|r − rt | − 1)/2 = 1 and
m2 = (n − k − rt − 2)/2 = 11.

As a result n−k−h+r−1
h λmax = 6λmax follows an exact F(4, 24) distribution (since s=1)

F(h, n − k − h + r − 1). If α = 0.05, then using Equation 3.17 we can compute the 95%
cutoff point λ0.05 as 1

6 F0.05(4, 24) = 0.4627.

/* Program 3.5 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 3.5’;
proc iml;
alpha = .05 ;
n = 28;
/*
Calculations for simultaneous confidence intervals are shown below.

r_t =Rank (H+E)=p=4, Rank(L)=1, k=0
df of error matrix = dferror = 27
s = min(r, r_t) = 1, h=max(r,r_t)=4
m1 = .5(|r-r_t| - 1) = 1
m2 = .5(n-k-r_t-2) = 11.
lambda = [h/(n-k-h+r-1)]F(alpha,h, n-k-h+r-1)

*/
r_t=4;
r=1;
k=0;
s = min(r, r_t);
h=max(r,r_t);
m1 = .5*(abs(r-r_t) - 1);
m2 = .5*(n-k-r_t-2);
lambda = (h/(n-k-h+r-1))*finv(1-alpha,h,n-k-h+r-1);
cutoff = sqrt(lambda);
/*
Cut-off point for Bonferroni intervals will be computed as follows:
dferror = 27 ; * dferror=n-1;
g=3.0; * g is the no. of comparisons;
cutoff = tinv(1-(alpha/(2*g)),dferror);
cutoff=cutoff/sqrt(dferror);

*/
xpx = {28};
e = {7840.9643 6041.3214 7787.8214 6109.3214,

6041.3214 5938.1071 6184.6071 4627.1071,
7787.8214 6184.6071 9450.1071 7007.6071,
6109.3214 4627.1071 7007.6071 6102.1071};

bhat = {50.535714 46.178571 49.678571 45.178571};
l = {1} ;
c={1};
d1={1,-1,1,-1};
d2={0,0,1,-1};
d3={1,0,-1,0};
clbhatd1=c‘*l*bhat*d1;
clbhatd2=c‘*l*bhat*d2;
clbhatd3=c‘*l*bhat*d3;
cwidth1=cutoff*sqrt((c‘*l*(inv(xpx))*l‘*c)*(d1‘*e*d1));
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cwidth2=cutoff*sqrt((c‘*l*(inv(xpx))*l‘*c)*(d2‘*e*d2));
cwidth3=cutoff*sqrt((c‘*l*(inv(xpx))*l‘*c)*(d3‘*e*d3));
cl11=clbhatd1-cwidth1;
cl12=clbhatd1+cwidth1;
cl21=clbhatd2-cwidth2;
cl22=clbhatd2+cwidth2;
cl31=clbhatd3-cwidth3;
cl32=clbhatd3+cwidth3;
print ’Simultaneous Confidence Intervals’;
print ’For first contrast: (’ cl11’, ’ cl12 ’)’;
print ’For second contrast:(’ cl21’, ’ cl22 ’)’;
print ’For third contrast: (’ cl31’, ’ cl32 ’)’;
run;

In the IML procedure code given in Program 3.5 it is necessary only to specify
rt , r, n, k and α explicitly. The rest of the parameters and the (approximate) value of
λα are computed by the program.

Output 3.5 Output 3.5

Simultaneous Confidence Intervals

CL11 CL12
For first contrast: ( 1.2786666 , 16.435619 )

CL21 CL22
For second contrast:( -0.539816 , 9.5398157 )

CL31 CL32
For third contrast: ( -4.467176 , 6.1814617 )

Output 3.5 shows that three confidence intervals are (1.2787, 16.4356), (−0.5398,
9.5398) and (−4.4672, 6.1815) respectively. It may be noted that the first of these intervals
does not contain zero and therefore, it is this contrast, namely the difference between the
average (or sums of) deposits in (N,S) and (E,W) direction, which caused the rejection of
the hypothesis of uniform cork deposits in all four directions.

Hotelling’s T 2 offers another choice of simultaneous confidence intervals. See Johnson
and Wichern (1998, p. 239) for further details. These simultaneous confidence intervals
have the drawback of being too wide. However, if the interest is in only a few specific
linear combinations, it is possible to provide corresponding confidence intervals, which are
shorter, using Bonferroni’s inequality. These confidence intervals are based on the usual
Student’s t test for the associated univariate linear hypothesis. For instance, if c′

i LBdi ,
i = 1, . . . , g are the g linear functions of interest, then 100(1−α)% Bonferroni’s intervals
are

c′
i LB̂di ± tn−k−1(αi/2)√

n − k − 1

√
(c′

i L(X′X)−1L′ci )(d′
i Edi ), i = 1, . . . , g,

where α1 + · · · + αg = α and tν(δ) is the 100(1 − δ)% upper cutoff point from a t-
distribution with ν degrees of freedom. Note that in order to compute these intervals the
IML procedure as shown in Program 3.5 can be used with λ

1/2
d replaced by tn−k−1(αi/2),
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for i = 1, . . . , g respectively. The corresponding statements have been included in Pro-
gram 3.5 with αi = α/3 but have been commented out. To obtain the Bonferroni intervals,
replace these statements with those corresponding to simultaneous confidence intervals.

3.7 Multiple Response Surface Modeling

Response surface modeling is essentially a regression analysis problem. In situations where
data are collected on a number of response (dependent) variables under the controlled lev-
els of process or recipe (independent) variables, these responses are correlated. However,
as it often happens, the levels of process or recipe variables that are optimum for one de-
pendent variable may not be optimum for others. Therefore it is important to investigate
response variables simultaneously and not individually or independently of one another,
in order to also account for interrelationships. Consequently, the “best model” search for
the individual response variables may not be meaningful. What is desired is a best set of
models for these responses. A way to do this would be to simultaneously fit multivariate
regression models and statistically test the significance of various terms corresponding to
independent variables using multivariate methods. This can be done by the repeated use of
the MTEST statement in PROC REG.

EXAMPLE 5 Quality Improvement of Mullet Flesh Tseo, Deng, Cornell, Khuri, and Schmidt (1983)
considered a study of quality improvement of minced mullet flesh where three process
variables, namely washing temperature (TEMP), washing time (TIME), and washing ra-
tio (WRATIO) were varied in a controlled manner in a designed experiment. The four
responses, springiness (SPRNESS) in mm, TBA number (TBA), cooking loss (COOK-
LOSS) in % and whiteness index (WHITNESS) were observed for all 17 experiments. For
the analysis, all the variables are standardized to have zero means. The standardization of
independent variables was carried out to have the levels of the three variables as +1 and
−1 in the 23 full factorial part of the design. To do so, we define

X1 = TEMP − 33

7
, X2 = TIME − 5.5

2.7
, X3 = WRATIO − 22.5

4.5
.

The four response variables are standardized to have sample variances equal to 1. The
standardized variables are respectively denoted by Y 1, Y 2, Y 3, and Y 4. The multiple re-
sponse surfaces are fitted for Y 1, Y 2, Y 3, and Y 4 as functions of X1, X2, and X3.

Suppose the interest is to simultaneously fit models which contain effects only up to the
second degree in X1, X2, and X3 and up to two variable interactions. For that, we first
obtain the values for the variables X1, X2, and X3 as indicated above and their respective
interactions defined as X1X2 = X1 ∗ X2, X1X3 = X1 ∗ X3, X2X3 = X2 ∗ X3. Then we
obtain the quadratic effects X1SQ = X1∗ X1, X2SQ = X2∗ X2 and X3SQ = X3∗ X3,
within the DATA step for the data set WASH. The values for variables Y 1, . . . , Y 4 are ob-
tained by using the STANDARD procedure where the options MEAN = 0 and STD = 1
are used to set the respective sample means at zero and respective sample standard devia-
tions at unity for these variables which are listed in the VAR statement. Output is stored in
the data set WASH2. We perform a multivariate regression analysis on WASH2 to obtain
the appropriate response surfaces by performing the various significance tests.

A complete second order model would involve a total of nine terms, namely X1, X2,
X3, X1X2, X1X3, X2X3, X1SQ, X2SQ, and X3SQ, apart from the intercept. We will
confine our discussion to only three specific hypotheses

H (1)
0 The multivariate model contains only the linear terms plus an intercept vector.

H (2)
0 The multivariate model is quadratic without any interaction terms.

H (3)
0 The multivariate model has only linear, two-variable interaction terms and intercept

vector but no quadratic terms.
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The three null hypotheses stated above can respectively be tested using the following
three MTEST statements:

linear: mtest x1sq, x2sq, x3sq, x1x2, x1x3, x2x3/print;
nointctn: mtest x1x2, x1x3, x2x3/print;
noquad: mtest x1sq, x2sq, x3sq/print;

The names LINEAR, NOINTCTN and NOQUAD before the colon (:) in the respective
three statements are used only for labeling purposes and are optional. The SAS code and
resulting output are presented in Program 3.6 and Output 3.6.

/* Program 3.6 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 3.6’;
data wash;
input temp time wratio sprness tba cookloss whitness ;
x1 = (temp - 33)/7.0 ;
x2 = (time - 5.5)/2.7 ;
x3 = (wratio-22.5)/4.5 ;
x1sq =x1*x1;
x2sq = x2*x2;
x3sq = x3*x3;
x1x2 = x1*x2;
x1x3 = x1*x3;
x2x3 = x2*x3;
y1= sprness;
y2= tba;
y3 = cookloss;
y4= whitness ;
lines;
26.0 2.8 18.0 1.83 29.31 29.50 50.36
40.0 2.8 18.0 1.73 39.32 19.40 48.16
26.0 8.2 18.0 1.85 25.16 25.70 50.72
40.0 8.2 18.0 1.67 40.81 27.10 49.69
26.0 2.8 27.0 1.86 29.82 21.40 50.09
40.0 2.8 27.0 1.77 32.20 24.00 50.61
26.0 8.2 27.0 1.88 22.01 19.60 50.36
40.0 8.2 27.0 1.66 40.02 25.10 50.42
21.2 5.5 22.5 1.81 33.00 24.20 29.31
44.8 5.5 22.5 1.37 51.59 30.60 50.67
33.0 1.0 22.5 1.85 20.35 20.90 48.75
33.0 10.0 22.5 1.92 20.53 18.90 52.70
33.0 5.5 14.9 1.88 23.85 23.00 50.19
33.0 5.5 30.1 1.90 20.16 21.20 50.86
33.0 5.5 22.5 1.89 21.72 18.50 50.84
33.0 5.5 22.5 1.88 21.21 18.60 50.93
33.0 5.5 22.5 1.87 21.55 16.80 50.98
;
/* Source: Tseo et al. (1983). Reprinted by permission of
the Institute of Food Technologists. */
proc standard data=wash mean=0 std=1 out=wash2 ;
var y1 y2 y3 y4 ;
run;
proc reg data = wash2;
model y1 y2 y3 y4 = x1 x2 x3 x1sq x2sq x3sq
x1x2 x1x3 x2x3 ;
Linear: mtest x1sq, x2sq, x3sq, x1x2, x1x3,
x2x3/print;
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Nointctn: mtest x1x2,x1x3,x2x3/print;
Noquad: mtest x1sq, x2sq, x3sq/print;
title2 ’Quality Improvement in Mullet Flesh’;
run;
proc reg data = wash2;
model y1 y2 y3 y4 = x1 x2 x3 x1sq x2sq x3sq ;
run;

Output 3.6 Output 3.6
Quality Improvement in Mullet Flesh

Multivariate Test: LINEAR

E, the Error Matrix

0.8657014633 0.0034272456 -0.815101433 -1.634723273
0.0034272456 0.661373219 -0.17637356 0.6463179546
-0.815101433 -0.17637356 1.9374527491 2.2687768511
-1.634723273 0.6463179546 2.2687768511 6.765404456

H, the Hypothesis Matrix

8.0041171357 -8.822976865 -7.893007279 6.5980348245
-8.822976865 10.054652572 9.1165224684 -7.103378577
-7.893007279 9.1165224684 12.622482263 -5.15027833
6.5980348245 -7.103378577 -5.15027833 5.9966106878

Multivariate Statistics and F Approximations

S=4 M=0.5 N=1

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.001812 3.228 24 15.164 0.0107
Pillai’s Trace 2.001528 1.1685 24 28 0.3436
Hotelling-Lawley Trace 88.2617 9.1939 24 10 0.0004
Roy’s Greatest Root 83.82687 97.798 6 7 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Multivariate Test: NOINTCTN

E, the Error Matrix

0.8657014633 0.0034272456 -0.815101433 -1.634723273
0.0034272456 0.661373219 -0.17637356 0.6463179546
-0.815101433 -0.17637356 1.9374527491 2.2687768511
-1.634723273 0.6463179546 2.2687768511 6.765404456
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H, the Hypothesis Matrix

0.3238160164 -0.440143047 -0.758060209 -0.030667821
-0.440143047 0.7018039785 0.6864395048 -0.025289745
-0.758060209 0.6864395048 3.9583870894 0.4937367103
-0.030667821 -0.025289745 0.4937367103 0.0844373123

Multivariate Statistics and F Approximations

S=3 M=0 N=1

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.061574 1.6927 12 10.875 0.1973
Pillai’s Trace 1.443396 1.3909 12 18 0.2558
Hotelling-Lawley Trace 7.205689 1.6013 12 8 0.2566
Roy’s Greatest Root 5.86998 8.805 4 6 0.0110

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Multivariate Test: NOQUAD

E, the Error Matrix

0.8657014633 0.0034272456 -0.815101433 -1.634723273
0.0034272456 0.661373219 -0.17637356 0.6463179546
-0.815101433 -0.17637356 1.9374527491 2.2687768511
-1.634723273 0.6463179546 2.2687768511 6.765404456

H, the Hypothesis Matrix

7.6803011193 -8.382833817 -7.134947069 6.6287026452
-8.382833817 9.3528485931 8.4300829636 -7.078088833
-7.134947069 8.4300829636 8.6640951737 -5.644015041
6.6287026452 -7.078088833 -5.644015041 5.9121733755

Multivariate Statistics and F Approximations

S=3 M=0 N=1

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.004154 6.2945 12 10.875 0.0024
Pillai’s Trace 1.659428 1.8568 12 18 0.1141
Hotelling-Lawley Trace 81.05601 18.012 12 8 0.0002
Roy’s Greatest Root 79.06247 118.59 4 6 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
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The output resulting from the MTEST statements indicated above shows that the null
hypothesis H (1)

0 , which states that the models contain only linear terms and intercepts, is
probably not true. The p value corresponding to Wilks’ � is 0.0107. Except for Pillai’s
trace test, all the other multivariate tests produce small p values. Thus at least some of
the quadratic and/or interaction terms may be important and may need to be included in
the model. Also, it may be of interest to test the hypotheses H (2)

0 and H (3)
0 (among many

others) which exclusively test for the absence of two-variable interaction effects and the
absence of quadratic effects respectively. As Output 3.6 shows, the null hypothesis H (2)

0
is not rejected and hence, we may probably drop all the two-variable interaction terms
from the model. In view of small p values corresponding to all multivariate tests except the
Pillai’s trace statistic, H (3)

0 is rejected leading to the conclusion that there are at least some
quadratic effects present. As a result, the equations of the four estimated response surfaces,
obtained from the output corresponding to univariate analyses, (not shown), are

Ŷ 1 = 0.5831 − 0.7187 ∗ X1 − 0.0073 ∗ X2 + 0.0667 ∗ X3 − 0.7569 ∗ X1SQ

+ 0.0099 ∗ X2SQ + 0.0227 ∗ X3SQ,

Ŷ 2 = −0.8297 − 0.6071 ∗ X1 − 0.0186 ∗ X2 − 0.1314 ∗ X3 + 0.8736 ∗ X1SQ

+ 0.0510 ∗ X2SQ + 0.1065 ∗ X3SQ,

Ŷ 3 = −1.1671 + 0.1854 ∗ X1 − 0.0025 ∗ X2 − 0.2660 ∗ X3 + 0.856 ∗ X1SQ

+ 0.2044 ∗ X2SQ + 0.3904 ∗ X3SQ,

Ŷ 4 = 0.2979 − 0.4684 ∗ X1 + 0.1212 ∗ X2 + 0.0516 ∗ X3 − 0.6040 ∗ X1SQ

+ 0.1275 ∗ X2SQ + 0.1075 ∗ X3SQ.

Even the terms X2, X3, X2SQ, and X3SQ can also be dropped (the output is not shown
here), leaving the four quadratic response surfaces as functions of the variable X1, that
is temperature only. In that sense, the four responses appear to be robust with respect to
washing time and washing ratio.

3.8 General Linear Hypotheses

Sometimes our interest may be in comparing the regression coefficients from the models
corresponding to different variables. For example, in a multivariate linear model with two
response variables, it may be interesting to test if the intercepts, means, or some other
regression coefficients are equal in the respective models corresponding to these two re-
sponse variables. Such a hypothesis cannot be expressed in the form of Equation 3.11. This
hypothesis can, however, be formulated as a general linear hypothesis which can be written
as

H0 : LBM = 0 vs. H1 : LBM �= 0,

where r by (k + 1) matrix L is, as earlier, of rank r and the p by s matrix M is of rank s.
These two matrices have different roles to play and need to be chosen carefully depending
on the particular hypothesis to be tested. Specifically, the premultiplied matrix L is used to
obtain a linear function of the regression coefficients within the individual models while
the postmultiplied matrix M does the same for the coefficients from different models but
corresponding to the same set of regressors or independent variables. In other words, the
matrix L provides a means of comparison of coefficients within models, whereas the matrix
M offers a way for “between models” comparisons of regression coefficients. As a result,
the simultaneous pre- and postmultiplication to B by L and M respectively provides a
method for defining a general linear hypothesis involving various coefficients of B.

For example, let B = (βi j ), that is, except for the zeroth row of β, the coefficient βi j is
the regression coefficient of the i th independent variable in the j th model (that is, the model
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for j th dependent variable). The zeroth row of β contains intercepts of various models.
Suppose we want to test the hypothesis that the difference between the coefficients of first
and second independent variables is the same for the two univariate models involving the
first two dependent variables. In other words, the null hypothesis to be tested is β11−β21 =
β12 − β22, i.e., H0 : (β11 − β21) − (β12 − β22) = 0. This equation in matrix notation is
written as LBM = 0 with

L = (0 1 − 1 0 · · · 0)

and

M =




1
−1

0
.

.

.

0




.

These types of general linear hypotheses occur frequently in the studies of growth curves,
repeated measures, and crossover designed data. Chapter 5 covers various examples of
these data.

EXAMPLE 6 Spatial Uniformity in Semiconductor Processes Guo and Sachs (1993) presented a case
study that attempted to model and optimize the spatial uniformity of the product output
characteristics at different locations in a batch of products. This example empirically mod-
els these responses using the multiple response surfaces and interprets the problem of test-
ing the spatial uniformity as a problem of general linear hypothesis testing.

The independent variables under consideration are two flow rates denoted by X1 and
X2, and the resulting dependent variables are the deposition rates at three measurement
sites. We denote these by Y 1, Y 2, and Y 3 respectively. We are interested in the spatial
uniformity, that is, we want to achieve a uniformity between the values of Y 1, Y 2, and Y 3
for the given levels of two flow rates.

This example fits the multivariate regression model for Y 1, Y 2, and Y 3 in terms of X1
and X2. Assume that there is no interaction between X1 and X2 and that the effects of X1
and X2 are both linear. The individual models can be obtained by using the SAS statements

proc reg;
model y1 y2 y3 = x1 x2;

given as part of Program 3.7. Output 3.7, which is produced by Program 3.7, provides the
estimates (collected from three separate univariate analyses) of regression coefficients

B̂ =

 29.8449 34.0764 41.3942

0.2940 0.2048 0.1346
0.1175 0.1378 0.0355




and hence the three models are

Ŷ 1 = 29.8449 + 0.2940X1 + 0.1175X2,

Ŷ 2 = 34.0764 + 0.2048X1 + 0.1378X2,

Ŷ 3 = 41.3942 + 0.1346X1 + 0.0355X2.

In the ideal case of complete spatial uniformity, we would expect the models for Y 1, Y 2,
and Y 3 to be identical. We construct an appropriate null hypothesis from this interpretation
of spatial uniformity.
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/* Program 3.7 */

options ls=64 ps=45 nodate nonumber;
data semicond;
input x1 x2 y1 y2 y3;
z1=y1-y2;z2=y2-y3;
lines;
46 22 45.994 46.296 48.589
56 22 48.843 48.731 49.681
66 22 51.555 50.544 50.908
46 32 47.647 47.846 48.519
56 32 50.208 49.930 50.072
66 32 52.931 52.387 51.505
46 42 47.641 49.488 48.947
56 42 51.365 51.365 50.642
66 42 54.436 52.985 51.716
;
/* Source: Guo and Sachs (1993). Reprinted by permission of the

Institute of Electrical and Electronics Engineers, Inc.
Copyright 1993 IEEE. */

proc reg data = semicond ;
model y1 y2 y3 = x1 x2 ;
AllCoef: mtest y1-y2,y2-y3,intercept,x1,x2/print;
X1andX2: mtest y1-y2,y2-y3,x1,x2/print;
title1 ’ Output 3.7 ’;
title2 ’Spatial Uniformity in Semiconductor Processes’ ;
run;

Let

B =

 β01 β02 β03

β11 β12 β13
β21 β22 β23


 .

Then the columns of B represent the regression coefficients in the models for Y 1, Y 2,
and Y 3 respectively. Thus the complete spatial uniformity amounts to testing the hypothe-
sis that the three columns of B are identical, that is, our null hypothesis is

H0 : β01 = β02 = β03,

β11 = β12 = β13,

β21 = β22 = β23;
or,

H0 : β01 − β02 = 0, β02 − β03 = 0,

β11 − β12 = 0, β12 − β13 = 0,

β21 − β22 = 0, β22 − β23 = 0;
or,

H0 :

 β01 β02 β03

β11 β12 β13
β21 β22 β23




 1 0

−1 1
0 −1


 =


 0 0

0 0
0 0


 ;

or,

H0 : LBM = 0 with L = I3 and M =

 1 0

−1 1
0 −1


 .
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To test this null hypothesis, we use the MTEST statement in PROC REG. An alternative
could be to use the CONTRAST and MANOVA statements in PROC GLM, but since
that is applicable only for designed experiments and not otherwise, we do not make this
choice here. Chapters 4 and 5 elaborate on this approach. The approach using the MTEST
statement is general and applicable for all regression modeling problems even when the
data are collected from designed or undesigned experiments.

If H0 is true, then the coefficients of the three models are identical. And hence the true
means (expected values) of Y 1 − Y 2 and Y 2 − Y 3 would both be zero. Therefore, in order
to test H0 we could simultaneously test the three linear hypotheses. Specifically, the null
hypotheses are that the intercepts, as well as the coefficients of X1 and X2 in the models
for these two variables, are all zero. This can be done using the MTEST statement after the
MODEL statement. Models without intercepts can be fitted by using the NOINT option in
the MODEL statement.

Consequently, to test H0 : LBM = 0 with the choice of L and M indicated above, we
use the following SAS statements:

proc reg;
model y1 y2 y3 = x1 x2;
mtest y1-y2, y2-y3, intercept, x1, x2/print;

Note that the MTEST statement performs the four multivariate tests on variables Y 1 −
Y 2 and Y 2 − Y 3. An alternative yet equivalent approach would have been to define Z1 =
Y 1 − Y 2 and Z2 = Y 2 − Y 3 early in the DATA step after INPUT statement as shown
below:

data semicond;
input x1 x2 y1 y2 y3;
z1=y1-y2;
z2=y2-y3;

and then later in REG procedure use the MODEL and MTEST statements

model z1 z2 = x1 x2;
mtest z1, z2, intercept, x1, x2/print;

In fact, we do not really need to include variables Z1 and Z2 in the MTEST statement
given above. They are included by default because, if the list in the MTEST statement
does not include any dependent variable, SAS automatically includes the variables being
analyzed and those listed on the left side of the MODEL statement. In Program 3.7 we
have, however, used the MTEST statement to avoid creating two extra variables Z1 and
Z2. The PRINT option in the MTEST statement prints the corresponding H and E matrices
for variables Y 1 − Y 2 and Y 2 − Y 3.

Output 3.7 Output 3.7
Spatial Uniformity in Semiconductor Processes

Model: MODEL1
Dependent Variable: Y1

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value
Prob>F
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Model 2 60.14535 30.07268 201.946
0.0001
Error 6 0.89348 0.14891
C Total 8 61.03883

Root MSE 0.38589 R-square 0.9854
Dep Mean 50.06889 Adj R-sq 0.9805
C.V. 0.77073

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0

INTERCEP 1 29.844889 1.02421553 29.139
X1 1 0.294000 0.01575405 18.662
X2 1 0.117500 0.01575405 7.458

Variable DF Prob > |T|

INTERCEP 1 0.0001
X1 1 0.0001
X2 1 0.0003

Dependent Variable: Y2

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value
Prob>F

Model 2 36.54818 18.27409 251.850
0.0001
Error 6 0.43536 0.07256
C Total 8 36.98354

Root MSE 0.26937 R-square 0.9882
Dep Mean 49.95244 Adj R-sq 0.9843
C.V. 0.53925

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0

INTERCEP 1 34.076444 0.71494183 47.663
X1 1 0.204767 0.01099694 18.620
X2 1 0.137783 0.01099694 12.529

Variable DF Prob > |T|

INTERCEP 1 0.0001
X1 1 0.0001
X2 1 0.0001

Dependent Variable: Y3



96 Applied Multivariate Statistics

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value
Prob>F

Model 2 11.61893 5.80947 183.301
0.0001
Error 6 0.19016 0.03169
C Total 8 11.80910

Root MSE 0.17803 R-square 0.9839
Dep Mean 50.06433 Adj R-sq 0.9785
C.V. 0.35560

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0

INTERCEP 1 41.394200 0.47250828 87.605
X1 1 0.134567 0.00726792 18.515
X2 1 0.035450 0.00726792 4.878

Variable DF Prob > |T|

INTERCEP 1 0.0001
X1 1 0.0001
X2 1 0.0028

Multivariate Test: ALLCOEF

E, the Error Matrix

1.9090653889 -0.761418778
-0.761418778 0.6168702222

H, the Hypothesis Matrix

5.1464346111 2.3958517778
2.3958517778 9.3527627778

Multivariate Statistics and F Approximations

S=2 M=0 N=1.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.008835 16.064 6 10 0.0001
Pillai’s Trace 1.617641 8.4614 6 12 0.0010
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Hotelling-Lawley Trace 41.27571 27.517 6 8 0.0001
Roy’s Greatest Root 39.47972 78.959 3 6 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Multivariate Test: X1ANDX2

E, the Error Matrix

1.9090653889 -0.761418778
-0.761418778 0.6168702222

H, the Hypothesis Matrix

5.0244008333 2.5131113333
2.5131113333 9.2400906667

Multivariate Statistics and F Approximations

S=2 M=-0.5 N=1.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.00916 23.622 4 10 0.0001
Pillai’s Trace 1.605325 12.202 4 12 0.0003
Hotelling-Lawley Trace 41.0887 41.089 4 8 0.0001
Roy’s Greatest Root 39.38536 118.16 2 6 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

The first part of Output 3.7 presents the results of multivariate tests. The error SS&CP
matrix E and the hypothesis SS&CP matrix H are given first and are then followed by four
multivariate tests. All of the four multivariate tests reject the null hypothesis. For example,
the value of Wilks’ � is 0.0088, which leads to an (exact) F(6, 10) statistic value of 16.064
and a p value of 0.0001. In view of this extremely small p value, there is sufficient evidence
to reject H0 and conclude the lack of spatial uniformity.

Having rejected the null hypothesis of equality of all regression coefficients including
the intercepts in the three models, we may want to test if the three models differ only in their
intercepts and if the respective coefficients of X1 and X2 are the same in the models for
Y 1, Y 2 and Y 3. Therefore, we exclude the keyword INTERCEPT in the MTEST statement.
The appropriate MODEL and MTEST statements are

model y1 y2 y3 =x1 x2;
mtest y1-y2, y2-y3, x1, x2/print;

Of course, as earlier, Y 1 − Y 2 and Y 2 − Y 3 can be removed from the list in the MTEST
statement if Z1 = Y 1 − Y 2 and Z2 = Y 2 − Y 3 have already been defined in the DATA
step and if the variables Z1 and Z2 are analyzed in the MODEL statement. The resulting
multivariate outputs would be identical. These are presented under the label, “Multivariate
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Test: X1ANDX2” in the latter part of Output 3.7. As in the previous case, the null hypoth-
esis in the present case is also rejected by all four multivariate tests leading us to believe
that the deposition rates Y1, Y2, and Y3 at the three different measurement sites depend
differently on the two flow rates X1 and X2.

3.9 Variance and Bias Analyses for Calibration Problems

This section presents an application of the multivariate analysis of variance techniques to
test for equality of variances in several measuring devices. The approach is taken from
Christensen and Blackwood (1993). Such calibration problems occur frequently in assess-
ing the relative measurement quality of various instruments or of a particular instrument at
various times.

Suppose yi j i = 1, . . . , n, j = 1, . . . , q are the measurements for a random sample
of n items distributed around their respective true values, each measured by q instruments
or at q different laboratories. If α j is the fixed bias of the j th instrument and εi j are the
independent random errors with zero mean and variance σ 2

j , then the problem of testing
the equality of the error variances, namely

H0 : σ 2
1 = σ 2

2 = · · · = σ 2
q ,

can be reduced to a MANOVA problem with the test based on the multivariate regression
coefficients.

Let us define, for each of n items, ȳi = 1
q

∑q
j=1 yi j as the average measurement for the

i th item and ỹi j = yi j − ȳi as the deviation of each measurement on i th item from the
corresponding sample mean ȳi . Then, Christensen and Blackwood (1993) have shown that
the testing problem stated above is equivalent to testing

H0 : β11 = β12 = · · · = β1,q−1 = 0

in the multivariate linear model

ỹi j = β0 j + β1 j ȳi + εi j ,

j = 1, . . . , (q − 1); i = 1, . . . , n. In the context of above model, the null hypothesis H0
can be interpreted as a claim that the observed deviations from the mean do not depend on
the mean itself. The above model in matrix form is written as



ỹ11 · · · ỹ1, q−1
ỹ21 · · · ỹ2, q−1
.

.

.

ỹn1 · · · ỹn, q−1




=




1 ȳ1
1 ȳ2
. .

. .

. .

1 ȳn



[

β01 β02 · · · β0, q−1
β11 β12 · · · β1, q−1

]
+




ε11 · · · ε1 q−1
ε21 · · · ε2 q−1
.

.

.

εn1 · · · εn q−1




or

Y = XB + E

and our null hypothesis is that the vector of the slope parameters for the (q − 1) variables
is equal to zero. This is one of the standard null hypotheses that can be easily tested using
PROC GLM or PROC REG.

In the above discussion, ỹiq , i = 1, . . . , n have not been included in the model. In
general, any other set, ỹi j , i = 1, . . . , n could have been dropped instead. Although the
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data thus created would differ, the resulting test statistics and hence the conclusions are
invariant of any such choice.

EXAMPLE 7 Equality of Variances in Calibration of Thermocouples Christensen and Blackwood
(1993) described a study in which 64 measurements on a high temperature furnace were
taken by each of five thermocouples that had been bound together and inserted in the fur-
nace. The objective is to test if all five thermocouples have the same precision. In other
words, in this example we want to test the hypothesis of the equality of the variances for
the five thermocouples.

The data and the corresponding SAS code for analysis are presented in Program 3.8.
From the five temperature variables TC1 through TC5 corresponding to these thermocou-
ples and their average TCBAR = (T C1 + T C2 + · · · + T C5)/5 the variables Y1TILDA
through Y5TILDA are defined by taking the differences from their mean TCBAR. For
these data, since q = 5, we only need to take q − 1 = 4 of these five variables as the
response variables to fit a multivariate regression model with TCBAR as the independent
variable. We can choose any four of these five as the response variable. As mentioned pre-
viously, the values of the test statistics and the corresponding P values are unaffected by
any such choice.

Testing the hypothesis of equality of variances of TC1 through TC5 is equivalent to
testing the hypothesis that the slope parameters corresponding to the independent variable
TCBAR are all zero in the corresponding multivariate linear model. This hypothesis is
tested by using the SAS code

proc glm;
model y2tilda y3tilda y4tilda y5tilda = tcbar/nouni;
manova h = tcbar/printe printh;

or alternatively by using

proc reg;
model y2tilda y3tilda y4tilda y5tilda = tcbar;
EqualVar: mtest tcbar/print;

The latter choice is used while executing the Program 3.8, and the output is presented in
Output 3.8. All the multivariate tests are exact in this case and are also equivalent. Corre-
sponding to the observed value of F (4, 59) as 3.6449, the p value is equal to .0101 leading
to the rejection of the null hypothesis of equality of the five variances. The next step may
be to determine the equality of various variances in subgroups. The slope coefficients for
regressing Y2TILDA through Y5TILDA on TCBAR respectively, obtained from the cor-
responding outputs of univariate analysis, (not shown), are 0.1288, 0.0242, −0.0697, and
−0.0808. Because the five response variables sum to zero in this model the sum of all five
coefficients (corresponding to Y1TILDA through Y5TILDA) equals zero. Thus by differ-
ence, the slope coefficient for regressing Y1TILDA on TCBAR is −0.0025. Further, the
smaller regression coefficients correspond to smaller variances. Hence the five variances
can be ordered as

σ 2
5 , σ 2

4 , σ 2
1 , σ 2

3 , σ 2
2 .

Using the Student-Newman-Keuls test (Kuehl, 1994), Christensen and Blackwood (1993)
summarized the grouping as given below.

[
σ 2

5 , σ 2
4 ,

(
σ 2

1

]
, σ 2

3 , σ 2
2

)
.

See Christensen and Blackwood (1993) for further details.
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/* Program 3.8 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 3.8’;
title2 ’Testing the Precisions of Five Thermocouples’;
data calib ;
infile ’thermoco.dat’ obs=64;
input tc1 tc2 tc3 tc4 tc5 @@ ;
tcbar = (tc1+tc2+tc3+tc4+tc5)/5 ;
y1tilda = tc1 - tcbar ;
y2tilda = tc2 - tcbar ;
y3tilda = tc3 - tcbar ;
y4tilda = tc4 - tcbar ;
y5tilda = tc5 - tcbar ;

/*
proc glm data = calib;
model y2tilda y3tilda y4tilda y5tilda = tcbar /nouni;
manova h = tcbar/printe printh;
*/
proc reg data = calib ;
model y2tilda y3tilda y4tilda y5tilda = tcbar;
EqualVar:mtest tcbar/print;
Bias_Var:mtest intercept, tcbar/print;
run;

Output 3.8 Output 3.8
Testing the Precisions of Five Thermocouples

Multivariate Test: EQUALVAR

E, the Error Matrix

0.0475701116 -0.011049524 -0.009544794 -0.013674773
-0.011049524 0.0129013449 0.0015628105 -0.003486742
-0.009544794 0.0015628105 0.0075360191 -0.0005665
-0.013674773 -0.003486742 -0.0005665 0.0173898899

H, the Hypothesis Matrix

0.0036643259 0.0006892739 -0.001983269 -0.002297977
0.0006892739 0.0001296551 -0.000373061 -0.000432258
-0.001983269 -0.000373061 0.0010734184 0.00124375
-0.002297977 -0.000432258 0.00124375 0.0014411101

Multivariate Statistics and Exact F Statistics

S=1 M=1 N=28.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.801854 3.6449 4 59 0.0101
Pillai’s Trace 0.198146 3.6449 4 59 0.0101



Chapter 3 Multivariate Regression 101

Hotelling-Lawley Trace 0.247109 3.6449 4 59 0.0101
Roy’s Greatest Root 0.247109 3.6449 4 59 0.0101

Multivariate Test: BIAS_VAR

E, the Error Matrix

0.0475701116 -0.011049524 -0.009544794 -0.013674773
-0.011049524 0.0129013449 0.0015628105 -0.003486742
-0.009544794 0.0015628105 0.0075360191 -0.0005665
-0.013674773 -0.003486742 -0.0005665 0.0173898899

H, the Hypothesis Matrix

295.33648078 -263.4663775 67.96997654 168.39596614
-263.4663775 235.03968978 -60.63831058 -150.2289007
67.96997654 -60.63831058 15.645075922 38.758738355
168.39596614 -150.2289007 38.758738355 96.021841751

Multivariate Statistics and F Approximations

S=2 M=0.5 N=28.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.000018 3484.1 8 118 0.0001
Pillai’s Trace 1.148626 20.237 8 120 0.0001
Hotelling-Lawley Trace 47904.34 347306 8 116 0.0001
Roy’s Greatest Root 47904.16 718562 4 60 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Another problem of interest in calibration is to test for the equality of both the device
variances σ 2

i and biases α2
i , i = 1, . . . , q. Christensen and Blackwood (1993) showed that

with ỹi j = yi j − ȳi , j = 1, . . . , q − 1 as defined earlier, the null hypothesis of equality of
variances and equality of biases is equivalent to testing

H0 : β01 = β02 = · · · = β0,q−1 = 0,

β11 = β12 = · · · = β1,q−1 = 0.

in the linear model ỹi j = β0 j +β1 j yi + εi j , j = 1, . . . , q − 1; i = 1, . . . , n. Thus the hy-
pothesis is on slope coefficients as well as the intercepts. To test this null hypothesis using
SAS, we can, as earlier, use the MTEST statement in PROC REG. The SAS code for this is
given at the end of Program 3.8. All four multivariate tests lead to very small p values, for
example, the Wilks’ � results in the observed value of exact F(8, 118) as 3484.124, leading
to a p value of 0.0001. Consequently, we conclude that for at least two thermocouples either
the variances, or the biases, or both of the temperatures are unequal. For further discussion
of analysis involving biases and variances, see Christensen and Blackwood (1993).
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3.10 Regression Diagnostics

As in univariate regression, to assess various assumptions on the multivariate regression
model and the validity of the model, diagnostics should be an integral part of the analysis.
Such diagnostics tools also include data scrutiny to notice any striking or unusual features
present in the data. Certain quantities such as the matrices of predicted values, Ŷ = XB̂ =
X(X′X)−1X′Y = PY, of residuals, Ê = Y − Ŷ = (I − P)Y, and of estimated error
variances and covariances, Σ̂ = E/(n − k − 1) = Y′(I − P)Y/(n − k − 1), where
P = X(X′X)−1X′ = (pi j ) is the projection matrix also known as the hat matrix, play a
key role in such analyses. We will present certain aspects of these analyses in this section.

3.10.1 Assessing the Multivariate Normality of Error

One of the basic assumptions needed to perform the statistical tests under Equation 3.2 is
that the rows of E are independent and the multivariate normally distributed. This assump-
tion can be checked graphically using a Q − Q plot or analytically by applying formal
statistical tests, as presented in Chapter 1, on the residuals.

Let ε′
1, . . . , ε

′
n be the rows of E and ε̂′

1, . . . , ε̂
′
n be that of Ê . If the multivariate normality

assumption holds, the squared distances d2
i = ε̂′

i Σ̂
−1

ε̂i/(1 − pii ), i = 1, . . . , n will be
distributed approximately as chi-squares each with p degrees of freedom. Although these
are not theoretically independent, for a model well fit the correlations will be weak. Hence a
Q− Q plot of d2

i against the χ2
p quantiles will indicate a multivariate normality assumption

being acceptable if the points on the plot fall around a 45◦ angle line passing through the
origin. Formal tests were used in Chapter 1 for testing the multivariate normality of data.
The same tests can be adopted in the present context after some modifications for the
residual vectors ε̂′

1, . . . , ε̂
′
n .

EXAMPLE 8 Multivariate Normality Test We use the data of Dr. William D. Rohwer reported in Timm
(1975, p. 281, 345). Interest is in predicting the performance of a school child on three stan-
dardized tests, namely, Peabody Picture Vocabulary Test (y1), Raven Progressive Matrices
Test (y2), and Student Achievement Test (y3) given the sums of the numbers of correct
items out of 20 (on two exposures) to five types of paired-associated (PA) tasks. The five
PA tasks are: named (x1), still (x2), named still (x3), named action (x4), and sentence still
(x5). The data correspond to 32 randomly selected school children in an upper-class, white
residential school.

We fit the multivariate linear regression model with three responses y1, y2, y3 and five
independent variables x1, . . . , x5 as

Y32×3 = X32×6B6×3 + E32×3,

In the SAS Program 3.9, the OUTPUT statement

output out = b, r=e1 e2 e3 p=yh1 yh2 yh3 h=p_ii;

is used to store the residuals (option R = E1 E2 E3), predicted values (option P = YH1
YH2 YH3), and the diagonal elements of the hat matrix (option H=P II) in a SAS data set
named B using the option OUT=B. The residuals are then used to calculate d2

i . Selected
parts of the output are shown in Ouput 3.9.
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/* Program 3.9 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 3.9’;
title2 ’Multivariate Regression Diagnostics’;
data rohwer;
infile ’rohwer.dat’ firstobs=3;
input ind y1 y2 y3 x1-x5;
run;

/* Store all the residuals, predicted values and the diagonal
elements (p_ii) of the projection matrix, (X(X’X)^-1X’), in a
SAS data set (we call it B in the following) */
proc reg data=rohwer;
model y1-y3=x1-x5/noprint;
output out=b r=e1 e2 e3 p=yh1 yh2 yh3 h=p_ii;

/* Test for multivariate normality using the skewness and kurtosis
measures of the residuals. Since the sample means of the residuals
are zeros, Program 1.2 essentially works. */
proc iml;
use b;
read all var {e1 e2 e3} into y;
n = nrow(y) ;
p = ncol(y) ;
dfchi = p*(p+1)*(p+2)/6;
q = i(n) - (1/n)*j(n,n,1);
s = (1/(n))*y‘*q*y; /* Use the ML estimate of Sigma */
s_inv = inv(s);
g_matrix = q*y*s_inv*y‘*q;
beta1hat = ( sum(g_matrix#g_matrix#g_matrix) )/(n*n);
beta2hat =trace( g_matrix#g_matrix )/n;
kappa1 = n*beta1hat/6;
kappa2 = (beta2hat - p*(p+2) ) /sqrt(8*p*(p+2)/n);
pvalskew = 1 - probchi(kappa1,dfchi);
pvalkurt = 2*( 1 - probnorm(abs(kappa2)) ) ;
print beta1hat ;
print kappa1 ;
print pvalskew;
print beta2hat ;
print kappa2 ;
print pvalkurt;

/* Q-Q plot for checking the multivariate normality using
Mahalanobis distance of the residuals;*/
data b;
set b;
totn=32.0; /* totn is the number of observations */
k=5.0; /* k is the no. of indep. variables */
p=3.0; /* p is the number of dep. variables */
proc princomp data=b cov std out=c noprint;
var e1-e3;
data sqd;
set c;
student=_n_;
dsq=uss(of prin1-prin3);
dsq=dsq*(totn-k-1)/(totn-1);
* Divide the distances by (1-p_ii);
dsq=dsq/(1-p_ii);
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data qqp;
set sqd;
proc sort;
by dsq;
data qqp;
set qqp;
stdnt_rs=student;
chisq=cinv(((_n_-.5)/ totn),p);
proc print data=qqp;
var stdnt_rs dsq chisq;

* goptions for the gplot;
filename gsasfile "prog39a.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;

title1 h=1.5 ’Q-Q Plot for Assessing Normality’;
title2 j=l ’Output 3.9’;
title3 ’Multivariate Regression Diagnostics’;
proc gplot data=qqp;
plot dsq*chisq=’star’;
label dsq = ’Mahalanobis D Square’

chisq= ’Chi-Square Quantile’;
run;

* Q-Q plot for detection of outliers using Robust distance;
* (Section 3.10.3);
data qqprd;
set sqd;
rdsq=((totn-k-2)*dsq/(totn-k-1))/(1-(dsq/(totn-k-1)));
proc sort;
by rdsq;
data qqprd;
set qqprd;
stdnt_rd=student;
chisq=cinv(((_n_-.5)/ totn),p);
proc print data=qqprd;
var stdnt_rd rdsq chisq;
filename gsasfile "prog39b.graph";
title1 h=1.5 ’Q-Q Plot of Robust Squared Distances’;
title2 j=l ’Output 3.9’;
title3 ’Multivariate Regression Diagnostics’;
proc gplot;
plot rdsq*chisq=’star’;
label rdsq = ’Robust Mahalanobis D Square’

chisq= ’Chi-Square Quantile’;
run;

* Influence Measures for Multivariate Regression;
* (Section 3.10.4);
* Diagonal Elements of Hat (or Projection) Matrix;
data hat;
set sqd;
proc sort;
by p_ii;
data hat;
set hat;
stdnt_h=student;
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keep stdnt_h p_ii;
run;

* Cook’s type of distance for detection of influential obs.;
data cookd;
set sqd;
csq=dsq*p_ii/((1-p_ii)*(k+1));
proc sort;
by csq;
data cookd;
set cookd;
stdnt_co=student;
keep stdnt_co csq;
run;

* Welsch-Kuh type statistic for detection of influential obs.;
data wks;
set qqprd;
wksq=rdsq*p_ii/(1-p_ii);
proc sort;
by wksq;
data wks;
set wks;
stdnt_wk=student;
keep stdnt_wk wksq;
run;

* Covariance Ratio for detection of influential obs.;
data cvr;
set qqprd;
covr=((totn-k-2)/(totn-k-2+rdsq))**(k+1)/(1-p_ii)**p;
covr=covr*((totn-k-1)/(totn-k-2))**((k+1)*p);
proc sort;
by covr;
data cvr;
set cvr;
stdnt_cv=student;
keep stdnt_cv covr;
run;

* Display of Influence Measures;
data display;
merge hat cookd wks cvr;
title2 ’Multivariate Regression Diagnostics’;
title3 ’Influence Measures’;
proc print data=display noobs;
var stdnt_h p_ii stdnt_co csq stdnt_wk wksq stdnt_cv covr;
run;

The Q−Q plot of ordered d2
i (denoted by DSQ in Program 3.9) against the quantiles of

χ2
3 (denoted by CHISQ) presented in Output 3.9 seems to indicate no violation of multi-

variate normality assumption.
Using a modification of Program 1.2 (code provided in Program 3.9) Mardia’s skewness

and kurtosis tests (see Chapter 1) are performed on the residuals. The p value for the test
based on skewness (denoted by PVALSKEW in Program 3.9) is 0.8044 and that for the
test based on kurtosis (denoted by PVALKURT) is 0.4192. The corresponding output has
been eliminated. In view of these large p values, we see no evidence of any violation
of multivariate normality assumption. One can also perform the test due to Mudholkar,
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Output 3.9
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McDermott, and Srivastava (1992). For the present dataset, the conclusion obtained is the
same.

3.10.2 Assessing Dispersion Homogeneity

One of the important components of residual analysis in univariate regression is the resid-
ual plots. A plot of (studentized) residual values drawn against the predicted values may
indicate various possible violations of the assumptions of the regression model. For ex-
ample, a plot which funnels out (or funnels in) is considered to be an indication of hetero-
geneity of error variance, in that the error variance may depend on certain functions of the
predicted values or the independent variables.

For multivariate regression, a similar residual plot may be suggested based on the fol-
lowing motivation. Suppose in the univariate situation the absolute values of the (studen-
tized) residuals (instead of the residuals) are plotted against the absolute values of the
corresponding predicted values. Then various shapes and features in this plot can be uti-
lized to determine the violations of different aspects of the assumptions in the model.
Since in this plot the absolute values of the studentized residuals are being used, a plot
in the original residuals which was funneling out, for example, will now have only the
upper half of the funnel in this plot. This fact can be utilized to suggest a residual plot in
(dε

i , d y
i ), i = 1, . . . , n, where

dε
i =

√√√√ ε̂′
i Σ̂

−1
ε̂i

1 − pii
and d y

i =

√√√√ ŷ′
i Σ̂

−1
ŷi

pii
,

and where ŷ′
i is the i th row of Ŷ, i = 1, . . . , n. We note that the quantities dε

i and d y
i

respectively are the Mahalanobis distances of the vectors ε̂i and ŷi from the origin. We
will call such a plot based on these two distances a D-D plot.

EXAMPLE 9 D-D Plot, Air Pollution Data Daily measurements on independent variables, wind speed
(x1) and amount of solar radiation (x2), and dependent variables indicating the amounts
of CO(y1), NO(y2), NO2(y3), O3 (y4) and HC(y5) in the atmosphere were recorded at
noon in the Los Angeles area on 42 different days. One of the problems is to predict the
air-pollutants measured in terms of y1 through y5 given the two predictors x1 and x2. We
fit a multivariate regression model by taking only y3 and y4 as dependent variables and
x1 and x2 as the independent variables. The logarithmic transformation was applied on all
four variables. The D-D plot to assess the homogeneity of dispersion is considered here.
Thus, we plot (dε

i vs. d y
i ), which are computed using the formulas given above. The data

set as well as the SAS code are given in Program 3.10. The data are courtesy of G. C. Tiao.
In the Program 3.10 the distances d y

i and dε
i are denoted respectively by DSQ1 and DSQ2.

The corresponding D-D plot is presented in Output 3.10.

/* Program 3.10 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 3.10’;
title2 ’Multivariate Regression: D-D Plot’;
* The data set containing independent and dependent variables.;
data pollut;
infile ’airpol.dat’ firstobs=6;
input x1 x2 y1-y5;
* Make transformations if necessary;
data pollut;
set pollut;
x1=log(x1);
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x2=log(x2);
y1=log(y1);
y2=log(y2);
y3=log(y3);
y4=log(y4);
y5=log(y5);
proc reg data=pollut;
model y3 y4=x1 x2/noprint;
output out=b r=e1 e2 p=yh1 yh2 h=p_ii;

/* Univariate residual plots;
proc reg data=pollut;
model y3 y4=x1 x2 /noprint;
plot student.*p.;
title2 ’Univariate Residual Plots’;
run;
*/

* The Mahalanobis distances of residuals and predicted values;
proc iml;
use b;
read all var {e1 e2} into ehat;
read all var {yh1 yh2} into yhat;
read all var {p_ii} into h;
n = nrow(ehat);
p = ncol(ehat);
k = 2.0; *The no. of independent variables in the model;
sig=t(ehat)*ehat;
sig=sig/(n-k-1); /* Estimated Sigma */
dsqe=j(n,1,0);
dsqyh=j(n,1,0);
do i=1 to n;
dsqe[i,1]=ehat[i,]*inv(sig)*t(ehat[i,])/(1-h[i]);
dsqyh[i,1]=yhat[i,]*inv(sig)*t(yhat[i,])/h[i];
end;
dsqe=sqrt(dsqe);
dsqyh=sqrt(dsqyh);
dsqpair=dsqyh||dsqe;
varnames={dsq1 dsq2};
create ndat1 from dsqpair (|colname=varnames|);
append from dsqpair;
close ndat1;
* D-D Plot;
data ndat1;
set ndat1;
filename gsasfile "prog310.graph";
goptions reset=all gaccess=gsasfile autofeed dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=6in vsize=8in;
title1 h=1.5 ’D-D Plot’;
title2 j=l ’Output 3.10’;
title3 ’Residual Analysis: Multivariate Regression’;
proc gplot data=ndat1;
plot dsq2*dsq1=’star’;
label dsq1=’Distance of Predicted Value’

dsq2=’Distance of Residual’;
run;
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Output 3.10
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The plot clearly seems to show an increasing trend indicating that there may be some
heterogeneity of error dispersion. A look at individual univariate studentized plots (not
shown here) also supports this conclusion.

3.10.3 Outliers

Formal or graphical tests for multivariate normality may sometimes fail due to the presence
of outliers in the data. Observations which are unusual in the sense that they violate certain
model assumptions are outliers. A simple method of detection of outliers in a multivari-
ate normal distribution case has been discussed in Chapter 2. It involves plotting robust
Mahalanobis distances against the corresponding quantiles (Q-Q plot) of an appropriate
chi-square distribution. This method can be applied on residuals to detect any outliers in
multivariate regression analysis set up.

Analogous to the discussion in Chapter 2, we define

D2
i = 1

1 − pii
ε̂′

i Σ̂(i)ε̂i ,

where Σ̂(i) = Ê ′
(i)Ê(i)/(n − k − 2), and Ê(i) is the n − 1 by p residual matrix obtained

by fitting the multivariate regression model Y = XB + E without the i th observation. As
in Chapter 2, a relationship between the squared Mahalanobis distance d2

i and its robust
version, D2

i exists and is given by

D2
i = (n − k − 2)d2

i

(n − k − 1)(1 − d2
i

n−k−1 )

,

which is also a Hotelling T 2 statistic. In the absence of any outliers the quantity

F = D2
i

n − k − 2

n − k − 1 − p

p
,

follows an Fp,n−k−1−p distribution. However, for large samples (such that n − k −1− p is
large), the distribution of D2

i is approximately χ2
p and this fact will be utilized to identify

outliers in a Q-Q plot.

EXAMPLE 8 Detection of Outliers, Rohwer’s Data (continued) SAS code given in Program 3.9 also
computes d2

i (DSQ) and D2
i (RDSQ) and then prints them in an increasing order of mag-

nitude for this data set. The D2
i values along with the corresponding chi-square quantiles

(CHISQ) are listed in Output 3.9 along with a Q-Q plot of these values. The largest D2
i is

11.87 corresponding to the 25th observation (listed under the variable STDNT RD in the
output). Since this is not very large compared to the corresponding χ2

3 quantile we con-
clude that there are no outliers in this data set. The corresponding Q-Q plot also supports
this conclusion.



Chapter 3 Multivariate Regression 111

Output 3.9
continued

Output 3.9
Multivariate Regression Diagnostics
Q-Q Plot of Robust Squared Distances

OBS STDNT_RD RDSQ CHISQ

1 15 0.1772 0.1559
2 10 0.4521 0.3360
3 6 0.4698 0.4864
4 4 0.4809 0.6253
5 2 0.7605 0.7585
6 18 0.9489 0.8888
7 22 1.0047 1.0181
8 26 1.4352 1.1475
9 16 1.4545 1.2780
10 11 1.6509 1.4103
11 28 1.6719 1.5452
12 24 1.7299 1.6834
13 13 2.3245 1.8256
14 19 2.5938 1.9725
15 20 2.7996 2.1250
16 3 2.8882 2.2838
17 30 3.0811 2.4501
18 7 3.5062 2.6250
19 1 3.6494 2.8099
20 12 3.7542 3.0065
21 27 3.8898 3.2169
22 5 4.3593 3.4438
23 23 4.4198 3.6906
24 8 4.7224 3.9617
25 17 4.7321 4.2636
26 29 4.7502 4.6049
27 32 4.7893 4.9989
28 9 5.2072 5.4670
29 21 6.8286 6.0464
30 31 7.4628 6.8124
31 14 8.8648 7.9586
32 25 11.8711 10.3762

If so desired, formal statistical tests to detect outliers in the context of multivariate
regression can be used. One such test has been derived by Naik (1989). Instead of ε̂i he
utilized the uncorrelated best linear unbiased scalar (BLUS) residuals (Theil, 1971). The
resulting test statistic is Mardia’s kurtosis measure of BLUS residuals. We will not discuss
this approach here. However, SAS code using PROC IML can easily be developed for this
method.

3.10.4 Influential Observations

Influential observations are those unusual observations which upon dropping from the anal-
ysis yield results which are drastically different from the results that were otherwise ob-
tained. They are often contrasted from outliers by the fact that the presence of outliers in
the data does not affect the results to the extent the influential observations do. One of
the important developments in the recent univariate regression analysis literature has been
the introduction of the concept of influential observations and statistical methods for de-
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Output 3.9
continued
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tection of these observations. See Cook and Weisberg (1982). Here we discuss some of
the approaches considered in Hossain and Naik (1989). It must be emphasized that these
methods are not substitutes for one another and must be used in conjunction with each
other.

The Hat Matrix Approach The projection or hat matrix is defined as P = X(X′X)−1X′.
Let pii be the i th diagonal element of P. It is known that 0 ≤ pii ≤ 1 and tr P =∑n

i=1 pii = k + 1. Hence the average of pii , i = 1, . . . , n, is p̄ = tr(P)
n = k+1

n . Belsley,
Kuh, and Welsch (1980) defined the observation i corresponding to which pii > 2 p̄ as a
leverage point. A leverage point is a potential influential observation. The influence in this
case is entirely due to one or more independent variables.

An observation may be influential entirely or in part due to one or more dependent
variables. Such observations can be determined by using the residuals. For example, the
distances d2

i or the robust distances D2
i computed from the residuals can be used for this

purpose. Thus an observation detected as an outlier using D2
i has the potential to be an

influential observation.

Cook Type Distance Cook (1977) introduced a distance measure to detect the influential
observations in univariate regression. For the multivariate regression we can define Cook
type distance (Hossain and Naik, 1989) for the i th observation as

Ci =
(

1

k + 1

)(
pii

1 − pii

)
d2

i , i = 1, . . . , n.

The observations with a large value of Ci are considered as potentially influential. Since
d2

i
n−k−1 ∼ Beta

(
p
2 ,

n−k−1−p
2

)
, to obtain a cutoff point for assessing the largeness of Ci

we may use(
1

k + 1

)(
pii

1 − pii

)
(n − k − 1)Beta

(
1 − α,

p

2
,

n − k − 1 − p

2

)

where Beta (1 −α,
p
2 ,

n−k−1−p
2 ), is the upper α probability cutoff value of a Beta distribu-

tion with the parameters p
2 and n−k−1−p

2 . To have the convenience of the same cutoff point
we substitute p̄ for pii . Thus the approximate cutoff point for Ci is simply Cα = Beta
(1 − α,

p
2 , n−k−1−p

2 ).

Welsch-Kuh Type Statistic Belsley, Kuh and Welsch (1980) introduced several con-
tenders for Cook distance in the context of univariate regression. One such statistic at-
tributed originally to Welsch and Kuh (1977) that has been generalized to multivariate
regression (Hossain and Naik, 1989) is

W Ki = pii

1 − pii
D2

i .

The observations corresponding to the large W Ki are considered as potentially influen-
tial. As indicated earlier, D2

i is same as Hotelling’s T 2 statistic. Therefore, an α probabil-

ity cutoff point for the W Ki statistic should be pii
1−pii

p (n−k−2)
(n−k−1−p)

F1−α,p,n−k−1−p, where
F1−α,p,n−k−1−p is the upper α probability cutoff point of the F distribution with p and
n − k − 1 − p degrees of freedom. As in the case of Cook type distance we replace pii by
p̄ resulting in an approximate cutoff point for W Ki given by

W Kα = k + 1

n − k − 1

p(n − k − 2)

n − k − 1 − p
F1−α,p,n−k−1−p .

Covariance Ratio The influence of the i th observation on the variance covariance matrix
of B̂, the matrix of estimated regression coefficients, can be measured by the covariance
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ratio defined in terms of sample generalized variances with and without considering the i th

observation,

Ri =
(

1

1 − pii

)p
{

|Σ̂(i)|
|Σ̂|

}k+1

.

The observations corresponding to both low and high values of covariance ratio are con-
sidered as potentially influential. In order to find the cutoff points for Ri we use the fact
that

|Σ̂(i)|
|Σ̂| =

(
n − k − 2

n − k − 1

)−p
(

1 + D2
i

n − k − 2

)−1

and that (Rao, 1973, p. 555)

(
1 + D2

i

n − k − 2

)−1

∼ Beta

(
n − k − 1 − p

2
,

p

2

)
.

Using these, and replacing pii by p̄ as done earlier an approximate lower cutoff point
for Ri is

RL =
(

1

1 − p̄

)p (n − k − 1

n − k − 2

)p(k+1) {
Beta

(
α

2
,

n − k − 1 − p

2
,

p

2

)}k+1

.

For an upper cutoff point, α
2 is replaced by 1 − α

2 . But pii this time will be replaced by 2 p̄
(Belsley et al., 1980) resulting in the approximate upper cutoff point

RU =
(

1

1 − 2 p̄

)p (n − k − 1

n − k − 2

)p(k+1) {
Beta

(
1 − α

2
,

n − k − 1 − p

2
,

p

2

)}k+1

.

EXAMPLE 8 Identification of Influential Observations, Rohwer’s Data (continued) Rohwer’s data
are considered for the illustration of all four methods described above. Program 3.9 in-
cludes the necessary SAS code. Output 3.9 shows the results. The output lists all the diag-
onal elements p11, . . . , pnn of the hat matrix P (under the variable P II) in the increasing
order of magnitude. The largest two of these are p55 = 0.5682 and p10,10 = 0.4516 cor-
responding to the 5th and 10th observations (see under STDNT H) respectively. Both of
these values are greater than 2 p̄ = 2 k+1

n = 0.3750 and hence are deemed as the leverage
points or potentially influential.

Output 3.9
continued

Output 3.9
Multivariate Regression Diagnostics

Influence Measures

S S S
S T T T
T D D D
D N N N
N P T T W T C
T _ _ C _ K _ O
_ I C S W S C V
H I O Q K Q V R

23 0.04455 4 0.00645 4 0.03795 25 0.3287
7 0.04531 6 0.01458 6 0.08572 14 0.4920
9 0.05131 15 0.01519 15 0.08826 31 0.5594
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4 0.07314 7 0.02530 7 0.16640 21 0.7485
32 0.07321 23 0.03036 23 0.20610 9 0.7624
20 0.07881 28 0.03422 28 0.21065 23 0.8746
30 0.08655 2 0.03576 2 0.21258 32 0.8891
31 0.08922 20 0.03733 20 0.23950 7 1.0593
13 0.10375 22 0.04025 22 0.24151 17 1.2668
28 0.11190 9 0.04040 26 0.25993 8 1.2851
14 0.12650 26 0.04261 13 0.26907 30 1.3235
21 0.14024 13 0.04267 11 0.28094 20 1.3707
3 0.14173 30 0.04505 9 0.28165 12 1.5332
11 0.14543 11 0.04568 30 0.29195 1 1.5475
26 0.15334 32 0.05503 18 0.33957 13 1.6506
6 0.15432 18 0.05671 10 0.37234 3 1.6629
25 0.15713 10 0.06339 32 0.37831 28 1.9612
1 0.16701 24 0.07294 24 0.44995 29 2.1183
12 0.17050 3 0.07411 3 0.47696 11 2.2117
17 0.17321 31 0.09758 16 0.72235 4 2.2694
8 0.17661 1 0.11067 31 0.73104 26 2.3879
22 0.19380 12 0.11629 1 0.73167 24 2.7132
24 0.20642 16 0.11832 12 0.77168 6 2.9955
2 0.21845 17 0.14448 17 0.99133 22 3.0522
18 0.26354 8 0.14768 8 1.01291 19 3.2436
19 0.29836 21 0.15164 19 1.10294 27 3.3582
29 0.30427 14 0.16427 21 1.11383 2 3.5453
16 0.33183 19 0.17321 14 1.28379 18 4.0558
15 0.33247 25 0.26008 29 2.07746 16 4.8372
27 0.36726 29 0.30260 25 2.21298 15 6.5280
10 0.45161 27 0.33866 27 2.25782 5 9.5932
5 0.56821 5 0.84672 5 5.73670 10 11.0314

The program also computes the Cook type distances (denoted by CSQ in the program).
With the level of significance α = 0.05, the corresponding cutoff point is Cα = C0.05 =
Beta (0.05, 1.5, 11.5) = 0.2831. This is calculated using the SAS function BETAINV.
Using this, observations 5, 27, and 29 are identified as potential influential observations
(see under the variable STDNT CO in Output 3.9). At the same level of significance the
cutoff point for W Ki (WKSQ) is W Kα = 2.2801. Only the 5th observation (see under
STDNT WK) with W K5 = 5.7367 qualifies as a potential influential observation under
this criterion.

Finally, at α = 0.05 and for the covariance ratio criterion the lower and upper cutoff
points are computed respectively as CL = 0.3463 and CU = 7.8549. Upon computation,
we find (see the output under the variables COVAR and STDNT CV) that R25 = 0.3282,

R10 = 11.0314, and R5 = 9.5932 are three values which do not fall between RL and
RU . Hence these three are identified as potential influential observations. These results are
summarized in Table 3.4.

TABLE 3.4 Influential Observation Identification

Method Influential Obs.

Hat Matrix 5, 10

Cook Type 5, 27, 29

Welsch Kuh Type 5

Covariance Ratio 5, 10, 25
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A few comments may be made after examining the above table. All the measures declare
the 5th observation as influential. The influence is perhaps mainly due to the independent
variables since it is a leverage point. An examination of the data set indicates that this ob-
servation has the largest X1 value of 20. This is almost twice as large as the X1 values
for the other observations except that for the 10th observation. Observation 5 also has the
largest value for variable X3 (=21). Observation 10 has fairly large values for many inde-
pendent variables. Observation 25 has large values for the variables Y 1 and Y 2 but small
value for Y 3. It is identified only by the covariance ratio. Observations 27 and 29 were
identified only by Cook type distance although no striking features in these two observa-
tions are immediately apparent.

3.11 Concluding Remarks

In closing this chapter, we emphasize that the inference in multivariate regression can be
sensitive to the assumption of multivariate normality as well as the presence of unusual
observations. We have briefly described some of the approaches to these problems here. It
is a good practice to apply these checks before performing the formal multivariate analysis
described earlier in this chapter. Some of the test statistics in a normal MANOVA are more
sensitive to nonnormality than others. In general, if the data are not strictly normal, Pillai’s
test is the most robust (in terms of preserving the power of the test) of the MANOVA tests
and therefore is especially recommended for such situations.
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4.1 Introduction

In the previous chapter, we considered the multivariate linear regression model

Y = XB + E . (4.1)

In the model, the

• n by p matrix Y contains the random observations on p dependent variables,
• k + 1 by p matrix B is the matrix of unknown parameters,
• n by p matrix E is the matrix of random errors such that each row of E is a p variate

normal vector with mean vector zero and variance-covariance matrix Σ. The matrix Σ
is assumed to be a p by p positive definite matrix.

• n by k + 1 matrix X was assumed to be of full rank, that is, Rank (X) = k + 1.

There are, however, situations especially those involving the analysis of classical ex-
perimental designs where the assumption Rank (X) = k + 1 cannot be made. This in turn
requires certain suitable modifications in the estimation and testing procedures. In fact, fol-
lowing the same sequence of development as in the previous chapter, a generalized theory
has been developed, which contains the results of the previous chapter as the special “full
rank” case.

Let us assume that Rank (X) = r < k + 1. It was pointed out in Chapter 3 that in this
case, the solution to the normal equations in Equation 3.3 is not unique. If (X′X)− is a
generalized inverse of X′X, then correspondingly a least square solution is given by

B̂(g) = (X′X)−X′Y,

which will depend on the particular choice of the generalized inverse. As a result, the
matrix B is not (uniquely) estimable. The following example illustrates this case.
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EXAMPLE 1 Checking Estimability, Jackson’s Laboratories Comparison Data Jackson (1991) con-
sidered a situation where samples were tested in three different laboratories using two
different methods. Each of the laboratories received four samples and each of the samples
was divided into subsamples to be tested by these two methods. As a result, the observa-
tions on the subsamples arising out of the same sample are correlated leading to the data
as the four bivariate vector observations per laboratory. The data are shown in Table 4.1.

TABLE 4.1 Laboratory Data

Laboratory Method 1 Method 2

1 10.1 10.5
9.3 9.5
9.7 10.0

10.9 11.4

2 10.0 9.8
9.5 9.7
9.7 9.8

10.8 10.7

3 11.3 10.1
10.7 9.8
10.8 10.1
10.5 9.6

Let yi j be the 2 by 1 vector of observation on the j th sample sent to the i th laboratory,
j = 1, . . . , 4; i = 1, 2, 3. If we assume that yi j has a bivariate distribution with a structured
mean vector

[ µ1 +τi1
µ2 +τi2

]
and the variance covariance matrix Σ, then we can write our model

as

(yi j1, yi j2) = (µ1 + τi1, µ2 + τi2) + (εi j1, εi j2),

i = 1, 2, 3, j = 1, . . . , 4.

Stacking these equations one below the other for j = 1, . . . , 4 and (then for) i = 1, 2, 3,
leads to


y′
11
...

y′
14

. . .

y′
21
...

y′
24

. . .

y′
31
...

y′
34




12×2

=




1 1 0 0
...

...
...

...

1 1 0 0
. . . . . . . . . . . .

1 0 1 0
...

...
...

...

1 0 1 0
. . . . . . . . . . . .

1 0 0 1
...

...
...

...

1 0 0 1




12×4




µ1 µ2
τ11 τ12
τ21 τ22
τ31 τ32




4×2

+




ε′
11
...

ε′
14

. . .

ε′
21
...

ε′
24

. . .

ε′
31
...

ε′
34




12×2

,

where εi j = ( εi j1
εi j2

)
represents the sample-to-sample variation. The model represented by

the set of equations given above is in the form of Equation 4.1, with

X =

 14 0 0

112 0 14 0
0 0 14


 ,
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where 1q represents a q by 1 vector of unit elements. Since all the elements of X are either
zero or one, with zero representing the absence and one representing the presence of the
particular parameter in the individual equation, this can be considered as a situation where
the regression is performed on the dummy variables. It is easy to see that since the last
three columns of the matrix X above add to the first column, the first column is linearly
dependent on the last three columns. A similar statement can be made about the linear
dependence of any other columns on the remaining three. As a result, the matrix X is not
of full column rank. In fact, Rank (X) = 3, as the last three columns of X form a linearly
independent set of vectors. Now as Rank (X′X) = Rank (X) = 3, the 4 by 4 matrix X′X
is singular, thereby not admitting the inverse (X′X)−1. Therefore the least squares system
of linear equations corresponding to Equation 4.1,

X′XB = X′Y

does not admit a unique solution B̂. As a result, for k = 1, 2, (µk, τ1k, τ2k , τ3k) cannot be
uniquely estimated.

If we want to estimate the mean measurement for each of the two methods, then the
quantities of interest are νik = µk + τik , i = 1, 2, 3, k = 1, 2. We may also be interested in
comparing the laboratories, that is, in estimating the differences between the true means for
the three laboratories, namely ν1k −ν2k = τ1k −τ2k , ν1k −ν3k = τ1k −τ3k and ν2k −ν3k =
τ2k − τ3k , k = 1, 2. Even though (µk, τ1k , τ2k, τ3k) cannot be uniquely estimated, the
unique estimates of these differences are available, regardless of what generalized inverse is
used to obtain the solution (µ̂k, τ̂1k , τ̂2k, τ̂3k), k = 1, 2 of X′XB = X′Y. Thus, even though
the matrix B is not estimable, certain linear functions of B are still estimable. Specifically,
as mentioned in Chapter 3, a nonrandom linear function c′B, where c �= 0 is estimable if
and only if

(X′X)(X′X)−c = c. (4.2)

Quite appropriately, a linear hypothesis is called testable if it involves only the estimable
functions of B.

For the first laboratory, the vector of mean measurements for each of the two methods
(ν11, ν12) is given by

(ν11, ν12) = (µ1 + τ11, µ2 + τ12) = (1 1 0 0)




µ1 µ2
τ11 τ12
τ21 τ22
τ31 τ32


 = c′B,

with c′ = (1 1 0 0). The choices of respective c′ vectors for the other two laboratory
means are obtained in the same way. These are (1 0 1 0) and (1 0 0 1). Similarly, for the
differences between the laboratory means the three choices of c are

c′ = (0 1 − 1 0), (0 1 0 − 1), and (0 0 1 − 1).

It can be theoretically shown (Searle, 1971) that all the above choices of c satisfy Equation
4.2 and hence all the laboratory means and their pairwise differences are estimable. It
is equivalent to saying that all of the above choices of c′ can be expressed as the linear
function of the rows of X. That this is true in our example is easily verified by the visual
examination of the rows of our matrix X. The actual rank of the matrix X would depend
on the particular design and the particular statistical model. For a one-way classification
model with k groups, the rank of Xn×(k+1) is k. This deficiency in rank of X affects the
tests for the statistical significance in many ways. First of all, such tests can be performed
only for the testable linear hypotheses. That given, all the univariate and multivariate tests
can still be adopted after making a simple yet important modification. When the hypothesis
is linear, the quantity r = Rank (X) replaces (k + 1) in most formulas of Chapter 3.
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4.2 Balanced and Unbalanced Data

When the design is balanced in the sense that each group has the same number of measure-
ments or certain orthogonality conditions are met (Searle, 1971), the analysis is relatively
much simpler with respect to the computations as well as interpretations. In this case for
a given response variable, the (univariate) ANOVA partitioning (Searle, 1971) of the cor-
rected total sums of squares into various sources of variation specified by the model is
unique. This simplicity is unfortunately lost as soon as the underlying design becomes un-
balanced. The partitioning of the corrected total sums of squares is no longer unique in
that it depends on the model and the various submodels of it as specified by the order in
which various sums of squares are extracted. For example, suppose we have an unbalanced
(univariate) two-way classification design with interaction, for which the statistical model
is

yi jk = µ + αi + β j + (αβ)i j + εi jk

i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , ni j .

Denoting the main effects as A and B and the interaction effect as AB and following the
notation of Searle (1971), the corrected model sum of squares R (A, B, AB|µ) can be
partitioned in the following two alternative ways:

R (A, B, AB|µ) = R (A|µ) + R (B|µ, A) + R (AB|µ, A, B) (4.3)

or

R (A, B, AB|µ) = R (B|µ) + R (A|µ, B) + R (AB|µ, A, B), (4.4)

where R (A|µ) is the sum of squares due to A after correcting for µ, and R (B|µ, A) is
the sum of squares due to B after correcting for µ and the variable A (i.e., after discount-
ing the effect of A). Other quantities are similarly defined. Unless the design is balanced,
R (B|µ, A) �= R (B|µ) and R (A|µ, B) �= R (A|µ). The complexity increases further for
the higher order unbalanced designs. As a result, SAS computes the four types of sums
of squares, commonly referred to as Type I through Type IV sums of squares. A brief
summary of these four sums of squares, adopted from Littell, Freund and Spector (1991)
follows.

• The Type I sums of squares represent a partitioning of the model sum of squares into
component sums of squares due to each variable or interaction as it is added sequentially
to the model in the order prescribed by the MODEL statement (Littell, Freund, and
Spector, 1991, p. 20). They are often referred to as sequential sums of squares. In view
of their dependence on the order prescribed the corresponding partitioning of the model
sum of squares is not unique. For example, for a three-way classification model with all
possible interactions in variables A, B, and C the MODEL statement

model y = a b c a*b a*c b*c a*b*c/ss1 ss2 ss3 ss4;

results in the Type I sum of squares (generated by the use of option SS1) for, say, A*C
as the one which is adjusted for all the previous terms in the model: A, B, C, and A*B.

• The Type II sums of squares for a particular variable represent the increase in the model
sum of squares. This increase is due to adding the particular variable or interaction to
a model that already contains all the other variables and interactions in the MODEL
statement which do not notationally contain the particular variable or interaction (Littell,
Freund, and Spector, 1991, p. 21). For example, for the MODEL statement given above,
the Type II sums of squares for A*C represents the increase in the model sum of squares
by adding A*C while A, B, C, A*B, and B*C have already been included in the model.
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The three-factor interaction is not included in this because the notational symbol A*B*C
contains the symbol A*C. Type II sums of squares do not depend on the order in which
the variables and interactions are listed in the MODEL statement. In general, Type II
sums of squares for various variables and interactions do not add up to the model sum
of squares. Type II sums of squares are commonly called partial sums of squares.

• The Type III sums of squares are also a kind of partial sums of squares (Littell, Freund,
and Spector, 1991, p. 156). They differ from Type II sums of squares in that a partic-
ular sum of squares represents increase in the model sum of squares due to adding the
particular variable or interaction to a model that contains all the other variables and
interactions listed in the MODEL statement. For example, for the MODEL statement
given above the Type III sums of squares for A*C represent the increase in the model
sum of squares by adding A*C while all the remaining terms in the right-hand side of
the MODEL statement, A, B, C, A*B, B*C, and A*B*C, have already been included
in the model. As in the case of Type II, Type III sums of squares also do not depend
on the order in which the variables and interactions are listed in the MODEL statement.
Further, in general Type III sums of squares for various variables and interactions do not
add up to the model sum of squares.

• In case there are empty cells, the Type IV sums of squares are recommended. Unfor-
tunately, they can be discussed only in the general framework of estimable functions
and their constructions. For cross-classified unbalanced data, these are not unique when
there are empty cells in that they depend on the way the data may have been arranged.
When there are no empty cells, Type IV sums of squares are identical to Type III sums
of squares (Littell, Freund, and Spector, 1991, p. 156).

For details, see the SAS/STAT User’s Guide, Version 6, Fourth Edition, Littell, Freund
and Spector (1991), and Milliken and Johnson (1991).

For multivariate analysis purposes, when the data are multivariate in nature we analo-
gously define the sums of squares and crossproducts (SS&CP) matrices rather than just the
sums of squares. The partitioning that is essentially similar to ANOVA partitioning, called
in the literature MANOVA partitioning (M for multivariate), can be done for the corrected
total SS&CP matrix. As is true in the univariate case, we will encounter problems related
to the nonuniqueness of this partitioning for the unbalanced data. Needless to say, the in-
terpretations similar to those mentioned in the references given above can be assigned to
various types of analyses to help in choosing the appropriate MANOVA partitioning and/or
analysis.

Based on Milliken and Johnson (1991) we make the following recommendations for
two-way classification models. For most higher order models, a straightforward modifica-
tion of these recommendations will be applicable, in most situations.

• Type III SS&CP matrices are appropriate when the interest is in comparing the effects
of the experimental variables. The corresponding null hypotheses are equivalent to the
hypotheses tested in the balanced classifications. Specifically, for a multivariate version
of the two-way classification model stated earlier, the hypotheses being tested are

i. αi + b−1∑b
j=1(αβ)i j are all equal, i = 1, . . . , a.

ii. β j + a−1 ∑a
i=1(αβ)i j are all equal, j = 1, . . . , b.

iii. (αβ)i ′ j ′ − b−1∑b
j=1(αβ)i ′ j − a−1∑a

i=1(αβ)i j ′ + (ab)−1∑a
i=1

∑b
j=1(αβ)i j =

0 for all i ′ = 1, . . . , a; j ′ = 1, . . . , b.

• For model-building purposes such as in response surface modeling, where we want to
predict the responses, Type I and/or Type II SS&CP is desirable. Usually, since the terms
are to be added sequentially in the process of model building, Type I analysis may be
more appropriate.
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• In survey designs and observational studies such as in sociology, where the data are
collected “passively,” rather than “actively” generated under a designed experiment, the
number of observations per cell will be approximately proportional to the actual relative
frequencies of these cells in the reference population. As a result, the weighted averages
with observed cell sizes as weights may be of interest in the course of analyzing the data.
In this case, it is advisable to attempt and carefully interpret the two possible sequential
analyses using Type I SS&CP leading to the partitioning given by Equations 4.3 and 4.4.
Of course, the three-way or other higher order cross-classified designs would require
several sequential analyses.

Remember that underlying any test statistic or significant effect as shown in any com-
puter output, there is a specific statement in the null hypothesis which is being tested. In
the case of designed experiments, the cell sizes are determined by the experimenter or by
certain circumstances which are beyond the control of the experimenter. The effects, sig-
nificant or not, are the characteristics of the reference population and in no way should be
a function of the design parameters such as the cell sizes. It makes no intuitive sense that
a null hypothesis would involve these parameters of the particular design. It is, therefore,
very important that any appropriate null hypothesis is a priori identified before declaring
an effect significant or nonsignificant. This is preferable to retroactively identifying what
the hypothesis is, corresponding to a significant or nonsignificant p value associated with
a particular test statistic. In fact, in the case of highly unbalanced designs, the SS&CP
matrices for the notationally same effects (in the computer output) under Type I, II, or III
analyses may correspond to very different null hypotheses. Not surprisingly, one often ob-
tains mutually conflicting conclusions from these analyses. Of course, the best solution to
this problem is to construct a design which is as balanced as possible.

The issues related to which of the three sums of squares is appropriate have been the
subject of considerable discussion for the past several decades. See Goodnight (1976) and
Searle (1987). These issues do not seem to have subsided or been adequately settled or
clarified as evident from the recent contributions to this topic. See Dallal (1992), De Long
(1994), Goldstein (1994) and Searle (1994). It is thus inevitable not to find a consensus
on various modes of analyses considered in the specific examples in this book. Wherever
possible, we attempt to intuitively justify the type of analysis chosen, while at the same
time deliberately avoiding the complex notational and mathematical representations of the
underlying hypotheses.

Type IV analysis is appropriate in the case of missing observations when, for certain
cells, the cell frequency is zero. In this case, none of the Type I, II, or III analyses may
be entirely satisfactory, and may be difficult to interpret. The Type IV hypotheses are con-
structed to have balance in the cell mean coefficients in such cases. As a result, meaningful
interpretations can be assigned to the underlying hypotheses being tested by these SS&CP
matrices. For designs with missing observations, PROC GLM automatically generates cer-
tain Type IV hypotheses which can be identified by examining the list of estimable func-
tions generated by SAS under the given design. Unfortunately, the resulting hypotheses
being tested may themselves depend on the numbering of the variables. Consequently, the
very same set of treatments in the same data set, if renumbered or reordered, may result
in a different set of Type IV SS&CP matrices. See Milliken and Johnson (1991) for an
especially readable discussion in which the authors devote an entire chapter to these and
other related issues, of course in a univariate setting.

The preceding discussion about the unbalanced designs pertains only to the cases where
there are an unequal number of observations per cell or where balancedness conditions
(Searle, 1971) on the cell sizes are not satisfied. Imbalance may also occur in cases when,
for some observations or experiments, the data are available only on some of the response
variables and not available on the others. This situation, although quite common in prac-
tice, cannot be handled in the standard multivariate analysis of variance setup. As a result,
for any multivariate analysis procedure, observations with missing values for one or more
response variables are automatically deleted by SAS before any analysis. This is not neces-
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sarily an ideal choice because missingness of observations may not have a random pattern
and there may be an underlying selection mechanism due to which the observations were
missing. In this case, due to selection bias in data, ignoring the missing values may severely
affect the analysis and consequently may result in misleading conclusions.

4.3 One-Way Classification

In the previous section, we considered an interlaboratory study where four bivariate obser-
vations corresponding to two different methods were made in three different laboratories.
The purpose of the study was to compare the three laboratories and decide if these laborato-
ries provide, on the average, the same bivariate measurements. The three groups or classes
of interest were three laboratories, which define a categorical variable (or factor) with three
levels represented by these laboratories. In general, a one-way classification model can be
defined for a variable with a levels or groups. If we denote by yi j , the p by 1 vector of
responses on the j th unit of the i th group, then we can write

yi j = µ + τ i + εi j , j = 1, . . . , ni ; i = 1, . . . , a,

where εi j is the p by 1 random vector corresponding to error, and is assumed to have a
zero vector as the mean and the variance-covariance matrix Σ. The surplus or slack effect
of the i th group is represented by the p by 1 vector τ i and the p by 1 vector µ is the overall
mean. The ni is the number of observations in the i th group. If n1 = · · · = na , then the
design is balanced. A usual assumption, though not crucial but only convenient, is to take∑a

i=1 niτ i = 0.
This assumption implies that the weighted sum of treatment effects is zero, thereby

making µ the overall average across all treatment groups. In fact, any other linear restric-
tion on τ1, . . . , τa can be used instead so long as it provides an additional equation which
is linearly independent of the system of normal equations given in Equation 3.3. The pur-
pose of making such an assumption is to devise a convenient method to find an appropriate
generalized inverse of X′X, where X is the corresponding design matrix when the above
model is represented as a multivariate linear model given in Equation 3.1. In fact, PROC
GLM makes the alternative assumption of τa = 0 rather than the traditional assumption of∑a

i=1 niτ i = 0 adopted by various multivariate analysis and experimental design books.
This assumption amounts to setting the effect of last treatment to zero, thereby making
µ the mean of the last group. A model with this assumption is often referred to as the
reference cell model.

As mentioned earlier, since the choice of the generalized inverse is immaterial when es-
timating an estimable linear function or performing a testable linear hypothesis, what linear
restriction is placed on τ i does not affect the subsequent analysis in any way. Since for a
one-way classification model Rank (Xn×(a+1)) = a, the rank of X is short only by one. As
a result, only one linear restriction on τ i is needed. For the higher order classifications, the
number of linearly independent restrictions needed is equal to the rank deficiency of X.

To test the multivariate null hypothesis of no differences in the group means, that is,
H0 : τ1 = τ2 = · · · = τa , it is possible to use any of the four multivariate tests described
in Chapter 3, after making the appropriate modifications in the degrees of freedom. Specif-
ically, the quantity (a + 1) (which was (k + 1) in the notation of Chapter 3), which was the
rank of X in the full rank model of Chapter 3, would be replaced by a, the actual rank of
the matrix X.

EXAMPLE 1 Hypothesis Testing, Laboratories Comparison Data (continued) We return to the Jack-
son (1991) data as presented in Table 4.1. The objective of simultaneously comparing the
three laboratories translates to the bivariate null hypothesis,

H0 : τ1 = τ2 = τ3
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against the alternative

H1 : At least two τ i are different from each other.

The null hypothesis is testable, as seen earlier, and the four different multivariate tests,
namely Wilks’ �, Pillai’s trace, Hotelling-Lawley’s trace, and Roy’s maximum root test,
are available to test H0. Further, the design is balanced with no missing values and hence
the four types of analyses are equivalent, all resulting in identical SS&CP matrices (in fact,
for one-way classification, this is true even for unbalanced data). The SAS code to do this
analysis is presented in Program 4.1. The program produces Output 4.1.

/* Program 4.1 */

options ls = 64 ps=45 nodate nonumber;
data jack;
input lab method1 method2;
lines;
1 10.1 10.5
1 9.3 9.5
1 9.7 10.0
1 10.9 11.4
2 10.0 9.8
2 9.5 9.7
2 9.7 9.8
2 10.8 10.7
3 11.3 10.1
3 10.7 9.8
3 10.8 10.1
3 10.5 9.6
;
/* Source: Jackson (1991, p. 301). Principal Components. Copyright

1991 John Wiley & Sons, Inc. Reprinted by permission of
John Wiley & Sons, Inc. */

Title1 ’Output 4.1’ ;
title2 ’Balanced One-Way MANOVA’;
proc glm data = jack;
class lab;
model method1 method2 = lab/nouni;
manova h = lab/printe printh ;
run;
/* proc glm data = jack ;
class lab ;
model method1 method2 = lab/nouni;
contrast ’Test: lab eff.’ lab 1 -1 0,

lab 1 0 -1;
manova/printe printh;
run; */

The independent variable which defines the classification is denoted by LAB and the
two methods specified as METHOD1 and METHOD2 are the dependent variables. We
perform the analysis using the GLM procedure. The MANOVA statement performs multi-
variate analysis. It is important that the variable LAB is specified in the CLASS statement.
This enables SAS to create the appropriate X matrix. We could have used any other numeric
or nonnumeric coding for the values taken by the class variable LAB, since classification
variables can be either character or numeric.

To test the null hypothesis, it suffices to indicate the variable LAB as H=LAB in the
MANOVA statement. The PRINTE and PRINTH options enable us to print the SS&CP
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matrices corresponding to the error and the null hypothesis H0. We could have also spec-
ified the type of SS&CP matrices to be used in the analysis in the MODEL statement but
since the four types of analyses are identical in this case, it is not necessary to specify one
type over another. As a result, SAS uses the default, Type III analysis.

Output 4.1 Output 4.1
Balanced One-Way MANOVA

E = Error SS&CP Matrix

METHOD1 METHOD2

METHOD1 2.7275 2.63
METHOD2 2.63 2.81

H = Type III SS&CP Matrix for LAB

METHOD1 METHOD2

METHOD1 1.815 -0.605
METHOD2 -0.605 0.4466666667

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall LAB Effect

H = Type III SS&CP Matrix for LAB E = Error SS&CP Matrix

S=2 M=-0.5 N=3

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.069895 11.13 4 16 0.0002
Pillai’s Trace 0.971691 4.2522 4 18 0.0135
Hotelling-Lawley Trace 12.71214 22.246 4 14 0.0001
Roy’s Greatest Root 12.66516 56.993 2 9 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

For the present data set, the number of data points n = 12 and the number of dependent
variables p = 2. The null hypothesis can be written as

H0 :
[

0 1 −1 0
0 1 0 −1

]
µ′
τ ′

1
τ ′

2
τ ′

3


 = 0 or LB = 0

and since the left-most matrix in H0, that is L, has rank 2, the value of r = Rank (L) = 2
(see Table 3.2). The four test statistics corresponding to the null hypothesis are shown in
Output 4.1. Recall that according to Table 3.3, the transformation of Wilks’ � to F statistic
is exact, since p = 2 here. As a result,

F =
(

n − k − 1

r

)(
1 − √

�√
�

)
=
(

12 − 3 − 1

2

)(
1 − √

�√
�

)
= 8

2

(
1 − √

�√
�

)
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follows an F (4, 16) distribution. Corresponding to the observed value of F = 11.1299
with d f (4,16), the p value is 0.0002. Consequently, we conclude that there is sufficient
evidence against H0 and that there is a significant difference between the laboratories.
We reach essentially the same conclusions under the other three test criteria. The output
also presents the corresponding SS&CP matrices for error and the hypothesis as results of
PRINTE and PRINTH options in the the MANOVA statement. These were respectively
denoted by E and H in the previous chapter. It may also be noted that as an alternative to
H=LAB, one could also use the following CONTRAST statement,

contrast ’Test: lab eff.’ lab 1 -1 0,
lab 1 0 -1;

It is so since the above statement specifies the hypothesis τ1 = τ2 and τ2 = τ3 together
which are then equivalent to our H0 stated earlier. For completeness we have included this
code in Program 4.1 but have commented it out to suppress the corresponding output.

EXAMPLE 2 An Unbalanced One-Way Classification, Diabetic Patients Study Data Crowder and
Hand (1990, p. 8) provided this example of unbalanced data. Two groups of subjects, an
eight-member normal control group and a six-member group of diabetic patients without
complications, were to be compared as part of a medical experiment. The subjects per-
formed a small physical task, and the measurements were recorded on each of the subjects
during various subsequent time points. The data in Table 4.2 are these measurements after
one minute, five minutes, and ten minutes after performing the task. The question of inter-
est concerns differences between the two groups. In other words, we want to investigate
if the two groups differ from each other in their abilities to perform the specified physical
task.

This one-way classification data has GROUP as the CLASS variable. On each of the 14
subjects, a trivariate vector of data representing the three measurements at one, five, and
ten minutes after performing the physical task, is available. If the respective population
mean vectors for the two groups on these measurements are represented as µ(1) = µ + τ1
and µ(2) = µ + τ2, then the matrix B of regression coefficients can be written as

B3×3 =

 µ′

τ ′
1

τ ′
2


 .

TABLE 4.2 Effect of a Physical Task on Hospital Patients

Time

Subject 1 5 10

Group 1 1 7.6 8.7 7.0
2 10.1 8.9 8.6
3 11.2 9.5 9.4
4 10.8 11.5 11.4
5 3.9 4.1 3.7
6 6.7 7.3 6.6
7 2.2 2.5 2.4
8 2.1 2.0 2.0

Group 2 9 8.5 5.6 8.4
10 7.5 5.0 9.5
11 12.9 13.6 15.3
12 8.8 7.9 7.3
13 5.5 6.4 6.4
14 3.2 3.4 3.2
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To test the equality of the treatment effects (that is, the two groups’ abilities to complete
the specified physical task) between the two groups for all the three time points, the null
hypothesis is

H0 : [
0 1 − 1

] 
 µ1 µ2 µ3

τ11 τ12 τ13
τ21 τ22 τ23


 = 0

that is,

H0 : LB = 0,

which can be tested as in Example 1. However, in the present context a more realistic
hypothesis may be to test that the amount of change in measurements from one minute to
five minutes is equal for the two groups and that the change between the five minutes and
ten minutes is equal for the two groups. These can be represented as

H0 : [ 0 1 − 1
] 

 µ1 µ2 µ3
τ11 τ12 τ13
τ21 τ22 τ23





 1 0

−1 1
0 −1


 = 0

or

H0 : LBM = 0 (4.5)

with L = (0 1 − 1), and M =
[ 1 0−1 1

0 −1

]
.

The above representation deserves some further explanation. Let us first premultiply B
to M, resulting in

BM =

 µ1 − µ2 µ2 − µ3

τ11 − τ12 τ12 − τ13
τ21 − τ22 τ22 − τ23


 .

The entries in the first row of the above matrix represent the successive differences in
the intercept or the overall mean for the three time points. The second row represents the
successive treatment differences for Group 1 and the third row represents the same for
Group 2. Since we want to compare these differences for the two groups, this is accom-
plished by premultiplying BM by L = (0 1 − 1) and equating the product to zero. This
results in the simplification of H0 : LBM = 0 to

H0 :
[

(τ11 − τ12) − (τ21 − τ22)

(τ12 − τ13) − (τ22 − τ23)

]′
=

[
0
0

]′
.

The choices of either L or M indicated here are not unique. For example, L = (0 − 1 1)

and M =
[ 1 1−1 0

0 −1

]
are the other equally legitimate choices for L and M. The tests for the

hypotheses of the type H0 : LBM = 0 were described in Chapter 3. In SAS, this objective
is attained by specifying the M matrix in the MANOVA statement. SAS automatically
identifies the corresponding L matrix from the specification H = GROUP.

The M matrix can be specified using one of the two different yet equivalent ways. We
can either explicitly specify all the entries of M in the M= specification of the MANOVA
statement as

m = (1 -1 0,
0 1 -1);

or ask SAS to create it so as to correspond to the measurement differences of interest. The
latter is achieved by using the algebraic statements which, in the present context, are
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m = min1 - min5,
min5 - min10;

where MIN1, MIN5, and MIN10 were the names assigned in Program 4.2 to the measure-
ments at 1, 5, and 10 minutes after performing the physical task. It may also be pointed
out that when using the former choice, the assignment is column after column separated
by commas. Similarly, when the respective columns are written in different lines of the
program, the matrix in the SAS code may visually resemble M′ and not M. In Program
4.2, we have used the latter alternative. See Output 4.2 for the results.

/* Program 4.2 */

options ls=64 ps=45 nonumber nodate;
data phytask ;
input group min1 min5 min10 ;
lines ;
1 7.6 8.7 7.0
1 10.1 8.9 8.6
1 11.2 9.5 9.4
1 10.8 11.5 11.4
1 3.9 4.1 3.7
1 6.7 7.3 6.6
1 2.2 2.5 2.4
1 2.1 2.0 2.0
2 8.5 5.6 8.4
2 7.5 5.0 9.5
2 12.9 13.6 15.3
2 8.8 7.9 7.3
2 5.5 6.4 6.4
2 3.2 3.4 3.2
;
/* Source: Crowder and Hand (1990, p. 8). */

title1 ’Output 4.2’;
title2 ’Unbalanced One-Way MANOVA’;
proc glm data = phytask;
class group;
model min1 min5 min10 = group/nouni;
manova h = group m = min1-min5,

min5-min10/printe printh ;
manova h = intercept m = min1-min5,

min5-min10/printe printh ;
run;

Output 4.2
Output 4.2

Unbalanced One-Way MANOVA

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall GROUP Effect

on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for GROUP E = Error SS&CP Matrix

S=1 M=0 N=4.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.65534 2.8926 2 11 0.0979
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Pillai’s Trace 0.34466 2.8926 2 11 0.0979
Hotelling-Lawley Trace 0.525925 2.8926 2 11 0.0979
Roy’s Greatest Root 0.525925 2.8926 2 11 0.0979

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0 N=4.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.872037 0.8071 2 11 0.4709
Pillai’s Trace 0.127963 0.8071 2 11 0.4709
Hotelling-Lawley Trace 0.146741 0.8071 2 11 0.4709
Roy’s Greatest Root 0.146741 0.8071 2 11 0.4709

Suppose, in addition, that we are also interested in testing the null hypothesis that the
changes with respect to time in the levels of overall means (intercepts) are zero. This
amounts to testing H0 : µ1 = µ2 = µ3 or

H0 :
[

µ1 − µ2
µ2 − µ3

]
= 0. (4.6)

With the choice of M the same as earlier and L = (1 0 0), this hypothesis also reduces
to the form H0 : LBM = 0. As earlier, the corresponding M will be specified through
the M= specification of the MANOVA statement. However, the choice of L in this case is
specified by indicating H = INTERCEPT.

The null hypotheses in Equations 4.5 and 4.6 are tested using Program 4.2. Output 4.2
presents portions of the resulting output. We use the default Type III analysis since all the
four types of analyses are identical in this case.

In both the cases, since L is a nonzero row vector, it is of rank 1. Consequently, all four
multivariate test criteria lead to an exact and identical F test statistic. For the hypothesis in
Equation 4.5, the p value corresponding to the test statistic is 0.0979, which indicates that
there is some evidence, though it is not very strong, against the null hypothesis. However,
with respect to the null hypothesis in Equation 4.6, there is not enough evidence to reject
H0 (p value = 0.4709) and hence we conclude that levels of overall mean are the same for
the three periods.

Certain other ways of analyzing repeated measures data are discussed in Chapter 5.

4.4 Two-Way Classification

In one-way classification models, the interest is in comparing the treatment effects which
correspond to a single variable. When there are two variables, say A and B, various treat-
ments are obtained by combining the various levels of variable A with those of variable B.
If A is at a different levels and B is at b levels, then assuming that all possible levels of A
can be attempted with those of B, the experiment consists of ab treatment combinations.
In such a case, we say that A and B are crossed with each other, and the design is often
referred to as a two-way classification.

If each ab treatment is tried an equal number of times, then the resulting design is
balanced. Such designs usually lead to a simpler analysis in that the corrected total SS&CP
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matrix has a unique partitioning: the SS&CP matrices corresponding to variables A and
B, the interaction AB, and the error. In fact, this same uniqueness of partitioning can be
ensured if ri j , the number of observations in the (i, j)th cell, that is, corresponding to the
i th level of variable A and the j th level of variable B, i = 1, . . . , a, j = 1, . . . , b is such
that

ri j = ri .r. j

r..
,

where

ri. =
b∑

j=1

ri j , r. j =
a∑

i=1

ri j , and r.. =
a∑

i=1

ri. =
b∑

j=1

r. j .

EXAMPLE 3 A Balanced Two-Way Classification, Weight Loss in Mice Morrison (1976, p. 190) pre-
sented a two-way classification study to compare the loss in weights of male and female
mice under three different drugs. Four mice of each sex were randomly assigned to each
of the three drugs and weight losses were measured at the end of the first and second
weeks. The resulting bivariate data correspond to a balanced two-way classification with
interaction:

yi jk = µ + αi + β j + (αβ)i j + εi jk

i = 1, 2, j = 1, 2, 3, k = 1, 2, 3, 4,

where suffix i indicates the particular level of variable SEX, and j indicates the particular
level of variable DRUG.

The purpose in this example is to test the significance of the effects of SEX, the effects
of DRUG, and their interaction. Program 4.3 provides the needed SAS code. The output is
presented as Output 4.3.

/* Program 4.3 */

options ls=64 ps=45 nodate nonumber;
data wtloss ;
input sex $ drug $ week1 week2 ;
lines;
male a 5 6
male a 5 4
male a 9 9
male a 7 6
male b 7 6
male b 7 7
male b 9 12
male b 6 8
male c 21 15
male c 14 11
male c 17 12
male c 12 10
female a 7 10
female a 6 6
female a 9 7
female a 8 10
female b 10 13
female b 8 7
female b 7 6
female b 6 9
female c 16 12
female c 14 9
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female c 14 8
female c 10 5
;
/* Source: Morrison (1976, p. 190). Multivariate Statistical

Methods, McGraw-Hill, Inc. Reproduced with permission
of McGraw-Hill, Inc. */

proc glm data = wtloss ;
class sex drug ;
model week1 week2= sex|drug/nouni ;
*model week1 week2= sex drug sex*drug/nouni ;
manova h = sex drug sex*drug/printe printh ;
title1 ’Output 4.3’;
title2 ’Balanced Two-Way MANOVA’;
run;

The MANOVA statement in the program asks for the individual multivariate testing for
the variables SEX, DRUG, and the interaction SEX*DRUG. The PRINTE and PRINTH
options are used to print the resulting SS&CP matrices corresponding to the error and the
particular hypotheses in each of the three tests.

We discuss the test for the interaction first. Note that the same SS&CP matrix E for
error will be used for the tests for main effects as well, unless the model is modified. Here

E =
[

94.5 76.5
76.5 114.0

]
.

The SS&CP matrix corresponding to the hypothesis of no interaction is

Hint =
[

14.3333 21.3333
21.3333 32.3333

]
.

As a result, Wilks’ � is computed as �int = |E|
|E+Hint | = 0.7744. From Table 3.3, Fint =

17
2 { 1−√

0.7744√
0.7744

} = 1.1593 is the observed value from an F(4, 34) distribution. As the corre-
sponding p value = 0.3459 is quite large, we do not reject the hypothesis of no interaction
between the variables SEX and DRUG. Other test statistics were calculated using the cor-
responding formulas, and their respective p values also support this conclusion. As a result,
it may be assumed that an additive model for SEX and DRUG is valid.

In the absence of possible interaction, we may want to perform tests of significance
on the main variables. A similar calculation provides for variable SEX: �sex = 0.9925,

Fsex = 0.0639 with d f = (2, 17) (p value = 0.9383) and for variable DRUG: �drug =
0.1686, Fdrug = 12.1991 with d f = (4, 34) (p value = 0.0001). As a result, we conclude
that the variable DRUG has a significant effect on weight loss, but the sex of the rats does
not play any important role; that is, rats of either sex lost weight in the same way.

Output 4.3 Output 4.3
Balanced Two-Way MANOVA

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall SEX Effect

H = Type III SS&CP Matrix for SEX E = Error SS&CP Matrix

S=1 M=0 N=7.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.992537 0.0639 2 17 0.9383
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Pillai’s Trace 0.007463 0.0639 2 17 0.9383
Hotelling-Lawley Trace 0.007519 0.0639 2 17 0.9383
Roy’s Greatest Root 0.007519 0.0639 2 17 0.9383

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall DRUG Effect

H = Type III SS&CP Matrix for DRUG E = Error SS&CP Matrix

S=2 M=-0.5 N=7.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.16863 12.199 4 34 0.0001
Pillai’s Trace 0.880378 7.0769 4 36 0.0003
Hotelling-Lawley Trace 4.639537 18.558 4 32 0.0001
Roy’s Greatest Root 4.576027 41.184 2 18 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall SEX*DRUG Effect

H = Type III SS&CP Matrix for SEX*DRUG E = Error SS&CP Matrix

S=2 M=-0.5 N=7.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.774362 1.1593 4 34 0.3459
Pillai’s Trace 0.226949 1.152 4 36 0.3481
Hotelling-Lawley Trace 0.289692 1.1588 4 32 0.3473
Roy’s Greatest Root 0.283723 2.5535 2 18 0.1056

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

When the design is not balanced, the partitioning of corrected total SS&CP is not
unique. This issue has already been addressed in Section 4.2. As mentioned earlier, for
most comparison purposes, when the variables are being treated as categorical, and the pur-
pose is merely to compare or identify treatment effects, Type III analysis can be adopted.
However, for model-building purposes, where we are implicitly performing a selection of
variables analyses to obtain an appropriate model, the analysis using the sequential sums
of squares and crossproducts (Type I) may be appropriate.

The following example with unbalanced data provides an illustration.

EXAMPLE 4 Optimization of Uniformity and Selectivity in Etching Process In manufacturing in the
integrated circuit industry, the process must etch layers uniformly across the wafers. This
study investigated whether pressure (PRESS) and power (POWER) are the two main ex-
planatory variables which considerably affect various response variables. The list of re-
sponse variables includes the uniformity of the etching of the two layers (UNIF1 and
UNIF2) and the selectivity (SELECT), which is defined as the ratio of the etch rates of
the two layers. The problems in this example are first to see the effects of PRESS and
POWER on the response variables indicated above and second to fit a model for the three
response variables in terms of the variables PRESS and POWER and possibly their inter-
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action. Observations at each of two levels of POWER (240 and 290 watts) and three levels
of PRESS (90, 110 and 130 torr) were made with a total of 15 observations leading to an
unbalanced design. Three different response variables were observed in each of these 15
experiments.

The data are shown as part of Program 4.4. For each of the fifteen experiments, as
the three responses have resulted from the same experiment and are taken on the same
wafer, they will be correlated and hence the three separate univariate analyses may give
misleading results. It seems logical to perform a multivariate analysis of variance to draw
meaningful results. In addition, since we also want to find a suitable choice of the levels
of POWER and PRESS, to optimize the three responses, we also want to find suitable
regression models for the uniformity of the two etches and the selectivity. Here a Type
I analysis seems more appropriate than Type III; the three analyses are not going to be
identical since the design under consideration is not balanced.

It is possible that the variable PRESS may be more influential than the variable POWER.
This possibility indicates that, in the right-hand side of the MODEL statement, PRESS
should precede POWER and their interaction PRESS*POWER. To obtain a Type I anal-
ysis, we use the following sequential SS&CP partitioning. See Equations 4.3 and 4.4 for
notations.

R (PRESS, POWER, PRESS*POWER | INTERCEPT)

= R (PRESS | INTERCEPT) + R (POWER | INTERCEPT, PRESS)

+ R (PRESS ∗ POWER | INTERCEPT, PRESS, POWER).

In Program 4.4, we ask for all the three types of analyses, namely Types I, II, and III. The
appropriate SS&CP matrices computed by the statement:

manova h = press power press*power/printe printh;

for various hypotheses are indicated below. We have used the same notations as in Equa-
tions 4.3 and 4.4, with the understanding that the corresponding values are SS&CP matrices
and not just the sums of squares.

Type I: R (PRESS | INTERCEPT),
R (POWER | INTERCEPT, PRESS),
R (PRESS∗POWER | INTERCEPT, PRESS, POWER),
Error SS&CP.

Type II: R (PRESS | INTERCEPT, POWER),
R (POWER | INTERCEPT, PRESS),
R (PRESS∗POWER | INTERCEPT, PRESS, POWER),
Error SS&CP.

Type III: R (PRESS | INTERCEPT, POWER, PRESS*POWER),
R (POWER | INTERCEPT, PRESS, PRESS∗POWER),
R (PRESS∗POWER | INTERCEPT, PRESS, POWER),
Error SS&CP.

/* Program 4.4 */

options ls=64 ps=45 nodate nonumber;
data etch;
input press power etch1 etch2 unif1 unif2 ;
select = etch1/etch2 ;
x1 = (press-265)/25 ;



134 Applied Multivariate Statistics

x2 = (power-110)/20 ;
x2sq = x2*x2 ;
lines ;
240 90 793 300 13.2 25.1
240 90 830 372 15.1 24.6
240 90 843 389 14.2 25.7
240 110 1075 400 15.8 25.9
240 110 1102 410 14.9 25.1
240 130 1060 397 15.3 24.9
240 130 1049 427 14.7 23.8
290 90 973 350 7.4 18.3
290 90 998 373 8.3 17.7
290 110 940 365 8.0 16.9
290 110 935 365 7.1 17.2
290 110 953 342 8.9 17.4
290 110 928 340 7.3 16.6
290 130 1020 402 8.6 16.3
290 130 1034 409 7.5 15.5
;
title1 ’Output 4.4’;
title2 ’Unbalanced Two-Way Classification: MANOVA’ ;
title3 ’Effects of Factors on Etch Uniformity and Selectivity’;
proc glm data = etch ;
class press power ;
model select unif1 unif2= press power press*power/ss1 nouni ;
manova h = press power press*power/printe printh ;

proc glm data = etch ;
class press power ;
model select unif1 unif2=press power press*power/ss2 nouni ;
manova h = press power press*power/printe printh ;

proc glm data = etch ;
class press power ;
model select unif1 unif2=press power press*power/ss3 nouni ;
manova h = press power press*power/printe printh ;

proc glm data = etch ;
model select unif1 unif2 = x1 x2 x2sq /ss1 nouni;
manova h = x1 x2 x2sq /printe printh ;

/* proc glm data = etch ;
model select unif1 unif2 = x1 x2 x2sq /ss2 nouni;
manova h = x1 x2 x2sq /printe printh ;

proc glm data = etch ;
model select unif1 unif2 = x1 x2 x2sq /ss3 nouni;
manova h = x1 x2 x2sq /printe printh; */

A part of the results of Program 4.4 appears in Output 4.4. Since PRESS may play a
more important role than POWER, and hence if possible should be included in the model
when fitting a response surface, we examine the Type I analysis next. We first consider the
interaction term for testing. It is so because a significant interaction causes the main effect
tests to be meaningless. After discounting for the effects of PRESS and POWER, we find
that the interaction PRESS*POWER is not significant. The p value for Wilks’ � is 0.3605.
The other multivariate tests also provide comparable p values and similar conclusions. We
therefore look sequentially at the statistical significance of the main effect PRESS and then
POWER after discounting for PRESS.
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The analysis shows that the variable PRESS is highly significant with the corresponding
calculated value of F(3, 7)=264.6643 under all four criteria. These tests are all equivalent
for PRESS but not for POWER and PRESS*POWER. This is so since the rank of the
corresponding L matrix is 1 for PRESS whereas it is 2 for the other two hypotheses. The
corresponding p values are all very small. For POWER, significance is observed but only
marginally. For example, corresponding to Wilks’ test the p value is 0.0477. Note that the
test for the variable POWER was performed after discounting for the effect of PRESS.
As a result, we conclude that the variable POWER also has some effect on the response
variables. It may be pointed out that these conclusions are further supported by Type II as
well as Type III analyses outputs, which are not included here.

Output 4.4 Output 4.4
Unbalanced Two-Way Classification: MANOVA

Effects of Factors on Etch Uniformity and Selectivity

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall PRESS Effect

H = Type I SS&CP Matrix for PRESS E = Error SS&CP Matrix

S=1 M=0.5 N=2.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.008739 264.66 3 7 0.0001
Pillai’s Trace 0.991261 264.66 3 7 0.0001
Hotelling-Lawley Trace 113.4276 264.66 3 7 0.0001
Roy’s Greatest Root 113.4276 264.66 3 7 0.0001

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall POWER Effect

H = Type I SS&CP Matrix for POWER E = Error SS&CP Matrix

S=2 M=0 N=2.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.199491 2.8908 6 14 0.0477
Pillai’s Trace 1.014505 2.7452 6 16 0.0498
Hotelling-Lawley Trace 2.940054 2.9401 6 12 0.0529
Roy’s Greatest Root 2.513229 6.7019 3 8 0.0142

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall PRESS*POWER Effect

H = Type I SS&CP Matrix for PRESS*POWER E = Error SS&CP Matrix

S=2 M=0 N=2.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.435362 1.203 6 14 0.3605
Pillai’s Trace 0.582269 1.0952 6 16 0.4068
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Hotelling-Lawley Trace 1.256443 1.2564 6 12 0.3457
Roy’s Greatest Root 1.223339 3.2622 3 8 0.0805

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall X1 Effect

H = Type I SS&CP Matrix for X1 E = Error SS&CP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.010972 270.42 3 9 0.0001
Pillai’s Trace 0.989028 270.42 3 9 0.0001
Hotelling-Lawley Trace 90.1392 270.42 3 9 0.0001
Roy’s Greatest Root 90.1392 270.42 3 9 0.0001

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall X2 Effect

H = Type I SS&CP Matrix for X2 E = Error SS&CP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.294806 7.1762 3 9 0.0092
Pillai’s Trace 0.705194 7.1762 3 9 0.0092
Hotelling-Lawley Trace 2.392064 7.1762 3 9 0.0092
Roy’s Greatest Root 2.392064 7.1762 3 9 0.0092

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall X2SQ Effect

H = Type I SS&CP Matrix for X2SQ E = Error SS&CP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.830186 0.6136 3 9 0.6231
Pillai’s Trace 0.169814 0.6136 3 9 0.6231
Hotelling-Lawley Trace 0.20455 0.6136 3 9 0.6231
Roy’s Greatest Root 0.20455 0.6136 3 9 0.6231

Since our present goal is to predict the optimum combination of PRESS and POWER,
both of which are the continuous variables, we obtain the appropriate response surface
models by examining the importance of various terms in the model. We thus transform
PRESS and POWER as x1 = (PRESS − 265)/25 and x2 = (POWER − 110)/20. Since
PRESS is at two levels and POWER at three, only the following terms can be included in
the model:

X1 = x1, X2 = x2, X2SQ = x2
2 , X1X2 = x1x2, and X1X2SQ = x1x2

2 .
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However, since we have already found the interaction PRESS*POWER to be nonsignifi-
cant, we may not want to include the terms x1x2 and x1x2

2 in the model. As a result, for the
three response variables we simultaneously fit three models with x1, x2, and x2

2 as the in-
dependent variables. As earlier, we rely primarily on the Type I analysis, with the sequence
of the terms as specified. Since in regression modeling the quadratic effect x2

2 is treated as
a new variable and not as a function of x2, the Type I and Type II SS&CP matrices and the
corresponding test statistics for x2

2 are identical.
Output 4.4 shows the result of testing various hypotheses under Type I analysis. All

four multivariate tests are equivalent in this case. In view of the small p value(= 0.0001)

for the tests on x1 (PRESS), it is found to be statistically significant. Even after discount-
ing the effect of PRESS, the variable POWER represented by x2 is also significant with
p value = 0.0092. The quadratic effect of POWER, however, is not significant as evident
from the large p value(= 0.6231) for x2

2 . Note that a significant effect obtained through
a multivariate analysis does not necessarily imply that the effect is significant for each
response variable. The conclusions drawn from a univariate analysis for an individual re-
sponse variable may or may not be in complete agreement with those derived by perform-
ing a multivariate analysis of all the response variables collectively. This is true also in the
present example where it can be verified in univariate significance testing that none of the
three variables x1, x2, and x2

2 appear to have any significant effect on selectivity.

4.5 Blocking

In order to remove the additional variability in the data due to other external sources, block-
ing is often desired. Likewise, if the external variability is present due to two independent
sources or is present in two orthogonal directions, two-way blocking using the Latin square
design is often used. If the data are available for all the cells in the Latin square, the or-
thogonality of the two blocking variables and the treatment is automatically accomplished.
Hence the Type I, II, III, and IV analyses are identical. A problem, however, occurs if the
data are not available for certain cells or the blocks are of unequal size. The question in
that case is, which analysis is appropriate? As the treatments are to be compared only after
eliminating the effects due to blocking variables, the Type I analysis is clearly the appropri-
ate choice with the treatment variables listed after the blocking variables (in an appropriate
sequence) in the MODEL statement of PROC GLM. As an illustration, see the following
example, where data are collected under a Latin square design setup for all the cells except
two.

EXAMPLE 5 Experiments in Blocks, Comparison of Corn Varieties We consider a part of the data
from Srivastava and Carter (1983, p. 107), where a certain area of land was used for testing
four varieties of corn represented by four levels of the variable VARIETY. Due to the
slope of the land, differences from north to south (NS) and from east to west (EW) were
possible. As a result, the experiment was conducted using a Latin square design with the
corresponding layout given in Table 4.3.

Note that for our analysis the experiments corresponding to A3 B2 and A4 B4 are not
included in Table 4.3, so the design is unbalanced. For each experiment, two characteristics,
namely the height of the plant (HEIGHT) and the yield (YIELD), were measured. Thus,
the additive bivariate model (p = 2) containing the variable VARIETY as well as the
two blocking variables NS and EW will be fitted for the response variables HEIGHT and
YIELD.

As indicated earlier, sequential MANOVA partitioning (Type I) is used to adjust the
treatment SS&CP matrix for the block effects. The corresponding MODEL statement is

model height yield = ew ns variety/ss1;
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TABLE 4.3 Data on Corn Yield and Plant Height

East - West

A1 A2 A3 A4

Variety C2 C3 C4 C1
B1 Height 65 68 67 68

Yield 24 21 26 27

Variety C3 C2 – C4
B2 Height 66 63 – 67

Yield 20 23 – 24
North−South

Variety C1 C4 C2 C3
B3 Height 65 67 64 63

Yield 24 25 19 20

Variety C4 C1 C3 –
B4 Height 65 64 64 –

Yield 26 25 25 –

An alternative is to use the SS3 option instead of SS1 to get all the SS&CP matrices ad-
justed for all the remaining terms in the right side of the MODEL statement. However, if in
the MODEL statement given above, VARIETY was specified before NS and EW, then SS3
and not SS1 would be the correct option since under the SS1 option, the SS&CP matrix for
variety would be adjusted only for the intercept.

Therefore, since the MODEL statement in Program 4.5 lists VARIETY first, we have
chosen the Type III analysis and specified the SS3 option. The multivariate tests based on
Type III analysis (that is, after adjusting for the two directions in the Latin squares, in this
case) are presented as Output 4.5. Based on any of the four multivariate tests, there does
not appear to be significant difference between the four varieties; the p value for Wilks’ �

is 0.2638. If there were indeed a significant difference, it would also have been interesting
to perform the pairwise comparisons of the four varieties. This can be done using the
CONTRAST statement. For instance, if we wanted to compare the varieties C2 and C4,
then the corresponding SAS statement, which should follow the MODEL statement but
must precede the MANOVA statement, is

contrast ’c2 vs. c4’ variety 0 1 0 -1;

For the optional phrase c2 versus c4 enclosed by single quotation marks (’ ’), we could
have used any other alternative identifier appropriately indicating the type of contrast.

/* Program 4.5 */

options ls=64 ps=45 nodate nonumber;
data corn1;
input ew $ ns $ variety $ height yield;
lines ;
a1 b1 c2 65 24
a1 b2 c3 66 20
a1 b3 c1 65 24
a1 b4 c4 65 26
a2 b1 c3 68 21
a2 b2 c2 63 23
a2 b3 c4 67 25
a2 b4 c1 64 25
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a3 b1 c4 67 26
a3 b3 c2 64 19
a3 b4 c3 64 25
a4 b1 c1 68 27
a4 b2 c4 67 24
a4 b3 c3 63 20
;
/* Source: Srivastava and Carter (1983, p. 109). */

title1 ’Output 4.5’;
title2 "Latin Square Design: Corn Yield and Plant Height";
proc glm data = corn1;
class ew ns variety;
model height yield = variety ew ns/ss3 nouni;
manova h =variety/printe printh;
run;

Output 4.5 Output 4.5
Latin Square Design: Corn Yield and Plant Height

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall VARIETY Effect

H = Type III SS&CP Matrix for VARIETY E = Error SS&CP Matrix

S=2 M=0 N=0.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.135447 1.7172 6 6 0.2638
Pillai’s Trace 1.166323 1.8653 6 8 0.2033
Hotelling-Lawley Trace 4.154999 1.385 6 4 0.3925
Roy’s Greatest Root 3.522509 4.6967 3 4 0.0846

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Since the pairwise comparisons are not meaningful in the present context of nonsignif-
icant effect on VARIETY, we do not pursue this analysis further for this example.

4.6 Fractional Factorial Experiments

As the number of variables in an experiment increases, so does the total number of all pos-
sible combinations or treatments obtained by combining various levels of these variables.
As a result, the number of experiments needed to obtain data on the corresponding full
factorial design may soon become overwhelming. One way to reduce the total number of
experiments is to carefully choose the combinations of variable levels, so that the informa-
tion on all main effects and certain important lower order interactions can still be extracted
from these experiments. This, of course, requires assuming the absence of certain interac-
tions, for example. Also it is necessary to choose the design carefully to ensure that various
important interactions which are expected to be significant can still be estimated. When the
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effects of two variables or interactions on a response variable cannot be distinguished from
one another they are said to be confounded. In general, it is best to avoid confounding im-
portant variables or interactions. In fact, the confounding scheme of the design plays an
important role in the choice of fractions of factorial experiments. These are often termed
fractional factorial experiments.

There is a vast amount of literature available on the construction and analysis of the
fractional factorial experiments. On the topic of analysis, John (1971) and Montgomery
(1991) provide excellent discussions at different mathematical levels, the latter being more
accessible to nonmathematical audiences. However, only univariate analysis is considered
in both of these references. As for construction, SAS/QC software provides a number of
design generation choices including fractional factorial designs through PROC FACTEX.
Also available are certain SAS macros to generate more advanced designs in the same
reference. See SAS/QC Software, Usage and Reference, for details.

The multivariate nature of the data in response variables does not play any role in the
choice of fractional factorial designs or on the confounding scheme. In fact, these issues re-
late only to the independent variables and are usually decided prior to the experimentation.
However, a multivariate analysis of various response variables may be more appropriate
due to possible correlations between various response variables. The standard multivari-
ate tests can be performed as described earlier. For various main effects and interactions
use either PROC GLM or the REG procedure. The latter is appropriate when all the in-
dependent variables are continuous, or when the variables are categorical, if they are only
at two levels. Since fractional factorial designs are balanced designs, the ANOVA proce-
dure is also applicable, when we are only interested in comparison and the significance or
nonsignificance of various variables and interactions and not in modeling.

It should also be noted that multivariate analysis may sometimes be restrictive in that it
tests that a given variable or interaction is significant or nonsignificant collectively for all
the response variables. As a result, it is possible to miss the very strong effect of a particu-
lar variable or interaction on one response variable simply because it did not significantly
affect the other response variables. It is therefore advisable that various univariate anal-
yses accompany the multivariate results to ensure that the two results do not drastically
contradict each other.

EXAMPLE 6 A 28−3 Fractional Factorial Experiment, Modeling of a Chemical Process Daniel and
Riblett (1954) described a chemical experiment with eight variables, A to H , in 32 runs.
Two response variables under consideration were catalyst activity (ACTIVT) and selec-
tivity (SELECTVT). The experiment was run as a one-eighth fraction of a full factorial
(that is, a 28−3 fractional factorial design) with all the variables at two levels: +1 and −1.
The design allowed the estimation and testing of all the main effects and the following two
variable interactions: AB, AC, AD, AE, AF, AG, AH, BG, B H, C E, C F, CG,

C H, DG, DH, EG, E H, FG, F H , and G H . All other interactions were assumed to
be nonexistent.

The purpose of the analysis was to first identify important main variables and inter-
actions using the statistical tests, then estimate their effects and finally obtain a bivariate
regression model for the catalyst activity and selectivity.

The data corresponding to this study are presented in Program 4.6. This example also
illustrates the use of PROC REG as an occasionally more efficient alternative to PROC
GLM. PROC REG is especially helpful here since for two-level fractional factorial experi-
ments, the computation of various effects can be easily achieved through the estimation of
certain regression coefficients as we shall see next.

For two variables, say A and B, each at two levels, denoted by +1 and −1, interaction
can be represented by their ordinary algebraic product A∗B. We can correspondingly create
the values of the new independent variables representing various interactions by simply
multiplying the columns of the values (coded as ±1) of appropriate main variables. In
Program 4.6, variables AB, AC, etc., are defined using this rule only. Having done that, we
fit the models for the variables ACTIVT and SELECTVT using all the main variables and
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interactions indicated earlier, as the independent variables. Since these variables are being
treated as continuous and not categorical, we can use PROC REG. All the main variables
and interactions are defined as continuous variables which take values +1 and −1 for this
data set. The estimated regression coefficients are saved in the output file EST1. Next the
MODEL statement is specified for the two dependent variables ACTIVT and SELECTVT.
Since the underlying design is a fractional factorial and hence balanced, all three types of
analyses are identical. We have thus used the default choice of Type III SS. Also, since
the effects are orthogonal (fractional factorial designs are always orthogonal), dropping a
particular interaction or main variable term from the model would not alter the estimated
regression coefficients of other terms in the reduced model.

In order to test the joint effect of a set of independent variables or an individual inde-
pendent variable on the response variables, we use the MTEST statement. We first test if
the bivariate model with only main variables as independent variables is adequate. To do so
we include the list of all the independent variables (separated by commas) corresponding
to the two variable interactions in the MTEST statement. The label ONLYMAIN is used to
indicate that under the null hypothesis stated by MTEST, the reduced model contains only
the main effects. The hypothesis in the MTEST statement can also be specified as an equa-
tion or a set of equations. For example, an alternative way to write the MTEST statement
is

onlymain: mtest ab=0, ac=0, ad=0, ae=0, af=0, ag=0,
ah=0, bg=0, bh=0, ce=0, cf=0, cg=0, ch=0,
dg=0, dh=0, eg=0, eh=0, fg=0, fh=0, gh=0;

The remaining MTEST statements in Program 4.6 are used to individually test the hypothe-
ses on the particular interactions. The four multivariate tests for these individual tests are
equivalent as well as exact. See Table 3.3 for details.

/* Program 4.6 */

options ls = 64 ps=45 nodate nonumber;
data actselct ;
infile ’chemist.dat’ obs=32;
input a b c d e f g h activt selectvt;
ab = a*b;
ac = a*c;
ad = a*d;
ae = a*e;
af = a*f;
ag = a*g;
ah = a*h;
bg = b*g;
bh = b*h;
ce = c*e;
cf = c*f;
cg = c*g;
ch = c*h;
dg = d*g;
dh = d*h;
eg = e*g;
eh = e*h;
fg = f*g;
fh = f*h;
gh = g*h;
title1 ’Output 4.6’;
title2 ’Fractional Factorial Experiment: Modeling a

Chemical Process’;
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proc reg outest = est1 data = actselct ;
model activt selectvt = a b c d e f g h ab ac ad ae af
ag ah bg bh ce cf cg ch dg dh eg eh fg fh gh ;
onlymain: mtest ab, ac, ad, ae, af, ag, ah, bg, bh,
ce, cf, cg, ch, dg, dh, eg, eh, fg, fh, gh ;
ag_eq_0: mtest ag;
/*
ab_eq_0: mtest ab ;
ac_eq_0: mtest ac ;
ad_eq_0: mtest ad ;
ae_eq_0: mtest ae ;
af_eq_0: mtest af ;
ah_eq_0: mtest ah ;
bg_eq_0: mtest bg ;
bh_eq_0: mtest bh ;
ce_eq_0: mtest ce ;
cf_eq_0: mtest cf ;
cg_eq_0: mtest cg ;
ch_eq_0: mtest ch ;
dg_eq_0: mtest dg ;
dh_eq_0: mtest dh ;
eg_eq_0: mtest eg ;
eh_eq_0: mtest eh ;
fg_eq_0: mtest fg ;
fh_eq_0: mtest fh ;
gh_eq_0: mtest gh ;
*/
data effects;
set est1 ;
eff_a=2*a;
eff_b=2*b;
eff_c=2*c;
eff_d=2*d;
eff_e=2*e;
eff_f=2*f;
eff_g=2*g;
eff_h=2*h;
eff_ab=2*ab;
eff_ac=2*ac;
eff_ad=2*ad;
eff_ae=2*ae;
eff_af=2*af;
eff_ag=2*ag;
eff_ah=2*ah ;
eff_bg=2*bg ;
eff_bh=2*bh ;
eff_ce=2*ce ;
eff_cf=2*cf ;
eff_cg=2*cg ;
eff_ch=2*ch ;
eff_dg=2*dg ;
eff_dh=2*dh ;
eff_eg=2*eg ;
eff_eh=2*eh ;
eff_fg=2*fg ;
eff_fh=2*fh ;
eff_gh=2*gh ;
proc print data = effects ;
var _depvar_ eff_a eff_b eff_c eff_d eff_e eff_f
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eff_g eff_h ;
title2 ’Effects for Main Factors’;
title3 ’Coefficients are Half of the Effect of the Contrasts’;
proc reg data = actselct ;
model activt = a b c d e f g h ;
model selectvt = activt a b c d e f g h ;
run;

Selected parts of the output are presented as Output 4.6. The null hypothesis (all the two-
variable interactions are zero) is not rejected by all four multivariate tests. For instance, the
p value corresponding to Wilks’ � is 0.8258. Similarly, all the individual null hypotheses
for the interactions are also not rejected at a 5% level of significance. In the output, we show
the values of various (equivalent) test statistics and the corresponding p values (=0.7824)
for H0 : AG = 0 only.

Output 4.6 Output 4.6
Fractional Factorial Experiment: Modeling a Chemical Process

Multivariate Test: ONLYMAIN

Multivariate Statistics and F Approximations

S=2 M=8.5 N=0

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.020639 0.5961 40 4 0.8258
Pillai’s Trace 1.662822 0.7397 40 6 0.7425
Hotelling-Lawley Trace 14.33703 0.3584 40 2 0.9266
Roy’s Greatest Root 11.44314 1.7165 20 3 0.3667

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Multivariate Test: AG_EQ_0

Multivariate Statistics and Exact F Statistics

S=1 M=0 N=0

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.78244 0.2781 2 2 0.7824
Pillai’s Trace 0.21756 0.2781 2 2 0.7824
Hotelling-Lawley Trace 0.278053 0.2781 2 2 0.7824
Roy’s Greatest Root 0.278053 0.2781 2 2 0.7824

Effects for Main Factors
Coefficients are Half of the Effect of the Contrasts

OBS _DEPVAR_ EFF_A EFF_B EFF_C EFF_D

1 ACTIVT 0.03437 0.11563 -0.03437 0.024375
2 SELECTVT 0.71250 0.55000 0.85000 -0.062500
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OBS EFF_E EFF_F EFF_G EFF_H

1 -0.17062 -0.02937 0.18813 0.08688
2 -1.00000 -1.11250 -0.53750 -0.48750

We also want to compute the effects for various main variables. Since all the variables
are at two levels and the design is orthogonal, the computation of effects is especially
simple. In this case, the effect of a particular variable (or interaction, if it exists) is noth-
ing but twice the estimated value of the corresponding regression coefficient. Since all
the regression coefficients of the two models corresponding to two response variables,
namely ACTIVT and SELECTVT, have been output in a data set EST1, we define a new
data set EFFECTS, where effects for various main variables and the interactions are com-
puted. For example, the regression coefficient of the variable A in the model for ACTIVT
is 0.01719; correspondingly, the effect of A is 2 × (0.01719) = 0.03438 as shown in
the output.

An alternative way to compute the values of various effects would have been to use
PROC GLM, treat all the main variables as classification variables, and use the ESTIMATE
statement. For example, the corresponding statement for the effect of A is

estimate ’factor a’ a 1 -1;

It would, however, require that the variable A be declared as a classification variable,
thereby not permitting direct computation of the regression coefficients.

It is also possible to identify significant effects using the stepdown analysis discussed
in Chapter 3. Roy, Gnanadesikan, and Srivastava (1971) point out that in the context of the
present data set, it is known that the response variable ACTIVT is observable with greater
precision than the response variable SELECTVT. As a result, we decided that ACTIVT is
more important than SELECTVT and there is a natural ordering between the two variables.
Thus the overall bivariate null hypothesis of no treatment effect can be tested by first con-
sidering the hypothesis of no treatment effect on the response ACTIVT marginally. Then
we can consider the hypothesis of no treatment effect on the response variable SELECTVT
conditional on ACTIVT (that is, on SELECTVT after adjusting for the covariate ACTIVT).
Since any effect is merely a multiple of corresponding regression coefficients for this de-
sign, we can directly apply a stepdown analysis on these regression coefficients only.

For illustration, we consider only the main factor model by assuming that all the inter-
actions are negligible and hence our regression model contains only the main variables.
In the stepdown analysis (see Chapter 3), the overall null hypothesis is not rejected if and
only if the corresponding hypotheses at all the stages are not rejected. We will therefore
reject the overall null hypothesis if it is rejected at either the first stage (that is, in the model
for ACTIVT) or the second stage (that is, in the model for SELECTVT, with ACTIVT as a
covariate) or at both the stages. As a result, an occurrence of a small p value at either of the
two stages leads to the rejection of the overall null hypothesis. Of course, the individual
levels of significance, α1 and α2 for the two hypotheses, should be appropriately decided.
See Section 3.5.2.

The corresponding two models are fitted by using the last three lines of Program 4.6. As
shown in Output 4.6, in the first model (for the variable ACTIVT), the effects E and G have
small p values and hence are statistically significant. In the model for SELECTVT adjusted
for the covariate ACTIVT, we observe that A, C , E , and F are statistically significant at a
5% level of significance. Consequently, we conclude that all the effects except B, D, and
H are significant.

In the above example, we have seen how univariate analysis of covariance can be used
in the analysis to adjust one response variable for the other and to test a multivariate hy-
pothesis using the stepdown approach. However, keep in mind that situations exist in which
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genuine covariates are available as the independent variables. In such situations any com-
parison of various variables needs to be done after adjusting for the effects of these covari-
ates. We discuss this issue in the next section.

4.7 Analysis of Covariance

When we want to compare various treatments, but the responses are affected by not only the
particular treatments but also by certain other variables termed covariates or concomitant
variables, we need to modify the analysis to account for these covariates and eliminate their
effects. In other words, to make a fair comparison of various treatments, the data on the
response variables need to be made comparable by first adjusting for the covariates. These
situations commonly occur in social, biological, medical, physical, and other sciences.

For analyzing these data we utilize the following model

Y = XB + ZΓ + E, (4.7)

where the matrices Y and E are defined as before. The term XB represents the design part
of the model with a rank of the n by k + 1 matrix X equal to r . The n by q matrix Z is
the matrix of data on the covariates with Rank(Z) = q, and the q by p matrix Γ is the
matrix of unknown parameters representing the regression of Y on Z. Hence the term ZΓ
in the model in Equation 4.7 represents the covariate part of the model. First we want to
test the significance of some or all covariates in Z by testing the corresponding rows of Γ
to be zero. Second we want to test the linear hypotheses about B, after adjusting for the
effects of the variables Z, to answer the usual questions discussed in the earlier sections.
We rewrite Equation 4.7 in the standard linear model form as

Y = (X Z)

[
B
Γ

]
+ E = W� + E .

Then using the usual least squares principle and assuming that the Rank(Z) < n −
Rank(X), the least square solutions for Γ and B respectively are

Γ̂ = (Z′QZ)−Z′QY

and

B̂ = (X′X)−X′(Y − ZΓ̂),

where Q = I − X(X′X)−X′.
Now for the first test H (a)

0 : Γ = 0, that is, covariates have no effect on the response
variables, we use the matrices

H = Y′QZ(Z′QZ)−Z′QY = Γ̂
′
Z′QY

and

E = Y′QY − Γ̂
′
Z′QY.

When H (a)
0 is true, then assuming n > q + r , H and E are independently distributed as

Wp(q, �) and Wp(n −q −r, �) respectively. Using these matrices the usual multivariate

tests can be used to test H (a)
0 . Next, for the second test H (b)

0 : LB = 0, the same E matrix
is used and the matrix H is determined using the model

Y = W� + E .



146 Applied Multivariate Statistics

Since H (b)
0 : LB = 0 can be written as L1� = 0 with L1 = (L : 0), the H matrix for H (b)

0
is same as that for L1� = 0. We use PROC GLM to test these hypotheses, as is illustrated
in the next example.

EXAMPLE 7 Comparisons in the Presence of Covariates, A Flammability Study Consider a situation
where the interest is in comparing the effects of various types of foams and fabrics used in
carpets on carpet flammability. The experiment was designed to determine the most heat-
resistant foam and fabric after determining if there were any significant differences between
various types of foams and fabrics. The problem appears to fit in the multivariate two-way
classification setup. Three types of foams, namely A, B, and C , and three types of fabric
materials denoted by X , Y , and Z were used, leading to nine possible compositions for the
carpets. Two specimens of equal size (by volume) were taken and separately subjected to
flame under identical temperature, pressure, and space. The heat releases at 5, 10, and 15
minutes (HR5, HR10, and HR15) were observed in each experiment.

One important issue, however, needs to be addressed. Although the specimens are all
supposedly of the same volume, the amount of heat release relates more to the weight of
the specimens than to the volume. Due to different densities for various types of foams and
fabrics, the equality of volumes does not necessarily imply the equality of weights of all
these specimens. As a result, for a fair comparison, the values of heat releases need to be
adjusted for the differing weights of the various specimens. The weight to response rela-
tionship does not depend on any other factor. Thus, all effects and contrast tests discussed
below are performed at the overall average weight.

These fictitious data inspired by an actual experiment are presented as part of Program
4.7. A two-way classification model with interaction in the classification variables FOAM
and FABRIC is fitted for the response variables, HR5, HR10, and HR15. The weight of the
specimen (WT) is taken as the covariate.

/* Program 4.7 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 4.7’;
title2 ’Analysis of Covariance’;

data heat ;
input foam $ fabric $ hr5 hr10 hr15 wt;
lines ;
foam_a fabric_x 9.2 18.3 20.4 10.3
foam_a fabric_x 9.5 17.8 21.1 10.1
foam_a fabric_y 10.2 15.9 18.9 10.5
foam_a fabric_y 9.9 16.4 19.2 9.7
foam_a fabric_z 7.1 12.8 16.7 9.8
foam_a fabric_z 7.3 12.6 16.9 9.9
foam_b fabric_x 8.2 12.3 15.9 9.5
foam_b fabric_x 8.0 13.4 15.4 9.3
foam_b fabric_y 9.4 17.7 21.4 11.0
foam_b fabric_y 9.9 16.9 21.6 10.8
foam_b fabric_z 8.8 14.7 20.1 9.3
foam_b fabric_z 8.1 14.1 17.4 7.7
foam_c fabric_x 7.7 12.5 17.3 10.0
foam_c fabric_x 7.4 13.3 18.1 10.5
foam_c fabric_y 8.7 13.9 18.4 9.8
foam_c fabric_y 8.8 13.5 19.1 9.8
foam_c fabric_z 7.7 14.4 18.7 8.5
foam_c fabric_z 7.8 15.2 18.1 9.0
;
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proc glm data = heat;
class foam fabric ;
model hr5 hr10 hr15=wt foam fabric foam*fabric/ss1 nouni;
contrast ’(a,z) vs. (c,x)’
intercept 0 foam 1 0 -1 fabric -1 0 1

foam*fabric 0 0 1 0 0 0 -1 0 0 ;
contrast ’foam a vs b ’ foam 1 -1 0 ;
manova h = foam fabric foam*fabric/ printe printh ;
run;

/*
proc glm data = heat ;
class foam fabric ;
model hr5 hr10 hr15=wt foam fabric foam*fabric/ss3 nouni;
lsmeans foam fabric foam*fabric ;
contrast ’Foam a vs b ’ foam 1 -1 0 ;
contrast ’(a,z) vs. (c,x)’
intercept 0 foam 1 0 -1 fabric -1 0 1

foam*fabric 0 0 1 0 0 0 -1 0 0 ;
manova h = foam fabric foam*fabric/ printe printh ;
run;
*/

Even though the design appears to be balanced in the variables FOAM and FABRIC, the
balancedness is lost due to the presence of the covariate WT as it changes from specimen
to specimen. The various types of SS&CP matrices are therefore not identical and a careful
analysis of the data is needed.

Since the effects and the SS&CP matrices of the variable FOAM, FABRIC, and
FOAM*FABRIC are all to be adjusted for WT, a sequential partitioning of the total SS&CP
matrix is appropriate with the WT variable listed first in the corresponding MODEL state-
ment. The partitioning results in all the subsequent SS&CP matrices adjusted at least for
this covariate. As far as the other two variables are concerned, there does not appear to be
any reason to prefer one over the other. If we want a Type I analysis, we should examine
the output resulting from two possible orders in the MODEL statement, namely

model hr5 hr10 hr15 = wt foam fabric foam*fabric/ss1;

and

model hr5 hr10 hr15 = wt fabric foam foam*fabric/ss1;

hoping for consistency in the conclusions. We have, however, chosen to limit our output
for the first of these statements.

An examination of Output 4.7 reveals that the interaction FOAM*FABRIC is highly
significant under all of the four test criteria. In view of this, it makes sense to conduct
various pairwise comparisons for the nine treatments to decide which treatments are similar
and which are not. This unfortunately requires as many as 36 pairwise comparisons; in
general it is not advisable to perform too many tests since in a large number of pairwise
tests, some are likely to appear to be significant just by chance. Based on the least square
cell means computed by the LSMEANS statement, it appears that the treatments (A, Z ) and
(C, X ) are comparable with relatively low values for heat release at various time points.
The output from the LSMEANS statement is not shown to save space. Suppose we want
to see if these two preferred treatments are significantly different from each other. Such
a comparison can be made using the CONTRAST statement. Note that the CONTRAST
statement should always appear before a MANOVA statement.
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Output 4.7 Output 4.7
Analysis of Covariance

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall FOAM*FABRIC Effect

H = Type I SS&CP Matrix for FOAM*FABRIC E = Error SS&CP Matrix

S=3 M=0 N=2

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.001717 13.602 12 16.166 0.0001
Pillai’s Trace 2.071646 4.4631 12 24 0.0009
Hotelling-Lawley Trace 110.095 42.815 12 14 0.0001
Roy’s Greatest Root 107.144 214.29 4 8 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall (a,z) vs. (c,x) Effect

H = Contrast SS&CP Matrix for (a,z) vs. (c,x)
E = Error SS&CP Matrix

S=1 M=0.5 N=2

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.76977 0.5982 3 6 0.6392
Pillai’s Trace 0.23023 0.5982 3 6 0.6392
Hotelling-Lawley Trace 0.299089 0.5982 3 6 0.6392
Roy’s Greatest Root 0.299089 0.5982 3 6 0.6392

In order to identify an appropriate CONTRAST statement, it is helpful to write down
the two-way classification model (the covariate term in the model can be ignored for this
purpose) for the 1 by 3 response vector HR

H Ri jk = INTERCEPT + FOAMi + FABRIC j

+ (FOAM ∗ FABRIC)i j + ERRORi jk,

where i = A, B, C , j = X, Y, Z and k = 1, 2.
Our interest is in the contrast E (H RAZk − H RC Xk), where E indicates the expected

value. Dropping the replication suffix ′k ′ for convenience, this can be written as

(INTERCEPT − INTERCEPT)

+ (FOAM A − FOAMC ) + (FABRICZ − FABRICX )

+ ((FOAM A ∗ FABRICZ ) − (FOAMC ∗ FABRICX ))

= 0 × INTERCEPT + (1 0 − 1)


 FOAM A

FOAMB

FOAMC


+ (−1 0 1)


 FABRICX

FABRICY

FABRICZ



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+ (0 0 1 : 0 0 0 : −1 0 0)




FOAM A ∗ FABRICX

FOAM A ∗ FABRICY

FOAM A ∗ FABRICZ

FOAMB ∗ FABRICX

FOAMB ∗ FABRICY

FOAMB ∗ FABRICZ

FOAMC ∗ FABRICX

FOAMC ∗ FABRICY

FOAMC ∗ FABRICZ




.

The above representation indicates that in order to get the contrast between treatments
(A, Z ) and (C, X ),

• the coefficient for intercept is zero,
• the vector of coefficients for the vector of foams (A, B, C)′ is (1 0 − 1)′,
• the vector of fabrics (X, Y, Z)′ is (−1 0 1)′,
• the vector of coefficients for the 9 by 1 vector of interactions

((A ∗ X), (A ∗ Y ), (A ∗ Z), (B ∗ X), (B ∗ Y ), (B ∗ Z),

(C ∗ X), (C ∗ Y ), (C ∗ Z))′

is obtained by respectively putting 1 and -1 at the places corresponding to (A ∗ Z) and
(C ∗ X) and zeros elsewhere as follows.
All of this is specified in the CONTRAST statement as

contrast ’label’ intercept 0 foam 1 0 -1 fabric -1 0 1
foam*fabric 0 0 1 0 0 0 -1 0 0;

The name (A, Z) versus (C, X) enclosed within single quotation marks (‘ ’) in Program
4.7 is used as the label. A label is required in the CONTRAST statement.

For the desired contrast, it is possible to use any of the four multivariate tests. In the
present case, since the rank of underlying L matrix is one (there is only a single contrast)
all four tests are identical and exact. The corresponding observed value of the F(3, 6) test
statistic is 0.5982 leading to a p value of 0.6392. Hence the null hypothesis of no overall
difference between (A, Z) and (C, X) treatments cannot be rejected.

Although it is not quite relevant in the present context (because of highly significant
interaction), if the interest were to compare the effect of Foam A with that of Foam B, the
CONTRAST statement in simplified form could be written as

contrast ’label’ foam 1 -1 0;

It is so, since in this case the coefficients of INTERCEPT, the vector of FABRIC, and
the vector of FOAM*FABRIC all have zero coefficients and hence need not be explicitly
specified in the CONTRAST statement.

Note that in the data presented here, the heat releases at various time points are the
repeated measures on the same specimen. Further analysis may be possible using the re-
peated measures techniques. We address these techniques in Chapters 5 and 6.

4.8 Concluding Remarks

It must be remembered that all the analyses presented in this chapter assume the equality
of the variance-covariance matrices of the rows of matrix E . If in a multiway classifica-
tion, this assumption of the homogeneity of the variance-covariance matrix is not satisfied,
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the analysis presented here may not be appropriate. We therefore strongly recommend that
some appropriate tests for the homogeneity of the variance-covariance matrices be ap-
plied to the data prior to performing any multivariate analysis of variance. The equality of
variance-covariance matrices can be tested using the DISCRIM procedure. See SAS/STAT
User’s Guide, Version 6, Fourth Edition, Volume 1, for details.
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5.1 Introduction

In many experiments, several treatments are applied to the same experimental unit at dif-
ferent time points, or only a single treatment is applied to a subject but the measurements
on the same characteristic or set of characteristics are taken on more than one occasion.
The data collected under these or similar kinds of experimental setups are often referred to
as repeated measures data and require extra care in their analyses.

A common reason for taking repeated measures on the same subject in many biological,
medical, psychological, and sociological experiments is the fact that there is usually more
variability in the measurements between the subjects than within a given subject. Thus, to
control the variability, subjects are taken as the blocks. As a result, treatments applied to the
same subject provide a more comparable set of measurements than several parallel groups
subjected to different treatments. The analysis, however, is complicated by the fact that the
measurements taken on the same subject will most likely be correlated. The obvious lack
of ability to randomize in such situations often prevents one from using the standard block
design related experimental design methodology. Therefore it is necessary to incorporate
this special feature of the data in the modeling and analysis.

Within the domain of repeated measures, there are certain subtle differences in the anal-
yses, depending on the design and the data collection scheme. For example, a situation in
which three different drugs are all tried on a group of 30 patients at different time peri-
ods (and possibly in different sequences) is different in design and analysis from the one
in which each of the three drugs is given to a different group of ten patients who are all
observed over a certain period of time. These features are very important in choosing an
appropriate model, in deciding the appropriate hypotheses to be tested, and in constructing
the corresponding statistical tests.

Repeated measures designs also arise naturally in many other research or industrial
contexts. For example, an auto maker may be interested in the number of problems various
models of cars may have over time. In order to study this, he may decide to follow up on
a specific group of cars in each model for a given length of time. Similarly a soft drink
manufacturer may want to compare her drink with those from some of her competitors
and to do so she may decide to conduct a double-blind taste test on a group of potential
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consumers. A psychologist may be interested in comparing the performance of students at
various schools and may administer a battery of several tests to sample groups of students
from these schools. The common aspect in all these problems is that the data are multi-
variate in nature: on each subject we have a vector of repeated measurements which are
correlated within themselves but are independent for different subjects.

This chapter considers various experimental situations where repeated measures data
may arise, and concentrates on the analysis of such data. Of course, the particular approach
to these analyses depends on the particular data collection scheme and therefore, various
sections have been arranged by the designs under which data are collected. While most of
the chapter emphasizes analyses under various designs, at the end of this chapter we also
provide certain methods to generate certain relatively complex crossover designs which are
extensively used in repeated measures studies.

5.2 Single Population

5.2.1 Profile Analysis

EXAMPLE 1 Profile of Memory Data Srivastava and Carter (1983, p. 201) presented an example
where a group of ten subjects was given a memory test three times. The purpose of the
study was to test if there were any differences in the test scores for the three trials. In other
words, if µ′ = (µ1, µ2, µ3) is the vector of true mean scores at three occasions, then we
wish to test H0 : µ1 = µ2 = µ3. A graphical representation of the elements of µ (i.e.,
graph of µi versus i) is called a profile of the vector µ. Using this terminology, our null
hypothesis represents the hypothesis of a horizontal profile. The sample profile, that is, a
profile for the sample mean vector Ȳ is given in Output 5.1 generated by Program 5.1.

/* Program 5.1 */

options ls = 64 ps=45 nodate nonumber;
data memory ;
input y1 y2 y3 ;
lines ;
19 18 18
15 14 14
13 14 15
12 11 12
16 15 15
17 18 19
12 11 11
13 15 12
19 20 20
18 18 17
;
/* Source: Srivastava and Carter (1983, p. 201). */
filename gsasfile "prog51.graph";
goptions gaccess=gsasfile dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=5in vsize=7in;
title1 h=1.5 ’Profile for Memory Data’;
title2 j=l ’Output 5.1’ ;
proc summary data=memory;
var y1 y2 y3;
output out=new mean=my1-my3;
data plot;
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set new;
array my{3} my1-my3;
do test =1 to 3;
Response=my(test);
output;
end;
drop my1-my3;
proc gplot data = plot;
plot response*test /vaxis=axis1 haxis=axis2 vminor=3
legend=legend1 ;
axis1 order =(14 to 16) label =(a=90 h=1.2 ’Response’);
axis2 offset=(2) label=(h=1.2 ’Test’);
symbol1 v=+ i = join;
legend1 across = 3;
run;

Output 5.1
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The data can be thought of as collected under a randomized complete block design in
which subjects are the blocks and the three trials are the treatments. Since the group of sub-
jects is a random sample, the block effect is assumed to be random. If we can assume equal
correlation between the three trials then the above data can be analyzed as the univariate
randomized complete block design. This, however, may be a questionable assumption and
its validity would need to be examined before any such analysis. We will come back to
this analysis later. If no such assumption is made, it may be more appropriate to assume
a general correlation structure for the three trials and analyze the data using multivariate
techniques. The null hypothesis under consideration can be written as Cµ = 0, where

C =
[

1 0 −1
0 1 −1

]
.

Since for the underlying multivariate linear model given in Equation 3.1, viz., Y =
XB + E, B = (µ1, µ2, µ3) = µ′, the above hypothesis can be written as H0 : BM = 0
with M = C′ and can be tested using the multivariate approach presented in Chapters
3 and 4. Note that the multivariate linear model has only intercepts and no independent
variables on the right-hand side. These kinds of models have already been examined in the
previous chapters. To analyze these data, we use the first PROC GLM statement given in
Program 5.2. Selected parts of the corresponding output appear in Output 5.2. Note that
the null hypothesis stated above will not be rejected (p values for all four tests are equal to
0.9639). In this case all four multivariate tests are exact and equivalent. This analysis can
also be done using a REPEATED statement (to be discussed later) as shown in the latter
part of Program 5.2.

/* Program 5.2 */

options ls = 64 ps=45 nodate nonumber;
title1 ’Output 5.2’;
title2 ’Analysis of Memory data’;
data memory ;
input y1 y2 y3 @@;
lines ;
19 18 18 15 14 14 13 14 15
12 11 12 16 15 15 17 18 19
12 11 11 13 15 12 19 20 20 18 18 17
;
proc glm data = memory ;
model y1 y2 y3 = /nouni ;
manova h=intercept m=(1 0 -1,

0 1 -1)/printe printh;
run;
proc glm data = memory ;
model y1 y2 y3 = /nouni ;
repeated test 3 profile/printe printm; run;

Output 5.2 Output 5.2
Analysis of Memory data

General Linear Models Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

Y1 Y2 Y3

MVAR1 1 0 -1
MVAR2 0 1 -1



Chapter 5 Analysis of Repeated Measures Data 155

E = Error SS&CP Matrix

MVAR1 MVAR2

MVAR1 14.9 7.9
MVAR2 7.9 12.9

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0 N=3

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.99084 0.037 2 8 0.9639
Pillai’s Trace 0.00916 0.037 2 8 0.9639
Hotelling-Lawley Trace 0.009245 0.037 2 8 0.9639
Roy’s Greatest Root 0.009245 0.037 2 8 0.9639

General Linear Models Procedure
Repeated Measures Analysis of Variance
Repeated Measures Level Information

Dependent Variable Y1 Y2 Y3

Level of TEST 1 2 3

TEST.N represents the nth successive difference in TEST

M Matrix Describing Transformed Variables

Y1 Y2 Y3

TEST.1 1.000000000 -1.000000000 0.000000000
TEST.2 0.000000000 1.000000000 -1.000000000

E = Error SS&CP Matrix

TEST.N represents the nth successive difference in TEST

TEST.1 TEST.2

TEST.1 12.00000000 -5.00000000
TEST.2 -5.00000000 12.90000000

Test for Sphericity: Mauchly’s Criterion = 0.8374058
Chisquare Approximation = 1.4195715 with 2 df

Prob > Chisquare = 0.4917
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Applied to Orthogonal Components:
Test for Sphericity: Mauchly’s Criterion = 0.9833085
Chisquare Approximation = 0.134659 with 2 df

Prob > Chisquare = 0.9349

Univariate Tests of Hypotheses for Within Subject Effects

Source: TEST
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 0.0666667 0.0333333 0.05 0.9559 0.9540 0.9559

Source: Error(TEST)

DF Type III SS Mean Square
18 13.2666667 0.7370370

Greenhouse-Geisser Epsilon = 0.9836
Huynh-Feldt Epsilon = 1.2564

5.2.2 Testing for Covariance Structures

In the preceding section, we discussed the multivariate approach to comparison of compo-
nents of the mean vector. An alternative, but not necessarily universally better, approach
can be taken by interpreting each subject as a block and the memory test periods as the
plots within blocks. This interpretation results in a complete block design structure for the
experimental layout in which block (subject) effects are random. Remember, however, that
since the plots are memory tests and hence of a temporal nature, they cannot be randomized
within blocks. In addition, they may exhibit a certain dependence between the observations
within a subject. If there were no such dependence, then assuming no SUBJECT*TEST
interaction, a comparison of the memory tests could be made using the usual ANOVA F
test. Unfortunately, this ideal situation rarely occurs in practice. There are, however, certain
covariance structures modeling the dependence which would still admit the valid F tests
for some comparisons. These possible covariance structures should therefore be formally
tested for, before assuming them and applying the usual ANOVA F tests. We describe
statistical tests for some of the covariance structures here.

A test for sphericity Let yi , i = 1, . . . , n be a random sample of size n from Np(µ,Σ).
To test the null hypothesis H0 : Σ = σ 2I, σ 2 unknown, Mauchly (1940) derived the
likelihood ratio test statistic Ln/2, where

L = |S|/(p−1tr S)p, (5.1)

and S is the sample variance-covariance matrix defined by

S = 1

n − 1

n∑
i=1

(yi − ȳ)(yi − ȳ)′, ȳ = 1

n

n∑
i=1

yi .

For large samples, −{(n − 1) − (2p2 + p + 2)/6p}ln L has an approximate chi-square
distribution with degrees of freedom 1

2 p(p + 1) − 1.

Using the REPEATED statement in PROC GLM, we can perform the tests for spheric-
ity on certain sets of contrasts but not on the original data. The use of the REPEATED
statement included in Program 5.2 will be illustrated later in Section 5.2.3.
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A test for compound symmetry Given a sample of size n from Np(µ,Σ), consider the
problem of testing the null hypothesis H0 : Σ = σ 2V, where

V =




1 ρ . . . ρ

ρ 1 . . . ρ

. . . . . .

ρ ρ . . . 1


 , −(p − 1)−1 ≤ ρ ≤ 1

and σ 2 unknown. The correlation structure commonly known as compound symmetry or
the intraclass correlation structure essentially assumes that the correlations between mea-
surements within a subject do not depend on the ordering of the measurements. The likeli-
hood ratio test statistic for the above null hypothesis is Ln/2, where

L = |S|/[(s2)p(1 − r)p−1{1 + (p − 1)r}],
S = (si j ) as defined before, s2 = p−1∑p

i=1 sii , and

r = 2[p(p − 1)s2]−1
p∑

i=1

p∑
j=i+1

si j .

For large samples,

Q = −[(n − 1) − {p(p + 1)2(2p − 3)}/{6(p − 1)(p2 + p − 4)}]ln L (5.2)

follows approximate chi-square distribution with 1
2 p(p + 1) − 2 degrees of freedom.

EXAMPLE 1 Testing Compound Symmetry, Memory Data (continued) To test if the variance-
covariance matrix of the scores on the three memory tests possesses compound symmetry,
we use the likelihood ratio test described in Equation 5.2. The SAS/IML code to perform
the calculations appears in Program 5.3. From Output 5.3,

s2 = 8.9963, r = 0.9181

|S| = 12.5091, L = 0.9025, and Q = 0.9873.

Corresponding to the observed values 0.9873 of Q ∼ χ2
1
2 p(p+1)−2

(or χ2
4 ) the p value is

0.9117. Therefore we do not reject the null hypothesis of compound symmetry.

/* Program 5.3 */

options ls = 64 ps=45 nodate nonumber;
proc iml;
y={
19 18 18,
15 14 14,
13 14 15,
12 11 12,
16 15 15,
17 18 19,
12 11 11,
13 15 12,
19 20 20,
18 18 17};
Title1 ’Output 5.3’ ;
p=ncol(y);
n=nrow(y);
s=y‘*(I(n)-(1/n)*j(n,n))*y;
svar=s/(n-1);
/*
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*Test for sphericity;
const1=-((n-1)-(2*p*p+p+2)/(6*p));
wlam=( det(svar)/((trace(svar)/p)**p) );
llam=wlam**(2/n);
print llam;
test=const1*log(wlam);
print const1 wlam test;
*/
* Test of Compound Symmetry;
detment=det(svar);
square=sum (diag(svar));
sumall=sum(svar);
ssquare=square/p;
correl=(sumall-square)/(p*(p-1)*ssquare);
lrlam=detment /( (ssquare**p)*((1-correl)**(p-1))
*(1+(p-1)*correl) );
correct=(n-1)-( p*(p-1)**2*(2*p-3))/(6*(p-1)*(p*p+p-4));
lrstat=-correct*log(lrlam);
df=p*(p+1)/2-2;
pvalue=probchi(lrstat,df);
pvalue=1-pvalue;
print ’Test of Compound Symmetry for Memory Data’ ;
print ssquare correl detment lrlam;
print lrstat pvalue;
run;

Output 5.3 Output 5.3

Test of Compound Symmetry for Memory Data

SSQUARE CORREL DETMENT LRLAM
8.9962963 0.9180733 12.509053 0.9025129

LRSTAT PVALUE
0.8846863 0.9267475

The usual ANOVA F tests which traditionally assume sphericity for the variance-
covariance matrix remain valid under compound symmetry as well. It is so because the
compound symmetry of the original variables leads to the sphericity of the orthonormal
contrasts on which the F test is based. Thus, an acceptance of the null hypothesis of com-
pound symmetry may be helpful to researchers applying or wishing to apply the analysis
of variance techniques in their data analysis.

A test for circular covariance A useful covariance structure which can naturally occur
when repeated measures are taken with spatial instead of time considerations is a circu-
lar pattern for the variance-covariance matrix. For example, for p = 5 and 6, a circular
variance-covariance matrix is




σ0 σ1 σ2 σ2 σ1
σ1 σ0 σ1 σ2 σ2
σ2 σ1 σ0 σ1 σ2
σ2 σ2 σ1 σ0 σ1
σ1 σ2 σ2 σ1 σ0


 ,




σ0 σ1 σ2 σ3 σ2 σ1
σ1 σ0 σ1 σ2 σ3 σ2
σ2 σ1 σ0 σ1 σ2 σ3
σ3 σ2 σ1 σ0 σ1 σ2
σ2 σ3 σ2 σ1 σ0 σ1
σ1 σ2 σ3 σ2 σ1 σ0



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Examples of the situations in which it is natural to assume such a covariance structure
are spatial repeated measurements taken on the petals of a flower or on the tentacles of a
starfish, or along the perimeter of a circle at equally spaced angles.

Although the assumption of circular covariance does not necessarily simplify the anal-
ysis of data, a test for it is important in its own right. A likelihood ratio test statistic for the
null hypothesis of circular covariance structure given by Olkin and Press (1969) is

L2/n = 22(p−m−1)|U|/
p∏

j=1

ν j , (5.3)

where m is such that p = 2m or p = 2m + 1, U = (ui j ) = Γ′(n − 1)SΓ, Γ = (γi j ) is a p
by p orthogonal (orthonormal) matrix with

γi j = p−1/2[cos 2π p−1 (i − 1)( j − 1) + sin 2π p−1 (i − 1)( j − 1)], i, j = 1, . . . , p.

Further,

ν1 = u11, ν2 = u22 + u pp, ν3 = u33 + u p−1,p−1,

. . . , νm = umm + um+2,m+2, νm+1 = um+1,m+1,

for p = 2m and

ν1 = u11, ν2 = u22 + u pp, ν3 = u33 + u p−1,p−1,

. . . , νm+1 = um+1,m+1 + um+2,m+2, for p = 2m + 1.

Also, ν j = νp− j+2 for j = 2, . . . , p.
Under the null hypothesis, for L defined in Equation 5.3

−2

(
1 − 2b

n

)
ln L (5.4)

follows an approximate chi-square distribution with f degrees of freedom, where for p =
2m, f = (p2 − 2)/2 and b = (2p3 + 9p2 − 2p − 18)/[12(p2 − 2)]; for p = 2m + 1,
f = (p2 − 1)/2 and for b = (2p + 9)/12. Hence the null hypothesis can be tested using
the appropriate χ2

f cutoff point.
The SAS/IML code to test for circular symmetry is given in Program 5.4 along with an

illustrative analysis of cork data presented in Output 5.4.

EXAMPLE 2 Testing Circular Covariance, Cork Boring Data For the data set of Rao (1948), exten-
sively discussed in Chapters 1, 2, and 3 (cork boring in four directions: North, East, South,
and West), we expect that the amount of correlation of a measurement, say taken at the
north facing of the tree, with measurements at its immediate neighboring facings, east and
west, may be the same while measurement on the opposite direction, south, may be dif-
ferent from these two. This assumption would lead to a circular structure for the 4 by 4
variance-covariance matrix for the cork measurements. Therefore, we want to statistically
test the validity of this assumption.

/* Program 5.4 */

options ls = 64 ps=45 nodate nonumber;
title1 ’Output 5.4’;
/* This program computes the LRT for testing circular

covariance structure vs. general cov. Ref. Olkin & Press,
AMS, 1969,40, 1358-1373.*/
data cork;
infile ’cork.dat’;
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input y1 y2 y3 y4;
run;
proc iml;
use cork;
read all var {y1 y2 y3 y4} into y;
p=ncol(y);
n=nrow(y);
s=y‘*(I(n)-(1/n)*j(n,n))*y;
svar=s/(n-1);
pi=3.1415927;
gam=I(p);
do k=1 to p;
do l=1 to p;
gam(|k,l|)=(p**(-0.5))*(cos(2*pi*(k-1)*(l-1)/p)+
sin(2*pi*(k-1)*(l-1)/p));
end;
end;
m=floor(p/2);
if(m = p/2) then b = (2*p**3+9*p**2-2*p-18)/
(12*(p**2-2)) ;
else b = (2*p+9)/12 ;
if(m = p/2) then f = (p**2-2)/2 ;
else f = (p**2-1)/2 ;
v=gam*s*gam‘;
x=j(p);
nu=x(|,1|);
do k=1 to p;
nu(|k|)=v(|k,k|);
end;
snu=x(|,1|);
snu(|1|)=nu(|1|);
if (m=p/2) then
snu(|m+1|)=nu(|m+1|);
else
snu(|m+1|)=nu(|m+1|)+nu(|m+2|);
do k=2 to m;
kp=p+2-k;
snu(|k|)=nu(|k|)+nu(|kp|);
end;
do k=m+2 to p;
snu(|k|)=snu(|p-k+2|);
end;
pdt=1.0;
do k=1 to p;
pdt=pdt*snu(|k|);
end;
wlamda=(2**(2*(p-m-1)))*det(v)/pdt;
wlamda=wlamda**(n/2);
lrstat=-2*(1-2*b/n)*log(wlamda);

pvalue=probchi(lrstat,f);
pvalue=1-pvalue;
print ’Test of Circular Structure for Cork Data’ ;
print wlamda lrstat pvalue;
run;



Chapter 5 Analysis of Repeated Measures Data 161

Output 5.4 Output 5.4

Test of Circular Structure for Cork Data

WLAMDA LRSTAT PVALUE
0.0000273 18.820383 0.008769

To perform the likelihood ratio test of Olkin and Press, we have, L = 0.0000273.
Correspondingly, the observed value of the approximate chi-square statistic (Equation 5.4)
with d f = 7 is 18.8204. This leads to a p value of 0.0088 and hence a rejection of the
hypothesis of circular covariance structure.

The MIXED procedure described in Chapter 6 uses, among many others, a Toeplitz
structure in modeling and data analysis. The circular structure is a special case of the
Toeplitz structure. However the MIXED procedure only implements the most general form
of the Toeplitz structure. Fortunately the circular covariance structure can still be imple-
mented since it can be expressed as a linear structure which can be easily specified in the
MIXED procedure. Details will be discussed in Chapter 6.

Covariance structures guaranteeing the sphericity of orthogonal contrasts Huynh
and Feldt (1970) and Rouanet and Lépine (1970) derived a set of necessary and sufficient
conditions on the covariance structures under which the usual F tests formed by the ratios
of mean squares still follow the exact F distributions. As a result, in the repeated mea-
sures context despite the presence of correlation among the repeated measures on the same
subject, the usual univariate ANOVA tests can still be used so long as these correlations
can be assumed to have a particular structure. Specifically, the vector of all orthogonal
contrasts would satisfy the sphericity requirement if for the original variance-covariance
matrix Σ = (σi j ), σi i + σ j j − 2σi j is a constant for all i , j . As in Huynh and Feldt
(1970), we call this structure of a variance-covariance matrix a Type H structure and the
condition of having a constant value for σi i + σ j j − 2σi j a Type H condition. This con-
dition is automatically satisfied by the covariance matrices with compound symmetry, and
hence the class of Type H structure covariance matrices form a slightly more general class.
Note, however, that the circular covariance structure and many other important covariance
structures including the autoregressive structure do not belong to this class.

To test if the variance-covariance matrix can be assumed to have this structure, Huynh
and Feldt (1970) suggest applying the sphericity test on the variance-covariance matrix
of the set of (p − 1) orthogonal contrasts. If S is the sample variance-covariance matrix
computed from the original data and C is the matrix defining (p − 1) orthogonal contrasts,
then the likelihood ratio test is given by Ln/2, where

L = |CSC′|/{(p − 1)−1tr(CSC′)}p−1. (5.5)

The value of L in Equation 5.5 does not depend on the choice of the suborthogonal ma-
trix C, and hence any of the several choices (such as POLYNOMIAL, as specified in the
REPEATED statement of the GLM procedure) would serve the purpose. Under the null
hypothesis of sphericity of the orthogonal contrasts,

−{(n − 1) − (2(p − 1)2 + (p − 1) + 2)/(6(p − 1))}ln L

approximately follows a chi-square distribution with p(p −1)/2−1 d f . When we specify
the PRINTE option on the REPEATED statement in PROC GLM, it produces this test and
titles it

Applied to Orthogonal Components: Test for Sphericity: Mauchly’s
Criterion=
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For the memory data, Mauchly’s test on the orthogonal contrasts (see part of Output
5.2) strongly favors the null hypothesis (p value = 0.9349).

This suggests, as will be seen later, that the analysis of these data using the univariate
ANOVA may be deemed valid. Since certain orthogonal contrasts have meaningful and
simple interpretations, accepting the independence of these contrasts and constant vari-
ances is very desirable.

5.2.3 Univariate Analysis

Repeated measures data can be analyzed using the univariate techniques applicable for split
plot designs (Milliken and Johnson, 1989) under certain assumptions on the covariance
structures of within-subject measurements. These requirements on covariance structure
are derived by the necessary and sufficient conditions for the usual F test to be valid and
hence are rather artificial. It is hard to imagine repeated measures situations where such
correlations would naturally occur due to practical considerations. Hence the validity of
these assumptions should always be statistically tested before any univariate analysis based
on these assumptions is used to draw conclusions about the significance of the effects. If
the hypothesis of the validity of these assumptions is rejected, there may still be a way to
draw meaningful conclusions from the univariate analysis after making certain adjustments
to the degrees of freedom of the F test.

For example, consider the memory data discussed earlier in this chapter. In this experi-
ment, each subject was given three memory tests. If we interpret each subject as a random
block (whole plot) containing three treatments (memory tests), then the design resembles a
complete block design, except that, within each block, the randomization of the treatments
is not possible. In fact, from the very design of this experiment, such a randomization has
no meaning. Since the scores on the three memory tests of a given subject are correlated,
the design can be treated as a split plot design and can probably be analyzed using the stan-
dard univariate analysis of variance techniques for this particular design. However, there is
still a subtle difference in that the split plot experiments assume that plots (tests) within a
given block (subject) are equicorrelated with each other. This assumption we would seri-
ously doubt for data collected over time, as in the present example. Hence it is necessary
to formally test if such an assumption, usually referred to as the assumption of compound
symmetry, can be made for the data at hand. The approximate chi square test based on the
likelihood ratio for compound symmetry has been given in the previous pages, and we can
use it for this purpose. If the data pass this test, univariate analysis of these data using the
aforementioned techniques may be applicable, for most practical purposes.

Huynh and Feldt (1970) and Rouanet and Lépine (1970) give a weaker requirement
for the validity of the ANOVA F test in the split plot design. This requirement, already
described in Section 5.2.2, amounts to a condition of sphericity of the variance-covariance
matrix of all orthogonal contrasts of repeated measures and, hence, can be tested using
Mauchly’s sphericity test.

When the sphericity (or compound symmetry) assumption is false, it is still possible to
use the ANOVA F test by modifying its degrees of freedom. Box (1954) gave a measure
defined as

ε = [tr (C′ΣC)]2

(p − 1)tr (C′ΣC)2
= [∑ j θ j ]2

(p − 1)
∑

j θ2
j

,

where the θ j , j = 1, . . . , p−1 are the p−1 eigenvalues of C′ΣC. From the above formula,
it is evident that (p − 1)−1 ≤ ε ≤ 1, when p is the number of repeated measures. When
the variance-covariance matrix is spherical, all the eigenvalues θ1, . . . , θp−1 are equal and
hence ε = 1. The smaller values of ε indicate a relatively high degree of departure from
sphericity.
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Box also suggests that in the case of departure from sphericity, the conventional F test
with degrees of freedom (p−1) and (p−1)(n−1) should be replaced by an approximate F
test with degrees of freedom ε(p −1) and ε(p −1)(n −1). In practice, since ε is unknown,
its estimate

ε̂GG = [tr (CSC′)]2

(p − 1)tr (C′SC′)2

can be substituted to obtain the approximate degrees of freedom. This is known as the
Greenhouse-Geisser procedure. See Greenhouse and Geisser (1959). As can be easily seen,
the estimate ε̂GG of ε is obtained by replacing the variances and covariances in the formula
of ε given above by the corresponding elements of the sample variance-covariance matrix.

Huynh and Feldt (1976) have provided the following estimate of ε

ε̂H F = n(p − 1)ε̂GG − 2

(p − 1)[n − 1 − (p − 1)ε̂GG] .

Note that the value of this estimate may exceed one. In this case, its value is taken to be
one.

EXAMPLE 1 Testing Type H Structure, Memory Data (continued) For the memory data discussed
above, n = 10 and p = 3. Based on the p value in Output 5.3, we have not rejected the
null hypothesis of compound symmetry. This implies that the Type H conditions hold, since
compound symmetry is a more restrictive condition. Hence the univariate split plot ap-
proach is justified. However, for the sake of illustration, let us consider these data again and
formally test for the Type H structure. This task can be performed using the REPEATED
statement.

Since the group of 10 subjects forms a random sample, SUBJECT is a random effect.
The variable TEST, representing the variable with three memory tests as the treatments, is
fixed and the interaction SUBJECT*TEST is random. The conventional F test statistic for
the null hypothesis of no difference between the memory test is given by

F = M STEST

M SSUBJECT∗TEST

which under H0 follows an F distribution with (p − 1) = 2 and (n − 1)(p − 1) = 18
degrees of freedom. This test is automatically performed when a REPEATED statement is
used for the variable TEST. The SAS code for this analysis is given in the latter part of
Program 5.2. The resulting output is shown as part of the Output 5.2.

The statement

repeated test 3 profile/printe printm;

performs a repeated measures analysis, with the variable TEST as the within-subject effect.
Both the univariate as well as multivariate analyses are performed. If desired, the mul-

tivariate output can be suppressed by using the NOM option. The matrix E is printed if
we use the PRINTE option and, if we use PRINTM, the matrix defining the contrasts is
printed. The contrasts do not necessarily have to be orthogonal. The default matrix of con-
trasts is the contrast matrix (which corresponds to the option CONTRAST) comparing the
last treatment with all the previous ones and is given by[

1 0 −1
0 1 −1

]
.

However, the contrast matrix specified here corresponds to the comparison of PROFILE
and is given by
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[
1 −1 0
0 1 −1

]

which is referred to as the M matrix in Output 5.2. The E matrix of the two transformed
variables using the above profile matrix is[

12.0 −5.0
−5.0 12.9

]
.

There are many other transformations such as HELMERT or POLYNOMIAL for the M
matrix. However, in most situations, the main interest may be to compare the responses at
various time points. This can be accomplished by choosing the default CONTRAST or by
choosing the option PROFILE as done here.

There are two sets of transformed variables on which Mauchly’s sphericity test is per-
formed. The first of these corresponds to the sphericity test on the variables obtained by
using the transformation matrix M specified in the REPEATED statement. As is the case
in our example, this may correspond to a nonorthogonal transformation. In the present
example, for the profiles Y1-Y2 and Y2-Y3, Mauchly’s criterion is 0.8374 with a corre-
sponding observed value of an approximate χ2

2 as 1.4196. The corresponding p value is
0.4917.

Recall that in general the validity of the F test is subject to the Type H condition which
is equivalent to the sphericity of orthogonal contrasts. The above test was conducted on a
set of two nonorthogonal contrasts and is not applicable for this purpose.

The test applied to the orthogonal contrasts results in a value of 0.9833 for Mauchly’s
criterion with an observed approximate χ2

2 = 0.1347 and a corresponding p value =
0.9349. This appears to support the null hypothesis of Type H structure for the variance-
covariance matrix. The choice of which orthogonal matrix to use is immaterial, as the test
does not depend on any such choice. Thus, it is not necessary to know the specific choices
of orthogonal contrasts, nor are they printed as part of the SAS output.

Note that if a POLYNOMIAL transformation is selected in the repeated statement, for
example as in the following

repeated test 3 polynomial/printe printm;

the two Mauchly’s tests that are printed will be identical. This is because the polynomial
contrast is an orthogonal transformation. Although the rows of HELMERT transformation
(as implemented in SAS) are orthogonal to each other, it is not an orthogonal transforma-
tion since they have not been scaled to have the same norm.

The univariate F test is performed for the variable TEST. Since the design is balanced,
all three types of sums of squares are identical and hence the default choice of Type III
sums of squares is used. Under the null hypothesis of no difference between the three
memory tests, and with the understanding that the error term is M SSU B J ECT ∗T E ST ,

F = M STEST

M SSUBJECT∗TEST
= M STEST

M SERROR(TEST)
= 0.0333

0.7370
≈ 0.05,

is an observed value of F(2, 18). The corresponding p value = 0.9559 is very high.
A few observations and checks need to be made before we decide not to reject H0

with such a high p value. First of all, the sphericity test resulted in the acceptance of
a hypothesized Type H structure. This is confirmed by the values of ε̂GG (= 0.9836) and
ε̂H F (= 1.2564 and truncated to 1) both of which are close to 1. Thus, the adjustment in the
degrees of freedom is not necessary, and the distribution of the F statistic indicated above
can be safely assumed to be F(2, 18). In view of the very high p value, we do not reject the
null hypothesis of no treatment effect. However, comparable p values (0.9540 and 0.9559
respectively) would have been obtained had the degrees of freedom been adjusted using
ε̂GG and ε̂H F , resulting in the same conclusion.
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5.2.4 Fitting the Polynomial Curve: Determination of Degree

When the measurements are repeated on the same subject or unit over several time points,
we may want to model these responses as a function of time. The model may arise from
some theoretical considerations or may be empirically chosen to be simple enough for
inferential purposes but, at the same time, to provide sufficient flexibility in fitting the data
reasonably well. As an empirical approximation, justified by the Taylor expansion of the
function, a model can often be found by fitting polynomials to data.

Suppose n subjects or units receive a treatment and their responses are measured over
p time points. The model can be written as

y j = µ + ε j ,

where y j is the p by 1 vector of measurements on the j th subject and µ is the vector of the
true means for these measurements.

To fit an r th order polynomial, we take µ = Gβ, where G is the known p by (r + 1)

matrix

G =




1 t1 . . . tr
1

1 t2 . . . tr
2

. . . . . .

1 tp . . . tr
p




and β′ = (β0, β1, . . . , βr ) is the vector of unknown coefficients in the r th degree polyno-
mial.

To test if the r th order model may indeed be sufficient, we test the hypothesis

H0 : µ = Gβ vs. H1 : µ �= Gβ,

where G is as defined above. It is known that the rank of G, Rank(G) = r + 1. If H′ is
a p by (p − (r + 1)) matrix orthogonal to G, with Rank(H) = p − (r + 1), then since
HG = 0, we must have under the null hypothesis H0 : Hµ = HGβ = 0, and hence the
null hypothesis can be reduced to a linear hypothesis of the type H0 : Lµ = 0. The choice
of H is not unique but the resulting Wilks’ � and other multivariate tests would, however,
be invariant of the particular choice of H. The test requires us to reject H0 if

(n − p + r + 1)n

(n − 1)(p − r − 1)
ȳ′H′(HSH′)−1Hȳ > Fα(p − r − 1, n − p + r + 1),

where ȳ is the sample mean vector and S is the sample variance-covariance matrix.
The matrix H can conveniently be chosen as a matrix corresponding to the orthogonal

polynomials. This is especially helpful since such a matrix can be instantly created by
using the function ORPOL in SAS/IML.

EXAMPLE 3 Polynomial Fitting for Fish Data Consider the fish data discussed in Chapter 3. After
fish were given various doses of copper (in mg/liter), the study measured the number of fish
that were dead after 8, 14, 24, 36, and 48 hours in 25 tanks of 20 trout each. The objective
of the study was to model the effects of copper dosage on fish mortality over time. The
arcsine transformed data on the number of fish that were dead at various time points were
used as the dependent variables. A natural question to ask is, for a fixed level of copper
dose, what is the appropriate degree of polynomial in time which can be fitted to describe
the death rate?

Suppose we are interested in fitting only the second-degree models. For a fixed dose,
the second-degree model for the j th individual then would be

y j (t) = β0 + β1t + β2t2 + ε j
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while the biggest model that can be fit would be the fourth degree (since there are five time
points), namely,

y j (t) = β0 + β1t + β2t2 + β3t3 + β4t4 + ε j .

Thus, the null hypothesis H0 : µ = Gβ can be expressed as

H0 : µ =

 1 1 1 1 1

8 14 24 36 48
82 142 242 362 482




′
 β0

β1
β2


 .

Since G is completely specified by the time points (second column of G), we could
alternatively choose the 5 by 3 matrix of second-degree orthogonal polynomials. More
specifically, if we transform the data on variables y1, y2, y3, y4, and y5 to new variables
z1, z2, z3, z4, and z5 through a 5 by 5 matrix of fourth-degree orthogonal polynomials,
then we only need to test that the last two variables z4 and z5 which respectively represent
the third- and fourth-degree effects have zero means.

In Program 5.5, we used the IML procedure to first obtain the new variables zi , i =
1, . . . , 5, which are coded as Z1, Z2, Z3, Z4, and Z5. For the vector of time points (8,
14, 24, 36, 48), the matrix of fourth-degree orthogonal polynomials denoted as OPOLY is
constructed using the IML function ORPOL and is presented below.

OPOLY =




0.4472136 −0.5539120 0.5034303 −0.4085320 0.2698908
0.4472136 −0.3692740 −0.0575260 0.4921961 −0.6465830
0.4472136 −0.0615460 −0.5507160 0.3103943 0.6297453
0.4472136 0.3077287 −0.4136770 −0.6535700 −0.3271400
0.4472136 0.6770032 0.5184895 0.2595117 0.0740877


 .

Subsequently, the data on the transformed variables are obtained by using the matrix
transformation

(Z1 : Z2 : Z3 : Z4 : Z5)n×5 = (Y 1 : Y 2 : Y 3 : Y 4 : Y 5)n×5 ∗ O P O LY5×5

or Z = Z0 ∗ O P O LY , where n is the number of data points. The columns of matrix Z
are then assigned the variable names Z1, Z2, Z3, Z4, and Z5 respectively. The variable zi

thus represents the effect resulting from the terms corresponding to the (i − 1)th power of
time. Thus, if an r th order polynomial is adequate, then E(zr+2) = · · · = E(z p) = 0. The
results appear in Output 5.5. Some output has been suppressed.

/* Program 5.5 */

options ls=64 ps=45 nodate nonumber;
data fish;
infile ’fish.dat’ firstobs = 1;
input p1 p2 p3 p4 p5 dose wt @@;
y1=arsin(sqrt(p1));
y2=arsin(sqrt(p2));
y3=arsin(sqrt(p3));
y4=arsin(sqrt(p4));
y5=arsin(sqrt(p5));
x1=log(dose);
x2=wt;
Title1 ’Output 5.5’ ;
title2 ’Polynomial Fitting for Fish Data’ ;
data growth;
set fish;
keep y1-y5;
proc iml;
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use growth;
read all into z0;
vec={8 14 24 36 48};
opoly=orpol (vec,4);
print ’Orthogonal Polynomial Matrix’;
print opoly;
z=z0*opoly;
varnames={z1 z2 z3 z4 z5};
create newdata from z (|colname=varnames|);
append from z;
close newdata;
data newdata;
set newdata fish;
merge newdata fish;
run;
proc sort data=newdata;
by dose ;
run;

proc glm data = newdata;
by dose;
model z4 z5 = /nouni;
manova h=intercept;
title3 ’Second Degree Polynomial Fit for Individual Doses’;
run;

proc glm data = newdata;
by dose;
model z5 = /nouni;
manova h=intercept;
title3 ’Third Degree Polynomial Fit for Individual Doses’;
run;

proc glm data = newdata;
class dose;
model z5 = dose /nouni;
manova h=intercept;
title3 ’Common 3rd degree Polynomial Fit’;
run;

Output 5.5 Output 5.5
Polynomial Fitting for Fish Data

Second Degree Polynomial Fit for Individual Doses

--------------------------- DOSE=270 ---------------------------

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0 N=0.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.678781 0.7098 2 3 0.5592
Pillai’s Trace 0.321219 0.7098 2 3 0.5592
Hotelling-Lawley Trace 0.473228 0.7098 2 3 0.5592
Roy’s Greatest Root 0.473228 0.7098 2 3 0.5592
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--------------------------- DOSE=410 ---------------------------

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0 N=0.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.221426 5.2743 2 3 0.1042
Pillai’s Trace 0.778574 5.2743 2 3 0.1042
Hotelling-Lawley Trace 3.516189 5.2743 2 3 0.1042
Roy’s Greatest Root 3.516189 5.2743 2 3 0.1042

--------------------------- DOSE=610 ---------------------------

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0 N=0.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.078083 17.71 2 3 0.0218
Pillai’s Trace 0.921917 17.71 2 3 0.0218
Hotelling-Lawley Trace 11.80692 17.71 2 3 0.0218
Roy’s Greatest Root 11.80692 17.71 2 3 0.0218

--------------------------- DOSE=940 ---------------------------

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0 N=0.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.011851 125.07 2 3 0.0013
Pillai’s Trace 0.988149 125.07 2 3 0.0013
Hotelling-Lawley Trace 83.37844 125.07 2 3 0.0013
Roy’s Greatest Root 83.37844 125.07 2 3 0.0013

-------------------------- DOSE=1450 ---------------------------

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0 N=0.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.010281 144.41 2 3 0.0010
Pillai’s Trace 0.989719 144.41 2 3 0.0010
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Hotelling-Lawley Trace 96.271 144.41 2 3 0.0010
Roy’s Greatest Root 96.271 144.41 2 3 0.0010

Output 5.5
continued Output 5.5

Polynomial Fitting for Fish Data
Common 3rd degree Polynomial Fit

General Linear Models Procedure
Class Level Information

Class Levels Values

DOSE 5 270 410 610 940 1450

Number of observations in data set = 25

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=-0.5 N=9

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.988946 0.2236 1 20 0.6415
Pillai’s Trace 0.011054 0.2236 1 20 0.6415
Hotelling-Lawley Trace 0.011178 0.2236 1 20 0.6415
Roy’s Greatest Root 0.011178 0.2236 1 20 0.6415

To test if the second-degree model is adequate for a given dose level, we have r =
2, and hence the transformed variables corresponding to the higher degrees, namely, Z4
and Z5, should have zero means. We thus use multivariate tests to see if the intercepts
corresponding to Z4 and Z5 can be assumed to be zero. This is accomplished by first
sorting the data by dose levels and then by using the code presented in Program 5.5:

proc glm data=newdata;
by dose;
model z4 z5= /nouni;
manova h=intercept;

Output 5.5 indicates that this hypothesis can be accepted for lower levels of doses. How-
ever, as the doses increase, there is a relatively stronger case against a second-degree model.
This is not surprising as, at the higher doses, most of the fish died early in the experiment.
A third-degree polynomial, however, seems to fit data for all the five doses. In this case,
the corresponding MODEL and MANOVA statements are

model z5= /nouni;
manova h=intercept;

We have suppressed the output to save space. Having known that a third-degree poly-
nomial may suffice in the case of all five doses, we ask if it is possible to fit a common
third-degree polynomial. In other words, if DOSE is taken as a variable at five levels then
does the variable Z5, when fitted as a function of DOSE, have a zero intercept? If the en-
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tire data set of 25 observations for Z5 is analyzed under the cubic polynomial model with
DOSE as a variable, the value of Wilks’ � for the null hypothesis of no intercept for Z5 is
not significant at α = 0.05. This suggests that a model of the type

y(t) = β0 + β1t + β2t2 + β3t3 + γ x1 + εt ,

where x1 is the logarithm of the dose level can be fitted to this data set. In other words,
acceptance of this null hypothesis implies that the cubic polynomial curves for the five dose
levels are parallel in that they differ only in the intercepts. The intercepts are determined
by the corresponding value of the term (β0 + γ x1). In this case, the number of fish that
died over time can be described by cubic polynomials differing only in the intercept terms.

5.2.5 Repeated Measure Designs for Treatment
Combinations/Conditions

When various treatment combinations of a factorial experiment with two or more factors
are applied to the same group of subjects, then it may not be appropriate to analyze the data
from this factorial experiment using the univariate analysis of variance techniques. It is so
since the conventional ANOVA assumes the independence of all the measurements (or the
Type H covariance structure) as the minimum requirement for the distributional validity of
the ANOVA F test. Obviously, if the same unit has been subjected to various treatments
one after the other, the corresponding measurements cannot be assumed to be independent
and are not guaranteed to have the Type H covariance structure. However, it is possible to
formulate the comparison of treatments problem in the Hotelling’s T 2 framework.

By appropriately numbering the treatments, say as 1, . . . , p, and denoting the measure-
ments on the j th unit as y′

j = (y1 j , . . . , ypj ), j = 1, . . . , n, we can write the model as

y j = µ + ε j , j = 1, . . . , n, (5.6)

where µ is the p by 1 vector of true means of various treatment effects. The effects of
individual variables can be expressed as the contrasts of the vector µ, say c′

iµ, by appro-
priately choosing the p by 1 vectors ci . Likewise a simultaneous comparison of several
treatments can be accomplished by simultaneously testing for several, say r , linearly inde-
pendent contrasts Cµ, where C is an appropriately defined r by p matrix. To test the null
hypothesis H0 : Cµ = d, where d is a known vector of order r by 1, Hotelling’s T 2 test
can be used by defining

T 2 = n(Cȳ − d)′(CSC′)−1(Cȳ − d). (5.7)

The null hypothesis then is rejected if

F = (n − r)

(n − 1)r
T 2 > Fα(r, n − r).

The vector ȳ here is the vector of sample means for all treatments and S is the sample
variance-covariance matrix. Chapter 4 showed that this hypothesis can be tested using the
M= specification in the MANOVA statement of PROC GLM or PROC ANOVA.

EXAMPLE 4 A Two-Way Factorial Experiment, Dog Data Johnson and Wichern (1998) provide a
very fitting example of such a study, where a two-way factorial experiment was conducted
as a repeated measures design to explore the possibility of finding improved anesthetics.
Two variables, carbon dioxide pressure and the presence or absence of halothane, each
at two levels (namely, high, low, and absent, present) respectively were used. The four
treatments here referred to as 1, 2, 3, and 4, were administered in the order (high, absent),
(low, absent), (high, present) and (low, present) on each of the 19 dogs. The number of
milliseconds between the heartbeats was taken as the response variable. These data were



Chapter 5 Analysis of Repeated Measures Data 171

collected by Dr. J. Atlee, a physician at Veteran’s Hospital, Madison, Wisconsin. If the
mean response of the four treatments is represented by a 4 by 1 vector µ, then the effect
of halothane is represented by the contrast (µ1 + µ2) − (µ3 + µ4) = c′

1µ with c′
1 =

(1 1 −1 −1), the effect of carbon dioxide is represented by (µ1 +µ3)− (µ2 +µ4) = c′
2µ

with c′
2 = (1 − 1 1 − 1), and the interaction effect by (µ1 + µ4) − (µ2 + µ3) = c′

3µ
with c′

3 = (1 − 1 − 1 1). Also to test that there is no difference among any of the four
means, that is, H0 : µ1 = µ2 = µ3 = µ4, it is possible to simultaneously test that all the
three contrasts described above are zero. This is so since the three equations

(µ1 + µ2) − (µ3 + µ4) = 0

(µ1 + µ3) − (µ2 + µ4) = 0 (5.8)

(µ1 + µ4) − (µ2 + µ3) = 0

imply and are implied by the null hypothesis H0 : µ1 = µ2 = µ3 = µ4. Thus, the
null hypothesis can alternatively be expressed as H0 : Cµ = 0, where the 3 by 4 matrix
C consists of c′

1, c′
2, and c′

3 as its three rows. It may be noted that there are many other
choices of c to attain this equivalence. However, the value of T 2 and hence of the resulting
F statistic remains invariant of the choice of c matrix.

To carry out these comparisons using SAS, we need to express the problem in the linear
model setup. We denote the responses corresponding to four treatments as HIGH NOH,
LOW NOH, HIGH H, and LOW H respectively and collectively represent the data on
these responses as a 19 by 4 matrix Y. Thus, we have the linear model

Y19×4 = 119×1µ
′
1×4 + E19×4.

The linear model above has only the intercept term. The null hypothesis H0 : Cµ = 0 can
be written as H0 : BM = 0, with M = C′. This hypothesis can be tested by specifying the
MANOVA statement

manova h=intercept m=(1 1 -1 -1,
1 -1 1 -1,
1 -1 -1 1);

In Program 5.6, we have used the representation of the M matrix directly through Equa-
tions 5.8 only to illustrate that the two alternatives are equivalent. Also in Program 5.6,
the PRINTE and PRINTH options are used to print the error and the hypothesis sums of
squares and crossproduct matrices. The results appear in Output 5.6.

/* Program 5.6 */

options ls=64 ps=45 nodate nonumber;
data dog ;
input high_noh low_noh high_h low_h ;
y1 = high_noh;
y2 = low_noh ;
y3 = high_h;
y4 = low_h;
z=y1+y2-y3-y4;
lines ;
426 609 556 600
253 236 392 395
359 433 349 357
432 431 522 600
405 426 513 513
324 438 507 539
310 312 410 456
326 326 350 504
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375 447 547 548
286 286 403 422
349 382 473 497
429 410 488 547
348 377 447 514
412 473 472 446
347 326 455 468
434 458 637 524
364 367 432 469
420 395 508 531
397 556 645 625
;
/* Original Data Source: Dr. J. Atlee, III, M.D. Reproduced

with permission from Dr. J. Atlee. */
title1 ’Output 5.6 ’;
title2 ’Two-way Factorial Experiment: Dog Data’;
proc glm data = dog ;
model high_noh low_noh high_h low_h = /nouni;
/* Test for Factor halothane;
manova h=intercept m=high_noh + low_noh -high_h -low_h
/printe printh;
*Test for Factor Co2 ;
manova h=intercept m=high_noh - low_noh +high_h -low_h
/printe printh;

*Test for interaction Co2*halothane;
manova h=intercept m=high_noh - low_noh -high_h +low_h
/printe printh; */

*Testing Both factors and interaction simultaneously:
Comparing all treatments;
manova h=intercept m=high_noh+low_noh -high_h -low_h ,

high_noh - low_noh +high_h -low_h ,
high_noh - low_noh -high_h +low_h

/printe printh ;
run;

Output 5.6 Output 5.6
Two-way Factorial Experiment: Dog Data

General Linear Models Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

HIGH_NOH LOW_NOH HIGH_H LOW_H

MVAR1 1 1 -1 -1
MVAR2 1 -1 1 -1
MVAR3 1 -1 -1 1

E = Error SS&CP Matrix

MVAR1 MVAR2 MVAR3

MVAR1 169780.10526 -19780.31579 -16696.73684
MVAR2 -19780.31579 93524.947368 16462.210526
MVAR3 -16696.73684 16462.210526 136033.15789
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H = Type III SS&CP Matrix for INTERCEPT

MVAR1 MVAR2 MVAR3

MVAR1 832448.89474 238829.31579 50863.736842
MVAR2 238829.31579 68520.052632 14592.789474
MVAR3 50863.736842 14592.789474 3107.8421053

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0.5 N=7

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.134312 34.375 3 16 0.0001
Pillai’s Trace 0.865688 34.375 3 16 0.0001
Hotelling-Lawley Trace 6.445351 34.375 3 16 0.0001
Roy’s Greatest Root 6.445351 34.375 3 16 0.0001

The output corresponding to this statement is given in the first part of Output 5.6. First
the matrix M = C′ is printed, which is followed by the error SS&CP and the hypothesis
SS&CP matrices labeled E and H respectively for the three new variables defined as the
linear combinations of the four measurements using the M = C′ matrix. SAS also prints
the matrix of partial correlation coefficients between the three linear combinations as well
as all the eigenvalues of E−1H. We have suppressed certain parts of the SAS output in Out-
put 5.6 to save space. Since the design is balanced, all the three types of SS&CP matrices
described in Chapter 4 are identical. We have therefore accepted the SAS default option of
Type III matrices.

For the null hypothesis described in Equations 5.8, we observe that the value of Wilks’
� is 0.1343, correspondingly giving the observed value of F(3, 16) as F = 34.375. This is
highly significant with the corresponding p value = 0.0001, indicating that at least one of
the equations in Equations 5.8 is possibly not true. Incidentally, the other three multivariate
tests are equivalent leading to the identical observed values of (exact) F(3, 16). This is so,
since all four test statistics are the functions of

T 2 = n(Cȳ − d)′(CSC′)−1(Cȳ − d)

= n tr (CSC′)−1(Cȳ − d)(Cȳ − d)′

= tr E−1H.

Since T 2 is a 1 by 1 matrix, the matrix E−1H has rank 1 and hence only one nonzero
eigenvalue. Consequently, all four multivariate test criteria, which are the functions of the
eigenvalues of E−1H, have a one-to-one correspondences between any pair of tests and
hence are all equivalent. As remarked earlier, Hotelling’s T 2 statistic and hence also the
four multivariate tests listed in the SAS output do not depend on the choice of the C matrix.
Another meaningful choice of the C matrix is a PROFILE matrix given by

 1 −1 0 0
0 1 −1 0
0 0 1 −1


 .
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Although the E and H matrices are different in this case, the four test statistics are all
identical to those obtained in Output 5.6.

Having rejected the null hypothesis given in Equations 5.8, we want to know first if
the interaction between carbon dioxide levels and the presence or absence of halothane
is nonexistent; second, if halothane’s presence has no effect on the response; and third, if
the level of carbon dioxide has no effect on the response. The corresponding M matrices
can respectively be defined by using the third, first, and the second equations in Equations
5.8, as shown in Program 5.6. The corresponding SAS output is not presented here. The
hypothesis of no interaction is not rejected with the corresponding p value of 0.5294. The
other two null hypotheses are rejected with the respective p values as 0.0001 and 0.0019
concluding that halothane’s presence has a strong effect on the response as does the level
of carbon dioxide.

We could also analyze these data as a univariate two-way classification, provided
that the Type H covariance structure can be assumed for the variance-covariance ma-
trix D(y j ) = Σ. Since the matrix C used in Hotelling’s T 2 statistic in Equation 5.7
is, by construction, orthogonal, we need only to test for the sphericity of CΣC′. Since
the E matrix printed in Output 5.6 is equal to [n − (p − 1)]CSC′ or 16CSC′, the esti-
mated variance-covariance matrix CSC′ for these orthogonal contrasts can be obtained
as E/[n − (p − 1)] = E/16, on which a sphericity test as given in Equation 5.1 can
easily be performed. Alternatively, all these computations can be achieved with the use of
REPEATED statement as described in the case of memory data. Specifically the
REPEATED statement is

repeated trtment 4/ printe printm;

One can verify that the Type H structure can be assumed for these data as well, thereby
validating the ANOVA F tests. Further, the same conclusions about the main effects and
their interaction are reached by the univariate analysis. We stress, however, that to test
the Type H structure, the transformations for which sphericity would be tested should be
orthogonal. That is, the rows of C should be orthogonal to each other and should be of
the same length. This was the case for the particular C we have used in M= option of
MANOVA statement but may not be so in several other possible choices such as in the
case where C is a profile matrix as defined earlier.

Often, the data are collected over time by applying different treatments or are collected
under different conditions, and the number of longitudinal observations under various con-
ditions may be different. In such cases, we may want to compare the mean responses under
various conditions. Assuming no carryover effects, a simple way to compare various treat-
ments or conditions is to test for the suitable weighted linear combinations of the mean
response at different time points. The approach is best illustrated by an example.

EXAMPLE 5 Comparing Treatments, A Dietary Treatment Study A group of 12 patients was sub-
jected to a dietary regime treatment. Two observations before the treatment, three during
and two after the conclusion of treatment, all at different time points, were made on a vari-
able representing the level of plasma ascorbic acid (Figure 5.1). The problem is to compare
the effectiveness of the treatments by comparing the three sets of responses.

As in the previous example, we have one group of repeated measures with an unequal
number of time points for each of the three conditions. If µ1, µ2, . . . , µ7 are the mean
responses at seven consecutive time points then we may want to test the hypothesis

H0 : µ1 + µ2

2
= µ3 + µ4 + µ5

3
= µ6 + µ7

2

or

H0 : 3(µ1 + µ2) = 2(µ3 + µ4 + µ5) = 3(µ6 + µ7).
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Figure 5.1
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In matrix form, it can be written as

H0 :
[

3 3 −2 −2 −2 0 0
0 0 2 2 2 −3 −3

]



µ1
µ2
µ3
µ4
µ5
µ6
µ7




=
[

0
0

]
.

With B = µ′ = (µ1, . . . , µ7), , X = 112, and

M′ =
[

3 3 −2 −2 −2 0 0
0 0 2 2 2 −3 −3

]

and Y a 12 by 7 matrix of observed responses on twelve patients at seven time points, the
above hypothesis testing problem can be formulated as

H0 : BM = 0

under the linear model setup

Y = XB + E = 1µ′ + E .

Taking normality as the underlying assumption, we can test the null hypothesis as in the
previous example by appropriately defining the M matrix in the MANOVA statement in
PROC GLM.

The SAS code and the selected parts of the output are respectively presented in Program
5.7 and Output 5.7. The evidence is strongly against the null hypothesis (p value = 0.0001)
for all multivariate tests which are equivalent in this case and we consequently reject H0.
We thereby conclude that the dietary regime treatment is indeed effective. However, we
may still want to know if the effect of the treatment lasts for the latter periods. This hy-
pothesis can be tested by defining the new M matrix consisting only of the second column
of the M matrix indicated above, that is, (0 0 2 2 2 −3 −3)′. We can verify that this hy-
pothesis is also rejected (p value = 0.0002), leading us not to reject the well-known fact
that the effect of dietary treatment does not continue after the diet ends.
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/* Program 5.7 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.7’;
data react;
input patient y1-y7;
lines;
1 0.22 0.00 1.03 0.67 0.75 0.65 0.59
2 0.18 0.00 0.96 0.96 0.98 1.03 0.70
3 0.73 0.37 1.18 0.76 1.07 0.80 1.10
4 0.30 0.25 0.74 1.10 1.48 0.39 0.36
5 0.54 0.42 1.33 1.32 1.30 0.74 0.56
6 0.16 0.30 1.27 1.06 1.39 0.63 0.40
7 0.30 1.09 1.17 0.90 1.17 0.75 0.88
8 0.70 1.30 1.80 1.80 1.60 1.23 0.41
9 0.31 0.54 1.24 0.56 0.77 0.28 0.40
10 1.40 1.40 1.64 1.28 1.12 0.66 0.77
11 0.60 0.80 1.02 1.28 1.16 1.01 0.67
12 0.73 0.50 1.08 1.26 1.17 0.91 0.87
;
/* Source: Crowder and Hand (1990, p. 32). */
proc glm data = react;
model y1-y7= /nouni;
manova h=intercept
m=3*y1+3*y2-2*y3-2*y4-2*y5, 2*y3+2*y4+2*y5-3*y6-3*y7;
title2 ’Comparison of Dietary Regime Treatments’;
run;

Output 5.7 Output 5.7
Comparison of Dietary Regime Treatments

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

on the variables defined by the M Matrix Transformation
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.136226 31.704 2 10 0.0001
Pillai’s Trace 0.863774 31.704 2 10 0.0001
Hotelling-Lawley Trace 6.340768 31.704 2 10 0.0001
Roy’s Greatest Root 6.340768 31.704 2 10 0.0001

5.3 k Populations

Suppose there are k different treatments and the i th treatment, say Ai , is applied to a group
of ni subjects which are observed over time for p time points. In such a situation, the
p dimensional observations on these groups can be thought of as the respective random
samples from the k populations corresponding to various treatments. As a first step, we
can look at the problem of comparing various treatments as a problem of multivariate one-
way classification. Clearly, the p dependent variables, namely, the observations taken over
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time, are correlated and may have different means for different time points as well as for
the different treatments.

For the j th dependent variable (that is, response at j th time point) j = 1, . . . , p the
(univariate) one-way classification model is

yi jl = ν j + τi j + εi jl , i = 1, . . . , k; l = 1, . . . , ni ,

which, by stacking y1 j1, y1 j2, . . . , yk jnk one below the other, can be written in matrix form
as

y j = Xβ j + ε j , (5.9)

with X and β j respectively as

X =




1 1 0 . . . 0
1 1 0 . . . 0
. . . . . . .

1 1 0 . . . 0
1 0 1 . . . 0
. . . . . . .

1 0 1 . . . 0
. . . . . . .

. . . . . . .

1 0 0 . . . 1
. . . . . . .

1 0 0 . . . 1




n×(k+1)

β j =




ν j

τ1 j

τ2 j

.

.

.

τk j




(k+1)×1

,

where n = ∑k
i=1 ni . The vector ε j has been arranged in essentially the same way as the

vector y j , and ε j has zero mean and the variance-covariance matrix σ j j In .
The multivariate model is obtained by arranging the univariate linear models given in

Equation 5.9 side by side as columns. That is,

(y1 : y2 : · · · : yp) = (Xβ1 : Xβ2 : · · · : Xβp) + (ε1 : ε2 : · · · : εp)

or

Y = XB + E,

where the j th columns of Y, E , and B respectively are y j , ε j , and β j . Since the ob-
servations taken at different time points on the same subject may be correlated, we as-
sume that each row of E has zero mean and a variance-covariance matrix Σ. On the other
hand since the measurements on different subjects are uncorrelated, we assume, that for
j, j ′ = 1, . . . , p,

Cov (y j , y j ′) = σ j j ′In,

so that a nonzero covariance between two responses is assumed only when they are ob-
served on the same subject at possibly two different time points j and j ′. In other words,
the variance-covariance matrix of the elements of Y stacked as a column vector by taking
row after row is an np by np matrix


Σ

Σ
. . .

Σ




or diag (Σ,Σ, . . . ,Σ).
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The statistical problems of interest can be broadly classified into two classes: first, the
comparison of various treatment groups and second, the comparison within the repeated
measures. The hypothesis concerning the latter aspects are often referred to as within-
subject hypotheses, while the former are termed between-subject hypotheses.

5.3.1 Comparison of Treatments

The multivariate approach to the analysis and the hypothesis testing for between-subject
analysis has already been described in Chapter 4. Specifically, the hypothesis of interest
is the comparison of the treatment mean vectors, namely, µ1, µ2, . . . ,µk , where µi =
ν + τ i , i = 1, . . . , k and ν = (ν1, . . . , νp)

′. This hypothesis is written as H0 : µ1 =
µ2 = · · · = µk or τ1 = τ2 = · · · = τk , where τ ′

i = (τi1, τi2, . . . , τi p), i = 1, . . . , k. As
discussed in Chapter 4, the testing of H0 can be accomplished by MANOVA partitioning
of the corrected total sums of squares and a crossproducts (SS&CP) matrix into the model
SS&CP and error SS&CP matrices and then by using the appropriate Wilks’ � or any
other multivariate test statistic derived from these quantities. We will illustrate this using
an example of drug comparison.

EXAMPLE 6 A Three-Population Study, Heart Rate Data Spector (1987) presented a heart rate study
which was carried out to compare the effects of two drugs on human heart rate. The twenty-
four subjects were randomly assigned to one of the three groups (eight to each group): two
receiving the experimental drugs and one receiving the control. The heart rate measure-
ments were observed at four different time points five minutes apart after administering the
drug. Consequently, for this data set k = 3, n1 = n2 = n3 = 8, and p = 4. We test the
null hypothesis of no differences between the three drugs, that is, τ1 = τ2 = τ3, by using
the Wilks’ � defined as

� = |E|
|E + H|

or any of the other three multivariate tests defined in Chapters 3 and 4. Denoting the mea-
surements at four time points as the variables y1, y2, y3, and y4 respectively, and the
levels of variable DRUG as the three drug names AX23, BWW9, and CONTROL, the
corresponding SAS statements are

proc glm;
class drug;
model y1 y2 y3 y4=drug/nouni;
manova h=drug;

These statements are specified in the beginning of Program 5.8. Correspondingly, Out-
put 5.8 shows that there are significant differences between the three drugs, including
placebo (� = 0.0790 leading to F = 11.51 at (8, 36) degrees of freedom with a corre-
sponding p value = 0.0001). All three types of analyses, namely, Type I, II, and III, are
identical in this case. Also, all multivariate test criteria lead to the same conclusions.

5.3.2 Profile Analysis

Profile analysis is a collection of statistical hypothesis testing procedures used to explore
any possible similarities between the treatment effects. We have briefly touched upon the
profile analysis of the population mean in Section 5.2. Profile analysis is especially relevant
for the longitudinal data on a given response variable or in the situations where responses
on several dependent variables are measured on the same experimental unit. A population
profile is a plot of the components of the population mean vector versus the order in which
these means are arranged. In such cases, the order usually represents the time, especially
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in cases such as longitudinal studies or clinical trials. Such an order may also occur when
a battery of treatments is sequentially applied on a group of subjects. Since the population
means are usually unknown, the sample profile plots in which the population means are
replaced by the sample means are in some sense the graphical estimates of the population
profile plots. A typical sample profile plot has already been shown in Output 5.1.

The hypothesis of equality of means H0 : µ1 = µ2 = · · · = µk implies that the
treatments have the same average effects. Though useful, mere acceptance or rejection
of such a hypothesis does not provide adequate insight into the type of similarities and
dissimilarities that may exist among the treatments. In order to gain more understanding,
we can formulate the above hypothesis as three hypotheses to be tested sequentially and
subjected to the acceptance of the hypothesis at the previous stage. Specifically, we can
ask: Are the profiles parallel? If so, are they coincidental? and finally, If so, are they all
horizontal?

Are the k population profiles parallel? The question here is, for the k populations, are
the profile curves all identical except for the constant shifts in the levels? At a given time
point j , the mean responses for i th and i

′th treatments are µi j and µi ′ j and their difference
is µi j − µi ′ j . Thus, the profiles for the i th and i

′th treatments are parallel if this difference
remains constant for all time points j = 1, . . . , p, that is, if µi1−µi ′1 = µi2−µi ′2 = · · · =
µi p − µi ′ p. Thus, the null hypothesis of all treatment profiles being parallel is equivalent
to the null hypothesis (see Figure 5.2)

H (a)
0 : µ11 − µ21 = µ12 − µ22 = · · · = µ1p − µ2p

µ11 − µ31 = µ12 − µ32 = · · · = µ1p − µ3p

...

µ11 − µk1 = µ12 − µk2 = · · · = µ1p − µkp.

The first equation in this set can be written as

[
1 −1 0 . . . 0

]



µ′
1

µ′
2
...

µ′
k




k×p




1 1 . . . 1
−1 0 . . . 0

0 −1 . . . 0
...

0 0 . . . −1




p×(p−1)

= 0.
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Similarly for the j th equation, j = 1, . . . , k − 1, the left-most row vector would have 1
at the first place and −1 at the j th place. As a result, the system given in H (a)

0 can be
conveniently expressed as




1 −1 0 . . . 0
1 0 −1 . . . 0
...

1 0 0 . . . −1




(k−1)×k




µ′
1

µ′
2
...

µ′
k




k×p




1 1 . . . 1
−1 0 . . . 0

0 −1 . . . 0
...

0 0 . . . −1




p×p−1

=




0
0
...

0


 .

Since µi = ν + τ i , i = 1, . . . , k, the above set of equations has an alternative representa-
tion as




0 1 −1 0 . . . 0
0 1 0 −1 . . . 0
...

0 1 0 0 . . . −1




(k−1)×(k+1)




ν′
τ ′

1
τ ′

2
...

τ ′
k




(k+1)×p




1 1 . . . 1
−1 0 . . . 0

0 −1 . . . 0
...

0 0 . . . −1


 =




0
0
...

0


 .

or

H (a)
0 : LBM = 0, (5.10)

where the definitions of L, B, and M are obvious. Thus, the hypothesis of parallel profiles
can be formulated as a general linear hypothesis. As indicated in Section 3.4, the matrices
L and M respectively have some special interpretations. The i th row of matrix L forms
the appropriate linear functions of the regression coefficients (in matrix B) within the i th

model, i = 1, . . . , p, whereas the j th column of the post-multiplied matrix M creates the
desired linear combination of the coefficients from different models but corresponding to
the same independent variable. In other words, in the present context, the specific com-
parisons between the population means are indicated by using the L matrix. Further, the
longitudinal comparisons (or the comparisons involving the parameters of the models for
various dependent variables) for a fixed population are specified through the M matrix.
Note, however, that although there are several equivalent choices of L and M, the final test
statistics and the conclusions do not depend on these choices.

The general linear hypothesis given in Equation 5.10 is tested using the appropriate mul-
tivariate test. All the tests described in Section 3.4 apply, with some specific modifications.
This is so since the general linear model

Y = XB + E,

when post-multiplied by a p by s matrix M, reduces to the model YM = XBM + EM or
Y∗ = XB∗ + E∗ which is essentially the same model with p replaced by s. In the present
context of the parallel profile hypothesis, the matrix M is of order p by (p − 1) and hence
s is equal to (p − 1).

EXAMPLE 6 Heart Rate Data (continued) The sample profile plots for three drugs are given in part of
Output 5.8. The SAS code used to obtain this plot is given in Program 5.8. Chapter 2 also
discussed similar SAS code. Friendly (1991) provides an explanation as well. The sample
profile plots reveal the differences between the drugs in several respects, and we consider
some of them here.
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/* Program 5.8 */

options ls=64 ps=45 nodate nonumber;
data heart;
infile ’heart.dat’;
input drug $ y1 y2 y3 y4;
title1 ’ Output 5.8’;
title2 ’Comparison of Drugs: Profile Analysis’;
proc glm data = heart;
class drug;
model y1 y2 y3 y4 = drug/nouni;
manova h = drug/printe printh ;
run;

filename gsasfile "prog58.graph";
goptions gaccess=gsasfile dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=5in vsize=7in;
title1 h=1.5 ’Comparison of Drugs: Profiles of the Means’;
title2 j=l ’ Output 5.8’;
proc summary nway data=heart;
class drug;
var y1 y2 y3 y4;
output out=new mean=my1-my4;
data plot;
set new;
array my{4} my1-my4;
do test =1 to 4;
Response=my(test);
output;
end;
drop my1-my4;
proc gplot data = plot;

plot response*test=drug /vaxis=axis1 haxis=axis2
vminor=3 legend=legend1 ;
axis1 label =(a=90 h=1.2 ’Response’);
axis2 offset=(2) label=(h=1.2 ’Test’);
symbol1 v=+ i = join;
symbol2 v=x i=join;
symbol3 v=* i=join;
legend1 across = 3;
run;

title1 ’ Output 5.8’;
title2 ’Comparison of Drugs: Profile Analysis’;
proc glm data = heart ;
class drug;
model y1 y2 y3 y4 =drug/nouni;
contrast ’"bww9 vs. control"’ drug 0 1 -1;
contrast ’"ax23 vs. the rest"’ drug 2 -1 -1;
contrast ’"parallel?"’ drug 1 0 -1, drug 0 1 -1;
contrast ’"horizontal?"’ intercept 1;
manova h=drug

m= (1 -1 0 0, 1 0 -1 0, 1 0 0 -1)/printe printh;
contrast ’"coincidental?"’ drug 1 0 -1, drug 0 1 -1;
manova h=drug m=(1 1 1 1) /printe printh;
run;
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Output 5.8
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Output 5.8
continued

Output 5.8
Comparison of Drugs: Profile Analysis

General Linear Models Procedure
Multivariate Analysis of Variance

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall DRUG Effect

H = Type III SS&CP Matrix for DRUG E = Error SS&CP Matrix

S=2 M=0.5 N=8

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.079007 11.51 8 36 0.0001
Pillai’s Trace 1.283456 8.5081 8 38 0.0001
Hotelling-Lawley Trace 7.069384 15.022 8 34 0.0001
Roy’s Greatest Root 6.346509 30.146 4 19 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Comparison of Drugs: Profile Analysis
M Matrix Describing Transformed Variables

Y1 Y2 Y3 Y4

MVAR1 1 -1 0 0
MVAR2 1 0 -1 0
MVAR3 1 0 0 -1

E = Error SS&CP Matrix

MVAR1 MVAR2 MVAR3

MVAR1 261.375 119.5 147.5
MVAR2 119.5 226.375 235
MVAR3 147.5 235 463.5

H = Contrast SS&CP Matrix for "parallel?"

MVAR1 MVAR2 MVAR3

MVAR1 465.58333333 593.54166667 212.25
MVAR2 593.54166667 872.58333333 308.25
MVAR3 212.25 308.25 109
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Manova Test Criteria and F Approximations for
the Hypothesis of no Overall "parallel?" Effect

on the variables defined by the M Matrix Transformation
H = Contrast SS&CP Matrix for "parallel?"

E = Error SS&CP Matrix

S=2 M=0 N=8.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.110286 12.738 6 38 0.0001
Pillai’s Trace 1.089171 7.972 6 40 0.0001
Hotelling-Lawley Trace 6.258785 18.776 6 36 0.0001
Roy’s Greatest Root 5.955089 39.701 3 20 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

H = Contrast SS&CP Matrix for "bww9 vs. control"

MVAR1 MVAR2 MVAR3

MVAR1 27.5625 -19.6875 -5.25
MVAR2 -19.6875 14.0625 3.75
MVAR3 -5.25 3.75 1

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall "bww9 vs. control" Effect
on the variables defined by the M Matrix Transformation

H = Contrast SS&CP Matrix for "bww9 vs. control"
E = Error SS&CP Matrix

S=1 M=0.5 N=8.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.743569 2.1841 3 19 0.1233
Pillai’s Trace 0.256431 2.1841 3 19 0.1233
Hotelling-Lawley Trace 0.344864 2.1841 3 19 0.1233
Roy’s Greatest Root 0.344864 2.1841 3 19 0.1233

H = Contrast SS&CP Matrix for "ax23 vs. the rest"

MVAR1 MVAR2 MVAR3

MVAR1 438.02083333 613.22916667 217.5
MVAR2 613.22916667 858.52083333 304.5
MVAR3 217.5 304.5 108
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Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall "ax23 vs. the rest" Effect
on the variables defined by the M Matrix Transformation

H = Contrast SS&CP Matrix for "ax23 vs. the rest"
E = Error SS&CP Matrix

S=1 M=0.5 N=8.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.144636 37.455 3 19 0.0001
Pillai’s Trace 0.855364 37.455 3 19 0.0001
Hotelling-Lawley Trace 5.913921 37.455 3 19 0.0001
Roy’s Greatest Root 5.913921 37.455 3 19 0.0001

First of all, we want to see if the three drugs have parallel profiles. Accepting such a
hypothesis would mean that for the three drugs the changes in the heart rate measurements
are in the same direction and have similar patterns. We call this the hypothesis of no inter-
action between the drug and time, if time itself is taken as a factor. In notation, we want to
test

H (a)
0 : µ11 − µ21 = µ12 − µ22 = µ13 − µ23 = µ14 − µ24,

µ11 − µ31 = µ12 − µ32 = µ13 − µ33 = µ14 − µ34

or equivalently,

[
1 −1 0
1 0 −1

] µ11 µ12 µ13 µ14
µ21 µ22 µ23 µ24
µ31 µ32 µ33 µ34






1 1 1
−1 0 0

0 −1 0
0 0 −1


 =

[
0
0

]

or

[
0 1 −1 0
0 1 0 −1

]
ν′
τ ′

1
τ ′

2
τ ′

3






1 1 1
−1 0 0

0 −1 0
0 0 −1


 =

[
0
0

]
.

Thus, with

L =
[

0 1 −1 0
0 1 0 −1

]
and M =




1 1 1
−1 0 0

0 −1 0
0 0 −1


 ,

we have H (a)
0 : LBM = 0. Note that another alternative choice (among many others) for

the matrices L and M may be

L =
[

0 1 0 −1
0 0 1 −1

]
and M =




1 0 0
−1 1 0

0 −1 1
0 0 −1


 .

In PROC GLM, the matrix M is specified by the M= specification on the MANOVA state-
ment. The matrix L, however, is specified in the CONTRAST statement which should
appear before the MANOVA statement. The following statements (see Program 5.8) are
used to test the hypothesis of parallel profiles.
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proc glm;
class drug;
model y1 y2 y3 y4=drug;
contrast ’"parallel?"’ drug 1 0 -1,

drug 0 1 -1;
manova h=drug m=(1 -1 0 0,

1 0 -1 0,
1 0 0 -1)/printe printh;

A few comments are in order. As mentioned earlier, the matrix L is specified in the
CONTRAST statement. Since the comparison involves µ1, µ2, and µ3 or equivalently
τ1, τ2, and τ3 the coefficients for the intercept are zero and hence need not be specified.
As a result, the matrix L is shortened in the SAS code by deleting the first column. Further,
we have used the second of the two equivalent choices for L stated earlier. The M matrix is
specified in the MANOVA statement, where the corresponding hypothesis is on the equal-
ity of the treatment effects for the variable DRUG. The specification of M is column by
column, and hence it would resemble M′ rather than M. In the actual program, we have
also used the NOUNI option to suppress the univariate analysis.

The selected pieces of the output resulting from these statements are given as part of
Output 5.8. First the matrix M is printed. The transformed (by post-multiplication of M)
variables are referred to as MVAR1 MVAR2 MVAR3 (the output can be cosmetically im-
proved by using the PREFIX option to assign the appropriate names to the transformed
variables). The error SS&CP matrix E as well as the corresponding hypothesis SS&CP
matrix H are listed next. Based on these two matrices, the four multivariate test statistics
are calculated for H0 : L∗BM = 0 with M indicated above and L∗ = (0 : I) with 0 as a
vector of zeros. However, the null hypothesis H0 : L∗BM = 0 is not the null hypothesis
of just the parallel profiles. What this particular null hypothesis states is that for all three
treatments, profiles are horizontally aligned. This, of course would imply the parallelism
of the profiles but as a hypothesis it is considerably more restrictive and demanding than
the requirement of just the parallel profiles. Not being relevant in the present context, this
part of the output is not included here.

The null hypothesis of parallel profiles gives the corresponding hypothesis SS&CP ma-
trix H as

H =

 465.5833 593.5417 212.2500

593.5417 872.5833 308.2500
212.2500 308.2500 109.0000


 ,

and the error SS&CP matrix as

E =

 261.3750 119.5000 147.5000

119.5000 226.3750 235.0000
147.5000 235.0000 463.5000


 .

The value of Wilks’ � is 0.1103 leading to the observed value of the (exact) F(6, 38)
random variable as 12.738. This is highly significant with a very low p value of 0.0001.
As a result, we reject the null hypothesis of parallel profiles. The other three multivariate
tests are also in agreement with this conclusion.

Are the profiles coincidental, given that profiles are parallel? If the hypothesis of parallel
profiles is not rejected, the next thing to ask may be if they are all identical. Since paral-
lelism of profiles guarantees that profiles do not intersect each other and are consistently
one below the other, the profiles will all be identical only if sums of components in each
profile vector µi are all equal. The corresponding null hypothesis is

H (b)
0 : 1′

pµ1 = 1′
pµ2 = · · · = 1′

pµk

or LBM = 0
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with the choice of L and M respectively as

L =




0 1 0 . . . 0 −1
0 0 1 . . . 0 −1
...

0 0 0 . . . 1 −1




(k−1)×(k+1)

and M = 1p.

Two sample profiles suggesting the possibility of coincidental population profiles are
shown in Figure 5.3. Note that even when the hypothesis of possible parallel population
profiles has been accepted, the sample profiles may still intersect with each other due to
the sampling variability in computing the sample means.

Figure 5.3
Two Sample Profiles
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The hypothesis of parallel profile was rejected for the heart data in Example 6. In view of
this rejection, the null hypothesis of coincidental profiles has no meaning there. However,
if such a hypothesis were to be tested for this data set, the following L and M matrices
would need to be used.

L =
[

0 1 0 −1
0 0 1 −1

]
and M′ = [

1 1 1 1
]
.

As earlier, omitting the first column of L, which corresponds to the coefficients of the
intercepts, the corresponding SAS statements would be

contrast ’"coincidental?"’ drug 1 0 -1,
drug 0 1 -1;

manova h=drug m=(1 1 1 1)/printe printh;

Are the profiles horizontal? If we did not reject the null hypothesis of coincidental pro-
files, then the k populations supposedly have a common mean vector. It is natural to ask
if the components in this common mean vector are also all equal. This means that profiles
can be represented by a common horizontal line. Statistically speaking, this amounts to
testing the hypothesis H (c)

0 : LBM = 0 with

L = (1, 0, . . . , 0) and M =




1 1 . . . 1
−1 0 . . . 0

0 −1 . . . 0
...

...
...

...

0 0 . . . −1


 .
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In this case, the coefficient of intercept vector in the L matrix is 1, while all other coef-
ficients are zero. The M matrix is the same as that used to test the hypothesis of parallel
profiles. If this hypothesis were to be tested for the heart data in Example 6, the corre-
sponding part of the PROC GLM statements would be

contrast ’"horizontal?"’ intercept 1;
manova h=drug m=(1 -1 0 0,

1 0 -1 0,
1 0 0 -1)/printe printh;

EXAMPLE 6 Heart Rate Data (continued) We recall that in Example 6, the hypothesis of parallel
profiles was rejected. To gain further insight and identify the possible causes for nonpar-
allelism, we may want to test for the significance of individual orthogonal contrasts. What
we need to do first is to identify an appropriate L matrix in which rows are orthogonal to
each other and then perform statistical tests for the significance of these individual con-
trasts. Although technically not necessary, one should attempt to use an L matrix so that
its rows correspond to some intuitive and meaningful subhypotheses.

The sample profile plots of the three drugs are given in the beginning of Output 5.8. It
appears that the profile for the drug AX23 is very different from the other two and falls
between the profiles for BWW9 and CONTROL. These observations seem to suggest that
such comparisons should also be part of the analysis. Specifically, we should first compare
the profiles of the other two drugs, namely, BWW9 and CONTROL, with each other and
then their average profile with the profile of drug AX23. If the 2 by 4 matrix L is chosen as

L =
[

0 0 1 −1
0 2 −1 −1

]
,

the two rows of L are mutually orthogonal and the corresponding functions LB are es-
timable. This is an alternative choice of L in addition to the two nonorthogonal choices
previously indicated (see H (a)

0 ), namely,[
0 1 −1 0
0 1 0 −1

]
and

[
0 1 0 −1
0 0 1 −1

]
.

With matrix M the same as earlier, the rows of this new matrix L, namely,

�′
1 = (0 0 1 − 1) and �′

2 = (0 2 − 1 − 1)

respectively, can be used to test the hypotheses H (a1)
0 : �′

1BM = 0, which tests for the

parallelism of the profiles of drug BWW9 and CONTROL, and H (a2)
0 : �′

2BM = 0 tests
for the parallelism of the profiles of drug AX23 to the average profile of drugs BWW9 and
CONTROL. These were the two hypotheses we have found to be of interest by looking
at the profile plots given in Output 5.8. However, we hasten to add that the practice of
developing hypotheses after looking at the data may be of questionable value at least from
the classical statistics point of view.

The Wilks’ � and other tests, all of which are exact and equivalent, support the hypothe-
sis H (a1)

0 . The observed value of F(3, 19) corresponding to all of these tests is 2.1841 with
a p value of 0.1233. Thus, we conclude that, although it may be different and superior,
drug BWW9 behaves similarly to CONTROL over time.

The null hypothesis given in H (a2)
0 is rejected and in view of the very small p value

(= 0.0001), there is a strong argument for doing so. It indicates that as a function of time,
the drug AX23 has a behavior very different from the other two. A look at the profile plots
is visually convincing. Clearly, the major reason for the nonparallelism of profiles and
hence the major component in the rejection of H (a)

0 is the fact that drug AX23 acts very
differently from the average of other two over time. CONTROL and drug BWW9 appear
to be similar in their behavior.
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5.3.3 A Univariate Approach

As in the one population case, a univariate approach to the analysis of repeated measure
data for k populations can be devised by treating the experiments as a split plot design
in which the units in the whole plots (whole plots are subjects in the present context) are
correlated. By first testing for the Type H covariance structure and then accordingly taking
the appropriate action (to adjust or not adjust the degrees of freedom for the test statistics),
we can make inferences using the univariate approach as well. Of course each of the two
approaches has its own shortcomings, and we should not think of these approaches as
interchangeable. The split plot experiment leads to the linear model

yi ju = µ + αi + β j + (αβ)i j + δiu + εi ju, (5.11)

u = 1, . . . , ni , i = 1, . . . , k, j = 1, . . . , p, in which µ represents the intercept or the
general mean, αi is the effect of the i th treatment, β j is the effect of the j th time point,
(αβ)i j is the interaction effect between the i th treatment and j th time point, δiu represents
the random error for the uth subject in the i th treatment group, and εi ju is the random error
corresponding to the uth subject in the i th treatment group at the j th time point.

We assume that δiu and εi ju are both independently and normally distributed with zero
means and respective variances σ 2

δ and σ 2. As a consequence of this assumption and the
assumed split plot model, the repeated measurements on the subjects have the variance-
covariance matrix possessing the property of compound symmetry. This is a mixed effect
model in which the appropriate F tests for treatment effect, time effect, and their interac-
tion can be constructed using ANOVA partitioning of the corrected total sum of squares.
However, this model is seldom realistic. The assumption of compound symmetry of the
variance-covariance matrix is artificial and should not be accepted on face value. If the
appropriate statistical tests on the data suggest this assumption to be acceptable, then un-
der this assumption the usual split plot ANOVA F ratio tests for all the variables and the
interaction are valid, exact F tests.

However, when the data do not conform to compound symmetry, only the test for the
whole plot or between-subject treatment variable (DRUG) is a valid exact F test. As far
as the other two tests, that is, for the time variable and the interaction between the drug
and time, the F tests will be valid provided the Type H conditions, which are less stringent
than compound symmetry assumption on the covariance structure, are satisfied. These are
discussed in Section 5.2.2 and also in Section 5.2.3. If Type H conditions do not hold, then,
the distribution of usual F ratios for TIME and DRUG*TIME interaction can be approx-
imated by an F distribution for which the degrees of freedom are appropriately adjusted.
The two adjustments suggested by Greenhouse and Geisser (1959) and Huynh and Feldt
(1976) have been discussed in Section 5.2.3. Huynh and Feldt’s (1976) adjustment has been
shown to maintain the desired level of significance to a higher degree than Greenhouse and
Geisser’s.

EXAMPLE 6 Heart Rate Data (continued) Let us analyze the heart rate data of Spector (1987) using
the univariate approach. To fit the model in Equation 5.11, for the dependent variable heart
rate (Y) on variables DRUG, TIME, and their interaction with SUBJECT as the whole plot
using PROC GLM, we use the SAS statements

proc glm;
class subject drug time;
model y= drug subject (drug) time drug*time;
random subject (drug)/test;

In the MODEL statement we have specified the model given in Equation 5.11. The
RANDOM statement indicates that subjects are a random sample, and hence SUBJECT is
a random effect nested within DRUG. It is necessary to account for such facts in construct-
ing the appropriate F tests. The RANDOM statement prints the table of expected values
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of various mean squares. The TEST option computes the values of the appropriate test
statistics. Of course, since it is a univariate analysis, all values of Y1, Y2, Y3, and Y4 are
to be stacked one below the other as Y with corresponding levels of the variable TIME
appropriately identified. This is done in Program 5.9. The ANOVA part of the resulting
output is presented in Output 5.9. The results are identical to certain parts of Output 5.10
shown later.

/* Program 5.9 */

title1 ’Output 5.9’;
title2 ’Univariate Analysis of Heart Rate Data’;
options ls=64 ps=45 nodate nonumber;
data heart;
infile ’heart.dat’;
input drug $ y1 y2 y3 y4;
data split;
set heart ;
array t{4} y1-y4;
subject+1;
do time=1 to 4;
y=t{time};
output;
end;
drop y1-y4;
proc glm data = split;
class subject drug time;
model y = drug subject(drug) time time*drug;
random subject(drug)/test;
run;

Output 5.9 Output 5.9
Univariate Analysis of Heart Rate Data

General Linear Models Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Y

Source: DRUG *
Error: MS(SUBJECT(DRUG))

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
2 657.40625 21 111.08630952 5.9180 0.0092

* - This test assumes one or more other fixed effects are zero.

Source: SUBJECT(DRUG)
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
21 111.08630952 63 7.3402777778 15.1338 0.0001

Source: TIME *
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
3 93.069444444 63 7.3402777778 12.6793 0.0001

* - This test assumes one or more other fixed effects are zero.
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Source: DRUG*TIME
Error: MS(Error)

Denominator Denominator
DF Type III MS DF MS F Value Pr > F
6 88.059027778 63 7.3402777778 11.9967 0.0001

The analysis performed in Program 5.9 can be more efficiently achieved by using the
REPEATED statement. It eliminates the need for arranging the data on Y1, Y2, Y3, and Y4
in a vector Y. The other added advantage is the availability of the test for sphericity for the
prescribed contrasts and the Type H structure as well as the computation of the estimates
of ε, to adjust the degrees of freedom, in case these conditions are not met. To indicate that
the repeated measures are taken across TIME, which in this case has four levels, the SAS
statement is

repeated time 4;

If we want, we can specify the levels of TIME (5, 10, 15, and 20 in our example) within
parentheses following 4, the number of levels. Further, any other relevant variable name to
represent the repeated measures is also applicable. For example, in spatial data the mea-
surements may be named TRANSECT.

Tests on various contrasts of E(Y1), . . . , E(Y4) can also be performed. While the de-
fault choice is the difference between the means of the responses at various time points and
the last time point, we can choose any other time point instead of the last for these contrasts.
For example, to obtain the contrasts E(Y1) − E(Y2), E(Y1) − E(Y3) and E(Y1) − E(Y4)

we specify the CONTRAST(1) transformation after TIME 4 in the REPEATED statement
given above. The number 1 within parentheses ( ) indicates that time point 1 is taken as the
base or reference point for CONTRAST comparisons. Many other choices for contrasts
may be used. For example, PROFILE can be used if we want the contrasts to consist of
successive differences such as E(Y1)− E(Y2), E(Y2)− E(Y3), E(Y3)− E(Y4). The con-
trasts using the orthogonal polynomials (of degree p − 1 if there are p time points) can be
obtained by specifying the POLYNOMIAL transformation in the REPEATED statement.
This choice is especially useful if we want to study time trends. In fact, we will utilize this
option later on in this example.

Returning to the univariate split plot analysis of heart rate data, suppose we want to
fit the model in Equation 5.11 and examine if this split plot model is appropriate for the
analysis. The statement

repeated time 4 profile/summary printm printe;

given in Program 5.10 first fits the split plot model given in Equation 5.11 and examines its
appropriateness. If Σ is the p by p variance-covariance matrix of responses collected over
time, then, program tests for the sphericity of CΣC′, where C is the profile matrix given
by

C =




1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

0 0 0 . . . 1 −1




(p−1)×p

.

In the case of heart rate data it simply is
 1 −1 0 0

0 1 −1 0
0 0 1 −1


 .
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In addition, the sphericity test is also applied on the matrix DΣD′, where D is a (p − 1)

by p matrix of orthogonal contrasts. This test is invariant of the choice of suborthogonal
matrix D and is used to test for the Type H condition. If the matrix C (specified in the
REPEATED statement) itself is the matrix of orthogonal contrasts, then the two tests result
in identical output. Observe that PROFILE or CONTRAST transformations are not the
matrices of orthogonal contrasts. Therefore, we use Mauchly’s test described in Section
5.2.2 to test the sphericity of CΣC′ and DΣD′.

Program 5.10 results in Output 5.10. With the choice of contrast matrix C as PROFILE
matrix, the null hypothesis of the sphericity of CΣC′ is rejected. The observed value of
approximate χ2

5 is 7.7411 with a large p value of 0.1711. This part of the output has been
suppressed. To test if the Type H structure can be assumed, we apply Mauchly’s test to
DΣD′ (see Section 5.2.2). In view of the observed value of approximate χ2

5 = 8.0703
with a p value of 0.1524, we do not reject this null hypothesis. This suggests that we can
probably analyze these data using the split plot model, and we may not need to adjust the
degrees of freedom for certain resulting F ratios, using ε̂GG or ε̂H F .

/* Program 5.10 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.10’;
title2 ’Repeated Measures Analysis of Heart Rate Data’;
data heart;
infile ’heart.dat’;
input drug $ y1 y2 y3 y4;
proc glm data = heart;
class drug ;
model y1 y2 y3 y4 = drug/ nouni ;
repeated time 4 profile/ printe;
run;
proc glm data = heart;
class drug ;
model y1 y2 y3 y4 = drug/ nouni ;
repeated time 4 polynomial/summary printm printe;
run;

Output 5.10 Output 5.10
Repeated Measures Analysis of Heart Rate Data

General Linear Models Procedure
Repeated Measures Analysis of Variance

Test for Sphericity: Mauchly’s Criterion = 0.6641817
Chisquare Approximation = 8.0703245 with 5 df

Prob > Chisquare = 0.1524

Applied to Orthogonal Components:
Test for Sphericity: Mauchly’s Criterion = 0.6641817
Chisquare Approximation = 8.0703245 with 5 df

Prob > Chisquare = 0.1524

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS F Value Pr > F

DRUG 2 1314.8125000 5.92 0.0092

Error 21 2332.8125000



Chapter 5 Analysis of Repeated Measures Data 193

Univariate Tests of Hypotheses for Within Subject Effects

Source: TIME
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
3 279.208333 93.069444 12.68 0.0001 0.0001 0.0001

Source: TIME*DRUG
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
6 528.354167 88.059028 12.00 0.0001 0.0001 0.0001

Source: Error(TIME)

DF Type III SS Mean Square
63 462.437500 7.340278

Greenhouse-Geisser Epsilon = 0.7947
Huynh-Feldt Epsilon = 0.9887

Analysis of Variance of Contrast Variables

TIME.N represents the nth degree polynomial contrast for TIME

Contrast Variable: TIME.1

Source DF Type III SS F Value Pr > F

MEAN 1 8.53333333 0.72 0.4042
DRUG 2 85.40416667 3.63 0.0444

Error 21 247.26250000

Contrast Variable: TIME.2

Source DF Type III SS F Value Pr > F

MEAN 1 234.37500000 46.30 0.0001
DRUG 2 398.31250000 39.34 0.0001

Error 21 106.31250000

Contrast Variable: TIME.3

Source DF Type III SS F Value Pr > F

MEAN 1 36.30000000 7.00 0.0151
DRUG 2 44.63750000 4.31 0.0271

Error 21 108.86250000

Next, note that the remaining part of Output 5.10 essentially includes all the information
provided by Output 5.9. The usual ANOVA F test for the interaction DRUG*TIME is
significant (p value = 0.0001). No adjustments are needed since the null hypothesis of
Type H structure has been accepted, and hence we assume this structure. If we also want to
conduct individual testing for certain specific contrasts, we can do it using the CONTRAST
statement as shown in Program 5.8.
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5.3.4 A Study of Time Trends

If an interaction between the treatment and time exists, we are interested in studying the
time trends for individual treatments and in identifying the differences in such trends if
any. The sample profile plots provide some visual insight about such trends and the dif-
ferences between them, but we need a formal study. This can be done by partitioning the
sum of squares corresponding to the variable TIME as well as the interaction TREAT-
MENT*TIME into the independent sums of squares corresponding to various degrees of
orthogonal polynomials up to (p −1)th degree. When orthogonal polynomial contrasts are
used, the sums of squares corresponding to successive contrasts provide us with necessary
information. In SAS, we can accomplish this by using the POLYNOMIAL transformation
in the REPEATED statement as shown in Program 5.10.

EXAMPLE 6 Heart Rate Data (continued) Since p = 4, we can fit up to a third-degree polynomial
and we can accordingly partition the sum of squares corresponding to the variable TIME
as well as TIME*DRUG into three orthogonal components, namely, linear, quadratic, and
cubic. For the heart rate data in Output 5.10, these components are respectively labeled
TIME.1, TIME.2, and TIME.3. The three sums of squares corresponding to the MEAN
transformation provide the orthogonal partitioning of the sum of squares for the variable
TIME. The sums of squares corresponding to DRUG give the orthogonal decomposition of
the sum of squares corresponding to the interaction TIME*DRUG (say, INT). We perform
similar partitioning for the error sum of squares. The results are given in Table 5.1. The
values are taken from Output 5.10.

The analysis of variance is carried out separately for each of the three contrasts. If z(h)

represents the hth contrast, then the linear model for the hth contrast h = 1, 2, 3 is a
one-way classification model in the drug effect α

(h)
i , that is,

z(h)
i j = µ(h) + α

(h)
i + ε

(h)
i j , i = 1, 2, 3, j = 1, . . . , 8.

All the usual assumptions for this model are made. There are two questions that could be
asked:

Are the contrast means zero? If all contrast means are zero, then it implies that there is
no treatment effect.

Is there an interaction between the drug and trend? If there is no interaction between
drug and trend, the situation corresponds to the case when all α

(h)
i are zero.

Thus, we may individually test

H (a)
0 : µ(h) = 0

and H (b)
0 : α

(h)
1 = α

(h)
2 = α

(h)
3 = 0

for h = 1, 2, 3. We recall that in the split plot experiment, we rejected the null hypoth-
esis of no DRUG effect and of no TIME*DRUG interaction. The tests performed here

TABLE 5.1 Partitioning of SS into Othogonal Polynomial Contrasts

Contrast SS(TIME) d f SS(INT) d f SS(ERROR) d f

Linear 8.5333 1 85.4042 2 247.2625 21

Quadratic 234.3750 1 398.3125 2 106.3125 21

Cubic 36.3000 1 44.6375 2 108.8625 21

Total 279.2083 3 528.3542 6 462.4375 63
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would provide the cause of rejection in each of the two cases. Output 5.10 shows that the
DRUG for TIME.1 (linear contrast) is marginally significant (p value = 0.0444). It is
strongly significant (p value = 0.0001) for TIME.2 (quadratic contrast) and is reasonable
(p value = 0.0271) in the case of TIME.3 (the cubic contrast). This indicates that there
is sufficient evidence to assume that the response curves are quite different for the three
drugs. Since the response curves are not the same for the three drugs, it is currently of
no interest to test if the contrast means are all zero, because it is equivalent to testing that
there is no treatment effect. These hypotheses would have been of interest if H (b)

0 had been
accepted for all the three contrasts.

A few comments are in order with respect to the analysis of contrasts outlined here. First
of all, since two or more hypotheses are being tested to draw the simultaneous inference,
we can use a Bonferroni approach to choose the appropriate levels of significance for each
individual hypothesis (we have used this approach in the context of confidence intervals in
Chapter 3). Secondly, the analysis of contrasts may be subject to serious error if the error
variances for these contrasts are not nearly equal. Thus, we should be especially careful in
the interpretation of these results if the Type H conditions are not met. Finally, the split plot
analysis may be more useful than the present analysis of orthogonal contrasts. The reason
for this is that when the Type H conditions are not met the degrees of freedom of the F
tests in the former analysis can be adjusted to get approximate tests. Finally a multivariate
approach to trend analysis can be taken using the growth curve models.

Given the two different approaches to the repeated measure data, namely, multivari-
ate and univariate, a natural question to ask is, which of the two approaches is superior?
This question cannot be answered in a clear-cut way. Due to the data collection scheme
and design, the problem is multivariate in nature and hence, theoretically, the multivariate
approach is the “correct” approach for the problem. However, the multivariate tests usu-
ally have lower power than the corresponding univariate tests. This is more so when the
sphericity assumptions are satisfied. Thus, the power of the tests can possibly be increased
by following the univariate approach when the assumptions on the covariance structure
(such as compound symmetry or Type H conditions) can be made.

Thus, although the multivariate approach is always a legitimate approach, we may be
able to obtain more conclusive results and possibly gain more insight by using the uni-
variate split plot models. Crowder and Hand (1990), however, state that in the absence of
sphericity of orthogonal contrasts, there is little to choose between the multivariate tests
and the univariate tests where the degrees of freedom of univariate F tests have been mod-
ified using either ε̂GG or ε̂H F . Of course, in certain cases circumstances such as small
sample size permit only univariate analysis of data.

There are certain precautions that we must take in analyzing repeated measures data
especially when using the univariate approach. The failure of the user or the software to
appropriately identify the fixed and random effects in the model and to form appropriate
F ratios for the tests may result in incorrect analyses and hence in invalid conclusions.
Schaefer (1994) provides an excellent account, with special reference to SAS, of possible
pitfalls in using the default packaged analysis: in PROC GLM, all the effects are by de-
fault considered fixed unless indicated otherwise by using a RANDOM statement and then
using the TEST option to perform the appropriate test. Using simulation studies, he found
that Type I and Type II errors in the testing of hypotheses can both be greatly affected if
inappropriate tests are performed.

5.4 Factorial Designs

When the treatment combinations are made up of various levels of several factors, then
both the multivariate and univariate approaches are generalized in a straightforward way.
It is so because all these situations can still be dealt within the general framework of multi-



196 Applied Multivariate Statistics

variate linear model. Also, the assumption of compound symmetry of covariance structure
needed in the univariate analysis is on the error. Therefore, what design has been used
for data collection does not affect the univariate approach. For the multivariate approach,
the MANOVA partitioning of the total sums of squares and crossproduct matrix has been
seen to be the straightforward generalization of the univariate ANOVA and therefore the
multivariate approach essentially parallels that for the univariate ANOVA. This similarity
has already been discussed in Chapters 3 and 4. We illustrate the approach for the factorial
designs using a three-factor experiment originally discussed by Box (1950).

EXAMPLE 7 A Two-Way Factorial Experiment, Abrasion Data Box (1950) presented data on fab-
ric weight loss due to abrasion. Some of the fabrics were given a surface treatment
(SURFTRT) and some were not, leading to two levels, YES and NO, for SURFTRT. Two
fillers (FILL) A and B were used at three proportions (PROP), namely, 25%, 50%, and
75%, and the weight losses were recorded at three successive periods, each after 1000
revolutions of the machine which tested the abrasion resistance. Two replicates for each
treatment combination in this 2 × 2 × 3 factorial experiment were obtained. Program 5.11
performs the multivariate as well as the univariate analysis of the data.

The repeated measures are taken with respect to the increasing number of revolutions
(REVOLUTN). The corresponding values of the dependent variable weight loss are de-
noted by Y1, Y2, and Y3. We first fit the multivariate model with all main variables
and two- and three-factor interactions. The standard MANOVA (not shown) indicates that
SURFTRT, FILL, SURFTRT*FILL, PROP, and FILL*PROP are all highly significant. For
illustration we examine only the profiles corresponding to variable PROP. Thus, all the
comparisons are about the average weight losses due to various proportions of the fillers.
The three sequential hypotheses to be tested are, are the PROP profiles parallel? given that
they are parallel, are the PROP profiles coincidental? given that they are coincidental, are
the PROP profiles horizontal?

Each of these three hypotheses is specified as LBM = 0 in the linear model setup
with the specific choices of matrices of L and M in the three hypotheses. Since the three
hypotheses are about the variable PROP only, the L matrix is specified by using the CON-
TRAST statement with PROP as the variable of interest. The M matrices are appropriately
defined with the M= specification on the MANOVA statement. Specifically, the SAS state-
ments specifying L and M for each hypothesis are listed below.

Are the PROP profiles parallel?

contrast ’"prop-parallel?"’ prop 1 0 -1,
prop 0 1 -1;

manova h=prop m=(1 -1 0,
1 0 -1);

Given that they are parallel, are the PROP profiles coincidental?

contrast ’"prop-coincidental?"’ prop 1 0 -1
prop 0 1 -1;

manova h=prop m=(1 1 1);

Given that they are coincidental, are the PROP profiles horizontal?

contrast ’"prop-horizontal?"’ intercept 1;
manova h=prop m=(1 -1 0,

1 0 -1);



Chapter 5 Analysis of Repeated Measures Data 197

/* Program 5.11 */

options ls=64 ps=45 nodate nonumber;
title1 ’ Output 5.11’;
data box;
infile ’box.dat’;
input surftrt $ fill $ prop y1 y2 y3 ;
title2 ’Repeated Measures in Factorials: Tire Wear Data’;
proc glm data = box;
class surftrt fill prop;
model y1 y2 y3 =surftrt|fill|prop/nouni;
contrast ’"prop-parallel?"’ prop 1 0 -1,

prop 0 1 -1;
contrast ’"prop-horizontal?"’ intercept 1;
manova h=prop m= (1 -1 0, 1 0 -1)/printe printh;
contrast ’"prop-concidental?"’ prop 1 0 -1,

prop 0 1 -1 ;
manova h = prop m=(1 1 1) /printe printh;
run;
proc glm data = box;
class surftrt fill prop;
model y1 y2 y3 = surftrt|fill|prop/ nouni ;
repeated revolutn 3 polynomial/summary printm printe ;
title2 ’Univariate Split Plot Analysis of Tire Wear Data’;
run;
data boxsplit;
set box;
array yy{3} y1-y3;
subject+1;
do time=1 to 3;
y=yy(time);
output;
end;
run;
proc mixed data = boxsplit method = reml ;
class surftrt fill prop subject;
model y = surftrt fill prop surftrt*fill surftrt*prop
fill*prop surftrt*time fill*time prop*time
surftrt*fill*time surftrt*prop*time fill*prop*time/chisq;
repeated /type = ar(1) subject = subject r ;
title2 ’Analysis of Tire Wear Data Using PROC MIXED’;
run;

Output 5.11 Output 5.11
Repeated Measures in Factorials: Tire Wear Data

General Linear Models Procedure
Multivariate Analysis of Variance

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall "prop-parallel?" Effect

on the variables defined by the M Matrix Transformation
H = Contrast SS&CP Matrix for "prop-parallel?"

E = Error SS&CP Matrix

S=2 M=-0.5 N=4.5
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Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.469985 2.5227 4 22 0.0701
Pillai’s Trace 0.550475 2.2786 4 24 0.0904
Hotelling-Lawley Trace 1.084195 2.7105 4 20 0.0594
Roy’s Greatest Root 1.042434 6.2546 2 12 0.0138

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall "prop-concidental?" Effect
on the variables defined by the M Matrix Transformation

H = Contrast SS&CP Matrix for "prop-concidental?"
E = Error SS&CP Matrix

S=1 M=0 N=5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.216071 21.769 2 12 0.0001
Pillai’s Trace 0.783929 21.769 2 12 0.0001
Hotelling-Lawley Trace 3.628115 21.769 2 12 0.0001
Roy’s Greatest Root 3.628115 21.769 2 12 0.0001

Univariate Split Plot Analysis of Tire Wear Data

General Linear Models Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Source: REVOLUTN
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 60958.5278 30479.2639 160.68 0.0001 0.0001 0.0001

Source: REVOLUTN*SURFTRT
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 8248.0278 4124.0139 21.74 0.0001 0.0001 0.0001

Source: REVOLUTN*FILL
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 18287.6944 9143.8472 48.20 0.0001 0.0001 0.0001

Source: REVOLUTN*SURFTRT*FILL
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 2328.0833 1164.0417 6.14 0.0070 0.0111 0.0070

Source: REVOLUTN*PROP
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
4 1762.8056 440.7014 2.32 0.0857 0.1002 0.0857
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Source: REVOLUTN*SURFTRT*PROP
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
4 685.9722 171.4931 0.90 0.4772 0.4658 0.4772

Source: REVOLUTN*FILL*PROP
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
4 1415.6389 353.9097 1.87 0.1493 0.1633 0.1493

Source: REVOLUTN*SURFTRT*FILL*PROP
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
4 465.9167 116.4792 0.61 0.6566 0.6308 0.6566

Source: Error(REVOLUTN)

DF Type III SS Mean Square
24 4552.6667 189.6944

Greenhouse-Geisser Epsilon = 0.8384
Huynh-Feldt Epsilon = 1.8522

Analysis of Variance of Contrast Variables

REVOLU.N represents the nth degree
polynomial contrast for REVOLUTN

Contrast Variable: REVOLU.1

Source DF Type III SS F Value Pr > F

MEAN 1 60705.18750000 565.91 0.0001
SURFTRT 1 7676.02083333 71.56 0.0001
FILL 1 9436.02083333 87.96 0.0001
SURFTRT*FILL 1 1938.02083333 18.07 0.0011
PROP 2 1035.12500000 4.82 0.0290
SURFTRT*PROP 2 191.54166667 0.89 0.4350
FILL*PROP 2 260.54166667 1.21 0.3309
SURFTRT*FILL*PROP 2 255.79166667 1.19 0.3371

Error 12 1287.25000000

Contrast Variable: REVOLU.2

Source DF Type III SS F Value Pr > F

MEAN 1 253.34027778 0.93 0.3536
SURFTRT 1 572.00694444 2.10 0.1727
FILL 1 8851.67361111 32.53 0.0001
SURFTRT*FILL 1 390.06250000 1.43 0.2543
PROP 2 727.68055556 1.34 0.2991
SURFTRT*PROP 2 494.43055556 0.91 0.4292
FILL*PROP 2 1155.09722222 2.12 0.1625
SURFTRT*FILL*PROP 2 210.12500000 0.39 0.6879

Error 12 3265.41666667
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Analysis of Tire Wear Data Using PROC MIXED
The MIXED Procedure

R Matrix for SUBJECT 1

Row COL1 COL2 COL3

1 368.56581667 -166.1922475 74.93875414
2 -166.1922475 368.56581667 -166.1922475
3 74.93875414 -166.1922475 368.56581667

Output 5.11 shows that while the null hypothesis of parallel profiles for PROP is not
rejected at 5% level of significance (with a p value for Wilks’ � equal to 0.0701), the
hypothesis of coincidental profiles is rejected with � = 0.2161 (leading to an observed
value of F (2,12) as 21.769 which corresponds to a very small p value of 0.0001).

To perform the univariate split plot analysis, we use the REPEATED statement. The
corresponding time variable is defined here as REVOLUTN as the repeated measures are
taken for the three increasing numbers of revolutions, namely, 1,000, 2,000, and 3,000. If
we are interested in studying the effects of various orthogonal polynomial contrasts, we
must choose the POLYNOMIAL transformation for the type of orthogonal contrasts. The
corresponding SAS statement is

repeated revolutn 3 polynomial;

In Program 5.11 we have made certain other choices such as printing the corresponding
E and M matrices and only summary output. The M matrix here is a 2 by 3 matrix of
first- and second-degree orthogonal polynomial coefficients and the 2 by 2 matrix E is the
matrix of the corresponding error SS&CP.

Output 5.11 shows that the interaction REVOLUTN*SURFTRT*FILL is highly sig-
nificant (with a p value = 0.0070) and respective interactions of REVOLUTN with
SURFTRT and FILL are very highly significant (both p values = 0.0001). The interac-
tion of REVOLUTN with PROP is only marginally significant (p value = 0.0857). This
indicates that the abrasion curves for various levels of the variables SURFTRT, FILL,
and PROP are not parallel. The univariate F tests adjusted by using ε̂GG(= 0.8384) or
ε̂H F (= 1.0, since it cannot exceed 1) for various interactions with REVOLUTN lead to the
same conclusions. These adjustments, however, may not be necessary as Mauchly’s test
for the sphericity of orthogonal contrasts provides sufficient evidence (p value = 0.3079)
to assume sphericity. This part has not been included in Output 5.11.

The tests on the linear and quadratic contrasts respectively denoted by REVOLUTN.1
and REVOLUTN.2 reveal that the quadratic contrast is not significant for any effect or
interaction except FILL (p value = 0.0001). However, the linear contrast is significant
for all main variables and the SURFTRT*FILL interaction. The data can also be analyzed
under various covariance structures, other than compound symmetry using the MIXED
procedure which will be discussed in detail in Chapter 6. While most of the output has
been suppressed, the appropriate statements under AR(1) covariance structure and REML
estimation procedure are included in Program 5.11. One especially interesting observation
is that some of the off-diagonal elements of the estimates of the R matrix (referred to as
Σsubject in the previous example) are negative. Normally we would not expect the negative
correlations between the repeated measures of these weight losses. Lindsey (1993, p. 83)
interprets such an occurrence as evidence of a situation where there is a greater variability
within the experiment or subject than among the experiments or subjects.

EXAMPLE 8 Two-Factor Experiment with Both Repeated Measures Factors In a factorial design, if
there are repeated measures on more than two variables then the analysis of the previous
section can be applied in a straightforward manner. For example, consider this example:
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three participants in an experiment were given a large amount of a sleep-inducing drug on
the day before the experiment. The next day, they were given placebos. The participants
were tested in the morning (AM) and afternoon (PM) of the two different days. Each par-
ticipant was given a stimulus, and his or her reaction (the response variable) was timed.
See Cody and Smith (1991, p. 182). The problem considered here is to determine whether
the drug had any effect on the reaction time and the effects are the same for AM and PM.

Since each subject is measured under two levels of TIME (AM, PM) and for two levels
of DRUG (DRUG1 (Placebo), DRUG2), it is a 2 by 2 factorial experiment with both TIME
and DRUG as repeated measures variables or repeated measures factors. The data are
given below and the SAS code for analyzing these data is given in Program 5.12.

DRUG1 DRUG1 DRUG2 DRUG2
SUBJECT AM PM AM PM

1 77 67 82 72
2 84 76 90 80
3 102 92 109 97

Both the univariate and multivariate analysis are performed using the SAS statement

repeated drug 2, time 2;

One important thing to remember is that the order in which the variables are written
in the REPEATED statement and the order in which data are presented in the INPUT
statement must correspond. For every level of variable DRUG there are two levels of the
variable TIME and the REPEATED statement given above reads exactly that way. That is,
level 1 of variable DRUG and levels 1 and 2 of variable TIME are selected first, level 2 of
variable DRUG and levels 1 and 2 of variable TIME are selected next, and so on. The logic
behind writing the variables in the REPEATED statement is the same as the logic behind
nested DO loops.

/* Program 5.12 */

option ls=64 ps=45 nodate nonumber;
title1 ’Output 5.12’;
title2 ’Analysis with Two Repeated Factors’;
data react;
input y1 y2 y3 y4;
lines;
77 67 82 72
84 76 90 80
102 92 109 97
;
proc glm;
model y1-y4= /nouni;
repeated drug 2, time 2;
run;

Output 5.12 Output 5.12
Analysis with Two Repeated Factors

General Linear Models Procedure
Repeated Measures Analysis of Variance

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no DRUG Effect

H = Type III SS&CP Matrix for DRUG E = Error SS&CP Matrix
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S=1 M=-0.5 N=0

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.007752 256 1 2 0.0039
Pillai’s Trace 0.992248 256 1 2 0.0039
Hotelling-Lawley Trace 128 256 1 2 0.0039
Roy’s Greatest Root 128 256 1 2 0.0039

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no TIME Effect

H = Type III SS&CP Matrix for TIME E = Error SS&CP Matrix

S=1 M=-0.5 N=0

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.006623 300 1 2 0.0033
Pillai’s Trace 0.993377 300 1 2 0.0033
Hotelling-Lawley Trace 150 300 1 2 0.0033
Roy’s Greatest Root 150 300 1 2 0.0033

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no DRUG*TIME Effect

H = Type III SS&CP Matrix for DRUG*TIME E = Error SS&CP Matrix

S=1 M=-0.5 N=0

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.333333 4 1 2 0.1835
Pillai’s Trace 0.666667 4 1 2 0.1835
Hotelling-Lawley Trace 2 4 1 2 0.1835
Roy’s Greatest Root 2 4 1 2 0.1835

An examination of Output 5.12 reveals that there is no interaction between the variables
TIME and DRUG (p value = 0.1835). However, the variable DRUG with a p value of
0.0039 and the variable TIME with a p value of 0.0033 are both highly significant.

EXAMPLE 9 Three-Factor Experiment with Two Repeated Measures Factors In an educational test-
ing program, students from two groups, namely, those with relatively higher socioeconomic
status (GP1) and with lower socioeconomic status (GP2), were tested and their scores in
the tests recorded. See Cody and Smith (1991, pp. 194–195). The study was conducted for
three years (denoted by 1, 2, and 3) during each of the two seasons, FALL and SPRING,
for a group of 10 students. Each group consisted of five subjects. In this setup there are
three variables, namely, GROUP, YEAR, and SEASON. Repeated measures on each of the
ten subjects are available for the variables YEAR and SEASON. In that sense, YEAR and
SEASON are two repeated measures variables.

The three problems of interest are to test
• whether students do better on a reading comprehension test in the Spring than in the

Fall,
• whether the differences in the mean scores become negligible as students get older,
• whether these differences in the mean scores are more prominent for one socio-economic

group than the other.
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In order to find answers to these problems, we first determine whether there are sig-
nificant main effects and interactions. Once that is determined, if needed, we can perform
an analysis of the means, applying multiple comparison techniques, to conduct pairwise
differences between the variables. However, we restrict ourselves to the determination of
the significance of the main effects and their interactions. We assume that the underlying
variances of responses for both seasons and for all three years are the same. The data and
SAS code are given in Program 5.13 and the corresponding output in Output 5.13. The
REPEATED statement is used to perform both the multivariate and univariate analyses.

/* Program 5.13 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.13’;
title2 ’Three Factors Case with Two Repeated Factors’;
data read;
input group y1-y6;
lines;
1 61 50 60 55 59 62
1 64 55 62 57 63 63
1 59 49 58 52 60 58
1 63 59 65 64 67 70
1 62 51 61 56 60 63
2 57 42 56 46 54 50
2 61 47 58 48 59 55
2 55 40 55 46 57 52
2 59 44 61 50 63 60
2 58 44 56 49 55 49
;
/* Source: Cody, R. P./Smith, J. K. APPLIED STATISTICS AND SAS
PROGRAMMING LANGUAGE, 3/E, 1991, p. 194. Reprinted by permission of
Prentice-Hall, Inc. Englewood Cliffs, N.J. */
proc glm data=read;
class group;
model y1-y6=group/nouni;
repeated year 3, season 2;
run;
proc glm data=read;
class group;
model y1-y6=group/nouni;
repeated year 3(1 2 3) polynomial,
season 2/summary nom nou;
run;

Output 5.13 Output 5.13
Three Factors Case with Two Repeated Factors

General Linear Models Procedure
Repeated Measures Analysis of Variance

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no YEAR Effect

H = Type III SS&CP Matrix for YEAR E = Error SS&CP Matrix

S=1 M=0 N=2.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.195582 14.395 2 7 0.0033
Pillai’s Trace 0.804418 14.395 2 7 0.0033
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Hotelling-Lawley Trace 4.112941 14.395 2 7 0.0033
Roy’s Greatest Root 4.112941 14.395 2 7 0.0033

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no YEAR*GROUP Effect
H = Type III SS&CP Matrix for YEAR*GROUP

E = Error SS&CP Matrix

S=1 M=0 N=2.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.96176 0.1392 2 7 0.8724
Pillai’s Trace 0.03824 0.1392 2 7 0.8724
Hotelling-Lawley Trace 0.03976 0.1392 2 7 0.8724
Roy’s Greatest Root 0.03976 0.1392 2 7 0.8724

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no SEASON Effect

H = Type III SS&CP Matrix for SEASON E = Error SS&CP Matrix

S=1 M=-0.5 N=3

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.034362 224.82 1 8 0.0001
Pillai’s Trace 0.965638 224.82 1 8 0.0001
Hotelling-Lawley Trace 28.10193 224.82 1 8 0.0001
Roy’s Greatest Root 28.10193 224.82 1 8 0.0001

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no SEASON*GROUP Effect
H = Type III SS&CP Matrix for SEASON*GROUP

E = Error SS&CP Matrix

S=1 M=-0.5 N=3

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.177593 37.047 1 8 0.0003
Pillai’s Trace 0.822407 37.047 1 8 0.0003
Hotelling-Lawley Trace 4.630854 37.047 1 8 0.0003
Roy’s Greatest Root 4.630854 37.047 1 8 0.0003

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no YEAR*SEASON Effect
H = Type III SS&CP Matrix for YEAR*SEASON

E = Error SS&CP Matrix

S=1 M=0 N=2.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.037144 90.727 2 7 0.0001
Pillai’s Trace 0.962856 90.727 2 7 0.0001
Hotelling-Lawley Trace 25.92199 90.727 2 7 0.0001
Roy’s Greatest Root 25.92199 90.727 2 7 0.0001
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Manova Test Criteria and Exact F Statistics for
the Hypothesis of no YEAR*SEASON*GROUP Effect
H = Type III SS&CP Matrix for YEAR*SEASON*GROUP

E = Error SS&CP Matrix

S=1 M=0 N=2.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.916038 0.3208 2 7 0.7357
Pillai’s Trace 0.083962 0.3208 2 7 0.7357
Hotelling-Lawley Trace 0.091658 0.3208 2 7 0.7357
Roy’s Greatest Root 0.091658 0.3208 2 7 0.7357

Repeated Measures Analysis of Variance
Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS F Value Pr > F

GROUP 1 680.0666667 13.54 0.0062

Error 8 401.6666667

Univariate Tests of Hypotheses for Within Subject Effects

Source: YEAR
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 252.033333 126.016667 26.91 0.0001 0.0002 0.0001

Source: YEAR*GROUP
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 1.033333 0.516667 0.11 0.8962 0.8186 0.8700

Source: Error(YEAR)

DF Type III SS Mean Square
16 74.933333 4.683333

Greenhouse-Geisser Epsilon = 0.6757
Huynh-Feldt Epsilon = 0.8658

Source: SEASON
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
1 680.066667 680.066667 224.82 0.0001 . .

Source: SEASON*GROUP
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
1 112.066667 112.066667 37.05 0.0003 . .

Source: Error(SEASON)

DF Type III SS Mean Square
8 24.200000 3.025000
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Source: YEAR*SEASON
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 265.433333 132.716667 112.95 0.0001 0.0001 0.0001

Source: YEAR*SEASON*GROUP
Adj Pr > F

DF Type III SS Mean Square F Value Pr > F G - G H - F
2 0.433333 0.216667 0.18 0.8333 0.7592 0.8168

Source: Error(YEAR*SEASON)

DF Type III SS Mean Square
16 18.800000 1.175000

Greenhouse-Geisser Epsilon = 0.7073
Huynh-Feldt Epsilon = 0.9221

Analysis of Variance of Contrast Variables

YEAR.N represents the nth degree polynomial contrast for YEAR

Contrast Variable: YEAR.1

Source DF Type III SS F Value Pr > F

MEAN 1 490.05000000 31.06 0.0005
GROUP 1 1.25000000 0.08 0.7855

Error 8 126.20000000

Contrast Variable: YEAR.2

Source DF Type III SS F Value Pr > F

MEAN 1 14.01666667 4.74 0.0612
GROUP 1 0.81666667 0.28 0.6135

Error 8 23.66666667

SEASON.N represents the contrast between the
nth level of SEASON and the last

Contrast Variable: SEASON.1

Source DF Type III SS F Value Pr > F

MEAN 1 4080.40000000 224.82 0.0001
GROUP 1 672.40000000 37.05 0.0003

Error 8 145.20000000

YEAR.N represents the nth degree polynomial contrast for YEAR
SEASON.N represents the contrast between the

nth level of SEASON and the last

Contrast Variable: YEAR.1*SEASON.1
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Source DF Type III SS F Value Pr > F

MEAN 1 530.45000000 157.17 0.0001
GROUP 1 0.05000000 0.01 0.9061

Error 8 27.00000000

Contrast Variable: YEAR.2*SEASON.1

Source DF Type III SS F Value Pr > F

MEAN 1 0.41666667 0.31 0.5903
GROUP 1 0.81666667 0.62 0.4550

Error 8 10.60000000

The multivariate tests indicate that the YEAR*SEASON*GROUP and YEAR*GROUP
interactions are not significant (p values are 0.7357 and 0.8724 respectively) whereas,
YEAR and SEASON have significant effects with respective p values 0.0033 and 0.0001.
Also significant are the interactions YEAR*SEASON (p value = 0.0001) and SEASON*
GROUP (p value = 0.0003). The univariate tests also support these findings. Note from
the output that there is a significant difference between the two socio-economic groups
(p value = 0.0062). Note also that the values of ε̂GG and ε̂H F are quite large, indicating
that Type H structure for the covariance may be satisfied.

In order to understand the nature of the significant effect of the repeated measures vari-
able YEAR, since the levels of it are quantitative (1, 2, 3), it may be useful to analyze the
variables obtained by using the POLYNOMIAL transformation. The statement

repeated year 3 polynomial, season/summary nom nou;

can be used for this purpose. Both NOM and NOU options suppress redundant output. If
the time points were not equidistant then the transformation “POLYNOMIAL(t1, t2, t3)”
can be used in the REPEATED statement to indicate the time points. The PRINTM op-
tion is used to print the contrast transformation. The output for this part of the analysis is
shown in Output 5.13. The variable YEAR.N represents the nth degree orthogonal poly-
nomial contrast for the variable YEAR as indicated in the output. Thus, in the output,
YEAR.1 represents the first degree (linear) polynomial contrast and YEAR.2 represents
the quadratic contrast. The line MEAN, listed under column SOURCE in the output, tests
the hypothesis that the linear component of the variable YEAR is zero. Since the mean
effect for YEAR.1 is significant (p value = 0.0005), the linear component of YEAR is
significantly different from zero. The variable GROUP listed under SOURCE is used to
test the hypothesis that the first-order polynomial for the variable YEAR is the same for
different levels of the variable GROUP. This hypothesis is not rejected (p value = 0.7855).
Similar interpretations are applicable for the contrast YEAR.2. Since the p value for the
MEAN effect in this case is 0.0612 there is slight evidence that the quadratic component is
different from zero. See Section 5.3.4 for a more detailed description and interpretation of
the analysis of the orthogonal polynomial contrasts.

5.5 Analysis in the Presence of Covariates

When data contain covariates that might affect repeated measures tests, it is important to
design the analysis to account for the covariate effects. Consider these examples. First,
suppose the initial measurements on the subjects before the treatments are applied provide
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the information relevant to the subsequent measurements. Second, suppose various blood
pressure drugs are administered to groups of subjects, and blood pressure measurements
are taken weekly. Also measured is the amount of sodium consumed by each individual
the previous day. See Milliken (1989). Since the amount of sodium in the diet is known to
affect blood pressure measurements, a better analysis may be possible by incorporating the
sodium content in the previous day’s diet as a covariate.

However, the two examples described above are different. In the first case, the value of
the covariate is the same for all time points and is specific only to the particular subject; in
the second case, the values of covariates may be different for various time points for ev-
ery subject. In other words, if the subjects are visualized as the whole plots with subplots
represented by different time points, then the two situations differ in whether the value of
the covariate is the same for all subplots within a whole plot or not. We will contrast these
two scenerios by respectively naming them as subject specific and time specific covariates.
Unfortunately, only the first case (subject specific) can be expressed in terms of a standard
multivariate linear model. The second case, although quite common, requires that the ma-
trix of regression coefficients corresponding to the covariates be block diagonal, thereby
imposing restrictions on the matrix of unknown parameters.

5.5.1 A Multivariate Analysis of Covariance:
Subject Specific Covariates

If the values of covariates are the same for all time points for a given subject then the
multivariate linear model can be written as

Y = XB + ZΓ + E,

where the matrix Z represents the matrix of the values of covariates and possibly inter-
action between the treatments and covariates. The matrix Γ stands for the corresponding
unknown coefficients. This model has been described in Chapter 4 along with an appropri-
ate approach to the analysis.

The effect of covariates may be different in various treatment groups. Also, they may in-
fluence the measurements taken at different time points very differently, and these two pos-
sibilities should be carefully investigated. The first of these possibilities can be examined
by testing for the statistical significance of the interactions of the treatment with the covari-
ates. The second possibility can be tested by examining the significance of the interaction
between the covariates and time and also possibly that between treatment, covariates, and
time. If the covariates have different effects on responses at various time points then the
comparison of treatment profiles adjusted for the covariates does not have much meaning.
If, however, the covariate*time and the treatment*covariate*time interactions can be as-
sumed to be zero, we can perform the profile analysis with only a slight modification. We
will illustrate this in the following example.

EXAMPLE 10 Subject-Specific Covariates, Diabetic Patients Study Data Three groups of diabetic pa-
tients, without complications (DINOCOM), with hypertension (DIHYPER), and with pos-
tural hypotension (DIHYPOT) respectively and a control (CONTROL) of healthy subjects
were asked to perform a small physical task at time zero. A particular response was ob-
served at times −30, −1, 1, 2, 3, 4, 5, 6, 8, 10, 12, and 15 minutes. The corresponding vari-
ables are denoted by X1, X2, and Y1 through Y10 respectively and the pre-performance
responses X1 and X2 are used as the covariates for the repeated measures Y1 through Y10.
The data set has certain missing values and in such cases the entire row of the data set on
the corresponding subjects is discarded in the SAS analysis. As a result, it is not possible
to perform all the desirable analyses on this data set. Hence we illustrate the analysis only
for variables Y1, Y2, Y3, and Y4.
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The first step in the analysis is to examine if the effects of the two covariates are the
same in all treatment groups. To do so, we need to include X1, X2 and their interactions
with GROUP, namely, GROUP*X1, and GROUP*X2, in the multivariate linear model.
Thus, the corresponding MODEL statement is

model y1-y4 =x1 x2 group group*x1 group*x2;

and the corresponding MANOVA statement is

manova h=group x1 x2 group*x1 group*x2;

The NOUNI option in Program 5.14 suppresses the univariate output and the SS3 op-
tion produces the Type III SS&CP matrices. The PRINTE and PRINTH options in the
MANOVA statement print the E and corresponding H matrices. The multivariate tests
show that neither of the two interactions, GROUP*X1 and GROUP*X2, is significant (re-
spective p values for Wilks’ � are 0.9420 and 0.7343). Also, there is no overall GROUP
effect. The corresponding Wilks’ � test statistic has a value of 0.6131 with a p value of
0.9248. Further, X1 is not significant (p value = 0.4753) but X2 appears to have a very
significant effect (� = 0.0609 with a p value of 0.0001). This indicates that X2 should be
included in the model for any treatment comparison. Also, since GROUP*X2 was found
not to be significant, we can assume that the effect of covariate X2 is same in the four
treatment groups.

/* Program 5.14 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.14’;
data task;
infile ’task.dat’;
input group$ x1 x2 y1-y10;
title2 ’Multivariate Analysis of Covariance (MANCOVA)’;
proc glm data=task;
class group;
model y1-y4=x1 x2 group group*x1 group*x2/nouni ss3;
manova h=group x1 x2 group*x1 group*x2/printe printh;
run;
title2 ’MANCOVA: Profile Analysis’;
proc glm data = task ;
class group;
model y1-y4 = x1 x2 group/nouni;
contrast ’"parallel?"’ group 1 -1 0 0, group 1 0 -1 0,
group 1 0 0 -1;
*contrast ’"horizontal?"’ intercept 1;
manova h=group m=y1-y2,y1-y3,y1-y4/printe printh;
run;
proc glm data = task;
class group;
model y1-y4 = group/nouni;
contrast ’"coincidental?"’ group 1 -1 0 0,
group 1 0 -1 0, group 1 0 0 -1;
manova h = group m=(1 1 1 1)/printe printh;
run;
title2 ’Analysis as in Srivastava and Carter (1983)’;
data task;
set task;
z1=y2-y1;
z2=y3-y2;
z3=y4-y3;
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ybar = (y1+y2+y3+y4)/4;
proc glm data = task;
class group;
model ybar = z1 z2 z3 x1 x2 group;
run;
title2 ’MANCOVA with Repeated Measures: Using repeated statement’;
proc glm data=task;
class group;
model y1-y4=x1 x2 group x1*group x2*group/nouni ss3;
repeated time 4 (1 2 3 4) polynomial/printe;
run;

Output 5.14 Output 5.14
Multivariate Analysis of Covariance (MANCOVA)

General Linear Models Procedure
Multivariate Analysis of Variance

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall GROUP Effect

H = Type III SS&CP Matrix for GROUP E = Error SS&CP Matrix

S=3 M=0 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.613076 0.4528 12 26.749 0.9248
Pillai’s Trace 0.440286 0.516 12 36 0.8903
Hotelling-Lawley Trace 0.546654 0.3948 12 26 0.9529
Roy’s Greatest Root 0.307716 0.9231 4 12 0.4822

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall X1*GROUP Effect

H = Type III SS&CP Matrix for X1*GROUP E = Error SS&CP Matrix

S=3 M=0 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.633684 0.4195 12 26.749 0.9420
Pillai’s Trace 0.409494 0.4742 12 36 0.9167
Hotelling-Lawley Trace 0.511456 0.3694 12 26 0.9631
Roy’s Greatest Root 0.326124 0.9784 4 12 0.4552

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall X2*GROUP Effect

H = Type III SS&CP Matrix for X2*GROUP E = Error SS&CP Matrix

S=3 M=0 N=4
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Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.483896 0.7037 12 26.749 0.7343
Pillai’s Trace 0.58756 0.7307 12 36 0.7126
Hotelling-Lawley Trace 0.920692 0.6649 12 26 0.7680
Roy’s Greatest Root 0.725555 2.1767 4 12 0.1335

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall X1 Effect

H = Type III SS&CP Matrix for X1 E = Error SS&CP Matrix

S=1 M=1 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.724797 0.9492 4 10 0.4753
Pillai’s Trace 0.275203 0.9492 4 10 0.4753
Hotelling-Lawley Trace 0.379697 0.9492 4 10 0.4753
Roy’s Greatest Root 0.379697 0.9492 4 10 0.4753

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall X2 Effect

H = Type III SS&CP Matrix for X2 E = Error SS&CP Matrix

S=1 M=1 N=4

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.060864 38.575 4 10 0.0001
Pillai’s Trace 0.939136 38.575 4 10 0.0001
Hotelling-Lawley Trace 15.43015 38.575 4 10 0.0001
Roy’s Greatest Root 15.43015 38.575 4 10 0.0001

Output 5.14
continued

Output 5.14
MANCOVA: Profile Analysis

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall "parallel?" Effect

on the variables defined by the M Matrix Transformation
H = Contrast SS&CP Matrix for "parallel?"

E = Error SS&CP Matrix

S=3 M=-0.5 N=7.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.719521 0.6682 9 41.524 0.7324
Pillai’s Trace 0.301037 0.7064 9 57 0.7005
Hotelling-Lawley Trace 0.361292 0.6289 9 47 0.7665
Roy’s Greatest Root 0.246755 1.5628 3 19 0.2312

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
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Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall "coincidental?" Effect

on the variables defined by the M Matrix Transformation
H = Contrast SS&CP Matrix for "coincidental?"

E = Error SS&CP Matrix

S=1 M=0.5 N=10

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.871497 1.0813 3 22 0.3776
Pillai’s Trace 0.128503 1.0813 3 22 0.3776
Hotelling-Lawley Trace 0.147451 1.0813 3 22 0.3776
Roy’s Greatest Root 0.147451 1.0813 3 22 0.3776

Output 5.14
continued

Output 5.14
Analysis as in Srivastava and Carter (1983)

General Linear Models Procedure

Dependent Variable: YBAR

Source DF Sum of Squares F Value Pr > F

Model 8 254.29864123 37.00 0.0001

Error 16 13.74575877

Corrected Total 24 268.04440000

R-Square C.V. YBAR Mean

0.948718 14.46671 6.40700000

Source DF Type I SS F Value Pr > F

Z1 1 0.41503092 0.48 0.4970
Z2 1 4.03021154 4.69 0.0458
Z3 1 0.66998345 0.78 0.3903
X1 1 63.73020368 74.18 0.0001
X2 1 177.09538387 206.14 0.0001
GROUP 3 8.35782776 3.24 0.0498

Source DF Type III SS F Value Pr > F

Z1 1 3.06301372 3.57 0.0773
Z2 1 0.29590402 0.34 0.5655
Z3 1 1.13016529 1.32 0.2683
X1 1 0.38955026 0.45 0.5103
X2 1 177.85893877 207.03 0.0001
GROUP 3 8.35782776 3.24 0.0498
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Output 5.14
continued

Output 5.14
MANCOVA with Repeated Measures: Using repeated statement

General Linear Models Procedure
Repeated Measures Analysis of Variance

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no TIME*X1 Effect

H = Type III SS&CP Matrix for TIME*X1 E = Error SS&CP Matrix

S=1 M=0.5 N=4.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.928425 0.2827 3 11 0.8369
Pillai’s Trace 0.071575 0.2827 3 11 0.8369
Hotelling-Lawley Trace 0.077092 0.2827 3 11 0.8369
Roy’s Greatest Root 0.077092 0.2827 3 11 0.8369

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no TIME*X2 Effect

H = Type III SS&CP Matrix for TIME*X2 E = Error SS&CP Matrix

S=1 M=0.5 N=4.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.9661 0.1287 3 11 0.9411
Pillai’s Trace 0.0339 0.1287 3 11 0.9411
Hotelling-Lawley Trace 0.035089 0.1287 3 11 0.9411
Roy’s Greatest Root 0.035089 0.1287 3 11 0.9411

Manova Test Criteria and F Approximations for
the Hypothesis of no TIME*X1*GROUP Effect
H = Type III SS&CP Matrix for TIME*X1*GROUP

E = Error SS&CP Matrix

S=3 M=-0.5 N=4.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.8163 0.2602 9 26.922 0.9802
Pillai’s Trace 0.191514 0.2955 9 39 0.9718
Hotelling-Lawley Trace 0.215503 0.2315 9 29 0.9869
Roy’s Greatest Root 0.156091 0.6764 3 13 0.5818

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Manova Test Criteria and F Approximations for
the Hypothesis of no TIME*X2*GROUP Effect
H = Type III SS&CP Matrix for TIME*X2*GROUP

E = Error SS&CP Matrix

S=3 M=-0.5 N=4.5
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Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.640487 0.6009 9 26.922 0.7849
Pillai’s Trace 0.37655 0.622 9 39 0.7710
Hotelling-Lawley Trace 0.534956 0.5746 9 29 0.8066
Roy’s Greatest Root 0.481813 2.0879 3 13 0.1513

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Suppose we can assume that the covariates X1 and X2 do not influence differently the
measurements taken at different time points (this assumption will be tested later). This
assumption means that the covariates X1 and X2 affect the average of Y1, Y2, Y3, and
Y4 for a given subject rather than the temporal changes in response. In that case, we want
to perform the profile analysis for this data set. Under the assumption stated above, the
hypotheses of parallel profiles and of coincidental profiles, given parallelism, will be un-
changed. The SAS code for these hypotheses is given as part of Program 5.14. The two
hypotheses are not rejected in view of their large p values. These p values for Wilks’ �

are 0.7324 and 0.3776 respectively.
Given that the profiles are coincidental, the other hypothesis of interest is that all the

profiles are horizontal. To test this hypothesis, we made a transformation by defining the
variables YBAR = (Y1 + Y2 + Y3 + Y4)/4, Z1 = Y2 − Y1, Z2 = Y3 − Y2, and Z3 =
Y4 − Y3. The variable YBAR measures the average response for the subject and Z1, Z2,
Z3 measure the changes in response from one time point to the next. For parallel profiles,
the expected values of Z1, Z2, and Z3 are the same for all four groups. The hypothesis
of horizontal profiles could be tested using the method described in the previous section.
However, YBAR is correlated with Z1, Z2, and Z3 and hence these can be taken as the
additional covariates in the model. In view of this, the hypothesis of horizontal profiles
can be tested by testing the hypothesis of no GROUP effect in the univariate analysis of
covariance model for YBAR given by the following statement

model ybar =z1 z2 z3 x1 x2 group;

Output 5.14 indicates that the GROUP effect is marginally significant (p value = 0.0498).
Care must be taken to ensure that the sum of squares corresponding to GROUP have been
corrected for all the covariates Z1, Z2, Z3, X1, and X2. Thus, we can either list GROUP
last in the MODEL statement, if the sequential sums of squares (Type I) are used or alter-
natively specify the Type III sums of squares (SS3) as an option in the MODEL statement.

One assumption that was made in the profile analysis using YBAR presented above is
that the covariates do not differently influence the measurements taken at different times.
This hypothesis can be examined by testing for the significance of the covariate*time and
treatment*covariate*time interaction in the corresponding univariate analysis. This can be
easily achieved by using the REPEATED statement

repeated time 4 (1 2 3 4) polynomial;

where the POLYNOMIAL option has often been chosen for further analyses (such as,
to examine the polynomial trend etc.) in repeated measures data. The analysis presented
in this section does not, however, depend on any such choice. The above REPEATED
statement is included in Program 5.14 and the corresponding output appears in Output
5.14. Only the relevant parts of the output are presented. None of the multivariate tests for
TIME*X1, TIME*X2, TIME*X1*GROUP, and TIME*X2*GROUP are significant. The
respective p values for Wilks’ � are 0.8369, 0.9411, 0.9802, and 0.7849. All other multi-
variate test statistics also confirm this conclusion. Thus, the hypothesis that the covariates
X1 and X2 do not differently affect the measurements taken at different time points cannot
be rejected.
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5.5.2 A Univariate Approach

The alternative univariate approach of a split plot design with covariates can also be
adopted. Specifically the observed value on the uth subject under the i th treatment at the
j th time point yi ju can be modeled as (assuming only one covariate)

yi ju = µ + αi + β j + (αβ)i j + δiu + βi j xiu + εi ju, (5.12)

where all the symbols except βi j and xiu have been defined in Equation 5.11. The covariate
xiu represents the value for the uth subject under the i th treatment and βi j are the slope
parameters for the j th time period and the i th treatment. The model in Equation 5.12 is
a time specific covariate model. The generalization of the above model for more than one
covariate is straightforward.

If for a given subject xiu are the same for all time points j, j = 1, . . . , p, a whole
plot model can be obtained by averaging the above model over suffix j . See Milliken and
Johnson(1989). It leads to

ȳi ·u = µ + αi + β̄· + (αβ)i · + δiu + β̄i ·xiu + εi ·u

or

ȳi ·u = µ̄i · + β̄i ·xiu + ε∗
i ·u (5.13)

which is a one-way classification model with a covariate. We prefer to call it a subject
specific model rather than a whole plot model to agree with our present context of repeated
measures. Note that unlike the standard analysis of covariance model, “errors” ε∗

i ·u are
not independently distributed but have a compound symmetric structure for the variance-
covariance matrix. However, the analysis of variance tests are still valid under compound
symmetry. The two hypotheses of interest are

H (1)
0 : β̄1· = · · · = β̄k· = 0

and

H (2)
0 : β̄1· = · · · = β̄k·

The null hypothesis H (1)
0 tests if the average slopes are all zero, whereas, H (2)

0 tests if the
regression lines for various treatment groups are parallel. If H (2)

0 is true then the common
slope can be estimated.

Both of these hypotheses can be tested using the subject model in Equation 5.13 and
its appropriate reduction under the corresponding null hypothesis. Specifically, if H (1)

0 is
true, then Equation 5.13 reduces to a one-way classification model. Although errors are not
independent in view of their compound symmetric covariance structure, the usual partial F
test can still be applied. The corresponding F statistic

F = (SSEReduced − SSEFull)/k

SSEFull/ f
(5.14)

follows an F distribution with (k, f ) d f under the null hypothesis H (1)
0 . The quantity

SSEFull corresponds to the error sum of squares of the subject model given in Equation
5.13. Its degrees of freedom, for convenience, are denoted by f . We may add that the value
of f is in part also determined by the number of missing values in the multivariate data.
SSReduced is the error sum of squares for the reduced model; that is, the model given in
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Equation 5.13 without β̄i ·xiu terms. To test H (2)
0 , we observe that under H (2)

0 , Equation
5.13 becomes

ȳi ·u = µ̄i · + β̄xiu + ε∗
i ·u . (5.15)

A partial F test for H (2)
0 can also be obtained using SSEFull and SSEReduced which

now correspond to models in Equations 5.13 and 5.15 respectively. Since the null hypothe-
sis H (2)

0 specifies only (k−1) linear restrictions, the divisor of the (SSEReduced −SSEFull)

is (k − 1) and not k. When there are two or more covariates, the hypothesis H (1)
0 and H (2)

0
can be generalized in a straightforward way. Also the corresponding F tests can be appro-
priately modified. All this can be best illustrated through the continuation of Example 10.
Also see Example 13 in Section 5.6.3 for an alternative analysis of testing the homogeneity
of regression coefficients and intercepts.

EXAMPLE 10 Example 10: Diabetic Patients Study Data (continued) For the fitness data of Crowder
and Hand, we first want to test if the covariates X1 and X2 have any effect on the average
responses. Since k = 4 and there are two covariates, the quantity k in Equation 5.14 is
replaced by 2k = 8 here. The SSEFull and SSEReduced are the two sums of squares
which can be respectively obtained by fitting the appropriate models using two MODEL
statements

model y=group z11 z12 z13 z14 z21 z22 z23 z24;

and

model y=group;

While the second MODEL statement is straightforward, the first one needs further ex-
planation, especially since Z11, Z12, etc., have not been introduced yet. Since x1iu and
x2iu values are available only for the subjects in the i th group (CONTROL) and not others,
and since the slopes for each group are different, we need to have (two covariates times
four groups =) eight slope parameters in the model and correspondingly eight indepen-
dent regression variables (apart from the treatment effect). The new regression variables
are defined as zli∗, l = 1, 2, i∗ = 1, . . . , 4 where the value of zli∗ for uth subject in the i th

group, say zli∗u, l = 1, 2, i∗ = 1, . . . , 4, is

zli∗u =
{

xliu if i = i∗

0 if i �= i∗

The hypotheses H (1)
0 of no covariate effect is equivalent to testing that all zli , l =

1, 2, i = 1, 2, 3, 4 are unimportant. Hence to assess their contribution, we use the corre-
sponding hypothesis sum of squares which is computed as the difference between the SSE
from two models indicated above in the MODEL statement.

The SAS program to calculate zli and then to fit two models is given as the first part
of Program 5.15. The output presented as Output 5.15 gives SSEReduced = 243.3190 and
SSEFull = 11.9889 and the value of f as the degree of freedom of SSEFull , which is
14 for this data set. Note even though the covariates do not appear in the corresponding
model, one observation with a missing X1 value was discarded for this calculation, to have
the sum of squares comparable in the two models. Also k = 8, and hence the observed
value of the F statistic with (8, 14) d f is

F = (243.3190 − 11.9889)/8

11.9889/14
= 33.7669
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which is highly significant with a p value (calculated from an independent computation
using the SAS function PROBF, not shown) almost zero. As a result, we reject the null hy-
pothesis H (1)

0 and conclude that the average response is indeed affected by the covariates.

/* Program 5.15 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.15’;
title2 ’Analysis of Diabetic Patients Study’;
data task;
infile ’task.dat’;
input group$ x1 x2 y1-y10;
data task;
set task;
ybar = mean(y1,y2,y3,y4);
if group = ’control’ then z11=x1;
if group = ’control’ then z12 =0;
if group = ’control’ then z13 =0;
if group = ’control’ then z14 =0;
if group = ’control’ then z21=x2;
if group = ’control’ then z22 =0;
if group = ’control’ then z23 =0;
if group = ’control’ then z24 =0;
if group = ’dinocom’ then z11 =0;
if group = ’dinocom’ then z12=x1;
if group = ’dinocom’ then z13 =0;
if group = ’dinocom’ then z14 =0;
if group = ’dinocom’ then z21 =0;
if group = ’dinocom’ then z22=x2;
if group = ’dinocom’ then z23 =0;
if group = ’dinocom’ then z24 =0;
if group = ’dihypot’ then z11=0;
if group = ’dihypot’ then z12 =0;
if group = ’dihypot’ then z13=x1;
if group = ’dihypot’ then z14 =0;
if group = ’dihypot’ then z21 =0;
if group = ’dihypot’ then z22=0 ;
if group = ’dihypot’ then z23=x2;
if group = ’dihypot’ then z24 =0;
if group = ’dihyper’ then z11=0;
if group = ’dihyper’ then z12=0;
if group = ’dihyper’ then z13=0;
if group = ’dihyper’ then z14=x1;
if group = ’dihyper’ then z21=0;
if group = ’dihyper’ then z22=0;
if group = ’dihyper’ then z23=0;
if group = ’dihyper’ then z24=x2;
data nomiss;
set task ;
if x1 > 0;
title3 ’Subject Model’;
proc glm data =nomiss;
classes group ;
model ybar = group z11 z12 z13 z14 z21 z22 z23 z24;
run;
proc glm data =nomiss;
classes group ;
model ybar = group;
title3 ’Subject Model: No Covariates’;
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run;
proc glm data =nomiss;
classes group ;
model ybar = group x1 x2/solution;
title3 ’Subject Model: With Covariates’;
run;

Output 5.15 Output 5.15
Analysis of Diabetic Patients Study

Subject Model

General Linear Models Procedure

Dependent Variable: YBAR

Source DF Sum of Squares F Value Pr > F

Model 11 256.43272193 27.22 0.0001

Error 14 11.98888330

Corrected Total 25 268.42160524

Subject Model: No Covariates

Dependent Variable: YBAR

Source DF Sum of Squares F Value Pr > F

Model 3 25.10256299 0.76 0.5304

Error 22 243.31904225

Corrected Total 25 268.42160524

Subject Model: With Covariates

Dependent Variable: YBAR

Source DF Sum of Squares F Value Pr > F

Model 5 246.79399930 45.64 0.0001

Error 20 21.62760594

Corrected Total 25 268.42160524

T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate

X1 -0.032229071 -0.30 0.7690 0.10825051
X2 1.017385670 12.61 0.0001 0.08066019
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Next, to test if the slopes in different groups for the covariate X1 are all equal and those
for X2 are all equal, the MODEL statement for the reduced model would be

model y=group x1 x2;

The corresponding SSE would be used as SSEReduced while SSEFull is the same as ear-
lier. In Output 5.15, we have eliminated the corresponding calculations to save the space.
We may verify that the hypothesis H (2)

0 is not rejected (p value = 0.1157). Thus, a com-
mon slope model can be used for all four groups. The estimated value of the two common
slopes corresponding to X1 and X2 are −0.0322 and 1.0174 respectively.

Two other hypotheses of interest from the original time specific model in Equation 5.12
are

H (3)
0 : β11 = · · · = β1p = β21 = · · · = β2p = · · · = βk1 = · · · = βkp = 0,

which states that the covariate has no effect on the response variable and

H (4)
0 : β11 = · · · = β1p,

β21 = · · · = β2p,

... = · · · = ...

βk1 = · · · = βkp,

which states that for any given treatment group, the effect of the covariate on the response
variable is unaffected by the particular time point, and is the same for all time points. The
hypothesis H (4)

0 can be tested using the model in Equation 5.12 but H (3)
0 cannot be tested

using the original model due to certain confounding difficulties. However, the acceptance
of orthogonal hypotheses H (1)

0 and H (4)
0 implies the acceptance of H (3)

0 ; rejection of either
H (1)

0 or H (4)
0 implies the rejection of H (3)

0 . Hence, H (3)
0 can be tested by testing both H (1)

0
and H (4)

0 . Milliken and Johnson (1989) provide an extensive discussion of the methodology
involved and the related intricacies.

When the covariates are available for each subject and at every time point, the appropri-
ate analysis using the univariate split plot design is given by Milliken (1990), who also
warns that the use of the REPEATED statement does not provide the correct sums of
squares for within-subject effects. See Milliken (1990) for more information. The anal-
ysis of covariance will again be considered in Chapter 6 under more complex covariance
structures.

5.6 The Growth Curve Models

Suppose a growth process is observed on a set of experimental subjects over a period of
time. We want to build an appropriate growth function for this process. We may also want
to compare the growth functions of groups of several sets of individuals or subjects. A
generalization of MANOVA models can be used to fit certain polynomial growth curves to
the growth process and hence, using the standard theory of multivariate analysis, we can
compare the growths of several groups. We consider this model next. For comprehensive
treatment of the growth curve models, see Kshirsagar and Smith (1995).

5.6.1 Polynomial Growth

In Chapters 3 and 4 the linear model

Y = XB + E (5.16)
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was considered and applications of this model to analyze various types of data were given.
A slightly more general model than Equation 5.16 developed by Potthoff and Roy (1964)
follows. It is needed to analyze certain types of measurements on growth curves. In the
model

Y0n×p = Xn×kBk×qAq×p + En×p,

where X and A are known full rank (as was also observed in the previous chapters, this
assumption is really not needed) matrices of ranks k(< n) and q(< p) respectively. The
matrix B is the matrix of unknown parameters. As in the previous discussion, p represents
the number of time points at which the measurements are taken on each of the n experi-
mental units. The degree of the polynomial curve that is being fit for the p measurements
over time is q − 1. Accordingly A is a q by p matrix of the coefficients of the polynomials
of various degrees up to q − 1 (or orthogonal polynomials, if the measurements are taken
at equidistant time points) and X is the design matrix representing k different groups. In
general, the matrices A and X can be any matrices of known quantities. Assume that the
rows of error matrix E are independently distributed as Np(0, Σ), where Σ is a p by p
positive definite matrix.

Consider the general linear hypothesis

H0 : LBM = 0,

where Lr×k and Mq×s are full rank matrices with ranks r and s respectively. There are
several approaches for testing H0. However, we will adopt what is termed the Rao-Khatri
approach (Seber, 1984, p. 480), since it reduces the present problem to a testing problem
under the usual analysis of covariance model. Hence the standard SAS procedures, like
PROC GLM, can be applied to test H0 given above.

5.6.2 Rao-Khatri Reduction

Let C1 of order p by q and C2 of order p by p − q be any two matrices such that Rank
(C1) = q, Rank (C2) = p − q, AC1 = Iq , and AC2 = 0p−q and that C = (C1 : C2)

is a nonsingular matrix. For example, C1 and C2 can be taken as A′(AA′)−1 and any
p − q linearly independent columns of I − A′(AA′)−1A respectively. An easy way of
choosing C1 and C2 when A is the matrix of orthogonal polynomials is to take C1 = A′
and C2 such that C = (C1 : C2) is an orthogonal matrix. Specifically, choose C1 to be
the matrix of normalized orthogonal polynomials of degree 0 to q − 1 and C2 to be the
similar matrix for degrees q to p −1. Once C1 and C2 are selected, define Y1 = Y0C1 and
Y2 = Y0C2 as the transformed data matrices of order n by q and n by p − q respectively.
This leads to Y = (Y1 : Y2) = Y0(C1 : C2) = Y0C. Also, E(Y1) = XBAC1 = XB
and E(Y2) = XBAC2 = 0. Since Y1 and Y2 are correlated, even though E(Y2) does not
involve B, the set of variables Y2 can be taken as covariates for estimating or testing the
hypotheses about B. That is, we consider the conditional model

E(Y1|Y2) = XB + Y2Γ, (5.17)

where (p − q) by q matrix Γ is the parameter matrix representing the effects of various
covariates on the conditional mean of Y1 given Y2. The rows of Y1 are independent and
are conditionally distributed as multivariate normal with the means as the rows of the right-
hand side matrix of Equation 5.17 and a common variance-covariance matrix. Hence the
method used in Section 4.7 can be used here. By writing Equation 5.17 as

Y1 = (X Y2)

[
B
Γ

]
+ E,
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it can be shown that the maximum likelihood estimate of B is given by

B̂ = (X′X)−1X′Y0S−1A′(AS−1A′)−1

where

S = Y′
0[I − X(X′X)−1X′]Y0/(n − p).

EXAMPLE 11 Modeling Cubic Growth, Dog Response Time Data These data were first analyzed by
Grizzle and Allen (1969) using the Rao-Khatri method. Also see Seber (1984, p. 487)
for the analysis of these data. The data set includes observations on four groups of dogs
showing the response of each dog at times 1, 3, 5, 7, 9, 11, and 13 minutes after a coronary
occlusion. The four groups, the first being the control group, have respective sample sizes 9,
10, 8, and 9. The three experimental groups respectively include dogs with extrinsic cardiac
denervation three weeks prior to coronary occlusion, with extrinsic cardiac denervation
immediately prior to coronary occlusion, and with bilateral thoracic sympathectomy and
stellectomy three weeks prior to coronary occlusion. A profile plot of the sample mean
vectors of the four group is presented as a part of Output 5.16. The SAS code for plotting
this profile plot is included in Program 5.16. The null hypothesis is that the third-degree
polynomial is adequate.

/* Program 5.16 */

/* This is a growth curve anlysis program where
dog data is used (Grizzle and Allen, 1969). */
options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.16’;
title2 ’Growth Curves Analysis of Dog Data’;
data dog;
infile "dog.dat";
input d1 d2 d3 d4 d5 d6 d7;
dog+1;
if (dog<10 and dog>0) then group=’control’;
if (dog<19 and dog>9) then group=’treat1’;
if (dog<28 and dog>18) then group=’treat2’;
if (dog<37 and dog>27) then group=’treat3’;
output;
drop dog;
run;

filename gsasfile "prog516.graph";
goptions gaccess=gsasfile dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=5in vsize=7in;
title1 h=1.5 ’Modeling Growth: Profiles of the Means’;
title2 j=l ’Output 5.16’;
proc summary nway data=dog;
class group;
var d1 d2 d3 d4 d5 d6 d7;
output out=new mean=md1-md7;
data plot;
set new;
array md{7} md1-md7;
do i =1 to 7;
meanresp=md(i);
time=i*2-1;
output;
end;
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keep group time meanresp;
run;
proc gplot data = plot;
plot meanresp*time=group/ vaxis=axis1 haxis=axis2;
axis1 label =(a=90 h=1.2 ’Dog Response Time’);
axis2 offset=(2) label=(h=1.2 ’Time of Test’);
symbol1 v=+ i = join;
symbol2 v=x i=join;
symbol3 v=* i=join;
symbol4 v=- i=join;
run;

proc iml;
use dog;
read all into y0;
/*Generating the Orthogonal Polynomial of degree p-1=6*/
vec1={1 3 5 7 9 11 13};
c=orpol(vec1,6);
y=y0*c;
/* Converting Y matrix to a data set Trandata*/
varnames={y1 y2 y3 y4 y5 y6 y7};
create trandata from y (|colname=varnames|);
append from y;
close trandata;
/* Creating the independent variable named group*/
data trandata;
set trandata;
dog+1;
if (dog<10 and dog>0) then group=’control’;
if (dog<19 and dog>9) then group=’treat1’;
if (dog<28 and dog>18) then group=’treat2’;
if (dog<37 and dog>27) then group=’treat3’;
output;
run;
/* Testing the adequacy of a 3rd degree polynomial */
proc glm data=trandata;
model y5 y6 y7= /nouni;
manova h=intercept;
run;
/* Fitting a 3rd degree polynomial using
Rao-Khatri method*/
/* Contrast statement defines a 3 by 4 L matrix.*/
proc glm data=trandata;
classes group;
model y1 y2 y3 y4=group y5 y6 y7/nouni;
contrast ’growth curves’ group 1 -1 0 0,

group 1 0 -1 0,
group 1 0 0 -1/E;

manova h=group;
run;
*To obtain the estimates use one of the following
two programs;
proc glm data=trandata;
classes group;
model y1 y2 y3 y4=group y5 y6 y7;
estimate ’es1’ intercept 1 group 1 0 0 0 ;
estimate ’es2’ intercept 1 group 0 1 0 0 ;
estimate ’es3’ intercept 1 group 0 0 1 0 ;
estimate ’es4’ intercept 1 group 0 0 0 1 ;
run;
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proc glm data=trandata;
classes group;
model y1 y2 y3 y4=group y5 y6 y7/noint;
estimate ’es1’ group 1 0 0 0 ;
estimate ’es2’ group 0 1 0 0 ;
estimate ’es3’ group 0 0 1 0 ;
estimate ’es4’ group 0 0 0 1 ;
run;

Output 5.16
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The profile plots of the sample mean vectors for each group seem to suggest a third-
degree polynomial growth curve. Alternatively, a third-degree orthogonal polynomial may
instead be used. The model then is

Y036×7 = X36×4B4×4A4×7 + E36×7,
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where

X =




19 0 0 0
0 110 0 0
0 0 18 0
0 0 0 19




and A is the matrix with the first four columns of a 7 by 7 orthogonal polynomial matrix.
Thus A is known. In SAS the matrix of orthogonal coefficients, C, is generated using the
ORPOL function of PROC IML. Then

Y = Y0C = (Y1 : Y2 : Y3 : Y4 : Y5 : Y6 : Y7).

A formal test for the adequacy of the third-degree polynomial is performed by testing
whether E(Y 5) = E(Y 6) = E(Y 7) = 0. The SAS code is given in Program 5.16, and the
output is presented in Output 5.16. The p value using Wilks’ � is 0.4280. Hence we do
not reject the null hypothesis that the third-degree polynomial is adequate.

Output 5.16
continued

Output 5.16
Growth Curves Analysis of Dog Data

General Linear Models Procedure

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall INTERCEPT Effect

H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix

S=1 M=0.5 N=15.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.920548 0.9494 3 33 0.4280
Pillai’s Trace 0.079452 0.9494 3 33 0.4280
Hotelling-Lawley Trace 0.08631 0.9494 3 33 0.4280
Roy’s Greatest Root 0.08631 0.9494 3 33 0.4280

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall GROUP Effect

H = Type III SS&CP Matrix for GROUP E = Error SS&CP Matrix

S=3 M=0 N=12

Statistic Value F Num DF Den DF Pr > F

Wilks’ Lambda 0.403257 2.3576 12 69.081 0.0132
Pillai’s Trace 0.675205 2.0331 12 84 0.0309
Hotelling-Lawley Trace 1.29045 2.6526 12 74 0.0052
Roy’s Greatest Root 1.131816 7.9227 4 28 0.0002

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

The model for further analysis of the data can therefore be taken as the one in which
Y 5, Y 6, and Y 7 are covariates for the dependent variables Y 1, Y 2, Y 3, Y 4, and the basic
independent variable is GROUP. For this, the null hypothesis of no difference between the



Chapter 5 Analysis of Repeated Measures Data 225

groups can be written as H0 : LBM = 0 with M = I4 and

L =

 0 1 −1 0 0

0 0 1 −1 0
0 0 0 1 −1


 .

Wilks’ � for this hypothesis is 0.4033 leading to an approximate F = 2.3576 on 12 and
69 degrees of freedom. This yields a p value of 0.0132 thereby leading us to reject the null
hypothesis that all the groups have the same third-degree polynomial curves. All the other
three tests also lead to the same conclusion. Knowing that the groups may have different
growth curves, we may want to estimate the matrix B consisting of parameters of these
curves. To estimate B we use the ESTIMATE statement of PROC GLM. The columns of
B̂, the estimate of B, are obtained as the estimates of the regression coefficients from the
individual outputs from the corresponding univariate analyses. The SAS code for finding
the estimates is given at the end of Program 5.16 and the corresponding output is sup-
pressed to save space. Another way to get these estimates is by using the REG procedure.
See Example 12.

The model in Equation 5.17 is applicable in many other designed experimental situa-
tions. For example, suppose data measured at p time points on n experimental units comes
from a randomized block design. Then, by choosing the X matrix appropriately and in-
cluding all the parameters of this model in B we can express the model as Equation 5.17.

It is not necessarily true that the inclusion of covariates would improve the efficiency
of the estimates. In some instances, including only a few covariates from Y2 (that is, only
a few columns of Y2) may improve the efficiency of the estimates more than using the
entire Y2. We illustrate a way of selecting a set of covariates from Y2 to improve the
inference, using the mice data of Izenman and Williams (1989). Also see Williams and
Izenman (1981).

EXAMPLE 12 Choosing Covariates, Mice Data The data, given in Program 5.17, are a part of those
given in Izenman and Williams (1989). Complete details of the data collection scheme are
given in Izenman (1987). The observations represent the weights from birth until weaning
of 14 male mice measured at 2, 5, 8, 11, 14, 17, and 20 days after birth. A graphical
representation of the data along with the profile of the means is presented as Output 5.17.
Other output is suppressed. The SAS code to plot this graph is provided in Program 5.17.

/* Program 5.17 */

options ls=64 ps=45 nodate nonumber;
data mice;
input d1 d2 d3 d4 d5 d6 d7;
lines;
0.190 0.388 0.621 0.823 1.078 1.132 1.191
0.218 0.393 0.568 0.729 0.839 0.852 1.004
0.141 0.260 0.472 0.662 0.760 0.885 0.878
0.211 0.394 0.549 0.700 0.783 0.870 0.925
0.209 0.419 0.645 0.850 1.001 1.026 1.069
0.193 0.362 0.520 0.530 0.641 0.640 0.751
0.201 0.361 0.502 0.530 0.657 0.762 0.888
0.202 0.370 0.498 0.650 0.795 0.858 0.910
0.190 0.350 0.510 0.666 0.819 0.879 0.929
0.219 0.399 0.578 0.699 0.709 0.822 0.953
0.225 0.400 0.545 0.690 0.796 0.825 0.836
0.224 0.381 0.577 0.756 0.869 0.929 0.999
0.187 0.329 0.441 0.525 0.589 0.621 0.796
0.278 0.471 0.606 0.770 0.888 1.001 1.105
;
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/* Source: Izenman and Williams (1989). Reproduced by
permission of the International Biometric Society. */

filename gsasfile "prog517.graph";
goptions gaccess=gsasfile dev=pslmono;
goptions horigin=1in vorigin=2in;
goptions hsize=5in vsize=7in;
title1 h=1.5 ’Mice Data with Profile of the Mean’;
title2 j=l ’Output 5.17’;
data plot1;
set mice;
array d{7} d1-d7;
do i=1 to 7;
weight=d(i);
day=i*3-1;
output;
end;
keep day weight;
run;
proc summary nway data=mice;
var d1 d2 d3 d4 d5 d6 d7;
output out=new mean=md1-md7;
data plot2;
set new;
array md{7} md1-md7;
do i =1 to 7;
mean_wt=md(i);
output;
end;
keep mean_wt;
run;
data plot;
merge plot1 plot2;
run;
proc gplot data = plot;
plot (weight mean_wt)*day/overlay vaxis=axis1 haxis=axis2;
axis1 label =(a=90 h=1.2 ’Weights of Mice’);
axis2 offset=(2) label=(h=1.2 ’Days after Birth’);
symbol1 v=square i = none;
symbol2 v=dot i=join;
run;

proc iml;
use mice;
read all into y0;
print y0;
/* Generating the Ortho. Poly. of degree p-1=6*/
vec1={2 5 8 11 14 17 20};
c=orpol(vec1,6);
y=y0*c;
/* Convert Y matrix to a data set Trandata*/
varnames={y1 y2 y3 y4 y5 y6 y7};
create trandata from y (|colname=varnames|);
append from y;
close trandata;
proc glm data=trandata;
model y1 y2 y3=y4 y5 y6 y7/nouni;
manova h=intercept/printe;
proc reg data=trandata;
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model y1 y2 y3= ;
model y1 y2 y3=y4;
model y1 y2 y3=y4 y5;
model y1 y2 y3=y4 y5 y6;
model y1 y2 y3=y4 y5 y6 y7;
title1 ’Output 5.17’;
title2 ’Growth Curve Analysis: Mice Data’;
run;

Output 5.17
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We analyze this data set to illustrate how a set of covariates may increase the efficiency
of the inference in growth curve modeling. Suppose that a second-degree polynomial is
the correct model for these data. Rao (1987) has utilized a number of methods of selecting
variables to arrive at this model.
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A second degree polynomial model for these data can be written in matrix form as

Y014×7 = 114×1B1×3A3×7 + E14×7.

As in the previous example, by transforming Y0 using an orthogonal polynomial matrix we
obtain Y = Y0C. Let Y = (Y1 : . . . : Y7). The adequacy of the second-degree polynomial
model is established by testing the null hypothesis H0 : E(Y 4) = · · · = E(Y 7) = 0.
The variables Y 4, . . . , Y 7 can thus be used as the covariates for the dependent variables
Y 1, Y 2, and Y 3. The problem is to estimate B = (β0, β1, β2), elements of which represent
the expected values of Y 1, Y 2, and Y 3 respectively. In Table 5.2 we present the standard
errors (SE) of the least squares estimates of β̂0, β̂1, and β̂2 for the five models; namely, with
no covariates, only Y 4 as a covariate, Y 4 and Y 5 as covariates, . . ., and Y 4, . . . , Y 7 are all
covariates. The standard errors presented in the table are taken from the outputs of PROC
REG for each of the five models. For example, the values corresponding to the covariate
Y4 in the table below respectively are the standard errors corresponding to intercepts for
dependent variables Y1, Y2, and Y3 from the output of PROC REG when the code

proc reg;
model y1 y2 y3 = y4;

is used.

TABLE 5.2 Standard Errors for the Estimates

Covariates SE(β̂0) SE(β̂1) SE(β̂2)

None .0573 .0332 .0138

Y 4 .0484 .0221 .0099

Y 4&Y 5 .0647 .0294 .0112

Y 4, Y 5, Y 6 .0667 .0313 .0120

Y 4, Y 5, Y 6, Y 7 .0731 .0351 .0133

An examination of the values in the table suggests that including only Y4 in the model
as a covariate may be the most beneficial approach. The complete SAS code for finding the
estimates using PROC REG is given in Program 5.17. However, the corresponding output
is suppressed to save space.

5.6.3 Test of Homogeneity of Regression Coefficients

It is a common practice in most of the growth studies in biological sciences to compare two
or more groups by testing the equality of model parameters. First, we consider an example
of a linear model and show how to use dummy variables to test the homogeneity of several
regressions. The analysis is primarily univariate.

Suppose there are g groups with ni , i = 1, . . . , g observations in each group. Let the
dependent variable be denoted by y and the independent variable be x . Instead of a single
independent variable we could have k independent variables. The linear model in this case
can be written as

yi j = βi0 + βi1xi j + εi j , j = 1, . . . , ni , i = 1, . . . , g. (5.18)

That is, each group has its own regression line possibly with different intercepts and re-
gression parameters. Assume that εi j , j = 1, . . . , ni , i = 1, . . . , k are all independent
N (0, σ 2) random variables. In order to test the homogeneity of slopes or homogeneity
of intercepts we may first express the above models as a single regression model using
dummy variables for identifying the groups. Although PROC GLM directly can be utilized
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for this analysis we illustrate the approach using dummy variables to facilitate an approach
that can be used in the context of nonlinear growth curves discussed in the next section.
We thus define

Di =
{

1 if the observation is from group i,

0 otherwise;

i = 1, . . . , g. Then Equation 5.18 can be written as

yi j = D1(β10 + β11xi j ) + · · · + Dg(βg0 + βg1xi j ) + εi j ,

or

yi j = β10 D1 + β11 D1xi j + · · · + βg0 Dg + βg1 Dgxi j + εi j . (5.19)

It should be observed that the above model does not have an intercept term. Define y =
(y11, . . . , y1n1, y21, . . . , y2n2, . . . , yg1, . . . , ygng )

′, and define ε similarly. Also let

X =




1 x11 0 0 . . . 0 0
...

...
...

...
...

...

1 x1n1 0 0 . . . 0 0
0 0 1 x21 . . . 0 0
...

...
...

...
...

...

0 0 1 x2n2 . . . 0 0
...

...
...

...
...

...

0 0 0 0 . . . 1 xg1
...

...
...

...
...

...

0 0 0 0 . . . 1 xgng




, β =




β10
β11
β20
β21
...

βg0
βg1




.

Then Equation 5.19 can be written in matrix form as

yn×1 = Xn×mβm×1 + εn×1, ε ∼ N (0, σ 2I),

where n = ∑g
i=1 ni , and m = 2g. Here the matrix X is of full rank with rank 2g. The

hypotheses H (1)
0 : β11 = · · · = βg1 and H (2)

0 : β10 = · · · = βg0 can be tested using the
standard tests from regression analysis.

EXAMPLE 13 Homogeneity of Regression, Cabbage Data The problem is to compare ascorbic acid
content (Y) in cabbage in two genetic lines (LINE) or cultivars planted on three different
dates. A completely randomized design with ten experimental units for each combination
of planting date and genetic line is used. Thus, g = 2 × 3 = 6, ni = 10 for each of the six
treatment groups and hence n = �ni = 60. As the ascorbic acid content may also depend
on the weight (X) of the cabbage, the weight of the cabbage head is taken as a covariate. A
model for analyzing these data, taking x̄ as the average head weight, is

yi ju = µi j + βi j (xi ju − x̄) + εi ju,

u = 1, . . . , 10, i = 1, 2, j = 1, 2, 3. Here βi j represent the slopes of different regression
lines for each of the six groups. It is possible that µi j themselves may have a model, say of
the type µ + αi + δ j + γi j . The problem we consider here is to test for homogeneity of the
regression coefficients βi j . That is, we want to test the null hypothesis H (1)

0 : βi j = β for all
i and j . The null hypothesis H (2)

0 which is the hypothesis of the equality of intercepts can
then be tested similarly. It is also possible to test the specific hypotheses on the individual
components of µi j , such as αi , δ j or γi j , i = 1, 2; j = 1, 2, 3.
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Since the main interest here is to test H (1)
0 : βi j = β we consider the alternative, yet

equivalent, model

yi ju = νi j + βi j xi ju + εi ju,

where νi j = µi j +βi j x̄ . Of course both models will lead to the same test statistics for H (1)
0 .

The SAS code for performing this test is provided in Program 5.18. Using the two levels
(LIN1 and LIN2) of the genetic line variable LINE and three levels (DAT1, DAT2, and
DAT3) of the variable DATE we first create six dummy variables D1-D6 to identify the six
groups. The respective products of D1-D6 with the covariate X representing interactions
are created as the variables XD1-XD6. Then we use the NOINT option in PROC REG to fit
the model in Equation 5.19. The TEST statement is used to test the equality of regression
parameters βi j . From Output 5.18, the F statistic for testing H0 : βi j = β has an observed

value of 0.6643. Under H (1)
0 it has an F distribution with (5, 48) degrees of freedom thereby

giving a p value of 0.6523. The high p value indicates that a common regression parameter
can be used in the model. Thus, a simplified model for the analysis of this data set is

yi ju = µi j + β(xi ju − x̄) + εi ju,

with µi j = µ + αi + δ j + γi j .

/* Program 5.18 */

option ls=64 ps=45 nodate nonumber;
title1 ’Output 5.18’;
data a;
input line $ date $ @;
do i=1 to 5;
input x y@;
output; drop i;
end;
lines;
lin1 dat1 2.5 51 2.2 55 3.1 45 4.3 42 2.5 53
lin1 dat1 4.3 50 3.8 50 4.3 52 1.7 56 3.1 49
lin1 dat2 3.0 65 2.8 52 2.8 41 2.7 51 2.6 41
lin1 dat2 2.8 45 2.6 51 2.6 45 2.6 61 3.5 42
lin1 dat3 2.2 54 1.8 59 1.6 66 2.1 54 3.3 45
lin1 dat3 3.8 49 3.2 49 3.6 55 4.2 49 1.6 68
lin2 dat1 2.0 58 2.4 55 1.9 67 2.8 61 1.7 67
lin2 dat1 3.2 68 2.0 58 2.2 63 2.2 56 2.2 72
lin2 dat2 4.0 52 2.8 70 3.1 57 4.2 58 3.7 47
lin2 dat2 3.0 56 2.2 72 2.3 63 3.8 54 2.0 60
lin2 dat3 1.5 78 1.4 75 1.7 70 1.3 84 1.7 71
lin2 dat3 1.6 72 1.4 62 1.0 68 1.5 66 1.6 72
;
/* Source: Rawlings (1988, p. 219). Reprinted by permission
of the Wadsworth Publishing Company. */
data cabbage;
set a;
if (line=’lin1’ and date=’dat1’) then d1=1;
else d1=0;

if (line=’lin1’ and date=’dat2’) then d2=1;
else d2=0;

if (line=’lin1’ and date=’dat3’) then d3=1;
else d3=0;

if (line=’lin2’ and date=’dat1’) then d4=1;
else d4=0;

if (line=’lin2’ and date=’dat2’) then d5=1;
else d5=0;
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if (line=’lin2’ and date=’dat3’) then d6=1;
else d6=0;

output;
data cabbage;
set cabbage;
xd1=x*d1;
xd2=x*d2;
xd3=x*d3;
xd4=x*d4;
xd5=x*d5;
xd6=x*d6;
title2 ’Homogeneity of Regression’;
proc reg data=cabbage;
model y=d1-d6 xd1-xd6/noint;
test xd1=xd2=xd3=xd4=xd5=xd6;
run;

Output 5.18 Output 5.18
Homogeneity of Regression

Dependent Variable: Y
Test: Numerator: 25.5634 DF: 5 F value: 0.6643

Denominator: 38.48409 DF: 48 Prob>F: 0.6523

For testing the equality of the intercepts (H (2)
0 ) for the six groups the following SAS

code could be utilized.

proc reg;
model y=d1-d6 xd1-xd6/noint;
test d1=d2=d3=d4=d5=d6;
run;

5.6.4 Growth as a Nonlinear Regression Model

There may be situations where the linear modeling of growth may not be appropriate. For
more realistic applications, especially in fisheries and biological growths, we may need to
use nonlinear functions for fitting the growth processes. Although there are several non-
linear models for growth curves, for illustration we will consider only a class of the most
celebrated models. These models, called Von Bertalanffy models, are especially useful in
fisheries.

The Von Bertalanffy model with additive error in its most general form can be written
as

yi j = l∞i [1 − exp{−ki (ti j − t0i )}] + εi j , (5.20)

j = 1, . . . , ni , i = 1, . . . , g, where yi j is the measurement, say, of the length of a fish, on
the j th subject ( j th fish) from the i th group. Also, ti j is the observed value of a covariate
(for example, age of a fish) corresponding to yi j , l∞i for each group i is the unknown
limiting value (as the time variable tends to infinity) of the expectation of yi j , that is, the
asymptote of the mean (expected value) as a function of the time variable. For example,
l∞i is the asymptotic length (or the expected length at maturity) of the fish from the i th

group. The unknown constant ki represents the rate at which the asymptotic value l∞i is
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achieved, t0i is the unknown hypothetical value of ti j when the value of yi j is zero, and εi j

are independently distributed N (0, σ 2) error variables.
As in the case of linear regression models, we define the dummy variables

Di =
{

1 if the observation is from group i,

0 otherwise;

i = 1, . . . , g. Then the model in Equation 5.20 can be written as

yi j =
g∑

u=1

Dul∞u[1 − exp{−ku(ti j − t0u)}] + εi j , j = 1, . . . , ni , i = 1, . . . , g.

The problem is to compare several of these groups. The likelihood ratio method may be
used for such comparisons. The maximum likelihood estimates of the unknown parameters
have been obtained using PROC NLIN. See Lakkis and Jones (1992) for a study of this
problem.

Rewrite the model Equation 5.20 as

yi j = µ(l∞i , ki , t0i , ti j ) + εi j ,

where µ(l∞i , ki , t0i , ti j ) = l∞i [1 − exp{−ki (ti j − t0i )}]. Then the likelihood function of
the parameters given the data yi j , j = 1, . . . , ni , i = 1, . . . , g is

f (θ) = (2πσ 2)−n/2 exp

{
− 1

2σ 2

g∑
i=1

ni∑
j=1

(yi j − µ(l∞i , ki , t0i , ti j ))
2

}
. (5.21)

Here n = ∑g
i=1 ni and θ represents all the parameters l∞1, . . . , l∞g, k1, . . . , kg, t01, . . . ,

t0g and σ 2. For a fixed σ 2 maximizing f (θ) in Equation 5.21 with respect to the parameters
l∞i , ki , t0i , i = 1, . . . , g is the same as minimizing

S(l∞1, . . . , l∞g, k1, . . . , kg, t01, . . . , t0g) =
g∑

i=1

ni∑
j=1

[yi j − µ(l∞i , ki , t0i , ti j )]2

with respect to the corresponding parameters and this minimization will need to be done
iteratively. Once have we obtained these estimates, the maximum likelihood estimate of σ 2

is given by

σ̂ 2 = 1

n
S(l̂∞1, . . . , l̂∞g, k̂1, . . . , k̂g, t̂01, . . . , t̂0g),

where l̂∞1, . . . , l̂∞g, k̂1, . . . , k̂g, t̂01, . . . , t̂0g are the estimates obtained by the nonlinear
least squares minimization described above.

Consider the general problem of testing a null hypothesis H0 : θ ∈ ω versus H1 : θ �∈
ω, where ω is a subset of � the parameter space. The likelihood ratio test statistic for this
problem is

L =
(

σ̂ 2
�

σ̂ 2
ω

)n/2

,

where σ̂ 2
� is the maximum likelihood estimate of σ 2 when no restrictions on the parameter

space are placed and σ̂ 2
ω is the maximum likelihood estimate of σ 2 when the linear con-

straints prescribed by H0 are put on the parameter space �. For large sample size n, the
distribution of −2 ln L = −n ln (σ̂ 2

�/(σ̂ 2
ω) is approximated by the chi-square distribution

with ν degrees of freedom, where ν is the number of parameters estimated in � minus the
number of parameters estimated in ω (Rao, 1973).
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We want to test the following hypotheses:

H (1)
0 : l∞1 = · · · = l∞g(= l∞, say) vs. not all l∞i are equal

H (2)
0 : k1 = · · · = kg(= k) vs. not all ki are equal

H (3)
0 : t01 = · · · = t0g(= t0) vs. not all t0i are equal

H (4)
0 : l∞1 = · · · = l∞g(= l∞), t01 = · · · = t0g(= t0) and k1 = · · · = kg(= k) vs. at

least one inequality.

For testing H (1)
0 , H (2)

0 , H (3)
0 , and H (4)

0 against the corresponding alternatives, the
chi-square approximation of the likelihood ratio test statistics are −n ln(σ̂ 2

�/σ̂ 2
ωi

), i =
1, 2, 3, 4. Each of these statistics has an approximate chi-square distribution with respective
degrees of freedom (g−1), (g−1), (g−1) and 3(g−1). The ωi are the respective subsets
of the parameter space � defined by the null hypotheses H (i)

0 , i = 1, .., 4. Given the initial
estimates θ = θ0 and the form of the function µ(θ, x), PROC NLIN fits a model of the
type y = µ(θ, x) + ε given the data (yi , xi ), i = 1, . . . , n and obtains the least squares
estimates of θ. This procedure can be adapted to the present case of having data on g
groups with possibly different growth curves.

EXAMPLE 14 Tests of Homogeneity, Fish Growth Data This data set from Kimura (1980) and also
analyzed by Lakkis and Jones (1992) using SAS programs contains observations on the
average lengths at different ages for male and female fish (Pacific hake). The data in Pro-
gram 5.19 are only a part of a larger data set. As g = 2, we introduce two more independent
variables D1 and D2, respectively, identifying male and female fish. The model to analyze
these data is

yi j = D1l∞1[1 − exp{−k1(ti j − t01)}]
+ D2l∞2[1 − exp{−k2(ti j − t02)}] + εi j (5.22)

j = 1, . . . , ni , i = 1, 2; n1 = 11, n2 = 13, n = n1 + n2 = 24.
The objective of the study was to fit the separate Von Bertalanffy models to the data on

male as well as female Pacific hakes. Interest was also in determining if a single model for
the two groups could be considered adequate and if not, if there were certain parameters in
the model that could be taken to be the same for the two groups.

The SAS code for calculating the maximum likelihood estimates of the relevant param-
eters under � (no restriction on the parameter space), under ω1 (parameter space restricted
by linear constraint: l∞1 = l∞2 = l∞), ω2 (parameter space restricted by k1 = k2 = k),
ω3 (parameter space restricted by t01 = t02 = t0) and under ω4 (parameter space re-
stricted by all of the restrictions in ω1, ω2, and ω3 together) is given in Program 5.19.
In each case, PROC NLIN requires one to supply the initial estimates of the parame-
ters with the PARMS= option. Following Lakkis and Jones (1992), we first plot for each
group (male and female) the length as a function of age, and get the initial estimates for
(t0i , l∞i ), i = 1, 2 by visually examining the graph (not shown here). The initial esti-
mates of ki are obtained by substituting the corresponding initial estimates for l∞i , t0i and
by substituting the average, ȳi for yi j , the average, t̄i for ti j , j = 1, . . . , ni in Equation
5.20 and then solving for ki ignoring the error component. The initial estimates under the
restricted models are obtained by appropriate simple averaging. For example, under ω1 the
average of initial estimates of l∞1 and l∞2 is used as an initial estimate of l∞ since under
H (1)

0 , we have the restriction l∞1 = l∞2 = l∞.
In the MODEL statement of PROC NLIN, the explicit form of Equation 5.22 (barring

error term) is provided. There are many iterative procedures available in the NLIN proce-
dure to fit the model some of which are derivative-based and require the explicit specifi-
cation of partial derivatives. If no derivatives are provided, the procedure uses the default
DUD (Doesn’t Use Derivatives), where the derivatives are estimated by the program. The
maximum number of iterations are specified in the MAXITER= option. In the output the
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estimates of each of the parameters and a regression type (ANOVA) summary table are pro-
vided. As in the ANOVA, we have partitioned the total sum of squares into sum of squares
due to regression and the residual sum of squares. The maximum likelihood estimate of
σ 2, say σ̂ 2, is obtained from the residual sum of squares by dividing it by n. Thus, by run-
ning the NLIN procedure under no restrictions and under various restrictions specified by
ω1 − ω4 we obtain σ̂ 2

�, σ̂ 2
ω1

, .., σ̂ 2
ω4

. These are used to obtain the test statistics for various
hypotheses described above. In the following we present various parameter estimates, test
statistics and the p values for the hypotheses H (1)

0 -H (4)
0 .

/* Program 5.19*/

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.19’;
title2 ’Nonlinear Growth Curve Analysis’;
data fish;
input length d1 d2 age@@;
lines;
15.40 1 0 1.0 26.93 1 0 2.0 42.23 1 0 3.3
44.59 1 0 4.3 47.63 1 0 5.3
49.67 1 0 6.3 50.87 1 0 7.3 52.30 1 0 8.3
54.77 1 0 9.3 56.43 1 0 10.3
55.88 1 0 11.3
15.40 0 1 1.0 28.03 0 1 2.0 41.18 0 1 3.3
46.20 0 1 4.3 48.23 0 1 5.3
50.26 0 1 6.3 51.82 0 1 7.3 54.27 0 1 8.3
56.98 0 1 9.3 58.93 0 1 10.3
59.00 0 1 11.3 60.91 0 1 12.3 61.83 0 1 13.3
;
/* Source: Kimura (1980). U. S. Fishery Bulletin. */
/* The following code fits von Bertalanffy model
under Omega*/
proc nlin data=fish maxiter=100;
parms l1=55 k1=.276 t1=0 l2=60 k2=.23 t2=0;
model length= l1*d1*(1-exp(-k1*(age-t1)))+
l2*d2*(1-exp(-k2*(age-t2)));
run;
/* The following code fits von Bertalanffy model
under omega 1:l1=l2=l*/
/* The initial estimate of l is taken as the average
of that of l1 and l2*/
proc nlin data=fish maxiter=100;
parms l=57.5 k1=.276 t1=0 k2=.23 t2=0;
model length= l*d1*(1-exp(-k1*(age-t1)))+
l*d2*(1-exp(-k2*(age-t2)));
run;
/* The following code fits von Bertalanffy model
under omega 2:k1=k2=k*/
/* The initial estimate of k is taken as the average
of that of k1 and k2*/
proc nlin data=fish maxiter=100;
parms l1=55 k=.253 t1=0 l2=60 t2=0;
model length= l1*d1*(1-exp(-k*(age-t1)))+
l2*d2*(1-exp(-k*(age-t2)));
run;
/* The following code fits von Bertalanffy model
under omega 3:t1=t2=t*/
/* The initial estimate of t is taken as the average
of that of t1 and t2*/
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proc nlin data=fish maxiter=100;
parms l1=55 k1=.276 t=0 l2=60 k2=.23;
model length= l1*d1*(1-exp(-k1*(age-t)))+
l2*d2*(1-exp(-k2*(age-t)));
run;
/* The following code fits von Bertalanffy model
under omega 4:
l1=l2 ,k1=k2 and t1=t2*/
proc nlin data=fish maxiter=100;
parms l=57.5 k=.253 t=0 ;
model length= l*d1*(1-exp(-k*(age-t)))+
l*d2*(1-exp(-k*(age-t)));
run;

Output 5.19 Output 5.19
Nonlinear Growth Curve Analysis

Non-Linear Least Squares Summary Statistics
Dependent Variable LENGTH

Source DF Sum of Squares Mean Square

Regression 6 57120.508434 9520.084739
Residual 18 48.223766 2.679098
Uncorrected Total 24 57168.732200

(Corrected Total) 23 3989.046050

Parameter Estimate Asymptotic Asymptotic 95 %
Std. Error Confidence Interval

Lower Upper
L1 55.97801266 1.1380114362 53.587155151 58.368870172
K1 0.38558439 0.0409732778 0.299503299 0.471665486
T1 0.17133864 0.1489187227 -0.141525924 0.484203195
L2 61.23333874 1.1709806801 58.773215874 63.693461602
K2 0.29625218 0.0277203755 0.238014214 0.354490140
T2 -0.05726981 0.1691162935 -0.412567606 0.298027995

Non-Linear Least Squares Summary Statistics
Dependent Variable LENGTH

Source DF Sum of Squares Mean Square

Regression 5 57097.130085 11419.426017
Residual 19 71.602115 3.768532
Uncorrected Total 24 57168.732200

(Corrected Total) 23 3989.046050



236 Applied Multivariate Statistics

Parameter Estimate Asymptotic Asymptotic 95 %
Std. Error Confidence Interval

Lower Upper
L 59.40382630 1.0081829496 57.293690212 61.513962385
K1 0.29675407 0.0270955196 0.240042903 0.353465241
T1 -0.11124358 0.1952230595 -0.519847223 0.297360057
K2 0.33746034 0.0327778212 0.268856063 0.406064619
T2 0.08730393 0.1719128085 -0.272511144 0.447119001

From Output 5.19 (part of which is provided), under no restrictions (�) on the parame-
ters of the model in Equation 5.22 the estimates of various parameters are

l̂∞1 = 55.9790, k̂1 = 0.3855, t̂01 = 0.1711
l̂∞2 = 61.2352, k̂2 = 0.2962, t̂02 = −0.0575

and n σ̂ 2
� = 48.2238 (the residual sum of squares).

Under the restriction l∞1 = l∞2 = l∞ (ω1), the estimates are l̂∞ = 59.4037,
k̂1 = 0.2968, t̂01 = −0.1112, k̂2 = 0.3375, t̂02 = 0.0873, and n σ̂ 2

ω1
= 71.6021. The chi-

square test statistic for testing H (1)
0 is −24 ln(σ̂ 2

�/σ̂ 2
ω1

) = 9.4865, which, using the SAS
PROBCHI function, yields a p value of 0.0021 based on a chi-square distribution with
g − 1 = 1 degrees of freedom. Since the p value is small, a rejection of H01 occurs and
we conclude that male and female fish have different asymptotic lengths upon maturity.

Similarly, under H02 : k1 = k2 = k, n σ̂ 2
ω2

= 56.3368 yielding the chi-square statistic
−24 ln(σ̂ 2

�/σ̂ 2
ω2

) = 3.7319. The p value based on the chi-square distribution with 1 d f is
0.0534. There is some evidence for rejection of H (2)

0 although this is only marginal. Output
corresponding to H (2)

0 is not presented here to save space. For the same reason we have
also suppressed the output corresponding to H (3)

0 and H (4)
0 .

Under H (3)
0 : t01 = t02 = t0 n σ̂ 2

ω3
= 50.7578. Hence −24 ln(σ̂ 2

�/σ̂ 2
ω3

) = 1.2291 yield-
ing a p value of 0.2676 based on 1 df. We do not reject H (3)

0 . Finally, with all the three
restrictions n σ̂ 2

ω4
= 79.7645 and −24 ln(σ̂ 2

�/σ̂ 2
ω4

) = 12.0774 yielding a p value of 0.0071
based on the chi-square distribution with 3(g − 1) = 3 degrees of freedom. Thus, H (4)

0 is
rejected.

In summary, the analyses given above suggest that two different growth curves for male
and female fish populations are needed with a common length at birth and possibly a com-
mon growth rate.

5.7 Crossover Designs

In crossover experiments, treatments are administered in a variety of sequences on various
subjects. Thus, each subject may get more than one treatment in the course of the experi-
ment. One reason for doing so is that there is usually more variability across subjects than
within subjects. Hence the subjects can be treated as random blocks for the purpose of in-
creasing the precision by controlling experimental error variance. The problem, however,
becomes complicated by the fact that the successive measurements on the subjects may be
correlated. There is also the possible presence of carryover effect(s) at a given time point,
from the treatment(s) applied at previous time point(s). This calls for a careful analysis of
the data by incorporating these effects appropriately in the model.
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5.7.1 Analysis of Crossover Designs

A linear model for crossover design for the response from the mth subject receiving the i th

sequence and the kth treatment in the j th time point is

yi jkm = µi jk + ηim + εi jkm

i = 1, . . . , s, j = 1, . . . , p, k = 1, . . . , a, m = 1, . . . , ni , where µi jk is the average
response of the kth treatment in sequence i at time point j , ηim is the error corresponding
to the mth experimental unit in sequence i and εi jkm is the random error associated with
time point j of the mth experimental unit in sequence i .

The mean response µi jk is, for convenience, assumed to be composed of several com-
ponents as

µi jk = µ + αk + π j +
j−1∑
r=0

λ jkr ,

where αk is the treatment effect, π j the time effect, and λ jkr is the carryover effect of kth
r

treatment administered in one or more times during time points 0, 1, . . . , j − 1, on the
observation at time point j . Initially, at the beginning of any sequence, there is not any
carryover effect, so λ jk0 is zero. To simplify the model, we also assume that any carryover
effect lasts only up to the next time point, and hence we take λ jk0 = λ jk1 = · · · = λ jk j−2 =
0. We also denote, for convenience, λ jk j−1 by λ[k, j−1]. In view of this the model becomes

yi jkm = µ + αk + π j + λ[k, j−1] + ηim + εi jkm . (5.23)

It is further assumed that ηim ∼ N (0, σ 2
η ) are all independent and are independent of

εi ′ jkm′ also for all i, i ′, j, m, m′. However, the assumption of independence of εi jkm and
εi ′ j ′k′m′ may not be realistic. It is so because the observations taken over time on a given
subject would most likely be correlated. For convenience the model in Equation 5.23 has
been often analyzed as a split plot design, with an assumption of compound symmetric
covariance structure for the observation on a given subject. The split plot analysis of Equa-
tion 5.23 is straightforward. We will illustrate it by an example adopted from Jones and
Kenward (1989, p. 229).

EXAMPLE 15 Univariate Analysis, Comparison of Drugs Two drugs A and B and their combination
termed drug C are to be compared for their effectiveness to control hypertension. Each
subject was given three drugs in one of the six possible sequences ABC, ACB, BAC, BCA,
CAB, and CBA and systolic blood pressure (Y) was measured at the conclusion of each
of the three treatments, each of which lasted for four weeks. The data were collected at
four different centers. However, we will not consider the variability due to location in our
analysis. The data are presented as part of Program 5.20 (the carryover effect for the initial
period is defined as zero). The objective of the study is to examine if there were significant
differences between drugs, and to examine the period effect and the carryover effect. The
model given in Equation 5.23 is the appropriate model and can be fitted using PROC GLM
with the following MODEL statement

model y= subject period treat carry;

where all the variables on the right side are CLASS variables. Since SUBJECT forms a
random sample, the variable SUBJECT is declared to be random. This instructs SAS to
use the appropriate sums of squares in forming the F ratios for the tests.
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/* Program 5.20 */

options ls= 64 ps=45 nodate nonumber;
title1 ’Output 5.20’;
title2 ’Analysis of Crossover Design’;
data bp;
infile ’bpress.dat’;
input patient $ y treat $ carry $ period center subject;
proc glm data = bp ;
class treat carry period subject;
model y = subject period treat carry/ ss1 ;
random subject/test ;
contrast ’ a vs. b’ treat 1 -1 0;
contrast ’ a vs. c’ treat 1 0 -1;
contrast ’ b vs. c’ treat 0 1 -1;
run;
proc glm data = bp ;
class treat carry period subject;
model y = subject period treat carry/ ss3 ;
random subject/test ;
contrast ’ a vs. b’ treat 1 -1 0;
contrast ’ a vs. c’ treat 1 0 -1;
contrast ’ b vs. c’ treat 0 1 -1;
run;

Output 5.20 Output 5.20
Analysis of Crossover Design

General Linear Models Procedure

Dependent Variable: Y

Source DF Sum of Squares F Value Pr > F

Model 28 40095.9560700 4.95 0.0001

Error 40 11573.9859589

Corrected Total 68 51669.9420290

R-Square C.V. Y Mean

0.776002 9.575829 177.637681

Source DF Type I SS F Value Pr > F

SUBJECT 22 30646.6086957 4.81 0.0001
PERIOD 2 1395.5942029 2.41 0.1026
TREAT 2 7983.8717062 13.80 0.0001
CARRY 2 69.8814653 0.12 0.8866

Dependent Variable: Y

Contrast DF Contrast SS F Value Pr > F

a vs. b 1 6303.02403115 21.78 0.0001
a vs. c 1 1471.22264872 5.08 0.0297
b vs. c 1 1491.20262487 5.15 0.0287
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The resulting output is presented in Output 5.20, which indicates a significant effect due
to the differences in treatments (for Type I SS, the observed value of F(2,40) is 13.80 and
the corresponding p value is 0.0001). However, the carryover effect and the period effect
are both statistically insignificant. The same conclusions are reached when the analysis is
done using Type III SS. Note that because of our convention of using 0 for the carryover
effect at the initial period, the sum of squares due to the carryover effect is different from
that reported by Jones and Kenward.

In view of the absence of the carryover effect and the period effect, it may be meaningful
to compare the treatment means. The estimated difference between the mean effects of A
and B, A and C, and B and C are respectively, 25.3971, 12.4140, and −12.9831, which
are obtained by first obtaining the least squares solutions using the SOLUTION option in
the MODEL statement and then by computing the appropriate differences α̂A − α̂B, α̂A −
α̂C , and α̂B − α̂C . Using separate CONTRAST statements, we can perform tests for the
significance of treatment differences. All three treatments are significantly different from
each other (respective p values are 0.0001, 0.0297 and 0.0287), and A and B are especially
markedly different from each other. Treatment C, being the combination of drugs A and B,
falls in between the two.

It must be remembered that the course of analysis in crossover designed data depends
heavily on what the significant and insignificant effects are. The reason for this is that, de-
pending on the particular design, certain effects may be confounded with each other, and
if a sum of squares representing two or more confounded effects is found to be signifi-
cant, it would require a further careful examination of data to decide which of the many
confounded effects may have led to the statistical significance of the particular sum of
squares. In fact, if each of the treatment sequences is tried on the groups of subjects, then
the group*period interaction is composed of
• the treatment effect,
• carryover effect and treatment*period interaction, and
• other left over effects associated with group*period effects.

Since it is desirable that the effects listed above are all estimated, the choice of an
appropriate crossover design becomes of great importance. This topic has been addressed
at length in Jones and Kenward (1989) and Ratkowsky, Evans and Alldredge (1993). Later
in this section we present the SAS code for generating suitable designs from two useful
classes of crossover designs.

In some special cases, it may be possible to perform a straightforward multivariate anal-
ysis of crossover data. One such case is the analysis of AB/BA designs, which are two-
sequence (namely, AB and BA) designs in two treatments A and B respectively applied
to the groups of size, say n1 and n2. Since the analysis would follow a familiar pattern
described earlier in great detail, it can be best illustrated by an example.

EXAMPLE 16 Multivariate Analysis, Effect of Onions in Diet Dunsmore (1981) presents a case study
which was initiated to investigate the effect of including onions in the diet on plasma
triglyceride levels. A two-sequence crossover design with two treatments, namely, break-
fast without and with onions, to be referred to as A and B respectively, is used. Eight
patients were assigned to sequence AB and six to BA. Increases in the plasma triglyceride
levels at 1, 2, 3, 4, 5, and 6 hours after breakfast were measured. The analysis here is per-
formed on 10,000 times the logarithm of the plasma triglyceride levels. In the SAS code
the respective 12 responses are denoted as Y11, . . . , Y16 and Y21, . . . , Y26. While Duns-
more analyzed the data using the univariate technique, Grender and Johnson (1992) chose
the multivariate route and listed a SAS approach using the 12 by 1 vectors of responses on
each of the 14 subjects, which we will briefly present here. Multivariate normality has been
assumed for the analysis. There are two groups, namely, AB and BA. These are referred
to as Group 1 and 2. Let us denote by µi j , the 6 by 1 vector of true mean responses on a
subject in the i th group and under j th treatment, i, j = 1, 2. This is displayed in Table
5.3:
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TABLE 5.3 A Two Sequence Crossover Design in Two Treatments

Group Treatment Mean Treatment Mean

1 A µ11 B µ12

2 B µ21 A µ22

where µi j = (µi j1, . . . , µi j6)
′, i, j = 1, 2. Also, let µ′

1 = (µ′
11 : µ′

12) and µ′
2 = (µ′

21 :
µ′

22) and let µi = µ + αi , i = 1, 2 for some µ and α1,α2. Then the linear model for
these data can be written as

Y14×12 =
[

18 18 0
16 0 16

] µ′
α′

1
α′

2


+ E

which is in the form of standard linear model

Y = XB + E .

From Equation 5.23 we have

E(yi jkm) = µ + αk + π j + λ[k, j−1],

k = 1, 2, j = 1, 2, i = 1, 2, m = 1, . . . , ni ; n1 = 8, n2 = 6.

Thus, we have

E(yi11m) = µ + α1 + π1,

E(yi21m) = µ + α1 + π2 + λ1,

E(yi12m) = µ + α2 + π1,

and E(yi22m) = µ + α2 + π2 + λ2.

Hence

E(y111m + y121m) = 2µ + (α1 + α2) + (π1 + π2) + λ1,

E(y112m + y122m) = 2µ + (α1 + α2) + (π1 + π2) + λ2,

E(y111m − y121m) = (α1 − α2) + (π1 − π2) − λ1,

and E(y112m − y122m) = (α2 − α1) + (π1 − π2) − λ2.

These sums and differences can be calculated by pre- and post-multiplying B = (µ,α1,α2)
′

by certain specific matrices, that is, as LBM, where L and M are to be appropriately cho-
sen. As a result, most of the relevant hypotheses can be expressed as LBM = 0.

We adopt the following strategy for the analysis. The appropriate SAS code has been
provided by Grender and Johnson (1992), which has been produced here with a few nota-
tional changes.

1. First test the null hypothesis that there is no group*time interaction. For this, use

L = [
0 1 −1

]
and M′ = (1, 1) ⊗




1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1




= M1, (say)

where ⊗ stands for Kronecker product (Rao, 1973).
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2. Test for the equal carryover effect, that is, H0 : λ1 = λ2. For this, use L = (0 1 − 1)

and, say, M′ = (1 1 1 1 1 1 1 1 1 1 1 1) = M2.

3. If there are equal carryover effects, then test the hypothesis of no treatment*time inter-
action. For this, L = (0 1 − 1) and M′ = M1.

4. If there is no group*time interaction (that is, if H0 in Step 1 is not rejected), we may
test the hypothesis of no period*time interaction. For this L = (1 0 0) and M′ = M1.

5. Test for the time effect by using L = (1 0 0) and M′ = M1.

6. Test for equal treatment effects using L = (1 0 0) and M′ = (1 1 1 1 1 1 − 1 − 1 −
1 − 1 − 1 − 1) = M3.

7. Test for equal treatment effects using L = (1 0 0) and M′ = M3.

SAS code to analyze Dunsmore’s data is presented in Program 5.21. The interpretation
of multivariate tests is straightforward and we do not cover it here. The corresponding
output has been therefore supressed.

/* Program 5.21 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.21’;
title2 ’Multivariate Analysis of Crossover Design’;
data onion;
infile ’onion.dat’;
input patient meal$ y11 y12 y13 y14 y15 y16 group
patient2 meal2$ y21 y22 y23 y24 y25 y26 group2;
run;
proc glm data = onion ;
class group ;
model y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26=
group / nouni;
contrast ’Group*Time Interaction’ group 1 -1 ;
manova
m = y11-y12+y21-y22,
y12-y13+y22-y23,
y13-y14+y23-y24,
y14-y15+y24-y25,
y15-y16+y25-y26;
title3 ’Test for Group*Time Interaction’;
run;
proc glm data = onion;
class group;
model y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26=
group / nouni;
contrast ’Carryover Effect’ group 1 -1 ;
manova
m = y11+y12+y13+y14+y15+y16+y21+y22+y23+y24+y25+y26;
title3 ’Test for Equality of Carryover Effects’;
run;
proc glm data = onion;
class group ;
model y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26=
group / nouni;
contrast ’Teatment*Time Interaction’ group 1 -1 ;
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manova
m = y11-y12-y21+y22,

y12-y13-y22+y23,
y13-y14-y23+y24,
y14-y15-y24+y25,
y15-y16-y25+y26;

title3 ’Test for Treatment*Time Interaction
(Assuming equal Carryover Effects)’;
run;
proc glm data = onion ;
class group ;
model y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26=
group / nouni;
manova h = intercept m = y11-y12-y21+y22,

y12-y13-y22+y23,
y13-y14-y23+y24,
y14-y15-y24+y25,
y15-y16-y25+y26;

title3 ’Test for Period*Time Interaction
(assuming no Group*Time Interaction)’;
run;
proc glm data = onion ;
class group ;
model y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26=
group / nouni;
contrast ’Treatment Effect’ group 1 -1 ;
manova
m = y11+y12+y13+y14+y15+y16-y21-y22-y23-y24-y25-y26;
title3 ’Test for Equality of Treatment Effects’;
run;
proc glm data = onion ;
class group ;
model y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26=
group / nouni;
manova h = intercept

m = y11-y12+y21-y22,
y12-y13+y22-y23,
y13-y14+y23-y24,
y14-y15+y24-y25,
y15-y16+y25-y26;

title3 ’Test for Time Effect’;
run;
proc glm data = onion ;
class group ;
model y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26=
group / nouni;
manova h = intercept
m = y11+y12+y13+y14+y15+y16-y21-y22-y23-y24-y25-y26;
title3 ’Test for Equality of Period Effects’;
run;

5.7.2 Construction of Crossover Designs

There is a vast amount of literature available on the construction of p period crossover
designs under various desirable criteria, such as the variance balance or the D-optimality
criterion. These criteria have been discussed in detail in Jones and Kenward (1989).
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One common crossover design consists of augmenting various mutually orthogonal Latin
squares one below the other. These designs are variance balanced in that the variances of
the estimates of the treatment differences are minimum. The resulting design is a design
in p periods, p treatments that require p(p − 1) subjects (provided such a design exists).
See Jones and Kenward (1989) for further details.

A complete set of p by p mutually orthogonal Latin squares, if it exists, is equivalent
to a resolution III fractional factorial design for p + 1, p level variables in p2 runs that
is a p(p+1)−(p−1) fractional factorial design. The problem can be approached by first gen-
erating the appropriate fractional factorial layout and then by extracting the elements to
arrange (p −1) Latin squares one below the other. In these, the columns denote the period,
and rows denote the subject number. Since the transpose of a Latin square is also a Latin
square, some caution needs to be exercised about which of the two should be chosen; a
simple way to ensure that the correct one of the two is being used is to make sure that
all subjects have distinct sequences. The entry at the (i, j)th place indicates the particular
treatment administered at the j th time point on the i th subject. The desired p(p+1)−(p−1)

fractional factorial design is generated by using the FACTEX procedure. A sample pro-
gram to generate a 4 period, 4 treatment crossover arrangement requiring 12 subjects is
given in Program 5.22. The output is given in Output 5.22. Crossover designs with a = p
treatments and p1 < p periods can be obtained by removing any (p − p1) columns from
the above design.

/* Program 5.22 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.22’;
title2 ’Generation of a Latin Square Crossover Design’;
title3 ’ 4 Treatments, 4 Time Points in 12 Subjects’;
proc factex;
factors row col t1-t3/nlev=4;
size design=16;
model resolution=3;
output out=latinsq;
run;
data latinsq1;
set latinsq;
keep t1-t3;
proc iml;
use latinsq1;
read all into z0;
p=4;
latin1 = i(p);
latin2 = i(p);
latin3 = i(p);
do i = 1 to p;
do j = 1 to p;
ij = (j-1)*p +i ;
latin1[i,j] = z0[ij,1];
latin2[i,j] = z0[ij,2];
latin3[i,j] = z0[ij,3];
end;
end;
cross = ((latin1//latin2)//latin3);
print cross;
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Output 5.22 Output 5.22
Generation of a Latin Square Crossover Design
4 Treatments, 4 Time Points in 12 Subjects

CROSS
0 3 1 2
3 0 2 1
1 2 0 3
2 1 3 0
0 2 3 1
3 1 0 2
1 3 2 0
2 0 1 3
0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

Since the design obtained from the complete set of p × p mutually orthogonal Latin
squares requires p(p − 1) subjects (and such a design may not even exist, e.g., when
p = 6), a smaller design may be desired. Williams’ designs are possible candidates. These
designs are obtained from a p × p cyclic Latin square (i.e., for which the i th row is i, i +
1, . . . , p, 1, . . . , i − 1). When p is even, it requires only p subjects. However, when p is
odd, the number of subjects required by the Williams’ design is 2p.

Given a cyclic Latin square, we first find its mirror image and interlace the columns
of the two. That is, if A1, . . . , Ap are columns of the cyclic Latin square and Bp(=
A1), Bp−1(= A2), . . . , B1(= Ap) are their respective mirror images (which appear in
the order B1, . . . , Bp), then the resulting arrangement is

A1 B1 A2 B2 . . . Ap Bp,

obtained by interlacing B1, . . . , Bp with A1, . . . , Ap . This gives an arrangement with 2p
columns. It can be generated by using Program 5.23 and is shown in Output 5.23 for p = 5.
The desired design in p periods is obtained by taking either the first p or the last p columns
of the above arrangement if p is even and by arranging the last p columns below the first p
columns if p is odd. By virtue of being generated from a Latin square, all p treatments will
appear in the design and every treatment will appear exactly once (if p is even) or twice (if
p is odd) in every time period.

/* Program 5.23 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 5.23’;
title2 ’Williams Design: p Treatments in p Time points ’;
proc iml;
p=5;
p2=p*2;
pover2 =p/2;
/*Initialize the matrices;
a is the circular p by p Latin Square, b is
its mirror image and the specific;*/
a=i(p);
b=i(p);
w=j(p,p2);
*Create the matrix a;
do i = 1 to p;
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i1=i-1;
do j = 1 to p;
if (i = 1) then a[i,j] =j;
if (i >1) then do;
if (j < p) then do ;
jmod = j+1;
a[i,j] = a[i1,jmod] ;
end ;
if (j = p) then do ;
jmod = 1 ;
a[i,j] = a[i1,jmod] ;
end ;
end ;
end ;
end ;
* Create b, the mirror image of a;
do i = 1 to p;
do j = 1 to p;
jj=(p+1-j);
b[i,j] = a[i,jj];
end ;
/*Interlace the Circular Latin Square and its
mirror image;*/
do k = 1 to p2;
kby2 =k/2;
if kby2=floor(kby2) then do;
w[i,k] = b[i,kby2];
end;
if kby2>floor(kby2) then do;
kk= floor(kby2)+1;
w[i,k] = a[i,kk];
end;
end;
end;
print ’p is equal to ’ p;
print ’The following is the Desired Williams Design: ’;
print ’_____________________________________________ ’;
/*
Design requires p (if p even) or 2p subjects (if p odd).
If p is even take first p or last p columns.
If p is odd slice after first p columns
and augment last p columns below it.
*/
w1 = w*(i(p)//j(p,p,0));
w2 =w*(j(p,p,0)//i(p));
if pover2 > floor(p/2) then do;
williams =w1//w2;
end;
else williams =w1 ;
print williams;
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Output 5.23 Output 5.23
Williams Design: p Treatments in p Time points

P
p is equal to 5

The following is the Desired Williams Design:
_____________________________________________

WILLIAMS
1 5 2 4 3
2 1 3 5 4
3 2 4 1 5
4 3 5 2 1
5 4 1 3 2
3 4 2 5 1
4 5 3 1 2
5 1 4 2 3
1 2 5 3 4
2 3 1 4 5

There are a number of alternative methods available to construct other crossover de-
signs. See, for example, Jones and Kenward (1989) and John (1971). An extensive catalog
of many useful designs is given in Ratkowsky, Evans and Alldredge (1993).

5.8 Concluding Remarks

We conclude this chapter with some comments about missing values in repeated measures.
One of the very frequent problems in conducting repeated measures experiments is the
failure to follow the subject at all time points. As a result, many repeated measures data
sets are not balanced. This further complicates the problem in two ways. First, the stan-
dard multivariate methods may no longer be applicable. Second, most computer packages
including SAS do not deal with missing values in the multivariate data; for example, SAS
ignores all the observations on a particular subject if it finds a missing value for any of
the dependent variables in the MODEL statement. This not only reduces the sample size
substantially but may also result in a sample that is biased due to this implicit self-selection.

A way to alleviate this problem would be the imputation of missing values before an-
alyzing the data. There are well-respected approaches, based on the EM algorithm, for
imputing the missing values in certain cases of missingness patterns and causes (Little and
Rubin, 1987, McLachlan and Krishnan, 1997). Unfortunately, the EM algorithms by defi-
nition are very problem specific and often require the identification of appropriate sufficient
statistics (for conditioning purposes) even to program the estimation procedure. However,
it should be remembered that imputing the missing values and their substitution for further
analysis may not necessarily be a desirable choice. This type of analysis may cause the
variance terms to be underestimated. The SAS MIXED procedure provides some alterna-
tive modeling approaches for data sets of this kind. We will discuss these approaches in
Chapter 6.
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6.1 Introduction

The multivariate and the univariate approaches to analyzing the repeated measures data
presented in Chapter 5 represent the extremes of the assumptions made on covariance
structures. The former has absolutely no requirements (except that the variance covariance
matrix of repeated measures be positive definite) and hence requires one to estimate the
maximum possible number of variance and covariance parameters. By contrast, the latter
imposes stringent requirements (except when sphericity is required) when the entire co-
variance structure is governed only by two parameters (in the case of compound symmetry
and a few more in the of Huynh-Feldt structure).

Nonetheless, each of these two approaches permits us to use the least squares and the
(univariate or multivariate) analysis of variance based approach for data analysis. What is
desirable is to assume a covariance structure on repeated measures, which is not as liberal
as the multivariate approach but at the same time is not as restrictive and hence not as
unrealistic as the univariate approach of Chapter 5. Unfortunately, as soon as any devia-
tion from the two is allowed, the analysis of variance based approach is no longer valid.
However, in such a situation one can use an alternative (but not necessarily equivalent) ap-
proach based on likelihoods. While the likelihood theory regarding estimation and testing
of hypothesis is well established, it must be noted that most of the likelihood based statis-
tical test procedures are asymptotic in nature and hence are only approximate for the finite
sample cases.

Some of the useful covariance structures other than compound symmetry for the re-
peated measure data are the first order autoregressive, unstructured covariance, Toeplitz,
and banded Toeplitz. The MIXED procedure provides all of these with several other co-
variance structures as options. Further, the univariate split plot analysis of repeated mea-
sures can be performed by using the MIXED procedure, which makes available several
alternative covariance structures including those listed above and in addition to compound
symmetry. This kind of analysis under the general mixed effects linear model is the major
theme of this chapter. Specifically, this chapter explains how to formulate problems in re-
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peated measures data analysis as problems in the general mixed effects linear model and
to utilize the MIXED procedure to solve these problems.

6.2 The Mixed Effects Linear Model

Let yi be the pi × 1 vector of repeated measures on the i th subject. Then consider a mixed
effects model described as

yi = Xiβ + Ziνi + εi , i = 1, . . . , n, (6.1)

where Xi and Zi are the known matrices of orders pi by q and pi by r respectively, and
β is the fixed q by 1 vector of unknown (nonrandom) parameters. The r by 1 vectors νi

are random effects with E(νi ) = 0, and D(νi ) = σ 2G1. Finally εi are the pi by 1 vectors
of random errors whose elements are no longer required to be uncorrelated. We assume
that E(εi ) = 0, D(εi ) = σ 2Ri , cov(νi ,νi ′) = 0, cov(εi , εi ′) = 0, cov(νi , εi ′) = 0
for all i �= i ′, and cov(νi , εi ) = 0. Such assumptions seem to be reasonable in repeated
measures data where subjects are assumed to be independent, yet the repeated data on a
given subject may be correlated. Note here that Ri is the appropriate pi × pi submatrix of
a p × p positive definite matrix, where p is the number of time points in the data set where
observations have been made. An appropriate covariance structure can be assigned to the
data by an appropriate choice of matrices G1 and Ri . Note that since yi is a pi by 1 vector,
i = 1, . . . , n, the model can account for the unbalanced repeated measures data, that is,
when data are such that all the subjects have not been observed at all time points.

The n submodels in Equation 6.1 can be stacked one below the other to give a single
model 


y1
y2
...

yn


 =




X1
X2
...

Xn


β +




Z1 0 · · · 0
0 Z2 · · · 0
...

... · · · ...

0 0 · · · Zn






ν1
ν2
...

νn


+




ε1
ε2
...

εn




or

y�pi ×1 = X�pi ×qβq×1 + Z�pi ×nrνnr×1 + ε�pi ×1, (6.2)

where the definitions of y, X, Z, ν, and ε in terms of the matrices and vectors of sub-
models are self explanatory. In view of the assumptions made on Equation 6.1, we have
E(ν) = 0, E(ε) = 0,

D(ν) = σ 2




G1 0 · · · 0
0 G1 · · · 0
...

... · · · ...

0 0 · · · G1


 = σ 2In ⊗ G1 = σ 2G

and

D(ε) = σ 2




R1 0 · · · 0
0 R2 · · · 0
...

... · · · ...

0 0 · · · Rn


 = σ 2R.
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The symbol ⊗ here stands for the Kronecker product (Rao, 1973) defined for two ma-
trices Us×t = (ui j ) and Wl×m = (wi j ) as

U ⊗ W =




u11W u12W · · · u1t W
u21W u22W · · · u2t W

...
... · · · ...

us1W us2W · · · ust W


 = (ui j W).

It follows from Equation 6.2 that

D(y) = ZD(ν)Z′ + D(ε) = σ 2[ZGZ′ + R] = σ 2V.

The above representation D(y) = σ 2V is taken as a convenience in the algorithm of the
MIXED procedure. It may be remarked that in many situations, the variance covariance
matrix of y may not be in the above form where the parameter σ 2 has been explicitly
factored out. However, with appropriate (but not necessarily unique) modifications in the
matrices G and R, some parameter σ 2 (not necessarily unique) can be factored out. For
example, to factor out σ 2, one only needs to divide all elements of G and R by σ 2 and use
their reparametrized versions for the purpose of defining the appropriate V. Thus, there is
no loss of generality in defining the covariance structure as is the case with the MIXED
procedure algorithm.

6.2.1 Estimation of Effects When V Is Known

If G1 and R1, . . . , Rn are assumed to be known then the Best (minimum mean squared
error) Linear Unbiased Estimator (BLUE) using the generalized least squares estimator of
β is given by (assuming that it uniquely exists)

β̂ = [X′(ZGZ′ + R)−1X]−1X′(ZGZ′ + R)−1y

=
[

n∑
i=1

X′
i (Zi G1Z′

i + Ri )
−1Xi

]−1 [ n∑
i=1

X′
i (Zi G1Z′

i + Ri )
−1yi

]
. (6.3)

The variance covariance matrix of β̂ is

σ 2[X′(ZGZ′ + R)−1X]−1 = σ 2

[
n∑

i=1

X′
i (Zi G1Z′

i + Ri )
−1Xi

]−1

.

Similarly, the Best Linear Unbiased Predictor (BLUP) of ν is given by GZ′(ZGZ′ +
R)−1(y − Xβ). Further an unbiased estimator of σ 2 is obtained as

σ̂ 2 = 1

ν2
ε̂′V−1ε̂,

where ε̂ = y − X(X′V−1X)−X′V−1y and ν2 = ∑n
i=1 pi − Rank(X) is the error degrees

of freedom. If X′(ZGZ′ + R)−1X does not admit an inverse, for most estimation problems
a generalized inverse would replace the inverse in Equation 6.3 provided estimability of
the functions under consideration has been ensured.

The above BLUE of β and the BLUP of ν can also be obtained by solving the system
of mixed model equations (Henderson, 1984),

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

] [
β̂
ν̂

]
=
[

X′R−1y
Z′R−1y

]
.
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If in addition, multivariate normality is assumed for νi and εi , i = 1, . . . , n, then,

y ∼ N�pi (Xβ, σ 2[ZGZ′ + R]).
In this case β̂ and ν̂ are also the maximum likelihood estimator and maximum likelihood
predictor of β and ν respectively.

Consider the problem of testing a linear hypothesis of the form H0 : Lβ = 0, where L
is a full (row) rank matrix. Then the usual test statistic for testing H0 is

F = β̂
′
L′(L(X′V−1X)−1L′)−1Lβ̂

σ̂ 2 Rank(L)
,

which under the null hypothesis H0 is distributed as Fν1, ν2, where ν1 = Rank(L), ν2 is
the error degrees of freedom, and V = (ZGZ′ + R).

6.2.2 Estimation of σ2 and V

When the matrices G and/or R (or V) are unknown, estimation of these matrices can be
carried out using the standard likelihood based methods (i.e. ML or REML) under the
assumption of joint multivariate normality of ν and ε. In practice, certain structure on either
one or both of these matrices is assumed so that V is a function of only a few unknown
parameters, say θ1, . . . , θs . The above methods are iterative in that first for a fixed value of
V, an estimator of β using the form of the BLUE is obtained. Then the likelihood function
of V is maximized with respect to θ1, . . . , θs to get an estimate of V. These two steps are
iterated until a certain user specified convergence criterion is met.

The ML estimators of θ1, . . . , θs and hence of V (and hence of G and R) and of σ 2 are
obtained by maximizing the logarithm of the normal likelihood function

l(θ) = −1

2
ln|σ 2V| − 1

2σ 2
ε̂′V−1ε̂ − n

2
ln(2π) (6.4)

simultaneously with respect to these parameters. The ML estimator of σ 2 expressed in
terms of V̂ will be σ̂ 2

n = ε̂′V̂−1ε̂/n. The ML estimates of θ1, . . . , θs, generally have to be
obtained using iterative schemes.

Alternatively, estimators of θ1, . . . , θs, and finally of σ 2 can be obtained by maximizing
the function:

−1

2
ln|V| − n

2
lnε̂′V−1ε̂ − n

2

[
1 + ln

(
2π

n

)]
.

which is obtained from the log-likelihood function after factoring and profiling a residual
variance σ̂ 2

n .

Similarly, another set of estimators commonly known as the Restricted Maximum Like-
lihood (REML) estimators is obtained by maximizing the function (after profiling σ̂ 2)

−1

2
ln|V| − 1

2
ln|X′V−1X| − n − k

2
lnε̂′V−1ε̂ − n − k

2

[
1 + ln

(
2π

n − k

)]
,

where k = Rank(X). The ML and REML estimators are known to be asymptotically
equivalent.

Suppose θ̂ = (θ̂1, . . . , θ̂s)
′ is the ML estimate of θ = (θ1, . . . , θs)

′. Let h(θ) be a
certain, possibly vector valued, function of θ. Then the three asymptotic tests to test H0 :
h(θ) = 0 against the alternative H1 : h(θ) �= 0 are given by

Wald’s Statistic: TW = nh(θ̂)′[H(θ̂)′I(θ̂)−1H(θ̂)]−1h(θ̂)

Likelihood Ratio Test (LRT) Statistic : TL = 2[l(θ̂) − l(θ̂0)]
Rao’s Statistic: TR = 1

n
U(θ̂0)

′I(θ̂0)
−1U(θ̂0),
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where θ̂0 is the ML estimator of θ under the null hypothesis H0, U(θ) = ∂l
∂θ

, H(θ) = ∂h(θ)
∂θ

,

and I(θ) is the Fisher information matrix (Rao, 1973).
Under certain regularity conditions each of the statistics TW , TL , and TR has an asymp-

totic χ2
r distribution under H0, where r = Rank(H(θ)). See Rao (1973) and also Sen and

Singer (1993) for proofs and more details about these tests. Since REML and ML estimates
are asymptotically equivalent one may alternatively use the REML estimates in the above
expressions.

Since under certain regularity conditions, the ML estimator θ̂ follows a multivariate
normal distribution with the mean vector θ and the variance covariance matrix I−1(θ)

one can also construct a test for the hypothesis about any component θi of θ using the
standard normal distribution. This asymptotic test is also known as Wald’s test. Using this
asymptotic result, approximate confidence intervals can be constructed as well.

6.2.3 Estimation of Effects When V Is Estimated

Suppose Ĝ and R̂ are the estimators of G and R respectively, obtained by using one of the
above two methods. Then the respective estimates of β and ν are obtained by solving the
plug-in version of mixed model equations,[

X′R̂−1X X′R̂−1Z
Z′R̂−1X Z′R̂−1Z + Ĝ−1

] [
β̂
ν̂

]
=
[

X′R̂−1y
Z′R̂−1y

]
,

where the estimators Ĝ and R̂ respectively have been used for G and R in the mixed
model equations stated earlier. Upon solving we obtain β̂ = (X′V̂−1X)−1X′V̂−1y and
ν̂ = ĜZ′V̂−1(y − Xβ̂), where V̂ is obtained by substituting Ĝ and R̂ for G and R re-
spectively in V. Note that β̂ is an estimator of the best linear unbiased estimator (BLUE)
(X′V−1X)−X′V−1y of β and ν̂ is an estimator of the best linear unbiased predictor (BLUP)
GZ′V−1(y − X(X′V−1X)−X′V−1y) of the random effects vector ν.

For simplicity of presentation, let us denote the estimate of σ 2 by σ̂ 2, whatever the
method may have been used for the estimation. The estimated variances and covariance
matrices of these estimators are: D̂(β̂) = σ̂ 2C11 = σ̂ 2(X′V̂−1X)−, ˆcov(β̂, ν̂) = σ̂ 2C21 =
−σ̂ 2ĜZ′V̂−1XC11, and D̂(ν̂) = σ̂ 2C22 = σ̂ 2((Z′R̂−1Z + Ĝ−1)−1 − C21X′V̂−1ZG). It
may however be cautioned that

σ̂ 2
[

C11 C′
21

C21 C22

]

usually underestimates D(β̂
′
, ν̂′

)′, the true variance covariance matrix of (β̂
′
, ν̂′

)′.

6.2.4 Tests for Fixed Effect Parameters

Consider the problem of testing a linear hypothesis of the form H0 : Lβ = 0, where L is
a full rank matrix. A suggested test statistic for H0 is

F = β̂
′
L′(LC11L′)−1Lβ̂

σ̂ 2 Rank(L)
.

The exact distribution of F is complicated due to many facts. For example, β̂ is only an
approximate version of BLUE since G1 and R1, . . . , Rn are unknown and hence their esti-
mates have been used in their expressions. The matrix σ̂ 2C11 is also an estimated version
of the variance covariance matrix of β̂. Further, the distribution of F also depends on the
type of unbalancedness that exists in the data. However for large samples the test statistic F
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will have an approximate F distribution with numerator degrees of freedom ν1 = Rank(L)

and denominator degrees of freedom ν2 appropriately estimated.
A brief description of the MIXED procedure follows. This procedure implements the

likelihood based approach described above and hence is useful in the repeated measures
context. More specific details of this procedure will be provided in later sections as the
need arises.

6.3 An Overview of the MIXED Procedure

PROC MIXED, available in SAS/STAT, can be used to analyze data under the model stated
earlier in Equation 6.1. To describe the choices available in PROC MIXED, we will follow
the notations used above. More details can be found in SAS/STAT Software: Changes and
Enhancements through Release 6.12.

Consider the following mixed effects model defined earlier in Equation 6.1,

y = Xβ + Zν + ε. (6.5)

The first statement that invokes this procedure is

proc mixed;

The inferential approach in the MIXED procedure is predominantly likelihood based.
The multivariate normality assumptions as stated in the previous section are needed. The
ML and REML estimation procedures have been implemented for the estimation of all
parameters and the prediction of random effects. The test procedures for the purpose of
hypothesis testing rely heavily on likelihood based functions. Examples of such tests are
LRT and Wald’s tests. Additionally, another estimation procedure suggested by C. R. Rao
(1972) known as MIVQUE0 is also available. No normality assumptions need to be made
for this method. Consequently, no statistical tests based on MIVQUE0 are available.

6.3.1 Structures for G and R

Recall that G is the variance covariance matrix of random effects and R is the variance
covariance matrix of error vectors corresponding to repeated measures on the same sub-
ject. Various choices of structures for G and R are available in the MIXED procedure.
Accordingly, structures for G are selected using the TYPE= option in the RANDOM state-
ment and those for R are selected using the TYPE= option in the REPEATED statement of
PROC MIXED. The MIXED procedure also has the ability to allow the Kronecker product
(named as a direct product (notation: @) in SAS/IML documentation) covariance structure
for R. See Example 10 for an illustration.

6.3.2 Estimation of G and R

As stated earlier estimation of the covariance parameters is carried out using one of the
three methods, namely the maximum likelihood (ML), restricted maximum likelihood
(REML), and minimum variance quadratic unbiased estimation (MIVQUE0). The first two
are iterative. For these we need the joint multivariate normality of the error vector ε and
the random effects ν.

The minimum variance quadratic unbiased estimator, MIVQUE0 (developed using the
formulas given in Rao (1972), is non-iterative and no multivariate normality assumption
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is needed. It is usually used as an initial estimator in the iterative process of the ML or
REML method. For certain designs with balanced data this estimator coincides with the
REML estimator.

Using the METHOD = ML, REML, or MIVQUE0 option of the PROC MIXED state-
ment, one of the three methods of estimating the covariance parameters can be adopted.
For example, the syntax for using the REML method is

proc mixed method=reml;

It must be remarked that this specification also implements the same method of estima-
tion for the fixed effect parameters in the case of ML and REML. For MIVQUE0, the fixed
effects are obtained by generalized least squares where the estimate of G and R have been
used in place of true values.

6.3.3 Selection of Appropriate Structure for G and R

Given numerous choices of structures for G and R, one of the problems a practitioner faces
is the selection of appropriate structure. Under the heading “Model Fitting Information,”
PROC MIXED prints out certain useful statistics that are helpful in selecting an appropriate
covariance structure for either G or for R or for both. Two of these which are used often
are Akaike’s Information Criterion (AIC) and Schwarz’s Bayesian Criterion (BIC).

Akaike’s Information Criterion (AIC) is defined as

AI C = l(θ̂) − q,

where l(θ) is the log-likelihood function as given in Equation 6.4 (or the restricted log-
likelihood function) and l(θ̂) is the maximum log-likelihood function (or the restricted
maximum log-likelihood function) and q is the number of the estimated covariance param-
eters. The structure expressed in terms of θ with the largest AIC is preferred.

Schwarz’s Bayesian Criterion (BIC) is defined as

l(θ̂) − 1

2
q log(n∗),

where n∗ = n for ML and (n − k) for REML. Similar to AIC interpretation, a model with
a larger value of BIC is preferred.

Keselman, Algina, Kowalchuk and Wolfinger (1998) indicate through extensive sim-
ulation studies that AIC performs better than BIC in trying to identify the true models.
However, both criteria frequently fail to identify the correct covariance structure. These
authors have also speculated that the poor performance of BIC may be due to the fact that
in PROC MIXED the penalty criterion for BIC is a function of n, the total number of ob-
servations, rather than the number of subjects. Further, in SAS Version 7, the number of
subjects rather than the number of observations are used in the penalty criterion for BIC.

In the context of selecting a covariance structure for R, LRT on covariance structure
can be performed to decide if the particular covariance structure is deemed adequate. This
approach will be discussed in detail in the next section.

6.3.4 Inference for Covariance Parameters

The estimates, standard errors (SEs) of the estimates, and the asymptotic tests using
the standard normal distribution (Wald’s test) for each of the covariance parameters are
produced when the COVTEST option is specified in the PROC MIXED statement. The
standard errors and (Wald’s) tests are determined from the general theory of the maximum
likelihood estimates which states that the vector of ML estimates of a vector parameter,
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under certain regularity conditions, is consistent and has a multivariate normal distribu-
tion with the inverse of the Fisher’s information matrix as its variance covariance matrix.
The tests provided on covariance parameters are for two-sided alternative hypotheses.
Thus, care should be exercised in interpreting the p value since in certain cases it is more
meaningful to test a particular hypothesis under a one sided alternative (e. g., when the
parameters are interpreted as the variance components).

PROC MIXED also provides confidence intervals for all the unknown parameters in
the variance covariance matrix. The 95% confidence intervals for these parameters can be
obtained using the CL option in the PROC MIXED statement. The default 95% for the con-
fidence level can be changed, if needed, using the ALPHA= option of the PROC MIXED
statement. For the parameters which have a natural lower bound constraint of zero (for
example, the variance components and the diagonal elements of the variance covariance
matrix), the confidence intervals are provided using the Satterthwaite approximation. For
all the other parameters, the confidence limits are obtained using the corresponding Wald’s
statistics.

6.3.5 Inference for Fixed and Random Effects Parameters

As indicated earlier, a linear hypothesis of the form H0 : Lβ = 0, where L is a full rank
matrix is tested using the approximate F test described in the previous section. The test
statistic

F = β̂
′
L′(LC11L′)−1Lβ̂

σ̂ 2 Rank(L)

under the null hypothesis H0 is approximately distributed as an F with the degrees of
freedom ν1 and ν2, where ν1 = Rank(L) and ν2 is the degrees of freedom of the error sum
of squares. However, different estimates of ν2, to improve the approximation, can be used
in practice. The MIXED procedure allows one to specify predetermined degrees of freedom
using the DDF= option in the MODEL statement. The procedure also provides several
built-in choices for ν2 using the DDFM= option in the MODEL statement. For example, the
DDFM=RESIDUAL option conducts all the tests using the error sum of squares degrees
of freedom, which is n − Rank(X). The DDF=SATTERTH option conducts a general
Satterthwaite approximation for obtaining ν2. The default sums of squares used are of
Type III. The Type I sums of squares can also be utilized using the HTYPE=1 option in the
MODEL statement. Approximate p values of the tests are reported using a certain standard
estimate of ν2.

As an alternative to the above F statistic one can use the log-likelihood ratio test
statistic or the chi-square statistic associated with that. The degrees of freedom of the
chi-square distribution are determined by taking the difference between the number of
parameters in the full model and that in the reduced (under the null hypothesis) model.
This chi-square test can be requested using the CHISQ option in the MODEL statement
and METHOD=ML option in the PROC MIXED statement. Since the REML method
produces estimators that are not the maximum likelihood estimators, whenever chi-square
tests are requested the ML and not the REML method must be used for estimating the
parameters.

The estimates of the fixed effects are obtained using the LSMEANS statement of PROC
MIXED. The multiple comparison tests of these effects using one of the standard meth-
ods (for example Tukey’s method) can be carried out using the ADJUST= option in the
LSMEANS statement. Estimation and testing of the hypotheses of certain specific contrasts
of the parameters can be carried out using the ESTIMATE and CONTRAST statements in
PROC MIXED.

In the following sections, we provide several applications of this approach in conjunc-
tion with PROC MIXED for a variety of models. It is not possible to address all the as-
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pects and options of this very general procedure. For different applications and detailed
description, we refer the reader to Littell, Milliken, Stroup, and Wolfinger (1996) and The
MIXED Procedure Chapter in SAS/STAT Software: Changes and Enhancements through
Release 6.12.

6.4 Statistical Tests for Covariance Structures

In Chapter 5, we encountered the spherical or compound symmetric covariance structures
as a required prerequisite for the univariate analysis of variance methods to be valid for
the repeated measures data. It was suggested that one should first test if such a covariance
structure can be assumed using the likelihood ratio tests. In many real world applications
the hypothesis of spherical or compound symmetric covariance structure will be rejected.
While the univariate analysis of variance approach is then invalidated, one may still pursue
the (univariate-like) analysis using the asymptotic results based on the maximum likeli-
hood theory. However, in such problems, first one should also determine the appropriate
covariance structure so as to enable one to estimate the unknown parameters, including the
ones represented in the covariance structure. As earlier, the likelihood ratio tests can be
used to test such hypotheses. However, unlike the cases discussed in Chapter 5, it may not
be possible to obtain a closed form test statistic when testing for the particular covariance
structure. Fortunately, in the data analysis problems, such an issue is only secondary as
long as the evaluation of the test statistics is computationally feasible and its theoretical
properties are known.

Let yp×1 be a p−variate normally distributed random vector with mean µ and the vari-
ance covariance matrix Σ. Suppose we have our data as a random sample y1, . . . , yn from
this population. The appropriate likelihood ratio test statistic for the null hypothesis,

H0 : Σ has a given covariance structure

is given by,

L =
max

H0
g(Σ|data)

max
unrestricted

g(Σ|data)
,

where g(Σ|data) is same as the f (y1, . . . , yn), the joint density function of y1, . . . , yn

and for optimization purposes, it is treated as a function of Σ for given data. Of course, any
other unknown parameters, that may appear in the function g(.|data) will be replaced by
their maximum likelihood estimates.

It may be noted that in certain problems and for the calculation of the denominator
of L, the matrix Σ may not be completely unrestricted and from the very context of the
problem at hand, it may still have some covariance structure. The likelihood ratio test can
still be performed so long as this restricted parameter space itself contains as a subset, the
parameter space restricted by H0. A simple example of such a situation is when we want
to test if a variance covariance matrix additionally has a compound symmetric structure
while it is a priori assumed that this matrix already has a circular covariance structure — a
structure which contains all compound symmetric variance covariance matrices as a further
specialization. In Example 3, we consider yet another context where such a situation arises.

From the likelihood theory it follows that for large n, and under the null hypothesis,
−2 lnL approximately follows a chi-square distribution with f degrees of freedom, where
the quantity f is computed as

f = number of unknown parameters in unstructured Σ − number of unknown parame-
ters in Σ under the covariance structure specified by H0.

For a better approximation, often a correction factor b known as the Bartlett’s correction
is multiplied to −2lnL and hence −2blnL is used as the modified test statistic. However,
we will not concern ourselves with this modification in this chapter.
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Often, instead of maximizing the likelihood, only a part of the likelihood which is in-
variant of the fixed effects is maximized. This results in what is known as the restricted
maximum likelihood (REML) estimate of the variance covariance matrix. Using these es-
timates, another test statistic L R instead of L defined above can be devised. Corresponding
to L R , the quantity −2 lnL R also follows a chi-square distribution and in fact, it is asymp-
totically equivalent to the test based on −2lnL . Since in PROC MIXED the default esti-
mation is REML, the quantities reported under the default correspond to −2lnL R rather
than −2 lnL .

Using SAS, a number of covariance structure choices can be adopted and hence tests for
these can be performed using the MIXED procedure. Here we give a list of a few selected
covariance structures. The complete list can be found in SAS/STAT Software: Changes
and Enhancements through Release 6.12. Corresponding SAS options to be used in the
REPEATED statement in PROC MIXED are indicated within the parentheses.

1. Σ = σ 2I (VC)

2. Σ = σ 2
1 11′ + σ 2

2 I (CS)

3. Σ Unstructured (UN)

4. Σ = diag(σ 2
1 , . . . , σ 2

p) : Banded main diagonal (UN(1))

5.

Σ = σ 2




1 ρ · · · ρ p−1

ρ 1 · · · ρ p−2

...

ρ p−1 ρ p−2 · · · 1


 : Autoregressive of order 1 (AR(1))

6.

Σ =




σ0 σ1 · · · σp−1
σ1 σ0 · · · σp−2

...

σp−1 σp−2 · · · σ0


 : Toeplitz (TOEP)

7.

Σ =




σ0 σ1 0 0 · · · 0
σ1 σ0 σ1 0 · · · 0

...

0 · · · · · · 0 σ1 σ0


 : Two Bands Toeplitz (TOEP(2))

8. Σ = σ 2(ρ
di j
i j ), ρi i = 1 : Spatial Power or Markov (SP(POW)(c))

9. Σ = (σi j ), σi j = σii +σ j j
2 − λ, if i �= j : Huynh − Feldt (HF)

Linear Structures In addition, one can test the null hypothesis (as well as perform the
estimation) for any variance covariance matrix �, which can be represented as a linear
combination of known matrices. Such a structure is called a linear covariance structure
and is given by

Σ = c1A1 + · · · + ckAk,

where A1, . . . , Ak are known matrices but the scalars c1, . . . , ck are all unknown and are
functionally unrelated to each other. For example, the matrix

Σ1 =



σ 2
1 + σ 2

2 σ 2
1 σ 2

1

σ 2
1 σ 2

1 + σ 2
2 σ 2

1

σ 2
1 σ 2

1 σ 2
1 + σ 2

2


 = σ 2

1


 1 1 1

1 1 1
1 1 1


+ σ 2

2


 1 0 0

0 1 0
0 0 1



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does have the above structure but the matrix

Σ2 = σ 2


 1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1


 = σ 2


 1 0 0

0 1 0
0 0 1


+ σ 2ρ


 0 1 0

1 0 1
0 1 0


+ σ 2ρ2


 0 0 1

0 0 0
1 0 0




does not because the three parameters c1 = σ 2, c2 = σ 2ρ and c3 = σ 2ρ2 are essentially
dependent on only two quantities namely, σ 2 and ρ and therefore are functionally related.
The SAS option for linear structure is TYPE =LIN(k) which is specified as part of the
REPEATED statement.

It may be remembered that presently we are dealing with the fixed effects models of
the type yi = µ + εi only and hence the variance covariance matrix of yi is the same
as the variance covariance matrix of εi . If the p by 1 vector µ corresponds to fewer than
p parameters and is linearly expressed as µ = Xβ for some design matrix X then the
MODEL statement can be used to specify such details for fixed effects. In the REPEATED
statement of the MIXED procedure, one can specify the covariance structure of εi and
hence in the present case, for yi . This will not be the case if the model also has some other
random effects.

From the expression of L , it is clear that,

−2 ln L = −2

[
ln max

H0
g (Σ|data) − ln max

unrestricted
g(Σ|data)

]

= [−2ln g (Σ̂H0 |data)] − [−2ln g(Σ̂unrestr icted |data)],
where Σ̂H0 and Σ̂unrestr icted are the maximum likelihood estimators of Σ under H0
and without any restrictions on Σ, respectively. The two terms in the above expression
can be obtained by executing the MIXED procedure twice, for the appropriate models
and under appropriate covariance structures, which are specified as the TYPE = op-
tion in the REPEATED statements. The option TYPE =UN will result in the value of
−2ln g(Σ̂unrestr icted |data). The appropriate option to obtain −2ln g(Σ̂H0 |data) depends
on what H0 is.

EXAMPLE 1 Testing Covariance Structure, Glucose Data Six volunteers were observed for the blood
glucose levels over a period of time after eating a certain test meal. Measurements were
taken 15 minutes before the meal, immediately before (0 hours) and then at every half an
hour for the next two hours. Later, hourly readings were taken for the next four hours.
The measurements from time point 0 onward are denoted by y1, . . . , y9. The time points
are represented by the variable TIMEPT in the program. The experiment was repeated six
times with the meals taken at different times of the day, thus giving the six treatments
(represented by GROUP in the program). Any carryover effect of treatments was assumed
to be nonexistent. Data were obtained from Crowder and Hand (1990, p. 14); we have
replaced the two missing values in the data set by certain estimates.

To do any meaningful analysis, we must first determine the appropriate covariance struc-
ture for the errors. To begin with, an AR(1) structure seems a potential choice but the obser-
vations are not made at equal time intervals. In view of this, a Markov covariance structure
given by Σ = (σi j ), σi j = σ 2ρdi j , where di j = |ti − t j | is the time elapsed between i th and
j th repeated measures, can be used. We will therefore test the null hypothesis that the error
covariance structure is of the Markov type. As there are no other random effects (except
of course subjects on which repeated measures are taken) in the present context, the test
on the covariance structure for error is the same as that for the dependent variable. Con-
sequently, we will test for the Markov covariance structure after correcting for the fixed
effects present in the model, namely, the GROUP, TIMEPT and their interaction. In SAS,
the Markov structure is referred to as the Spatial power structure and is specified by the
option TYPE = SP(POW) (V BLE) where V BLE defines the variable taking values as
time points t1, . . . , tp .
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A SAS program for this test is presented in Program 6.1. First of all, the data on
y1, . . . , y9 at the nine time points should be arranged on a single variable y, at various
levels of the variable TIMEPT. This is done using the first part of the code presented in
Program 6.1. Output 6.1 follows.

/* Program 6.1 */

options ls =64 ps=45 nodate nonumber;
title1 ’Output 6.1’;
title2 ’Test for Markov Covariance Structure: Glucose Data’;
data a;
infile ’glucose.dat’ obs=36;
input id group$ before y1-y9;
run;
data c;
set a;
array t{9} y1-y9;
subj+1;
do timept=1 to 9;
y=t{timept};
if timept = 1 then realtime = 0;
if timept = 2 then realtime = .5;
if timept = 3 then realtime = 1;
if timept = 4 then realtime = 1.5;
if timept = 5 then realtime = 2;
if timept = 6 then realtime = 3;
if timept = 7 then realtime = 4;
if timept = 8 then realtime = 5;
if timept = 9 then realtime = 6;
output;
end;
drop y1-y9;
run;
proc mixed method=ml;
class subj group timept;
model y= group timept group*timept;
repeated/type=un subject=subj;
title3 ’Unstructured Covariance’;
run;
proc mixed method=ml;
class subj group timept;
model y=group timept group*timept;
repeated/type=sp(pow)(realtime) subject=subj;
title3 ’Markov Covariance’;
run;

Output 6.1 Output 6.1
Test for Markov Covariance Structure: Glucose Data

The MIXED Procedure

Unstructured Covariance
Model Fitting Information for Y

Description Value

Observations 324.0000
Log Likelihood -288.269
Akaike’s Information Criterion -333.269
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Schwarz’s Bayesian Criterion -418.336
-2 Log Likelihood 576.5388
Null Model LRT Chi-Square 211.7630
Null Model LRT DF 44.0000
Null Model LRT P-Value 0.0000

Markov Covariance
Model Fitting Information for Y

Description Value

Observations 324.0000
Log Likelihood -385.092
Akaike’s Information Criterion -387.092
Schwarz’s Bayesian Criterion -390.873
-2 Log Likelihood 770.1850
Null Model LRT Chi-Square 18.1168
Null Model LRT DF 1.0000
Null Model LRT P-Value 0.0000

Note that the variable REALTIME which is different from the variable TIMEPT, takes
values corresponding to the actual time elapsed. This information is needed in specifying
the covariance structure.

To compute the likelihood ratio L , the two likelihood functions are to be maximized
separately. This is done using the option METHOD = ML in the PROC MIXED state-
ment in the corresponding two executions. As explained earlier, the corresponding fixed
effects are to be specified in the MODEL statement. The options TYPE = UN and TYPE =
SP(POW)(REALTIME) are used for specifying the appropriate covariance structures used
in the calculations of the denominator and the numerator of L . The results of these two
runs of PROC MIXED are reported in Output 6.1.

Since

−2ln L =
[
−2ln max

H0
g(Σ|data)

]
−
[
−2ln max

unrestricted
g(Σ|data)

]
,

rather than working with the individual maximized likelihoods, it suffices to only know
-2 times their natural logarithm. Fortunately, these are reported as -2 Log Likelihood in
the output. Thus the observed value of the chi-square test statistic is χ2 = −2lnL =
770.1850 − 576.5388 = 193.6462. This test statistic follows a chi-square distribution with
degrees of freedom f = Null Model LRT df (Under H0) - Null Model LRT df (Unrestricted)
= 44 - 1 = 43.

This observed value of the test statistics is highly significant at any reasonable level
of significance (such as 5% or 1%) and hence the null hypothesis of Markov covariance
structure can be rejected.

Testing for Linear Structures As discussed earlier, a variance covariance matrix Σ is
said to have a linear structure if it can be written as, Σ = c1A1 + · · · + ckAk, for some
k and for some known matrices A1, . . . , Ak . The parameters c1, . . . , ck are unknown and
assumed to be functionally not related to each other, or can be reparametrized to do so.

There are a number of models and consequently a number of situations, where the vari-
ance covariance matrix has a linear structure. The hypothesis about such covariance struc-
tures can also be tested using the MIXED procedure. For this the option TYPE = LIN(k),
where k is the number of parameters in the linear structure can be used in the REPEATED
statement. However, the known matrices Ai corresponding to parameters ci , i = 1, . . . , k
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are to be specified separately in a data set. We will illustrate this using the cork data dis-
cussed extensively in the earlier chapters.

EXAMPLE 2 Cork Data, Testing Circular Structure for Measurements on a Tree We have already
provided PROC IML code to test the circulant covariance structure in Chapter 5. The ap-
proach here provides an alternative (although not universally applicable due to convergence
problems) approach. Due to the very nature of cork data, where the measurements on the
trees were taken along four directions namely, North, East, South and West, the assumption
of circular covariance structure seems to be a viable one. The variance covariance matrix,

Σ =




σ0 σ1 σ2 σ1
σ1 σ0 σ1 σ2
σ2 σ1 σ0 σ1
σ1 σ2 σ1 σ0




can be written either as

Σ = σ0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ σ1




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


+ σ2




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




= c1A1 + c2A2 + c3A3

or as

Σ = σ2




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


+ (σ1 − σ2)




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


+ (σ0 − σ1)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




= c∗
1A∗

1 + c∗
2A∗

2 + c∗
3A∗

3

among certain other choices. We will however use the first representation. Clearly, k = 3
and A1, A2 and A3 are known. The fact that these matrices are to be retrieved from another
data set titled CIRC has been specified in the option LDATA = CIRC in the REPEATED
statement. The PARMS statement is optional within the code but has been used to pro-
vide some initial guesses of the parameters σ0, σ1 and σ2 for the iterative process. Such a
specification is helpful and highly recommended to attain the convergence because often
during the iterations the parameters may be estimated by quantities which may violate the
required positive definiteness of the matrix �, thereby making the likelihood function un-
bounded and growing indefinitely. It may be pointed out that for the present example, the
convergence is not obtained unless the PARMS statement with appropriate initial values is
added.

Returning to the specification of matrices A1, A2 and A3, these are specified row by row
in the data set CIRC. The variable PARM taking values 1, 2 and 3, specifies which parame-
ter — first, second or third, that is, c1, c2 or c3 — does the particular matrix correspond to.
Accordingly, in the output, these parameters are referred to as LIN(1), LIN(2) and LIN(3)
respectively.

The program for this testing problem is shown in Program 6.2. The corresponding
output appears in Output 6.2. The chi-square test statistic χ2 = −2lnL = 811.1686 −
791.4164 = 19.7522 at degrees of freedom 9 − 2 = 7 is significant at any reasonable level
of significance. We therefore reject the hypothesis of circulant structure.

/* Program 6.2 */

options ls =64 ps=45 nodate nonumber;
title1 ’Output 6.2’;
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title2 ’Test for Linear Structure: Circulant for Cork Data’;
data cork;
infile ’cork.dat’;
input n e w s;
data cork1;
set cork;
array t{4} n e s w;
tree+1;
do dir = 1 to 4;
dir1 = dir;
y = t{dir};
output;
end;
drop n e s w;
run;
data circ;
input parm row col1-col4;
datalines;
1 1 1 0 0 0
1 2 0 1 0 0
1 3 0 0 1 0
1 4 0 0 0 1
2 1 0 1 0 1
2 2 1 0 1 0
2 3 0 1 0 1
2 4 1 0 1 0
3 1 0 0 1 0
3 2 0 0 0 1
3 3 1 0 0 0
3 4 0 1 0 0
;
proc mixed data =cork1 method = ml;
class tree dir;
model y =dir;
repeated/ type =un subject = tree;
title3 ’Unstructured Covariance’;
run;
proc mixed data = cork1 method = ml;
class tree dir;
model y = dir;
repeated/type = lin(3) ldata = circ subject = tree;
parms (190) (30) (70);
title3 ’Circulant’;
run;

Output 6.2 Output 6.2
Test for Linear Structure: Circulant for Cork Data

The MIXED Procedure

Unstructured Covariance
Model Fitting Information for Y

Description Value

Observations 112.0000
Log Likelihood -395.708
Akaike’s Information Criterion -405.708
Schwarz’s Bayesian Criterion -419.301
-2 Log Likelihood 791.4164



262 Applied Multivariate Statistics

Null Model LRT Chi-Square 150.0319
Null Model LRT DF 9.0000
Null Model LRT P-Value 0.0000

Circulant
Model Fitting Information for Y

Description Value

Observations 112.0000
Log Likelihood -405.584
Akaike’s Information Criterion -408.584
Schwarz’s Bayesian Criterion -412.662
-2 Log Likelihood 811.1686
PARMS Model LRT Chi-Square 78.0542
PARMS Model LRT DF 2.0000
PARMS Model LRT P-Value 0.0000

We have already emphasized the usefulness of specifying the initial guess(es) of the
parameters in the PARMS statement. In fact, in our experience, we have encountered many
data sets where despite our best efforts by specifying the good initial guesses, we could
not succeed in obtaining the convergence. Fortunately, in the case of circulant covariance
structure, we do have an alternative namely, that given in Program 5.4.

Prespecified Known Variance Covariance Matrix In many situations, it is often of
interest to test the hypothesis that the population variance covariance matrix is equal to
a given known positive definite matrix. This can be done using a combination of TYPE
= LIN(k) and NOITER options along with PARMS statement. The following example
illustrates the approach.

EXAMPLE 3 Quality Control for Car Door Panels, Warpage Data During the manufacturing process
in the automotive industry, an undesirable amount of warpage on car door panels is of-
ten observed. During a manufacturing process, warpage measurements are taken at three
different locations on the same car door panel. The three observations can be treated as re-
peated measures. The two sources of variation during the process are the variations within
and between the car door panels denoted respectively as σ 2

1 and σ 2
2 . Thus the variance co-

variance matrix of three measurement on the same panel will have a compound symmetric
structure given by,

Σ =



σ 2
1 + σ 2

2 σ 2
1 σ 2

1

σ 2
1 σ 2

1 + σ 2
2 σ 2

1

σ 2
1 σ 2

1 σ 2
1 + σ 2

2


 = σ 2

1 11′ + σ 2
2 I

For control chart purposes, it is believed that σ 2
1 = 1.0 and σ 2

2 = 0.1. Thus Σ = Σ0 =
11′ + (0.1)I is a known compound symmetric matrix. Periodically, checks are to be made
to see if the process is stable and that the variability of the process has not changed. Thus,
it is appropriate to test the hypothesis

Σ =

 1.1 1 1

1 1.1 1
1 1 1.1


 = 0.1


 1 0 0

0 1 0
0 0 1


+ 1.0


 1 1 1

1 1 1
1 1 1


 = Σ0.

Data on fifteen panels were collected for all three measurements and are reported as part
of Program 6.3. Clearly, k = 2. Thus, we use the option TYPE = LIN(2) in the REPEATED
statement. As in the previous example, the matrices A1 = 11′ and A2 = I are specified
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in the data set MATRIX. We use the PARMS statement with initial guesses for c1 and
c2 as 0.1 and 1.0 respectively but allow no iterations for maximum likelihood estimation
using the option NOITER. Consequently, no iterations will take place and the matrix Σ will
remain as Σ0 = c1A1 + c2A2 with c1 = 0.1 and c2 = 1.0 for the computation of likelihood.

However, in this particular context, we may also note that regardless of any shifts in
the process variances, the compound symmetric structure of Σ will still be intact. Thus, to
maximize the denominator of L , one should still use the compound symmetric structure
Σ = c1A1 +c2A2, with c1 and c2 unknown. Therefore, we must use the TYPE =CS option
rather than TYPE =UN in this case as has been done in Program 6.3. Output 6.3 follows.

/* Program 6.3 */

options ls =64 ps=45 nodate nonumber;
title1 ’Output 6.3’;
title2 ’Test for \Sigma =\Sigma_0: Warpage Data’;
data warpage;
input y1 y2 y3;
lines;
3.3 3.7 3.8
4.1 4.3 4.9
2.1 1.9 2.0
1.8 1.4 2.2
3.9 3.9 3.7
2.5 2.7 2.5
4.4 3.9 4.0
3.3 3.7 4.0
4.4 3.8 4.2
1.1 1.7 1.5
1.8 1.4 1.8
4.4 4.8 4.3
3.4 3.4 3.9
2.9 2.5 2.4
3.6 3.1 3.8
;
data warpage1;
set warpage;
array t{3} y1-y3;
panel+1;
do location = 1 to 3;
y = t{location};
output;
end;
drop y1-y3;
run;
data matrix;
input parm row col1-col3;
datalines;
1 1 1 1 1
1 2 1 1 1
1 3 1 1 1
2 1 1 0 0
2 2 0 1 0
2 3 0 0 1
;
proc mixed data =warpage1 method = ml;
class panel location ;
model y =location ;
repeated/ type =cs subject = panel;
title3 ’Compound Symmetry’;
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run;
proc mixed data =warpage1 method = ml;
class panel location ;
model y =location ;
parms (1) (.1)/noiter;
repeated/ type =lin(2) ldata =matrix subject = panel;
title3 ’Known Fixed \Sigma_0’;
run;

Output 6.3 Output 6.3
Test for \Sigma =\Sigma_0: Warpage Data

The MIXED Procedure

Compound Symmetry
Model Fitting Information for Y

Description Value

Observations 45.0000
Log Likelihood -32.9845
Akaike’s Information Criterion -34.9845
Schwarz’s Bayesian Criterion -36.7911
-2 Log Likelihood 65.9690
Null Model LRT Chi-Square 65.2826
Null Model LRT DF 1.0000

Known Fixed \Sigma_0
Model Fitting Information for Y

Description Value

Observations 45.0000
Log Likelihood -33.6813
Akaike’s Information Criterion -35.6813
Schwarz’s Bayesian Criterion -37.4880
-2 Log Likelihood 67.3627

Test for \Sigma =\Sigma_0: Warpage Data

From Output 6.3, it is evident that −2lnL = 67.3627−65.9690 = 1.3937. This follows
a chi-square distribution with degrees of freedom equal to the difference between the Null
Model LRT DF under two scenarios. Since no parameters have been estimated when Σ has
been specified as Σ0, the degrees of freedom for our χ2 test statistics obtained from the
likelihood ratio is 1. Since the observed value of 1.3937 is quite small and smaller than the
χ2 cut off point at any reasonable level of significance, we do not reject the null hypothesis
in this case and claim that the two components of the process variability are unchanged.

Finally a few comments on choosing a covariance structure among several competing
ones are in order. It is possible that for two different covariance structures, when LR tests
are applied, they deem both covariance structures as acceptable. Which of the two should
one choose? While no conclusive well defined preference policy can be laid out, certain
measures can still be used to evaluate such preferences. These are Akaike’s and Schwartz’s
information criteria defined earlier and popularly referred to as AIC and BIC respectively.
The larger value of these criteria indicates a higher degree of preference. It may however
be remarked that recent simulation studies by Keselman, Algina, Kowalchuk and Wolfin-
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ger (1998) indicate that both of these methods often fail to identify the true covariance
structure, although AIC performs a little better than BIC in this respect.

Assuming no random effects, the tests presented above require that the fixed effect part
of the model remain the same while maximizing the two likelihoods. However, estimating
the appropriate fixed effect part of the model is itself a step in modeling and thus the fixed
effects will seldom be known a priori. Diggle, Liang and Zeger (1995) suggest that to
determine the appropriate covariance structure, one may use the saturated model. Once an
appropriate covariance structure has been determined, the modeling of fixed effects and
its reduction to a more parsimoneous model can be done under the selected covariance
structure.

As an ad-hoc procedure, the above two stage procedure can also be applied when the
model contains some random effects as well. In this case, for the selection of an appropriate
covariance structure, residuals instead of data on response variables should be used. These
residuals may be obtained by initially fitting the saturated fixed and random effect parts of
the model under the spherical covariance structure. Once these are obtained, two separate
runs (under H0 and unrestricted respectively) of MIXED procedure as detailed earlier will
enable one to test the hypothesis on the error covariance structure.

6.5 Models with Only Fixed Effects

Consider the following fixed effects model

y�pi ×1 = X�pi ×qβq×1 + ε�pi ×1, (6.6)

with D(ε) = σ 2R = σ 2 diag(R1, . . . , Rn) = σ 2V, which is a special case of the model
in Equation 6.2 with ν = 0. We have considered this type of model in Chapter 5 but the
variance covariance matrix of the error was assumed to be one of the two extremes, namely,
the compound symmetry and completely unstructured. In the following two subsections,
we describe two examples of the above fixed effects model in the context of repeated
measures. The model for the first example differs from the model used for that data in
Chapter 5, only in its error covariance structure. As we will see in the following analysis,
such a difference, however, affects the entire analysis including the method of estimation
and the approach taken for the hypothesis testing.

6.5.1 Repeated Measures with AR(1) Structure

The split plot model given in Equation 5.11, viz.,

yi ju = µ + αi + β j + (αβ)i j + δiu + εi ju,

has two random effects, namely, δiu and εi ju , i = 1, . . . , k, j = 1, . . . , p, u = 1, . . . , ni ,

corresponding to the whole plot and subplot errors. Under the assumptions stated there,
this in turn leads to the variance covariance matrix of the repeated observations on the uth

subject of the i thgroup, that is of yiu = (yi1u, yi2u, . . . , yipu)′ as

�subject =




σ 2
δ + σ 2 σ 2

δ · · · σ 2
δ

σ 2
δ σ 2

δ + δ2 · · · σ 2
δ

...
... · · · ...

σ 2
δ σ 2

δ · · · σ 2
δ + σ 2


 = 1

σ 2
δ + σ 2




1 ρ · · · ρ

ρ 1 · · · ρ
...

... · · · ...

ρ ρ · · · 1


 ,
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where ρ = σ 2
δ /(σ 2

δ + σ 2). The above matrix has a compound symmetry covariance struc-
ture, a structure which was convenient for the analysis as discussed in Chapter 5. However
since (yi1u, yi2u, . . . , yipu)′ are the measurements over time on the same subject, a more
realistic covariance structure may be that of the first order autoregressive process, viz.,

�subject = σ 2




1 ρ ρ2 · · · ρ p−1

ρ 1 ρ · · · ρ p−2

...
...

... · · · ...

ρ p−1 ρ p−2 ρ p−3 · · · 1




or possibly some other suitable structures such as the Toeplitz. The unstructured covari-
ance can also be used. Thus instead of the split plot model with compound symmmetric
structure, the model,

yi ju = µ + αi + β j + (αβ)i j + εi ju, (6.7)

where εi ju now represents the combined random error of the whole as well as the sub-
plot with an assumed suitable covariance structure, such as the first order autoregressive
(AR(1)) structure can be viewed as more accommodating. Of course the model in Equa-
tion 5.11 is a special case of this model when εi ju can be expressed additively in terms of
two identifiable components δiu and ε∗

i ju representing the whole plot and sub-plot errors
respectively. We note that the model in Equation 6.7 can be expressed in matrix notation
as the model in Equation 6.6 with

σ 2V = σ 2R = diag(Σsubject , . . . ,Σsubject ).

Now we will illustrate the analysis of the model in Equation 6.6 under an autoregres-
sive error of order one, commonly known as AR(1) using the heart rate data discussed in
Chapter 5. Without presenting any details or corresponding output, it may be mentioned
that LRT to test the AR(1) covariance structure for this data set supports this assumption.
The chi-square test statistic corresponding to LRT in this case is χ2 = 6.8954 on 8 degrees
of freedom which is less than the corresponding 5% cutoff point of 15.51.

EXAMPLE 4 Heart Rate Data (continued) These data have been previously analyzed using both the
multivariate and univariate methods discussed in Chapter 5. To reanalyze the data under
AR(1) covariance structure and the general linear model set up, we first need to arrange all
repeated measures as the values of a single dependent variable observed at various levels of
the longitudinal variable TIME. This is done using the following code, included in Program
6.4.

data split;
set heart;
array t{4} y1-y4;
subject +1;
do time =1 to 4;
y=t{time};
output;
end;
drop y1-y4;
run;

The SET statement creates a new data set named SPLIT by reading observations from
the data set HEART. The new variable Y is defined as taking values Y1, Y2, Y3, and Y4
corresponding to the values 1, 2, 3, and 4 of the variable TIME respectively. This is done by
first defining a 4 by 1 array T containing data on Y1, Y2, Y3, and Y4 and then transferring
the values in the array T to the variable Y within a DO loop which goes through 4 iterations
(TIME = 1 to 4) for every value of SUBJECT.
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Under the model given in Equation 6.7 with AR(1) covariance structure for εiu =
(εi ju, . . . , εi pu)′, let αi represent the treatment (drug) effect, β j the time effect, and (αβ)i j

the DRUG*TIME interaction. The error subvectors εiu, i = 1, . . . , 3, u = 1, . . . , 8, indi-
vidually follow independent and identical AR(1) processes. The statements given in Pro-
gram 6.4 fit the model and perform the subsequent analysis. The results appear in Output
6.4.

/* Program 6.4 */

options ls=64 ps=45 nodate nonumber;
title1 ’ Output 6.4’;
title2 ’Analysis of Heart Rate Data’;
data heart;
infile ’heart.dat’;
input drug $ y1 y2 y3 y4;

proc glm data=heart;
class drug;
model y1-y4=drug/nouni;
repeated time 4;
run;
data split;
set heart;
array t{4} y1-y4;
subject+1;
do time=1 to 4;
y=t{time};
output;
end;
drop y1-y4;
run;
* AR(1) Covariance Structure;
proc mixed data = split covtest method = reml;
class drug subject time;
model y = drug time time*drug;
repeated /type = ar(1) subject = subject r ;
title3 ’AR(1) Covariance Structure’;
run;
*Compound Symmetry Structure;
proc mixed data = split covtest method = reml;
class drug subject time;
model y = drug time time*drug;
repeated /type = cs subject = subject r ;
title3 ’Compound Symmetry Structure’;
*Unstructured Covariance;
proc mixed data = split covtest method = reml;
class drug subject time;
model y = drug time time*drug;
repeated /type = un subject = subject r ;
title3 ’Unstructured Covariance’;
run;

In general, the MODEL statement in the MIXED procedure is similar to the MODEL
statement in the GLM procedure, except for the fact that only fixed effects are to be listed
on the right-hand side of the MODEL statement. However, a very different set of options is
available for the analysis using PROC MIXED. For example, the option METHOD=REML
specifies that the restricted maximum likelihood estimation procedure should be used. The
option COVTEST requests Wald’s test for the parameters of variance covariance matrix.
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For the first set of statements in Program 6.4 these parameters are the error variance σ 2

and the autocorrelation ρ.

The covariance structure of the error is specified in the REPEATED statement. The
SUBJECT = option specifies the independent random blocks and accordingly it defines the
way the block diagonal matrix for all the errors is created. For example in our heart rate
data for each of the twenty-four independent subjects there are four repeated measures.
Hence the variance covariance matrix of the error vector ε is a diagonal matrix of twenty
four blocks each of size 4 by 4, namely diag(Σsubject , . . . ,Σsubject ) where the 4 by 4
matrix �subject has an AR(1) covariance structure,

�subject = σ 2




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


 ,

and SAS provides an estimate of Σsubject using the estimation procedure indicated in the
METHOD = option.

Output 6.4 Output 6.4
Analysis of Heart Rate Data

The MIXED Procedure
AR(1) Covariance Structure

Class Level Information

Class Levels Values

DRUG 3 ax23 bww9 control
SUBJECT 24 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24

TIME 4 1 2 3 4

REML Estimation Iteration History

Iteration Evaluations Objective Criterion

0 1 403.36154087
1 2 330.03350930 0.00002071
2 1 330.03005861 0.00000000

Convergence criteria met.

R Matrix for SUBJECT 1

Row COL1 COL2 COL3 COL4

1 32.28611617 26.52424845 21.79065925 17.90183919
2 26.52424845 32.28611617 26.52424845 21.79065925
3 21.79065925 26.52424845 32.28611617 26.52424845
4 17.90183919 21.79065925 26.52424845 32.28611617
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Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate Std Error Z Pr > |Z|

AR(1) SUBJECT 0.82153729 0.04957930 16.57 0.0001
Residual 32.28611617 7.85162497 4.11 0.0001

Model Fitting Information for Y

Description Value

Observations 96.0000
Res Log Likelihood -242.206
Akaike’s Information Criterion -244.206
Schwarz’s Bayesian Criterion -246.637
-2 Res Log Likelihood 484.4117
Null Model LRT Chi-Square 73.3315
Null Model LRT DF 1.0000
Null Model LRT P-Value 0.0000

AR(1) Covariance Structure
Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

DRUG 2 21 6.39 0.0068
TIME 3 63 15.85 0.0001
DRUG*TIME 6 63 13.34 0.0001

Compound Symmetry Structure
Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

DRUG 2 21 5.92 0.0092
TIME 3 63 12.68 0.0001
DRUG*TIME 6 63 12.00 0.0001

Unstructured Covariance
Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

DRUG 2 21 5.92 0.0092
TIME 3 21 15.82 0.0001
DRUG*TIME 6 21 21.91 0.0001

As shown in Output 6.4, for this data set the restricted maximum likelihood (REML)
procedure converged in just two iterations. The REML estimate of �subject is �̂subject

(identified as the R matrix in SAS output) and is given by

�̂subject =




32.2861 26.5242 21.7907 17.9018
26.5242 32.2861 26.5242 21.7907
21.7907 26.5242 32.2861 26.5242
17.9018 21.7907 26.5242 32.2861


 .
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The estimate of σ 2 is σ̂ 2 = 32.2861 and that of the AR(1) correlation parameter ρ is
ρ̂ = 0.8215. The respective asymptotic standard errors are ŝe(σ̂ 2) = 7.8516 and ŝe(ρ̂) =
0.0496.

The tests for fixed effects, namely the variables DRUG and TIME, and TIME*DRUG,
are shown next. The approximate F tests indicate that the interaction as well as DRUG and
TIME effects are significant. For example, the TIME*DRUG interaction effect has the F
statistic value 13.34 with 6 and 63 degrees of freedom and a p value 0.0001.

Suppose the chi-square test is used (program-output not shown) by specifying the
CHISQ option in the MODEL statement, and the maximum likelihood estimation is im-
plemented by using the option METHOD=ML in PROC MIXED statement. Then the
chi-square statistic for testing TIME*DRUG interaction effect will have a chi-square
statistic value 91.49 with 6 degrees of freedom and a p value 0.0001. The conclusions here
are consistent with those observed using the mutivariate and univariate methods discussed
in Chapter 5.

The univariate split-plot analysis under the model given in Equation 5.11 can be per-
formed by adopting the option TYPE=CS in the REPEATED statement. The general (un-
structured) covariance structure can also be adopted by using the option TYPE=UN. These
options are also used in Program 6.4. The corresponding tests on fixed effects are presented
in Output 6.4 for a comparison. A multivariate approach can also be taken as in Chapter 5
using PROC GLM. Of course, the tests used by PROC MIXED are different from mul-
tivariate tests. For example, for testing the TIME*DRUG interaction, the exact (for this
example) F test corresponding to Wilks’ � has the F statistic value 12.7376 with 6 and
38 degrees of freedom and a p value 0.0001, whereas the approximate F test in MIXED
procedure has an F statistic value of 21.91 with 6 and 21 degrees of freedom and a p value
0.0001. The conclusions are however the same.

A few brief comments about the preference for the covariance structure are in order. To
choose a covariance structure among the three used here, we may look at AIC and BIC
values produced in the output of PROC MIXED. These are reported in the following table.

TABLE 6.1 Values of Various Information Criteria: Heart Data

Covariance AI C B I C

AR(1) −244.206 −246.637

C S −245.917 −248.348

U N −248.758 −260.912

Since the values of AIC and BIC are both maximum for the AR(1) structure, this struc-
ture seems to be most appropriate among the choices considered in the above table.

6.5.2 Unbalanced and Unequally Spaced Data

Unbalanced and unequally spaced data occur in practice due to many factors. These data
are especially common in clinical experiments where patients reschedule their appoint-
ments and/or drop out. Additionally, many consumer preference surveys, where two or
more groups of consumers are asked to try out the products over time, and then report their
preferences will also yield such data. The techniques illustrated here are useful when there
is a reason to believe that the dropouts are fairly random. In cases, when there is some
nonrandom assignable cause for the dropouts, the techniques given here are not applicable.
See Little and Rubin (1987) for details on appropriate techniques for such data sets.

EXAMPLE 5 Fitting Markov Structure, Audiology Data The data are the percentage of correct scores
on a sentence hearing test administered to two groups of subjects wearing two different
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cochlear implant types denoted by A and B respectively. There are 19 subjects in group
A and 16 subjects in group B. The hearing tests are administered 1, 9, 18, and 30 months
after the implantation of the devices. The objective of the study is (i) to determine if there
is any difference between the two cochlear implants and also (ii) to determine the average
improvement curves as functions of the length of time since implantation. The raw data
have several missing values and are observed at unequally spaced time points.

Suppose we decide to fit two different quadratic functions for different groups, as func-
tions of time since implantation, for the scores on the hearing tests. For the uth individual
in the i th group, i = 1, 2, we consider the following model relating the improvement as a
function of TIME,

yi(time)u = β0 + β0i + β1time + β1i time + β2time2 + β2i time2 + εiu

time = t1, t2, t3, t4; i = 1, 2; u = 1, . . . , ni , n1 = 19, n2 = 16. We assume that εiu are
all independently distributed as N (0, σ 2), β0i for i = 1, 2; u = 1, . . . , ni . The coefficients
β1i and β2i , i = 1, 2 allow the curves for the two groups to be different in their linear and
quadratic time components. Thus corresponding terms in Program 6.5 represent the linear
and quadratic interactions of TIME with the group effect GP. We also assume that the
variance covariance matrix of the piu repeated measurements, collected on a given subject
over time since the implantation of the hearing device, is given by

σ 2Riu = σ 2




1 ρ t2−t1 ρ t3−t1 ρ t4−t1

ρ t2−t1 1 ρ t3−t2 ρ t4−t2

ρ t3−t1 ρ t3−t2 1 ρ t4−t3

ρ t4−t1 ρ t4−t2 ρ t4−t3 1


 ,

where for our data t1 = 1, t2 = 9, t3 = 18, and t4 = 30. The above covariance structure
is often referred to as the Markov covariance structure and is especially useful in modeling
spatial correlations. Since this covariance structure involves the powers of the parameter ρ,
it is also referred to as the spatial power covariance structure. To fit this covariance structure
the appropriate TYPE = option in the REPEATED statement is SP(POW)(TIME1), where
TIME1 is the variable taking values as the actual time points for which the data were
observed (in our example these are 1, 9, 18, and 30 respectively). Program 6.5 is used to
analyze the audiology data. Output 6.5 follows.

/* Program 6.5 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 6.5’;
data aud;
infile ’audiology.dat’;
input gp$ y1-y4;
data aud_n;
set aud;
array t{4} y1-y4;
subject+1;
do i=1 to 4;
if (i=1) then time=1;
if (i=2) then time=9;
if (i=3) then time=18;
if (i=4) then time=30;
time1=time;
y=t{i};
output;
end;
drop i y1-y4;
run;
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title2 ’Fit Different Quadratic Curves for Groups A and B’;
proc mixed data=aud_n method=reml covtest;
class gp subject;
model y= gp time time*gp time*time time*time*gp/htype=1;
repeated/type=sp(pow)(time1) subject=subject r;
run;
title2 ’Common Quadratic Term for Groups A and B’;
proc mixed data=aud_n method=reml covtest;
class gp subject;
model y= gp time time*gp time*time;
repeated/type=sp(pow)(time1) subject=subject r;
run;
title2 ’Common Linear and Quadratic Terms for Groups A and B’;
proc mixed data=aud_n method=reml covtest;
class gp subject;
model y= gp time time*time/s;
repeated/type=sp(pow)(time1) subject=subject r;
run;
title2 ’Common Quadratic Curve for Groups A and B’;
proc mixed data=aud_n method=reml covtest;
class gp subject;
model y= time time*time/s;
repeated/type=sp(pow)(time1) subject=subject r;
run;

Some explanation is needed about the MODEL statements used in Program 6.5. Since
for each of the two groups (GP) the two models will have different coefficients, we in-
troduce a CLASS variable GP and incorporate that in the model along with linear and
quadratic components of the interaction with TIME. These are denoted by GP, TIME*GP,
and TIME*TIME*GP respectively. If any of these are found to be statistically not signifi-
cant the corresponding terms can perhaps be dropped in the process of finalizing the model.
Further, the curves for the two groups will be deemed parallel if both of the interactions
TIME*GP and TIME*TIME*GP are zero. Additionally, if a common quadratic curve can
be fitted it will amount to saying that the two curves are identical and the GP effect is also
absent.

The acceptance of the null hypothesis

H (1)
0 : β2i = 0, i = 1, 2

indicates that a common quadratic term can be fit for the two groups. Since the polyno-
mial growth curves are fit in a sequence, TYPE I sums of squares can be utilized to test
this hypothesis. The SAS code for testing this hypothesis is provided in the first MODEL
statement in Program 6.5. From Output 6.5, we see that the approximate p value computed
for the F statistic using the TYPE I sum of squares is 0.8508. Under H0, F follows an
F-distribution with (1, 71) degrees of freedom. The observed value of F = 0.8508 is not
significant at any reasonable level of significance. Hence we do not reject H (1)

0 . Thus a
common quadratic term can be used for the two groups.

Given that the two groups have common quadratic terms, acceptance of the null hypoth-
esis

H (2)
0 : β1i = 0, i = 1, 2

implies that the two groups have parallel quadratic improvement curves. That is, these two
growth curves are possibly different only in their intercept terms. The intercept for the two
groups are respectively β0 + β01 and β0 + β02. The second MODEL statement in Program
6.5 tests this hypothesis which has been formally expressed as H (2)

0 . From Output 6.5, the
p value for test is 0.6649. Thus H (2)

0 is not rejected.
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Finally, not rejecting the hypothesis

H (3)
0 : β0i = 0, i = 1, 2

implies that a common quadratic improvement curve fits both the groups. The third
MODEL statement in Program 6.5 tests H (3)

0 . Since the p value for testing H (3)
0 , given

that the quadratic curves are parallel, is 0.1514 this hypothesis is not rejected as well.

Output 6.5 Output 6.5
Fit Different Quadratic Terms for Groups A and B

Tests of Fixed Effects

Source NDF DDF Type I F Pr > F

GP 1 33 2.23 0.1453
TIME 1 71 64.20 0.0001
TIME*GP 1 71 0.20 0.6533
TIME*TIME 1 71 33.43 0.0001
TIME*TIME*GP 1 71 0.04 0.8508

Common Quadratic Term for Groups A and B
Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

GP 1 33 1.32 0.2581
TIME 1 72 85.48 0.0001
TIME*GP 1 72 0.19 0.6649
TIME*TIME 1 72 33.85 0.0001

Common Linear and Quadratic Terms for Groups A and B
Solution for Fixed Effects

Effect GP Estimate Std Error DF t

INTERCEPT 15.36207906 5.81203232 33 2.64
GP a 11.05462289 7.52633962 33 1.47
GP b 0.00000000 . . .
TIME 2.87736050 0.30970055 73 9.29
TIME*TIME -0.05748638 0.00983687 73 -5.84

Solution for Fixed Effects

Pr > |t|

0.0125
0.1514

.
0.0001
0.0001
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Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

GP 1 33 2.16 0.1514
TIME 1 73 86.32 0.0001
TIME*TIME 1 73 34.15 0.0001

Common Quadratic Curve for Groups A and B
Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t|

INTERCEPT 21.32088661 4.20808393 34 5.07 0.0001
TIME 2.88426715 0.31011367 73 9.30 0.0001
TIME*TIME -0.05773884 0.00984910 73 -5.86 0.0001

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

TIME 1 73 86.50 0.0001
TIME*TIME 1 73 34.37 0.0001

Having eliminated the possibility of any differences between the two model we fit a
common quadratic curve for the two groups using the last MODEL statement of Program
6.5. As seen from the bottom part of Output 6.5, the common quadratic curve ŷ = β̂0 +
β̂1 × time + β̂2 × time2 fits well to the data, where β̂0 = 21.3209, β̂1 = 2.8843 and
β̂2 = −0.0577. Since β̂1 is positive and β̂2 is negative, this curve which, representing
the effectiveness of implantation over a period of time, increases initially, stabilizes, and
slowly decreases after a period of time.

6.6 Analysis in the Presence of Covariates

In many biological, medical and industrial applications, we often come across repeated
measures data along with covariates that influence the response variable. It is important to
account for the effects of such covariates. In clinical trials, the baseline measurements can
be thought of as the useful covariates for analyzing response patterns at successive visits.
For example, in therapies for the treatment of chronic stable angina, treadmill walking time
(a covariate) is recorded just before the administration of a dose, and then at some post-
dose times. The effectiveness of the visit doses is evaluated relative to the corresponding
baseline walking times (Patel, 1986). Here the covariate information available for each
person remains unchanged during the trial.

In Chapter 5 (Section 5.5) two types of covariates, viz. fixed over time and varying
over time, were discussed and the analyses of repeated measures data with the covariates
fixed over time were shown using both the multivariate and univariate approaches. These
approaches make the assumption of either no covariance structure whatsoever (for mul-
tivariate approach) or the simplistic assumption of compound symmetry (for univariate
approach). Both of these approaches fail when the correlation structure is not one of the
two extremes or when the data are unbalanced along the time axis. We will now explore
the analysis of covariance problem in the presence of various other covariance structures.
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6.6.1 Covariates Fixed Over Time

Let yi ju represent the observed value of the response variable on the uth subject from the
i th treatment group at the j th occasion and xiu be an observed value of a covariate which
may depend on the subject but does not depend on time. As a first step towards the analysis
consider the model

yi ju = µ + αi + β j + (αβ)i j + λxiu + λ j xiu + δi xiu + ηi j xiu + εi ju,

j = 1, . . . , piu, u = 1, . . . , ni , i = 1, . . . , k

where εiu = (εi1u, . . . , εi piu u)′ are independently distributed as piu-variate normal with
mean vector zero and variance covariance matrix σ 2Riu . If needed, these variance co-
variance matrices can be allowed to be different for different treatment groups, but their
apparent dependence on u (that is, Riu depending on the uth subject) is only due to the fact
that the dimensions of Riu, may be different for different subjects. Let us assume for the
moment that they do not differ for different groups. Then the matrices Riu themselves will
not be completely different, and will just be submatrices of a matrix, say Rmax , which cor-
responds to the (possibly hypothetical) subject with repeated measures at all time points.
For example, suppose corresponding to this possibly hypothetical subject the error vector
has a compound symmetric structure. That is, Rmax = (1 − ρ)I + ρ11′. Then any matrix
Riu will be a submatrix of this and will (still) depend on only two parameters.

The model considered above may appear rather general and complex. However, to ac-
count for various effects we do need to consider this model, at least in the initial stages of
model building. We will first provide a brief explanation of the terms in the model. The
term αi represents the effect of the treatment group, β j the effect of time, (αβ)i j the inter-
action effect between the variables, the treatment and time. The term λxiu is considered to
represent the common slope λ of the line relating covariate to the response variable. The
terms λ j xiu and δi xiu respectively represent different slopes at different occasions and dif-
ferent slopes at different treatment groups respectively. Finally the term ηi j xiu represents
the interaction effects between the variables representing the treatment group, the time or
occasion, and the covariate. In other words, the statistical significance of the term ηi j im-
plies that the slopes of the lines relating xiu to yi ju are different for different levels of the
treatment and time.

Noting D(yiu) = σ 2Riu, where yiu = (yi1u, . . . , yipiuu)′, we can express the above
model as

y = Xβ + ε,

where y = (y′
11, . . . , y′

1n1
, . . . , y′

k1, . . . , y′
knk

)′, and ε is similarly defined, β = (µ,

α1, . . . , αk , β1, . . . ..)
′ is the vector of the parameters in the model, X is the appropri-

ately chosen design matrix, and ε ∼ Nn(0, σ 2R), where R = diag(R11, . . . , Rknk ), and
n = ∑k

i=1 ni . This model is a special case of the general linear mixed effects model when
there are no random effects. Thus, the testing of linear hypotheses of the form H0 : Lβ = 0
for specific choices of matrix L can be easily carried out by appealing to the likelihood
theory described earlier. If appropriate, a compound symmetric or any other alternative
structures can be selected for Riu . To illustrate the analysis under this model we once again
analyze the diabetic patients study data considered in Chapter 5, but with the aid of PROC
MIXED.

EXAMPLE 6 Subject-specific Covariates, Diabetic Patients Study Data Three groups of diabetic pa-
tients, without complications (DINOCOM), with hypertension (DIHYPER), and with pos-
tural hypotension (DIHYPOT) respectively and a control (CONTROL) group of healthy
subjects were asked to perform a small physical task at time zero. A particular response
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was observed at times −30, −1, 1, 2, 3, 4, 5, 6, 8, 10, 12, and 15 minutes. The responses
at ten time points starting from 1 onward are denoted by Y1 through Y10 respectively.
The corresponding subject specific covariates representing pre-performance responses (at
times −30 and −1) are denoted by X1 and X2 and are used as covariates. The objective
is to assess the group differences after correcting for the effects of covariates. We analyze
these data using Program 6.6 under compound symmetry and AR(1) covariance structures.
The corresponding output is presented in Output 6.6.

/* Program 6.6 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 6.6’;
data task;
infile ’task.dat’;
input group$ x1 x2 y1-y10;
data a;
set task;
array t{10} y1-y10;
subject+1;
do time=1 to 10;
y=t{time};
output;
end;
drop y1-y10;
run;
proc mixed data=a method=reml covtest;
classes group time subject;
model y=group time time*group x1 x2 time*x1 time*x2 group*x1

group*x2 time*group*x1 time*group*x2;
repeated /type=cs subject=subject r;
title2 ’Analysis Under CS Covariance Structure’;
run;
proc mixed data=a method=reml covtest;
classes group time subject;
model y=group time time*group x1 x2 time*x1 time*x2 group*x1

group*x2 time*group*x1 time*group*x2;
repeated /type=ar(1) subject=subject r;
title2 ’Analysis Under AR(1) Covariance Structure’;
run;

Output 6.6 Output 6.6
Analysis Under CS Covariance Structure

Model Fitting Information for Y

Description Value

Observations 247.0000
Res Log Likelihood -365.546
Akaike’s Information Criterion -367.546
Schwarz’s Bayesian Criterion -370.390
-2 Res Log Likelihood 731.0924
Null Model LRT Chi-Square 32.5465
Null Model LRT DF 1.0000
Null Model LRT P-Value 0.0000
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Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

GROUP 3 14 2.58 0.0953
TIME 9 113 2.08 0.0373
GROUP*TIME 27 113 5.51 0.0001
X1 1 14 3.89 0.0685
X2 1 14 240.25 0.0001
X1*TIME 9 113 1.53 0.1473
X2*TIME 9 113 13.87 0.0001
X1*GROUP 3 14 1.58 0.2390
X2*GROUP 3 14 14.16 0.0002
X1*GROUP*TIME 27 113 1.80 0.0178
X2*GROUP*TIME 27 113 20.91 0.0001

Analysis Under AR(1) Covariance Structure
Model Fitting Information for Y

Description Value

Observations 247.0000
Res Log Likelihood -350.808
Akaike’s Information Criterion -352.808
Schwarz’s Bayesian Criterion -355.653
-2 Res Log Likelihood 701.6169
Null Model LRT Chi-Square 62.0220
Null Model LRT DF 1.0000
Null Model LRT P-Value 0.0000

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

GROUP 3 14 2.95 0.0692
TIME 9 113 1.08 0.3859
GROUP*TIME 27 113 3.52 0.0001
X1 1 14 4.75 0.0469
X2 1 14 274.13 0.0001
X1*TIME 9 113 1.61 0.1218
X2*TIME 9 113 8.51 0.0001
X1*GROUP 3 14 1.62 0.2290
X2*GROUP 3 14 15.57 0.0001
X1*GROUP*TIME 27 113 1.05 0.4175
X2*GROUP*TIME 27 113 10.64 0.0001

From Output 6.6, we observe that under the TYPE=CS option, many interactions
are found to be statistically significant. Specifically, at 5% level of significance, the in-
teraction effects of X1*GROUP*TIME, X2*GROUP*TIME, X2*GROUP, X2*TIME,
GROUP*TIME and the effects of TIME and X2 are significant.

Suppose instead of the compound symmetry covariance structure we use the autoregres-
sive (AR(1)) structure for the error covariance. When the analysis is performed using the
TYPE=AR(1) option, the TIME, X1*TIME, and X1*GROUP*TIME effects were found
to be statistically not significant. Additionally the model appears to be more parsimonious
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in the sense that fewer significant effects are observed. This reveals that AR(1) structure
was perhaps more appropriate and that in the analysis under CS structure many interactions
with TIME were declared as statistically significant possibly due to misspecified covari-
ance structure. The fact that AR(1) is more suitable is also evident from comparatively
larger AIC(= −352.808) and BIC(= −355.653) values.

Assuming that the AR(1) structure is a reasonable choice for the variance covariance
matrix of the error, we may conclude that the covariate X1 does not play any significant
role in the model. Since the interaction between the covariate X2 and GROUP*TIME is
significant (p value = 0.0001) we suggest including all the terms in the model except of
course those involving the covariate X1.

6.6.2 Time Varying Covariates

In many repeated measures studies, the covariates themselves may vary over time and so
in addition to being subject specific, they may also be time specific. In the medical field we
often come across repeated measures data with covariates that influence the response vari-
able at every time period where the measurements are made. For example, the effectiveness
of a drug in the treatment of arteriosclerosis is probably influenced by many factors such as
diet, exercise and smoking (Patel, 1986) which can be viewed as the covariates. In this sit-
uation the value of a covariate is being measured at each time point along with the response
variable leading to what are termed as the time varying covariates.

Assume for simplicity that there is only one covariate, represented by x . The data in
this case can be represented by (yi ju , xi ju), j = 1, . . . , p (time periods), u = 1, . . . , ni ,
i = 1, . . . , k (treatment groups). We also assume that there are no missing data for any
time point. Then the following multivariate approach has been suggested by Patel (1986).

The multivariate approach Let yiu be a p × 1 vector of responses and xiu be p × 1
vector of the corresponding values of the covariate, taken over p occasions on the j th

individual. Define Yn×p = (y11 : . . . : y1n1 : y21 : . . . : y2n2 : . . . : yknk )
′, n = ∑k

i=1 ni

and Xn×p = (x11, : . . . : x1n1 : x21 : . . . : x2n2 : . . . : xknk )
′. Then consider the following

model similar (but not the same) as that in Equation 4.7,

Yn×p = An×mξm×p + Xn×pΓp×p + En×p. (6.8)

Here A is a design matrix, ξ is a matrix of unknown parameters, Γ is a diagonal matrix with
the unknown diagonal elements, γ1, . . . , γp , representing the slopes of the line relating the
covariate and the response variable at the time points 1, . . . , p respectively. The matrix
E is an n × p error matrix, rows of which are assumed to be independently distributed
with a common multivariate normal distribution that has a zero mean vector and a p × p
covariance matrix V. Note that the model (6.8) is still different from the usual multivariate
analysis of covariance model discussed in Chapter 4 in the sense that its parameter matrix
Γ is known (to be zero) except at the diagonal entries. This case of a partially known and
partially unknown parameter matrix makes it harder to handle the analysis of this model in
a routine MANOVA setup.

Patel (1986) provided an iterative algorithm describing the computation of the maxi-
mum likelihood estimators of the unknown parameters and for the likelihood ratio test for
any general linear hypothesis of the form H0 : Lb×mξm×pMp×c = 0. It can be shown that
the likelihood function under model (6.8) is

L = (2π)−
1
2 np|V|− 1

2 nexp

{
−1

2
tr(V−1R)

}
, (6.9)

where R = (Y − Aξ − XΓ)′(Y − Aξ − XΓ).
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The maximum likelihood estimators of ξ and Γ are obtained by minimizing φ = ln |R|.
The reason for this is that, if ξ and Γ are known then the MLE of V is n−1R. Substi-
tuting this, the log-likelihood function reduces to ln |R| apart from a constant. Hence the
computation procedure iterates between computing V̂ as V̂ = n−1R̂ and estimating R̂ by
minimizing ln |R| with respect to ξ and Γ. Thus,

R̂ = R|ξ=ξ̂,Γ=Γ̂, (6.10)

where ξ̂ and Γ̂ are the estimated values of ξ and Γ at the particular iteration. It can be shown
that ξ and Γ are respectively estimated from the equations

ξ̂ = (A′A)−1A′(Y − XΓ̂), (6.11)

and

diag{R−1X′(Y − Aξ̂ − XΓ̂)} = 0

which together imply,

diag{R̂−1X′(I − A(A′A)−1A′)Y} = diag{R̂−1X′XΓ̂}. (6.12)

Based on this fact, Patel (1986) suggests the following iterative steps to solve the ML
equations:

1. Initially take R̂ = I and compute Γ̂ from (6.12).

2. Compute ξ̂ from (6.11).

3. Compute R̂ using ξ̂ and Γ̂ from (6.10). Then compute φ̂ = ln |R̂|.
4. Compute a revised estimate Γ̂ from (6.12) using R̂ obtained in Step 3.

5. Repeat Steps 2, 3 and 4 until the convergence has been obtained up to a desired degree
of accuracy under a suitable convergence criterion.

This iterative scheme was initially implemented using the IML procedure by S. Rao
(1995) for a data set provided by Dr. Barbara Hargrave of Old Dominion University. A
cosmetically improved version is presented here as Program 6.7.

Suppose it is of interest to test for the significance of the covariate X. For this, we also
need to estimate the parameters of the reduced model under H0 : Γ = 0. Under H0 we have
the usual multivariate linear model, Yn×p = An×mξm×p + En×p . Hence the likelihood
ratio test for testing the significance of the covariate can be easily constructed as described
earlier.

To test a general linear hypothesis H0 : LξM = 0, Patel (1986) provides a similar
algorithm for computing the ML estimates under the null hypothesis H0 : LξM = 0. As
before, using the maximum likelihood estimates under no restriction and those under the
null hypothesis, the likelihood ratio test for H0 can be obtained.

Under no restrictions on the parameters, the maximum of the likelihood can be shown
to be

max L = (2π)−
1
2 np|V̂|− 1

2 nexp

(
−1

2
np

)
, (6.13)

where V̂ = R̂/n is the maximum likelihood estimator of V. Similarly, the maximum
likelihood estimator of V under H0, is Ṽ, where Ṽ = R̃/n. The maximum of L under
H0 : LξM = 0 is

max L H0 = (2π)−
1
2 np|Ṽ|− 1

2 nexp

(
−1

2
np

)
. (6.14)
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Thus, by taking the ratio of the quantities in Equations 6.14 and 6.13, the likelihood
ratio test for testing H0 : LξM = 0 rejects the null hypothesis if

λ = |V̂Ṽ−1| 1
2 n ≤ Cα, (6.15)

where Cα is a constant satisfying Pr(λ ≤ Cα|H0) = α. Using the standard likelihood
theory, under H0, the quantity −2 ln λ asymptotically follows a chi-square distribution
with mp − bc degrees of freedom.

Patel’s approach has been illustrated through the following example.

EXAMPLE 7 Time Varying Covariates, Sheep Data The effects of phenylephrine induced increase in
arterial pressure on the secretion of atrial natriuretic peptide (ANP) in the ovine fetus have
been studied by Hargrave and Castle (1995). A set of 16 chronically cannulated fetal sheep
was divided into two groups, the young and old. Arterial pressure was increased by infusing
phenylephrine to the fetus from each of the two groups. Systematic mean arterial pressure
(MAP), plasma ANP concentrations and plasma renin activity (PRA) were measured at
three time points (5 min, 15 min, and 30 min) after infusion. PRA is used as the response
variable and MAP is an accompanying time varying covariate. In our case, k = 2, p = 3,
n1 = 6 and n2 = 10 and one covariate. The data set (SHEEP DATA) and the program
appear in Program 6.7.

/* Program 6.7 */

option ls=64 ps=45 nodate nonumber;
title1 ’Output 6.7’;
title2 ’Multivariate Analysis of Time Varying
Covariates Data’;
proc iml;
y={66 59 47 -16 -29 6.9 -16

29 5.8 -40 -80 13 -1.6 60
16 -17,
-12 59 6.7 2.6 -53 -29 2.6
-40 -29 -60 170 -45 4.1 6.6
-73 -38,
60 46 6.7 -18.4 -61 -35 -18.4
-38 5.8 -58 80 -25 -7.1 0.2
-41 -50};

a={1 1 1 1 1 1 0
0 0 0 0 0 0 0
0 0,
0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 1};

x1={135 21 55 22 -22 7.6 55
875 23 86 -9.6 -16 46 31
15 13,
545 97 78 -28 155 169 158
158 56 121 2.4 0.2 104 81
85 54,
840 224 210 -33 629 754 133
133 177 82 76 -16 25 442
830 205};

/* Enter the parameters for each problem */
n=16;
p=3;
eps=10;
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* Computation of gamma hat;
z=block(y, x1);
g=i(n)-(a‘*inv(a*a‘)*a);
* Initial value of Vhat;
nvhat=i(p);
do iteratio=1 to 50 while (eps > 0.0001);
vhat=nvhat;
pihat=log(det(vhat));
vhatinv=inv(vhat);
w=vhatinv#(y*g*x1‘);
T=vhatinv#(x1*g*x1‘);
onep=j(1,p,1);
gamma=onep*W*inv(T);

* Computation of xihat;
irp=repeat(i(p), 1, 2);
icn=i(n) // -i(n);
* Compute ygx= Y-Sum(Gamma*X);
gone=onep || gamma;
irpp=irp*diag(gone);
ygx=irpp*z*icn;
xihat= ygx*a‘*inv(a*a‘);

* Compute new Vhat and new pihat;
nvhat=(ygx-xihat*a)*(ygx-xihat*a)‘;
npihat=log(det(nvhat));
eps=abs(pihat-npihat);
end;
* keep vhat for the computation of lambda;
vhat=nvhat;
print vhat;

/* Compute Vhat under the null hypothesis of
no covariate effect (we called this value sighat).
We have used PRINTE option of MANOVA statement of
PROC GLM for getting this value. These statements
are commented out in the program */
/*
yt=y‘;
at=a‘;
var1=({y1 y2 y3});
var2=({a1 a2});
create ndata1 from yt [colname=var1];
append from yt;
close ndata1;
create ndata2 from at [colname=var2];
append from at;
close ndata2;
data ndata;
merge ndata1 ndata2;
proc glm data=ndata;
model y1 y2 y3=a1 a2/noint nouni;
manova/printe;
*/
sighat={21554.744333 -8727.857667 3420.5183333,

-8727.857667 49988.409333 29065.183333,
3420.5183333 29065.183333 25186.393333};

* Test for testing no covariate effect;
lambda1=(det(vhat*inv(sighat)))**(n/2);
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print lambda1;
chi1=-2*log(lambda1);
print chi1;
pval1=1-probchi(chi1,3);
print pval1;

* Test of hypothesis: No time effect, algorithm;
/* Give L and M matrices */
L=i(2);
M={ 1 -1 0, 1 0 -1};
eps=10;
/* Use nvhat and gamma from the previous step as initial

values. So initial value of ygx=Y-Sum(Gamma*X) is also from
the previous step */

do iter=1 to 50 while (eps > 0.0001);
pihat=log(det(nvhat));
delta=2*inv(m*nvhat*m‘)*(m*ygx*a‘*inv(a*a‘)*l)*
inv(l‘*inv(a*a‘)*l);
* Compute xi-tilde;
xtilde=(ygx*a‘-0.5*nvhat*m‘*delta*l‘)*inv(a*a‘);
vtilde=(ygx-xtilde*a)*(ygx-xtilde*a)‘;
vtnv=inv(vtilde);
W=vtnv#(y*g*x1‘);
T=vtnv#(x1*g*x1‘);
onep=j(1,p,1);
gmt=onep*W*inv(T);
/* Update ygx=Y-Sum(gmt*X) in preparation for the next
iteration irp and icn are defined earlier */
icn=i(n) // -i(n);
gtn=onep || gmt;
irpp=irp*diag(gtn);
ygx=irpp*z*icn;
npihat=log(det(vtilde));
eps=abs(pihat-npihat);
nvhat=vtilde;
end;
print vtilde;
lambda=(det(vhat*inv(vtilde)))**(n/2);
print lambda;
chi=-2*log(lambda);
print chi;
pval2=1-probchi(chi,2);
print pval2;
quit;

In Program 6.7 we first test for the significance of the covariate in the model. The unre-
stricted ML estimates of R = nV is found to be

R̂ =

 19807.802 −4186.271 4663.295

−4186.271 48285.522 30775.957
4663.295 30775.957 24974.933


 .

Under the null hypothesis of no covariate effect, the ML estimate R̂ of R = nV is the
same as that obtained from the standard multivariate regression model. This estimate is
obtained by using PROC GLM in Program 6.7 and is denoted as SIGHAT in the program.
The complete output however is not shown. The results for the hypothesis test extracted
from the output are summarized below:

λ d f Approx. χ2 p value
.0053 3 10.4793 .0149
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Since the p value is smaller than 0.05 we conclude that the covariate effect is statistically
significant at a 5% level of significance.

In Program 6.7 we also provide PROC IML code for computing the likelihood ratio for
the null hypothesis of no time effect. The corresponding null hypothesis

H0 : ξ11 = ξ12 = ξ13 = 0

ξ21 = ξ22 = ξ23 = 0,

or

H0 : ξ11 − ξ12 = 0, ξ11 − ξ13 = 0

ξ21 − ξ22 = 0, ξ21 − ξ23 = 0.

This can be written as H0 : LξM = 0 with L = I2×2 and

M =

 1 1

1 1
0 −1


 .

The ML estimate R̃ of R = nV under this null hypothesis is given by

R̃ =

 20212.801 −4704.252 5694.256

−4704.252 48330.394 30810.573
5694.256 30810.573 28866.521


 .

Accordingly from Equation 6.15 the value of λ is 0.0025. Thus, −2 ln λ = 11.9920, which
is statistically significant with the corresponding p value of 0.0025. The program can be
appropriately modified to test other relevant linear hypotheses of interest with the appro-
priate choices of L and M. We summarize the results below for three such hypotheses of
interest.

H0 on λ d f Approx. χ2 p value

Group 0.1042 2 4.5225 0.1042
Time 0.0025 2 11.9920 0.0025

Time*Group 0.5993 2 1.0241 0.5993

Using a univariate approach, Verbyla (1988) points out that model in Equation 6.8 can
be expressed as Zellner’s seemingly unrelated regression (SUR) model and a two-stage
estimation procedure can be utilized. This method and its variations are discussed in detail
using IML procedure by Timm and Mieczkowski (1997). We will not discuss these here.

A General Linear Model Approach The multivariate approach described above cannot
handle unbalanced data and ignores any observations with missing values. An alternative
univariate approach which can handle the unbalanced data will be described below (Rao,
1995).

Let 1 × p vector y′
i be the i th row of Y, i = 1, . . . , n in the model given in Equation

6.8 assuming only one treatment group (that is, k = 1) for illustration. Similarly consider
other vectors and matrices of model Equation 6.8. Then tentatively assuming no missing
values, we can write the model from Equation 6.8 as,

y′
i1×p

= a′
i [ξ1 : . . . : ξp] + [x1i , . . . , x pi ]diag(γ1, . . . , γp) + ε′

i (6.16)

= [a′
iξ1 : . . . : a′

iξp] + [γ1, . . . , γp]diag(xi1, . . . , xip) + ε′
i ,
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where a′
i is the i th row of matrix A and other quantities are similarly defined. Transposing

both sides, we obtain

yi =




a′
i 0 . . . 0
0 a′

i . . . 0
. . . . . .

. . . . . .

0 0 . . . a′
i







ξ1
.

.

.

ξp


+




x1i 0 . . . 0
0 x2i . . . 0
. . . . . .

. . . . . .

0 0 . . . x pi







γ1
γ2
.

.

γp


+ εi

= Ai p×mpηmp×1 + Di p×pγ p×1 + εi ,

where Ai = diag(a′
i , . . . , a′

i ), Di = diag(x1i , . . . , x pi ), η′ = [ξ′
1, .., ξ

′
p], and γ′ =

(γ1, . . . , γp).
The above equation can again be rewritten in the form

yi = [Ai : Di ]
[

η
γ

]
+ εi

or
yi p×1 = Bi p×(m+1)p β(m+1)p×1 + εi ,

where Bi = [Ai : Di ], and β =
[

η
γ

]
.

Let y = (y′
1, . . . , y′

n)′ and ε = (ε′
1, . . . , ε

′
n)′. Then

y =




B1
.

.

.

Bp


β + ε

or

y = Bβ + ε,

which is a special case of linear model in the Equation 6.1 with no random effects and
D(ε) = σ 2R = σ 2In ⊗ V(θ), where V(θ) is a p × p variance covariance matrix of the
repeated measures depending on a vector of parameters θ, and B = (B′

1, . . . , B′
p)

′. It may
be noted that although we have presented here the model with no missing covariates, the
only change, were there any missing covariate values at any time points for a particular
subject, will be to discard the particular values of the dependent variable (corresponding
to the particular time points only and, only for the particular subject). This model, being
a special case of a general mixed effects linear model, can be analyzed using the MIXED
procedure. For illustration, we consider the following example.

EXAMPLE 7 Sheep Data (continued) To illustrate, we again consider the SHEEP DATA where k = 2,
p = 3, n1 = 6 and n2 = 4 and there is one covariate, namely MAP. The SAS code to
analyze these data under a general linear model using PROC MIXED is given in Program
6.8 and the corresponding output is presented in Output 6.8.

/* Program 6.8 */

options ls=64 ps=45 nodate nonumber;
title1 ’Output 6.8’;
title2 ’Analysis of Time Varying Covariates Data’;
title3 ’Analysis with Independent Error for Subjects’;
data one;
infile ’sheep.dat’;
input group$ sheep time pra anp map;
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data one;
set one;
y=pra;
x=anp;
z=map;
run;
proc mixed data=one method=reml;
classes group time sheep;
model y=group time group*time time*z group*z group*time*z z;
repeated /type=simple subject=sheep r;
run;
title3 ’Analysis with Compound Symmetry Error for Subjects’;
proc mixed data=one method=reml;
classes group time sheep;
model y=group time group*time time*z group*z group*time*z z;
repeated /type=cs subject=sheep r;
run;

Output 6.8 Output 6.8
Analysis of Time Varying Covariates Data

Analysis with Independent Error for Subjects

The MIXED Procedure

Class Level Information

Class Levels Values

GROUP 2 old young
TIME 3 5 15 30
SHEEP 10 24 49 502 505 528 599 617 618

717 722

REML Estimation Iteration History

Iteration Evaluations Objective Criterion

0 1 195.78315742
1 1 195.78315742 0.00000000

Convergence criteria met.

R Matrix for SHEEP 24

Row COL1 COL2 COL3

1 1091.5163360
2 1091.5163360
3 1091.5163360

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate

DIAG SHEEP 1091.5163360
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Analysis with Independent Error for Subjects

Model Fitting Information for Y

Description Value

Observations 30.0000
Res Log Likelihood -114.432
Akaike’s Information Criterion -115.432
Schwarz’s Bayesian Criterion -115.878
-2 Res Log Likelihood 228.8649
Null Model LRT Chi-Square 0.0000
Null Model LRT DF 0.0000
Null Model LRT P-Value 1.0000

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

GROUP 1 8 4.84 0.0590
TIME 2 10 0.89 0.4394
GROUP*TIME 2 10 0.28 0.7612
Z*TIME 2 10 0.84 0.4596
Z*GROUP 1 10 0.26 0.6231
Z*GROUP*TIME 2 10 1.63 0.2444
Z 1 10 2.30 0.1600

Analysis with Compound Symmetry Error for Subjects

The MIXED Procedure

Class Level Information

Class Levels Values

GROUP 2 old young
TIME 3 5 15 30
SHEEP 10 24 49 502 505 528 599 617 618

717 722

REML Estimation Iteration History

Iteration Evaluations Objective Criterion

0 1 195.78315742
1 2 182.64116970 0.00035155
2 1 182.60566734 0.00001167
3 1 182.60457671 0.00000002
4 1 182.60457534 0.00000000

Convergence criteria met.



Chapter 6 Analysis of Repeated Measures Using Mixed Models 287

R Matrix for SHEEP 24

Row COL1 COL2 COL3

1 1067.2157907 865.09810940 865.09810940
2 865.09810940 1067.2157907 865.09810940
3 865.09810940 865.09810940 1067.2157907

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate

CS SHEEP 865.09810940
Residual 202.11768133

Analysis with Compound Symmetry Error for Subjects
Model Fitting Information for Y

Description Value

Observations 30.0000
Res Log Likelihood -107.843
Akaike’s Information Criterion -109.843
Schwarz’s Bayesian Criterion -110.734
-2 Res Log Likelihood 215.6864
Null Model LRT Chi-Square 13.1786
Null Model LRT DF 1.0000
Null Model LRT P-Value 0.0003

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

GROUP 1 8 4.72 0.0615
TIME 2 10 6.08 0.0187
GROUP*TIME 2 10 0.38 0.6907
Z*TIME 2 10 3.16 0.0862
Z*GROUP 1 10 1.87 0.2014
Z*GROUP*TIME 2 10 2.67 0.1179
Z 1 10 0.06 0.8110

We assume the compound symmetric error structure and, thus, perform the analysis with
the TYPE = CS option in the REPEATED statement. From the output the estimated com-
pound symmetry correlation coefficient is equal to ρ̂ = 865.0981/1067.2158 = 0.8106.
Further, from the bottom part of the output (under ‘Tests of Fixed Effects’) we conclude
that only the TIME factor is statistically significant at a 5% level of significance. This
agrees with our earlier conclusion arrived at by using the multivariate approach, except
that the covariate effect was also significant in the multivariate approach.

It may be emphasized that if time varying covariates are present then the estimates and
the tests under the options TYPE=CS and TYPE=SIMPLE will be different (compare the
two sets of outputs given above corresponding to these options). This is in stark contrast
from the situation of subject specific covariates. This is so because in the former situation,
the generalized least squares estimators, with the compound symmetry covariance structure
for the error, are not the same as the ordinary least squares estimators.
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6.7 A Random Coefficient Model

Another approach to the modeling of repeated measures data is to use an appropriate ran-
dom coefficient model. In this approach, one or more regression parameters are assumed to
be a random sample from a population of regression coefficients. These models are useful
whenever the regression model for fitting the repeated data on a subject can be assumed to
be a random variation of a population regression model. This approach can be especially
useful due to its capacity to handle unequally spaced and/or unbalanced growth curve type
data.

Let yiu be the piu ×1 vector of repeated measures on the uth subject of the i th treatment
group. Then consider a mixed effects model described as

yiu = Xiuβ + Ziuνiu + εiu, u = 1, . . . , ni , i = 1, . . . , k, (6.17)

where Xiu and Ziu are the known matrices of orders piu by q and piu by r respectively,
and β is the fixed q by 1 vector of unknown nonrandom regression coefficients. The r by
1 vectors νiu are random effects with E(νiu) = 0, and D(νiu) = σ 2G1. Also εiu are the
piu by 1 vectors of random errors with E(εiu) = 0, D(εiu) = σ 2Riu . The usual further
assumption that the various variables are uncorrelated is also made.

When both Xiu and Ziu correspond to quantitative variables and Ziu is a submatrix
of Xiu , the model in Equation 6.17 is referred as a random coefficient model. The fact
that Ziu is a submatrix of Xiu distinguishes this situation from the general mixed model
(Equation 6.1) where no such assumption need be made. A situation where Ziu will be
a submatrix of Xiu can be described formally as follows. Suppose for a certain random
regression coefficient, say γiul , E(γiul) = βl , so that it can be written as

γiul = E(γiul) + νiul = βl + νiul ,

where νiul is random with E(νiul) = 0. Thus any random regression coefficient νiul with
E(νiul) = 0 has its fixed effects counterpart, namely βl . Therefore, when the model is
expressed in the matrix form as in Equation 6.17, the columns corresponding to βl and νiul

in the matrices Xiu and Ziu respectively are identical, thereby making Ziu a submatrix of
Xiu .

The random coefficient models provide ample flexibility to deal with the repeated mea-
sures data. Within-subject variability is conveniently dealt with by modeling it through the
random errors εiu and the random slope coefficients νiu for changes in repeated measures
specific to the uth subject in the i th treatment group. The correlation structures such as
compound symmetry and autoregressive or unstructured covariances can be assumed for
G1 and Riu, u = 1, . . . , ni , i = 1, . . . , k. The development of an appropriate model and
corresponding analysis can best be illustrated through an example.

EXAMPLE 8 Random Coefficients, A Pharmaceutical Stability Study This example is adopted from
SAS/STAT Software: Changes and Enhancements through Release 6.12, pp. 684–685. The
pharmaceutical stability data (used with permission from Glaxo Wellcome Inc.) presents
replicate assay results as the observed responses for the shelf life of various drugs (in
months). The response variable is potency of the drug relative to the percentage claim
on the label. There are three batches of products which may differ in initial potency repre-
sented by intercepts and in degradation rates represented by the slope parameters. Since the
batches are taken randomly, these intercepts and slope parameters are assumed to be the
random coefficients. Note that piu, the number of repeated measurements on each subject,
are not all equal. The model can be expressed as

yi ju = γ0i + γ1i ageiu + εi ju, i = 1, 2, 3; j = 1, . . . , piu; u = 1, . . . , 6,
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where γ0i and γ1i respectively are random intercepts and slopes normally distributed with
mean β0 and β1 respectively. We write γ0i = β0 + ν0i and γ1i = β1 + ν1i . Then ν0i and
ν1i are normally distributed with zero means. Thus the above model can be reexpressed as

yi ju = β0 + β1ageiu + ν0i + ν1i ageiu + εi ju,

where εi ju ∼ N (0, σ 2) are independent. The coefficients (ν0i , ν1i )
′ are assumed to be

independently jointly distributed as bivariate normal with zero mean vector and variance
covariance matrix σ 2G1. The independence of (ν0i , ν1i )

′ and εi ′ ju is also assumed for all
i, i ′, j, u.

Let β = (β0, β1)
′ and νi = (ν0i , ν1i )

′. For our example, we can provide an interpre-
tation of the above model as follows. Since there are two random coefficients, namely the
batch intercept and the batch slope in vector νi both of which may not have zero means, we
write their effects as β+ν1,β+ν2, . . .. In the interpretation, β is the fixed effect part, rep-
resenting the mean initial potency and mean degradation rate, and the vectors ν1,ν2, . . .

are all 2 by 1 vectors with their variance-covariance matrix σ 2G1, where G1 a 2 by 2 ma-
trix, which we assume to be unstructured. The three unknown parameters of G1, namely
g11, g12 = g21, and g22, need to be estimated, along with several other parameters. For
the error vector εiu = (εi1u, . . . , εi piu u)′, we assume the spherical covariance structure.
We will use the restricted maximum likelihood (REML) procedure for the estimation of
parameters of the variance covariance matrix.

The subject effect is represented by three batches and on each batch, data are collected at
0, 1, 3, 6, 9, and 12 months. As mentioned earlier, the age of the drug in months represents
a fixed effect factor as well, along with an intercept in the model which can be interpreted
as the mean initial potency.

To analyze this data using PROC MIXED, we essentially need to spell out these facts in
compact form within short SAS code. Specifically, we must indicate that BATCH plays the
role of SUBJECT (SUBJECT=BATCH); that INTERCEPT and AGE are random effects
(RANDOM=INT AGE); and we specify only the fixed effects part of the model, which
includes an intercept, (which need not be specified as SAS adds the intercept by default)
and the variable AGE. The SAS code is given as Program 6.9 and the output is presented
as Output 6.9.

/* Program 6.9 */

options ls = 64 ps = 45 nodate nonumber;
title1 ’Output 6.9’;
title2 ’A Pharmaceutical Stability Study’;
data rc;
input batch age@;
do i=1 to 6;
input y@;
output;
end;
cards;
1 0 101.2 103.3 103.3 102.1 104.4 102.4
1 1 98.8 99.4 99.7 99.5 . .
1 3 98.4 99.0 97.3 99.8 . .
1 6 101.5 100.2 101.7 102.7 . .
1 9 96.3 97.2 97.2 96.3 . .
1 12 97.3 97.9 96.8 97.7 97.7 96.7
2 0 102.6 102.7 102.4 102.1 102.9 102.6
2 1 99.1 99.0 99.9 100.6 . .
2 3 105.7 103.3 103.4 104.0 . .
2 6 101.3 101.5 100.9 101.4 . .
2 9 94.1 96.5 97.2 95.6 . .
2 12 93.1 92.8 95.4 92.5 92.2 93.0
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3 0 105.1 103.9 106.1 104.1 103.7 104.6
3 1 102.2 102.0 100.8 99.8 . .
3 3 101.2 101.8 100.8 102.6 . .
3 6 101.1 102.0 100.1 100.2 . .
3 9 100.9 99.5 102.5 100.8 . .
3 12 97.8 98.3 96.9 98.4 96.9 96.5
;
/*Source: Obenchain (1990). Data Courtesy of R. L. Obenchain*/

proc mixed data=rc;
class batch;
model y=age/s;
random int age/type=un sub=batch s;
run;

Output 6.9 Output 6.9
A Pharmaceutical Stability Study

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate

UN(1,1) BATCH 0.97292750
UN(2,1) BATCH -0.10192674
UN(2,2) BATCH 0.03649300
Residual 3.30229533

Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t|

INTERCEPT 102.70159884 0.64480457 2 159.28 0.0001
AGE -0.52417636 0.11845227 2 -4.43 0.0475

Solution for Random Effects

Effect BATCH Estimate SE Pred DF t

INTERCEPT 1 -0.99744294 0.68336297 78 -1.46
AGE 1 0.12668799 0.12362914 78 1.02
INTERCEPT 2 0.38582987 0.68336297 78 0.56
AGE 2 -0.20397070 0.12362914 78 -1.65
INTERCEPT 3 0.61161307 0.68336297 78 0.90
AGE 3 0.07728271 0.12362914 78 0.63

Solution for Random Effects

Pr > |t|

0.1484
0.3087
0.5740
0.1030
0.3735
0.5337



Chapter 6 Analysis of Repeated Measures Using Mixed Models 291

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

AGE 1 2 19.58 0.0475

The output shows that the REML estimate of the matrix G1 is

Ĝ1 =
[

0.9729 −0.1019
−0.1019 0.0365

]

and therefore, the REML estimator of G is

Ĝ =

 Ĝ1 0 0

0 Ĝ1 0
0 0 Ĝ1




which is a 6 by 6 block diagonal matrix. Since the covariance structure for error is assumed
to be spherical (σ 2I), we do not need to specify this default choice in the SAS code. A
REPEATED statement would be needed if any other covariance structure for error were to
be specified. Under assumed sphericity, the estimated error variance is σ̂ 2 = 3.3023.

The effects of the intercept and slope are in part fixed and in part random. These are
represented as β + ν = (β0 + ν0, β1 + ν1)

′, where β0 and β1 are the fixed parameters
and ν0 and ν1 are the random coefficients, in each case respectively for the INTERCEPT
and slope for AGE. The estimate of β and the predicted values of the random effects ν are
presented in two separate tables in Output 6.9. Specifically,

β̂ =
[

102.7016
−0.5242

]
and ν̂ =




(−0.9974, 0.1267)′ for Batch 1
(0.3858, −0.2040)′ for Batch 2
(0.6116, 0.0773)′ for Batch 3.

Also presented are the corresponding standard errors, the prediction errors, and corre-
sponding tests for significance. It may be remarked that since νi ’s are random rather than
fixed parameters, hypothesis testing on them may not be meaningful.

EXAMPLE 9 Modeling Linear Growth, Ramus Heights Data To further illustrate the use of the ran-
dom coefficients models, we will analyze the ramus heights data of Elston and Grizzle
(1962) where the heights of the ramus bone (in mm) for 20 boys were measured at 8, 8 1

2 , 9,
and 9 1

2 years of age. We may want to model the ramus height, say yt , at age t as a poly-
nomial growth function of their ages. Since these boys are a sample from a hypothetical
population of all boys, the modeled growth curve can be thought of as the common growth
curve for the population. However, due to many genetic and environmental variations, each
boy would have his own individual growth curve which can be thought of as a random vari-
ation of the population growth curve.

For a given boy, we consider the model

yt = β0 + β1aget + εt , (6.18)

where εt ∼ N (0, σ 2) are independent and the values of β0 and β1 are specific to the spe-
cific boy. In other words, β0 and β1 are random coefficients. It is possible that only one of
the two coefficients may be random. For example, if β0 is fixed and β1 is random then all
the boys will have the common intercept of the population but different rate of growth. The
difference is modeled as β1 = β1F + β1R, where β1F is the fixed common slope for the
population and β1R is the random part representing the amount of change from the com-
mon slope for the specific individual (boy). We assume E(β1R) = 0 and var(β1R) = σ 2

β1
.

Similarly, if β1 is fixed then all the boys will have the common rate of growth of the popu-
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lation but will have different intercepts. The appropriate assumptions to accommodate this
case are β0 = β0F + β0R, where β0F is the fixed common intercept for the population and
β0R is the random part representing the amount of change from the common intercept for
the specific individual (boy). We assume E(β0R) = 0 and var(β0R) = σ 2

β0
. If both β0 and

β1 are random then the above assumptions and interpretations hold for both coefficients.
We will illustrate the case when only β1 is random.

The SAS code is presented as Program 6.10. For the sake of completeness we have also
added the code for the other two cases in the same program (but they have been commented
out).

If only β1 is random but β0 is fixed then the model (6.18) results in

yt = β0 + β1F aget + β1Raget + εt . (6.19)

Thus β0 +β1F aget represents the fixed part of the model and β1R is a normally distributed
random coefficient with zero mean, and variance σ 2

β1
. Thus, σ 2G1 is a 1 by 1 matrix,

namely (σ 2
β1

). The errors εt are assumed to be independent and have a common variance,
say, σ 2. That is, the spherical structure for the variance covariance matrix of the errors is

assumed. Since σ 2G1 = σ 2
β1

I, or equivalently, G1 = σ 2
β1

σ 2 I = δI, the option TYPE=SIM
for the covariance structure of G1 can be used (in fact, this is a default option). Thus the
appropriate MODEL and RANDOM statements are given by

model y=age/s;
random age/type=sim subject=boy;

where the option S in the MODEL statement requests that the solution for the fixed effects
be printed. The option SUBJECT = BOY indicates that the observations on a given BOY
constitute the vector of repeated measures. We have chosen to use the METHOD=REML
option as the choice of estimation procedure. The complete code is given in Program 6.10.
The corresponding output appears as Output 6.10.

/* Program 6.10 */

options ls = 64 ps=45 nodate nonumber;
title1 ’Output 6.10’;
title2 ’Analysis of Ramus Data’;
data ramus;
input boy y1 y2 y3 y4;
y=y1;
age=8;
output;
y=y2;
age=8.5;
output;
y=y3;
age=9;
output;
y=y4;
age=9.5;
output;
lines;
1 47.8 48.8 49. 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53. 54.3 54.5
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8 49.8 50. 50.3 52.7
9 48.1 50.8 52.3 54.4
10 45. 47. 47.3 48.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53. 55.5
13 52.1 52.8 53.7 55.
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.0 51.8
;
/* Source: Elston and Grizzle (1962). Reproduced by
permission of the International Biometric Society. */
proc mixed data=ramus covtest;
class boy;
model y=age/s;
random age /type = simple subject = boy;
title3 ’Only slope is random’;
run;
/*
proc mixed data=ramus covtest;
class boy;
model y=age/s;
random int /type = simple subject = boy;
title3 ’Only intercept is random’;
run;
proc mixed data=ramus covtest;
class boy;
model y=age/s;
random int age /type = simple subject = boy;
title3 ’Both intercept and slope are random’;
run;
*/

Output 6.10 Output 6.10
Analysis of Ramus Data
Only slope is random

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate Std Error Z Pr > |Z|

AGE BOY 0.07944986 0.02647746 3.00 0.0027
Residual 0.66113890 0.12172554 5.43 0.0001

Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t|

INTERCEPT 33.77000000 1.42583383 59 23.68 0.0001
AGE 1.86300000 0.17440771 19 10.68 0.0001
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Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

AGE 1 19 114.10 0.0001

From Output 6.10 we find the estimates of variance components as σ̂ 2 = 0.6611, δ̂ =
0.0794, and σ̂ 2

β1
= σ̂ 2δ̂ = 0.0525. It is appropriate to test the null hypothesis H0 : σ 2

β1
= 0

against the one-sided alternative. Testing H0 : σ 2
β1

= 0 is equivalent to testing H0 : δ = 0.
Wald’s test given in the output tests this null hypothesis against the two-sided alternative.
The p value under the one-sided alternative can be computed as one-half of the reported
p value. For our case, it is 0.0027/2 ≈ 0.0014, which is statistically significant. Thus we
can claim σ 2

β1
to be nonzero. Since E(yt) = β0 + β1F aget , an estimate of average ramus

height at time t is given by

Ê(yt) = β̂0 + β̂1F aget . = 33.7700 + 1.8630aget .

Suppose instead of fitting Equation 6.19, we decide to fit Equation 6.18 with a 4 by 1
vector of εt for each subject having a compound symmetric (CS) structure. In this case,
there are no random effects in the model given in Equation 6.18, but the covariance struc-
ture within each subject would need to be specified using the REPEATED statement

repeated/type=cs subject=boy r;

where SUBJECT=BOY indicates that repeated measures which are assumed to be inde-
pendent are taken on boys. Option R in the REPEATED statement prints a typical diagonal
block of the block diagonal matrix R. However, we will not discuss this model further here.

6.8 Multivariate Repeated Measures Data

When the data are collected on a set of q variables and on each of these variables at p
different occasions, we have a set of multivariate repeated measures data. Analysis of such
data is further complicated by the existence of correlation among the measurements on
different variables in addition to the correlation among measurements taken at different
occasions. Several approaches to analyze these data exist in the literature. We will briefly
describe one of these here.

Let yi jul , l = 1, . . . , q; j = 1, . . . , p; u = 1, . . . , ni ; i = 1, . . . , k, be the observation
on the l th variable for the uth individual in the i th treatment group at the j th occasion
and let yiu = (yi1u1, . . . , yipu1, yi1u2, . . . , yipuq)′. Then yiu is pq by 1 random vector
of responses corresponding to the uth individual in the i th group. Let D(yiu) = Ω, for
u = 1, . . . , ni ; i = 1, . . . , k and n = ∑k

i=1 ni . By defining

Yn×pq =




y′
11

y′
12
...

y′
knk


 ,

and following the approach described in Chapter 3, a multivariate linear model with an ap-
propriate X matrix consisting of design (assumed to be fixed) and/or regression variables
can be written as Y = XB + E . The rows of error matrix E are assumed to be independent
and distributed as pq-variate normal with a zero mean vector and the variance covariance
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matrix Ω. Thus, following the approaches presented in Chapters 3, 4, and 5 any linear
hypothesis about the elements of B can be formulated in the form of a general linear hy-
pothesis H0 : LBM = 0, for known and full (row and column respectively) rank matrices
L and M. Using Wilks’ � or any other standard multivariate tests, such a hypothesis can
be tested.

This approach for analyzing the multivariate repeated measures data, known as the dou-
bly multivariate model (DMM) analysis, is commonly adopted in practice. Since this ap-
proach has been discussed extensively in previous chapters we will not discuss this further
here. However, see Timm (1980) for a detailed description of the theory and Timm and
Mieczkowski (1997) for SAS applications of these methods.

An alternative approach (Naik and Rao, 1997) is to begin by making certain assumptions
on the covariance structure of Ω. We assume

D(yiu) = Ωpq×pq = Σq×q ⊗ Vp×p,

where V and Σ respectively are p by p and q by q positive definite matrices and ⊗ stands
for the Kronecker product. In view of the defined arrangement of the elements in yiu the
matrix V represents the variance covariance matrix of repeated measures for a given re-
sponse variable. This is assumed to be same for all response variables. The matrix Σ repre-
sents the variance covariance matrix between the measurements on all response variables
at a given time point. It is assumed that this does not depend on the particular time point
and is the same for all time points.

This assumed structure of Ω has certain advantages over the general covariance struc-
ture. First, the variance covariance matrix of the repeated measures may have a simpler
structure such as compound symmetric or AR(1). It is easier to accommodate different
structures for the variance covariance matrix of repeated measures V in this formulation.
Secondly, the number of unknown parameters of the variance covariance matrix Ω, in this
set up, viz, [q(q + 1)/2 + p(p + 1)/2], is smaller as compared to that in the general co-
variance structure, viz, [pq(pq + 1)/2]. Further, this structure enables us to handle unbal-
anced multivariate repeated measures data more easily. Statistical analysis of multivariate
repeated measures data assuming the above structure can be performed by using PROC
MIXED. We illustrate this and the subsequent analysis in the following example.

EXAMPLE 10 Multivariate Repeated Measures Data, Data from a Dental Study Data used in Program
6.11 were collected by T. Zullo of the School of Dental Medicine at the University of Pitts-
burgh and have been considered in Timm (1980, Table 7.2). The study is concerned with
determining the relative effectiveness of two orthopedic adjustments of the mandible. Nine
subjects were assigned to each of two orthopedic treatments called activator treatments.
The measurements were made on p = 3 characteristics to assess the changes in the ver-
tical position of the mandible at t = 3 time points of activator treatment. The problem is
to compare the two treatments, and study the time effect and the interaction between time
and treatment.

As discussed earlier, here the assumed covariance structure for observations on any
subject is of the form

D(yiu) = Ω = Σ ⊗ V.

We will assume Σ to be unstructured (UN) and V to have an AR(1) covariance structure.
This can be specified using the option TYPE=UN @ AR(1) in the REPEATED statement.
In this specification, the Kronkecker product ⊗ is specified by @. The complete SAS
program is presented as Program 6.11.

/* Program 6.11 */

option ls=64 ps=45 nodate nonumber;
title1 ’Output 6.11’;
data a;
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input y1-y9;
cards;
117 59 10.5 117.5 59 16.5 118.5 60 16.5
109 60 30.5 110.5 61.5 30.5 111 61.5 30.5
117 60 23.5 120 61.5 23.5 120.5 62 23.5
112 67.5 33 126 70.5 32 127 71.5 32.5
116 61.5 24.5 118.5 62.5 24.5 119.5 63.5 24.5
123 65.5 22 126 61.5 22 127 67.5 22
130.5 68.5 33 132 69.5 32.5 134.5 71 32
126.5 69 20 128.5 71 20 130.5 73 20
113 58 25 116.5 59 25 118 60.5 24.5
128 67 24 129 67.5 24 131.5 69 24
116.5 63.5 28.5 120 65 29.5 121.5 66 29.5
121.5 64.5 26.5 125.5 67.5 27 127 69 27
109.5 54 18 112 55.5 18.5 114 57 19
133 72 34.5 136 73.5 34.5 137.5 75.5 34.5
120 62.5 26 124.5 65 26 126 66 26
129.5 65 18.5 133.5 68 18.5 134.5 69 18.5
122 64.5 18.5 124 65.5 18.5 125.5 66 18.5
125 65.5 21.5 127 66.5 21.5 128 67 21.6
;
/* This data set is from Timm, N.H. (1980). Courtesy of Dr. Thomas Zullo,
School of Dental Medicine, University of Pittsburgh. */
data b; set a;
if _n_<10 then group=’1’;
else group=’2’;
run;
data b; set b;
subj=_n_;
y=y1; m_var=’var1’; time=1; output;
y=y2; m_var=’var2’; time=1; output;
y=y3; m_var=’var3’; time=1; output;
y=y4; m_var=’var1’; time=2; output;
y=y5; m_var=’var2’; time=2; output;
y=y6; m_var=’var3’; time=2; output;
y=y7; m_var=’var1’; time=3; output;
y=y8; m_var=’var2’; time=3; output;
y=y9; m_var=’var3’; time=3; output;
drop y1-y9;
title2 ’Analysis of Multivariate Repeated Measures’;
title3 ’Kronecker Product Covariance Structure’;
proc mixed data=b method=reml covtest;
classes group subj m_var time;
model y = m_var group time group*time;
repeated m_var time/type=un@ar(1) subject=subj;
run;

The SAS code requires some explanation. First the data are converted to the univariate
form using the standard technique discussed in several earlier examples. In addition to
the variable TIME representing the repeated measures, the variable M VAR representing
three characteristics is also declared as a CLASS variable and is included in the MODEL
statement of the MIXED procedure. This ensures that E(yi jul) = µl , i = 1, 2, 3. That is,
the three multivariate responses are ensured to have a mean vector without any structure.
We have used the option TYPE=UN @ AR(1) in the REPEATED statement to specify the
desired covariance structure discussed earlier. Currently, UN is the only option available
for the specification of matrix Σ in the MIXED procedure. However, V can be chosen to
have any of the several covariance structures discussed earlier. The output is presented in
Output 6.11.
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Output 6.11 Output 6.11
Analysis of Multivariate Repeated Measures
Kronecker Product Covariance Structure

Covariance Parameter Estimates (REML)

Cov Parm Subject Estimate Std Error Z

M_VAR UN(1,1) SUBJ 62.69183882 18.28231166 3.43
UN(2,1) SUBJ 19.11001566 7.01570034 2.72
UN(2,2) SUBJ 22.53327182 6.38954562 3.53
UN(3,1) SUBJ -8.82049720 6.47187742 -1.36
UN(3,2) SUBJ 1.58037505 3.38585908 0.47
UN(3,3) SUBJ 22.50606019 5.58715855 4.03

TIME AR(1) SUBJ 0.94906998 0.01450582 65.43

Pr > |Z|

0.0006
0.0065
0.0004
0.1729
0.6407
0.0001
0.0001

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

M_VAR 2 137 909.21 0.0001
GROUP 1 17 0.22 0.6439
TIME 2 137 13.19 0.0001
GROUP*TIME 2 137 0.01 0.9870

Testing for the equality of the means of the three responses may not be meaningful in
this case. Thus, we note that only the TIME effect is statistically significant with a p value
of 0.0001. Since, the interaction GROUP*TIME is not significant (p value = 0.9870) and
since no overall differences between the groups have been observed (p value = 0.6439),
the TIME trend is deemed the same for the two treatment groups.

6.9 Concluding Remarks

The models and methods considered in this chapter are limited in that (i) only models
which are linear in fixed or random coefficients are considered (i i) the error component
was assumed to be additive (i i i) normality of error is assumed and (iv) usually some
appropriate covariance structures on errors and random effects are assumed. Obviously sit-
uations where there is substantial departures from one or more of these assumptions will
require some other alternative approaches. Additionally, most of the statistical tests are
asymptotic and/or approximate and may not necessarily possess certain desirable prop-
erties such as a reasonably high power or the ability to maintain the type I error at the
specified level. Thus caution should be exercised in selecting and evaluating the appropri-
ate models and in making statistical inferences from these models.
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Appendix

AA Brief Introduction to the
IML Procedure

Sometimes we may need to do certain data analyses which are not readily provided by any
of the SAS procedures. The IML procedure is a very helpful matrix language within SAS
for such situations. One can conveniently perform many of the matrix calculations by using
simple statements and by calling various subroutines and functions within PROC IML.

We will briefly describe here a few of these choices which are likely to be encountered
in various multivariate analyses and other related matrix manipulations. For further details
on other relatively more complex manipulations, the user is referred to SAS/IML Software:
Usage and Reference, Version 6, First Edition.

A.1 The First SAS Statement

The first SAS statement of the code is

proc iml;

A.2 Scalars

Scalars are specified in the usual way. For example,

c = 7.856;

A.3 Matrices

Matrices can be specified within braces ({}) row by row. Rows are separated by commas
(,). For example the matrix,

A =
[

1 3
9 4

]

is specified as

a = { 1 3, 9 4};

or

a = { 1 3,
9 4};
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A.4 Printing of Matrices

One or more matrices, say A and B, can be printed using one of the following statements

print a b ;

or

print a, b ;

Note that the use of the comma (,) results in the two matrices printing one below the
other, while when no comma is used, they are printed side by side.

A.5 Algebra of Matrices

The algebraic operators are defined in the usual way, that is,

Addition: +
Substraction: −
Multiplication: ∗

For example, the matrix E defined as

E = A − B ∗ (C + D)

is specified as

e = a-(b*(c+d));

Of course, the order of the matrices involved should be conformable.

A.6 Transpose

PROC IML uses the leading quote (‘) for transpose. For example,

a_trans =a‘;

Since certain keyboards do not support this key, an alternative way is to use the function
T . For example,

trans_a =t(a);

A.7 Inverse

The inverse of a square matrix, if defined, can be obtained by using the function I N V . For
example, for

A =
[

1 3
9 4

]
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the inverse denoted as A INV is obtained by

inv_a = inv(a);

and results in

A INV =
[ −0.173913 0.1304348

0.3913043 −0.043478

]
.

A.8 Finding the Number of Rows and Columns

Often, it is convenient to alllow the program to determine the number of rows and columns
in a matrix rather than explicitly specifying it. Functions NROW and NCOL respectively
perform the desired task. For example, for a 2 by 3 matrix

B =
[

2 4 8
0 5 9

]
,

the statements

row_in_b = nrow(b);
col_in_b = ncol(b);
print row_in_b, col_in_b;

respectively result in ROW I N B = 2 and C O L I N B = 3.

A.9 Trace and Determinant

For a square matrix, functions TRACE and DET will perform the respective tasks of finding
the trace and the determinant. For A defined earlier, the statements

trace_a = trace(a);
det_a = det(a);
print trace_a, det_a;

result in tr(A) = 5 and det (A) = −23.

A.10 Eigenvalues and Eigenvectors

There are two SAS functions—one for each—to compute the eigenvalues and to compute
the eigenvectors of a symmetric matrix. These are EIGVAL and EIGVEC respectively. For
the symmetric matrix denoted by SYM and given as,

SYM =
[

4 2
2 4

]

the statements
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sym ={4 2, 2 4};
eval_sym = eigval(sym)
evec_sym = eigvec(sym);
print eval_sym,evec_sym;

produce the desired eigenvalues and eigenvectors.
The subroutine EIGEN will achieve both tasks in a single call. The corresponding state-

ment is

call eigen(lambda,p,sym);
print lambda,p;

The eigenvalues and respective eigenvectors are stored in Λ and P. Columns of P are
the eigenvectors.

A.11 Square Root of a Symmetric Nonnegative Definite Matrix

For a symmetric nonnegative definite matrix (that is, all eigenvalues of the matrix are non-
negative), A, one can find an upper triangular matrix U such that A = U′U. This is called
the Cholesky decomposition. The function ROOT can find this matrix U. The correspond-
ing SAS statement is

u = root(a);

For the symmetric nonnegative definite (since its eigenvalues were found to be nonneg-
ative) matrix, SYM defined earlier, we can compute U as

U =
[

2 1
0 1.7320508

]
.

A.12 Generalized Inverse of a Matrix

For any matrix say B, one can find a matrix say G such that BGB = B. The matrix G is
called a generalized inverse (or g-inverse for short) of B. A g-inverse always exists but is
not unique unless the matrix B is square and nonsingular (in which case, the regular inverse
is the unique g-inverse).

SAS produces one particular g-inverse called the Moore Penrose inverse which in addi-
tion to above requirement satisfies some more conditions (Rao, 1973). It is obtained by the
statement,

g = ginv(b);

For the 2 by 3 matrix B defined as,

B =
[

2 4 8
0 5 9

]
,

the Moore Penrose g-inverse is obtained as a 3 by 2 matrix,

G =

 0.4818182 −0.418182

−0.081818 0.1181818
0.0454545 0.0454545


 .
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A.13 Singular Value Decomposition

Any matrix B of order m by n can be partitioned as B = UQV′, where U and V are orthog-
onal or suborthogonal. If m is larger than n then U is suborthogonal and V is orthogonal.
If m is smaller than n, then it is the other way around. If B is square then both U and V
are orthogonal. The matrix Q contains the singular values of B. Denoting U, Q and V by
LEFT, MID and RIGHT, the following subroutine call will result in their computation,

call svd(left,mid,right,b);
print left,mid,right;

A.14 Symmetric Square Root of a Symmetric Nonnegative
Definite Matrix

For a symmetric nonnegative definite matrix A, a symmetric square root denoted by A1/2

can be obtained by using the ROOT function and the subroutine EIGEN. Specifically, since
A is symmetric, we must have A = PΛP′ = (PΛ1/2P′)(PΛ1/2P′) = A1/2A1/2 where P
is orthogonal. The diagonal matrix Λ contains the eigenvalues of A in the diagonal places,
which are nonnegative since the matrix A is nonnegative definite. Thus, Λ1/2 is just a diag-
onal matrix with diagonal elements as the nonnegative square roots of the corresponding
elements of Λ. Accordingly, we define A1/2 as A1/2 = PΛ1/2P′. Thus A1/2 is also symmet-
ric. However, it may not be unique.

The needed SAS statements to accomplish this task are

proc iml;
a = {
10 3 9,
3 40 8,
9 8 15};
call eigen(d,p,a);
lam_half = root(diag(d));
a_half = p*lam_half*p‘;
print a, p, lam_half;
print a_half ;

The symmetric square root matrix A1/2 in the above code is denoted by A H AL F .
It may be pointed out that A−1/2 may be computed by taking the inverse of A1/2 or by
directly computing the symmetric square root of A−1 instead of A using the above code.

A.15 Kronecker Product

One defines the Kronecker product of C with D (denoted by C ⊗ D) by multiplying every
entry of C by matrix D and then creating a matrix out of these block matrices. In notations,
the Kronecker product is defined as C ⊗ D = (ci j D). In SAS, the operator @ does this job.
For example, the Kronecker product matrix K RO N C D is obtained by writing

kron_cd = c @ d;
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With

C =

 1 0 3 4

0 4 1 −1
1 1 −3 2


 ,

and

D = [
1 3 7

]
,

the Kronecker product C ⊗ D (in SAS notation C@D) is equal to

C ⊗ D =




1 0 3 4
3 0 9 12
7 0 21 28
0 4 1 −1
0 12 3 −3
0 28 7 −7
1 1 −3 2
3 3 −9 6
7 7 −21 14




.

A.16 Augmenting Two or More Matrices

Several matrices can be lined up one after the other or one atop the other or in both direc-
tions to obtain a single matrix of larger size. Of course in such augmentations, one needs
to be careful about the respective orders of various matrices.

In SAS the operator || (two vertical lines) will arrange matrices side by side and the
operator // (two division signs) will do so in the order of one below the other. For example,
for the matrices C and D defined above, SIDE CD = C||D results in the matrix SIDE CD
equal to

SIDE CD =

 1 0 3 4 1

0 4 1 −1 3
1 1 −3 2 7


 ,

and BLO CTDT = C‘//D‘ results in the matrix BLO CTDT as

BLO CTDT =




1 0 1
0 4 1
3 1 −3
4 −1 2
1 3 7


 .

A.17 Construction of a Design Matrix

Often, we may need to create a design matrix (usually denoted by X in linear models con-
texts) corresponding to a given experimental design. The function DESIGN will provide
such a matrix. This is best illustrated by an example.

Suppose we want the design matrix corresponding to a one-way classification model
with three groups. The sample sizes are n1 = 3, n2 = 2 and n3 = 5. As a result, n = n1 +
n2 + n3 = 10. What one needs to do is to define a column vector titled ADDRESS which
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provides the addresses for all nonzero entries (all of which would be 1) in the individual
rows. For instance, if the seventh entry in the column ADDRESS is 3 then in the seventh
row of resulting matrix X a ’1’ will be placed in the third column and zero elsewhere.

Suppose we want the design matrix without a column corresponding to the intercept.
Then, for our example, we define the vector ADDRESS as a column vector by using the
SAS statement

address = {1,1,1, 2,2, 3,3,3,3,3};

and then define

x_w_out = design(address);

An alternative way to obtain the column address would be to use the J function, which
can be very handy if matrix X were too big. Specifically, we could use

address = j(n1,1,1) // j(n2,1,2) // j(n3,1,3);

To obtain the design matrix with a column for intercept, we could pre-augment the
matrix X W OU T with the corresponding column, namely a column of 1 everywhere or
in SAS notation, with the matrix J(N,1,1). Specifically, the new design matrix is X W I T H
given by the SAS statement

x_with = j(n,1,1)||x_w_out;

A.18 Checking the Estimability of a Linear Function p′β

Often, one needs to check if a given linear function of β say, p′β, in the linear model set
up is estimable. There is a theorem (Searle, 1972) which says that it is estimable if and
only if X′X(X′X)−p = p where (X′X)− is any g-inverse of (X′X). Also, it so happens
that checking the above requirement for a given g-inverse is as good as checking it for all
g-inverses and hence with just one choice of a g-inverse, we can determine, using above,
the estimability of a linear function.

Consider the one way classification model, described above. Suppose we want to know
(a) if µ + τ2 is estimable and (b) if τ1 + τ2 is estimable. The corresponding choices for
p′ are p′

1 = (1 0 1 0) and p′
2 = (0 1 1 0). With X as obtained earlier, for p1 and p2, the left

sides of the estimability condition can be calculated using the SAS statements

left_p1 = (x_with)‘*x_with*(ginv( (x_with)‘*x_with ) )*p1;
left_p2 = (x_with)‘*x_with*(ginv( (x_with)‘*x_with ) )*p2;

resulting in

LEFT P1 =




1
0
1
0


 ,

and

LEFT P2 =




.5

.5

.5
−.5


 .

Since LEFT P1 is identically equal to p1, estimability of µ + τ2 is established. How-
ever, since LEFT P2 is not equal to p2, τ1 + τ2 is not estimable.
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A.19 Creating a Matrix from a SAS Data Set

We can create a matrix out of a SAS data set. It is very helpful because many times after
runnuing a SAS program, one may, for further calculations, need to use PROC IML. An
example for the intended task is presented here. Suppose we have a data set called MY-
DATA with three variables X1, X2 and X3 and five data points, from which we want to
create a matrix called MYMATRIX. To do so, we use the following SAS statements,

data mydata;
input x1 x2 x3;
lines;
2 4 8
3 9 1
9 4 8
1 1 1
2 7 8
;
proc iml;
use mydata;
read all into mymatrix;
print mymatrix;

If we want a matrix consisting of only a few variables, say in this case X3 and X1 (in
that specific order) from the data set, then the appropriate READ statement needs to be
slightly more specific as shown below.

read all var {x3 x1} into mymatrix;

A.20 Creating a SAS Data Set from a Matrix

Conversely, we can create a SAS data set out of a matrix. An example is presented here.
Suppose we have a 5 by 3 matrix titled MYMATRIX containing five observations on three
variables for which we will use the default names COL1, COL2 and COL3. From this, we
wish to create a data set named NEWDATA. It is done as follows.

proc iml;
mymatrix = {
2 4 8,
3 9 1,
9 4 8,
1 1 1,
2 7 8};
create newdata from mymatrix;
append from mymatrix;
close newdata;
proc print data = newdata;

A.21 Generation of Normal Random Numbers

The standard normal random numbers can be generated by specifying SEEDs as a matrix
and then using the function NORMAL. For example,
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seed = {12490,129479,69737};
nor_rand = normal(seed);

Through these, one can generate the multivariate normal random vectors with the de-
sired mean and variance covariance matrix, as shown in Chapter 1.

A.22 Computation of Cumulative Probabilities

Cumulative probabilities or distribution functions for various distributions at the given
CUTOFF values can be obtained as shown below for standard normal, chi-square, t and F
distributions. The notations are self explanatory.

cutoff = {.3 .5 1, 2 3 4};
df = 3;
nc = 0; /*This choice corresponds to a CentraL chi-sq/f/t */
f_ndf = 1;
f_ddf = 3;
dist_nor = probnorm(cutoff);
dist_chi = probchi(cutoff,df,nc);
dist_f = probf(cutoff,f_ndf,f_ddf,nc);
dist_t = probt(cutoff,df,nc);
print dist_nor,dist_chi,dist_f,dist_t;

These probabilities are frequently needed in various p value calculations.

A.23 Computation of Percentiles and Cut Off Points

Various percentiles and the cut off points are also needed as intermediate or final calcu-
lations in many statistical analyses. The percentiles corresponding to given probabilities
(PROB) can be obtained for various distributions as shown below for standard normal,
chi-square, t and F distributions. The notations are self explanatory.

prob = {.3 .5 .7, .95 .975 .99 };
df = 3;
nc = 0; /*This choice corresponds to a CentraL chi-sq/f/t */
f_ndf = 1;
f_ddf = 3;
nor_inv = probit(prob);
c_inv = cinv(prob,df,nc);
f_inv = finv(prob,f_ndf,f_ddf,nc);
t_inv = tinv(prob,df,nc);
print nor_inv, c_inv, f_inv, t_inv;

Any 100α percent upper cut off point can be obtained as the corresponding 100(1−α)th

percentile.
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BData Sets

/*CORK DATA SET: cork.dat*/

72 66 76 77
60 53 66 63
56 57 64 58
41 29 36 38
32 32 35 36
30 35 34 26
39 39 31 27
42 43 31 25
37 40 31 25
33 29 27 36
32 30 34 28
63 45 74 63
54 46 60 52
47 51 52 43
91 79 100 75
56 68 47 50
79 65 70 61
81 80 68 58
78 55 67 60
46 38 37 38
39 35 34 37
32 30 30 32
60 50 67 54
35 37 48 39
39 36 39 31
50 34 37 40
43 37 39 50
48 54 57 43

/* Cork Boring Data: Source: C. R. Rao (1948). Reproduced
with permission of the Biometrika Trustees. */

/* NEWCORK DATA SET: newcork.dat */

T1 72 66 76 77
T2 60 53 66 63
T3 56 57 64 58
T4 41 29 36 38
T5 32 32 35 36
T6 30 35 34 26
T7 39 39 31 27
T8 42 43 31 25
T9 37 40 31 25
T10 33 29 27 36
T11 32 30 34 28
T12 63 45 74 63
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T13 54 46 60 52
T14 47 51 52 43
T15 91 79 100 75
T16 56 68 47 50
T17 79 65 70 61
T18 81 80 68 58
T19 78 55 67 60
T20 46 38 37 38
T21 39 35 34 37
T22 32 30 30 32
T23 60 50 67 54
T24 35 37 48 39
T25 39 36 39 31
T26 50 34 37 40
T27 43 37 39 50
T28 48 54 57 43

/* In the cork boring data of C. R. Rao (1948) the trees have
been numbered as T1-T28 */

/* FISH DATA SET: fish.dat */

0 0. .25 .25 .25 270 .6695
0. .10 .30 .30 .30 410 .6405
0. .5 .75 .9 .9 610 .729
.15 .65 1.0 1.0 1.0 940 .77
.45 1. 1. 1. 1. 1450 .5655
0. .05 .20 .20 .2 270 .782
.05 .1 .3 .3 .3 410 .812
.05 .45 .95 1. 1. 610 .8215
.1 .7 1. 1. 1. 940 .869
.2 .85 1. 1. 1. 1450 .8395
0. 0. 0. 0. .05 270 .8615
0. .05 .15 .25 .30 410 .9045
0. .15 .95 .95 .95 610 1.028
0. .55 .95 1. 1. 940 1.0445
.1 .85 1. 1. 1. 1450 1.0455
0. 0. 0. .05 .10 270 .6195
0. .05 .15 .20 .25 410 .5305
.1 .45 .95 .95 .95 610 .597
.1 .7 1 1 1 940 .6385
.35 .95 1. 1. 1. 1450 .6645
0 .05 .20 .20 .20 270 .5685
0 0 .15 .25 .25 410 .604
0 .4 .9 1. 1. 610 .6325
.05 .65 1 1. 1. 940 .6845
.3 .85 1. 1. 1. 1450 .723

/* Source: Srivastava and Carter (1983, p. 143). */

/* THERMOCOUPLES DATA SET: thermoco.dat */

326.06 321.92 326.03 323.59 322.84
326.09 322.00 326.06 323.63 322.92
326.07 321.98 326.03 323.62 322.88
326.08 321.99 326.06 323.64 322.91
326.05 321.96 326.02 323.64 322.89
326.05 321.96 326.02 323.60 322.89
326.03 321.94 326.01 323.62 322.87
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326.08 321.86 326.01 323.64 322.89
326.00 321.85 325.99 323.58 322.85
326.16 322.05 326.13 323.70 322.98
326.00 321.90 325.97 323.55 322.84
326.20 322.12 326.20 323.76 323.03
325.97 321.89 325.95 323.55 322.82
326.20 322.10 326.18 323.74 323.02
326.07 321.99 326.04 323.66 322.93
326.11 322.02 326.08 323.66 322.93
326.00 321.91 325.98 323.57 322.82
326.20 322.11 326.16 323.75 323.03
326.13 322.04 326.12 323.70 322.95
326.12 322.03 326.08 323.68 322.95
326.14 322.04 326.11 323.69 322.94
326.15 322.05 326.12 323.70 322.97
326.07 321.96 326.03 323.62 322.89
326.11 322.00 326.08 323.66 322.93
326.07 321.97 326.03 323.62 322.89
326.13 322.02 326.07 323.67 323.02
326.01 321.92 325.99 323.58 322.85
326.22 322.25 326.19 323.77 323.03
326.08 321.97 326.05 323.63 322.90
326.16 322.06 326.12 323.70 322.97
325.99 321.91 325.96 323.55 322.81
326.14 322.03 326.11 323.68 322.93
325.97 321.86 325.94 323.51 322.80
326.17 322.06 326.14 323.70 322.99
326.02 321.93 325.99 323.58 322.84
326.14 322.04 326.11 323.71 322.96
326.03 321.93 325.98 323.59 322.86
326.10 321.99 326.08 323.66 322.91
326.02 321.91 325.98 323.56 322.93
326.15 322.04 326.13 323.69 322.96
326.10 322.00 326.03 323.64 322.91
326.05 321.96 326.02 323.63 322.88
326.07 321.96 326.04 323.61 322.88
326.00 321.90 325.97 323.57 322.84
326.07 321.98 326.04 323.62 322.89
325.96 321.86 325.90 323.51 322.80
326.08 321.98 326.05 323.63 322.88
326.09 321.99 326.06 323.65 322.92
326.06 321.96 326.01 323.61 322.86
326.11 322.01 326.00 323.65 322.93
326.10 321.99 326.06 323.65 322.90
326.12 322.02 326.07 323.67 322.94
326.05 322.11 326.02 323.62 322.87
326.03 321.95 326.00 323.60 322.87
326.07 321.98 326.05 323.62 322.89
326.14 321.95 326.01 323.62 322.89
326.09 322.00 326.06 323.65 322.91
326.04 321.93 326.01 323.60 322.87
326.17 322.08 326.14 323.72 322.99
326.10 321.88 326.07 323.65 322.92
326.02 321.95 326.00 323.59 322.86
326.11 322.02 326.08 323.67 322.94
326.07 321.96 326.04 323.65 322.90
326.07 321.98 326.03 323.62 322.89
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/* Source: Christensen and Blackwood (1993). Reprinted with
permission from Technometrics. Copyright 1993 by the American
Statistical Association and the American Society for Quality
Control. All rights reserved. */

/* ROHWER’s DATA SET: rohwer.dat */

OBS PPVT RPMT SAT N S NS NA SS

1 68 15 24 0 10 8 21 22
2 82 11 8 7 3 21 28 21
3 82 13 88 7 9 17 31 30
4 91 18 82 6 11 16 27 25
5 82 13 90 20 7 21 28 16
6 100 15 77 4 11 18 32 29
7 100 13 58 6 7 17 26 23
8 96 12 14 5 2 11 22 23
9 63 10 1 3 5 14 24 20
10 91 18 98 16 12 16 27 30
11 87 10 8 5 3 17 25 24
12 105 21 88 2 11 10 26 22
13 87 14 4 1 4 14 25 19
14 76 16 14 11 5 18 27 22
15 66 14 38 0 0 3 16 11
16 74 15 4 5 8 11 12 15
17 68 13 64 1 6 10 28 23
18 98 16 88 1 9 12 30 18
19 63 15 14 0 13 13 19 16
20 94 16 99 4 6 14 27 19
21 82 18 50 4 5 16 21 24
22 89 15 36 1 6 15 23 28
23 80 19 88 5 8 14 25 24
24 61 11 14 4 5 11 16 22
25 102 20 24 5 7 17 26 15
26 71 12 24 0 4 8 16 14
27 102 16 24 4 17 21 27 31
28 96 13 50 5 8 20 28 26
29 55 16 8 4 7 19 20 13
30 96 18 98 4 7 10 23 19
31 74 15 98 2 6 14 25 17
32 78 19 50 5 10 18 27 26
/* Source: Timm (1975). Data courtesy of Dr. William D.

Rohwer, University of California, Berkeley.*/

/* AIR-POLLUTION DATA SET: airpol.dat */

8 98 7 2 12 8 2
7 107 4 3 9 5 3
7 103 4 3 5 6 3
10 88 5 2 8 15 4
6 91 4 2 8 10 3
8 90 5 2 12 12 4
9 84 7 4 12 15 5
5 72 6 4 21 14 4
7 82 5 1 11 11 3
8 64 5 2 13 9 4
6 71 5 4 10 3 3
6 91 4 2 12 7 3
7 72 7 4 18 10 3
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10 70 4 2 11 7 3
10 72 4 1 8 10 3
9 77 4 1 9 10 3
8 76 4 1 7 7 3
8 71 5 3 16 4 4
9 67 4 2 13 2 3
9 69 3 3 9 5 3
10 62 5 3 14 4 4
9 88 4 2 7 6 3
8 80 4 2 13 11 4
5 30 3 3 5 2 3
6 83 5 1 10 23 4
8 84 3 2 7 6 3
6 78 4 2 11 11 3
8 79 2 1 7 10 3
6 62 4 3 9 8 3
10 37 3 1 7 2 3
8 71 4 1 10 7 3
7 52 4 1 12 8 4
5 48 6 5 8 4 3
6 75 4 1 10 24 3
10 35 4 1 6 9 2
8 85 4 1 9 10 2
5 86 3 1 6 12 2
5 86 7 2 13 18 2
7 79 7 4 9 25 3
7 79 5 2 8 6 2
6 68 6 2 11 14 3
8 40 4 3 6 5 2

/* These are 42 measurements on air-pollution variables recorded
at 12:00 noon in the Los Angeles area on different days.
The variables respectively are Wind, Solar rad., CO, NO,
NO_2, O_3, and HC. (Data Courtesy Prof. G. C. Tiao,
Ref. Johnson and Wichern (1998, p. 30)).*/

/* CHEMISTRY DATA: chemist.dat */

1 1 1 1 1 1 1 -1 4.99 92.2
1 1 1 1 1 1 -1 1 5.00 93.9
1 1 1 1 -1 -1 1 1 5.61 94.6
1 1 1 1 -1 -1 -1 -1 4.76 95.1
1 1 -1 -1 1 1 1 1 5.23 91.8
1 1 -1 -1 1 1 -1 -1 4.77 94.1
1 1 -1 -1 -1 -1 1 -1 4.99 95.4
1 1 -1 -1 -1 -1 -1 1 5.17 93.4
1 -1 1 -1 1 -1 1 1 4.90 94.1
1 -1 1 -1 1 -1 -1 -1 4.90 93.2
1 -1 1 -1 -1 1 1 -1 5.24 92.8
1 -1 1 -1 -1 1 -1 1 4.95 93.8
1 -1 -1 1 1 -1 1 -1 4.96 91.6
1 -1 -1 1 1 -1 -1 1 5.03 92.3
1 -1 -1 1 -1 1 1 1 5.14 90.6
1 -1 -1 1 -1 1 -1 -1 5.05 93.4
-1 1 1 -1 1 -1 1 -1 4.97 93.1
-1 1 1 -1 1 -1 -1 1 4.83 93.3
-1 1 1 -1 -1 1 1 1 5.27 92.0
-1 1 1 -1 -1 1 -1 -1 5.20 92.5
-1 1 -1 1 1 -1 1 1 5.34 91.9
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-1 1 -1 1 1 -1 -1 -1 5.00 92.1
-1 1 -1 1 -1 1 1 -1 5.28 91.9
-1 1 -1 1 -1 1 -1 1 4.93 93.7
-1 -1 1 1 1 1 1 1 4.91 91.0
-1 -1 1 1 1 1 -1 -1 4.71 92.9
-1 -1 1 1 -1 -1 1 -1 4.99 94.8
-1 -1 1 1 -1 -1 -1 1 4.91 94.1
-1 -1 -1 -1 1 1 1 -1 4.86 91.7
-1 -1 -1 -1 1 1 -1 1 4.65 89.4
-1 -1 -1 -1 -1 -1 1 1 5.24 92.8
-1 -1 -1 -1 -1 -1 -1 -1 5.05 93.7

/* Source: Daniel and Riblett (1954). Reprinted with
permission from American Chemical Society. Copyright 1954,
American Chemical Society. */

/* HEART RATE DATA: heart.dat */

ax23 72 86 81 77
ax23 78 83 88 82
ax23 71 82 81 75
ax23 72 83 83 69
ax23 66 79 77 66
ax23 74 83 84 77
ax23 62 73 78 70
ax23 69 75 76 70
bww9 85 86 83 80
bww9 82 86 80 84
bww9 71 78 70 75
bww9 83 88 79 81
bww9 86 85 76 76
bww9 85 82 83 80
bww9 79 83 80 81
bww9 83 84 78 81
control 69 73 72 74
control 66 62 67 73
control 84 90 88 87
control 80 81 77 72
control 72 72 69 70
control 65 62 65 61
control 75 69 69 68
control 71 70 65 65

/* Source: Spector (1987, pp. 1174-1177). "Strategies for
Repeated Measures Analysis of Variance," SUGI 1987. */

/* DATA SET FROM BOX (1950): box.dat */

yes a 25 194 192 141
yes a 25 208 188 165
yes a 50 233 217 171
yes a 50 241 222 201
yes a 75 265 252 207
yes a 75 269 283 191

yes b 25 239 127 90
yes b 25 187 105 85
yes b 50 224 123 79
yes b 50 243 123 110
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yes b 75 243 117 100
yes b 75 226 125 75

no a 25 155 169 151
no a 25 173 152 141
no a 50 198 187 176
no a 50 177 196 167
no a 75 235 225 166
no a 75 229 270 183

no b 25 137 82 77
no b 25 160 82 83
no b 50 129 94 78
no b 50 98 89 48
no b 75 155 76 91
no b 75 132 105 67

/* Source: Box (1950). Reproduced by permission of the
International Biometric Society. */

/* TASK DATA SET: task.dat */

control 4.1 6.1 7.6 7.5 8.9 9.5 8.7 8.8 . 7.0 . 6.5
control 5.8 7.5 10.1 10.4 10.4 8.9 8.9 8.4 9.9 8.6 . 6.9
control 7.0 8.4 11.2 12.8 10.0 10.3 9.5 9.2 9.0 9.4 . 8.4
control 9.0 7.8 10.8 10.3 9.3 10.3 11.5 12.3 10.0 11.4 . 5.9
control 3.6 4.3 3.9 3.9 4.5 3.2 4.1 4.0 3.5 3.7 3.0 2.8
control 7.7 7.0 6.7 7.0 7.9 7.4 7.3 7.2 6.6 6.6 8.3 7.9
control 3.4 2.1 2.2 2.0 2.2 2.2 2.5 2.3 2.5 2.4 2.0 2.2
control 1.8 1.4 2.1 2.4 2.5 2.3 2.0 2.0 1.9 2.0 2.0 1.4
dinocom 7.6 8.9 8.5 8.4 8.5 8.2 5.6 8.8 8.8 8.4 8.0 8.2
dinocom 4.2 6.5 7.5 7.1 7.2 7.0 5.0 4.2 6.9 9.5 . .
dinocom 6.9 13.3 12.9 13.5 13.4 13.1 13.6 13.1 14.8 15.3 16.1 16.9
dinocom 8.1 7.4 8.8 9.2 8.4 9.2 7.9 7.9 7.9 7.3 . 7.2
dinocom 4.5 4.9 5.5 5.6 5.2 5.3 6.4 6.0 6.4 6.4 . 6.9
dinocom 4.2 3.2 3.2 4.0 3.2 3.4 3.4 3.2 3.2 3.2 2.8 2.8
dihypot 5.9 5.5 5.5 5.5 5.3 5.0 4.5 4.1 4.3 3.9 3.7 3.5
dihypot . 0.8 0.4 0.6 0.4 0.4 0.5 0.6 0.5 0.5 0.8 0.7
dihypot 10.1 6.5 6.2 6.3 6.6 5.9 6.5 5.5 5.7 5.1 4.4 4.9
dihypot 5.7 4.3 4.6 3.8 3.9 3.6 3.0 3.7 3.2 3.1 2.7 2.4
dihypot 2.1 2.9 3.2 3.2 2.7 2.7 2.4 2.2 1.8 1.7 1.7 1.5
dihypot 5.5 11.1 10.8 8.7 9.3 10.5 12.7 11.3 19.1 18.9 37.0 39.0
dihypot 0.9 4.9 5.7 7.0 7.0 5.8 6.9 7.7 7.5 8.8 8.1 9.9
dihyper 5.0 5.2 3.4 3.0 3.1 3.6 3.2 2.6 4.6 3.8 4.9 2.7
dihyper 4.2 4.3 4.1 3.5 2.8 2.8 4.7 3.7 3.7 4.2 . 4.4
dihyper 3.2 3.0 3.3 3.5 3.4 3.3 3.3 3.3 3.4 3.2 3.1 3.2
dihyper 5.0 6.9 7.5 5.9 . 7.7 7.3 7.6 7.5 7.5 7.0 7.5
dihyper 2.5 12.0 12.2 11.4 11.6 11.7 12.6 10.1 11.4 12.8 11.5 10.7
dihyper 1.6 1.6 2.1 1.9 1.7 2.5 1.6 1.3 3.5 0.6 . .

/* Source: Crowder and Hand (1990, p.8). */

/* DOG DATA SET: dog.dat */

4. 4. 4.1 3.6 3.6 3.8 3.1
4.2 4.3 3.7 3.7 4.8 5.0 5.2
4.3 4.2 4.3 4.3 4.5 5.8 5.4
4.2 4.4 4.6 4.9 5.3 5.6 4.9
4.6 4.4 5.3 5.6 5.9 5.9 5.3



322 Applied Multivariate Statistics

3.1 3.6 4.9 5.2 5.3 4.2 4.1
3.7 3.9 3.9 4.8 5.2 5.4 4.2
4.3 4.2 4.4 5.2 5.6 5.4 4.7
4.6 4.6 4.4 4.6 5.4 5.9 5.6
3.4 3.4 3.5 3.1 3.1 3.7 3.3
3.0 3.2 3.0 3.0 3.1 3.2 3.1
3.0 3.1 3.2 3.0 3.3 3.0 3.0
3.1 3.2 3.2 3.2 3.3 3.1 3.1
3.8 3.9 4.0 2.9 3.5 3.5 3.4
3.0 3.6 3.2 3.1 3.0 3.0 3.0
3.3 3.3 3.3 3.4 3.6 3.1 3.1
4.2 4.0 4.2 4.1 4.2 4.0 4.0
4.1 4.2 4.3 4.3 4.2 4.0 4.2
4.5 4.4 4.3 4.5 5.3 4.4 4.4
3.2 3.3 3.8 3.8 4.4 4.2 3.7
3.3 3.4 3.4 3.7 3.7 3.6 3.7
3.1 3.3 3.2 3.1 3.2 3.1 3.1
3.6 3.4 3.5 4.6 4.9 5.2 4.4
4.5 4.5 5.4 5.7 4.9 4.0 4.0
3.7 4.0 4.4 4.2 4.6 4.8 5.4
3.5 3.9 5.8 5.4 4.9 5.3 5.6
3.9 4.0 4.1 5.0 5.4 4.4 3.9
3.1 3.5 3.5 3.2 3.0 3.0 3.2
3.3 3.2 3.6 3.7 3.7 4.2 4.4
3.5 3.9 4.7 4.3 3.9 3.4 3.5
3.4 3.4 3.5 3.3 3.4 3.2 3.4
3.7 3.8 4.2 4.3 3.6 3.8 3.7
4.0 4.6 4.8 4.9 5.4 5.6 4.8
4.2 3.9 4.5 4.7 3.9 3.8 3.7
4.1 4.1 3.7 4.0 4.1 4.6 4.7
3.5 3.6 3.6 4.2 4.8 4.9 5.0

/* Source: Grizzle and Allen (1969). Reproduced by permission
of the International Biometric Society. */

/* BLOOD PRESSURE DATA: bpress.dat */

1 206 c 0 1 1 1
1 220 a c 2 1 1
1 210 b a 3 1 1
2 174 a 0 1 1 2
2 146 b a 2 1 2
2 164 c b 3 1 2
3 192 a 0 1 1 3
3 150 c a 2 1 3
3 160 b c 3 1 3
4 184 b 0 1 1 4
4 192 a b 2 1 4
4 176 c a 3 1 4
5 136 b 0 1 1 5
5 132 c b 2 1 5
5 138 a c 3 1 5
1 190 c 0 1 4 6
1 145 b c 2 4 6
1 160 a b 3 4 6
1 145 a 0 1 2 7
1 125 b a 2 2 7
1 130 c b 3 2 7
2 160 c 0 1 2 8
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2 180 a c 2 2 8
2 145 b a 3 2 8
3 145 b 0 1 2 9
3 154 c b 2 2 9
3 166 a c 3 2 9
1 230 a 0 1 3 10
1 174 b a 2 3 10
1 200 c b 3 3 10
2 194 b 0 1 3 11
2 210 c b 2 3 11
2 190 a c 3 3 11
3 180 c 0 1 3 12
3 180 b c 2 3 12
3 208 a a 3 3 12
4 140 b 0 1 3 13
4 150 a b 2 3 13
4 150 c a 3 3 13
5 194 a 0 1 3 14
5 208 c a 2 3 14
5 160 b c 3 3 14
6 188 c 0 1 3 15
6 200 a c 2 3 15
6 190 b a 3 3 15
7 240 a 0 1 3 16
7 130 b a 2 3 16
7 195 c b 3 3 16
8 180 b 0 1 3 17
8 180 c b 2 3 17
8 190 a c 3 3 17
9 210 c 0 1 3 18
9 160 b c 2 3 18
9 226 a b 3 3 18
10 175 a 0 1 3 19
10 152 c a 2 3 19
10 175 b c 3 3 19
11 155 b 0 1 3 20
11 230 a b 2 3 20
11 226 c a 3 3 20
12 202 a 0 1 3 21
12 160 c a 2 3 21
12 180 b c 3 3 21
13 180 b 0 1 3 22
13 185 a b 2 3 22
13 190 c a 3 3 22
14 185 c 0 1 3 23
14 180 b c 2 3 23
14 200 a b 3 3 23

/* Source: Jones and Kenward (1989, p. 230). Reprinted
by permission of Chapman and Hall, Andover, England. */

/* ONION DATA SET: onion.dat */

1 a 0146 3756 2172 3956 3806 4990 1
1 b 9666 8496 12056 8216 5076 -1568 1
2 a 5767 12321 16440 15736 12760 8504 1
2 b 2784 9668 9138 8096 9286 7413 1
3 a 2723 3177 3427 3549 4084 4754 1
3 b 2595 4959 6993 5614 5108 2690 1
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4 a 3365 3567 3646 5120 5390 5051 1
4 b -2191 1281 1184 1750 0532 1328 1
5 a 3238 8804 6480 7221 5680 4439 1
5 b 1872 3655 4810 4737 3776 0682 1
6 a 3567 2820 5878 4410 6988 7962 1
6 b -1640 1063 0430 0476 0145 -3326 1
7 a 1878 3832 3459 4300 3010 2541 1
7 b 2126 2041 0771 1985 -1914 -0537 1
8 a -0408 0392 1310 -0619 0770 1310 1
8 b 2412 0000 3102 3953 3536 1671 1
9 a 3933 5674 5878 9235 8089 7676 2
9 b -0119 -3483 0000 2208 0791 5132 2
10 a 6373 5902 7357 7357 5021 4888 2
10 b -1424 0601 0546 3289 2284 0000 2
11 a 0426 0834 8285 7357 6022 6101 2
11 b 1773 8579 6931 6473 4774 2839 2
12 a 8249 12011 13649 15364 14803 9191 2
12 b 2800 6698 8755 8228 6737 -1947 2
13 a 5623 7302 7482 0370 -1861 0370 2
13 b 3716 4055 9555 15041 11151 2231 2
14 a -0089 4361 4893 5001 7493 6025 2
14 b 0517 0785 4068 3931 4776 2918 2
;

/* Source: Dunsmore (1981). Reprinted by permission of the
Royal Statistical Society. */

/* GLUCOSE DATA SET: glucose.dat */

1 g1 4.90 4.50 7.84 5.46 5.08 4.32 3.91 3.99 4.15 4.41
2 g1 4.61 4.65 7.90 6.13 4.45 4.17 4.96 4.36 4.26 4.13
3 g1 5.37 5.35 7.94 5.64 5.06 5.49 4.77 4.48 4.39 4.45
4 g1 5.10 5.22 7.20 4.95 4.45 3.88 3.65 4.21 4.38 4.44
5 g1 5.34 4.91 5.69 8.21 2.97 4.30 4.18 4.93 5.16 5.54
6 g1 5.24 5.04 8.72 4.85 5.57 6.33 4.81 4.55 4.48 5.15
7 g2 4.91 4.18 9.00 9.74 6.95 6.92 4.66 3.45 4.20 4.63
8 g2 4.16 3.42 7.09 6.98 6.13 5.36 6.13 3.67 4.37 4.31
9 g2 4.95 4.40 7.00 7.80 7.78 7.30 5.82 5.14 3.59 4.00
10 g2 3.82 4.00 6.56 6.48 5.66 7.74 4.45 4.07 3.73 3.58
11 g2 3.76 4.70 6.76 4.98 5.02 5.95 4.90 4.79 5.25 5.42
12 g2 4.13 3.95 5.53 8.55 7.09 5.34 5.56 4.23 3.95 4.29
13 g3 4.22 4.92 8.09 6.74 4.30 4.28 4.59 4.49 5.29 4.95
14 g3 4.52 4.22 8.46 9.12 7.50 6.02 4.66 4.69 4.26 4.29
15 g3 4.47 4.47 7.95 7.21 6.35 5.58 4.57 3.90 3.44 4.18
16 g3 4.27 4.33 6.61 6.89 5.64 4.85 4.82 3.82 4.31 3.81
17 g3 4.81 4.85 6.08 8.28 5.73 5.68 4.66 4.62 4.85 4.69
18 g3 4.61 4.68 6.01 7.35 6.38 6.16 4.41 4.96 4.33 4.54
19 g4 4.05 3.78 8.71 7.12 6.17 4.22 4.31 3.15 3.64 3.88
20 g4 3.94 4.14 7.82 8.68 6.22 5.10 5.16 4.38 4.22 4.27
21 g4 4.19 4.22 7.45 8.07 6.84 6.86 4.79 3.87 3.60 4.92
22 g4 4.31 4.45 7.34 6.75 7.55 6.42 5.75 4.56 4.30 3.92
23 g4 4.30 4.71 7.44 7.08 6.30 6.50 4.50 4.36 4.83 4.50
24 g4 4.45 4.12 7.14 5.68 6.07 5.96 5.20 4.83 4.50 4.71
25 g5 5.03 4.99 9.10 10.03 9.20 8.31 7.92 4.86 4.63 3.52
26 g5 4.51 4.50 8.74 8.80 7.10 8.20 7.42 5.79 4.85 4.94
27 g5 4.87 5.12 6.32 9.48 9.88 6.28 5.58 5.26 4.10 4.25
28 g5 4.55 4.44 5.56 8.39 7.85 7.40 6.23 4.59 4.31 3.96
29 g5 4.79 4.82 9.29 8.99 8.15 5.71 5.24 4.95 5.06 5.24
30 g5 4.33 4.48 8.06 8.49 4.50 7.15 5.91 4.27 4.78 5.72
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31 g6 4.60 4.72 9.53 10.02 10.25 9.29 5.45 4.82 4.09 3.52
32 g6 4.33 4.10 4.36 6.92 9.06 8.11 5.69 5.91 5.65 4.58
33 g6 4.42 4.07 5.48 9.05 8.04 7.19 4.87 5.40 4.35 4.51
34 g6 4.38 4.54 8.86 10.01 10.47 9.91 6.11 4.37 3.38 4.02
35 g6 5.06 5.04 8.86 9.97 8.45 6.58 4.74 4.28 4.04 4.34
36 g6 4.43 4.75 6.95 6.64 7.72 7.03 6.38 5.17 4.71 5.14

/*
The data are ID, group, y1-y10 (the observations taken at the time points
-15 0 30 60 90 120 180 240 300 and 360 minutes.
From Crowder and Hand (1990) p. 14.
*/

/* AUDIOLOGY DATA SET: audiology.dat */

a 28.57 53.00 57.83 59.22
a . 13.00 21.00 26.50
a 60.37 86.41 . .
a 33.87 55.60 61.06 .
a 26.04 61.98 67.28 .
a . 59.00 66.80 83.20
a 11.29 38.02 . .
a . 35.10 37.79 54.80
a 16.00 33.00 45.39 40.09
a 40.55 50.69 41.70 52.07
a 3.90 11.06 4.15 14.90
a .00 17.74 44.70 48.85
a 64.75 84.50 92.40 95.39
a 38.25 81.57 89.63 .
a 67.50 91.47 92.86 .
a 45.62 58.00 . .
a .00 .00 37.00 .
a 51.15 66.13 . .
a .00 48.16 . .
b 8.76 24.42 . .
b .00 20.79 27.42 31.80
b 2.30 12.67 28.80 24.42
b 12.90 28.34 . .
b . 45.50 43.32 36.80
b 68.00 96.08 97.47 99.00
b 20.28 41.01 51.15 61.98
b 65.90 81.30 71.20 70.00
b .00 8.76 16.59 14.75
b 9.22 14.98 9.68 .
b 11.29 44.47 62.90 68.20
b 30.88 29.72 . .
b 29.72 41.40 64.00 .
b .00 43.55 48.16 .
b 8.76 60.00 . .
b 8.00 25.00 30.88 55.53

/* Nunez-Anton and Woodworth (1994).
Biometrics, 50, 445-456). */

/* SHEEP DATA: sheep.dat */

young 528 5 66 135 -20
young 528 15 -12 545 -28
young 528 30 60 840 -24
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young 502 5 59 21 9.8
young 502 15 59 97 20
young 502 30 46 224 45
young 505 5 47 55 20
young 505 15 6.7 78 41
young 505 30 6.7 210 39
young 24 5 -16 22 13
young 24 15 2.6 -28 36
young 24 30 -18.4 -33 49
young 599 5 -29 -22 19
young 599 15 -53 155 45
young 599 30 -61 629 50
young 49 5 6.9 7.6 16
young 49 15 -29 169 44
young 49 30 -35 754 60
old 717 5 -16 55 18
old 717 15 -40 158 18
old 717 30 -38 133 24
old 722 5 29 875 35
old 722 15 -40 158 18
old 722 30 -38 133 24
old 617 5 5.8 23 4.3
old 617 15 -29 56 -2.1
old 617 30 5.8 177 -2.1
old 618 5 -40 86 7.4
old 618 15 -60 121 22
old 618 30 -58 82 28

/* Data courtesy of Dr.Barbara Hargrave, Department of
Biological Sciences, Old Dominion University. */



A

abrasion data example  196-200
ADJUST option, LSMEANS statement  254
AIC (Akaike’s information criterion)  253, 264
air pollution data example, D-D plot  107-110
Akaike’s information criterion (AIC)  253, 264
algebra of matrices  306
ALPHA= option, MIXED procedure  254
analysis of covariance  145-149
analysis of repeated measures data  151-246

analysis in presence of covariates  207-219
crossover designs  236-246
factorial designs  195-207
growth curve models  219-236
k populations  176-195
single population  152-176
treatment combinations/conditions  170-176

Andrews function plots  33-38
ANOVA F test

See F statistic
ANOVA partitioning  64-65

sphericity of orthogonal contrasts, guaranteeing  161
unbalanced data and  120-123

ANOVA partitioning, multivariate
See MANOVA partitioning

AR(1) covariance structure  256, 265-270
repeated measure with time-fixed covariates,

example  277-278
arranging matrices  310
ARRAY statement  31
assumption of compound symmetry  162
audiology data example  270-274
augmenting matrices  310
autoregressive covariance structure  256, 265-270

repeated measure with time-fixed covariates,
example  277-278

B

balanced data  120-123
one-way laboratories comparison data example  123-126
two-way classification, mice weight loss example  130-132

banded main diagonal covariance structure  256
Bartlett-Hotelling-Lawley trace  67
Bartlett-Nanda-Pillai’s trace

See Pillai’s trace statistic
Bartlett’s correction  255
Best Linear Unbiased Estimator (BLUE)  63, 249
Best Linear Unbiased Predictor (BLUP)  249

best linear unbiased scalar (BLUS) residuals  111
BETAINV function  115
Beta Type 1 matrix variate distribution  8

generating Beta matrices  17-19
Beta Type 2 matrix variate distribution  8

generating Beta matrices  17-19
between-subject hypotheses  178-188
BIC (Schwartz’s Bayesian criterion)  253, 264
BIPLOT macro  40-44
biplots  38-45
bivariate normal distribution  53-58

See also multivariate normal distribution
contour plot of density  56-58
pdf, plotting  55

block design structure  69, 137-139
profile analysis of single population  154
testing for covariance structures  156

BLUE (Best Linear Unbiased Estimator)  63, 249
BLUP (Best Linear Unbiased Predictor)  249
BLUS (best linear unbiased scalar) residuals  111
Bonferroni’s inequality  86, 195

C

cabbage data example  229-231
calibration problems  98-101
CALIS procedure, computing multivariate kurtosis  11-13
canonical correlation coefficients  5
CAPABILITY procedure  47-48, 52

GRAPHICS option  48
car door panels warpage data example  262-264
chemical process model, example  140-145
child test performance data, example

detection of outliers  110-111
influential observations, detecting  114-116
multivariate normality test  102-107

CHISQ (chi-square quantiles)  52
CHISQ option, MODEL statement  254, 270
chi-square distributions

approximation of Wilks’ ratio  68
cumulative probabilities, percentiles, cut off points  313
Q-Q plots  45

chi-square quantiles (CHISQ)  52
chi-square statistic, MIXED procedure for  254
Cholesky decomposition  17-18, 308
CINV function  46
circular covariance structures, example  260-262
circular covariance testing  158
coefficients

canonical correlation coefficients  5

Index
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coefficient of determination  65
compound symmetry correlation coefficient  287
correlation coefficients  4-5
homogeneity tests for regression coefficients  228-231
Pearson’s correlation coefficient  4-5
population coefficient of determination  5
random coefficient model  288-294
regression coefficients homogeneity testing  228
square of multiple correlation coefficient  5

coincidental profiles, k populations  186
columns in matrix, determining  307
compound symmetry testing  157-158
concomitant variables, comparisons in presence of  145-149

flammability study example  146-149
conditional distribution  4
confidence intervals

simultaneous  84-87
variance-covariance matrix parameters  254

confounded variables  140
contours of bivariate pdf  54

plotting  56-58
contrast matrix  163
CONTRAST option, REPEATED statement  163
contrasts

sphericity of orthogonal contrasts, guaranteeing  161
testing for, cork data example  14

CONTRAST statement, GLM procedure
crossover design analysis  239
one-way balanced MANOVA partitioning, example  126
pairwise comparisons of SS&CP matrix types  138
parallel profiles testing, example  185
spatial uniformity semiconductor processes,

example  94, 97
SS&CP matrices, analysis of covariances  147-149
two-way factorial experiment  196
univariate analysis of k populations, example  193

CONTRAST statement, MIXED procedure  254
Cook type distance  113

test performance data example  114-116
cork data example

Andrews function plots  35-37
circular covariance testing  159-161
Hotelling T 2 statistic  69-73
outliers, detecting with plots  52-53
profile plots  31-33
Q-Q plots  48-50
simultaneous confidence intervals  84
testing circular covariance structure  260-262
testing for multivariate normality  10-16
three-dimensional scatter plots  26-28
two-dimensional scatter plots  22-26

corn varieties comparison, example  137-139
corrected sums of squares, unbalanced data  120

correlation, multiple  5
correlation coefficient matrix  4
correlation coefficients  4-5
covariables  69
covariance ratio  113

influential observations, example  114-116
covariances  3-5

assessing dispersion homogeneity  107-110
circular, testing for  158-161
inference for covariance parameters  253
sphericity of orthogonal contrasts, guaranteeing  161

covariance structures
choosing for tests  264-265
circular, example  260-262
circular covariance tests  158-161
compound symmetry tests  157-158
glucose data example  257-259
linear  256-262
Markov structure, example  270-274
spatial power structure  257
sphericity of orthogonal contrasts  161
sphericity tests  156
statistical tests  255-265
Type H structure  161

covariate effects  283
covariates  207-209

choosing in growth curve model, example  225-228
comparisons in presence of  145-149
fixed over time  275-278
repeated measures analysis  274-287
subject-specific covariates  208-214
univariate approach of split plot design  215-219

COVTEST option, MIXED procedure  253, 267
cross-classified unbalanced data  121-122
crossover designs  236-246

constructing  242-246
multivariate analysis, example  239-242
univariate analysis, example  237-239

cumulative probabilities  313
curve fitting, polynomial  165-170
cut off points, computing  313
cyclic Latin-square crossover designs  244-246

D

DATA step, fish data example  73
DDF= option, MODEL statement  254
DDFM= option, MODEL statement  254
D-D plot, air pollution data example  107-110
degree of polynomial curve fit  165-170
density

See probability distribution
dental study data example  295-297
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DESIGN function  310
design matrix, constructing  310
detecting outliers

See outliers
determinant of matrices  307
DET function  307
DEV= specification, GPLOT procedure  22
diabetic patients study example  126-129

subject-specific covariates  208-214, 275-278
univariate approach to split plot design  216-219

diagonal matrix  4
dietary treatment study example  174-176
direct product

See Kronecker product
dispersion homogeneity, assessing  107-110
dispersion matrices

See variance-covariance matrices
distribution functions  313
distributions

See also multivariate normal distribution
Beta Type 1 matrix variate distribution  8
Beta Type 2 matrix variate distribution  8
bivariate normal distribution  53-58
chi-square distributions  45, 68, 313
conditional distribution  4
F distributions  313
joint probability distribution  4
outlier detection in multivariate normal distribution

110-111
probability distribution  4
sample statistics for  8-9
sampling from multivariate normal distributions  6-8
symmetry of, scatter plots to examine  23-26
t distributions  313
Wishart distribution  6-8, 17-19

DMM analysis  295
dog data example  170-174
door panels warpage, example  262-264
doubly multivariate model (DMM) analysis  295
DROP statement  55
drug comparison data example  237-239
drug response time data example  221-225

E

EIGEN function  308, 309
eigenvalues and eigenvectors  307
EIGVAL function  307
EIGVEC function  307
equality of variances in calibration of thermocouples,

example  99-101

error sums of squares and crossproducts
See SS&CP matrices

estimability, checking
laboratories comparison data example  118-119
linear functions  311

estimable functions  64
ESTIMATE statement, GLM procedure  144, 225
ESTIMATE statement, MIXED procedure  254
etching process data example  132-137
Euclidean distance  34

F

FACTEX procedure  140, 243
factorial designs  195-207

fractional  139-145, 243
fractional, example  140-145
three-factor experiment with two repeated measures

factors  202-207
two-way experiment, example  196-200
two-way factorial experiment  196
two-way factorial experiment, example  170-174

F distribution  313
fish data example

multivariate regression  73-80
polynomial fitting  165-170
stepdown analysis  81-83

Fisher information matrix  251
fish growth data example  233-236
fitting polynomial curves  165-170
fixed effects models  265-274

repeated measures  265-270
repeated measures, example  266-270
unbalanced and unequally spaced data  270-274

fixed effects parameters  251, 254
fixed-time covariates  275-278
flammability study example  146-149
FOOTNOTE statement, J= option  28
fractional factorial designs  139-145

chemical process modeling, example  140-145
crossover designs  243

F statistic
approximations to  67
covariance structures  156
fitting Markov covariance structure  272
fixed effect parameter tests  251
k populations  189-193
MIXED procedure for  254
simultaneous confidence intervals  84
sphericity and compound symmetry tests  158
univariate analysis adjustments  162-164



G

GCONTOUR procedure  56-58
G3D procedure

plotting pdf of bivariate normal distribution  55
three-dimensional scatter plots  26

generalized inverse of matrix  63, 308
generalized variance  3
general linear hypotheses  91-98

spatial uniformity example  92-98
time-varying covariates  284-287

generating normal random numbers  312-313
g-inverse of matrix  63, 308
GLM procedure

See also ESTIMATE statement, GLM procedure
cubic growth model, example  225
fractional factorial experiment, example  144-145
missing observations, handling  122
multivariate approach to time-varying covariates,

example  282
multivariate regression, fish data example  73-80
multivariate tests as options  68-69
one-way classification  123-126
profile analysis of k population, example  185, 188
profile analysis of single population  154-156
regression coefficients homogeneity testing  228
repeated measures with fixed effects, example  267-270
simultaneous confidence intervals, fish data example  84
univariate analysis of k populations, example  189
variance and bias analysis  98

glucose data example, testing covariance structure  257-259
GPLOT procedure

Andrews function plots  35-37
biplots  40-44
two-dimensional scatter plots  22-26

graphical representation of multivariate data  21-59
Andrews function plots  33-38
biplots  38-45
bivariate normal distribution  53-58
contour plots  56-58
D-D plot, air pollution data example  107-110
outlier detection plots for  50-53
pdf, plotting  55
P-P plots  48
profile plots  31-33
Q-Q plots  45-51
Q-Q plot to detect outliers  110-111
Q-Q plot to assess normality, example  105-106
SAS/INSIGHT software  58
scatter plots  22-31

GRAPHICS option, CAPABILITY procedure  48
Greenhouse-Geisser procedure  163
growth curve models  219-236

growth as nonlinear regression model  231-236
polynomial growth  219
Rao-Khatri reduction  220-228
regression coefficient homogeneity tests  228-231

H

hat (projection) matrix  113
test performance data example  114-116

heart rate data example
comparison of treatments  178
repeated measures with fixed effects only  266-270
significance of orthogonal contrasts  188
testing for parallel profiles  180-186
time trend analysis  194-195
univariate analysis  189-193

HELMERT option, REPEATED statement  164
homogeneity of dispersion, assessing  107-110
homogeneity tests for regression coefficients  228-231
H= option, MANOVA statement  127, 129
horizontal profiles, k populations  187
Hotelling-Lawley trace criterion  67
Hotelling’s T 2 statistic

cork data example  69-73
simultaneous confidence intervals  86
squared Mahalanobis distance and robust version  110
treatments comparison  170

I

IML procedure  305-313
circular symmetry tests  159-161
compound symmetry testing  157-158
generating Wishart random matrix, example  17-19
Mardia’s kurtosis measure of BLUS residuals  111
matrices and SAS data sets  312
multivariate approach to time-varying covariates  279- 283
ORPOL function  165-170, 224
Q-Q plots  45-46
simultaneous confidence intervals, fish data example  86
skewness and kurtosis calculations  11-13

influential observations  111-116
INTERCEPT keyword, MTEST statement  75

excluding for testing intercept differences  97
inverse of matrices  306, 308
INV function  306

J

J function  311
joint probability distribution  4
J= option  28
JUSTIFY= (J=) option  28
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K

KEEP statement  55
k populations  176-195

comparison of treatments  178
profile analysis  178-188
time trend studies  194-195
univariate analysis  189-193

Kronecker product  249, 252, 309
kurtosis, multivariate

CALIS procedure to calculate, example  11-13
Mardia’s measures for  10
outliers, detecting  53

L

laboratories comparison data example
checking estimability  118-119
hypothesis testing  123-126

Latin-square crossover designs  243-246
LDATA= option, REPEATED statement, example  260
L2-distance  34
leading quote (‘) for transpose  306
least squares analysis  63

NLIN procedure for  80
nonlinear  232

LEVELS option, PLOT statement  57
leverage points, hat matrices  113
likelihood ratio test statistic  9

circular covariance structure  159, 161
covariance structure tests  255
nonlinear regression growth model  231
testing sphericity  156-157

linear covariance structure  256-262
linear functions, checking estimability of  311
linear hypotheses, testing  66-83, 119

multivariate tests  66-80
stepdown analysis  80-83

linear regression model  61
LINESIZE= option  23
log-likelihood ratio test statistic  254
LRT statistic, mixed effects model  250
LSMEANS statement, MIXED procedure  147, 254
LSMEAN statement, MIXED procedure

ADJUST option  254
LS= option  23

M

Mahalanobis distance, squared
approximately with biplots  39
assessing multivariate normality  45
outlier detection  50, 110-111
sample version  10

MANOVA partitioning  121-123
blocking, corn varieties comparison example  137-139
one-way balanced, laboratories classification example

123-126
one-way unbalanced, diabetic patients example  126-129
two-way balanced, mice weight loss example  130-132
two-way unbalanced, etching process example  132-137

MANOVA statement, GLM procedure
See also M= specification, MANOVA statement
See also PRINTE option, MANOVA statement
See also PRINTH option, MANOVA statement
H= option  127, 129
laboratories comparison data example  124
mice weight loss example  131
MNAMES= option  72
multivariate hypothesis testing, cork data example  71-72
NOUNI option  186
polynomial fitting  169
PREFIX option  186
spatial uniformity semiconductor processes, example

94, 97
two-way factorial experiment, example  171

Mardia’s multivariate skewness and kurtosis measures  10
computing, example  11-13
outliers, detecting  53

Markov covariance structure  256, 257
fitting audiology data example  270-274
testing, glucose data example  257

matrices
See also SS&CP matrices
See also variance-covariance matrices
algebra of matrices  306
arranging and augmenting  310
Beta matrices  8
Beta matrices, generating  17-19
contrast matrix  163
converting from/into SAS data sets  312
correlation coefficient matrix  4
creating from/into SAS data sets  312
design matrix, constructing  310
determinants of  307
diagonal matrix  4
Fisher information matrix  251
generalized inverse  63, 308
IML procedure, syntax for  305-313
inverse of  306, 308
mixed effects model, estimating  250-252
multivariate linear model representation  62
of partial correlation coefficients  4
projection (hat) matrix  113
projection (hat) matrix, example  114-116
random matrix generation, example  17-19

Index 331



rows in matrix, determining  307
scatter plot matrices  28-31
square roots of  4
symmetric, eigenvalues and eigenvectors  307
symmetric nonnegative definite matrix  308
traces of  63, 307
transposes of  306
Wishart random matrix, generating  17-19

matrix variate Beta Type 1 distribution  8
generating Beta matrices  17-19

matrix variate Beta Type 2 distribution  8
generating Beta matrices  17-19

Mauchly’s sphericity test  156
orthogonal contrasts, example  161
univariate analysis of k populations, example  192

maximum likelihood estimates  9
See also likelihood ratio test statistic
mixed effects linear model  249-251
nonlinear regression growth model  231

MAXITER= option, NLIN procedure  233
means  2-5
MEANS procedure  46
memory data profile, example

compound symmetry testing  157-158
profile analysis  152-156
Type H conditions testing  163-164

METHOD= option, MIXED procedure  253
likelihood ratios for covariance structures  259

METHOD= option, MODEL statement, example  292
mice data example

choosing covariates in growth curve model  225-228
two-way balanced MANOVA partitioning  130-132

minimum variance quadratic unbiased estimator  252
missing observations  122
MIVQUE0 estimator  252
mixed effects linear model  248-252
mixed model equations  249, 251
mixed models for repeated measures analysis  247-297

analysis in presence of covariates  274-287
fixed effects only  265-274
mixed effects linear model  248-252
multivariate repeated measures  294-297
random coefficient model  288-294
statistical tests for covariance structures  255-265

MIXED procedure  247, 252-255
ALPHA= option  254
COVTEST option  253, 267
METHOD= option  253, 259
random coefficient model, example  289
repeated measures with fixed effects, example

267-270
repeated measures with time-fixed covariates, example

275-278
repeated measures with time-varying covariates, example

284-287
testing covariance structure  256-257
testing covariance structure of variance-covariance matrix

259
testing prespecified covariance structures, example

262-264
Toeplitz structure  161

ML estimator  9
See also likelihood ratio test statistic
mixed effects linear model  249-251
MIXED procedure for  252
nonlinear regression growth model  231

ML estimator, restricted
See REML estimator

MNAMES= option, MANOVA statement  72
modeling chemical processes, example  140-145
MODEL statement, GLM procedure

analysis of covariance  147-149
blocking variables in  137-139
CHISQ option  254
crossover design analysis  237-239
DDF= option  254
DDFM= option  254
fish data example  73
fitting Markov covariance structure, example  272
multivariate regression, fish data example  82
NOINT option  94
NOUNI option  70, 72
polynomial fitting  169
repeated measures with fixed effects, example  267
specifying SS&CP matrix type  125
two-way unbalanced, etching process example  133
Type I through Type IV sums of squares  120
univariate analysis of covariates, example  216-219
univariate analysis of k populations, example  189

MODEL statement, MIXED procedure
CHISQ option  270
METHOD= option, example  292
multivariate repeated measures data, example  296
repeated measures with fixed effects, example  267
S option  292
testing covariance structure, example  259

MODEL statement, NLIN procedure  233
MODEL statement, REG procedure, example  92-98
Moore Penrose inverse  308
M= specification, MANOVA statement  71-72, 127, 129

parallel profiles testing, example  185
two-way factorial experiment  196
two-way factorial experiment, example  174

MTEST statement, REG procedure  75
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fractional factorial experiment, example  141-142
multiple response surface modeling, example  88-91
PRINT option  94
spatial uniformity semiconductor processes, example

94, 97
testing equality of variances in calibration, example  101

mullet fish data example  87-91
multiple correlation  5
multiple response surface modeling  87-91
multivariate analysis  1-19

applications  1-2
basic concepts  2-5
generating random vectors and matrices  17-19
sampling from multivariate normal distributions  6-8
statistics and distributions  8
testing multivariate normality  9-16

multivariate analysis of experimental data  117-150
analysis of covariance  145-149
balanced and unbalanced data  120-123
blocking  137-139
fractional factorial experiments  139-145
one-way classification  123-129
two-way classification  129-137

multivariate ANOVA partitioning
See MANOVA partitioning

multivariate data  1
fractional factorial design  140
outliers, detecting with plots  50-53
repeated measures  294-297
SS&CP matrices  121-123
unbalanced and unequally spaced  270-274

multivariate data, graphical representation  21-59
Andrews function plots  33-38
biplots  38-45
bivariate normal distribution  53-58
contour plots  56-58
outlier detection plots for  50-53
pdf, plotting  55
P-P plots  48
profile plots  31-33
Q-Q plots  45-51
SAS/INSIGHT software  58
scatter plots  22-31

multivariate normal distribution  5, 21
See also bivariate normal distribution
Q-Q plots to assess  45-50
testing for  9-16

multivariate normality test, example  102-107
multivariate normal population, sampling  6-8
multivariate regression  61-116

ANOVA partitioning  64-65
fish data example  73-80

general linear hypotheses  91-98
least squares estimation  63
regression diagnostics  102-116
simultaneous confidence intervals  84-87
statistical background  62
testing linear hypotheses  66-83
variance and bias analyses for calibration problems  98-101

multivariate repeated measures data  294-297
dental data example  295-297

multivariate skewness and kurtosis
CALIS procedure to calculate, example  11-13
Mardia’s measures for  10
outliers, detecting  53

multivariate tests
crossover design, example  239-242
Hotelling T 2 statistic for cork data example  69-73
multivariate regression for fish data example  73-80

N

_N_ automatic variable  46
NCOL function  307
negatively correlated variables in biplots  45
NLIN procedure  80

maximum likelihood estimates for growth models  232
MAXITER= option  233
PARMS= option  233

NOINT option
MODEL statement  94
REG procedure  230

NOITER option, PARMS statement  263
NOM option, REPEATED statement  207

testing sphericity of orthogonal contrasts, example  163
nonlinear regression model for growth  231-236
normal distribution, multivariate

See bivariate normal distribution
See multivariate normal distribution

NORMAL function  18, 312-313
normality assessment, example  102-107
normal random numbers  18, 312-313
NOUNI option

MANOVA statement  186
MODEL statement  70, 72

NOU option, REPEATED statement  207
NROW function  307

O

observations, plotting with variables  38-45
one-way classification models  123-129

laboratories classification data example  123-126
onions in diet, example  239-242
optimization of uniformity and selectivity in etching process,

Index 333



example  132-137
ORPOL function, IML procedure  165-170, 224
orthogonal contrasts, testing sphericity  161
orthogonal Latin-square crossover designs  243-246
orthogonal transformation  164
outliers

detecting in multivariate normal distribution  110-111
detecting with plots  50-53
influential observations, compared with  111-116

OUT= option, OUTPUT statement  102
OUTPUT statement  35, 102
OVERLAY option, PLOT statement  46

P

PAGESIZE= option  23
parallel profiles, k populations  179-186
PARMS= option, NLIN procedure  233
PARMS statement, MIXED procedure

testing circular covariance structures, example  260
testing prespecified covariance structures, example  263

partial tests, MTEST statement for  75
pdf (probability density function) of bivariate normal

distribution  53-56
Pearson’s correlation coefficient  4-5
percentiles, computing  313
pharmaceutical stability study example  288-291
Pillai’s trace statistic  65, 67

MTEST statement to calculate, example  91
PLOT statement

LEVELS option  57
OVERLAY option  46
two-dimensional scatter plots  22-26

plotting symbol, specifying  23
polynomial curve fitting  165-170
polynomial growth model  219-220
POLYNOMIAL option, REPEATED statement

sphericity of orthogonal contrasts  164
subject-specific covariates, example  214
three-factor experiment, two repeated measures, example

203
time trend studies  194-195
univariate analysis of k populations, example  191

population coefficient of determination  5
populations

k populations  176-195
multivariate normal population, sampling  6-8
single population analysis  152-176
three-population study, example  178

positively correlated variables in biplots  45

P-P plots  48
PPPLOT statement, CAPABILITY procedure  48
PREFIX option, MANOVA statement  186
prespecified known variance-covariance matrix  262-264
PRINCOMP procedure  45-46

STD option  46
PRINTE option, MANOVA statement  73

balanced two-way classification, example  131
one-way balanced MANOVA partitioning, example

124, 126
two-way factorial experiment, example  171

PRINTE option, REPEATED statement, example  163
PRINTH option, MANOVA statement  73

balanced two-way classification, example  131
one-way balanced MANOVA partitioning, example

124, 126
PRINTH option, REPEATED statement, example  163
printing matrices  306
PRINT option, MTEST statement  75, 94
probability density function (pdf)  21

bivariate normal distribution  53-56
probability distribution  4
probability-probability plots  48
PROBF function  217
PROBPLOT statement, CAPABILITY procedure  48
profile analysis

coincidental profiles, k populations  186
horizontal profiles, k populations  187
k populations  178-188
parallel profiles, k populations  179-186
single population, example  152-156

profile plots  31-33
cubic growth model, example  221

projection (hat) matrix  113
test performance data example  114-116

PS= option  23

Q

Q-Q plots  45-50
detecting outliers  51
multivariate normality test, example  105-106
outlier detection in multivariate normal distribution

110-111
QQPLOT statement, CAPABILITY procedure  47
QR decomposition  38
quality control for car door panels example  262-264
quality improvement of mullet fish example  87-91
quantile-quantile plots

See Q-Q plots
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R

ramus height data example  291-294
random coefficient model  288-294

pharmaceutical stability study example  288-291
ramus height data example  291-294

random effects parameters  254
random matrix generation, example  17-19
random number generator  18, 312-313
RANDOM statement

GLM procedure, univariate analysis of k populations
example  189

MIXED procedure, random coefficient model example
292

random vectors  2-5
generating  17

Rao-Khatri reduction  220-228
choosing covariates to improve efficiency, example

225-228
cubic growth model, example  221-225

Rao’s F statistic  68
mixed effects model  250

RDSQ (robust squared distances)  52-53
reference cell model  123
REG procedure

See also MTEST statement, REG procedure
MTEST statement  75
multivariate tests as options  68-69
obtaining growth curve estimate, example  228
simultaneous confidence intervals, fish data example  84
spatial uniformity semiconductor processes, example

92-98
two-level fractional factorial experiment, example  140-145
variance and bias analysis  98

regression, multivariate
See multivariate regression

regression, univariate  61
regression analysis  61
regression coefficients, homogeneity tests  228-231
regression diagnostics  102-116

homogeneity of dispersion, assessing  107-110
influential observations  111-116
multivariate normality test, example  102-107
outliers, detecting  110-111

REML estimator  250, 267-270
MIXED procedure for  252
random coefficient model, example  291

repeated measures analysis  151-246
analysis in presence of covariates  207-219
crossover designs  236-246
factorial designs  195-207
growth curve models  219-236
k populations  176-195

multivariate data  294-297
single population  152-176
treatment combinations/conditions  170-176
with fixed effects only  265-270
with fixed effects only, example  266-270

repeated measures analysis using mixed models  247-297
analysis in presence of covariates  274-287
fixed effects only  265-274
mixed effects linear model  248-252
multivariate repeated measures  294-297
random coefficient model  288-294
statistical tests for covariance structures  255-265

repeated measures variables  201
REPEATED statement, GLM procedure

See also POLYNOMIAL option, REPEATED statement
TYPE= option, REPEATED statement

CONTRAST option  163
HELMERT option  164
NOM option  163, 207
NOU option  207
PRINTE option  163
PRINTH option  163
profile analysis of single population  154
sphericity tests  156
subject-specific covariates, example  214
three-factor experiment, two repeated measures,

example  203
two-factor experiment, both repeated measures,

example  201
two-way factorial experiment, example  174, 200
univariate analysis of k populations, example  191
within-subject hypotheses  219

REPEATED statement, IML procedure
LDATA= option  260
testing circular covariance structure, example  260-262

REPEATED statement, MIXED procedure  252
random coefficient model, example  291
repeated measures with time-varying covariates,

example  287
R option  294
SUBJECT= option  268
testing covariance structure  256-257
testing covariance structure, example  259

response surface modeling  87-91
response variables  1
restricted maximum linear estimator

See REML estimator
robust squared distances (RDSQ)  52-53
ROOT function  17-18, 308, 309
R option, REPEATED statement  294
rows in matrix determining  307
Roy’s maximum root criterion  67
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S

sample statistics and distributions  8-9
sample variance-covariance matrix  6-8
SAS data sets, converting from/into matrices  312
SAS/INSIGHT software  58
scalars, specifying  305
scatter plot matrices  28-31
scatter plots  22-31

three-dimensional  26-28
two-dimensional  22-26

SCATTER statement, G3D procedure  26-28
Schwartz’s Bayesian criterion (BIC)  253, 264
second-degree polynomial

fitting, example  165-169
mice data example  227-228

semiconductor processes example  92-98
sequential sums of squares  120
SET statement  266
sheep data example  280-287
simultaneous confidence intervals  84-87
single population analysis  152-176

fitting polynomial curve  165-170
profile analysis, example  152-156
testing for covariance structures  156-162
treatment combinations/conditions  170-176
univariate analysis  162-164

singular value decomposition (SVD)  39, 309
skewness, multivariate

Mardia’s measures for  10
S option, MODEL statement  292
spatial power covariance structure

See Markov covariance structure
spatial uniformity in semiconductor processes, example

92-98
sphericity of orthogonal contrasts  161
sphericity tests  156
split plot design

F test validity  189
time trends analysis  195
univariate analysis, repeated measures data  162
univariate approach, with covariates  215-219

squared Mahalanobis distance
approximately with biplots  39
assessing multivariate normality  45
outlier detection  50, 110-111
sample version  10

square of multiple correlation coefficient  5
square root of symmetric nonnegative definite matrix  308
square roots of matrices  4

SS&CP matrices  121-123
analysis of covariances  147-149
blocking, corn varieties comparison example  137-139
pairwise comparisons of different types  138
profile analysis of k populations, example  186
spatial uniformity semiconductor processes, example  97
total sum of squares in ANOVA  64
two-way classification models  129-130
two-way classification models, example  131
two-way factorial experiment of treatment combinations,

example  173
two-way unbalanced, etching process, example  133

standardized test performance data, example
detection of outliers  110-111
influential observations, detecting  114-116
multivariate normality test  102-107

standardizing variables  31
STANDARD procedure  31

obtaining standardized response variables  87
STD option, PRINCOMP procedure  46
stepdown analysis  80-83

fish data example  81-83
Student-Newman-Keuls test  99
SUBJECT= option, REPEATED statement  268
subject-specific covariates  208-214

fixed over time, example  275-278
sums of squares, Type I through Type IV  120-123
sums of squares and crossproducts

See SS&CP matrices
SVD (singular value decomposition)  39, 309
SVD subroutine  309
symmetric matrices, eigenvalues and eigenvectors  307
symmetric nonnegative definite matrix

square root  308
symmetric square root  309

symmetric square root of symmetric nonnegative definite
matrix  309

symmetry of distribution
compound, assumption of  162
compound, testing for  157-158
scatter plots to examine  23-26

T

t distribution  313
testability of linear hypotheses  119
TEST option, RANDOM statement  190
test performance data, example

detection of outliers  110-111
influential observations, detecting  114-116
multivariate normality test  102-107
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TEST statement, fish data example  82
test statistics and distributions  8-9
T function  306
thermocouples calibration, example  99-101
third-degree polynomial

dog response time example  223-225
fitting, example  169-170

three-population study, example  178
time-fixed covariates  275-278
time trend studies  194-195
time-varying covariates  278-287

general linear model approach  283-287
sheep data example  280-287

tire wear data example  196-200
TITLE statement, J= option  28
Toeplitz covariance structure  161, 256
total variance  3, 63
trace, matrix  63, 307
TRACE function  307
transpose, matrix  306
TRANSPOSE procedure  31
treatment combinations/conditions

k populations  178
repeated measures design, dietary treatment example

174-176
repeated measures design, dog data example  170-174

two bands Toeplitz covariance structure  256
two-dimensional scatter plots  22-26
two-way classification  129-137

two-way balanced MANOVA, mice weight loss example
130-132

two-way factorial experiment  196
two-way factorial experiment, example  170-174
two-way unbalanced MANOVA, etching process example

132-137
Type H structure/condition  161

testing for, example  163-164
time trend analysis  195
treatment combinations  170
univariate analysis of k populations, example  189

TYPE= option, RANDOM statement  252
TYPE= option, REPEATED statement  252, 270

fitting Markov covariance structure, example  271
repeated measures with time-varying covariates, example

287
testing covariance structure, example  259
testing linear covariance structure  257

Type I through IV SS&CP matrices  121-122
Type I through IV sums of squares  120-121, 272

U

unbalanced data  120-123
one-way classification, diabetic patients study example

126-129
two-way classification, etching process example  132-137
unequally spaced  270-274

univariate analysis
crossover design analysis  237-239
k populations  189-193
single population, repeated measures  162-164
split plot design with covariates  215-219

univariate normal density  5
univariate regression  61

influential observations, detecting  113
influential observations, example  114-116

unstructured covariance structure  256
USS function  46

V

variables
blocking variables  69, 137-139
confounded and fractional factorial experiments  140-145
correlations, in biplots  45
plotting with observations (biplots)  38-45
repeated measures variables  201
standardizing  31

variable-time covariates  278-287
general linear model approach  283-287
sheep data example  280-287

variance and bias analysis for calibration problems  98-101
variance-covariance matrices  3

circular covariance testing  161
circular pattern for, testing  158-161
confidence intervals for parameters  254
prespecified, testing for  262-264
sample  6-8
testing covariance structure  259

variances  3-5
MIVQUE0 (minimum variance quadratic unbiased

estimator)  252
testing equality of, example  99-101
total variance  63

Von Bertalanffy models  231-236

W

Wald’s statistic, mixed effects model  250
weight loss in mice example  130-132
Welsh-Kuh type statistic  113

influential observations, example  114-116
whole plot model  215
Wilks’ ratio  65, 67-68
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MTEST statement to calculate, example  91
obtaining Hotelling T 2 from, example  71

Williams’ designs for crossover analysis  244
Wishart distribution  6-8

generating random matrix  17-19
within-subject hypotheses  178

REPEATED statement  219

Special Characters

@ operator for Kronecker product  309
// operator for arranging matrices  310
‘ (leading quote) for transpose  306
|| operator for arranging matrices  310
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