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PREFACE

This is an intermediate-level textbook on probability and mathematical statistics. This
book can be used for one-semester graduate courses in engineering statistics. Prereq-
uisites include a course in college algebra, differential and integral calculus, and some
linear algebra concepts. Exposure to computer programming is not a must but will
be useful in Chapters 1 and 5. It can also be used as a supplementary reading mate-
rial for mathematical statistics, probability, and statistical methods. Researchers in
various disciplines will also find the book very helpful as a ready reference.

AUDIENCE

This book is mainly aimed at three reader groups: (i) Advanced undergraduate and
beginning graduate students in engineering and physical sciences and management.
(ii) Scientists and engineers who require skill sets to model practical problems in a
statistical setting. (iii) Researchers in mathematical statistics, engineering, and related
fields who need to make their knowledge up-to-date. Some of the discussions in
Chapters 1, 9, and 11 are also of use to computer professionals. It is especially suited
to readers who look for nonconventional concepts, problems, and applications. Some
of the chapters (especially Chapters 2–8) can also be used by students in other disci-
plines. With this audience in mind, we have prepared a textbook with the hope that it
will serve as a gateway to the wonderful subject of statistics. Readers will appreciate
the content, organization, and coverage of the topics.



PURPOSE

This book discusses the theoretical framework needed to build, analyze, and interpret
various models. Our aim is to present the basic concepts in an intuitively appealing
and easily understood way. This book will help the readers to choose the correct
model or distinguish among various choices that best captures the data or solve the
problem at hand. As this book lays a strong foundation of the subject, interested
readers will be able to pursue advanced modeling and analysis with ease.

APPROACH

Theoretical concepts are developed or explained in a step-by-step and easy-to-
understand manner. This is followed by practical examples. Some of the difficult
concepts are exemplified using multiple examples drawn from different fields.
Exercises are chosen to test the understanding of concepts. Extensive bibliography
appears at the end of the book.

MAIN FEATURES

Most important feature of the book is the large number of worked out examples from
a variety of fields. These are self-explanatory and easily grasped by students. These
are drawn from medical sciences and various disciplines of engineering, and so on.
In addition, extensive exercises are provided at the end of each chapter. Some novel
methods to find the mean deviation (MD) of discrete and continuous distributions are
introduced in Chapters 6, 7, and 9.

MATHEMATICS LEVEL

This book is ideal for those who have done at least one course in college algebra
and calculus. Sum and product notations given in Chapter 1 are used in Chapters
6 and 8. Set theory concepts are sparingly used in Chapter 5. Basic trigonometric
concepts are used in Chapters 7 and 11. Differential calculus concepts are needed to
solve some of the problems in Chapters 10 and 11, especially in finding the Jacobian
of transformations. Integral calculus is used extensively in Chapters 7, 10, and 11.
Some concepts on matrices and linear algebra are needed in Chapters 10 and 11.

COVERAGE

The book starts with an introductory chapter that fills the gap for those readers who
do not have all the prerequisites. Chapter 1 introduces the basic concepts, including
several notations used throughout the book. Important among them are the notations



for combinations, summation, and products. It briefly discusses the scales of mea-
surement and gives examples of various types of data. The summation notation is
extensively discussed, and its variants such as nested sums, fractional steps, sym-
metric sums, summation over sets, and loop unrolling are thoroughly discussed. The
product notation is discussed next and its applications to evaluating powers of the
form xn where x and n are both large are given. Rising and falling factorial notation is
briefly discussed. These are extremely helpful for scientists and working engineers in
various fields. Data discretization and data transformations are also introduced. The
chapter ends with a discussion of testing for normality of data. This chapter can be
skipped for senior-level courses. Working engineers and professionals may need to
skim through this chapter, as it contains a few useful concepts of immense practical
value.

Chapter 2 discusses the measures of location. These are essential tools for anyone
working with numeric data. All important measures such as arithmetic mean,
geometric and harmonic means, median, and mode are discussed. Some updating
formulas for the means are also given. Important among them are the updating
formula for weighted mean, geometric mean and harmonic means, and trimmed
means, as well as updating formulas for origin and scale changed data and windowed
data. The sample median, mode, quartiles, and percentiles are also explained.

Popular measures of spread appear in Chapter 3. A categorization of spread mea-
sures helps the reader to distinguish between various measures. These include linear
and nonlinear measures, pivotal and pivot-less measures, additive and nonadditive
measures, absolute and relative measures, distance-based measures, and so on. The
sample range and its advantages and applications are discussed. An illuminating dis-
cussion of the “degrees-of-freedom” concept appears in page 3–13. A summary table
gives a comparison of various spread measures (pp. 3–8). The average absolute devi-
ation (AAD) (also called sample mean absolute deviation) and its properties are
discussed next. Sample variance and standard deviation are the most frequently used
measures of spread. These are discussed, and some updating formulae for sample
variance are derived. This is followed by the formula for pooling sample variance and
covariance, which forms the basis for a divide-and-conquer algorithm. Some bounds
on the sample standard deviation in terms of sample range are given. The chapter
ends with a discussion of the coefficient of variation and Gini coefficient.

Chapter 4 discusses measures of skewness and kurtosis. Absolute versus relative
measures of skewness are discussed, followed by various categories of skewness
measures such as location and scale-based measures, quartile-based measures,
moment-based measures, measures that utilize inverse of distribution functions,
and measures that utilize L-moments. Pearson’s and Bowley’s measures are given
and their ranges are discussed. Coefficient of quartile deviation and its properties
are discussed. The range of values of various measures is summarized into a table.
This is followed by a discussion of the measures of kurtosis. The kurtosis of other
statistical distributions is compared with that of a standard normal with kurtosis
coefficient 3, which is derived. A brief discussion of skewness–kurtosis bounds and
L-kurtosis appear next. This chapter ends with a discussion of spectral kurtosis and
multivariate kurtosis (which may be skipped in undergraduate courses).



Fundamentals of probability theory are built from the ground up in Chapter 5. As
solving some probability problems is a challenge to those without adequate math-
ematical skills, a majority of this chapter develops the tools and techniques needed
to solve a variety of problems. The chapter starts with a discussion of various ways
to express probability. Converting repeating and nonrepeating decimal numbers into
fractional form p/q is given in algorithmic form. Sample spaces are defined and illus-
trated using various problems. These are then used to derive the probability of var-
ious events. This is followed by building the mathematical background using set
theory and Venn diagrams. A discussion of event categories appears next–simple
and compound events, mutually exclusive events, dependent and independent events,
and so on. Discrete and continuous events are exemplified as well as various laws
of events—commutative, associative, distributive laws; the law of total probability;
and De’Morgan’s laws. Basic counting principle is introduced and illustrated using
numerous examples from various fields. This is followed by a lengthy discussion of
the tools and techniques such as permutation and combination, cyclic permutation,
complete enumeration, trees, principle of inclusion and exclusion, recurrence rela-
tions, derangements, urn models, and partitions. Probability measure and space are
defined and illustrated. The do-little principle of probability and its applications are
discussed. The axiomatic, frequency, and other approaches to probability are given.
The chapter ends with a discussion of Bayes theorem for conditional probability and
illustrates its use in various problems.

Chapter 6 on discrete distributions builds the concepts by starting with the bino-
mial theorem. As the probabilities of theoretical distributions sum to one, some of
them can be easily obtained by putting particular values in the binomial expansion.
A novel method to easily find the MD of discrete distributions is introduced in this
chapter (Section 6.3, pp. 6–6). Important properties of distributions are succinctly
summarized. These include tail probabilities, moments and location measures, dis-
persion measures, generating functions, and recurrence relations. It is shown that the
rate of convergence of binomial distribution to the Poisson law is quadratic in p and
linear in n (pp. 6–37). This provides new insight into the classical textbook rule that
“binomial tends to the Poisson law when n → ∞ and p → 0 such that np remains a
constant.” Analogous results are obtained for the limiting behavior of negative bino-
mial distributions. Distribution of the difference of successes and failures in Bernoulli
trials are obtained in simple form. Other distributions discussed include geometric,
Poisson, hypergeometric, negative hypergeometric, logarithmic, beta binomial, and
multinomial distributions. Researchers in various fields will find Chapters 6 and 7 to
be of immense value.

Chapter 7 introduces important continuous distributions that are often encoun-
tered in practical applications. A general method to find the MD of continuous
distributions is derived in page 7–4, which is very impressive as it immensely
reduces the arithmetic work. This helpful result is extensively used throughout
the chapter. A relation between variance of continuous distributions and tail areas
is derived. Alternate parametrizations of some distributions are given. List of
distributions include uniform (rectangular), exponential, beta-I, beta-II, gamma,
arc-sine, cosine, normal, Cauchy, central 𝜒2 and chi-, Student’s t, Snedecor’s F,



inverse Gaussian, log-normal, Pareto, Laplace, Weibull, Rayleigh, Maxwell, and
Fisher’s Z distributions. Important results are summarized and several algorithms for
tail areas are discussed. These results are used in subsequent chapters.

Mathematical expectation is discussed in Chapter 8. Expectation and variance
using distribution functions are discussed next. Expectation of functions of random
variables appears in page 8–20. Properties of expected values, expectation of func-
tions of random variables, variance, covariance, moments, and so on appear next.
This is followed by a discussion of conditional expectation, which is used to derive
the mean of mixture distributions. Several important results such as expressions for
variance (pp. 8–47) and expectation of functions of random variables (pp. 8–50) are
summarized. These are needed in subsequent chapters.

Chapter 9 on generating functions gives a brief introduction to various generating
functions used in statistics. This includes probability generating function, moment
generating function, cumulant generating function, and characteristic functions.
These are derived for several distributions and their inter-relationships are illustrated
with examples. Two novel generating functions are introduced in this chapter–first
one to generate the cumulative distribution function (CDF-GF) in Section 9.3
(pp. 9–10) and second one to generate MD (MD-GF) (Section 9.4, pp. 9–11).
Factorial moment generating functions and its relationship to Stirling numbers are
briefly mentioned. This chapter is strongly coupled with Chapters 6–8. Readers in
prior chapters may want to refer to the results in this chapter as and when needed.

Functions of random variables are discussed in Chapter 10. These are used in
deriving distributions of related statistics. This chapter discusses various techniques
such as method of distribution functions, Jacobian method, probabilistic methods, and
area-based methods, and it also discusses distribution of absolute values of symmetric
random variables, distribution of F(x) and F−1(x), and so on. These results are applied
to find the MD of continuous distributions using a simple integral of tdt∕f (F−1(t) from
lower limit to F(𝜇). Other topics discussed include distribution of squares, square
roots, reciprocals, sums, products, quotients, integer part, and fractional part of con-
tinuous random variables. Distributions of trigonometric and transcendental functions
are also discussed. The chapter ends with a discussion of various transformations of
normal variables.

Joint distributions are briefly discussed in Chapter 11 and some applications are
given. Marginal and conditional distributions are discussed and illustrated with var-
ious examples. The concept of the Jacobian is introduced in Section 11.2 in page
11–7. Derivation of joint distributions in a bivariate setup is given in Section 11.2.1,
pp. 11–9. An immensely useful summary table of 2D transformations appears in page
11–15 for ready reference. Various polar transformations such as plane polar, spher-
ical polar, and toroidal polar and its inverses are discussed, and a summary table is
given in page 11–28. A good understanding of integration is absolutely essential to
grasp some of the examples in this chapter.

Working professionals will find the book to be very handy and immensely useful.
Some of the materials in this book were developed during Dr. Ramalingam Shan-
mugam’s teaching of engineering statistics in the University of Colorado and second



author’s teaching at Frederick University, Cyprus. Any suggestions or comments for
improvement are welcome. Please mail them to the first author at rs25@swt.edu.

The first author would like to thank Wiley editorial staff, especially Ms. Kari
Capone, Ms. Amy Henderson, and others in Wiley for tremendous help during the
entire production work and their patience. The second author would like to thank his
brothers C.V. Santosh Kumar and C.V. Vijayan for all the help and encouragements.
The first author dedicates this book to his wife srimathi Malarvizhi Shanmugam, and
the second author dedicates it to his late grandfather Mr. Keyath Kunjikannan Nair.

Ram Shanmugam
Rajan Chattamvelli

San Marcos, TX
Thanjavur, India
November, 2014
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1
DESCRIPTIVE STATISTICS

After finishing the chapter, students will be able to

◾ Explain the meaning and uses of statistics

◾ Describe the standard scales of measurement

◾ Interpret various summation (
∑

) and product (
∏

) notations

◾ Apply different types of data transformations

◾ Distinguish various data discretization algorithms (DDAs)

1.1 INTRODUCTION

Statistics has borrowed several ideas and notations from various other fields. This
section summarizes some important concepts and notations that will be used in this
book. As examples, the factorial, permutation and combination, summation, product
(including rising and falling factorials), and other mathematical notations including
set-theoretic operators are discussed in this chapter. These notations are extensively
used in descriptive and inferential statistics. A discussion on the most commonly
used scales of measurement in this chapter gives better insight into the types of data
most often encountered. Various techniques to transform these data into any desired
range are also given. Data discretization techniques to categorize continuous data are
exemplified. These notations, tools, and techniques are immensely useful to better
grasp the rest of the chapters.
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Most of the statistical analyses use a sample of data values. These data are either
collected from a target population, obtained from field trials, or generated randomly.
They are then either summarized (using summary measures) or subjected to one or
more analyses. Popular summarization measures include location measures, spread
measures, skewness and kurtosis measures, dependency measures, and other mea-
sures. Chapter 2 introduces the most common location measures. These include arith-
metic, geometric, and harmonic means; median; and the mode. Trimmed versions of
these measures are obtained by dropping data values at either or both of the extremes.
As a special case, as the geometric and harmonic means are defined only for positive
data values ($ >$0), an analyst may drop all zero and negative data values to obtain
left-trimmed versions of them. The trimmed means, weighted means, and their updat-
ing formula are given. The sample median, mode, quartiles, and percentiles are also
explained.

Dispersion measures are discussed in Chapter 3. A categorization of spread mea-
sures helps the reader to distinguish between linear and nonlinear measures, pivotal
and pivotless measures, additive and nonadditive measures, absolute and relative
measures, and distance-based measures. The most frequently used spread measures
are the sample range, variance, or standard deviation. These are discussed and some
updating formulae for sample variance are derived. The sample variance and covari-
ance can be computed recursively using a divide-and-conquer strategy by dividing
the sample into two subsamples and pooling the corresponding variance or covari-
ance of subsamples in a sensible and orderly way. The coefficient of variation and
Gini coefficient are also discussed.

Popular measures of skewness and kurtosis are discussed in Chapter 4. Dif-
ferent types of skewness measures such as location and scale-based measures,
quartile-based measures, moment-based measures, measures that utilize inverse
of distribution functions, or L-moments are discussed. The measures of kurtosis
discussed are skewness–kurtosis bounds, L-kurtosis, and spectral kurtosis. Chapter 5
discusses probability theory with emphasis on solving problems from various
fields. Essential tools and techniques such as permutation and combination, cyclic
permutation, complete enumeration, trees, principle of inclusion and exclusion,
recurrence relations, derangements, urn models, and partitions used to solve prob-
ability problems are discussed, and conditional probability and Bayes theorem are
introduced.

Discrete distributions and their properties are discussed in Chapter 6. A novel
method to easily find the mean deviation (MD) of any discrete distribution is
introduced in this chapter, and its practical use is illustrated. It is shown that the rate
of convergence of binomial distribution to the Poisson [307,308] law is quadratic
in p and linear in n. Distribution of the absolute value of the difference between
successes and failures in independent Bernoulli trials is obtained in simple form.
Commonly encountered continuous distributions are discussed in Chapter 7. An
impressive method of immense practical value to find the mean deviation of continu-
ous distributions is derived and is extensively used throughout the chapter. Variance
of continuous distributions is shown to be related to the tail areas. Mathematical
expectation and its properties are discussed in Chapter 8. An introduction to various
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generating functions used in statistics appears in Chapter 9. Two new families of
generating functions (for generating cumulative distribution functions (CDF-GF)
and mean deviation (MD-GF)) are introduced in this chapter.

Functions of random variables appear in Chapter 10. Different techniques such
as method of distribution functions, Jacobian method, probabilistic methods, and
area-based methods are discussed. Distribution of squares, square roots, reciprocals,
sums, products, quotients, integer part, and fractional part of continuous random
variables and distributions of trigonometric and transcendental functions are also dis-
cussed. Joint, marginal, and conditional distributions are discussed in Chapter 11. The
concept of Jacobians is introduced, and an immensely useful summary table of 2D
transformations is given. Various polar transformations such as plane polar, spherical
polar, and toroidal polar and their inverses are also discussed and summarized.

1.2 STATISTICS AS A SCIENTIFIC DISCIPLINE

Statistics has its origin in describing (collecting, organizing, and interpreting)
numeric data collected on subjects of interest. This branch of statistics is called
descriptive statistics. It deals with finite random samples drawn from the totality of
all elements concerned (which is assumed to be large and is called the population
(pp. 1–11)). It uses numerical measures (such as mean, variance, and correlation)
and graphical techniques to summarize information in a concise and comprehen-
sible form. These are intended for communication, interpretation, or subsequent
processing by humans or machines. Inferential statistics is concerned with making
inferences about the parameters or on the functional form of a population (defined
in the following) using small random samples drawn from it. A great majority of
inferential statistics do make assumptions on the form of the underlying density, on
the parameters, or on the data range. Data for descriptive and inferential statistics
are often numeric. Large samples are typically used in descriptive statistics than in
inferential statistics. For example, scatterplots and other visualization tools require
more data points than those used in statistical quality control or testing statistical
hypotheses.

Definition 1.1 Statistics is a branch of scientific discipline that deals with the sys-
tematic collection, tabulation, summarization, classification, analysis and modeling
of data, extracting summary information from numeric data, and drawing potentially
useful conclusions from past or observed data, or verifying experimental hypotheses.

This definition does not cover every branch of statistics, as the subject continues to
diversify into various applied sciences. For example, statistical quality control is used
to check process deviations to see if they are well within the tolerance limits or if they
fall beyond predefined levels. Testing of statistical hypotheses involve well-defined
experimental steps that use tabulated values of a test statistic to draw reasonable con-
clusions (accepting or rejecting a research hypothesis) about an unknown population
parameter that describes some characteristic of the distribution.
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Similarly, engineering applications of statistics include searching for potentially
useful patterns and trends in large data collections using regression [304] models,
hierarchical (tree) models, cluster analysis, partial least squares, and so on. The
least-squares principle finds applications in neural networks (NNs), digital signal
processing, data compression, and many engineering fields.

Population census was conducted long ago in 3340 BC in Egypt [en.wikipedia.org/
wiki/census]. William-I of England conducted a complete census of adults and
households in AD 1086. Regular population census started in the United States in
1790 and in the United Kingdom in 1801 at 10-year periods. Numeric data on birth,
death, and marriages were collected in several countries of Western Europe subse-
quently. This branch of statistics that deals with vital (life-connected) data is known
as vital statistics. Study of numeric data on education, housing, and social welfare
came to be known as social statistics. Economic statistics deals with data analysis
on unemployment, economic indicators (consumer price index of essential com-
modities, purchasing power of people in various strata, etc.), industrial production,
import, and export. Experimental statistics deals with data analysis or compari-
son techniques in field experiments using samples or simulated trials. Agricultural
statistics is a related field that deals with analysis of yield in field experimentation.
Data analysis techniques that utilize data spread across a frame-of-reference (such
as the Earth’s surface or deep space) are known as spatial statistics. They involve
data of categorical or quantitative types along with a spatial frame of reference that
serves as a window. Medical statistics is a mixture of the above that deals with
summary measures, experimental designs, sampling, predictions, classifications,
and clustering, to name a few. Mathematical statistics comprises an umbrella of
properties of random variables, sampling distributions, expectations, estimation,
and inference (see inferential statistics). Nonparametric statistics have minimal
assumptions on the data—on the data range, distribution function, or the location
and scale parameters of the population. Statistical techniques are also applied in
various other fields such as insurance (actuarial statistics), engineering (engineer-
ing statistics), psychology, and education.

1.2.1 Scales of Measurement

The most popular scales of measurement are nominal, ordinal, interval, and ratio
(NOIR) scales originated by Stevens [265]. A great majority of common data during
the 1940s belonged to one of these four categories. These are called standard data
scales. These scales were well known in statistical analysis much before 1946 as
categorical and quantitative scales. The nominal and ordinal data are together called
categorical, nonmetric, or qualitative data because they are labeled using a finite
alphabet of distinct and consistent symbols. These need not be numbers because
we can use letters (in various languages such as English and Greek), enumerated
constants, or strings to label them. The interval and ratio type of data are together
called quantitative data. These are always numeric (either integers or floating point
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Figure 1.1 The NOIR scale of measurement.

numbers with integer and fractional parts). Most statisticians are familiar with
categorical (nominal and ordinal) and quantitative (interval and ratio) (or C&Q for
short) data scales1, as the majority of statistical methods works on them. Different
statistical techniques are used with C&Q data, as discussed in subsequent chapters.

Text data are built on a nominal or ordinal set of characters [53]. One example is
the binary string data that uses a sequence of 0’s and 1’s (Figure 1.1). Majority of
text data use alphabetic characters of natural languages that are ordinal data. Subsets
of alphabetic characters or special characters can also be used to encode text data as
in genomics and bioinformatics. Audio, video, animation, and multimedia (AVAM)
data are always compressed when stored in digital form. These use interval or ratio
type of data at the basic level.

Spatial data are stored with reference to a coordinate frame, a surface, or a map.
It consists of quantitative or categorical data that are tied to unique points in the cor-
responding frame. One example is GIS data that use the Earth’s surface as the base.
Earth-centric data can be represented in multiple ways (using (longitude, latitude,
altitude) coordinates, using GPS coordinates, etc.).

Temporal data are time dependent. One common example is the stock market
index, which varies continuously during the trading time. Spatiotemporal data are
spatial data that vary over time. Examples are data generated by tornadoes, hurri-
canes, and other natural disasters that persist for some time, sea surface temperatures
(which vary during 24-hour intervals with maximum occurring when the Sun has
passed over the particular sea), HTTP connection requests generated across the world
(which subsides down after midnight at particular regions), and so on. The extended
data types can be structured or unstructured, compressed or uncompressed. Newer
data types and standards are also being devised to store data collected using special
hardware devices, wireless devices, and satellites. These data are transmitted as
radio waves in analog form, which are then converted into digital form. High-quality
compression standards that use quantization and least squares principle are used
for efficient storage of this type of data. Newer applications of statistics are also
emerging in extended data analysis. For instance, statistical measures computed

1quantitative data are also called metric data
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from summary information extracted from extended data are being used in infor-
mation retrieval using latent semantic analysis [53, 294]. Well-developed statistical
techniques also exist for spatial and temporal data analysis.

1.3 THE NOIR SCALE

This section briefly reviews the standard scales of measurement, which we call
the NOIR typology. A basic understanding of this concept is helpful to students
and researchers in statistics and other fields, who are faced with the data collection
task. Data can be collected using questionnaires, web forms, or machines or special
devices. A precise granularity level is important for choosing each variable and to
extract the maximum information from subjects that generate the data.

1.3.1 The Nominal Scale

It is a categorization of a variable into a set of mutually exclusive (distinct) values. A
most common example is the human blood group = {A,B,O,AB}. There is no logi-
cal order among the blood groups. Hence, we cannot say that a person with blood
group “A” is better or worse than a person with blood group “B” (Owing to the
advances being made in the mapping and analysis of human genes, it is now possible
to identify humans who are more susceptible to certain illnesses using their blood
type. Someday, it may be possible to logically order the blood groups conditionally
on various disease categories.). They are just distinguishing labels given to persons
based on a surface marker on the red blood cells. By convention, they are denoted
by capital letters of the English alphabet. Another common nominal variable is the
rhesus factor (Rh-F) coded as {+,−}. The labels + and − are chosen historically, but
it could be any two distinct symbols, or numbers such as {1, 0}.

Definition 1.2 A variable that takes a value among a finite set of mutually exclusive
codes that have no logical order among themselves is called a nominal variable, and
the data that it generates is called nominal data.

Some nominal data are always coded numerically. Examples are binary support
vector machines (SVMs) whose class labels are always coded as (−1,+1), dummy
variables in linear programming (coded as 0 or 1). Decision trees (DTs) and NNs use
any type of numeric or nonnumeric codes for nominal data. Pearson’s 𝜒2-statistic
based goodness of fit tests use mutually exclusive and collectively exhaustive
nominal categories that are numerically coded. It uses the contingency coefficient
(Section 1.12, pp. 1–20) to find the correlation between two numerically coded
nominal variables.

1.3.2 The Ordinal Scale

Some of the nominal variables can be ordered using the values they take on
two or more subjects. Examples are the severity of an accident = {mild, severe,
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critical, deadly}, patient-type = {child, teenager, youth, adult, senile}, and various
ratings = {poor, fair, good, excellent}.

Definition 1.3 Nominal data that can be logically ordered are called ordinal data and
the corresponding variable is called an ordinal variable.

One of the relational operators is used to order them. For instance, poor < fair <
good < excellent. Sometimes, this ordering is done literally. An example is the sea-
sons = {spring, summer, autumn, winter}. These seasons repeat among themselves.
Hence, it is called a cyclic ordinal variable. Other examples are the days of the week,
months of the year, letters of an alphabet, and so on, which are literally ordered ordinal
data. We could categorize ordinal data as alphabetically ordered, numerically ordered,
and literally ordered; each of them can be cyclically ordered if there is a natural suc-
cession among them. Alphabetically ordered ordinal data use the precedence order
among the letters of a natural language (e.g., English and Japanese) to decide which
comes first.

Numerically coded ordinal data can be compared using relational operators.
Hence, the median and mode are appropriate measures of location for them. We
could also use the quartiles, percentiles, contingency coefficient, and so on.

1.3.3 The Interval Scale

Some of the ordinal data can be coded as integers or functions thereof (as in date data
type).

Definition 1.4 If numerically coded ordinal data have the property that the differ-
ences between any two values represent equal difference in the amount of the char-
acteristic measured, it is called an interval data.

In other words, all ordinal data with well-defined intervals are interval data. One
common example is the date data type. A characteristic property of interval data is
that there is no natural zero. The natural zero need not always be the zero point. This
can differ among variables. As an example, the fever is measured in Fahrenheit or
centigrade scales. The normal [305] human body temperature is 98.4∘F. If a person
has higher body temperature, we say that there is fever. Thus, the origin for fever is
98.4∘F, as it is the cutoff limit.

1.3.4 The Ratio Scale

Interval data with a clear definition of zero are called ratio data. Thus, both the dif-
ferences between data values and their ratios are meaningful. Common examples are
the height and weight. If a father is 5 feet 4 inches and his sibling is 2 feet 8 inches,
then the father is twice as tall as the sibling, and the same relationship holds irre-
spective of the unit of measurement. Hence even if we change to the metric system,
the same relationship will hold. Other examples are the price of an article, speed of
vehicles, capacity of disks or pen drives, and so on. The zero point for some ratio
variables may never be materialized. For instance, consider the task of classifying a
patient as overfat or underfat. This is done using the body mass index (BMI) measure.
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The BMI is defined as follows:

BMI = (weight in Kg.)∕(height in meter squared). (1.1)

This is a ratio variable. Typical cutoff limit varies from country to country, but a
BMI of 25 is a common cutoff limit for adults. If the person’s BMI is above 25, we
say that he or she is overfat. The BMI can never be zero (not even for newborns). This
means that a zero BMI is hypothetical. As the square of a number between zero and
one is less than itself, the cutoff will vary for infants shorter than 1 meter.

1.4 POPULATION VERSUS SAMPLE

Most statistical procedures are based on a random sample drawn from a “population”
of interest. The meaning of statistical population is slightly different from the literal
meaning of population. Literally, it denotes a group of living organisms that are often
large in size. A statistical population can have temporary or permanent existence. It
can be small in size. As examples, the set of all HTTP requests on the web on any day
is a statistical population that is large in size. However, majority of HTTP requests last
at most a few seconds. The set of GPS satellites in orbit is another population that
is small in size, as also the set of atomic powered interplanetary spacecrafts. Each
element of a population is assumed to be measurable on a set of variables. These
variables often follow well-defined statistical laws.

Definition 1.5 The totality of all elements of interest in a study is called the
population.

A statistical population may comprise animate or inanimate objects, symbols, enti-
ties, and so on. It may or may not be finite. It can be confined to a specific location
or could be spread around a known or unknown locality. The first step in obtaining a
sample is identifying the correct population. Hence, the population is often defined
unambiguously by the experimenter for each research study. The study of elements
of the entire population is called a census.

Illustration 1 Consider a study to correlate the marks obtained by students in a
science subject to ownership of a computer or iPad and the use of the Internet. The
population in this study is the totality of all students in that subject who owns a com-
puter or iPad with Internet connectivity. This can be confined to a university, a country,
a geographic region, and so on. Thus, the population could vary depending on the
spread of the subjects.

Illustration 2 Toy manufacturers make toys for kids in specific age groups. In a study
to find out toys that are injurious to kids in 1–5 age group, the population is the set of
all toys for this age group. As measurements are taken on subjects, the true population
is the totality of kids in the above-mentioned age group who use these toys.

Definition 1.6 A random sample is a true representative subset of a population,
which is much smaller in size and each element of which generates recordable and
meaningful data.
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By the true representative, we mean that each and every element of the population
has an equal chance of being included in our random sample. If the population is of
finite size, sampling with replacement will ensure that the chance of drawing a sample
from the population remains the same. The method in which a sampled item from a
population is not replaced (back into the population) before the next item is drawn is
called sampling without replacement. This does not matter for infinite populations.
If the population size is finite and small, sampling without replacement results in a
nonrandom sample.

Illustration 3 A foundation offered five scholarships to students in a college who
secured distinction in their final exam. If there are 25 eligible students, we need to
select a random sample of five students from among them. To preclude the possibility
of a selected student receiving two scholarships, we need to do a sampling without
replacement.

Random samples are much easier to work with because they are much smaller
in size. Owing to some asymptotic properties of sample estimates, we often restrict
the random sample size between 30 and a few hundred. Bigger sample sizes give
better results in some statistical procedures. A researcher decides upon an optimal
sample size using the cost of sampling an item, population characteristics, number of
unknown parameters, sampling distribution of statistics, and so on. For instance, if
the population has distinct data clusters, a technique called stratified sampling can be
used to select a random sample from each cluster based on the cluster size. Sampling
of elements from populations is an extensively studied field called sampling theory
in statistics.

1.4.1 Parameter Versus Statistic

A parameter describes the population of interest. A population can have zero or more

parameters. Consider the Cauchy distribution f (x) = 1
𝜋

1
(1+x2) for −∞ < x < ∞. It has

no parameters, although it describes a population2. Parameters are values that char-
acterize the population. They may be a part of the functional form or the range of
values assumed. For instance, a left-truncated Poisson distribution with truncation
point k has the functional form

g(x; 𝜆, k) = f (x; 𝜆)∕

[

1 −
k∑

j=0

P(j)

]

= e−𝜆𝜆x∕

[

x!

(

1 −
k∑

j=0

P(j)

)]

, (1.2)

where P(j) = e−𝜆𝜆j∕j! Here k is a range parameter. The location (central value) and
spread (scale) are the most important characteristics of a population. They may either
be described as functions of the same set of parameters (as in 𝜒2 distribution with 𝜇 =
n, 𝜎2 = 2n, where n is the degrees of freedom; or the Poisson law with 𝜇 = 𝜎

2 = 𝜆)

2The more general form of Cauchy’s distribution is f (x; a, b) = K
𝜋

1
a2+(x−b)2 , with two parameters a and b.
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or by separate parameters as in the univariate normal law N(𝜇, 𝜎2) with mean 𝜇 and
variance 𝜎2; the Laplace law which has PDF

f (x; a, b) = (1∕2b) exp (−|x − a|∕b), b > 0, −∞ < a <∞, (1.3)

with 𝜇 = a and 𝜎2 = 2b2 or the logistic law with CDF

F(x; a, b) = 1∕[1 + exp (−(x − a)∕b)] with 𝜇 = a and 𝜎
2 = 𝜋

2b2∕3. (1.4)

For several distributions, the mean and variance are complex functions of the
parameters. As examples, the BINO(n, p) distribution has mean 𝜇 = np and variance
= 𝜇 ∗ q = npq. Similarly, the noncentral chi-square distribution has mean 𝜇 = n + 𝜆
and variance 𝜎2 = 2(𝜇 + 𝜆) = 2n + 4𝜆. The shape of the distribution can be very sen-
sitive to the parameters. One example is the beta distribution BETA-I(p, q) with mean
𝜇 = p∕(p + q), which is asymmetric in the parameters p and q and variance

𝜎
2 = 𝜇 q∕(p + q + 1) = pq∕[(p + q)(p + q + 1)], (1.5)

which is symmetric in p and q. If p is increased or decreased by keeping q fixed, the
distribution changes shape rapidly. The logarithmic distribution

f (x; p, q) = pqx∕x, 0 < q < 1, x = 1, 2,… (1.6)

has 𝜇 = pq∕(1 − q) and 𝜎2 = 𝜇
2( 1

pq
− 1). This discussion shows that various parame-

ters contribute differently to the mean and variance in particular and to other moments
in general. This complexity can be used as a measure of the parameter dependence
on the shape of distributions. This also affects the asymptotic convergence behav-
ior of various distributions to other standard distributions. When there exist three or
more parameters, they may all contribute as functions to the location and scale. For
example, the noncentral F distribution NCF(m, n, 𝜆) has mean 𝜇 = n

n−2
m+𝜆

m
, for n > 2,

which is linear in 𝜆, and nonlinear in the degrees of freedom parameters. If the pop-
ulation parameters are unknown, they are estimated from a sample drawn from that
population.

Definition 1.7 A well-defined function of the sample values is called a statistic.

By our definition, a statistic does not involve the unknown population parameters,
but it could involve the sample size or any function of it. For example, if X is a random
sample of size n from a population with sample mean x, then n − x is a statistic as it
involves the sample values and sample size. The unknown population parameters are
estimated using a statistic (or a function of it, which is also a statistic if it does not
involve unknowns). We have used the word “well-defined function” in our definition
of statistic. This includes not only arithmetic and other mathematical functions but
also special functions such as minimum and maximum of sample values and integer
part of data values (ceil and floor functions in computer programming).
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1.5 COMBINATION NOTATION

The combination notation is used in several statistical distributions. Examples include
the binomial, negative binomial, hypergeometric, and beta-binomial distributions. We
denote it as

(
n
x

)

, which is read as “n choose x.” Other notations include nCx and
C(n, x). This represents the combination of n things taken x at a time. Symbolically,

(n
x

)

= n!∕[x! ∗ (n − x)!] where
(n

0

)

=
(n

n

)

= 1,
(n

1

)

= n, (1.7)

where n! is pronounced either as “n factorial” or as “factorial n” and abbreviated as
“fact n.” By convention 0! = 1! = 1. As the numerator and denominator involve prod-
ucts of integers, it can be evaluated in multiple ways. Write the n! in the numerator
as n ∗ (n − 1)!, and the x! in the denominator as x ∗ (x − 1)! to get

(n
x

)

= n
x
∗
(n − 1

x − 1

)

. (1.8)

As it represents the number of ways to select x items out of n distinct items,
(

n
x

)

is always an integer when n and x are integers. Formula (1.8) can result in approx-
imations (for example,

(
5
3

)

is evaluated as (5∕3) ∗ (4∕2) ∗ 3 = 9.99, instead of 10,
owing to floating point truncations (5/3 is truncated to 1.6666). A solution is to use
Pascal’s identity (n

x

)

=
(n − 1

x

)

+
(n − 1

x − 1

)

. (1.9)

As this involves only addition, it will always give an integer as the final result. A
related notation used in negative binomial and negative hypergeometric distributions
is
(
−n
x

)

= (−1)x
(

n+x−1
x

)

.

1.6 SUMMATION NOTATION

The ubiquitous
∑

notation is extremely useful to express functions of sample val-
ues, random variables, complicated sequences, series, and so on in concise form.
This section introduces several summation notations that are extensively used in the
present and subsequent chapters. A good grasp of various summation notations is
essential for students and practitioners of statistics and for people in many other disci-
plines such as algorithmics, numerical methods, digital signal processing, and parallel
computing. It is extensively used in probability distributions (more so in discrete
than in continuous distributions), sampling distributions, mathematical probability
and expectations, generating functions, design of experiments, regression and corre-
lation, contingency tables, and order statistics, to name a few. There are many vari-
ants to the summation notation. All of them starts with the Greek capital symbol

∑
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(which is read as sum). Each
∑

has an associated index variable (indexvar)3 and has
an implied meaning of an iteration or enumeration of the expression that follows it
(summand) over the range of the implicit indexvar (which is assumed to be an integer
and is usually denoted by i, j, k, p, q, or r with or without subscripts). Thus, all of the
following expressions are equivalent:

n∑

j=1

Xj =
n∑

r=1

Xr =
∑

s

Xs = X1 + X2 + · · · + Xn. (1.10)

The indexvar could also be explicit when the set notation is used for iteration. The
subscript of

∑
denotes the initial values, conditions, or initializations, and the super-

script denotes the terminal (final) values or conditions. The subscript, superscript, or
both can also be missing, as in the above-mentioned example, if they can be inferred
from the context.

In the great majority of applications, the indexvar varies from low values to high
values. However, there are a few applications in which this can either be in the reverse
(high to low) or two-way varying. As an example of reverse summing, consider the
problem of accumulating binomial right-tail probabilities (survival function) until it
accumulates to say c. This is mathematically expressed as

n∑

x=k

(n
x

)

pxqn−x = c. (1.11)

The indexvar here is chosen as x to indicate that we are summing probabilities. This
can be easily accumulated by starting the summation at x = n and iterating backward
(x = n − 1, x = n − 2, · · · , x = k) until the desired sum is accumulated (this can also
be expressed in terms of the incomplete beta function; see page 6–34). Similarly,
infinite Poisson-weighted distributions such as noncentral 𝜒2 and noncentral beta
need to evaluate the Poisson weights e−𝜆𝜆x∕x! for large 𝜆 values. If the computations
are carried out in single precision arithmetic, the first Poisson term e−𝜆𝜆0∕0! = e−𝜆

will result in a memory underflow (a machine will misinterpret it as zero) for 𝜆 > 104
and a memory overflow for 𝜆 > 183.805 (see [47], pp. 231–232 for details). This leads
to error propagation, as each subsequent term is evaluated iteratively. As the mode of
the Poisson distribution is 𝜆, we could start the computations at 𝜆 and iterate in both
directions [49, 51, 52]. This will allow one to compute such PDF and CDF for much
higher 𝜆 values. Alternatively, we could use double precision arithmetic.

1.6.1 Nested Sums

Nested sums and iterations are usually denoted by multiple
∑

symbols4. For instance,
∑

j
∑

k denotes a nested sum over two index variables j and k. When multiple
∑

occur

3also called dummy variable or running variable, but dummy variable has another meaning in linear pro-
gramming and decision theory.
4If there are only two sums as

∑
j
∑

k, it is called a double sum.
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as a block, they are evaluated from right to left. In other words, the leftmost indexvar is
fixed and right indexvars are varied in the summand until they are complete, thereby
accumulating the partialsum. Then, the leftmost indexvar is incremented using the
step size, and the process is continued. One common example is Pearson’s𝜒2 statistic:

U =
r∑

j=1

c∑

k=1

(ojk − ejk)2

ejk
, (1.12)

where ojk are the observed and ejk are the expected frequencies in an r × c table. The
order in which nested sums are found is sometimes important (as in matrix multi-
plications). In the above-mentioned sum, we iterate first over the (inner) k variable,
followed by the (outer) j variable. Thus, j is set to its lowest value (=1), and k is
varied over its full range (1 to c). Then, j is incremented by 1 and k is again varied
over its full range, and so on. If the expression to be evaluated is symmetric in the
dummy variables (as in equation 1.12), the order of summation can be interchanged.
The summand may sometimes be tightly coupled with the indexvars. Consider the
minimization criterion used in K-means clustering as

E =
k∑

j=1

|Cj|∑

i=1

‖x(j)i − cj||
2
, (1.13)

where |Cj| is the number of data points in cluster j, cj’s are the cluster centroids, k is the

number of clusters, and x(j)i denotes ith data value in jth cluster. Here, the summand
is tightly coupled with the outer indexvar. Thus, we cannot easily interchange the
summations.

When there are several nested summations in one block, each of them must be
assigned a unique index variable. The variable names do not actually matter, as they
are dummy indexvars. Any constant multiplier(s) that does not depend upon the
indexvars could be taken outside all summations. Any multiplicand expressions that
do not depend on the inner indexvars could be moved as much outside as possible such
that their dependence is only on the indexvars to their left. For example, consider the
sum

S1 =
k∑

j=1

m∑

i=1

c ∗ ui ∗ 𝑣j. (1.14)

As 𝑣j is independent of i and c is a constant, we could rewrite it as

S1 = c ∗
k∑

j=1

𝑣j ∗ (
m∑

i=1

ui) (1.15)

(see Exercise 1.51). Similarly,

S2 =
∑

k

(a ∗ ck + b ∗ dk) = a ∗
∑

k

ck + b ∗
∑

k

dk. (1.16)
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We could also combine multiple
∑

into a single
∑

if there is no scope for confu-
sion. Thus, the above-mentioned double sum in equation (1.12) can also be written
using

∑
j,k. However, multiple

∑
is the recommended notation, as it is easy to com-

prehend and useful to convert such expressions into computer programs. Moreover,
the indexvars in inner sums are sometimes dependent on the outer indexvars (as in
equation 1.13, where the upper limit of the inner indexvar “i” depends on the outer
indexvar j. See also equations 1.30 and 1.31 in page 1–26 and 1–38 in page 1–30).

1.6.2 Increment Step Sizes

The increments of the indexvar are assumed to be in steps of 1 by default. This
is true for most of the summations that we encounter in statistics and computer
science. However, there exist some applications in engineering and numerical
computing where the increments are fractions. If this increment is in steps of c (≠1),
it is indicated at the middle of the

∑
symbol. The increment step c can in general

be a multiple of an integer or a fraction. It can rarely grow exponentially in some
applications (see Exercise 1.48 pp. 1–68).

1.6.2.1 Fractional Incremental Steps (FISs) When the increment is a fraction,
we could recode the indexvar to force it to be an integer and adjust the summand
accordingly. For example, consider the summation

∑n
j=1 f (j), where f(j) is any arbi-

trary function of j (along with other parameters), the indexvar j varies in steps of
c = 0.5, and n is an integer or half-integer>1. We could write it as

∑2n−1
j=1 f (( j + 1)∕2).

Here, the indexvar has been “inflated” to vary from 1 to 2n − 1 in steps of 1 and
( j + 1)∕2 has been substituted in the summand to compensate for the inflated index.
In general, if we need to increment j from u to v in steps of a proper fraction c = 1∕k,
then the indexvar is inflated to vary from u to (𝑣 ∗ k − u ∗ (k − 1)), and the sum is
evaluated as

S =
vk−uk+u∑

j=u

f (u(1 − 1∕k) + j∕k). (1.17)

As u and k are known constants, we could also write this as

S =
(𝑣−u)k+u∑

j=u

f (k′ + j∕k), (1.18)

where k′ = u(1 − 1∕k). Indeed, changing the indexvar as i = j − u, this could also be
written in the alternative form

S =
𝑣∑

j=u step(1∕k)
f (j) =

(𝑣−u)k∑

i=0

f (u + i∕k), (1.19)

which is much better suited for computer implementation.
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EXAMPLE 1.1 Simplified sum

Simplify
∑

j f (j) for index j from 1 to 3 in steps of 1/3, using the above-mentioned
technique.

Solution 1.1 The seven possible values of j are 1, 1 1
3
, 1 2

3
, 2, 2 1

3
, 2 2

3
, 3. Here u =

1, 𝑣 = 3, c = 1∕3 so that k = 3. Thus, the new sum is

(𝑣−u)k∑

j=0

f (u + j∕k) =
(3−1)∗3∑

j=0

f (1 + j∕3) =
6∑

j=0

f (1 + j∕3). (1.20)

1.6.2.2 Integral Incremental Steps (IISs) If the indexvar increments in steps of
2, we evaluate the sum

∑n
j=1 f (j) with step size c = 2 as

S =
n∑

j = 1 step 2
f (j) =

⌊(n+1)∕2⌋∑

k=1

f (2 ∗ k − 1) =
⌊(n−1)∕2⌋∑

k=0

f (2 ∗ k + 1), (1.21)

where ⌊x⌋ denotes the floor operator that returns the largest integer less than x. If c
is an integer >2, we modify the sum as

S =
n∑

j = 1 step c >2
f (j) =

⌊(n+c−1)∕c⌋∑

k=1

f (1 + c ∗ (k − 1)) =
⌊(n−1)∕c⌋∑

k=0

f (1 + c ∗ k).

(1.22)
These are used in discrete signal processing and transforms. In general, if we need to
increment j from u to v in steps of an integer multiple c ≥ 2, then the index is deflated
to vary from 0 to (v − u)/c, and the sum is evaluated as

step c
𝑣∑

j=u

f (j) =
⌊(𝑣−u)∕c⌋∑

j=0

f (u + c ∗ j). (1.23)

A special case is accumulating the sum
∑k

j=−k f (j) in steps of size c. This can be
unfolded as

k∑

j=−k

f (j) =
⌊2k∕c⌋∑

j=0

f (c ∗ j − k). (1.24)

Equation (1.24) is valid for both c an integer and a fraction. When c is a fraction, the
upper limit ⌊2k∕c⌋ is simply blown up.

EXAMPLE 1.2 Simplified symmetric sum

If j varies in fractional steps of 1/3, simplify the following sums:– (i)
S1 =

∑1
j=−1 1∕(1 + j2), (ii) S2 =

∑2
j=−2 sin(𝜋 ∗ j).
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Solution 1.2 (i) Using (1.24), the first sum has upper limit ⌊2 × 1∕(1∕3)⌋ = 6, so
that it can be unfolded as

∑6
j=0 f ((1∕3) ∗ j − 1) = 1∕2 + 1∕(1 + 4∕9) + 1∕(1 +

1∕9) + 1 + 1∕(1 + 1∕9) + 1∕(1 + 4∕9) + 1∕2 = 2 ∗ (1∕2 + 9∕13 + 9∕10) + 1 =
5.184615

(ii) Using (1.24), we get S2 =
∑⌊2×2∕(1∕3)⌋

j=0 sin(𝜋 ∗ (j∕3 − 2)). This simplifies
to zero as positive and negative terms cancel out.

EXAMPLE 1.3 Simplified double sum

If j varies in fractional steps of 1/4, and k varies in integer steps of 3, simplify
following sums:– (i) S1 =

∑5
j=2

∑10
k=1 1∕(j + k), (ii) S2 =

∑10
k=1

∑k
j=1 1∕(j + k).

Solution 1.3 In Case (i), u = 2, 𝑣 = 5, and c = 1∕4 so that we apply FIS first to
get

S1 =
(5−2)∗4∑

j=0

10∑

k=1

1∕(2 + (j∕4) + k) =
12∑

j=0

10∑

k=1

1∕(2 + (j∕4) + k). (1.25)

For the inner sum (indexvar k), we have u = 1, 𝑣 = 10, k = 3 so that
(𝑣 − u)∕k = 9∕3 = 3 and

S1 =
12∑

j=0

3∑

k=0

1∕(2 + (j∕4) + (1 + 3 ∗ k)) =
12∑

j=0

3∑

k=0

1∕[3 + 3k + j∕4]. (1.26)

In Case (ii), we first apply FIS to get

S2 =
(10−1)∕3∑

k=0

3∗k+1∑

j=1

1∕(1 + j + 3 ∗ k), (1.27)

where the inner index still increments in step size 1/4. Next, we apply IIS to
indexvar k to get

S2 =
3∑

k=0

12∗k∑

j=0

1∕(2 + j∕4 + 3 ∗ k). (1.28)

The most frequent use of
∑

notation in statistics is to denote the arithmetic sum
of n quantities that are distinguished only by one or more subscripts. In the following
discussion, we introduce the most common summation notations.

1. Subscript fully varying summation
Consider the summation

n∑

j=1

xj =
∑

xj = x1 + x2 + · · · + xn, (1.29)
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where xj is the jth value of the series X[]. Here, each of the xj’s are either known
data values or random variables. The j is called the summation variable or index
of summation. This notation is used in arithmetic means of samples, of random
variables, in order statistics, and in probability theory for disjoint events.
Because bivariate data are arranged as a matrix and identified by a row and
a column, we could extend the above-mentioned notation as

∑m
i=1

∑n
j=1 xij to

denote the sum of all of the m × n entries or values. This is sometimes compactly
written as

∑
i
∑

jxij or as
∑

i,jxij. The summation notation is also used in vari-
ances as s2 =

∑n
j=1 (xj − x)2∕(n − 1). Consider the summation

∑n
j=1 (xj − c)k

or
∑

(xj − c)k for short. This denotes the expanded sum (x1 − c)k + (x2 − c)k +
· · · + (xn − c)k, where xj is the jth value of the series X[], and c,k are constants.
As in the above-mentioned case, we could extend this to bivariate data as
∑n

j=1 xjyj, where xj and yj are the values of two traits generated by the jth
subject. When there are many traits, we may represent them by an additional
subscript, rather than by separate variables as in

∑m
i=1

∑n
j=1 (xij − c)k for a

given k.

2. Subscript partially varying summation
This is a variant of the above-mentioned notation, where we use ≠ or ≥ to
restrict one or more summation indexes. Consider the problem of summing the
elements in the upper triangular portion (above the diagonal) of a 2D array. If
xij denotes the (i, j)th element, this sum is given by S =

∑n
i=1

∑n
j=i xij or equiva-

lently
∑n

i=1
∑

j≥ixij. In some applications, we may have to omit particular values
of the summation index as in

∑n
i=1

∑n
j=1;j≠i xij. As another example, the sample

variance can be represented as

s2
n = 1∕[n(n − 1)]

n∑

i=1

n∑

j>i

(xi − xj)2, (1.30)

where the inner indexvar depends on the outer indexvar. As this is symmetric
in xi and xj, we could also write it as

s2
n = 1∕[n(n − 1)]

n∑

i=2

i−1∑

j=1

(xi − xj)2. (1.31)

3. Summation over a set
This is an extension of the above-mentioned notation. In some applications,
we have distinct nonoverlapping subsets that makeup a set. We may have to
accumulate some information about each of the subsets. The above-mentioned
summation notation can be modified such that the summation index varies over
each subset:

∑
j∈Sj

f (xj). These sets can be specified either explicitly or implicitly
using a condition. For instance, the set of all odd integers can be specified as “j is
odd,” where j is the summation index. Suppose that we are interested in finding
the probability of an even number of heads when six coins are thrown. Let Y
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denotes the event that an even number of Heads appear. The possible values of
Y are S1 = 0, 2, 4, 6. Here, Y = 0 indicates that all six coins ended up as Tails and
six indicates that all of them were Heads. We know that this is solvable using the
binomial distribution with n = 6. If p denotes the probability of a head showing
up and q = 1 − p denotes the probability of a tail showing up, we are interested
in finding the probability

P(Y is even) =
∑

j even

(
n
j

)

pjqn−j =
∑

j∈S1

(
n
j

)

pjqn−j
. (1.32)

4. Function of summation variable
Consider the simple summation

∑n
j=1 j or

∑n
j=1 j2. Here, our summand (the

quantity summed) is either j itself or a function of it. A more complicated
example is the tail areas of Poisson probability defined as Pj(𝜆) = e−𝜆𝜆j∕j! or

the binomial density bj(n, p) =
(

n
j

)

pj(1 − p)n−j = (1 − p)n
(

n
j

)

(p∕q)j, for j =
0, 1, · · · , n, and q = 1 − p. The sum of the probabilities on the left tail is called
the CDF and that on the right tail is called the survival function. Symbolically,
Fx(k, 𝜆) =

∑k
j=0 e−𝜆𝜆j∕j! is the CDF up to and including k, where k is a number

in (0,∞). Similarly, the binomial survival function is given by Gx(k, n, p) =
1 − Fx(k − 1, n, p) =

∑n
j=k

(
n
j

)

pj(1 − p)n−j. This notation will be used in
Chapter 6.

5. Superscript varying summation
Consider the summation

∑n
k=1 (xj − c)k or

∑
k(xj − c)k for short. This denotes

the expanded sum (xj − c)1 + (xj − c)2 + · · · + (xj − c)k, where xj, the jth value
of the series X[], and c are constants. This notation is used in generating func-
tions. In differential calculus, it denotes jth derivative as in dj

dx j f (x) = ( d
dx
)jf (x),

which is interpreted as applying the differential operator ( d
dx
) repeatedly j times.

As another example, the jth derivative of cumulant generating function is

(𝜕∕𝜕t)jKx(t) = (𝜕∕𝜕t)j ln(Mx(t)) = 𝜅j + 𝜅j+1(t∕1) + 𝜅j+2(t2∕(1 ∗ 2)) + · · · ,
(1.33)

from which by putting t = 0, we could separate out the jth cumulant. Putting
t = 1 gives ( 𝜕

𝜕t
)j ln(Mx(t))|t=1 =

∑∞
r=0

𝜅j+r

r! (see also 9.1 (pp. 9–2)). Note that the
superscript may or may not mean powers. For instance, it means various states
in stochastic processes and game theory. It could be negative in time-dependent
autoregressive processes and discrete signal processing. For example, the gener-
ating function A(z, n) =

∑n
j=1 aj(n)z−j denotes the autoregressive process x(n) =

−
∑n

i=1 ai(n)x(n − i) + 𝜎(n), where negative powers of z denote time lags to the
past from the reference point. If it does not imply powers, we could enclose
them in parenthesis to avoid confusion. A superscript could denote an omitted
data value as in the Jackknife estimator of a parameter using a sample of size
n as

J = n ∗ tn − (1∕n)
n∑

j=1

t(j)n−1, (1.34)
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where tn is the estimate using all sample values and t(j)n−1 denotes the estimate
without jth data value (using other n-1 values).

6. Combination summation
This type of summation may involve a combination of the above-mentioned
two types. Consider the expression Mx(t) =

∑∞
j=0(t j∕j!)𝜇j, which is called the

ordinary moment generating function. Here, the summation index appears as a
subscript on 𝜇, as superscript on the dummy variable t, and as a function 1∕j!.
As another example, consider the noncentral beta distribution NCB(p, q, 𝜆) with
shape parameters (p, q), and noncentrality parameter 𝜆 >0. The mean of this
distribution is expressed as an infinite sum of Poisson-weighted central beta
means as

𝜇 =
∞∑

j=0

e−𝜆∕2(𝜆∕2)j

j!
p + j

p + q + j
≃ 1 −

q

C

(

1 + 𝜆

2C2

)

, (1.35)

where C = p + q + 𝜆∕2 [52]. Here, j appears as powers of (𝜆∕2) and as a func-
tion p+j

j!(p+q+j) (see Table 8.3, pp. 8–41 in Chapter 8).

1.7 PRODUCT NOTATION

We have used the + operator in the summation notation discussed earlier. There
are many situations where we need to use the product (*) operator instead of +.
Examples are the rising and falling factorial moments, geometric mean (Section 2.7,
pp. 2–29), likelihood function in maximum likelihood estimation (MLE) of statis-
tical parameters, multivariate distribution theory, conditional distributions, multiple
and partial correlations, and some special numbers. It is also used in inverse discrete
Fourier transforms, numerical interpolation, and many other engineering fields. If
x1, x2, · · · , xn are nonzero numbers (positive or negative), their product is denoted as
P =

∏n
j=1 xj. By taking logarithm of both sides, we get log(P) =

∑n
j=1 log(xj), using

log(xy) = log(x) + log (y). It immediately follows that

n∏

j=1

x
bj

j = exp

(
n∑

j=1

bj ∗ log e(xj)

)

. (1.36)

The objective function in geometric programming (GP) is the posynomial
f (x) =

∑T
t=1 ct

∏N
j=1 x

ajt

j , where ct >0, ajt are real and xj >0 ∀j. Applying
equation 1.36 immediately gives

f (x) =
T∑

t=1

ct ∗ exp

(
N∑

j=1

ajt ∗ log e(xj)

)

. (1.37)

The multinomial probabilities are expressed as n!
x1!.x2!···xn!

px1
1 .p

x2
2 … pxn

n , where p′js are
probabilities that add up to 1 and ‘.’ denotes multiplication (*) (see Chapter 6). This
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can be concisely written as P = n!
∏n

j=1 xj!
∏n

k=1 pxk
k . By taking log (to base e) and using

equation 1.36, this becomes

P = exp

(
n∑

j=2

log e(j) +
n∑

k=1

xk ∗ log e(pk) −
n∑

j=1

xj∑

k=1

log e(k)

)

,

where we have used log(1) = 0, and loge(xj!) =
∑xj

k=1 loge(k) as x′js are integers. This
can be written as

n!
x1!.x2! · · · xn!

px1
1 .p

x2
2 … pxn

n = exp

(
n∑

j=2

ln(j) +
n∑

k=1

xk ∗ ln(pk) −
n∑

j=1

xj∑

k=1

ln(k)

)

.

(1.38)

For an MLE example, let fx(x, 𝜃) be the PDF of a distribution from which
a sample x1, x2, · · · , xn of size n is drawn. Then, the likelihood function is
L(x1, x2, · · · , xn; 𝜃) =

∏n
j=1 fx(xi, 𝜃). The unknown parameters are then estimated by

maximizing the likelihood or equivalently maximizing the log-likelihood.
Expressions independent of the indexvars can be taken outside all independent

products. For example, consider the product P =
∏k

j=0
∏m

i=0 c ∗ ui ∗ 𝑣j. As 𝑣j is inde-
pendent of i and c is a constant, we could rewrite it as

P =
k∏

j=0

m∏

i=0

c ∗ ui ∗ 𝑣j = ck+m+2 ∗
k∏

j=0

𝑣
m+1
j ∗ (

m∏

i=0

ui) (1.39)

(note that j varies k+1 times and i varies m+1 times). As the expression within the
product5 is symmetric in i and j, we could also write it as P = ck+m+2 ∏m

i=0 uk+1
i ∗

(
∏k

j=0 𝑣j). In the particular case when u = 𝑣 (uj = 𝑣j), this simplifies to

P = ck+m+2 ∗

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

k∏

j=0
uk+m+2

j

m∏

i=k+1
uk+1

i if k < m;

m∏

j=0
uk+m+2

j

k∏

i=m+1
um+1

i if m < k;

m∏

j=0
u2(m+1)

j = (
m∏

j=0
u2

j )
(m+1) if m = k.

.

1.7.1 Evaluating Large Powers

Expressions of the form xn
, (1 − x)n, or 𝜆x occur in many probability distributions

such as gamma, beta, Weibull, Pareto, power series, and Poisson distributions. In
some applications, we need to compute the PDF for just a few x values for a large

5We denoted the expression within the sums as summand. Strictly speaking, we cannot use summand here
as it is enclosed by product symbol. A better word might be prodand.
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fixed n or large integer values of x for fixed 𝜆. There are many ways to evaluate them.
The following example first considers an efficient method when the power n is large
and then explains the computational details when both x and n are large.

EXAMPLE 1.4

Evaluate xn where n is a large integer.

Solution 1.4 We consider two cases depending on whether n is a power of 2 or
not. (i) Let n = 2m, where m is an integer. We could evaluate it as xn∕2 ∗ xn∕2,
where each of the terms are recursively evaluated.

Case (ii): n is not a power of 2. If n is of the form 2k ± 𝑣, where v is a small
number (say 1,2, or 3), we could still utilize Case (i). As examples, n = 15 = 24 − 1,
so that x15 = x16∕x, and x67 = x64 ∗ x3. Otherwise, we convert n into its binary
representation as n = bkbk−1 · · · b1b0, where b0 is the least significant bit (LSB) and
bk is the most significant bit (MSB). The n and b′js are connected by n =

∑k
j=0 bj2

j,
where we have rearranged the summation index to match significant bits from right

to left. Substitute for n to get xn = x
∑k

j=0 bj2
j
. Using xm+n = xm ∗ xn, this becomes

xb0 ∗ (x2)b1 ∗ · · · (x2k )bk . This can be written as
∏k

j=0 (x2j )bj . As the powers of all
x’s are of the form 2k, the case (i) applies for large k. Because b′js are binary digits

(0 or 1), we need to evaluate the expressions for bj = 1 only (as (x2j )0 = 1∀j). Hence,

the above-mentioned product could also be expressed as xn =
∏k

j=0, bj=1 (x2j )bj .
Sequential algorithms convert a decimal number (n >0) into its binary represen-
tation using the repeated division by base (=2) method. This generates the binary
digits from LSB to MSB. We could then check each and every bit to see if it is 1 and
accumulate the corresponding product term (x2j )bj immediately. This is especially
useful in cryptography applications that work with expressions of the form xp − 1
where p is a very large prime number. As fractions are converted into binary using
the repeated multiplication by base method, the above-mentioned discussion is
equally applicable to evaluate expressions involving x1∕n too, where n is large.

In the particular case when x and n are both very large, we break x using the prime
factorization theorem into x = pn1

1 pn2
2 · · · pnm

m =
∏m

i=1 pni
i , where pi’s are prime num-

bers and ni’s are integers (≥1). Then xn = (
∏m

i=1 pni
i )

n. Substitute n =
∑k

j=0 bj2
j to get

xn = (
∏m

i=1 pni
i )

∑k
j=0 bj2

j
. This can be simplified into the form

xn =
m∏

i=1

(
k∏

j=0

(p2j

i )
bj)ni , (1.40)

where the inner product is carried out only for bj = 1. Note that p2j+1

i = p2j

i ∗ p2j

i .
Hence, these can be kept in an array and updated in each pass.

We could also combine multiple products as well as sums and products. Multiple
products are, however, not of much use in engineering statistics. The index of sum-
mation and products could also be a function (say R(j)) of the respective indexvars
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as used in [157], page 27–36. An extension is to allow the step size to be any integer
>1. For example, when the step size is 2, we get

x(j,2) = x ∗ (x − 2) ∗ · · · ∗ (x − 2j + 2) = step 2
j−1∏

k=0

(x − 2 ∗ k). (1.41)

1.8 RISING AND FALLING FACTORIALS

This section introduces a particular type of the product form presented earlier. These
expressions are useful in finding factorial moments of discrete distributions whose
PDF involves factorials or binomial coefficients. In the literature, theseare known
as Pochhammer’s notation for rising and falling factorials. This will be explored in
subsequent chapters.

1. Rising Factorial Notation
Factorial products come in two flavors. In the rising factorial, a variable is incre-
mented successively in each iteration. This is denoted as

x(j) = x ∗ (x + 1) ∗ · · · ∗ (x + j − 1) =
j−1∏

k=0

(x + k) =
Γ(x + j)
Γ(x)

. (1.42)

2. Falling Factorial Notation
In the falling factorial, a variable is decremented successively at each iteration.
This is denoted as

x(j) = x ∗ (x − 1) ∗ · · · ∗ (x − j + 1) =
j−1∏

k=0

(x − k) = x!
(x − j)!

= j!
(

x
j

)

.

(1.43)

Writing equation (1.42) in reverse gives us the relationship x(j) = (x + j − 1)(j).
Similarly, writing equation (1.43) in reverse gives us the relationship x(j) =
(x − j + 1)(j).

1.9 MOMENTS AND CUMULANTS

Moments of a distribution are denoted by the Greek letter 𝜇. They have great theoret-
ical significance in statistical distribution theory. Moments can be defined about any
arbitrary constant “c” as

𝜇n(c) = E(x − c)n =
⎧
⎪
⎨
⎪
⎩

∑

x
(x − c)nf (x), for discrete distributions

∫x(x − c)nf (x)dx, for continuous distributions.
(1.44)
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If c = 0 in this definition, we get raw moments, and when c = 𝜇1 = 𝜇, we get the
central moments.

The corresponding sample moments are analogously defined as mk(c) =∑n
j=1 (xj − c)kf (xj). The population moments may not always exist, but the sample

moments will always exist. For example, the mean of a standard Cauchy distribution
does not exist, however, the sample mean exists. The moment generating function
(MGF) provides a convenient method to express population moments. It is defined
as

Mx(t) = E(etx) = 1 + t
1!
𝜇1 +

t2

2!
𝜇2 + . (1.45)

The logarithm of the MGF is called cumulant generating function (KGF). Sym-
bolically,

log(Mx(t)) = Kx(t) = 𝜅1t + 𝜅2t2∕2! + · · · + 𝜅rt
r∕r! + .. (1.46)

See also equation (1.33) in pp. 1–31. L-moment is an extension that is discussed in
Ref. 145. A thorough discussion of generating functions appears in Chapter 9.

1.10 DATA TRANSFORMATIONS

Data transformation is used in various statistical analyses. It is especially useful in
hand computations when the numbers involved are too large or too small. Computing
summary measures such as mean and variance of large numbers can be simplified
using linear transformation techniques discussed in the following. Similarly, as the
test statistic in analysis of variance (ANOVA) computations involves the ratio of sums
of squares, a change of scale transformation is applicable. If the spread (variance) of
data are too large or too small, an appropriate change of scale transformation can ease
the visualization of data.

1.10.1 Change of Origin

As the name implies, this shifts all data points linearly (by subtracting or adding a
constant from each sample value) as Y = X − c. The constant c (positive or negative)
is preferably an integer when sample values are all integers.

EXAMPLE 1.5 Reservoir inflow

The amount of water inflow into a reservoir during 6 hours in cubic feet is
X = {286, 254, 242, 247, 255, 270}. Apply the change of origin method and find
the mean.

Solution 1.5 We subtract 240 (chosen arbitrarily) from each observation to get
x′i = xi − 240 as X′ = {46, 14, 2, 7, 15, 30}, from which

∑
ix
′
i = 114. The mean

of X′ is x′ = 114∕6 = 19. The mean of the original data is 240 + 19 = 259 = x.
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It is trivial to prove that the range of original data is preserved by a change of
origin transformation because (xn − k) − (x1 − k) = xn − x1 and (xn + k) − (x1 + k) =
xn − x1.

1.10.2 Change of Scale

This technique divides each large observation by the same constant (>1). This is use-
ful when numbers are large and has high variability. Examples are family income,
total insured amounts, annual insurance premiums, defaulting loan amounts, adver-
tising expenses in various media and regions, and so on. Let x1, x2, ..xn be “n” sample
values and c be a nonzero constant. Define yi = xi∕c. If c is less than the minimum
of the observations, each of the yi’s are greater than 1, if xi’s are positive. Similarly,
if c is greater than the maximum of the observations, each yi’s are less than 1. For
values of c between minimum and maximum of the sample, we get values on the real
line (positive real line if all xi’s are positive). If all values are small fractions, we may
multiply by a constant to scale them up.

EXAMPLE 1.6 Change of scale to find the mean

Error measurements of a device are as follows. Scale the data and find the mean:-
X = {0.001, 0.006, 0.0095, 0.015, 0.03}.

Solution 1.6 Choose c = 1000 and scale using yi = cxi to get Y = {1, 6, 9.5, 15,
30}. This is an example of decimal scaling in which the decimal point is moved
by multiplying/dividing by a power of 10. The mean of Y is y = 61.5∕5 = 12.3
and thus the mean of X is x = 0.0123.

1.10.3 Change of Origin and Scale

This is the most frequently used technique to standardize data values. Depending on
the constants used to change the origin and scale, a variety of transformed intervals
can be obtained.

Theorem 1.1 A sample in the range (a,b) can be transformed to a new interval (c, d)
by the transformation y = c + [(d − c)∕(b − a)] ∗ (x − a).

Proof: By putting x = a in the expression gives y = c. Putting x = b gives y = c +
[(d − c)∕(b − a)] ∗ (b − a) = c + (d − c) = d. As (x − a)∕(b − a) and (y − c)∕(d − c)
both map points in the respective intervals to the [0,1] range, all intermediate values
in (a,b) get mapped to a value in (c,d) range. This proves the result.

EXAMPLE 1.7

Amount of fluoride (in milligrams) in drinking water collected from six places
are [60, 90, 118, 150, 165, 170]. Transform the data to the range [10, 60].
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Solution 1.7 Here a = 60, b = 170, c = 10, d = 60. Thus (d − c)∕(b − a) =
(60 − 10)∕(170 − 60) = 5∕11. Hence, the required transformation is yi = 10 +
(5∕11)(xi − 60). Substitute each successive value of x to get Y = [10, 23.6364,
36.3636, 50.9091, 57.7273, 60].

Corollary 1 Prove that the sample x in the range (a,b) can be transformed to a new
interval (c,d) by the transformation

yi =
1

(b − a)
[(d − c) ∗ xi + (bc − ad)]. (1.47)

Proof: Write c + [(d − c)∕(b − a)] ∗ (xi − a) as c + (xi − a) ∗ [(d − c)∕(b − a)]. Dis-
tribute (xi − a) as two products to get [c + xi ∗ (d − c)∕(b − a) − a ∗ (d − c)∕(b −
a)]. Take (b-a) as the common denominator. The first and third expressions simplify to
(bc−ac−ad+ac)/(b−a). Cancel out “ac” to get (bc−ad)/(b−a). Combine with the sec-
ond expression and take the common denominator outside to get the required result.

1.10.4 Min–Max Transformation

This transformation is used to map any sample values to the interval [0, 1], [−1, +1],
and so on.

Theorem 1.2 Any numeric variable x in the interval (xmin, xmax) can be trans-
formed to a new interval [0, 1] by the transformation y = (x − xmin)∕R, where R =
(xmax − xmin) is the range and xmin, xmax are the minimum and maximum of the sample
values.

Proof: Substituting x = xmin gives y = 0 and x = xmax gives y = 1. Hence, the trans-
formed values are mapped to [0, 1].

EXAMPLE 1.8

Transform the fluoride data in page 1–38 into the [0,1] range.

Solution 1.8 As the minimum is 60 and maximum is 170, the required trans-
formation is y = (x − 60)∕(170 − 60). This gives Y = [0, 0.2727, 0.5273, 0.8182,
0.9545, 1].

Lemma 1 A sample x in any finite range can be mapped to the interval [−1, +1] by
a simple change of origin and scale transformation.

Proof: Consider the transformation y = 2 ∗ [(x − xmin)∕R] − 1, where R = (xmax −
xmin). When x = xmin, y becomes −1 and when x = xmax, y = +1. All intermediate
values are mapped to points within the interval [−1,+1]. Thus the result. This holds
even if xmin is negative.
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EXAMPLE 1.9

Transform the data [ 34, 43, 55, 62, 68, 74] to the interval [−1, +1].

Solution 1.9 Here, the minimum is 34 and maximum is 74. Thus, the range is
40. Using Lemma 1, we get the transformed data as y = [2 ∗ (x − 34)∕40] − 1 =
[−1,−0.55, 0.05, 0.40, 0.70,+1].

Theorem 1.3 A sample x in any finite range with at least two elements can be mapped
to the range Y = [−k,+k] by the transformation

yi =
k
R
[2 ∗ xi − (xmin + xmax)], where R = (xmax − xmin). (1.48)

Proof: Putting x = xmin gives y = k
R
[2 ∗ xmin − (xmin + xmax)] =

k
R
[xmin − xmax] = −k

because R = (xmax − xmin). Putting x = xmax gives y = k
R
[2 ∗ xmax − (xmin + xmax)] =

+k. All intermediate values are mapped to the interval (−k,+k). For instance xc =
(xmin + xmax)∕2 gets mapped to 0. This proves the result.

EXAMPLE 1.10

Transform the above-mentioned data into the intervals [−0.5, +0.5], and [−3,
+3].

Solution 1.10 Here k = 0.5, so that k∕R = 0.5∕(74 − 34) = 0.0125, xmin +
xmax = 74 + 34 = 108, giving the transformation y = 0.0125 ∗ (2 ∗ x − 108).
Resulting y vector is [−0.5,−0.275, 0.025, 0.20, 0.35, 0.5]. For the [−3,+3]
range, k = 3 and k∕R = 3∕40 = 0.075, giving the transformation y = 0.075 ∗
(2 ∗ x − 108). Resulting values are [−3,−1.65, 0.15, 1.2, 2.1, 3].

Remark 1 In the particular case when the sample has just two elements, they are
mapped exactly to −k and +k respectively.

Proof: Consider a sample (x,y) of size two. Rearrange them such that xmin = x, xmax =
y or vice versa. Substituting in equation 1.3, xmin and xmax gets mapped to −k and +k,
respectively.

EXAMPLE 1.11

The incomes of six families are [34,000, 43,000, 55,000, 62,000, 68,000,
74,000]. Transform the data to the interval [−1, +1].

Solution 1.11 We will choose c = 10, 000 and divide each value by c to
get X′ = [3.4, 4.3, 5.5, 6.2, 6.8, 7.4]. Here R = (7.4 − 3.4) = 4, k = 1 and
(xmin + xmax) = 3.4 + 7.4 = 10.8, giving the transformation y = 0.25 ∗ (2 ∗
x − 10.8) where x varies over the original data values. The resulting y vector is
[−1,−0.55, 0.05, 0.40, 0.70,+1].
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1.10.5 Nonlinear Transformations

Linear data transformations may be insufficient in some engineering applications.
The popular nonlinear transformations are square-root transformation, trigonometric
and hyperbolic transformations, logarithmic and exponential transformations, power
transformations, and polynomial transformations. These transformations are used
either to stabilize the variance of the data or to bring the data into one of the
well-known distributional form.

1.10.6 Standard Normalization

This transformation is so called because it is extensively used in statistics to stan-
dardize arbitrary scores. Here, the origin is changed using the mean of the sample,
and the scale is changed using the standard deviation of the sample. Symbolically
yi = (xi − x)∕s, where s is the standard deviation. The resulting values of y are called
z-scores and will almost always lie in the interval [−3, +3]. A disadvantage of this
transformation is that it uses the mean and variance that need a single pass through
the data. If standard normalization is applied manually, a quick check can be carried
out as follows. If the sum of the z-scores is nonzero, it is an indication that either
the calculation is wrong or error has propagated. Ideally, we expect the sum of the
z-scores to be less than a small number (say <0.00001).

EXAMPLE 1.12 Shear strength of bonded joints

The shear strength of bonded joints (in MPa) are X=(22, 30, 81, 26, 44, 29, 61, 35).
Apply the standard normalization.

Solution 1.12 The sum of the data is 328, from which the mean is 41. Sum of
squares is 16,344 so that the variance is 413.7142857 (and s is 20.33996769).
Thus, the transformation y=(x − 41)∕20.33996769, which gives Y=(−0.93412,
−0.54081, 1.96657,−0.737464, 0.14749,−0.58997, 0.983286,−0.294986).

EXAMPLE 1.13 Carbon nanoparticles

The amount of carbon particles in a nano-device is X = {32, 148, 21, 940, 36, 182,
39, 276, 14, 260, 43, 769, 25, 313, 25, 312}. Compute the z-scores.

Solution 1.13 As the numbers are large, apply a change of scale transformation.
Divide each data by 10,000 to get S′={0.32148, 0.2194, 0.36182, 0.39276, 0.1426,
0.43760, 0.25322, 0.25312}. The mean of scaled data is 0.29775, and variance is
s2 = 0.009634, from which the standard deviation is obtained as 0.098152944.
The corresponding z-scores are easily found as [00.24176,−0.79824, 0.65276,
0.967979,−1.580696, 1.42482,−0.4536797,−0.454698]. The corresponding
z-scores for S are also the same, which can be verified using the transformation
z = (x − 29775)∕9815.294.
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1.11 DATA DISCRETIZATION

As the name implies, discretization (also known as binning) is the process of catego-
rizing a continuous variable (called source variable) measured in the interval or ratio
scale of NOIR typology into a small number of groups (called bins) with minimal
loss of information.

Definition 1.8 DDAs divide the global range of a continuous attribute into
nonoverlapping and piece-wise continuous intervals in an optimal way, where each
continuous interval is assigned a categorical label.

Univariate DDA has only one source variable with well-defined logical bound-
aries (upper and lower). Continuous periodic data are discretized using a technique
called sampling using Shannon’s law. We will consider only aperiodic functions in
the rest of the chapter. These boundaries can also be ∓∞. Nothing is assumed on the
distribution of the source variable—it can be uniformly distributed over its range or
can follow one of the other statistical laws.

1.12 CATEGORIZATION OF DATA DISCRETIZATION

The DDA can be classified into the following categories—(i) supervised, semisuper-
vised, or unsupervised; (ii) global or local, and (iii) static or dynamic. Supervised
DDA explores the class information (category labels) in the data intensively.
Entropy-based binning and purity-based binning are supervised algorithms. Static
DDA discretizes each attribute independently without regard to attribute interactions.
Dynamic DDA on the other hand searches for all attributes simultaneously and
takes care of attribute interactions. In the following discussion, we will use a simple
parenthesis ‘(’ to denote an open interval and a ‘[’ to denote a closed interval. We
have a choice of either keeping the right margin open, except for the last bin, or
keeping the left margin open, except for the first bin.

1.12.1 Equal Interval Binning (EIB)

This method is also called equal width binning (EWB). It is the simplest unsu-
pervised DDA, as it does not use the class label information of training data.
Moreover, it does not require data sorting. Only inputs to this algorithm are the
minimum x1 and maximum xn of n observations, and a user-supplied constant k(≥ 2)
that represents the number of bins. This minimum and maximum can be found
without data sorting, either using a single iteration over the data or using a recursive
divide-and-conquer strategy. The range R = xn − x1 is then divided into k equal width
intervals (say S = R∕k), so that xn = x1 + k ∗ S. The ith interval is then given by
(x1 + (i − 1) ∗ S, x1 + i ∗ S) for i = 1, 2, · · · , k, where boundaries are properly taken
care of. A disadvantage of EIB is that it is sensitive to data outliers on both sides. A
simple solution is to use percentiles of the data X, say P5 and P95, as the minimum
and maximum and use it in the range calculation, so that S = (P95 − P5)∕k. The
leftmost and rightmost intervals can finally be made unequal widths as [x1,P5 + S)
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and [P95 − S, xn]. In this case, the intervals 1 and k are unequal and all others are
equal width. This does not matter as we assign categorical labels to these intervals.

It is well known that excessive fat intake and a compulsion to over-eat are the major
contributing factors in the pathogenesis of obesityx. Sedentary life styles and fatty
food eating habits make many people overfat in developed countries, resulting in
a negatively skewed BMI distribution. The BMI of most adults varies between 17
and 35. This of course is country specific. An ideal BMI value is a key indicator of
the overall health and fitness of an individual. Too low or too high BMI values quite
often indicate ill-health. Very low values can be due to immunity-related illnesses
and anemia. Some genetic disorders and addiction to fatty food can result in very
high BMI values (there are less than a dozen genetic markers that increase the
BMI and contribute to obesity). Those with BMI values between 30 and 35 are
called obese. Those above 35 BMI are called morbidly obese, for which surgical
options (bariatric surgery) are available. Management of obesity is important in
adolescence as it could lead to heart problems in later life.

Because the normal BMI range for adults is a narrow interval, we expect a
smaller fraction of the people to fall in this range than in the other ranges. An EWD
will probably produce wrong results, as the “normal” range is too narrow. An EFB
could give better results if the population were naturally divided equally among
under-fats, normals, and over-fats. In addition, as females are in general shorter
than males, the BMI distribution for males and females is different. Thus, the pro-
portion of females in our sample could impact the binning boundary. Note that the
BMI-based categorization of an individual into the three body-fatness groups is
very explicit as there are no overlaps. On the contrary, consider binning a group of
people into {diabetic, nondiabetic} categories based on the BMI value. All overfat
people are not diabetic, and there are few underfat diabetic patients too. Thus, the
classes have high overlaps. The extent of the overlap determines the error rate in
binning. The entropy-based binning algorithms can give good binning in this kind
of situations if the class labels of the training data are exactly known.

Instead of fixing the lower and upper cutoff at P5 and P95, we could arbitrarily
choose two percentiles, which are often taken symmetrically (this is not necessary if
the distribution is highly skewed). If Pl and P100−l are the lower and upper percentiles,
the above-mentioned formula becomes

[x1, (1 − 1∕k)Pl + (1∕k)P100−l), (Pl + (i − 1)(P100−l − Pl)∕k,Pl + i(P100−l − Pl)∕k)

for i = 1, 2, · · · , k − 1 and [(1 − 1∕k)P100−l + (1∕k)Pl, xn]. This is recommended only
when the data size is large. For smaller data sizes, an outlier test may be carried out
to individually remove them one by one and then use the remaining data for binning.
Multiple continuous attributes are discretized one at a time (simultaneous discretiza-
tion algorithms that care for attribute interactions (correlations) are also reported in
the literature). This can also be done in parallel, as the majority of computation time
is spent in assigning the correct bin to each data value. Because nothing is assumed
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about the data distribution, other than the range, this method is called blind binning.
If the class labels (categories) of the data are already known, we could estimate the
error rate (discussed in the following) by comparing the actual and predicted class
labels. Obviously, the error rate is maximum with EWB when compared to other
DDA. Thus, the real question is whether we should compromise on the high predic-
tive accuracy attainable by supervised DDA at the expense of extra computations over
the simplicity of unsupervised algorithms such as EIB.

EXAMPLE 1.14

The body mass index (BMI) of 15 patients is as follows. Discretize the
data using EIB with (i) k = 3, (ii) k = 4, and (iii) k = 7 bins. X = {26.2,
25.6, 25.1, 23.3, 23.7, 23.4, 29.7, 28.5, 25.2, 21.4, 28.3, 33.4, 27.8, 24.4, 25.9}.

Solution 1.14 Here, the minimum is 21.4 and maximum is 33.4, so
that the range is 12. For case (i), we need to divide the range into
three equal widths, so that S = R∕k = 12∕3 = 4. The bins are b1 =
[21.4, 25.4), b2 = [25.4, 29.4), and b3 = [29.4, 33.4]. If the labels are
U = underweight, N = normal, and O = overweight, the new data are Y =
{N,N,U,U,U,U,O,N,U,U,N,O,N,U,N}. For case (ii), we get S = R∕k =
12∕4 = 3. The bins are b1 = [21.4, 24.4), b2 = [24.4, 27.4), b3 = [27.4, 30.4),
and b4 = [30.4, 33.4]. Let the labels be U = underweight, N = normal, O = over
weight, and H = Heavy. Note that the “Normal” category has lost its signifi-
cance because the normal6 BMI is in the range (25–26). Discretized data are
Y = {N,N,N,U,U,U,O,O,N,U,O,H,O,N,N}. For case (iii), S = R∕k =
12∕7 = 1.7143. The bins are A = [21.40, 23.114),B = [23.114, 24.829),C =
[24.829, 26.543),D = [26.5435, 28.257),E = [28.257, 29.971),F = [29.971,
31.686),G = [31.686, 33.4]. The discretized data becomes {C,C,C,B,B,B,E,E,
C,A,E,G,D,B,C}. Note that the class F = [29.971, 31.686) has zero frequency.
This is a common problem when narrow range data are discretized into a large
number of bins.

1.12.2 Equal Frequency Binning (EFB)

This method divides the total range such that each subinterval has more or less the
same number of data items. As this obviously requires some knowledge about the
data distribution, EFB is in general computationally more complex than EIB. If data
are known to be approximately uniform, we could first apply the EIB and perturb
the boundary, if necessary, to get the EFB. The results obtained by EIB and EFB are
often different, except in particular cases (when data are uniformly distributed, when
(n = 2, k = 2), (n = 3, k = 2), etc.). If k is a power of 2, we could apply the median
finding algorithm repeatedly using the divide-and-conquer principle to easily get the
bin boundaries. Otherwise, we sort the data values and pick out the bin boundaries
using the following algorithm. If the number of data points is large and k is small,

6Another categorization is normal = (18 − 25), overweight = (26 − 30), obese = (30 − 35), morbid ≥ 35.
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the frequency of each class will be more or less equal. A problem with this binning is
the duplicate values that could get split across the boundary of two adjacent classes.
Consider for example discretizing X = {1, 1, 2, 2, 2, 3} into k = 2 bins. As n = 6, we
would split it into b1 = {1, 1, 2} and b2 = {2, 2, 3}. Here 2 appears in both the bins.
By our algorithm, each value in b1 is assigned one label (say X), and all values in
b2 are assigned another label (say Y), so that the discretized data becomes {X, X,
X, Y, Y, Y}. If the EIB algorithm is used, we have R = 3 − 1 = 2 and S = R∕2 = 1
so that we either get b1 = [1, 2) and b2 = [2, 3] or b1 = [1, 2] and b2 = (2, 3]. In
the first case, the discretized data becomes {X, X, Y, Y, Y, Y}, and in the second
case, we get {X, X, X, X, X, Y}. This example shows that EIB and EFB could give
totally different results. Eliminating all duplicates solves the problem because the
data range will remain the same after a duplicates deletion (but it could result in a
smaller n if there were at least one pair of duplicates). Above data without duplicates
is X = {1, 2, 3} with new n = 3. For k = 2 bins, we get the boundaries as b1 = [1, 1.5)
and b2 = [1.5, 3]. Discretized data becomes {X, X, Y, Y, Y, Y}.

EXAMPLE 1.15 Discretize BMI data using EFB

Discretize the 15 BMI data in Example 1.14 using EFB with (i) k = 3 and (ii)
k = 7 bins.

Solution 1.15 Data in sorted order is X={21.4, 23.3, 23.4, 23.7, 24.4, 25.1, 25.2,
25.6, 25.9, 26.2, 27.8, 28.3, 28.5, 29.7, 33.4}. Here n = 15, S = 15∕3 = 5. For
case (i), we need to assign the same label to all values in (X[1 + (i − 1) ∗
S],X[1 + i ∗ S]) so that b1 = (X[1],X[5]) = [21.4, 24.4], b2 = (X[6],X[10]) =
[25.1, 26.2], and b3 = (X[11],X[15]) = [27.8, 28.3, 28.5, 29.7, 33, 33.4]. The
binned original data (unsorted) using labels (U, N, O) is Y={N,N,N,U,U,U,O,O,N,
U,O,O,O,U,N}.

For case (ii), we have k = 7, s = [15∕7] = 2 so that the binned data is
Y = {OO UUUU OO UU OOO UO} or Y = {O UUUUU OO UU OOO UO}.

Note that the class labels of test data are not utilized in any of the above-mentioned
unsupervised DDA. This results in loss of classification information (when DDA is
used in engineering context). Other unsupervised DDAs include Holte’s 1R algo-
rithm [125] that constrains each bin to have at least m prespecified data instances of
a majority class and Kerber’s Chi–Merge algorithm [153]. The following algorithm
adjusts the boundaries to decrease entropy at each interval.

1.12.3 Entropy-Based Discretization (EBD)

These are hierarchical discretization methods that maximize Shannon’s entropy in
the resulting discretized space or minimize entropy to control the number of inter-
vals induced in the continuous space. As EBD considers the class labels of the data,
it is a supervised learning algorithm. The EBD induces a binary tree in the data by
recursively splitting it using a fixed attribute at each level. If the data are unsorted,
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each value is considered one-by-one as a pivot for a possible split. Let T = x[j] be
the current pivot. Then, we split the data into two bins as b1 = (x[i] < T]∀ (i) and
b2 = (x[i] ≥ T∀ (i). We assume that each of the bins contains representative data
items of each of the classes. In other words, if there are k classes, we assume that
at least one of the data items in each bin will belong to one of the classes. Some-
times, this assumption may not hold, as our classes become more and more pure.
The entropy for this split is calculated as |S1|

|S|
∗ Ent(S1) + |S2|

|S|
∗ Ent(S2), where |S1|

is the number of elements in bin b1 and |S| the total number of data items under
current consideration. The entropy is calculated using all of the classes as Ent(Si) =
−
∑k

j=1 P(cj) ∗ log2P(cj), where k is the number of classes and P(cj) the fraction of
items belonging to class Cj in the respective subset Si. As log (0) = −∞, irrespective
of the base of the logarithm, we will drop those classes not represented in the bins (or
combine the corresponding bins with its neighbors). The information gain resulting
from the split at T is found as the difference between the entropies before and after
split:

InfGain(S,T) = Ent(S) −
[
|S1|
|S|

Ent(S1) + |S2|
|S|

Ent(S2)
]

, (1.49)

where Ent(S) = −
∑k

j=1 P′(cj) ∗ log2P′(cj) (here P′(cj) is the fraction of items belong-
ing to class Cj in the original set before split).

Those intervals with entropy 0 or with only one data value are kept. Others are split
recursively. The splitting is stopped using the MDL principle when InfGain(S,T) <
𝛿 =

(log2(n − 1) + log2(3k − 2) − [k ∗ Ent(S) − k1 ∗ Ent(S1) − k2 ∗ Ent(S2)])∕n,
(1.50)

where n is the size of data and k the total number of classes. Alternately, the differ-
ence between the entropy of the parent and maximum of the child node entropies is
computed at each step, and iterations are terminated if this difference is small. As
stated earlier, further splitting is continued only for impure intervals (if an interval is
totally pure, then all values in it belong to the same class and its entropy is 0). If the
class labels are highly correlated with an (increasing or decreasing) sort order of one
or more attributes, we could considerably speedup the above-mentioned algorithm
by taking T at the boundary of each class. As an example, consider discretizing med-
ical patients as high-blood pressure (HBP) (C1) and low-blood pressure (C2) groups.
Majority of HBP patients are also overfat. Thus, the BMI and HBP are highly corre-
lated. If we sort the data in increasing order of BMI, there will be some overlap along
the class boundary (on occasion there could also be some outliers in both classes).

EXAMPLE 1.16 Discretize BMI data using EBD

Discretize the 15 BMI data in Example 1.14 (pp. 1–14) using EBD.
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Solution 1.16 As EBD is a supervised learning algorithm, we will label7 the data
as X = {26.2(O), 25.6(N), 25.1(N), 23.3(U), 23.7(U), 23.4(U), 29.7(O), 28.5(O),
25.2(N), 21.4(U), 28.3(O), 33.4(O), 27.8(O), 24.4(U), 25.9(N)}. There are 6 O’s,
4 N’s, and 5 U’s in the original data. The entropy before split is −6∕15 ∗ log2
(6∕15) − 4∕15 ∗ log2(4∕15)−5∕15 ∗ log2(5∕15) =−0.4 ∗ (−1.3219)−0.26667 ∗
(−1.90689)−0.33333 ∗ (−1.58496) = 0.52877+0.5085 + 0.52832 = 1.565596.
The set S1 contains all sample values <26.2 and S2 contains all sam-
ple values ≥26.2. For convenience, we represent only the class labels as
S1 = {N,N,U,U,U,N,U,U,N} and S2 = {O,O,O,O,O,O}. Here, S1 contains
only four N’s and five U’s; and S2 contains only six O’s. The correspond-
ing entropies are easily computed as Ent(S1) = −(4∕9) ∗ log2(4∕9) − (5∕9) ∗
log2(5∕9) =−0.444444 ∗ (−1.169925)− 0.555556∗(−0.8479969) = 0.5199667+
0.4711094= 0.991076, and Ent(S2) = 0.0. Information gain for this split is

given by Ent(S) −
[
|S1|
|S|

∗ Ent(S1) + |S2|
|S|

∗ Ent(S2)
]

= 1.565596 − (9∕16) ∗
0.991076 − (6∕16) ∗ 0.0 = 0.97095. Iterations are continued using each of the
subsequent values as split points. The results are summarized in Table 1.1.
The maximum information gain 0.97095 occurs for split point 26.2. Hence,
we will keep the set S2 intact and recursively split S1. Proceeding as above, we
get the entropies as 25.60 (0.31976), 25.10 (0.99108), 23.30 (0.10219), 23.70
(0.37888), 23.40 (0.22479), 25.20 (0.55773), 21.40 (0.00000), 24.40 (0.59000),
and 25.90 (0.14269). The optimal split point is 25.1 with maximum value

TABLE 1.1 Computation of Entropies

Pivot S1 S2 Ent(S1) Ent(S2) InfoGain

26.2 4 N, 5 U 6 O 0.99108 0.00000 0.97095
25.6 2 N, 5 U 2 N, 6 O 0.86312 0.81128 0.73012
25.1 5 U 4 N, 6 O 0.00000 0.97095 0.91830
23.3 1 U 4 N, 4 U, 6 O 0.00000 1.55666 0.11272
23.7 3 U 4 N, 2 U, 6 O 0.00000 1.45915 0.39828
23.4 2 U 4 N, 3 U, 6 O 0.00000 1.52623 0.24286
29.7 4 N, 5 U, 4 O 2 O 1.57662 0.00000 0.19919
28.5 4 N, 5 U, 3 O 3 O 1.55459 0.00000 0.32193
25.2 1 N, 5 U 3 N, 6 O 0.65002 0.91830 0.75461
21.4 0 N, 0 U 4 N, 5 U, 6 O 0.00000 1.56560 0.00000
28.3 4 N, 5 U, 2 O 4 O 1.49492 0.00000 0.46932
33.4 4 N, 5 U, 5O 1 O 1.57741 0.00000 0.09335
27.8 4 N, 5 U, 1 O 5 O 1.36096 0.00000 0.65829
24.4 4 U 4N, 1U, 6O 0.00000 1.32218 0.59600
25.9 3 N, 5 U, 0 O 1 N, 6 O 0.95443 0.59167 0.78045

U = Underfat, n = Normal, and O = Overfat.

7See another categorization at the footnote of page 1–48
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0.99108. Hence, the three intervals are U = BMI < 25.1,N = (25.1, 26.2), and
O = BMI ≥ 26.2.

1.12.4 Error in Discretization

If the true class labels of data to be discretized are known apriori, we could estimate
the error in discretizing as follows. Let there be k original classes. Denote original data
by X and discretized data by Y. For class Cj, let nj be the total number of items in X. If
all of them are correctly classified in Y, the error rate for class j is zero. Let npj

be the
number of correctly classified items of Cj and nqj

be the wrongly classified number of
items, so that nj = npj

+ nqj
. Note that in the case of just two classes, all nqj

items will

belong to the other class. However, if there are >2 classes, nqj
will contain all items

belonging to Cj. Then, the error rate for class j is nqj
∕nj. The error rate for the entire

data is obtained by summing over all of the classes as 𝜖 =
∑k

j=1 nqj
∕nj. The minimum

of 𝜖 occurs when all items are correctly classified with minimum value 0. The maxi-
mum occurs when all items are incorrectly classified with maximum value 1. When
there are no class overlaps (𝜖 is very small), the predictive accuracy is maximum. The
information extracted by the discretization process can be used to classify new data
instances. As the DDA returns a set of disjoint, piece-wise continuous set of intervals,
these intervals define the boundaries for various classes. We could divide the available
data into a training set and a test set. The training set can then be used to construct the
class boundaries (bins). These bin boundaries are then put to use in discretizing test
data (in a classification context). In this sense, the DDA is a semisupervised learning
model.

1.13 TESTING FOR NORMALITY

Several statistical procedures such as ANOVA tests and t-tests assume normality of
data. Similarly, the error terms are assumed to be normally distributed with zero mean
in linear regression models. There are two categories of normality tests— (i) visual
displays and (ii) numerical tests.

1.13.1 Graphical Methods for Normality Checking

Visual displays (also known as graphical methods) use one or more graphs or dia-
grams to visually display the data distribution. They can be drawn as overlapping
diagrams with a normal distribution for reference comparison. If the data have dis-
tinct mode, the normal curve with the same variance as the data is drawn so as to
align the normal mode with the data mode. If the data mode is not unique, the normal
curve uses the means for alignment. Note that the theoretical normal curve extends
from −∞ to ∞, whereas the sample data are always in a finite range. Hence, we will
look for alignment with a normal curve at the central part of the data distribution
rather than at the tails (away from the location measure).
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The popular graphical methods include histograms, frequency polygons and
curves, box plots, Quantile-Quantile (Q-Q) plots, Moran plots, ogive curves, and
dot plots. These can be categorized into two types:– (i) isochronous graphical
methods produce shapes that resemble a normal curve. Examples are the histograms,
frequency curves. These graphs can be used as quick tests to check for normality. (ii)
Nonisochronous graphical methods produce particular shapes or patterns that do not
have direct resemblance to a normal curve but are similar to the shapes obtained for
data from a normal distribution. For instance, if points lie close to a straight line in a
Q–Q plot, it is an indication of normality of data. This is due to the fact that quantiles
of any two identical distributions when plotted along the X and Y axes gives rise to a
straight line plot. Checking for symmetry using a box plot is easy, but checking for
normality is more involved.

1.13.2 Ogive Plots

Ogives are graphical plots of cumulative distribution functions F(x) or survival proba-
bilities G(x) = 1 − F(x). They are of two types, called less-than ogive (positive ogive)
and more-than ogive (negative ogive). Mathematically, we plot (x,F(x)) for each sam-
ple value arranged in increasing order for the less-than ogive and plot (x, 1.0 − F(x))
for the more-than ogive. The positive ogive is more popular among data analysts
because several software packages support only this option. In addition, the posi-
tive ogive passes through the origin, whereas the negative ogive touches the y-axis
at y = 1. If both of them are plotted in the same graph, they will intersect at the
median. If the intersection point is less than the normal median and more toward
the origin, it is an indication that the sample has come from a right-skewed distribu-
tion. On the other hand, an intersection point away from the normal median indicates
that the sample has come from a left-skewed distribution. Similar reasoning holds
for left- and right-truncated distributions. The ogive curves exhibit anti-symmetry
(lower left-tail and upper right-tail both tails off similarly for data from symmet-
ric distributions). Thus, the tail shapes can throw some light on whether the parent
population is symmetric or not. Note that a variate is symmetric around a constant
𝜇 if Fx(𝜇 − xk) + Fx(𝜇 + xk) = 1 ∀ k >0. In terms of density functions, this can be
expressed as fx(𝜇 − xk) = fx(𝜇 + xk). A standard normal ogive may be superimposed
on an ogive obtained from standardized empirical data to check for deviations from
normality. If the original data are normal, both ogives will almost overlap. However,
as linear combinations of normal variates are normally distributed, these methods can-
not reveal whether the original data are linear combinations of normal laws or purely
normal. Nevertheless, these methods are less technical than the numerical tests.

1.13.3 P–P and Q–Q Plots

A probability–probability (P–P) plot is another method to check if a sample has come
from a known distribution. We plot the CDF of the standardized variate along the
X-axis and the corresponding cumulative probabilities from a theoretical distribution
along the Y-axis. Mathematically, we plot (F(xj − x)∕s,G(x)) for each sample value
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arranged in increasing order, where G(x) is the CDF of the hypothesized distribution
from which the sample came. In other words, it compares the empirical cumulative
distribution function of a variate (say along the X-axis) with the CDF of a theoret-
ical distribution (say along the Y-axis). Thus, both of the axes are calibrated from
0 to 1.0, starting with the origin. A reference line with slope 45∘ is also drawn in
the positive quadrant along the stretch of the data. If the sample is indeed drawn
from the hypothesized population, the data points will clutter around the reference
line. Any major scattering away from the reference line indicates that the hypothe-
sis is wrong. The Q–Q plot is very similar, except that we plot the quantiles of the
data along the X-axis and quantiles of theoretical distribution along the Y-axis. A
skewness–kurtosis plot can also be used if multiple samples are available. This plot
uses the X-axis for skewness and the Y-axis for kurtosis or vice versa. As the normal
distribution has skewness 0 and kurtosis 3, the sample values must clutter around the
point with coordinates (0,3) (or (3,0) if skewness is plotted along the Y-axis) if the
parent population is normal. Several researchers have modeled the skewness–kurtosis
relationships empirically.

Using the above-mentioned techniques, even beginning practitioners and analysts
can easily be trained to check normality. All of the positive ogive plot, P–P plot and
Q–Q plot pass through the origin. An advantage of ogive plot and Q–Q plot is that they
can be used to check if data came from any theoretical distributions and not only for
normal populations. As an example, if data are known to come from a student-t dis-
tribution, we could plot the data quantiles along the X-axis and quantiles of student’s
t along the Y-axis.

1.13.4 Stem-and-Leaf Plots

If all data values are integers with a fixed range (say they have two or three digits),
one could also use the stem-and-leaf (S&L) plot to check if data are approximately
normal (this method, however, cannot distinguish between continuous and discrete
distributions. For example, the S&L plot of data from a binomial distribution with a
p close to 0.5 and large n will resemble that from a normal law). They are unsuitable
for higher dimensional data. This method depends on the user’s familiarity with the
normal law too. Most statistics textbooks give the figure of only the standard normal
law N(0, 1). As the dispersion parameter 𝜎2

>0, the normal curve can take a variety
of shapes. Hence unless a normal distribution is superimposed on the observed data,
slight deviations from normality are difficult to judge. In addition, the success also
depends on the class width chosen for some of these plots. If a histogram is prepared
with a small class interval, some of the classes may be empty (there may not be any
data points falling in this range, so that their frequency counts are zeros). This is
more likely to occur in classes toward the tails, especially when data contain outliers
(exceptions do exist as in the case of U-shaped distributions). Thus, a trial and error
method with many class widths may be needed to reasonably conclude that the data
are indeed drawn from a normal law.

Box plots are more appropriate to check for outliers than for normality. It uses
the five-number summary of a sample, namely, the (minimum, Q1, median= Q2,Q3,
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maximum). If the data are symmetrically distributed, the Q1 and Q3 are equidistant
from the median (Q2 − Q1 = Q3 − Q2). This is easy to catch if the scale of the graph
is large enough (so that the boxes are long). In addition, the mean and median should
coincide for symmetric distributions. As the box is drawn from Q1 to Q3, the mean
and median should bisect the box area (they must be approximately at the center of
the box; considering any sampling errors). The difference Q3 − Q1 is called IQR. All
observations that fall below−1.5*IQR of Q1 and above 1.5*IQR of Q3 are considered
to be outliers.

1.13.5 Numerical Methods for Normality Testing

Numerical tests are more reliable as they can catch all kinds of normality violations
(normality may be violated due to dispersion, skewness or kurtosis, or a combina-
tion of these. In a normal curve, 68.26% of the frequencies lie in 𝜇 ∓ 𝜎, 95.44%
of the frequencies lie in 𝜇 ∓ 2𝜎, and 99.74% of the frequencies lie in 𝜇 ∓ 3𝜎 (see
Chapter 8). Location and spread measures computed from the data cannot in gen-
eral reveal if the parent population is normal or not. As the mean, median, and mode
coincide for symmetric distributions, these measures can quite often reveal symme-
try for large samples. If the sample size is small, the above-mentioned measures may
be in proximity (close-by) even for asymmetric distributions. A symmetry test and
a skewness measure can jointly be used to check for normality. As discussed in the
following, there are many symmetric distributions with the same skewness. Hence,
this method cannot always guarantee the normality of a population. Similarly, lin-
ear combination of several symmetric distributions is known to be symmetric. If data
are known to be asymmetric, the inverse Gaussian distribution IG(𝜇, 𝜆) with PDF

f (x;𝜇, 𝜆) = (𝜆∕2𝜋x3)
1
2 exp{− 𝜆

2𝜇2x
(x − 𝜇)2} is the preferred choice for data model-

ing and fitting. Table 1.2 summarizes popular normality testing using graphical and
analytical methods.

A data plot can reveal any possible lack of symmetry for 2D samples. This is more
difficult to visualize when dimensionality is more than three. In addition, if the vari-
ables (in 2D or more) are measured in different units, one may have to do a data
transformation to concisely visualize the data. Any slight departures from symmetry
may not be apparent in such situations. This is more challenging when the sample
size is small. Suppose we have data from two asymmetric distributions. Deciding
whether one is more asymmetric than the other is harder when they are mirror image

TABLE 1.2 Normality Testing Using Graphical and Analytical Methods

Type Graphical Numeric

Descriptive Box plot and
stem-and-leaf plot P–P plots

Inferential Q–Q plots, Kolmogorov & Smirnov test,
Lillioforos test, Shapiro–Wilks,
Anderson–Darling and Jarque–Bera tests
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asymmetric—one is skewed to the left and the other is skewed to the right. Setting
aside the geometric intuition behind skewness as evinced through graphical plots and
displays, a numeric score derived from the data can certainly help to understand the
amount of lack of symmetry. If such a measure takes positive and negative values,
we could even distinguish between left-skewed and right-skewed distributions. Sev-
eral skewness measures have been reported for this purpose. These are interpreted as
measures of lack of symmetry because increasing values indicate how far they are
away from symmetry. See Refs 60, 134, and 170 for other normality tests.

1.14 SUMMARY

This chapter introduced different data types encountered in statistical analysis. Some
notations to better understand statistics in particular and mathematical sciences in
general are given below. Most students are familiar with the summation and product
notations. However, these can sometimes be intricate and often tricky solutions exist
to simplify them. Some of the concepts such as sum and product notations, data dis-
cretization, and transformation may be skipped depending on the level of the course.
Readers who are already familiar with summation and product notations, combina-
tions, and so on can have a bird’s eye view of the respective sections. Equations that
are unfamiliar or tedious can be skipped in the first reading as these are meant only to
familiarize the reader with various notations. See Ref. 298 for an unsupervised and
Ref. 174 for a Bayesian data discretization algorithm.

EXERCISES

1.1 Mark as True or False

a) Interval data have no natural zero point

b) Quartile differences are interval data

c) The mode of a sample can coincide with the minimum of the sample

d) The median is meaningless for ordinal data

e) A scale of proportionality exist among values of numeric ordinal data

f) The entropy of a set can be negative

g) All arithmetic operations are allowed on numeric nominal variables

h) Data discretization works only for unlabeled data.

1.2 What are the main branches of
statistics? How does sample size
differ among these branches?

1.3 Give examples of nominal and
ordinal data. What are some
restrictions on coding these types
of data?

1.4 Distinguish between categorical
and quantitative data. What are
some statistical procedures that
use each of them? Which encap-
sulates more information?

1.5 Distinguish between standard and
extended data types. Identify some
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numeric measures used in each of
the standard data types.

1.6 What type of variable is each of
the following: (i) BMI, (ii) Sys-
tolic blood pressure, (iii) Earth-
quake intensity, (iv) consumer
price index, (v) GRE scores.

1.7 Can you apply the change of ori-
gin technique to find the median
of a sample containing very large
numbers? mode of same sample?

1.8 Consider the alphabet of any natu-
ral language. What type of data are
these?

1.9 Which means are easier to evalu-
ate for distributions that have

(
n
x

)

in the probability mass function?.

1.10 What data are the basic building
blocks of text encoded data?

1.11 Define parameter and statistic.
Can a statistic take arbitrarily large
values?

1.12 Distinguish between population
and sample. Give examples of
enumerable populations.

1.13 What are some problems encoun-
tered in computing the Poisson
PDF for large parameter values?

1.14 What are some situations in which
the summation variables in a dou-
ble sum can be interchanged?.

1.15 Give an example situation where
the index variable is varied from
high to low values.

1.16 What is a nested sum? How are
they evaluated? What are the pos-
sible simplifications in a nested
sum evaluation?

1.17 Give an example of a summa-
tion over a set. Give examples of
subscript varying and superscript
varying summations.

1.18 Give examples of double summa-
tions where the inner indexvar is
dependent on the outer indexvar.

1.19 What is the most appropriate
indexvar to model thermal con-
ductivity problems?

1.20 In what situations can you
exchange the indexvars in a dou-
ble sum?

1.21 Give an example where the index-
var increments in fractions.

1.22 Give an example where the index-
var is varied from high to low val-
ues. Is it possible to convert such
summations in the low to high
indexvar values using an index
transformation?

1.23 What type of summation will you
use in very large matrix mul-
tiplication problems where each
matrix is decomposed into several
submatrices of appropriate order?

1.24 Give examples of summations
in which the upper limit for
the indexvar is known only at
run-time.

1.25 Distinguish between supervised
and unsupervised data discretiza-
tion algorithms.

1.26 If Xmxm is a square matrix, use
the

∑
notation to find the sum of

each of the following:–(i) diagonal
elements, (ii) tridiagonal elements
(main diagonal plus adjacent diag-
onals), and (iii) lower triangular
elements (including the diagonal).
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1.27 The number of hours that a battery
can be continuously operated in
different devices after a 30-minute
recharge is given below. Trans-
form the data into the inter-
vals [−0.5,+0.5], [−1,+1].X =
{32, 19, 24, 31, 20, 27}.

1.28 Using equation 1.30 in page 1–30,
prove that s2

n = (1∕[2n(n − 1)]) ∗
∑n

i=1
∑n

j≠i=1 (xi − xj)2.

1.29 Express (
∑n

j=1 xj)2 in terms of
∑n

j=1 x2
j and

∑n
j≠k; j,k=1 xj ∗ xk. Use

it to express exp (−(
∑n

j=1 xj)2) as a
product.

1.30 If the indexvar increments in steps
of 2, evaluate the sum

∑n
j=0 f (j)

using unit incrementing indexvar.

1.31 If the indexvar increments in steps
of c, evaluate the sum

∑k
j=−k f (j)

using unit incrementing indexvar.

1.32 If Gini diversity index is defined as
D2 = (1∕n2)

∑n
i=1

∑n
j≠i=1 (xi −xj)2,

prove that D2 ≤ 2s2
n.

1.33 What is a data requirement for
using the entropy-based dis-
cretization? In what situations is
it best?

1.34 The following data gives the
marks scored by 10 students in
engineering statistics. Discretize
the data using EIB and EFB. X =
{56,62,68,73,75,78,81,88,90,93}.
Transform the data to [−3,+3]
range using min–max transfor-
mation. Obtain the z-scores and
compare with min–max trans-
formed data.

1.35 The power of a discrete signal
measured at 2N+1 points is given
by P = 1∕(2N + 1)

∑N
n=−N x[n],

where x[n] is the signal value
recorded at time t = n. Rewrite the
expression where n varies from 0
to 2N. What is the power when
the signals are either compressed
using y[n] = x[kn] for k >1 or
expanded using y[n] = x[ln ] for
0 < l < 1.

1.36 Describe how you can discretize
discontinuous data (with gaps in
between)? Which algorithm is
best in such cases?

1.37 Discretize the data X = {56,
62, 68, 73, 75, 78, 81, 88, 90, 93}
using EPB if the labels are
D = (50, 60),C = [60, 75),B =
[75, 90),A = [90, 100].

1.38 What is data discretization? What
are some of its applications in
engineering? Describe how you
will discretize if the range (spread)
of values is too large.

1.39 Transform the above-mentioned
data to the [−1, +1] and [−3, +3]
ranges using min–max transfor-
mation (pp. 1–48) and compare
the results using the z-score trans-
formation.

1.40 Can the minimum data value in
EIB (pp. 1–45) be negative? Can
both the minimum and maximum
be negative?

1.41 How will the EFB (pp. 1–48)
divide n data items into k intervals
if n is not a multiple of k?

1.42 The first-order Bragg reflection of
X-ray at different angles through
a crystal gave the nanometer
wavelengths as {0.0795, 0.0841,
0.0790, 0.0844, 0.0842, 0.0840}.
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Transform the data into the inter-
vals [−0.5,+0.5] and [−1,+1].

1.43 The resistance of an electronic
circuit was measured using five
different components as {5.2Ω,
4.9Ω, 5.12Ω, 4.95Ω, 5.1Ω}. Trans-
form the data to [−1,+1] range.
Convert data into z-scores.

1.44 Dielectric strength (kV/mm) of
some thermoplastics is given
below. Discretize the data into
three intervals using EFB and
EIB. Transform the data to the
intervals (i) [1,5], (ii) [−1,+1].X =
{15.6,19.5,17.2, 18.1, 17.6, 15.3,
18.0, 16.8, 16.4, 19.0}.

1.45 The number of hours that a battery
can be continuously operated in
different devices after a 30-minute
recharge is given below. Trans-
form the data into the interval

[−1,+1] and [−3,+3] ranges. X =
{32, 19, 24, 31, 20, 27}.

1.46 A plastic polymer thread is sub-
jected to an elongation stress
test to see how much it can be
stretched before it breaks. Elonga-
tion at break point is expressed as a
percentage of its original length as
X = {9.2%, 6.7%, 15.3%, 18.0%,
11.6%, 10.8%, 7.7%, 16.1%, 8.5%,
12.0%}. Transform the data to the
[−3,+3] range.

1.47 Soluble dissolvents (in mg/L) in
drinking water are measured at
different places in a city. X =
{560, 458, 490, 525, 482, 554, 499,
538, 540, 507, 481, 513}. Standard-
ize the data. Will you prefer the
change of origin, change of scale,
or both transformations? Trans-
form the data to the [−1,+1]
range.?

1.48 If the index varies in powers of b (in steps of bj), prove that
∑n

j=0 f (j) =
∑log b(n)

k=0 f (bk).

1.49 Prove that
∏n

j=1(1 − 1
j+1

) = 1
n+1

and
∏n

j=2(1 − 2
j+1

) = 2
n(n+1) .

1.50 Consider an expression for echo delay estimation in audio echo cancellation
algorithms �̂�(lag) = 1

k

∑k
j=−lag X[j] ∗ X[j + lag]. Use loop rerolling technique

to express it in terms of an indexvar that is always positive.

1.51 Rewrite the summation
∑n

k=1
∑l

j=1
∑m

i=1 c ∗ ui ∗ 𝑣j+k ∗ 𝑤k by taking terms
independent of indexvars outside the summations.

1.52 Simplify S3 =
∑10

k=−10
∑2

j=−2 1∕(j2 + k2) if k varies in steps of 2, j varies in steps
of 1/4.

1.53 Prove that
∏n

j=1(
j

2j+1
) = 2n(n!)2∕(2n + 1)!.



2
MEASURES OF LOCATION

After finishing the chapter, students will be able to

◾ Distinguish between location and scale population parameters

◾ Describe important measures of location (central tendency)

◾ Understand trimmed mean and weighted mean

◾ Comprehend Quartiles, Deciles, and Percentiles

◾ Use data transformations to compute various measures

◾ Apply updating formula for arithmetic, geometric, and harmonic means

◾ Prudently choose the correct measure for each situation

2.1 MEANING OF LOCATION MEASURE

The literal meaning of “location” is a place or point of interest with respect to (wrt)
a frame of reference. In statistics, a location indicates a single point (for univariate
data) that best describes the data at hand.

Definition 2.1 A well-defined function of the sample values that purports to summa-
rize the locational information of data into a concise number is called a measure of
location or central tendency.

The concept of location is applicable to a sample as well as to a population.
Population locations are indicated by parameters (described below). For example,
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a parameter 𝜃 is called a location parameter if the functional form of the PDF
is f (x ∓ 𝜃). Here, 𝜃 is a nonzero real number. Sample locations are measured by
functions of sample values that return a real number within the range of the sample.
It need not coincide with the sample data (i.e., x-value) for a sample drawn from a
discrete distribution. These are also called measures of central tendency.

2.1.1 Categorization of Location Measures

Many meaningful functions of sample values can be used as sample location
measures. Such a measure is expected to locate the central part of the data. Naturally,
a measure that uses each and every sample value is more meaningful in engineering
applications. The arithmetic mean (simply called mean), geometric mean, and
harmonic mean (HM) belong to this category. Trimmed versions of them remove
a small amount of extreme observations, and compute the value for the rest of the
data. Weighted version of them give different importance to different data. The mean
need not always coincide with one of the data values. A medoid is that data value
that is closest to the mean in a distance sense. Medoids for large samples need not be
unique (as there could exist multiple data points at equal distance from the mean).
As it depends on the mean, it also belongs to the above category. Yet other types of
measures that use the frequency of data rather than data values are available. One
example is the mode that locates the data value with maximum frequency. This is
more meaningful for grouped data. The sample median uses the count of data values
to divide the total frequency into two equal parts. An extension of this concept uses
quartiles, deciles, and percentiles that are useful when the data size is large. Among
these measures, a change of origin transformation is meaningful to the arithmetic
mean only, and a change of scale transformation is applicable to all the three means.
These are discussed in subsequent sections.

2.2 MEASURES OF CENTRAL TENDENCY

Statistical distributions come in various shapes. Some of them are always symmet-
ric around a real number for univariate distributions (or a vector for multivariate
distributions), which can be zero or nonzero. Examples include the standard nor-
mal, standard Cauchy, and Student’s T distributions (symmetric about 0), general
normal distribution N(𝜇, 𝜎2), which is symmetric about 𝜇, and general Cauchy dis-
tributions. Examples of asymmetric distributions include the exponential, beta and
gamma distributions, F distribution, Pareto distribution, and so on. Some of these
distributions are symmetric for particular parameter values though. For instance, the
2-parameter beta distribution BETA-I (a, b) is symmetric when the parameters are
equal (a= b), and the binomial distribution BINO (n, p) is symmetric when p =
1∕2,∀ n. As mentioned below, a great majority of statistical distributions are asym-
metric. Most of the symmetric distributions are of continuous type.

The “central tendency” measures the location of symmetry of symmetric distri-
butions, and the center of gravity of asymmetric distributions. We call it a location
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measure because they can locate the approximate centering of the distribution along
the real line (univariate case). The most commonly used measures of location are the
arithmetic mean, median, and the mode. Among them, the arithmetic mean is a linear
measure as it uses the sum of the data values in the numerator. Geometric and HMs
are nonlinear measures (geometric mean is log-linear as shown below). A change
of origin transformation (e.g., using the mean as the pivot) can be used to align the
location measures of different distributions. Arithmetic, geometric, and HMs and the
median always lie between the minimum and maximum of the sample values (for
n ≥ 2), while the mode may get aligned with the extremes.

2.3 ARITHMETIC MEAN

The mean of a population is denoted by the Greek letter 𝜇, and the corresponding
sample mean is denoted by x (or xn where n is the sample size). We define it as

𝜇 =

{∑∞
k=−∞ xk pk if X is discrete;

∫ ∞
x=−∞ x f (x)dx if X is continuous.

The summation or integration needs to be carried out only throughout the range of
the respective random variable (as the PDF is defined to be zero outside the range).
This represents the weighted average of all possible values of a random variable with
the corresponding probabilities as weights. The mean is the first moment because it
is obtained by putting j = 1 in

𝜇j =

{∑∞
k=−∞ xj

k pk if X is discrete;
∫ ∞
−∞ xjf (x)dx if X is continuous.

The simple (arithmetic1) mean of a sample of size n is defined as the sum of the
sample values divided by the sample size. Symbolically

xn = (x1 + x2 + · · · + xn)∕n =
n∑

j=1

xj∕n. (2.1)

where the subscript n on the left hand side (LHS) denotes the sample size, and on xn
denotes the nth data value. We write it as x when no ambiguity is present. Dupli-
cate values, if any, are counted distinctly in finding the mean. It is evident from
equation (2.1) that the mean of a sample need not coincide with one of the sample
values for n > 1 (median for odd sample size, and mode will always coincide with a
sample value). Distributing the constant with each of the sample values results in

xn = (x1∕n + x2∕n + · · · + xn∕n). (2.2)

1In statistical parlance, “mean” or “average” always denote the “arithmetic mean.” It is also called average
value, although we reserve this term to mathematical expectation (Chapter 8).
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This shows that the sample mean gives equal weights or importance to each sample
data item. If a sample contains several zeros, all of them are counted in the above
definition. Subtract xn from both sides of equation (2.1), and write xn on the right-hand
side (RHS) as n terms each of which is xn∕n to get

0 = xn − xn = (x1∕n − xn∕n) + (x2∕n − xn∕n) + · · · + (xn∕n − xn∕n). (2.3)

Take (1∕n) as common factor from RHS, and write the rest of the terms using the
summation notation. This gives

(1∕n) ∗
n∑

i=1

(xi − xn) = 0. (2.4)

As (1/n) is a constant, this means that the sum of the deviations of sample values from
its mean is always zero. This can also be stated as follows:

Lemma 1 If
∑n

i=1(xi − c) = 0 for a sample, then c = xn.

Proof: Apply the summation to each individual term in the bracket to get
∑n

i=1 xi −∑n
i=1 c. From the definition of xn, we have

∑n
i=1 xi = n ∗ xn. As the summand in the

second term is a constant,
∑n

i=1 c = n ∗ c. Substitute in the above to get n ∗ xn − n ∗
c = 0, or equivalently n ∗ (xn − c) = 0. As n being the sample size is nonzero, the
only possibility is that c = xn. This result will be used in subsequent chapters.

The sample mean is the most extensively used location measure due to its desirable
properties in inferential statistics. As the mean utilizes each and every observation in
a sample, it rapidly converges to the population mean as n → ∞. The arithmetic mean
is not an appropriate measure of central tendency when nominal variables are coded
numerically. However, the mean is meaningful in one situation—when a dichotomous
nominal (i.e., binary) variable is coded as 0 and 1, the mean gives the proportion of
items that are coded as 1. As we cannot compare nominal data, the median p. 54 also
is meaningless. The mode p. 58 is the most appropriate measure of central tendency
for nominal data.

2.3.1 Updating Formula For Sample Mean

As mentioned above, the mean of a sample can be found if the sum of the obser-
vations and the sample size are known. All of the sample values may not be readily
available in some scientific and industrial applications. As an example, suppose the
data come from sensors installed in a large factory. Several industries and factories
have a multitude of sensors such as temperature (heat), light, pressure, humidity
(moisture), gas, and chemical sensors installed at various strategic points. In addition,
some specialized industries such as chip design factories, DVD, and floppy disk
manufacturing plants measure dust and microparticle suspension in the air to ensure
that they do not get deposited into sensitive chip components, circuits, or platters.
Smoke and radiation sensors are more important in space stations. Similarly, some
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pharmaceutical companies have microbe sensors on the machine parts that manufac-
ture some medicines. A high concentration of microbes in the ingredients could be
lethal to patients if it contaminates just a few of the tablets or capsules manufactured2.
Each of the sensors can have variations in terms of calibration. For example, there
are separate heat sensors for air, water, liquids (different liquids boil at different tem-
peratures; it slightly differs for the same liquid in the presence of various solvents, or
combinations of them; the boiling point also depends on the altitude), chemicals, and
surface temperatures. This will vary from factory to factory. While air temperature,
smoke, and humidity sensors are more important in textile factories, pressure and
temperature sensors are more important in robotic factories. As another example,
hydroponics farms are closed (air-tight) laboratories in which plants are grown in
sand or water tubes or containers. The light, nutrient concentrations, and temperature
sensors are the most important, followed by water and microbe concentrations in
hydroponics farms. These can be continuously monitored using various sensors.

In all of the above cases, we wish to continuously check process deviations using
quality control charts or statistical models that heavily depend on the sample mean.
In such situations, we could find the mean of already available data, and iteratively
update the mean when new data items are received from various sensors. This is called
online updating. Suppose we have a sample of size n with mean xn. If an additional
observation xn+1 is added to our sample, the new mean becomes

xn+1 = (x1 + x2 + · · · + xn + xn+1)∕(n + 1) =
n+1∑

i=1

xi∕(n + 1). (2.5)

Multiply numerator and denominator by n, and separate out the last term xn+1 to get

xn+1 = [n∕(n + 1)] ∗ (x1 + x2 + · · · + xn)∕n + (xn+1∕(n + 1)). (2.6)

Replace (x1 + x2 + · · · + xn)∕n by xn, to get

xn+1 = [n∕(n + 1)] ∗ xn + xn+1∕(n + 1). (2.7)

Take 1/(n+1) as a common factor, and write this as

xn+1 = [nxn + xn+1]∕(n + 1). (2.8)

Add and subtract xn∕(n + 1) on the RHS, and combine nxn∕(n + 1) + xn∕(n + 1) as
(n + 1)xn∕(n + 1) = xn, to get the alternate form

xn+1 = xn + (xn+1 − xn)∕(n + 1). (2.9)

2Most pharmaceutical companies have quality control specialists who sample the produced medicines on
a periodic basis and checks for contaminations.
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Each newly received data item is used only once in the updating formula. Note that the
correction term (xn+1 − xn)∕(n + 1) can be positive or negative depending on whether
the new data item xn+1 is > or < xn. In the particular case when xn+1 = xn, the mean
is unchanged. This provides a recursive algorithm for arithmetic mean [2].

EXAMPLE 2.1 Find mean by updating formula

Thickness of paint layer applied on straight locations using nylon brush is depen-
dent on the paint viscosity and smoothness of the surface. Paint-layer tends to be
thicker on harsh surfaces than smooth ones. A sample surface of size 1" × 1" is
test-painted, and the layer thickness (in mm) after drying is noted down at 10 ran-
dom spots. Use the updating formula (2.9) to compute the mean paint thickness.

X = {0.26, 0.51, 0.39, 0.27, 0.44, 0.58, 0.34, 0.29, 0.4, 0.53}

Solution 2.1 Form a sequence of pairs (xi, xi) where xi is the mean of all data
until the current one. We get (0.26, 0.26), (0.51, 0.385), (0.39, 0.38667), (0.27,
0.3575), (0.44, 0.374), (0.58, 0.4083), (0.34, 0.39857), (0.29, 0.385), (0.4,
0.386667), (0.53, 0.401) as the values. The second value in the last pair is the
mean xn.

In some applications, we have the mean of subsamples already available. As
examples, the mean marks of two or more classes in the same college, the mean
yield of two or more plots in an agricultural experimentation, the mean purchase
amount of day-time and night-time customers to an online store, and the average
sales amount in two consecutive time periods (days, months, years, etc.) all record
multiple means for different samples. These separately computed means could be
combined, irrespective of their individual sample sizes, using the following theorem.

Theorem 2.1 If x1 and x2 are the means of two samples of sizes n1 and n2, respec-
tively, the mean of the combined sample is given by x = (n1x1 + n2x2)∕(n1 + n2).

Proof: The n1x1 and n2x2 in the RHS represent the sum of the observations of the first
and second sample, respectively, so that their sum is the grand total of all observations.
By dividing this total by (n1 + n2) gives the grand mean on the LHS. This result can
be extended to any number of samples as follows:

Corollary 1 If xi, i = 1, 2, ..m are the means of m samples of sizes n1, n2, … , nm,
respectively, the mean of the combined sample is given by x = (n1x1 + n2x2 + · · · +
nmxm)∕(n1 + n2 + · · · + nm).

As E(xn) = 𝜇, the sample mean is used as an unbiased estimator of the unknown
population mean 𝜇. This has two interpretations. If repeated random samples of small
size n are drawn from a population, the mean of these samples will clutter around the
population mean 𝜇. On the other hand, the mean of a sample of size n converges in
probability to the population mean as n → ∞. Equivalence of both these statements
can be understood from the above lemma, where N = (n1 + n2 + · · · + nm) → ∞with
each of the n′is being equal, and m is large.
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EXAMPLE 2.2 Combined mean

Two trucks work continuously to transport passenger luggage from an airport to
a terminal. If the mean weight (in tonnes) transported in 10 trips by truck-1 is
58, and 12 trips of truck-2 is 46, what is the mean weight transported by these
two trucks combined?

Solution 2.2 Here, x1 = 58, x2 = 46. Hence, x = (10 ∗ 58 + 12 ∗ 46)∕(10 +
12) = 1132∕22 = 51.4545 tonnes.

Corollary 2 If an existing observation xn is removed from a sample of size n with
mean xn, the new mean is given by (nxn − xn)∕(n − 1).

Corollary 3 If m observations with mean xm are removed from a sample of size n
with mean x, the new mean is given by xnew = (nx − mxm)∕(n − m).

2.3.2 Sample Mean Using Change of Origin and Scale

The change of origin technique is useful to compute the mean when the sample values
are large. If the variables are transformed as yi = xi − c, the means are related as yn =
xn − c. In this case, the updating formula becomes yn = [(n − 1) ∗ yn−1 + xn − c]∕n.
This can also be written as

yn = (1 − 1∕n) yn−1 + (xn − c)∕n. (2.10)

The change of scale transformation Y = c ∗ X gives yn = c ∗ xn. We could simul-
taneously apply the change of origin and scale transformation to the data as zi =
(xi − c)∕d. The means are then related as zn = (xn − c)∕d. The updating formula then
becomes

zn = [(1 − 1∕n) ∗ zn−1 + (xn − c)∕(nd)]. (2.11)

The above equation is quite useful in iteratively computing the mean when the data
values are large and have large variance. As an example, microparticle sensors have
limited range (or visibility) to maintain correct accuracy. If the range is 1cm3 (the-
oretically, it is a sphere of appropriate radius (if they are setup above ground) or a
semi-sphere (if they are mounted on walls or flat surfaces) such that there are no
empty regions between adjacent sensors) around its sensing point, the number of
microparticles in it could be very large, which could vary depending on the air current.
Similarly, smoke sensors installed in rooms or buildings near the road or highway
sides, or inside vehicles on the road have a cutoff threshold for the number of carbon
particles. If this number is beyond the threshold, it is flagged as smoke from fire. If it
is below the threshold, it is assumed as engine exhausts or cigarette smoke, and so on.
The numbers used in all these situations are large in magnitude and have large vari-
ance. However, we need to only accumulate the values for a suitable time window. A
smoke detector is least concerned with the number of carbon particles it encountered
2 min ago. Its window is very small, perhaps 1–3 s. The window size of microparticle
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sensors could vary depending on the air-current—if air circulates fast, the window is
a few milliseconds, and if it circulates slowly, it could be 1 or 2 s. This could also
vary among sensors installed in other media such as water, liquids, or chemicals. If
the window size is d, the general updating formula given above becomes

zt = zt−1 + (xt − xt−d) ∕ d, for t = d + 1, d + 2, … (2.12)

This is called the ‘window mean’ as it simply accumulates the mean of the most
recently seen d data values.

EXAMPLE 2.3 Mean updating

The mean of the number of particles received in a sensor for 6 s is 1600. If two
new counts (970 and 1830) are recorded in subsequent seconds, find the new
mean using updating formula (2.9) in page 47.

Solution 2.3 Our updating formula is xn+1 = xn + (xn+1 − xn)∕(n + 1). We are
given that n = 6 (as the particles are counted in intervals of 1 s), xn = 1600.
For xn+1 = 970, the correction term is 𝛿n+1 = (xn+1 − xn)∕(n + 1) =
(970 − 1600)∕7 = −90. Substitute xn+1 = xn + 𝛿n+1 to get the new mean as
1600 − 90 = 1510. The new correction term is 𝛿n+2 = (xn+2 − xn+1)∕(n + 2) =
(1830 − 1510)∕8 = 40. Substitute in xn+2 = xn+1 + 𝛿n+2 to get the new mean as
1510 + 40 = 1550.

2.3.3 Trimmed Mean

Data outliers have a major influence on the arithmetic mean, as they are given equal
importance as other data values. A solution is to delete extreme observations from
the low and high end of a sample (of sufficiently large size) and compute the mean
of the rest of the data. These are called trimmed means. They can be left-trimmed
(only low end data are discarded), right-trimmed (only high end data are discarded),
or simply trimmed (from both the ends). It is symmetrically trimmed if an equal num-
ber of observations are discarded from both the ends. Using the summation notation
introduced in Chapter 1, this becomes

xt
m = (x(k+1) + x(k+2) + · · · + x(n−k))∕(n − 2k) = 1

(n − 2k)

n−k∑

i=k+1

x(i). (2.13)

where xt
m denotes that this is the trimmed mean of m = n − 2k data values, and x(i)

is the ith order statistic. This definition uses a count (k) to truncate data values from
both the ends. A cutoff threshold can also be used to discard data values from either
or both the ends of a rearranged sample. In fact, an entire sample need not be sorted
(arranged in increasing or decreasing order) to find the trimmed mean.

2.3.4 Weighted Mean

Each observation (sample value) is weighted by 1∕n in the simple mean (see
equation (2.2)). The weighted mean is an extension in which we multiply (or divide)
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each observation by an appropriate nonzero weight. If 𝑤1, 𝑤2, … , 𝑤n are the
weights associated with x1, x2, … , xn, respectively, the weighted mean is given by

xn(wn) = (𝑤1x1 +𝑤2x2 + · · · +𝑤nxn)∕(𝑤1 +𝑤2 + · · · +𝑤n) =
n∑

i=1

𝑤ixi∕
n∑

i=1

𝑤i.

Weighted mean assigns different importance to different sample observations. For
example, if the data were collected over a time window (as in supermarket sales),
more recent transactions must be highly weighted than distant ones to the past.
Similarly in some medical studies in which the age of a patient is correlated with
the outcome of an experiment, patients in various age groups may be weighted
differently. We denote the weighted mean by xn(w) (or xn(wn)) to distinguish it
from simple mean, and to indicate that the weights are the parameters. Different
weightings may be used on the same sample. When all the weights are equal, the
weighted mean reduces to the arithmetic mean.

2.3.5 Mean of Grouped Data

The mean of grouped data is obtained from the above by replacing 𝑤i’s with corre-
sponding class frequencies fi’s as

xn =
n∑

i=1

fixi∕F where F =
n∑

i=1

fi. (2.14)

Here, fi are the frequencies and xi is the middle point of the respective class. It is
assumed that there are no open classes (such as x < 5 or x > 100) at the extremes. In
such cases, the median is more appropriate. Each of the class widths are assumed to
be equal in equation (2.14). A Shepperd’s correction may be applied to get more accu-
rate results. This is desirable because the middle value of a class is used to compute
the mean (and higher order moments) under the assumption that the entire frequency
falling in a class is concentrated at or around the middle value. This warrants a cor-
rection to compensate for the distribution of data throughout the class. There is no
correction for the first moment 𝜇1. For 𝜇2, the correction term is h2∕2 so that the
corrected term is 𝜇2 − h2∕2 where h is the class width. If there are a large number of
classes and some of the adjacent classes have relatively very low frequencies, they
may be combined to reduce the computation.

2.3.6 Updating Formula for Weighted Sample Mean

An updating formula could also be developed for the weighted mean as follows. Start
with equation (2.14) for n + 1 as

xn+1(wn+1) =
n∑

i=1

𝑤ixi∕
n+1∑

i=1

𝑤i +𝑤n+1xn+1∕
n+1∑

i=1

𝑤i. (2.15)
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Multiply and divide the first term on the RHS by
∑n

i=1 𝑤i, and then replace
∑n

i=1 𝑤ixi∕
∑n

i=1 𝑤i by xn(wn) to get

xn+1(wn+1) =

(
n∑

i=1

𝑤i∕
n+1∑

i=1

𝑤i

)

xn(wn) +𝑤n+1xn+1

/
(

n+1∑

i=1

𝑤i

)

. (2.16)

Add and subtract𝑤n+1xn(wn)∕
∑n+1

i=1 𝑤i on the RHS, then take
∑n+1

i=1 𝑤i as a common
factor from first two terms, and cancel out

∑n+1
i=1 𝑤i from numerator and denominator

of the first term to get

xn+1(wn+1) = xn(wn) +

[

𝑤n+1∕
n+1∑

i=1

𝑤i

]

(xn+1 − xn(wn)). (2.17)

In terms of the mean of the weights, this becomes xn+1(wn+1) = xn(wn) +
𝑤n+1

(n+1)𝑤n+1
(xn+1 − xn(wn)). When xn+1 = xn(wn), the weighted mean will remain

the same, irrespective of the weight assigned to the new sample data item.

EXAMPLE 2.4 Calories burned while exercising

Calories burned on a treadmill by a person depends on many things including
speed of the belt, age, and physical stature. Table 2.1 gives the calories burned
and speed on treadmill of 16 visitors to a health club. Find the weighted mean
using equation (2.17).

Solution 2.4 Calculations are shown in Table 2.1. Weighted mean is computed
directly to check the computations. The last entry in the last column gives the
weighted mean as 8.0282.

TABLE 2.1 Weighted Mean Example: Calories Burned on Threadmill

c v c ∗ 𝑣 (2.17) Direct c v c ∗ 𝑣 (2.17) Direct

6.4 7.60 48.64 6.4000 6.4000 7.5 8.4 63.00 7.8105 7.8105
8.3 8.20 68.06 7.3861 7.3861 9.1 13.0 118.3 8.0068 8.0068
7.2 7.40 53.28 7.3267 7.3267 6.6 7.0 46.20 7.9002 7.9002
9.7 10.00 97.00 8.0416 8.0416 8.4 10.0 84.0 7.9490 7.9490
8.9 9.00 80.10 8.2246 8.2246 7.5 8.3 62.25 7.9154 7.9154
6.9 8.00 55.20 8.0135 8.0135 6.7 7.8 52.26 7.8354 7.8354
8.0 7.80 62.40 8.0117 8.0117 9.85 14.0 137.90 8.0482 8.0482
6.3 6.00 37.80 7.8513 7.8513 7.7 8.1 62.37 8.0282 8.0282

First column is the calories burned per minute while exercising on a treadmill. Second column gives the
speed of walking/jogging in miles/hour. Third column is the product. Fourth column gives the weighted
mean using equation (2.17). Fifth column is direct calculation using equation (2.14). Subsequent columns
repeat the data.
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2.3.7 Advantages of Mean

The AM can be computed even if data contain many zeros. In addition, it possesses
some desirable statistical properties in other fields of statistics such as testing of
hypotheses and inferences. It is meaningful for ordinal or higher scales of measure-
ments that are numerically coded. There is one particular case of nominal data for
which the mean is meaningful. If the nominal data are coded as either 0 or 1, the
mean will give the relative frequency of sample values that are coded as 1. As a sim-
ple example, suppose the sex of patients to a clinic are coded as 0= Female, 1=Male.
If 120 patients visit the clinic on a particular day, we could find the mean of these val-
ues to find out what proportion of them were males. This is due to the fact that we
have coded Males as “1.” What if we want to find out the proportion of females only?
One solution is to subtract the males’ proportion from 1 to get the female propor-
tion (as the proportions for males and females add up to 1). The mean also has an
interpretation as the balancing point (center of gravity) of a simple or weighted sam-
ple (see below). This implies that if one were to use a single number between the
minimum and maximum of the sample values as a representative of the sample, the
sample mean seems to be the most appropriate value to use.

Some of the advantages of mean are summarized below:

1. The mean is easy to compute.

2. It lends itself to further arithmetic treatment.
3. It is always unique (whereas mode of a sample need not be unique).

4. It can easily be updated (when data are added or deleted).

As the mean is a linear function of the sample values, we could deal with missing
values as follows: (i) find the grand mean xg by omitting all missing observations; (ii)
replace each missing value by xg and find the new mean x.

2.3.8 Properties of The Mean

The mean satisfies many interesting properties. For example, the mean places itself
in-between the extremes of observations in such a way that the sum of the deviations
of observations (from it) to its left and to its right are equally balanced in terms of
their magnitudes. This is proved in the following theorem.

Theorem 2.2 For any sample of size n > 1, the sum of the deviations of observations
from the mean

∑n
j=1(xj − xn) is zero.

Proof: This is already proved in equation (2.4) (p. 46). This can be extended to the
weighted mean as follows:

EXAMPLE 2.5 Verify
∑n

i=1(xi − xn) = 0

Hexavalent chromium is a toxic chemical found in the metropolitan areas. Data
in Table 2.2 gives the levels in nanogram per cubic meter for 10 different places.
Compute the mean and verify whether

∑n
i=1(xi − xn) = 0.
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TABLE 2.2 Hexavalent Chromium Levels

1 2 3 4 5 6 7 8 9 10 Sum

0.95 1.26 0.63 0.80 0.57 0.34 0.29 0.71 1.17 0.94 7.66
0.18 0.49 −0.14 0.03 −0.20 −0.43 −0.48 −0.06 0.40 0.17 0.00

Solution 2.5 The sum of the numbers is 7.66, from which the mean is found as
0.766. The second row of Table 2.2 gives the deviations of data from the mean.
The last column is the sum of the deviations, which is obviously zero.

EXAMPLE 2.6 AM coinciding with a data value

If the arithmetic mean of n data values coincide exactly with one of the data
values (say xk), then xk must be the AM of the other (n − 1) data values.

Solution 2.6 Let there be n data values with mean xn. Then we have n ∗ xn =
∑n

i=1 xi. Without loss of generality, assume that the coinciding data value is xk so
that xn = xk and the LHS becomes nxk. Cancel one xk term from LHS and RHS.
The multiplier on the LHS becomes (n − 1). What remains on the RHS is the
sum of the data values less xk. Divide both sides by (n − 1) to get xk = xn−1. As
k is arbitrary, the result follows. This result is easy to extend to GM and HM (see
Exercise 2.10, p. 65).

In analysis of variance procedures, we encounter within group variances which are
measured around the means of each group xi. =

1
n

∑
jxij, and between group variances

which are measured around overall mean x
..
= 1

nk

∑
i
∑

jxij. Note that a “.” in these
expressions fixes a variable. Thus x

..
is the mean that is averaged around all values

of i and j, whereas xi. is the mean that is averaged around all j values.

2.4 MEDIAN

The population median is that value below which 50% of the values fall. In other
words, the median divides the total frequency (area under the distribution) into exactly
equal parts. Analogous definition holds for the sample median. It is most appropri-
ate when all sample values are different. It can be easily found if the sample values
are arranged in sorted order (in ascending or descending order). The complexity of
sequential data sorting is O(n log n) where n is the size of the data. Parallel sorting
techniques can improve this to O(n). Still, it may be time consuming to sort an entire
data set, just to find the median when the data size is too large. However, efficient
algorithms are available to locate approximate median without data sorting [2, 17].

The median of a sample is unique for odd sample size (middle element at
[(n + 1)∕2]th position, or x(n+1)∕2). When the sample size is even, we take the
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arithmetic mean of the middle values (at (n∕2)th and (n∕2 + 1)th positions) as the
median. Symbolically:

Median =
⎧
⎪
⎨
⎪
⎩

x(n+1)∕2 if n is odd;

0.5(x(n∕2) + x(n∕2)+1) if n is even

EXAMPLE 2.7 Median finding

Find the median of (5,2,8,4,7) and (5,2,8,9,4,7).

Solution 2.7 Here, the number of observations is odd. The sorted data set is
(2,4,5,7,8). The middle element is 5, which is the median. In the second case, the
number of observations is even. The sorted data set is (2,4,5,7,8,9). The middle
elements are 5 and 7. The mean of these middle elements is (5+7)/2= 6, which
is the median.

Trimmed median is meaningful when the trimming occurs at either of the
extremes. If data values are discarded at the low end, the trimmed median moves to
the right and vice versa. When an equal number of data values are discarded from
both ends, the median will remain the same.

2.4.1 Median of Grouped Data

Finding the median of grouped data is more difficult, as we need to first locate the
median class. It is found in two steps as follows:

1. Find the class to which the median belongs

2. Compute it as Median = L + c ∗ (n∕2 − M)∕f where L is the lower limit of the
median class, c is the fixed class width, n is the sample size, M is the cumulative
frequency up to median class, and f is the frequency in the median class.

Theorem 2.3 The expected absolute departure of a random variable is minimum
when it is taken around the median (i.e., E|X − c| is minimum when c is the median
(expected values are discussed in Chapter 8)).

Proof: Let X be discrete. By definition, E|X − c| =
∑

xi<c
(c − xi)f (x) +

∑

xi>c
(xi − c)f (x).

Perturb the constant c by a small amount 𝛿c so that c = c − 𝛿c. The net change is then
Δ = −

∑

xi<c
(𝛿c)f (x) +

∑

xi>c
(𝛿c)f (x). Taking the constant 𝛿c outside the summation, we

get Δ = 𝛿c[
∑

xi>c
f (x) −

∑

xi<c
f (x)]. If c is the median, then the expression in the square
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brackets is zero (because the median divides the total frequency into equal parts).
Thus, the result. If X is continuous, we could write

|X − c| − |X − M| =
⎧
⎪
⎨
⎪
⎩

c − M for x < c;
2(X − c) + c − M for c ≤ x ≤ M;
M − c for X > M.

whereas the mean balances the data above and below it in terms of the magnitudes
of observations, the median balances the frequency (count) of data above and below
it, irrespective of their magnitudes (here we are assuming that the median for even
sample size is the mean of the middle (sorted) sample values). Thus the median can be
found iteratively using an indicator function. Define an indicator function I(xj) = 1 if
xj <Median and I(xj) = 0 otherwise. Summing results in

∑
xj

I(xj) = n∕2 if n is even;
and (n − 1)∕2 if n is odd (because I(xj) is zero at xj =Median). Then the median can
be defined as

Median = maximum xj such that
∑

xj

I(xj) =

{
n∕2 if n is even;
(n − 1)∕2 if n is odd.

As I(xj) is defined in terms of the median, we start with a guess value (say M0) and
evaluate the LHS. If it is less than the RHS, it means that our guess value was short
of the true median. We increment our guess value M0 by a small amount, and repeat
the above procedure (checking I(xj) = 0 values and changing perhaps some of them
to 1) until equality holds. If LHS sum is greater than the RHS value, we keep on
decrementing our guess value M0 by a small amount (checking I(xj) = 1 values and
changing perhaps some of them to 0) until equality holds. This is easy to parallelize,
and can be extended to find quartiles (discussed below).

2.4.1.1 Advantages of Median The sample median is least influenced by extreme
observations (for n>2). It can be approximated graphically using ogive curves.
Median is better than the mean for skewed data. The median can be found even for
open-ended data.

Finding the median of a sample of size n ≥ 4 is computationally more involved
than finding the mean. If the data are unsorted, we may require multiple passes
through the data to locate the median. The nature of the sample size n (whether it
is odd or even) should be known to compute the sample median, whereas this is
immaterial to compute the mean and mode. The Theorem 2.1 (p. 48) allows us to use
a divide and conquer strategy to find the mean of large samples by finding the mean
of subsamples, but such a strategy will not in general work for finding the median.

Sample median is used as smoothing filters in digital image processing. It is also
used in data clustering algorithms (k-median algorithm). The data item nearest to the
mean (if mean does not coincide with a sample item) is called the medoid. This near-
ness can be quantified using a distance metric. The medoid is not unique in the uni-
variate case if it is equally distant from the nearest data points on both the sides of it.
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Figure 2.1 Location measures.

This is more of a problem in the multivariate case, in the presence of correlation,
for which Mahalanobis distance metric is the most appropriate choice. Medoid is
used in k-medoid algorithm of data clustering. Location measures are summarized in
Figure 2.1.

2.5 QUARTILES AND PERCENTILES

Quantiles is a common name for quartiles (which divide the total frequency into four
equal parts), deciles (which divide the total frequency into 10 equal parts), and per-
centiles (see Figure 2.2). They can be considered as generalizations of the median.
As the quartiles divide the total frequency into four equal parts, there are three of
them. The first quartile is denoted by Q1. It is that value of x below which one-fourth
of the frequency lie. The second quartile is the same as the median (Q2 =median).
The third quartile Q3 is that value of x below which three-fourth of the frequency
lie (or above which one-fourth of the frequency lie). Deciles divide the total fre-
quency into one-tenth parts. Percentiles are those values of x that divide the total
frequency into units of (1/100). Thus, 25th percentile= first quartile. The five parame-
ters [x(1),Q1,Q2 = M,Q3, x(n)] is called the five-number summary of a sample, where
x(1) and x(n) are the minimum and maximum of the sample.

The quartiles of grouped data are found using Qk = L + c ∗ (kN∕4 − M)∕f where
k = 1 for Q1, and k = 3 for Q3. Here, L is the lower limit of the respective class, c
is the fixed class interval, N is the total frequency, M is the cumulative frequency
up to the respective class, and f is the frequency in the respective class. This
formula can be generalized to find the percentiles as Pk = L + c ∗ (kN∕100 − M)∕f ,

Median Quartiles

n = 2

Quantiles

Deciles Percentiles

n = 100
n = 4 n = 10

Figure 2.2 Quantiles.
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where k ∈ {1, 2, 3, .. , 99}. A quantile function Q(u) is analogously defined as
Q(u) = inf {x ∶ F(x) ≥ u}, where u ∈ (0, 1). They can easily be found for contin-
uous distributions (find x ∶ x = F−1(u)). The inequality may not strictly hold for
discrete distributions due to uneven split of probabilities.

Trimmed quantiles are obtained by trimming data values from either or both the
ends of a sample. They are useful when outliers are present. When an equal number
of data values are discarded from both extremes, the median will remain the same,
but other quantiles will move uniformly toward the median.

2.6 MODE

Mode of a sample is that data item which occurs most frequently. The corresponding
value is called modal value. If each data item is unique, any of the observations can
be taken as the mode. Hence, it is most appropriate when some sample values are
repeated. A population with two or more modes is called multi-modal. The mode of
grouped data can be found using a two-step procedure:

1. Find the class to which the mode belongs.

2. Compute the mode using the formula Mode = L + c ∗ 𝛿u∕(𝛿l + 𝛿u) where L is
the lower limit of modal class, 𝛿l is the difference in frequency between modal
class and the class below it, and 𝛿u is the difference in frequency between the
next class above it and the modal class. For bivariate and higher samples, we
could define conditional mode by fixing (conditioning) some of the variables.
However, the existence of unique conditional modes does not necessarily mean
that the mode for the entire sample is unique. As an example, in a class of stu-
dents, there could exist multiple values for height or weight but it is rare to have
two or more students with the same height and weight unless the sample is too
large.

2.6.1 Advantages of Mode

As the mode is located along the maximum frequency, it is easy to find irrespective
of whether the data are symmetric or skewed. Mode can be found even when the
data are open ended. Some other advantages are summarized below: (1) Mode can
be approximated graphically, which is useful for skewed distributions and in multi-
variate case. (2) Mode is not influenced by outliers. (3) The modal value coincides
with a sample observation (whereas the median for even sample size and mean need
not coincide with sample values). (4) Mode is the most appropriate measure for cat-
egorical data. The biggest disadvantage of mode is that it need not be unique. It can
coincide with the minimum or maximum of the sample (which is not possible for
mean for n ≥ 2, although it could happen for median). When large number of data
items are missing or have default values, the mode can wrongly get located at the
missing value. Mode utilizes only the value of most frequently occurring observation
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(max frequency counts) in contrast to the mean that utilizes actual values of every
item in a sample.

An approximate relation exists for samples from bell-shaped distributions as
(mean–mode) ≃ 3(mean–median). For right–skewed distributions (mean ≤ median
≤ mode). This is called the mean–median–mode inequality [18, 19].

2.7 GEOMETRIC MEAN

The Geometric Mean (GM) of n nonzero numbers is defined as

GM = (x1x2.. xn)1∕n =

(
n∏

i=1

xi

)1∕n

, (2.18)

where
∏

denotes the product of the observations. We will denote GM by x̂n to distin-
guish it from xn. If none of the observations are zeros, we could take the logarithm of
both sides of equation (2.18) to get log(GM) = (1∕n)

∑n
i=1 log (xi). This shows that

log(GM) is the arithmetic mean in the “log-space.” Because the logarithm is defined
only for positive argument, this summary measure is meaningful only when all obser-
vations are positive (if at least one observation is 0, the product will itself be zero. The
usual practice in such situations is to omit all zeros, and find the GM of the remaining
values).

The GM coincides with the sample observations when all observations are equal.
Hence, it is most appropriate when the products of several positive numbers com-
bine together to produce a resulting quantity as in rates of changes, exchange rates,
inflation rates, compound interests, population growth, and so on. Other examples
are successive discounts; price or stock market increases and decreases; successive
size changes (enlargements or contractions) of images, graphics; successive volume
changes; and so on. It is used in image enhancement applications to smooth low con-
trast images by taking the GM of the surrounding pixels.

Some of the rates of changes can be positive or negative. Is the geometric mean
defined for negative numbers? Theoretically No!, because the nth root of a negative
number is imaginary. However, if there is an even number of negatives, the product
of them will be a positive number. As an example, if X = {− 3,−2, 2, 3}, the product
of data values is +36. Hence, it looks like we could define the GM when negative
numbers occur in pairs. However, this is not true, because it loses the significance as
a measure of central tendency, which may wrongly get located toward the positive
values). This implies that even in rates of changes involving negative numbers, we
should opt for the arithmetic mean. As GM inherently involves the product of individ-
ual observations, the change of origin technique is not useful. However, the change
of scale transformation Y = c ∗ X provides the relationship ŷn = c ∗ x̂n. The GM for
grouped data is given by

(∏n
i=1(fixi)

)1∕F
, where F =

∑n
j=1 fj is the total frequency.

Trimmed GM is meaningful when outliers or zero values are present. A
left-trimmed GM is appropriate when data contain several zeros.
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2.7.1 Updating Formula For Geometric Mean

As in the case of AM, there are situations in which we need to update an already
found GM using newly arrived data values. When all sample values are non-negative,
an updating formula for GM can easily be derived as

log(x̂n) =
(

1 − 1
n

)

log(x̂n−1) + log(xn)∕n. (2.19)

where the logarithm is to any base. By taking 1∕n as a common factor, and denoting
log of GM by ẑ this could also be written as

ẑn = (1 − 1∕n) ẑn−1 + log(xn)∕n. (2.20)

The successive values can be evaluated iteratively by starting with log(x̂1) =
log(x1), log(x̂2) =

1
2

log(x̂1) +
1
2

log(x2), log(x̂3) =
2
3

log(x̂2) + log(x3)∕3, and so on.
The iterations are stopped when log(x̂n) is reached. By taking the anti-logarithm we
get the required result. When the variables are transformed using the change of scale
transformation Y = c ∗ X, these iterations are carried out in yi and at the end, the
GM of Y is multiplied by c to get the GM of X, as shown below. Alternatively, we
could add a constant log(c) to the recurrence (2.19) to iteratively update log(x̂i). As
the GM involves the product of nonzero observations, weighted GM is meaningless.
However, there is one situation where weighting by exponentiation is useful.
Consider GM

𝑤
= (xf1

1 xf2
2 .. x

fn
n )1∕N , where f1, f2, … , fn are nonzero real numbers,

which serves as the weights. If fj > 1, then x′js are scaled up if xj > 1 and scaled
down if 0 < xj < 1 (as the powers of a fraction are less than the fraction itself). In

the particular case, when fj = −xj, we get GM
𝑤
= (x−x1

1 x−x2
2 .. x−xn

n )1∕N . Taking log of

both sides we get log(GM
𝑤
) = (−1∕N)

∑n
k=1 xk ∗ log (xk).

Lemma 2 Prove that the GM of change of scale transformed data (y-variable) is
given by GM(Y) = c * GM(X), where yi = cxi, and c is a constant (positive or
negative).

Proof: GM(y) = (cx1.cx2.. cxn)1∕n = c(
∏n

i=1 xi)1∕n = c ∗ GM(x) because (cn)1∕n = c.

EXAMPLE 2.8 Geometric mean for shear strength

Find the geometric mean for the shear strength X = (32, 80, 56, 75, 69, 26, 44, 50)
using equation (2.19).

Solution 2.8 As the numbers are large, we will apply the above lemma to com-
pute the GM (product of the original numbers is 42,435,993,600,000= 4.24E+13,
which is too big for single precision) by dividing each number by 10 to get
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TABLE 2.3 Recursive Computation of Geometric Mean

X[i] X[i]∕10 log(X[i]∕10) ln(GM) GM

32 3.2 1.16315081 1.16315081 3.200000000
80 8.0 2.079441542 1.621296176 5.059644256
56 5.6 1.722766598 1.65511965 5.233706096
75 7.5 2.014903021 1.745065492 5.726276491
69 6.9 1.931521412 1.782356676 5.943847650
26 2.6 0.955511445 1.644549138 5.178674512
44 4.4 1.481604541 1.621271338 5.059518589
50 5.0 1.609437912 1.61979216 5.052040191

The fourth column is computed using equation (2.19) as log (x̂n) =
(

1 − 1
n

)

log (x̂n−1) +
log (xn)∕n.

X = {3.2, 8.0, 5.6, 7.5, 6.9, 2.6, 4.4, 5.0}. Here, n = 8. The calculations are
shown in Table 2.3, where the last column contains the successive GM. The GM
of scaled data is 5.05204019. Hence using Lemma 3, the GM of original data
is 5.05204019*10 = 50.5204019. As ln(4.24359936E+13)/8= 3.92237725 and
exp(3.92237725) = 50.5204019, we get the same result directly.

2.8 HARMONIC MEAN

If all the observations are nonzero, the reciprocal of the arithmetic mean of the recip-
rocals of observations is known as HM. For ungrouped data, it is defined as HM =
n∕

∑n
i=1(1∕xi). The HM is used when (nonzero) numbers combine via reciprocals

as in the case of finding the mean speed of vehicles that go the same distance (not
for the same duration). The HM for grouped data is given by F∕

∑n
i=1(fi∕xi), where

F =
∑n

j=1 fj.
We will denote it by xn to distinguish it from xn and xn. A simple inequality exists

between the three popular means as: (AM ≥ GM ≥ HM). When each of the sample
values are weighted using the same set of weights, this identity is preserved [20]. HM
finds applications in clustering (k-HMs algorithm). The F-score used in text mining
is the HM of precision and recall [2].

2.8.1 Updating Formula For Harmonic Mean

If the sample values arrive successively, we may have to update the HM from an
already found value. The updating formula for HM is easily derived as

xn = n∕[(n − 1)∕xn−1 + 1∕xn], (2.21)
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or in terms of the HM() notation as HM(Xn) = n∕[(n − 1)∕HM(Xn−1) + 1∕(xn)].
Dividing numerator and denominator by n, and rearranging gives

1∕HM(Xn) = [(1 − 1∕n)∕HM(Xn−1) + 1∕(nxn)], (2.22)

where HM(Xj) denotes the harmonic mean of x1, ...., xj, and HM(X1) = x1. Denoting
the reciprocal of the HM by RHM, we could rewrite it in the easy-to-remember form

RHM(Xn) = [(1 − 1∕n) ∗ RHM(Xn−1) + 1∕(n ∗ xn)]. (2.23)

As in the case of GM, the change of origin transformation is meaningless. The change
of scale transformation Y = c ∗ X for HM gives HM(y)= c*HM(x).

Lemma 3 If yi = c ∗ xi, where c is a constant, prove that the HM of transformed data
(y-variable) is given by HM(Y) = c * HM(X).

Proof: HM(y) = n∕
∑n

i=1 1∕yi = n∕
∑n

i=1 1∕(cxi). Taking the constant c to the numer-
ator, this becomes c ∗ n∕

∑n
i=1 1∕xi = c ∗ HM(x).

Trimmed HM is meaningful when outliers or zero values are present. A
left-trimmed HM is appropriate when data contain several zeros.

EXAMPLE 2.9 Harmonic mean finding

Find the HM for the data in Example 2–32 (pp. 2–24) using equation in page 60.

Solution 2.9 The calculations are shown in Table 2.4. Column 2 gives the recip-
rocal of observations. These sum to 0.170622041. Column 3 gives the RHS of
equation (2.22), the reciprocals of which are given in column 4. We could verify
our result by direct substitution as n∕(

∑
1∕xi) = 8∕0.170622041 = 46.88726,

which agrees with the last entry in column 4.

TABLE 2.4 Recursive Computation of Harmonic Mean

X[i] 1∕X[i]
(1 − 1∕n)
HM(Xn−1)

+ 1
nxn

HM

32 0.031250000 0.031250000 32.00000000
80 0.012500000 0.021875000 45.71428571
56 0.017857143 0.020535714 48.69565217
75 0.013333333 0.018735119 53.37569500
69 0.014492754 0.017886646 55.90763087
26 0.038461538 0.021315795 46.91356872
44 0.022727273 0.021517434 46.47394202
50 0.020000000 0.021327755 46.88726001

The fourth column is computed using equation (2.22) as HM(Xn) = 1∕
[

(1−1∕n)
HM(Xn−1)

+ 1
nxn

]

.
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2.9 WHICH MEASURE TO USE?

Three types of means (AM, GM, and HM), along with the median and mode, serve

as measures of location. In addition, the quadratic mean is defined as
√

∑
ix

2
i ∕n.

A question that analysts face is “which measure is the most appropriate?”. This
depends both on the nature of the data (qualitative or quantitative, positive or
negative) and the application at hand. The mode is the only appropriate measure
for numerically coded nominal or ordinal data. For interval and ratio type data, the
median is better than the mean and mode if the distribution is skewed. As the medoid
coincides with a sample observation, it is preferred when all data values are integers
and arithmetic operations involve differences between data values and the medoid
(as in clustering). The arithmetic mean is to be preferred when the numbers combine
additively to produce a resultant value. Examples are consumption of materials
or power, quantities measured on a scale such as heights, weights, thickness, and
temperatures. The geometric mean is better suited when several nonzero numbers
combine multiplicatively to produce a resultant value (or equivalently, the logarithm
of several nonzero numbers combine additively). This includes rates of changes
such as successive discounts; time-dependent growth; successive size changes
(enlargements or contractions) of images, graphics; successive volume changes,
power and voltage changes and so on. The HM is preferred when reciprocals of
several nonzero numbers combine additively to produce a resultant value. Examples
are electrical resistance or capacitance in parallel circuits, average speed of vehicles
for the same distance, and so on. Quadratic mean is better suited when squares of
several numbers combine additively as in squared Euclidean distances.

2.10 SUMMARY

Several popular measures of location are introduced and exemplified which are use-
ful to compare several groups. The measures of location portray the central location
of varying data values. They are sometimes called “sample statistics” which are sub-
stitutes for their population counterparts. The mean is vulnerable to unusually low
or high values (which are recognized as outliers) in an uneven manner. In such situ-
ations, the median should be used. When the data size is large or there is a need to
identify more often repeating value in the data, the mode is preferable over the mean
or median. If neither the median nor the mode resolves the issue of uneven influ-
ences exerted by the outliers on the measures of location, the weighted mean could
be chosen as a remedy.

Updating formula for some of them are also presented. These are useful in online
computations, where new data arrive continuously. Important properties of these
location measures are also discussed. This allows an analyst to choose the most
appropriate measure of central tendency for the data at their hand [21]. Median
finding algorithms are discussed in References 17, 22, and 23. See Reference 20 for a
discussion of AM, GM, and HM inequalities for weighted data, and References 24, 25
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for new measures of central tendency and variability. A discussion of visualizing of
location measures can be found in References 26–28.

EXERCISES

2.1 Mark as True or False

a) Quartiles divide a data set into three equal parts

b) Third quartiles lies between 7th and 8th decile

c) The mode of a sample can never be the minimum of the sample

d) The median balances the frequency count of data above and below it

e) Geometric mean of data containing at least one zero is zero

f) Every sample observation contributes to the mode

g) Mode of a sample is always a sample value

h) Duplicate data values are counted distinctly in finding the mean.

2.2 The tuition fees of 230 graduate schools per semester are given in Table 2.5,
where the count column indicates the number of schools charging the fee on
the left. Find the mean and median of tuition fees.

TABLE 2.5 Median of Grouped Data

Fees Count Fees Count Fees Count

0K–4K 2 8K–10K 30 14K–16K 44
4K–6K 7 10K–12K 65 16K–18K 10
6K–8K 18 12K–14K 51 >18K 3

2.3 What is a medoid? What are its
uses? How can it be used to mea-
sure data spread?

2.4 To which of the location measures
does a medoid converge to as the
sample size is increased?

2.5 For which of the following mea-
sures is the change of origin tech-
nique useful? (a) arithmetic mean
(b) geometric mean (c) harmonic
mean (d) median

2.6 In what situations is the mode
most appropriate, and most inap-
propriate? What information is

needed to update the mode using

new data?

2.7 Which of the following is most

appropriate as a measure of loca-

tion in finding the average distance

of vehicles that travel the same

duration?

(a) arithmetic mean (b) geometric

mean (c) harmonic mean (d) all

of them

2.8 Which location measure is most

appropriate for the following data?

(i) growth of visitors to a web site
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(ii) amount of money in a com-
pound interest account (iii) elec-
tric current in a parallel circuit (iv)
debt of a company.

2.9 If the GM of n data values coincide
exactly with one of the data values
(say xk), then prove xk is the GM
of the other (n − 1) data values.

2.10 If the HM of n data values coincide
exactly with one of the data values
(say xk), then xk must be the HM
of the other (n − 1) data values.

2.11 What is the most commonly used
location measure? What are its
advantages over others?

2.12 What are some uses of sam-
ple median? What is a medoid?
Where is it used?

2.13 What is the least stable measure
of central tendency? (a) arithmetic
mean (b) geometric mean (c) har-
monic mean (d) mode

2.14 Prove that the sum of the devia-
tions of sample values from the
sample mean is zero. What is the
corresponding population equiva-
lent?

2.15 What is trimmed arithmetic mean?
Give formula for trimmed geomet-
ric and trimmed harmonic means.

2.16 In what situations is the geometric
mean most appropriate? What are
some data restrictions on comput-
ing it?

2.17 If xt
n−2 denotes the 1-trimmed

mean after deleting the smallest
and largest observation in a sam-
ple, prove that (1 − 2∕n) ∗ xt

n−2 =
xn − (x(1) + x(n))∕n.

2.18 Describe situations where
trimmed mean and median are
useful for grouped data. Can you
find trimmed mean without com-
plete data sorting?

2.19 Give examples of some situations
where the harmonic mean is the
most appropriate location mea-
sure. When is it most inappropri-
ate?

2.20 Can you always find the GM and
HM for standardized data Y =
(X − x)/s, where x is the sample
mean and s is the standard devia-
tion?

2.21 Find the mean of n observations
that are in arithmetic progression
with first term k and common dif-
ference d.

2.22 What is the first step in comput-
ing (i) the mode? (ii) the median
of raw data and grouped data?

2.23 What are the two situations in
which the mean is the same as the
sample value?

2.24 When is the change of origin use-
ful in computing the mean?

2.25 The percentage of seeds that ger-
minate from eight different plots
are given below: {98.2, 92.7,
89.3, 94.4, 95.0, 83.1, 90.6, 96.1}.
Which location measure is most
appropriate? Find its value.

2.26 The first-order Bragg reflection of
X-ray at different angles through
a crystal gave the wavelengths (in
nanometers) as {0.0795, 0.0841,
0.0790, 0.0844, 0.0842, 0.0840}.
Use the change of scale technique
to find the mean and the median.
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2.27 The number of hours that a bat-
tery can be continuously oper-
ated in different devices after a
30 min recharge is given below.
Find the median and mean. X =
{32, 19, 24, 31, 20, 27}.

2.28 The resistance of an electronic
circuit was measured using
five different components as
{5.2, 4.9 5.12, 4.95, 5.1}. Find the
mean and median. Convert data to
z-scores.

2.29 What is trimmed median? If
extreme data values are removed
from both ends of a sample, does
the trimmed median differ from
the original median?

2.30 Prove that (xn − 𝜇) =
1
n

∑n
j=1(xj −

𝜇) = (Median − 𝜇) + 1
n

∑n
j=1(xj −

Median), where xn is the mean of
a sample of size n.

2.31 If data values are discarded from
the low end of a sorted sample,
the trimmed median —(a) moves
to the left (b) moves to the right
(c) remains the same (d) is unpre-
dictable

2.32 The expected absolute departure
of a random variable is minimum
when it is taken around the—(a)
mean (b) median (c) mode (d) both
(a) and (b).

2.33 A plastic polymer thread is
subjected to an elongation
stress test to see how much
it can be stretched before it
breaks. Let X = {9.2 6.7 15.3
18.0 11.6 10.8 7.7 16.1 8.5 12.0}
denote the break point length in
cm. (i) Find the mean and the
median.

2.34 Soluble dissolvents (in mil-
ligram/liter) in drinking water
are measured at different places
in a city. Find the mean
and median, and standard-
ize the data where X = {560,
458, 490, 525, 482, 554, 499, 538,
540, 507, 481, 513} is the amount
of dissolvent in mg/L.

2.35 Should the complete sample be
sorted to compute the trimmed
mean using the formula xt

m =
1

(n−2k)
∑n−k

i=k+1 x(i)? If not, how
much sorting is required?



3
MEASURES OF SPREAD

After finishing the chapter, students will be able to

◾ Describe popular measures of spread

◾ Understand range and inter-quartile range

◾ Understand variance and standard deviation

◾ Comprehend the Coefficient of Variation

◾ Apply the above concepts to practical problems

3.1 NEED FOR A SPREAD MEASURE

The prime task in many statistical analyses is to summarize the location and
variability of data. One or more concise measures are used for this purpose. These
are real numbers for univariate samples, and a vector or matrix for bivariate and
higher dimensional samples. Chapter 2 introduced several location measures for this
purpose. If repeated samples are drawn from a univariate population, they can lie
anywhere within the range (min, max). As shown below, this depends on the shape
of the distribution. If the parent population is unimodal (with a clear peak), a great
majority of sample values will fall close to the mode. As the mean and mode coincide
for symmetric unimodal distributions, we expect most of the data points to fall within
the vicinity of the mean for such distributions. On the other hand, if the distribution
is uniform, there is an equal chance for any new data item to fall anywhere within
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the range. The number of data points that fall in the vicinity of the mean or mode
depends more on how fast the distributions tail-off in both directions. We expect less
data points around the mean if the tailing-offs are slow, than otherwise. Thus, there
are likely to be more data points in the close proximity of the mean for leptokurtic
distributions (defined in Chapter 4) when sample size is large.

This shows that a location measure alone is insufficient to fully understand a data
distribution. Assume that we have somehow found the mean (average) of a popula-
tion. In repeated sampling from that population, why do some data points fall above
the mean, and some others fall below? Can we predict with some confidence how far
from a location measure (e.g., the mean) are the new data values likely to lie? What is
the probability that a randomly chosen new data value will fall above the mean or two
standard deviations away (in both directions) from the mean? These types of queries
can be answered using spread measures discussed below. As the median divides the
total frequency into two equal halves, we know that there is a 50–50 chance that
a new sample value will be above or below the median. Hence for symmetric uni-
modal distributions, we expect that there is an equal chance for new data values to
fall above or below the mean too. However, to quantify “how far from a location
measure (such as the mean) they are likely to lie,” we need well-defined measures.
These are called measures of dispersion or spread (we will use “measures of spread,”
“dispersion measure,” or measure of variability synonymously).

Definition 3.1 A univariate dispersion measure concisely summarizes the extent of
spread or variability of data in a sample of size n ≥ 2 using a well-defined statistic,
with a minimum value of zero indicating that there is no spread; and an increasingly
positive value indicating the extent of spread of observations.

As the zero value is well-defined, this is a ratio measure. Increasing values of it
indicate that the sample values are more spread-out over its range. The extent of this
spread depends on whether the measure is linear or nonlinear. As shown below, some
of the dispersion measures (such as the variance) are upper-bounded by the square of
the range. As in the case of location measures, these are also applicable to sample and
population. A population parameter is called a scale-parameter if the density function
takes the form (1∕𝜃) f (x∕𝜃).

There are two situations in which a univariate sample measure of spread can be
zero—(i) if the sample contains just one item (n = 1), (ii) if all sample values coin-
cide. In case (i) there is no spread as the sample is a singleton. This is symbolically
written as s2

1 = 0, where s2
n denotes the sample variance (defined in p. 77). Note that

if the sample variance uses (n − 1) in the denominator, we get a zero (1 − 1) in the
denominator. Hence, the sample variance is undefined (it is not zero) if (n − 1) is used
in the denominator, and is zero if n is used. In case (ii), all the sample observations are
the same (xi = xj = c ∀i, j). This is as equal as having a singleton sample. The mean
in this case is c, so that each of the deviation terms in the numerator of s2

n is zero. The
sample range and mean absolute deviation are both zero as well (as the minimum and
maximum are both c).
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3.1.1 Categorization of Dispersion Measures

Sample range, inter-quartile range (IQR), mean absolute deviations (from the mean
or median), sample variance, and standard deviation are the most commonly used
measures of spread. While the sample variance additively combines the squared
deviations of sample values from its mean, the mean absolute deviation combines
the absolute values of deviations additively, and the range-based measures (sample
range, IQR, etc.) combine the appropriate extremes of sample values linearly. All
dispersion-measures quantify the spread of data into a positive numeric scale. They
are not affected by a change of origin transformation (as the entire data are translated
linearly by this transformation). All of the measures defined below are affected by a
change of scale transformation. There are many ways to categorize the measures of
spread (see Table 3.1)—(i) linear and nonlinear measures, (ii) pivotal measures and
pivot-less measures, (iii) measures that utilize sample size and those that do not use
sample size, and (iv) additive and nonadditive measures.

1. Linear and Nonlinear Measures
Linear measures combine sample values as simple linear functions or their devi-
ations from pivotal values. For instance, the sample range is a linear function
of the first and last sample values as R = (x(n) − x(1)) (see Section 3.2, p. 71).
The mean deviation 1

N

∑n
i=1 |xi − xn| (where N = n − 1, see Section 3.5, p. 76),

on the other hand, is a linear function of deviations measured from the mean
xn. Nonlinear measures combine sample values nonlinearly (as square-roots,
squares, or higher powers). Nonlinear measures are the preferred choice in some
applications because they often inflate (blow-up) the deviations so that the com-
puted value is larger than those obtained from linear measures.

2. Pivotal Measures and Pivot-less Measures
Some of the dispersion measures use a location measure as a pivot to quantify
the spread (see below). Recall from Chapter 2 that some of the location mea-
sures (such as the means) are expressible as a function of the sample values.

TABLE 3.1 Categorization of Dispersion Measures

Measure Additive Linear Pivotal Absolute Uses Distance
Name Size n Based

Range No Yes No Yes No Yes
IQR No Yes No Yes No Yes
AAD No Yes Yes Yes Yes No
Variance Yes No Yes Yes Yes Yes
CV No No Yes No Yes No

AAD = average absolute deviation, CV= coefficient of variation uses sample standard deviation s, which
in turn uses a pivot. Variance can be considered as squared Euclidean distance between sample values and
a vector of all xn.
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By expanding such location measures as a function of the sample values, it is
possible to obtain those spread measures without an explicit location measure.
Nevertheless, this criterion allows us to distinguish some spread measures from
the others. Exceptions are the range, IQR, and quartile deviation (QD) that do
not use a location measure as a pivot.

3. Measures that Utilize the Sample Size
The variance, coefficient of variation (CV), and mean deviations discussed
below fully utilize each and every sample value (and thus the sample size n).
On the contrary, the sample range utilizes only the minimum and maximum;
and IQR utilizes only two of the sample values denoted by Q1 and Q3.
The range does not distinguish between multi-modal distributions, skewed
distributions, and peaked distributions. Hence, the range and IQR are called
minimax measures.

4. Additive and Nonadditive Measures
Additive measures are those that can be found by divide-and-conquer (D&C)
method without further information. In other words, suppose we divide a sam-
ple into two subsamples and find the measure values from these subsamples.
If we could combine these values obtained independently from the subsamples
without additional information to find the corresponding measure for the entire
sample, then it is called additive. In the case of sample range, we need extra
information to find the range of the original sample. If a sample S is divided
into two subsamples S1 and S2, and we find the ranges r1 and r2, we can-
not find the range of the original sample S unless the subsample minimums
and maximums are both known. Sometimes the subsamples may be such that
all elements in one of them is less than (or greater than) all elements in the
other. If such overlap information about subsamples is known, we could some-
times find the range using the minimum of lower subsample and maximum
of the upper subsample. However, the overlap can occur in many ways—(i)
S1 completely subsumes S2, (ii) S2 completely subsumes S1, (iii) minimum of
S2 lies between minimum and maximum of S1, or vice versa, and (iv) mini-
mum of S2 is greater than maximum of S1 or vice versa. In this case, we could
obtain Range(S) = max(max(S1), max(S2)) − min(min(S1), min(S2)). Suppose
the subsamples S1 and S2 are nonoverlapping, and additionally we know that
elements in S1 are all less than the elements in S2. In this particular case, we
could find the range as Range(S) = max(S2) − min(S1). Similar arguments
hold when the minimum element of S1 is greater than the maximum of S2, in
which case the roles of S1 and S2 simply get swapped and we obtain Range
(S) = max(S1) − min(S2). Variance is an additive measure.

5. Absolute and Relative Measures
Some of the dispersion measures are absolute. They are expressed in the same
unit as that of the observations. Examples of absolute dispersion measures are
the range, QD, mean deviations, variance, and standard deviation. Variance,
being the average of the squared deviations of observations from their mean,
is expressed in the unit squared. Relative measures, on the other hand, do not
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depend on a unit. Examples are the coefficient of dispersion and CV. Abso-
lute measures are easy to convert into relative measures. Simply find the unit
in which they are expressed and divide by another measure (usually one of the
location measures) expressed in the same unit. Sample standard deviation (s),
being the positive square-root of variance (s2), has the same unit as the data.
Hence, we could divide s by any of the location measures (mean, median, or
mode) to get a relative measure. As the standard deviation uses the sample mean
as pivotal measure to take the deviations, it is customary to use the mean in the
denominator to get a relative measure s∕x. Owing to the possibility of x becom-
ing zero (resulting in a very large value) this measure is defined only for x ≠ 0.
This measure called the CV (p. 82) can also be expressed as a percentage. As it
is dimensionless, it can be used to compare the variability of data measured in
different units. For instance, data collected from different geographical regions
that have different currencies (dollars, euro, yen, etc.) can be compared without
worrying about the currency exchange rates or conversions.

6. Distance-based Measures
Some of the dispersion measures can be cast in distance metric form. As an
example, we can interpret the univariate sample range as either the Manhattan
distance between xn and x1 as |xn − x1|, or as the Euclidean distance as
[(xn − x1)1∕2]2. The sample variance in the univariate case is the squared
Euclidean distance 1

N
(X − Xn)

′ (X − Xn), where X is the data vector of size

n, and Xn is an n-vector in which each element is the sample mean xn (i.e.,

X
′

n = {

n values
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

xn, xn, … , xn}). Here, N denotes the appropriate divisor used (either
N = n − 1, or N = n; see discussion below). Similarly, the average absolute

deviation (AAD) can be written as AAD = 1
N

∑n
i=1 |xi − xn|. This could also be

written in vector form in which each component is
√
|xi − xn|. The analogue in

the multivariate case is the Mahalanobis distance (X − Xn)
′
S−1(X − Xn), where

S is the pooled sample variance–covariance matrix.

3.2 RANGE

The sample range can throw more insight into the inherent variability in a population.
Suppose repeated samples are taken from a population and the range is updated each
time. If it does not vary very much, it is an indication that we have captured most of the
variability into the sample. As an example, if the range of temperatures in 24 h for two
cities are the same, we cannot conclude that both cities have the same weather because
one city, say on the sea-front, might have cooled faster at night whereas another city
in mid-plains might have cooled slower. If we have the additional information that the
mean temperature during the 24-h period was almost the same, we could have a better
perception regarding the weather at the two cities. Thus, a measure of location along
with a spread measure can describe the nature of our data in a better way than either
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of them alone. As temperatures increase and decrease gradually, we can conclude that
the weather is more or less the same. As shown below, even this cannot fully describe
the data if skewness and kurtosis are also present.

Definition 3.2 Range of a sample is the difference between the largest and
smallest observation of the sample. Symbolically, if X = {x1, x2, ..xn} are the “n”
sample values that are arranged in increasing order,

R = (x(n) − x(1)) = max(X) − min(X). (3.1)

The range is zero in only one particular case—when all of the sample values are
the same. In all other situations, it is a positive number which is an integer when the
sample values are integers. Even if all data values are negative, the range is always
positive as we are subtracting the minimum from the maximum. For instance, if
X = { −11,−5,−3,−2}, the minimum is −11 and maximum is −2, so that the
range is max − min = (−2) − (−11) = 11 − 2 = 9, where we have used the fact that
maximum of negative numbers max(xi ∶ xi < 0∀i) = −min(|xi|). Range is defined
for interval or ratio data too. It is also meaningful for numerically coded ordinal data,
if the codes are equi-spaced. Coefficient of range is defined as CR = (x(n) − x(1))∕(x(1)
+ x(n)), which is unit-less. If each of the sample values are positive, this measure lies
in [0,1). If x(1) is negative, this measure could take any positive value. It is assumed
that (x(1) + x(n)) is nonzero.

3.2.1 Advantages of Range

The range is easy to compute and easy to interpret. We require only the smallest and
largest observations of a sample to compute the range. This can be obtained in a single
pass through the data (unless the data are sorted, in which case we can easily pick out
the smallest and largest observations in two fetches). Range is easy to update if new
data arrive continuously. For instance, suppose data are received from a traffic sensor
on a continuous basis. The data may indicate either the number of vehicles in a street
or locality; or the speed of a passing vehicle. As new data arrive, it is a simple matter
to check if it lies above or below the minimum and maximum to decide whether the
range needs to be updated. If new data are within the so far accumulated min and
max, the range is unaffected. The range can be bulk-updated if old minimum and
maximum are known, and several new sample values are received. Suppose a sample
Sk has minimum and maximum xk

min and xk
max. If the minimum and maximum of a

new sample are xk+1
min and xk+1

max, the new range is max(xk
max, x

k+1
max) − min(xk

min, x
k+1
min ). Of

course, we need to save the new minimum and maximum to update for subsequent
iterations.

3.2.2 Disadvantage of Range

The biggest disadvantage of range is that it is extremely sensitive to outliers (on both
extremes). As it does not utilize every observation of a sample, it cannot distinguish
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between skewed distributions that have the same range. It is not a good indicator of
spread when the sample size varies. Range is not unit-less. It uses the same unit as
that of the data. Thus, it is affected by a change of scale transformation. For example,
if the family incomes of a sample are measured in dollars and Euros, the range will be
different. It does not lend itself to further arithmetic operations (as does the sample
variance).

Range is better suited for univariate data. Range of multivariate data contains too
little information about the multivariate spread, especially in the presence of correla-
tion. For example, consider a bivariate sample of say height and weight of students,
or amount of two different dissolvents in drinking water. The range can measure only
the difference between the individual variates X and Y.

3.2.3 Applications of Range

The sample range has lot many applications in engineering and applied sciences.
It is applicable to ordinal and higher scales of measurement. It is used in quality
control and process control systems. Some of the data plotting and visualization tech-
niques use the sample range. As an example, the box-plot and range plot use the
sample range. The sample range is also used in data transformations. For instance,
the min–max transformation in (Section 1.9.4) uses the data range in the denominator.
If the sample size is small (say 4 or 5 as in quality control applications), the range is a
quite good estimate of the spread. Thus, we use average of the ranges R =

∑
Ri∕n in

quality control charts as (x ∓ 3R∕(d2

√
n)). The mean of ranges R can indicate when

a process deviates in one direction. For example, suppose a time-dependent process
deviates to the “high” (or increasing) side. Even if the range remains the same, the
mean of ranges will steadily increase. However, if the range deviates from both sides
(either inwards or decreasing values or outwards or increasing values), the mean of
ranges could remain the same.

3.3 INTER-QUARTILE RANGE (IQR)

The sample range is sensitive to outliers at both ends. This could be diminished by
removing possible outliers and then computing the range of remaining data. These are
called trimmed range. A generalization of it is called the IQR. We defined quartiles
in Section 2.5. As the name implies, the IQR is the range of data quartiles.

Definition 3.3 The IQR is defined as (Q3 − Q1), where Q3 and Q1 are the upper
and lower quartiles. (Q1 is that value below which one-fourth of the observations
fall, and Q3 is that value below which three-fourth of the observations fall, after the
sample is arranged in ascending order). One half of IQR is called the QD. The unit
quantile function is a parametrized version of it defined as q(u) = (F−1(u) − F−1(1 −
u))∕2, where 0 ≤ u ≤ 1 and F(x) denotes the cumulative distribution function. This
reduces to QD for u = 3∕4, and is negative for u < 0.5. It is unaffected by outliers,
and provides supplementary information on the spread of observations around the
center of the sample. It is used in boxplots to visually detect outliers.



74 MEASURES OF SPREAD

3.3.1 Change of Origin and Scale Transformation for Range

Range is unaffected by a change of origin data transformation. The change of scale
transformation Y = c ∗ X gives the relationship Range(Y) = c*Range(X), as both
extremes are scaled by the same constant. The constant c is chosen as <1 if X values
are very large. This is especially useful when large data are expressed in scientific
notation. In this case, dividing by 10k is done by adjusting just the index of the
number. For example, let x = 3.6524219879E+8. To divide x by 106, simply adjust
E+8 to E+2 to get x = 365.24219879, which is the number of days in a year.

EXAMPLE 3.1 Outstanding amounts on 10 bank loans

Ten outstanding loan amounts in a bank are X = [60,000, 40,000, 85,000, 37,000,
110,000, 280,000, 72,000, 92,000, 154,000, 81,000]. Find the range and QD of
the data.

Solution 3.1 As the data values are all large, we divide them by c = 100,000
to get Y = [0.60, 0.4, .85, 0.37, 1.10, 2.80, 0.72, 0.92, 1.54, 0.81]. The max-
imum and minimum values of transformed data are 2.8 and 0.37. The
range of Y is 2.80 − 0.37 = 2.43. From this the range of X is obtained by
multiplying by c as 2.43 ∗ 100,000 = 243,000. To find the QD, we need
to find Q3 and Q1. The first quartile is that value below which one-fourth
of the data values lie. Rearranging the data in ascending order gives
Y = [0.37, 0.4, 0.60, 0.72, 0.81, 0.85, 0.92, 1.10, 1.54, 2.80]. As there are two
data values below 0.60, Q1 = 0.60. Similarly, Q3 = 1.10 as there are two
values above it. From this we get the QD of Y as 1.10 − 0.60 = 0.50. Mul-
tiply by 100, 000 to get the QD of X as 50,000. The quartile coefficient is
(Q3 − Q1)∕(Q3 + Q1) = 50,000∕170,000 = 0.294.

3.4 THE CONCEPT OF DEGREES OF FREEDOM

Degrees of freedom concept originated in data analysis. Sample variance was the most
popular dispersion measure in wide use during the 19th and early 20th centuries.

The concept of degrees of freedom (DoF) is used in many branches of applied
sciences. In physics and physical chemistry, it indicates the independent mode or
free dimensionality in which a particle or system can move, or be oriented wrt
fixed coordinate axes. In mechanical and aeronautical engineering, DoF denotes
the flexibility of motion of a particle or an object in 3D. Such a particle has 6
DoF—namely: (i) up or down (heaving), (ii) left or right (swaying), (iii) forward
or backward (surging), (iv) tilting up or down (pitching), (v) turning left or right
wrt a plane (yawing), and (vi) tilting side-to-side (rolling). It has an entirely dif-
ferent interpretation in statistics, where loosely speaking, it denotes the local level
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of confidence left in a sample of size n ≥ 2. If nothing has been estimated from a
sample, its DoF is n. The DoF is reduced by one for each statistic (that uses all of the
sample values) estimated from it. Consider the deviations (x1 − x, x2 − x, … , xn
− x). These deviations always sum to zero (p. 53), specifying any of the (n − 1) val-
ues automatically determines the nth deviation. This is precisely the reason why we
use (n − 1) as the DoF of a sample from which the mean has been estimated. It may
also be noted that this reduction in DoF is not a global phenomena. So, if 10 per-
sons estimate the mean of a sample of size 15, the DoF is reduced by one for each
one of them (the DoF does not become 5, but it is simply 14 for each person) under
the assumption that each person’s procedures or actions are independent.

Sampling distribution of the statistic t = (xn − 𝜇)∕(s∕
√

n) follows a Student’s T
distribution with n DoF for normal samples, where n is the sample size. Similarly,
the sum of squares of n sample values drawn from a standard normal distribution
has a central 𝜒2 distribution with n DoF. These are discussed in Chapter 11.

It is defined in terms of the mean as the pivot as in equation (3.8), which uses the
sample mean xn explicitly. Assume that the variance is computed in two steps. The
first step computes the sample mean. The second step then finds the deviations of
observations and finds the variance. As the mean has to be estimated from the data,
some “information content” of the obtained sample is lost during this process.

For each parameter estimated from the sample, we quantify it as a unit loss of
information. We use (n − 1) in the denominator of sample variance to indicate the loss
of 1 “DoF” due to the estimation of the sample mean from the data. To compensate for
this loss of information, it is logical to use (n − 1) as the divisor for the variance. This
lead some statisticians to advocate the formula (3.8) for sample variance. However,
there are many expressions for the sample variance that does not explicitly involve
the sample mean. Some such formulas are given in Chapter 1, which are repeated
below:

s2
n = 1∕[n(n − 1)]

n∑

i=1

n∑

j>i

(xi − xj)2, (3.2)

and

s2
n = 1∕[n(n − 1)]

n∑

i=2

i−1∑

j=1

(xi − xj)2, (3.3)

s2
n = (1∕[2n(n − 1)]) ∗

n∑

i=1

n∑

j≠i=1

(xi − xj)2. (3.4)

where we have used the subscript partially varying summation notation introduced
in Chapter 1. Another formula in terms of order statistic can be found in References
9 and 29.

Definition 3.4 The DoF is a concept associated with the information content of a
sample that indicates a local level of confidence left in a sample as a function of the
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sample size. It is also applied to a statistic computed from a sample or the distribution
of a parent population.

The DoF of a statistical distribution is actually a parameter. They are so-called due
to an analogy with the sampling distribution of some related statistics. As examples,
the Student’s T distribution has a parameter which is traditionally known as “n,”
which is called its DoF; and Snedecor’s F distribution has two parameters m,n which
are called its (numerator and denominator) DoF. Other distributions that utilize the
DoF concept are the 𝜒2 distribution, Fisher’s Z distribution, Wishart distribution, and
noncentral versions of these central distributions (noncentral 𝜒2

,F,T ,Z [4, 5]. Many
other distributions such as the distribution of the trace of a Wishart matrix and the dis-
tribution of statistics computed from the sample variance–covariance matrix (such as
the distribution of the determinant, or minimum and maximum Eigen values) can also
have DoF parameter. Noncentral distributions also exist without the DoF concept.
As examples, the noncentral gamma, beta, negative binomial, and hypergeometric
laws have shape and scale parameters, and one or more noncentrality parameters but
no DoF.

As mentioned above, 1 DoF is lost for each statistic computed from a sample.
This does not mean that we must lose one DoF for each statistic. The rule is that if a
statistic involves each and every observation of a sample, it loses 1 DoF. Thus if the
mode or range of a sample is estimated, 1 DoF is not lost. But if the AM, GM, HM,
variance or mean deviation, or some other statistic that utilizes each observation of a
sample is estimated, 1 DoF is lost for each such estimate.

3.5 AVERAGED ABSOLUTE DEVIATION (AAD)

The AAD (also called sample mean absolute deviation (SMAD)) from the mean is
defined as

AAD = 1
N

n∑

i=1

|xi − xn|. (3.5)

where N = n − 1 if n > 1 and xn is estimated from the sample (some authors use n in
the denominator; this is why we have kept N which can be interpreted appropriately).
As in the case of sample variance (defined below), this quantity is undefined for a
sample of size 1, if n − 1 is used as the divisor. This is because the numerator then
becomes x1 − x1 = 0, and the expression (3.5) is of 0/0 form. But if N = n, the AAD
is defined as zero (as the expression (3.5) becomes 0/1 = 0). Expand xn in (3.5), and
simplify to get the alternate expressions

AAD = 1
nN

n∑

i=1

|(n − 1)xi −
n∑

j≠i=1

xj| =
1
N

n∑

i=1

|(1 − 1∕n)xi −
1
n

n∑

j≠i=1

xj|. (3.6)

where we have used a condition on the second indexvar (p. 1–26). The correspond-
ing population analogue is E|X − 𝜇|, where E[ ] denotes mathematical expectation
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(Chapter 8). It is also called mean (absolute) deviation from the mean. As in the case
of arithmetic mean, this measure uses each and every observation of the sample. It is
affected by outliers, but not as much as the range. Computations can be simplified if
medoid is used in place of the mean xn, resulting in AAD from the medoid. When all
sample values are integers, this will ease the computations because the medoid itself
being a sample value will be an integer (whereas the mean need not be an integer)
so that the differences are all integers. A related statistic is median absolute devia-
tion (AAD around the median) defined as

∑n
i=1 |xi − Median|∕N. Median absolute

deviation around the median is the middle value of (sorted) absolute deviations of
observations from the median. Symbolically,

Median absolute deviation = Median|xi − M| where M = Median(xi). (3.7)

Similarly, we could define the median absolute deviation around the medoid as the
middle value of (sorted) absolute deviations of observations from the medoid (by
replacing M by medoid in (3.7)).

3.5.1 Advantages of Averaged Absolute Deviation

As the deviation from each and every sample value is summed, it contains more infor-
mation than the range. It is easy to compute as we need only the absolute deviations
from the sample mean (or median).

3.5.2 Disadvantages of Averaged Absolute Deviation

It does not lend itself to further arithmetic treatment. For example, if a sample S of
size n is divided into two subsamples, and the AAD of each subsample is found, it is
not in general possible to combine the subsample values to find the AAD of S.

3.5.3 Change of Origin and Scale Transformation for AAD

The AAD can be found easily using the change of origin and scale transformation.
Consider the change of origin transformation Y = X + c. Then the AAD of Y is the
same as the AAD of X because each term inside the summation becomes |yi − yn| =
|xi + c − (xn + c)| = |xi − xn|. This holds true for averaged absolute deviation from
medoid and median, as the data are simply translated. Next, consider the change of
scale transformation Y = c ∗ X. Each deviation term of Y is |yi − yn| = |c ∗ xi − c ∗
(xn)| = |c| ∗ |xi − xn|, so that AAD(Y ,N)= |c|*AAD(X,N).

3.6 VARIANCE AND STANDARD DEVIATION

Using the notation introduced in Section 1 (Chapter 1), we define sample variance as

s2
n =

n∑

i=1

(xi − xn)2∕(n − 1). (3.8)
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The variance of the population is defined as

𝜎
2 =

N∑

i=1

(xi − 𝜇)2∕N (3.9)

where 𝜇 is the population mean, n is the sample size, and N is the population size.
Being a sum of squares, s2 and 𝜎2 are always≥ 0. We will keep the divisor n in analogy
with the sample covariance (see Chapter 8) that uses n in the denominator although x
and y are estimated from the data. In addition, the sample covariance should reduce
to the variance when y′i s are replaced by x′i s (and y is replaced by x). Moreover, in
the recursive algorithm for variance defined below, we assume that the variance for
n = 1 (a single observation) is zero. This assumption is invalid if (n−1) is used in the
denominator.

By expanding the square, and summing the resulting terms individually, this could
also be computed as

N ∗ s2 =

(
n∑

i=1

x2
i − nx2

)

=
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2/

n, (3.10)

where N is to be interpreted appropriately (as n − 1 or n). This has a frequency version
given by

s2
n =

n∑

i=1

fi(xi − xn)2∕F =
n∑

i=1

fix
2
i ∕F −

(
n∑

i=1

fixi∕F

)2

, where F =
n∑

i=1

fi. (3.11)

Positive square-root of variance is called the standard deviation. Many other for-
mula are also available for the variance (see References 9, 30–32, which are more of
theoretical interest than from a computational viewpoint.

3.6.1 Advantages of Variance

The main advantages of variance are that (i) it uses all of the sample observations,
(ii) it lends itself to further arithmetic operations, (iii) distribution of sample variance
is known when the population distribution is known, and (iv) it can be found without
data sorting. It is well defined for univariate as well as multivariate samples (but
the range and mean absolute deviation are seldom used for multivariate samples or
procedures).

Theorem 3.1 The sample variance can be recursively computed as s2
n+1 =

(1 − 1∕n)s2
n + (xn+1 − xn)2∕(n + 1), with initial value s2

n=2 = (x2 − x1)2∕2.

Proof: We give a proof for the more general result for the unscaled variance.
Let N denote the denominator of the sample variance for n + 1 DoF. Then
s2

n+1 =
∑n+1

i=1 (xi − xn+1)2∕N, where N is the scaling factor (either n or n + 1). Split
this into two terms to get

Ns2
n+1 =

n∑

i=1

(xi − xn+1)2 + (xn+1 − xn+1)2 = (1) + (2). (say) (3.12)
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Substitute
xn+1 = xn + (xn+1 − xn)∕(n + 1) (3.13)

in (2) to get

[(xn+1 − xn) − (xn+1 − xn)∕(n + 1)]2 = [(xn+1 − xn)(1 − 1∕(n + 1))]2. (3.14)

This simplifies to n2∕(n + 1)2 (xn+1 − xn)2.

Next, substitute for xn+1 in (1) to get

(1) = [(xi − xn) − (xn+1 − xn)∕(n + 1)]2. (3.15)

Expand as a quadratic and sum term by term. The first term becomes (N − 1)S2
n. The

product term reduces to zero using equation 2.4 (p. 46) of last chapter. As the second
term does not involve the index variable i, summing it n times gives the second square

term as n(xn+1 − xn)2∕(n + 1). Combine (1)+(2) and take n∕(n + 1)2(xn+1 − xn)2 as a
common factor to get

Ns2
n+1 = (N − 1)s2

n + n(xn+1 − xn)2∕(n + 1). (3.16)

Divide throughout by N = n to get

s2
n+1 = (1 − 1∕n)s2

n + (xn+1 − xn)2∕(n + 1). (3.17)

If N = n + 1 is used (instead of N = n for s2
n+1) as a scaling factor, the corresponding

recurrence for variance becomes (1 + 1
n
)s2

n+1 = s2
n + (xn+1 − xn)2∕(n + 1) with initial

value s2
n=1 = 0.

EXAMPLE 3.2 Variance of chlorine in drinking water

Chlorine in drinking water at eight locations in ml/cc are [8, 17, 12, 13, 10]. Find
the variance using Theorem 3.1.

Solution 3.2 Table 3.2 gives various steps using both algorithms (that uses n
in the denominator and (n − 1) in the denominator). The sample means (second
column) need be computed until (n − 1)th row. The last entry in 3rd (resp 4th)
column is the variance with n (resp. n − 1) in the denominator.

Theorem 3.2 If (x1, s
2
1) and (x2, s

2
2) are the arithmetic means and variances of two

samples S1 and S2 of respective sizes n1 and n2, the variance of the combined sample
of size n1 + n2 is given by

s2
c = 1

N1 + N2

[

N1s2
1 + N2s2

2 +
n1n2

n1 + n2
(x1 − x2)2

]

. (3.18)

where N1 = n1 − 1,N2 = n2 − 1.
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TABLE 3.2 Recursive Calculation of Variance using
Theorem 3.1

Data Mean Variance1 Variance2
Values Value (n in Dr.) (n − 1 in Dr.)

8 8.00 0.00 0.00
17 12.50 20.25 40.50
12 12.333 13.556 20.333
13 12.50 10.25 13.667
10 9.20 11.50

The second column gives successive sample means, the third column gives
successive variances using n in the denominator, and the fourth column uses
(n − 1) in the denominator of variance.

Proof: By Theorem 2.1, the combined sample mean is xc = (n1x1 + n2x2)∕(n1 + n2).
The variance of the combined sample by definition is

s2
c = [1∕(N1 + N2)]

n1+n2∑

i=1

(xi − xc)2. (3.19)

Consider the expression
∑n1+n2

i=1 (xi − xc)2. Split this into two terms T1 and T2 over S1
and S2, respectively. Substitute for xc in T1 to get

T1 =
∑

xi ∈ S1
(xi − (n1x1 + n2x2)∕(n1 + n2))2. (3.20)

Take (n1 + n2)2 outside the summation from the denominator.

T1 = 1∕(n1 + n2)2
∑

xi ∈ S1
((n1 + n2)xi − (n1x1 + n2x2))2. (3.21)

Add and subtract n2x1 inside the summation, combine −n1x1 and −n2x1 as −(n1 +
n2)x1, to get T1 = 1

(n1+n2)2
∑

xi∈S1
((n1 + n2)[xi − x1] + n2(x1 − x2))2. Expanding the

square and noting that
∑

xi∈S1
(xi − x1) = 0, we get

T1 = 1
(n1 + n2)2

(

(n1 + n2)2
∑

xi ∈ S1
(xi − x1)2 + n2

2

∑

xi ∈ S1
(x1 − x2)2

)

. (3.22)

As (x1 − x2) is a constant, the second expression becomes n1n2
2(x1 − x2)2. Also,

∑
xi∈S1

(xi − x1)2 = N1s2
1. Thus, T1 simplifies to N1s2

1 + n1n2
2(x1 − x2)2∕(n1 + n2)2.

A similar reduction is possible for T2 by adding and subtracting n1x2 inside the

summation of T2. This gives us T2 = N2s2
2 + n2n2

1(x1 − x2)2∕(n1 + n2)2. Add T1 and
T2, and simplify to get
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s2
c = 1

N1 + N2

[

N1s2
1 + N2s2

2 +
n1n2

n1 + n2
(x1 − x2)2

]

. (3.23)

where N1 and N2 are the divisors used in the respective variance (n or n − 1).

Corollary 1 The covariance of two subsamples can be combined using the
relationship

COVc =
1

N1 + N2

[

N1 COVc1
+ N2 COVc2

+
n1n2

n1 + n2
(x1 − x2)(y1 − y2)

]

. (3.24)

where N1 and N2 are the scaling factors, COVc1
is the covariance and (x1, y1) is the

mean vector of the first subsample, and COVc2
is the covariance and (x2, y2) is the

mean vector of the second subsample.

3.6.2 Change of Origin and Scale Transformation for Variance

Theorem 3.3 If data are transformed as y = (x − a)∕c, the variances are related as
s2

y = (1∕c2)s2
x .

Proof: The means are clearly related as y = (x − a)∕c. Consider
∑n

i=1 (yi − y)2 =
∑n

i=1 ((xi −a)∕c−(x−a)∕c)2 = 1∕c2 ∑n
i=1 ((xi −a)−(x − a))2 = 1∕c2 ∑n

i=1 (xi − x)2.

Divide both sides by N gives s2
y = (1∕c2)s2

x .

Dispersion measures concisely quantify the amount of spread inherent in a sample.
Some dispersion measures use a location measure as a pivot to calculate the devi-
ations (Section 3.1.1). Both the sample range and IQR do not use a pivot. Hence,
they can be used to get a preliminary estimate of the spread. Because the dispersion
measures explain the inherent variability in the sample data, those measures that
utilize a location measure are preferred for engineering applications. All absolute
spread measures depend on the unit of measurement of the variable. In other words,
they are scale variant. However, there are some relative measures such as the CV
that does not depend on the unit of measurement. This is summarized as several
theorems below (Section 3.6) in p. 82. The popular dispersion measures can be
arranged according to the inherent information on the amount of spread captured
by them from a sample as: range < IQR < AAD < variance. Thus, the variance
and standard deviation (positive square-root of variance) contain maximum spread
information in a sample.

3.6.3 Disadvantages of Variance

The main disadvantages of variance are that (i) extreme observations on either side
has a large influence on variance, (ii) it is inappropriate for numeric coded ordinal
data, (iii) it can result in loss of precision due to squaring when large decimal numbers
are involved, and (iv) it may require 2 passes through data (in standard algorithm)
although it can be computed in a single pass.
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3.6.4 A Bound for Sample Standard Deviation

As the sample variance is a sum of squares, it is always ≥ 0. Several researchers
have come up with bounds for variance or standard deviation. Mcleod and Hen-
derson [33–35] gave a lower bound for the standard deviation. Shiffler and Harsha
[36] provided an upper bound for the standard deviation in terms of the range. For
a sample of size ≥3, these bounds can be combined to get a bound for the standard
deviation as

R∕(2(n − 1))1∕2 ≤ s ≤ 0.5 ∗ R ∗ (n∕(n − 1))1∕2
. (3.25)

where R is the sample range. Note that the upper bound is not tight asymptoti-
cally. As n becomes large, the quantity (n∕(n − 1))1∕2 will converge quickly to 1,
giving s ≤ R∕2. When n = 2, the square-root simplifies to

√
2, giving s ≤ R/

√
2 =

0.70711 ∗ R. In fact, it can be shown that for n = 2 the equality holds, because
the variance is (x1 − x2)2∕2. A sharper upper bound can be found in Reference 37
as s ≤ R(1∕2 − (n − 2)∕[n(n − 1)])1∕2 for n ≥ 2. Write (n − 2) as (n − 1) − 1 to get

s ≤ R(1∕2 − 1∕n + 1∕[n(n − 1)])1∕2
. (3.26)

As 1∕[n(n − 1)] → 0 when n becomes large, (3.26) becomes s ≤ R(1∕2 − 1∕n)1∕2

for large n (say ≥ 20).

3.7 COEFFICIENT OF VARIATION

Definition 3.5 The CV of a sample is a relative ratio-measure defined as (s∕x) ×
100, and the corresponding population CV is (𝜎∕𝜇) × 100. This form of CV is called
the standard form, and it applies to single variables only.

3.7.1 Advantages of Coefficient of Variation

The CV is simple to understand. It is a unit-less measure whose numerical value
is high when data variance is high. If the variability of two samples measured in
different units are to be compared, CV is the most appropriate measure. In other
words, CV allows variability of heterogeneous samples to be compared among them-
selves. A change of scale transformation Y = c ∗ X will not change the CV as the c
will be canceled out from the numerator and denominator. It can be used to create
confidence intervals. It provides caution on the sample size, normality, or departures
from it.

The CV of a random sample of size 1 is zero if n is used as a divisor in the variance,
and the CV is undefined if n − 1 is used. Symbolically, CV(x1) = 0 if n is used as
scaling factor. For a sample of size 2, CV(x1, x2) = |x1 − x2|∕(x1 + x2) if n is used,
and CV(x1, x2) =

√
2|x1 − x2|∕(x1 + x2) if n − 1 is used in variance. When CV is used
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in the model setting, it can indicate which model better fits the data—the smaller the
CV, the better the fit.

3.7.2 Disadvantages of Coefficient of Variation

As the denominator of CV contains x, the arithmetic mean should be nonzero. If a
variable takes both positive and negative values and the mean is very close to zero,
we cannot use the CV. Thus it is most appropriate when variables are either strictly
positive or strictly negative. This is a disadvantage. However, there is a catch. The
CV is location variant. This means that a change of origin transformation Y = X + c
results in the same numerator sy, but the denominator is shifted by c units. When
CV is used to compare the variability of two samples, at least one of which has zero
mean, we could choose the c carefully in such a way that the resulting means are
nonzero. Alternatively, we could remove outliers from that sample which had a mean
near zero with the hope of shifting it away from zero. It cannot easily be extended to
the multivariate case. Another disadvantage of CV is that it can result in misleading
or conflicting interpretations under some transformations such as y = log(x).

3.7.3 An Interpretation of Coefficient of Variation

As the CV is a ratio of standard deviation (which being the +ve square-root of vari-
ance is always positive) to the mean, its sign depends on the sign of x (if x is positive
(negative), CV is positive (negative); if x is zero, CV is undefined). As the numerator
and denominator are expressed in the same unit as the variate, the ratio is unit-less.
Thus, it summarizes the dispersion of a variable as a concise and unit-less real num-
ber. Hence, it can be used across geographical boundaries, irrespective of the units
in use. When two samples are being compared by the CV, a higher value may be due
to a lower x. Depending on whether x →0 from below or above, the CV will tend to
±∞ for fixed variance. The CV also has an interpretation in terms of the ratio of the
root mean square error (RMSE) to the mean of the dependent variable in regression
models, and as the ratio of the standard error of an estimate to its estimated value [see
(�̂�)∕�̂�] in parameter estimation]. The smaller the CV, the better the goodness of fit, or
the estimation procedure.

3.7.4 Change of Origin and Scale for CV

Consider the change of scale transformation first. Let Y = c ∗ X, where c is nonzero.
We know that sy = |c| ∗ sx and y = c ∗ x. As the scaling factor c factors out from
both the numerator and denominator, the CV is scale invariant (CVy = CVx). This
is a desirable characteristic in some applications such as cross-national comparison
of traits or attributes such as income, profits, and expenses or cross comparison of
scores in different tests such as GRE and GMAT. Next, consider a change of origin
transformation Y = X + d. In this case the standard deviation remains the same, but
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the mean is shifted by d units. Then, CVy = sy∕(x + d) = CVx ∗ x∕(x + d). Thus, the
coefficient of variability can be increased or reduced depending on the magnitude and
sign of x∕(x + d).

3.8 GINI COEFFICIENT

Gini’s mean difference is a summary statistic that measures the extent of the distribu-
tion of a variable by fixing other variables. For a sample (x1, x2, … , xn), it is defined
for raw data as

GMD = (1∕K)
n∑

i=1

n∑

j=1

|xi − xj| = (2∕K)
n∑

i=1

n∑

j>i

|xi − xj|. (3.27)

where K = n(n − 1) if j varies from i to n or K = n2 if j varies from 1 to n. For
frequency distributions

GMD = [1∕(F(F − 1))]
n∑

i=1

n∑

j=1

fi ∗ fj ∗ |xi − xj|. (3.28)

where F =
∑n

i=1 fi. This has the same unit as the data. A unit-less measure can be
obtained by dividing GMD by x to get the Gini coefficient of concentration as

GCC = (1∕K)
n∑

i=1

n∑

j=1

|xi − xj|∕ x. (3.29)

As it is a mean difference (see equation 3.2), it can be used to measure dispersion of
highly skewed data. As the numerator is always positive, GCC can take any positive
value.

3.9 SUMMARY

Popular measures of dispersion are discussed at length in this chapter. In a sense, the
dispersion captures and summarizes data information. The lesser dispersion value
refers to more consistency and hence reliability (see Figure 3.1). The sample dis-
persion measure is a surrogate of the corresponding unknown population dispersion.
Commonly used dispersion measures are range, variance, QD, coefficient of variance,
and absolute mean deviation (see Figure 3.2). The range (xn − x1) is not indicative of
the neighborhood of the data as the same range value could occur among smaller or
larger values. Hence, the sample dispersion is preferred over the sample range. The
variance is of second degree, while the mean is of first degree. The CV (which is the
ratio of the standard deviation over the mean) is often used if the measure of disper-
sion has to be compared across samples. When the data contain one or more unusual
value (which is technically called outlier), the inter-QD is selected over the variance
or range. The 50th percentile (which is technically called the median) partitions the
ordered data into two equal segments. The inter-QD portrays the range between the
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Figure 3.1 Dispersion low and high.
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Figure 3.2 Dispersion measures. (AAD=Average Absolute Deviation from the mean, GMD
= Gini’s Mean Difference, CV = Coefficient of Variation, IQR = Inter-Quartile Range, Abs =
Absolute, Rel = Relative.)

25th and 75th percentiles. When the data have outlier(s), the inter-QD is preferable
over other measures of dispersion. Alternatively, the measure of absolute deviation is
exercised when the data are skewed or have thick tails.

Every data analyst who works with numeric data will find the discussion very
illuminating and easy to follow. Updating formulas that comes handy when new
data arrive are presented and illustrated. A discussion of algorithms for variance can
be found in References 30–32, 38–41. A measure of variance for hierarchical data
appears in Reference 42. Evaluating methods of symmetry are discussed in Refer-
ences 43–45, and Poisson dispersion in Reference 46.

EXERCISES

3.1 Mark as True or False

a) Dispersion is a measure of data spread

b) Third quartile lies between 7th and 8th decile

c) Sample range can distinguish between skewed distributions

d) Every sample observation contributes to the range
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e) Range of a sample can be negative when all data values are negative

f) A sample with large CV is less dispersed than a sample with small CV

g) CV measures the data spread irrespective of the unit of measurement.

3.2 What is the sample range when all
sample observations are the same
(say k)?
(a) 0 (b) k (c) ∞ (d) 1

3.3 Which of the measure additively
combines the squared sample val-
ues? (a) mean absolute deviations
(b) sample range (c) inter-quartile
range (d) variance

3.4 What are the popular categoriza-
tion of dispersion measures?

3.5 What are some desirable qualities
of a good measure of dispersion?

3.6 For which of the following mea-
sures is the change of origin tech-
nique useful? (a) mean absolute
deviations (b) sample range (c)
inter-quartile range (d) variance

3.7 If a sample S is split into two sub-
samples, can you find the range of
S if the range of the subsamples
are known? If not, what additional
information is needed?

3.8 Identify the unit of measurement
in each of the following statis-
tics: (i) s2

n∕xn (ii) AM/GM, where
AM= xn, GM = geometric mean
(iii) 𝜇4∕𝜇2 if all measurements are
in centimeters.

3.9 Consider a statistic defined as sd
n =

1
n−1

∑n−1
j=1 d2

j , where dj = xj+1 − xj

denotes the difference between
successive ordered observations.
When is it minimum? What does
it measure?

3.10 Prove that s ≤ R ( 1
2
− 1

n
)1∕2 for

large n, where s is the sample stan-
dard deviation and R is the range.

3.11 Why is it that a location measure
alone is insufficient to fully under-
stand a data distribution?

3.12 A city has five weight-loss clinics.
Each one uses a different diet and
exercise program. (i) An executive
who wishes to shed the maximum
body fat in shortest time should
prefer a weight-loss program hav-
ing
(a) low variance (b) high variance
(c) negative skew (d) platykurtic
(ii) A housewife who has 15
days available should prefer
a weight-loss program hav-
ing______
(a) high mean >15 (b) low vari-
ance (c) low mean and high vari-
ance (d) high mean and low
variance.

3.13 If F−1(u) = sup(x ∶ F(x) ≤ u), 0
< u < 1 denotes the inverse of
the CDF, prove that a sym-
metric distribution can be char-
acterized by the condition
𝛼 = F−1(u) + F−1(1 − u) = 0 for
u ∈ (0, .5). Prove that such dis-
tributions are symmetric around
0 if F−1(1∕2) = 0 and symmetric
around 𝜇 if F−1(1∕2) = 𝜇. Prove
that 𝛼 > 0 for positively skewed
and 𝛼 < 0 for negatively skewed
distributions. Can you compute
this measure for frequency dis-
tributed data?
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3.14 Can the QD be ever zero? If so,
for what type of data? What is its
interpretation?

3.15 Describe the unit quantile func-
tion. How is it useful to measure
sample variance?

3.16 Critically examine the different
measures for variation, and indi-
cate their advantages and disad-
vantages.

3.17 In what situations is the recur-
sive algorithm for sample variance
helpful over the iterative version?

3.18 If there are two items (x1, x2) in a
sample, prove that the mean abso-
lute deviation around the mean
and median are both equal to half
the sample range.

3.19 If the sample mean and variance of
two independent samples of sizes
8 and 10 are (65, 20) and (70, 32),
find the variance of the combined
sample.

3.20 What are the possible ranges of
values for CV? How is it help-
ful in comparing the variability of
different samples?

3.21 How is the sample standard devi-
ation related to the range? What is
the asymptotic inequality between
them when sample size n is large?

3.22 If the origin and scale are trans-
formed as y = c ∗ x + d, where
c ≠ 0, prove that CVy = CVx ∗
x∕(x + d∕c).

3.23 How does the change of origin
and scale transformation affect the
sample AAD?

3.24 Consider a measure defined as
Q = 1

4

∑4
i=1(Qi − Qi−1), where

Q0 = x(1) is the first-order statis-
tic, Q4 = x(n) and other Q

′
is are the

quartiles. Can it be used to mea-
sure the dispersion? What does
high values indicate?

3.25 Prove that the unit quantile func-
tion of one parameter Weibull
distribution with CDF F(x) =
1 − e−xa

, x, a > 0 is Q(u) =
[1 − log (1 − u)]1∕a. Show that
the median is log (2)1∕a.

3.26 When is the sample range mean-
ingful for numerically coded ordi-
nal data?

3.27 What information is needed to
update the sample range using new
data?

3.28 The percentage of seeds that ger-
minate from eight different plots
are as follows: {98.2, 92.7, 89.3,
94.4, 95.0, 83.1, 90.6, 96.1}. Find
the coefficient of range CR.

3.29 If a quartile coefficient is defined
as qc = (Q3 − Q1)∕(Q3 + Q1),
what are the possible values? Is
it absolute or relative measure?

3.30 Consider a measure defined as
[(Q1 − p − Median) − (Median −
Qp)]∕[Q1 − p − Qp], where p is a
percentile. What does it measure?
What are the possible values?



4
SKEWNESS AND KURTOSIS

After finishing the chapter, students will be able to

◾ Describe measures of Skewness

◾ Understand absolute and relative measures

◾ Comprehend Galton’s, Pearson’s, Bowley’s, and Kelly’s measures

◾ Interpret Pearson’s and Stavig’s kurtosis measures

◾ Describe L-kurtosis

◾ Understand spectral kurtosis

4.1 MEANING OF SKEWNESS

The literal meaning of “skew” is a bias, dragging, or distortion toward some particular
value, group, subjects, or direction.

Definition 4.1 A measure of skewness is a numeric metric to concisely summarize
the degree of asymmetry of a unimodal distribution that can be compared with other
similar numbers.

A great majority of statistical distributions are asymmetric (see Table 4.1). Nev-
ertheless, symmetrical laws such as the normal, Student’s T, Laplace, Cauchy dis-
tributions, and the distribution of sample correlation coefficients are more popular.
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TABLE 4.1 Asymmetry of Some Statistical Distributions

Type Discrete /Continuous Examples

Symmetric Discrete Binomial(n, 1∕2), Discrete Uniform
Symmetric Continuous Normal, Cauchy, Student’s T, Laplace, beta(p, p)
Asymmetric Discrete Binomial(n, p), p ≠ 1

2
, Poisson, geometric

Asymmetric Continuous Exponential, Snedecor’s F, gamma, beta(p, q); p ≠ q

Some of the distributions exhibit symmetry for particular parameter values. Examples are beta(p, p), Bino-
mial (n, 1∕2).

Asymmetry of unimodal distributions can be due to a flat left tail or right tail. Two
asymmetric mirror-image distributions (around the mode) could have exactly the
same location and spread. A quantified measure of this asymmetry is needed to com-
pare and contrast such distributions (see Reference 47 for bimodal data).

A change of origin transformation can be used to align the location measures
of two distributions (or samples). Then, we could compare the spreads of the two
distributions. These two measures are insufficient to fully understand the data. Two
distributions could have the same location and spread, but one could tail-off slowly
to the right, whereas the other could tail off slowly to the left. In other words, two
asymmetric mirror-image distributions (around the mode) could have exactly the
same location and spread. This is exactly the reason for studying skewness [48]. This
information is useful to fit empirical distributions and in parametric analysis. In addi-
tion, possible outliers under the assumption of normality of data may turn out to be
nonoutliers when the data distribution is actually skewed.

A skewed distribution may be a desired outcome in some domains. As an example,
instructors in several educational institutions set the exam questions in such a way that
the resulting scores reflect symmetry (the mark distribution is often unimodal with
a great majority of the class having marks in the neighborhood of the mode, and a
few students with scores in both the extremes—a few failures and more or less an
equal number of distinctions. Owing to the heterogeneity of student population and
different learning habits, a perfect bell shape is seldom achieved. Even if the instructor
had a bell-shaped distribution in mind while setting the exam questions, it could end
up as a skewed distribution. A mark distribution skewed to the left indicates an easy
exam (or a question paper leak or mass copying), whereas a distribution skewed to
the right indicates a difficult exam.

Asymmetry is the opposite of symmetry. It is literally applied to physical struc-
tures, arrangements, formations, and so on. Examples are buildings, walls, gates,
paintings and pictures, arrangement of flowers and beads, formation of groups of
people or ships, and so on around an axis. In statistics, it is used to describe data
distributions around a central value. It is more meaningful for unimodal distribu-
tions. The uniform distribution (both discrete and continuous) exhibits a special
type of symmetry. Note that the symmetry is always measured with respect to the
X-axis (most software packages record the variate values along the abscissa and
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frequencies along the Y-axis). The following discussion is more pertinent to con-
tinuous data than discrete ones. With this convention, positive skewness (or skewed
to the right) indicates a heavy and long-extending tail on the right side of the loca-
tion alignment. Similarly, a negative skewness (or skewed to the left) indicates a
heavy and long-extending left tail. In other words, a disproportionate amount of
data falls on the left or right side of a unimodal distribution, thereby dragging or
dispersing the location measures. This will be apparent only when the data size
is large, and the spread is small. Consider the systolic BP of some patients. If the
number of patients is small (say <12), the values may all be distinct, in which case
the mode is not unique. Therefore, we may have to use grouping of data (using a
class interval) to find symmetry.

The mean, median, and mode coincide for symmetric laws. In addition, the quar-
tiles are equally distant from the median. However, for negatively skewed distribu-
tion, the mean is less than the median and mode in general (although exceptions
do exist). For positively skewed distribution, the mean is greater than the median
and median is greater than the mode in general. Thus, the difference between these
measures can tell us if the data are symmetric or skewed [12]. It is important to
remember that a skewed sample may come from a symmetric distribution and vice
versa because of sampling errors. This error is minimal when the sample size is
large.

If the distribution of marks in a series of tests of the same difficulty level moves
from a positively skewed shape at the beginning to a negatively skewed shape at
the end of the course, it is an indication that the teaching was effective and student
participation was good.

From Table 4.1, it is evident that most of the symmetric distributions are
continuous. An exception is the discrete uniform distribution, which exhibits a
special type of symmetry. The binomial distribution is symmetric when p = 0.5, and
the Poisson distribution (Chapter 6, p. 6–67) approaches symmetry for very large 𝜆
values.

4.1.1 Absolute Versus Relative Measures of Skewness

Absolute measures express the skewness in terms of the unit of measurement. As
the arithmetic mean is greater than mode for positively skewed distributions, d =
(mean-mode) provides a quick check to see if data are skewed. This is an absolute
measure because it uses the same unit as the data. Similarly (Q3 + Q1) − 2 ∗ M where
M is the median is zero for symmetric laws and>0 for positively skewed distributions.
A disadvantage of these measures is that they cannot be compared across samples.
The unit can be canceled by dividing the quantity with another quantity computed
from the same sample that has the same degree. For instance, Bowley’s measure is
obtained by dividing (Q3 + Q1) − 2 ∗ M by (Q3 − Q1). This measure is zero in two
situations:–(i) when data are symmetric, the average (Q3 + Q1)∕2 coincides with the
median M, so that the numerator is zero (ii) when all sample values are the same
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(Q3,Q1), and M are equal. As the denominator is much greater than the numerator,
the numerical value of this measure is much less than 1.

How much skewed is a skew distribution? We need a yardstick to measure the
amount of departure from an otherwise symmetric law. The original skewness mea-
sures used the standard normal distribution N(0, 1) as the yardstick. To quantify the
amount of skewness, we could consider the standard error of skewness (SES) and
measure the departure from twice the standard error. An approximate SES for a
sample of size n is

√
6∕n (see Reference 49. If 2*SES < absolute value of skew-

ness, we may reasonably conclude that the data are from a skewed distribution. We
could also distinguish if the data are skewed to the left (skewness <0) or to the right
(skewness>0). Skewness can be categorized based on the shape of both tails. A distri-
bution which is skewed to the right may have a left tail either below a standard normal
left tail, above it, partially below and partially above it, or align exactly with the nor-
mal. This gives rise to lepto-right-skewed, meso-right-skewed and platy-right-skewed
distributions (where lepto-, meso- and platy- indicate the behavior of the left tail of
a right-skewed distribution). The difference is subtle but important. Analogous def-
inition holds for left-skewed distribution whose right tail may be unaligned with a
normal right tail. As defined in the following, the kurtosis measures the relative con-
centration or amassment of probability mass toward the center (peak) of a distribution.
Hence, these peculiarities are of interest among itself than from a kurtosis view point.

Note that the third-order central moments (in the numerator of some skewness
measures) vanish not only for the normal law but also for any symmetric distribu-
tion. Whether the fourth cumulant vanish or not depends on the distribution. Both the
skewness and kurtosis are measures of shape departures from normality.

Definition 4.2 Skewness is a numeric measure of the degree of departure of a sample
of size n > 2 from symmetry.

The above-mentioned definition pertains to the sample, although it is defined for
both the sample and the population. If a unimodal skewed distribution is superim-
posed on a unimodal bell-shaped distribution so as to align the peaked points exactly
(location alignment), we could visualize various possible types of asymmetry in the
left and right tails. A positively (respectively negatively) skewed distribution has
longer tails on the right (left) side of the location alignment.

EXAMPLE 4.1 Check the skewness of marks

The mark distribution of 60 students of a class had a skewness of −0.65 at the
start of the semester and +0.75 at the end. Are the marks significantly skewed?

Solution 4.1 Here n = 60, so that 6∕n = 0.10, SES = 6∕n1∕2 = 0.316227766,
and 2*SES = 0.632455532. As the absolute values of skewness are both greater
than 2*SES, we conclude that both distributions are skewed.

Skewness was originally defined as a measure of asymmetry. All three location
measures (the mean, median, and mode) together can throw some insight on the
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skewness of a data distribution. In general, mean < median < mode for negatively
skewed distributions, mean = median = mode for symmetric distributions, mean >
median > mode for positively skewed distributions. The variance could be exactly
identical for positively and negatively skewed distributions. We need a measure of
skewness to distinguish between possible asymmetries. There are many measures for
this purpose [50].

4.2 CATEGORIZATION OF SKEWNESS MEASURES

1. Location and scale-based measures
These measures combine the location and scale measures (in the numerator
and denominator, respectively) to get a unit-less measure of dispersion.
One popular example is Pearson’s 𝜂 measure [51] for a sample defined as
𝜂 = (xn − mode)∕sn. As the mode can be on the left or right of xn, the
numerator can be positive, negative, or zero. The denominator being the
positive square-root of variance is always positive. Hence, 𝜂 can take any real
value. As xn and mode both lie in between the minimum and maximum, 𝜂 is
bounded by the sample range.

2. Quartile-based measures
These measures utilize the quartiles of a distribution. The popular examples
are Bowley’s, Hinkley’s, and Kelley’s measures discussed in the following text.
Another measure that utilizes the averaged deviations of percentiles from the
median using a cutoff threshold can be found in Reference 43.

3. Moment-based measures
These utilize the third central moment as 𝛾 = 𝜇3∕𝜎3 for the population. They
are defined for both the population and the sample. As the denominator is the
cube of the standard deviations, they are also unit-less and scale invariant, that
is, X and Y = |c| ∗ X have the same skewness for nonzero c ∈ R.

4. Measures that utilize inverse of distribution functions
These measures use the inverse of theoretical distribution functions. One
example is the spread function. Let F−1(u) = sup(x∶F(x) ≤ u), 0 < u < 1
denotes the inverse of the CDF. Then, a symmetric zero-centered distribution
can be characterized by the condition 𝛼 = F−1(u) + F−1(1 − u) = 0 for
u ∈ (0, .5). Such distributions are symmetric around 0 if F−1(1∕2) = 0, and
symmetric around 𝜇 if F−1(1∕2) = 𝜇, in which case 2𝜇 − 𝛼 = 0. Note that
𝛼 > 0 for positively skewed and 𝛼 < 0 for negatively skewed distributions.
Balanda and MacGillivray [52] used SF(u) = F−1(0.5 + u) − F−1(0.5 − u)
for 0 ≤ u ≤ 0.5 as a measure of skewness. If both F and G are unimodal and
invertible, one could produce a plot of SF(u)∕SG(u) (or its inverse) to compare
the relative skewness.

5. Measures that utilize L-moments
For a real-valued random variable X with finite mean 𝜇, the L-moment
is defined as expected value of linear combination of order statistics.
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The first L-moment is the same as the mean, so that 𝜆1 = E(X) = 𝜇.
The second L-moment 𝜆2 = 0.5 ∗ [E(X(2∶2) − X(1∶2))] where X(i∶n) for i < n
denotes the ith order statistic of a sample of size n. This is E(half range). Define
𝜆3 = (1∕3) ∗ E(X(3∶3) − 2 ∗ X(2∶3) + X(1∶3)). The L-skewness is then defined as
𝜏3 = 𝜆3∕𝜆2 [9, 53]. As 𝜆3 and 𝜆2 are expected values of linear combination of
order statistics, 𝜏3 is unit-less. Analogously, 𝜏2 = 𝜆2∕𝜆1 can be considered as
a measure of dispersion.

The quartiles, deciles, and percentiles are symmetrically located from the median
for all symmetric distributions. While deciles divide the total frequency (or area)
into 10 equal parts, percentiles (%-tiles) divide it into 100 equal parts. We could
go to finer levels into one thousand equal parts, and so on. However, these are
seldom popular owing to the simple reason that sample sizes are most often<1000.
If the sample size is <100, even the percentiles are not used as several percentiles
could coincide. Deciles are special %-tiles, as also quartiles are special deciles. For
example, Q2 = D5 = P50, where Q, D, P stand for quartile, decile, and percentile,
respectively. In the following discussion, k ∈ {1, 2, 3}, j ∈ {1, 2, .., 9}. The general
formula to convert from quartile into decile is Qk = D(10∕4)∗k = D(5∕2)∗k, provided
(5∕2) ∗ k is an integer. The reverse relationship is Dj = Q(2∕5)∗j, provided (2∕5) ∗ j
is an integer (which happens to be the case for j = 5). Similarly Dj = P10∗j or its
reverse Pi = Di∕10 if i∕10 is an integer. A similar relation between quartiles and
percentiles is Qk = P25∗k or Pi = Q⌈i∕25⌉. As Q⌈i∕25⌉ returns the integer part (ceil
operator), several percentiles can get mapped to the same quartile when the data
size is small.

4.3 MEASURES OF SKEWNESS

There are many skewness measures available. They can be applied to the population
or sample. Sample skewness is more important for data analysts and engineers. Most
of the measures discussed in the following are sample measures. It is assumed that
the sample size n is sufficiently large for the expressions involved to be meaningful.
The population analogs are denoted by Greek letters and their sample counterparts
by lower case English letters by convention.

4.3.1 Bowley’s Skewness Measure

As skewness measures the lack of symmetry, several measures can be defined by
utilizing their location relative to the distance from the median. If the distribution is
symmetric, (M − Q1) and (Q3 − M) are equal. In general, (M − Pk) and (P100−k − M)
are equal where Pk denotes the percentiles and P50 = M is the median. This property
has been utilized by Harremoës [54], MacGillivray [55]. The simplest one is due to
Bowley [56], who defined a skewness coefficient as

Bs = [(Q3 − M) − (M − Q1)]∕(Q3 − Q1) = (Q3 + Q1 − 2M)∕(Q3 − Q1), (4.1)
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where Q1 and Q3 are the lower and upper quartiles and M is the median. As the
percentiles are equally distant from the median, the above-mentioned measure is zero
for symmetric continuous distributions because the numerator is zero (this may not
hold for discrete distributions owing to round-off errors).

The corresponding population analog is easily expressed in terms of the CDF as

𝛾 = (F−1(3∕4) + F−1(1∕4) − 2F−1(1∕2))∕(F−1(3∕4) − F−1(1∕4)). (4.2)

This measure was generalized in Reference 57, who parametrizes it in terms of an
arbitrary percentile u as skewness function

[F−1(u) + F−1(1 − u) − 2F−1(1∕2)]∕(F−1(u) − F−1(1 − u)), (4.3)

where u is normalized to the range [0,1]. This is easy to compute for continuous
populations (for discrete populations, the percentiles may not align exactly on variate
values). The above-mentioned measure is negative for u < 1

2
(as the denominator

is −ve). It coincides with Galton skewness measure for u = 3∕4. Subtract and add
F−1(1 − u) in the numerator and simplify to get the alternative form

1 + 2 ∗ (F−1(1 − u) − F−1(1∕2))∕(F−1(u) − F−1(1 − u)). (4.4)

EXAMPLE 4.2 Range of Values for Bowley’s Measure

Prove that Bowley’s Skewness measure lies in the interval [−1,+1].

Solution 4.2 Consider Bs = (Q3 + Q1 − 2M)∕(Q3 − Q1). When M = Q1
(highly positively skewed), the numerator simplifies as (Q3 + Q1 − 2 ∗ Q1)
= (Q3 − Q1). This cancels out with the denominator giving Bs = 1. Sim-
ilarly when M = Q3 (highly negatively skewed), the numerator becomes
Q1 − Q3 = −(Q3 − Q1), giving Bs = −1. Add and subtract Q1 in the denomina-
tor to get Bs = (Q3 + Q1 − 2M)∕(Q1 + Q3 − 2Q1). Divide both the numerator
and the denominator by 2 to get

Bs = [(Q1 + Q3)∕2 − M]∕[(Q1 + Q3)∕2 − Q1)]. (4.5)

As Q1 ≤ Q2 ≤ Q3, the mean (Q1 + Q3)∕2 must lie in between them. Hence, the
absolute value of the numerator must be less than absolute value of the denomi-
nator. This means that |Bs| < 1 for all other cases. Hence, Bs ∈ [−1,+1].
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TABLE 4.2 BMI of 30 Patients—Unsorted

BMI BMI BMI BMI BMI

23.3 24.6 23.4 22.9 17.7
26.2 32.2 23.0 24.4 23.7
25.6 33.6 24.0 25.2 28.6
25.1 27.4 33.0 25.2 24
23.3 24.4 29.7 24 28.5
22.1 23.5 22.3 28.4 26.3

TABLE 4.3 BMI Frequency Distribution

Class Interval Class Middle Frequency Cumulative Frequency Quartile Class

17-20 18.5 1 1
20-23 21.5 4 5
23-26 24.5 15 20 ← 23.5
26-29 27.5 6 26 ← 27.25
29-31 30.5 1 27
≥ 31 33.5 3 30

EXAMPLE 4.3 BMI skewness calculation

The BMI of 30 patients is given in first two columns of Table 4.2. Compute
Galton’s skewness coefficient.

Solution 4.3 Here N = 30, so that N/4 = 7.5. Hence, Q1 is that value below
which one-fourth of the data lie. From the sorted column (3), we find that the
seventh and eighth values are both 23.3. Hence Q1 = 23.30. Next, Q3 is that value
below which three-fourth of the data lie (or equivalently above which one-fourth
of the data lie). From the last column, we see that eight patients have BMI ≥
27.4 and there are seven patients with BMI ≥ 28.4. Hence Q3 = 27.9. If data
are grouped using a class width of 3, we get Table 4.3. Using the formula for
quartiles as Qk = L + (N ∗ k∕4 − M) ∗ c∕f where N = 30, L = lower limit of
quartile class, k = 1 for Q1 and 3 for Q3,M is the cumulative frequency up to (but
excluding) quartile class, c is class width ( = 3) and f is the frequency of quartile
class, we get Q1 = 23.5 and Q3 = 27.25. As M = 24.45, (Q3 + Q1 − 2M)∕(Q3 −
Q1) = (50.75 − 48.9)∕3.75 = 0.4933, showing that the data are skewed to the
right (Table 4.4).

As the kth quartile uses the lower limit of the class where Qk falls, frequency of that
class and cumulative frequency up to the class, there is no need to sort the complete
data. Fast methods exist to find any quantile when the data size is very large and one
of them needs to be computed.
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TABLE 4.4 Range of Skewness Measures

Name Range Based on

Bowley’s measure (−1,+1) Quartile
Pearson’s measure(𝜂) (−3,+3) x, s,M
Bowley’s measure Q [0, max((Q3 − M)∕2, (M − Q1)∕2)] Quartiles
Kelly’s measure K (−1,+1) Deciles
CQD (0, 1) Quartiles

Note: M is the mode by default but could be taken as the mean or median; Di’s are the
deciles.

4.3.2 Pearson’s Skewness Measure

Pearson’s measure of sample skewness was introduced in Section 1. It is a ratio-
measure defined as 𝜂 = (xn − mode)∕sn. Nearly, bell-shaped distributions satisfy an
approximate relationship (x-mode) ∼ 3*(x-median). This allows us to express the
above as 𝜂 = 3*(x-median)/s. This is more meaningful, as the mode of a sample need
not be unique. As the numerator is the difference between two location measures, 𝜂
can be positive or negative. As it is divided by the standard deviation, it is unit-less.
This measure returns 0 for symmetric distributions. It is <0 for negatively skewed
distributions. The expected value of these statistics tends to zero when samples come
from large symmetric populations. For most data, it will lie in the range (−3,+3).

Pearson’s 𝜂 = (x − mode)∕s ≃ 3 ∗ (x − median)∕s ∈ (−3,+3). (4.6)

Pearson also suggested another measure of skewness in terms of third moment of a
unit normalized random variable as

𝛾1(X) = E[(X − 𝜇)3]∕𝜎3 = E[(X − 𝜇)∕𝜎]3 = E(Z3). (4.7)

This can be expressed in terms of moments as 𝜇3∕𝜎3. As the standard normal distri-
bution has skewness zero, positive values of skewness indicates a flat right tail and
vice versa. Its square 𝛽1 = 𝛾

2
1 is sometimes used, under the assumption of the exis-

tence of finite second and third moments. As the numerator contains a centralized
measure (with expected value zero for symmetric distributions), this measure is loca-
tion invariant for unimodal distributions. As the denominator contains quantities in
the same unit, it is unit-less. As the orders of the numerator and the denominator are
the same, the measure is scale invariant too.

EXAMPLE 4.4 Pearson’s skewness calculation

Compute Pearson’s skewness for the data in Table 4.2.

Solution 4.4 We find x = 25.49667, and s = 3.4455852, Median M = 24.45.
Substitute these values to get 𝜂 = 3 ∗ (25.49667 − 24.45)∕3.44558 =
3.14∕3.44558 = 0.9113, showing that the data are skewed to the right.
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EXAMPLE 4.5 Is marks distribution bell-shaped?

The marks obtained by students in an exam have mean 70 and median 72, with
a standard deviation of 8. Is the distribution of marks symmetric? If not, is it
skewed to the left or right?

Solution 4.5 We find Pearson’s measure of skewness as 𝜂 = 3*(x-median)/s =
3*(70 − 72)/8 = −6∕8 = −0.75. As this is <0, the distribution is asymmetric and
is negatively skewed.

A skewness measure can be used to compare two samples drawn from distinct
populations. However, as the sample statistics vary in repeated sampling from the
same population, these comparisons are often vague. For example, Pearson’s 𝜂 coef-
ficient has expected value (Chapter 8) zero for unimodal distributions. Suppose we
take repeated samples from a uniform or U-shaped distribution. The 𝜂 coefficient will
vary widely in these situations (because the mode is not well defined for uniform dis-
tributions, and there are two modes for U-shaped distributions). See Reference 58 for
a discussion on a quadratic-mean based skewness test.

The concept can be extended to population densities with intent to order them
based on a skewness measure. One notable contribution is by van Zwet [59], who
defines a partial-order among probability laws with cumulative distributions F and
G as F≤sG iff G−1(F(x)) is convex for x ≥ k (or equivalently F−1(G(x)) is concave),
where k is the common point of symmetry of the distributions. This allows one to
compare those distributions, the inverse of at least one of which exists. Symmet-
ric distributions can be converted into asymmetric ones using the transformation
f (x, 𝜆) = 2g(x)G(𝜆) where 𝜆 ∈ ℝ, and G() denotes the CDF [60, 61].

4.3.3 Coefficient of Quartile Deviation

The coefficient of quartile deviation exclusively uses the first and third quartile

CQD = (Q3 − Q1)∕(Q3 + Q1). (4.8)

While Bowley’s measure uses the median, CQD does not depend on the median.
Hence, it is less informative. As the numerator and denominator are both linear in Qi
and measured in the same units, CQD is a unit-less ratio measure with finite range.
It is always positive as both the numerator and the denominator are positive.

EXAMPLE 4.6 Range of values for CQD

Prove that CQD ∈ (0,1).

Solution 4.6 Add and subtract Q1 in the numerator to get (Q3 + Q1 − 2Q1).
Combine the first two terms with the denominator and write the third terms sep-
arately. Then CQD = 1 − 2Q1∕(Q1 + Q3). Because Q3 (being the third quartile)
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divides the entire data in 75%:25% ratio, it is always greater than Q1. Thus, the
ratio Q1∕(Q1 + Q3) is always in the range (0,.5). Substituting 0 shows that CQD
is always less than 1. Substituting 0.5 shows that CQD is greater than zero (see
Table 4.3). Hence CQD ∈ (0,1).

4.3.4 Other Skewness Measures

The concept of symmetry has been defined in terms of density or distribution func-
tions in the above-mentioned discussions. Kelly’s measure of skewness uses deciles
and is defined as (D1 + D9 − 2D5)∕(D9 − D1). The inverse Gaussian (IG)-symmetry
is an analog that utilizes equality of positive and negative moments. For the IG(𝜇, 𝜆)
law (Chapter 7, pp. 7–64), it is easy to verify that E(X∕𝜇)−r = E(X∕𝜇)r+1, where neg-
ative index denotes inverse moments. The negative moments are defined only when
f (x) = 0 for x = 0. This property is also satisfied by the log-normal law and scale
mixtures of IG distributions [62].

The skewness measure defined earlier is biased. An unbiased estimator can be
obtained by differently scaling it to have an expected value exactly equal to the
population skewness. This is why some software packages use n∕[(n − 1)(n − 2)]
∑

j[(xj − x)∕s]3 (for n ≥ 3) as a measure of skewness. See Reference 63 for a com-
parison of skewness measures.

4.4 CONCEPT OF KURTOSIS

Kurtosis originated in data analysis. Some data distributions are more peaked than the
standard normal law, whereas some others are less peaked. This prompted Pearson
(1905) to classify distributions as leptokurtic, mesokurtic, and platykurtic. Kurtosis
was originally defined using the standard normal law as a yardstick. A data distri-
bution that has the same kurtosis as N(0, 1) is called mesokurtic. Those with higher
kurtosis is called leptokurtic and with lower values is called platykurtic. They are
applicable to discrete and truncated data, skewed, and symmetric data that are con-
tinuous. They are more meaningful to unimodal data than rectangular data. They are
less meaningful to U-shaped and other multimodal data.

Definition 4.3 Kurtosis is a measure of both the peakedness of the distribution in and
around the location measure (center of mass) and a measure of the tail weights that
jointly characterize the accumulation of probability mass toward the center [64].

The population analogs are denoted by Greek letters and their sample counter-
parts by lower case English letters by convention. Pearson’s kurtosis measure for the
population is denoted by 𝛽2 and sample counterpart by b2 (or b2(n)).

4.4.1 An Interpretation of Kurtosis

Pearson’s definition of kurtosis confines itself to unimodal distributions. It empha-
sizes the overall frequency at or around the central part (mode) of a distribution.
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As theoretical distributions can take a variety of shapes depending on the parame-
ter values, this “central part” may move to the extremes for some parameters. One
example is the exponential distribution c ∗ exp (−c x) or the Poisson distribution
with very small 𝜆 values (say 𝜆 <0.10) that tails off slowly to the right (the left tail of
these distributions are either very short or nonexistent). Kurtosis is defined for these
distributions too. Such distributions are not kurtosis comparable with others that tails
off in both directions. The classical kurtosis measures how much of the probability
mass is moved from the shoulders (say within 𝜇 ± 2𝜎 to 𝜇 ± 3𝜎) of a normal law to
the center that results in an identical leptokurtic distribution or vice versa (how much
mass is moved from the central part (say from 𝜇 ± 𝜎) to the regions beyond, so as to
get a platykurtic distribution). To quantify the amount of kurtosis, we could consider
the SEK and measure the departure from twice the standard error. An approximate
SEK for a sample of size n is

√
24∕n (see Reference 49. If 2*SEK < absolute value

of kurtosis, we may reasonably conclude that the data are from a non-platykurtic
distribution. The above-mentioned interpretation of kurtosis can be refined, resulting
in a new interpretation in terms of both the tailing off behavior combined with the
peakedness simultaneously [65]–[70].

As the variance is a quadratic function of the random variable (for a popula-
tion) or a quadratic function of the sample values (for s2), its second moment has
power 4 (it is a biquadratic or quadratic of the random variable or sample values).
In other words, the variance of the sample variance must be a function of Pearson’s
𝛽2 (Var(s2)/E[s2]2 = 𝛽2 − 1 asymptotically). As mentioned earlier, the variance is
measured in the same unit as the sample values, whereas the kurtosis is a unit-less
measure. If the sample size is large, it is known that

√
n(s2 − 𝜎2) → N(0, (𝛽2 − 1)𝜎4),

which is interpreted as convergence in distribution. As 𝛽2 = 3 for the standard normal
law, the asymptotic convergence is to N(0, 2). In addition,

√
n(log (s2) − log (𝜎2)) →

N(0, (𝛽2 − 1)) using Mann–Wald theorem [62]. It is well known that ns2∕𝜎2 is dis-
tributed as 𝜒2

n−1 when samples come from a normal population, so that E(ns2∕𝜎2)2 ≃
2(n − 1). This result is used in some of the kurtosis measures defined in the following
discussion.

EXAMPLE 4.7 When is binomial distribution mesokurtic?

Prove that the binomial distribution is mesokurtic when p = 1
2

(

1 ± 1
√

3

)

.

Solution 4.7 The coefficient of kurtosis of binomial distribution is 𝛽2 =
3 + (1 − 6pq)∕npq (Chapter 6). For mesokurtic distributions, 𝛽2 = 3. This
means that (1 − 6pq)∕npq = 0. As the denominator is always positive, this
expression is zero when pq = 1∕6. Write this as p(1 − p) − 1∕6 = 0 or equiv-

alently 6p2 − 6p + 1 = 0 and solve for p to get p = 1
2
±

√
3

6
. Consider the

second expression
√

3
6

. Multiply numerator and denominator by
√

3 and

cancel out 3 to get 1∕2
√

3. Substitute in the aforementioned and take (1/2)
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as common factor to get the condition as p = 1
2

(

1 ± 1
√

3

)

. The distribution

is leptokurtic (respectively platykurtic) if (1 − 6pq) > (respectively <) 0. In

terms of p this becomes p > (respectively <) 1
2

(

1 ± 1
√

3

)

. Equivalently,

it is leptokurtic if p < 1
2

(

1 − 1
√

3

)

or p > 1
2

(

1 + 1
√

3

)

and platykurtic if

1
2

(

1 − 1
√

3

)

< p < 1
2

(

1 + 1
√

3

)

.

4.4.2 Categorization of Kurtosis Measures

The kurtosis can be measured in more than one way [61]. This section gives a cate-
gorization of popular kurtosis measures.

1. Moment-based measures
The classical kurtosis measures are moment-based and assume the existence of
finite fourth moment (for the population). Most of them utilize the fourth central
moment or its scale transforms. They are defined for both the population and the
sample. Pearson’s kurtosis is expressed for a population in terms of moments as
𝛽2 = 𝜇4∕𝜇2

2. As the denominator is the fourth power of the standard deviations,
they are also unit-less. Because the standard normal distribution has kurtosis 3,
the quantity 𝛾2 = 𝛽2 − 3 is widely used (see the following discussion).

2. Measures that utilize standardized variables (z-scores)
The classical measure of Pearson’s population kurtosis is defined as 𝛽2 = E[z4]
where z = (x − 𝜇)∕𝜎. Stavig’s kurtosis measure [71] is defined as 1 − E[|z|].
Seiner Bonett used E[g(z)] where

g(z) = ab−|z| for 2 ≤ b ≤ 20, and a[1 − |z|b] for 0.2 ≤ b ≤ 1, (4.9)

which gives more importance to the peak at the center for unimodal data.
3. Quantile-based measures

These measures utilize the quantiles of a distribution. The popular ones are due
to Balanda and MacGillivray [52], Groeneveld and Meeden [72] and Groen-
eveld [73].

4. Measures that utilize inverse of distribution functions
These measures use the inverse of theoretical distribution functions. One
example is the spread function of Balanda and MacGillivray [52]

SF(u) = F−1(0.5 + u) − F−1(0.5 − u) for 0 ≤ u ≤ 0.5. (4.10)

The u is called interquantile distance. If both F and G are continuous unimodal
and invertible, one could produce a plot of SF(u)∕SG(u) (or its inverse) to com-
pare the relative skewness [74].
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5. Measures that utilize density crossing
The “density crossing” is a sufficient condition to kurtosis-order two samples.
Finucan [75] showed that if two distributions have the same variance, and if the
frequency curves cross twice on each side of the mode, then one of them has
higher kurtosis than the other.

4.4.2.1 Van Zwet ordering of kurtosis As in the case of skewness, theoretical
distributions can be “kurtosis ordered” [59]. This is more meaningful for symmetric
unimodal distributions. A bivariate ordering based on both the skewness and the kur-
tosis is more meaningful for asymmetric distributions. As various distributions have
different range, they are standardized to the same range before they are ordered.

4.5 MEASURES OF KURTOSIS

Kurtosis measures are used to numerically evaluate the relative peakedness or flatness
of data. The standard normal distribution can be used as a yardstick for bell-shaped
data, but the concept is valid for other shapes such as J-shaped, reverse J-shaped,
and cusp-shaped data. It is applicable to both the sample and the population. This
has important implications in some fields. As examples, suppose that there are many
weight-loss programs available. The distribution of actual weight lost, or the time
spent in the program by participants can take various shapes. A negatively skewed
distribution in the first case will indicate that more persons lost more weight and in
the second case will indicate that participants who spent more time in the program lost
more weight. A leptokurtic distribution indicates that the program was very effective
in weight loss, whereas a platykurtic distribution indicates that the weight loss was
gradual. Hence, people will be more attracted to a positively skewed or leptokurtic
weight-loss program. Similarly consider machine servicing by various vendors or
repair persons. If there are multiple shops that could do this, a client may be more
interested in that service shop with a leptokurtic and positively skewed servicing time
distribution. We need a standard scale to measure the amount of kurtosis.

4.5.1 Pearson’s Kurtosis Measure

Using the reasoning in page 4–22, Pearson defined the population kurtosis in terms
of moments as

𝛽2 = 𝜇4∕𝜇2
2 = E(X − 𝜇)4∕[E(X − 𝜇)2]2 = E(X − 𝜇)4∕𝜎4 = E[(X − 𝜇)∕𝜎]4, (4.11)

where E() denotes mathematical expectation (Chapter 8) [76]. This is the fourth
moment of the standardized variate Z = (X − 𝜇)∕𝜎. Using V(X) = E[X2] − E[X]2
on [(X − 𝜇)∕𝜎]2, we have

V{[(X − 𝜇)∕𝜎]2} = E{[(X − 𝜇)∕𝜎]4} − {E[(X − 𝜇)∕𝜎]2}2
. (4.12)
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Rearranged, we get E{[(X − 𝜇)∕𝜎]4} = V{[(X − 𝜇)∕𝜎]2} + {E[(X − 𝜇)∕𝜎]2}2.
The second expression being the square of the variance the RHS becomes
V{[(X − 𝜇)∕𝜎]2} + {V[(X − 𝜇)∕𝜎]}2. An interpretation of this result is that the
kurtosis and variance (spread) are related through squares. As the numerator is an
even function of the variate, this measure allows one to compare the kurtosis of
asymmetric distributions. The sample kurtosis coefficient is

b2 = 1
n

n∑

j=1

(xj − xn)4∕s4
n, (4.13)

where sn is the sample standard deviation. Because sums of fourth powers is always
positive, b2 ≥ 0. As the zero-point is well defined, it is a ratio-measure with range
∈ ℝ. It is shown in the following (next page) that the kurtosis of the standard nor-
mal distribution is 3. This means that irrespective of whether the data are discrete or
continuous, we could subtract 3 to get 𝛾2 = 𝛽2 − 3 as a standardized measure of kur-
tosis as suggested by Fisher. Then 𝛾2 > 0 indicates leptokurtic and 𝛾2 < 0 indicates
platykurtic distributions. Replacing the population quantities by the corresponding
sample equivalents, we could get a biased estimate as

b2 =
∑

j(xj − x )4∕n
[
∑

k
(xk − x )2∕n2

] =
n
∑

j(xj − x )4
[
∑

k
(xk − x )22

] . (4.14)

The sample kurtosis is a biased estimator of the population kurtosis. We need
to apply a different scaling factor to get the unbiased estimate. This is why some
software packages use n(n+1)

(n−1)∗(n−2)∗(n−3)
∑

j[(xj − xn)∕sn]4 − K where K is a correction

factor ((n − 1)2∕[(n − 2)(n − 3)]).

EXAMPLE 4.8 Classical kurtosis coefficient

Prove that the classical kurtosis coefficient measures the dispersion of
[(X − 𝜇)∕𝜎]2 around its mean 1.

Solution 4.8 Replace E[(X − 𝜇)∕𝜎]2 on the RHS of equation (4.12) by
V[(X − 𝜇)∕𝜎] + {E[(X − 𝜇)∕𝜎]}2. As Z = (X − 𝜇)∕𝜎 is a standardized variate,
it has mean E(Z) = 0 and variance V(Z) = 1. If X is normally distributed,
((X − 𝜇)∕𝜎)2 has a chi-square distribution having 1 DoF with mean 1 and
variance 2 (Chapter 7). Substitute these values in equation (4.12) to get

V{[(X − 𝜇)∕𝜎]2} = E{[(X − 𝜇)∕𝜎]4} − 1. (4.15)

This shows that E{[(X − 𝜇)∕𝜎]4} = V{[(X − 𝜇)∕𝜎]2} + 1 measures the disper-
sion of [(X − 𝜇)∕𝜎]2 about its mean 1 (which is the variance of Z = (X − 𝜇)∕𝜎).
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Substitute for V{[(X − 𝜇)∕𝜎]2} = 2 (chi-square variance with 1 DoF) shows that
the kurtotis is 3 when X is normal.

The dependency of kurtosis on variance is more pronounced for symmetric dis-
tributions than for others (asymmetric and truncated distributions). The amount by
which spread is reduced when kurtosis is increased depends also on whether fre-
quency is moved from both the shoulders of a distribution to the center or only
from one side (left or right) to the center, in which case the reduction of variance
could be minimal. If one is interested only in the peakedness of distributions, a trun-
cated measure that eliminates the contribution of the tail(s) may be more appro-
priate. The truncation point can be setup equidistant from the mode for symmetric
distributions.

For the standard normal distribution, 𝛽2 is 3. However, there exist many other dis-
tributions that also have 𝛽2 = 3. For example, the Tukey distribution with 𝜆 = 5.2
and double gamma law with 𝛼 = 0.5 ∗ (1 +

√
13) all have 𝛽2 = 3, although their

shapes are different [77, 78]. This is because Pearson’s kurtosis measure encapsu-
lates both the peakedness and tail weight(s) of a distribution. This is easy to under-
stand using truncated distributions. A left-truncated distribution tails off slower than
their nontruncated counterparts. Truncating a distribution at left or right 𝛼 tail also
increases the peak probability by f (x)∕(1 − 𝛼) where 𝛼 is the probability of truncated
part.

4.5.2 Skewness–Kurtosis Bounds

Several researchers have studied the d = (skewness−excess kurtosis) quantity from
various perspectives. See for example References 79, and 80. Pearson obtained the
bound 𝛽2

1 − 𝛽2 ≤ 2 for Bernoulli distributions. This was further improved by several
researchers. If the distribution is infinitely divisible, 𝛽2

1 ≃ 𝛽2, and 𝛽2
1 ≤ 𝛽2 is attained

for normal and Poisson distributions [81]. This property was used in Reference 82 to
distinguish Poisson or normal distributions from other infinite divisible distributions.
A similar quantity is c = skewness/kurtosis (for kurtosis≠ 0), which is well behaved
for symmetric distributions in general and the normal distribution in particular. See
Reference 83 for some inequalities, Reference 54 in the context of minimizing infor-
mation divergence under moment constraints, Reference 84 for a studentized range
based test and Reference 85 for a right and left inequality order, and Reference 86 for
skewness-invariant measures of kurtosis.

4.5.3 L-kurtosis

This is a generalization of kurtosis, introduced by Hosking [53], that uses L-moments
(denoted by 𝜆

′
ks). For a real-valued random variable X with finite mean 𝜇, we define

the L-moment as expectation of linear combination of order statistic as follows (see
page 4–10). Let Xn

(k) denote the kth order statistic of a random sample of size n.

Define 𝜆3 = (1∕3) ∗ E(X3
(3) − 2 ∗ X3

(2) + X3
(1)) and 𝜆4 = (1∕4) ∗ E(X4

(4) − 3 ∗ X4
(3) +
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3 ∗ X4
(2) − X4

(1)). Note that the coefficients of Xj
(k) are the rows of Pascal’s triangle

with alternating signs. The L-skewness is then defined as 𝜏3 = 𝜆3∕𝜆2. Similarly,
L-kurtosis is defined as 𝜏4 = 𝜆4∕𝜆2

2. As both are expectation of linear combination
of order statistics, they are unit-less measures.

4.5.4 Spectral Kurtosis (SK)

As mentioned earlier, kurtosis can clearly distinguish between peakedness and flat-
ness in numeric data in the interval or ratio scale. It is a quantified real number
(+ve or −ve) whose magnitude represents the amount of departure of a distribu-
tion from the shoulders toward the center and tails. This property of kurtosis can
be used to predict machine faults (using past data) [87], in fault diagnosis of equip-
ments or independent parts and materials [88, 89] damage assessment of structures
[90], crack detection of isotropic plates, machine diagnostics and prognostics [91],
modular classification of digital signals, and so on. As an example, they can be used
to warn an operator on machine overloads or wear and tear beyond a threshold. Con-
sider an aircraft or helicopter with a fixed weight limit on the cargo and passenger
compartments, respectively. If either or both of these sections exceed the weight
limit, resulting in an overall overweight, the bearings sound during takeoff due to the
excess weight acting down can slightly deviate from the normal takeoff sound at the
same ground speed (in the case of aircraft). Similarly, by analyzing acoustic signals,
one can distinguish between human footsteps from background noise (impurities)
or identify submarines from whales in deep water. Seismic sensors and geophones
use such signals to automatically measure the movement of objects or to distinguish
between possible objects (such as vehicles, humans, other animals, or objects) and
direction of movement (moving toward, away from or along a trajectory around the
sensor).

Definition 4.4 Spectral Kurtosis (SK) is a ratio-measure defined in the frequency
domain of a signal that reveals the deviation from Gaussianity of the spectral com-
ponents with intent to separate randomly occurring signals from normal ones using
cumulants.

The above-mentioned definition assumes that original data are transformed into
a band-delimited frequency domain using one of the popular frequency transforms
such as discrete Fourier transform (DFT), discrete wavelet transform (DWT), and so
on. A simpler definition that hides the technical details is as follows:

Definition 4.5 The spectral kurtosis of a signal is the kurtosis of its sampled
frequency components.

Let x[n] denote a real-time discrete random process where the index n denotes the
time. Let X[m] denote the transformed signal in the frequency domain. Then, the SK
of x[n] is defined as

𝜅x(m) = 𝜅4[X[m],X∗[m]]∕𝜅2[X[m],X∗[m]]2, (4.16)
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where 𝜅r is the rth order cumulant and X∗[m] denotes the complex conjugate. In the
case where x[n] is a stationary random process, nonnull cumulants of X[m] will have
as many complex conjugate terms as nonconjugate terms.

4.5.5 Detecting Faults Using SK

Rotating machines typically exhibit nonstationary vibration signatures that are easy
to detect using SK [92]. The popularity of SK comes from its proved effectiveness
in real-time signal detection and removal of noise (impurities, harmonics, outliers,
or deviants). In time-varying discrete signals, it can distinguish between constant
amplitude harmonics, time-varying amplitude harmonics, and noise. In addition, it
is conceptually simple and easy to compute. Its value is independent of the noise
present in the input signal. This is why it has been applied in a variety of fields such
as astronomy, industrial robotics, and deep-sea explorations.

Consider a healthy induction motor running at a constant speed. The harmonic
components of such asynchronous machines are constant amplitude harmonics. The
SK of such faulty machines can be compared with healthy ones to identify possible
deviations [93]. This means that the data generated by a healthy machine is stored
for future use and compared continuously with current data generated while it is
presumably operating under fault (such as cracks, defunct components, or lubricant
depletion) to detect any possible deviations. Owing to the heterogeneity of work-
ing conditions, a healthy data vector is used instead of a single data instances. These
data are usually bandpass filtered and transformed into the frequency domain (usually
using short time Fourier transform (STFT) or wavelet transforms [90] and processed
in a fixed time window. The SK of both these data is found and compared to detect
defects. Another application is to detect and remove (if present) radio-frequency inter-
ference (RFI) in radio astronomy and GPS. The precision of such event or object
identification can be improved using multiple receivers.

SK can be used to measure the impulsiveness of signals (variation of frequencies)
as a function of frequencies in a band-filtered domain [94]. They can give an indica-
tion on the most impulsive part of a vibrating signal. Kurtosis of each frequency band
can be used to improve the precision in a time or frequency decomposed signal. See
References 95–98 for applications to fault diagnosis.

4.5.6 Multivariate Kurtosis

The kurtosis concept has been extended to multivariate distributions by many
researchers. See References 49, 99–101. The following discussion is on multivariate
continuous distributions, although the concept is valid for discrete distributions.
Let 𝜇 and Σ denote the mean vector and variance–covariance matrix of a mul-
tivariate distribution in ℝd. Then, the classical kurtosis measure [99] is defined
as 𝛽d = E{[(X − 𝜇)′Σ−1(X − 𝜇)]2}. As E{[(X − 𝜇)′Σ−1(X − 𝜇)]} is the squared
Mahalanobis distance metric, this represents the second moment of Mahalanobis’
squared distance. The sample analog is obtained by replacing 𝜇 by the mean vector X
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and Σ by the sample variance–covariance matrix. A discussion of source separation
using kurtosis maximization can be found in Reference 102.

4.6 SUMMARY

This chapter discussed several measures of skewness and kurtosis. Most of the pop-
ular statistical techniques are devised for the symmetric bell-shaped data (which is
technically called normal data). The skewness captures the lack of symmetry in the
data trend. Kurtosis captures the tail thickness in the data trend. Financial and health
data are also known to exhibit thick tailness.

Most of the popular measures of skewness and kurtosis are based on the central
moments or functions of it. However, it is well known that the moments do not always
determine a distribution uniquely. Several examples to support this fact are available
in the literature (see References 60 and 103. This leads to skewness and kurtosis
measures based on other statistics than moments.

√
𝛽1 and 𝛽2 are routinely used in

statistical analysis [104]. Asymptotic distributions of skewness and kurtosis coeffi-
cients are discussed in Reference 105, an application in regenerative simulation in
Reference 106, and rain-drop diameter distribution in Reference 107. An applica-
tion of fuzzy mean-variance-skewness to portfolio selection models can be found in
Reference 108. A visualizing discussion can be found in Reference 109.

EXERCISES

4.1 Mark as True or False

a) Skewness is a measure of the lack of symmetry

b) Third moment measures the asymmetry of data

c) Zero skewness indicates symmetry around the median

d) Positive skewness indicates a long left tail

e) Every sample observation contributes to the coefficient of skewness

f) Kurtosis measures are useless in providing variance of data

g) The skewness coefficient is independent of change of scale transformation

h) Truncating data at left end increases kurtosis

i) A left-truncation of symmetric law makes it positively skewed

j) Spectral kurtosis uses frequency transformed data.

4.2 Prove that Bowley’s skewness
measure varies between −1 and
+1.

4.3 For bell-shaped distributions
prove that the skewness measures
are zeros.

4.4 If Pearson’s 𝜂 is zero, one can
infer that the__ (A) data distribu-
tion is symmetric (B) distribution
is mesokurtic (C) x = mode but
distribution need not be symmet-
ric (D) distribution is bell-shaped
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4.5 Show that the kurtosis of stan-
dard normal distribution is 3. Dis-
cuss how this helps in asymptotic
convergence of other distributions
that tend to standard normal for
large parameter values.

4.6 What are some desirable qualities
of a good measure of skewness?

4.7 Describe how you will check sym-
metry using the 5-number sum-
mary of a sample.

4.8 Arrange the following distribu-
tions according to increasing lev-
els of kurtosis (called kurtosis
ordering) (i) Student’s T distri-
bution with n < 25, (ii) standard
Cauchy distribution, (iii) standard
normal and (iv) double exponen-
tial (v) gamma distribution with
parameters (10, 2)

4.9 Consider the distribution of marks
obtained in an exam. What type
of skewness is exhibited in the
following situations? (i) the exam
was easy for majority of stu-
dents, (ii) the exam was difficult
for majority of students, and (iii)
questions that carry around 50 of
the marks were easy questions.

4.10 What is the 5-number summary
of a sample? Can you check the
skewness and kurtosis of the sam-
ple using the 5-number summary?

4.11 Find the moments of gamma dis-
tribution, and obtain the measures
of skewness and kurtosis.

4.12 If the sign of kurtosis statistic is
positive, it indicates (a) leptokurtic
distribution (b) mesokurtic distri-
bution (c) platykurtic distribution
(d) normal distribution.

4.13 What is the value of skewness for
the following distributions?
A) bell-shaped distribution B)
continuous uniform distribution,
C) symmetric triangular distribu-
tion.

4.14 What is the range of possible val-
ues of Pearson’s skewness mea-
sure 𝜂 = (x-mode)/s?. What does
a zero value indicate? What is
its expected value for bell-shaped
distributions? What is a disadvan-
tage of this measure?

4.15 What is the range of values for
the standard skewness and kurto-
sis measures? What is the reason
for defining the kurtosis measure
𝛾2 as 𝛽2 − 3? Derive its value for
standard normal distribution.

4.16 What does a distribution of marks
in an exam skewed to the left indi-
cate?

4.17 When is the Bowley measure
and Galton measure of skewness
equal?.

4.18 If a symmetric distribution is
left-truncated, will the new distri-
bution be positively or negatively
skewed? Will it change disper-
sion?.

4.19 Does the skewness and kurtosis
get affected by the change of scale
transformation Y = c ∗ X? Does
the quantile based measures get
affected?

4.20 What value does CQD = (Q3 −
Q1)∕(Q3 + Q1) take for (i) sym-
metric data? (ii) for positively
skewed data?
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4.21 Show that the population skew-
ness can be expressed as 𝛽1(X) =
[E(X4) − 4𝜇E(X) + 6𝜇2E(X2) −
3𝜇4]∕d4, where d = std.dev.

4.22 What is the range of Moore’s kur-
tosis measure? What are the possi-
ble value ranges?

4.23 Comment on the statement “kur-
tosis and variance (spread) are
inversely related.”

4.24 What is the relation between quar-
tiles and percentiles?

4.25 Give the mathematical expression
to convert deciles into quartiles.

4.26 When is the continuous uniform
distribution (CUNI(a,b)) platykur-
tic?

4.27 Prove that 𝛽2
1 ≤ 𝛽2 + 5/6.

4.28 Consider a measure defined as
Q = (Q2 − Q0)∕(Q4 − Q2) where
Q0 = x(1) is the first-order statis-
tic, Q4 = x(n) and other Q

′
is are

the quartiles. Can it be used to

measure the skewness? What does
high values indicate?

4.29 Prove that the kth percentile is
given by Pk = L+(N*k/100−M)*
c/f, where L = lower limit of per-
centile class, M is the cumulative
frequency up to (but excluding)
percentile class, c is class width
and f is the frequency of percentile
class.

4.30 Which of the following measures
uses 𝜅4∕𝜅2

2 ? (a) dispersion, (b)
skewness, (c) kurtosis, (and d)
location

4.31 Find skewness for Bragg reflec-
tion of X-ray data {0.0795,
0.0841, 0.0790, 0.0844, 0.0842,
0.0840}.

4.32 Find skewness for the seeds
example data (p. 3–31) given in
Chapter 3

4.33 Prove that the skewness can
be increased using one-sided
truncation.



5
PROBABILITY

After finishing the chapter, students will be able to

◾ Comprehend the concept of probability

◾ Explore different ways to express probability

◾ Understand various approaches to probability

◾ Grasp the meaning of events and how to assign probabilities to them

◾ Apply various counting rules and selection techniques

◾ Differentiate between dependent and independent events

◾ Understand conditional probability including Bayes theorem

◾ Practice computations of probabilities for a variety of problems

5.1 INTRODUCTION

Probability had its humble beginning in gambling and games of chance. The
theoretical foundations of probability were laid by several 17th and 18th century
mathematicians. Prominent among them are the French mathematicians Blaise Pascal
(1623–1662) and Pierre de Fermat (1601–1665), Dutch astronomer Christian Huy-
gens (1629–1695), English mathematician and physicist Isaac Newton (1642–1727),
French mathematicians Abraham de Moivre (1667–1754), Pierre Simon Laplace
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(1749–1827), Simeon-Denis Poisson (1781–1840), German mathematician Leibnitz
Gottfried (1646–1716), and so on to name a few.

Definition 5.1 Probability is a quantitative ratio capturing the possible levels of
uncertainty or chance.

It is encountered in almost all applied sciences such as statistical physics, quan-
tum mechanics, bioinformatics, and various branches of engineering. The study of
probability became an essential part of statistics owing to the obvious reason that
probability is deep rooted in a great majority of statistical models and procedures.
For example, random sampling, frequency distributions, reliability and gaming
models, estimation and inference, statistical quality control, and so on are based
on the foundations of probability. Chances play a prominent role in characterizing
a random sample from an unknown population. There exist many approaches to
define and use probability. We begin with the most popular approaches. A thorough
understanding of these approaches is essential for students to apply probability to
solve real-life problems.

The greatest challenge in solving a probability problem is that there are usually
many ways to solve it but no obvious way to verify the results. Suppose that a stu-
dent is presented with a probability problem. The first thing to decide is which of
the approaches is the most appropriate one to solve it. There are several set theo-
retic laws, rules, permutation and combination, urn models, principle of inclusion
and exclusion, and so on that are used to solve probability problems. Fundamen-
tal laws of set theory give rise to analogous laws of probability. Majority of these
approaches are classical, as exemplified in the following discussion. The answer
obtained in a problem can be verified only in some particular cases where the num-
bers involved are small.

5.2 PROBABILITY

Definition 5.2 Probability is a quantitative measure of uncertainty or chance associ-
ated with future events or random experiments.

In gambling or games of uncertain outcomes, it is referred to as “the odds.” For
example, it may be mentioned that the odds are three to two that a horse will win a
race. In estimation theory, it is called the “likelihood.” The reliability in engineering
and plausibility in management refers to probability.

Probability is always associated with one or more future events, a happening, an
unknown process, or a working condition. Probability is also associated with random
samples, random variables, and uncertain outcomes. The “likelihood” that is men-
tioned earlier associates a probability to a random sample drawn from a population
with a known functional form. Probability associated with random variates is math-
ematical expressions that return a real number in [0,1] range for each possible value
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of the variate. These can be too low for some x values when the range of the variate is
infinite or for particular parameter values. In numerical probability problems that are
discussed in the following sections, it represents the chance of a specified event as
a real number. This probability is the same irrespective of the method used to arrive
at it. To simplify our discussion, we assume the chance mechanism as logically fine
grained. The chance mechanism may be a fine-grained event (likelihood of error-free
transmission of a data packet, chance of winning a game, likelihood that two political
contestants will address the same location or share the same podium, etc.), a random
phenomenon (chance that an electronic component will fail in a computer), or an
experiment (probability of survival after a surgery, probability that a new drug will be
more effective than the existing ones). Note that in each of them there exist many lev-
els of uncertainties. For example, transmission of a data packet depends on network
bandwidth, transmission media, network congestion, and the proper functioning of
other hardware or software components. Thus, there are multiple interacting simple
events involved in the main event see Table 5.1 for a set of symbols). In all probability
problems, we will unambiguously identify the events at the root level. Probability is
a ratio-measure. A “probability of zero” indicates an impossibility. A ‘probability of
one’ indicates a complete certainty (in common parlance “in all probability” denotes
a very likely or certain event). These occur quite often in theoretical problems but are
a rarity in practice.

Probabilities encountered in some fields are extremely small. Consider manufac-
tured products from a company that has implemented six-sigma. As all processes are
streamlined and quality control techniques ensure stringent restrictions, chances of
defects in newly manufactured items are extremely small. Other examples are survival
chances in some terminal diseases, chances of product returns in newly introduced
items (like new models of cell phones), chances of natural calamities in some loca-
tions, and so on. Each of these events has a “complementary event” (defined below)
for which the corresponding probability is quite high (close to 1). For instance, prob-
ability that an electronics component will work without failure is high. This shows
that the magnitude of probability depends on how we define events.

TABLE 5.1 Some Common Symbols in Probability

Symbol Description Probabilistic Interpretation

Ω Set of all outcomes Sample Space
𝜔 A member of set An outcome
A Subset of Ω An event (an outcome in A occurs)
A Complement of A No outcomes in A occurs
A ∪ B Union of sets An outcome in either A or B occurs
A ∩ B Intersection of sets Both A and B occurs
A − B Difference of sets Event in A but not in B occurs

Set theory and probability theory use the same operator symbols like ∪,∩,− and complements. However,
set theory symbols combine subsets to produce other sets, whereas probability symbols combine numbers
to produce probabilities.
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5.3 DIFFERENT WAYS TO EXPRESS PROBABILITY

It was mentioned in Section 5.2 (p. 112) that probability is a real number between 0
and 1. The information content in probability statements can be expressed in multiple
ways. Popular ways to express a probability are (i) fractional form, (ii) decimal form,
(iii) scientific form, (iv) percentage form, (v) literal form, (vi) pictorial form, and (vii)
as tail areas under empirical curves or functions [2].

The fractional form represents a probability as a fraction p/q where p and q are
assumed to be without common factors (called proper form of a fraction). The deci-
mal form represents a probability in the form 0.dddd where “d” denotes a decimal
digit that may or may not repeat. In case of repeating fractions, the digits repeat
either individually or as a group. For example 1∕3 = 0.333 is a single digit repeat-
ing fraction (here the digits that are underlined denotes the repeating part). Consider
5∕11 = 0.4545. This is a double-digit repeating fraction (the repeating part 45 is
underlined). Such repeating fractions are encountered in several applications. The
fractional form has the advantages that it is easy to remember and compact for perma-
nent computer storage. Fortunately, the decimal form of probability can be converted
into its fractional equivalent by some simple algorithms described in the following.
For this, we consider three cases depending on whether any of the trailing digits cycli-
cally repeat or not.

5.3.1 Converting Nonrepeating Decimals to Fractions

Suppose we have a non-repeating decimal number. How do we convert it into the
equivalent fractional form p/q? As the trailing decimal digits do not repeat, multi-
ply the decimal number by an appropriate power of 10 (say m = 10k) to remove all
decimal places. Let the number after multiplication be n. Find the greatest common
divisor (GCD) of m and n (say p = GCD(m, n)). If p ≠ 1 and p ≠ n, divide both m and
n by p to get the answer. This method will work only when the number (n) is divisible
by 2, 5, or their multiples (such as 4, 10, and so on.). We can only give approximate
result when the trailing decimal digits cyclically repeat over a wide interval. We sum-
marize it as an algorithm for positive fraction in the following. Extension to negative
fractions is straightforward. Line 6 in the listing means that the result is returned in
the form p/q.

EXAMPLE 5.1 Decimal to fractional form example-1

Express the following probabilities in fractional form p/q:
(i) 0.18, (ii) 0.0015, (iii) 0.125, (iv) 0.29, (v) 0.032

Solution 5.1 We need to multiply 0.18 by 100 to discard all decimal digits.
Thus, n = 18,m = 100. The GCD(18,100) is 2. Dividing both 18 and 100 by 2
gives the answer as 9/50. (ii) In this case, we have n = 15 and m = 10, 000. The
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GCD(15,10,000)= 5. Dividing both 15 and 10,000 by 5 gives the resulting frac-
tional form as 3/2000. (iii) Here n = 125,m = 1000, and GCD(125,1000)= 125.
Dividing by 125 gives the resulting fractional form as 1/8. (iv) Here n = 29,
m = 100, and GCD(29,100)= 1 (as 29 is a prime). Hence, the resulting fractional
form is 29/100. (v) In this case, we have n = 32 and m = 103 = 1000, GCD(32,
1000)= 8 giving the result 4/125.

Algorithm 5.1 Convert a non-repeating decimal number into fractional form

1: Input the decimal number into X

{∗ ignore trailing zeros if any ∗}
Ensure: (−1 < X < +1)

2: Count the total number of decimal places k in X

3: Multiply X by 10k to make it an integer (say Y)

4: Form the fraction p = Y/10k

5: Find the GCD of Y and 10k as m = GCD(Y, 10k)

6: if (m == 1) then
7: return “Y / 10k ”

8: else
9: Divide both Y and 10k by m

10: return Irreducible fraction “(Y/m) / (10k/m)”

11: end if

5.3.2 Converting Repeating Decimals to Fractions

This is more challenging than the nonrepeating case. Here we consider two cases. In
the first case, the repeating block starts as the very first digit. If a set of trailing digits
repeat cyclically within a reasonable size, we identify the decimal number as p = 0.dd
where d is the cyclically repeating part. As done earlier, we multiply it by m = 10k to
move the decimal point to the right position of the last digit of the first repeating block
(k is the size of the repeating block). Let the resulting value be Y = 10k ∗ p. Compute
Z = Y − p, which is devoid of fractions. Now find r = GCD(Z,m − 1). Divide both
Z and m − 1 by r to get the desired fractional representation.

EXAMPLE 5.2 Decimal to fractional form example-2

Express the following probabilities in fractional form p/q:
(i) 0.666, (ii) 0.1818, (iii) 0.315 315

Solution 5.2 (i) Let p = 0.666. Here the first digit itself repeats indefinitely.
Hence d = 6 (repeating block), k = 1 (its size). Multiply p by m = 10 to get



116 PROBABILITY

Y = 6.66. Subtract p from Y to get Z = 6. As m − 1 = 9, r = GCD(Z,m − 1) =
GCD(6, 9) = 3. Divide numerator and denominator by 3 to get the fractional
equivalent as (6/3)/(9/3) = 2/3. This is of the form p/q without common fac-
tors. (ii) Let p = 0.1818. Here d = 18, k = 2, so that m = 100 (as there are two
digits that cyclically repeats) and Y = 18.1818. Compute Z = Y − p = 18, and
r = GCD(Z,m − 1) = GCD(18, 99) = 9. Divide both Z and m − 1 by r to get
p = 2∕11. (iii) Here d = 315 repeats indefinitely. Hence, we need to multiply
by m = 103 = 1000 to move the decimal place. This gives Z = 315,m = 1000,
r = GCD(315, 999) = 9. The answer is (315/9)/(999/9)= 35/111. We give below
an algorithm for this purpose.

Algorithm 5.2 Convert a Repeating decimal number into fractional form

1: Input the decimal number into X

{∗ Assumption: blocks of digits repeat starting with the first digit ∗}
Ensure (−1 < X < +1)

2: Count the total number of decimal places K in X

3: Find the repeating cycle length k in X

4: Multiply X by 10k to make it an integer followed by a fraction (say Y)

5: Subtract X from Y to get an integer Z

6: Form the fraction p = Z/(10k −1)

7: Find the GCD of Z and (10k −1) as m = GCD(Z, 10k −1)

8: if (m == 1)then
9: return “Z / (10k−1)”

10: else
11: Divide both Z and 10k − 1 by m

12: return Irreducible fraction “(Z/m) / [(10k − 1)/m]”

13: end if

5.3.3 Converting Tail-Repeating Decimals to Fractions

This is a variant of the aforementioned in which the trailing digits repeat cyclically,
after a nonrepeating block of digits. This is the hardest case to consider. We iden-
tify the decimal number as p = 0. d1dd where d1 is the non-repeating part and d is
the cyclically repeating part. Note that d1 can be a single digit or zero too (as in
0.633, 0.01515). As done earlier, we multiply p by m = 10n (where n is the number
of digits in d1) to move the decimal point to the right position of the last digit of d1.
Let Y = p ∗ 10n. Next multiply Y by 10k to move the decimal point to the right posi-
tion of the first block of repeating digits and store it in Z. Then Q = Z − Y is devoid
of fractions. Next find r = GCD(Q, 10n(10k − 1)). Divide both Q and 10n(10k − 1)
by r to get the desired fractional representation. These are explained in the following
sections.
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Algorithm 5.3 Convert Tail Repeating decimal into a fraction

1: Input the decimal number into X

{∗ Assumption: Blocks of digits repeat after a non-repeating block ∗}
Ensure (−1 < X < +1)

2: Find the repeating cycle length k in X, and non-repeating block length n

3: Multiply X by 10n to make it an integer followed by a repeating fraction (say Y)

4: Multiply Y by 10k to make it an integer followed by a fraction (say Z)

5: Subtract Y from Z to get an integer Q

6: Find GCD of Q and [10n(10k − 1)] as m = GCD(Q, [10n(10k − 1)])
7: if (m == 1) then
8: return “Q / 10n(10k − 1)”
9: else

10: Divide both Q and 10n(10k − 1) by m

11: return Irreducible fraction “(Q/m) / (10n(10k − 1)/m)”

12: end if

EXAMPLE 5.3 Decimal to fractional form example-3

Convert the following probabilities (i) 0.6333 (ii) 0.21515, (iii) 0.0571428
571428 into the form p/q.

Solution 5.3 Let X = 0.6333. As the nonrepeating block is of size
1, first multiply X by 10 to get Y = 6.333, then multiply Y by 10 to
get Z = 63.33. Subtract Y from Z to get Q = 63 − 6 = 57. Find r =
GCD(57, 10 ∗ (10 − 1)) = GCD(57, 90) = 3. Divide both 57 and 90 by 3
to get p = (57∕3)∕(90∕3) = 19∕30. In part (ii) p = 0.21515. Here repeat-
ing cycle length is k= 2 digits, and nonrepeating block size is n = 1
so that 10k = 100, 10k+n = 1000, and [10n(10k − 1)] = 990. This gives
Q = 215 − 2 = 213. Form the fraction p = 213∕990. Find the GCD as
m = GCD(213, 990) = 3. Divide both the numerator and denominator of p by 3
to get the required answer p = 71∕330. In Case (iii), we have K = 6 and n = 1,
so that 10k = 1000000, and [10n(10k − 1)] = 9999900. This gives Q = 571428,
and p = 571428∕9999900. Next, we need to find the GCD(571428,9999900).
We write 571428 = 22 ∗ 33 ∗ 11 ∗ 13 ∗ 37 and 9999900 = 22 ∗ 32 ∗ 52 ∗ 37,
from which the GCD is 2857140. Divide both the numerator and denominator
of p by 2857140 to get the required answer p = 2∕35.

EXAMPLE 5.4 Repeating decimals to fractional form

Convert the probabilities (i) 0.01515, (ii) 0.006363 into fractional form.
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Solution 5.4 Let X = 0.01515. Here the repeating cycle length is k= 2 digits,
and n= 1 so that 10k = 100 and 10n(10k − 1) = 990. Multiply X by 10n to make
it an integer (in this case 0) followed by a fraction as Y= 0.1515. Next mul-
tiply Y by 10k to make it an integer (in this case 15) followed by a fraction as
Z = 10k+n ∗ X = 0.1515 ∗ 100 = 15.1515. Now subtract Y from Z to get an inte-
ger Q=Z−Y = 15.1515 − 0.1515 = 15. Form the fraction p = Q/[10n(10k − 1)]
= 15/990. Find the GCD of Z and 10n(10k − 1) as m = GCD(Z, 10n(10k − 1))
= GCD(15,990)= 15. Finally, divide both the numerator and denominator of p
by 15 to get the required answer p= 1/66. (ii) Here also k= 2 digits, so that
10k = 100. Proceed as earlier and find the GCD of 63 and 99 as GCD(63,99)
= 9. Divide both 63 and 99 by 9 to get the answer 7/11.

We could improve upon our GCD in some particular cases. For example, if Q is
an odd number, GCD(Q, [10n(10k − 1)]) is the same as GCD(Q, [(10k − 1)]). If the
nonzero digits in the nonrepeating block is an exact divisor of the repeating block, we
could reduce it to the above-mentioned form. Consider X = 0.00021 4242, in which
the nonrepeating block has a 21, which divides the repeating block 42 42. This reduces
to X = 0.0000102020 in which the nonrepeating block has nonzero digit as a single
1, and the repeating block is “02” of length 2 (or nonrepeating block “10” followed
by repeating digits “20”). When there are several leading zeros in the nonrepeating
block as in this example, we could consider the nonrepeating block as the nonzero
digits (by simply sliding the decimal place over all zeros) and make a final adjustment
to the result. This is described in the following algorithm.

Algorithm 5.4 Tail Repeating decimal with many leading zeros into p/q form

1: Input the decimal number into X
{∗ Assumption: Blocks of digits repeat after a non-repeating block, the first few of
which are all 0’s ∗}

Ensure (−1 < X < +1)
2: Find the repeating cycle length k in X, and block size of leading zeros of length

m, and non-repeating nonzero-digit block of length n
3: Multiply X by 10m to move the decimal place over the zeros (say Y)
4: Multiply Y by 10n to make it an integer followed by a repeating fraction (say Z)
5: Multiply Z by 10k to make it an integer followed by a fraction (say T)
6: Subtract Z from T to get an integer Q
7: Find GCD of Q and [10n+m(10k − 1)] as m = GCD(Q, [10n+m(10k − 1)])
8: if (m == 1) then
9: return “Q / [10n+m(10k − 1)]”

10: else
11: Divide both Q and [10n+m(10k − 1)] by m
12: return Irreducible fraction “(Q/m) / ([10n+m(10k − 1)]/m)”
13: end if
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EXAMPLE 5.5 Tail repeating decimal to fractional form

Convert the decimal 0.00022 4545 to fractional form.

Solution 5.5 Here repeating block is of length k= 2, nonrepeating block is of
length n= 2 (5–“3 zeros”), and m is 3 (as there are three leading zeros). First mul-
tiply X by 10m. We have 10k = 100, 10k+n = 10, 000, and 10n(10k − 1) = 9900.
This gives Q = 2245 − 22 = 2223, and p= 2223/9900000. Next, find
m=GCD(2223, 9900000)= 9. Dividing both the numerator and denominator
of p by 9 gives p = 247∕1100000, which is the required answer.

The repeating block may be too long for some fractions, especially involving
ratios of primes. Consider 2/17= 0.1176470588235294 117.., which repeats itself
after 16 decimal places. Similarly, there are many fractions for which the cycle of
digits repeats well beyond the calculator display. Consider 7/29 = 0.2413 7931 0344
8275 8620 6896 5517 241, and so on, which repeats after 28 decimal places! (they
are in general of the form k/(k*n+ 1) with cycle block size k*n). We could either
approximate such decimals or employ other algorithms.

If we truncate it at the wrong decimal place (say 8th or 16th place), the result-
ing fraction will not come even close to the true value (7/29 in the above-mentioned
example). For example, truncating at second decimal place gives 6/25 and truncat-
ing at 12th decimal place gives 30172413793/125000000000. An astute reader will
notice that our original digits are repeated after a nonrepeating block of length 4.
This property can be used to approximate the fractional value using the second algo-
rithm given earlier. This means that we may sometimes be able to approximate a
nonrepeating decimal number (or a repeating decimal with a large cycle length) by
dividing it by a small number. In the above-mentioned case, we get the approximation
as 3017/12500 = 0.24136. This is correct to the fourth decimal place.

Assuming that all our decimal numbers are positive, we could store any dec-
imal number in just two memory locations (one for storing p and the other for
storing q). Signed decimals need an extra 1 bit to store the sign as 0 for positive and 1
for negative. As an unsigned int type can store numbers between 0 and 65,535 in just
2 bytes of memory, we could represent a great majority of fractions that we encounter
in practice using this method, provided that both the numerator and denominator are
less than 65,536. We could use the unsigned long int data type (4 bytes of memory)
when larger numbers are involved, as it can store up to 4,294,967,295.

Percentage form of probability is obtained by multiplying the decimal form by
100. These are usually used in conversations and correspondences. Scientific form
is preferred when a probability is too small with several leading zeros. The pictorial
form is used in geometric probability problems.

5.4 SAMPLE SPACE

Random experiments are at the core of experimental probability. Here, the word “ex-
periment” has a different meaning in statistics than its literal meaning. A simple
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measurement of a physical or other characteristics of an object, a count of objects
that satisfy one or more conditions, an observation of the duration of a phenomena
(like the lifetime of a device) can all be considered as an experiment in statistics.

Definition 5.3 Random experiments are those that are repeated under identical con-
ditions every time and always produce one among several outcomes.

Here, the clause “under identical conditions” needs some scrutiny. It only means
that the conditions are replicable and statistically insignificant. For example, consider
the measurement of the storage of water in a reservoir. If measurements are taken
over a period of time (say on successive days or weekends), the conditions may not
be exactly identical in the strict scientific sense. Owing to the pull exerted by celestial
bodies on the surface of the earth, the reservoir levels could go up when the moon has
just passed overhead. This gravitational pull is more in the equatorial region when the
moon and the Sun are both oriented in more or less the same direction over the place
of observation (this is why very high tides occur on some days), which is maximum
during the closest approach of the moon to the Earth. Similarly, the amount of water
evaporated depends on the day-time temperature, wind speed, humidity, and reser-
voir area among other things. It is our tacit assumption that random experiments are
conducted in rapid succession or in short duration of time. Extraneous factors, if any,
that could affect the measurements should be accurately maintained in highly sensi-
tive and time-dependent scientific experiments. These are often negligible when the
sample is collected over a short duration. The purpose of an experiment could also be
the identification of such differences (as in agricultural experiments). The qualifier
“random” indicates that the outcomes are unpredictable until the results are observed.
In other words, the results will vary from trial to trial even when the conditions of the
experiment are the same.

Definition 5.4 The set of all possible outcomes of a random experiment is called its
sample space.

The sample space itself is an event because it always occurs. By convention, it
is indicated by the Greek symbol Ω (pronounced capital omega). Its complement
is denoted by Ωc = 𝜙 (the null set, pronounced small phi). The complement of an
event X is denoted as X

′
,X, or Xc. As X is used in subsequent chapters to denote the

arithmetic mean, we will use Xc for complement. The very first step in solving any
probability problem is to identify the sample space. These are quite often easy to find.
We illustrate it with various examples.

EXAMPLE 5.6 Sample space for simple experiment

What is the sample space of an experiment of throwing two fair coins?

Solution 5.6 Denote a Head turning up by H and a tail turning up by T. Then, the
sample space is {HH, HT, TH, TT} where HH denotes that both throws resulted
in Heads, and so on. Here “H” and “T” are simply labels. We could assign any
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label we wish (because the English letter H is a silent syllable in Spanish (words)
and is pronounced differently in Greek, Russian, etc.). For example, if Head is
denoted by a “1” and the tail by a “0,” our sample space becomes {11, 10, 01,
00}.

EXAMPLE 5.7 Circuits in series in a device

There are two circuits in series in a device, both of which can be open or closed.
Identify the sample space when the device is turned on.

Solution 5.7 Denote the open circuit by a 0 and closed circuit by a 1. Then, the
possibilities are {00, 01, 10, 11} where 00 indicates that both circuits are open
and 11 indicates that both are closed.

EXAMPLE 5.8 Balls in urns

Find the sample space for (i) drawing two balls from an urn containing three red
and two blue balls that are indistinguishable except for the color (ii) two throws
of a dice that result in a sum of 10.

Solution 5.8 (i) Denote the red ball by R and blue ball by B. The possible out-
comes are {R, R}, {R, B}, {B, R}, {B, B}, (ii) Denote the numbers on the die
by {1, 2, 3, 4, 5, 6}. Then the possible 36 values in the sample space are {1, 1},
{1, 2}, {1, 3}, {1, 4}, {1, 5},{1, 6}, {2, 1}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6},
… , {5, 6}, and {6, 6}. Here {1, 6} and {6, 1} are considered to be different, even
if the two dice are thrown simultaneously. For part (ii), the favorable cases are
{(5,5), (4,6), (6,4)}.

The sample space obviously depends on the defined event. If an event U is defined
as the sum of the numbers that show up when two dice are thrown, the sample space
of U becomes {2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12}. If another event V is defined as the
absolute value of the difference between the numbers that show up, the sample space
of V becomes {0, 1, 2, 3, 4, 5}. This shows that multiple sample spaces can be obtained
on the same random experiment.

5.5 MATHEMATICAL BACKGROUND

Probability problems are unlike the problems in other sciences. Beginning students
sometimes find it difficult to solve probability problems because there are either
several ways or no obvious way to solve it. Different problems may require a dif-
ferent approach, concept, or tool. There are many such tools and techniques needed
to solve every problem in probability. Examples are Venn diagrams, permutations and
combinations, principle of inclusion and exclusion, urn models, recurrence relations,
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divide and conquer or decrease and conquer principles, sampling with and without
replacement, bipartite graphs, and De’Morgan’s laws to name a few. In addition,
independence of events, conditional events, and other event algebra discussed in the
following sections may be needed individually or in combination in some problems.
There are still other problems that can be solved easily by geometric reasoning, prop-
erties of probability distributions, and so on. A thorough understanding of these tools
and techniques are essential to solve all probability problems with ease. The following
section first describes the essential tools and then applies it to individual problems.

5.5.1 Sets and Mappings

A set is a collection of distinguishable elements logically considered as a group. The
elements may be homogeneous or heterogeneous. For example, consider fruits and
vegetables as two separate sets. The fruit set can comprise of apples, oranges, berries,
bananas, and the like, whereas the vegetable set may consist of potatoes, tomatoes,
carrots, and so on. Total number of distinct elements in a set S is called the size
of the set or its cardinality. It is denoted as |S|. This is always an integer ≥1. To
extend the set theory to various situations involving intersect and complement oper-
ations, we will denote an empty set (without any elements in it) by the Greek symbol
𝜙 (pronounced “small phi”). The size of the empty set by convention is zero (i.e.,
|𝜙| = 0). The totality of all elements under consideration in a set is called the uni-
versal set, super-set, or set space. It is symbolically denoted by Ω. Any element of
Ω is called a member or point of the set and is denoted by 𝜔. Multiple elements can
be combined to get subsets of the set Ω. In probability theory, our main interest is in
counting proper subsets of Ω.

Definition 5.5 The collection of all subsets of a set S (including the null set 𝜙 and
the set itself) is called the power-set (it is denoted by 2S and has 2|S| elements).

EXAMPLE 5.9 Cardinality of Power-set

Use induction to prove that the power set P(S) of a finite set S has cardinality
2|S|.

Solution 5.9 Consider a singleton set S (with just one element, say b). Its
power-set is {𝜙, b} of cardinality 2. Next consider a set with two elements
S = {a, b}. Its power-set is {𝜙, {a}, {b}, {a, b}} of cardinality 4. Thus, the
assumption is true for n = 1, 2 where n is the number of elements in the set.
Assume that it is true for an arbitrary set S of size k > 2. Obviously, cardinality
of S is 2|S| = 2|k| = 2k. Label all elements currently in S by a group symbol
𝜎. Now add a single new element x to S to make it S′ = {𝜎, x} of cardinality
|S′| = k + 1. The power-set of S′ comprises the power-set of S, plus new subsets
formed by adding x to each of them. As sets are unordered collections, adding x
to each subset of 𝜎 produces at most 2|S| new subsets. Thus, the total number of
subsets in S′ is 2|S| + 2|S| = 2 ∗ 2|S| = 2|S|+1 = 2k+1 = 2|S

′|. This shows that if



MATHEMATICAL BACKGROUND 123

the assumption is true for n = k, it is true for n = k + 1. By induction, it is true
for all positive integers n ≥ 1.

EXAMPLE 5.10 Powerset example-2

Find the power-set of the set S = {a, b, c}

Solution 5.10 We will tackle the problem by the divide-and-conquer approach.
First consider all one-element subsets. There are three singleton subsets
as {a}, {b}, {c}. Next consider two-element subsets. There are

(
3
2

)

= 3

two-element subsets as {a, b}, {a, c}, {b, c} (see Section 5.9.5 in page 145). To
this add the null set 𝜙 (with no elements), and the set S itself to get the power-set

2S = {𝜙, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} (5.1)

having 2|S| = 23 = 8 elements. This is pictorially shown in Figure 5.1.

A special decomposition of a finite set S is of importance in probability theory.
This is called the partition of S or set partition.

Definition 5.6 A partition of a finite set S with at least two distinct elements is a
collection of mutually exclusive and collectively exhaustive subsets S1, S2, … , Sm
such that S = S1 ∪ S2 ∪ · · · ,∪ Sm = ∪m

i=1Si, and Si ∩ Sj = 𝜙 for all i ≠ j. Note that 𝜙
and S are not counted in a set partition.

Each element of a set partition can be mapped to a real number pi. If this mapped
number has the property that they add up to 1 (

∑
ipi = 1), it is called a distribution

defined over S.

N Y N YN Y N Y

N N

N Y

YY

{ø} {c} {b} {a}{bc} {ac} {ab} {abc}

a ε S

b ε S b ε S

c ε S c ε S c ε S c ε S

Figure 5.1 Power-set of S = {a, b, c}.
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A BA∩B

Figure 5.2 Venn diagram for A ∩ B.

BA∩BA-B

Figure 5.3 Venn diagram for ABc.

5.5.2 Venn Diagrams

The British mathematician and cleric John Venn (1834–1923) introduced Venn dia-
grams in 1881 for representing sets and operations on them. They became instantly
popular because there are just two symbols used in its graphical representation—a
rectangle denotes the universal set U, and one or more labeled circles or ellipses drawn
wholly within the rectangle denote subsets of U. Event interactions are represented
by intersecting labeled circles (see Figures 5.2 and 5.3). The area that is common to
intersecting circles can map the actual amount of interaction of the events. In most of
the problems, this need not be so fine-grained because the Venn diagram is not used
to compute the probabilities directly; rather it is a visual device simply to ascertain if
events interact or not. Sets without common elements are drawn as nonintersecting
circles. This is useful when the number of events is small (say 2–6). The importance
of Venn diagrams in probability arises because events (both discrete and continuous)
that underlie probabilities are easily represented by sets. They are valuable tools in
breaking complex probability problems involving multiple intersecting events into
simpler subproblems that are easy to solve. Venn diagrams have been extended by
many researchers to suit problems in engineering, geology, chemistry, and other sci-
ences. Examples are Karnaugh maps, Euler diagrams, Johnston diagrams, Edwards’
Venn Diagrams, and Peirce diagrams. Euler diagrams are an extension of Venn dia-
grams to represent more than one sample space (see Reference 110). Venn diagrams
may not be easy to comprehend when there are too many intersecting events. In such
a case, we could form a hierarchical Venn diagram by labeling events with a common
denomination to the top of the hierarchy.
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EXAMPLE 5.11 Union of events

Sixty percentage of the people in an office read newspaper “A,” and 50% read
newspaper “B.” If 10% of the people read neither “A” nor “B,” what percentage
of the people read both newspapers?

Solution 5.11 This problem is easily solved using a Venn diagram. Let “A”
denote the event that people read newspaper “A” and “B” denote the event that
they read newspaper “B.” Then A ∪ B denotes the event that people read either of
the newspapers and A ∩ B denotes the event that people read both newspapers. As
this problem involves count or percentage, the event and count can be considered
as synonymous. As the number of people who reads either of them is given as
A ∪ B, the number of people who read neither is U-A ∪ B = 10% (given). From
this, we get 10 = 100 − [(60 + 50) − A ∩ B] or A ∩ B = 20%. Hence, 20% of the
people read both newspapers.

5.5.3 Tree Diagrams

Several probability problems involve mutually exclusive subcases or subevents.
These are best represented as rooted trees or forests (a collection of disjoint trees
is called a forest). A tree in computer science is a nonlinear data structure with a
distinguished node called the root. A pictorial representation of trees makes it much
easy to comprehend. For this purpose, the root is always drawn either at the top or
at the left. A tree is a special case of a graph. Although a graph can be directed or
undirected, a tree is almost always undirected. The branches (straight lines) drawn
from a node represent subproblems, subsets, or subcases. This representation can
sometimes decompose a complex probability problem into two or more simple ones
or as a hierarchy of subproblems. Each such subcase can be further broken down
into smaller trees. This subdivision usually uses a categorical variable such as sex
and religion or outcomes of an experiment. Quantitative variables could also be used
to subdivide a node into smaller subtrees if (i) the number of cases are small or (ii)
discretization is used to categorize the continuous variable.

EXAMPLE 5.12 Tree-diagram for coin toss experiment

A fair coin is tossed three times. Draw the tree diagram and find the sample space.

Solution 5.12 As there are just two possible outcomes in each throw, we denote
it by two branches from the nodes. Consider the first throw. It could result in
either an H or a T. The second and subsequent throws are denoted as further
branching as in the figure. The sample space is obtained as the union of labels
at the leaf nodes as {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}. This is
pictorially shown in Figure 5.4.

In some problems, there exist more than one way to draw a tree. Sometimes, the
tree is formed by the occurrence of a related happening as in sports tournaments in
which the winning team encounters other players or opponents.
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Figure 5.4 Coin-tossing sample space.

5.5.4 Bipartite Graphs

A bipartite graph consists of two sets of nodes (say V and W) such that each node
in V is connected to some node in W and vice versa. This means that nodes in V
are not connected to other nodes in V and similarly nodes in W are not connected to
other nodes in W. The elements of V and W are nominal or ordinal type in most of
the applications. The bipartite graph is extremely useful in simplifying some of the
probability problems.

EXAMPLE 5.13 Jobs and applicants

A company has five vacancies that require different skill sets for which 10 appli-
cations are received. Describe how bipartite graphs can be used to model the
matching of applicants and jobs.

Solution 5.13 Here, both sets are nominal type. Represent 10 applicants by 10
labeled nodes on the left and five jobs by five nodes on the right. Make a link
among the two sets of nodes if the skill set of ith applicant fits the job j. For each
job j, if there is only a single applicant, remove it from the bipartite graph. If
the remaining graph is a forest, we could identify groups of applicants that are
clustered in groups of jobs (or a single job). Otherwise, the bipartite graph will
show the choices for hiring applicants.

5.5.5 Bipartite Forests

These are special cases of bipartite graphs in which the entire graph can be decom-
posed into two or more disjoint bipartite graphs. The smallest possible bipartite graph
is one in which one node on the left is connected to just one node on the right. In the
jobs and applicants example, if one applicant is connected to one job and there are no
other links between these two nodes, this can be removed as there are no other choices.
Hence, bipartite forests decompose a larger problem into smaller subproblems that
can be independently solved.
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5.6 EVENTS

There are many types of events encountered in probability and related fields. A good
understanding of them can greatly simplify some of the probability problems. In addi-
tion, they provide a parallel between the axioms of set theory and probability. We
assume in the subsequent discussions that P(𝜙) = 0 (probability associated with the
null set is zero), and P(Ω) = 1.

Definition 5.7 An event is a well-defined outcome of an experiment or a subset of a
sample space.

The literal meaning of an event is a thing that happens. In probability, an event
is a well-defined outcome associated with a random experiment or a trial. Set the-
oretically, events are subsets of the set of all possible outcomes.

Objective probability has two basic building blocks. First, there should be a random
experiment that generates uncertain outcomes. These can be discrete or continuous.
A unique label is assigned to each outcome of the experiment to distinguish among
themselves. Secondly, we must have events that are either single outcomes or a
collection of outcomes that satisfy a user-specified condition or criterion. The set
of all possible outcomes of a random experiment is called sample space. The sample
space is specific to each random experiment. It may or may not depend on time.
Most of the problems that are encountered below are time independent sample
spaces.

Each discrete event is uniquely identified by a label, a symbol, a number, or other
identifying mark. There are no hard and fast rules to name events. Event labels are
usually denoted by capital letters of an alphabet (English, Greek, etc.). We can com-
bine events and denote them by other labels or abbreviated letters. One experimenter
may label the events resulting in a single toss of a coin as {H, T} while another may
label it as {1, 0}. These labels are meant to distinguish the events among themselves.
If you conduct such a trial or experiment, every event will eventually occur. Some
events that have high chance of occurring materializes more. Thus, the probability
associated with each event can tell us which are more likely to materialize than others.

EXAMPLE 5.14 Event identification

Consider contaminants in drinking water sources collected from different parts
of a city. Describe what are some possible events and how to combine them.

Solution 5.14 Assume that there are a dozen possible contaminants in drink-
ing water. Label each contaminant by a unique letter. Then a simple event can
be defined as “Presence of contaminant in drinking water above the prescribed
limit.” For instance, let “A” denote the presence of Arsenic above its permitted
limit and let “C” denote the presence of chromium, and so on. If a sample con-
tains both arsenic and chromium (and not the others), it can be labeled as “AC”
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or “CA.” This type of concatenated labeling is inconvenient when there are a
large number of possibilities. A solution is to give separate codes of fixed size or
numbers to each combination event.

5.6.1 Deterministic and Probabilistic Events

Events may be deterministic or probabilistic. Outcomes of deterministic events are
always predictable using mathematical equations or various laws of physics, chem-
istry, or logic. For instance, chances of getting six spades in a hand of 10 cards is
exactly predictable as the number of spades in any deck of cards is 13. The reservoir
capacity example given in page 5–18 is predictable using the position of the Sun and
path of the moon. Probabilistic events can be predicted by past analysis of outcomes.
An aircraft’s engine failure can be predicted well in advance if past data on engine
failures are available for specific engines of certain age and type.

5.6.2 Discrete Versus Continuous Events

Events can be discrete or continuous. In probability problems (especially textbook
examples), we seldom encounter continuous events. However, continuous events are
encountered in engineering applications.

EXAMPLE 5.15 Continuous events

Give examples of continuous events.

Solution 5.15 Consider a microchip that has just been manufactured. Its lifetime
(in hours) is an event that can take any positive value. The sample space in this
case is S = {t|t ≥ 0} and the variable involved is time. Let F denote the event
that it does not fail during the first c = 1000 hours of operation. Then P(F) =
P(t > c). This probability becomes smaller as c is increased. Consider a swim-
ming pool with an optimal capacity. If the water inflow and outflow are ignored,
the amount of water in the pool (say in cubic feet or inches) can be considered as
a continuous sample space. The complementary event in this case is the optimal
level less the current capacity. Both of them are continuous. In general, if the
sample space is continuous, the complement of an event defined on the sample
space is also continuous.

Probabilistic events are associated with random experiments, random variations
in some processes (like manufacturing), or unknown variations in some variables
(probability that an air-bag in a car will fail to inflate upon a collision depends on the
speed at impact and various circuitry characteristics. Probability of a rain or snow (at
an appropriate location) tomorrow depends on hundreds of interacting atmospheric
variables). One need not understand the variables that drive a phenomenon to predict
the probability. Past data collected over a period of time can be used in such situations
using the frequency approach. In this chapter, we are more interested in probability
mechanisms involved in random experiments.
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Each event of a random experiment is mapped to a probability between 0
and 1. This is denoted by P(A) where A is the event label, name, or token; and P()
is the notation for probability. An event is said to occur if the outcome of a random
experiment results in that event.

EXAMPLE 5.16 Combination event examples

Give examples of events defined on each of the following: (i) software-controlled
machine failures and (ii) viscous flow through a pipe.

Solution 5.16 Machines may fail due to (i) mechanical faults, (ii) electrical
faults, (iii) software faults, (iv) wrong handling or wrong initial settings, and (vi)
other reasons. Let these be denoted by events M, E, S, H and O. Combination
events can then be represented as described earlier. In the case of viscous
flow, we could define events using flow-rate or average amount of liquid
transported since last overhaul work. This could vary slightly depending on the
pressure applied, viscosity of liquid, surface corrosion, and outside temperature
variations.

Almost certain events have probability one. As examples, the probability that an
email message with a correctly specified address will be delivered to an existing per-
son within a reasonable time interval is 1 (unless the recipient’s mailbox is full or the
server is down, the probability of which are small), probability that a payment for an
online transaction processed and approved through a payment gateway will be cred-
ited to the merchant’s account is 1. Uncertain or unlikely events have probability near
0. For instance, the probability that an ATM machine will eject an amount larger than
requested by a customer is zero. A probability of 0.5 implies a “fifty–fifty” chance for
the occurrence or nonoccurrence of an event. Experimentalists, managers, and prac-
titioners are more interested in probabilities that deviate much away from 0.5 owing
to this simple reason.

5.6.3 Event Categories

There are many types of events encountered in probability problems.

1. Simple and compound events
A simple event (also called elementary event) cannot be decomposed into sim-
pler events. All compound events are built using either simple events or other
compound events using event operations. In most cases, a compound event can
be sliced up into several fine-grained simple events. Consider the working con-
dition of a device. It may be defective (D) or nondefective (N). These are simple
events. An event can comprise of a set of items. Consider the tossing of two dice,
each with six faces marked 1–6. The possible events are {(1,1), (1,2), ..., (6,6)}.

2. Mutually exclusive events
Events are mutually exclusive if they are disjoint. Symbolically, two events
A and B are mutually exclusive or disjoint if A∩B = 𝜙 or equivalently
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P(A∩B) = 0. In the coin-tossing experiment, the mutually exclusive events
are Head and Tail. This definition can be extended to any number of events.
Let A1,A2, … ,An be n events. If n > 2, they are totally mutually exclusive if
P(A1 ∩ A2 ∩ · · · ∩ An) = 𝜙. If they are totally mutually exclusive, they need
not be pairwise mutually exclusive. For instance, events A and B can have a
common portion and B,C can have a common portion, but A and C can be
disjoint. This implies that P(A ∩ C) = 𝜙. As 𝜙 ∩ X is 𝜙 where X is any other
event, we can simply add events to totally mutually exclusive events. Suppose
B = A. Incorporating B to P(A ∩ C) = 𝜙 we get P(A ∩ B ∩ C) = 𝜙 although
A ∩ B = A. A set of events is minimally mutually exclusive if there are events
A1,A2, … ,Ak such that P(A1 ∩ A2 ∩ · · · ∩ Ak) = 𝜙, but this relationship does
not hold for any m < k. The mutually exclusivity property is extremely useful
in decomposing some of the complex probability problems into simpler ones.

3. Equally likely events (ELEs)
If every event of an experiment has an equal chance of occurring, they are
called equally likely events (ELEs). Probability problems are greatly simplified
in such situations. Examples are dice and coin tosses. Consider the outcomes
of an unbiased coin (with two possible events H and T), tosses of a six-faced
die, a regular prism with four faces, or a regular pyramid with five faces. The
probability of any event occurring in ELE is one divided by the total number
of events in the sample space. Consider a regular five-faced pyramid with faces
numbered from 1 to 5 that is tossed to a hard surface. As there is a unique face
(at the bottom) on which it will rest, we can define an event as “face number
that is hidden at the bottom.” Then, each of the faces is equally likely with
probability 1/5.
Two or more independent experiments with ELE may be combined. Let V
denote an event defined on the sample space Ω of n equally likely outcomes.
Then P(V) = |V|/n where |V| denotes the cardinality of V (number of favorable
elementary events in V). Consider two tosses of our pyramid. Define an event
that V=“the sum of the numbers at the bottom is even.” There are 5×5 = 25
total possibilities. The 13 favorable cases are (1,1), (1,3), (1,5), (2,2), (2,4),
(3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), and (5,5). Hence P(V) = 13/25.
Next consider the toss of a fair die. Let V be the event that the face that shows
up is a prime number. The favorable cases are V = {1, 2, 3, 5} with |V| = 4.
This gives P(V) = 4∕6 = 2∕3. These results are summarized in the following
theorem.
Equally Likely Principle (ELP): If the sample spaceΩ of a random experiment
consists of a finite number of equally likely outcomes, then any non-null event
E defined on Ω has probability of occurrence |E|∕|Ω|.
These probabilities can easily be calculated directly using the count-and-conquer
techniques or indirectly calculated using one of the do-little principles
(Section 5.6.4 (p. 131), Section 5.15.4(p. 159)).

4. Complementary events
Complementary events are those that do not include the outcomes of another
event. This complement operation is taken with respect to the entire sample
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space Ω. This means that complement of an event belongs to the sample space.
Some probability problems can be substantially simplified by the complemen-
tary event principle. One common example is those problems that contain at
least one outcome. If the number of outcomes is large, we could take the com-
plement of the event to get a simple favorable set. A related operator is event
difference (denoted by −), which is taken with respect to another event. Thus,
X-Y represents an event that contains events in X but not in Y. Consider the
event V defined on the toss of a fair die. The complementary event comprises
Vc = {4, 6}.

5. Dependent and independent events
Events may be dependent on one another. This dependence can be due to a
shared property or some underlying commonalities. Two or more events are
independent if the occurrence of one in no way affects the occurrence of others.
Consider the following examples:
(i) Let X denote the event that an e-commerce customer at a video store has “Red
hair” and Y denote the event that the order is for “Adventure movie.” Then, X
and Y are independent.
(ii) Consider a school kid with six shirts, five pants, and three ties. Wearing any
of the combinations are independent events. However, the decision to choose a
shirt that matches the color of the pants or a tie that matches the shirt color may
preclude some possibilities. Thus, the events may be considered as dependent.
See 5.15.7 in page 163 for further discussion.

6. Conditional events
Events may depend conditionally on other events. These are called conditional
events. In other words, you have knowledge that some other event has occurred.
This filters out a subset of the sample space, thereby reducing the computational
burden.
Consider a simple experiment of throwing a fair coin until you get the first Head.
As the coin is fair, probability of getting a Head in the first throw is 1/2. The
event of Head occurring in the second throw is conditional on the first throw
resulting in a Tail. Similarly for subsequent events. These are the sequence of
events considered in geometric distribution.
Consider an electronic board with a parallel circuit in each of which there are
three components. If any component in one circuit fails, the device will continue
operating. However if at least one component in both circuits fails, the device
will stop working. Thus, the nonworking condition of a device is conditionally
dependent on both circuits in the board.

5.6.4 Do-Little Principle for Events

Complementary events are sometimes easy to find when the sample space consists
of a large number of discrete events as in the above-mentioned example. These are
especially true in “at least k” and “at most k” type problems (or a combination of both)
that can be considerably simplified by taking the complement or opposite event. It is
also called complement-and-conquer principle. It has two versions—a count version
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to count the complementary events and a probability version to obtain the probability
of complementary events. Both of them are related.

5.7 EVENT ALGEBRA

Every random experiment involves two or more events. Events are usually combined
using the logical operators {AND, OR, NOT}. Combining events using OR operator
often increases the probability, while combining events using AND operator often
decreases the probability. If A and B are two events, P(A OR B) = P(A) only when
B is a proper subset of A. Similarly P(A AND B) = P(A) only when A and B are
exactly identical. The NOT operator may or may not increase the probability—this
depends on how big a chunk of the sample space is spanned by the defined event. The
events resulting from applying a NOT operator to another event is called its comple-
ment. For example, consider the throw of a six-faced die numbered 1–6. If event X
is defined as “an even number shows up,” then it has probability 0.5 as the possible
outcomes are X = {2, 4, 6}. Its complement event also has probability 0.5, as the NOT
operator returns Xc = {1, 3, 5}. Next consider the event “the number that shows up
is a prime.” This has associated probability 4/6 = 2/3 as the possible outcomes are
{1, 2, 3, 5}. Its complement event consists of {4, 6} with probability 2/6 = 1/3. Here,
the complementation has reduced the probability. Unless otherwise stated, the com-
plement is always taken with respect to the entire sample space Ω. In other words, the
NOT operator is to be interpreted as anything that remains in the sample space other
than those in the considered event or subspace. Sometimes, we seek the probability of
occurrence of event combinations. Events can be combined using set theoretic oper-
ations union (∪), intersections (∩), complements, and differences. Any of these can
be combined to produce compound events.

5.7.1 Laws of Events

There are several laws of events that are direct descendants of corresponding laws of
set theory. These laws are helpful to solve some of the discrete probability problems.
More importantly, they form the theoretical foundations on which classical proba-
bility theory is built up. Most of the axioms of probability are direct generalizations
of corresponding event axioms. Union of events represents the occurrence of either
or both of them, whereas intersection of two events represents their joint occurrence
(both occur).

EXAMPLE 5.17 Flight delay

Consider a commercial flight that is scheduled for departure at a fixed time. A
delay in departure can happen due to many reasons:–(i) technical problems with
the aircraft, (ii) delay in one or more connecting flights that have passengers for
current flight, (iii) delay of flight crew in reporting for duty (iv) delay in security
checking, (v) delay due to runway problems or congestion, and (vi) other reasons.
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Assume that each of these is independent occurrences. Form meaningful events
using union and intersection of events.

Solution 5.17 Let T, V, W, X, Y, and Z denote each of the six events. As each of
them are independent, a union represents an “either or” situation. For example,
T ∪ V represents the event that the flight is delayed either due to technical prob-
lems with the aircraft or connecting flights are delayed. The event T ∪ V ∪ W ∪
X ∪ Y denotes the event that there is a likely flight delay due to the occurrence
of individual events or a combination of events mentioned. The event T ∩ V
denotes that there is technical problem with the aircraft AND connecting flights
are delayed. If all events are represented by single character labels, we could drop
the ∩ operator and represent multiple event occurrences by a concatenated label.
For instance, W ∩ X ∩ Y can be represented as WXY. This is just a new name or
label given to a combination of events.

5.7.1.1 Law of Total Probability Let X and Y be two nonempty sets with common
elements. Then, we can partition the set X into two parts as X = X ∩ Y + X ∩ Y , where
X ∩ Y contains members of X with both traits and X ∩ Y contains members of X with-
out the trait of Y. In terms of probability, this is written as P(X) = P(X ∩ Y) + P(X ∩
Y). Similarly, Y = Y ∩ X + Y ∩ X gives P(Y) = P(Y ∩ X) + P(Y ∩ X). This result is
used in the derivation of Bayes theorem.

5.7.1.2 Commutative Laws The literal meaning of “commutative” is “unchanged
in result by a reordering of operands.” These are meaningful for binary operators that
take two operands. These laws are formed in event algebra and set theory using ∪
and ∩ set-theoretic operators. Simply put, these laws state that the events on either
side of these operators can be swapped. Let X and Y denote two events. Then, the
commutative law states that X ∪ Y = Y ∪ X and X ∩ Y = Y ∩ X. In Example 2.17,
T ∪ V and V ∪ T represent the same event. Similarly, W ∩ X and X ∩ W represent
the same thing. Humans can easily conceive the meaning of these expressions by
perception. This is especially easy when the events are disjoint. However, the law
holds even when two events overlap. They are more useful when more than two events
are involved.

EXAMPLE 5.18 Weight-loss program

Consider a weight-loss clinic for over fat people that offers three programs:–
(i) restricted diet (RD) program that can decrease the weight on the average by
10 pounds in 4 weeks, (ii) a fat-burning exercise regime (ER) with a thermal
belt that sheds on the average 8.5 pounds in 4 weeks, (iii) a bariatric surgery
(BS) program that sheds on the average 16 pounds in 4 weeks. A patient can opt
for either individual programs or for a combination. Does the commutative law
make sense in this example? Describe the following event combinations in plain
English:– (i) ER∩BS and (ii) RD∪BS.
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Solution 5.18 As events represent various programs offered by the clinic, the
intersection of events indicate the programs for which a patient has opted. Thus,
ER∩BS indicates that a patient is registered in both ER and BS programs. How-
ever, union of events in this problem does not make sense. If the events are
defined in terms of counts (total number of people registered for the program),
then union of events make sense. For instance, ER∪BS indicates the total number
of people registered for either of the programs or both.

5.7.1.3 Associative Laws Let X, Y, and Z denote three distinct events. Then, the
associative law states that X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z and X ∩ (Y ∩ Z) = (X ∩ Y) ∩ Z.
The meaning of each of them is that the flight is delayed due to a delay in security
checking OR a delay due to runway problems or congestion OR due to other reasons.
Here, the operator that is commuted is the same. As in the case of commutative law,
humans can easily conceive the meaning when the events are disjoint.

5.7.1.4 Distributive Laws The name distributive comes from the fact that two non-
identical event combinations are simplified by distributing one of the operators. Let
X, Y, and Z denote three events. Then, the distributive law states that

X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z) and X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z), (5.2)

where the ∪ operator outside the parenthesis in the first expression is distributed and
the∩ operator outside the parenthesis in the second expression is distributed. This law
is more meaningful when some events have a “combined effect.” Set-theoretically
this means that the intersection of some of the events is non-null. These rules are
extremely useful in reducing the favorable sample space of compound events.

In the case of associative law, we had the same operator (either ∪ or ∩). If the
operators are different, we get the distributive law given below discussion.

EXAMPLE 5.19 Distributive Laws

Consider the pre-requisite courses for enrolling in a statistics course. A student
who has finished College Algebra (X) is eligible, as also those who have fin-
ished both of Computer Science 100 (Y) and Maths 104 (Z). Express this using
distributive law.

Solution 5.19 Label the events as X, Y, and Z. Then, the condition can be
expressed as X ∪ (Y ∩ Z).

EXAMPLE 5.20 Event Combinations

Consider example 5.18 given earlier. Describe the following event combinations
in plain English:– (i) RD ∩ (BS ∪ ER) and (ii) (ER ∩ RD) ∪ BS

Solution 5.20 As the operator inside the bracket in (i) is ∪, the meaning is
to select a weight-loss program with RD AND either BS OR ER. Similarly,
the meaning of (ii) is to opt for a program with either BS alone or both ER
and RD.
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5.7.2 De’Morgan’s Laws

These laws relate the complement of compound events in terms of individual com-
plements. In the following section, we use overline to denote complements.

Rule 1 Complement of an intersection is the union of their complements.
Let A and B be two arbitrary events. Then A ∩ B = A ∪ B. Consider the newspaper

readership problem. If there are just two newspapers and the percentage of people
who read both of them are known, the percentage of people who read neither of them
can be found using the above-mentioned law.

Rule 2 Complement of a Union is the intersection of their complements.
Symbolically, A ∪ B = A ∩ B. These rules can be extended to any number of events

as follows: (∪n
i=1Ai) = ∩n

i=1Ai, and (∩n
i=1Ai) = ∪n

i=1Ai. These are proved using induc-
tion and Venn diagrams.

5.8 BASIC COUNTING PRINCIPLES

A great majority of probability problems can be solved by a good mastery of a few
counting principles. These are more applicable to discrete sample spaces in 1D and
2D than for others. They are intended to count the number of objects, events, possibil-
ities, occurrences, or arrangements that satisfy zero or more properties or constraints.
There are a myriad of constraints possible. These may be related to adjacency, occu-
pancy, linear or circular arrangement, observation of some events, and so on.

5.8.1 Rule of Sums (ROS)

This is also known as the principle of disjunctive counting. Consider a set S of
objects that has been divided into disjoint subsets S1, S2, … , Sm so that S = S1 ∪ S2 ∪
· · · ∪ Sm. If there are n1 favorable cases for an event in S1, n2 favorable cases for the
same event in S2, and so on, nm favorable cases for the same event in Sm, then the total
number of favorable cases for the event in S is n1 + n2 + · · · + nm. Symbolically, this
can be written as |S| = |S1 ∪ S2 ∪ · · · ∪ Sm| = |S1| ∪ |S2| ∪ · · · ∪ |Sm|. Another way
to state it is as follows:– There are m cases or events with no common options (i.e.,
they are mutually exclusive). If ith case or event can occur in ni ways, then the total
number of options or ways in which one of them can occur is n1 + n2 + · · · + nm.
The principle of inclusion and exclusion (p. 158) is an extension when at least two
of the subsets have common elements.

EXAMPLE 5.21 Breakfast choices

The McDonalds restaurant offers eight varieties of breakfast, whereas Burger
King offers six varieties. Joe has a choice of going either to McDonalds or to
Burger King on any day (but not both) for breakfast. How many choices of break-
fast are possible?

Solution 5.21 This problem can be cast using rule of sums (ROS), where
S1= the choices available at McDonald’s and S2 = the choices available at
Burger King. Total possible choices are |S1| + |S2| = 8 + 6 = 14.
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5.8.2 Principle of Counting (POC)

This is also called multiplication law of counting (MLOC) or multiplication princi-
ple. It has direct applications in counting the number of occurrences of outcomes of
experiments such that the first experiment can result in n1 possible outcomes, and
for each outcome, there exist another independent experiment with n2 possible out-
comes, and so on. It is also useful in classical approach to probability in which we
need to count the favorable number of cases of an experiment.

Lemma 1 If one thing (or activity) can be done in “m” ways, and another in succes-
sion in “n” ways, the two together can be done in m ∗ n different ways.

EXAMPLE 5.22 Computer file types

A software allows an image to be saved in three different file types (as .JPEG,
.GIF, or .TIFF) in four different resolutions. How many possible ways are there
to save the image?

Solution 5.22 As the file types and resolutions are independent, there are
3 * 4= 12 different ways to save the image.

EXAMPLE 5.23 Car colors

A car manufacturer offers eight exterior colors and four interior designs. How
many varieties of cars can be produced if (i) each of them can be manufactured
in luxury and sedan models? (ii) if each of them can be made as petrol, diesel
and hybrid (electric) versions?

Solution 5.23 We define three events as follows:– (i) E= {Exterior color}, (ii)
I= {Interior design}, and (iii) M= {Model}. As the number of possibilities for
E is 8, I is 4, and M is 2, by the principle of counting there exist 8× 4× 2= 64
possible choices. For Case (ii), there are three types (petrol, diesel, and hybrid)
so that the number of ways is 8× 4× 3= 96.

In some problems, we may have to combine both ROS and POC multiple times to
reach a final result. This is illustrated in the following example.

EXAMPLE 5.24 Multiple choice exam

A multiple choice exam has 15 questions, each with 4 answer choices (say A, B,
C, and D). How many possible ways are there to answer the questions assuming
that multiple markings are not allowed, and (i) all questions are to be answered
and (ii) questions can be skipped (kept unanswered).

Solution 5.24 As the questions are independently answered, any of the ques-
tions can be marked in four ways. Hence, the total possible answer combination
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in (i) is 415. For instance, if there are just 2 questions, the 16 answer choices
are (A,A), (A,B), (A,C), (A,D), (B,A), (B,B), (B,C), (B,D), (C,A), (C,B), (C,C),
(C,D), (D,A), (D,B), (D,C), and (D,D), where the first letter denotes the answer
for question-1 and second letter is the answer for question-2. In Case (ii), sup-
pose that k questions are answered and (15-k) are skipped. As any of the questions
can be answered in four ways, there are 4k answer combinations for k answered
questions. However, the k questions can be any among the 15 questions. A stu-
dent could select arbitrary k questions in

(
15
k

)

different ways (see 5.9.5 in p.

145). By the multiplication principle, the total number of possible combinations

is
(

15
k

)

∗ 4k. By summing this expression over the possible range of k gives

the answer as
∑15

k=0

(
15
k

)

∗ 4k. Here, k = 0 means that none of the questions
are answered. This can be done in just one way. Similarly, k= 15 means that all

questions are answered (in one way only). This is of the form
∑n

k=0

(
n
k

)

∗ xk,
which is the binomial expansion of (x + 1)n. Thus, the above-mentioned sum
is (4 + 1)15 = 515. If there are just two questions, we have nine new combina-
tions in addition to the 16 listed earlier as (*,A), (*,B), (*,C), (*,D), (A,*), (B,*),
(C,*), (D,*), and (*,*), where “*” indicates an unanswered question and (*,*)
means that both questions are skipped. This gives a total of 16 + 9 = 25 = 52

combinations.

EXAMPLE 5.25 Cloth washing

A schoolchild has 10 colorless and 6 colored dresses to be washed on a weekend.
Colored dresses are of two types—Red and Blue. Both of them cannot be loaded
into the same washing cycle due to color dissolving. The color-less dresses can be
washed in any of the three settings: (i) hot, (ii) lukewarm, and (iii) cold and rinsed
after the wash cycle in two settings (lukewarm-rinse or cold-rinse); whereas the
colored dresses of same color can all be washed and rinsed in a cold or lukewarm
wash only. How many ways are there to wash all the clothes?

Solution 5.25 This problem is most easily solved using a tree. There are two
branches at the top for colored and colorless. The colored branch is further broken
down as Red and Blue. First consider colorless dresses. They cannot be mixed
with colored ones due to color staining. Thus, there exist three ways to wash
them and two ways to rinse them. By the POC, there exist 3× 2= 6 ways to
wash them. Next consider colored clothes. How many of the colored ones are
Red or Blue is not known. Let c of them be Red and 6-c Blue. The c Red ones
can be washed in four ways {C-C, C-L, L-C, L-L}, where C indicates a Cold and
L indicates a Lukewarm wash or rinse in the first and second place. Similarly 6-c
Blue clothes have four washing choices. Thus, there are eight choices for the
colored clothes. Adding both cases together, we get the answer as 6+ 8= 14
choices.
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In some experiments, each of the outcomes has an equal number of occurrences
(see Table 5.2). In other words, the probabilities are equally likely. These are much
easier to solve as illustrated in the following.

EXAMPLE 5.26 Car license plates

A car license plate comprises of two English capital letters followed by four
digits. How many license plates are possible if (i) each of the letters and digits
can be repeated and (ii) only digits can be repeated.

Solution 5.26 There are 26 capital English letters and 10 digits (between
0 and 9). As repetitions are allowed for (i) there are (26 × 26) × (10 ×
10 × 10 × 10) = 676 × 104 possible ways. Our assumption is that lower
case letters are not used on license plates (which need not be true in
some countries). As letter repetitions are not allowed for (ii), there are
(26 × 25) × (10 × 10 × 10 × 10) = 650 × 104 possible ways.

EXAMPLE 5.27 Cylindrical number lock

Consider a cylindrical number lock on a briefcase with three wheels or rings.
Assume that each of the wheels is marked with the digits 0–6 (total seven digits
or rollings possible). Using a lever, a user can set the lock to any desired number
(formed by the three digits chosen in succession from the wheels, say from left
to right). What is the total number of possible lock codes?

Solution 5.27 As there are three independent wheels, each with seven possibil-
ities, the total number of combinations is 7 × 7 × 7 = 343. Thus, the briefcase
can be locked in 343 possible ways.

5.8.3 Complete Enumeration

As the name implies, this method enumerates (count one by one) all possibilities. This
is more relevant in discrete probability problems involving throws of a coin or dice,
arrangement of digits, alphabets, assignments of elements in two finite sets, spin of
a numbered wheel, and so on. Sometimes, we need to enumerate only a small subset
by eliminating commonalities as in the following problem.

TABLE 5.2 Some Equally Likely Experiments and Their Probabilities

Experiment Sample Space Probability

Fair coin toss {H, T} 1/2 = 0.5
Toss of a fair die {1, 2, 3, 4, 5, 6} 1/6 = 0.1666
Playing cards {spade, heart, diamond, club} 1/13 = 0.076923076923

The labels given to events are fixed in the case of playing cards but are arbitrary for others.
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EXAMPLE 5.28 Leap-year

How many ways are there for a leap year (with 366 days) to have (i) 53 Sundays?,
(ii) 53 Saturdays and 53 Sundays?, (iii) exactly 52 Saturdays and 52 Sundays?,
(iv) exactly 53 Fridays or 53 Sundays?, and (v) exactly 52 Tuesdays and 52
Thursdays?

Solution 5.28 As 52 × 7 = 364, every year will have 52 weekdays each for sure.
There is an extra day (strictly speaking 1.24219879 days) for nonleap years,
and there are two extra days in leap years (the 0.24 days add up to approxi-
mately 1 day in 4 years and is counted as February 29 to get a leap-year). As
these two extra days are consecutive, we can do a complete enumeration of
these days as (Sunday, Monday), (Monday, Tuesday), (Tuesday, Wednesday),
(Wednesday, Thursday), (Thursday, Friday), (Friday, Saturday), and (Saturday,
Sunday). These are the only seven possible combinations for the extra 2 days.
(i) As Sunday occurs in two of the seven combinations, the number of ways a
leap year will have 53 Sundays is 2. (ii) As (Saturday, Sunday) occurs once, the
desired number of favorable cases is 1. (iii) Neither Saturday nor Sunday occurs
in four out of the seven possible pairs. (iv) There exist four pairs containing
either a Friday or a Sunday. (v) There are three favorable cases, namely, (Sun-
day, Monday), (Friday, Saturday), and (Saturday, Sunday) using the complement
rule.

EXAMPLE 5.29 Roots of quadratic equation

Consider a quadratic equation px2 + qx + r = 0, whose nonzero coefficients
(p, q, r) are determined by the number that turns up when a die with six faces
numbered 1–6 is thrown. Find the number of ways in which (i) the equation will
have real roots, (ii) equal roots, (iii) imaginary roots, (iv) both integer roots, and
(vi) exactly one integer root.

Solution 5.29 As each of the coefficients p, q, r is determined by the number that
shows up in the throw of a die, we need three throws to decide them (say choose p
first, then q, and finally r). We do a complete enumeration as follows. As each of
them can be in {1, 2, 3, 4, 5, 6}, there exist a total number of 6 × 6 × 6 = 63 = 216
equations by the POC. (i) We know that the condition for real roots is q2 − 4pr ≥
0. As repetitions are allowed, the least value of 4pr is 4 × 1 × 1 = 4. However,
q2 is greater than 4 when q = 3, 4, 5, 6. This means that there exist four favorable
cases when p= r= 1 (and five cases if q = 2 is also counted in which case we
have equal roots). Next consider (p= 2 and r= 1) or (p= 1 and r= 2). In both
cases 4pr= 8, and q2 is greater than 8 when q = (3, 4, 5, 6). Proceed similarly
with (p= 3 and r = 1), (p= 1 and r= 3), or (p= 2 and r= 2). In the first two
cases 4pr = 12 and q2 is greater than 12 for q= (4, 5, 6). For (p= 2 and r= 2),
(p= 1 and r= 4), or (p= 4 and r= 1) 4pr= 16 and q= (5,6). For (p= 1 and r= 5)
or (p= 5 and r= 1) 4pr= 20 and q= (5,6). Similarly for (p= 1 and r= 6), (p= 6
and r= 1), (p= 2 and r= 3) and (p= 3 and r= 2), 4pr= 24 and q= (5,6). Finally
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TABLE 5.3 Roots of Quadratic Equation

No. p r 4pr q No. p r 4pr q

1 1 1 4 3, 4, 5, 6 9 1 5 20 5, 6
2 1 2 8 3, 4, 5, 6 10 5 1 20 5, 6
3 2 1 8 3, 4, 5, 6 11 1 6 24 5, 6
4 3 1 12 4, 5, 6 12 6 1 24 5, 6
5 1 3 12 4, 5, 6 13 2 3 24 5, 6
6 1 4 16 5, 6 14 3 2 24 5, 6
7 4 1 16 5, 6 15 2 4 32 6
8 2 2 16 5, 6 16 4 2 32 6

for (p= 2 and r= 4) or (p= 4 and r= 2), 4pr= 32 and q= (6). For (p= 3 and
r= 3), real roots are not possible as 4pr= 36. Summing the counts, we get the
total number of cases as 38. In addition, there are five cases (given the following
discussion) for the roots to be equal.

There exists (38 + 5) = 43 ways (see Table 5.3). In Case (ii), the five favor-
able cases are (1,2,1), (1,4,4), (2,4,2), (3,6,3), and (4,4,1). A quadratic equation
can have either real roots or equal roots or imaginary roots only. Hence, the
favorable cases for (iii) can be directly obtained using complement rule as
216 − 43 = 173. Consider Case (iv). Both roots are integers in two cases: (a)
both q and q2 − 4pr are odd and (b) both are even. The 10 favorable cases are
(1,2,1),(1,3,2),(1,4,3),(1,4,4),(1,5,4),(1,5,6),(1,6,5),(2,4,2), (2,6,4),(3,6,3). (v) The
eight favorable cases are (2,3,1), (2,5,2), (2,5,3), (3,4,1), (3,5,2), (4,5,1), (4,6,2), and
(5,6,1).

5.9 PERMUTATIONS AND COMBINATIONS

The literal meaning of permutation is an ordering or arrangement. Mathematically,
a permutation of a set S is a one-to-one mapping of S onto itself. In other words, it is
the total number of arrangements of a set of elements. The elements being arranged
are all uniquely distinguishable to the human eye. This arrangement can be linear
(in 1D) or circular (in 2D space). An ordered subset of a larger set is also called a
permutation. As a great majority of probability problems are valid in 1D or 2D only,
we will not discuss higher dimensional permutations. Consider a set of three students
{Amy, John, and Mary}. Denoting each of them by their first letter, there are six
ways to arrange them linearly as {A,J,M}, {A,M,J}, {J,A,M}, {J,M,A}, {M,A,J},
and {M,J,A}. These are the only possible linear permutations.

Definition 5.8 A permutation is an arrangement of the whole or part (with at least
two elements) of a finite set of distinguishable elements without repetition, where the
order is considered as important.
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There is no universally accepted notation for permutations. The four most widely
used notations are nPr,Pr,n,P(r, n) and Pn

r , where both n and r are integers such that
r ≤ n. Permutation can also be interpreted as selection of elements from a group with-
out replacement.

Theorem 5.1 Prove that the total number of permutations of r objects from among
n distinguishable objects is nPr where r ≤ n.

Proof: As there are n elements initially, there exist n ways to choose the first element.
Now there are (n − 1) elements remaining, as one element is already removed from
the set. Thus, there are (n − 1) ways to select the second object. Continuing in like
fashion r times, we see that there are

nPr = n ∗ (n − 1) ∗ … (n − r + 1) = n!∕(n − r)! = (n)r (5.3)

ways to choose r objects from n objects ((n)r is the Pochhammer notation for falling
factorial). This is the same as the number of samples of size r without replacement
from n distinguishable objects (see Table 5.4).

Lemma 2 A set of n distinguishable objects can be linearly arranged among them-
selves in n! ways.

Proof: Mark the positions of n objects. The first position can be filled by any of
them (in n possible ways). Once this position is filled, there are (n − 1) objects remain-
ing and (n−1) positions to put them into. Next we fix second of the (n−1) possible
positions. There are (n-1) ways to choose an object to this position. Thus, the first
two positions can be filled in n*(n−1) ways. Continuing this way we find that for fill-
ing the last position, we have only one choice. Hence, the total number of ways to fill
all the positions is nPn = n ∗ (n − 1) ∗ (n − 2) ∗ · · · ∗ 2 ∗ 1 = n!∕(n − n)! = n! ways
(as 0! = 1 by convention).

EXAMPLE 5.30 National flags

A political summit is attended by delegates from five countries. All five national
flags are to be arranged in a row at the entrance. In how many ways can this be
done?

TABLE 5.4 Some Permutation Formulas

Objects Type Number of Ways

n distinguishable Linear n!
k among n distinguishable Linear P(n, k) = n(n − 1) … (n − k + 1)

n items with duplicates Linear

(
n

k1 ,k2 ,… ,kj

)

= n!∕k1!k2!· · · kj!

n distinguishable Circular (n−1)!
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Solution 5.30 As n = 5, there are n! = 5! = 120 possible ways.

5.9.1 Permutations with Restrictions

In most of the practical applications, we have restrictions on the elements. The most
common restriction is duplicates (property restriction) discussed in the following.
Other types of restrictions include adjacency restrictions, locational restrictions (such
as fixed positions), and end point (extreme position) restrictions.

EXAMPLE 5.31 Book arrangement

A schoolchild has five books, one each on Mathematics, Gaming, English,
Physics, and Biology. How many ways are there to arrange the books on a
rectangular rack if (i) no order is maintained among them?, (ii) the leftmost book
must be Gaming book?, (iii) the left-most and right-most places are occupied
by Mathematics and Physics books?, (iv) Physics and Mathematics books are
always adjacent, and (v) English and Biology books cannot be next to each
other?

Solution 5.31 (i) If no order is maintained among them, the possible number
of ways is 5! = 120. In Case (ii), the Gaming book occupies a fixed position.
There are four books to be arranged. This can be done in 4!= 24 ways. In Case
(iii), two places are preoccupied. The remaining three books can be arranged
in 3! = 6 ways. In Case (iv), we consider Physics and Mathematics as a single
logical bundle. Then, it reduces to arranging four books among themselves. This
can be done in 4! = 24 ways. The easiest way to tackle (v) is using the do-little
principle (complement-and-conquer). We consider the complement event that
English and Biology books are together. As it is similar to Case (iv), there are 24
possibilities. The required answer is then found using the complement as 5! −
4! = 120 − 24 = 96.

5.9.2 Permutation of Alike Objects

If there are n things of which n1 of them are of one kind, n2 of them are of another
kind, … , nk of them are of kth kind, then there are

nPn1,n2,..,nk
= n!∕[n1 ! ∗ n2 ! ∗ … ∗ nk !] (5.4)

different permutations, where n = n1 + n2 + · · · + nk. This is called the multinomial
coefficient. It can alternately be written as

nPn1,n2,..,nk
=
(

n
n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)

· · ·
(

n −
∑k−1

j=1 nj

nk

)

, (5.5)

where the missing operator is a “*.” Some of the ni in this theorem can be one.
When all of the ni’s are 1’s, the denominator reduces to 1 and we get the number
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of permutations as n!. This result can be stated alternately as follows. The number of
possible divisions of n distinct objects into r groups of respective sizes n1, n2, … , nr

is
(

n
n1,n2,… nr

)

= n!∕[n1! ∗ n2! ∗ · · · ∗ nr!]. Multinomial coefficients are further dis-
cussed in Chapter 6.

EXAMPLE 5.32 Shelving of books

A library has received a shipment of 12 books of which 2 are duplicate copies
of a Statistics book, 4 are duplicate copies of a Database book, and 3 each are
duplicate copies of C programming book and Java programming book. These
need to be kept on a reserve shelf. In how many ways, can this be arranged?

Solution 5.32 As several items are exactly alike, we use the above-mentioned
formula with n1 = 2, n2 = 4, and n3 = n4 = 3, to get 12!/(2!*4!*3!*3!). One of
the 3! cancels with 6 and 2!*3! cancels with 12 leaving = 5*7*8*9*10*11 in the
numerator. This simplifies to 277,200 possible ways.

EXAMPLE 5.33 Train coaches

A train has five ordinary coaches and three AC coaches in addition to an engine.
How many ways are there to connect the coaches if the engine is always at the
front?

Solution 5.33 This problem is most easily solved using permutations of alike
objects. The eight coaches can be considered as objects of which five are of one
kind and three are of another kind. Hence using the above-mentioned theorem,
the total number of possibilities is 8!/(5!*3!) = 336/6 = 56 ways.

5.9.3 Cyclic Permutations

If the permutations of distinguishable objects occur along a “logical circle,” it is
called cyclic or circular permutation. Here, logical circle means that the objects can
be thought of as forming an imaginary circle (although physically it can be any closed
shape including a triangle, square, rectangle, or pentagon). The circle can be rotated
by fixing the objects in place. Hence, it is not the circle, but the order of occurrence
of objects that is more important. As an example, if several people sit around a rect-
angular table, we could consider it as a logical circle as long as the sides of the table
are not distinguished or considered with respect to the persons.

Lemma 3 The number of permutations of n distinguishable objects along a circle is
(n − 1)!.

Proof: Keep any one of the objects as fixed. There are (n − 1) others remaining. They
can be arranged among themselves in (n − 1)! ways.



144 PROBABILITY

EXAMPLE 5.34 Roundtable seating

How many ways are there to seat four people W,X,Y,Z around a circular table?

Solution 5.34 According to the above-mentioned lemma, there are (4− 1)!
= 6 different ways. In clockwise order, they are {W,X,Y ,Z}, {W,Y ,X,Z},
{W,Z,X,Y}, {W,X,Z,Y}, {W,Y ,Z,X}, and {W,Z,Y ,X}.

EXAMPLE 5.35 Circular arrangement

Suppose that n boys and n girls are to be seated around a circular table. (i) How
many ways can this be done if no two of the same sex are seated next to each
other, (ii) there are no restrictions on males and females?, and (iii) three or more
pairs of boys cannot be together, but at most two pairs of boys are allowed?

Solution 5.35 First fix the n boys around the circle with an empty chair between
them. This can be done in (n − 1)! ways, as they can be rearranged among
themselves using circular permutation formula given earlier. As there are n
empty chairs, the n girls can be circularly arranged in (n − 1)! ways. This gives
a total of (n − 1)!2 possible ways. (ii) If there are no restrictions, we need to
arrange 2n persons along a circle. This can be done in (2n − 1)! ways. Case
(iii) is most easily solved using the do-little principle. The complement of the
problem is to find the number of ways in which any three males are together.
Mark the group of three males by M. Then, there are n − 3 remaining males (plus
one M). They can be arranged among themselves in (n − 3 + 1 − 1)! = (n − 3)!
ways. As the three males can be fixed in

(
n
3

)

ways, the total number of ways is
(

n
3

)

∗ (n − 3)! ways. Take complement from (n − 1)!2 ways to get the desired

answer.

5.9.4 Cyclic Permutations of Subsets

Consider n distinct objects. If r is an integer between 1 and n, there are (r − 1)!
(

n
r

)

different ways to circularly permute the r objects.

EXAMPLE 5.36 Train coaches

A train has five ordinary coaches and three AC coaches in addition to the engine.
How many ways are there to connect the coaches if (i) the coach immediately
behind the engine and the rear-end coach are both ordinary?, (ii) if all AC coaches
cannot be together?, (iii) at most three ordinary coaches can be together?

Solution 5.36 Denote ordinary coach by O and AC coach by C. This problem
has restrictions. In Case (i), two of the five “O coaches” are fixed. This leaves
three O and three C coaches remaining to be connected. Using permutations
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of alike objects, the answer is 6!/(3!*3!)= 20 ways. (ii) Fix the five O coaches
with an empty space in-between them. There are two extra empty spaces at
the beginning and end (extremes behind the engine). This gives a total of six
empty spaces where we could place three C coaches together. Total number of
ways in which five O coaches and three C coaches can be connected together
is 8!/(5!*3!)= 56 ways. By subtracting the number of ways in which all the AC
coaches are together, we get the answer to part (ii) as 56 − 6 = 50. (iii) The com-
plementary event of “at most three ordinary coaches can be together” is either
four coaches are together or all five coaches are together. These are more easier
to count. Number of ways in which four coaches are together is found as follows:
fix the three C coaches with a space in between them (including beginning and
end). We can place four O coaches in four ways. The remaining one O coach can
be placed in three ways. This gives a total of 4 × 3 = 12 ways. Next consider all
five coaches together. These can be placed in four different ways. By the ROS
principle, total number of ways for the complementary event is 12+ 4= 16 ways.
Hence, the desired number of ways is 8!/(5!*3!)−16= 56−16= 40 ways.

5.9.5 Combinations

Permutation is an arrangement technique in which the order of elements matters, but
order of elements does not matter in combinations. This means that if X and Y are two
elements, XY and YX are considered the same in combination but not in permutations.
The combination of n things taken r at a time was introduced in Chapter 1. It is
denoted by

(
n
r

)

,
nCr,C

n
r , or C(n, r). Symbolically, it is expressed as

(n
r

)

= n!∕(r! ∗ (n − r)!) = (n)r∕r! = n!∕((n − r)! ∗ r!) =
( n

n − r

)

. (5.6)

This denotes the number of ways in which r objects can be selected from n distin-
guishable objects without regard to order and without replacement. For a fixed r, there
exist r! permutations that give the same combination. Hence,

nPr∕r! = n!∕[r!(n − r)!]=nCr =
(n

r

)

. (5.7)

By writing r! ∗ (n − r)! as (n − r)! ∗ r!, it follows that
(

n
r

)

=
(

n
n−r

)

(i.e.,nCr=nCn−r).

Particular cases are
(

n
n

)

= 1,
(

n
0

)

= 1, and
(

n
1

)

=
(

n
n−1

)

= n.

EXAMPLE 5.37 Pilot choices

A flight has to be scheduled using a pilot. There are 12 persons in the pool for the
pilot among whom 8 are males, 5 of the 8 speak English and Spanish, and the rest
3 speak English only. Two of the four females speak English and Spanish, and
the rest of them speak English only. How many ways are there to select a pilot
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and a copilot such that (i) there is one male and one female, both speak Spanish?
(ii) two males, at least one of whom speak Spanish?

Solution 5.37 Define events A, B as follows:–A: = Event that the pilot candidate
is Male and B: = Event that the candidate speaks Spanish. We seek the number
of possibilities of the event A ∩ B. There are five out of eight males who speak
Spanish and English. The number of ways to choose a bilingual male is

(
5
1

)

= 5.

Similarly, number of ways to choose a bilingual female is 2. By the product rule,
total number of ways is 5*2 = 10. (ii) As there are five males who speak Spanish,
we consider the two cases: (i) both chosen persons speak Spanish. (ii) only one
of them speak Spanish. The favorable cases for (i) is

(
5
2

)

= 10 and for (ii) is
(

5
1

)

∗
(

3
1

)

= 5 ∗ 3 = 15. By the ROS principle, the total favorable cases are
10 + 15 = 25.

EXAMPLE 5.38 Poker game

Find the number of ways of obtaining a hand of cards in a poker game.

Solution 5.38 This problem is easy to solve using combination law. As a hand
contains five cards in a poker game, the number of ways is

(
52
5

)

= 2, 598, 960.

EXAMPLE 5.39 Irrigation plot

An irrigation plot is divided into 6 × 6 blocks of equal size (with 36 subplots). A
sample of four subplots is to be selected at random. What is the number of ways
in which the four subplots will (i) lie along any row or column, (ii) lie along the
main diagonal or parallel to the main diagonal (from top left to bottom right),
(iii) they stick together as a 2 × 2 subplot anywhere, and (iv) if nine subplots are
selected, find the number of ways they stick together as 3 × 3 subplots.

Solution 5.39 Total number of ways to select four subplots from 36 plots is(
36
4

)

. In case (i), there are two possibilities to consider (1) they lie along the rows

and (2) they lie along the columns. In the first case, there are
(

6
4

)

= 15 ways for

all four to lie along any fixed row. As there are six rows, the total number of ways
is 6 × 15 = 90 ways. Owing to symmetry, there are 90 ways for the columns too.
This gives 180 total possibilities. In case (ii), the main diagonal (with six slots),
its immediate above and below diagonals with five slots and those at distance 2
from it (with four slots) are the only favorable positions. There exist

(
6
4

)

= 15

ways for the main diagonal,
(

5
4

)

= 5 ways for its immediate above and below
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diagonals, and
(

4
4

)

= 1 way each for distance 2 diagonals. By the ROS princi-
ple, total number of ways is 15 + 2*5 + 2*1 = 27 ways. For case (iii), we fix the
2 × 2 subplot as a square and use cell (2,2) (second column in second row) as
an “anchor” for alignment. This anchor can be aligned in a 5 × 5 subplots giving
25 possible ways. Similarly for case (iv), consider cell (3,3) as the anchor. This
can be anchored along a 4 × 4 matrix of subplots giving a total of 16 possible
ways.

EXAMPLE 5.40 Plant operators

A small production plant needs eight operators, two shipping and handling per-
sons, two clerks, and one supervisor for a day. If there are 10 operators, four
shipping and handling persons, three clerks, and two supervisors available for
work, how many ways are there to staff the plant?

Solution 5.40 As each of the jobs are disjoint, we could apply the
above-mentioned principle and get the answer as

(
10
8

)

∗
(

4
2

)

∗
(

3
2

)

∗
(

2
1

)

= 45 ∗ 6 ∗ 3 ∗ 2 = 1620.

EXAMPLE 5.41 Chess players

A college has 10 chess players of which 6 are males and 4 are females. Two
students are to be sent for an inter-collegiate festival. How many ways are there
to send a team of 2 if: – (i) the gender is not considered, (ii) exactly one is a male,
(iii) at least one must be female, and (iv) both are females?

Solution 5.41 For case (i), the total number of possibilities is
(

10
2

)

= 10 ∗

9∕2 = 45. In case (ii), the total favorable cases is
(

6
1

)

∗
(

4
1

)

= 24. In case (iii),

there are two possibilities {FM and FF}. The possible ways for FM is found
above as 24. Possible ways for FF is

(
4
2

)

= 6. Adding these two gives the

answer as 24 + 6 = 30. In case (iv), answer to this is found above as
(

4
2

)

= 6.

5.10 PRINCIPLE OF INCLUSION AND EXCLUSION (PIE)

This is one of the most widely used principles when events or sets interact (have
subsets or subevents in common). It has two interpretations:– in terms of counts and
in terms of probabilities. Both are analogous at the conceptual level. We discuss the
count version below. The extension to probability is given in a later section. The count
version provides an answer to the query “How many elements or objects are there in
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the union of a finite number of sets, some of which have elements or properties in
common?.”

Theorem 5.2 If A1, A2, … , An are finite sets, some of which have common ele-
ments, then

|A1 ∪ A2 ∪ · · ·Ai ∪ · · ·An| =
∑

i

|Ai| −
∑

i<j

|Ai ∩ Aj| +
∑

i<j<k

|Ai ∩ Aj ∩ Ak|

− · · · + (−1)n−1|A1 ∩ A2 ∩ · · ·An|, (5.8)

where vertical bars denote the cardinalities (number of elements) of respective sets,
and i < j, and so on, on the summation sign denotes that the sum is carried out only
for those values of indices satisfying respective conditions.

Proof: Consider the special case with just two sets say X and Y. The above-mentioned
theorem takes the form |X ∪ Y| = |X| + |Y| − |X ∩ Y|. If X and Y do not overlap, then
X ∩ Y = 𝜙 so that |X ∩ Y| = 0, and the results follow. If X = Y , then X ∩ Y = X = Y ,
so that the negative term cancels out with one of the X or Y giving the result. Next,
suppose that X and Y overlap (with c common elements where c ≥ 1) and X ≠ Y .
In counting |X| + |Y|, the c common elements are counted twice. Hence, we need
to subtract one of the c counts to get the number of elements in X ∪ Y . This gives
|X ∪ Y| = |X| + |Y| − |X ∩ Y|. Assume that the theorem is true for an arbitrary m.
Consider

|A1 ∪ A2 ∪ · · ·Ai ∪ · · ·Am ∪ Am+1|. (5.9)

Write A = A1 ∪ A2 ∪ · · ·Ai ∪ · · ·Am. Then (5.9) becomes |A ∪ Am+1|. Expand it using
the special case to obtain |A ∪ Am+1| = |A| + |Am+1| − |A ∩ Am+1|. Substitute for A =
A1 ∪ A2 ∪ · · ·Ai ∪ · · ·Am and use the fact that intersection distributes over union oper-
ator to get the RHS as

=
m+1∑

i=1

|Ai| −
m+1∑

i<j=1

|Ai ∩ Aj| +
m+1∑

i<j<k=1

|Ai ∩ Aj ∩ Ak|

· · · + (−1)m|A1 ∩ A2 ∩ · · ·Am ∩ Am+1|. (5.10)

This shows that if the theorem is true for m, it is also true for m + 1. As it is true
for m = 2, it is also true for m = 3, 4, … .

Corollary 1 If A1,A2, … An are finite sets, some of which have common ele-
ments, then |A1 ∩ A2 ∩ · · ·Ai ∩ · · ·An| = | U| −

∑n
i=1 |Ai| +

∑n
1≤i≤j |Ai ∩ Aj| −∑n

1≤i≤j≤k |Ai ∩ Aj ∩ Ak| + .. + (−1)n−1|A1 ∩ A2 ∩ … ∩ An−1|.
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EXAMPLE 5.42 Divisible integers

How many integers between 1 and 100 are divisible by 3, 5 or 7?

Solution 5.42 Let S denote the set of 100 integers S = {1, 2, 3, … , 100}. Define
three events as follows:– (i) E1 = count of all integers in S that are divisible by 3,
(ii) E2 = count of all integers in S that are divisible by 5, and (iii) E3 = count of all
integers in S that are divisible by 7. Then, E1 ∩ E2 is the count of all integers in S
that are divisible by both 3 and 5, and so on. Using the PIE principle E1 ∪ E2 ∪ E3
is the set of integers divisible by 3, 5, or 7. The results needed to compute this
are given in Table 5.5. Using (5.11),

|E1 ∪ E2 ∪ E3| = |E1| + |E2| + |E3| − |E1 ∩ E2| − |E1 ∩ E3| − |E2 ∩ E3|

+ |E1 ∩ E2 ∩ E3|. (5.11)

Substitute the values to get |E1 ∪ E2 ∪ E3| = 33 + 20 + 14 − 6 − 4 − 2 + 0 =
67 − 12 = 55.

5.11 RECURRENCE RELATIONS

A recurrence relation is a recursive relationship that relates the nth term of a sequence
or task in terms of lower order terms. If the nth term is related to the (n − 1)th term,
it is called first-order recurrence. Most of the recurrence relations encountered in this
book are first order recurrences. If the nth term is related to two prior terms, it is
called second-order recurrence. A special case is the recurrence relation connecting
successive probabilities of discrete distributions. These are formed by reducing one
of the integer parameters. These are explained in subsequent sections.

5.11.1 Derangements and Matching Problems

Matching problems comprise two sets of objects (such as husband and wife, person
and hat, person and overcoat, and letter and envelope) that have a one-to-one cor-
respondence among themselves. These types of problems seem to have fascinated
mathematicians for centuries. The first “person and hat” problem was documented
by de Montfort in Reference 111. They arise in many situations. For example, con-
sider 13 cards numbered 1–13 without duplicates that are kept face down on a table.

TABLE 5.5 Divisibility of Integers by 3, 5, or 7

3 5 7 (3,5) (3,7) (5,7) (3,5,7)

⌊100
3

⌋ ⌊100
5

⌋ ⌊100
7

⌋ ⌊
100

(3 ∗ 5)

⌋ ⌊
100

(3 ∗ 7)

⌋ ⌊
100

(5 ∗ 7)

⌋ ⌊
100

(3 ∗ 5 ∗ 7)

⌋
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A person utters a number between 1 and 13 and then picks up a card and notes the
number. This is repeated 13 times, such that each time a different number is uttered.
Obviously, after 12 tries, the last number can easily be guessed. In how many ways,
can the person get k(< 13) correct matches? As another example, suppose that there
are n books kept on a book rack in some specific order (say in alphabetical order
of first author name, increasing order of accession numbers, or using call numbers).
During the “library-hour,” kids take out all the books and return it arbitrarily back
to the rack. What is the chance that exactly k of the books are returned back to their
original position? What is the probability that none of the books are in their proper
position? These problems can easily be modeled by the bipartite graph described in
p. 126. In such a mapping, the first pair of the n objects are represented as n nodes
on the left (say S), and the second pair is represented by n nodes on the right (say T).
Each node in S can be connected to at most 1 node in T. An undirected arc from node
i in S to node j in T denotes a new order or assignment. A perfect match (original
order is maintained) is indicated by a forest in which each node in S is connected to
the matching node in T. These are easy to solve when n is small. In the following
discussion, it is assumed that n is fairly large. A few of the situations where such
problems arise are listed in the following:

1. Consider n married couples (H1, W1), (H2, W2), .. , (Hn, Wn) at a party.
Assume that the men and women are randomly paired for a dance. A complete
match occurs if each couple happens to be paired together.

2. Suppose that n letters are to be sent to n different people in n envelopes. The
addresses are already printed on the envelope, and the letters are shuffled. An
absent-minded clerk randomly puts the letters, one each, into the n envelopes.
A complete match occurs if each letter is put in its correct envelope.

3. Suppose n people with overcoats go for a party. They give the coat to the waiter
for safe keeping. While leaving the party, the waiter randomly grabs a coat and
gives it to the people. A complete match occurs if each person gets his or her
own coat.

4. A defective electronic device has n exactly looking parts. A repair person
removes each of them without labeling them, tests it individually, and returns
them back to the original positions arbitrarily. A complete match occurs if each
part ends up in its correct slot.

Each of these problems is mathematically equivalent. If none of them match, it is
called a derangement. They can be modeled by different techniques such as recur-
rence relations and using inclusion–exclusion principle.

Theorem 5.3 Total number of derangements of n elements is

Dn = n!
[

1 − 1
1!

+ 1
2!

− 1
3!

+ … + (−1)n 1
n!

]

. (5.12)
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Proof: This can be proved in many ways. We give the following two simple proofs.
The first one uses the PIE principle. Let Ai denote the event that ith object is cor-
rectly paired with matching pair (ith letter is put in its correct envelope, etc.). Let Ai

denote the complementary event. Then A1A2 denotes that the first two objects are not
paired with their matches. The event A1A2 … An denotes that none of the objects are
matched with their peers. This is what is meant by a derangement. By generalized
DeMorgan’s law, we have A1 ∩ A2 ∩ … ∩ An = [A1 ∪ A2 ∪ · · ·Ai ∪ · · ·An]c, where
the superscript denotes the complement. Using the “do-little” principle (Section 5.6.4
(p. 131)), the complementary event A1 ∪ A2 ∪ … ∪ An on the RHS is much easier to
evaluate. Using the PIE principle, this can be expanded as

|A1 ∪ A2 ∪ · · ·Ai ∪ · · ·An| =
n∑

i=1

|Ai| −
n∑

i<j=1

|Ai ∩ Aj| +
n∑

i<j<k=1

|Ai ∩ Aj ∩ Ak|

− · · · + (−1)n−1|A1 ∩ A2 ∩ · · ·An|. (5.13)

There are n ways in which ith object can be paired with its match. For any two arbi-
trary pairs (i,j), there are n(n − 1) ways to pair them using the multiplication law.
Owing to the restriction on i and j, there are

(
n
2

)

such pairs, and so on. In general,
the number of ways in which k items are paired with their peers is (n − k)!. Substitute
in equation (5.13) to get

|A1 ∪ A2 ∪ · · ·Ai ∪ · · ·An|

=
(n

1

)

(n − 1)! −
(n

2

)

(n − 2)! + ... + (−1)n
(n

n

)

. (5.14)

Expand
(

n
i

)

= n!∕(i!(n − i)!), take n! as common factor, subtract from n! and

simplify to get n!
∑n

i=0 (−1)i∕i!. If n is large, n!/e is a good approximation to
equation (5.14) because e−1 =

∑∞
k=0 (−1)k∕k!.

The derangement problem is easy to solve using recurrence relations. Let un denote
the number of derangements of n objects and Sn denote the corresponding set. Fix any
two objects say P and Q. There are four possibilities:– (i) both P and Q are paired
with their own match, (ii) either P or Q is paired with own partner, (iii) P is paired
with Q’s match and Q is paired with P’s, and (iv) only one of P or Q is paired with the
other’s match. Obviously, options 1 and 2 do not belong to Sn because they violate
the derangement condition. Only favorable cases are options 3 and 4. Consider option
3 first. As they are not matched to their peers, the remaining (n − 2) objects can be
deranged in un−2 ways. Obviously, Sn−2 is a subset of Sn. Object P can be matched
to (n− 1) other objects j (excluding its peer say (i). This automatically determines
one such match for Q as i. Thus, there are (n − 1) ways in which pairs of objects
that occupy each others’ place can be formed. If one among the fixed objects occupy
another place but not vice versa, there exist un−1 ways in which others can go wrong.
This gives the recurrence un = (n− 1)*(un−1 + un−2). Write the RHS as

n ∗ un−1 − un−1 + (n − 1) ∗ un−2, (5.15)
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and take n ∗ un−1 to the LHS to get

un − n ∗ un−1 = (−1) ∗ (un−1 − (n − 1) ∗ un−2). (5.16)

Repeated application of equation (5.16) results in un − n ∗ un−1 = (−1)n−2(u2 − 2u1).
Substitute u1 = 0 and u2 = 1 to get un − n ∗ un−1 = (−1)n. Divide throughout by n!
and cancel out n from the second term to get

un∕n! − un−1∕(n − 1)! = (−1)n∕n!. (5.17)

Replace n successively by (n − 1), (n − 2), ..., 2 and add them together to get
(un∕n!) = {1∕2! − 1∕3! + · · · (−1)n∕n!}. Add and subtract 1 in the RHS and write it
as 1−1/1! to get the final result. For two objects (A,B), there is only one derange-
ment (namely (B,A)) with D2 = 1. For three objects say (A,B,C), there exist two
derangements (B,C,A) and (C,A,B) so that D3 = 2. Similarly D4 = 6 and so on.

EXAMPLE 5.43 Hat-Check problem

There are n customers at a club, each of whom wears a cap. Each member puts
his cap in a basket while entering the club in the evening. While going out, each
one picks a cap randomly and walks out. What is the possible number of ways
that (i) all of them picks their own cap, (ii) no one picks their own cap, and (iii)
exactly half of them gets back their own hats (where n is even)?

Solution 5.43 Number the caps from 1 to n. The total number of possible ways
to arrange the n caps is n!. Out of this, there is only one way in which everyone
can get their own caps, so that the answer to (i) is 1 out of n!, (ii) number of ways
in which no one picks their own hat is the derangement Dn, and (iii) if exactly
half of them gets back their own hats, the other half do not get their hat. This can
happen in Dn∕2 ways. As there are

(
n

n∕2

)

ways to fix the half (for n even), there

are
(

n
n∕2

)

Dn∕2 total ways.

5.12 URN MODELS

An urn model is a conceptual framework for representing a set of problems that satisfy
the following conditions:–

• problem involves a collection of (preferably three or more) items, where each
item belongs to a group or has a type, and elements of the same group or type
are indistinguishable;

• all items are put together or assigned as a whole such that any subset of them
can be selected at random, without looking at their type;
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• Each of the groups are distinguishable, but their order or arrangement is unim-
portant.

There are a large number of problems that can be cast as urn model. These are also
called occupancy problems.

EXAMPLE 5.44 Unique ID numbers

A university wishes to assign a unique 4 digit ID number to each of the enrolled
students with the following restrictions that the student number cannot start
with digit “0.” What is the maximum number of IDs that can be generated if
(i) the digits can be repeated any number of times and (ii) digits cannot be
repeated?.

Solution 5.44 Consider the four positions as four numbered urns arranged along
a line. We can fill these urns from left to right. As the student number cannot start
with digit “0,” the first urn can be filled in nine ways (with digits one through
nine). In case (i), we are allowed to repeat the already used digit. This means
that the second, third, and fourth urns can be filled with any of the 10 digits. This
gives 9 ∗ 103 = 9000 possible numbers. In case (ii), the first urn can be filled in
nine ways as before. The second urn can be filled in nine ways as digits cannot
be repeated. Similarly, the third and fourth urns can be filled in eight and seven
ways, respectively. By the multiplication rule, we get the answer as 9*9*8*7 =
4536 ways. Thus, up to 4536 student, ID numbers can be generated if digits are
not repeated.

Theorem 5.4 Total number of ways in which n indistinguishable balls can be put
in k distinguishable urns (see Table 5.6) where none of the urns can be empty, and
maximum capacity of each urn is n is kn.

Proof: As the urns are distinguishable, arrange them in a linear order. Start with the
leftmost urn. We can put any of the balls there. Thus, there are n ways. This is true
for each of the k urns. By the multiplication law, the total number of ways is kn.

EXAMPLE 5.45 Common birthday

Suppose that there are n − 1 (<365) other persons along with you in a room,
none of whom are twins. How many ways are there for each of the following
events to realize assuming that leap-years are not accounted for? (i) None of the
people shares a common birthday, (ii) at least one other person in the room shares
a birthday with you, (iii) at most three people share a common birthday, and (iv)
find the value of n such that the probability for at least two persons to share a
common birthday is 0.6?

Solution 5.45 This can be cast in the urn-model framework by assuming days
of the year consecutively numbered as urns and people as balls (Table 5.6). Then
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TABLE 5.6 Urns and Balls Without Restrictions

k Urns

n Balls Distinguishable Indistinguishable

Distinguishable kn

n∑

i=1

{k
i

}

Indistinguishable
(n + k − 1

k

)

𝜋(n + k, n)

The literal meaning of these rules can be worded simply as follows:
1. The number of ways in which k ordered items can be sampled from n items with replacement is nk

and without replacement is (n)k.

case (i): “None have a common birthday” means that all birthdays are different.
This is the same as the number of ways to choose n different days from 365 days,
which is (365)n. (ii) The complementary event of “at least one other person” is
that discussed in case (i). As the total number of ways for the birthdays of n
persons is 365n, the required answer is 365n − (365)n. (iii) At most three people
will have common birthdays if either two or three people have the same birthday.
These are, respectively,

(
n
2

)

365 ∗ (364)n−2 and
(

n
3

)

365 ∗ (363)n−3s. (iv) The
value of n is found by solving (365)n∕365n ≃ 0.6.

5.13 PARTITIONS

We saw in Section 5.9.5 (p. 5–63) that the number of partitions of n things into two
groups of sizes r and n − r is

(
n
r

)

= n!/[r!(n − r)!]. In some problems, we need to
divide a finite set S of size n elements into all possible subsets. This is not to be con-
fused with set partitions defined in Section 5.5.1 in page 122. The trivial subsets are S
itself and one-element subsets. For simplicity, consider a set with three elements S =
{1, 2, 3}. Then, the seven possible partitions are {{1},{2},{3},{1,2},{1,3},{2,3}},
and {1,2,3}. When S has four elements, there are m = 15 partitions. In general, when
there are n elements, there exist S(n, k) partitions, where S(n, k) is called the Stirling
number of second kind. These numbers satisfy the recurrence S(n, k) = S(n − 1, k −
1) + k ∗ S(n − 1, k), where S(n, 1) = S(n, n) = 1, S(n, 2) = 2n−1 − 1.

5.14 AXIOMATIC APPROACH

With the solid mathematical footing given earlier, we are ready to define the axiomatic
approach to probability. Consider a finite set of mutually exclusive and collectively
exhaustive set of events Ai such that ∪n

i=1Ai = Ω. The literal meaning of an axiom is
“a statement that is always true or obviously true.” Events lie at the core of axiomatic
approach. We break the sample space of a random experiment into events that do
not occur together. Then, we define probability as a real valued function that obeys
certain conditions.
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5.14.1 Probability Measure

A probability measure has two fundamental ingredients. A sample space Ω of out-
comes of a random experiment and a function that maps each elementary outcome Ai
to a real number between 0 and 1 such that they add up to 1. These are stated as three
axioms:–

1. 0 ≤ P(Ai) ≤ 1,

2. P(Ω) = 1, P(𝜙) = 0,

3. if Ai is a sequence of disjoint events, then P(∪n
i=1Ai) =

∑n
i=1 P(Ai).

The third axiom can be extended to countably infinite collective mutually exclusive
events. Such a function is called a probability measure.

The postulation P(𝜙) = 0 follows because Ω ∪ 𝜙 = Ω and P(Ω) = 1. A direct con-
sequence of these axioms is the following set of properties that are stated in set
theoretic symbols and operators.

Theorem 5.5 If X and Y two arbitrary events defined on a sample space, then (i)
0 ≤ P(X) ≤ 1, (ii) 0 ≤ P(Y) ≤ 1, (iii) if X ⊂ Y → P(X) ≤ P(Y), and (iv) P(X ∪ Y) =
P(X) + P(Y) − P(X ∩ Y).

Proof: The first two results follows from the above-mentioned theorem. To prove the
third result, we write X + (Y − X) = Y . Then apply the third axiom to get P(X) +
P(Y − X) = P(Y). As P(Y − X) ≥ 0, it follows that P(X) ≤ P(Y).

To prove (iv), write X ∪ Y as the disjoint unions as X ∪ Y = (X ∩ Yc) ∪ (Y ∩ Xc) ∪
(X ∩ Y). As the subsets on the RHS are disjoint, axiom 3 can be applied to get

P(X ∪ Y) = P(X ∩ Yc) + P(Y ∩ Xc) + P(X ∩ Y). (5.18)

Add and subtract P(X ∩ Y) on the RHS and combine P(X ∩ Yc) + P(X ∩ Y) as P(X).
Similarly, write P(X ∩ Y) as P(Y ∩ X) and combine P(Y ∩ Xc) + P(Y ∩ X) as P(Y).
Substitute the values on the RHS to get P(X) + P(Y) − P(X ∩ Y). This is known as
the addition rule of probability.

5.14.2 Probability Space

A probability space is a triplet {Ω,𝔸,ℙ}, where Ω is the sample space, 𝔸 the set of
events defined on Ω, and ℙ the probability measure that maps events in 𝔸 → [0, 1]
such that P(Ω) = 1,P(A) ∈ [0, 1]∀A ∈ 𝔸, which is countably additive. This forms the
foundation for several theoretical studies in probability. Note that all three are related,
but second and third components are more related than others. This is because the
third component is a mapping from elementary events of Ω to the real line [0,1]. In
other words, ℙ has domain 𝔸 and range [0,1] (it is assumed here that the probabilities
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are represented as decimals and not as percentages). It is used to mathematically
represent a random phenomenon or an unknown experiment.

A probability model is a triplet ℙ = (Ω, S, p(x)), where Ω is the sample space,
S a set of events associated with an experiment, and p(x) the probability associated
with each event in S such that

∑
ip(xi) = 1.

5.15 THE CLASSICAL APPROACH

The sample space Ω is well-defined and often enumerable in the classical approach.
In addition, there are no conditional events involved. Assume that there are n
equally likely, mutually exclusive, and collectively exhaustive outcomes of a random
experiment. If m of them are favorable to an event E, the classical approach states
that the desired probability is m upon n (i.e., p = m∕n). Symbolically, this can be
written as

p(E) = number of outcomes favorable to E∕ total number of outcomes in Ω.

This definition holds only when the sample space is finite.

5.15.1 Counting Techniques in Classical Probability

Several counting techniques were discussed in Section 5.8 (starting p. 135). These
form the foundation of the classical approach. Some of the counting techniques
developed there have direct analogs in probability. Consider for example, the
principle of inclusion and exclusion discussed in page 147. It was mentioned there
that the PIE has two variants in terms of counts and probabilities. The “probability
version” given below has direct application in finding the probability of a union of
events, at least some of which have common elements.

5.15.2 Assigning Probabilities to Events

It is fairly straightforward to find probabilities of events by the classical approach.
First find the total number of possible events say n. Then find the number of favorable
events say m. Then divide m by n to get the probability.

Lemma 4 Classical probability = number of favorable cases/total number of cases
(p = m∕n, where m = # favorable cases, n = total number of cases).

Numerator can be either enumerated, estimated by other means, or evaluated recur-
sively in most of the problems. These are exemplified in the following.

EXAMPLE 5.46 Cards in a box

A box contains cards marked with numbers 1–10. (A) What is the probability
that a number drawn at random is (i) prime number and (ii) divisible by 3.
(B) What is the probability that the sum of two numbers drawn at random
without replacement is (i) even and (ii) odd integer greater than or equal
to 15.
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Solution 5.46 The sample space is well defined. There are no conditional prob-
abilities involved. Total favorable cases are easy to enumerate. Hence, we could
easily find the probability by dividing the total favorable cases by the number
of points in the sample space. For Case (A), we need to enumerate all prime
numbers. There are 5 of them as {1,2,3,5,7} are all primes. Hence, required
probability by lemma 8 is 5/10 = 1/2. In case (ii), the favorable cases are {3,6,9}.
From this, the required probability follows easily as 3/10. In Part (B), we are
drawing the cards without replacement. Total number of ways to draw two num-
bers from 10 is

(
10
2

)

. As the sum of two numbers is even when both are even or
both are odd, we can easily enumerate the 20 favorable cases in the sample space
as S= {(1,3),(1,5),(1,7),(1,9),(3,5),(3,7),(3,9),(5,7),(5,9),(7,9),(2,4),(2,6),(2,8),
(2,10), (4,6),(4,8),(4,10),(6,8),(6,10),(8,10)}. The required probability is then
20∕

(
10
2

)

= 20∕45 = 4∕9. In case (ii), the favorable cases in the sample space
are (5,10),(7,10),(9,10),(6,9),(8,9),(7,8),(9,8). Hence, the required probability
by Lemma 8 is p = total favorable cases/number of points in the sample space
= 7/

(
10
2

)

= 7∕45.

5.15.3 Rules of Probability

This section refreshes some of the rules that are necessary for laying a foundation for
subsequent discussions.

Rule 3 Probability is always between 0 and 1 (0 ≤ P(A) ≤ 1).
In Section 5.2, we have seen various ways to express probability. All of the meth-

ods described there (except the percentage method) map the probability into the
interval [0,1].

Rule 4 Probability of the entire sample space is 1. That is P(Ω) = 1.
The proof follows trivially because the probability of all the events occurring is

certainty.

Rule 5 Probability of occurrence of either of two disjoint events is the sum of their
individual probabilities (i.e., P(A ∪ B) = P(A) + P(B)).

EXAMPLE 5.47 Playing card problem

What is the probability that a card selected from a deck of playing cards will be
either an Ace or a Queen?

Solution 5.47 Let “A” denote the event that it is an Ace and “B” denote the
event that it is a Queen. These two are disjoint events. Hence, the required prob-
ability by Rule 5 is P(A) + P(B). But P(A) = 4∕52 = 1∕13 = P(B). The answer
follows as 2/13. This rule can be extended to any number of disjoint events. Let
A1,A2, … ,An be disjoint events. Then (P(A1 ∪ A2 · · · ∪ An) =

∑n
i=1 P(Ai)).



158 PROBABILITY

Rule 6 Product Rule

If A and B are two independent events, the probability of occurrence of both of
these events is the product of their individual probabilities:– P(A ∩ B) = P(A)P(B).

Proof: As the events are independent, the occurrence of A has nothing to do with the
occurrence of B. The probability of occurrences of A and B is the product of their
individual probabilities. This rule can be generalized to any number of independent
events as P(A1A2 · · ·An) = P(A1)P(A2)...P(An).

EXAMPLE 5.48 Furniture making

A furniture is made through three processes:–(i) cutting process, (ii) drilling
process, and (iii) assembly and finishing process. The respective probabilities
of a defect in each of the stages are 1/60, 1/20, and 1/80. Find the probabil-
ity that a finished furniture is (i) defective and (ii) has no cutting or drilling
defect.

Solution 5.48 Assume that the processes are independent. The probability that
it is defective is 1/60*1/20*1/80 = 1/96,000. (ii) Probability that it has no cutting
or drilling defect is (1 − 1∕60) ∗ (1 − 1∕20) = 0.93416.

Rule 7 Sum rule

The probability of occurrence of either of two events (not necessarily independent)
is P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof follows trivially using the principle of inclusion and exclusion. Let “X”
denote the common intersection of events A and B(X = A ∩ B). Then P(A) + P(B)will
contain the “X” portion twice. Therefore, we need to subtract it once to get P(A ∪ B).
Another proof appears in Theorem 5.5 (p. 155).

The probability of non-occurrence of an event is the complement of the probability
of occurrence. Symbolically, P(A) = 1 − P(A).

The complement of an event comprises all events in the sample space Ω except
the event. As the probability of the sample space is 1, it follows that the probability of
the event union the probability of its complement is 1. Symbolically P(A) + P(A) = 1,
from which the result follows.

Theorem 5.6 If A1,A2, … ,An are events defined on a sample space, at least some
of which have common elements, then

P(A1 ∪ A2 ∪ · · ·Ai ∪ · · ·An) =
∑

i

P(Ai) −
∑

i<j

P(Ai ∩ Aj)

+
∑

i<j<k

P(Ai ∩ Aj ∩ Ak) · · ·

+ (−1)n−1P(A1 ∩ A2 ∩ · · ·An). (5.19)
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Proof: Consider a special case with just two events say X and Y. We know that

|X| + |Y| − |X ∩ Y| = (|X − Y| + |X ∩ Y|) + (|Y − X| + |X ∩ Y|) − |X ∩ Y|

= |X − Y| + |X ∩ Y| + |Y − X|

= |X ∪ Y|.

Divide both sides by the total number of points in the sample space and swap
the LHS and RHS. Then, the above-mentioned expression takes the form
P( X ∪ Y) = P(X) + P(Y) − P(X ∩ Y). If X and Y are disjoint events, then X ∩ Y = 𝜙

so that P(X ∩ Y) = 0, and the results follow. Next assume that the result is true for
an arbitrary m > 2. Then P(∪iA

m
i=1) =

∑m
i=1 P(Ai) −

∑
i<jP(Ai ∩ Aj) +

∑
i<j<kP(Ai ∩

Aj ∩ Ak) · · · + (−1)n−1P(A1 ∩ A2 ∩ · · ·An). Write

∪m+1
i=1 Ai = ∪m

i=1Ai + Am+1 − [(∪m
i=1Ai) ∩ Am+1]

= ∪m
i=1Ai + (Am+1 − ∪m

i=1(Ai ∩ Am+1). (5.20)

As done earlier, divide by |Ω| to get the probabilities as P(∪m+1
i=1 Ai) = P(∪m

i=1Ai) +
P(Am+1) − P(∪m

i=1(Ai ∩ Am+1). Now apply the above-mentioned equation to get the
RHS in desired form. Thus, the result follows by induction.

Corollary 2 If A1,A2, … An are finite sets, some of which have common ele-
ments, then |A1 ∩ A2 ∩ · · ·Ai ∩ · · ·An| = |U| −

∑n
i=1 |Ai| −

∑n
1≤i≤j |Ai| ∩ Aj| +∑n

1≤i≤j≤k |Ai| ∩ Aj ∩ Ak| + ... + (−1)n−1|A1 ∩ A2 ∩ … ∩ An|.

5.15.4 Do-Little Principle of Probability

It was mentioned in Section 5.6.4 (p. 131) that complementary events are sometimes
easy to find when the sample space consists of a large number of discrete events as in
the above-mentioned example. These are especially true in “at least k” and “at most k”
type problems. These are called the do-little (or complement-and-conquer) principle
of probability. See page 162 and 166 for numerical examples.

EXAMPLE 5.49 Multiple choice exam

A multiple choice exam has 15 questions, each with 4 answer choices (say
A,B,C,D). If a student guesses the answer to every question, what is the
probability of getting at least two questions correct?

Solution 5.49 Here, the keyword is “at least 2.” The complement event is 0 or
1 correct answers that are much easier to find. As there are four choices, prob-
ability of guessing the answer is 1/4 (so that the probability of incorrect answer
is 3/4). We can consider the 15 questions as independent. This gives the prob-
ability of 0 correct answers as (3∕4)15 = 0.0133635. Now consider getting at
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least one correct answer. This correct answer may correspond to any of the ques-
tions 1 through 15 (in other words, there exist 15 possibilities). Hence, this has

probability
(

15
1

)

(1∕4)(3∕4)14 = 0.0668173. Subtracting the sum of these prob-

abilities from 1 gives the required answer of getting at least two questions correct
as 1 − 0.0668173 − 0.0133635 = 1 − 0.080181 = 0.919819.

EXAMPLE 5.50 At least type problem

There are 10 students in a class. What is the probability that at least two of them
have a common birthday if none were born in a leap-year?

Solution 5.50 Here, the keyword is again “at least 2.” The complementary event
is “none of them have a common birthday.” This means that each student has a
different birthday. Arrange the students in an arbitrary order. The first student
has 365 choices. Having fixed the birthday of first student, there are 364 choices
for the second student and so on. Thus, by the multiplication principle, total
number of ways (favorable cases) in which all birthdays are different is m =
365*364*363*356. Total number of ways in which the birthdays can be dis-
tributed (including those counted above) is n = 36510. The required probability
(in which all birthdays are different) is obtained by dividing m by n. Note that one
of the 365’s cancel out from the numerator and denominator giving the answer as
(364)9∕3659 = 0.88305. Subtract this from 1 to get the probability that at least
two of them have a common birthday. In general, if there are m students, the
probability for all birthdays to be different is (364)m−1∕365m−1.

EXAMPLE 5.51 Shipping container

A shipping container is loaded with 50 food cartons. The probability that any of
the cartons will get damaged during transshipment is 0.003 = 3/1000. What is
the probability of finding at least one defective carton when the container reaches
its destination?

Solution 5.51 As the probability that it will get damaged during shipment is
0.003, the probability that it will not be damaged is 0.997. Hence, the probabil-
ity that at least one of them gets damaged = 1-probability that none of them is
damaged = 1 − (0.997)50 = 1 − 0.8605 = 0.1395.

EXAMPLE 5.52 Defective circuits

An electronic board has three parallel circuits, each of which contains three,
eight, and five components. The probability for each component to malfunction
is 0.0015. The board will stop working when at least one of the parallel circuits
has a defect. What is the probability that the board does not work?
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Solution 5.52 Probability that at least one of the circuits does not work =
1-probability that none of them are defective. Probability that the first circuit is
not defective = 0.99853. Similarly, the corresponding probabilities for second
and third circuits can be found.

5.15.5 Permutation and Combination in Classical Approach

Permutation is useful to solve a variety of probability problems involving place-
ment of objects (such as books, people, and electronic components). Probabilities
can be assigned to the events that make up a random experiment using the axiomatic
approach. This is easily done in the case of equally likely experiments using the
classical approach. When the favorable cases for an event involve counting several
arrangements, we can use the techniques developed in the permutation and combina-
tion theorems.

EXAMPLE 5.53 Leap year

Consider Example 5.28 in page 139. What is the probability for a leap year with
366 days to have (i) 53 Sundays?, (ii) 53 Saturdays and 53 Sundays?, (iii) exactly
52 Saturdays and 52 Sundays?, (iv) exactly 53 Fridays or 53 Sundays?, and (v)
exactly 52 Tuesdays and 52 Thursdays?

Solution 5.53 As mentioned before, there are only seven possible combinations
for the extra 2 days. (i) As Sunday occurs in two of the seven combinations, the
probability that a leap year will have 53 Sundays is 2/7. (ii) As (Saturday, Sunday)
occurs once, the desired probability is 1/7. (iii) As neither Saturday nor Sunday
occurs in four out of the seven possible pairs, the desired probability is 4/7. (iv)
There exist four pairs containing either a Friday or a Sunday required probability
is 4/7. (v) There are three favorable cases, namely, (Sunday, Monday), (Friday,
Saturday), and (Saturday, Sunday) using the complement rule. Hence, the answer
is 3/7.

EXAMPLE 5.54 Roots of quadratic equation

Consider the quadratic equation px2 + qx + r = 0 considered in Example 5.29
(p. 139). Find the probability that (i) the equation will have real roots, (ii)
equal roots, (iii) imaginary roots, (iv) both integer roots, and (v) exactly one
integer root.

Solution 5.54 As each of the coefficients p,q,r is determined by the number that
shows up in the throw of a die, we need three throws to decide them (say choose p
first, then q, and finally r). In Example 5.29, we found that there exists (38 + 5) =
43 ways for the equation to have real roots. Hence, the answer to (i) is 43/216. (ii)
As the five favorable cases are (1,2,1), (1,4,4), (2,4,2), (3,6,3), and (4,4,1), answer
to (ii) is 5/216. A quadratic equation can have real roots, equal roots, or imaginary
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roots only. Hence, the favorable cases for case (iii) can be directly obtained using
complement rule as 216 − 43 = 173. This gives the probability for case (iii) as
173/216. Consider case (iv). Both roots are integers in 10 favorable cases, so that
the required probability is 10/216 = 5/108. (v) There are eight favorable cases
so that the probability is 8/216 = 1/27.

EXAMPLE 5.55 Equal number of Heads and Tails in coin toss

An unbiased coin is tossed 2n times where n ≥ 1. What is the probability of
observing an equal number of heads and tails?

Solution 5.55 As we are interested in “an equal number of heads and tails,”
this can be considered as an arrangement of n Heads and n Tails in 2n trials.
There are

(
2n
n

)

ways in which n Heads and n Tails can occur. Each of them
has the associated probability pnqn where q = 1 − p. By the ROS principle, the
answer is

(
2n
n

)

pnqn. As we are given that the coin is unbiased, p = q = 0.5.

Substitute in the above-mentioned equation to get the answer as
(

2n
n

)

(1∕2)2n.

EXAMPLE 5.56 Common birthday

Suppose that there are n (<365) passengers in a plane. What is the probability
that at least two people have a common birthday? What is the minimum value of
n such that the probability that (i) none will have a common birthday is 0.4313?
(ii) Two or more people will share a common birthday is at least 0.9?

Solution 5.56 Assume that the birthdays are randomly distributed, and none
were born on February 29 of a leap year. Then we could consider the 365 days
as the equivalent of numbered urns. A person whose birthday is January 10 is
assigned to 10th urn, and one whose birthday is December 26 is assigned to
urn 360. The desired probability is found by enumerating the number of ways
in which these urns can be filled by people such that at least two people are
assigned to an urn. This sample space is not easy to enumerate. Next apply
the “complement-and-conquer” principle. Consider the complement event. As
a common birthday occurs with at least two people, the complement event is that
none of the passengers have a common birthday. This is equivalent to counting
the number of ways in which people can be assigned to urns such that each urn is
either empty or has at most one assigned person. This event is greatly simplified.
The total number of ways in which birthdays of n passengers may fall among
the 365 days is 365n. Order the persons arbitrarily from 1 to n. There are 365
possibilities for the first person’s birthday. As that day is taken, the second per-
son’s birthday can fall in 364 days, and so on. As our assumption is that n < 365,
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the last person’s birthday can be chosen in 365*364*363*...*(365 − n + 1)ways.
This can be denoted using factorials as 365!∕(365 − n)! or using Pochhammer
notation as (365)n. Thus, the number of ways in which each person’s birthday is
different is 365!/(365 − n)! because we do not care which person’s birthday is on
a particular date. From this, the probability that each of the birthdays is different
is obtained as p = 365!∕((365 − n)!365n) = (365)n∕365n. Hence, the probabil-
ity that at least two people have a common birthday is 1 − p = 1 − (365)n∕365n.
For part (i), we need to find n such that (365)n∕365n ≃ 0.4313. Take log of both
sides and try successive values to get n = 25. In part (ii), we have to find that
value of n for which 1 − p = 1 − (365)n∕365n ≤ 0.1. For n = 40, the probability
that all birthdays are different is 0.108768, and for n = 41, it is 0.0968. Hence
n = 41.

EXAMPLE 5.57 No Common birthday

Consider the above-mentioned example where n > 365. What is the probability
that (i) none have a birthday on Sundays?. (ii) Exactly k persons have a common
birthday on the X’mas day?.

Solution 5.57 (i) A year has either 52 or 53 Sundays (if 1 January is a Sunday,
then that year will have 53 Sundays, as 31 December is also Sunday). In the
former case, there are 365 − 52 = 313 days that are not Sundays. Hence, the
total number of possibilities is 313n. In the later case, there are 312 days that are
not Sundays with 312n possibilities. Thus, the probability is either (312∕365)n
or (313∕365)n depending on whether January 1st is a Sunday or not. (ii) As k
persons birthday fall on an X’mas day, there are n − k persons whose birthday
falls on other 364 days. There are

(
n
k

)

ways for k persons to have birthday on

X’mas day and (364)n−k ways for other birthdays. Hence, the required probability
is
(

n
k

)

(364)n−k∕(365)n.

5.15.6 Sequentially Dependent Events

Events cyclically repeat in some applications. Consider a working traffic light. In each
cycle, the signal changes color from Green (G) to Yellow (Y) to Red (R) and then to
Green. Hence, the events are {G, Y, R}. These are not equally likely because the
duration of these signals are preset based on the traffic density in different directions.
Assume that Green signal is shown for 50 seconds, Yellow for 5 seconds, and Red
for 35 seconds in one direction. Then P(Green) = 50/90 = 5/9, P(Yellow) = 5/90 =
1/18, and P(Red) = 35/90 = 7/18. This may differ in other directions.

5.15.7 Independence of Events

Independence of events is an important condition to check, as this can considerably
simplify probability calculations. This is most often intuitively clear to humans but
not to machines. Independence of events is often assumed in random experiments.
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Definition 5.9 Two events “A” and “B” are independent if the occurrence of either
of them is not influenced by prior knowledge about the occurrence of the other
event.

Symbolically, we denote it as P(A and B) = P(A) ∗ P(B). Note that independence
is a “logical relation” among events, but it is mathematically cast using the probability
notation. This can also be expressed as P(A) = P(A|B) (or P(B) = P(B|A)), where the
vertical bar denotes conditioning (it is read as “Probability of A equals probability of
A given B,” etc.). The first notation is easier than others to generalize the concept to n
events. Symbolically events E1,E2, … ,En are independent if P(E1 ∩ E2 · · · ∩ En) =
P(E1) ∗ P(E2) ∗ · · · ∗ P(En).

EXAMPLE 5.58 Student selection

One class has 5 girls and 10 boys. Another class has 8 girls and 7 boys. If one
student each is selected from both classes, what is the probability that (i) both
are boys, (ii) both are girls, and (iii) one boy and one girl?

Solution 5.58 Let “Ai” denote the event of selecting a boy and “Bi” denote the
event of selecting a girl from ith class. P(A1) = 10∕15 = 2∕3 and P(A2) = 7∕15.
The probability that both are boys = 2/3*7/15 = 14/45, (ii) probability that both
are girls= 1/3*8/15 = 8/45, and (iii) one boy and one girl can come in two ways
(boy from first class or second class). Thus, the probability that one is a boy and
other is a girl is (2/3)*(8/15) + (1/3)*(7/15) = 23/45 as the events “A” and “B”
are independent.

EXAMPLE 5.59 Restaurant menu

A restaurant offers 6 varieties of soup; of which 4 are vegetarian and 2 are
nonveg soups; 10 varieties of the main course meal; of which 8 are nonveg and
the rest 2 are vegetarian meals. If 80% of the customers take vegetarian soup,
and among those 90% orders nonveg main meal, what is the probability that a
randomly chosen customer will order a veg soup followed by a vegetarian main
meal? If 95% of the people who orders nonveg soup also orders nonveg meals,
what is the probability that a randomly chosen customer will eat vegetarian
meal?

Solution 5.59 As there are interacting events, this problem is easy to crack using
a table. Probability that a randomly chosen customer will order a nonveg soup
is 80%. Probability that this is followed by vegetarian main meal is 0.80*0.10
= 0.08 or 8%. From Table 5.7, we see that 20% of the customer’s order nonveg
soup, among which 95% (or 19 customers) order nonveg main meal. This means
that only 1% of the customers who order nonveg soup also orders veg meal.
Hence, the probability that a randomly chosen customer will eat vegetarian meal
(irrespective of soup type) is 8 + 1 = 9%.
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TABLE 5.7 Soup and Meal Combination

Soup Main meal

Veg Nonveg

Veg 8 72 80
Nonveg 1 19 20

90% of 80 is 72, and 95% of 20 is 19. Other entries are found by
subtraction.

5.15.8 Independent Random Variables

Independence of events discussed earlier can be expressed in terms of conditional
probabilities as P(X|Y = y) = P(X). This immediately leads to independence of
random variables. Let X and Y be discrete or continuous random variables. We
define the independence in terms of probability of joint occurrence and individual
occurrences as follows:

Definition 5.10 Two random variables X and Y are independent if P(XY) = P(X) ∗
P(Y).

This definition can be extended to any number of random variables.

As random variables have probability and distribution functions, we have
several choices to define independence. Two random variables X and Y are inde-
pendent if any of the following conditions is satisfied:– (i) f (X|Y = y) = f (X), (ii)
f (Y|X = x) = f (Y), (iii) F(X,Y) = F(X) ∗ F(Y), (iv) F(X|Y = y) = F(X), and (v)
F(Y|X = x) = F(Y). In addition, generating functions can also be used.

An “empirical” probability is estimated after an experimental trial using known
or observed frequencies of outcomes. Here, the assumption is that the trials are inde-
pendent. It may also be estimated using a computer simulation. Experimental prob-
ability is derived numerically through the use of existing or simulated data. In the
coin-tossing example, if we toss the coin 100 times and observe the number of Heads
that turn up, we could find the experimental probability of observing a Head. Objec-
tive probability is a ratio measure that expresses the likelihood of an event occurring
in many repeated and identical trials of a random experiment.

EXAMPLE 5.60 Birthday sharing

A class has 60 students, of which 20 are males. Find (i) Probability that the
birthday of at least one student falls on a Sunday. (ii) Probability that at least three
female students will share the same birthday on Wednesday. (iii) Probability that
at most two male students will have their birthday on a weekend.

Solution 5.60 We assume that there are 52 weeks in a year (52 × 7 = 364 days).
As the extra day in a year can be a Sunday (for nonleap years) with probability 1/7
and other days with probability 6/7, we get the exact probability as follows. The
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probability that the birthday of an arbitrary student falls on a Sunday is p = 1∕7
and the probability that it does not fall on a Sunday is q = 6∕7. To answer (i),
we use the complement-and-conquer principle (p. 131), which is the probability
that none of the student birthdays fall on a Sunday. Hence, the required prob-
ability is 1 − q60 = 1 − (6∕7)60. This answer is not exact. For non-leap years,
the extra day can be a Sunday with probability 1/7, we get the exact result as
(6∕7)[1 − (6∕7)60] + (1∕7)[1 − (53∕365)60]. For leap years, the multipliers are
5/7 and 2/7. (ii) Using do-little principle, the answer is one-probability that less
than two female students share a birthday on Wednesday. As there are 40 female
students, this is 1 −

∑2
i=0

(
40
i

)

q40−i. As we have used the word “shares,” the
other possibilities (only one student’s birthday is on Wednesday or none have
their birthday on Wednesday) are irrelevant. (iii) The answer can be broken into
three groups: (a) none have their birthday on a weekend, (b) only one male
student has birthday on a weekend, and (c) exactly two male students have birth-
day on a weekend. These are, respectively, (5∕7)20

,

(
20
1

)

∗ (2∕7) ∗ (5∕7)19, and
(

20
2

)

∗ (2∕7)2 ∗ (5∕7)18.

EXAMPLE 5.61 Chessboard squares

If two squares are chosen at random on a chessboard, what is the probability that
they will form a rectangle?

Solution 5.61 There are 64 squares in total on the chessboard. The chosen
squares will form a rectangle when they are adjacent and either horizontally
or vertically aligned (but not diagonally). Let these be denoted by events X
and Y. The total favorable cases for X to materialize on any row are seven (as
this could happen in (1,2),(2,3), ..., (7,8)) squares. As there are eight rows,
the total number of favorable cases for X is 8 × 7 = 56. Similarly, there are
56 cases for vertical alignment along any of the columns. Thus, the total
number of favorable cases is 56 + 56 = 112. Total number of ways to choose
two squares on a chessboard of 64 squares is

(
64
2

)

. Hence, the required
probability = total favorable cases/number of points in the sample space =
112∕

(
64
2

)

= 112∕[32 ∗ 63] = 7∕[2 ∗ 63] = 7∕126 = 1∕18.

5.16 FREQUENCY APPROACH

Consider a random experiment that is conducted n times under identical conditions.
If an event X occurs r times out of the n equally likely outcomes, the ratio r/n can
be considered as the probability of occurrence of the event X. This probability may
fluctuate for small values of n but will stabilize for large values. Symbolically, P(X) =
r∕n = number of favorable cases/total number of trials.
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TABLE 5.8 Frequency Distribution of BMI Values

BMI Range Frequency BMI Range Frequency

“12–15” 1 “15–18” 6
“18–21” 24 “21–24” 56
“24–27” 67 “27–30” 33
“30–34” 11 “> 34” 2

Definition 5.11 Probabilities computed using frequency distributions or random
trials that are repeated under identical conditions are called empirical probability.
This approach can be used when the sample space is fuzzy, uncountable, or even
unknown.

EXAMPLE 5.62 BMI values

The BMI values of 200 patients are given in Table 5.8. Find the probability that
a new patient will have a BMI in the range (i) “24–27,” (ii) between 21 and 27,
and (iii) at least 30?

Solution 5.62 From the table, the relative frequency of patients with BMI in
the range “24–27” is p = 67∕200, which is the required answer. For part (ii)
by the frequency approach, we get p = (56 + 67)∕200 = 123∕200; for part (iii)
by the frequency approach, we get p = (11 + 2)∕200 = 0.065. The probabili-
ties obtained are only estimates of the towards true value. If the sample size is
increased from 200 to 2000, some of these probabilities may improve slightly
toward true value.

EXAMPLE 5.63 Newspaper readership

Consider the Example 11 in page 5–26. What is the probability that a randomly
chosen person reads either of the newspapers?

Solution 5.63 Define the events A and B as before. The required probability is
P(A ∪ B) = P(A) + P(B) − P(A ∩ B). As we are given that P(A ∩ B) = 0.10, we
could directly obtain P(A ∪ B) as 1 − P(A ∩ B) = 1 − 0.10 = 0.90.

EXAMPLE 5.64 Human blood groups

The human blood is categorized into four groups called “A,” “B,” “O,” and “AB”
using the presence of an antigen on the cell marker. Suppose that the percentage
of people with these blood groups is 40, 12, 43, and 5, respectively. Find the
probability that (i) two persons getting married are of blood group “A,” (ii) two
persons getting married are of the same blood group, and (iii) a child will be born
with blood group “O.”
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Solution 5.64 Using the frequency approach, we expect the probability of any
person with blood group “A” as 0.40. Denote this as P(A) = 0.40. Thus, the prob-
ability that both couples are of type “A” is 0.4*0.4 = 0.16 by the product rule. (ii)
We need to add the probabilities for each couple to be of the same type. This gives
p = 0.4 ∗ 0.4 + 0.12 ∗ 0.12 + 0.43 ∗ 0.43 + 0.05 ∗ 0.05 = 0.3618. (iii) Assum-
ing that all possible blood types are present among the parents, there are 16
possibilities. From the Table 5.9 page 173, we see that an “O” occurs in nine
cases. Hence, the required probability is 9/16.

5.16.1 Entropy Versus Probability

Entropy is a term that originated in data communication. It is a measure of the uncer-
tainty in a system. Small entropy values indicate the presence of structure and large
entropy values indicate randomness. Probability and entropy are inversely related.
This means that the probability of certainty is 1 while entropy of certainty is 0. While
the probability quantifies the degree of belief, the entropy quantifies the lack of pat-
tern or organization. It is used in data communications, decision tree induction, and
many other fields [2].

5.17 BAYES THEOREM

This theorem was invented by the English mathematician and cleric Thomas Bayes
(1702–1761) but was published posthumously in 1763. The basic ingredient of Bayes
theorem is conditional probability. Here, the word “conditional” implies that an event
depends on one or more conditions being fulfilled. Usually, the condition is the occur-
rence of another event. Conditional probability concept is always based on two or
more events (in the same sample space) or random variables.

Definition 5.12 Conditional probability is the probability of occurrence of an event
with prior knowledge or assumption about another event defined on the same sample
space.

EXAMPLE 5.65 Soxes and colors

Suppose that a drawer contains n pairs of soxes. All soxes are exactly alike except
for the color. In utter darkness, a boy wishes to grab just enough number of soxes
so that at least two of them are of the same color (he need not have to go and grab
another one). What is the minimum number of soxes to grab if (i) there are only
two possible colors ((black and white), (ii) there are three possible colors?, (iii)
what is the probability of obtaining two whites in a grab of size 3?, and (iv) a kid
grabs four soxes. One of them is found to be a Black. What is the conditional
probability that the other three together will make two matching pairs?.

Solution 5.65 Let the two colors be Black (B) and White (W). Minimum grabs
cannot be 2 as they could be of opposite color. Let it be three. The possible cases
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are {B,B,B}, {B,B,W}, {B,W,B}, {W,B,B}, {B,W,W}, {W,B,W}, {W,W,B},
and {W,W,W}. Because the order is unimportant, some of these are exactly iden-
tical. (i) As every combination should include either two Blacks or two Whites,
the minimum number of soxes to grab is 3. For case (ii), let the three colors be
Black (B), Red (R), and White (W). If the minimum number of soxes grabbed
is 3, there is only one case {B,R,W} (or its permutations) where a match can-
not occur. However, if the minimum number of soxes grabbed is 4, a match will
always occur. (iii) The answer is easily seen to be 0.5 from above. (iv) As one
of them is Black, the other three should contain two Whites and one Black to
make two matching pairs or all three Blacks. The favorable cases are {B,W,W},
{W,B,W},{W,W,B}, and {B,B,B}. The required probability is 4/8 = 1/2.

Bayes theorem is a convenient way to compute the conditional probability of a
hypothesis H given that an observation (evidence) E has occurred using the probabil-
ity of an observation, given that a hypothesis has occurred.

Lemma 5 Probability of hypothesis given evidence is the ratio of joint occurrence
of hypothesis and evidence over probability of evidence. P(H|E) = P(H ∩ E)∕P(E).

Corollary 3 The unconditional probability of hypothesis is the sum of the products
of the probabilities of hypothesis given evidence and probability of evidence; and
probability of hypothesis given no evidence and probability of no-evidence. P(H) =
P(H|E).P(E) + P(H|E).P(E).

Here, P(H|E) is the posterior probability. These can be obtained from each other
with the help of prior probabilities and likelihood as given by Bayes theorem.

5.17.1 Bayes Theorem for Conditional Probability

This theorem is also known as the law of inverse probability. Bayes theorem is used
to calculate posterior probability in terms of priors. In other words, Bayes theorem
analyzes the root causes and associated risks of alternatives using empirical data to
come up with the best plausible aposteriori probability or probability of occurrence
of hypothetical causes. Conceptually, posterior = likelihood × prior/evidence where
likelihood is estimated from sample data or found by other means. It expresses apos-
teriori probability in terms of apriori probabilities using newly acquired information.

Let X and Y be two arbitrary events. Suppose that Y has already occurred. If X and
Y have some outcomes in common, X will occur iff X ∩ Y occurs. This is symboli-
cally denoted as P(X|Y) = P(X ∩ Y)∕P(Y). Cross-multiply to get P(X ∩ Y) = P(Y) ∗
P(X|Y). As X and Y are arbitrary, this can also be expressed as P(X ∩ Y) = P(X) ∗
P(Y|X). This is the multiplicative law of probability discussed earlier. In P(X|Y) =
P(X ∩ Y)∕P(Y), replace the numerator P(X ∩ Y) by P(X).P(Y|X). Substitute in the
aforementioned to get P(X|Y) = P(X).P(Y|X)∕P(Y). Using the law of total proba-
bility (page 133), we have P(Y) = P(Y ∩ X) + P(Y ∩ X). Reorder the events to get
P(Y) = P(X ∩ Y) + P(X ∩ Y). Now write P(X ∩ Y) = P(X) ∗ P(Y|X) and P(X ∩ Y) =
P(X) ∗ P(Y|X).
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Replace the denominator P(Y) by P(X) ∗ P(Y|X) + P(X) ∗ P(Y|X) to get

P(X|Y) = P(X).P(Y|X)∕[P(X) ∗ P(Y|X) + P(X) ∗ P(Y|X)]. (5.21)

This is the simplest form of Bayes theorem. Using the hypothesis and evidence
notation used earlier, if the nonoccurrence of the hypothesis is denoted by P(H),
we get

P(H|E) = P(H) ∗ P(E|H))∕[P(H) ∗ P(E|H) + P(H) ∗ P(E|H)].

Next consider n events A1,A2, … ,An. Let B be an event that spans at least two
of the A

′
is. If the apriori probabilities of occurrence of P(B|Ai) are known, we could

utilize the information in obtaining an estimate of the aposteriori probability using
Bayes theorem. Symbolically, it can be written as P(Ai|B) =

[P(Ai).P(B|Ai)]∕[P(A1).P(B|A1) + P(A2).P(B|A2) + · · · + P(An).P(B|An)]. (5.22)

Proof: Let Ai denote possible explanations for a given set of data B. As the
data size increases, the probability P(B|Ai)P(Ai) increases. If A is decomposed as
A = A1 ∪ A2 ∪ · · ·An, then B can be represented as B = BA1 ∪ BA2 ∪ · · · ∪ BAn. Thus
P(B) =

∑
iP(BAi) =

∑
iP(Ai).P(B|Ai). As P(Ai|B) = P(Ai).P(B|Ai)∕P(B), the proof

follows by substituting the value for P(B). This proves the theorem for the general
case.

In multiple hypotheses situations, Bayes theorem provides a “best” estimate for
the probability of evidence under the assumption that each hypothesis is true. A gen-
eralization to the three event case easily follows as P(AB|C) = P(A|BC) ∗ P(B|C) =
P(B|AC) ∗ P(A|C).

EXAMPLE 5.66 ATM Cash Withdrawal

Consider cash withdrawals at an ATM booth. From analysis of prior fraudulent
transaction, a Bank has found that the probability of any transaction to be fraudu-
lent is one in thousand (P(Fraud)= 0.001), 90% of fraudulent transactions are for
amounts above 2000 (i.e., P(Amount > 2000|Fraud) = 0.90), and 99% of cash
withdrawals for amounts> 2000 are genuine. Using this information, what is the
probability that a transaction is fraudulent, given that the withdrawal amount is
4000?

Solution 5.66 We have P(Fraud) = 0.001, P(Amount > 2000|Fraud) =
0.90, P(Amount > 2000|Not Fraud) = 0.99 By Bayes theorem, P(Fraud|
Amount>2000) = P(Fraud) * P(Amount > 2000|Fraud)/[P(Fraud) * P(Amount
> 2000|Fraud) + P(Not Fraud) * P(Amount > 2000| Not Fraud)] = 0.001 *
0.90 / [0.001 * 0.90 + 0.999 * 0.99] = 0.0009/(0.0009 + 0.98901) = 0.90917
E-3 = 0.000909.
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5.17.1.1 Odds-Likelihood Ratio Form of Bayes Theorem In some applications,
we are interested in finding the ratio of the likelihoods

P(Hypothesis1| Evidence)
P(Hypothesis2| Evidence)

=
P(Hypothesis1)P(Evidence/Hypothesis1)
P(Hypothesis2)P(Evidence/Hypothesis2)

. (5.23)

EXAMPLE 5.67 Blood type of parents

Table 5.10 gives the break-down of the actual count of patients who visited a
clinic, with the combination blood type of parents, where columns denote father’s
and rows denote mother’s blood type1. A newly admitted patient only knows that
her father was “O” blood type. Find the probabilities that (i) her mother had blood
type AB and (ii) mother was also “O” blood type. (iii) If another patient knows
only that mother’s blood type is AB, what is the probability that the father’s blood
type is A or O?

Solution 5.67 Let X denote the event that Father was “O” blood type. Let Yi
denote the event that mother’s blood type is as given on the ith row of Table 5.10.
From the Table 5.9 below, we find that if father is of type “O” and mother is of
type “AB,” there are two possibilities for the child to have blood types A or B.

From the above-mentioned table, we get P(Y1) = 183∕456,P(Y2) = 52∕456,
P(Y3) = 200∕456, and P(Y4) = 21∕456. Similarly P(X|Y1) = 68∕183,P(X|Y2) =
23∕52,P(X|Y3) = 72∕200,P(X|Y4) = 9∕21. For question (i), we need to find P(Yi|X)
for i = 4 and 3. Using Bayes theorem P(Yi|X)=

[P(Yi).P(X|Yi)]∕[P(Y1).P(X|Y1) + P(Y2).P(X|Y2) + · · · + P(Y4).P(X|Y4)].

The denominator is 183/456 * 68/183+ 52/456 * 23/52+ 200/456 * 72/200+
21/456 * 9/21= 68/456+ 23/456+ 72/456+ 9/456= 172/456. The numerator

TABLE 5.9 Child’s Blood-type from Those of Parents’

Entries Are Father’s Blood Type

Child’s Type A B O AB

Mother’s A A, O A,B,O,AB A,O A,B,AB
Blood B A,B,O,AB B, O B, O A,B,AB
Type O A,O B,O O A,B

AB A,B,AB A,B,AB A,B A,B,AB

1The blood types of people differ in various countries and among different ethnic groups. See
www.wikipedia.org/wiki/Blood_type_distribution_by_country for a break up. Data in Table 5.10 can be
further broken down using Rh-factor +ve or −ve.
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TABLE 5.10 Blood Type Frequency Data

Entries Are Father’s Blood Type

Patient Counts A B O AB Total

Mother’s A 82 24 68 9 183
Blood B 20 5 23 4 52
Type O 90 28 72 10 200

AB 8 2 9 2 21
Total 200 59 172 25 456

is 21/456 * 9/21= 9/456. Substitute the values to get the answer to P(Y4|X) =
9∕456∕[172∕456] = 9∕172. For part (ii), the numerator is P(Y3).P(X|Y3) =
200∕456 ∗ 72∕200 = 72∕456, so that the required probability is 72/172. As the
GCD(72,172)= 4, divide both numerator and denominator by the GCD to get the
answer as 18/43.

(ii) Let Y denote the event that mother’s blood type is AB. Let Xi denote the
event that father’s blood type is as given on the ith column of Table 5.10. As
done earlier, we get P(X1) = 200∕456,P(X2) = 59∕456,P(X3) = 172∕456, and
P(X4) = 25∕456. Similarly P(Y|X1) = 8∕200,P(Y|X2) = 2∕59,P(Y|X3) = 9∕172,
and P(Y|X4) = 2∕25. For part (iii), we need to find P(Xi|Y) for i = 1 and 3 (blood
group “A” or “O”). Using Bayes theorem, this is P(Xi|Y)=

[P(Xi).P(Y|Xi)]∕[P(X1).P(Y|X1) + P(X2).P(Y|X2) + · · · + P(X4).P(Y|X4)].

The denominator is 200/456 * 8/200 + 59/456 * 2/59 + 172/456 * 9/172 +
25/456 * 2/25 = 21/456. The numerator is 200/456 * 8/200 = 8/456. Substitute
the above-mentioned values to get the answer for blood group of father = “A” as
(8/456)/(21/456) = 8/21. Answer for father’s blood group “O” differs only in the
numerator. As the numerator is 172/456 * 9/172 = 9/456, we get the answer for
subpart as (9/456)/(21/456) = 9/21. Add these two probabilities to get the answer
that father is of type A or O as 8/21 + 9/21 = 17/21 = 0.809523 809523.

5.17.1.2 Product Rule for Conditional Probability P(AB|C) = P(A|C) ⋅
P(B|AC) = P(B|C).P(A|BC), where AB denotes A ∩ B, and so on.

5.17.2 Bayes Classification Rule

Consider two propositions A and B whose apriori probabilities are known. Let U(A)
and U(B) denote the utilities of propositions A and B, respectively. Then, A is pre-
ferred over B if U(A) > U(B). In data mining applications, Bayes’ rule is used to
specify how the learning system updates its beliefs as new data instances arrive. This
is the basic principle of statistical decision theory.
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5.17.2.1 Rule of Expected Utility Assuming A as the action and B as the conse-
quence, this rule gives the utility of A as

U(A) = P(B|A)U(A ∩ B) + P(B|A)U(A ∩ B). (5.24)

A disadvantage of this approach is that they depend on prior probabilities of propo-
sitions explicitly. If these are unknown, they need to be estimated (using point esti-
mation, EM algorithm 2, stochastic sampling, or parametric approximations) before
starting the decision process.

Now consider the problem of classifying a dichotomous attribute using data
instances. If the two attribute values are “Yes” and “No,” we could obtain a measure
of entropy using the probabilities of Yes and No responses as

E(S) = −pyeslog 2(pyes) − pnolog 2(pno).

As the logarithm of a number in the range (0,1) is negative, it combines with the
minus sign to return a positive number.

5.18 SUMMARY

This chapter introduced the concepts, tools, and techniques of probability in an intu-
itive way. Several examples drawn from different fields help the readers in honing the
problem-solving skills, and applying it with confidence to practical problems. Several
self-understanding and concrete examples make the book accessible to even average
students. See Reference 112 for a historical review, References 113 and 114 for the-
oretical aspects, Reference 115 for urn models, and References 116–120 for further
examples.

Data uncertainty prevail in most experiments. With scientific rules and regula-
tions of probability, the exactitude and their remedies in the data could be understood
and interpreted. Two or more outcomes in an application might be dependent. As
explained in this chapter, the level of their dependence could be calculated and uti-
lized. When two outcomes are dependent, the prediction of one outcome becomes
more precise based on the occurrence of a connected outcome using conditional
probability. This type of prediction is the basic foundation of decision making in
engineering and applied sciences.

EXERCISES

5.1 Mark as True or False

a) A probability of 0.5 is realized only for discrete event,

2Expectation Maximization(EM) algorithm is used for maximum likelihood estimation of parameters from
missing or incomplete data
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b) Addition and subtraction are the only operations on probabilities,

c) A Venn diagram can quantify the probability of an event,

d) If P(A|B) = P(A) then P(B|A) = P(B) always,

e) Combining events using OR operator often increases the probability,

f) Venn diagrams can represent only discrete events,

g) P(A ∩ B) is always ≤ P(A ∪ B).

5.2 The mechanism that generates
uncertain outcomes is called
(A) event (B) random experiment
(C) sample space (D) combination

5.3 Permutations of objects in which
nothing is in its original position is
(A) Power-set (B) circular per-
mutation (C) Combination (D)
Derangement.

5.4 The identifiable outcomes of a ran-
dom experiment is called
(A) event (B) probability (C) sam-
ple space (D) power-set

5.5 Decimal form of probability
always take values in the range
(A) −1 to +1 (B) 0 to 1 (C) −0.5
to +0.5 (D) any positive value

5.6 A pharmacist has six medicine
packs, three of which are of one
kind, two of another kind and a last
one of a single kind. How many
ways are there to arrange them on
a shelf?

5.7 A video store has nine cassettes, of
which four are of one kind, three
are of a second kind, and two are
of a third kind to be arranged on a
rack. In how many ways, can this
be done?

5.8 Evaluate the multinomial coeffi-
cients (i)

(
7

3,3,1

)

. (ii)
(

10
4,3,2,1

)

,

(iii)
(

12
4,4,2,2

)

5.9 Convert to fractional form p/q (i)
0.2727 (ii) 0.428571 428571, (iii)
0.285714 285714, (iv) 0.809523
809523

5.10 An event E1 can happen in m
ways and a mutually exclusive
event E2 can happen in n ways. In
how many ways, can E1 and E2
happen?

5.11 An elevator starts with six girls
from the ground floor to all other
floors of a four storeyed building.
If all disembarks, define appropri-
ate events.

5.12 Sets of outcomes of a sample
space meeting some specifications
is (A) subspace (B) partition (C)
cardinality (D) Event

5.13 If 4 squares are chosen at random
on a chessboard, what is the prob-
ability that they will form a bigger
square?

5.14 A man has five pairs of soxes of
different styles and colors. One
night when the power was off, he
selects two soxes at random. Find
the probability that they form a
matching pair.

5.15 Consider a set of ordered events
of a random experiment. Express
following events using probability
notation:
(a) at least one has occurred.
(b) at most one has occurred.
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5.16 Prove or disprove the following:
(i) if A ⊆ B and B ⊆ A then A = B.

5.17 Prove (n)k∕nk =
∏k−1

i=0 (1 − i∕n)

5.18 There are 60 students in a class.
What is the probability that (i) two
or more students share the same
birthday? (ii) there are exactly k
days in which no one’s birthday
falls?

5.19 How many people are there in a
room to have the probability that
two or more people will have the
same birthday is (i) greater than
0.5? and (ii) less than 0.75?

5.20 A diabetes medicine comes as
a tablet, capsule, nasal spray, or
injection. If each of them is avail-
able in regular and generic vari-
eties, in how many ways, can it be
prescribed?

5.21 Let X and Y be two finite sets.
Define X ⊕ Y as the set of all ele-
ments in X or Y but not in both.
Verify whether ⊕ is commutative
and associative.

5.22 If X and Y are nondisjoint events,
prove (i) P(X ∪ Y) + P(X ∩ Y) =
P(X) + P(Y), (ii) P[(X ∩ Y) ∪
(Y ∩ X)] = P(X) + P(Y) − 2 ∗
P(X ∩ Y)

5.23 If X and Y are nondisjoint events,
arrange the following probabilities
in increasing order of magnitude:
P(X),P(X ∩ Y),P(X ∪ Y),P(X) +
P(Y).

5.24 A pizza can be ordered in 3 vari-
eties of crust (thin crust, medium,
and thick crust), 4 varieties of
cheese, and 12 varieties of top-
pings. How many different vari-
eties of pizzas can be ordered?. If

crust is fixed as thick how many
choices are left?

5.25 A chocolate bar is in the form of
6 × 8 pieces of equal size. The
bar can be broken only along a
straight line horizontally or verti-
cally but not diagonally. If the bars
are broken one at a time, what is
the probability of obtaining eight
2 × 3 pieces in seven tries?.

5.26 A school kid has 10 varieties of
shirt, 7 varieties of pants, and 5
varieties of tie. In how many ways,
can the kid dress up?

5.27 Consider n tosses of a die with
faces numbered 1–6. What is the
probability that the top face num-
ber is greater than the bottom face
number?.

5.28 An electronic circuit has n2 com-
ponents that look identical. A
technician has time to inspect all
except n of the components in any
trip. If the components are chosen,
one after another find the number
of ways to choose the components
in any trip. Using Stirling’s for-
mula for factorials obtain a simpli-
fied expression for it.

5.29 Describe a suitable sample space
Ω for the following experi-
ments:–(i) absolute value of the
difference between the numbers at
the top and bottom when a die is
rolled; (ii) number of Red balls in
x draws of a ball from an urn con-
taining m White and n Red balls;
(iii) two dice are thrown and an
event is specified as “the number
at top of second die is greater than
the one on the first die.”
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5.30 A committee consists of five mem-
bers of whom the three males are
(X, Y, Z) and the females are (U,V).
If a meeting is attended by only
three members, what is the prob-
ability that (i) at least one female
is present; (ii) If V was present in
the meeting, what is the probabil-
ity that Y and Z were also present?
How many ways are there to form
a subcommittee of size 3 compris-
ing (i) at least two males, (ii) at
most one female?, and (iii) exactly
two males?

5.31 A furniture shop makes a vari-
ety of furnitures. Each piece goes
through three processes:–(i) cut-
ting process, (ii) drilling process,
and (iii) assembly and finish-
ing process. A quality inspector
inspects each furniture before it is
shipped. The respective probabil-
ity of a defect in each of the stages
is 1/60, 1/20 and 1/80. If a finished
furniture is found to be defective,
what is the probability that (i) it is
a cutting defect and (ii) it is due
to either drilling or assembly pro-
cess?

5.32 Is the event X ∪ Y defined when
either of them is discrete and the
other is continuous? Is the concept
of independence defined for con-
tinuous events?

5.33 There are n different tasks to be
assigned to m employees where
n > m. How many ways are there
if every employee is assigned at
least one task?

5.34 Two persons P and Q play a game
with respective initial amounts of
70 and 30. Probability of P win-
ning is p, and for Q it is 1−p.

Each winning person gets an
amount of 1 from the loser. Find
the expected value of the amount
owned by the winner at nth game.
What is the probability of (i) P
winning the game?, (ii) the game
being over in 120 plays?, and (iii)
both have 50:50 in n trials.

5.35 There are 160 customers who buy
electronics, and 120 customers
who buy other items. Among the
160 customers, 30 also buy other
items. If nine customers are ran-
domly chosen, what is the prob-
ability that (i) a customer who
bought only other items will get
selected? And (ii) a customer
who bought both items will get
selected?

5.36 A safe locker has two locks. An
intruder has gained access to “n”
keys. If two keys are chosen at
random each time, (i) what is the
probability that the intruder will
be able to open the locker in first
try and (ii) the locker in third try?

5.37 If X ∪ Y is translated into words
as “X or Y occurs,” X ∩ Y as “X
and Y occurs,” X − Y as “X but
not Y occurs,” X as “X does
not occur,” translate the following
expressions into words:

(i) X ∩ Y (ii) X − X ∩ Y , and (iii)
X ∪ Y − X ∩ Y .

5.38 A train has 3 general (unreserved)
compartments, 12 reserved
coaches, and a pantry car in
addition to the engine. Out of
12 reserved coaches, 3 are AC
coaches and the rest are ordi-
nary coaches. How many ways are
there to connect the coaches if (i)
the pantry car can never be the first
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or last and (ii) the coach immedi-
ately behind the engine and the
rear-end coach are both ordinary?.
(iii) If all AC coaches cannot be
together?

5.39 A university wishes to assign a
unique 6 digit number to each
of the enrolled students with the
following restrictions that :– (i)
the student number cannot start
with digit “0,” (ii) digits cannot be
repeated in the first three places,
but repetition is allowed in sub-
sequent digits. How many student
numbers can be generated?

5.40 A fruit merchant has five bas-
kets of apples (all of one kind),
three baskets of oranges (all of one
kind), and two baskets of bananas
to be displayed in front of the
shop. (i) How many ways can this
be put if all of them are placed
in one straight line (ii) if they are
arranged as a circle?

5.41 A restaurant offers 5 varieties of
soup, 10 varieties of the main
course meal, and 5 varieties of ice
cream or cake after meal. How
many choices are possible for a
person who will take any of the
choices? How many choices are
possible if a person does not take
2 of the 10 varieties of the main
course and 3 varieties of ice-cream
choices?

5.42 The passenger area of a jumbo-jet
can be divided into an execu-
tive section (XS) and an economy
section (ES). There are three dif-
ferent ways in which XS can be
arranged and five different ways in
which ES can be arranged. Total

how many ways are there for seat-
ing arrangement in the aircraft?

5.43 There are 22 people in a hospi-
tal including 2 twins who were
born on the same day. What is the
mathematical expression to find
the probability that at least three
persons have the same birthday?
At most two people have the same
birthday? no-one except the twins
have a common birthday?

5.44 A customer needs change for a 10
dollar bill in 5 dollar, 2 dollar, and
1 dollar bills. How many ways are
there to make the change?

5.45 Use the PIE principle to find
how many integer solutions exist
for the equation x1 + x2 + x3 = 11
where x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6.

5.46 A street has 10 houses on one
side and 12 houses on the other
side. Each of the houses should
be numbered sequentially by start-
ing from either end of the road
with three digits. How many ways
can this be done if only the dig-
its {0,1,2,3,4,5} are used? If all
houses on one side get even house
numbers and all houses on the
other side get odd numbers? If 0
cannot be used as a first digit for
numbering.

5.47 A rocket can fail independently
due to navigation error(NE),
software error(SE), or hardware
fault(HF). The probability of NE
is twice as large as that of SE, and
the probability of SE is three times
as large as HF. Assume that it
failed. (i) If there were no naviga-
tion errors, what is the probability
that it was due to one of the other
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faults? (ii) What is the probability
that it was due to hardware faults
given that there was no software
fault?

5.48 There are four blood group types
{A, B, AB, and O} and two types
of Rh-factors {+, −}. Assume
that all of them are equally likely.
Among a group of 50 students,
what is the probability that (i)
there are at least 5 students with
O blood group.(ii) Probability for
at least 10 students with +ve
Rh-factor and blood group A or B.

5.49 Consider a quadratic equation
px2 + qx + r = 0, whose nonzero
coefficients are determined by the
number that turns up when a die
is thrown. Find the probability that
(i) the discriminant b2 − 4 ∗ a ∗ c
is an integer, (ii) the roots are inte-
gers, (iii) at least one integer root,
and (iv) there are no real roots.

5.50 A family has n friends. They
invite m (1 < m < n∕7) friends
randomly on each day from Sun-
day to Saturday to their house
where some of the invited guests
may overlap on different days, but
the group as a whole are different
on each day (no identical groups
invited twice). For instance, if
m = 2 and {X,Y} are invited on
Sunday, {X,Z} or {Y ,Z} may be
invited on another day. What is the
minimum and maximum number
of friends who visit the house in
a week?

5.51 Consider a die with six faces. They
are not numbered from 1 to 6, but
it is known that two of the num-
bers repeat once (resulting in four
numbers). A quadratic equation

px2 − qx + r = 0 is formed, whose
nonzero coefficients (p, q, r) are
determined by the number that
turns up when this die is thrown.
What is the probability that the
roots are real if the numbers that
repeat are 1 and 2 and nonrepeat-
ing are 3 and 4?. What is the prob-
ability that the roots are equal?

5.52 A class comprises 35 males and 25
females. If five students each have
to give a seminar randomly each
day, find the probability that (i) all
five of them on a day are males
and (ii) three are males and rest
females. How many ways are there
if at least two boys are to give the
seminar each day?

5.53 A trailer truck has 10 identi-
cal looking wheels. A mechanic
removes the brake pedals for
cleaning and returns them back to
the wheels after some time. What
is the probability that (i) all brake
pedals are returned to their correct
wheels? And (ii) none of the brake
pedals match their corresponding
wheels?

5.54 An online examination has n ques-
tions, which are taken together by
m (≥2) students sitting in a com-
puter laboratory. To avoid copy-
ing, the instructor sets it up in such
a way that the questions for each
student are generated using unique
random numbers between 1 and
n (so that the same question is
not displayed twice, and adjacent
students may get different ques-
tion orders). Find the probability
that (i) all questions are gener-
ated in exactly the same order to
two students sitting next to each
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other?. (ii) Exactly k of the ques-
tions are generated the same order
to two students sitting next to each
other?. (iii) All questions are gen-
erated differently for two or more
students?

5.55 Assume that n pairs of husbands
and wives enter a club, each one
wearing a hat. The hats are handed
over to a waitress for keeping.
After a short while, all n pairs of
people assemble for a dance each
one wearing a hat. If the waiter
distributes the hats at random, and
the dancing pairs are formed at
random, find the probability that
(i) no couple are properly paired,
and nobody gets their own hat;
(ii) exactly k of the couple are
matched, but no one get their
matching hat; (iii) exactly k of
the hats are matched, but no cou-
ple are matched; (iv) exactly k of
the couple and m of the hats are
matched; and (v) all husbands and
wives are matched but none of the
hats are matched.

5.56 A biased coin has probability p of
heads showing up. If it is tossed 12
times, find the conditional proba-
bility that for each of the follow-
ing if it is known that a total of six
heads have been obtained: (i) the
first four outcomes are HTHT and
(ii) they are TTTH.

5.57 A telephone number has eight dig-
its. What is the probability for
each of the following, if start-
ing (leftmost) digits cannot be
zeros? (i) four or more digits are
repeated?, (ii) at most six digits
are repeated?, and (iii) none of the
digits are repeated?

5.58 Two exactly identical deck of
cards is shuffled. Then, two cards
each are drawn from the pool
and kept face down. A player is
allowed to take one pair of face
down cards at a time until k identi-
cal pairs are obtained. What is the
probability of obtaining k match-
ing pairs?

5.59 An urn contains m Blue and n
Red balls. A second urn contains
a Blue and b Red balls. Two balls
are drawn at random from the first
urn and put into the second urn.
Then, a ball is drawn from the sec-
ond urn. Find the probability that
(i) it is Blue and (ii) it is Red.

5.60 There are n pairs of shoes in a box
(total 2n shoes). If m(<n) shoes
are chosen at random from the
box without looking at the shoe,
find the probability that (i) none
of the m shoes have a matching
pair, (ii) at most two of them have
a matching pair, and (iii) in how
many ways can you choose m pairs
(< n) such that at least one match-
ing pair is obtained.

5.61 A lottery selects the winner by
drawing 5 numbers between 1 and
39 randomly. Find probability of
the following events if (i) none of
the numbers can repeat (all num-
bers are unique or it is like sam-
pling without replacement) and
(ii) numbers can repeat: (a) all 5
numbers are odd, (b) all numbers
are below 25, (c) at least 2 num-
bers are above 30, and (d) none of
the numbers are primes.

5.62 A device is manufactured in m
independent successive steps.
Probability of making an error at
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step k is pk. Find the probability
that out of n manufactured items,
(i) at least one item is defective,
(ii) at most two are defectives,
(iii) a lot contains between two
and five defectives, and (iv) none
are defectives.

5.63 Consider a quadratic equation
px2 − qx + r = 0, whose nonzero
coefficients (p, q, r) are deter-
mined by the number that turns
up when a regular pyramid with
five faces numbered 1–5 is thrown.
Find the number of ways in which
(i) the equation will have real
roots, (ii) equal roots, (iii) imagi-
nary roots, (iv) both integer roots,
and (vi) exactly one integer root.

5.64 A software company has 8 VB
experts, 5 C++ experts, 10 Java
experts, and 4 C# expert program-
mers. A new project that requires
3 VB, 2 Java, and 3 C++ experts is
to be initiated. In how many ways
can the team be formed? If another
project requires two each of VB
and C# experts, three each of C++
and Java experts, how many ways
are there to form the team?

5.65 The simple matching coefficient
(SMC) used in cluster analysis
is a similarity coefficient defined
on binary strings as SMC(x, y) =
1
d

(Number of positions in which x
and y match), where d= total num-
ber of bits or the size of the data.
If x and y are d bits long, what is
the probability that (i) SMC takes
the value 1, (ii) SMC takes the
value ≥1/d, and (iii) SMC is 1/2
(d even).

5.66 How many numbers between 1
and 200 are divisible by (i) 3, 5,

and 7? And (ii) at least by 3 and 7
but not by 5?

5.67 Verify whether (i) P(A|B) ∗
P(B|A) = P(A ∩ B) or (ii) P(Ac) ∗
P(Bc) = P(Ac ∩ Bc) when events
A and B are independent.

5.68 A faulty electronics appliance has
eight exactly looking components.
Bob samples four components
arbitrarily, tests each of them indi-
vidually, writes his initial “B”
on each of them and puts them
back. After he is finished, Peter
comes and samples three compo-
nents arbitrarily and does the same
testing, writes his initial “P” on
each of the 3 and puts them back.
What is the probability that (i)
none of the components have both
marks, (ii)exactly two of the com-
ponents will have marks “P” and
“B”? and (iii) at least two of them
have both the marks?.

5.69 A group of 12 school kids are on
a sightseeing trip. The instructor
wants to stock enough drinks of
each kind. There are seven stu-
dents who drink coffee, four stu-
dents who drink tea, nine students
who drink fruit juice, three stu-
dents who drink coffee and tea,
four who drinks coffee and juice,
and two who drink tea and juice.
(i) How many students drink all
three beverages? (ii) A student is
selected at random and is found to
drink fruit juice. What is the prob-
ability that student does not drink
coffee.

5.70 There are three classes X,Y,Z
with respective male and female
strengths (30, 10), (27,15), and
(32,12). An aptitude test is given
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in all the three classes. If a girl
scored the highest marks followed
by two boys overall, what is the
probability that (i) all came from
Y?. (ii) Female topper came from
Z and males came from X and Y?

5.71 The underground water supply
system in a city in northern lat-
itude has 5 major pipes and 50
minor pipes with respective proba-
bilities of cracks in a year as POIS
(1/1000) and POIS (1/200). What
is the probability of one major and
two minor cracks in a year? If a
crack has indeed occurred, what is
the probability that both of them
have cracked?

5.72 A tourist has to visit n tourist-spots
in a city. In how many possible
order can this be visited if (i) all of
them are visited on a single day?,
(ii) n∕2 each in two days (for n
even)?, and (iii) m of them on first
day and rest on second day.

5.73 If the probability of Head show-
ing up is p = 0.4 for a coin, find
the probability that (i) the second
Head is obtained in an odd num-
bered trial and (ii) the third head is
obtained in at least 10 and at most
15 trials.

5.74 A satellite that failed to reach orbit
is falling down to the Earth. Some
internal parts made of steel, tita-
nium, and beryllium that have a
high melting point are likely to
make through the descent with-
out burning up. The exact loca-
tion where it will hit the surface
is unknown owing to its eccentric
path. Assume that 70% of Earth
surface is covered with water. The
Atlantic ocean is 16.67% of the

total ocean area. The probable hit
point is 85% in ocean. What is the
probability that it will (i) fall in the
Atlantic ocean and (ii) it will hit
land mass or Atlantic?

5.75 Two medical tests are being devel-
oped for a new virus infection.
The first test T1 has probability
of identifying the presence of the
virus in 99% of the cases but is
expensive. The second test T2 is
cheap, but it can detect the dis-
ease in 96% of the cases. The first
test has a false positive rate of
0.05, whereas the second test has
a false positive rate of 0.06. If a
person is tested positive using T2,
what is the probability that the dis-
ease is truly present? If both tests
show positive what is the proba-
bility that the person truly has the
disease.

5.76 There are nine rings, all of which
have exactly identical look. Three
of them are gold and the rest are
brass. If you are given a balance,
what is the probability of identi-
fying the three gold rings in (i)
two weightings?, (ii) three weight-
ings?, and (iii) four weightings?

5.77 A container has 12 machinery
parts, all looking alike. Seven of
them are known to be good, three
of them have mild defect, and the
rest have severe defect. Two parts
are selected at random. Find prob-
ability that (i) both of them are
good and (ii) one is good and other
has mild defect?

5.78 A course on probability theory
is attended by 28 students with
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statistics major or computer sci-
ence major. If there are 18 statis-
tics majors and 14 computer
science majors, how many are
double majors?

5.79 Suppose you are in a room with n
other people. What is the proba-
bility that no one else shares the

birthday with you?. If m among
the n people are males, find the
probability that at least one male
shares the birthday with you.

5.80 Using Table 5.9 (p. 5.9), com-
pute the conditional probability
that parent blood types are A or B
given that child’s type is O.

5.81 If X and Y are independent, which of the following are also independent? (a) X
and Y , (b) X and Y, and (c) X and Y .

5.82 The customer breakdown to a store is given in Table 5.11. Find the probability
that (i) a randomly chosen customer to the store is a female and (ii) conditional
probability that a customer will visit the store on Friday, given that the customer
is male.

TABLE 5.11 Customers to a Store

Day Males Females Total

Monday 11 3 14
Tuesday 6 8 14
Wednesday 7 6 13
Thursday 5 6 11
Friday 6 7 13
Total 35 30 65

TABLE 5.12 Cancer Incidence among Smokers and
Nonsmokers

Entries Are Smoker type

Patient Counts Direct Exposed Total

Malignant tumour 186 14 200
Benign tumour 124 26 150
Total 310 40 350

5.83 Cancer incidence among first-hand smokers and second-hand smokers (who
are exposed to smokers inside enclosed areas) are given in Table 5.12. A new
patient is found to be a nonsmoker. What is the probability that he has benign
cancer? A retiree is having malignant tumor. Find the probability that he is a
smoker.
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5.84 If A1,A2, … An are finite events, some of which have overlaps, prove that

P(A1 ∪ A2 ∪ · · ·Ai ∪ · · ·An)

=
∑

i

P(Ai) −
∑

i<j

P(Ai ∩ Aj) +
∑

i<j<k

P(Ai ∩ Aj ∩ Ak) − · · ·

+ (−1)n−1P(A1 ∩ A2 ∩ · · ·An), (5.25)

where summations are carried out using conditions specified.

TABLE 5.13 Impurity in Minerals

Entries Are Mining process

Impurity in Percentage Process P1 Process P2 Total

Impurity A 2.5 0.81 3.31
Impurity B 5.0 1.69 6.69
Total 7.50 2.50 10

5.85 A mineral is extracted using two processes P1 and P2. Two types of impurities
in the mineral are examined by a quality inspector. Data appear in Table 5.13.
A lot produced by process P1 is randomly selected. Find the probability that it
contains Impurity B. If a lot is known to contain Impurity A, what is the chance
that it was produced by process P2?



6
DISCRETE DISTRIBUTIONS

After finishing the chapter, students will be able to

◾ Understand binomial theorem and its forms

◾ Explain Bernoulli trials and Bernoulli distribution

◾ Describe binomial distribution and its properties

◾ Apply Poisson distribution in practical situations

◾ Understand geometric, hypergeometric distribution, and its properties

◾ Describe negative binomial distribution and its properties

◾ Describe logarithmic and multinomial distribution and its properties

◾ Apply the Power method to find the MD of discrete distributions

6.1 DISCRETE RANDOM VARIABLES

A real-valued function defined on the sample space of a random experiment is called
a random variable. We denote the random variables by capital English letters (X, Y,
etc.) and particular values by lowercase letters (x, y, etc.). Random variables can be
discrete or continuous. A random variable that can take a countable number of possi-
ble values in a finite or infinite interval is called a discrete random variable. In most of
the applications, the values assumed are positive (x ≥1) or nonnegative (x ≥ 0) inte-
gers that are equispaced. Theoretically, this is not a restriction. Consider, for example,
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the portion of a fruit (say apples) taken by a person at a dining table per day. If it is cut
evenly and eaten by different family members, the random variable of interest takes
values 0, 1

2
, 1, 1 1

2
, 2, and so on. Similarly, if an employer allows an employee to take

either a half-day leave or a full-day leave only, the variable of interest takes integer or
half-integer values. However, the majority of discrete distributions discussed in the
following are defined on “counts” or “occurrences” that can take nonnegative integer
values (0, 1, 2, … ). Displaced distributions are those obtained by a change of origin
transformation (Y = X ± c). The constant c is assumed to be a nonzero integer for
discrete distributions and a real number for continuous distributions. Left-truncated
distributions are exceptions in which the starting value is offset by a positive integer.

This chapter discusses popular discrete distributions. The x values are assumed
to be equispaced integers, unless otherwise noted. The domain of X can be finite (as
in binomial, discrete uniform, and hypergeometric distributions (HGDs)) or infinite
(as in Poisson, geometric, and negative binomial distributions). In the case of infi-
nite range, we naturally expect the probabilities to tail-off to zero beyond a cutoff.
Discrete distributions with finite range are more popular in practical applications,
whereas those with infinite range are more important theoretically. This is because
some statistical distributions with finite range asymptotically converge to discrete
distributions with infinite range as shown below. The cumulative distribution func-
tions (CDFs) of discrete random variables are step functions. The CDF of binomial,
negative binomial, and Poisson distributions can be expressed as continuous func-
tions such as the incomplete beta and gamma functions as shown below. It may be
noted that there exist many more statistical distributions than those mentioned below
(see References 121–123. Here, we discuss only those that are widely used in the
applications of probability and statistics in everyday life.

6.2 BINOMIAL THEOREM

The binomial theorem with positive and negative exponents has many applications
in statistical distribution theory. This section provides an overview of this theorem,
which will be used in the sequel. We first consider an expansion for integer powers
of a sum or difference of two quantities. More specifically, if n is a positive integer,
and x and y are nonzero real numbers, the power (x + y)n can be expressed as a sum
of n + 1 quantities in either of two ways as follows:

(x + y)n =
n∑

k=0

(n
k

)

xkyn−k =
n∑

k=0

(n
k

)

ykxn−k
, (6.1)

where
(

n
k

)

denotes n!∕(k!(n − k)!. This is most easily proved by induction on n (see

exercise). Here, the indexvar k is used as an exponent and a function (in
(

n
k

)

). The

numbers
(

n
k

)

(also denoted as nCk, see page 1–16) are called binomial coefficients,

which are always integers when n and k are integers. The special case
(

n
0

)

is defined
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to be 1 by convention. In the particular case when x = y = 1, the aforementioned
becomes 2n =

∑n
k=0

(
n
k

)

. As
(

n
k

)

=
(

n
n−k

)

, the coefficients in the above-mentioned

expansion are symmetric (hence 2n =
∑n

k=0

(
n

n−k

)

, which follows by summing in
reverse). If n is odd, there are (n + 1) terms with (n + 1)∕2 coefficients symmetrically
placed. For instance, if n = 5, there are three coefficients

(
5
0

)

=
(

5
5

)

= 1,
(

5
1

)

=
(

5
4

)

= 5,
(

5
2

)

=
(

5
3

)

= 10. If n is even, there are n∕2 symmetric coefficients with a

unique middle coefficient
(

n
n∕2

)

.
If y is negative, we write x − y as x + (−y) and the above-mentioned expansion

gives

(x − y)n =
n∑

k=0

(n
k

)

xk(−y)n−k =
n∑

k=0

(n
k

)

(−y)kxn−k =
n∑

k=0

(n
k

)

(−1)kykxn−k
. (6.2)

When the index n in the above-mentioned expansion is negative, we get an infinite
series as given below:

(x + y)−n =
∞∑

k=0

(n + k − 1
k

)

(−x)kyn−k =
∞∑

k=0

(−n
k

)

xkyn−k
. (6.3)

In the particular case when y = 1, we get

(1 + x)−n =
(−n

0

)

+
(−n

1

)

x +
(−n

2

)

x2 + · · · =
∞∑

k=0

(n + k − 1
k

)

(−x)k. (6.4)

By differentiation, it is easy to prove for k = 0, 1, 2, … , n that [124]

𝜕
n

𝜕xk𝜕yn−k
(x + y)n = n!, 𝜕

n

𝜕xk𝜕yn−k
(x − y)n = (−1)n−kn!. (6.5)

We have not placed any restrictions on x and y values in the above-mentioned
expansions, other than that they are nonzero real numbers. As the total probability
of statistical distributions must sum to unity, we make the restriction that x + y = 1.
These are usually denoted by p and q (or 𝜃 and 1 − 𝜃) instead of x and y in statistical
applications. This implies that q = 1 − p, so that both p and q lie in the interval [0, 1].
As shown in the following, p and q are the probabilities associated with the occurrence
or nonoccurrence of well-defined events in distribution theory.

6.2.1 Recurrence Relation for Binomial Coefficients

Binomial coefficients satisfy many recurrences. These are most often proved by
“combinatorial arguments” because

(
n
r

)

denotes the number of ways of choosing r
objects from among n objects without replacement. We give only the simplest and
most popular recurrences in the following:
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1.
(

n
r

)

=
(

n−1
r

)

+
(

n−1
r−1

)

.

This is known as Pascal’s identity. As the only arithmetic operation involved is
addition, this always returns an integer result.

2.
(

n
r

)

= n
r

(
n−1
r−1

)

This recurrence simultaneously decrements both the arguments and is useful in
computing the coefficients for small r values. It is used in Chapter 8, Example
8.35 (p. 8–11). As shown in the following, this could result in approximations
owing to truncation error resulting from (n/r). A remedy is suggested below.

3.
(

n
r

)

= n− r+1
r

∗
(

n
r−1

)

This form is useful when n is large and r is small.

4.
(

n
r

)

= n
n− r

∗
(

n−1
r

)

.

This form is useful when n is very large and r is close to n, so that the decre-
menting of n is continued until n becomes r. It is used to simplify the MD of
binomial distribution (p. 6–23).

5.
(

n
r

)

= (−1)r
(

r+n−1
r

)

This is used in negative binomial distribution.

6.
(

n
r

)(
r
m

)

=
(

n
m

)(
n−m
r−m

)

This form is useful when n and m are large and close-by.

7.
∑n

r=m

(
r
m

)

=
(

n+1
m+1

)

This combines multiple summations of combinations into a single combination.
It is used in finding factorial moments (see page 6–45).

8.
∑

k≤n

(
r
k

)(
s

n− k

)

=
(

r+ s
n

)

This is called Vandermonde convolution. It is used in deriving factorial moments
of some discrete distributions (see page 6–82).

Binomial coefficients evaluated by a computer can sometimes result in approx-
imations. For instance,

(
5
3

)

when evaluated by
(

n
r

)

= n
r
∗
(

n−1
r−1

)

gives ((5∕3) ∗
(4∕2) ∗ ( 3

1
) = 1.6666666 ∗ 2 ∗ 3 = 9.999999999999) owing to truncation error. This

is because the expression inside the bracket is forcibly evaluated. If the order of evalu-
ation is modified as

(
n
r

)

= n ∗
(

n−1
r−1

)

∕r without parenthesis, we will get the correct
integer result. Alternatively, use Pascal’s identity (1). It always returns an integer as
it involves only additions (see Reference 22).

6.2.2 Distributions Obtainable from Binomial Theorem

There are many statistical distributions that are derived from the above-mentioned
form of the binomial theorem. Taking n = 1, x = p, and y = q = 1 − p, we get the
Bernoulli distribution (Section 6.4). Setting n >1 to be an integer, x = p and y = q
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= 1 − p, results in the Binomial distribution (Section 6.5). Putting n = −1, p =
−P, q = Q, we get f (x) = 1∕(Q − P), which is a special case of discrete uniform dis-
tribution. Setting n = −m, x = p, and y = q = 1 − p results in the negative binomial
distribution (Section 6.8). Writing (x + y)n as xn(1 + y∕x)n, putting y/x = −Q, 1/x
= P, and n = −1 we get the geometric distribution (which has infinite range). Put
n = −1 and write (x − y)−1 as 1∕x (1 − y∕x)−1. Setting y∕x = 𝜃, taking logarithm and
expanding using − log(1 − x) = x + x2∕2 + x3∕3 + · · · results in logarithmic series
distribution. Write (1 + y)n = (1 + y)n1 ∗ (1 + y)n2 where n1 + n2 = n. Expand each
one using binomial theorem, equate identical coefficients on both sides and divide
RHS by LHS constant to get the HGD.

6.3 MEAN DEVIATION OF DISCRETE DISTRIBUTIONS

Finding the MD of discrete distributions is a laborious task, as it requires a lot of
arithmetical work. It is also called the mean absolute deviation or L1-norm. The MD
is closely associated with the Lorenz curve used in econometrics, Gini index and
Pietra ratio used in economics and finance, and in reliability engineering. In 1730,
the French mathematician Abraham De Moivre (1667–1754) gave a surprisingly sim-
ple and computationally appealing closed-form expression for the MD of a binomial
distribution (which is given in p. 201). This is perhaps the very first published work
on MD. This was followed by several interesting investigations, which are given in
the summary section (p. 201). Johnson [125] surmised that the MD of some discrete
distributions can be put in the form 2𝜇2 fm, where 𝜇2 = 𝜎

2 and fm is the probability
mass evaluated at the integer part of the mean m = ⌊𝜇⌋. This holds good for Poisson,
binomial, negative binomial, and geometric distributions. Kamat [126] generalized
Johnson’s result to several discrete distributions.

The following theorem greatly simplifies the work and is very helpful to find the
MD of a variety of discrete distributions. It can easily be extended to the multivariate
case and for other types of mean deviations such as mean deviation from the median
and medoid.

Theorem 6.1 The MD of any discrete distribution that tails off to the left is expressed
in terms of the CDF as

MD = 2
𝜇−1∑

x=ll

F(x), (6.6)

where ll is the lower limit of the distribution, 𝜇 the arithmetic mean, and F(x) the CDF.

Proof: By definition

E|X − 𝜇| =
ul∑

x=ll

|x − 𝜇|p(x), (6.7)

where ll is the lower and ul the upper limit of the distribution.
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Split the range of summation from ll to 𝜇 − 1 and 𝜇 to ul and note that |X − 𝜇| =
𝜇 − X for x < 𝜇. This gives

E|X − 𝜇| =
𝜇−1∑

x=ll

(𝜇 − x)p(x) +
ul∑

x=𝜇
(x − 𝜇)p(x). (6.8)

As E(X) = 𝜇, we can write E(X − 𝜇) = 0, where E() is the expectation operator.
Expanding E(X − 𝜇) as

E(X − 𝜇) =
ul∑

x=ll

(x − 𝜇)p(x) = 0. (6.9)

As done earlier, split the range of summation from ll to 𝜇 − 1 and 𝜇 to ul to get

E(X − 𝜇) =
𝜇−1∑

x=ll

(x − 𝜇)p(x) +
ul∑

x=𝜇
(x − 𝜇)p(x) = 0. (6.10)

Substitute
∑ul

x=𝜇(x − 𝜇)p(x) = −
∑𝜇−1

x=ll (x − 𝜇)p(x) in (6.8) to get

E|X − 𝜇| =
𝜇−1∑

x=ll

(𝜇 − x)p(x) −
𝜇−1∑

x=ll

(x − 𝜇)p(x) = 2
𝜇−1∑

x=ll

(𝜇 − x)p(x).

Split this into two sums to get

E|X − 𝜇| = 2

(

𝜇F(𝜇 − 1) −
𝜇−1∑

x=ll

xp(x)

)

. (6.11)

As the MD is always positive, the first term in (6.11) is greater than the second for
positive random variables.

Expand the summation inside the bracket in reverse order of indexvar as

𝜇−1∑

x=ll

xp(x) = (𝜇 − 1) ∗ p(𝜇 − 1) + (𝜇 − 2) ∗ p(𝜇 − 2) + · · · + ll ∗ p(ll). (6.12)

Collect the first term from each expression on the RHS to get

𝜇−1∑

x=ll

xp(x) = 𝜇 ∗ F(𝜇 − 1) −
𝜇−1∑

k=ll

(𝜇 − k) ∗ p(k), (6.13)

where F(𝜇 − 1) = p(𝜇 − 1) + p(𝜇 − 2) + · · · + p(ll) so that both partial expectations
are bounded, for finite 𝜇. Now substitute in (6.11). The 𝜇F(𝜇 − 1) term cancels out,
leaving behind

E|X − 𝜇| = 2

(
𝜇−1∑

k=0

(𝜇 − k) ∗ p(k)

)

, (6.14)

which is same expression obtained above.
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Write (6.14) as two summations

E|X − 𝜇| = 2

(
𝜇−1∑

x=ll

x∑

i=ll

p(i)

)

(6.15)

and substitute
∑x

i=ll p(i) = F(x) to get the final result as

MD = 2
𝜇−1∑

x=ll

F(x). (6.16)

If the mean 𝜇 is a half-integer, a correction term F(⌊𝜇⌋) must be added to get the
correct MD. If the distribution of X is symmetric, we can write the aforementioned
as

MD =
𝜇−1∑

x=ll

F(x) +
ul∑

x=𝜇
S(x), (6.17)

where S(x) is the survival function. If the distribution tails off to the right extreme,
the aforementioned is evaluated as

MD = 2
ul∑

x=𝜇
S(x). (6.18)

If the mean 𝜇 is neither an integer nor a half-integer, the summation is carried out to
the nearest integer. In this case, the results are only approximate (see Example 6.40
in p. 6–78). Nevertheless, the above-mentioned theorem is of enormous use, as it can
be easily extended to find the MD of bivariate and multivariate discrete distributions.
There are two other novel methods to find the mean deviation. The first one uses
generating functions (Chapter 9, Section 9.4, p. 9–11) to fetch a single coefficient of
t𝜇−1 in the power series expansion of (1 − t)−2Px(t), where Px(t) is the probability
generating function. This works best for discrete distributions. The second method is
using the inverse of distribution functions (Chapter 10, Section 10.10, p. 10–9), the
discrete analog of which is obtained by replacing integration by summation.

EXAMPLE 6.1 Variance of discrete distribution as tail probability

Prove that the variance of discrete distributions can be expressed in terms of tail
probabilities when the mean is an integer or a half-integer.

Solution 6.1 We know that the MD is an L1-norm and 𝜎2 is an L2-norm. We
found earlier that MD = 2

∑𝜇−1
x=ll F(x) = 2

∑ul
x=𝜇 S(x). Equating Johnson’s result

that MD = 2𝜇2fm, where 𝜇2 = 𝜎
2 and fm is the probability mass evaluated at the

integer part of the mean m = ⌊𝜇⌋ we get 𝜇2 ∗ fm =
∑𝜇−1

x=ll F(x). Divide both sides
by fm to get

𝜎
2 = (1∕fm)

𝜇−1∑

x=ll

F(x) = (1∕fm)
ul∑

x=𝜇
S(x). (6.19)
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TABLE 6.1 Mean Deviation of Binomial Distribution Using Our Power Method
(equation 6.8) for np a Half-integer

n, p (np) 0 1 2 3 4 eq (6.66) Final

15, 0.3 (4.5) 0.0047 0.0353 0.1268 0.2969 0.5155 0.92742 1.442913
18, 0.25 (4.5) 0.0056 0.0395 0.1353 0.3057 0.5187 1.39742 1.91171
8.8125 (6.5) 0.0009 0.0078 0.0455 0.1762 0.4594 0.46098 0.920416

First column gives n, p (np) values of binomial. Second column onward are the values computed
using (6.84). Seventh column gives the uncorrected MD using equation (6.6). Correction term
F(⌊np⌋) is added to get the correct MD in the last column.

When m = ⌊𝜇⌋ is a half-integer, the correction term mentioned earlier must be
applied (Table 6.1).

6.3.1 Recurrence Relation for Mean Deviation

Mean deviation of some distributions involves complicated terms. In the
above-mentioned theorem, we have obtained an expression for MD in terms
of CDF. It is possible to develop recurrences for MD in those situations where the
CDF has closed-form expressions in terms of incomplete beta or gamma functions,
normal distribution, confluent hypergeometric functions, or orthogonal polynomials.
This argument applies to both discrete and continuous distributions. As examples,
the CDF of binomial and negative binomial distributions are expressed in terms of
incomplete beta functions. However, the beta function satisfies several recurrences
like

a Ix(a + 1, b) = (a + b) Ix(a, b) − b Ix(a, b + 1). (6.20)

Equation (6.20) allows one to successively reduce the first argument of beta function,
which in turn results in a recurrence for the MD. Similarly

Ix(a, b) = x Ix(a − 1, b) + (1 − x) Ix(a, b − 1), (6.21)
and

Ix(a + 1, b − 1) = [1 + bx∕(a(1 − x))] Ix(a, b) − bx∕[a(1 − x)] Ix(a − 1, b + 1).
(6.22)

Equation (6.21) allows one to successively reduce both parameters, which results in
another recurrence for MD.

6.4 BERNOULLI DISTRIBUTION

The Bernoulli distribution results from a random experiment in which each outcome
is either a success (denoted by 1) with probability p or a failure (denoted by 0) with
a probability q so that p + q = 1. This means that fixing the value of p automatically
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fixes the value of q. A question that naturally arises is what should be chosen as
p?. This is not an issue because p and q are simply place holders for probabili-
ties. It depends more on the research hypothesis. Here, the meaning of the word
success and failure should not be taken literally – it simply means two dichoto-
mous outcomes of an experiment. In engineering, it can denote faulty or nonfaulty,
working or defunct, closed or open (as in electrical circuits), and detected or unde-
tected (radioactivity, smoke, abnormality, etc.). If we wish to check if something is
faulty, we choose p as the probability of a fault. In medical sciences, p is chosen
as the probability of the presence of a symptom or condition. Thus, this distribution
finds applications in a variety of fields. It is named after the Swiss mathematician
Jacques Bernoulli (1654–1705). Such an experiment is known as a Bernoulli trial.
The probability density function (PDF) of a Bernoulli random variable is given by
f (x; p) = pxq(1−x), x = 0 or 1, and 0 ≤ q = 1 − p ≤ 1. We will denote the Bernoulli
distribution by BER(p). This could also be expressed in the following convenient
form:

f (x; p) =

{
pxq1−x for x = 0, 1;
0 otherwise.

The mean and variance of a Bernoulli distribution are 𝜇 = p, 𝜎2 = pq. As the only
values of x are 0 and 1, we get the mean as E(X) = 0∗q + 1∗p = p. Similarly, E(X2) =
02 ∗ q + 12 ∗ p = p, so that the variance becomes E(X2) − E(X)2 = p − p2 = p(1 −
p) = pq. 𝛽1 = (1 − 2p)∕

√
(pq), 𝛽2 = 3 + (1 − 6p)∕pq.

Bernoulli distribution has only one unknown parameter p. This unknown proba-
bility is usually estimated either from past experiments or from empirical studies. If
we observe k successes in n Bernoulli trials, an estimate of p is obtained as p = k∕n.
The probability generating function is easily obtained as PX(t) = (q + pt), and char-
acteristic function is 𝜙(t) = q + peit. Hence, all moments about zero are p.

There are many other probability distributions based on Bernoulli trials. For
example, the binomial, negative binomial, and geometric distributions mentioned
earlier; success-run distributions are all defined in terms of independent Bernoulli
trials.

EXAMPLE 6.2 CDF of Bernoulli distribution

Suppose p denotes the probability of a trait in a group of persons. Define a ran-
dom variable X that takes the value 1 if trait is present and is 0 otherwise. Find
the PDF and CDF of X.

Solution 6.2 Assign a random variable X to the two possible outcomes as P(trait)
= p and P(trait not present) = q = 1 − p. The PDF is expressed as

f (x) =

{
q = 1 − p if x = 0 (trait not present)
p if x = 1 (trait).
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TABLE 6.2 Properties of Bernoulli Distribution

Property Expression Comments

Range of X x = 0, 1 Discrete, finite
Mean 𝜇 = p
Variance 𝜎

2 = pq ⇒ 𝜇 > 𝜎
2

Skewness 𝛾1 = (1 − 2p)∕
√

pq =(q − p)∕
√

pq
Kurtosis 𝛽2 = 3 + (1 − 6pq)∕pq
Mean deviation 2pq
Median Moments 𝜇

′
r = p

MGF (q + pet) = 1 + p(et − 1) = 0.5(1 + et) if p = q
PGF (q + pt) = 1 + p(t − 1) = 0.5(1 + t) if p = q

Additivity
n∑

i=1

BER(p) = BINO(n, p) Independent

aBernoulli distribution is the building block of binomial, geometric, negative binomial, and
success-run distributions.

As there are only two possible values, the CDF is obtained as

F(x) =

{
q = 1 − p if x = 0 (trait not present)
1 if x = 1 (trait).

The p = 0 or p = 1 cases are called degenerate cases, as there is no randomness
involved. See Table 6.2 for summary of properties.

EXAMPLE 6.3 Product of two Bernoulli random variables

If X and Y are IID BER(p), find the distribution of U = X ∗ Y

Solution 6.3 X and Y both takes the values 1 with probability p, and 0 with prob-
ability q = 1 − p. Hence, XY takes the value 0 when either or both of X and Y
take the value 0 with probability q2 + qp + pq. Here, q2 is the probability that
both of them takes the value 0, and qp and pq are the probabilities that either of
them takes value 0 and other takes the value 1. Write q2 + qp = q[q + p] and use
q + p = 1 to get q. Next combine q with pq to get q + pq = q(1 + p). Write q as
(1 − p) to get (1 − p) ∗ (1 + p) = 1 − p2. Probability that XY takes the value 1 is
p2. Hence, XY is Bernoulli with probability of success p2. This can be extended to
the case

∏n
i=1(1 + kXi), where k is a constant and Xi are iid BER(p) (see Exercise

6.13).

6.5 BINOMIAL DISTRIBUTION

Binomial distribution is a natural extension of Bernoulli distribution for two or
more independent trials (n > 1). It was first derived in its present form by the Swiss
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mathematician Jacques Bernoulli (1654–1705), which was published posthumously
in 1713 [127], although the binomial expansion (for arbitrary n) was studied by
Blaise Pascal [128]. It can be interpreted in terms of random trials or in terms of
random variables. Consider n independent Bernoulli trials. We assume that the trials
have already occurred. We are interested in knowing how many successes have taken
place among the n trials. This number is any integer from 0 to n inclusive. Assuming
that there are x successes, this can happen at any of the n positions in

(
n
x

)

ways.
Since the probability of success remains the same from trial to trial, the probability
of x successes and n − x failures is given by

f (x; n, p) =
⎧
⎪
⎨
⎪
⎩

(
n
x

)

pxqn−x 0 ≤ q = 1 − p ≤ 1 if x = 0, 1, 2, … , n

0 elsewhere.

It is called binomial distribution because it is the xth term in the binomial expan-
sion of (p + q)n. It belongs to the exponential family.

The random variable interpretation of binomial distribution is based on inde-
pendent Bernoulli trials. Let X1,X2, … ,Xn be a sequence of IID Bernoulli random
variables with the same parameter p. Then, the sum X = X1 + X2 + · · · + Xn has a
binomial distribution with parameters n and p. We denote this as BINO(n, p).

6.5.1 Properties of Binomial Distribution

There are two parameters for this distribution (see Figure 6.1 and Table 6.3), namely
the number of trials (n > 1; an integer), and the probability of success in each trial
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Figure 6.1 BINO(10,0.1) and BINO(10,0.9).
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Figure 6.2 Geometric distribution p = 0.5.

(p), which is a real number between 0 and 1. This probability remains the same from
trial to trial, which are independent. This distribution is encountered in sampling with
replacement from large populations. If p denotes the probability of observing some
characteristic (there are x individuals that have the characteristic in the population, so
that p = x∕N where N is the population size), the number of individuals in a sample
of size n from that population has the characteristic is given by a binomial distribution
BINO(N, p).

6.5.1.1 Moments As the trials are independent, and X = X1 + X2 + … + Xn,
the mean is E(X) = p + p + .. + p = np. Similarly, the variance of X is V(X) =
V(X1) + V(X2) + … + V(Xn) = pq + pq + … + pq = npq. Hence 𝜇1 = E(X) =
np,Var(X) = npq = 𝜇1 ∗ q. Note that when p → 0 from above, q → 1 from below
and the variance → 𝜇1. This results in a distribution with the same mean and variance
(Table 6.3). If np = 𝜇 is a constant, we could reparametrize the binomial distribution
by putting 𝜇 = np to get

f (x; n, 𝜇) =
(n

x

)

(𝜇∕n)x((n − 𝜇)∕n)(n−x) (6.23)

TABLE 6.3 Binomial Probabilities Example

0 1 2 3 4 5 sum

p| qn
(n

1

)

pqn−1
(n

2

)

p2qn−2
(n

3

)

p3qn−3
(n

4

)

p4qn−4
(n

5

)

p5q0

0.1 0.59049 0.32805 0.0729 0.0081 0.00045 0.00001 1.0
0.5 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125 1.0
0.9 1E-05 0.00045 0.0081 0.0729 0.32805 0.59049 1.0
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with mean 𝜇 and variance 𝜇(n − 𝜇)∕n. The symmetry of variance for fixed n indicates
that the variance of BINO(n, p) and BINO(n, q) are the same.

EXAMPLE 6.4 Maximum variance of a binomial distribution

Prove that the maximum variance of a binomial distribution BINO(n, p) as a
function of p is n∕4.

Solution 6.4 We know that the variance is given by V(n, p) = npq = np − np2.
Differentiating with respect to p, we get 𝜕

𝜕p
V(n, p) = n − 2np. Equating to zero

and solving for p gives p = 1/2. As the second derivative is −2n, this indeed gives
the maxima. Substitute in the above to get V(n, p) = n*(1/2)*(1/2) = n/4. This
can be increased without limit by letting n → ∞ (see discussion in page 6–54).

The ratio of two probabilities of a discrete distribution at distinct ordinal (x) values
provides the relative likelihood of the random variable taking a value at one level
versus the other. This is useful to calculate the probabilities recursively, locate the
mode, and develop moment recurrences [129].

EXAMPLE 6.5 Mode of binomial distribution

Find the mode of the binomial distribution.

Solution 6.5 Consider the ratio

f (x; n, p)∕f (x − 1; n, p) = (n − x + 1)p∕(xq). (6.24)

Add and subtract xq in the numerator and combine −xp − xq to get −x. Then the
ratio becomes 1 + [(n + 1)p − x]∕(xq). The bracketed expression in the numer-
ator is positive when (n + 1)p > x and negative otherwise. If (n + 1)p = x, the
bracketed expression vanishes giving two modes at x − 1 and x. Otherwise, the
mode is ⌊(n + 1)p⌋. This shows that the binomial distribution is unimodal for all
values of p and n, except when (n + 1)p is an integer.

6.5.2 Moment Recurrences

Low order moments could be obtained using the density recurrences fx(n, p)∕fx(n −
1, p) = (n∕(n − x))q, which upon cross multiplication and rearrangement becomes

xfx(n, p) = n[fx(n, p) − qfx(n − 1, p)]. (6.25)

Multiply both sides of (6.25) by xk, denote the moments by 𝜇k(n, p), and sum over
the range of x to get

𝜇k+1(n, p) = n[𝜇k(n, p) − q ∗ 𝜇k(n − 1, p)] with 𝜇0(n, p) = 1. (6.26)
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Put k = 1, to get 𝜇2(n, p) = n[𝜇1(n, p) − q𝜇1(n − 1, p). Substituting 𝜇1(n, p) =
np, 𝜇1(n − 1, p) = (n − 1)p, the RHS becomes n[np − q(n − 1)p] = np[np + q].
Higher order moments are obtained similarly.

EXAMPLE 6.6 Binomial ordinary moment recurrence

Prove that the ordinary moments of a binomial distribution satisfy the recurrence

𝜇
′
k+1 = p

(

q
𝜕

𝜕p
𝜇
′
k + n𝜇′k

)

. (6.27)

Solution 6.6 Write

𝜇
′
k =

n∑

x=0

xk
(n

x

)

px(1 − p)n−x
. (6.28)

Differentiate (6.28) by p to get

𝜕

𝜕p
𝜇
′
k =

n∑

x=0

xk
(n

x

)

[(1 − p)n−xxpx−1 − px(n − x)(1 − p)n−x−1]. (6.29)

Write q = 1 − p and consider the terms qn−xxpx−1 + xpxqn−x−1 = xpx−1qn−x−1

[q + p] = xpx−1qn−x−1. Substitute in equation (6.29) and simplify to get

𝜕

𝜕p
𝜇
′
k =

n∑

x=0

xk+1
(n

x

)

[qn−x−1px−1 − n
n∑

x=0

xk
(n

x

)

pxqn−x−1]

= 𝜇
′
k+1∕(pq) − (n∕q)𝜇′k. (6.30)

Multiply throughout by pq and rearrange to get 𝜇′k+1 = p
(

n𝜇′k + q 𝜕

𝜕p
𝜇
′
k

)

EXAMPLE 6.7 Binomial central moment recurrence

Prove that the central moments of a binomial distribution satisfy the recurrence

𝜇k+1 = pq

(
𝜕

𝜕p
𝜇k + nk𝜇k−1

)

. (6.31)

Solution 6.7 Consider

𝜇k =
n∑

x=0

(x − np)k
(n

x

)

pxqn−x
. (6.32)

Note that there are three functions of p on the RHS (as q = 1 − p). Differentiate
both sides with respect to p using chain rule to get
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𝜕

𝜕p
𝜇k = −nk

n∑

x=0

(x − np)k−1
(n

x

)

pxqn−x +
n∑

x=0

(x − np)k
(n

x

)

xpx−1qn−x

−
n∑

x=0

(x − np)k
(n

x

)

(n − x)pxqn−x−1

= −nk𝜇k−1 +
n∑

x=0

(x − np)k
(n

x

)

px−1qn−x−1(xq − (n − x)p). (6.33)

Write xq − (n − x)p as x(1 − p) − (n − x)p = x − np and combine with (x − np)k;
multiply both numerator and denominator by pq to get −nk𝜇k−1 + 𝜇k+1∕pq.
Rearrange the expression to get the result.

EXAMPLE 6.8 Binomial central moment recurrence

Prove that the central moments of a binomial distribution satisfy the recurrence

𝜇k+1(n, p) = nq[𝜇k(n, p) −
k∑

j=0

(
k
j

)

(−p)k−j
𝜇j(n − 1, p)]. (6.34)

Solution 6.8 Write

𝜇k =
n∑

x=0

(x − np)k
(n

x

)

px(1 − p)n−x
. (6.35)

Consider equation (6.25) as (n − x)fx(n, p) = nqfx(n − 1, p). Write (n − x) as
n(p + q) − x = nq − (x − np) on the LHS. Multiply throughout by (x − np)k, write
(x − np) = [(x − (n − 1)p) − p] on the RHS, expand using binomial theorem and
sum over the proper range to get

nq 𝜇k(n, p) − 𝜇k+1(n, p) = nq
∑

x

k∑

j=0

(
k
j

)

(x − (n − 1)p)j(−p)k−jfx(n − 1, p)

= nq
k∑

j=0

(
k
j

)

(−p)k−j
𝜇j(n − 1, p). (6.36)

Rearrange (6.36) to get

𝜇k+1(n, p) = nq[𝜇k(n, p) −
k∑

j=0

(
k
j

)

(−p)k−j
𝜇j(n − 1, p)] (6.37)

with 𝜇0(n − 1, p) = 1.

Theorem 6.2 The factorial moment 𝜇(r) is given by 𝜇(r) = n(r)pr.
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Proof: Consider the expression for factorial moment as

𝜇(r) = E[x(r)] = E[x(x − 1)..(x − r + 1)] =
∑

x

[x(x − 1)..(x − r + 1)]f (x) (6.38)

Substitute the PDF and sum over the proper range of x to get the RHS as
∑

x

x(x − 1)..(x − r + 1)n!∕(x!(n − x)!)pxq(n−x)
. (6.39)

Write n! in the numerator as n(n − 1)..(n − r + 1) ∗ (n − r)!, this becomes

n(n − 1)..(n − r + 1)pr
∑

x

(n − r)!∕((x − r)!(n − x)!)px−rq(n−x) = n(r)pr
. (6.40)

Write

x(x − 1)..(x − r + 1)∕(n − x)! =
r∑

i=0

s(r, i)xi (6.41)

where s(r, i) is the Stirling number of first kind. The factorial moments are found
using Stirling numbers as

𝜇(r) =
r∑

i=0

s(r, i)𝜇′i , (6.42)

where 𝜇′i denotes the ith ordinary moment. The reverse relationship is

xr =
r∑

i=0

S(r, i)x!∕(x − i)!, (6.43)

where S(r, i) is the Stirling number of second kind. This allows us to write

𝜇
′
r =

r∑

k=0

S(r, k)𝜇′(k). (6.44)

Theorem 6.3 Prove that the mean deviation from the mean of a binomial distribution
is

2npq

(
n − 1
𝜇 − 1

)

p𝜇−1qn−𝜇
, (6.45)

where 𝜇 is the largest integer less than np (symbolically 𝜇 = ⌊np⌋).

Proof: By definition,

MD =
n∑

x=0

|x − np|
(n

x

)

pxqn−x
. (6.46)

Split the RHS into two sums for x ≤ np and x > np, respectively:

np∑

x=0

(np − x)
(n

x

)

pxqn−x +
n∑

x=np+1

(x − np)
(n

x

)

pxqn−x
. (6.47)
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Using Theorem 2.4 in page 2–6, we have
∑n

x=0(np − x)
(

n
x

)

pxqn−x = 0. Substitute
in the aforementioned to get

2
np∑

x=0

(np − x)
(n

x

)

pxqn−x
. (6.48)

Write (np − x) = (np − x(p + q)) = p(n − x) − xq and split the aforementioned sum
as

2

(

p
np∑

x=0

(n − x)
(n

x

)

pxqn−x − q
np∑

x=0

x
(n

x

)

pxqn−x

)

. (6.49)

Expand
(

n
x

)

and cancel out common terms to get

MD = 2

(

npq
np∑

x=0

(n − 1
x

)

pxqn−x−1 − npq
np∑

x=1

(n − 1
x − 1

)

px−1qn−x

)

. (6.50)

Taking npq as common factor, we notice that the alternate terms in the left and right
sums of 6.50 cancel out giving

MD = 2npq(
(

n − 1
np

)

pnpqn−np−1) (6.51)

when np is an integer. If np is noninteger, we carry out the summation up to 𝜈 = ⌊np⌋
so that the last term of the LHS remains (all others are canceled out). In this case, we
get

MD = 2npq(
(n − 1

𝜈

)

p𝜈qn−1−𝜈), (6.52)

where 𝜈 = ⌊np⌋ is the greatest integer ≤np. This is the form obtained originally by
De Moivre and subsequently by Bertrand [131]. Johnson [125], Diaconis and Zabell
[132] among others have discussed other equivalent forms and approximations. In
Section 6.5.6, page 208, we provide a new method to find the MD using the Power
method introduced in Section 6.3, page 189.

6.5.2.1 Generating Functions Generating functions are extensively discussed in
Chapter 9. Here we give the main results, which are proved in that chapter.

Theorem 6.4 The probability generating function is PX(t) = (q + pt)n, and the
moment generating function is MX(t) = (q + pet)n.

Proof: The pgf is

E(tx) =
n∑

x=0

tx
(n

x

)

pxqn−x =
n∑

x=0

(n
x

)

(pt)xqn−x = (q + pt)n, (6.53)

where E() is the expectation operator. The mgf is found similarly by replacing tx by
etx. See also Chapter 9, page 379.
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TABLE 6.4 Properties of Binomial Distribution

Property Expression Comments

Range of X x = 0, 1, .., n discrete, finite
Mean 𝜇 = np need not be integer

Variance 𝜎
2 = npq = 𝜇q ⇒ 𝜇 > 𝜎

2

CV q∕(np)1∕2

Mode (x − 1), x if (n + 1) ∗ p x = (n + 1) ∗ p else
is not integer

Skewness 𝛾1 = (1 − 2p)∕
√

npq = (q − p)∕
√

npq

Kurtosis 𝛽2 = 3 + (1 − 6pq)∕npq

Mean deviation 2npq(
(

n − 1
⌊np⌋

)

p⌊np⌋qn−1−⌊np⌋) 2
⌊np−1⌋∑

x=0

I1−p(n − x, x + 1)

E[X(X − 1) · · · n(r)pr

(X − k + 1)]
MGF (q + pet)n = pn(1 + et)n if p = q

PGF (q + pt)n = pn(1 + t)n if p = q

Additivity
m∑

i=1

B(ni, p) = B(
m∑

i=1

ni, p) independent

Recurrence f (x; n, p)∕f (x − 1; n, p) = 1 + ((n + 1)p − x)∕(xq)
(n − x + 1)p∕[xq]

Tail probability
n∑

x=k

(n
x

)

pxqn−x = Ip(k, n − k + 1) I = Incomplete beta

Symmetric when p = q = 1/2.

6.5.3 Additivity Property

If X1 ∼ BINO(n1, p) and X2 ∼ BINO(n2, p) are independent binomial random vari-
ables with the same probability of success p, the sum X = X1 + X2 is distributed as
BINO(n1 + n2, p) (Table 6.4).

Proof: The easiest way to prove the above-mentioned result is using the MGF.
As X1 and X2 are independent, MX1+X2

(t) = MX1
(t) ∗ MX2

(t). Substituting
MX(t) = (q + pet)n, the RHS becomes (q + pet)n1 ∗ (q + pet)n2 = (q + pet)n1+n2 ,
which is the mgf of BINO(n1 + n2, p). An interpretation of this result in terms
of Bernoulli trials is the following – “if there are n1 independent Bernoulli trials
with the same probability of success p and another n2 independent Bernoulli trials
with the same probability of success, they can be combined in any desired order to
produce a binomial distribution of size n1 + n2.”

Another way of stating the above-mentioned theorem is that if X + Y is dis-
tributed as BINO(n1 + n2, p), and either of X or of Y is distributed as BINO(n1, p),
the other random variable must be BINO(n2, p) (or BER(p) is n2 = 1). This
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result can be extended to any number of independent binomial distributions
with the same probability of success. Symbolically, if Xi ∼ BINO(ni, p), then
∑

iXi ∼ BINO(
∑

ini, p).

EXAMPLE 6.9 Distribution of Y = n − X

If X has a binomial distribution with parameters n and p, derive the distribution
of Y = n − X and obtain its PGF and MGF. Obtain the mean and variance. What
is the additive property for Y?

Solution 6.9 As X takes the values 0, 1, …, n; Y also takes the same values in
reverse. Thus, the range of X and Y are the same.

P[Y = y] = P[X = n − y] =
(

n
n − y

)

pn−yqn−(n−y) =
(

n
n − y

)

pn−yqy
. (6.54)

Using
(

n
n−y

)

=
(

n
y

)

, this becomes
(

n
y

)

qypn−y. This is the PDF of a binomial
distribution with p and q reversed. Hence Y = n − X ∼ BINO(n, q), so that all
properties are obtained by swapping the roles of p and q in the corresponding
property of BINO(n,p). The PGF is

PY (t) = E(ty) =
n∑

y=0

ty

(
n
y

)

qypn−y =
n∑

y=0

(
n
y

)

(qt)ypn−y = (qt + p)n = (p + qt)n.

Similarly, the MGF is MY (t) = E(ety) = (p + qet)n. From this, the cumulant gen-
erating function follows as n ∗ ln (q + pet). The mean and variance are nq and
npq, respectively. This shows that X and Y have the same variance, but the mean
is nq = n(1 − p) = n − np. As it is binomial distributed, the additive property
remains the same. This means that if Y and Z are BINO(n1, q) and BINO(n2, q)
random variates, then Y + Z is distributed as BINO(n1 + n2, q), provided q (or
equivalently p = 1 − q) is the same.

6.5.4 Distribution of the Difference of Successes and Failures

The number of successes and failures in a binomial distribution is related through
n. If there are x successes, there exist n − x failures and vice versa. In other words,
they must add up to the total number of trials. The following example derives the
distribution of the absolute difference of them.

EXAMPLE 6.10 Distribution of U = |X − Y|∕2.

Let X denotes the number of successes (or Heads) and Y denotes the number of
failures (or Tails) in n independent Bernoulli trials with the same probability of
success p. Find the distribution of U = |X − Y|∕2 for n even.
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Solution 6.10 Obviously, U takes the values (0, 1, … , n∕2). As n is even, it can
take the value 0 in just one way – when both X and Y are n∕2. The probability of

this case is

(
n
n
2

)

pn∕2qn−n∕2 =
(

n
n
2

)

(pq)n∕2. There exist two ways in which all

other values are materialized. First consider the number of successes exceeding
the number of failures by x. Let t be the number of failures (so that the number
of successes is t + x). Then t = (n − x)∕2, and t + x = (n + x)∕2. Probability of
this happening is

fu(x; n, p) =

(

n
n+x

2

)

p
n+x

2 q
n−x

2 = (pq)n∕2

(

n
n+x

2

)

(p∕q)x∕2
, (6.55)

for x = 2, 4, .., n. Next consider the number of failures exceeding the number of
successes by x. Let t be the number of failures. Then t = (n + x)∕2 and t − x =
(n − x)∕2. Probability of this happening is

fu(x; n, p) =

(

n
n−x

2

)

p
n−x

2 q
n+x

2 . (6.56)

Using
(

n
x

)

=
(

n
n−x

)

, this becomes

fu(x; n, p) =

(

n
n+x

2

)

p
n−x

2 q
n+x

2 = (pq)n∕2

(

n
n+x

2

)

(q∕p)x∕2
, (6.57)

for x = 2, 4, …, n. Adding (6.55) and (6.57) gives the probability of U assuming the
value u as

fU(u; n, p) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(
n

n∕2+u

)

(pq)
n
2 [(p∕q)u + (q∕p)u ] for u = (1, …, n∕2);

(

n
n
2

)

(pq)n∕2 for u = 0;

0 otherwise.

Putting t = n∕2 + u, this can also be written as

fT (t; n, p) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(
n
t

)

[qn(p∕q)t + pn(q∕p)t] for t = (n∕2 + 1, …, n);
(

n
n
2

)

(pq)n∕2 for t = n∕2;

0 otherwise.

Take qn as a common factor and write (q∕p)t = (p∕q)−t to get the alternate form

fT (t; n, p) = qn
(n

t

)

[(p∕q)t + (p∕q)n−t]. (6.58)
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TABLE 6.5 Properties of Discrete Uniform Distribution

Property Expression Comments

Range of X x = 1, ..,N Discrete, finite
Mean 𝜇 = (N + 1)∕2 Need not be integer
Variance 𝜎

2 = (N2 − 1)∕12 = 𝜇 ∗ (𝜇 − 1)∕3 ⇒ 𝜇 > 𝜎
2 for N < 7

Mode any x
Skewness 𝛾1 = 0 Special symmetry

Kurtosis 𝛽2 =
3
5
(3 − 4

N2 − 1
)

CV {(N − 1)∕[3(N + 1)]}1∕2

MD (N − 1)(N + 1)∕4N (N2 − 1)∕4N
Moments 𝜇

′
r = (1r + 2r + · · · + Nr)∕N Bernoulli numbers

MGF et(1 − eNt)∕[N(1 − et)]
𝜙x(t) (1 − eitN)∕[N(e−it − 1)]
PGF [t(1 − tN)]∕[N(1 − t)]
Recurrence f(x; N)/f(x−1; N) = 1 f(x) = f(x−1)

Tail probability
N∑

x=k

1/N = (N−k+1)/N

Truncation results in the same distribution with higher probability for each x value.

TABLE 6.6 Distribution of U = |X − Y|∕2 for n Even

x∖(n, p) (6,0.2) (10,0.6) (20,0.3) (20,0.9) (20,0.5)

0 0.0819 0.2007 0.0308 0.0000 0.17620
1 0.2611 0.3623 0.0774 0.0001 0.32040
2 0.3948 0.2575 0.1183 0.0004 0.24030
3 0.2622 0.1315 0.1653 0.0020 0.14790
4 0.0419 0.1919 0.0089 0.07390
5 0.0062 0.1789 0.0319 0.02960
6 0.1304 0.0898 0.00920
7 0.0716 0.1901 0.00220
8 0.0278 0.2852 0.00040
9 0.0068 0.2702 0.000038
10 0.0008 0.1216 0.000002

SUM 1.0000 1.0000 1.0000 1.0000 1.0000

aSecond column onward gives values of n and p. As u varies between 0 and n∕2, there are
n∕2 + 1 values in each column.

For p = q, this simply becomes
(

n
t

)

∕2n−1. A similar result could be derived when n
is odd. See Table 6.5 for some sample values, and Exercise 6.11 (p. 247).

There is another way to derive the above-mentioned distribution using a result in
Chapter 10 (p. 401). Let there be x successes and (n − x) failures in n trials (Table 6.6).
Then S − F = x − (n − x) = 2x − n = y(say), where S denotes the successes and F
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denotes the failures. Clearly, y takes the values −n,−n + 2, … , 0, …, n − 2, n.

P(Y = y) = P(2x − n = y) = P(x = (n + y)∕2) =
(

n
(n + y)∕2

)

p(n+y)∕2q(n−y)∕2
.

(6.59)
The distribution of |Y| is given in Section 10.4.1 as f (y) + f (−y). Put y = −y in
equation (6.59) and add to get

f (y) =
(

n
(n + y)∕2

)

p(n+y)∕2q(n−y)∕2 +
(

n
(n − y)∕2

)

p(n−y)∕2q(n+y)∕2
. (6.60)

Use
(

n
x

)

=
(

n
n−x

)

and take common factors outside to get the above-mentioned form
(6.57).

6.5.5 Algorithm for Binomial Distribution

Successive probabilities of the binomial distribution are found using the recurrence
relationship f (x)∕f (x − 1) = ((n − x + 1)∕x)p∕q with starting value f (0) =

(
n
0

)

qn =
qn. This could also be written as

f (x)∕f (x − 1) = [(n + 1)∕x − 1]p∕q or as 1 + [(n + 1)p − x]∕(qx), (6.61)

where the last expression is obtained by adding and subtracting 1∕q, writing −1∕q
as −x∕qx and using (−p∕q + 1∕q) = 1. When n is very large and x > n∕2, we could
reduce the number of iterations by starting with f (n) =

(
n
n

)

pn = pn and recurring

backward using the relationship f (x − 1) = q
p

x
(n−x+1) f (x).

EXAMPLE 6.11 Winning group

A class has b boys and g girls, both ≥ 2. A competition is conducted between
the boys (who form group G1) and the girls (who form group G2), where each
competition is independent of others and it is between the groups. If there are n
prizes to be distributed to the winning groups, find (i) probability that girls bag
more prizes than boys, (ii) number of prizes bagged by boys is odd, (iii) number
of prizes bagged by girls is even number, and (iv) boys get no prizes.

Solution 6.11 As there are b boys and g girls, the proportion of boys is b∕(b + g)
and that of girls is g∕(b + g). As there are n prizes, the distribution of the prizes
in favor of the boys is a BINO(n, b∕(b + g)), where we have assumed that a “suc-
cess” corresponds to the boys winning a prize. We assume that this probability
remains the same because the prizes are distributed to the groups independently.

(i) Probability that girls bag more prizes than boys = Probability that
boys get less prizes than girls = Pr[x<n−x] = Pr[2x < n] = Pr[x < n/2]
=

∑⌊n∕2⌋
i=0

(
n
i

)

piqn−i, where p = b∕(b + g) and the summation is from 0 to
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(n − 1)∕2 if n is odd and to n∕2 if n is even. (ii) The number of prizes bagged

by boys is odd = Pr[x = 1,3,… ] =
∑

x odd

(
n
x

)

pxqn−x. To evaluate this sum,

consider the expression (p + q)n − (p − q)n. Expanding using binomial theorem
and canceling out all even terms, we get

(p + q)n − (p − q)n = 2

[ ∑

x odd

(n
x

)

pxqn−x

]

. (6.62)

Hence, the required probability is 1
2
[(p + q)n − (p − q)n]. However, p + q = 1

and p − q = b∕(b + g) − g∕(b + g) = (b − g)∕(b + g). Substitute in the afore-
mentioned to get the required probability as 1

2
[1 − [(b − g)∕(b + g)]n]. When

the number of boys is less than that of girls, the second term can be negative for

odd n. (iii) Number of prizes bagged by girls is even =
[ ∑

x even

(
n
x

)

qxpn−x

]

,

where we have swapped the roles of p and q. To evaluate this sum, consider
the expression (p + q)n + (q − p)n. Expanding using binomial theorem, all

odd terms cancel out giving 2

[ ∑

x even

(
n
x

)

qxpn−x

]

. Hence, the required prob-

ability is 1
2
[1 + [(g − b)∕(b + g)]n]. (iv) Probability that boys get no prizes =

qn = [g∕(b + g)]n.

EXAMPLE 6.12 Rolling a die

Consider rolling a die 20 times. What is the probability of getting at least 10
sixes?

Solution 6.12 The probability p of getting a six on any roll is 1/6, and the count X
of sixes has a B(20, 1/6) distribution. Hence, the required probability is obtained
by summing the individual probabilities as

∑20
x=10

(
20
x

)

(1∕6)x(5∕6)20−x.

6.5.6 Tail Probabilities

The CDF of a binomial distribution BINO(n, p) is Fx(n, p) =
∑x

k=0

(
n
k

)

pkq(n−k). We
could compute this by the straightforward method of adding the successive probabil-
ities. However, for large n and k, this method is very inefficient. A better approach
is to use the relationship between the binomial distribution and the incomplete beta
function as follows.

Fx(k; n, p) = P[X ≤ k] =
k∑

x=0

(n
x

)

pxqn−x = I1−p(n − k, k + 1). (6.63)

(see Chapter 7, Section 7.6, p. 7–36). The LHS of equation (6.63) is a discrete sum,
whereas the RHS is a continuous function of p. When k > np∕2, this is computed as



208 DISCRETE DISTRIBUTIONS

Fx(k) = 1 − Ip(k + 1, n − k). Alternatively, the tail probabilities (SF) can be expressed
as n∑

x=k

(n
x

)

pxqn−x = n !
(k − 1)!(n − k)! ∫

p

y=0
yk−1(1 − y)n−kdy. (6.64)

Replacing the factorials by gamma functions, this is seen to be equivalent to

n∑

x=k

(n
x

)

pxqn−x = Ip(k, n − k + 1). (6.65)

As the incomplete beta function is widely tabulated, it is far easier to evaluate the
RHS. This is especially useful when n is large and k is not near n.

EXAMPLE 6.13

Find the MD of binomial distribution using the Power method in Section 6.1 (p.
189).

Solution 6.13 We know that the mean of binomial distribution is np. The lower
limit ll for the BINO(n, p) is x = 0, so that xF(x) = 0. Hence using Theorem 6.1,
the MD is given by

MD = 2
𝜇−1∑

x=ll

F(x) = 2
⌊np−1⌋∑

x=0

I1−p(n − x, x + 1). (6.66)

The results obtained by equation (6.66) and Theorem 6.1 are given in the
Table 6.7 (see also Table 6.1). Both results totally tally when np is an integer
or half-integer (with the correction term). Otherwise, the results are only
approximate when np is small, but the accuracy increases for large np values.

TABLE 6.7 Mean Deviation of Binomial Distribution Using Equation (6.6)

n, p 0 1 2 3 4 5 6 7 Equation (6.66)

10, 0.10 0.349 0.6974
15, 0.40 0.000 0.005 0.027 0.091 0.217 0.4032 1.4875
20, 0.50 0.000 0.001 0.006 0.021 0.058 0.132 0.252 0.412 1.762
30, 0.10 0.042 0.184 0.4114 1.2749
40, 0.05 0.129 0.399 1.0552
50, 0.14 0.001 0.005 0.022 0.067 0.153 0.281 0.438 1.934
8, 0.875 0.000 0.000 0.000 0.001 0.011 0.067 0.264 0.6872

50, 0.20 0.001 0.006 0.018 0.048 0.103 0.190 0.307 0.444 2.2371
80, 0.1125 0.001 0.004 0.016 0.046 0.102 0.191 0.310 0.448 2.2339
25, 0.36 0.000 0.002 0.007 0.025 0.068 0.148 0.271 0.425 1.8937

First column gives n, p values of binomial. Second column onward are the values computed using
equation (6.66). Last column finds the MD using equation (6.6), which is the same as that found using
equation (6.66) when np is an integer. When np is not an integer, results are only approximate. Values have
been left shifted by two places for (20, 0.50), (50, 0.20) rows and by one place to the left for few other
rows, as the first few entries are zeros.
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If n is large and p is small, the first few F(x) terms in equation (6.66) could be
nearly zeros. A solution is to start the iterations at x = 𝜇 − 1 and recur backward
or start the iterations at a higher integer from lower limit ll and recur forward.

6.5.7 Approximations

As there are two parameters for this distribution, the binomial tables are lengthy and
cumbersome. When the probability of success p is very close to 0.5, the distribu-
tion is nearly symmetric (see Figure 6.6, p. 6–61). From Figure 6.6, it is evident that
the normal approximation is not good for x values away from the modal value (10)
when n is small due to the disparity in the variance. If we reduce the variance of
the approximating normal, the peak probabilities will increase. When n is large, the
central limit theorem can be used to approximate binomial by a normal curve. The
accuracy depends both on n and whether the value of p is close to 0.5. Not only the
probabilities but also the cumulative probabilities can also be approximated using
normal tail areas. This approximation is quite good when p is near 0.5 rather than
near 0 or 1 (use the normal approximation when np > 10 or np(1 − p) > 10 or both
np and n(1 − p) are> 5). Symbolically, P[x ≤ k] = Z( k−np

√
npq

), where Z() is the standard

normal distribution. As this is an approximation of a discrete distribution by a continu-
ous one, a continuity correction could improve the precision for small n. This gives us

P[x ≤ k] = Z((k − np + 0.5)∕
√

npq) and P[x ≥ k] = 1 − Z((k − np − 0.5)∕
√

npq).
(6.67)

See Reference 133 for normal approximations, References 123, 133–135 for further
discussions.

6.5.8 Limiting Form of Binomial Distribution

The binomial distribution tends to the Poisson law (p. 6–67) when n → ∞, p → 0 such
that np remains a constant. This result was known to S.D. Poisson (1837), which is
why the limiting distribution is called Poisson distribution. This is easily derived from
the PDF as follows (see Figures 6.3 and 6.7). Write the PDF as

fX(k; n, p) =
(n

k

)

pkqn−k = n(n − 1)(n − 2)..(n − k + 1)
k!

pkqn−k
. (6.68)

Multiply the numerator and denominator by nk, combine it in the numerator with pk

and write qn−k as (1 − p)n ∗ (1 − p)−k to obtain:

fX(k; n, p) = n
n
.
n − 1

n
.
n − 2

n
· · · n − k + 1

n

(np)k

k!
(1 − p)−k(1 − p)n. (6.69)

According to our assumption, np is a constant (say 𝜆) so that p = 𝜆∕n. Substitute in
the aforementioned and let n → ∞

Lt
n → ∞ fX(k; n, p) = Lt

n → ∞
n
n
.
n − 1

n
.
n − 2

n
· · · n − k + 1

n
𝜆

k

k!
(1 − 𝜆∕n)−k(1 − 𝜆∕n)n.

(6.70)
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If k is finite, the multipliers all tend to 1 and (1 − 𝜆∕n)−k also tends to 1. The last term

tends to e−𝜆 using the result that
Lt

n → ∞(1 − x∕n)n = e−x. Hence in the limit, the RHS

tends to the Poisson distribution e−𝜆𝜆k∕k!. We could write this in more meaningful
form as

fX(x; n, p) =
(n

x

)

pxqn−x → e−np(np)x∕x! + O(np2∕2) as n → ∞, (6.71)

where O(np2∕2) is the asymptotic notation [8, 22]. An interpretation of this result is
that the binomial distribution tends to the Poisson law when p → 0 faster than n → ∞.
In other words, the convergence rate is quadratic in p and linear in n. This allows us
to approximate the binomial probabilities by the Poisson probabilities even for very
small n values (say n < 10), provided that p is comparatively small.

The above-mentioned result can also be proved using the PGF. We know that
Px(t; n, p) = (q + pt)n. Write q = 1 − p and take logarithm of both sides to get
log(Px(t; n, p)) = n log(1 − p(1 − t)). Write n = −(−n) on the RHS and expand as an
infinite series using − log(1 − x) = x + x2∕2 + x3∕3 + · · · to get

log(Px(t; n, p)) = −n[p(1 − t) + p2(1 − t)2∕2 + p3(1 − t)3∕3 + …]. (6.72)

Write np = 𝜆 and take negative sign inside the bracket. Then, the RHS becomes
log(Px(t; n, p)) = 𝜆(t − 1) − np2(t − 1)2∕2 + · · ·. When exponentiated, the first term
becomes the PGF of a Poisson distribution (p. 6–69). The rest of the terms contain
higher order powers of the form npr∕r for r ≥ 2.

We have assumed that p → 0 in the above-mentioned proof. This limiting behavior
of p is used only to fix the Poisson parameter. This has the implication that we could
approximate both the left-tail and right-tail areas, as well as individual probabilities
using the above-mentioned approximation. If p is not quite small, we use the random
variable Y = n − X, which was shown to have a binomial distribution (see example
in p. 6–27) with probability of success q = 1 − p, so that we could still approximate
probabilities in both tails when p is very close to 1.

When p is near 0.5, a normal approximation is better than the Poisson approxima-
tion due to the symmetry. However, a correction to the Poisson probabilities could
improve the precision. For large values of n, the distributions of the count X and the
sample proportion are approximately normal. This result follows from the Central
Limit Theorem. The mean and variance for the approximately normal distribution of
X are np and np(1 − p), identical to the mean and variance of the binomial(n, p) dis-
tribution. Similarly, the mean and variance for the approximately normal distribution
of the sample proportion are p and (p(1 − p)∕n).

EXAMPLE 6.14 Political parties

Consider a group of n individuals who support one of two political parties say
P1 and P2. Assuming that none of the votes are invalid, what is the probability
that a candidate of party P1 wins over the other candidate?

Solution 6.14 If the voting decision of an individual is not influenced by the
decision of another (for example, husband’s and wife’s decision or decision
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among friends), the proportion of individuals who support one of two political
parties can be regarded as a binomial distributed random variable with probabil-
ity p. To find winning chances, we need to consider whether n is odd or even. If
n is odd, P1 will win if the number of votes received is ≥n+1

2
. Thus, the required

probability is
∑n

x= n+1
2

(
n
x

)

pxqn−x, where p = probability that the vote is in favor

of the candidate of P1. If n is even, the summation needs to be carried out from
(n∕2) + 1 to n.

EXAMPLE 6.15 Malfunctioning electronic device

Consider an electronic device containing n transistors from the same manufac-
turer. The probability of each transistor malfunctioning is known from previous
observations over a long period of time to be p. Find the probability that (i) at
most three transistors malfunction and (ii) none of the transistors malfunction.

Solution 6.15 We assume that the transistors malfunction independent of each
other. Then, the number of transistors that malfunction has a binomial distribu-
tion. Hence, the required probability is P[X ≤ 3] =

∑3
x=0

(
n
x

)

pxqn−x. Probability

that none of them malfunction is
(

n
0

)

p0qn−0 = qn.

See Reference 136 for dependent Bernoulli trials and References 135, 137, and
138 for further examples.

6.6 DISCRETE UNIFORM DISTRIBUTION

A random variable that takes equal probability for each of the outcomes has a discrete
uniform distribution (DUNI[N]). The PDF is given by

f (x) = Pr[X = k] = 1∕N, for k = 1, 2, …,N where N > 1. (6.73)

For N = 2, we get the Bernoulli distribution with p = 1∕2. As each of the proba-
bilities is equal, f (x)∕f (x + k) = 1 for all k in the range. It is also called discrete

TABLE 6.8 Variance of Discrete Distributions

Distribution Mean Variance 𝜎
2 as 𝜇 Ordering

Binomial np npq 𝜇q 𝜎
2
< 𝜇

Poisson 𝜆 𝜆 𝜇 𝜎
2 = 𝜇

Geometric q/p q∕p2
𝜇∕p 𝜎

2
> 𝜇

Negative binomial kq∕p kq∕p2
𝜇∕p 𝜎

2
> 𝜇

Hypergeometric
nk
N

= t
t

N − 1
(1 − k∕N)(N − n)

𝜇

N − 1
(1 − k∕N)(N − n)

𝜎
2
< 𝜇

Discrete uniform (N + 1)∕2 (N2 − 1)∕12 𝜇(𝜇 − 1)∕3

For discrete uniform and HGDs, the inequality depends on parameter values. For discrete uniform distri-
bution 𝜎2

< 𝜇 when N < 7 and 𝜎2
> 𝜇 for N > 7. They are equal when N = 7.
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rectangular distribution. A displaced discrete uniform distribution DUNI[a, b] (where
b > a) can be defined as f (x) = Pr[X = a + k] = 1∕N, for k = 0, 1, 2, … ,b−a (or
f (x) = Pr[X = k] = 1∕N for k = a, a + 1, a + 2, … , b − 1). Choosing a = 0, b = N
gives another form of the distribution as f (x) = 1∕(N + 1), for x = 0, 1, 2, … , N. In
general, we could shift the origin by c (positive or negative) to get the generalized
DUNI(N) as f (x) = Pr[X = k] = 1∕N, for k = c, c + 1, …, c + N − 1.

EXAMPLE 6.16 CDF of DUNI(N)

Find the CDF of DUNI[N] and obtain the mean using E(X) =
∑

kP(X ≥ k).

Solution 6.16 Assume that the PDF is f (x) = Pr[X = k] = 1∕N. The CDF
F(x) = P[X ≤ x] =

∑x
k=1 1∕N = x∕N. From this, we get P(X > x) = 1 − [x∕N]

and P(X ≥ x) = 1 − [(x − 1)∕N]. Now E(X) =
∑

kP(X ≥ k) =
∑N

k=1(1 − [(k −
1)∕N]) =

∑N
k=1 1 − 1∕N

∑N
k=1(k − 1) = N − (1∕N)[1 + 2 + 3 + .. + (N − 1)] =

N − (1∕N)(N − 1)N∕2. This simplifies to E(X) = 𝜇 = (N + 1)∕2.

EXAMPLE 6.17

Find the MD of DUNI[N] distribution using the Power method in Section 6.1
(p. 6–7) when N is odd.

Solution 6.17 We know that the mean of DUNI[N] distribution is c =
(N + 1)∕2. Using Theorem 6.1, the MD is given by

MD = 2
𝜇−1∑

x=ll

F(x) = 2
c∑

x=1

x∕N, where c = ((N + 1)∕2) − 1 = (N − 1)∕2. (6.74)

Take (1∕N) outside the summation and evaluate
∑c

x=1 x = c(c + 1)∕2. This gives

MD = (2∕N) ∗ c(c + 1)∕2 = c(c + 1)∕N. (6.75)

Now put c = (N − 1)∕2 to get MD = (N − 1)(N + 1)∕4 = (N2 − 1)∕4.

6.6.1 Properties of Discrete Uniform Distribution

This distribution has a single parameter. The MGF is easy to find as

E(etx) =
N∑

x=1

etx∕N = 1
N
[et + e2t + · · · + eNt] = et

N
1 − eNt

1 − et
(6.76)

for t ≠ 0 and = 1 for t = 0. The PGF is obtained by replacing et in the above by t as
Px(t) =

t
N

1−tN

1−t
. The characteristic function is written as 𝜙x(t) = (1 − eitN)∕[N(e−it −

1)], where we have divided both numerator and denominator by et. The mean and
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variance are easily seen to be E(X) = (N + 1)∕2 and V(X) = (N2 − 1)∕12. The
coefficient of kurtosis is 𝛽2 = 3

5
(3 − 4

n2−1
). This shows that it is always platykurtic.

Truncated discrete uniform distributions are of the same type with the probabilities
simply enlarged (because dividing by the truncated sum of probabilities simply
enlarges each individual probability. See Table 6.5).

EXAMPLE 6.18 Variance as a function of 𝜇 for the DUNI(N)

Express the variance of DUNI(N) as a function of 𝜇 alone

Solution 6.18 We know that 𝜇 = (N + 1)∕2 and 𝜎
2 = (N2 − 1)∕12.

From 𝜇 = (N + 1)∕2, we get N = 2 ∗ 𝜇 − 1. Write 𝜎
2 = (N2 − 1)∕12 =

(N − 1)(N + 1)∕12. Substitute for (N + 1)∕2 = 𝜇 to get 𝜎2 = [(2 ∗ 𝜇 − 1) − 1] ∗
𝜇∕6 = (𝜇 − 1) ∗ 𝜇∕3. If the variance of a DUNI(N) distribution is estimated
from data, we can obtain an estimate of the mean as follows. Write the afore-
mentioned as a quadratic equation x2 − x − 3k = 0, where x = 𝜇 and k = 𝜎

2.
This has positive root x = (1 +

√
1 + 12 ∗ k)∕2. Put the values for x and k to get

𝜇 = (1 +
√

1 + 12 ∗ 𝜎2)∕2. Alternatively, we could first estimate N from vari-
ance as N =

√
1 + 12 ∗ 𝜎2 and obtain the mean as (N + 1)∕2 (see Table 6.8).

EXAMPLE 6.19 Factorial moments of DUNI(N)

Find the factorial moments of DUNI[N], and obtain the mean.

Solution 6.19 By definition

𝜇(k) = E[X(X − 1) · · · (X − k + 1)] =
N∑

x=1

x(x − 1) · · · (x − k + 1)(1∕N). (6.77)

As (1∕N) is a constant while summing with respect to X, take it outside the
summation and adjust the indexvar to vary from k to N. This gives 𝜇(k) =
(1∕N) ∗

∑N
x=k x(x − 1) · · · (x − k + 1). Multiply and divide by 1, 2, … (x − k)

and write this as 𝜇(k) = (1∕N) ∗
∑N

x=k x!∕(x − k)!. Next multiply and divide by

k! and write x!∕[k!(x − k)!] as
(

x
k

)

. The LHS becomes (k!∕N) ∗
∑N

x=k

(
x
k

)

. Now

use
∑N

x=k

(
x
k

)

=
(

N+1
k+1

)

= (N + 1)!∕[(k + 1)! ∗ (N − k)!] (identity 7 in p. 6–5).
Write (k + 1)! in the denominator as (k + 1) ∗ k! and cancel out the k! to get

𝜇(k) = (1∕N(k + 1)) ∗ (N + 1)!∕(N − k)! (6.78)

EXAMPLE 6.20 Distribution of U = X+Y.

If X and Y are IID DUNI(N) with the same range, find the distribution of U =
X + Y .
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Solution 6.20 Without loss of generality, we assume that X and Y take values
1, 2, … ,N. Then Pr[X + Y = k] = Pr[X = t ∩ Y = k − t] = Pr[X = t] ∩ Pr[Y =
k − t] due to independence. As t is arbitrary, this becomes

∑k
t=1 1∕N2 = k∕N2.

Hence fu(u) = u∕N2, for u = 2, 3, … , 2N.

6.6.2 An Application

The DUNI(N) is used in lotteries and random sampling. Let there be m prizes in a
lottery. If N tickets are sold, the chance that an arbitrary ticket will win a prize is
m∕N. If each ticket is printed with the same number of digits (say the width is 6),
and each of the digits (0, 1, ..., 9) is equally likely, the PDF of kth digit is DUNI(10).
Similarly, in random sampling with replacement, if the population has N elements,
the probability distribution of the kth item in the sample is 1∕N.

6.7 GEOMETRIC DISTRIBUTION

Consider a sequence of independent Bernoulli trials with the same probability of
success p. We observe the outcome of each trial, and either continues it if it is not a
success or stop it if it is a success. This means that if the first trial results in a success
with probability p, we stop further trials. If not, we continue observing failures until
the first success is observed. Let X denotes the number of trials needed to get the first
success. Naturally X is a random variable that can theoretically take any value from
0 to ∞. In summary, practical experiments that result in a geometric distribution can
be characterized by the following properties:

1. The experiment consists of a series of IID Bernoulli trials

2. The trials can be repeated independently without limit (as many times as neces-
sary) under identical conditions. The outcome of one trial has no effect on the
outcome of any other, including next trial

3. The probability of success, p, remains the same from trial to trial until the exper-
iment is over.

4. The random variable X denotes the number of trials needed to obtain the first
success.

If the probability of success is reasonably high, we expect the number of trials
to get the first success to be a small number. This means that if p = 0.9, the number
of trials needed is much less than if p = 0.5 in general. Let Xk denote the random
variable for observing the first success. If a success is obtained after getting x
failures, the probability is qxp by the independence of the trials. This is called the
geometric distribution (see Figure 6.3). It gets its name from the fact that the PDF is
a geometric progression with first term p and common difference q with closed form
(p∕(1 − q)). In other words, the individual probabilities (divided by the first proba-
bility p) form a geometric progression. Some authors define the PDF of a geometric



GEOMETRIC DISTRIBUTION 215

distribution as f (x; p) = qx−1p, where x = 1, 2, …,∞. We could combine the
above-mentioned two cases and write the PDF as

f (x; p) =
⎧
⎪
⎨
⎪
⎩

qx−1p if x ranges from 1, 2, 3, … ,∞
qxp if x ranges from 0, 1, 2, … ,∞
0 elsewhere.

The second form follows easily by a change of origin transformation Y = X − 1
in the first form. The mean, mode, and other location measures are simply displaced
in this case (see the following discussion). The variance remains the same because
V(X − 1) = V(X). The Polya distribution

f (x; 𝜆) = [𝜆∕(1 + 𝜆)]x∕𝜆 (6.79)

is obtained by setting the mean q∕p = 𝜆 so that 1∕p = (1 + 𝜆) or p = 1∕(1 + 𝜆).
Now substitute in qx−1p, multiply numerator and denominator by 𝜆 to get the
above-mentioned form (Figure 6.4).

This can be considered as the distribution of waiting time until the occurrence of
first success. Consider a sequence of customers in a service queue. Assume that either
a new customer joins the queue (with probability p) or none arrives (with probability
q = 1 − p) in a short-enough time interval. The time T until the next arrival is dis-
tributed as GEO(p). It has a single parameter p, the probability of success in each
trial.

6.7.0.1 Relationship with Other Distributions It is a special case of the negative
binomial distribution when r = 1. If X1,X2, … ,Xn are IID geometric variates with
parameter p, then Y = X1 + X2 + … + Xn has a negative binomial distribution with

0
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Figure 6.3 Normal approximation.
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Figure 6.4 Geometric distribution p = 0.2.

parameters n,p. This is easily proved using the MGF. It can also be considered as the
discrete analog of the exponential distribution.

6.7.0.2 Moments and Generating Functions The mean and variance are
𝜇 = 1∕p, 𝜎2 = q∕p2 if f (x; p) = qx−1p, with support x = 1, 2, … ; and q∕p, q∕p2 if
f (y; p) = qyp with support y = 0, 1, 2, … . The mean is easily obtained

𝜇 =
∞∑

x=0

xqxp = p[q + 2q2 + 3q3 + · · · ] = pq[1 − q]−2 = pq∕p2 = q∕p. (6.80)

If the PDF is taken as f (x; p) = qx−1p, the mean is 1∕p. The ordinary moments of this
distribution are easy to find using PGF or MGF. We find higher order moments using
the MGF technique.

Mx(t) = E(etx) =
∞∑

x=0

etxqxp = p
∞∑

x=0

(qet)x = p∕(1 − qet). (6.81)

(the MGF for range 1 to ∞ is pet∕(1 − qet)). The characteristic function is obtained
from the MGF as Φx(t) = p∕(1 − qeit).

EXAMPLE 6.21 Moments of geometric distribution

Obtain the moments of GEO(p) distribution using MGF

Solution 6.21 Take logarithm to the base e of the MGF and differentiate once
to obtain

M′
x(t)∕Mx(t) = qet∕[1 − qet] = q∕[e−t − q]. (6.82)
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Putting t = 0, we get M′
x(0)∕Mx(0) = q∕(1 − q) = q∕p. Hence 𝜇 = q/p, as

expected. Differentiating again, we get

[Mx(t)M′′
x (t) − M′

x(t)2]∕Mx(t)2 = q[(1 − qet)et + etqet]∕(1 − qet)2, (6.83)

from which M′′
x (0) = q∕p2 + q2∕p2, so that the variance is q∕p2. The CDF is

obtained as F(x) =
∑x

k=0 qkp = p[1 + q + q2 + · · · + qx]. As q is a probability,
each power of q is between 0 and 1. Hence, the above-mentioned series converges
for all values of q, giving the summed value p[1 − qx+1]∕[1 − q]. As (1 − q) = p,
the p in the numerator and denominator cancels out giving the CDF as F(x) =
[1 − qx+1].

EXAMPLE 6.22 Mean deviation of geometric distribution

Find the MD of geometric distribution using Theorem 6.1 (p. 189).

Solution 6.22 We know that the mean of GEO(p) distribution is 𝜇 = q∕p. Using
Theorem 6.1, the MD is given by

MD = 2
𝜇−1∑

x=ll

F(x) = 2
c∑

x=0

[1 − qx+1], where c = ⌊q∕p⌋ − 1. (6.84)

Split this into two sums. The first one becomes 2(c + 1) = 2⌊q∕p⌋. The sum

c∑

x=0

qx+1 = q[1 + q + q2 + · · · + qc] = q[1 − qc+1]∕p = (q∕p)[1 − q⌊q∕p⌋]. (6.85)

Combine with the first term to get

MD = 2(⌊q∕p⌋) − 2(q∕p)[1 − q⌊q∕p⌋]. (6.86)

Write q = 1 − p and cancel out +2 and −2. This simplifies to

2⌊1∕p⌋(q⌊q∕p⌋). (6.87)

Write q = 1 − p in the exponent to get an alternate expression

MD = (2∕q)⌊1∕p⌋(q⌊1∕p⌋). (6.88)
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EXAMPLE 6.23 Y = ⌊X⌋ of an Exponential Distribution

If X has an exponential distribution, find the distribution of Y = ⌊X⌋.

Solution 6.23 As X is continuous, Pr[Y = y] = Pr[y ≤ X < y + 1]. Now con-
sider

Pr[y ≤ X < y + 1] =
∫

y+1

y
𝜆 exp(−𝜆x)dx = − exp(−𝜆x)|y+1

y

= exp(−𝜆y) − exp(−𝜆(y + 1)) = exp(−𝜆y)[1 − exp(−𝜆)] (6.89)

Write exp(−𝜆y) as [exp(−𝜆)]y. Then, equation (6.89) is of the form
qyp = (1 − q)qy, where q = exp(−𝜆). This is the PDF of a geometric dis-
tribution with probability of success p = 1 − q = [1 − exp(−𝜆)]. Hence,
Y = ⌊X⌋ is GEO([1 − exp(−𝜆)]).

EXAMPLE 6.24 Moments of geometric distribution qx∕2p

Find the mean of a distribution defined as

f (x; p) =

{
qx∕2p if x ranges from 0, 2, 4, 6, …,∞
0 elsewhere.

Solution 6.24 By definition E(X) =
∑

xxqx∕2p = p[2q + 4q2 + 6q3 + · · ·]. Take
2q as common factor and simplify using

(1 − x)−2 = 1 + 2x + 3x2 + 4x3 + · · · (6.90)

to get 2pq(1 − q)−2 = 2pq∕p2 = 2q∕p (see also p. 8–31).

EXAMPLE 6.25 Geometric probability exceeding 1∕p

If X ∼ GEO(p) find the probability that X takes values larger than the mean.

Solution 6.25 Let ⌊1∕p⌋ denote the integer part. Then, the required probability
is

p
∞∑

x=⌊1∕p⌋

qx = pq⌊1∕p⌋(1 + q + q2 + · · · ) = pq⌊1∕p⌋(1 − q)−1 = q⌊1∕p⌋
. (6.91)

EXAMPLE 6.26 Factorial moments of geometric distribution

Obtain the factorial moments of GEO(p) distribution.
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Solution 6.26 Differentiate the identify
∑∞

x=0 qx = 1∕(1 − q) with respect to q
multiple times to obtain the factorial moments. Differentiating it once, we get

∞∑

x=0

xqx−1 = 1∕(1 − q)2 = 1∕p2
. (6.92)

Multiply both sides by pq. Then, the LHS becomes
∑∞

x=0 xqxp = E(X). The RHS
is pq∕p2 = q∕p. Differentiating it again results in

∞∑

x=1

x(x − 1)qx−2 = 2∕(1 − q)3 = 2∕p3
. (6.93)

Multiply both sides by q2p and simplify to get E[X(X − 1)] = 2q2∕p2. Differen-
tiating k times gives

∞∑

x=k

x(x − 1) · · · (x − k + 1)qx−k = 1, 2, 3, … k∕(1 − q)k+1
. (6.94)

Multiply both sides by qkp to get

E[X(X − 1) · · · (X − k + 1)] = k!∕(1 − q)k+1qkp = k!qk∕pk = k!(q∕p)k. (6.95)

We could reparameterize the geometric distribution by putting 𝜇 = q∕p to get

f (x;𝜇) = (𝜇∕(1 + 𝜇))x 1∕(1 + 𝜇), (6.96)

with mean 𝜇 and variance 𝜇(1 + 𝜇). Left truncated geometric distribution is
obtained by truncating at a positive integer K. The resulting PDF is f (x; p) =
qx+Kp∕[1 −

∑K−1
y=0 qyp].

6.7.1 Properties of Geometric Distribution

Both the above-mentioned densities in equation 6.7 are related through a change
of origin transformation Y = X−1. This simply displaces the distribution to the left
or right. Using E(Y) = E(X) − 1, we get E(Y) = (1∕p − 1) = (1 − p)∕p = q∕p. Vari-
ance remains the same because V(Y) = V(X). As 𝜎2 = 𝜇∕p > 𝜇, the distribution is
over-dispersed. Similarly, Z = min(X1,X2, … ,Xn) has the same geometric distribu-
tion. A geometric distribution of order k is an extension:–in a sequence of independent
Bernoulli trials, we look for the first consecutive block of k successes (either in the
beginning itself or surrounded by failures). For example, in SSFFSFSSF SSSF, an
SSS occurs at position 10.

Coefficient of skewness is 𝛽1 = (2 − p)∕
√

q. As the numerator never vanishes
for valid values of 0 ≤ p ≤ 1, the geometric distribution is never symmetric (in
fact, it is always positively queued). The kurtosis is 𝛽2 = (p2 + 6q)∕q = 6 + p2∕q.
As p2∕q can never be negative, the distribution is always leptokurtic. Probability
generating function is p∕(1 − qs) and the characteristic function is p∕(1 − qeit) (see
Table 6.9).
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In Chapter 3, it was mentioned that the sample variance is a measure of the spread
of observations around the sample mean. As the expected value of a constant mul-
tiple of the sample variance is the population variance (E(s2) = ((n−1)/n)𝜎2), we
categorize statistical distributions using the boundedness property of population
variance.

Several statistical distributions have a single unknown parameter. Examples
are Bernoulli, geometric, Poisson, 𝜒2, exponential, Rayleigh, and T distributions.
The population variance is a linear function of this parameter for Poisson ( = 𝜆),
𝜒

2(= 2n), and other distributions. It is a nonlinear function for exponential (1∕𝜆2),
T (n∕(n − 2)) and geometric distributions ((1 − p)∕p2). For normal distributions, it
is 𝜎2. It is the square of a parameter for double exponential and logistic distribu-
tions, constant multiple of the square for Rayleigh and extreme value distributions,
and square of the difference of the parameters for uniform distribution. It is a
quadratic for binomial (np(1 − p)) distribution. It is a linear combination of param-
eters for noncentral 𝜒2(2(n + 2𝜆)). This discussion shows that the variance can be
increased without limit by increasing the respective parameter(s) in the numera-
tor or decreasing the parameters in the denominator for some distributions. How-
ever, there are some statistical distributions with strictly bounded parameter values,
whose variance is either a ratio of parameters or a function of two or more unknown
parameters (e.g., as transcendental functions), and cannot be increased without
limit. Examples are the BETA-I(a, b) with variance ab∕[(a + b)2(a + b + 1)], Stu-
dent’s T (n∕(n − 2) for n > 2), and the distribution of the correlation coefficient.
This has interesting implications in the asymptotics of statistical distributions with
respect to a subset of the parameter space. For example, the variance of both geo-
metric and negative binomial distributions can be increased without limit by let-
ting p → 0. We could reparametrize these distributions appropriately to have this
asymptotic behavior at the extreme right end of the parameter space. For instance,
let 𝜇 = q∕p for the geometric distribution, so that p = 1∕(1 + 𝜇). Then p → 0 is
equivalent to 𝜇 → ∞. These distributions have a characteristic property that the
variance is greater than the mean. Similar results could be obtained for higher order
moments and cumulants. Naturally, we expect this property to hold in samples
drawn from such populations. Such samples are called over-dispersion samples
(s2 ≥ x).

Let X1,X2, … ,Xn be IID geometric random variates with common parameter p.
Then, Y = X1 + X2 + … + Xn has a negative binomial distribution with parameters
n,p. This is easily proved using the characteristic function. This property can be used
to generate random numbers from negative binomial distribution using a random
number generator for geometric distribution. Similarly, Z = min(X1,X2, …,Xn) has
the same geometric distribution. See Reference 139 for characterizations and Refer-
ence 140 for applications.

EXAMPLE 6.27 Variance of geometric distribution

Prove that the ratio of variance to the mean of a geometric distribution is 1∕p.
Express the variance as a function of 𝜇 and discuss the asymptotic behavior.
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Solution 6.27 We know that the variance is q∕p2 = (1 − p)∕p2 and mean is q∕p.
As p→ 0, numerator of variance→ 1 and the denominator→ 0. The ratio 𝜎2∕𝜇 =
(q∕p2)∕(q∕p) = 1∕p, which is obviously > 1 as 0 < p < 1. Thus, the ratio tends
to ∞. This has the interpretation that as p→ 0, the number of trials needed to get
the first success increases without limit. The variance is expressed as a function
of the mean as 𝜎2 = 𝜇(1 + 𝜇).

EXAMPLE 6.28 Conditional distribution of geometric laws

If X and Y are IID GEO(p), find the conditional distribution of (X|X + Y = n).

Solution 6.28 As X and Y are independent,

Pr(X|X + Y = n) = Pr(X = x) ∗ Pr[Y = n − x]∕Pr[X + Y = n]. (6.97)

We will evaluate the denominator expression first. X + Y takes the value n when
x = k and y = n − k. Hence, Pr[X + Y = n] =

∑n
k=0 P[X = k]P[Y = n − k] (here

we have terminated the upper limit at n because Y is positive) =
∑n

k=0 qkpqn−kp =
(n + 1)p2qn. Thus

Pr(X|X + Y = n) = qxpqn−xp∕[(n + 1)p2qn] = 1∕(n + 1), (6.98)

which is the PDF of a discrete uniform distribution DUNI((n+1)).

EXAMPLE 6.29 Geometric probabilities

If X∼ GEO(p), find the following probabilities:– (i) X takes even values and (ii)
X takes odd values.

Solution 6.29 As the geometric distribution takes x = 0, 1, 2, … ∞ val-
ues, both the above-mentioned probabilities are evaluated as infinite sums.
(i) P[X is even] = q0p + q2p + · · · = p[1 + q2 + q4 + · · · ] = p∕(1 − q2) =
1∕(1 + q). (ii) P[X is odd] = q1p + q3p + · · · = qp[1 + q2 + q4 + · · · ] =
qp∕(1 − q2) = q/(1+q), which could also be obtained from (i) because P[X is
even] = 1−P[X is odd] = 1−[1/(1+q)] = q/(1+q).

6.7.2 Memory-less Property

The geometric density function possesses an interesting property called memory-less
property.

Theorem 6.5 If m and n are natural numbers, and X∼ GEO(p), then Pr(X > m+n |

X > m) = Pr(X>n).

Proof: We know that P(A|B) = P(A ∩ B)∕P(B). Applying this to the LHS we get
Pr(X > m + n|X > m) = Pr(X > m + n ∩ X > m)∕P(X > m). However, the numera-
tor is simply Pr(X > m + n), so that the ratio becomes Pr(X > m + n)∕P(X > m).
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TABLE 6.9 Properties of Geometric Distribution

Property Expression Comments

Range of X x = 0, 1, … ,∞ Discrete, infinite
Mean 𝜇 = q∕p Need not be integer
Variance q∕p2 = 𝜇∕p = 𝜇(𝜇 + 1) ⇒ 𝜇 < 𝜎

2

Mode 0
Skewness 𝛾1 = (1 + q)∕

√
q = (2 − p)∕

√
q

Kurtosis 𝛽2 = 9 + p2∕q = 7 + (q + 1∕q)
CV 1∕

√
q

Mean deviation (2∕q)⌊1∕p⌋(q⌊1∕p⌋)

E[X(X − 1) · · · (X − k + 1)] k!(q∕p)k Diverges if p → 0, k → ∞
CDF [1 − qx+1]
MGF p∕(1 − qet)
PGF p∕(1 − qt)
Recurrence f (x; n, p)∕f (x − 1; n, p) = q
Tail probability qx+1

Never symmetric, always leptokurtic.

Substituting the PDF, this becomes
∑∞

x=m+n+1 qxp∕
∑∞

x=m+1 qxp = qn (see the follow-
ing), which is Pr(X > n). The above-mentioned result holds even if the > operator is
replaced by ≥.

6.7.3 Tail Probabilities

The survival probabilities from x = c is

∞∑

x=c

qxp = p[qc + qc+1 + · · · ] = pqc[1 + q + q2 + · · · ] = pqc∕(1 − q) = pqc∕p = qc
.

As q < 1, this goes down to zero for large c. The left-tail probabilities can be found
from complementation as Pr[0 ≤ x ≤ c] = 1 − Pr[x > c] = 1 − qc.

6.7.4 Random Samples

Random samples from this distribution can be generated using a uniform random
number u in (0,1) by first finding a c such that 1 − qc−1

< u < 1 − qc. Subtract 1 from
each term and change the sign to get qc+1

< 1 − u < qc−1. Now consider qc
< 1 − u.

As 1−U and U have the same distribution, taking log we get c ∗ log(q) < log(u) from
which c < log(u)∕ log(q). Similarly, taking log of both sides of 1 − u < qc−1, we get
(c − 1) log(q) > log(1 − u) or equivalently c > 1 + log(u)∕ log(q). Combine both the
conditions to get c = ⌊1 + log(u)∕ log(q)⌋. This value being an integer is returned as
the random variate from the geometric distribution.
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6.8 NEGATIVE BINOMIAL DISTRIBUTION

This distribution gets its name from the fact that the successive probabilities are
obtained from the infinite series expansion of the expression pk(1 − q)−k, where q =
1 − p and p > 0 (see also Exercise 6.20, p. 6–97).

Consider a sequence of independent Bernoulli trials. Instead of counting the num-
ber of trials needed to get the first success, we count the number of trials needed to get
the kth success, where k is a fixed constant integer greater than 1 known in advance
(we are actually counting the number of failures, as the number of successes is fixed
at k). Hence, in x + k − 1 trials, we have observed k − 1 successes, and the (x + k)th
trial must result in the kth success. The probability of occurrence is thus

f (x; k, p) =
(x + k − 1

k − 1

)

pk−1qx × p =
(x + k − 1

k − 1

)

pkqx
. (6.99)

Using
(

n
x

)

=
(

n
n−x

)

, the PDF becomes

f (x; k, p) =
(x + k − 1

x

)

pkqx = Γ(x + k)∕[Γ(k) x!] pkqx
, (6.100)

for x = 0, 1, 2, … and k = 1, 2, … . For k = 1, this reduces to the geometric distri-
bution because

(
x
0

)

= 1. The second form in equation (6.100) is more general, as k
is not restricted to be an integer. Put y = x + k in equation (6.99) to get an alternate
form

f (y; k, p) =
(

y − 1
k − 1

)

pkqy+k for y = k, k + 1, … , (6.101)

6.8.1 Properties of Negative Binomial Distribution

By using
(
−n
x

)

= (−1)x
(

n+x−1
x

)

, the PDF can be written alternatively as

f (x; k, p) =
(−k

x

)

pk(−q)x. (6.102)

Putting p = k∕(u + k) and q = u∕(u + k), this could also be written in alternate form
as
(x + k − 1

x

)

(k∕(u + k))k(u∕(u + k))x = Γ(x + k)∕[Γ(k) x!] (k∕(u + k))k(u∕(u + k))x.

The MGF of NBINO(k, p) is

Mx(t) = E[etx] =
∞∑

x=0

etx
(−k

x

)

pk(−q)x =
∞∑

x=0

(−k
x

)

pk(−qet)x = [p∕(1 − qet)]k.
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Differentiating with respect to t and putting t = 0 gives E(X) = kq∕p.

EXAMPLE 6.30 Candidate interviews

A company requires k candidates with a rare skill set, See Figure 6.6 for p = 0.2,
0.8. As there is a scarcity of local candidates perfectly matching the required skill
set, the company decides to conduct a walk-in interview until all k candidates
have been found. If the probability of a candidate who matches perfectly is p, find
the expected number of candidates interviewed, assuming that several candidates
whose skill set is not completely matching also walks-in.

Solution 6.30 We are given that the probability of perfect match is p. Each
interviewed candidate is either rejected if the skill set is not 100% match or
hired. As the company needs k such candidates, the distribution of finding
all k candidates is negative binomial with parameters (k,p). The expected
number of candidates is kq∕p. Owing to the rarity of the sought skill set, p is
small so that q∕p is large. For instance, if p = 0.1, q∕p = 9 and if p = 0.005,
q∕p = 199.

6.8.1.1 Factorial Moments The falling factorial moments are easier to find than
ordinary moments. Let 𝜇(r) denote the rth factorial moment.

Theorem 6.6 The factorial moment 𝜇(r) is given by 𝜇(r) = k(r) (q∕p)r.

Proof: Consider 𝜇(r) = E[x(r)] = E[x(x − 1)..(x − r + 1)]. Substitute the PDF and sum

over the proper range of x to get the RHS as
∑

xx(x − 1) … (x − r + 1)
(

k+x−1
x

)

pkqx.
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Figure 6.5 Three poisson distributions.
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Figure 6.6 Two negative binomials.

Write x! in the denominator as x(x − 1) … (x − r + 1) ∗ (x − r)!, multiply both
numerator and denominator by k(k + 1)(k + 2) · · · (k + r − 1) this becomes

k(k + 1)(k + 2) · · · (k + r − 1) pkqr
∞∑

x=r

(k + x − 1
x − r

)

qx−r
. (6.103)

Put y = x − r in equation (6.103) and rearrange the indexvar. This gives

k(k + 1)(k + 2) · · · (k + r − 1) pkqr
∞∑

y=0

(
k + r + y − 1

y

)

qy
. (6.104)

The infinite sum in equation (6.104) is easily seen to be (1 − q)−(k+r). As (1 − q) = p,
the pk cancels out giving 𝜇(r) = E[x(r)] = k(r)(q∕p)r. This can be written in terms of
gamma function as 𝜇(r) = [Γ(k + r)∕Γ(k)] (q∕p)r.

6.8.1.2 Relationship with Other Distributions Tail areas of binomial and nega-
tive binomial distributions are related. Consider equation (6.101). Then Pr[Y ≥ n −
c] = Pr[X ≤ c], where X is distributed as BINO(n, p) and Y as NBINO(c, p). As
k → ∞ and p →1 such that k(1 − p) is a constant, the negative binomial distribution
approaches a Poisson law with parameter 𝜆 = k(1 − p). Similarly, NBINO(k, p∕k)
as k → ∞ tends to the Poisson law exp(−𝜆)𝜆x∕x! [121] with complexity O(kq2∕2).
This means that “the negative binomial distribution tends to the Poisson law when
p →1 faster than k → ∞.” If k is an integer or a half-integer, the SF can be written
as Pr[Y > y] = I1−p(y, k), where I(a, b) denotes the incomplete beta function. This
can also be written in terms of an F distribution as Pr[Y > y] = Ft(2k, 2y) where
t = p ∗ y∕(q ∗ k).
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Proposition 1 The negative binomial distribution can be regarded as a sum of k
independent geometric distributions with the same parameter p. We know from
Section 6.7.0.2 in p. 216 that the MGF of a GEO(p) distribution is given by Mx(t) =
p∕(1 − qet). Hence, the MGF of k IID GEO(p) is given by MY (t) = [p∕(1 − qet)]k.

EXAMPLE 6.31 Gamma mixture of the Poisson parameter

Prove that a gamma(m, p) mixture of the Poisson parameter (𝜆) gives rise to a
NBINO(p,m∕(m + 1)) distribution.

Solution 6.31 The PDF of Poisson and Gamma variates are, respectively,

f (x; 𝜆) = e−𝜆𝜆x∕x!, and g(𝜆;m, p) = mp

Γ(p)
e−m𝜆

𝜆
p−1
. (6.105)

The unconditional distribution is obtained as f (x) =

∫

∞

𝜆=0
e−𝜆𝜆x∕x! mp

Γ(p)
e−m𝜆

𝜆
p−1d𝜆 (6.106)

= mp

x!Γ(p) ∫

∞

𝜆=0
e−𝜆(1+m)

𝜆
x+p−1d𝜆 = mp

x!Γ(p)
Γ(p + x)
(m + 1)p+x

. (6.107)

This upon rearrangement becomes

f (x) =
Γ(p + x)
x!Γ(p)

( m
m + 1

)p( 1
m + 1

)x
, for x = 0, 1, 2, …, (6.108)

EXAMPLE 6.32 Variance of negative binomial

Prove that the ratio of variance to the mean of a negative binomial random vari-
able is 1∕p.

Solution 6.32 We know that the variance is given by V(r, p) = kq∕p2. Obvi-
ously, this can be increased by increasing the parameter k without limit. As the
mean is kq∕p, the ratio of variance to the mean is (kq∕p2)/(kq∕p) = 1∕p, which
is obviously greater than 1 (as 0 < p < 1). This gives p ∗ 𝜎2 = 𝜇.

EXAMPLE 6.33

Find the MD of negative binomial distribution using Theorem 6.1 (p. 189).

Solution 6.33 We know that the mean of negative binomial distribution is
𝜇 = kq/p. Using Theorem 6.1, the MD is given by
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MD = 2
𝜇−1∑

x=ll

F(x) = 2
c∑

x=0

Ip(k, x + 1), where c = ⌊kq∕p⌋ − 1, (6.109)

where I(a, b) is the incomplete beta function. This simplifies to 2c
(

k+c−1
c

)

qcpk−1 = 2𝜇2 ∗ fc, where fc is the probability mass evaluated at the integer part
of the mean.

6.8.2 Moment Recurrence

The central moments satisfy the recurrence

𝜇r+1 = q((kr∕p2)𝜇r−1 − 𝜕𝜇r∕𝜕p) , (6.110)

where 𝜇r = E(x − kq∕p)r. Consider

𝜇r =
∞∑

x=0

(x − kq∕p)r
(k + x − 1

x

)

pkqx
. (6.111)

As
(

k+x−1
x

)

is independent of p, and q = 1 − p, write the aforementioned as

𝜇r =
∞∑

x=0

(k + x − 1
x

)

{(x + k − k∕p)rpk(1 − p)x}. (6.112)

Differentiate the expression within the curly brackets with respect to p using the func-
tion of a function rule to get

𝜕𝜇r∕𝜕p =
∞∑

x=0

(k + x − 1
x

)

{r(x + k − k∕p)r−1pk(1 − p)x(+k∕p2)

+ (x + k − k∕p)rkpk−1(1 − p)x − (x + k − k∕p)rpkx(1 − p)x−1}. (6.113)

Combine the last two terms as [k(1 − p) − px] = −p(x − k(1 − p)∕p) = −p(x + k −
k∕p) to get −p (x + k − k∕p)r+1pk−1(1 − p)x−1. Multiply and divide by pq and com-
bine the terms as −(1∕q) (x + k − k∕p)r+1pk(1 − p)x. This gives

𝜕

𝜕p
𝜇r = −𝜇r+1∕q + rk∕p2

𝜇r−1. (6.114)

Cross-multiply and rearrange the expressions to get the result.

Theorem 6.7 Additivity theorem: If X1 ∼ NB(n1, p) and X2 ∼ NB(n2, p) are inde-
pendent NB random variables, then X1 + X2 ∼ NB(n1 + n2, p)
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TABLE 6.10 Properties of Negative Binomial Distribution

Property Expression comments

Range of X x = 0, 1, ..,∞ Discrete, infinite

Mean 𝜇 = kq∕p Need not be integer

Variance 𝜎
2 = kq∕p2 = 𝜇∕p 𝜇 < 𝜎

2

Mode (x − 1), x x = [(q∕p)(k − 1)] is int.

Skewness 𝛾1 = (1 + q)∕
√

kq = (2 − p)∕
√

kq

Kurtosis 𝛽2 = 3 + 6∕k + p2∕(kq) Always leptokurtic

CV 1∕
√

kq

CDF Fc(k, p) = Ip(k, c + 1)

Mean deviation 2
⌊kq∕p⌋−1∑

x=0

Ip(k, x + 1) 2𝜇2 ∗ fm

Factorial mom k(r)(q∕p)r = [Γ(k + r)∕Γ(k)] (q∕p)r

MGF pk∕(1 − qet)k [p∕(1 − qet)]k

PGF pk∕(1 − qt)k pk(1 − t + pt)−k

FMGF (1−qt/p)−k

Additivity
m∑

i=1

NB(ki, p) = NB(
m∑

i=1

ki, p) Independent

Recurrence f (x; k, p)∕f (x − 1; k, p) = q(k + x − 1)∕x

Tail probability
∑

x>c

(x + k − 1
x

)

pkqx = Iq(c + 1, k) I = Incomplete beta

Proof: This is most easily proved by the MGF method. We have seen in equation 6.103
that MGF is [p∕(1 − qet)]k. As p is the same, replace k by n1 and n2 and take the
product to get the result. This result can be extended to any number of NBIN(ri, p)
as follows: If Xi ∼ NBIN(ri, p), then

∑
iXi ∼ NBIN(

∑
iri, p). The pgf is obtained by

replacing et by t.

6.8.3 Tail Probabilities

As the random variate extends to ∞, the right-tail probabilities are more challenging
to evaluate (Table 6.10 and Figure 6.6). The left-tail probabilities of NBIN(r, p) are
related to the right-tail probabilities of binomial distribution as Fk(r, p) = P(X ≤ k) =
P(Y ≥ r) = 1-BINO(k + r, p). The upper tail probabilities of an NB distribution can
be expressed in terms of the incomplete beta function as

∑

x>c

(x + k − 1
x

)

pkqx = Iq(c + 1, k). (6.115)
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The lower tail probabilities can be found from the complement rule as

c∑

x=0

(x + k − 1
x

)

pkqx = Ip(k, c + 1). (6.116)

This can also be expressed as tail areas of an F distribution (A. Meyer [141]; see also
Guenther [142].

EXAMPLE 6.34 Negative binomial probabilities

If X∼ NBIN (r, p), find the following probabilities:– (i) X takes even values and
(ii) X takes odd values

Solution 6.34 Let Px(t) denote the PGF of NBIN (r, p). (i) P[X is even] has PGF
given by

[Px(t) + Px(−t)]∕2 = (pr∕2)[1∕(1 − qt)r + 1∕(1 + qt)r]. (6.117)

This can be simplified and expanded into an even polynomial in t with the cor-
responding coefficients giving the desired sum. (ii) The PGF for X taking odd
values is 1

2
[Px(t) − Px(−t)]. Substitute for Px(t) to get

[Px(t) + Px(−t)]∕2 = (pr∕2)[1∕(1 + qt)r − 1∕(1 − qt)r]. (6.118)

Proceed as above and expand as an odd polynomial in t whose coefficients give
desired probabilities.

See References 143 and 144 for a generalizations and Reference 145 for MLE.

6.9 POISSON DISTRIBUTION

The Poisson distribution was invented by S.D. Poisson (1781–1840) in 1838 as counts
(arrivals) of random discrete occurrences in a fixed time interval. It can be used
to model temporal, spatial or spatiotemporal rare events that are open-ended. For
example, it is used to predict the number of telephone calls received in a small time
interval, number of accidents in a time period, number of automobiles coming at a
gas station, number of natural disasters (like earthquakes) in a year, and so on. These
are all temporal models with different time intervals. Examples of spatial frame of
reference include predicting defects in newly manufactured items such as clothing
sheets, paper rolls or newsprints, cables and wires, and micro-chips. Spatiotemporal
applications include predicting earthquakes and tsunamis in a particular region over
a time period, outbreak of epidemics in a geographical region over a time period, and
so on. It is also used in many engineering fields. The unit of the time period in these
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cases is implicitly assumed by the modeler. A wrong choice of the time period may
lead to convoluted Poisson models.

The PDF is given by

px(𝜆) = e−𝜆𝜆x∕x!, x = 0, 1, 2, … , (6.119)

where e is the natural logarithm. Obviously, summing over the range of x values
gives

∑∞
x=0 e−𝜆𝜆x∕x! = e−𝜆(1 + 𝜆 + 𝜆2∕2! + · · · ) = e−𝜆e𝜆 = 1, where the indexvar

is varied as an exponent and a function. It belongs to the exponential family.
It can be considered as the limiting case of a binomial distribution as shown in

Section 6.5.8 in page 6–37. Most of the textbooks give this limiting behavior as fol-
lows: “When n, the number of trials is large, and p, the probability of success is
small, such that np remains a constant 𝜆, then BINO(n, p) → POIS(𝜆).” Johnson
et al. [123, 306] mentions in page 152 that “It is the largeness of n and smallness
of p that are important.” The product 𝜆 = np can remain a constant in two limiting
cases: (i) n → ∞ faster than p → 0 and (ii) p → 0 faster than n → ∞. As shown in
Section 6.5.8, this limiting property is valid only when np remains finite, and np2∕2
and higher order terms are negligible. We give the revised rule that “the binomial dis-
tribution tends to the Poisson law when p tends to zero faster than n tends to infinity.”
Thus, the Poisson approximation is valid even for low values of n, provided that p is
comparatively very small. In most practical applications, the value of n is at the hands
of a researcher, and the value of p is observed from the data. When p is near 0.5, the
above-mentioned condition may not hold. In such cases, a correction term is needed
to get higher accuracy for the approximation. Consider equation (6.72) in page 6–38,
which is reproduced in the following:

log(Px(t; n, p)) = −n[p(1 − t) + p2(1 − t)2∕2 + p3(1 − t)3∕3 + …]. (6.120)

Keeping first term intact, and collecting constant terms from the rest, we get the RHS
as

np(t − 1) − [np2∕2 + np3∕3 + · · · ] = np(t − 1) − n[− log(1 − p) − p]

= np(t − 1) + n[log q + p] = 𝜆(t − 1) + 𝜆 + n log(q). (6.121)

Exponentiating LHS and RHS, we see that the first term becomes the PGF of the
Poisson distribution.

6.9.1 Properties of Poisson Distribution

This distribution has a single parameter 𝜆, which is both the mean and variance of
the distribution. It is easy to compute for small 𝜆 values. It is an excellent choice for
forming mixture distributions (like noncentral 𝜒2 distribution).

The difference of two independent Poisson random variables has the Skellam dis-
tribution with PDF (see Figure 6.5)

f (x, 𝜆1, 𝜆2) = e−(𝜆1+𝜆2)(𝜆1∕𝜆2)x∕2Ix(2
√
𝜆1𝜆2), (6.122)

where Ix() is the modified Bessel function of the first kind.
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6.9.1.1 Moments and MGF The first moment is readily obtained as

𝜇 = E(X) =
∞∑

x=0

xe−𝜆𝜆x∕x! = 𝜆e−𝜆
∞∑

x=1

𝜆
x−1∕(x − 1)! = 𝜆e−𝜆e+𝜆. (6.123)

Using em ∗ en = em+n, the aforementioned reduces to 𝜆. To find the second moment
E(X2), write x2 as x ∗ (x − 1) + x to get

E(X2) =
∞∑

x=0

x2 ∗ e−𝜆𝜆x∕x! =
∞∑

x=0

[x(x − 1) + x] ∗ e−𝜆𝜆x∕x! = 𝜆
2 + 𝜆. (6.124)

From this, the variance is found as V(X) = E(X2) − E(X)2 = 𝜆. Factorial moments of
a Poisson distribution are easier to find because of the presence of x! in the denomi-
nator of the PDF. The rth factorial moment is

𝜇(r) = E[x(r)] = E[x(x − 1)..(x − r + 1)] =
∞∑

x=0

x(x − 1)..(x − r + 1)e−𝜆𝜆x∕x!

= 𝜆
re−𝜆

∞∑

x=r

𝜆
x−r∕(x − r)! = 𝜆

re−𝜆e+𝜆 = 𝜆
r
. (6.125)

Higher order moments can be obtained from this as 𝜇
′
2 = 𝜆

2 + 𝜆, 𝜇′
3 = 𝜆

3 + 3𝜆2 + 𝜆.

6.9.1.2 Moment Generating Function The moment generating function is

Mx(t) = E[etx] =
∞∑

x=0

etxe−𝜆𝜆x∕x! = e−𝜆
∞∑

x=0

(𝜆et)x∕x! = e−𝜆e𝜆et = e𝜆(e
t−1).

From this, the PGF is obtained by replacing et by t as Px(t) = e𝜆(t−1).

EXAMPLE 6.35 Mode of Poisson distribution

Prove that the mode of the Poisson distribution is ⌊𝜆⌋ if 𝜆 is noninteger and is
bimodal with the modes located at [𝜆 − 1, 𝜆] otherwise.

Solution 6.35 Consider the ratio fx(k, 𝜆)∕fx(k − 1, 𝜆) = 𝜆∕k. If k ≤ 𝜆, the LHS
is strictly increasing. Otherwise, it is strictly decreasing. If 𝜆 is integer, 𝜆∕k will
assume the last integer value at k = 𝜆 (if 𝜆 is a prime number, this occurs only
once, but if it is composite, the ratio could be integer for more than one value
of k). Thus, if 𝜆 is an integer, the RHS becomes 1 when k = 𝜆 giving fx(𝜆, 𝜆) =
fx(𝜆 − 1, 𝜆) (we have simply substituted k = 𝜆). Thus, the maximum occurs at
k = 𝜆 − 1 and 𝜆. Otherwise, there is a single mode at [𝜆], the integer part.



232 DISCRETE DISTRIBUTIONS

TABLE 6.11 Properties of Poisson Distribution

Property Expression Comments

Range of X x = 0,1,.., ∞ Discrete, infinite

Mean 𝜇 = 𝜆 Real number

Variance 𝜎
2 = 𝜆 ⇒ 𝜇 = 𝜎

2

Mode [𝜆 − 1, 𝜆] if 𝜆 is integer ⌊𝜆⌋ if not integer

Skewness 𝛾1 = 1∕
√
𝜆

Kurtosis 𝛽2 = 3 + 1∕𝜆 Leptokurtic

Even sum
1
2
(1 + e−2𝜆)

SF P[x > r] = 1
Γ(r + 1) ∫

𝜆

0
e−xxrdx

CV
√
𝜆

Mean deviation 2
⌊𝜆⌋−1∑

x=0

𝛾(x + 1, 𝜆)∕Γ(x + 1) 2 ∗ exp(−𝜆)𝜆⌊𝜆⌋+1∕⌊𝜆⌋!

Moments 𝜇r = 𝜆

r−2∑

i=0

(r − 1
i

)

𝜇i r > 1, 𝜇0 = 1

rth cumulant 𝜆

Factorial moments 𝜆
r

FMGF = E(1+t)x exp(t𝜆)

MGF e𝜆(e
t−1)

PGF e𝜆(t−1)

Additivity
m∑

i=1

P(𝜆i) = P(
m∑

i=1

𝜆i) independent

Recurrence f (x; n, p)∕f (x − 1; n, p) = 𝜆∕x

Tail probability
m∑

x=0

e−𝜆𝜆x

x!
= 𝛾(m + 1, 𝜆)

Γ(m + 1)
𝛾(m, 𝜆) = ∫ ∞

𝜆
e−yym−1dy

Incomplete gamma

Approaches normality when 𝜆 → ∞.

EXAMPLE 6.36 Defectives in shipment

Consider a collection of items such as light bulbs and transistors, of which some
are known to be defective with probability p = 0.001. Let the number of defec-
tives in a shipment follow a Poisson law with parameter 𝜆 (Tables 6.11 and 6.12).
How is p and 𝜆 related? What is the probability of finding (i) no defectives and
(ii) at least two defective items in a shipment containing 20 items?

Solution 6.36 If n is the number of items in the shipment, p and 𝜆 are
related as np = 𝜆. To find the probability of at least two defectives, we use
the complement-and-conquer rule. The complement event is that of finding
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TABLE 6.12 Mean Deviation of Poisson Distribution Using Our Power Method
(equation 6.8) for 𝝀 Integer

𝜆 Direct 1 2 3 4 5 6 7 8 9

5 1.755 0.0135 0.0943 0.3436 0.8737 1.755
7 2.086 0.0018 0.0164 0.0757 0.2392 0.5852 1.186 2.086
8 2.233 0.0007 0.0067 0.0342 0.1190 0.3182 0.7007 1.328 2.233
10 2.502 0.0012 0.0066 0.0273 0.0858 0.220 0.480 0.921 1.586 2.502

First column gives 𝜆 values of Poisson distribution. Second column onward is the values accumulated
using equation (6.134) in page 6–78. Row for 𝜆 = 10 has been left shifted by one column.

either 0 or 1 defective. The corresponding probabilities are e−𝜆 and 𝜆e−𝜆. As
n = 20, n ∗ p = 20 ∗ 0.001 = 0.02. (i) The probability of finding no defec-
tives = e−0.02 = 0.98019867 and (ii) substitute for 𝜆 to get e−0.02 + 0.02 ∗ e−0.02

= 0.9801986 + 0.0196039 = 0.9998 as the complement probability. From this,
the required answer follows as 1−0.9998 = 0.0002

6.9.1.3 Additivity Property If X1 ∼ POIS(𝜆1) and X2 ∼ POIS(𝜆2) are indepen-
dent, then X1 + X2 ∼ POIS(𝜆1 + 𝜆2).

This is most easily proved using the MGF. Using MX1+X2
(t) = MX1

(t) ∗ MX2
(t),

we get MX1+X2
(t) = e(𝜆1+𝜆2)(et−1). This result can be extended to an arbitrary number

of random variables (see Table 6.11).

EXAMPLE 6.37 Distribution of X1|(X1 + X2 = n)

If X1 ∼ POIS(𝜆1) and X2 ∼ POIS(𝜆2) are independent, then the distribution of
X1|(X1 + X2 = n) is BINO(n, 𝜆1∕(𝜆1 + 𝜆2)).

Solution 6.37 Consider the conditional probability P[X1|(X1 + X2 = n)] =
P[X1 = x1] ∩ P[X2 = n − x1]∕P(X1 + X2 = n). Substitute the density to get
e−𝜆1𝜆

x1
1 ∕x1! ∗ e−𝜆2𝜆

n−x1
2 ∕(n − x1)!∕e−(𝜆1+𝜆2)(𝜆1 + 𝜆2)n∕n!. Canceling out com-

mon terms from the numerator and denominator and writing (𝜆1 + 𝜆2)n in the
denominator as (𝜆1 + 𝜆2)x1 ∗ (𝜆1 + 𝜆2)n−x1 this becomes

n!∕[x1!(n − x1)!](𝜆1∕(𝜆1 + 𝜆2))x1 (𝜆2∕(𝜆1 + 𝜆2))n−x1

which is the binomial PDF with probability of success p = 𝜆1∕(𝜆1 + 𝜆2).

EXAMPLE 6.38 Poisson probabilities

If X∼ POIS(𝜆), find (i) P[X is even], (ii) P[X is odd].

Solution 6.38 (i) P[X is even] = e−𝜆[𝜆0∕0! + 𝜆2∕2! + · · · ]. To evaluate this
sum, consider the expansion of cosh(x) = [1 + x2∕2! + x4∕4! + · · ·]. The
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above-mentioned sum in the square bracket is then cosh(𝜆) = 1
2
(e𝜆 + e−𝜆). From

this, we get the required probability as e−𝜆 ∗ 1
2
(e𝜆 + e−𝜆) = 1

2
(1 + e−2𝜆) (ii) P[X

is odd] = 1−P[X is even] = 1 − 1
2
(1 + e−2𝜆) = 1

2
(1 − e−2𝜆) (see Example 9.4 in

Chapter 8, p. 9–7).

EXAMPLE 6.39 Conditional distribution

If X ∼ POIS(𝜆), find the conditional distribution of the random variable (i) X|X
is even and (ii) X|X is Odd.

Solution 6.39 Let Y denote the random variable obtained by conditioning X to
even values and Z denote the random variable obtained by conditioning X to odd
values. As the Poisson variate takes values x = 0, 1, 2, … the variate Y takes
the values Y = 0, 2, 4, 6, … ∞, and Z takes the values Y = 1, 3, 5, … ∞. Using
above-mentioned example,

∞∑

i=0,2,4…
f (y) −

∞∑

i=1,3,5,…
g(z) =

∑

i even

e−𝜆𝜆i∕i! −
∑

i odd

e−𝜆𝜆i∕i!

=
∞∑

k=0

(−1)ke−𝜆𝜆k∕k! = e−2𝜆
. (6.126)

From conditional probability, P[X = k|X is even] = P[X = k ∩ X is even]/P[X is
even] = f(y) = 2e−𝜆𝜆y∕[y!(1 + e−2𝜆)]. This gives

f (y; 𝜆) =

{
2e−𝜆𝜆y∕[y!(1 + e−2𝜆)]
0 otherwise.

Proceed exactly as above to get the PDF of z as P[X = k|X is odd] = P[X = k∩X
is odd]/P[X is odd] as

g(z; 𝜆) =

{
2e−𝜆𝜆z∕[z!(1 − e−2𝜆)]
0 otherwise.

6.9.1.4 Relationship with Other Distributions The tail probabilities of a Poisson
distribution is related to the incomplete gamma function as follows:

Theorem 6.8 Prove that the survival function of POIS(𝜆) is related to incomplete
gamma function as

F(r) = P[x > r] =
∞∑

x=r+1

e−𝜆𝜆x∕x! = 1
Γ(r + 1) ∫

𝜆

0
e−xxrdx. (6.127)
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Proof: Consider ∫ ∞
𝜆

e−xxrdx. Put y = x − 𝜆, so that the range becomes 0 to ∞, and
we get

∫

∞

𝜆

e−xxrdx =
∫

∞

0
e−(y+𝜆)(y + 𝜆)rdy = e−𝜆

∫

∞

0
e−y

r∑

j=0

(
r
j

)

yj
𝜆

r−jdy. (6.128)

Take constants independent of y outside the integral to get e−𝜆
∑r

j=0

(
r
j

)

𝜆
r−j ∫ ∞

0 e−y

yjdy. Put ∫ ∞
0 e−yyjdy = Γ(j + 1) = j! in equation (6.128) and expand

(
r
j

)

= r!∕[j!(r −
j)!]. The j! cancels out giving

∫

∞

𝜆

e−xxrdx = e−𝜆
r∑

j=0

𝜆
r−j r!∕(r − j)!. (6.129)

Divide both sides by r! and write r! as Γ(r + 1).

1
Γ(r + 1) ∫

∞

𝜆

e−xxrdx =
r∑

j=0

e−𝜆𝜆r−j∕(r − j)!. (6.130)

Put r − j = k on the RHS. When j = 0, k = r and when j = r, k = 0. Thus, the
sum is equivalent to

∑r
k=0 e−𝜆𝜆k∕k!. Subtract both sides from 1. The LHS is then

1
Γ(r+1) ∫

𝜆

0 e−xxrdx. The RHS is
∑∞

k=r+1 e−𝜆𝜆k∕k!. This shows that the left-tail area of
the gamma function is the survival probability of Poisson distribution. This proves
our result.

Theorem 6.9 Prove that the survival function of a central chi-square distribution with
even degrees of freedom is a Poisson sum (Fisher [146]) as

1 − Fn(c) = ∫

∞

c
e−x∕2x

n
2
−1∕2n∕2Γ(n∕2)dx =

n∕2−1∑

x=0

e−𝜆𝜆x

x !
,where𝜆 = c

2
.

Proof: The proof follows easily because the 𝜒2 and gamma distributions are related
as 𝜒2

n ≡ GAMMA(n∕2, 1∕2).

Fn(x) = 1 − e−x∕2
(n−2)∕2∑

i=0

(x∕2)i∕i !, (6.131)

Putting n = 2m, we find that the CDF of central 𝜒2 with even df can be expressed as
a sum of Poisson probabilities.

F2m(x) =
∞∑

j=m

Pj(x∕2), and F2m(x) =
m−1∑

j=0

Pj(x∕2), (m = 1, 2, 3, …), (6.132)

where Pj(u) = e−uuj∕j !. These are discussed in Chapter 7 (Figure 6.7).
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When p tends to zero 
faster than n tends to
infinity such that np 

remains constant

When (p > = 0.5 and nq > 5)
or (p < 0.5 and np > 5), and

n tends to infinity

BINO (n, p) Poisson (λ) N(λ, √λ)

When λ tends to
infinity

Figure 6.7 Limiting behavior of binomial distributions.

6.9.2 Algorithms for Poisson Distribution

Individual probabilities can be calculated using the forward recurrence

fx(k + 1; 𝜆) = [𝜆∕(k + 1)]fx(k; 𝜆), with fx(0; 𝜆) = e−𝜆. (6.133)

When 𝜆 is large, e−𝜆 is too small. This may result in loss of precision or even
underflow (in computer memory). As subsequent terms are calculated using the first
term, error may propagate throughout the subsequent computation steps. A solution is
to use the log-recursive algorithm suggested in Reference 4. Another possibility is an
algorithm that starts with the mode of the Poisson distribution, which then iteratively
calculates subsequent values leftward (reverse) and rightward (forward). This may be
combined with the log-recursive algorithm to provide a reliable and robust algorithm
for Poisson distributions, and other mixture distributions that use Poisson weighting
[4, 5]. The left-tail probabilities (CDF) Fc(𝜆) =

∑c
j=0 P(j) converge rapidly for small

𝜆 values. CDF can be evaluated efficiently using Fc(𝜆) = 𝛾(c + 1, 𝜆)∕Γ(c + 1), where
𝛾(c + 1, 𝜆) = ∫ ∞

𝜆
e−ttcdt is the incomplete gamma integral.

EXAMPLE 6.40

Find the MD of Poisson distribution using the Power method Section 6.1
(p. 189). See Figure 6.5.

Solution 6.40 We know that the mean of Poisson distribution is 𝜆. The lower
limit ll is x = 0, so that xF(x) = 0. Hence using Theorem 6.1, the MD is given
by

MD = 2
𝜇−1∑

x=ll

F(x) = 2
c∑

x=0

𝛾(x + 1, 𝜆)∕Γ(x + 1), (6.134)

where c = ⌊𝜆 − 1⌋. See Table 6.12.

6.9.2.1 Approximations The Poisson distribution provides a good approximation
to the Binomial distribution B(n, p) when p is small, provided 𝜆 = np > 10, and n
is large enough. The accuracy of this approximation increases as p tends to zero. As
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mentioned earlier, this limiting behavior is more dependent on the rate at which p → 0
faster than n → ∞ (see Figure 6.7).

As the variance of the distribution is 𝜆, normal approximations are not appli-
cable for small 𝜆 values. However when 𝜆→ ∞, the variate Y = (X − 𝜆)∕

√
𝜆 is

approximately normal. The continuity correction can be applied as before to get

P[(X; 𝜆)≤
≥

k] = Pr[Z≤
≥

k−𝜆±0.5
√
𝜆

]. The square root transformation is a variance stabiliz-

ing transformation for this distribution. Many approximations have appeared in the
literature based on this observation. For example, the Anscombe [147] approxima-
tion uses 2

√
X + 3∕8 ∼ NORM(0,1). An improvement to this is the

√
X +

√
X + 1

transformation to normality suggested by Freeman and Tukey [148] . As the Poisson
left-tail areas are related to the 𝜒2 right-tail areas, the individual Poisson probabilities
can be approximated using the 𝜒2 probabilities.

6.9.2.2 Applications The Poisson distribution has been applied to various prob-
lems involving high uncertainty (low probability of occurrence). Examples are the
number of false fire alarms in a building, number of flaws in a sheet roll of newly
manufactured fabric, number of phone calls received by a telephone operator in a
fixed time interval, number of natural calamities such as earthquakes and tsunamis
in a fixed time interval (say 1 month), number of epidemics in a locality, number of
deaths due to a rare disease, and so on.

EXAMPLE 6.41 Structural damage

A dam is built to withstand water pressure and mild tremors. Let X denote
the number of damages resulting from a major quake. If X is distributed as
POIS(0.008), find the following probabilities: (i) probability of no damage,
(ii) probability of at least two damages, and (iii) probability of at most four
damages.

Solution 6.41 The PDF is f (x, 𝜆) = e−0.008(0.008)x∕x!, for x = 0, 1, 2 … .
Answer to (i) is p0 = e−0.008(0.008)0∕0! = e−0.008 = 0.9920. Answer to (ii) is
1 − P(0) − P(1) = 1 − 0.992032 − 0.007936 = 1 − 0.99996817 = 3.18298E −
05. (iii) Probability of at most four damages =

∑4
x=0 e−0.008(0.008)x∕x!.

6.9.3 Truncated Poisson Distribution

A useful distribution in epidemiological studies is a Poisson distribution truncated at
0. It is also used in search engine optimization. Assume that a user query returns a
large number of matches that are displayed by a search engine in discrete screenfuls
of say 10 matches each. Then, the number of pages viewed by a surfer can be modeled
as a zero-truncated Poisson law or a zipf law [2]. The PDF is given by

px(𝜆) = e−𝜆𝜆x∕[(1 − e−𝜆)x!] = 𝜆
x∕[(e𝜆 − 1)x!], x = 1, 2, …, (6.135)



238 DISCRETE DISTRIBUTIONS

where the second expression is obtained from the first by multiplying the numerator
and denominator by e𝜆. The mean and variance are 𝜆∕(1 − e−𝜆). See Shanmugam
[149]–[151] for incidence rate restricted Poisson distribution, Reference 152
for spinned Poisson distribution, and Reference 46 for a discussion on Poisson
dispersion.

6.10 HYPERGEOMETRIC DISTRIBUTION

Consider a “lot” containing N items of which k are of one kind, and the rest (N − k)
are of another kind. We assume that the two kinds are indistinguishable. Suppose we
sample n items without replacement from the lot. The number of items x of first kind
is then given by

p(x) =
(k

x

)(N − k
n − x

)

∕
(N

n

)

, where x = 0, 1, 2, ...,min(n, k). (6.136)

This is called the HGD, which has three parameters k,N and n. This can be derived
using the following argument. As there are k items of one kind, we can choose x

items from it in
(

k
x

)

ways. To make the count to n, we need to select further n − x

items. However, these can be selected from (N − k) items of second kind in
(

N−k
n−x

)

ways. Using the product rule for selection (Chapter 5), the total number of ways is the
expression in the numerator of equation (6.136). To make it a PDF, we need to divide
it by the total number of ways to select n items, namely

(
N
n

)

. We have not made any
assumptions on the items being sampled. In practical applications of this distribution,
it could be defective and nondefective items, marked and unmarked items, successes
and failures in independent Bernoulli trials, and so on.

As the expression involves binomial coefficients, there is a natural symmetry
involved in the above-mentioned PDF. Instead of sampling x items from the first
kind, we could take x items from the second kind and (n − x) items from the first
kind. This gives us the alternate PDF:

p(x) =
(N − k

x

)( k
n − x

)

∕
(N

n

)

. (6.137)

To impose the range for both these forms, we modify the range of x values as
0, 1, 2, … ,min(m,N − m, n). As all combination terms must exist, x varies between
max(0, n + m − N) and min(m,N).

6.10.1 Properties of Hypergeometric Distribution

This distribution has three parameters, all of which are integers. The recurrence rela-
tion for the PDF is

h(x + 1; k, n,N) = h(x; k, n,N) ∗ (n − x)(k − x)
(x + 1)(n − k + x + 1)

. (6.138)
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As the parameters are all related, the following symmetries follow easily (i)
h(x; k, n,N) = h(x; n, k,N), (ii) h(x; k, n,N) = h(k − x; k,N − n,N), and (iii)
h(x; k, n,N) = h(n − x;N − k, n,N). Replace x by x − 1 in equation (6.138) to
get

h(x; k, n,N) = h(x − 1; n, k,N) ∗ (n − x + 1)(k − x + 1)
x(N − k − n + x)

. (6.139)

6.10.2 Moments of Hypergeometric Distribution

Factorial moments are easier to find due to the x! in the denominator (of both the
forms (6.136) and (6.137)). The rth falling factorial moment

𝜇(r) = E[x(r)] = E[x(x − 1)..(x − r + 1)]

=
∑

x

x(x − 1)..(x − r + 1)
(k

x

)(N − k
n − x

)

∕
(N

n

)

= [1∕
(N

n

)

]
n∑

x=r

x(x − 1)..(x − r + 1)(k)x∕x!
(N − k

n − x

)

. (6.140)

Cancel out x(x − 1) … (x − r + 1) from x! in the denominator and write
(k)x = k(k − 1) · · · (k − r + 1)(k)x−r and take it outside the summation. This

gives 𝜇(r) = (k)r∕
(

N
n

)∑n
x=r

(
k−r
x−r

)(
N−k
n−x

)

. Change the indexvar using u = x − r to
get

𝜇(r) = (k)r∕
(N

n

) n−r∑

y=0

(
k − r

y

)(
N − k

n − y − r

)

. (6.141)

Using Vandermonde’s identity (p. 6–6), this becomes

𝜇(r) = (k)r
(N − r

n − r

)

∕
(N

n

)

. (6.142)

The mean is easily obtained from the above by putting r = 1 as nk∕N. The variance
is (nk∕N)(1 − k∕N)(N − n)∕(N − 1). Replace nk∕N on the RHS by 𝜇 and write the
multiplier as (1 − m∕N) ∗ [(N − n)∕(N − 1)]. This shows that 𝜎2

< 𝜇 as both (1 −
m∕N) and (N − n)∕(N − 1) are fractions. The mode of the distribution is ⌊(k + 1)(n +
1)∕(N + 2)⌋, which is greater than the mean. The MGF does not have simple form
but is expressed in terms of hypergeometric functions as

Mx(t) =
(N − k

n

)

∕
(N

n

)

2F1(−n,−k;N − k − n + 1; et). (6.143)

Covariance is given by Cov(xi, xj) = npipj
N−n
N−1

. The coefficient of skewness is as fol-
lows:

𝛽1 =
(N − 2k)(N − 2n)

√
N − 1

(N − 2)
√

nk(N − k)(N − n)
. (6.144)

See Table 6.13 for more properties.
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TABLE 6.13 Properties of Hypergeometric Distribution

Property Expression comments

Range of X x = max(0, n − N + k), ..,min(k, n) Discrete, finite

Mean 𝜇 = nk∕N Real

Variance 𝜎
2 = (nk∕N)(1 − k∕N)(N − n)∕(N − 1)

= 𝜇(1 − k∕N)(N − n)∕
(N − 1), 𝜎2

< 𝜇

Mode ⌊(k + 1)(n + 1)∕(N + 2)⌋

Skewness 𝛾1 = (N − 2k)(N − 2n)(N − 1)1∕2

[nk(N − k)(N − n)]1∕2(N − 2)
CV {(N − k)(N − n)∕[nk(N − 1)]}1∕2

Cov(xi, xj) npipj
N − n
N − 1

MD 2
𝜇∑

x=0
(nk − Nx)

(k
x

)(N − k
n − x

)

∕
[

N
(N

n

)]

2𝜇2 ∗ fm[1+1/N]

Factorial
moments

𝜇(r) = E[x(r)] = (k)r
(N − r

n − r

)

∕
(N

n

)

,

r = 1, 2, … ,min(k, n) (k)r(n)r∕(N)r
MGF

(N − k
n

)

∕
(N

n

)

2F1(−n,−k;N − k − n +
1; et)

PGF
(N − k

n

)

∕
(N

n

)

2F1(−n,−k;N − k − n + 1; t)
Recurrence f (x)∕f (x − 1) =

(n − x + 1)(k − x + 1)∕[x(N − n − k + x)]

Symmetric when N∕2 = k or n. Write (N − n)∕(N − 1) as 1 − (n − 1)∕(N − 1) to get another expression
for variance.

Theorem 6.10 If X and Y are independent BINO(m, p) and BINO(n, p) random vari-
ables, then the distribution of X|X + Y = n is hypergeometric and is independent
of p.

Proof: Consider the random variable Z = X + Y . As the probability p is the same,
this is distributed as BINO(n + m, p). The conditional distribution of X given Z = k
is P[X = x|Z = k] =

P[X = x ∩ Z = k]∕P[Z = k] = P[X = x] ∗ P[Y = k − x]∕P[X + Y = k]. (6.145)

As X and Y are independent, X + Y ∼ BINO(m + n, p). Hence, we get

(m
x

)

pxqm−x
( n

k − x

)

pk−xqn−k+x∕
(m + n

k

)

pkqm+n−k
.

This reduces to
(

m
x

)(
n

k−x

)

∕
(

m+n
k

)

. This obviously is independent of p.
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6.10.3 Approximations for Hypergeometric Distribution

Hypergeometric probabilities can be approximated by the binomial distribution.
When N and k are large, p = k∕N is not near 0 or 1, and n is small with respect
to both k and N − k, the HGD is approximately a BINO(n, k∕N). If k∕N is small
and n is large, the probability can be approximated using a Poisson distribution.
Closed-form expressions for tail probabilities do not exist, except for particular
values of the parameters. However in general

Fx(x;m, n,N) = Fx(y;N − m,N − n,N),where y = N − m − n + x. (6.146)

6.11 NEGATIVE HYPERGEOMETRIC DISTRIBUTION

This distribution is also called Markov–Polya distribution. The PDF is given by

f (x; a, b, n) =
(−a

x

)( −b
n − x

)

∕
(−(a + b)

n

)

(6.147)

for x = 0, 1, 2, … , n where a, b, n are integers. The mean and variance are given
by 𝜇 = E(X) = an∕(a + b), variance = 𝜎

2 = abn(a + b + n)∕[(a + b)2(a + b + 1)].
Replace an/(a + b) on the RHS by 𝜇, we get 𝜎2 = 𝜇 ∗ b(a + b + n)∕[(a + b)(a + b +
1)]. Write the RHS as 𝜇 ∗[b/(a+b)*(a+b+n)/(a+b+1)]. Beta binomial distribution
discussed in the following is a special case when k and (n − k) are integers.

6.12 BETA BINOMIAL DISTRIBUTION

This distribution can be obtained as the conditional distribution of binomial
distribution in which the probability of success is distributed according to the
beta law. Consider the binomial distributed random variable with PDF bx(n, p) =(

n
x

)

px(1 − p)(n−x), where p is distributed as gp(a, b) = (1∕B(a, b))pa−1(1 − p)b−1

for 0 ≤ p ≤ 1. As p is a continuous random variable in the range (0,1), we obtain
the unconditional distribution of X by integrating out p from the joint probability

distribution and using the expansion B(a, b) = Γ(a)Γ(b)
Γ(a+b) as

fx(n, a, b) = ∫

1

0
f (x|p)g(p)dp =

(n
x

)

∕B(a, b)
∫

1

p=0
px+a−1(1 − p)b+n−x−1dp

=
(n

x

) Γ(a + b)
Γ(a)Γ(b)

Γ(a + x)Γ(b + n − x)
Γ(a + b + n)

. (6.148)

By writing
(

n
x

)

= n!∕[x!(n − x)!] = Γ(n + 1)∕[Γ(x + 1)Γ(n − x + 1)], this can also be
written as fx(n, a, b) =

Γ(n + 1)Γ(a+b)∕[Γ(x+1)Γ(n − x+1)Γ(a)Γ(b)][Γ(a + x)Γ(b + n − x)∕Γ(a + b + n)].
(6.149)



242 DISCRETE DISTRIBUTIONS

This form is widely used in Bayesian analysis. The mean 𝜇 is most easily obtained
from the conditional expectation as E(X) = E[E(X|p)] = nE(p) = na∕(a + b) = nP,
where P = a

(a+b) . The second raw moment 𝜇′2 = 𝜇 ∗ [n(1 + a) + b]∕(a + b + 1), from

which the variance follows as 𝜎2 = nPQ + n(n−1)PQ
a+b+1

where Q = 1 − P. This can also
be written as nPQ(a + b + n)∕(a + b + 1). In Bayesian analysis, this is written as
n𝜋(1 − 𝜋)[1 + (n − 1)𝜌], where 𝜋 = P and 𝜌 = 1∕(a + b + 1) is the pairwise correla-
tion between the trials called overdispersion parameter. This form is obtained from the
previous one by writing a + b + n as a + b + 1 + (n − 1) and dividing by the denom-
inator a + b + 1 (see Table 6.14).

See Reference 153 for properties and generalizations.

6.13 LOGARITHMIC SERIES DISTRIBUTION

This is a special case of the left-truncated negative binomial distribution where the
zero class has been omitted and the parameter k tends to one (Table 6.14).

Although log() is a continuous function, this is a discrete distribution with infinite
support. It has PDF

f (x, p) =

{
qx∕[−x log p] for 0 < p < 1, x = 1, 2, …
0 elsewhere.

TABLE 6.14 Properties of Beta Binomial Distribution

Property Expression Comments

Range of X x = 0, 1, … , n Discrete, finite
Mean 𝜇 = na∕(a + b) = n ∗ P Need not be integer

Variance(𝜎2) nPQ + n(n − 1)PQ
a + b + 1

=
nPQ(a + b + n)∕(a + b + 1)

= 𝜇 < 𝜎2

Skewness 𝛾1 (C + n)(b − a)∕(D + 1)
√

D∕[nabC] C = a + b + n,
D = a + b + 1

CV
√

b(a + b + n)∕[na(a + b + 1)]
√

bC∕[naD]
MD 2𝜇2 ∗ fm[1 + 1∕(n + 1)]
E[X(X − 1) · · · k!∕(1 − q)k+1 = k!∕pk+1

(X − k + 1)]
CDF [1 − B(n − k + b − 1, k + a + 1)3F2(a, b, k)]/K K = [B(a, b)B(n −

k, k + 2)(n + 1)]
PGF

(n
k

)

B(k + a, n − k + b)∕B(a, b)
FMGF 2F1[a,−n, a + b,−t]

Variance is less than the mean for (1∕p − 𝜇) < 1 or equivalently p > 1∕(1 + 𝜇).
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An alternate parametrization is as

f (x, 𝜃) =

{
𝛼 𝜃

x∕x for 𝛼 = −[log(1 − 𝜃)]−1
, 0 < 𝜃 < 1, x = 1, 2, …

0 elsewhere.

6.13.1 Properties of Logarithmic Distribution

The logarithmic distribution has a single parameter p. The mean is 𝜇 = q∕[−plog(p)].
As 0 < p < 1, log(p) is negative, thereby canceling out negative sign. Variance is
𝜎

2 = −q(q + log(p))∕[(p log(p))2]. In terms of 𝜇, this is 𝜎2 = 𝜇(1∕p − 𝜇) or equiv-
alently 𝜎2 + 𝜇2 = 𝜇∕p. Cross-multiply to get p = 𝜇∕(𝜎2 + 𝜇2). This shows that the
variance is less than the mean for (1∕p − 𝜇) < 1 or equivalently p > 1∕(1 + 𝜇). For
the alternate representation (6.13), the mean is 𝜇 = a𝜃∕(1 − 𝜃) and variance is 𝜇(1 −
a𝜃)∕(1 − 𝜃). To fit the model, compute x and s2 and find p̂ = x∕(x2 + s2). As the
variance is +ve, q < − log(p). The factorial moments are easier to find than central
moments. The kth factorial moment is given by

𝜇(k) = E[x(x − 1)..(x − k + 1)] = −(k − 1) !
log(p)

(q∕p)k. (6.150)

The ChF is given by 𝜙(t) = ln (1 − qeit)∕ ln (1 − q). As the values assumed by X are
integers, it is used in those modeling situations involving counts. For instance, the
number of items of a product purchased by a customer in a given period of time can
be modeled by this distribution. See Table 6.15 for more properties.

6.14 MULTINOMIAL DISTRIBUTION

This distribution can be considered as a generalization of the binomial distribution
with n(>2) categories. The corresponding probabilities are denoted as pi for the ith
class such that

∑n
i=1 pi = 1. We denote it by MN(n, p1, p2, … , pn). The PDF of a

general multinomial distribution with k classes is

f (x; n, p1, p2, … , pk) =

{
n !

x1 !x2 !···xk !p
x1
1 px2

2 · · · pxk
k if xi = 0, 1, … , n

0 elsewhere,

where x1 + x2 + … + xk = n and p1 + p2 + … + pk = 1. Using the product notation
introduced in Chapter 1, this can be written as (n!∕

∏k
i=1 xi!) ∗

∏k
i=1 pxi

i . This can

also be written as
(

n
x1, x2, …, xk

)

, which is called the multinomial coefficient. As the

p′is are constrained as
∑k

i=1 pi = 1, there are k parameters. For k = 2, this reduces to
BINO(n, p).

As in the case of binomial distribution, we could show that this distribution tends
to the multivariate Poisson distribution:
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TABLE 6.15 Properties of Logarithmic Distribution

Property Expression Comments

Range of X x = 0,1,...,∞ Discrete, infinite

Mean 𝜇 = q/[−p log(p)] 𝛼𝜃∕(1 − 𝜃)
Variance 𝜎2 −q(q + log(p))∕(p log(p))2 = 𝜇(1∕p − 𝜇) = 𝜇((1 − 𝜃)−1 − 𝜇),

⇒ 𝜇 < 𝜎
2

Mode 1∕ log(𝜃)

Skewness 𝛾1 = [(1 + 𝜃) − 3D + 2D2]∕[
√

D(1 − D)3∕2 D = 𝛼𝜃

Kurtosis (1 + 4𝜃 + 𝜃2 − 4D(1 + 𝜃) + 6D2 − 3D3/R R = D(1 − D)2

CV
√
(1 − 𝛼𝜃)∕

√
𝛼𝜃(1 − 𝜃)2 (𝛼−1

𝜃
−1)1∕2

Mean deviation 2𝛼
⌊𝜇⌋∑

k=1
(𝜇 − k)𝜃k∕k

Moment recurrence 𝜇
′
r+1 = 𝜃[𝜕∕𝜕𝜃 + 𝛼∕(1 − 𝜃)]𝜇′

r

Moment recurrence 𝜇r+1 = 𝜃𝜕𝜇r∕𝜕𝜃 + r𝜇2𝜇r−1

Factorial moment 𝛼𝜃
r(r − 1)!∕(1 − 𝜃)r (r−1)!(q∕p)r∕ − log(p)

PGF log(1 − 𝜃t)/log(1 − 𝜃)

MGF log(1 − 𝜃 exp(t))/log(1 − 𝜃)

Recurrence f(x + 1; p)/f(x; p) = qx/(x+ 1) (1− p)(1 − 1
x + 1

)

Variance is less than the mean for (1∕p − 𝜇) < 1 or equivalently p > 1∕(1 + 𝜇).

Theorem 6.11 If n is large and pi is small such that npi = 𝜆i remains a constant, the
multinomial distribution approaches e−(𝜆1+𝜆2+···+𝜆k)𝜆

n1
1 𝜆

n2
2 · · · 𝜆nk

k ∕[n1!n2! · · · nk!].

Proof: The easiest way to prove this result is using pgf. As in the case of binomial
distribution, it is easy to derive the pgf of multinomial as (p1t1 + p2t2 + · · · + pktk)n.
Now proceed as done in Section 6.5.8.

6.14.1 Properties of Multinomial Distribution

For each class, the means can be obtained using binomial distribution as E(Xi) = npi,
Var(Xi) = npiqi, and Cov(Xi,Xj) = −npipj. As the covariance is negative, so is the
correlation. This is because when one of them increases, the other must decrease due
to the sum constraint on the X

′
i s. The ChF is given by 𝜙(t) = [1 +

∑m
j=1 pj(eitj − 1)]n.

See Table 6.16 for more properties.

6.14.1.1 Marginal and Conditional Distributions The marginal distributions are
binomial that follows easily from the observation that the probabilities are obtained
as terms in the expansion of (p1 + p2 + · · · + pn)N . If marginal distribution of xj is
needed, put pj = p and the rest of the sum as 1−p (as

∑k
i=1 pi = 1, 1 − p =

∑k
i≠j=1 pi).

This results in the PGF of a binomial distribution.
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TABLE 6.16 Properties of Multinomial Distribution

Property Expression Comments

Range of X xi = 0, 1, … , n Discrete,
k∑

i=1

xi = N

Mean 𝜇 = Npi Need not be integer
Variance 𝜎

2 = Npiqi 𝜇 > 𝜎
2

Covariance −npipj i ≠ j
Mode (x − 1), x if (n + 1) ∗ pi is not integer x = (n + 1) ∗ pi else
Skewness 𝛾1 = (1 − 2pi)∕

√
npiqi = (q − p)∕

√
npq

Kurtosis 𝛽2 = 3 + (1 − 6pq)∕npq
E[X(X − 1) · · · n(r)pr

(X − k + 1)]

PGF

[
m∑

j=1

pjtj

]n

= pn(1 + t)n if each pi = p

MGF

[
m∑

j=1

pje
tj

]n

ChF 𝜙(t) =

[
m∑

j=1

pje
itj

]n

Never symmetric, always leptokurtic. Satisfies the additivity property
∑m

i=1
MN(ni, p1, p2, … , pm) = MN(

∑m
i=1 ni, p1, p2, …, pm) if they are independent.

Conditional distributions of multinomials are more important as these are used
in the expectation–maximization algorithms (EMAs) [22]. Let Xn be a multinomial
distribution with k classes defined earlier. Suppose we have missing data in an experi-
ment. For convenience, we assume that the first j components are observed, and j + 1
through k classes have missing data (unobserved). To derive the EMA for this type of
problems, one needs to find the conditional distribution of X|observed variates. The
conditional distribution of Xi given Xj = nj is binomial with parameters n − nj and
probability pi∕(1 − pj).

As Xj+1,Xj+2, … ,Xk are unobserved with respective probabilities pj+1, pj+2, … , pk,
we write it using P(A|B) = P(A∩B)/P(B) as

P[Xj+1 = mj+1, … ,Xk = mk|X1 = m1, … ,Xj = mj]

=
P[X1 = m1, … ,Xk = mk]
P[X1 = m1, … ,Xj = mj]

. (6.151)

Owing to the independence of the trials, this becomes

n !
x1 !x2 ! · · · xk !

k∏

i=1

pxi
i ∕

n !
x1 !x2 ! · · · xj !

j∏

i=1

pxi
i . (6.152)
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Canceling out common terms, this can be simplified to a multinomial distribution.
See Reference 154 for the mode of multinomial distribution,

EXAMPLE 6.42 Human blood groups

Consider the human blood groups example in Chapter 5. Suppose that the per-
centage of people with the blood groups {A, B, O, and AB} are 40, 12, 5, and 43,
respectively. Find the probability that (i) in a group of 60 students, 30 or more
are of blood group “A” and (ii) at least 4 persons have blood group O.

Solution 6.42 Using the frequency approach, we expect the probability of any
person with blood group “A” as 0.40. Denote this as p1 = 0.40. Similarly p2 =
0.12, p3 = 0.05, and p4 = 0.43. This gives the PDF as

f (x) = 60!∕[x1!x2!x3!x4!](0.40)x1(0.12)x2 (0.05)x3(0.43)x4 (6.153)

such that x1 + x2 + x3 + x4 = 60. Thus, the answer to (i) is
∑60

x=30 BINO(60, 0.40),
as the marginal distribution is binomial. (ii) Probability of “O” blood
group is 5/100 = 1/20. Thus, the answer is 1−

∑3
i=0 BINO(60, 1∕20) =

1 −
∑3

i=0

(
60
i

)

(1∕20)i(19∕20)60−i.

6.15 SUMMARY

The collected data are either count or continuous number type. Several important
discrete distributions encountered in probabilistic modeling are discussed and sum-
marized in this chapter. Some of these are used in subsequent chapters. Sometimes,
there are competing models (such as Poisson with small 𝜆, geometric or logarithmic
distributions that have striking similarities for some parameter values).

A manufactured item might meet engineering specifications (to be a quality item)
or is a defective item otherwise. In a quality control inspection of sample items, the
outcomes with respect to a specific item follow a Bernoulli distribution. The number
of quality items in a random sample of n inspected items follows a binomial distribu-
tion. If the inspection of items is done until a defective item is encountered, then the
number of items inspected until the termination of the inspection follows a geometric
probability distribution. If a modification in the inspection process is made such that
the inspection of items is continued until an accumulation of a specified number r
of defective items, then the number of inspected items follows a negative binomial
distribution.

Students and professionals are often interested in the tail probabilities of these
distributions and approximations of it for power calculations. These tail probabilities
can be obtained in closed form for some of the distributions. This in turn provides an
alternative method to compute the mean deviation using the Power method introduced
in Section 6.3 (p. 6–6). Several researchers have extended Abraham De Moivre’s 1730
[130] result on the MD of a binomial distribution. The notable ones being by Bertrand
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[131], Frisch [155], Kamat [156], Winkler [157], Diaconis and Zabell [132], Jogesh
Babu and Rao [158], Pham-Gia et al. [159], Pham-Gia and Hung [160] (who also
derives the distribution of sample mean absolute deviation), Egorychev et al. [161],
and so on. In Section 6.3 (p. 6–6), we have provided a greatly simplified expression
involving either the CDF (left-tail probabilities) or the SF (right-tail probabilities)
when the mean 𝜇 is an integer or half integer.

EXERCISES

6.1 Mark as True or False

a) For the binomial distribution mean is > variance

b) Variance of a Bernoulli distribution lies between 0 and 1/4

c) Poisson distribution is bimodal if 𝜆 is noninteger

d) Poisson distribution satisfies the memory-less property

e) Geometric distribution has infinite range

f) Mean of a negative-binomial distribution is always greater than the variance

g) The variance of BINO(n, p) and BINO(n, q) are the same

h) Truncated discrete uniform distributions are of the same type.

6.2 Which of the following distributions have infinite range?
(a) binomial (b) negative binomial (c) discrete uniform (d) hypergeometric

6.3 If the mean and variance of a bino-
mial distribution are equal, what is
the value of p?

6.4 If the mean and variance of a
negative binomial distribution are
equal, what is the value of p?

6.5 If X ∼ GEO(0.5), find P[X ≥ 3],
and P[X = 5].

6.6 For which distribution is
f (x)∕f (x + k) = 1 for all k in the
range?.

6.7 Prove that the binomial distribu-
tion attains its maximum at k =
⌊(n + 1)p⌋. If k is an integer, then
there are two maxima at k = (n +
1)p and k = (n + 1)p − 1 = np +
p − 1 = np − q.

6.8 If X and Y are independently and
identically distributed geometric

random variables, find the prob-
ability of each of the following:
(a) P[X = Y] (b) P[X ≥ 2Y] (c)
P[X > Y] (d) P[X|X + Y = (n +
1)] = 1∕n.

6.9 Using the binomial expan-
sion, derive the follow-
ing i)

∑n
k=0

(
n
k

)

= 2n ii)
∑n

k=0 (−1)k
(

n
k

)

= 0

6.10 If X is BINO(n, p) prove that
E(X∕n) = p, and Var(X∕n) =
pq∕n.

6.11 Find the mean and variance of the
distribution discussed in section
6.5.4, p. 204.

6.12 Prove that the mode of a negative
binomial distribution NB(k, p) is
⌊(q∕p)(k − 1)⌋.
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6.13 If X1,X2, … ,Xn are independent
BER(p) random variables, find
the distribution of U =

∏n
i=1(1 +

kXi), where k is a constant.

6.14 Prove that variance of DUNI(N) is
𝜎

2 = 𝜇(𝜇 − 1)∕3 where 𝜇 = (N +
1)∕2. Hence or otherwise show
that the variance is greater than the
mean for N > 7.

6.15 Show that the coefficient of vari-
ation (CV) of a binomial distribu-
tion is CV =

√
q∕(np).

6.16 Show that the third moment 𝜇3

of a binomial distribution is npq
(q − p).

6.17 Prove that the variance of a bino-
mial distribution is always less
than the mean.

6.18 Find the covariance Cov(Xi,Xj)
for multinomial distribution. Why
is it negative?.

6.19 Can the Poisson approximation to
BINO(n, p) be used when n is
small? (say n < 15)?. If so, under
what conditions?.

6.20 Prove that the NB(k, p) with PDF(
x+k−1

x

)

pkqx can be obtained

using the expansion (q − p)−k,
where q = 1 − p.

6.21 The mean and variance can never
be equal for which of the fol-
lowing distributions? (A) Bino-
mial (B) Poisson (C) geometric
(D) negative binomial.

6.22 What is the probability that a fair
coin need to be flipped ten times to
get the 5th head on 10th flip? 9th
head on 10th flip?.

6.23 Find tail probabilities of binomial
distributions using incomplete
beta function. (i) Pr[B(10, 0.4) ≤
6], (ii) Pr[B(22, 0.7) ≥ 18], (iii)
Pr[B(40, 0.2) ≥ 35].

6.24 Prove that a change of origin
transformation simply displaces
the discrete uniform distribu-
tion to the left or right with
PDF f (Y = a + x) = 1∕N, y =
a + 1, a + 2, … , a + N.

6.25 Which of the following discrete
distributions is always leptokur-
tic?
(A) Binomial (B) Poisson (C)
Geometric (D) Discrete uniform.

6.26 For which discrete distribution is
the variance always greater than
the mean? (a) Binomial (b) Pois-
son (c) Geometric (d) Discrete
uniform.

6.27 Truncation never changes the
skewness of which distribution?
(A) Binomial (B) Poisson (C)
Geometric (D) Discrete uniform.

6.28 Which of the following discrete
distributions is never symmetric?
(a) Binomial (b) Poisson (c) Geo-
metric (d) Hypergeometric.

6.29 Z = min(X1,X2, … ,Xn) is identi-
cally distributed for which of the
following discrete distributions?
(a) Binomial (b) Poisson (c) Geo-
metric (d) Uniform.

6.30 For which distribution does the
individual probabilities (divided
by the first probability p) form a
geometric progression?.

6.31 If X∼ POIS(𝜆), prove that log(X)
is approximately normal with
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mean log(𝜆) as 𝜆 → ∞. What is
the variance?.

6.32 Prove that the probability generat-
ing function (PGF) of DUNI(N) is
Px(t) = (1 − tn)∕[n(1 − t)].

6.33 Prove that BINO(n, 𝜆∕n) →
POIS(𝜆) as n → ∞. What about
limiting behavior of BINO(n, 1 −
𝜆∕n)?

6.34 Describe how you can approxi-
mate binomial probabilities using
a Poisson distribution when p is
not so small, but is near 1 (say
0.98).

6.35 Find the mode of negative bino-
mial NBINO(k, p). Show that
𝜎

2 = 𝜇(1 + 𝜇∕k).

6.36 If X is a discrete distribution such
that P(X = a) = p and P(X = b) =
1 − p, find distribution of (X −
a)∕(b − a).

6.37 If X ∼ Geometric(p) find the dis-
tribution of Y = exp(x).

6.38 If X is discrete with support 1,2,...
prove E(X) =

∑∞
k=1 Pr[X ≥ k].

6.39 If X ∼ Poisson(𝜆), find the proba-
bility that (i) X takes even values,
(ii) X takes odd values.

6.40 If X ∼ Geometric(p) find the prob-
ability that (i) X takes even values,
(ii) X takes odd values.

6.41 Let X ∼ Binomial(n, p) and Yk ∼
Negative Binomial(k, p). Prove
that Pr[X ≥ k] = Pr[Yk ≤ n].

6.42 Find x such that the binomial
left-tail probabilities (say 𝛼) are (i)
B(20, 0.8) with 𝛼 = 0.41145 (ii)
B(10, 0.7) with 𝛼 = 0.38278?.

6.43 If X ∼ Binomial(n, p), find the
covariance of (X∕n, (n − X)∕n).

6.44 Obtain the mean and variance of
zero-truncated geometric distribu-
tion.

6.45 What is the skewness of a discrete
uniform distribution? Show that it
is always platykurtic.

6.46 If X ∼ Geometric(p) with PDF

f (x; 𝜆) = 1
1+𝜆

(
𝜆

1+𝜆

)x
for x = 0, 1,

2, … find the mean and variance.

6.47 Prove that truncating a DUNI(N) distribution results in another distribution
of the same type as follows. If the truncation is at a single point on either
extremes, the new distribution is DUNI(N − 1). If the truncation is at both
tails (one point each), the resulting distribution is DUNI(N − 2). If k points
are truncated at both tails, the new distribution is DUNI(N − 2k).

6.48 If X ∼ BINO(n, p) where p → 1
from below, find the limiting dis-
tribution of X when n → ∞ and nq
remains a constant.

6.49 Obtain the skewness coefficient of
geometric distribution and argue
that it is never symmetric.

6.50 If X ∼ GEO(p) where p = e−𝜆

with PDF f (x; 𝜆) = e−𝜆(1 − e−𝜆)x

for x = 0, 1, 2, … find the mean
and variance.

6.51 Find the mean and variance of
truncated NBINO(k, p) distribu-
tion f (x; k, p) = 1

1−q−k

(
k+x−1

k−1

)
1

(1+p)k(
p
q

)x
, x = 1, 2, 3 … .

6.52 Show that the truncated negative
binomial distribution satisfies the
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recurrence (1 + p)(k + 1)fk+1(x) =
p(n + k)fk(x), k = 1, 2, …

6.53 Prove that the hypergeomet-
ric distribution

(
k
x

)(
N−k
n−x

)

∕
(

N
n

)

tends to the binomial distribu-
tion BINO(n, p) where p = k∕N
as N → ∞.

6.54 Let X denote the number of suc-
cesses (or Heads) and Y denote the
number of failures (or Tails) in n

independent Bernoulli trials with
the same probability of success p.
Find the distribution of U = (|X −
Y| + 1)∕2 for n odd.

6.55 An urn contains 10 red and 6 blue
balls. A sample of five balls is
selected at random. Let Y denote
the number of red balls in the sam-
ple. Find the density function of
Y if sampling is with replacement
and without replacement.

6.56 A company does tele marketing to sell its products. Three tele-operators X, Y,
Z contact customers over the telephone and explains the company’s products
to them to get possible orders. The average success rate in selling at least one
item out of 100 tele-contacts is 12 for X, 7 for Y, and 3 for Z with respective
standard deviations 5, 2, and 1. Find the probability for each of the following:
(a) X is able to get 20 or more sales orders out of 300 customers and (b) Y and
Z together gets 30–60 orders.

6.57 Describe how to generate random

numbers from negative binomial

distribution using a random num-

ber generator for geometric distri-

bution.

6.58 If Xi for i = 1, 2, … , n are IID

geometric random variables, find

the distribution of Zi = min(X1,

X2, … ,Xn).

6.59 Which of the discrete distribu-

tions satisfy: P(X ≥ s + t)|P(X ≥

s) = P(X ≥ t).

6.60 For which discrete distributions is
the variance always less than the
mean?

6.61 If X1,X2, … ,Xm are independent
BER(pi), where each pi is either
equal to p or equal to q, find the
distribution of

∑m
i=1 Xi.

6.62 If X and Y are independent
BINO(n, p) find the distribution of
X|X + Y = n. Find its mean and
variance.

6.63 Prove that the variance of discrete
uniform distribution is greater
than the mean for N > 7.

6.64 Find mean and variance of

f (x; n, 𝜇) =
(n

x

)

(𝜇∕n)x((n − 𝜇)∕n)(n−x)
.

6.65 Find the PDF and CDF of the
discrete uniform distribution when
x takes the values 0, 1, …,N.
Obtain the PGF, and the variance.

6.66 Find the mean deviation from the
mean of a geometric distribution
with PDF f (x; p) = qx−1p, where
x = 1, … .
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6.67 If X is distributed as BINO(n, p)
find E(|X∕n − p|) using power
method.

6.68 What is the variance of (i) standard
uniform distribution? (ii) trun-
cated uniform distribution?

6.69 Prove that the maximum variance
of a Bernoulli random variable is
1/4 and that of a binomial distri-
bution is n∕4.

6.70 For which of the following val-
ues of p does the geometric dis-
tribution qxp tails off slowly? (a)
p = 0.1 (b) p = 0.5 (c) p = 0.8 (d)
p = 0.9

6.71 Obtain an expression for the mean
deviation of a negative binomial
distribution using incomplete beta
function.

6.72 Prove that the mean devia-
tion from the mean of the
Poisson distribution is 2 ∗
exp(−𝜆)𝜆⌊𝜆⌋+1∕⌊𝜆⌋!.

6.73 What is the probability distri-
bution of n − x failures in a
BINO(n, p)? What is its variance?

6.74 If Xi, i = 1, 2, … , r are IID
GEO(p) random variables, prove
that

∑r
i=1 Xi ∼ NBIN(r, p).

6.75 If X and Y are IID GEO(p) find the
distribution of (i) X|(X + Y = 2n),
(ii) X|(X − Y = n).

6.76 What is the variance of limiting
binomial variate with fixed n when
p → 0 from above or q → 1 from
below?

6.77 If X and Y are IID GEO(p), find the
distribution of U = |X − Y|, and
its mean.

6.78 Prove that in a multinomial dis-
tribution Cov(xi, xj) = −npipj, and

Corr(xi, xj) = −
(

pi

1−pi

pj

1−pj

)1∕2

.

6.79 Describe independent Bernoulli
trials. If U = |X − Y|∕2 where X
and Y are the number of success
and failures, what is distribution of
U if p = 1∕2?

6.80 If a negative binomial distribution
is defined as the number of trials
needed to produce k successes in n
trials, obtain a moment recurrence
and find the mean.

6.81 If X ∼ geometric(p) find the prob-
ability that X > ⌈| log(p)|⌉

6.82 If X and Y are IID GEO(p), show
P[X − Y = 0] = p2∕(1 − q2) =
p∕(1 + q).

6.83 If X ∼ BINO(n, p) find the distri-
bution of Y = (X − np)2. Find its
mean and mode.

6.84 If X ∼ NBINO(k, p) find a recur-
rence relation for moments using
f (x + 1, k, p) = q ∗ f (x, k, p) ∗
(x + k)∕(x + 1).

6.85 Probability that high-rise struc-
tures in a city center will damage
x other adjacent buildings after an
earthquake is POIS(0.008). Find
the probability that it will dam-
age three or more buildings in the
vicinity.

6.86 If the mean and variance of a
logarithmic distribution are 𝜇 =
q∕[−plog(p)] and −q(q + log(p))∕
[(p log(p))2], prove that p =
𝜇∕(𝜎2 + 𝜇2). How can this be used
to fit the distribution to data?
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6.87 Wavelength W (in nanometer) and stopping potential V of a photo-electric sur-
face are given in Table 6.17. Fit a logarithmic distribution and obtain the mean.

TABLE 6.17 Properties of Photo-electric Surface

W 360 400 440 480 540 580 600
V 1.45 1.12 0.9 0.6 0.35 0.24 0.18

6.88 It is given that the mean of a Bino-
mial distribution is 6 and variance
is 4.8. What is the probability of
success p? What is n?

6.89 For which distribution does the
change of origin transformation
Y = X + 1 and left truncation at
X = 0 result in the same law?

6.90 Prove that BINO(n, p) → POIS(𝜆)
when n → ∞ and p2 → 0 and np
remains constant. Explain how to
use this approximation when p →
1.

6.91 Check if f (x) = K ∗ 2n∕(n2 − x2)
for x = 1, 2, … is a PDF for K =
1∕𝜋 cot(𝜋n)

6.92 Is f (x) = K∕(n + x)2 for x =
integer ∈ (−∞,∞), a PDF where
K = 𝜋

2∕sin2(𝜋n)?

6.93 Prove that the geometric dis-
tribution f (x; p) = qx−1p can be
obtained from f (x; p) = qxp by
truncation at x = 0. How are the
means and variances related?

6.94 The probability of success p of
a BINO(n, p) is given by a root
of the quadratic equation x2 − x +

cd
2(c2+d2) = 0. Find 𝜇. What are the
conditions on c and d?

6.95 Check if f (x) = K ∗ 2x
(

n−x
x

)

is a
PDF for x = 0, 1, … ⌊n∕2⌋.

6.96 Check if f (x) = K ∗ (−1)x
(

n−x
x

)

2

cos (c)n−2x is a PDF for x =
0, 1, … ⌊n∕2⌋.

6.97 Use the Power method introduced
in Section 6.3, page 6–6 to find the
mean deviation of truncated bino-
mial distribution (truncated at x =
0).

6.98 Use the Power method introduced
in Section 6.3, page 6–6 to find the
mean deviation of truncated Pois-
son distribution (truncated at x =
0).

6.99 The plumbing system of a
high-rise building uses pipes from
two sources. The probability of
becoming defective in 2 years
after installation is Poisson dis-
tributed with 𝜆 = 0.003 for both.
If 120 pipes from source-one and
185 pipes from source-two are
used, what is the probability that
at least one pipe will leak in 2
years? What is the probability that
at most 2 will leak?

6.100 A dyeing plant uses six steam
boilers. The probability of any
boiler exploding in 6 years time
is Poisson distributed with 𝜆 =
1∕10, 000. What is the probabil-
ity that none of the boilers will
explode in 6 years?. If two new
boilers with probability of explod-
ing 𝜆 = 1∕12, 000 are added, find
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the probability that at most two
boilers explode during 6 years
from the time of installation.

6.101 Assume that a dam is built to
hold 50,000 cubic feet of water.
The exceedence in any year has a
POIS(0.018). If the peak flow is
independent yearly, find the prob-
ability of (i) at least three excee-
dences in a year and (ii) exactly
two exceedences in a year.

6.102 A newly manufactured micro-chip
is known to have 0.0001 probabil-
ity of failing on any whole day (24
hours). Find the probability that (i)
it will last at least 60 days, (ii) it
will last between 50 and 100 days,
and (iii) it will last at most 90 days
(hint: use GEO(0.0001)).

6.103 A highway-patrolman is looking for speeding vehicles. It is known from past
data that the total number of vehicles Y going beyond the set speed limit on a
stretch of a highway during busy hours is N ∗ f (x; p), where N = total number
of vehicles passed during the time period and X has a logarithmic distribu-
tion with f (x; p) = qx∕[−x log p] with p = 0.5 and x = 1, 2, … represents the
difference in speed in miles per hour beyond the permitted limit (x = (actual
speed-speed-limit) in miles per hour to nearest int). If 200 vehicles go above
the speed limit in 1 hour, approximately how many vehicles are in the grace
bracket x ≤ 5? Approximately how many vehicles are ≥ 10 mph above the
speed limit?. If an over-speed vehicle is stopped at random, what is the prob-
ability that it exceeds 10% of the speed limit?

6.104 A civil engineer wishes to test if adding a heated tri-chloride of aluminum to
cement mixtures can improve the strength of high-rise structures to withstand
powerful earthquakes and aftershocks. From laboratory tests, it is found that
the probability of a crack developing in this type of cement is Poisson dis-
tributed with mean one in 6 thousand. If a building portfolio comprising 10
buildings in a city neighborhood is built using aluminum hardened cement,
what is the probability that at least one building will develop cracks after an
earthquake? What is the probability that at most two buildings develop cracks?

6.105 A variety of seed is experimented in a laboratory and is found to have a ger-
mination rate of 95% (95 out of 100 seeds will germinate). If 10,000 seeds are
sawed in identical conditions at a field, what is the probability that (i) at least
99% will germinate and (ii) between 90% and 98% will germinate.



7
CONTINUOUS DISTRIBUTIONS

After finishing the chapter, students will be able to

◾ Understand various continuous distributions

◾ Describe basic properties of common continuous distributions

◾ Explain memory-less property of exponential distribution

◾ Utilize the limiting behavior of some distributions

◾ Comprehend the incomplete beta and gamma functions

◾ Apply continuous distributions in practical problems

◾ Use the Power method to find the MD of continuous distributions

◾ Explore the Power method in other applications

7.1 INTRODUCTION

Continuous distributions are encountered in many industrial experiments and
research studies. For example, measurement of quantities (such as height, weight,
length, temperature, conductivity, and resistance) on the ratio scale is continuous or
quantitative data.

Definition 7.1 The variable that underlies quantitative data is called a continuous
random variable, as they can take a continuum of possible values in a finite or infinite
interval.
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This can be thought of as the limiting form of a point probability function, as the
possible values of the underlying discrete random variable become more and more
of fine granularity. Thus, the mark in an exam (say between 0 and 100) is assumed to
be a continuous random variable, even if fractional marks are not permitted. In other
words, even though marks are not measured at the finest possible granularity level of
fractions, it can be modeled by a continuous law. If all students scored between say
50 and 100 in an exam, the observed range for that exam is of course 50≤ x ≤100.
This range may vary from exam to exam, so that the lower limit could differ from
50, and the upper limit of 100 is never realized (nobody got a perfect 100). As shown
below, this range is in fact immaterial in several statistical procedures.

All continuous variables need not follow a statistical law. However, there are many
phenomena that can be approximated by one of the statistical distributions such as the
normal law, if not exact. For instance, errors in various measurements are assumed to
be normally distributed with zero mean. Similarly, measurement variations in phys-
ical properties such as diameter, size of manufactured products, and exceedences of
dams and reservoirs are assumed to follow a continuous statistical law. This is because
they can vary in both directions from an ideal measurement or value called its central
value. This chapter introduces the most common continuous univariate distributions.
An extensive treatment requires entire volumes by itself. Our aim is to summarize the
basic properties that are needed in subsequent chapters.

Before we proceed to discuss the popular distributions, we first derive a general
method to find the mean deviation (MD) of continuous distributions. This result will
be used extensively throughout the chapter to derive the MD of various distributions.

7.2 MEAN DEVIATION OF CONTINUOUS DISTRIBUTIONS

Finding the MD of continuous distributions is a laborious task, as it requires a lot of
meticulous arithmetic work. It is also called the mean absolute deviation or L1-norm
from the mean. The MD is closely related to the Lorenz curve used in economet-
rics, Gini index and Pietra ratio used in economics and finance, and in reliability
engineering. It is also used as an optimization model for hedging portfolio selection
problems [162, 163], fuzzy multisensor object recognition [164], and minimizing job
completion times on computer systems [165]. See also Jogesh Babu and Rao [158]
for expansions involving the MD and Pham-Gia and Hung [160] for the sampling
distribution of MD.

Johnson [125] surmised that the MD of some continuous distributions can be put in
the form 2𝜇2 fm where 𝜇2 = 𝜎

2 and fm is the probability density expression evaluated
at the integer part of the mean m = ⌊𝜇⌋. This holds good for exponential, normal,
and 𝜒2 distributions. Kamat [156] generalized Johnson’s result to several continuous
distributions, (see Table 7.1). The multiplier is distribution specific (see the following
discussion). The following theorem greatly simplifies the work and is very helpful
to find the MD of a variety of univariate continuous distributions. It can easily be
extended to the multivariate case and for other types of MDs such as mean deviation
from the median and medoid.
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TABLE 7.1 Summary Table of Expressions for MD

Name Expression Johnson’s Conjecture

Bernoulli 2pq 2𝜇2

Binomial 2npq

(
n − 1
𝜇 − 1

)

p𝜇−1qn−𝜇 2𝜇2 fm

Negative binomial 2c
( k + c − 1

c

)

qcpk−1 2𝜇2 fm

Poisson 2 ∗ exp(−𝜆)𝜆⌊𝜆⌋+1∕⌊𝜆⌋! 2𝜇2 fm

Geometric (2/q)⌊1∕p⌋(q⌊1∕p⌋) 2𝜇2 fm

Hypergeometric 2
𝜇∑

x=0
(nk − nx)

(k
x

)(N − k
n − x

)

∕
[

N
(N

n

)]

2𝜇2 ∗ fm[1+1/N]

Beta-binomial 2nPQ(a+b+n)/(a+b+1) 2𝜇2 ∗ fm[1+1/(n+1)]

Discrete uniform (N2 − 1)∕(4N) 3𝜇2 fm

Logarithmic 2𝛼
[𝜇]∑

k=1
(𝜇 − k)𝜃

k

k
2𝜇2 ∗ fm[1+1/(n+1)]

Continuous uniform (b−a)/4 3𝜇2 fm

Exponential 2/(e𝜆) 2𝜇2 ∗ fm

Central chi-square e−n∕2nn∕2+1∕[2n∕2−1Γ(n∕2 + 1)] 2𝜇2 fm

Normal 2𝜎 ∗ 1∕
√

2𝜋 = 𝜎

√
2∕𝜋 2𝜇2 fm

Inverse Gaussian 4 exp(2𝜆∕𝜇)Φ(−2
√
𝜆∕𝜇)

Double-exponential b 𝜇2 fm

See respective sections for other distributions.

Theorem 7.1 Power method to find the Mean Deviation

The MD of any continuous distribution that tails off to the left can be expressed in
terms of the CDF as

MD = 2
∫

𝜇

ll
F(x)dx, (7.1)

where ll is the lower limit of the distribution, 𝜇 the arithmetic mean, and F(x) the CDF.

Proof: By definition

E|X − 𝜇| =
∫

ul

ll
|x − 𝜇|f (x)dx, (7.2)

where ll is the lower, and ul is the upper limit of the distribution. Split the range of
integration from ll to 𝜇, and 𝜇 to ul, and note that |X − 𝜇| = 𝜇 − X for x < 𝜇. This
gives

E|X − 𝜇| =
∫

𝜇

x=ll
(𝜇 − x)f (x)dx +

∫

ul

x=𝜇
(x − 𝜇)f (x)dx. (7.3)
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As E(X) = 𝜇, we can write E(X − 𝜇) = 0, where E() is the expectation operator.
Expand E(X − 𝜇) as

E(X − 𝜇) =
∫

ul

ll
(x − 𝜇)f (x)dx = 0. (7.4)

As done earlier, split the range of integration from ll to 𝜇 and 𝜇 to ul to get

E(X − 𝜇) =
∫

𝜇

x=ll
(x − 𝜇)f (x)dx +

∫

ul

x=𝜇
(x − 𝜇)f (x)dx = 0. (7.5)

Substitute ∫ ul
x=𝜇(x − 𝜇)f (x)dx = − ∫ 𝜇

x=ll(x − 𝜇)f (x)dx in equation (7.3) to get

E|X − 𝜇| =
∫

𝜇

x=ll
(𝜇 − x)f (x)dx −

∫

𝜇

x=ll
(x − 𝜇)f (x)dx = 2

∫

𝜇

x=ll
(𝜇 − x)f (x)dx.

Split this into two integrals and integrate each of them to get

E|X − 𝜇| = 2

[

𝜇 ∗ F(𝜇) −
∫

𝜇

x=ll
xf (x)dx

]

, if F(ll) = 0. (7.6)

Use integration-by-parts to evaluate the second expression.
{

xF(x) ∣𝜇ll −∫ 𝜇

ll F(x)dx
}
=

𝜇 ∗ F(𝜇) − ll ∗ F(ll) − ∫ 𝜇

ll F(x)dx. The 𝜇 ∗ F(𝜇) terms cancel out leaving behind

E|X − 𝜇| = 2

[

x F(x)∣ll + ∫

𝜇

ll
F(x)dx

]

. (7.7)

Here x F(x)|ll = ll ∗ F(ll) means that we are to evaluate the limiting value of x ∗ F(x)
at the lower limit of the distributions. For those distributions that extend to −∞, this
limit is obviously zero. If the lower limit of the distribution is either zero or it tails off
to the limit, the first term in equation (7.7) is zero. If F(x) contains expressions of the
form (x−ll), then also this term is zero. Similarly for distributions with range x ≥ 0
for which the mode is not ll, F(0) → 0 as x → 0. If the distribution is symmetric,
equation (7.7) becomes

E|X − 𝜇| =
[

∫

𝜇

ll
F(x)dx +

∫

ul

𝜇

S(x)dx

]

, (7.8)

where S(x) = 1 − F(x) is the survival function (SF). If the distribution tails off to the
right, we evaluate this as

MD = 2
∫

ul

𝜇

S(x)dx. (7.9)

Otherwise, we need to evaluate both the terms in equation (7.7). These situations are
illustrated in the numerous MD examples throughout the chapter. Thus, we could
write the aforementioned for distributions that tails off to one of the extremes as

MD = 2
∫

𝜇

ll
F(x)dx = 2

∫

ul

𝜇

S(x)dx. (7.10)
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This representation of MD in terms of CDF is extremely helpful when one needs to
evaluate the MD using the CDF or SF. See the example on the MD of beta-I distribu-
tion, which is represented in terms of incomplete beta function in page 271.

In addition to finding the MD of continuous distributions, this formulation has
other important applications in proving convergence of distributions and central limit
theorems. Replace X on the LHS by S = X1 + X2 + · · · + Xn. If X′

i s are identically
distributed continuous random variables, this has mean n𝜇 so that the relationship
becomes

E|X1 + X2 + · · · + Xn − n𝜇| =
[

∫

𝜇

ll
F(x)dx +

∫

ul

𝜇

S(x)dx

]

, (7.11)

where F(x) and S(x) are CDF and SF of S. Dividing both sides by n, we see that
the LHS is the arithmetic mean (X1 + X2 + · · · + Xn)/n and RHS has an “n” in the
denominator and F(x), S(x) are the CDF and SF of the mean rather than x. Taking
the limit as n → ∞, we see that the RHS tends to zero (because both the integrals
are bounded for finite mean (see equation 7.13 given below) and the LHS converges
to 𝜇. This provides a simple and elegant proof for the asymptotic convergence of
independent random variables, which can be extended to other cases. For example,
if g(Xi) is a continuous function of Xi with finite mean 𝜈 = g(𝜇), replacing Xi by
g(Xi) in equation (7.11) provides a simple proof on the convergence of g(Xi) to its
mean asymptotically. Similarly, MD of functions of random variables can be easily
obtained from equation (7.1) by replacing X with Y = g(X), 𝜇 with 𝜈 = g(𝜇), and F(x)
with the CDF of Y.

There are two other novel methods to find the MD. The first one uses generating
functions (Chapter 9, Section 9.4, p. 381) to fetch a single coefficient of t𝜇−1 in the
power series expansion of (1 − t)−2Px(t), where Px(t) is the probability generating
function. This works best for discrete distributions. The second method is using the
inverse of distribution functions (Chapter 10, Section 10.4, p. 402). This works best
for continuous distributions.

Similar expressions are available for the MD around the median as

E|X − Median| =
∫

1
2

0
(F−1(1 − x) − F−1(x))dx =

∫

1
2

0
(S−1(x) − S−1(1 − x))dx.

(7.12)

Theorem 7.2 Variance of continuous distributions as tail areas
Prove that the variance of a continuous distribution can be expressed in terms of

tail areas.

Proof: We found earlier that MD = 2 ∫ 𝜇

x=ll F(x)dx = 2 ∫ ul
x=𝜇 S(x)dx, where F(x) is the

CDF and S(x) is the SF. Equating Johnson’s result that MD = c 𝜇2 fm where 𝜇2 = 𝜎
2

and fm is the probability mass evaluated at the integer part of the mean m = ⌊𝜇⌋ we
get 𝜇2 ∗ cfm = 2 ∫ 𝜇

x=ll F(x)dx. Divide both sides by cfm to get

𝜇2 = 𝜎
2 = (2∕(c ∗ fm))∫

𝜇

x=ll
F(x)dx = (2∕(c ∗ fm))∫

ul

x=𝜇
S(x)dx. (7.13)
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An alternate expression given by Jones & Balakrishnan is

𝜎
2 = 2

∫y ∫

ul

−ll<x<y
F(x)[1 − F(y)]dxdy, (7.14)

where ll and ul are the lower and upper limits [166]. See also Chapter 8 (p. 363).
The constant multiplier (c = 2) proposed by Johnson may be different for some con-
tinuous distributions (e.g., for Laplace distribution c = 1) (see Table 7.1). Even in
those situations, the above-mentioned result holds in general because the RHS of
equation (7.13) simply get scaled by the constant (c).

7.2.1 Notion of Infinity

Another important point to remember in the study of continuous distributions is the
notion of infinity (∞). Chapter 6 introduced several discrete distributions that extend
to infinity. Examples are the Poisson, geometric, negative binomial, and logarithmic
laws. All of them extend to +∞. Here, ∞ is assumed to be a large integer (because
discrete distributions take integer values; usually nonnegative). In this chapter, ∞ is
assumed to be a large real number (because continuous distributions take real values).
This difference is subtle but important because the majority of continuous distribu-
tions extend to infinity either at the positive end or both ends. In the discrete case,
we write x = 0, 1, … ,∞ (x actually assumes the value ∞), whereas in the contin-
uous case we write it as x < ∞ (we seldom write x ≤ ∞). For example, the range
for standard normal distribution is written as −∞ < z <∞. In the case of mixture
distributions that have a discrete part and a continuous part like the noncentral 𝜒2

distribution, which is a Poisson-weighted sum of central 𝜒2 distributions, the con-
tinuous part takes precedence. This means that for such distributions the rule reverts
to the continuous component, so that the discrete part (i.e., Poisson probabilities)
assumes all values < ∞. If both components of a mixture distribution are discrete
(e.g., noncentral negative binomial distribution), the rule reverts to the discrete case.

This notion pertains only to the population variate values. If the parameter(s) of a
discrete distribution takes any value on the real line, we write it as in the continuous
case. For example, the parameter 𝜆 of Poisson distribution has range −∞ < 𝜆 < ∞.
Sampling from such populations always gives us data values in a finite range. As
shown below, this range can be fixed in terms of the mean and variance of the distri-
butions. This is especially suitable for bell-shaped distributions.

7.3 CONTINUOUS UNIFORM DISTRIBUTION

As the name implies, this distribution assigns a constant probability to each point
in a continuous interval. Thus, the range is always finite (and quite often small in
practical applications). It is also called continuous rectangular or simply rectangular
distribution. The PDF of continuous uniform distribution (CUNI(a, b)) is given by

f (u; a, b) =

{
1∕(b − a) for a ≤ u ≤ b;
0 otherwise.
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The CDF is obtained by integration from “a” to x as FX(x; a, b) = ∫ x
a [1∕(b −

a)]dx = [1∕(b − a)]x|xa = (x − a)∕(b − a). Thus

F(x; a, b) =
⎧
⎪
⎨
⎪
⎩

0 for x < a;
(x − a)∕(b − a) for a ≤ x ≤ b;
1 for x > b.

Considered as an algebraic equation, y = (x − a)∕(b − a) represents a straight
line with slope 1∕(b − a) and intercept a∕(a − b). This line is defined only within
the interval (a, b) (theoretically, a straight line extends to infinity in both directions).
The slope is small when the range (b − a) is large. The slope is large (line is steep)
in the limiting case b → a. Only the extremes of a sample x(1) and x(n) are sufficient
to fit this distribution (Figures 7.1).

7.3.1 Properties of Continuous Uniform Distribution

This distribution has a special type of symmetry called flat-symmetry. Hence, all odd
central moments except the first one are zeros. The median always coincides with
the mean, and the mode can be any value within the range. As the probability is
constant throughout the interval, the range is always finite (and quite often small).
From equation (7.3), we see that a change of origin and scale transformation y = (x −
a)∕(b − a) results in the standard uniform distribution. A uniform distribution defined
in an interval (c, c + 𝜃) has PDF f (x; 𝜃) = 1∕𝜃 for c ≤ x ≤ c + 𝜃. Take c = 0 to get
the standard form f (x; 𝜃) = 1∕𝜃, 0 < x < 𝜃. This is the analog of the DUNI(N) with
probability function f (x;N) = 1∕N, x = 0, 1, 2, · · · ,N − 1 discussed in page 6-41 of
Chapter 6.

a b
X

Y

a

b

y = (x–a)/(b–a)

f(x)dx

Figure 7.1 CDF of CUNI(a,b).
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7.3.1.1 Moments and Generating Functions The moments are easy to find
using the MGF. The mean is directly obtained as 𝜇 = [1∕(b − a)] ∫ b

a xdx =
[1∕(b − a)] x2

2
∥b

a = (b2 − a2)∕[2(b − a)] = (a + b)∕2. We will find higher order
moments using the MGF. By definition

Mx(t) = E(etx) =
∫

b

x=a
[1∕(b − a)]etxdx = [1∕(b − a)]etx∕t|ba = (ebt − eat)∕[(b − a)t].

The PGF is obtained from this as Px(t) = (tb − ta)∕[(b − a)t].
To find the moments, we proceed as follows. Consider ebt∕t = 1∕t + b + b2t∕2! +

· · · + bktk−1∕k! + .. As (1∕t) is common in both ebt∕t and eat∕t, it cancels out. The
second term is (b − a)∕(b − a) = 1. Thus

(ebt − eat)∕[(b − a)t] = 1 + 1
b − a

(∞∑

k=2

[(bk − ak)∕(b − a)]tk−1∕k!

)

. (7.15)

If we differentiate equation (7.15) (k − 1) times with respect to t, all terms below the
(k − 1)th term will vanish (as they are derivatives of constants independent of t’s) and
all terms beyond the kth term will contain powers of t. Only the (k − 1)th term is a
constant with a (k − 1)! in the numerator, which cancels out with the k! giving a k in
the denominator. By taking the limit as t → 0, we get

𝜇
′
k−1 = (𝜕k−1∕𝜕tk−1)Mx(t)|t=0 = (bk − ak)∕[(b − a)k]. (7.16)

Putting k = 2 gives 𝜇1 = (b + a)∕2. The second moment is obtained by putting k = 3
as 𝜇′2 = (b3 − a3)∕[3(b − a)] = (b2 − ab + a2)∕3. From this, we get the second cen-
tral moment as 𝜇2 = (b2 − ab + a2)∕3 − (a + b)2∕4. Taking 12 as the LCM of 3 and
4, this simplifies to 𝜇2 = 𝜎

2 = (b − a)2∕12. See Table 7.2 for further properties.

7.3.1.2 Alternative Parametrization Write 𝜇 = (a + b)∕2 and 𝜎 = (b −
a)∕(2

√
3). Cross multiplying gives (a + b) = 2𝜇 and (b − a) = (2

√
3)𝜎. Add

these two equations to get b = 𝜇 +
√

3 𝜎. Subtracting gives a = 𝜇 −
√

3 𝜎, from
which (b − a) = (2

√
3)𝜎. This allows us to write the PDF in the alternative form as

f (x, 𝜇, 𝜎) = 1∕(2
√

3𝜎), 𝜇 −
√

3𝜎 ≤ x ≤ 𝜇 +
√

3𝜎. (7.17)

EXAMPLE 7.1 Even moments of rectangular distribution

Prove that the kth central moment is zero for k odd and is given by
𝜇k = (b − a)k∕[2k(k + 1)] for k even.

Solution 7.1 By definition 𝜇k =
1

b−a
∫ b

a (x − a+b
2
)kdx. Make the change of

variable y = x − (a + b)∕2. For x = a, we get y = a − (a + b)∕2 = (a − b)∕2 =
−(b − a)∕2. Similarly for x = b, we get y = b − (a + b)∕2 = (b − a)∕2. As the
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TABLE 7.2 Properties of Continuous Uniform Distribution U(a, b)

Property Expression Comments

Range of X a ≤ x ≤ b Continuous; finite
Mean 𝜇 = (a + b)∕2 Median = (a + b)∕2
Variance 𝜎

2 = (b − a)2∕12 𝜎
2 = (𝜇2 − ab)∕3

Skewness 𝛾1 = 0 Special symmetry
Kurtosis 𝛽2 = 9∕5

Mean deviation E|X − 𝜇| = (b − a)∕4 (
√

3∕2)𝜎 = 0.866𝜎

CV (b − a)∕[
√

3(a + b)] 0.57735 if a = 0, b = 1
CDF (x − a)∕(b − a) Line sloping up
SF (b − x)∕(b − a)
Moments 𝜇

′
r = (br+1 − ar+1)∕[(b − a)(r + 1)]

Moments 𝜇r = [(b − a)∕2]r∕(r + 1) r even
MGF (ebt − eat)∕[(b − a)t]
ChF (eibt − eiat)/[(b − a)it]
PGF (tb − ta)/[(b − a) log (t)]

Standard uniform distribution results when a = 0, b = 1.

Jacobian is 𝜕y∕𝜕x = 1, the integral becomes 𝜇k =
1

b−a
∫ (b−a)∕2
−(b−a)∕2 ykdy. When k is

odd, this is an integral of an odd function in symmetric range, which is identically

zero. For k even, we have 𝜇k =
2

b−a
∫ (b−a)∕2

0 ykdy = 2
b−a

[yk+1∕(k + 1)]|(b−a)∕2
0 =

(b − a)k∕[2k(k + 1)], as the constant 2∕(b − a) cancels out.

EXAMPLE 7.2 Mean deviation of rectangular distribution

Find the MD of rectangular distribution.

Solution 7.2 By definition E|X − 𝜇| = ∫ b
a |x − 𝜇|∕(b − a)dx. Split the range of

integration from “a” to 𝜇 and 𝜇 to “b” and note that |X − 𝜇| = 𝜇 − X for x <𝜇.
This gives

E|X − 𝜇| =
∫

𝜇

x=a
(𝜇 − x)∕(b − a)dx +

∫

b

x=𝜇
(x − 𝜇)∕(b − a)dx. (7.18)

Consider ∫ 𝜇

a 𝜇dx − ∫ b
𝜇
𝜇dx. As 𝜇 = (a + b)∕2, this integral vanishes. What

remains is

1
b − a

(

∫

b

𝜇

xdx −
∫

𝜇

a
xdx

)

= 1
2(b − a)

(b2 − 𝜇2 − (𝜇2 − a2))

= (a2 + b2 − 2𝜇2)
2(b − a)

. (7.19)

Substitute the value 𝜇 = (a + b)∕2 and take 2 as a common denominator to get
1

2(b−a) (b − a)2∕2 = (b − a)∕4. Thus, the MD E|X − 𝜇| = (b − a)∕4.
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Next we apply Theorem 7.1 (p. 257) to verify our result. As the rectangular dis-
tribution does not tail off to zero at the extremes, equation (7.1) seems to be not
applicable. However, we know the CDF is (x − a)∕(b − a). If we substitute the lower
limit is “a,” in (x − a)∕(b − a), we get zero. Hence, Theorem 7.1 is applicable. This
gives

MD = 2
∫

𝜇

ll
F(x)dx = 2∕(b − a)

∫

c

a
(x − a)dx where c = 𝜇 = (a + b)∕2. (7.20)

The integral ∫ c
a (x − a)dx is (x − a)2∕2|ca. The integral evaluated at the lower limit is

obviously zero. As c = (a + b)∕2, the upper limit evaluates to (b − a)2∕8. Substitute
in equation (7.20). One (b − a) cancels out and we get the MD as (b − a)∕4. This
tallies with the above-mentioned result.

7.3.2 Relationships with Other Distributions

Owing to its relationship with many other distributions, it is extensively used in
computer generation of random variables. As mentioned earlier, a simple change
of variable transformation Y = (X − a)∕(b − a) results in the standard uniform dis-
tribution U(0, 1), usually denoted as U(0, 1). If X is any continuous random variable
with CDF F(x), then U = F(x) ∼ U[0, 1]. This property is utilized to generate random
numbers from a distribution if the expression for its CDF involves simple or invert-
ible arithmetic or transcendental functions. For example, the CDF of an exponential
distribution (given below) is F(x) = 1 − e−𝜆x. Equating to a random number u in the
range [0,1] and solving for x, we get 1 − e−𝜆x = u or x = − log(1 − u)∕𝜆. U(0, 1) is a
special case of BETA-I(a, b) when a = b = 1.

7.3.3 Applications

This distribution finds applications in many fields. It is used in nonparametric tests
like Kolmogorov–Smirnov test. The rounding errors resulting from grouping data into
classes uses a U(0, 1) to obtain a correction factor known as Sheppard’s correction.
Quantization errors in audio coding use this distribution. It is also used in stratified
sampling, nonrandom clustering, and so on. Random numbers for other distributions
are easy to generate using U[0, 1]. Suppose we have a uniform random number gener-
ator between 0 and 1. The transformation y = a + (b − a)x gives a random number in
the interval [a, b], where x is in [0,1] (if the random number generated is in [0,32767),
we could use the mapping a + (b − a)x∕32767 to get a random number in [a, b]).

EXAMPLE 7.3 Estimating proportions

A jar contains a mixture of two liquids L1 and L2 that mixes well in each other
(as water and wine or acid and water). All that is known is that “there is at most
three times as much of one as the other.” Find the probability that (i) L1∕L2 ≤ 2
and (ii) L1∕L2 ≥ 1.
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Solution 7.3 The given condition is 1
3
≤ L1∕L2 ≤ 3. Let U = L1∕L2. Assume

that U is uniformly distributed in [1/3, 3]. As 3 − 1∕3 = 8∕3, we take the density
function as f (x) = 3∕8, 1

3
≤ x ≤ 3. The required answer for (i) is P[U ≤ 2] = ∫ 2

1∕3

f(x) dx = (3/8)*x|2
1∕3

= (3∕8) ∗ (2 − 1∕3) = 5∕8. (ii) L1∕L2 ≥ 1 = ∫ 3
1 f (x)dx =

(3∕8) ∗ x|31 = 6∕8 = 0.75.

7.4 EXPONENTIAL DISTRIBUTION

Exponential distribution (EXP(𝜆)) can be regarded as the continuous analog of geo-
metric distribution. The PDF is given by

f (x; 𝜆) =

{
𝜆e−𝜆x for x ≥ 0, 𝜆 > 0;
0 otherwise.

When 𝜆 = 1, we get the standard exponential distribution f (x) = e−x. Setting 𝜆 = 1∕𝜃
gives an alternative representation as f (x, 𝜃) = 1

𝜃
e−x∕𝜃 . The CDF is given by

F(x) =

{
1 − e−𝜆x

, x ≥ 0

0 otherwise.
(7.21)

7.4.1 Properties of Exponential Distribution

This distribution has a single parameter, which is positive (Figure 7.2). Variance of
this distribution is the square of the mean, as shown in the following. This means that
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Figure 7.2 Three exponential distributions.
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TABLE 7.3 Properties of Exponential Distribution (𝝀e−𝝀x)

Property Expression Comments

Range of X x ≥ 0 Continuous

Mean 𝜇 = 1∕𝜆
Median log(2)∕𝜆
Variance 𝜎

2 = 1∕𝜆2
𝜎

2 = 𝜇
2

Skewness 𝛾1 = 2 Never symmetric

Kurtosis 𝛽2 = 9 Always leptokurtic

Mean deviation E|X − 𝜇| = 2∕(e𝜆) 2𝜇2 ∗ fm

CV 1

CDF 1 − e−𝜆x SF = 1 − CDF = e−𝜆x

Moments 𝜇
′
r = 1∕𝜆r

MGF 𝜆∕(𝜆 − t)
ChF 𝜆∕(𝜆 − it)

Replace 𝜆 by 1∕𝜆 for the alternate parametrization.

when 𝜆→ 0, the variance and kurtosis increases without limit. The SF is 1 − CDF =
e−𝜆x (see Table 7.3).

7.4.2 Additivity Property

Several statistical distributions obey the additivity property. This information
is useful while modeling data from two or more identical populations. The
sum of k independent exponentially distributed random variables EXP(𝜆) has a
gamma distribution with parameters k and 𝜆. Symbolically, if Xi are EXP(𝜆), then
∑k

i=1 Xi ∼ GAMMA(k, 𝜆). This is most easily proved using the MGF (see Table 7.4).

7.4.2.1 Moments and Generating Functions The characteristic function is read-
ily obtained by integration as 𝜙x(t; 𝜆) =

∫

∞

0
eitx
𝜆e−𝜆xdx = 𝜆

∫

∞

0
e−(𝜆−it)xdx = 𝜆

(𝜆 − it)
= 1

1 − it
𝜆

= (1 − it∕𝜆)−1
.

Expand as an infinite series using (1 − x)−1 = 1 + x + x2 + x3 + · · · to get

(1 − it∕𝜆)−1 = 1 + it∕𝜆 + (it∕𝜆)2 + (it∕𝜆)3 + · · · (7.22)

From this, the mean and variance follows as 𝜇 = 1∕𝜆 and 𝜎2 = 1∕𝜆2. Alternately,
the mean is given by 𝜇 = 𝜆 ∫ ∞

0 xe−𝜆xdx. Write the integral as ∫ ∞
0 x2−1e−𝜆xdx. Using

gamma integral, this becomes 𝜇 = 𝜆Γ(2)∕𝜆2. One 𝜆 cancels out and we get 𝜇 = 1∕𝜆
as Γ(2) = 1. For the alternate parametrization f (x, 𝜃) = 1

𝜃
e−x∕𝜃 , the mean 𝜇 = 𝜃 and

variance 𝜎2 = 𝜃
2.
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TABLE 7.4 Summary Table of Additivity Property

Distribution Parms-1 Parms-2 Combined Conditions

Bernoulli p p BINO(2, p) Same p, independent
Binomial n1, p n2, p n1 + n2, p Same p, independent
Poisson 𝜆1 𝜆2 𝜆1 + 𝜆2 Independent
Negative Bino. r1, p r2, p r1 + r2, p Same p, independent
Exponential 𝜆1 𝜆2 𝜆1 + 𝜆2 Independent
Exponential 𝜆 𝜆 Γ(2, 𝜆) Same 𝜆, independent
Gamma Γ(n1, 𝜆) Γ(n2, 𝜆) Γ(n1 + n2, 𝜆) Same 𝜆, independent
Normal 𝜇1, 𝜎

2
1 𝜇2, 𝜎

2
2 𝜇1 + 𝜇2, 𝜎

2
1 + 𝜎

2
2 Independent

∗Log-Normal 𝜇1, 𝜎
2
1 𝜇2, 𝜎

2
2 𝜇1 + 𝜇2, 𝜎

2
1 + 𝜎

2
2 Product (

∏
)

∗BETA-I a, b a + b, c a, b + c Product (
∏

)
Cauchy 𝜃 𝜃 2𝜃 Same 𝜃, independent
Chi-square 𝜒

2
n1

𝜒
2
n2

𝜒
2
n1+n2

Independent

Unscaled F (p,n) (q,n) (p + q, n) Distribution of 𝜒2
p∕𝜒2

n

Noncentral 𝜒2
𝜒

2
n1
(𝜆1) 𝜒

2
n2
(𝜆2) 𝜒

2
n1+n2

(𝜆1 + 𝜆2) Independent

Note that for log-normal distributions (LNDs), it is the product and quotient that are identically distributed;
and 𝜇i, 𝜎

2
i are the means of underlying normal variate. Multinomial satisfies MN(n1, p1, p2, … , pm)+

MN(n2, p1, p2, … , pm) ∼ MN(n1 + n2, p1, p2, … , pm) if they are independent.

The coefficients of skewness and kurtosis are 2 and 9, respectively. Hence, the dis-
tribution is always asymmetric and leptokurtic. Putting Y = 1∕X results in the inverse
exponential distribution with PDF f (y) = (𝜆∕y2)e−𝜆∕y. See Table 7.3 for further
properties.

EXAMPLE 7.4 Median of exponential distribution

Find the median of exponential distribution with PDF f (x, 𝜆) = 𝜆e−𝜆x.

Solution 7.4 Let M be the median. Then ∫ ∞
M 𝜆e−𝜆xdx = 0.5. This gives

−e−𝜆x|∞M = 1∕2, or equivalently e−𝜆M = 1∕2. Take log of both sides to get
−𝜆M = − log(2) or M = log(2)∕𝜆 where the log is to the base e.

EXAMPLE 7.5 Pr(X > 𝜆∕2), Pr(X > 1∕𝜆) for EXP(𝜆) distribution

Show that Pr[X > 𝜆∕2] of the exponential distribution is e−𝜆
2∕2. What is the

Pr[X > 1∕𝜆]?

Solution 7.5 As the SF is e−𝜆x, Pr(X > 𝜆∕2) is easily seen to be the survival
function evaluated for x = 𝜆∕2. This upon substitution becomes e−𝜆

2∕2. Putting
x = 1∕𝜆 in the SF, we get e−1 = 1∕e. Thus, the mean 1∕𝜆 of an exponential dis-
tribution divides the total frequency in (1 − 1

e
)∶1

e
ratio. This is a characteristic

property of exponential distribution.
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EXAMPLE 7.6 Lifetime of components

The lifetime of a component is known to be exponentially distributed with mean
𝜆 = 320 hours. Find the probability that the component has failed in 340 hours,
if it is known that it was in good working condition when time of operation was
325 hours.

Solution 7.6 Let X denote the lifetime. Then X ∼ EXP(1/320). Symboli-
cally, this problem can be stated as P[X < 340|X > 325]. Using conditional
probability, this is equivalent to P[325 < X < 340]∕P[X > 325]. In terms
of the PDF, this becomes ∫ 340

325 f (x)dx∕ ∫ ∞
325 f (x)dx. Write the numerator as

∫ ∞
325 f (x)dx − ∫ ∞

340 f (x)dx, this becomes 1 − e−340∕320∕e−325∕320 = 1 − e−15∕320 =
0.04579.

7.4.2.2 Relationship with Other Distributions It is a special case of gamma dis-
tribution with m = 1 (p. 283). If X ∼ EXP(𝜆) and b is a constant, then Y = X1∕b ∼
WEIB(𝜆, b) (p. 320). The difference of two IID exponential variates is Laplace dis-
tributed. It is also related to the U(0, 1) distribution [167, 168] and power-law distri-
bution, which is a discrete analog of this distribution [169].

EXAMPLE 7.7 Memory-less property

Prove that the exponential distribution has memory-less property P(X ≥
s + t)|P(X ≥ s) = P(X ≥ t) for s, t ≥ 0.

Solution 7.7 Consider P(X≥s+t)∩P(X≥s)/P(X≥s). The numerator simplifies
to P(X ≥ s + t) = 𝜆 ∫ ∞

x=(s+t) e−𝜆xdx = e−𝜆(s+t) using e−∞ = 0. The denomina-
tor is 𝜆 ∫ ∞

x=s e−𝜆xdx. This simplifies to e−𝜆s. Taking the ratio of these gives
e−𝜆(s+t)∕e−𝜆s = e−𝜆t, which is the RHS.

7.4.2.3 Applications This distribution is used to model random proportions and
life-time of devices and structures. It has applications in reliability theory and waiting
times in queuing theory. For example, the expected life length of a new light bulb can
be assumed to follow an exponential distribution with parameter 𝜆 = 1∕500 hours so
that the life time is given by f (x) = (1∕500)(e−x∕500).

Other examples include modeling: (i) Lifetime of destructive devices that are
(more or less) continuously or regularly in use, such as light bulbs and tubes,
electronic chips. (ii) Lifetime of nondestructive or reusable devices until next repair
work, electronic devices such as computer monitors and LCD screens, microwaves,
electrical appliances such as refrigerators, and lifetime of automobile tires. Time
until the arrival of the next event (such as next telephone call and emergency call) or
time until next customer to an office or business.

EXAMPLE 7.8 Mean deviation of exponential distribution

Find the mean deviation of the exponential distribution f (x, 𝜆) = 𝜆e−𝜆x.
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Solution 7.8 We apply Theorem 7.1 (page 267) to find the MD. As the
exponential distribution does not tail off to zero at the lower limit (i.e., at 0),
equation (7.1) seems like not applicable.We know that the CDF is 1 − e−𝜆x. If we
apply L’Hospital’s rule once on x ∗ F(x) we get x exp(−𝜆x) + (1 − exp(−𝜆x)).
As both terms → 0 as x → 0, the limx→0 x ∗ F(x) = 0, and the Theorem 7.1
becomes applicable. This gives

MD = 2
∫

1∕𝜆

0
(1 − e−𝜆x)dx. (7.23)

Split this into two integrals and evaluate each to get

MD = 2[1∕𝜆 + (1∕𝜆)e−1 − (1∕𝜆)] = 2∕(e𝜆) = 2𝜇2 ∗ fm, (7.24)

where fm = 𝜆e−1 = 𝜆∕e. Alternatively, use the SF() version as the exponential
distribution tails off to the upper limit (Table 7.3).

7.4.2.4 General form The general form of the exponential distribution is given by

f (x) = 𝜆e−𝜆(x−𝛿), x ≥ 0, 𝜆 > 0, x ≥ 𝛿. (7.25)

The corresponding characteristic function is

𝜙(t) = ei𝛿t

1 − it∕𝜆
. (7.26)

7.5 BETA DISTRIBUTION

The beta distribution is widely used in statistics owing to its close relationship with
other continuous distributions. It is also used in Bayesian models with unknown prob-
abilities, in order statistics and reliability analysis. It is used to model the proportion
of fat (by weight) in processed or canned food and percentage of impurities in some
manufactured products such as food items, cosmetics, and laboratory chemicals. In
Bayesian analysis, the prior distribution is assumed to be the beta for binomial pro-
portions. Important distributions belonging to the beta family are discussed in the fol-
lowing. These include type I and type II beta distributions. We will use the respective
notations Beta-I(a,b) and Beta-II(a,b). Beta distributions with three or more parame-
ters are also briefly mentioned.

7.5.1 Type-I Beta Distribution

This is also called the standard beta distribution. The PDF of Beta-I(a, b) is given by

fx(a, b) = xa−1(1 − x)b−1∕B(a, b), (7.27)

where 0 < x < 1, and B(a, b) is the complete beta function (CBF). Particular values
for a and b results in a variety of distributional shapes.
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7.5.2 Properties of Type-I Beta Distribution

This distribution has two parameters, both of which are positive real numbers. The
range of x is between 0 and 1. The variance is always bounded, irrespective of the
parameter values. Put y = 1 − x in the above to get the well-known symmetry rela-
tionship fx(a, b) = fy(b, a) or in terms of tail areas Ix(a, b) = 1 − I1−x(b, a), where
Ix(a, b) is described below (p. 277). If a = b, the distribution is symmetric about
X = 1∕2. If a = b = 1, it reduces to uniform (rectangular) distribution. When a = b =
1∕2, this distribution reduces to the arc-sine distribution of first kind (Section 7.8,
p. 279). If b = 1 and a ≠ 1, it reduces to power-series distribution f (x; a) = axa−1

using the resultΓ(a + 1) = a ∗ Γ(a). Put a = 𝛼 + 1, b = 𝛽 + 1 to get an alternate form

fx(𝛼, 𝛽) = x𝛼(1 − x)𝛽∕B(𝛼 + 1, 𝛽 + 1). (7.28)

7.5.2.1 Moments and Generating Functions The moments are easy to find using
beta integral. The kth moment can be obtained as

𝜇
′
k =

1
B(a, b) ∫

1

0
xa+k−1(1 − x)b−1dx = B(a + k, b)∕B(a, b) = Γ(a + b)Γ(a + k)

Γ(a + b + k)Γ(a)
.

In terms of rising factorials, this becomes 𝜇′k = a[k]∕(a + b)[k]. The mean is obtained
by putting k = 1 as 𝜇 = a∕(a + b) = 1 − b∕(a + b). This has the interpretation that
increasing the parameter “a” by keeping “b” fixed moves the mean to the right
(toward 1). Put k = 2 to get the second moment as a(a + 1)∕[(a + b)(a + b + 1)].
The variance is 𝜎2 = ab∕[(a + b)2(a + b + 1)]. This is symmetric in the parameters
and increasing both “a” and “b” together decreases the variance. If a > 1 and b > 1,
there exist a single mode at (a − 1)∕(a + b − 2). The characteristic function is

𝜙(t) = 1
B(a, b) ∫

1

0
eitxxa−1(1 − x)b−1dx =1F1(a, a + b; it), (7.29)

where 1F1(a, a + b; it) is the confluent hypergeometric function. The kth central
moment can be obtained as follows:

𝜇k =
1

B(a, b) ∫

1

0
(x − a∕(a + b))kxa−1(1 − x)b−1dx

= (−a∕(a + b))k 2F1(−k, a, a + b, (a + b)∕a), (7.30)

where 2F1(a, b, c; x) is the hypergeometric function. The coefficient of skewness is
𝛾1 = 2(b − a)

√
a + b + 1∕[

√
ab(a + b + 2)]. Mean deviation about the mean is given

by
E|X − 𝜇| = 2aabb∕[B(a, b)(a + b)a+b+1]. (7.31)

See Table 7.5 for further properties (Figures 7.3 and 7.4).
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TABLE 7.5 Properties of Beta-I Distribution

Property Expression Comments

Range 0 ≤ x ≤ 1 Continuous

Mean 𝜇 = a∕(a + b) = 1 − b∕(a + b)

Variance ab∕[(a + b)2(a + b + 1)] = 𝜇(1 − 𝜇)∕
(a + b + 1)

⇒ 𝜇 > 𝜎
2

Mode (a − 1)∕(a + b − 2) a > 1, b > 1

CV (b∕[a(c + 1)])1∕2 c = a + b

Skewness 𝛾1 = 2(b − a)
√

a + b + 1∕[
√

ab
(a + b + 2)]

Kurtosis 𝛽2 = 3c(c + 1)(a + 1)(2b − a)∕
[ab(c + 2)(c + 3)]

c = a + b

Mean deviation E|X − 𝜇| = 2aabb∕[B(a, b)(a + b)a+b+1] 2c[Ic(a, b) − Ic(a + 1, b)],
c = a∕(a + b)

Moments 𝜇
′
r =
∏r−1

i=0 (a + i)∕(a + b + i) a(r)∕(a + b)(r)

Moments 𝜇r = (−c)r2F1(a,−r, a + b, 1∕c) c = a∕(a + b)

ChF
Γ(a + b)
Γ(a)

∑∞
j=0

Γ(a + j)(it)j

Γ(a + b + j)Γ(1 + j) 1F1(a, a + b; it)

Additivity
∑m

i=1 BETA(ai, b) = B
(∑m

i=1 ai, b
)

Independent

Recurrence f (x; a + 1, b)∕f (x; a, b) = (1 + b∕a)x

f (x; a, b + 1)∕f (x; a, b) = (1 + a∕b)(1 − x)

U-shaped a < 1 and b < 1

J-shaped (a − 1) ∗ (b − 1) < 0

Tail area Ix(a, b) =
1

B(a, b) ∫

x

0
ta−1(1 − t)b−1dt I = Incomplete beta

Symmetric when a = b. 2F1() is hypergeometric function that is related to the incomplete beta function
as Ix(a, b) = [f (x; a + 1, b)∕(a + b)]∗2F1(1 − b, 1; a + 1; −x∕(1 − x)), where f (x; a + 1, b) is the density of
BETA-I. It can also be represented using the Euler identity 2F1(a,−r, a + b, 1∕c) = (1 − 1∕c)b+r

2F1(b, a +
b + r, a + b; 1∕c) [170].

EXAMPLE 7.9 Mean deviation of beta distribution

Find the mean deviation of the beta distribution using Theorem 7.1.

Solution 7.9 As the beta distribution does not tail off to the lower or upper lim-
its for some parameter values (e.g., a = b = 0.25), equation (7.1) seems like not
applicable. We know that the CDF is Ix(a, b). As done in the case of exponen-
tial distribution, using L’Hospital’s rule, it is easy to show that x ∗ F(x) → 0,
so that the Theorem 7.1 is applicable. This gives MD = 2 ∫ c

0 Ix(a, b)dx, where
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Figure 7.3 Three beta distributions.
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c = a∕(a + b) is the mean. Taking u = Ix(a, b) and dv = dx, this becomes

MD = 2

[

xIx(a, b)dx|c0 − ∫

c

0
xgx(a, b)dx

]

= 2

[

c ∗ Ic(a, b) − ∫

c

0
xgx(a, b)dx

]

.

Write x ∗ gx(a, b) as xa(1 − x)b−1∕B(a, b). Multiply numerator and denom-
inator by B(a + 1, b) and write B(a + 1, b)∕B(a, b) as a∕(a + b) to get
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TABLE 7.6 Mean Deviation of Beta-I using Equations (7.31) and (7.32)

a b a∕(a + b) Equation Equation a b a∕(a + b) Equation Equation
(7.32) (7.31) (7.32) (7.31)

1 1 0.50000 0.25000 0.25000 5 5 0.50000 0.12305 0.12305
1 2 0.33333 0.19753 0.19753 10 2 0.83333 0.08225 0.08225
1 5 0.16667 0.11163 0.11163 10 5 0.66667 0.09525 0.09525
2 2 0.50000 0.18750 0.18750 8 8 0.50000 0.09819 0.09819
2 5 0.28571 0.13010 0.13010 10 20 0.33333 0.06801 0.06801
2 10 0.16667 0.08225 0.08225 30 30 0.50000 0.05129 0.05129
5 2 0.71429 0.13010 0.13010 30 10 0.75000 0.05414 0.05414

First and second columns are the shape parameters and third column is c = a∕(a + b). Fourth column finds
the MD using equation (7.32) and fifth column using equation (7.31).

2 ∫ c
0 x ∗ gx(a, b)dx = 2a∕(a + b)Ic(a + 1, b). This gives

MD = 2c[Ic(a, b) − Ic(a + 1, b)], where c = a∕(a + b). (7.32)

This can be simplified using a result in Reference 4 as

Ic(a, b) − Ic(a + 1, b) = (1 − c)2∕(b − 1) gc(a + 1, b − 1), (7.33)

where g( ) is the PDF of BETA-I. This gives MD = 2c(1 − c)2∕(b − 1) gc(a + 1, b −
1). Substitute for c and simplify to get the above-mentioned form (7.31). Alternately,
use

Ic(a, b) − Ic(a + 1, b) = ca(1 − c)b∕[a B(a, b)], (7.34)

to get MD = 2bc∕[(a + b)(a + b + 1)]gc(x; a, b), where c = a∕(a + b). Results are
compared in Table 7.6.

EXAMPLE 7.10 Mean versus variance of BETA-I

Prove that the variance can never equal the mean of a beta-I distribution.

Solution 7.10 We know that the variance of BETA-I can be represented in terms
of the mean as 𝜇(1 − 𝜇)∕(a + b + 1). Assume the contrary that the variance can
be equal to the mean. Put 𝜇 = x in the above to get x(1 − x)∕(a + b + 1) = x.
This simplifies to −x2 = (a + b)x. As the mean cannot be zero (as “a” cannot
be zero), there is no solution possible. Hence, the variance of BETA-I is always
less than the mean. Alternatively, divide the variance by the mean and argue that
as 𝜇 ∈ (0, 1), 1 − 𝜇 is always less than 1, showing that the ratio is <1, which
implies that 𝜎2

< 𝜇.
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7.5.3 Type-II Beta Distribution

Beta distribution of the second kind (also called Type-II beta distribution or inverted
beta distribution (IBD)) is obtained from the above by the transformation Y = X∕(1 −
X) or equivalently X = Y∕(1 + Y). When x → 0, y → 0, and when x → 1, y → ∞.
Hence, the range of Y is from 0 to ∞. The PDF is given by

fy(a, b) = ya−1∕[B(a, b)(1 + y)a+b], y > 0, a, b > 0. (7.35)

The BETA-I distribution is used to model random experiments or occurrences that
vary between two finite limits, which are mapped to the (0,1) range, whereas BETA-II
is used when upper limit is infinite.

7.5.4 Properties of Type-II Beta Distribution

This is a special case of the unscaled F distribution (distribution of 𝜒2
m∕𝜒2

n) or an
F with the same degrees of freedom. In other words, put Y = (m∕n) ∗ X in F distri-
bution to get BETA-II distribution. If Y is BETA-II(a,b) then 1∕Y is BETA-II(b, a).
This means that 1∕[X∕(1 − X)] = (1 − X)∕X is also beta distributed (see the following
discussion).

7.5.4.1 Moments and Generating Functions The mean and variance are
𝜇 = a∕(b − 1) and 𝜎2 = a(a + b − 1)∕[(b − 1)2(b − 2)] for b > 2. Consider E(Yk)

∫

∞

0
ykfy(a, b)dy =

∫

∞

0
ya+k−1∕[B(a, b)(1 + y)a+b]dy. (7.36)

Put x = y∕(1 + y) so that y = x∕(1 − x), (1 + y) = 1∕(1 − x), and dy∕dx =
[(1 − x) − x(−1)]∕(1 − x)2. This simplifies to 1∕(1 − x)2. The range of X is [0,1].
Hence, equation (7.36) becomes

(1∕B(a, b))
∫

∞

0
ya+k−1∕(1 + y)a+bdy = (1∕B(a, b))

∫

1

0
xa+k−1(1 − x)b−k−1dx.

(7.37)
This is B(a + k, b − k)∕B(a, b). Put k = 1 to get the mean as Γ(a + 1)Γ(b − 1)

Γ(a + b)∕[Γ(a)Γ(b)Γ(a + b)]. Write Γ(a + 1) = aΓ(a) in the numerator and
Γ(b) = (b − 1)Γ(b − 1) in the denominator and cancel out common factors to get
𝜇 = a∕(b − 1). Put k = 2 to get the second moment as B(a + 2, b − 2)∕B(a, b) =
Γ(a + 2)Γ(b − 2)Γ(a + b)∕[Γ(a)Γ(b)Γ(a + b)] = a(a + 1)∕[(b − 1)(b − 2)]. From
this, the variance is obtained as a(a + 1)∕[(b − 1)(b − 2)] − a2∕(b − 1)2. Take
𝜇 = a∕(b − 1) as a common factor. This can now be written as 𝜇( a+1

b−2
− 𝜇).

Substitute for 𝜇 inside the bracket and take (b − 1)(b − 2) as common denom-
inator. The numerator simplifies to b − a + 2a − 1 = (a + b − 1). Hence, the
variance becomes 𝜎

2 = a(a + b − 1)∕[(b − 1)2(b − 2)]. As (a + 1)∕(b − 2) − 𝜇 =
(a + b)∕[(b − 1)(b − 2)], this expression is valid for b > 2. Unlike the BETA-I
distribution whose variance is always bounded, the variance of BETA-II can be
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TABLE 7.7 Properties of Beta-II Distribution

Property Expression Comments

Range of X 0 ≤ x <∞ Continuous

Mean 𝜇 = a∕(b − 1)

Variance 𝜎
2 = a(a + b − 1)∕[(b − 1)2(b − 2)] = 𝜇(a + 1

b − 2
− 𝜇)

Mode (a − 1)∕(b + 1) a > 1

E[X∕(1 − X)]k Γ(a + k)Γ(b − k)
Γ(a)Γ(b)

Skewness 𝛾1 = 2(b − a)
√

a + b + 1∕[
√

ab(a + b + 2)]

Kurtosis 𝛽2 = 3c(c + 1)(a + 1)(2b − a)∕[ab(c + 2)(c + 3)] c = a + b

Mean deviation E|X − 𝜇| = 2 ∫
a∕(b−1)

0 Iy∕(1+y)(a, b)dy

Moments 𝜇
′
r = B(a + r, b − r)∕B(a, b) a(r)∕b(r)

Moments 𝜇r = (−c)r2F1(a,−r, a + b, 1∕c) c = a∕(a + b)

ChF 1F1(a, a + b; it) = Γ(a + b)
Γ(a)

∑∞
j=0

Γ(a + j)(it)j

Γ(a + b + j)Γ(1 + j)
Additivity

∑m
i=1 BETA(ai, b) = BETA

(∑m
i=1(ai, b

)
Independent

Recurrence f (x; a + 1, b)∕f (x; a, b) = (1 + b∕a)(x∕(1 + x))

f (x; a, b + 1)∕f (x; a, b) = (1 + a∕b) ∗ 1∕(1 + x)

U-shaped a < 1 and b < 1

J-shaped (a − 1) ∗ (b − 1) < 0

Tail area Ix(a, b) =
1

B(a, b) ∫

x

0
ta−1(1 − t)b−1dt x = y∕(1 + y)

Beta distribution of the first kind (also called Type-I beta distribution) is obtained by the transformation
X = Y∕(1 + Y).

increased arbitrarily by keeping b constant (say near 2+) and letting a → ∞. It
can also be decreased arbitrarily when (a + 1)∕(b − 2) tends to 𝜇 = a∕(b − 1). The
expectation of [X∕(1 − X)]k is easy to compute in terms of complete gamma function

as E[X∕(1 − X)]k = Γ(a+k)Γ(b−k)
Γ(a)Γ(b) . See Table 7.7 for further properties.

EXAMPLE 7.11 The mode of BETA-II distribution

Prove that the mode of BETA-II distribution is (a − 1)∕(b + 1).

Solution 7.11 Differentiate equation (7.35) (without constant multiplier) with
respect to y to get

f ′(y) = [(1 + y)a+b(a − 1)ya−2 − ya−1(a + b)(1 + y)a+b−1]∕(1 + y)2(a+b)
. (7.38)
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Equate the numerator to zero and solve for y to get y[a + b − a + 1] = (a − 1) or
y = (a − 1)∕(b + 1). It is left as an exercise to verify that the second derivative is
−ve for this value of y.

7.5.5 Relationship with Other Distributions

Put a = b = 1 to get Beta(1,1), which is identical to U(0, 1). If X is beta1(a, b) then
(1 − X)∕X is beta2(b, a), and X∕(1 − X) is beta2(a, b). If X and Y are independent
gamma random variables Γ(a, 𝜆) and Γ(b, 𝜆), then X∕(X + Y) is BETA(a, b) (see
Exercise 7.26). As gamma and 𝜒

2 are related, this result can also be stated in
terms of normal variates as follows. If X and Y are independent normal variates,
then Z = X2∕(X2 + Y2) is beta distributed. In addition, if X1,X2, · · · ,Xk are
IID N(0, 1) and Z1 = X2

1∕(X
2
1 + X2

2),Z2 = (X2
1 + X2

2)∕(X
2
1 + X2

2 + X2
3), and so on,

Zj =
∑j

i=1 X2
j ∕
∑j+1

i=1 X2
j , then each of them are BETA-I distributed, as also the product

of any consecutive set of Z′
j s are beta distributed [167, 171]. The logistic distribution

and type II beta distribution are related as Y = − ln(X). If X is BETA-I(a, b) then
Y = ln(X∕(1 − X)) has a generalized logistic distribution [172, 173]. Dirichlet
distribution is a generalization of beta distribution. Order statistic from uniform
distribution is beta distributed. In general, jth highest order statistic from a uniform
distribution is BETA-I(j, n − j + 1). See Reference 174 for the beta-generalized
exponential distribution, Reference 167 for relationships among various statistical
distributions, Reference 133 for normal approximations, and Reference 175 for new
properties of this distribution.

As the random variable takes values in [0,1], any CDF can be substituted for x
to get a variety of new distributions [22]. For instance, put x = Φ(x), the CDF of a
normal variate to get the beta-normal distribution with PDF

f (x; a, b) = (1∕B[a, b]) 𝜙(x)[Φ(x)]a−1[1 − Φ(x)]b−1
, (7.39)

where B(a, b) is the CBF, 𝜙(x) is the PDF and Φ(x) is the CDF of normal distribution,
so that the range is now extended to −∞ < x < ∞.

7.6 THE INCOMPLETE BETA FUNCTION

The incomplete beta function (IBF) denoted by Ix(a, b) or I(x; a, b) has several appli-
cations in statistics and engineering. It is used in wind velocity modeling [176], flood
water modeling, and soil erosion modeling. It is used to compute Bartlett’s statistic
for testing homogeneity of variances when unequal samples are drawn from normal
populations [177] and in several tests involving likelihood ratio criterion [178]. It is
also used in computing the power function of nested tests in linear models [179],
approximating the distribution of largest roots in multivariate inference, and detect-
ing two outliers in the same direction in a linear model [180]. Its applications to traffic
accident proneness are discussed by Haight [181].
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7.6.1 Tail Areas Using IBF

Tail areas of several statistical distributions are related to the beta CDF as discussed
below. The survival function of a binomial distribution BINO(n, p) is related to the
left-tail areas of BETA-I distribution as

n∑

x=a

(n
x

)

pxqn−x = Ip(a, n − a + 1). (7.40)

Using the relationship (7.47), the CDF becomes

a−1∑

x=0

(n
x

)

pxqn−x = Iq(n − a + 1, a). (7.41)

When both a and b are integers, this has a compact representation as

Ix(a, b) = 1 −
a−1∑

k=0

(a + b − 1
k

)

xk(1 − x)a+b−1−k
. (7.42)

The survival function of negative binomial distribution is related as follows

n∑

x=a

(n + x − 1
x

)

pnqx = Iq(a, n) = 1 − Ip(n, a). (7.43)

The relationship between the CDF of central F distribution and the IBF is

Fm,n(x) = Iy(m∕2, n∕2), (7.44)

where (m, n) are the numerator and denominator degrees of freedom (DoF) and
y = mx∕(n + mx). Similarly, Student’s T CDF is evaluated as

Tn(t) =
1
2

[

1 + sign(t) Ix

(1
2
,

n
2

)]

= 1
2

{

1 + sign(t) [1 − Iy

(n
2
,

1
2

)

]
}

(7.45)

where x = t2∕(n + t2) and y = n∕(n + t2), and sign(t) = +1 if t > 0, −1 if t < 0 and
is = 0 for t = 0.

The IBF is related to the tail areas of binomial, negative binomial, Student’s T,
and central F distributions [182]. It is also related to the confluent hypergeometric
function, generalized logistic distribution, the distribution of order statistics from uni-
form populations, and the Hotelling’s T2 statistic. The hypergeometric function can
be approximated using the IBF also [183]. The Dirichlet (and its inverse) distribution
can be expressed in terms of the IBF [184]. It is related to the cumulative distribu-
tion function (CDF) of noncentral distributions [7, 185–192] and the sample multiple
correlation coefficient [193, 194]. For instance, the CDF of singly noncentral beta
[179, 195], singly type-II noncentral beta, doubly noncentral beta [4], noncentral T
[188, 196], noncentral F [5, 197, 198], and the sample multiple correlation coefficient
[199, 200] could all be evaluated as infinite mixtures of the IBF.
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Definition 7.2 The IBF is the left-tail area of the beta distribution

Ix(a, b) = (1∕B(a, b))
∫

x

0
ta−1(1 − t)b−1dt, (a, b > 0) and 0 ≤ x ≤ 1, (7.46)

where B(a, b) is the CBF. Obviously, I0(a, b) = 0 and I1(a, b) = 1. Replace x by (1 −
x) and swap a and b to get a symmetric relationship.

Ix(a, b) = 1 − I1−x(b, a). (7.47)

This symmetry among the tail areas was extended by Chattamvelli [196] to noncentral
beta, noncentral Fisher’s Z, and doubly noncentral distributions.

If the CDF (left-tail area) of a type-II noncentral beta distribution is denoted
as Jx(a, b, 𝜆), then the tail areas are related as Jx(a, b, 𝜆) = 1 − I1−x(b, a, 𝜆), where
Iy(b, a, 𝜆) is the CDF of a type-I noncentral beta distribution. We write Ix(b) or I(x; b)
for the symmetric IBF Ix(b, b) [201, 202]. The parameters of an IBF can be any
positive real number. Simplified expressions exist when either of the parameters is an
integer or a half-integer. These representations have a broad range of applications to
evaluating or approximating other related distributions and test statistics mentioned
earlier.

The IBF has representations in terms of other special functions and orthogonal
polynomials [183, 202–205]. For example, it could be expressed in terms of hyper-
geometric series in the following form:

Ix(a, b) =
xa(1 − x)b−1

aB(a, b) 2F1(1 − b, 1; a + 1; −x∕(1 − x)), (7.48)

where 2F1 denotes the hypergeometric series.

7.6.2 Tables

Many tables for the IBF are available. See, for example, Soper [206], Pearson [207],
Aroian [203], Majumder and Bhattacharjee [208], and Boston and Battiste [209].

Random variate generation from beta distribution is accomplished using the rela-
tionship between the beta and gamma distributions. Hence, if two random numbers
are generated from Γ(1, a) and Γ(1, b), where a < b, then the beta variate is given by
B(a, b) = Γ(1, a)∕[Γ(1, a) + Γ(1, b)] [22].

7.7 GENERAL BETA DISTRIBUTION

General three parameter beta distribution is given by

fx(a, b, c) = (x∕c)a−1(1 − x∕c)b−1∕c B(a, b). (7.49)
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Figure 7.5 Standard arc-sine distribution.

The four-parameter beta distribution is obtained from the above-mentioned represen-
tation by the transformation y = (x − a)∕(b − a) to get the PDF

fx(a, b, c, d) =
Γ(c + d)

Γ(c)Γ(d)(b − a)c+d−1
(x − a)c−1(b − x)d−1. (7.50)

This has mean (ad + bc)∕(c + d) and variance 𝜎2 = cd(b − a)2∕[(c + d + 1)(c + d)2].
The location parameters are “a,”“b” and scale parameters are c and d. Coefficient of
skewness is 2cd(d − c)∕[(c + d)2(c + d)(3)[cd∕((c + d)(c + d)(2))]], where (c + d)(k)
is raising Pochhammer notation with (c + d)(3) = (c + d)(c + d + 1)(c + d + 2).
The mode is a(d−1)+b(c−1)

(c+d−2) for c not 1 and d not 1. See References 210 and 134.

7.8 ARC-SINE DISTRIBUTION

This is a special case of the beta distribution when a = 1∕2, b = 1∕2. The standard
arc-sine distribution (SASD) of first kind has support 0 < x < 1, is U-shaped and
symmetric around x = 1∕2 (see Figure 7.5). Its PDF is given by

f (x) =
⎧
⎪
⎨
⎪
⎩

1

𝜋

√
x(1 − x)

for 0 < x < 1

0 elsewhere.

To prove that this is indeed a PDF, put x = sin2(𝜃) so that dx = 2sin(𝜃)cos(𝜃)d𝜃
and 1 − x = 1 − sin2(𝜃) = cos2(𝜃). The denominator

√
x(1 − x) becomes
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√
sin2(𝜃)cos2(𝜃) = sin(𝜃) cos(𝜃). When x = 0, 𝜃 = 0 and when x = 1, 𝜃 = 𝜋∕2.

∫

+1

0

1

𝜋

√
x(1 − x)

dx =
∫

𝜋∕2

0
(2∕𝜋) sin(𝜃) cos(𝜃)d𝜃∕[sin(𝜃) cos(𝜃)] (7.51)

= (2∕𝜋)
∫

𝜋∕2

0
d𝜃 = (2∕𝜋)𝜃|𝜋∕2

0 = 1.

This shows that the above is indeed a PDF. Another form of the distribution called
arc-sine distribution of second kind has support −1 < x < 1 with PDF given by (see
Exercise 7.74, p. 331)

f (x) =
⎧
⎪
⎨
⎪
⎩

1

𝜋

√
(1 − x2)

for − 1 < x < 1

0 elsewhere.

To prove that this is a PDF, integrate over the range to get ∫ +1
−1 1∕

√
(1 − x2)dx =

sin−1x|+1
−1 = (3𝜋∕2) − (𝜋∕2) = 𝜋. The 𝜋 cancels out, showing that this is indeed

a PDF.

EXAMPLE 7.12 Moments of arc-sine distribution

Find the kth moment of arc-sine distribution of second kind

Solution 7.12 The kth moment is ( 1
𝜋
) ∫ +1

−1 xk∕
√
(1 − x2)dx. Put x = sin(𝜃)

so that dx = cos(𝜃)d𝜃 and
√
(1 − x2) =

√
1 − sin2(𝜃) = cos(𝜃). Thus

𝜇k =
1
𝜋
∫ 𝜋∕2
−𝜋∕2 sink

𝜃d𝜃. As sin(𝜃) is an odd function, the integral vanishes

when k is odd. When k is even, the integral becomes ( 1
𝜋
) ∫ 𝜋∕2

−𝜋∕2 sink
𝜃d𝜃 = ( 2

𝜋
)

∫ 𝜋∕2
0 sinp

𝜃d𝜃 where p = 2k. Using integration by parts, this reduces to

( 2
𝜋
)(
√
𝜋∕2)Γ((p + 1)∕2)∕Γ(p∕2 + 1) = (1∕

√
𝜋)Γ((2k + 1)∕2)∕Γ(k + 1). For

k = 1, this becomes (1∕
√
𝜋)Γ(3∕2) = 1∕2 using Γ(1∕2) =

√
𝜋.

The two-parameter arc-sine distribution (ASD) is obtained by putting y =
(x − a)∕b in the above as

f (x; a, b) =
⎧
⎪
⎨
⎪
⎩

b

𝜋

√
(x − a)(a + b − x)

for a < x < b

0 elsewhere.

It has mean = median = (a + b)∕2, variance (b − a)2∕8, skewness = 0, and excess
kurtosis −3∕2.
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TABLE 7.8 Properties of Arc-Sine Distribution

Property Expression Comments

Range of X 0 ≤ x ≤ 1 SASD-I; Continuous

Mean 𝜇 = 1∕2 = 0.50

Median 0.50 Mode ∈ {0, 1}
Variance 𝜎

2 = 1∕8 0.125

Skewness 𝛾1 = 0 Symmetric

Kurtosis 𝛽2 = 3∕2 Always platykurtic

Mean deviation E|X − 𝜇| = 1∕8

CV 1∕
√

2

CDF 2

𝜋
sin−1(

√
x) sin−1(x) + 𝜋∕2

Moments (1∕𝜋)B(k + 0.5, 0.5) 𝜇2k =
(

2k

k

)

(1∕2)2k

MGF et∕2I0(t∕2) Modified Bessel function

ChF e−t∕2I0(it∕2) 1F1(1∕2, 1; it)

Third column of CDF and moments line are for the other parametrization.

7.8.1 Properties of Arc-Sine Distribution

The SASD-I is a special case of beta type-I distribution. Put Y = X − 1
2

to get

f (y) = 1

𝜋

√
(y + 1∕2)(1∕2 − y)

, −1∕2 ≤ y ≤ 1∕2. (7.52)

As (1∕2 + y)(1∕2 − y) = (1∕4 − y2), the PDF becomes f (y) = (2∕𝜋)1∕
√
(1 − 4y2),

for −1∕2 ≤ y ≤ 1∕2. The CDF of SASD-I is

F(x) = 2
𝜋

sin−1(
√

x), 0 ≤ x ≤ 1. (7.53)

The mean is 0.5 and variance is 0.125 for the SASD. As the distribution is symmet-
ric, coefficient of skewness is zero. The kurtosis coefficient is 𝛽2 = 3∕2. Hence, it
is always platykurtic. Note that the density is maximum when x is near 0 or 1 with
the center as a cusp (U-shaped). Hence, there are two modes (bimodal) that are sym-
metrically placed in the tails. This is the reason why it is platykurtic. The central

moments of arc-sine distribution of second kind is 𝜇2k =
(

2k
k

)

(1∕2)2k. The MGF

is Mx(t) = et∕2I0(t∕2), where I0(x) is the modified Bessel function of first kind. The
two parameter ASD satisfies an interesting property:–If X ∼ ASD(a, b) then cX + d ∼
ASD(c ∗ a + d, c ∗ b + d). See References 121 and 134 for other relationships and
applications. See Table 7.8 for further properties.

EXAMPLE 7.13 Mean of arc-sine distributions

Find the mean of arc-sine distribution of first kind.
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Solution 7.13 E(X) = (1∕𝜋) ∫ 1
0 x∕
√

x(1 − x)dx. Put x = sin2(𝜃) as before so

that E(X) = (2∕𝜋) ∫ 𝜋∕2
0 sin2(𝜃)d𝜃. Put sin2(𝜃) = (1 − cos(2𝜃))∕2 and integrate

to get 2∕𝜋[(1∕2)𝜃|𝜋∕2
0 − (1∕4) sin(2𝜃)|𝜋∕2

0 ] = 2∕𝜋[𝜋∕4 − 0] = 1∕2.

This distribution is related to the beta distribution when a = 1∕2, b = 1∕2.

EXAMPLE 7.14 Mean deviation of arc-sine distribution

Find the mean deviation of the arc-sine distribution using Theorem 7.1.

Solution 7.14 We have seen earlier that the CDF is 2
𝜋

sin−1(
√

x). As the mean is
0.5, we get the MD using Theorem 7.1 as

MD = 2
∫

𝜇

ll
F(x)dx = 4

𝜋 ∫

.5

0
sin−1(

√
x)dx. (7.54)

Put
√

x = t so that dx = 2tdt. Adjust the upper limit of integration as

c =
√

0.5. This gives MD = 8
𝜋
∫ c

0 tsin−1(t)dt. Now use ∫ t sin−1(t)dt =
(2t2 − 1)∕4sin−1(t) + t

√
1 − t2∕4. The first term evaluates to zero, and we get

the MD as 1/8.

7.9 GAMMA DISTRIBUTION

The two parameter gamma distribution can be considered as a generalization of the
exponential distribution. Its PDF is given by

fx(𝜆,m) = 𝜆
mxm−1e−𝜆x∕Γ(m), x ≥ 0,m > 0, 𝜆 > 0. (7.55)

When m = 1, this reduces to the exponential distribution. Hence, it is con-
sidered a generalization of the exponential distribution. For m = 1∕2, we get
fx(𝜆,m) =

√
𝜆∕𝜋x e−𝜆x. The parameter 𝜆 is called scale parameter and m is the

shape parameter (see figure 7.8). A reparametrization as

f (x; 𝜆,m) = e−x∕𝜆xm−1∕[𝜆mΓ(m)] (7.56)

also exist. A change of scale transformation Y = 𝜆X (so that dy = 𝜆dx) in
equation (7.55) gives fy(m) = ym−1e−y∕Γ(m) given below. As this form is easier to
work with, it is extensively tabulated.
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7.9.1 Properties of Gamma Distribution

There are two parameters, both of which are real numbers. For 𝜆 = 1, we get the
one-parameter gamma distribution with PDF

f (x; m) = xm−1e−x∕Γ(m) for x > 0. (7.57)

For m an integer, this is called Erlang distribution. The coefficient of skewness and
kurtosis are 1∕

√
m and 3(1 + 2∕m), which are both independent of 𝜆. This distribu-

tion is always leptokurtic.

7.9.1.1 Additivity Property This distribution can be obtained as the sum of m inde-
pendent exponential variates with parameter 𝜆, resulting in GAMMA(m, 𝜆). If X and
Y are two independent gamma random variables with the same scale parameter 𝜆 and
shape parameters m1 and m2, respectively, their sum X + Y is distributed as gamma
with the same scale parameter and m1 + m2 as shape parameter. This result can be
generalized to any number of independent gamma variates as “the sum of m inde-
pendent gamma variates with shape parameters mi and the same scale parameter 𝜆 is
distributed as Gamma(

∑
imi, 𝜆), see Table 7.4 in page 269.”

7.9.1.2 Moments and Generating Functions The raw moments are easy to find
using gamma integral. Consider

E(Xk) =
∫

∞

0
𝜆

mxkxm−1e−𝜆x
.∕Γ(m) (7.58)

Using gamma integral, this becomes Γ(k + m)∕𝜆k+m. From this, we get the mean as
𝜇 = m∕𝜆 and variance 𝜎2 = m∕𝜆2 = 𝜇∕𝜆. This shows that the variance is more than
the mean for 𝜆 < 1 and vice versa. The characteristic function is

𝜙(t) = (𝜆m∕Γ(m))
∫

∞

0
xm−1e−x(𝜆−it)dx. (7.59)

Put Y = (𝜆 − it)X, so that dy = (𝜆 − it)dx. The range of integration remains the same
and we get

𝜙(t) = (𝜆m∕[Γ(m)(𝜆 − it)m])
∫

∞

0
ym−1e−ydy = (𝜆∕(𝜆 − it))m = (1 − it∕𝜆)−m

(7.60)
for t < 𝜆. By expanding this as an infinite series (see Chapter 6), we get
(1 − it∕𝜆)−m =

∞∑

k=0

(m + k − 1
k

)

(−it∕𝜆)k = 1 + (m∕𝜆)it + m(m + 1)∕[1 ∗ 2](it∕𝜆)2 + · · · . (7.61)
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7.9.2 Relationships with Other Distributions

The𝜒2 distribution is a special case of gamma distribution as𝜒2
n =GAMMA(n∕2,1∕2).

Symbolically, if X1,X2, · · · ,Xn are independent standard normal random vari-
ables, Y = X2

1 + · · · + X2
n ∼ GAMMA(n∕2, 1∕2). If X1 ∼ Gamma(a, b) and X2 ∼

Gamma(c, d), are independent, then X1∕(X1 + X2) is distributed as BETA-I. Inverse
gamma distribution is obtained by a simple change of variable Y = 1∕X as

fy(𝜆,m) = 𝜆
my−(m+1)e−𝜆∕y∕Γ(m), y ≥ 0,m > 0, 𝜆 > 0. (7.62)

Log-gamma distribution is the analog of LND in the Gamma case. The PDF is given
by

f (x) = ab∕Γ(b)(ln x)b−1x−a−1
. a > 1, b > 0. (7.63)

Boltzmann distribution in engineering is related to the gamma law. If the quantized
energies of a molecule in an ensemble are E1,E2, · · · ,En, the probability that a
molecule has energy Ei is given by C exp(−Ei∕(KT), where K is the Boltzmann con-
stant (gas constant divided by Avogadro number) and T is the absolute temperature.
The sum of the energies is gamma distributed when E′

i s are independent. See Table 7.9
for further properties. Estimating the median of gamma distributions is discussed in
Reference 211.

TABLE 7.9 Properties of Gamma Distribution (𝝀mxm−1e−𝝀x∕𝚪(m))

Property Expression Comments

Range of X x ≥ 0 Continuous
Mean 𝜇 = m∕𝜆
Median log(2)/ 𝜆
Mode (m − 1)∕𝜆
Variance 𝜎

2 = m∕𝜆2
𝜎

2 = 𝜇
2∕m = 𝜇∕𝜆

Skewness 𝛾1 = 2∕
√

m
Kurtosis 𝛽2 = 3(1 + 2∕m) Always leptokurtic

Mean deviation E|X − 𝜇| = 2mme−m
𝜆∕Γ(m) 2𝜆m∕Γ(m)

∫

m∕𝜆

0
Γ(x; 𝜆,m)dx

CV 1∕
√

m

CDF Γ(x; 𝜆,m) 𝜆
m

Γ(m) ∫

x

0
e−𝜆yym−1dy

Moments 𝜇
′
r = Γ(k + m)∕𝜆k+m

MGF [𝜆∕(𝜆 − t)]m
ChF [𝜆∕(𝜆 − it)]m

Replace 𝜆 by 1∕𝜆 for the alternate parametrization. 𝜎
2
> 𝜇

2 when m < 1.
𝜆

m

Γ(m) ∫
x

0 e−𝜆yym−1dy is called the incomplete gamma function. See References 211

and 212 for median estimates.
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7.9.3 Incomplete Gamma Function (IGF)

Definition 7.3 The left-tail area of gamma distribution is called the incomplete
gamma function. It is given by

P(x; 𝜆,m) = 𝜆
m

Γ(m) ∫

x

0
e−𝜆yym−1dy. (7.64)

As there are two parameters, a simple change of scale transformation mentioned
earlier can be made. This gives one-parameter gamma distribution. The function
Γ(m) = ∫ ∞

0 xm−1e−xdx is called the complete gamma function. When m is an integer,
the above-mentioned integral becomes Γ(m) = (m − 1)! When m is not an integer, we
get the recurrence Γ(m) = (m − 1) ∗ Γ(m − 1) using integration by parts. The integral
with and without the normalizing constant is denoted as 𝛾(x;m) =

∫

x

0
ym−1e−ydy = Γ(m) − Γ(x;m) and P(x, m) = 1

Γ(m) ∫

x

0
ym−1e−ydy. (7.65)

These satisfy the recurrence

𝛾(x;m + 1) = m ∗ 𝛾(x;m) − xme−x and P(x,m + 1) = P(x;m) − xme−x

Γ(m + 1)
.

Put y = x2 and m = 1 to get 𝛾(1, x2) = ∫
√

y

0 e−y2
dy. An approximate relation with

erfc() is available as 𝛾(x,m)∕Γ(m) ∼ 0.5 ∗ erfc(−K
√

m∕2), where K2 = 2(x∕m − 1 −
ln(x∕m)).

The CDF of gamma is a sum of Poisson probabilities when the shape parameter is
an integer: –Fx(m, p) = 1 −

∑p−1
k=0 e−𝜆x(𝜆x)k∕k!. The corresponding right-tail area is

denoted as P(x;m, p) = mp

Γ(p) ∫
∞

x e−mttp−1dt. Both of these are extensively tabulated.

For example, Pearson [207] tabulated the function I(x, p) = 1
Γ(p+1) ∫

x
√

p+1
0 e−ttpdt.

It has a representation in terms of confluent hypergeometric functions as
𝛾(x; 1, p) = (xp∕p)e−x

1F1(1, p + 1; x) = (xp∕p) 1F1(p, p + 1; −x) and error function
as 𝛾(x2; 1, 1∕2) = erf(x). See References 121, 213–216 for other properties and
relationships.

7.10 COSINE DISTRIBUTION

The PDF is given by

f (x; a, b) = 1
2b

cos((x − a)∕2b)), a − 𝜋b∕2 ≤ x ≤ a + 𝜋b∕2, b > 0 (7.66)

F(x) = 1
2

[
1 + sin((x − a)∕(2b))

]
. (7.67)
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TABLE 7.10 Properties of Cosine Distribution ( 1
4b

cos((x − a)∕2b))

Property Expression Comments

Range of X a − 𝜋b ≤ x ≤ a + 𝜋b Continuous; finite

Mean 𝜇 = a

Median a Mode = a

Variance 𝜎
2 = b2(𝜋2 − 8) c𝑣 = b

√
𝜋2 − 8
a

Skewness 𝛾1 = 0 Symmetric

Kurtosis 𝛽2 = 9 Always leptokurtic

MD b(𝜋 − 2)

CDF
1
2

[

1 + sin
x − a

2b

]

As this distribution is symmetric, the mean, median, and mode coincide at x = a,
which is the location parameter; and skewness is zero (Table 7.10). The variance
depends only on b and is given by 𝜎2 = b2[𝜋2 − 8]. Random sample generation: Gen-
erate U(−1, 1), then transform x = a + 2b sin−1(2U − 1) if u = [0, 1].

7.11 THE NORMAL DISTRIBUTION

The normal distribution is perhaps the most widely studied distribution in statistics.
It is known by the name Gaussian distribution in Engineering in honor of the German
mathematician Carl Friedrich Gauss (1777–1855). It has two parameters, which are
by convention denoted as 𝜇 and 𝜎 to indicate that they capture the location (mean)
and scale information. The PDF is

𝜙(x;𝜇, 𝜎) = 1

𝜎

√
2𝜋

e−
1
2
( x−𝜇
𝜎

)2
, −∞ < x < ∞, −∞ < 𝜇 < ∞, 𝜎 > 0. (7.68)

It is denoted by N(𝜇, 𝜎2), where the first parameter is always the population mean and
second parameter is the population variance. Some authors use the notation N(𝜇, 𝜎),
where the second parameter is the population standard deviation and Z(0, 1) for a
standard normal distribution. Even if the mean is zero, the first parameter should be
specified. Thus, N(0, 𝜎2) denotes a normal distribution with zero mean.

Any normal distribution (with arbitrary 𝜇 and 𝜎) can be converted into the standard
normal form N(0, 1) using the transformation Z = (X − 𝜇)∕𝜎. This is called “standard
normalization”. It is applicable for approximation due to central limit theorem, even
in nonnormal situations when the sample size is quite large. The reverse transforma-
tion is X = Z𝜎 + 𝜇. This shows that from the table of standard normal distribution,
we could obtain the tail areas of any other normal distribution.
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EXAMPLE 7.15 Probability of normal deviates

The radius of a batch of pipes is known to be normally distributed with mean 0.5
inch and variance 0.009. What proportions of a batch of 132 pipes have radius
more than 2 standard deviations in the higher side?

Solution 7.15 As radius ∼ N(0.5, 0.009), standard deviation is 0.0948683.
Standard normalize it to get Z = (X − 0.5)∕0.0948683. Area above 2 standard
deviations for N(0, 1) is 1 − 0.9772 = 0.0228. Thus, in a batch of 132 pipes, we
expect 132*0.0228 = ⌊3.0096⌋ = 3 pipes to have radius more than two standard
deviations.

7.11.1 Properties of Normal Distribution

The general normal distribution has two parameters, the second of which is positive
(the first parameter by convention is the mean 𝜇). The distribution is symmetric about
the mean with relatively shorter tails than Cauchy and T distributions (see Figures 7.6
and 7.7). When the mean 𝜇 = 0 and the variance 𝜎2 = 1, it is called the standard nor-
mal distribution, which is denoted by Z(0, 1) or simply by Z. The corresponding PDF
and CDF are denoted by 𝜙(x) and Φ(x). Owing to symmetry Φ(−c) = 1 − Φ(c) for
c > 0 and Φ(0) = 1∕2, so that median = mean = mode with modal value 1/[𝜎

√
2𝜋].

If c < d, the area from c to d can be expressed as Φ(d) − Φ(c).

7.11.1.1 Moments and Generating Functions As the distribution is symmetric,
all odd central moments are zeros. The even moments are given by

𝜇2k = (2k!)(𝜎2)k∕[2kk!]. (7.69)
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Figure 7.6 Normal versus Cauchy distributions.
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This can easily be proved using gamma integrals (see Exercise 7.34 in p. 285). The
mean deviation is 𝜎

√
2∕𝜋. The MGF is easily obtained as

Mx(t) = E(etx) =
∫

∞

−∞

1

𝜎

√
2𝜋

etxe−
1
2
((x−𝜇)∕𝜎)2 dx. (7.70)

Put z = (x − 𝜇)∕𝜎 in the above so that dz = dx∕𝜎 and x = 𝜇 + 𝜎z, to get

Mx(t) = (1∕
√

2𝜋)
∫

et(𝜇+𝜎z)e−z2∕2dz = et𝜇∕
√

2𝜋
∫

et𝜎z− 1
2

z2
dz. (7.71)
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TABLE 7.11 Properties of Normal Distribution( 1

𝝈

√
2𝝅

e−
1
2 (

x−𝝁
𝝈

)2 )

Property Expression Comments

Range of X −∞ < x < ∞ Continuous; infinite

Mean 𝜇

Median 𝜇 Mode = 𝜇
Variance 𝜎

2

Skewness 𝛾1 = 0 Symmetric

Kurtosis 𝛽2 = 3 For N(0,1)

Mean deviation E|X − 𝜇| = 𝜎

√
2∕𝜋 2

∫

𝜇

−∞
Φ(x)dx

CDF Φ((x − 𝜇)∕𝜎)
Absolute

Moments
E(|X|r) = (r − 1)!!𝜎r for r = 2k

√
2∕𝜋 2kk!𝜎r for r = 2k + 1

Moments 𝜇2r = 𝜎
2r(2r)!∕[2r r!] Even

MGF exp(t𝜇 + 1
2

t2
𝜎

2)

ChF exp(it𝜇 − 1
2

t2
𝜎

2)
Additivity IID X ∼ N(𝜇1, 𝜎

2
1 ) & Y ∼ N(𝜇2, 𝜎

2
2 ) X ± Y ∼ N(𝜇1 ± 𝜇2, 𝜎

2
1 + 𝜎

2
2 )

erf(z) = 1
√
𝜋
∫

z

0
e−x2∕2dx = 2

√
𝜋
∫

z

0
e−t2 dt.

Write the exponent as − 1
2
(z − t𝜎)2 + 1

2
t2
𝜎

2. As e
1
2

t2𝜎2
is constant, take it outside the

integral to get

et𝜇+ 1
2

t2𝜎2
(1∕
√

2𝜋)
∫

∞

−∞
e−(z−t𝜎)2∕2dz. (7.72)

As the integral evaluates to one, we get the desired result Mx(t) = et𝜇+ 1
2

t2𝜎2
. See

Table 7.11 for further properties.
The normal distribution is the basis of many procedures in statistical inference.

These include confidence intervals for unknown parameters, prediction intervals for
future observations, tests of various hypotheses, and estimation of parameters. Given
below is a theorem about the mean of a random sample from a normal population,
which is used in CI construction and tests about the mean.

Theorem 7.3 The sample mean xn of any sample of size n ≥ 2 from a normal
population N(𝜇, 𝜎2) is itself normally distributed as N(𝜇, 𝜎2∕n).

Proof: The easiest way to prove this result is using the MGF (or ChF) as follows. Let
Mx(t) be the MGF of a normal distribution (Chapter 8). Then Mx(t) = [Mx(t∕n)]n =
[e𝜇t∕n+ 1

2
(t∕n)2𝜎2

]n = en𝜇t∕n+ 1
2

n𝜎2(t∕n)2 = e𝜇t+ 1
2

t2(𝜎2∕n), which is the MGF of a normal
distribution with mean 𝜇 and variance 𝜎2∕n. This proves the result.
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EXAMPLE 7.16 Mean deviation of normal distribution

Find the mean deviation of the normal distribution using Theorem 7.1.

Solution 7.16 Let X ∼ N(𝜇, 𝜎2). As the normal distribution tails off to zero at
the lower and upper limits, equation (7.1) is applicable. This gives

MD = 2
∫

𝜇

ll
F(x)dx = 2

∫

𝜇

−∞
Φ(x)dx. (7.73)

Put z = (x − 𝜇)∕𝜎, so that dx = 𝜎dz. The lower limit remains the same, but the
upper limit in equation (7.73) becomes 0. Thus, we get

MD = 2𝜎
∫

0

−∞
Φ(z)dz. (7.74)

This integral can readily be evaluated using integration by parts. Put u = Φ(z)
and dv = dz, so that du = 𝜙(z). This gives

MD = 2𝜎

[

zΦ(z) ∣0−∞ −
∫

0

−∞
z𝜙(z)dz

]

= 2𝜎
∫

∞

0
z𝜙(z)dz. (7.75)

Substitute for 𝜙(z) = (1∕
√

2𝜋) exp(−z2∕2) and use ∫ ∞
0 z2n+1 exp(−z2∕2)dz =

n!2n. Then the integral becomes 1∕
√

2𝜋. Apply the constant 2𝜎 to get the

MD = 2𝜎 ∗ 1∕
√

2𝜋 = 𝜎

√
2∕𝜋. (7.76)

7.11.2 Transformations to Normality

Normality of parent population is a fundamental assumption in many statistical proce-
dures. For example, error terms in logistic and multiple regression are assumed to be
normally distributed with zero mean. Normality tests of the sample can reveal whether
the data came from a normal distribution or not. When the data are not normally dis-
tributed, a simple transformation may sometimes transform it to nearly normal form.
For instance, count data are usually transformed using the square root transformation,
and proportions are transformed using logit transformation as y = 1

2
log(p∕q) where

q = 1 − p.

7.11.3 Functions of Normal Variates

Any linear combinations of normal variates are normally distributed. Symbolically, if
X1,X2, · · · ,Xk are IID N(𝜇i, 𝜎

2
i ), then Y = ∓c1X1 ∓ c2X2 ∓ · · · ∓ ckXk =

∑k
i=1 ∓ciXi

is normally distributed with mean
∑k

i=1 ∓ci𝜇i and variance
∑k

i=1 c2
i 𝜎

2
i .

If X and Y are IID normal variates with zero means, then U = XY∕
√

X2 + Y2 is
normally distributed [217, 218]. In addition, if 𝜎2

x = 𝜎
2
y , then (X2 − Y2)∕(X2 + Y2) is
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TABLE 7.12 Area Under Normal Variates

Sigma Area Outside Sigma Area Outside
Level As % Range (ppm) Level As % Range (ppm)

∓1𝜎 68.26 317,400 ∓1.5𝜎 86.64 133,600
∓2𝜎 95.44 45,600 ∓2.5𝜎 98.76 12,400
∓3𝜎 99.74 2600 ∓3.5𝜎 99.96 400
∓4𝜎 99.99366 63.40 ∓5𝜎 99.9999426 0.574
∓6𝜎 99.9999998 0.002 >6𝜎 99.99999999 Negligible

also normally distributed. Product of independent normal variates has a Bessel-type
III distribution. The square of a normal variate is gamma distributed (of which 𝜒2

is a special case). In general, if X1,X2, · · · ,Xk are IID N(0, 𝜎2), then
∑k

i=1 X2
i ∕𝜎

2 is
𝜒

2
k distributed. As shown in page 276, if Z1 = X2

1∕(X
2
1 + X2

2),Z2 = (X2
1 + X2

2)∕(X
2
1 +

X2
2 + X2

3), and so on, Zj =
∑j

j=1 X2
i ∕
∑j+1

i=1 X2
i , then each of them are BETA-I dis-

tributed, as also the product of any consecutive set of Z′
j s are beta distributed [171].

Normal distribution is also related to Student’s T, Snedecor’s F, and Fisher’s Z dis-
tributions [219].

EXAMPLE 7.17 Probability P(X ≤ Y) for two populations N(𝜇, 𝜎2
i )

If X and Y are independently distributed as N(𝜇, 𝜎2
i ), for i = 1, 2 find the proba-

bility P[X ≤ Y].

Solution 7.17 As X and Y are IID, the distribution of X − Y is N(0, 𝜎2
1 + 𝜎2

2 ).
Hence P[X ≤ Y] = P[X − Y ≤ 0] = Φ(0) = 0.5, irrespective of the variances.

7.11.4 Relation to Other Distributions

If X and Y are independent normal random variables, then X∕Y is Cauchy distributed.

This is proved in Chapter 10. If X is chi distributed (i.e.,
√

𝜒
2
m) and Y is independently

distributed as BETA((b − 1)∕2, (b − 1)∕2), then the product (2 ∗ Y − 1) ∗ X is dis-
tributed as N(0, 1) [220]. There are many other distributions that tend to the nor-
mal distribution under appropriate limits. For example, the Binomial distribution
tends to the normal curve when the sample size n becomes large. The convergence
is more rapid when p → 1∕2 and n is large. The lognormal and normal distributions
(Section 7.14, p. 297) are related as follows: If Y = log(X) is normally distributed,
then X has LND. The LND can be obtained from a normal law using the transforma-
tion X = eY (p. 298).

7.11.4.1 Tail Areas The CDF of standard normal distribution is given by

Fz(z0) = Φ(z0) =
1
√

2𝜋 ∫

z0

−∞
e−z2∕2dz. (7.77)
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This can be approximated as Φ(z) = 0.5 + (1∕
√

2𝜋)(z − z3∕6 + z5∕40 − ... = 0.5 +
(1∕
√

2𝜋)
∑∞

k=0 (−1)kz2k+1∕[(2k + 1)k!2k]. Because of the symmetry of the normal
curve, the CDF is usually tabulated from 0 to some specified value x. The area of the
normal curve from 0 to z is called the error function

erf(z) = 1
√
𝜋
∫

z

0
e−x2∕2dx = 2

√
𝜋
∫

z

0
e−t2 dt. (7.78)

Using a simple change of variable, this can be expressed in terms of the incomplete
gamma integral as

√
𝜋𝛾(1∕2, z2). The complement of the above-mentioned integral is

denoted by erfc(z). The erf(z) can be expressed in terms of confluent hypergeometric
functions as

erf(z) = 2z
√
𝜋

1F1(1∕2, 3∕2,−z2) = 2z
√
𝜋

e−z2

1F1(1, 3∕2, z2). (7.79)

When the ordinate is in the extreme tails, another approximation as Φ(−x) =

𝜙(x)
x

(1 − 1∕x2 + 3∕x4 − · · · + (−1)n3 ∗ 5 ∗ · · · (2n − 1)∕x2n) (7.80)

can be used. Replace −x by +x to get an analogous expression for right-tail areas.
Scaled functions of the form C ∗ e−dx2

are quite accurate to approximate the tail
probabilities. The error function erf(z) has an infinite series expansion as

erf(z) = 2
√
𝜋
∫

z

0
e−t2 dt = 2

√
𝜋

e−z2
∞∑

k=0

2kz2k+1∕[1.3. · · · (2k + 1)]. (7.81)

This series is rapidly convergent for small z values. See References 134 and 221.

7.11.4.2 Additivity Property As mentioned in Section 7.11.3, linear combinations
of IID normal variates are normally distributed. If X ∼ N(𝜇1, 𝜎

2
1 ) and Y ∼ N (𝜇2, 𝜎

2
2)

are independent, then X ± Y ∼ N(𝜇1 ± 𝜇2, 𝜎
2
1 + 𝜎2

2 ). This is an important point in
practical experiments, where results from two or more processes that are independent
and normally distributed need to be combined.

EXAMPLE 7.18 Linear combination of IID normal variates

X ∼ N(10, 3),Y ∼ N(15, 6), and Z ∼ N(9, 2.5), find the mean and variance of the
following functions: (i) U = X − 2Y + 3Z and (ii) V = 2X − 1.2Y − Z.

Solution 7.18 Use the linear combination property to get E(U) = 10 − 2 ∗ 15 +
3 ∗ 9 = 37 − 30 = 7, Var(U) = 3 + 6 + 2.5 = 11.5 so that U ∼ N(7, 49.5) In the
second case, E(V) = 2 ∗ 10 − 1.2 ∗ 15 − 9 = −7 and Var(V) = 4 ∗ 3 + 4 ∗ 6 +
9 ∗ 3.5 = 23.14.
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7.11.5 Algorithms

Random variate generation: If x is uniform in the interval [0,1] then z =√
−2 log x cos(2𝜋x) is distributed as standard normal. This is known as Box–Muller

method [22, 222].

EXAMPLE 7.19 Truncated normal distribution PDF

Prove that the PDF of an asymmetrically truncated normal distribution with trun-
cation points a and b is

f (x;𝜇, 𝜎, a, b) = 1
𝜎
𝜙((x − 𝜇)∕𝜎)∕[Φ((b − 𝜇)∕𝜎) − Φ((a − 𝜇)∕𝜎)] for a < x < b.

Solution 7.19 As the truncation point is asymmetric, the area enclosed is
∫ b

a 𝜙((x − 𝜇)∕𝜎)dx. Put z = (x − 𝜇)∕𝜎, so that dz = dx∕𝜎. The limits are
changed as (a − 𝜇)∕𝜎 and (b − 𝜇)∕𝜎. Thus

∫

b

a
𝜙((x − 𝜇)∕𝜎)dx = 𝜎

∫

(b−𝜇)∕𝜎

(a−𝜇)∕𝜎
𝜙(z)dz = 𝜎[Φ((b − 𝜇)∕𝜎) − Φ((a − 𝜇)∕𝜎)].

(7.82)
Dividing by this quantity gives the PDF as desired.

7.12 CAUCHY DISTRIBUTION

The Cauchy distribution is named after the French mathematician A. L.
Cauchy(1789–1857), although it was known to Fermat and Newton much earlier. It
is symmetric, unimodal and has the general PDF

f (x; a, b) = 1∕[b𝜋[1 + (x − a)2∕b2]] a, b > 0, −∞ < x < ∞. (7.83)

The location parameter is “a” and scale parameter is “b.” The standard Cauchy dis-
tribution (SCD) is obtained from the above by putting a = 0 and b = 1:–

f (x) = 1
𝜋

1
1 + x2

, −∞ < x < ∞. (7.84)

The CDF of SCD is

F(x; a, b) = 1∕2 + (1∕𝜋) tan−1x (7.85)

and that of general Cauchy distribution is given by Fx(a, b) =

1
𝜋 ∫

x

−∞

dx
[b𝜋[1 + (x − a)2∕b2]]

= 1
2
+ sign(x − a) (1∕𝜋) tan−1

(x − a
b

)

. (7.86)

From this, the inverse CDF follows as a + b[tan (𝜋(u − 0.5))].
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TABLE 7.13 Properties of Cauchy Distribution (1∕[b𝝅[1 + (x − a)2∕b2]])

Property Expression Comments

Range of X −∞ < x <∞ Continuous; infinite
Mean 𝜇 = does not exist
Median a Mode = a
Variance 𝜎

2 = does not exist
Skewness 𝛾1 = 0 Symmetric
Kurtosis 𝛽2 = 9 Always leptokurtic
Mean deviation Does not exist

CDF
1
2
+ 1
𝜋

tan−1((x − a)∕b)
Moments Does not exist
Q1 = a − b Q3 = a + b
ChF exp(ita − |t|b)

7.12.1 Properties of Cauchy Distribution

As the integral ∫ ∞
−∞ x∕(1 + x2)dx does not exist, the mean is undefined. The limiting

value 1
𝜋

Lt
R → ∞ ∫ R

−R
x

1+x2 dx is zero. The characteristic function is

𝜙(t) = 1
𝜋 ∫

∞

−∞

eitx

1 + x2
dx = 2

𝜋 ∫

∞

0

cos(tx)
1 + x2

dx = e−|t|. (7.87)

Median and mode of the general Cauchy distribution coincide at x = a, with modal
value 1∕(b𝜋). If the distribution is truncated in both tails at x = c, the resulting PDF
is 1

2 tan−1(c)
1

1+x2 for −c ≤ x ≤ +c. This has mean 0 and variance c∕tan−1(c) − 1. See
Table 7.13 for further properties.

7.12.2 Functions of Cauchy Variate

If X1,X2, · · ·Xn are independent Cauchy distributed random variables, then
X = (X1 + X2 + · · · + Xn)∕n is also distributed as Cauchy. An implication of this
result is that the Cauchy mean does not obey the central limit theorem or the law
of large numbers (the law of large numbers states that Sn∕n for SCD converges to
𝜇 in probability, and the CLT states that the distribution of Sn∕n tends to N(0, 1) as
n → ∞).

Cauchy distribution is related to the uniform distribution U(0, 1) through the tan-
gent function tan(𝜋𝜃). More precisely, if U ∼ U(0, 1), then tan(𝜋U) has a Cauchy dis-
tribution. This allows us to find tangent functions of Cauchy distributed variates like
2X∕(1 − X2), (3X − X3)∕(1 − 3X2), (4X − X4)∕(1 − 6X2 + X4), and so on, which are,
respectively, tan(2X), tan(3X), tan(4X), and so on. These are all Cauchy distributed
[223–225]. If X and Y are IID Cauchy variates, (X − Y)∕(1 − XY) and (X − 1)∕(X + 1)
are identically distributed. It satisfies an additivity property: If X1 ∼ Cauchy(0, b1)
and X2 ∼ Cauchy(0, b2) are independent, then X1 + X2 ∼ Cauchy(0, b1 + b2).
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7.12.3 Relation to Other Distributions

The Student’s T distribution with 1 DoF is identically Cauchy distribution. If Z is
Cauchy distributed, then (a + bZ) is Cauchy distributed.

Many other similar relationships can be found in Arnold [224].

7.13 INVERSE GAUSSIAN DISTRIBUTION

This is also called Wald’s distribution (see Figure 7.9). The PDF takes many forms

f (x, 𝜇, 𝜆) =
√
𝜆∕2𝜋x3 exp { − 𝜆

2𝜇2x
(x − 𝜇)2}, for x > 0, 𝜇, 𝜆 > 0. (7.88)

Expand (x − 𝜇)2 as a quadratic and divide each term by 𝜇x to get

f (x, 𝜇, 𝜆) =
√
𝜆∕2𝜋x3 exp { − 𝜆

2𝜇
(x∕𝜇 − 2 + 𝜇∕x)}, for x > 0, 𝜇, 𝜆 > 0. (7.89)

Take the constant in the exponent as a separate multiplier and put 𝜆∕𝜇 = 𝛿 to get
another form

f (x, 𝜇, 𝛿𝜇) =
√
𝛿𝜇∕2𝜋x3 exp(𝛿) exp { − 𝛿

2
(x∕𝜇 + 𝜇∕x)}, for x > 0, 𝜇, 𝛿 > 0.

(7.90)
The CDF is expressible in terms of the standard normal CDF as

F(x, 𝜇, 𝜆) = Φ

(√
𝜆

x

[
x
𝜇
− 1

])

+ e2𝜆∕𝜇Φ

(

−
√
𝜆

x

[
x
𝜇
+ 1

])

. (7.91)
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Figure 7.9 Inverse Gaussian distributions.
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7.13.0.1 Properties of IGD Multiply equation (7.90) by eitx and integrate over the
range to get

𝜙(t) = exp

(
𝜆

𝜇
{1 − (1 − (2i𝜇2t∕𝜆)1∕2}

)

= exp(𝛿{1 − (1 − (2i𝜇t∕𝛿)1∕2}). (7.92)

The mean is 𝜇, but the mode depends on both 𝜇, 𝜆 as 𝜇((1 + 9∕(4𝛿2))1∕2 − 3∕(2𝛿))
where 𝛿 = 𝜆∕𝜇. The variance also depends on both 𝜇, 𝜆 as 𝜎2 = 𝜇

3∕𝜆 = 𝜇
2∕𝛿. The

coefficient of skewness is 3
√
𝜇∕𝜆 so that a practitioner can choose between a variety

of distributional shapes. The mean deviation is given by

MD = 2
∫

𝜇

0
{Φ(
√
𝜆∕x[x∕𝜇 − 1]) + e2𝜆∕𝜇Φ(−

√
𝜆∕x[x∕𝜇 + 1])}dx. (7.93)

This can be simplified as given in table 7.14. Linear combinations of IGD are IGD
distributed (see summary table 7.4 (p. 297)). In particular, if Xi’s are IGD(𝜇i, 𝜆i) then
∑n

i=1 𝜆i∕𝜇2
i Xi is IGD(

∑n
i=1 𝜆i∕𝜇i, (

∑n
i=1 𝜆i∕𝜇i)2). The kurtosis is 3 + 15(𝜇∕𝜆) show-

ing that it is always leptokurtic. Writing the exponent as ( x−𝜇
𝜇
)2 = ( x

𝜇
− 1)2 and letting

𝜇 → ∞ this becomes (−1)2 = 1. The resulting distribution is called one-parameter
IGD:–

f (x, 𝜆) =
√
𝜆∕2𝜋x3 exp { − 𝜆∕(2x)}. (7.94)

7.13.1 Relation to Other Distributions

If X ∼ IGD(𝜇, 𝜆) then Y = 𝜆(X − 𝜇)2∕(𝜇2X) has chi-square distribution. If
𝜆 is held constant and 𝜇 → ∞, IGD(𝜇, 𝜆) approaches a gamma distribution
GAMMA(𝜆∕2, 1∕2). When 𝜇 = 1, the CDF can be expressed in terms of standard
normal CDF as

Fx(𝛿) = Φ((x − 1)
√
𝛿∕x) + e2𝛿 Φ(−(x + 1)

√
𝛿∕x). (7.95)

See Reference 226 for other approximations.
The moments and inverse moments are related as E(X∕𝜇)−r = E(X∕𝜇)r+1, where

negative index denotes inverse moments. See Table 7.14 for further properties.

7.14 LOGNORMAL DISTRIBUTION

LND arises in a variety of applications. For example, rare-earth elements and radioac-
tivity, micro-organisms in closed boundary regions, solute mobility in plant cuticles,
pesticide distribution in farm lands, time between infection and appearance of symp-
toms in certain diseases, file sizes on hard disks, and so on follow approximately
the LND. It also has applications in insurance and economics. It is the widely used
parametric model in mining engineering for low-concentration mineral deposits.

It is obtained from the normal distribution 1
√

2𝜋
e−x2∕2 using the transformation y =

ex or equivalently x = log(y). This means that the transformed variate is lognormally
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TABLE 7.14 Properties of IGD (
√
𝜹𝝁∕2𝝅x3 exp(𝜹) exp { − 𝜹

2
(x∕𝝁+ 𝝁∕x)})

Property Expression Comments

Range of X x ≥ 0 continuous; Infinite

Mean 𝜇

Median log(2)/ 𝜆

Variance 𝜎
2 = 𝜇

3∕𝜆 = 𝜇
2∕𝛿 𝛿 = 𝜆∕𝜇

Mode 𝜇((1 + 9∕(4𝛿2))1∕2 − 3∕(2𝛿)) symmetric tail
areas are used in
6-sigma rule
(table 7.12)

Skewness 𝛾1 = 3∕
√
𝛿

Kurtosis 𝛽2 = 3 + 15∕𝛿 Always leptokurtic

Mean deviation E|X − 𝜇| = 4 exp(2𝜆∕𝜇)Φ(−2
√
𝜆∕𝜇)

CV 1/
√
𝛿 𝛿 = 𝜆∕𝜇

CDF Φ

(√
𝜆

x

[
x
𝜇
− 1

])

+ e2𝜆∕𝜇Φ

(

−
√
𝜆

x

[
x
𝜇
+ 1

])

Cumulants 𝜅r = 1.3.5 · · · (2r − 3)𝜇2r−1∕𝜆r−1 r ≥ 2

MGF exp(𝛿(1 − (1 − 2𝜇2t∕𝜆)1∕2))
CGF 𝛿(1 − [1 + 2𝜇2it∕𝜆]1∕2)
ChF exp(𝛿(1 − (1 − 2𝜇2it∕𝜆)1∕2))

Additivity Xi ∼IG(𝜇, 𝜆) ⇒
∑

i

Xi ∼IG(n𝜇, n2
𝜆)

Xi ∼IG(𝜇i, 𝜇
2
i ) ⇒

∑

i

Xi ∼IG

(
∑

i

𝜇, 2

(
∑

i

𝜇
2

))

Xi ∼IG(𝜇, 𝜆) ⇒ x ∼IG(𝜇, n𝜆)

Approaches normality as 𝜆→ ∞, otherwise it is skewed. The cumulant generating function of IG(𝜇, 𝜆) is
the inverse of the CGF of normal distribution.

distributed. It is important to remember that if X is normally distributed, log(X) is not
lognormal (a normal variate extends from −∞ to ∞, but logarithm is undefined for
negative argument). This gives 𝜕x∕𝜕y = 1∕y, so that the PDF of standard lognormal
distribution becomes

fy(0, 1) =
1

√
2𝜋 y

e−(ln y)2∕2
, 0 ≤ y < ∞. (7.96)

The general form of the lognormal distribution is easily obtained as

fy(𝜇, 𝜎2) = 1
√

2𝜋 𝜎y
e−(ln y−𝜇)2∕(2𝜎2)

. (7.97)
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Figure 7.10 Lognormal distributions.

Here, 𝜇 and 𝜎2 are not the mean and variance of lognormal distribution but that of the
underlying normal law (from which LND is obtained by the transformation y = ex).
Tail probabilities can be easily evaluated using the CDF of a normal distribution. For
instance, if Y ∼ lognormal(0,1) then P[Y > y0] = Pr[Z > ln(y0)] = 1 − Φ(ln(y0)).

7.14.1 Properties of Lognormal Distribution

This distribution and IG distribution are somewhat similar shaped for small parameter
values (Figure 7.10). The CDF can be expressed in terms of erf() function as

F(x) = 1
2

erfc((𝜇 − ln (x))∕𝜎
√

2) = Φ((ln (x) − 𝜇)∕𝜎). (7.98)

From this, it is easy to show that the area from the mode to the mean of an LND is
Φ(𝜎) − Φ(−𝜎), where Φ() denotes the CDF of standard normal. This result can be
used to characterize lognormal distributions.

The quantiles of standard normal and lognormal are related as Qp(x) = exp(𝜇 +
𝜎Zp(z)), where Zp denotes the corresponding quantile of standard normal variate.
Replace p by p + 1 and divide by the above-mentioned expression to get

Qp+1(x) = Qp(x) exp(𝜎(Zp+1(z) − Zp(z))). (7.99)

The sum of several independent LNDs can be approximated by a scaled LND. A
first-order approximation can be obtained by equating the moments of linear com-
bination with target lognormal distribution as done by Patnaik [198] for noncentral
𝜒

2 distribution. As the cumulants of LND are more tractable, we could equate the
cumulants and obtain a reasonable approximation. There are many other approaches
for this purpose. See, for example, References 227–229, and so on.
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EXAMPLE 7.20 Mode of lognormal distribution

Prove that LND is unimodal with the mode at exp(𝜇 − 𝜎2). What is the modal
value?

Solution 7.20 Consider the PDF (7.97). To find the maximum, we take
log first, as the maximum of f (x) and log(f (x)) are the same. This gives
log(fy(𝜇, 𝜎2)) = K − log(y) − (log y − 𝜇)2∕(2𝜎2), where K is a constant. Differ-
entiate with respect to y and equate to zero to get −1∕y − (log y − 𝜇)∕(y𝜎2) = 0.
Cross-multiply and solve for y to get (log y − 𝜇) = −𝜎2 or equivalently
log(y) = 𝜇 − 𝜎2. Exponentiate both sides to get the result y = exp(𝜇 − 𝜎2). Put
the value in equation (7.97) to get the modal value 1

√
2𝜋𝜎 exp(𝜇−𝜎2)

e−(𝜇−𝜎
2−𝜇)2∕(2𝜎2).

This simplifies to 1
√

2𝜋𝜎 exp(𝜇−𝜎2)
e−𝜎

2∕2.

7.14.2 Moments

The mean is 𝜇 = e𝜇+
1
2
𝜎

2
and variance 𝜎2 = e2𝜇+𝜎2 (e𝜎2 − 1) = e2𝜇

𝜔(𝜔 − 1) where
𝜔 = e𝜎

2
. The ratio 𝜇∕𝜎2 simplifies to (e𝜎

2 − 1). While the variance of the general
normal distribution is given by a single-scale parameter 𝜎2, the variance of lognor-
mal distribution depends on both the location and scale parameters 𝜇 and 𝜎2. As this
distribution in the “logarithmic scale” reduces to the normal law, many of the addi-
tive properties of the normal distribution have multiplicative analogs for the LND.
For example, the additive form of the central limit theorem that asserts that the mean
of a random sample tends to normality for increasing values of n can be stated for
LN() as follows: If X1,X2, · · · ,Xn are independent lognormal random variables with
finite E(log(Xi)), then Z = (log(Sn) − n ∗ E[log(Xi)])∕( n ∗ Var(log(Xi)))1∕2 asymp-
totically approaches normality, where Sn is the product of the X′

i s. See Table 7.15 for
further properties.

EXAMPLE 7.21 Mean deviation of lognormal distribution

Find the mean deviation of LND using Theorem 7.1.

Solution 7.21 Let X∼LN(𝜇, 𝜎2). As the lognormal distribution tails off to zero
at the lower and upper limits, equation (7.1) is applicable. This gives

MD = 2
∫

𝜇
′

ll
F(x)dx = 2

∫

c

0
Φ((ln(x) − 𝜇)∕𝜎)dx, where c = e𝜇+

1
2
𝜎

2
. (7.100)

Put z = ((ln(x) − 𝜇 − 𝜎2∕2), so that dx = ez+𝜇+𝜎2∕2dz. The lower limit in
equation (7.100) becomes −∞, and the upper limit is 0 because ln(c) = 𝜇 + 1

2
𝜎

2.
Thus, we get MD =

2
∫

0

−∞
Φ(z∕𝜎 + 𝜎∕2)ez+𝜇+𝜎2∕2dz = 2e𝜇+𝜎

2∕2

∫

0

−∞
ezΦ(z∕𝜎 + 𝜎∕2)dz. (7.101)
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TABLE 7.15 Properties of Lognormal Distribution

Property Expression Comments

Range of X 0 ≤ x <∞ Continuous

Mean 𝜇 = e
𝜇+

1
2
𝜎

2

Median = e𝜇

Mode exp(𝜇 − 𝜎2) Mode<median<mean

Variance e2𝜇+𝜎2 (e𝜎2 − 1) e2𝜇
𝜔(𝜔 − 1) where 𝜔 = e𝜎

2

Skewness 𝛾1 =
√
𝜔 − 1(𝜔 + 2) Approximately symmetry as

𝜎 → 0

Kurtosis (𝛽2) (𝜔 − 1)[𝜔2(𝜔 + 3) + 6(𝜔 + 1)]

Mean deviation 2e𝜇+𝜎
2∕2[2Φ(𝜎∕2) − 1] 2e𝜇+𝜎

2∕2erf(𝜎∕(2
√

2))

CV
√
(𝜔 − 1)

CDF
∫

log(x)

0

1

𝜎

√
2𝜋

e
−

1
2
( x − 𝜇
𝜎

)2
dx

Moments 𝜇
′
k = exp(k𝜇 + k2

𝜎
2∕2)

∗Log-normal (
∏

) (𝜇1, 𝜎
2
1 ), (𝜇2, 𝜎

2
2 ) 𝜇1 + 𝜇2, 𝜎

2
1 + 𝜎

2
2 product XY

∗Log-normal (ratio) (𝜇1, 𝜎
2
1 ), (𝜇2, 𝜎

2
2 ) 𝜇1 − 𝜇2, 𝜎

2
1 + 𝜎

2
2 ratio X/Y

The product and ratio of two independent log normal variates are log normal with the parameters
as shown. Similarly, the geometric mean of n IID lognormal variates is lognormally distributed. The
mean-median-mode inequality is mode<median<mean.

Take u = Φ(z∕𝜎 + 𝜎∕2) and dv = ezdz so that 𝑣 = ez, and du = (1∕𝜎) 𝜙(z∕𝜎 +
𝜎∕2). Apply integration by parts to equation (7.101) to get MD =

2e𝜇+𝜎
2∕2

[

Φ(z∕𝜎 + 𝜎∕2)ez ∣0−∞ −
∫

0

−∞
ez(1∕𝜎) 𝜙(z∕𝜎 + 𝜎∕2)dz

]

. (7.102)

The first expression in equation (7.102) isΦ(𝜎∕2) asΦ(−∞) = e−∞ = 0. To eval-
uate the second expression, we use − ∫ a

b f ()dx = ∫ b
a f ()dx, expand 𝜙() and write

it as

∫

∞

0
ez(1∕𝜎) 𝜙(z∕𝜎 + 𝜎∕2)dz = (1∕𝜎

√
2𝜋)

∫

∞

0
exp(z − 1

2
(z∕𝜎 + 𝜎∕2)2)dz.

Expand the quadratic and combine the exponent as z − 1
2
(z∕𝜎 + 𝜎∕2)2 =

− 1
2
(z2∕𝜎2 − z + 𝜎2∕4) = − 1

2
(z∕𝜎 − 𝜎∕2)2. This gives the above integral as

(1∕𝜎
√

2𝜋)
∫

∞

0
exp(−1

2
(z∕𝜎 − 𝜎∕2)2)dz. (7.103)
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Now put (z∕𝜎 − 𝜎∕2) = 𝑣 so that dz = 𝜎dv. The upper limit remains the same,
but the lower limit becomes −𝜎∕2. Upon substitution, the 𝜎 cancels out from the
numerator and denominator and equation (7.103) becomes

(1∕
√

2𝜋)
∫

∞

−𝜎∕2
exp(−𝑣2∕2)dv = 1 − Φ(−𝜎∕2). (7.104)

Substitute in equation (7.102) to get the MD as

MD = 2 e𝜇+𝜎
2∕2[Φ(𝜎∕2) + 1 − Φ(−𝜎∕2)]. (7.105)

Divide the area under the normal curve from −∞ to −𝜎∕2,−𝜎∕2 to +𝜎∕2, and
from +𝜎∕2 to +∞. We notice that as the total area is unity, the expression (7.105)
is simply the middle area from−𝜎∕2 to+𝜎∕2. Hence, it becomes 2∗ Φ(𝜎∕2) − 1.
Substitute for the bracketed expression to get the MD as

MD = 2 e𝜇+𝜎
2∕2[2 ∗ Φ(𝜎∕2) − 1]. (7.106)

EXAMPLE 7.22 Geometric mean of IID lognormal variates

If X1,X2, · · · ,Xn are independent lognormal random variables LN(𝜇, 𝜎2), find
the distribution of the GM = (X1 ∗ · · · ∗ Xn)1∕n.

Solution 7.22 As Xi is LND, log(Xi) are normally distributed. Taking log gives
Y = log(GM) = (log(X1) + · · · + log(Xn))∕n. Each component in this expression
is normal N(𝜇, 𝜎2), so that Y is N(𝜇, 𝜎2∕n). Taking the inverse transformation
X = ey shows that GM is lognormal LN(𝜇, 𝜎2∕n).

7.14.2.1 Partial Expectation of Lognormal Distribution The partial expectation
of LND has applications in economics, finance, and insurance. It is defined as

g(k) =
∫

∞

k
xf (x;𝜇, 𝜎2)dx = e𝜇+𝜎

2∕2[Φ([𝜇 + 𝜎2 − ln(k)]∕𝜎)]. (7.107)

Consider the survival function form (7.9) of MD as

E|x − 𝜇| = 2
∫

ul

𝜇

S(x)dx (7.108)

Take u = S(x), and dv = dx so that du = −f (x), and we get

E|x − 𝜇| = 2

(
[
xS(x) ∣∞

𝜇

]
+
∫

∞

𝜇

xf (x)dx

)

. (7.109)
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Using L’Hospital’s rule, the first expression inside the bracket reduces to −𝜇S(𝜇).
Divide throughout by 2 and rearrange equation (7.109) to get

∫

∞

𝜇

xf (x)dx = E|x − 𝜇|∕2 + 𝜇S(𝜇). (7.110)

Depending on whether k < 𝜇 or k > 𝜇, the integral between them can be expressed
in terms of Φ(). This shows that the partial expectation of LND is related to the MD
through the SF value at 𝜇.

7.14.3 Fitting Lognormal Distribution

We have seen earlier that the mean E(X) = e𝜇+
1
2
𝜎

2
and Variance V(X) = e2𝜇+𝜎2 (e𝜎2 −

1). Take log and solve for 𝜇 and 𝜎2 to get 𝜇 = ln(E(X)) − 0.5*ln(1+ (Var(X)∕E(X)2)),
and 𝜎2 = ln(1+(Var(X)∕E(X)2)). If the sample size is sufficiently large, we could
replace E(X) by the sample mean xn, and Var(X) by s2

n, and obtain estimates of the
unknown parameters.

7.15 PARETO DISTRIBUTION

This distribution is named after the Italian economist Vilfredo Pareto (1848–1923),
who studied the income distribution of populace during his lifetime. The PDF is
ckcx−(c+1) where x ≥ k, c > 0 are constants [230]. For income and wealth distribu-
tions, the constant c is greater than 1 (and near 2.0 in developed countries).

7.15.1 Properties of Pareto Distribution

The survival function of this distribution takes the simple form S(x) = (k∕x)c. The
median is given by k21∕c and coefficient of variation is 1∕

√
c(c − 2), which is inde-

pendent of k.

7.15.1.1 Moments and Generating Functions The ordinary and inverse moments
are easy to find. Moments higher than c do not exist.

EXAMPLE 7.23 Moments of Pareto distribution

Prove that the rth moment of Pareto distribution is 𝜇r = c ∗ kr∕(c − r) for
r < c.

Solution 7.23 As the range of x is from k to ∞, we have

𝜇
′
r = ckc

∫

∞

k
xr∕xc+1dx = ckc

∫

∞

k
xr−c−1dx = ckc∕(r − c)xr−c||∞k . (7.111)
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As the integrand is a power of x, it converges for r < c to get ckc∕(r − c)(0 −
kr−c). The kc cancels out giving 𝜇r = c ∗ kr∕(c − r). Take c as a common factor
from denominator to get 𝜇r = kr(1 − r∕c)−1. This gives the recurrence relation
𝜇r+1 = 𝜇r ∗ k ∗ (c − r)∕(c − r − 1). From this, the mean and variance are easily
obtained as 𝜇 = kc∕(c − 1), 𝜎2 = k2c∕[(c − 1)2(c − 2)]. The generalized Pareto
distributions are obtained by change of origin and scale transformation. This has
CDF 1 − (k∕(x + b))c and mode k. Median is k ∗ 21∕c.

EXAMPLE 7.24 Mean deviation of Pareto distribution

Find the mean deviation of the Pareto distribution f (x, k, c) = ckcx−(c+1) where
x ≥ k.

Solution 7.24 We apply Theorem 7.1 (p. 256) to find the MD. Note that the
Pareto distribution is defined for x ≥ k. At x = k, the functional value is 1∕k. As
the PDF does not tail off to zero at the lower limit (i.e., at k), equation (7.1) seems
like inapplicable. We know that the CDF is 1 − (k∕x)c. If we apply L’Hospital’s
rule once on x ∗ F(x), we get 1 [1 − (k∕x)c]+x[ckc x−c−1]. The first term → 0 as
x → k, whereas the second term tends to c. We need to use the equation (7.7).
However, the term x F(x)∣ll=k → 0, so that it reduces to

MD = 2
∫

𝜇

ll
F(x)dx = 2

∫

d

k
[1 − (k∕x)c]dx, where d = kc∕(c − 1). (7.112)

Separate into two terms and integrate each term to get MD = 2{[kc∕(c −
1) − k] − kc ∫ d

k x−cdx}. The expression inside the square bracket simplifies to
k∕(c − 1) and the integral simplifies to (k∕(1 − c))(c − 1)c−1∕cc−1 + k∕(1 − c).
The term k∕(1 − c) cancels with first term k∕(c − 1). Take c outside from
the second expression to get MD = 2k(1 − (1∕c)c−1)/(c-1). See table 7.16 for
further properties.

7.15.2 Relation to Other Distributions

This distribution is related to exponential distribution as follows: If Y is exponentially
distributed, then X = k ∗ exp(Y∕c) has Pareto distribution. The zipf distribution is
the discrete analog of Pareto distribution. As c → ∞, the PDF approaches Dirac’s 𝛿
function. Left truncation results in Pareto distributions. The sum of the logarithm
of several independent scaled Pareto distributions has a gamma distribution. See
References 122, 230–233 for further properties.

7.15.3 Algorithms

As the CDF is 1 − (k∕x)c, it is easy to generate random numbers using the
inverse-CDF method. Let u be a uniform random number. Equate u = 1 − (k∕x)c
and solve for x to get (1 − u)1∕c = k∕x or x = k∕(1 − u)1∕c.
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TABLE 7.16 Properties of Pareto Distribution (f (x; k, c) = ckcx−(c+1))

Property Expression Comments

Range of X k < x <∞ Continuous

Mean 𝜇 = kc∕(c − 1) k[1 + 1∕(c − 1)]
Median k21∕c Mode = k

Variance 𝜎
2 = k2c∕[(c − 1)2(c − 2)] = 𝜇2∕[c(c − 2)]

Skewness 𝛾1 = 2[(c − 2)∕c]1∕2(1 + c)∕(c − 3) Valid for c > 3

Kurtosis 𝛽2 = 6(c3 + c2 − 6c − 2)∕[c(c − 3)(c − 4)] Valid for c > 4

Mean deviation E|X − 𝜇| = 2k(1 − c−1)c−1∕(c − 1)
CV 1∕

√
c(c − 2) c > 2

SF (k∕x)c

CDF 1 − (k∕x)c

Moments 𝜇r = c ∗ kr∕(c − r)
MGF c(−kt)cΓ(−c,−kt) For t < 0

ChF c(−ikt)cΓ(−c,−ikt)

Put x = y − b to get a three-parameter version. Note that the expression for skewness is valid for
c > 3, and it is never symmetric. A symmetric Pareto distribution can be defined by replacing x
by |x|, changing the range as |x| > k and adjusting the normalizing constant. 𝛽2 given here is the
excess kurtosis, Γ() is incomplete gamma function.

7.16 DOUBLE EXPONENTIAL DISTRIBUTION

This distribution, invented by Pierre Laplace in 1774, has many applications in quality
control, error modeling (called Laplacian noise), and inventory control (especially of
slow moving items). It is also called Laplace distribution.

fx(a, b) = (1∕2b) exp(−|x − a|∕b), −∞ < x < ∞, −∞ < a < ∞, b > 0, (7.113)

where “a” is the location parameter and b is the scale parameter. The standard form
is obtained by putting a = 0, b = 1 as f (z) = e−|z|.

7.16.0.1 Properties of Double Exponential Distribution This distribution is sym-
metric around x = a (see Figure 7.11). Hence 𝛽1 and all odd moments are zeros. The
mean and variance are 𝜇 = a, and 𝜎2 = 2b2. When a = 0, the resulting distribution
and that of two IID exponential(b) distributions are the same.

EXAMPLE 7.25 Even moments of double exponential

Prove that the even moments of double exponential are given by 𝜇2k = (2k)!b2k.
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Figure 7.11 Laplace distributions.

Solution 7.25 As the distribution is symmetric, the odd moments are all zeros.
The even moment is given by 𝜇2k =

∫

∞

−∞
(x − 𝜇)2k 1

2b
exp(−|x − a|∕b)dx = 1

2b
[
∫

𝜇

−∞
(x − 𝜇)2k exp(−|x − a|∕b)dx

+
∫

∞

𝜇

(x − 𝜇)2k exp(−|x − a|∕b)dx].

As 𝜇 = a, put y = (x − a) and change the limits accordingly.

𝜇2k =
1
2b

[
∫

0

−∞
y2k exp(y∕b)dx +

∫

∞

0
y2k exp(−y∕b)dy]. (7.114)

Put −y = t in the first integral. Then, it becomes the second integral. Hence
𝜇2k = 2 ∫ ∞

0 y2k exp(−y∕b)dy. Write y2k as y(2k+1)−1. Using gamma integral, this
becomes Γ(2k + 1)b2k. As Γ(2k + 1) = (2k)!, the result follows.

By integrating with respect to x, we get the CDF as

Fx(a, b) = (1∕2)[1 + sign(x − a)(1 − exp(−|x − a|∕b)], −∞ < x < ∞. (7.115)

The standard form of the Laplace distribution is obtained by putting a = 0 and b = 1
in the above.

(1∕2) exp(−|x|), −∞ < x < ∞. (7.116)

The characteristic function is obtained easily as follows:

𝜙(t) = 1
2b ∫

∞

−∞
eitxe(−|x−a|∕b)dx. (7.117)
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By splitting the range of integration from −∞ to a and from a to ∞ and changing the
variable as y = (x − a)∕b, we get

𝜙(t) = eiat

1 + b2t2
(7.118)

from which the mean and variance can be obtained easily as 𝜇 = a and 𝜎2 = 2b2. For
a = 0, b = ±1, this becomes𝜙(t) = 1∕(1 + t2), which shows that Laplace and Cauchy
distributions are related through characteristic functions. See Table 7.17 for further
properties.

EXAMPLE 7.26 Mean deviation of Laplace distribution

Find the mean deviation of the Laplace distribution using Theorem 7.1.

Solution 7.26 Let X∼Laplace(a, b). As the Laplace distribution tails off to zero
at the lower and upper limits, equation (7.1) is applicable. This gives

MD = 2
∫

a

ll
F(x)dx = 2

∫

a

−∞

1
2

exp(−(a − x)∕b)dx, (7.119)

(see Table 7.17, the CDF line). Put z = (a − x)∕b, so that dx = −bdz. When
x = a, z = 0; but when x = −∞, z becomes +∞. Cancel out the 2 to get

MD = −b
∫

0

∞
e−zdz = b

∫

∞

0
e−zdz = −be−z ∣∞0 = −b[0 − 1] = b. (7.120)

This shows that the mean deviation is b.

TABLE 7.17 Properties of Double Exponential Distribution

Property Expression Comments

Range of X −∞ < x <∞ Continuous
Mean 𝜇 = a
Median a Mode = a
Variance 𝜎

2 = 2b2

Skewness 𝛾1 = 0 Always symmetric
Kurtosis 𝛽2 = 6
Mean deviation E|X − 𝜇| = b

CV
√

2b∕a

CDF
1
2

exp(−(a − x)∕b) x < a

1−1
2

exp(−(x − a)∕b) x > a

Moments 𝜇r = Γ(r + 1)br r even
MGF exp(at)∕(1 − b2t2)
ChF exp(iat)∕(1 + b2t2)
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7.16.1 Relation to Other Distributions

The standard Laplace distribution is the distribution of the difference of two
independent exponential variates. In general, if Xi are two independent EXP(𝜆)
variates, then Y = X1 − X2 has a Laplace distribution. The ratio of two IID Laplace
variates L(0, b1) and L(0, b2) is a central F(2, 2) variate.

7.17 CENTRAL 𝝌2 DISTRIBUTION

This distribution has a long history dating back to 1838 when Bienayme obtained it
as the limiting form of multinomial distribution (see Figure 7.12). It was used by Karl
Pearson for contingency table analysis during 1900. It is also used in testing good-
ness of fit between observed data and predicted model and in constructing confidence
intervals for sample variance.

If X1,X2, … ,Xn are independent standard normal random variables, the distri-
bution of Y = X2

1 + · · · + X2
n is called the central 𝜒2 distribution. It has only one

parameter called DoF (n) with PDF

fx(n) = xn∕2−1e−x∕2∕[2n∕2Γ(n∕2)]. (7.121)

It is a special case of the Gamma distribution GAMMA(n∕2, 1∕2).
The distribution of

√
𝜒2 is known as chi distribution and has PDF

fx(n) = xn−1e−x2∕2∕[2n∕2Γ(n∕2)]. (7.122)
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Figure 7.12 Chi-square distribution.
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7.17.1 Properties of Central 𝝌2 Distribution

Integrating equation (7.121) with respect to x, we get the CDF as

Fn(x) = (1∕[2n∕2Γ(n∕2)])
∫

x

0
yn∕2−1e−y∕2dy. (7.123)

Make the change of variable u = y∕2 to get the above in terms of incomplete gamma
function as Fn(x) = 𝛾(n∕2, x∕2)∕Γ(n∕2) = P(n∕2, x∕2). It satisfies the recurrence
Fn(x) − Fn−2(x) = −2 ∗ fn(x).

7.17.1.1 Moments and Generating Functions The MGF is easily obtained as

Mx(t) = E(etx) =
∫

∞

0
etxxn∕2−1e−x∕2∕[2n∕2Γ(n∕2)]dx (7.124)

= 1∕[2n∕2Γ(n∕2)]
∫

∞

0
e−x[1−2t]∕2xn∕2−1dx = (1 − 2t)−n∕2

. (7.125)

From this, the kth moment is easily obtained as 𝜇′k = 2kΓ(n∕2 + k)∕Γ(n∕2). The mean
is n and variance is 2n. See Table 7.18 for further properties.

TABLE 7.18 Properties of 𝝌2 Distribution xn∕2−1e−x∕2∕[2n∕2𝚪(n∕2)]

Property Expression Comments

Range of X 0 ≤ x < ∞ Continuous
Mean 𝜇 = n

Variance 𝜎
2 = 2n = 2𝜇 𝜎

2
> 𝜇

Mode n − 2 = 𝜇 − 2 n > 2

Median n − (2∕3) = 𝜇 − 2∕3 Approximately for large n

CV (2∕n)1∕2

Skewness 𝛾1 = 2
√

2∕n = 23∕2n−1∕2

Kurtosis 𝛽2 = 3 + 12∕n Always leptokurtic

Mean deviation e−
n
2 n

n
2
+1

/[

2
n
2
−1Γ
(

n

2
+ 1
)]

= 2
∫

n

0
P(n∕2, x∕2)dx

Moments 𝜇
′
r = 2rΓ(r + n∕2)∕Γ(n∕2)

MGF (1 − 2t)−n∕2 t < 1∕2

ChF (1 − 2it)−n∕2

CGF −(n∕2) log(1-2it)

Additivity 𝜒
2
m + 𝜒2

n = 𝜒
2
m+n Independent

Recurrence fn+2(x)∕fn(x) = x∕n Fn(x) − Fn−2(x) = −2fn(x)
Approximation (𝜒2

n∕n)1∕3 N((1 − 2∕(9n)), 2∕(9n))
Tail probability 1 − P(n∕2, x∕2) P = Regularized gamma fn

The mean-median-mode inequality is mode<median<mean.
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EXAMPLE 7.27 Mean deviation of central 𝜒2 distribution

Find the mean deviation of the central 𝜒2 distribution with PDF fx(n) =
xn∕2−1e−x∕2∕[2n∕2Γ(n∕2)].

Solution 7.27 We apply Theorem 7.1 (p. 257) to find the MD. As the 𝜒
2

distribution does not tail off to zero at the lower limit (i.e., at 0) for n < 3,
equation (7.1) seems like not applicable. We know that the CDF is P(n∕2, x∕2).
If we apply L’Hospital’s rule once on x ∗ F(x), we find that it → 0 as
x → 0. As the lim

x→0
x ∗ F(x) = 0, and the Theorem 7.1 becomes applicable.

This gives MD = 2 ∫ n
0 P(n∕2, x∕2)dx. Use integration by parts by taking

u = P(n∕2, x∕2), dv = dx to get

MD = 2nP(n∕2, n∕2) − 2∕Γ(n∕2)
∫

n

0
xn∕2e−x∕2dx. (7.126)

Put x∕2 = u so that dx = 2du to get

MD = 2nP(n∕2, n∕2) − 4∕Γ(n∕2)
∫

n∕2

0
une−udu. (7.127)

Multiply the numerator and denominator of the integral by (n∕2) and write
(n∕2) ∗ Γ(n∕2) = Γ(n∕2 + 1). This gives

MD = 2n[P(n∕2, n∕2) − P(n∕2 + 1, n∕2)]. (7.128)

Now use P(a, x) − P(a + 1, x) = e−xxa∕Γ(a + 1) (Abramowitz & Stegun eq.
6.5.21) with a = x = n∕2 to get

MD = 2ne−n∕2(n∕2)n∕2∕Γ(n∕2 + 1). (7.129)

This simplifies to

MD = e−n∕2nn∕2+1∕[2n∕2−1Γ(n∕2 + 1)]. (7.130)

See References 234 and 235 for properties including the median of 𝜒2 and Refer-
ence 236 for critical values.

7.17.1.2 Additivity Property This distribution in particular and its noncentral ver-
sion in general satisfies a reproductive property given below. If X ∼ 𝜒

2
m and Y ∼ 𝜒

2
n

are independent, then X + Y ∼ 𝜒
2
m+n. This result was proved by Helmert [238]. See

Table 7.4.
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7.17.1.3 Approximations Wilson and Hilferty proved that (𝜒2
n∕n)1∕3 is approxi-

mately normal with mean (1 − 2∕(9n)) and variance 2∕(9n). This allows the CDF to
be expressed in terms of standard normal CDF as

Fn(x) = Φ(((x∕n)1∕3 − 1 + 2∕(9n))∕
√

2∕(9n)). (7.131)

This has been extended by many researchers [239, 240].

7.17.2 Relationships with Other Distributions

If X ∼ 𝜒
2
n, then c ∗ X for c > 0 is GAMMA(n∕2, 2c). It is related to the U = U(0, 1)

as −2 log(U) ∼ 𝜒
2
2. If Xi ∼ Laplace(a, b),

∑n
i=1 2|Xi − a|∕b is distributed as 𝜒2

2n. If
X ∼Rayleigh(1), then X2 ∼ 𝜒

2
2. The SF of a chi-square distribution is related to the

Poisson CDF (Section 6.9 in p. 229). It is also related to the normal, beta, T, and F
distributions (see References 239, 241–245).

7.18 STUDENT’S T DISTRIBUTION

This distribution was obtained by William Gosset [246] as the distribution of the
ratio Z∕

√
𝜒2(n)∕n where Z is a standard normal variate and Z and 𝜒2(n) are inde-

pendent. A derivation is given in Chapter 11. It is frequently encountered in small
sample statistical inference when population variance is unknown. It is used in tests
for the means, in testing the significance of correlation coefficients, in constructing
confidence intervals, and so on.

It has a single parameter n called the DoF (df), which was described in Chapter
3. Theoretically, n need not be an integer. As n represents the sample size adjusted
for “loss of information,” it is always an integer in statistical inference. The PDF is
given by

f (t) = K(1 + t2∕n)−(n+1)∕2
, (7.132)

where K = Γ((n + 1)∕2)∕[
√

n𝜋 Γ(n∕2)]. As it is an even function of t, it is always
symmetric around t = 0. The more general form is obtained by a change of origin
and scale transformation t = (y − 𝜇)∕c.

7.18.1 Properties of Student’s T Distribution

It is always symmetric, unimodal with mode t = 0. The modal value is
(Γ(n + 1)∕2)∕[

√
n𝜋Γ(n∕2)]. The mean 𝜇 = 0 if n > 1 and does not exist oth-

erwise. It has a single parameter n, which controls both the spread and peakedness.
For higher values of n, the flatness in the tails decreases, and the peakedness
increases. Eventually, it coincides with the standard normal distribution for large n.
The variance is n∕(n − 2) if n > 2.

The distribution is concave upward for |t| < −
√
(n∕(n + 2)) and concave

downward otherwise. For n > 4, the kurtosis coefficient is given by 𝛽2 = 3 + 6
n−4

,
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showing that it is always leptokurtic. Write the PDF in equation (7.132) as

f (t) = K(1 + t2∕n)1∕2 ∗ (1 + t2∕n)−n∕2. Let n → ∞ and use
Lt

x → ∞(1 + a∕x)−x = e−a

to get f (t) = Ke−t2∕2 as (1 + t2∕n)1∕2 will tend to one. It can be shown that
K = Γ((n + 1)∕2)∕[

√
n𝜋 Γ(n∕2)] → 1∕

√
2𝜋 as n → ∞. This shows that the lim-

iting distribution is a standard normal. By factoring the PDF into two asymmetric
products, Jones & Faddy obtained the skew-t distributions

f (t; a, b) = K
{

1 + t∕
√

C + t2
}a+ 1

2
{

1 − t∕
√

C + t2
}b+ 1

2
, (7.133)

where K is given by 1∕K = C1∕22C−1B(a, b) and C = (a + b) [247]. See References
146, 248–251 for tail areas, Reference 252 for the distribution of the difference of
two t-variables, and Reference 253 for applications to statistical tests.

EXAMPLE 7.28 Mean deviation of Student’s T distribution

Find the mean deviation of Student’s T distribution using Theorem 7.1.

Solution 7.28 Let K = Γ((n + 1)∕2)∕[
√

n𝜋 Γ(n∕2)]. As the Student’s T distri-
bution is symmetric around zero, the MD is given by

MD = K
∫

∞

−∞
|t|(1 + t2∕n)−(n+1)∕2dt. (7.134)

Split the integral from −∞ to 0; and 0 to ∞. As |x| = −x when x < 0, the first
integral becomes − ∫ 0

−∞ tf (t)dt = ∫ ∞
0 tf (t)dt. Hence

MD = 2K
∫

∞

0
t(1 + t2∕n)−(n+1)∕2dt. (7.135)

Put t2 = n tan2(𝜃) so that t =
√

n tan(𝜃), and dt =
√

n sec2(𝜃)d𝜃. The limits of
integration become 0 to 𝜋∕2 and we get

MD = 2Kn
∫

𝜋∕2

0
tan(𝜃) sec−(n+1)(𝜃) sec2(𝜃)d𝜃. (7.136)

Using sec(𝜃) = 1∕ cos(𝜃), this becomes

MD = 2Kn
∫

𝜋∕2

0
sin(𝜃) cos(n−2)(𝜃)d𝜃. (7.137)

Put cos(𝜃) = t so that sin(𝜃)d𝜃 = −dt, and the limits are changed as 1 to 0; and
we get

MD = −2Kn
∫

0

1
tn−2dt = 2Kn

∫

1

0
tn−2dt. (7.138)



312 CONTINUOUS DISTRIBUTIONS

TABLE 7.19 Properties of T Distribution (1∕[
√

n B( 1
2
,

n

2
)](1 + t2

n
)−(n+1)∕2)

Property Expression Comments

Range of T −∞ < t < ∞ Infinite

Mean 𝜇 = 0

Median 0 Mode = 0

Variance 𝜎
2 = n∕(n − 2) = 1 + 2∕(n − 2) n > 2

Skewness 𝛾1 = 0 Symmetric

Kurtosis 𝛽2 = 3(n − 2)∕(n − 4) = 3 + 6∕(n − 4) for n > 4 Always leptokurtic

Mean deviation
√

n∕𝜋Γ((n − 1)∕2)∕Γ(n∕2)
∫

∞

0
In∕(n+t2)

(n
2
,

1
2

)

dt

CDF Fn(t0) = 1 − 1
2

In∕(n+t2)(n∕2, 1∕2) I = Incomplete beta

Moments 𝜇k = nk∕2
Γ
( k + 1

2

)

Γ
(n − k

2

)

√
𝜋Γ(n∕2)

ChF exp(−|t
√

n|)Sn(|t
√

n|)

See equation (7.155), page 7-91.

As the integral evaluates to 1∕(n − 1), MD = 2
√

n∕[(n − 1)B(1∕2, n∕2)].
Expand the complete beta function B(1∕2, n∕2) = Γ(1∕2)Γ(n∕2)∕Γ((n + 1)∕2)
and write Γ((n + 1)∕2) = ((n − 1)∕2)Γ((n − 1)∕2). One (n − 1) cancels
out from numerator and denominator giving the alternative expression√

n∕𝜋Γ((n − 1)∕2)∕Γ(n∕2).
Next we apply the Theorem 7.1 to find the MD. As the Student’s T distribution

tails off to zero at the lower and upper limits, equation (7.1) is applicable. This
gives

MD = 2
∫

𝜇

ll
Fn(t)dt = 2

∫

ul

𝜇

Sn(t)dt = 2
∫

∞

t=0
Sn(t)dt. (7.139)

As the SF can be expressed in terms of the IBF as

1 − Sn(t) = Fn(t) =
1
2
[1 + sign(t) Iy(1∕2, n∕2)], (7.140)

where y = t2∕(n + t2), and sign(t) = −1 for t < 0 (see Table 7.19, the CDF line),
equation (7.139) becomes

MD = 2 ∗
∫

∞

0

1
2
[1 − Iy(1∕2, n∕2)]dt. (7.141)

Using 1 − Iy(1∕2, n∕2)dt = I1−y(n∕2, 1∕2) where 1 − y = n∕(n + t2), this
becomes

MD =
∫

∞

0
I1−y(n∕2, 1∕2)dt. (7.142)
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To evaluate this integral, take u = I1−y(n∕2, 1∕2) and dv = dt so that 𝑣 = t.
Use the chain rule of differentiation to get

du = (𝜕∕𝜕t)I1−y(n∕2, 1∕2) = (𝜕∕𝜕y)I1−y(n∕2, 1∕2) ∗ (𝜕y∕𝜕t). (7.143)

Differentiate 1 − y = n∕(n + t2) to get −𝜕y∕𝜕t = −2nt∕(n + t2)2. In addition,
𝜕

𝜕y
I1−y(n∕2, 1∕2) = g1−y(n∕2, 1∕2) where g() is the PDF of BETA-I. Integrate

equation (7.143) by parts to get

t ∗ [I1−y(n∕2, 1∕2)] ∣∞0 +
∫

∞

0
t ∗ g1−y(n∕2, 1∕2)(2nt∕(n + t2)2)dt. (7.144)

The first term is zero using L’Hospital’s rule. Take 2n outside the integral to get

MD = 2n
∫

∞

0
[t2∕(n + t2)2] ∗ g1−y(n∕2, 1∕2)dt. (7.145)

Put 𝑣 = n∕(n + t2), and 1 − 𝑣 = t2∕(n + t2). This gives t =
√

n((1 − 𝑣)∕𝑣)1∕2,
and dv = −2nt∕(n + t2)2dt. Write [t2∕(n + t2)2] = [t2∕(n + t2)] ∗ 1∕(n + t2) =
𝑣(1 − 𝑣)∕n, and dv = (−2∕

√
n)𝑣1∕2(1 − 𝑣)3∕2. Expand g1−y(n∕2, 1∕2). The n

cancels out from the numerator and denominator, and equation (7.145) becomes

(
√

n∕B(n∕2, 1∕2))
∫

1

0
𝑣
(n−3)∕2(1 − 𝑣)0dv. (7.146)

This simplifies to(
√

n∕B(n∕2, 1∕2))∕[(n−1)∕2] = 2
√

n∕[(n − 1) ∗ B(n∕2, 1∕2)],
which is the same expression obtained earlier.

7.18.2 Relation to Other Distributions

For n = 1, it reduces to the Cauchy distribution. If X and Y are IID 𝜒
2-distributed

random variables with the same DoF, then (
√

n∕2)(X − Y)∕
√

XY is Student’s T dis-

tributed [254]. If X is an F variates with ndf , then T =
√

n

2
(
√

X − 1∕
√

X) is Student’s
T(n). The analog of log normal to normal distribution is the log-Student’s T distribu-
tion as f (y, n) =

Γ
(n + 1

2

)

∕
{
√
𝜋nΓ(n∕2) y

(

1 + 1
n
(log y)2

)(n+1)∕2
}

, (7.147)

where y = log(T) has a Student’s T distribution (p. 311).

7.18.2.1 Tail Areas The CDF of a Student’s T random variable is encountered
frequently in small sample statistical inference. For example, it is used in tests
for the means, testing the significance of correlation coefficients, and constructing
confidence intervals for means. The area under Student’s distribution from −t to +t
is of special interest in finding two-sided confidence intervals and tests of hypothesis.
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We denote it as T(−t ∶ t|n) or Tn(−t ∶ t).

Tn(−t ∶ t) = 1
√

nB( 1
2
,

n
2
) ∫

t

−t
(1 + x2∕n)−(n+1)∕2dx. (7.148)

This integral can be converted into an IBF by the transformation y = n∕(n + x2)
giving

Tn(−t ∶ t) = 1 − In∕(n+t2)(n∕2, 1∕2). (7.149)

Owing to the symmetry, the area from ±t to the mode (x = 0) is

Tn(−t ∶ 0) = Tn(0 ∶ t) = 1
2
− 1

2
In∕(n+t2)(n∕2, 1∕2). (7.150)

The CDF (area from −∞ to t) is given by

Fn(t0) = ∫

t0

−∞
f (t)dt =

∫

0

−∞
f (t)dt +

∫

t0

0
f (t)dt. (7.151)

Owing to symmetry, the first integral evaluates to 1/2. Represent the second integral
using equation (7.150) to get

Fn(t0) = 1 − 1
2

Iy(n∕2, 1∕2), (7.152)

where y = n∕(n + t2
0), and I(x; a, b) is the IBF.

For even degrees of freedom, the CDF of Student’s T distribution can be obtained
as Fn(t) =:

1
2
(1 +
√
(x∕𝜋)

n
2
−1
∑

i=0

(1 − x)iΓ(i + 1∕2)∕Γ(i + 1)), where x = t2∕(n + t2).

The special cases n = 2 and n = 4 are F2(t) =
1
2
(1 + t∕

√
(2 + t2)) and F4(t) =

1
2
[1 +

(1 + 2∕(4 + t2))t∕
√
(4 + t2)]. As mentioned earlier, this reduces to Cauchy CDF for

n = 1 as 1
2
+ 1

𝜋
sign(t) tan−1(t). For n = 3, 5, similar expressions exist (see Reference

121).

7.18.2.2 Moments and Generating Functions As this distribution is symmetric,
all odd moments vanish. The even moments are given by

𝜇k = nk∕2
Γ
(

k+1
2

)

Γ
(

n−k
2

)

√
𝜋Γ(n∕2)

. (7.153)

This satisfies the first-order recurrence

(n − k)𝜇k = n(k − 1)𝜇k−2, (7.154)
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repeated application of which gives a closed-form expression (see Table 7.19). The
characteristic function is given by

𝜙(t) = K ∗
∫

∞

−∞
eitx∕(1 + x2∕n)(n+1)∕2dx, (7.155)

where we have used the variable x instead of t owing to the dummy variable in the
ChF [255]. Upon putting x2∕n = y2, this becomes

K
√

n ∗
∫

∞

−∞
cos(ty

√
n)∕(1 + y2)(n+1)∕2dy. (7.156)

If n is odd (=2m + 1), this reduces to exp(−|t
√

n|)Sn(|t
√

n|) where S is a polynomial
of degree n − 1 that satisfies the recurrence Sm+3(t) = Sm+1(t) + t2∕(m2 − 1)Sm−1(t).
See Table 7.19 for further properties.

7.19 SNEDECOR’S F DISTRIBUTION

This distribution, named after G.W.Snedecor [256], is used extensively in ANOVA
and related procedures. This is due to the normality assumption of the population
from which sample came, so that the null distribution of the test statistic has an F
distribution. It is also used in computing the power of various statistical tests that
employ the sample variance.

This is the distribution of the ratio of two independent scaled 𝜒2 variates F =
(𝜒2(m)∕m)∕(𝜒2(n)∕n) = n

m
(𝜒2

m∕𝜒2
n) with PDF

f (x;m, n) =
Γ((m + n)∕2)mm∕2nn∕2

Γ(m∕2)Γ(n∕2)
xm∕2−1

(n + mx)(m+n)∕2
, 0 < x < ∞. (7.157)

A derivation is given in Chapter 11. The unscaled F distribution is the distribution of
the ratio 𝜒2(m)∕𝜒2(n), which is BETA-II (m∕2, n∕2).

7.19.1 Properties of F Distribution

As both the numerator and denominator variates in the definition are 𝜒2, this distribu-
tion is defined for x > 0. Owing to symmetry, 1∕F has exactly identical distribution
with the DoF reversed. The parameters m and n are integers in practical applications.
Theoretically, the distribution is defined for noninteger DoF values as well. The dis-
tribution of Z = (1∕2) log(F) is more tractable, as it converges to normality faster
than F itself. As the 𝜒2 distribution is a special case of gamma distribution, the ratio
of two properly scaled independent gamma variates has an F distribution [257]. The
F distribution has a long right tail and is skewed to the right for small parameter val-
ues. Several recurrences satisfied by the density, distribution functions, and moments
can be found in Reference 129.
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7.19.1.1 Moments and Generating Functions The mean is undefined when n <
2, but it is n∕(n − 2) = 1 + 2∕(n − 2) for n > 2. This does not depend on the numer-
ator DoF parameter m. Although the distribution has infinite range, the mean (center
of mass) is bounded by 3, and rapidly approaches 1 as n becomes large. The vari-
ance is 𝜎2 = 2n2(m+n−2)

m(n−2)2(n−4) , which is defined for n > 4. This in terms of the mean is

2𝜇2∕(n − 4) ∗ ((m + n − 2)∕m). The mode is [(m − 2)∕m] ∗ [n∕(n + 2)]. As n∕(n −
2) is >1 and n∕(n + 2) is <1, the mode is less than the mean. As n becomes large, the
mean tends to 1 but the mode tends to (m − 2)∕m. Similarly, the skewness coefficient
is undefined for n ≤ 6 (all of these conditions are on n and not on m). For n > 6, the

skewness coefficient is 𝛽1 = 2(2m+n−2)
√

2(n−4)
√

m(n−6)
√

m+n−2
. The characteristic function of F variate

is (see Reference 258)

𝜙(t) = Γ((m + n)∕2)∕Γ(n∕2)𝜓(m∕2, 1 − n∕2,−itn∕m), (7.158)

where 𝜓(m∕2, 1 − n∕2,−itn∕m) is the confluent hypergeometric function of type-2.
A double infinite sum for it is as follows (see References 259 and 260)

𝜙(m, n; t) = 1
B(m∕2, n∕2)

∞∑

i=0

∞∑

j=0

(it)i

[i!(i + j + m∕2)]

(
i + j − n∕2

j

)

, (7.159)

which is valid for n even. See Table 7.20 for further properties.

7.19.2 Relation to Other Distributions

As mentioned earlier, if X ∼ F(m, n), then Y = 1∕X is F(n,m). As the T distribution is
the ratio of a standard normal to the square root of an independent scaled 𝜒2

n random
variate, the square of T is F distributed with 1 and ndf . If X and Y are independent F

variates with the same df , then T =
√

n

2
(
√

X −
√

Y) is Student’s T(n) [254]. Tail area
of binomial distribution is related to the F distribution as

k∑

x=0

(n
x

)

pxqn−x = 1 − Fy(2(k + 1), 2(n − k)), where y = p(n − k)∕(q(1 + k)).

(7.160)
As the denominator DoF n → ∞, the variate m ∗ X approaches a 𝜒2

m distribution.

7.19.2.1 Tail Areas Integrating from 0 to +x gives the CDF of a Snedecor’s F
distribution with (m, n) DoF using equation (7.47) as

F(X)(x;m, n) = In∕(n+mx)(n∕2,m∕2) = 1 − Imx∕(n+mx)(m∕2, n∕2). (7.161)

The tail areas are related as F(x;m, n) = 1∕F(1 − x; n,m). The special cases are

F(x; 1, 1) = ( 2
𝜋
)tan−1(

√
mx∕n),F(x; 1, 2) =

√
mx∕(n + mx),F(x; 2, 1) = 1 −

√
n

√
(n+mx)

,

and F(x; 2, 2) = mx∕(n + mx). See References 261–264 for further properties and
References 236 and 265 for percentile points.
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TABLE 7.20 Properties of F Distribution
(

𝚪((m+n)∕2)mm∕2nn∕2

𝚪(m∕2)𝚪(n∕2)
xm∕2−1

(n+mx)(m+n)∕2

)

Property Expression Comments

Range 0 ≤ x ≤ ∞ Infinite

Mean 𝜇 = n∕(n − 2) = 1 + 2∕(n − 2)
Variance 𝜎

2 = 2𝜇2(m + n − 2)∕[m(n − 4)] = 𝜇 > 𝜎2

Mode n(m − 2)∕[m(n + 2)] m > 2

CV (2(m + n − 2)∕[m(n − 4)])1∕2

Skewness (2m + n − 2)[8(n − 4)]1∕2∕[
√

m(n − 6)(n + m − 2)1∕2] 𝛾1

Kurtosis 𝛽2 > 3

MD E|X − 𝜇| = 2
∫

n∕(n−2)

0
Imx∕(n+mx)(m∕2, n∕2)dx

Moments 𝜇
′
r = (n∕m)rΓ(m∕2 + r)Γ(n∕2 − r)∕[Γ(m∕2)Γ(n∕2)]

ChF [Γ((m + n)∕2)∕Γ(n∕2)] Ψ(m∕2, 1 − n∕2; −nit∕m)

Additivity
∑m

i=1 F(mi, n) = F
(∑m

i=1 mi, n
)

Unscaled IID F

Tail area In∕(n+mx)(n∕2,m∕2) = 1 − Imx∕(n+mx)(m∕2, n∕2) Pr(F ≤ x)

I is the incomplete beta function. Additivity is for unscaled F with the same denominator DoF.

7.20 FISHER’S Z DISTRIBUTION

This distribution is obtained as a transformation from the F distribution as
Z = 1

2
log(F). It is also called logarithmic F distribution. A derivation is given in

Chapter 11. As the range of F is from 0 to ∞, the range of Z is −∞ to ∞ and the
PDF is obtained directly from the previous PDF as

fz(m, n) =
2mm∕2nn∕2

B(m∕2, n∕2)
emz

(n + me2z)(m+n)∕2
, (7.162)

where B(m∕2, n∕2) is the CBF. The unnormalized Z distribution results when F is
replaced by the unnormalized F (which is BETA-II). If the F-distribution is noncen-
tral, the corresponding Z is singly noncentral. If both chi squares in the F-distribution
are noncentral, the corresponding Z is called doubly noncentral [4, 266].

7.20.1 Properties of Fisher’s Z Distribution

Left tail areas can be expressed in terms of IBF as follows

Zm,n(x) = P[1
2

log(Fm,n(x)) = P[Fm,n(x)] ≤ e2x = Ic(m∕2, n∕2), (7.163)

where c = e2x∕(n + me2x). The CDF satisfies the symmetry relationship Zc(m, n) =
1 − Z−c(n,m). See Table 7.21 for further properties (Figures 7.13 and 7.14).
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TABLE 7.21 Properties of Fisher’s Z
(

2mm∕2nn∕2

B(m∕2,n∕2)
emz

(n+me2z)(m+n)∕2

)

Property Expression Comments

Range of Z −∞ ≤ z ≤ ∞ Infinite

Mean 𝜇 ≃ (m − n)∕(2mn) mode z = 0

Variance 𝜎
2 ≃ (m + n)∕2mn ⇒ 𝜇 < 𝜎

2

ChF (n∕m)it∕2Γ((n − it)∕2)Γ((m + it)∕2)∕
[Γ(m∕2)Γ(n∕2)]

Tail area Ic(m∕2, n∕2), c = m e2x∕(n + me2x)
Symmetry relation Z(x;m, n) = 1 − Z(−x; n,m)

Ix(m, n) is the incomplete beta function.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

–5.6 –4.8 –4.0 –3.2 –2.4 –1.6 –0.8 0.0 0.8 1.6 2.4 3.2 4.0 4.8

m = 2, n = 5

m = 6, n = 3

Figure 7.13 Fisher’s Z distribution.

7.20.1.1 Moments The characteristic function is (n∕m)it∕2Γ((n − it)∕2)Γ((m +
it)∕2)∕[Γ(m∕2)Γ(n∕2)]. Using the derivatives of gamma function, the first two
moments are 𝜇 = (m − n)∕[2mn] = (1∕n − 1∕m)∕2 and 𝜇2 = (m + n)∕[2mn] =
(1∕n + 1∕m)∕2 approximately. The cumulants are easier to find in terms of digamma
function [60, 267, 268].

7.20.1.2 Relationship with Other Distributions When both the parameters
→ ∞,Z → N( 1

2
m−n,
mn

,
1
2

m+n
mn

). Convergence of Z to normality is faster than the
convergence of F distribution. If X ∼ Z(m, n) then exp(2Z) ∼ F(m, n). The trans-
formation V = (N∕(N + 1))1∕2(Z∕b) is approximately distributed as TN , where
N = m + n − 1, b2 = 1

2
(1∕m + 1∕n) and TN is Student’s T distribution.
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Figure 7.14 Incomplete beta function.

7.21 WEIBULL DISTRIBUTION

This distribution is named after the Swedish physicist W. Weibull (1887–1979), who
invented it in 1939 in connection with strength of materials, although it was known
to Rosen and Rammler [270]. It finds applications in reliability theory, quality con-
trol, strength of materials, and so on [271, 272]. It is used in the design of wind
turbines, model wind speed distributions, fading channels in wireless communica-
tions, describe the size of particles in motion (such as raindrops), or those being
grinded, milled, crushed, or subjected to external pressure (for which another choice
is the lognormal law). The one-parameter Weibull distribution has PDF

f (x, a) = axa−1e−xa
, x > 0. (7.164)

The two-parameter Weibull distribution is obtained from the above by a simple trans-
formation x = y∕b as f (y, a, b) = a

b
(y∕b)a−1e−(y∕b)a , where b is the scale and a is the

shape parameter. Mode is b( a−1
a
)1∕a, median is b(log 2)1∕a. This reduces to the above

form when b = 1. We denote it as WEIB(a, b). It is easy to see that if [(X − a)∕b]c
has an exponential distribution, then X has a general Weibull distribution. The corre-
sponding CDF is easily found as F(x) = 1 − e−x𝛼 , from which the quantile function
can be obtained as Q(u) = [− log(1 − u)]1∕𝛼 .

7.21.1 Properties of Weibull Distribution

The mode of the distribution is 0 for a < 1. When a = 1, we get the exponential
distribution. It is also related to the Rayleigh distribution. If X ∼ WEIB(a, b) then
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log(X) has extreme value distribution. For a > 1, the mode is at (1 − 1
a
)1∕a. This tends

to the limit 1 as a → ∞. The three-parameter Weibull model has CDF

FX(a, b, c) = 1 − exp

(

−
(x − c

a

)b
)

for x ≥ c. (7.165)

Put c = 0 to get two-parameter version earlier.

7.21.1.1 Moments The kth moment is given by E(xk) = ∫ ∞
0 xkf (x)dx = bkΓ(k∕a +

1). From this, we get the mean as 𝜇 = bΓ( 1
a
+ 1). The second moment is b2Γ( 2

a
+ 1),

from this we get the variance as 𝜎2 = b2[Γ(2∕a + 1) − Γ(1∕a + 1)2]. Put b = 1 to get
the variance of standard form (7.164). See Table 7.22 for further properties.

EXAMPLE 7.29 Mean deviation of Weibull distribution

Find the mean deviation of the Weibull distribution using Theorem 7.1.

TABLE 7.22 Properties of Weibull Distribution

Property Expression Comments

Range of X 0 ≤ x <∞ Continuous

Mean 𝜇 = bΓ(1 + 1
a
)

Variance 𝜎
2 = b2

[

Γ(1 + 2
a
) − Γ(1 + 1

a
)2
]

= b2Γ(1 + 2
a
) − 𝜇2

Mode b(1 − 1
a
)1∕a, a > 1 → b as a → ∞

Median b(log 2)1∕a

CV
(

Γ(1 + 2
a
)∕Γ(1 + 1

a
)2 − 1

)1∕2

→ 0 as a → large

Skewness 𝛾1 = (Γ(1 + 3
a
)b3 − 3𝜇𝜎2 − 𝜇3)∕𝜎3 =

Kurtosis 𝛽2 3c(c + 1)(a + 1)(2b − a)∕[ab(c + 2)(c + 3)] c = a + b

Moments 𝜇
′
r = brΓ(1 + r∕a)

MGF
∑∞

k=0 (bt)kΓ(1 + k∕a)∕k!

ChF
∑∞

k=0 (bit)kΓ(1 + k∕a)∕k!

Additivity
∑m

i=1 Y(a, bi) = Y(a,
∏m

i=1 bi) IID Y = log(WEIB)

Recurrence (1 + 1
a
)(x∕b) exp(−(x∕b)a[1 − x∕b]) f (x; a + 1, b)∕f (x; a, b)

Tail area exp(−(x∕b)a)

The mode of WEIB(a, b) → b as a becomes large (0.9974386 b for a = 20, 0.999596 b for a = 50), but
median → b much slower (0.981841 b for a = 20, 0.992697 b for a = 50, 0.9995964 b for a = 908).
The MFG and ChF of logarithm of the Weibull variate are more tractable, E[exp(ln(X)t)] = btΓ(1 +
t∕a). A Weibull plot can reveal if the data came from this distribution. For this, plot ln(x) along the
X-axis and ln(−ln(1−F(x))) along the Y-axis, where F is the empirical CDF obtained from random
sample. A straight line indicates Weibull parent population.
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Solution 7.29 We apply Theorem 7.1 (page 7-5) to find the MD. As the Weibull
distribution does not tail off to the lower limit for some parameter values (e.g.,
b < 1), equation (7.1) seems like not applicable. We know that the CDF is
1 − exp(−( x−c

a
)b). As done in the case of exponential distribution, using

L’Hospital’s rule, it is easy to show that x ∗ F(x) → 0, so that the Theorem 7.1
is applicable. This gives

MD = 2
∫

m

0

[

1 − exp

(

−
(x − c

a

)b
)]

dx, (7.166)

where m = bΓ(1 + 1
a
) is the mean. Split this into two integrals and integrate

the first term to get 2bΓ(1 + 1
a
). The second integral is −2 ∫ m

0 exp(−( x−c
a
)b)dx.

Expand exp(−( x−c
a
)b) as an infinite series and integrate term by term to get

−2
∑∞

k=0 (−1)k∕k! ∫ m
0 ( x−c

a
)bkdx. This simplifies to 2

∑∞
k=0 (−1)k+1∕[k!(bk +

1)abk][(m − c)bk+1 − (−c)bk+1]. Now combine with the first term to get the MD.

7.21.1.2 Relationship with Other Distributions If [(X − a)∕b]c has an exponen-
tial distribution, then X has a general Weibull distribution. It is also related to the
uniform distribution U(0, 1) as follows: –if X ∼U(0, 1) then Y = (− ln(X)∕a)1∕b ∼
WEIB(a, b). See Reference 273 discrete Weibull distribution.

7.21.2 Random Numbers

As F(x) = 1 − e−(x∕b)a , we could generate random numbers using uniform pseudo-
random numbers in [0,1] as u = 1 − e−(x∕b)a , which on rearrangement becomes x =
b(− log(u))1∕a. Notice that the log function takes negative values for the argument in
[0, 1]. Hence, the − log(u) maps it into the positive interval.

7.22 RAYLEIGH DISTRIBUTION

This distribution is named after the British physicist Rayleigh (1842–1919). It finds
applications in reliability theory and communication systems. See Reference 274 for
an application of Rayleigh distribution to wind turbine modeling. Stability of the
Rayleigh distribution is discussed in Reference 275. See References 276 and 277 for
the distribution of the product of two IID Rayleigh random variables. This distribution
can be considered as the distribution of the radial distance of a point on the bivariate
normal surface (with zero means) from the origin. In other words, it is the distribution
of
√

X2 + Y2, where (X,Y) have a joint bivariate normal distribution. It is a special
case of 𝜒-distribution. The PDF is

fx(x; a) = x∕a2 e−x2∕(2a2)
, x ≥ 0. (7.167)
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The corresponding CDF can be expressed in terms of scaled normal PDF as given
below. An alternate parametrization can be obtained by the linear transformation y =
(
√

b∕[a
√

2])x, so that dx = a
√

2∕
√

bdy and we get the PDF as

fy(y; b) = 2(y∕b)e−y2∕b
, y ≥ 0. (7.168)

In general, if X1,X2, · · · ,Xn are independent normal random variables N(0, 𝜎2), the
distribution of X = (X2

1 + · · · + X2
n)1∕2 is given by

f (x; n, 𝜎) = 2
(2𝜎2)n∕2Γ(n∕2)

xn−1e−x2∕2𝜎2
for x > 0. (7.169)

See Table 7.23 for further properties. The CDF is given by

Fx(x, a) = 1 − exp(−x2∕(2a2)), x ≥ 0. (7.170)

EXAMPLE 7.30 Mean deviation of Rayleigh distribution

Find the mean deviation of the Rayleigh distribution with PDF fx(x; a) =
(x∕a2) e−x2∕(2a2).

TABLE 7.23 Properties of Rayleigh Distribution (x∕a2) e−x2∕(2a2)

Property Expression Comments

Range of X 0 ≤ x <∞ Continuous

Mean 𝜇 = a
√
𝜋∕2

Variance 𝜎
2 = (2 − 𝜋∕2)a2 = 2a2 − 𝜇2 = 𝜇

2(4∕𝜋 − 1) = 0.27324𝜇2

Mode a

Median a
√

ln(4) 1.17741 x

Skewness 𝛾1 = 2(𝜋 − 3)
√
𝜋∕(4 − 𝜋)3∕2 ≃0.63111

Kurtosis 𝛽2 = (32 − 3𝜋2)∕(4 − 𝜋)2

Mean deviation 2[a
√
𝜋∕2 − P(𝜋∕4, 1∕2)] P = incomplete Γ

Quartiles Q1 = 0.75853 a Q3 = 1.66551 a

CV
√

4∕𝜋 − 1 0.522723

Moments 𝜇
′
r = 2r∕2arΓ(r∕2 + 1)

MGF 1 + bt exp(b2t2∕2)
√
𝜋∕2[erfc(bt∕

√
2) + 1]

ChF 1 − bit exp(−b2t2∕2)
√
𝜋∕2[erfc(bt∕

√
2) − i]

Tail area Pr[X > x] = exp(−x2∕2a2)

The ratio 𝜎∕𝜇 = 0.5227232 shows that 𝜇 > 𝜎. The mean-median-mode inequality is mode
<median<mean.



CHI-DISTRIBUTION 323

Solution 7.30 We apply Theorem 7.1 (p. 256) to find the MD. As the Rayleigh
distribution does not tail off to zero at the lower limit (i.e., at 0), equation (7.1)
seems like not applicable. We know that the CDF is 1 − exp(−x2∕2a2). If we
apply L’Hospital’s rule once on x ∗ F(x), we find that it → 0 as x → 0. As the
limx→0x ∗ F(x) = 0, Theorem 7.1 becomes applicable. This gives

MD = 2
∫

m

0
[1 − exp(−x2∕2a2)]dx where m = a

√
𝜋∕2. (7.171)

Split the integral into two parts. The first one integrates to 2m. The second one is
−2 ∫ m

0 exp(−x2∕2a2)dx. Put y = x2∕(2a2) so that dy = x∕a2dx. The upper limit
of integration becomes m2∕(2a2) = 𝜋∕4. We get

MD = 2m − 2
∫

𝜋∕4

0
y

1
2
−1e−ydy = 2[m − P(𝜋∕4, 1∕2)], (7.172)

where P() is the incomplete gamma integral. Put the value of m to get the MD.

7.22.1 Properties of Rayleigh Distribution

The standard Rayleigh distribution is obtained by putting a = 1. As the skewness
is 0.63111, it is always positively skewed. Variance 𝜎2 = 0.27324𝜇2 shows that
𝜎

2
< 𝜇

2 or equivalently 𝜎∕𝜇 = 0.5227232. See Reference 278 for an application to
the distance between pairs of points in wireless networks.

7.22.1.1 Moments and Generating Functions Ordinary moments can be obtained
in terms of gamma function as E[Xk] =

2
(2𝜎2)n∕2Γ(n∕2) ∫

∞

0
xn+k−1e−x2∕(2𝜎2)dx =

2k∕2
𝜎

kΓ((n + k)∕2)
Γ(n∕2)

, (7.173)

from which we get the mean as 𝜇 = 𝜎

√
2Γ((n + 1)∕2)∕Γ(n∕2) and 𝜎2 = (4 − 𝜋)a2∕2.

7.22.1.2 Relationship with Other Distributions If X is Rayleigh(1), then X2 is 𝜒2
2.

It is related to U(0, 1) as X = a(−2 ln(1 − U))1∕2. If Xi is Rayleigh(b), then
∑

iX
2
i is

gamma distributed.

7.23 CHI-DISTRIBUTION

If X1,X2, · · · ,Xn are independent standard normal random variables, the distribution

of Y = (X2
1 + X2

2 + · · · + X2
n)1∕2, that is,

√

𝜒
2
n is called a chi-distribution with ndf .

The PDF is easily obtained as

f (x; n) = xn−1e−x2∕2∕[2n∕2−1Γ(n∕2)]. (7.174)
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7.23.1 Properties of Chi-Distribution

This distribution reduces to the half-normal or folded normal distribution for n = 1,
the Rayleigh distribution for n = 2, and the Maxwell distribution for n = 3. The rth
moment is 𝜇r = 2r∕2Γ((n + r)∕2)∕Γ(n∕2). The mean is

√
2Γ((n + 1)∕2)∕Γ(n∕2).

EXAMPLE 7.31 Mode of chi-distribution

Find the mode of chi-distribution with n > 1df .

Solution 7.31 Take log of equation (7.174) to get log(f (x)) = k + (n −
1) log(x) − x2∕2. Differentiate with respect to x to obtain the RHS as
(n − 1)∕x − x. Equating to zero results in (n − 1) = x2 so that x =

√
n − 1

is the solution. As the second derivative is −(n − 1)∕x2 − 1, which is negative
for n > 1, this is indeed the mode.

7.24 MAXWELL DISTRIBUTION

This distribution is frequently encountered in engineering. It is named after the Scot-
tish physicist James C. Maxwell (1831–1879). The PDF is given by

fx(x; a) =
√

2∕𝜋x2e−x2∕(2a2)∕a3
, x > 0. (7.175)

Here, “a” is a scale parameter. Put y = x∕a to get the standard Maxwell distribution.

7.24.1 Properties of Maxwell Distribution

The Maxwell and Rayleigh distributions are surprisingly similar shaped for small
parameter values (Figures 7.15 and 7.16). It has an alternate parametrization known
as Maxwell’s velocity distribution that represents the velocity of a gas molecule as

f (x; a, k,T) = 4𝜋x2(a∕2𝜋kT)3∕2 exp(−ax2∕(2kT)), (7.176)

where a = molecular weight, T = absolute temperature, and k is the Boltzmann con-
stant. Mean 𝜇 =

√
8∕(𝜋a) and variance 𝜎2 = (3 − 8∕𝜋)∕a. The mean velocity of a

gaseous molecule at room temperature can then be estimated as x = [8kT∕(a𝜋)]1∕2.
Integration of equation (7.175) allows us to write the CDF in either of the following
formats:–

2𝛾(3∕2, x2∕(2a2))∕
√
𝜋 = erf(x∕(a

√
2)) − (x∕a)

√
2∕𝜋 exp(−x2∕(2a2)). (7.177)

The MD is easily obtained using the power method as

MD = (4∕
√
𝜋)

∫

2a∕
√
𝜋∕2

0
𝛾(3∕2, x2∕(2a2))dx. (7.178)
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Figure 7.15 Rayleigh distributions.
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Figure 7.16 Maxwell distributions.

This distribution is a special case of the chi-distribution that has PDF

f (x) = xn−1e−x2∕(2𝜎2)∕[2n∕2−1
𝜎

nΓ(n∕2)]. (7.179)

Put n = 3 in equation (7.179) to get equation (7.175). See Table 7.24 for further
properties.



326 CONTINUOUS DISTRIBUTIONS

TABLE 7.24 Properties of Maxwell Distribution
√

2∕𝝅x2 exp(−x2∕(2a2))∕a3

Property Expression Comments

Range of X 0 ≤ x <∞ Continuous

Mean 𝜇 = 2a
√

2∕𝜋
E(X2) 3a2

Variance 𝜎
2 = (3 − 8∕𝜋) a2

Mode a
√

2

Skewness 2a
√

2(16 − 5𝜋)∕(3𝜋 − 8)3∕2 a* to 0.4857 approximately

Mean deviation 4∕
√
𝜋
∫

𝜇

0
𝛾(3∕2, x2∕2a2)dx 4∕

√
𝜋
∫

2a
√

2∕𝜋

0
𝛾(3∕2, x2∕2a2)dx

Moments 𝜇
′
r = 2r∕2+1arΓ((r + 3)∕2)∕

√
𝜋

CDF 2 𝛾(3∕2, x2∕(2a2))∕
√
𝜋

MGF a t
√

2∕𝜋+2a (1 + t2)et2∕2 Φ(t)

Note that there are two parametrizations for Maxwell distribution.

7.25 SUMMARY

Statistical distributions play an important role in data modeling in various fields,
including psychology, education, various branches of engineering, medical sciences,
management, and the worldwide web. A single distribution suffices for most model-
ing situations. A linear combination of homogeneous models (such as normals with
different means) is sometimes used. A researcher has to choose the most appropriate
model depending on the data to be modeled at hand. A simple data plot can quite
often reveal the most appropriate distribution that fits it well.

Statistical properties such as the mean, variance, cumulative probability function,
median, and mean deviation are obtained in summary format for some commonly
employed continuous distribution such as uniform, normal (Gaussian), exponential,
gamma, Weibull, and lognormal among others. The exponential distribution has no
memory, whereas other continuous distributions in the above-mentioned list do retain
a level of memory.

Ever since the landmark paper of Abraham De Moivre in 1730 [130], numerous
research work had gone into finding the mean deviation of common distributions.
See, for example, References 134 and 221, and so on. In Reference 166, the authors
gave several expressions involving the integral of distribution function that pertains
to higher order moments and moments of spacings. In Section 7.2, we gave an easy
method to find the MD of continuous distributions and demonstrated its use through-
out this chapter.

Extensive bibliographies exist for each distribution. See Balakrishnan and
Nevzorov [121], Evans et al. [122], Johnson, Kotz and Balakrishnan [60], and
Hazewinkel [279] for theoretical discussions and properties of these distributions.
This chapter gave a bird’s eye view of the main results. Separate volumes are
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available exclusively for some of these distributions. For example, see Reference
230 for Pareto distributions, Reference 272 for Weibull distributions, References 221
and 280 for normal and related distributions, and Reference 281 for LND. Numerous
application papers have also appeared recently.

EXERCISES

7.1 Mark as True or False

a) F[1 − 𝛼;m, n] is always >1∕F[𝛼; n,M], where F is CDF of Snedecor’s F

b) BETA-I and BETA-II are related as Y = ln(X)
c) The MD of a distribution in the range [a, b] is always within the range

d) The central limit theorem is applicable to the Cauchy mean

e) Geometric mean of lognormal distributions is lognormal distributed

f) Maxwell distribution is a special case of chi-distribution

g) Truncated U(a, b) distribution has the same skewness

h) Variance of exponential distribution is square of the mean.

7.2 Find the unknown K and verify if each of the following is a PDF:
(a) f (x) = Kx2(1 − x), for 0 < x < 1, (b) f (x) = K∕xa, for x > 1, a > 0.

7.3 Prove that B(a + 1, b) = [a∕(a + b)] B(a, b), where B(a, b) denotes the com-
plete beta function (CBF). What is the value of B(0.5, 0.5)?

7.4 If X ∼ EXP(𝜆) and Y ∼ EXP(𝜇)
prove that P(X < Y) = 𝜆∕(𝜆 + 𝜇).

7.5 If X ∼ EXP(𝜆) find the probability
that Pr(X − 1∕𝜆) < 1.

7.6 Find C if f (x, y, z) = Cz(x + y) for
0 < x < 1, 0 < y < 1, 0 < z < 1 is
a PDF.

7.7 If X ∼ EXP(𝜆), find the PDF of
floor(X) and ceil(X).

7.8 Prove that mode <median<mean
for lognormal distribution.

7.9 Prove that for the lognormal distri-
bution mean/median = exp(𝜎2∕2).

7.10 What is the range of lognormal
distribution? If X is normal, is
log(X) lognormal distributed?.

7.11 For what values of the parame-

ters p and q is the beta distribution

BETA-I(p, q) U-shaped?

7.12 Prove that the normal distribution

N(𝜇, 𝜎2) has points of inflection at

x = 𝜇 ± 𝜎. How does it change by

the change of scale transformation

y = x∕𝜎

7.13 For which of the following distri-

butions is the variance the square

of the mean?. (a) exponential (b)

beta (c) normal (d) Student’s T

7.14 Prove that area from 1∕𝜆 to 𝜆 of an

exponential distribution f (x; 𝜆) =
𝜆e−𝜆x is 1

e
− e−𝜆

2
if 𝜆 > 1 and

e−𝜆
2 − 1

e
otherwise.
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7.15 Find the area from 0 to 𝜆 and from
𝜆 to ∞ of the exponential distri-
bution 𝜆e−𝜆x. Hence or otherwise
obtain the area from 1∕𝜆 to 𝜆.

7.16 Express the areas of standard nor-
mal in terms of error function
erf(z) (i) from −c to +c and (ii) −c
to ∞.

7.17 If X ∼ Beta-I(a, b), find the dis-
tribution of Y = (1 − X)∕X and
obtain its mean and variance. Find
the ordinary moments.

7.18 Prove that the mode of an F distri-
bution is ((m − 2)∕m)(n∕(n + 2))
for m > 2.

7.19 If Xi, i = 1, 2,...,n are IID U(0, 1),
find the distribution of S =
∑n

i=1 Xi.

7.20 Prove that the mean of an expo-
nential distribution divides the
area in (1 − 1

e
): 1

e
ratio.

7.21 Prove that the characteristic func-
tion of general Cauchy distribu-
tion is exp(itb-|t|a).

7.22 What are the central moments
of a rectangular distribution
CUNI(a, b)?. Obtain 𝜇2.

7.23 Prove that a = k − c and b = k + c
in CUNI(a, b) results in f (x; c) =
1/(2c) for a−c≤ x ≤ a + c. Find
its mean.

7.24 Which of the following distribu-
tions is always asymmetric and
leptokurtic. (a) exponential (b)
beta (c) normal (d) Student’s T.

7.25 If X ∼U(0, 1), find the distribution
of Y = − log(1 − X). Hence prove
that P[Y|X > x0] = 1 − log(1 −
x0) characterizes the U(0, 1) dis-
tribution.

7.26 If X and Y are independent gamma
random variables Γ(a, 𝜆) and
Γ(b, 𝜆), then prove that X∕(X + Y)
is BETA(a, b).

7.27 What transformation to use to
obtain standard arc-sine distribu-
tion from b∕[𝜋

√
(x−a)(a+b−x)]

for a < x < b?.

7.28 Prove that 𝜇 = a∕(b − 1) and
𝜎

2 = a(a + b − 1)∕[(b − 1)2(b −
2)] (b > 2) for the BETA-II dis-
tribution with PDF fy(a, b) =
ya−1∕[B(a, b)(1 + y)a+b].

7.29 Consider a distribution defined as
f (x; p) = pq(x−1)∕2, where x > 0,
p > 0, q > 0. Find the normaliz-
ing constant, the mean and vari-
ance.

7.30 Find the kth moment of arc-sine
distribution of first kind given in
equation (7.8), page 7-40, and
obtain the 𝜇 and 𝜎2.

7.31 Find the kth moment of the two
parameter arc-sine distribution
b∕𝜋
√
(x − a)(a + b − x).

7.32 Find first two moments of the dis-
tribution fx(𝜆,m) =

√
𝜆∕𝜋x e−𝜆x

with range x ≥ 0.

7.33 Find the constant C of the distri-
bution f (y) = C∕

√
(1 − 4y2), for

−1∕2 ≤ y ≤ 1∕2. Find 𝜇 and 𝜎2.

7.34 Prove that the rth moment, for r
even, of N(0, 1) is 𝜇r = 2r∕2Γ((r +
1)∕2)∕

√
𝜋.

7.35 Prove that the distribution of the
sum of n independent Cauchy
variates is f (x) = 1

𝜋

n
n2+x2 .

7.36 Show that the PDF of square root
of a half-standard normal variate
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(for z > 0) is f (x) =
√

2∕𝜋e−x4∕2,
x > 0.

7.37 Prove that if X ∼ WEIB(p, q), then
Y = (X∕q)p has an exponential
distribution.

7.38 If X, Y are IID ∼ U[0, 1], find the
distribution of −2 log(XY).

7.39 If X ∼Cauchy find the distribution
of Y = (X − (1∕X))∕2.

7.40 A left-truncated exponential dis-
tribution with truncation point
c has PDF f (x; 𝜆) = 𝜆e−𝜆x∕[1 −
e−c] for x > c. Obtain the mean
and variance.

7.41 Obtain the PDF for a symmetri-
cally both-side truncated Cauchy
distribution with the truncation
point 𝜃. Does the variance exist?

7.42 Prove that the harmonic mean of
n IID Cauchy variates is Cauchy
distributed.

7.43 If X ∼ Beta − I(a, b), find the
distribution of 1∕X, (1 − X)∕X,
X∕(1 − X).

7.44 If X is distributed as N(0, 1), find
the distribution of Y = exp(X).

7.45 Prove that the median and mode of
the log-normal distributions are e𝜇

and e𝜇−𝜎
2
.

7.46 For N(𝜇, 𝜎2) distribution, 68.26 of
the area lies in the interval (𝜇 −
𝜎, 𝜇 + 𝜎), and so on. What are the
corresponding intervals for log-
normal distribution?

7.47 Verify whether f (x; c, d) =
(1 + x)c−1(1 − x)d−1∕[2c+d−1B(c, d)]
is a PDF for −1 < x < 1, where
B(c, d) is the complete beta func-
tion.

7.48 Consider the Lindley distribution
with PDF f (x) = 𝜃

2 1+x
1+𝜃 e−𝜃xmx, for

x > 0, 𝜃 > 0. Prove that the mgf is
𝜃

2

𝜃+1
𝜃+t+1
(𝜃+t)2 . Find the mean and vari-

ance.

7.49 If X ∼ Cauchy(𝜇, 𝜎) with PDF
f (x;𝜇, 𝜎) = 1∕[𝜎𝜋

(

1 + ( x−𝜇
𝜎
)2
)

]
prove that (i) 2X∕(1 − X2) is
identically distributed (ii) 1∕X ∼
Cauchy(𝜇∕(𝜇2 + 𝜎2), 𝜎∕(𝜇2 +
𝜎

2)).

7.50 Prove that the mean and median
of Pareto law f (x; c) = c∕xc+1 are
c∕(c − 1) and 21∕c. Find the cor-
responding mean of power-law
using Y = 1∕X.

7.51 If X ∼ Cauchy(𝜇, 𝜎) with PDF
f (x;𝜇, 𝜎) = 1∕[𝜎𝜋

(

1 + ( x−𝜇
𝜎
)2
)

]
find the PDF of each of (i) 1∕(1 +
X2) and (ii) X2∕(1 + X2).

7.52 If X has a lognormal distribution,
find the distribution of Y = Xn for
n ≥ 2.

7.53 Prove that P[X > nc] = P[X > c]n
for an EXP(𝜆). Evaluate P[X >

c]∕ 𝜕

𝜕c
P[X > c].

7.54 Show that for a lognormal dis-
tribution, 𝜇

′
k+1∕𝜇

′
k = exp(𝜇 + 𝜎

2

2
(2k + 1)).

7.55 Verify whether the log-
normal distribution satisfies
GM2 = AM*HM, where GM,AM
and HM are the geometric,
arithmetic and harmonic means,
respectively.

7.56 Prove that the third moment of
beta distribution is 𝜇3 = 2(b −
a)𝜇2∕[(a + b)(a + b + 2)].
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7.57 Prove that the harmonic mean of n
IID Cauchy random variables has
PDF f (x) = n∕[𝜋(n2 + x2)].

7.58 Prove that the lognormal distri-
bution is unimodal with mode
exp(𝜇 − 𝜎2). What is the modal
value?

7.59 Prove that the variance of Stu-
dent’s T with n DoF is 1 +
(1∕(n∕2 − 1)) if n > 2, which → 1
as n → ∞.

7.60 If X is CUNI(a, b) find the distri-
bution of Y = (2X − (a + b))∕(b −
a)

7.61 Prove that BETA-I(a, b) can be
approximated by N(0, 1) when
a, b → ∞ and a∕b is constant.

7.62 If X ∼ EXP(𝜆), prove that c ∗ ex

has Pareto distribution.

7.63 Prove that difference of two IID
EXP(𝜆) variates is Laplace(0, 1

𝜆
).

7.64 Show that the constant C of the
generalized Cauchy distribution
with PDF f (x;m) = C∕(1 + x2)m
is C = Γ(m)∕[

√
𝜋Γ(m − 1∕2)].

7.65 Prove that f (x)∕[1 − F(x)] is a
constant for the exponential distri-
bution, irrespective of its paramet-
ric forms.

7.66 Prove that the mean tends to the
mode from above for a BETA-II
distribution by taking the ratio of
mode to the mean as (1 − 1

a
)(1 −

2
b+1

). Show that they coincide as
both a, b becomes large.

7.67 If Xi for i = 1, 2, · · · , n are
independent EXP(𝜆i) variates
where 𝜆i ≠ 𝜆j for i ≠ j, the sum
S =
∑n

i=1 Xi is distributed as

∑n
i=1 C(i, j, n)𝜆i exp(−𝜆ix), where

C(i, j, n) =
∏n

j≠i=1 𝜆j∕(𝜆j − 𝜆i).

7.68 Prove that the mean deviation of
CUNI(a, b) is

√
3𝜎∕2, where 𝜎 is

the standard deviation.

7.69 If X and Y are IID ran-
dom variables with f (x) =
1∕[𝜋
√
(2∕b2) − x2], where |x| <√

2∕|b|, prove that (X + Y)∕b has
the same distribution as XY .

7.70 The weight of baggage com-
partment of a small aircraft is
normally distributed with mean
1800∼kg and variance 20,64∼kg.
Find the probability that the bag-
gage compartment weighs (i) ≥
1942∼kg, (ii) <1516∼kg, and (iii)
between 1374 and 2226 kg.

7.71 If X and Y are independent F vari-
ates with the same numerator and
denominator degrees of freedom

n, then prove that T =
√

n

2
(
√

X −
√

Y) is Student’s T distributed
with n degrees of freedom.

7.72 Prove that the ratio of variances
of Student’s T with (n + 1) and
n DoF is (1 + 1∕n) ∗ (1 − 1∕(n −
1)) if n > 2.

7.73 Prove that the ratio of modal val-
ues of Student’s T with n and
(n + 2) DoF is (1 − 1∕(n + 1)) ∗√
(1 + 2∕n) if n > 2.

7.74 Find first two moments of the
arc-sine distribution of second
kind with PDF f (y) = 1

𝜋

√
(1−y2)

for

−1 < y < 1.

7.75 What does B(m∕2, n∕2) −
Iy(m∕2, n∕2) where y = m∕(m +
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nx), B() is the complete beta func-
tion and Iy(a, b) is the unskilled
IBF represent.

7.76 Show that as n → ∞K = Γ((n +
1)∕2)∕[

√
n𝜋 Γ(n∕2)] → 1∕

√
2𝜋.

7.77 Prove that the modal value
of lognormal distribution is

1
√

2𝜋𝜎 exp(𝜇−𝜎2)
e−𝜎

2∕2.

7.78 Let X be distributed as lognormal
LN(𝜇, 𝜎). Prove that the mean is
𝜓 = exp(𝜇 + 1

2
𝜎

2). If a change of
scale transformation Y = X∕𝜓 is
applied, prove that the (r + 1)th
mean of Y is exp( 1

2
𝜎

2r(r + 1)) =
E(Y−r), the rth inverse moment.

7.79 The fraction (by weight) of impu-
rities in a kitchen cleaning liq-
uid has a Beta-I distribution with
known parameter a = 2. If the
average fraction of impurities is
0.18, find the parameter b. What is
the variance for the impurities?.

7.80 If the shape parameter of a
GAMMA(m, n) is an integer,
prove that the survival function
can be expressed as a Poisson sum.

7.81 Show that the ordinary moments
of lognormal can be found using
𝜇
′
r+1 = 𝜇

′
r ∗ exp(𝜇 + 𝜎2(r + 1

2
)).

7.82 Prove that the quartiles Q1 and Q3
of generalized Cauchy distribution
are a − b and a + b, respectively.

7.83 Prove that the quartiles Q1 and Q3
of U[a, b] are given by xp = a +
p(b − a) where p = 0.25 for Q1
and 0.75 for Q3.

7.84 Prove that area from the median
to the mode of lognormal distribu-
tion is Φ(0) − Φ(−𝜎) where Φ() is
the normal CDF.

7.85 Prove that the area up to the mode
of lognormal distribution isΦ(−𝜎)
where Φ() is the CDF of underly-
ing normal.

7.86 Prove that the mean-median-mode
inequality of lognormal distribu-
tion is mode<median<mean.

7.87 Prove that the mean–median-mode
inequality of central 𝜒2 distribu-
tion is mode<median<mean.

7.88 Find the mean and variance
of Laplacian distribution with
PDF f (x; 𝜎) = (1∕𝜎

√
2) exp

(−
√

2|x|∕𝜎),−∞ < x < ∞.

7.89 Prove that the MD of lognor-
mal distribution is 2e𝜇+𝜎

2∕2[2Φ
(𝜎∕2) − 1], where Φ(x) is the CDF
of standard normal.

7.90 For which distribution is the mean
asymmetric and the variance sym-
metric in the parameters? (a) neg-
ative binomial (b) Beta-I(a, b) (c)
binomial (d) hypergeometric

7.91 Find the mean deviation of gamma
distribution using the incom-
plete gamma function (IGF)
and Theorem 7.1 as MD =
2 ∫ m∕𝜆

0 F(x)dx.

7.92 If X is BETA-I(a, b), find the dis-
tribution of X∕(1 − X) and (1 −
X)∕X.

7.93 If X is BETA-II(a, b), find the dis-
tribution of X∕(1 + X) and 1//(1 +
X).

7.94 If Y ∼ Tn, find the distribution of
(1/2)+(1/2)*y/

√
n + y2.

7.95 If X ∼ N(0, 1) prove that the dis-
tribution of X2 is 𝜙(

√
x)∕
√

x.
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7.96 The distribution of age (x) of patients to a clinic is given by the frequency
function f (x) = 12x(100 − x)2∕1004 for 0 ≤ x ≤ 100. Prove that the modal
age is 33.33, and the mean age is 40. Show that the standard deviation is 20
approximately. Find the approximate number of patients between two standard
deviations from the mean age. Is the age distribution positively or negatively
skewed?

7.97 Prove that the quantiles of expo-
nential distribution is given by
xp = − ln(1 − p)∕𝜆. Find an upper
bound to P|X − 𝜇| ≥ k𝜎 using
Chebychev’s inequality. Find
the hazard rate function 𝜌(t) =
f (t)∕SF(t), where SF() is the sur-
vival function.

7.98 If F(x) is the CDF of a continuous
random variable defined on [0,1],
prove the following: –(i) F(x) is
U(0, 1) distributed, (ii) − ln(F(x))
has standard exponential distri-
bution, and (iii) −2 ln(F(x)) has
a chi-square distribution with
two DoF.

7.99 Chloride content in kilogram
per cubic meter at a distance x

(in inches) from the surface of
thick concrete floors is distributed
as f (x) = K[1 − erf (x∕(2

√
tD))],

where t is the time in years and
D is the diffusion coefficient
(cm2/sec). Determine K if time
is taken as 20 years. Find total
chloride up to 3 inches from the
surface.

7.100 The annual maintenance cost in
1000 of a high-rise office complex
is BETA-I(1.2, 0.8) distributed
where x = (1 − 1∕t), t being the
age (in years) of the building. Find
the (i) maintenance cost (in000)
for the fifth year, (ii) total main-
tenance costs for 10 years, and
(iii) maintenance cost for first 3
years.



8
MATHEMATICAL EXPECTATION

After finishing the chapter, students will be able to

◾ Understand the meaning of mathematical expectation

◾ Find the expectation of sums and functions of random variables

◾ Derive moments (ordinary, central, factorial) as expected values

◾ Interpret variance and covariance as expected values

◾ Explain conditional expectation and independence

◾ Apply the concepts learned to practical problems

8.1 MEANING OF EXPECTATION

Many location measures were introduced in Chapter 2. These measures concisely
summarize the information in a sample as a single number (for univariate data).
Analogous measures are needed to succinctly summarize the characteristics of
statistical populations. The population and sample space were defined in Chapter 5.
In most of the discussions later, the functional form of the population is known pre-
cisely. However, theoretically the concept is valid even in those situations where the



334 MATHEMATICAL EXPECTATION

exact form is either unknown or is partially known. The concept of the mathematical
expectation (or simply called expectation) relies on a random variable defined below.

8.2 RANDOM VARIABLE

The concept of random variable is of prime importance in mathematical expectation.
Discrete random variables was defined in Section 6.1 of Chapter 6

Definition 8.1 A random variable is a function defined on the sample space of a ran-
dom experiment that maps each possible outcome of the sample space to real numbers
such that the associated probabilities sum to one.

This concept is easy to understand for discrete random variables as the number of
points in the sample space are countably finite. Any number of random variables can
be defined on a given sample space. These may be related or independent (see Figure
8.3). In every random experiment, there are some numerical values of interest. For
example, consider the toss of a die. The possible outcomes are the faces numbered
{1,2,3,4,5,6}, each with probability 1/6. If X denotes the face that turns up, we express
it mathematically as f (x) = 1∕6 for x = 1, 2, … 6. What we have done is to simply
assign a mathematical function to each outcome of a random experiment. This is the
most common way to define a discrete random variable. For example, f (x) = qxp is
a mathematically defined random variable. There is one more way to define discrete
random variables. It is called complete enumeration. Consider the random variable
p(1) = 0.2, p(2) = 0.6, p(3) = 0.2. Here, x takes three values {1,2,3}. As the proba-
bilities add up to one, it is a well-defined random variable. This can also be written as
p(x = 1) = 0.2, p(x = 2) = 0.6, p(x = 3) = 0.2 for a univariate random variable. This
notation can be extended to bivariate and higher-dimensional random variables. It is
better suited when the sample space is of small size. The individual probabilities can
also be defined using a recurrence relation.

Definition 8.2 A probability mass function (PMF) defined on the discrete sample
space of a random experiment is a mapping that can be represented as an ordered
pair {x, f (x)} if for each possible outcome x of the sample space, the following three
conditions are satisfied: (i) f (x) ≥ 0∀x values, (ii)

∑
x f (x) = 1, and (iii) P(X = x) =

f (x) unambiguously.

Note that in the case of continuous random variables, it is the area in an infinitesi-
mal interval ∫ x+𝜀

x−𝜀 f (x)dx, where 𝜀 = dx∕2 that represents the value of the variable at x
(Figure 8.4). This means that Pr(x = c) = 0 for a fixed c. Thus, we have the following
definition.

Definition 8.3 A probability density function (PDF) defined on the continuous
sample space of a random experiment is a mapping that can be represented

as {x, ∫ dx∕2
−dx∕2 f (x)dx} satisfying the following conditions: (i) f (x) ≥ 0∀x values,

(ii)∫ ∞
x = −∞ f (x)dx = 1, and (iii) P(a < X < b) = ∫ b

a f (x)dx, see Figure 8.1.
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Figure 8.1 Continuous density function takes any value in a range.

EXAMPLE 8.1 Check if f (x) is a PDF

Verify whether a function defined as f (x; c) = 2cx exp(−cx2) over [0,∞) is a
PDF.

Solution 8.1 As exp(−cx2) takes nonnegative values, the above is positive for
c > 0, proving (i). Integrate over the range of x to get 2c ∫ ∞

0 x exp(−cx2)dx.
Put x2 = t. The range of integration is the same and we get c ∫ ∞

0 exp(−ct)dt =
c[ exp(−ct)

−c
|∞0 ] = 1, proving condition (ii). Integrate from 0 to y to get the CDF

(cumulative distribution function) as c[ exp(−ct)
−c

|
y2

0 ] = 1 − exp(−cy2). Now

consider P(a < X < b) = ∫ b
a 2cx exp(−cx2)dx = 2c ∫ b

a x exp(−cx2)dx = c ∫ b2

a2

exp(−ct)dt using the transformation x2 = t. This integrates to c[ exp(−ct)
−c

|b
2

a2 ] =
exp(−ca2) − exp(−cb2). Putting x = b2 and x = a2 in the CDF, we get
(1 − exp(−cb2)) − (1 − exp(−ca2)) = exp(−ca2) − exp(−cb2), which is the
same as above. This proves condition (iii). Hence it is a PDF for c > 0.

8.2.1 Cumulative Distribution Function

The cumulative probabilities are computed by summing individual probabilities from
the lowest possible x value to a higher number (see figure 8.2). The implicit assump-
tion here is that the random variable is arranged in increasing order of possible val-
ues of the outcomes. Symbolically Fx(x) = Pr[X ≤ x]. Using the summation notation
introduced in Chapter 1, this can be written as Fx(x) =

∑
k≤xp(k). For x = 1,F(x) =

p(x) = p(1). For x = 2,F(x) = p(1) + p(2), and so on. The CDF is a jump (or step)
function if X is discrete (Figure 8.2). In this case, we call it a cumulative proba-
bility function. Analogously the right tail probabilities is called the survival func-
tion S(x). They are related as F(x) = 1 − S(x). If X is continuous, we use integra-
tion instead of summation. Thus, irrespective of the nature of the random variable,
we can define the cumulative distribution function as the probability that the ran-
dom variable X takes values less than or equal to x, where x is a specified number
within the range. Obviously the CDF is an increasing function of x. This means that
F(x) − F(x − 1) = p(x) for discrete random variables. In the case of continuous ran-
dom variables, we have (i) F(x) is a nondecreasing function of x, (ii) limx→llF(x) = 0
(i.e., F(ll) = 0), (iii) limx→ulF(x) = 1 (i.e., F(ul) = 1), (iv) 𝜕

𝜕x
F(x) = f (x), where ll and
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3/4

1/2

1/4

0

Figure 8.2 Discrete distribution function is a step function.

ul are the lower and upper limits, and (v) F(x) is continuous function of x on the right,
with countable number of discontinuities, if any. Property (i) follows trivially due to
our implicit assumption that the outcomes of the random experiment are arranged in
ascending order of their values. This means that if x1 is strictly less than x2, then all
sample points that are part of the left tail up to x1 are automatically part of the left tail
up to x2. Thus, the sum of probabilities up to x1 is strictly less than that up to x2. Other
properties follow easily due to the increasing nature of F(x), which must eventually
equal 1.

As the CDF accumulates probabilities from the left tail, it easily follows that for
b > a,

F(b) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

F(a) +
b∑

k=a+1

p(k) if X is discrete;

F(a) +
∫

b

a
f (x)dx if X is continuous.

This gives Pr[a < X ≤ b] = F(b) − F(a) (Table 8.1). The PDF of a continuous dis-
tribution can be obtained from the CDF by differentiation with respect to the random
variable, and that of a discrete distribution can be obtained from the CDF by differ-
encing. Symbolically,

f (x) = lim
Δx→0

[F(x + Δx) − F(x)]∕Δx = 𝜕F(x)∕𝜕x, (8.1)

provided the limit exists.

EXAMPLE 8.2 Check if F(x) is a CDF

Verify whether a function defined as F(x; c, d) = (1∕(d − c))[dxc − cxd] over
[0, 1] is a CDF.
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TABLE 8.1 Comparison of Discrete and Continuous Random Variables

Property Discrete Continuous Comment

PMF f (x) Probability mass
function

Probability density
function

CDF FX(x)
x∑

k=lo

f (k)
∫

x

u=lo

f (u)du lo is the lower limit

Sum
hi∑

x=lo

f (x) = 1
∫

hi

x=lo

f (x)dx = 1 lo = lower, ul = upper
limit

Partial sum
b∑

k=a

f (x) = F(b) − F(a)
∫

b

a

f (x)dx = F(b) − F(a)

f (x) from f (x) = F(x) − F(x − 1) f (x) = 𝜕F(x)∕𝜕x f(lo) = F(lo) discrete
F(x)

x1 < x2 F(x1) ≤ F(x2) F(x1) < F(x2)

For the continuous case, f (x = c) = 0 for fixed c. It is the area in an infinitesimal interval ∫ x+𝜀
x−𝜀 f (x)dx,

where 𝜀 = dx∕2 that represents the value of the variable at x.

Solution 8.2 Differentiate with respect to x to get f (x; c, d) = (1∕(d −
c))[cdxc−1 − cdxd−1]. Take cd as a common factor to get f (x; c, d) =
(cd∕(d − c))[xc−1 − xd−1]. As c < d and 0 ≤ x ≤ 1, the expression inside
the square bracket is always positive. This shows that F(x) is a nondecreasing
function of x. As ll = 0,F(ll) = F(0) = (1∕(d − c))[0 − 0] = 0, showing that
limx→llF(x) = 0. As ul = 1,F(ul) = F(1) = (1∕(d − c))[d − c] = 1, showing that
limx→ulF(x) = 1. Obviously, ∫ 1

0 f (x; c, d)dx = (cd∕(d − c))[xc∕c − cxd∕d]|10 =
(cd∕(d − c))[1∕c − 1∕d] = 1. Here, F(x) does not have discontinuities in the
interval [0, 1]. Hence all the conditions mentioned above are satisfied, proving
that F(x) is indeed a CDF.

8.2.2 Expected Value

Measures of location introduced in Chapter 2 refer to a sample. The expected value
can be thought of as the arithmetic mean (weighted average) of random variables
or populations, where the weights are the probabilities. The mean has a much more
broader meaning, as it could be associated with any numeric quantity which may or
may not be random. The concept of “expected value” appeared for the first time in
the works of Christian Huygens around 1657.

Definition 8.4 Mathematical expectation is used to concisely quantify the mean
value of an event, an experiment, a random variable, or a function of it in a
population.

It is also called the expected or average value of the argument, or the center of
mass in physical sciences. It can be any real number within the range for real-valued
random variables. The expected value of integer-valued random variables need not
be an integer. It is so called because (i) population may be unknown, (ii) population
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could be un-enumerable, (iii) it could be a function of the unknown parameters of the
population, and (iv) it is just the expected value (and not the exact value) of the pop-
ulation under study. It is defined for discrete as well as continuous random variables,
and any well-defined functions of them. It is a scalar for univariate populations, and
a vector for multivariate random variables. It is denoted as E(X),E[X], or E X, where
E is the expectation operator, followed by the argument. The argument (also called
the operand, which is usually an expression or a function in capital letters) of “E” can
be any well-defined function of X, including integer and fractional powers of X, or
conditional distributions. It can also be another expectation expression. Thus, the “E”
operator can be recursively nested (Section 8.4, p. 358). In the rest of the chapter, we
will simply call it the expected value. In the particular case when the argument is X
itself, it is called the population mean.

Definition 8.5 The expected value of a univariate random variable is defined as:

E(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∞∑

k=−∞
xkpk if X is discrete;

∫

∞

−∞
xf (x)dx =

∫

∞

−∞
xdF(x) if X is continuous.

Whenever this sum is absolutely convergent, we call it the expected value of X. This
means that ∫ |x|dF(x) < ∞ in the continuous case, and

∑
x|x|f (x) < ∞ in the discrete

case. Although we have indicated the range as −∞ to ∞, the actual range depends on
the random variable. For example, as the binomial distribution takes values between
0 and a positive integer n, all expected values of binomial random variables use
the summation range from 0 to n. Similarly, as the Poisson and geometric distribu-
tions take values between 0 and ∞, the summation is carried out in this range only.
Hence the very first step in finding the expectation is to figure out the exact range
(Figures 8.3, 8.4).

As p′ks are probabilities that sum to 1 (
∑

kpk = 1, ∫ f (x)dx = 1), the above sum will
almost always converge when

∑∞
k=−∞ |xk|pk < ∞ or ∫ ∞

−∞ |x|f (x)dx < ∞. On occasion
this sum may diverge, in which case we say that the expected value does not exist.
This seldom happens for random variables defined over a finite range.

Input Output

Figure 8.3 Parallel circuit.
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Figure 8.4 Continuous density function.

As mentioned earlier, E(X) is a weighted average of all possible values that the
variable can take with corresponding probabilities as the weights. In other words, the
notation E(X) can be considered as an expectation operator, operating upon the entire
range of its argument (which is not shown, but is understood from context). The argu-
ment of this expectation operator is quite often a random variable, with the implied
meaning that it is the centroid of the argument. As discussed below, the argument
could also be any well-defined function of the random variable (e.g., E(X2),E(X−k)).
If all weights (pk or f (xk)) are equal (and the range of X is finite), the expected
value reduces to the ordinary average (arithmetic mean) of all possible values. For
instance, let X take values in the range 1–n and let pk = 1∕n (so that

∑
kpk = 1) then

E(X) =
∑

kpkxk =
∑

kk∕n = 1
n

∑
kk = n(n + 1)∕[2n] = (n + 1)∕2.

EXAMPLE 8.3 Expected value of c/x2,x ≥1

Find the expected value of the random variable X with PDF f (x) = c∕x2
, x ≥ 1,

where c is the normalizing constant.

Solution 8.3 As the total probability must be one, c ∫ ∞
1 1∕x2dx = 1 ⇒

−c[1∕x|∞1 ] = 1 giving c = 1. The expected value is E(X) = ∫ ∞
1 (1∕x)dx =

[log (x)|∞1 ] = ∞. Hence E(X) does not exist.

In many of the examples given below, we are interested in the expected value
of random experiments. In such situations, E(X) can be considered as the average
value of the experiment, if it is repeated under identical conditions a large number of
times.
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EXAMPLE 8.4 Promotional coupons in cereals pack

A cereals manufacturer offers a promotional coupon with a new brand of cereals
pack. Two types of coupons (that carry either 1 point or 2 points) are printed, and
exactly one of them is put in each pack. Probability that a customer will find a
1-point coupon is p, and a 2-points coupon is q = 1 − p. If a customer purchases
n packs of the cereal, what is the expected number of points earned?

Solution 8.4 As each pack contains a coupon, the minimum score is n and the
maximum score is 2n. These two scores can happen in one way each with respec-
tive probabilities pn and qn. The customer can score (n + 1) points in n ways
(exactly one cereal pack contains a 2-points coupon, and the rest (n − 1) packs
contain 1-point coupons) with probability pn−1q, so that the probability of score
n + 1 is

(
n
1

)

pn−1q, and so on. Hence the expected score is found by summing the
points earned multiplied by the corresponding probabilities as E(X) = (n ∗ pn +
(n + 1)

(
n
1

)

pn−1q + … + 2n ∗ qn). Separate the first term from each, and use

binomial expansion for (p + q)n = 1 to simplify the above as n +
(

n
1

)

pn−1q +

2
(

n
2

)

pn−2q2 + · · · + nqn. The “n+” term here is a guarantee that the minimum

score is n. Using the identity 2 (p. 188) as i ∗
(

n
i

)

= n ∗
(

n−1
i−1

)

this can be fur-

ther simplified as n + nq(p + q)n−1 = n + nq = n(1 + q). The maximum score of
2n occurs when q → 1. If an equal number of coupons are printed, q = 1∕2, so
that the expected score is 3n∕2.

EXAMPLE 8.5 Coin tossing game

Consider a simple game in which a fair coin is tossed. You win $100 if the Head
turns up. If it is a Tail that turns up, you lose $90. What is your expected loss or
gain in one toss? What is the expected value in n (>2) tosses? Does the expected
value converge when a sufficiently large number of trials are conducted?

Solution 8.5 As the coin is fair, P(Head) = P(Tail) = 1/2. Thus, the expected
value in one toss = (1∕2) ∗ 100 − (1∕2) ∗ 90 = 50 − 45 = 5, which is a gain. If
this game is repeated n times, our expected gain is 5 ∗ n. This expected value is
divergent as n → ∞.

The expected value can also be a negative number. In the above example, if the
winning amount is 90 and losing amount is 100, the expected value is negative.
Another example is given below:

EXAMPLE 8.6 Roll of a die

Consider the experiment of rolling a fair die once. If the number that comes on
top is an even integer, you win c units of money. If the number on top is odd, you
lose 2*c units of money. What is your expected gain or loss?
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TABLE 8.2 Number of Chicken Hatched in 10 Days

Eggs 42 50 49 50 45 47 48 49 50 48

Chicken 37 43 47 44 40 45 44 42 48 45

Solution 8.6 If the number on top is 2, 4, or 6, the winning amount is c. If it is 1,
3, or 5, the losing amount is 2c. As the die is fair, each of them have equal prob-
ability 1/6. Let X denote the loss or gain. Then E(X) = −2c ∗ P(X = 1) + c ∗
P(X = 2) − 2c ∗ P(X = 3) + c ∗ P(X = 4) − 2c ∗ P(X = 5) + c ∗ P(X = 6) =
(1∕6)[−6c + 3c] = −(3∕6)c = −c∕2, which is a negative number for c > 0.

EXAMPLE 8.7 Egg hatching

A farmer hatches between 40 and 50 eggs every week. Total number of chickens
hatched are given in Table 8.2. Find the expected number of chickens that will
be hatched next week if n eggs are kept for hatching.

Solution 8.7 We assume that the eggs are uniformly sampled from a hypotheti-
cal population with a constant probability p of hatching. From Table 8.2, we get
the probabilities of hatching as p1 = 37∕42 = 0.881, p2 = 43∕50 = 0.86, p3 =
0.9592, p4 = 0.88, p5 = 0.8889, p6 = 0.9575, p7 = 0.9167, p8 = 0.8571, p9 =
48∕50 = 0.96, and p10 = 45∕48 = 0.9375. The expected probability of
hatching is found as E(p) = [0.881 + 0.86 + 0.9592 + .. + 0.9375]∕10 =
9.09778∕10 = 0.909778. If n eggs are kept for hatching, the expected number
of chickens hatched is 0.909778*n. The expected values for n = 40–50 are
[36.39,37.30,38.21,39.12,40.03,40.94,41.85, 42.76, 43.67,44.58,45.49]. As the
answer must be a whole integer, we could round-off the above values to the
nearest integer.

8.2.3 Range for Summation or Integration

We have taken the general range for X anywhere on the real line in the above def-
inition. Range of X depends upon the random variable. For example, Poisson and
Geometric distributions assume integer values in 0 to ∞, whereas binomial distribu-
tion has range 0–n. Thus, the range for summation (or integration) collapses to the
range of the random variable or event involved (see Figure 8.4).

EXAMPLE 8.8 Expected value of marks

A multiple choice exam comprises of 50 questions, each with 5 answers. All
correctly marked answers score 1 mark, and all wrong answers get a penalty
of 1/4 mark. What is the expected number of marks obtained by a student who
guesses n questions?
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Solution 8.8 Assume that the student has actually obtained x correct and
(n − x) wrong answers. Then the marks obtained is x ∗ 1 − (n − x) ∗ (1∕4) =
(5∕4) ∗ x − n∕4 = (5x − n)∕4 = Y (say). As Xi can take the possible values
0, 1, … , n we get the expected value as E(X) = 1 ∗ 1∕5 + 0 ∗ 4∕5 = 1∕5. Now
E(Y) = (5E(X) − n)∕4 = (5x(n∕5) − n)∕4 = 0. Hence the answer is zero. As it
is an expected value, the actual score earned when all n questions are attempted
could fluctuate around the expected value.

8.2.4 Expectation Using Distribution Functions

Some of the statistical distributions have simple expressions for the CDF. Examples
are the exponential, logistic, and extreme value (Gumbel) distributions. The expected
value could be found in terms of the distribution functions as follows:

Theorem 8.1 If X is discrete, then E(X) =
∑

kP(X ≥ k).

Proof: Without loss of generality, assume that X takes the values 1,2,.. Then

E(X) =
∑

k

kP(X = k) = 1 ∗ P(X = 1) + 2 ∗ P(X = 2) + 3 ∗ P(X = 3) + · · · .

(8.2)
Split 2 ∗ P(X = 2) as P(X = 2) + P(X = 2), and so on and sum alike terms to get

E(X) = [P(X = 1) + P(X = 2) + · · · ] + [P(X = 2) + P(X = 3) + · · · ] + · · ·

= P(X ≥ 1) + P(X ≥ 2) + · · · =
∑

k

P(X ≥ k). (8.3)

As E(X ± c) = E(X) ± c (Section 8.3 in page 348), the result follows for arbitrary
range of X.

EXAMPLE 8.9 Closed form summation of Incomplete Beta Function

Prove that
n∑

k=0

Ip(k, n − k + 1) = np, where Ix(a, b) =
1

B(a, b) ∫

x

0
ta−1(1 − t)b−1dt. (8.4)

is the Incomplete Beta Function (IBF) defined in Chapter 7 (p. 277).

Solution 8.9 We have seen in Chapter 6 (p. 208) that if X∼BINO(n, p),

n∑

x=k

(n
x

)

pxqn−x = Ip(k, n − k + 1). (8.5)

Using Theorem 8.1, we have

E(X) =
∑

k

P(X ≥ k) =
n∑

k=0

Ip(k, n − k + 1) = np. (8.6)
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because from Chapter 6, we know that the mean of BINO(n, p) is np. Note that
the IBF is a continuous function of p in equation (8.6), which is being summed.
The LHS gives exact result only for small n values, as error could propagate for
large n values. For example, if n = 8 and p = 0.9 (equation 8.6 ) gives 7.2, which
is exact. For n = 12 and p = 0.5, equation (8.6) gives 5.999756, whereas np = 6.
Use symmetry relation to get a similar expression

n∑

k=0

I1−p(n − k + 1, k) = n − np = nq, (8.7)

which is better suited for p > 0.5. Hence the closed form expression (on the RHS)
in equations (8.6) and (8.7) is extremely useful to evaluate sums on the LHS,
especially when n is large.

EXAMPLE 8.10 Closed form for infinite summation of IBF

Prove that ∞∑

j=0

Iq(j + 1, k) = kq∕p, where q = 1 − p. (8.8)

Solution 8.10 We have seen in Chapter 6 (p. 228) that if X ∼ NBINO(k, p), the
lower tail probabilities are found as

c∑

x=0

(x + k − 1
x

)

pkqx = Ip(k, c + 1). (8.9)

Upper tail probability (SF) is obtained by subtraction as
∑∞

x=c+1

(
x+k−1

x

)

pkqx =
1 − Ip(k, c + 1). Using Theorem 8.1, we have

E(X) =
∑

j

P(X ≥ j) =
∞∑

j=0

[1 − Ip(k, j + 1)] =
∞∑

j=0

Iq(j + 1, k) = kq∕p. (8.10)

because the mean of NBINO(k, p) is kq/p. Using symmetry relation, a similar
expression follows easily as

∞∑

j=0

Ip(k, j + 1) = 1 − kq∕p = 1 + k − k∕p. (8.11)

Although an infinite sum, rapid convergence of equation (8.10) occurs for p val-
ues in the right tail (> 0.5, especially for p above 0.80 or equivalently q < 0.20)
so that it can be truncated at j = 2k, giving the LHS as

∑2k
j=0 Ip(k, j + 1) for

p > 0.5. However, the RHS provides a simple and elegant expression, which
avoids the expensive evaluation of IBF.
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EXAMPLE 8.11 E(X) in terms of F(x) for continuous variates

If X is a continuous random variable with CDF F(x), then

E(X) =
∫

∞

0
[1 − F(x)]dx −

∫

0

−∞
F(x)dx. (8.12)

Solution 8.11 Consider ∫ ∞
0 [1 − F(x)]dx. As [1 − F(x)] is the survival function

(right tail area), it can be written as [1 − F(x)] = ∫ ∞
x f (t)dt. Substitute in the RHS

above to get ∫ ∞
0 [1 − F(x)]dx = ∫ ∞

x=0 ∫
∞

t=x f (t)dtdx. Change the order of integra-
tion to get ∫ ∞

t=0 ∫
t

x=0 f (t)dxdt. As f (t) is a constant while integrating with respect
to x, the inner integral simplifies to t ∗ f (t). Thus, the RHS becomes ∫ ∞

t=0 t ∗
f (t)dt, which is the LHS. Similarly ∫ 0

−∞ F(x)dx = − ∫ 0
−∞ t ∗ f (t)dt. Combine both

results to get the desired answer.

The quantiles of a distribution was defined in Chapter 3. This includes the quar-
tiles, deciles, and percentiles. We can express the quantiles using the CDF as follows:
The kth quantile is that value of x for which F(x) = k∕100. In the case of quartiles,
the divisor is 4 so that we get 3 quartiles that divide the total area into 25, 50, and 75
points.

Lemma 1 If X is non-negative, prove that E(X) = ∫ ∞
0 [1 − F(x)]dx.

Proof: By definition,

E(X) =
∫

∞

0
xf (x)dx =

∫

∞

0
xdF(x) = lim

t→∞∫

t

0
xdF(x)

= lim
t→∞

[

xF(x)|t0 − ∫

t

0
F(x)dx

]

= lim
t→∞

[

tF(t) − 0 −
∫

t

0
F(x)dx

]

. (8.13)

Letting t tend to infinity, this becomes F(∞)limt→∞ ∫ t
0 dx − ∫ t

0 F(x)dx. Put F(∞) =
1 to get limt→∞ ∫ t

0 [1 − F(x)]dx. Now let t tend to infinity to get the final results as
∫ ∞

0 [1 − F(x)]dx.

EXAMPLE 8.12 E(X) and E(X2) of a Poisson distribution

Find E(X) and E(X2) for a Poisson random variable.

Solution 8.12 Let X ∼ POIS(𝜆). Then E(X) =
∑∞

x=0 xe−𝜆𝜆x∕x! = e−𝜆𝜆
∑∞

x=1
𝜆

x−1∕(x − 1)! = e−𝜆𝜆e𝜆 = 𝜆. To find E(X2), write X2 = X ∗ (X − 1) + X. Then
E(X2) =

∑∞
x=0 x(x − 1)e−𝜆𝜆x∕x! +

∑∞
x=0 xe−𝜆𝜆x∕x!. The x(x − 1) in the first

sum cancels out with x! in the denominator giving (x − 2)!. Thus, the first term
becomes 𝜆2e−𝜆

∑∞
x=2 𝜆

x−2∕(x − 2)!. Putting x − 2 = y, the summation reduces

to e𝜆 giving 𝜆
2e−𝜆e𝜆 = 𝜆

2. Substitute for the second sum from above to get
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E(X2) = 𝜆
2 + 𝜆. From Chapter 6, page 234, we know that the tail probabilities

of a Poisson distribution is related to the incomplete gamma function as follows:

F(r) = P[x > r] =
∞∑

x=r+1

e−𝜆𝜆x∕x! = 1
Γ(r + 1) ∫

𝜆

0
e−xxrdx = Pr+1(x). (8.14)

Substitute for P[x > r] = Pr+1(x) using Section 8.1 to get E(X) =
∑

kP(X ≥ k) =
∑

rPr+1(x).
Mathematical expectation can also be defined on events associated with a random

variable. Consider the event Y that a Poisson random variable X takes even values. The

possible values of Y are 0, 2, 4, … ,∞. Then E(Y) =
∑

y even
ye−𝜆𝜆y∕y!. Put u = y∕2,

so that u takes all integer values starting with 0. As before E(U) =
∑∞

u=0 ue−𝜆𝜆u∕u! =
𝜆, so that E(Y) = 2𝜆 (see Example 6.39 in p. 233).

EXAMPLE 8.13

If X is a continuous random variable, and d is a constant, find the unknowns a,b,c
such that E[X − d|X > d] = ∫ b

a c[1 − F(x)]dx, where b > a.

Solution 8.13 Consider the probability Y = P[X − d|X > d]. Then P[Y ≤
y] = P[X − d|X > d ≤ y]. This probability is the same as P[X − d ≤ y|X > d].
As X is continuous, this can be written as P[d < X < y + d|X > d]. Using
the conditional probability formula P[A|B] = P[A ∩ B]∕P[B] this becomes
P[d < X < y + d]∕P[X > d]. The numerator can be written in terms of uncon-
ditional CDF of X as FX(y + d) − FX(d) if d is positive, and FX(d) − FX(y − d)
if d is negative. The denominator being the survival function can be writ-
ten as 1 − FX(d). Now apply equation 8.10 on the expectation of Y as
E[Y] = ∫ ∞

0 [1 − GY (y)]dy. Substitute for GY (y) from the above to get E[Y] =
∫ ∞

0 [1 − [FX(y + d) − FX(d)]∕[1 − FX(d)]]dy. This simplifies to E[Y] =
∫ ∞

0 [1 − [FX(y + d)]∕[1 − FX(d)]dy. Apply a change of variable transformation
x = y + d to get E[Y] = ∫ ∞

d [1 − [FX(y)]∕[1 − FX(d)]dx. From this, we see that
a = d, b = ∞, and c = 1∕[1 − FX(d)].

EXAMPLE 8.14 Variance in terms of F(X)

If X is continuous random variable, the variance of X can be expressed as 𝜎2
x =

∫ ∞
0 2x[1 − FX(x) + FX(−x)]dx − 𝜇2

X .

Solution 8.14 As Var(X) = E[X2] − (E[X])2 = E[X2] − 𝜇2
x . Substitute for F(x)

as in Example 8–11 and proceed as above to get the result.

EXAMPLE 8.15 Expectation of Integer part of Exponential

If X ∼ EXP (𝜆) find E[⌊X⌋], where ⌊X⌋ denotes the integer part of X.
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Solution 8.15 We have seen in Chapter 6, page 218, that the integer part of X has
a geometric distribution with q = exp (−𝜆). Using the above method, the prob-
lem reduces to finding the mean of GEO(p), where p = 1 − q = [1 − exp(−𝜆)].
Hence E(Y) = E(⌊X⌋) is exp(−𝜆)∕[1 − exp(−𝜆)].

8.3 EXPECTATION OF FUNCTIONS OF RANDOM VARIABLES

In many practical applications, we have to work with simple mathematical functions
of random variables. A possible method is to first find the distribution of these func-
tions and then find its expected value. However, the following theorem gives us a
simple method to find expected values of functions of random variables without either
deriving their distributions or knowing about the exact distributions.

There is another way to find E[g(x)] if g(x) has a well-defined distribution. Instead
of using the original PDF inside the summation or integration, we could find the distri-
bution of Y = g(X), and find E[Y] of this distribution. As an example, let X ∼ N(0, 1)
and Y = X2. We wish to find 𝜇′2 = E[X2] = ∫ ∞

−∞ x2
𝜙(x)dx, where 𝜙( ) is the standard

normal PDF. We know that Y = X2 has a central 𝜒2 distribution with 1 degree of
freedom, whose expected value is 1. Hence E[X2] is also 1. This technique may not
always work. In the above example, if we wanted E[X2 − 2X + 3], we need to resort
to the first approach because X2 − 2X + 3 does not have a simple distribution.

8.3.1 Properties of Expectations

Let X and Y be any two random variables, discrete or continuous, univariate or mul-
tivariate. In the following discussion, it is assumed that E(X) and E(Y) exist (they are
finite).

Theorem 8.2 The expected value of a constant is constant.

Proof: The proof follows trivially because the constant can be taken outside the sum-
mation (discrete case) or integration (continuous case) and what remains is either
the summation or integration of probabilities that evaluates to a 1.0. Symbolically,
E(c) = c. Here, c is a scalar constant for univariate distributions, and a constant vec-
tor for multivariate distributions. Symbolically, E(c) =

∑
kcpx=k = c

∑
kpx=k = c, for

the discrete case. If X is continuous, E(c) = ∫xcp(x)dx = c∫xp(x)dx = c.

Theorem 8.3 The expected value of linear function c ∗ X is c times the expected
value of X, where c is a nonzero constant and the expected value exists.

Proof: As above, the constant can be taken outside the summation (discrete case) or
integration (continuous case) and what remains is either the summation or integration
of X that evaluates to E(X). Applying the multiplier c gives the result as c ∗ E(X).

Theorem 8.4 Prove that expected value of linear combination E(a ∗ X + b) = a ∗
E(X) + b for any random variable X, and nonzero constant a.
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Proof: Let X be discrete, and take values x1, x2, … , x∞. From the definition of
expected values, E(aX + b) =

∑
k(axk + b)pxk

= a
∑

kxkpxk
+ b

∑
kpxk

= aE(X) + b
because

∑
kpxk

= 1. If X is continuous, E(aX + b) = ∫ (ax + b)p(x)dx = a ∫ xp(x)dx +
b ∫ p(x)dx = aE(X) + b. We have not made any assumption on the distribution of
the random variable X in this theorem, but only the existence of the first moment.

Corollary 1 E(c − X) = c − E(X). This follows by writing (c − X) as (−1 ∗ X + c)
and applying the above theorem with a = −1, and b = c. Putting c = 0, we get
E(−X) = −E(X).

EXAMPLE 8.16 E(n − x) of a Binomial

If X has a binomial distribution with parameters n and p (BINO(n, p)), find
E(n − X), of a binomial distribution.

Solution 8.16 Write n − X as Y = (−1) ∗ X + n, and apply Theorem 8.4 to
get E(Y) = (−1) ∗ E(X) + E(n). Substitute E(X) = np, and use E(c) = c to get
E(Y) = −np + n = n(1 − p) = nq.

Theorem 8.5 If X and Y are two random variables, E(X ± Y) = E(X) ± E(Y) =
E(Y ± X) and E(aX ± bY) = aE(X) ± bE(Y).

Proof: The sum of two random variables X and Y makes sense only when they are
compatible random variables. The first result follows trivially by distributing the sum-
mation or integration over the individual components (connected by + or −). The
second result can be proved using the fact that E(cX) = cE(X), twice. This is called
the linearity property of expectation.

8.3.1.1 Expected Value of Independent Random Variables We defined indepen-
dent random variables in Chapter 5 as P(XY) = P(X) ∗ P(Y).

This result is defined in terms of probabilities. As expected values can be con-
sidered as functions of random variables with probabilities as weights, we could
get analogous results in terms of expected values. Two outcomes are independent
if knowing the outcome of one does not change the probabilities of the outcomes of
the other. When two events are independent, we find the probability of both events
happening by multiplying their individual probabilities.

Definition 8.6 If X and Y are two independent random variables, then E(XY) =
E(X) ∗ E(Y).

Let X and Y be discrete. Then E(XY) =
∑

k(xkyk)pxk ,yk
=
∑

kxkykpxk
pyk

using the
above theorem on the independence of probabilities. Pairing xk with pxk

, this becomes
∑

k(xkpxk
)(ykpyk

). Hence, if X and Y are independent, then E[XY] = E[X]E[Y].

Theorem 8.6 If X and Y are two independent random variables, then P(X ≤ x,Y ≤
y) = P(X ≤ x) ∗ Pr(Y ≤ y).
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Proof: Let both be discrete. Write the LHS as

P[X ≤ c,Y ≤ d] =
∑

x≤c

∑

y≤d

p(x, y) =
∑

x≤c

∑

y≤d

p(x)p(y). (8.15)

Using the properties of summation mentioned in Chapter 1, split this into two
products as

P[X ≤ c,Y ≤ d] =
∑

x≤c

p(x)
∑

y≤d

p(y) = P[X ≤ c] ∗ P[Y ≤ d] (8.16)

due to the independence of X and Y.

Theorem 8.7 Expected value of a linear combination of scaled functions is the linear
combination of expected value of the functions with respective scaling factors. Sym-
bolically, E(c1g1(x) + c2g2(x) + · · · +) = c1E(g1(x)) + c2E(g2(x)) + · · · +, where the
constants ci’s are any real numbers.

Proof: This result follows trivially using theorem and corollaries above. Putting
c1 = +1 and c2 = −1, we get E([g1(x) − g2(x)]) = E(g1(x)) − E(g2(x)).

Definition 8.7 If X and Y are two independent random variables, and g(x), h(y) are
everywhere continuous functions of X and Y defined on the range of X and Y, then
E(g(X) ∗ h(Y)) = E(g(X)) ∗ E(h(Y)) if the expectations on the RHS exist.

The proof follows exactly as done above using summation in the discrete case and
integration in the continuous case.

EXAMPLE 8.17 E(X2) using E(X(X − 1))

Prove that E[x2] can be found easily using E[x(x − 1)] and E[x] when the
denominator of the random variable involves factorials. Find a similar method
to find E[x3]. Use this technique to find the expected values of a Poisson random
variable.

Solution 8.17 Write x2 = x(x − 1) + x. Use the above result to break the
expected value of RHS into two terms to get E[x2] = E[x(x − 1)] + E[x]. Write
x3 = x(x − 1)(x − 2) + 3x(x − 1) + x. Take expectation to get E(x3) = E[x(x −
1)(x − 2)] + 3E[x(x − 1)] + E[x]. For a Poisson random variable, E[x(x − 1)(x −
2)] =

∑∞
x=0 x(x − 1) (x − 2) exp(−𝜆)𝜆x∕x! =

∑∞
x=3 exp(−𝜆)𝜆x∕(x − 3)! = 𝜆

3.
Similarly, E[x(x − 1)] = 𝜆

2. Put these values in the above expression to get
E(x3) = 𝜆

3 + 3𝜆2 + 𝜆 = 𝜆(𝜆2 + 3𝜆 + 1) = 𝜆[(𝜆 + 1)2 + 𝜆].

Theorem 8.8 If X1,X2, … ,Xm are independent compatible random variables, then
E(c1X1 + c2X2 + · · · + cmXm) =

∑
iciE(Xi).

Proof: This follows easily by repeated application of the above result. If
X1,X2, … ,Xm are m compatible random variables, then E(X1 + X2 + · · · + Xm) =
E(X1) + E(X2) + · · · + E(Xm), provided each of the expectations exist.
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EXAMPLE 8.18 Sum of Bernoulli random variables

If X ∼ BER(p1) and Y ∼ BER(p2), then E(X + Y) = p1 + p2.

Solution 8.18 As X and Y are compatible, we apply the above theorem to get the
result. This theorem can be extended to any number of random variables.

Theorem 8.9 If X1,X2, … ,Xm are BER(pi), then E(X1 + X2 + · · · + Xm) =
p1 + p2 + · · · + pm =

∑m
i=1 pi.

Proof: The proof follows easily by taking the expectation term by term. If the proba-
bility of success is equal (the same probability p for each of them), then E(X1 + X2 +
· · · + Xm) = mp.

Theorem 8.10 If X1,X2, … ,Xn are random variables, each with mean 𝜇, the mean
of Xn = (X1 + X2 + · · · + Xn)∕n is also 𝜇.

Proof: Take 1∕n as a constant on the RHS and apply the above theorem to get E[Xn] =
(1∕n) ∗ (E[X1] + E[X2] + · · · + E[Xn] = (1∕n) ∗ n𝜇 = 𝜇.

Theorem 8.11 If X ≤ Y , then E[X] ≤ E[Y].

Proof: For simplicity assume that X and Y have the same range. Consider Z = Y − X.
As X ≤ Y , Z is always positive. Hence E[Z] ≥ 0. This means that E(Y − X) ≥ 0, or
equivalently E[Y] ≥ E[X].

As noted above, the sum on the left makes sense only when the random variables
are compatible. Any of the “+” can also be replaced by a “−” with the corresponding
sign changed on the RHS accordingly.

EXAMPLE 8.19 Expected value of functions of Binomial

If X has a binomial distribution with parameters n and p (BINO(n, p)), then (i)
E(X∕n) = p and (ii) E(n − X)2 = nq[n − p(n − 1)] = nq + n(n − 1)q2.

Solution 8.19 The first result follows trivially from the above by replacing c
with 1∕n, and taking 1∕n as a constant outside the expectation operator. For
(ii) expand the quadratic as E(n − X)2 = E(n2 − 2nX + X2). Take term by term
expectation to get E(n2) − 2nE(X) + E(X2)). Now apply above theorems to get
n2 − 2n ∗ np + (np + n(n − 1)p2). This simplifies to nq[n − p(n − 1)]. Write p
as 1 − q so that [n − p(n − 1)] = n − (1 − q)(n − 1). The n cancels out giving
1 + q(n − 1). Substitute in the above to get E(n − X)2 = nq[1 + (n − 1)q] = nq +
n(n − 1)q2. This result can also be obtained directly from the observation that
n − X has BINO(n, q) (Example 6.11 1, p. 203) so that its second moment is
nq + n(n − 1)q2.
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EXAMPLE 8.20 Expected heads in flips of four coins

What is the expected number of heads in four flips of a fair coin?

Solution 8.20 Let X be the number of heads. It can take values 0, 1, 2, 3, 4 with
probabilities P(X = 0) = P(“TTTT”) = q4

,P(X = 1) =
(

4
1

)

pq3 = 4pq3
,P(X =

2) =
(

4
2

)

p2q2 = 6p2q2
,P(X = 3) =

(
4
3

)

p3q = 4p3q, and P(X = 4) = P (“HH-

HH”) = p4. Hence E(X) = 0 ∗ q4 + 1 ∗ 4pq3 + 2 ∗ 6p2q2 + 3 ∗ 4p3q + 4 ∗
p4 = 4[pq3 + 3p2q2 + 3p3q + p4]. As the coin is fair, p = 1∕2. Thus, the
required expected number is 4

24 [1 + 3 + 3 + 1] = 8∕4 = 2 = np.

Theorem 8.12 Prove that |E[XY]| ≤
√

E[X2]
√

E[Y2].

Proof: Consider the expression (aX + Y∕a)2 = a2X2 + Y2∕a2 + 2 ∗ a ∗ (1∕a) ∗
XY = a2X2 + Y2∕a2 + 2 ∗ XY . As the LHS being a square is always nonnegative,
this can be written as ±2XY ≤ a2X2 + Y2∕a2. Take expectation of both sides to get
±2E[XY] ≤ a2E[X2] + (1∕a2)E[Y2]. If E[X2] > 0, take a2 =

√
E[Y2]∕

√
E[X2] to

get the RHS as 2 ∗
√

E[X2]
√

E[Y2]. Cancel out 2 from both sides to get the result.

Corollary 2 |E[X]| ≤
√

E[X2].

This follows easily by taking Y = X.

8.3.2 Expectation of Continuous Functions

Some applications involve functions of random variables. Examples are fractional
powers of X, integer powers of X, exponential, logarithmic and trigonometric func-
tions, and other transcendental functions.

EXAMPLE 8.21 Expected value of exp(𝜆X)

If X is BINO(n, p) find expected value of exp(𝜆X), where 𝜆 is a nonzero constant.

Solution 8.21 By definition E[exp (𝜆X)] =
∑n

k=0 exp(𝜆k)
(

n
k

)

pkqn−k. Com-

bine exp(𝜆k) with pk and write this as
∑n

k=0

(
n
k

)

(p exp(𝜆))kqn−k. This simplifies

to (q + pe𝜆)n.

Corollary 3 If g(x) is undefined for at least one value of X, then E(g(x)) does not
exist. For instance, the first inverse moment E(1∕X) is undefined for all random vari-
ables that assume a nonzero value for x = 0 (i.e., f (x = 0) ≠ 0).

EXAMPLE 8.22 E(1∕X) ≥ 1∕E(X)

Prove that E(1∕X) ≥ 1∕E(X) for positively defined random variables X.
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Solution 8.22 Let 𝜇 be the mean of X. Then E[(X − 𝜇)(1∕X) − 1∕𝜇] = E[(X −
𝜇)(𝜇 − X)∕𝜇X = −E[(X − 𝜇)2∕(𝜇X) ≤ 0.

Definition 8.8 If the function g(x) is everywhere continuous in the range of X, then

E(g(x)) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∞∑

x=−∞
g(x)f (x) if X is discrete;

∫

∞

−∞
g(x)f (x)dx if X is continuous.

Theorem 8.13 E(g(X,Y)) = E
over x

[
E

over y
(g(X,Y)|X)

]

EXAMPLE 8.23 Expected value of a function

If X is EXP(𝜆), find E[e−x∕2].

Solution 8.23 As X is EXP(𝜆), f (x; 𝜆) = (1∕𝜆) exp(−x∕𝜆).
Hence E[e−x∕2] = ∫ ∞

0 e−x∕2(1∕𝜆) exp(−x∕𝜆)dx. Take the constant outside
the integral and combine the exponents to get E[e−x∕2] = (1∕𝜆) ∫ ∞

0 exp(−x( 1
2
+

1
𝜆
))dx. This evaluates to 2∕(𝜆 + 2).

EXAMPLE 8.24 E((− 1)x) of a Poisson Distribution

If X is POIS(𝜆), find E[(−1)x].

Solution 8.24 This follows easily as E[(−1)x] =
∑∞

x=0 (−1)x exp(−𝜆)𝜆x∕x!.
Using the above theorem, we take the constant outside the summation to get

E[(−1)x] = exp(−𝜆)
∞∑

x=0

(−𝜆)x∕x! = exp(−𝜆) exp(−𝜆) = exp(−2𝜆). (8.17)

Corollary 4 Expected value of a scaled function is the scaling factor times the
expected value of the function. Symbolically, E(c ∗ g(x)) = c ∗ E(g(x)).

EXAMPLE 8.25 Moments of geometric distribution qx/2p

Find the mean and variance of a distribution defined as

f (x; p) =

{
qx∕2p if x ranges from 0, 2, 4, 6, … ,∞
0 elsewhere.

Solution 8.25 Put Y = X∕2 to get the standard form. Take expectation of
both sides to get E(Y) = E(X)∕2 = q∕p, so that E(X) = 2q∕p. Similarly,
V(X) = 4 V(Y) = 4q∕p2.
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8.3.3 Variance as Expected Value

The variance is a measure of spread in the population. This is captured in a single
parameter for normal, Laplace, Gumbel, and some other distributions, but is a func-
tion of two or more parameters for others.

Definition 8.9 Variance of a random variable is 𝜎
2
x = E[(X − E(X)]2 = E(X2) −

E(X)2.

Here, E(X) is the population mean, which we denote by 𝜇x. If 𝜇x = 0, the
population variance takes the simple form 𝜎

2
x = E(X2). The above can be

expressed as E[(X − E(X)]2 =
∑

k(xk − 𝜇)2pX(xk) when X is discrete, and
∫x(x − 𝜇)

2f (x)dx = ∫x(x − 𝜇)
2dF(x) when X is continuous.

8.3.3.1 Properties of Variance

1. Var(X) = E[X2] − E[X]2.
The proof follows trivially by expanding (x − 𝜇)2 = x2 − 2𝜇x + 𝜇2, then taking
expectation term by term, and using E[X] = 𝜇 in the middle term (Table 8.4).

2. The variance of independent random variables are additive. Symbolically V(X +
Y) = V(X) + V(Y).
This is known as the additivity property, which is valid for any num-
ber of independent random variables. We prove it for two variates
X and Y. By definition, Var(X + Y) = E[(X + Y) − E[X + Y]]2. Use
E[X + Y] = E[X] + E[Y] in the inner expectation and combine with (X + Y)
to get RHS as E[(X − E[X]) + (Y − E[Y])]2. Expand as a quadratic to get
E[(X − E[X])2 + (Y − E[Y])2 + 2(X − E[X])(Y − E[Y])]. Now take term by
term expectation and use E(X − E[X])(Y − E[Y]) = 0 (as X and Y are inde-
pendent, E(XY) = E(X) ∗ E(Y) so that E(X − E[X])(Y − E[Y]) = 0) to get the
result.

3. Var(c ∗ X) = c2 ∗ Var(X).
By definition Var(c ∗ X) = E[cX − E(cX)]2. As c is a constant, it can be taken
outside the expectation to get c2 ∗ E[X − E(X)]2.

4. Var(c ∗ X ± b) = c2 ∗ Var(X).
By definition Var(c ∗ X + b) = E[cX + b − E(cX + b)]2. The +b and −b can-
cels out giving E[cX − E(cX)]2 = c2 ∗ Var(X). Replace b by −b to get a similar
result. The above two results allow us to find the variance of any linear com-
bination of random variables by finding the Var(X) just once, and doing simple
arithmetic with the constants to get the desired result.

5. Var(X ± b) = Var(X).
By definition Var(X + b) = E[X + b − E(X + b)]2. The +b and −b cancels out
giving E[X − E(X)]2 = Var(X). Replace b by −b to get a similar result. This
result shows that a change of origin transformation does not affect the variance.



EXPECTATION OF FUNCTIONS OF RANDOM VARIABLES 353

6. VAR(
∑m

j=1 Xj) =
∑m

j=1 VAR(Xj) if Xj’s are independent.
This can be proved by induction using the above result 1 (see Table 8.4).

Theorem 8.14 If X1,X2, … ,Xn are random variables, each of which are pair-wise
uncorrelated with the same mean 𝜇 and variance 𝜎2, then the variance of Xn = 𝜎

2∕n.

Proof: Consider Var(Xn) = Var((X1 + X2 + · · · + Xn)∕n) = 1∕n2 ∗ [Var(X1 + X2 +
· · · + Xn)] = 1∕n2 ∗ n𝜎2 = 𝜎

2∕n.

EXAMPLE 8.26 Variance of Y = n − X of binomial distribution

If X has a binomial distribution with parameters n and p, derive the variance of
Y = n − X.

Solution 8.26 This is already derived in Chapter 6 (p. 203). Here we use
the above property to derive it. Var(Y) = Var(n − X) = Var(n) + (−1)2Var(X).
As the variance of a constant is zero, the RHS simplifies to Var(X). Hence
V(X) = Var(Y) = npq. This is obtainable directly because n − X ∼ BINO(n, q).

EXAMPLE 8.27 Variance of points earned in cereals coupon

In the cereals coupon example 8.4 in page 342 find the variance on the number
of points earned.

Solution 8.27 Let Xi denote the event associated with ith packet. Then Xi
takes the value 1 with probability p and 2 with probability 1 − p so that the
expected value is 1.p + 2.(1 − p) = 2 − p. Write this as 1 + (1 − p) = 1 + q.
If X ≥ 1 packets are bought, E(X) = X1 + X2 + · · · + Xn = n(1 + q). E(X2) =
12 ∗ p + 22 ∗ q = p + 4q = 1 + 3q using p + q = 1. From this V(Xi) = E(X2

i ) −
E(Xi)2 = 1 + 3q − (1 + q)2 = 3q − 2q − q2 = q−q2 = pq. V(X) = V(X1 + X2 +
· · · + Xn) = npq.

8.3.4 Covariance as Expected Value

Covariance is a nonstandardized measure of the dependency between the variables
involved. We denote it by Cov(X,Y). The order of the variables X and Y is unimportant,
as it is symmetric in the variables involved.

Definition 8.10 Covariance of two random variables X and Y is Cov(X,Y) =
E(XY) − E(X)E(Y) = E(X − E[X])(Y − E[Y]) = E(Y − E[Y])(X − E[X]).

8.3.4.1 Properties of Covariance Covariance satisfies several interesting proper-
ties listed below. It is assumed that both X and Y are quantitative.
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1. The covariance of two independent random variables is zero
This follows from the above definition because E(XY) = E(X) ∗ E(Y) when X
and Y are independent.

2. The covariance of a random variable with an independent linear combination
is additive.
Symbolically, Cov(X + Y ,Z) = Cov(X,Z) + Cov(Y ,Z). By definition

LHS = Cov(X + Y ,Z) = E(X + Y)Z − E(X + Y)E(Z). (8.18)

As Z is independent of X + Y ,E(X + Y)Z = E(XZ) + E(YZ). Also,
E(X + Y) = E(X) + E(Y). Substitute in RHS to get E(XZ) + E(YZ) −
[E(X) + E(Y)]E(Z). Rewrite this as [E(XZ) − E(X)E(Z)] + [E(YZ) −
E(Y)E(Z)] = Cov(X,Z) + Cov(Y ,Z). Similar results can be derived for
Cov(X − Y ,Z) = Cov(X,Z) − Cov(Y ,Z) (if Z is independent of X − Y),
Cov(X,Y + Z) = Cov(X,Y) + Cov(X,Z) (if X is independent of Y + Z), and
Cov(X,Y − Z) = Cov(X,Y) − Cov(X,Z) (if X is independent of Y − Z).

3. Cov(X,Y) = E(XY) when either or both of E(X) or E(Y) = 0.
This follows easily from the definition Cov(X,Y) = E(XY) − E(X) ∗ E(Y).

4. Cov(X,Y) = −𝜇x ∗ 𝜇y when X and Y are orthogonal.
This follows from the fact that E(XY) = 0 under orthogonality.

5. Cov(a ∗ X, b ∗ Y ± c ∗ Z) = ab ∗ Cov(X,Y) ± ac ∗ Cov(X,Z).
LHS = E[a ∗ X − aE(X)][(b ∗ Y ± c ∗ Z) − (b ∗ E(Y) ± c ∗ E(Z))]. Split
the second expression into two and combine with the first expression to get
E[a ∗ X − aE(X)][b ∗ Y − E(b ∗ Y)] ± E[a ∗ X − aE(X)][c ∗ Z − E(c ∗ Z)].
Take out a, b as constants from the first; and c,d as constants from the
second expression to get the result. If c = 0, we get Cov(a ∗ X, b ∗ Y) = ab ∗
Cov(X,Y).

6. Cov((X − a)∕c, (Y − b)∕d) = Cov(X,Y)∕(cd).
As the change of origin transformation does not affect the covariance, the LHS
is equal to Cov(X∕c,Y∕d). Now apply above result with a = 1∕c, b = 1∕d to
get the result.

7. If U = a ∗ X + b ∗ Y and V = c ∗ X + d ∗ Y , where a, b, c, and d are nonzero
constants, then Cov(U,V) = a ∗ c𝜎2

x + b ∗ d𝜎2
y + (a ∗ d + b ∗ c)Cov(X,Y).

This result allows us to find the covariance of two arbitrary linear combina-
tions. The proof follows exactly in the same way as above.

8. If U = cos(𝜃) ∗ X − sin(𝜃) ∗ Y and V = sin(𝜃) ∗ X + cos(𝜃) ∗ Y , then Cov
(U,V) = cos(𝜃) ∗ sin(𝜃)[𝜎2

x − 𝜎2
y ] + [cos2(𝜃) − sin2(𝜃)]Cov(X,Y). As 𝜃 is a

constant, take a = cos(𝜃), b = − sin 𝜃, and so on and apply the above theorem.

9. COV(
∑m

j=1 Xj,
∑n

k=1 Yk) =
∑m

j=1
∑n

k=1 COV(Xj,Yk) if the X’s and Y’s are inde-
pendent. This allows us to find the covariance of sums of random variables.

10. VAR(
∑m

j=1 Xj) = COV(
∑m

j=1 Xj,
∑m

j=1 Xj) =
∑m

j=1
∑m

k=1 COV(Xj,Xk) =
∑m

j=1
COV(Xj,Xj) +

∑m
j=1

∑m
k≠j=1 COV(Xj,Xk) =

∑m
j=1 VAR(Xj) + 2

∑m
j=1

∑
k<j

COV(Xj,Xk).
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Theorem 8.15 If Xi and Yi are pair-wise independent, and U = c1 ∗ X1 + c2 ∗
X2 + · · · + cn ∗ Xn and V = d1 ∗ Y1 + d2 ∗ Y2 + · · · + dn ∗ Yn, then COV(U,V) =
∑n

k=1 ck ∗ dk ∗ COV(Xk,Yk).

Proof: Consider U ∗ V =
∑n

i=1
∑n

j=1 cidjXiYj. Separate the indexvar into two groups
as i = j and i ≠ j and write this as

∑n
k=1 ck ∗ dk ∗ XkYk +

∑n
i=1

∑n
j≠i=1 cidjXiYj.

Take covariance of both sides to get Cov(U,V) = Cov[
∑n

k=1 ck ∗ dk ∗ XkYk] +
Cov[

∑n
i=1

∑n
j≠i=1 cidjXiYj]. As Xi and Yi are pair-wise independent, the second sum

is zero (by using the Theorem 8.8). Taking covariance inside the summation in the
first term gives the result.

8.3.5 Moments as Expected Values

The arithmetic mean of a random variable is the first raw or uncentered moment,
which is denoted as 𝜇 = E(X). We call E(Xk) as the kth raw moment and denote it
as mk; and E((X − 𝜇)k) as the kth central moment 𝜇k. Here, 𝜇 is called the pivot.
Theoretically, the pivot can be any nonzero constant, so long as the expected value
exists. By expanding (X − 𝜇)k using binomial theorem, it is possible to express the
central moments in terms of raw moments as follows:

𝜇k =
k∑

j=0

(
k
j

)

(−𝜇)k−jmj. (8.19)

When k is even, (X − 𝜇)k = (𝜇 − X)k so that 𝜇k =
∑k

j=0 (−1)k−j
(

k
j

)

𝜇
jmk−j.

Lemma 2 The change of origin and scale transformation yields 𝜇r(c ∗ X + b) = cr ∗
𝜇r(X).

By definition 𝜇r(c ∗ X + b) = E[cX + b − E(cX + b)]r. The+b and−b cancels out
giving E[cX − E(cX)]r = cr ∗ 𝜇r(X). Replace b by −b to get a similar result.

Lemma 3 Prove that E[cX + b]r = 𝜇
′
r(c ∗ X + b) =

∑r
k=0

(
r
k

)

cr−kbkE[Xr−k],
where r is a positive integer.

Here, 𝜇′r denotes the raw moments given by E[cX + b]r. As r is a positive integer,

we could expand this as a power series to get E[
∑r

k=0

(
r
k

)

bk(cX)r−k]. Take cr−k as a
constant outside and operate the expectation on each term to get the result.

8.4 CONDITIONAL EXPECTATIONS

Conditional expectation is a useful concept that defines the expected value of a ran-
dom variable or function thereof by conditioning one or more dependent variables.
Conditional expectation can also be defined in terms of conditional density functions.
The conditional expectation considers a non-null subset of random variables by fixing
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some other random variables as constant.

E[Y|X = x] =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∞∑

x=−∞
yfy(Y|X = x) if Y is discrete;

∫

∞

y=−∞
yfy(Y|X = x)dy if Y is continuous.

Thus, the conditional expected value of Y for a given value of X = x is the mean
of Y computed relative to the conditional distribution, which is a function of x.

Theorem 8.16 Show that E(Y) = E[E(Y|X)] if X and Y are independent.

Proof: For simplicity assume that X and Y are continuous. Consider the RHS.
E[E(Y|X)] = ∫ ∞

x=−∞ E[Y|X = x] fX(x)dx. Here we have expanded the outer expecta-
tion operator. Next, expand the inner expectation operator to get

E[E(Y|X)] =
∫

∞

x=−∞

(

∫

∞

y=−∞
y fX,Y (x, y)∕fX(x)dy

)

fX(x)dx.

As fX(x) inside the inner integral is a constant while integrating with respect to y, this
cancels out from the numerator and denominator to get

∫

∞

x=−∞ ∫

∞

y=−∞
y fX,Y (x, y)dxdy.

As X and Y are independent, the density function fX,Y (x, y) factorizes into fX(x) ∗ fY (y).
Integrate out f (x) over its entire range to unity, and the remaining expression becomes
∫ ∞

y=−∞ fY (y)dy = E[Y], which is the LHS.

Theorem 8.17 Show that E(XY) = E[E(XY|X)].

Proof: As before, assume that X and Y are continuous. Consider the RHS.

E[XY|X = x] =
∫

∞

y=−∞
xy fX,Y (x, y)∕fX(x)dy (8.20)

As x is a constant inside the integral over y, this becomes

x
∫

∞

y=−∞
y fX,Y (x, y)∕fX(x)dy.

This integral was shown above as E[Y|X = x]. Expand the outer expectation opera-
tor on the RHS as E[E(XY|X)] = ∫ ∞

x=−∞ E[XY|X = x]fX(x)dx. Next, expand the inner
integral also to get

E[E(XY|X)] =
∫

∞

x=−∞

(

∫

∞

y=−∞
y xy fX,Y (x, y)∕fX(x)dy

)

fX(x)dx.
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As fX(x) inside the inner integral is a constant while integrating with respect to y, this
cancels out from the numerator and denominator to get

E[E(XY|X)] =
∫

∞

x=−∞ ∫

∞

y=−∞
xy fX,Y (x, y)dxdy = E(XY).

Lemma 4 Show that E(Y + Z|X) = E(Y|X) + E(Z|X).

Proof: We will prove the result for the continuous case. By the above definition, E(Y +
Z|X) = ∫ ∞

y=−∞(y + z)fy(Y|X = x)dy = ∫ ∞
y=−∞ yfy(Y|X = x)dy+∫ ∞

y=−∞ zfy(Y|X = x)dy=
E(Y|X) + E(Z|X).

EXAMPLE 8.28 Expected number of devices in working condition

The lifetime of a device in years is distributed as EXP(𝜆), where 𝜆 = 1∕8. If
n such devices are put together in a satellite, find the following: (i) probability
that half or more of the devices are in good working condition after 5 years. (ii)
Expected number of devices in working condition after 8 years.

Solution 8.28 Put t = 5 to get the probability that any device is working after
5 years as 𝜆 exp(−5 ∗ 𝜆) = 0.0669. Probability that it is not working is 1 −
𝜆 exp(−5𝜆) = 0.9331. As there are n such devices, probability that at least half of
the devices are working is

∑n
k=n∕2

(
n
k

)

[0.0669.]k[0.9331]n−k. Using the relation-
ship between binomial SF and IBF, this can be written as Ic(n∕2, n∕2 + 1), where
c = 0.0669. For case (ii), we need to find the expected value after 8 years. The
probability of good working condition is 𝜆 exp(−8𝜆). The number of devices in
working condition is a binomial variate, so that the expected value is np = n𝜆 ∗
exp(−8𝜆) = 0.04598493 ∗ n.

EXAMPLE 8.29 Mean of noncentral beta distribution

Find the mean of noncentral beta distribution using conditional expectation.

Solution 8.29 The noncentral beta distribution is an infinite sum of Poisson
weighted central beta distributions [7]. Depending on whether the central beta
distribution is of first or second kind, there exist noncentral beta distribution
(NCB) of two kinds [4]. Symbolically, NCB of first kind has CDF Ix(a, b; 𝜆) ≡
Ix(a + N, b), where N ∼ P( 𝜆

2
) has a Poisson distribution. Hence conditional on

N, the random variable X has a central beta distribution of first kind. From this,
an expression for the mean is easily obtained as follows:

E(X) = E[E(X|N)] = E[(a + N)∕(a + b + N)], (8.21)

where we have used the fact that the mean of a beta distribution of first kind is
a∕(a + b). Write the numerator (a + N) as (a + b + N) − b and simplify to get the
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RHS as 1 − b ∗ E[1∕(a + b + N)]. As N is Poisson distributed, the expression in
the bracket is the first inverse moment of displaced Poisson distribution, which
is given as E

(
1

A+N

)

= e−𝜆

A 1F1[A,A + 1; 𝜆], where A = a + b, and 1F1[A,A +
1; 𝜆] is the confluent hypergeometric function.

As the numerator and the denominator are dependent, we use the following
formula:

E[X∕Y] ≃ 𝜇x∕𝜇y [1 + Var(Y)∕𝜇2
y − Cov(X,Y)∕(𝜇x𝜇y)],

where 𝜇x and 𝜇y denote the mean of X and Y, respectively. Here, 𝜇x =
E[b] = b, 𝜇y = E(a + b + N) = (a + b + 𝜆∕2),Cov(X,Y) = 0,Var(X) = 0,Var(Y) =
Var(a + b + N) = Var(N) (using Section 5, p. 354) = 𝜆∕2. Hence equation (8.21)
becomes

𝜇 = E(X) ≃ 1 − (b∕C)[1 + 𝜆∕(2C2)], (8.22)

where C = a + b + 𝜆

2
. Some approximations are given in Table 8.3, where the actual

mean is an infinite sum as

𝜇 =
∞∑

k=0

e−𝜆∕2(𝜆∕2)k∕k![(a + k)∕(a + b + k)]. (8.23)

The difference between actual and approximate values are given in the last column.
The results are quite good for increasing noncentrality parameter (𝜆) values. The
biggest advantage of equation (8.22) is that it takes only 10 arithmetic operations
(including the computation of C once), whereas equation (8.23) takes a large num-
ber of operations when 𝜆 is large. See Reference 282 for integral representations of
moments.

EXAMPLE 8.30 Mean of noncentral 𝜒2 distribution

Find the mean of noncentral chi-square distribution using conditional
expectation.

TABLE 8.3 Mean of Noncentral Beta Using Equation (8.22)

a b 𝜆 C = a + b + 𝜆∕2 1 − b
C

∗ (1 + 𝜆

2C2
) Actual Mean Difference

1 2 0.5 3.25 0.37005007 0.37300047 0.00295
3 3 2 7 0.56268220 0.56340118 0.000719
10 2 0.5 12.25 0.836462698 0.836482166 0.00002
2 10 4 14 0.278425656 0.278725707 0.00030
10 10 6 23 0.562751705 0.562078005 −0.00067
5 5 20 20 0.743750000 0.743599032 −0.00015
12 10 30 37 0.726768405 0.726752438 −0.00002
20 10 40 50 0.798400000 0.798393998 −0.00001
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Solution 8.30 Let Y be distributed as noncentral chi-square. As this is a Pois-
son weighted central chi-square distribution we write Y ∼ 𝜒

2
n+2N , where N has

Poisson distribution with parameter 𝜆∕2. From this we get E(N) = 𝜆∕2.

E(Y) = E[E(Y|N)] = E(n + 2N) = n + 𝜆. (8.24)

EXAMPLE 8.31 Mean of noncentral F distribution

Find the mean of noncentral F distribution.

Solution 8.31 The noncentral F distribution is the distribution of the scaled ratio
of a noncentral 𝜒2(𝜆) over an independent central 𝜒2 distribution. Symboli-
cally F(p, q, 𝜆) = (q∕p) 𝜒2

p+2N∕𝜒
2
q, where p and q are the DoF of numerator and

denominator 𝜒2, and 𝜆 is the noncentrality parameter.

This may be written as Z F(p, q, 𝜆) ∼
(p + 2N)𝜒2

p + 2N
∕(p+2N)

p𝜒2
q∕q

. Conditional on N, the

noncentral F distribution is a multiple of central F distribution [129, 283]. We write
this as F(p, q, 𝜆) ∼ p + 2N

p
Fp+2N,q. The moments follow by the same argument as

E(Z) = E[E(Z|N)] = E

[
p + 2N

p

q

q − 2

]

=
q

q − 2
p + 𝜆

p
, q > 2,

where we have used the fact that the mean of central F(p, q) is q∕(q − 2).

8.4.1 Conditional Variances

The variance of a random variable, conditionally on another variable or on the count
of IID (independent identically distributed) random variables occur in several applica-
tions. The conditional variance of Y for a given X is var(Y|X) = E{[Y − E(Y|X)]2|X}.
Expanding the quadratic and taking term by term expectation results in Var(Y|X) =
E(Y2|X) − [E(Y|X)]2 (see Table 8.4).

Theorem 8.18 Let N be an integer valued random variable that takes values ≥ 1.
Let X1,X2, … XN be N IID random variables. Define SN = X1 + X2 + · · · + XN . Then
(i) E(S) = E(X)E(N), provided the expectations exist, (ii) PSN

(t) = PN(PX(t)), and
MSN

(t) = MN(KX(t)) = (KX(t))N due to independence.

Proof: Assume that N is fixed. Then E(S) = E(X1 + X2 + · · · + XN) = E(X1) +
E(X2) + · · · + E(XN). As each of the Xi’s are IID, the above becomes E(S) = NE(X).
Now allow N to vary in its range and take the expectation of both sides to get
E(S) = E(N)E(X) (because E(E(S)) = E(S) and E(E(X)) = E(X)).
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To prove PSN
(t) = PN(PX(t)), we proceed as above and assume that N is held

constant. Then PSN
(t) = E(tSN ) = E(tX1+X2+···+XN ) = E(tX1 )E(tX2 ) · · ·E(tXN ) =

E(tX)N = [PX(t)]N . Taking expectation of both sides, we get the desired result.
Next consider MSN

(t) = E(etSN ) = E(et[X1+X2+···+XN ]) = MX1
(t) ∗ MX2

(t) ∗ · · · ∗
MXN

(t) = [MX(t)]N . Taking log of both sides, we get KSN
(t) = log (MSN

(t)) = N ∗
log (MX(t)) = NKX(t). Now allow N to vary to get the result.

8.4.2 Law of Conditional Variances

Theorem 8.19 The unconditional variance can be expressed in terms of conditional
variances as V(X) = E[V(X|Y)] + V[E[X|Y]] where V(X) = Variance(X), assuming
that the variances exist.

Proof: Subtract and add E[X|Y], and write X − E[X] = (X − E[X|Y]) + (E[X|Y] −
E[X]). Square both sides and take expectation of each term to get

E[X − E[X]]2 = V(X) = E(X − E[X ∣ Y])2 + E(E[X ∣ Y] − E[X])2

+ 2E(X − E[X ∣ Y])(E[X ∣ Y] − E[X]) = (1) + (2) + (3) (say).
(8.25)

As E(E[X|Y]) = E(X), the last term (3) is zero. Substitute E(X) = E(E[X|Y]) in the
second term E(E[X ∣ Y] − E[X])2 to get (2) = E(E[X ∣ Y] − E(E[X|Y]))2. As this is
the expectation of the squared deviation of E[X ∣ Y] from its mean, it is Var(E[X|Y]).
Symbolically, (2) = Var(E[X|Y]).

Using the law of total expectation we have V(X|Y) = E[X2|Y] − E[X|Y]2. Take
expectation of both sides to get E[V(X|Y)] = E{E[X2|Y]} − E{E[X|Y]2}. Write
the first term E(X − E[X ∣ Y])2 in equation (8.25) as E{E(X − E[X ∣ Y])2|Y}.
Expand the quadratic and take term by term expectation to get E{E[X2|Y]} −
2E{E(X)E[X|Y]} + E{E[X|Y]2}. Substitute E(X) = E(E[X|Y]) in the second term,
and cancel out the third term. This reduces to E{E[X2|Y]} − E{E[X|Y]2} showing
that it is the expected value of V[X|Y]. Symbolically, (1) = E[V(X|Y)]. Substitute
for (1) and (2) in equation (8.25) to get the result.

EXAMPLE 8.32 Variance of noncentral chi-square

Find the variance of noncentral chi-square distribution using conditional expec-
tation.

Solution 8.32 We know that the noncentral chi-square distribution is a Poisson
weighted linear combination of independent central chi-square distributions.
This allows us to write it as Y ∼ X + 2N, where conditional on N, X is a central
chi-square distribution. For convenience let the DoF of central chi-square be
denoted by p and N has POIS(𝜆/2). Then
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TABLE 8.4 Summary Table of Expressions for Variance

Using Expression Comment

Definition EX2 − E(X)2 E(X)2,E(X) finite
Var(Y|X) E(Y2|X) − [E(Y|X)]2 Conditional on X
V(X) E[V(X|Y)] + V[E[X|Y]] Unconditional and conditional
CDF ∫ ∞

0 2x[1 − FX(x) + FX(−x)]dx − 𝜇2
X

Px(t) P′′
x (1) + P′

x(1) − [P′
x(1)]2 PGF

Mx(t) M′′
x (0) − [M′

x(0)]2 MGF
Kx(t) K′′

x (0) K′
x(0) = 𝜇

ln (FX(x)) [ln (FX(x))]
′
|x=1 + [ln (FX(x))]′′|x=1 F is CDF

𝜙x(t) 𝜙
′′
x (0) − [𝜙′

x(0)]2 ChF
FMx(t) FM′′

x (0) + FM′
x(0) − [FM′

x(0)]2 FMGF

See Section 9.2.1 in page 9–9 and Wilf [284].

V(Y) = V[E(Y|N)] + E[V(Y|N)] = V(p + 2N) + E(2p + 4N)

= 4V(N) + 2p + 4E(N) = 2p + 4𝜆, (8.26)

where we have used the facts that V(c + b ∗ X) = b2V(X) and E(X) = V(X) = 𝜆

for a Poisson distribution [7, 283] (Table 8.4).

8.5 INVERSE MOMENTS

The definition of ordinary moments can be extended to the case where the order is a
negative integer as follows:

E(1∕xk) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∞∑

j=−∞
x−k

j pj if X is discrete;

∫

∞

−∞
x−kf (x)dx if X is continuous.

A necessary condition for the existence of the first inverse moment is that f (0) = 0.
For instance, the Poisson distribution has p(x = 0) = e−𝜆𝜆0∕0! = e−𝜆, which is
nonzero ∀𝜆. Hence the first inverse moment does not exist. However, there are a
large number of distributions that satisfy the necessary condition. Examples are
chi-square (and gamma), Snedecor’s F, beta, and Weibull distributions. The exponent
k is an integer in most of the applications of inverse moments. However, inverse
moments could also be defined for fractional k (called fractional inverse moments).

EXAMPLE 8.33 Inverse moment of central 𝜒2 distribution

Find first inverse moment of central 𝜒2 distribution.
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Solution 8.33 By definition, E(1∕X) =

K
∫

∞

0

(1
x

)

xn∕2−1e−x∕2dx = K
∫

∞

0
xn∕2−2e−x∕2dx = KΓ(n∕2 − 1)2n∕2−1

, (8.27)

where K = 1∕(2n∕2Γ(n∕2)). This simplifies to 1∕(n − 2).

8.6 INCOMPLETE MOMENTS

Ordinary and central moments discussed above are defined for the entire range of the
random variable X. There are several applications when the summation or integration
is carried out partially over the range of X. The omitted range can either be in the left
tail or in the right tail. We define the first incomplete moment as EI(X) =

∑∞
x=k xf (x).

8.7 DISTANCES AS EXPECTED VALUES

Statistical distances can be expressed as expected values. Consider two real-valued
random variables X and Y. The k-norm distance between them is Dk(X,Y) = ‖X −
Y||k = [E(|Y − X|k)]1∕k. This is also called the k-metric. It satisfies the following
properties:

(i) Dk(X,Y) ≥ 0, (ii) Dk(X,Y) = 0 iff X = Y , (iii) Dk(X,Y) + Dk(Y ,Z) ≥ Dk(X,Z)
(triangle inequality).

Particular values of k give various distances such as Euclidean metric, Manhattan
metric, and so on [22]. The sample analogs of these distances are used in cluster
analysis as dissimilarity metrics. The above definition can be extended from scalar
random variables to vectors and matrices. For instance, if X is an m × n matrix of
real-valued random variables, where Xij denotes the (i, j)th entry, we define E(X) as
that matrix whose (i, j) entry is E[Xij], provided the individual expectations exist.
Using matrix commutativity, associativity, and so on with respect to addition, we
could obtain the following results:

(i) E(X + Y) = E(X) + E(Y) if X and Y are compatible matrices, (ii) E(AX) =
AE(X) if A is a scalar m × n matrix and X has as many rows as columns of A matrix
(i.e., A is n × p), and (iii) if X and Y are independent, then E(XY) = E(X)E(Y)
(Table 8.5).

8.7.1 Chebychev Inequality

This is a useful result connecting the expected value of a function of a random variable
and the tail area of it. Let X be a random variable and g(x) be a nonnegative function
of it. Then the right tail area of g(X) is related to its expected value as P[g(X) ≥ c] ≤
E[g(X)]∕c.
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TABLE 8.5 Summary of Mathematical Expectation

Function Name Conditions

E[Xk] kth raw moment k is real, finite
E[X−k] kth inverse moment k real, f (x = 0) = 0
E[(X − 𝜇)k] kth central moment k is real, finite
E|X − 𝜇| Mean deviation (about mean) 𝜇 finite
E[X(X − 1) · · · (X − k + 1)] kth falling factorial moment k ≥ 1 is real, finite
E[X(X + 1) · · · (X + k − 1)] kth raising factorial moment k ≥ 1 is real, finite
EX2 − E(X)2 Variance E(X)2,E(X) finite
E[(X − 𝜇x)(Y − 𝜇y)] Covariance 𝜇x, 𝜇y finite
E(c1g1(x) + c2g2(x) + · · ·) Linear combination ci’s ≠ 0
E(etx) Moment generating function −𝜀 < t < 𝜀, 𝜀 > 0
E(eitx) Characteristic function −𝜀 < t < 𝜀, 𝜀 > 0
E(tx) Probability gen. function −𝜀 < t < 𝜀, 𝜀 > 0
E[(1 + t)x] Falling factorial mgf −𝜀 < t < 𝜀, 𝜀 > 0

E[(1 − t)−x] Raising factorial mgf −𝜀 < t < 𝜀, 𝜀 > 0
E(XY)2 ≤ E(X2)E(Y2) Cauchy–Schwartz inequality
E(g(x)) ≥ g(E(x)) Jensen’s inequality g(x) is convex

See Section 9.2.1 in page 9–9.

8.8 SUMMARY

This chapter introduced the basic ideas and rules of both the mathematical expecta-
tion and conditional expectation, see Table 8.5. Mathematical expectation plays an
important role in digital signal processing, actuarial sciences, astronomy, and many
other fields. For example, the average energy 𝜔(t) of a periodic or random signal
in the time domain is represented for continuous signals as 𝜔(t) = ∫ ∞

−∞ f (t)dt, from
which the average power of the signal over a time period t1 to t2 is given by

E[P] = 1
t2 − t1 ∫

t2

t1

f1(t)f2(t)dt = 1
T ∫

T

0
f 2(t)dt, (8.28)

if f1(t) = f2(t), where f (t) represents the signal value as a time-varying function. As
the spectra of periodic signals are more revealing in the frequency domain, most DSP
applications use one of the frequency transforms such as Fourier transform, cosine
transform, wavelet transform, and so on under the assumption that ∫ ∞

−∞ |xT (t)|dt <
∞ where |xT (t)| emphasizes that it is a random variable in the time-domain. The
average power in the frequency domain can then be represented by expected value
as E[|XT (f )|] =

1
2T

∫ ∞
−∞ |Xt(f )|2df . As T → ∞,E[|XT (f )|] will stabilize for stationary

processes and signals, resulting in power spectral density of the signal. See references
285, 286 for further examples.
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EXERCISES

8.1 Mark as True or False

a) Expected value of a random variable always exist

b) Expected value is unchanged by a change of scale transformation

c) Chebychev inequality can provide an upper bound on expected values

d) Variance of a distribution defined in [0, 1] can be > 1

e) E(1∕X) ≥ 1∕E(X) for all random variables X.

f) |E[X]| ≤
√

E[X2] for all random variables X

g) If X ≤ Y , then E[X] ≤ E[Y]
h) Expectation “E” is a linear and monotone operator.

8.2 A——assigns a value to each element of the sample space: (a) generating func-
tion (b) random variable (c) cumulant (d) expected value.

8.3 If X1,X2, … ,Xn are IID, and
Y =

∑
iXi prove that MY (t) =∏

iMXi
(t).

8.4 If p(x= 0) = q2
, p(x= 1) = 2pq, p

(x= 2) = p2, find the CDF and
PGF

8.5 Express Pr[c − 𝛿 < x < c + 𝛿] in
terms of CDF. For what value
of c is this area maximum for
bell-shaped curves?.

8.6 The current flow I through a resis-
tor fluctuates according to arcsin
law. Find the expected value of the
Power = R ∗ I2, where R is the
resistance (given).

8.7 Prove that c = E(X) minimizes the
expression E(x − c)2

8.8 Prove that c = Median(X) mini-
mizes the expression E|x − c|.

8.9 Show that all cumulants except the
first one vanish for a symmetric
distribution.

8.10 If X is a negative random variable
(values of x are always< 0), prove
that E(X) = ∫ ∞

0 −F(−x)dx.

8.11 If X is uniformly distributed in
[a, b] find the expected value of
exp(−𝜆X).

8.12 If X is a nonnegative discrete ran-
dom variable, prove that E(X2) =
∑∞

k=1(2k + 1)P(X > k)

8.13 Prove that [E(XY)]2 ≤ E(X)2 ∗
E(Y)2 if X and Y are real-valued.

8.14 If X > 0, prove that E[1∕X] ≥
1∕E[X], if each expectation exists.

8.15 If f (x; a, b) = Cxa−1e−(x∕b)a prove
that C = a∕ba. Find the CDF and
MGF, and obtain the first two
moments where x > 0.

8.16 Consider a discrete random vari-
able p(x = k) = 4∕(𝜋2k2) for
k = 1, 2, … . Verify whether the
expected value exists.

8.17 If X ∼ BETA(a, b), where a < b,
find E[[X(1 − X)]k]

8.18 Prove that COV(X,Y − Z) =
COV(X,Y) − COV(X,Z).

8.19 For the Geometric distribution
with PDF f (x) = qx−1p, find E(X)
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and E(X2) and deduce Var(X).
What is the MD?

8.20 Consider a game in which a fair
die (marked 1–6) is thrown and the
player losses k dollars if the top
point k is odd, and gains 2k dollars
if it is even. Find E(X),V(X).

8.21 For any continuous distribution,
prove that E|X − c| is minimum
when c is the median.

8.22 If f (x, y) = x + y for 0 < x <
1, 0 < y < 1, find E(Y|X) and
E(X|Y).

8.23 Let X be a random variable that
denotes the sum of the numbers
that shows up when two dice are
thrown. Define the PDF of X and
find its expected value E(X). Does
E(E(X)) exist?

8.24 Find the normalizing constant K
in f (x) = K∕(x + c)n+1, where n is
an integer and c is a real constant.
Prove that all ordinary moments of
order up to n − 1 are non-existent
for this distribution.

8.25 When is Cov(X,Y) = −𝜇x𝜇y?

8.26 If X,Y are IID ∼EXP (𝜆), find

E(
√

X+
√

Y
2

)2

8.27 Prove that Max(t) = Mx(at) and
Max+b(t) = ebtMx(at). Deduce that
M(x−𝜇)∕𝜎(t) = e−𝜇t∕𝜎Mx(t∕𝜎).

8.28 Prove that the expected value of

MD is E(MD) = 𝛿

√

1 − 1
n
, where

n is the sample size and 𝛿 is the
population MD.

8.29 If f (x) = Kx exp(−x) for x ≥ 0,
find K,E(X), and the MGF.

8.30 If f (x) = K exp(−|x|) for −∞ <

x < ∞, find K, E(X), and the MGF.

8.31 Show that E(cY|X) = c ∗ E(Y|X),
where c is a constant.

8.32 If X ∼ EXP (𝜆), find E[
√

X]

8.33 If f (x) =
(

x−1
r−1

)

prqx−r
, x = r, r +

1, … , find the MGF and derive the
first two moments. What is the sur-
vival function?

8.34 Prove that 𝜎
2 = E(X(X − 1)) +

E(X) − [E(X)]2. Apply it to find
the variance of Geometric and
Poisson distributions.

8.35 For the Poisson distribution (POIS(𝜆)), prove that

|𝜆|∑

x=0

e−𝜆𝜆x∕x!
⎧
⎪
⎨
⎪
⎩

≤
1
2

if 𝜆 is large;

≥
1
e

otherwise.

Use this result to derive the first incomplete moment
∑|𝜆|

x=0 xe−𝜆𝜆x∕x!.

8.36 Prove that E(X − k)2 = 𝜎
2 +

[E(X) − k]2

8.37 Find E( 1±X
1+Y

) and E( 1±X2

1+Y2 ) for the

random variable in Q 8.22.

8.38 Find E((1 + x
n
)n) for the binomial

distribution with n trials, where x
is the number of successes. What
is the limit of this expectation as
n → ∞?
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8.39 Find the MGF of logarith-
mic series distribution f (x) =
c𝜃x∕x, x = 1, 2, …where c = −1∕
log (1 − 𝜃), and 0 < 𝜃 < 1. Prove
that rth factorial moment 𝜇(r) =
c(r − 1)![𝜃(1 − 𝜃)]r.

8.40 Find the expected value for a bino-
mial distribution BINO(n, p).

8.41 If X ∼ BETA(a, b), prove that
E(X) = a∕(a + b).

8.42 If X ∼ BETA(a, b − a), prove that
Mx( t)= 1F1(a, b; x) = Γ(b)

Γ(a)Γ(b−a)
∫ 1

0 eytta−1(1 − t)b−a−1dt is the
confluent hypergeometric func-
tion. Hence show that E(X) = a∕b.

8.43 Find K to make the following
functions a PDF. Then find E(X)
and E(X2) (a) f (x) = Kx2(1 − x)
for 0 < x < 1, (b) K∕xa+1

, a >
1, x > 0, (c) f (x) = K(X2 + 1) for
x ∈ { − 2,−1, 0, 1, 2}.

8.44 If f (x) = 1∕𝜋 for 0 < x < 𝜋, show
that E[sin(x)] = 2∕𝜋.

8.45 If X > 0, find constants a,b,c such
that E[X − t|X > t] = c ∫ b

a [1 −
F(x)]dx.

8.46 Prove that E[X2] =
∑∞

k=0(2k +
1)P[X > k]

8.47 What is the expected value of an
indicator variable?

8.48 If X ∼ BINO(n, p) find E( x−1
x+1

).

8.49 Find
∑np

x=0

(
n
x

)

pxqn−x.

8.50 The PDF of a discrete random
variable is given by f (x) = K(|x| +
1) for x = −3,−2,−1, 0, 1, 2, 3.
Find K and the CDF. Evaluate F(2)
and P[X ≥ 0].

8.51 The PDF of a discrete random
variable is given by f (x) = cx2 for
x = {1, 2, 3}. Find the mean and
variance.

8.52 Verify if f (x) = 1
√

2𝜎
e−|x|∕(𝜎∕

√
2) is

a PDF. Find the MGF and E(X).

8.53 If f (x) = Kx(x + 1) for x = 1, 2,
3, 4; find the E[X] and P[X ≥ 2].

8.54 If f (x) = K∕2x−1 for x = 1, 2, 3, 4;
find K, E[X] and the probability
that X ≥ 2.

8.55 Find the mean and variance for
the distribution f (x) = (1 − 𝜇

n
)n

(
n
x

)

( 𝜇

n−𝜇 )
x
, x = 0, 1, … n.

8.56 If f (x, y) = C(x + y) for 0 < x <
y < 1, find C. What is the value of
E(X2 + Y2)?

8.57 If X and Y are independent ran-
dom variables with E(X) = −3
and E(Y) = 5, find E(2X − 3)(Y +
5).

8.58 If 𝜙(x) is a real-valued, monotonic
function of a positive random
variable X, prove that E[𝜙(x)] =
𝜙(0) + ∫ ∞

0 [1 − F(x)]𝜕𝜙(x)∕𝜕x.
Hence derive that E[Xn] =
n ∫ ∞

0 xn−1[1 − F(x)]dx.

8.59 What are the conditions for
a function to be a moment
generating function? Are
the following functions true
MGF? (a) ea(t−1)+b(t−1)2 , (b)
ea(t−1)∕(1−bt), (c) ea(t−1)+b(t2 −1),
(d) e|(t−1)∕(t2 −1)|.

8.60 Suppose an urn contains m red
balls and n blue balls. If r balls
are drawn with replacement, what
is expected number of blue balls
drawn?
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8.61 Suppose an urn contains n coins
numbered 1 – n. If r coins are
drawn without replacement, what
is the expected sum of the num-
bers?

8.62 If X and Y are IID distributed as
lognormal (𝜇, 𝜎2), (i) find E[XY]
and (ii) approximate value of
E[XY log(XY)].

8.63 If X is a discrete symmetric ran-
dom variable (P[X = k] = P[X =
−k]), find expected value of
sin(𝜋X).

8.64 Prove that COV(X,Xi − X) = 0
for any random sample.

8.65 Prove that COV(X,Xi) = 𝜎
2∕n for

any random sample.

8.66 Use x2 = x(x − 1) + x and x3 =
x(x − 1)(x − 2) + 3x(x − 1) + x to

find the expected values of a Pois-
son random variable. What is the
expression to find E[x4]?

8.67 Find the mean and variance of the
distributions: (i) f (x, n) = (n∕2) sin
(nx), 0 ≤ x ≤ 𝜋∕n, n > 0 is real;
(ii) f (x, n) = (n∕2) cos(nx),−𝜋∕2n
≤ x ≤ 𝜋∕2n, n > 0 is real.

8.68 Prove that 𝜎
2
Y|X

=
∑

ky2
k f (y|x) −

𝜇
2
Y|X

.

8.69 If the second derivative of h(x) is
positive, prove E[h(x)] ≥ h(E[x]).

8.70 If X is continuous, prove
that 𝜇

′
r = ∫ ∞

0 rxr−1[1 − FX(x) +
(−1)rFX(−x)]dx = E(Xr).

8.71 Find the expected values of x2 and
x3 in a random experiment of toss-
ing a fair die.

8.72 Prove that the factorial moments for the following distributions are as given:

BINO(n, p) ∶ E[X(X − 1)..(X − r + 1)] = n(r)p
r.

HYPG(N, n, p) ∶ n(r)Np(r)∕N(r) if f (x) =
(

Np
k

)(
Nq
n−k

)

∕
(

N
n

)

GEOM(p) ∶ r!qr−1∕pr

NBINO(n, p) ∶ r(r + 1)..(r + s)(q∕p)s.

8.73 If X1,X2, … ,Xn are independent identical random variables with the same
Mean 𝜇, and same variance 𝜎2, find the expected value and variance of the
arithmetic mean of x′i s′.

8.74 If X is a nonnegative continuous random variable, and Y = exp (X2) find the
expected value of Y. Find E(y) if y is U(0.1).

8.75 Find the MGF and first three moments of the geometric distribution f (x) =
(1 − e−𝜆)e−𝜆x.

8.76 If X is a real-valued continuous random variable, prove that E[X2] =
2 ∫ ∞

0 x[1 − F(x) + F(−x)]dx

8.77 The number of MMS messages arriving in Emily’s cell phone between 9 AM
and 5 PM is Poisson distributed with 𝜆 = 1 for a 10-min interval. What is the
expected number of MMS messages received in 1 h? What is the total expected
number of messages she will receive between 1 PM and 5 PM?
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8.78 The mean-excess function of a variate is defined as ∆[X] = (1∕S(x))
∑∞

u (1 −
F(x)) if X is discrete, and ∆[X] = (1∕S(x)) ∫ ∞

u (1 − F(x))dx if X is continu-
ous, where S(x) = 1 − F(x) is the survival function. Find ∆[X] of Poisson and
exponential variates.

8.79 Suppose X1,X2, … ,Xn are IID random variables, with E(Xi) = 𝜇 and
VAR(Xi) = 𝜎

2. Define Y = X1 + X2 + · · · + XN , where N is another random
variable independent of X. Prove that E(Y|N) = N𝜇, and Var(Y|N) = N𝜎2.
Use E(Y) = E[E(Y|N)] to show that E(Y) = 𝜈𝜇, where 𝜈 = E(N). Show that
the unconditional variance of Y is 𝜈𝜎2 + 𝜇2

𝛿
2 where 𝛿2 is variance of N.

8.80 When a cell phone is powered on, it is registered with a base station. Each
base station has a “cell” which is the coverage region (say a circular or square
region) around it. When the caller moves from place to place, they may move
out of one region and into an adjacent region. The phone company automati-
cally detects it and “hands over” the phone identity to the new base station. A
phone company has noticed that the majority of subscribers do not change their
base station during their call, but the proportion of subscribers who change
their base station is an upper truncated Poisson distribution with 𝜆 = 0.04, and
truncation point 4. Find the expected percentage of subscribers who change
their base station, and Pr[X ≥ 2], where X denotes the number of hand overs.

8.81 If the CDF of a discrete random variable is

F(x) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

0 if x < 0

0.25 if 0 ≤ x < 2

0.50 if 2 ≤ x < 4

0.75 if 4 ≤ x < 6

1.0 if x ≥ 6

find the PDF and the mean.

8.82 If the CDF of a continuous random variable is

F(x) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

0 if x < 2

c

(
x2

2
− 2(x − 1)

)

if 2 ≤ x < 4

c

(
−x2

2
+ 2(3x − 7)

)

if 4 ≤ x < 5

F(x) = 1 for x ≥ 5.

find the PDF and the mean.
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8.83 If the CDF of a discrete random variable is

f (x) =
⎧
⎪
⎨
⎪
⎩

0.25 if x = −1

0.50 if x = 0

0.25 if x = +1

how is the mean related to P[X = 1].

8.84 If the CDF of a continuous random variable is

F(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 if x < 0

c
x2

2
if 0 ≤ x < 1

c(2x − 1 + x2) if 1 ≤ x < 2

F(x) = 1 for x ≥ 2.

find the PDF and the mean.

8.85 If the PDF of a discrete random variable is

f (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

e−𝜆px
x∑

j=1

(
x − 1
j − 1

)

(𝜆q∕p)j∕j! for x = 1, 2, …

e−𝜆 for x = 0

0 elsewhere

prove that the mean is 𝜆∕q. Find the PGF.

8.86 If the CDF of a continuous random variable is

F(𝜃) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 if 𝜃 < 0,

tan(𝜃)∕2 if 0 ≤ 𝜃 ≤ 𝜋∕4,

1 − tan(𝜋∕2 − 𝜃)∕2 if 𝜋∕4 ≤ 𝜃 ≤ 𝜋∕2,

1 elsewhere

prove that the mean is 𝜋∕4. Find the MGF.

8.87 Prove that the memory-less prop-
erty of exponential distribution is
equivalent to G(u + 𝑣) = G(u) ∗
G(𝑣)∀u, 𝑣 > 0, where G(u) =
Pr[X > u]

8.88 If both X and Y are independent
gamma distributed, prove that (i)
E(Y|X) = cX + b, (ii) Var(Y|X) =
b, (iii) E((Y − X)2|X) = b.

8.89 If f (x; n, 𝜇) =
(

n
x

)

(1 − 𝜇∕n)n𝜇x∕
(n − 𝜇)x where x = 0, 1, … , n

prove that E(X) = 𝜇 and Var(X) =
𝜇(1 − 𝜇∕n).

8.90 If X, Y are independent normal

random variables with the same

variance, find E[(X + Y)4|(X −
Y)]
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8.91 Suppose you toss a fair die once
and note down the number N that
shows up (1 ≤ N ≤ 6). You then
toss a fair coin N times. Let X
denote the number of heads that
you get in N tosses of the coin.
Find E(X) and V(X).

8.92 If X and Y are independent
random variables, prove that
P(Y ≤ X) = ∫ ∞

−∞ FY (x)fX(x)dx =
1 − ∫ ∞

−∞ FX(y)fY (y)dy.

8.93 Prove that the population variance
can be expressed as the values
of CDF (FX(x)) and its first two
derivatives evaluated at x = 1.

8.94 Prove that the population variance
can be expressed using the second
derivative of Kx(t) as K′′

x (x) evalu-
ated at x = 0.

8.95 An electronic circuit has n2 com-
ponents that look identical. A
technician has time to inspect just
n of the components in any trip.
What is the expected number of
trips needed to inspect every com-
ponent if the components are cho-
sen arbitrarily in each repair trip,
and inspected components are not
marked.

8.96 A telephone carrier notices
that the average duration of
cell-phone calls among teenagers
is distributed as a left-truncated

exponential distribution with
𝜆 = 1∕2400 s and truncation point
20 s. What is the expected percent-
age of phone calls that take more
than 5 min? What is the variance
of duration of all phone calls?

8.97 A site offers HTTP and FTP con-
nections. The number of new cus-
tomers who connect to HTTP
server is Poisson distributed with
𝜆 = 20 for a time interval of 1 min.
On the FTP server is Poisson dis-
tributed with 𝜆 = 3 for same time
period. If both events are indepen-
dent, what is the expected number
of customers connecting to the site
in 4 min?.

8.98 The number of cars that arrive
at a gas station between 7 AM
and 9 AM is Poisson distributed
with mean 3 in 5 min. What is
the expected number of minutes
a person has to wait if there are
no others in the queue? What is
the expected number of cars that
arrive in 27 s?

8.99 If X is CUNI(a, b) find the distri-
bution and expected value of Y =
(2X − (a + b))∕(b − a).

8.100 What is the expression to find
E[x4] in terms of x(x − 1)(x −
2)(x − 3) and lower order prod-
ucts?

8.101 If X and Y are IID EXP(𝜆i) with respective PDF f (x) and g(y) for i = 1, 2 prove
that

Pr(X < Y) =
∫

∞

0
f (x)[1−G(x)]dx= 1−

∫

∞

0
g(y)[1 − F(y)]dy= 𝜆1∕(𝜆1 +𝜆2).

8.102 High-rise structures at earth-quake-prone areas are designed to withstand
powerful earthquakes. From past data, it is found that the probability of an
earthquake in a year is 0.091, and the probability of a building collapse after
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the earthquake is 0.004. The cost of constructing a high-rise building is C0
and the cost of repair after damage is Cr. If a building portfolio comprises of
n (> 2) buildings in a city neighborhood, find the expected value of the cost
incurred in 10 years: (i) if no information on the earthquakes are available
and (ii) if it is assumed that at least two earthquakes are likely to occur.

8.103 A POP (post-office protocol) based mail server sends each message and then
waits for an ACK from the receiver. Only after the receipt of the ACK will
the mail server send the next message in the queue. It is known that the delay
in receipt of the ACK is exponentially distributed with mean 1/2 s. If three
messages, each of size 1 K are to be sent, what is the expected number of
seconds elapsed for successful transmission if the sending of each message
itself takes half-second?.

8.104 An automated robot controlled inventory warehouse has racks of length 120 m
on both sides of an alley. The robot is equally likely to break down anywhere
on the stretch of 120 m. Where should a spare robot be located so that it can
immediately take over the task of the broken down robot in minimal waste of
time?

8.105 A computer virus can infect a lap-
top independently through (i) an
email, (ii) an http, or (iii) a mul-
timedia with respective Poisson
probabilities 2%, 0.09%, and 5%
in 1 day. If you use both email and
multimedia connection for 30 h,
what is the expected number of
computer virus infections? If you
use both http and multimedia for
20 h and email for 10 h, what is the
expected number of infections?

8.106 If xi – IDD beta -2 (a, bi) find
expected value of harmonic mean.

8.107 A software comprises of eight
subsystems. Probability that the
first five subsystems will throw a

run-time exception (kind of error)
in 8 h of use is POIS (0.03),
and independently the last three
subsystems is POIS (0.05). If the
software is used for 80 h, (i)
what is the expected number of
exceptions? (ii) probability that no
exceptions occurred.

8.108 An auto-emission test center has
found that on an average one in
eight automobiles fail in the emis-
sion test, and needs tune-up. The
distribution of tune-up time in
hours is EXP(2.5). If 100 vehi-
cles are tested per month, find the
expected number of hours spent on
servicing of failed vehicles.

8.109 Suppose n letters are to be sent in n envelops. If the letters and envelops are
shuffled and each letter is randomly assigned to an envelope, find the expected
number of matches (letters that get into correct envelops).

8.110 A cereals manufacturer offers a promotional coupon with a new brand of cereal
pack. Two types of coupons (that carry either 1 point or 2 points) are printed,
and either of them is put in selected packs so that some packs do not contain
a coupon. Probability that a customer will find a 1-point coupon is p, and a 2
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points coupon is q. If a customer purchases n packs of the cereal, what is the
expected number of points earned?

8.111 Prove that for the central chi-
square distribution E(1∕X)=1∕(n − 2).

8.112 If X ∼ EXP (𝜆) find E[cex], where
c is constant.

8.113 Prove that KX(0) = E(X)

8.114 Prove KaX+b(t) = KX(at) + bt.

8.115 If g(x) is a convex function, prove
that E[g(x)] ≥ g(E[x]) provided
that E[|g(x)|] < ∞

8.116 Prove Cov(X,Y) ≤ [V(X)V(Y)]1∕2

with equality when relationship is
perfectly linear.

8.117 If X has Geometric distribution,
find E[(−1)x].

8.118 If X ∼ BINO(n, p) prove that
E(n − X)2 = nq[n − p(n − 1)].

8.119 A consignment of 2n missiles contain
(

n
k

)

that have a range of 100 + k2 miles.
If a group of m missiles are randomly picked up and fired, what is the expected
miles covered from the firing point to hitting point?

8.120 If X1,X2, … ,XN are IID and SN = X1 + X2 + · · · + XN , prove that

E(
∑N

i=1 Xi) = E(N)E(X) and MSN
(t) =

N∏

i=1
Mxi

(t).

8.121 If X1,X2, … ,XN are IID each with the same mean 𝜇 and same variance 𝜎2, find
the second moment and variance of a random sum SN = X1 + X2 + · · · + XN .

8.122 What is the limiting value of limh ↓ 0(E[ehx − 1)]/h.

8.123 An audio signal S is corrupted
with background noise B. If S
is uniformly distributed in the
range −c to +c, but the noise
B is uniformly distributed in the
range 0 to 2d where d < c, what
is the expected value of signal
plus noice? What is the covari-
ance COV(S,B) assuming that sig-
nal and noise are coming from
independent sources?

8.124 Suppose two fair dice are tossed.
Find the density function of
(X1,X2), where X1 and X2
are the scores that show up.
Three random variables U,V,Y
are defined as follows: U =
min{X1,X2}, the minimum score,
V = max{X1,X2}, the maxi-
mum score, and Y = X1 + X2,
the sum of the scores. Find
E(U),E(V),E(Y), and E(Y|X1).



9
GENERATING FUNCTIONS

After finishing the chapter, students will be able to

◾ Understand generating functions and their properties

◾ Comprehend generating functions and characteristic function

◾ Interpret moments and cumulants from generating functions

◾ Explore new type of generating functions for discrete CDF

◾ Apply the concepts to practical problems

9.1 TYPES OF GENERATING FUNCTIONS

Generating functions find a variety of applications in engineering and applied sci-
ences. As the name implies, generating functions are used to generate different quan-
tities with minimal work.

Definition 9.1 A generating function is a simple and concise expression in one or
more dummy variables that captures the coefficients of a finite or infinite power series
expansion, and generates a quantity of interest using calculus or algebraic operations,
or simple substitutions.
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Depending on what we wish to generate, there are different generating functions.
For example, moment generating function (MGF) generates moments of a population
and probability generating function generates corresponding probabilities. These are
specific to each distribution. An advantage is that if the MGF of an arbitrary random
variable X is known, we can mathematically derive the MGF of any linear combina-
tion of the form a ∗ X + b. This reasoning holds for other generating functions too.

Let {an}, n = 0, 1, 2, … ,∞ be a sequence of bounded numbers. Then, the power
series f (x) =

∑∞
n=0 anxn is called the ordinary generating function (OGF) of {an}.

Here, x is a dummy variable, n is the indexvar, and a′ns are known constants. For
different values of an, we get different OGFs. For example, if all an = 1, we get
f (x) = (1 − x)−1, and if an = −1 for n odd and an = +1 for n even, we get (1 + x)−1.
Similarly, if even coefficients a2n = +1, and odd coefficients a2n+1 = 0, we get
(
1 − x2

)−1
. The function g(x) =

∑∞
n=0 anxn∕n! is called the exponential generating

function (EGF), where the divisor of the nth term is n!. The generating functions
used in Statistics can be finite or infinite, because they are defined on (sample spaces
of) random variables. The above is a discrete generating function as it is defined for
a discrete sequence. They may also be defined on continuous random variables as
shown below.

EXAMPLE 9.1 kth derivative of EGF

Prove that Dkg(x) =
∑∞

n=0 an+kxn∕n!

Solution 9.1 Consider g (x) = a0 + a1x∕1! + a2x2∕2! + a3x3∕3! + · · · + akxk∕
k! + · · ·. Take the derivative with respect to x of both sides. As a0 is a
constant, its derivative is zero. Use derivative of xn = n ∗ xn−1 for each
term to get g′ (x) = a1 + a2x∕1! + a3x2∕2! + · · · + akxk−1∕ (k − 1)! + · · ·.
Differentiate again (this time a1 being a constant vanishes) to get g′′ (x) =
a2 + a3x∕1! + a4x2∕2! + · · · + akxk−2∕ (k − 2)! + · · ·. Repeat this process k
times. All the terms whose coefficients are below ak will vanish. What remains
is g(k) (x) = ak + ak+1x∕1! + ak+2x2∕2! + · · ·. This can be expressed using the
summation notation introduced in Chapter 1 as g(k) (x) =

∑∞
n=k anxn−k∕ (n − k)!.

Using the change of indexvar introduced in Section 1.5 this can be written as
g(k) (x) =

∑∞
n=0 an+kxn∕n!. Now if we put x = 0, all higher-order terms vanish

except the constant ak.

EXAMPLE 9.2 OGF of f(x)/(1 − x)

If f(x) is the OGF of the infinite sequence a0, a1, … , an, … , prove that
f (x)∕ (1 − x) is the OGF of the infinite sequence a0, a0 + a1, a0 + a1 + a2, …

Solution 9.2 By definition f (x) = a0 + a1x + a2x2 + · · · + anxn + · · ·. Expand
(1 − x)−1 as a power series 1 + x + x2 + .. and multiply with f(x) to get the RHS
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as g(x) = (1 − x)−1 ∗ f (x) =
(
1 + x + x2 + x3 + · · ·

) (
a0 + a1x + a2x2 + · · · + anxn + · · ·

)
=

( ∞∑

j=0

1.xj

)( ∞∑

k=0

ak.x
k

)

. (9.1)

Change the order of summation to get

( ∞∑

k=0

(
k∑

j=0

aj.1

)

xk

)

=
∞∑

k=0

(
k∑

j=0

aj

)

xk = a0 +
(
a0 + a1

)
x

+
(
a0 + a1 + a2

)
x2 + · · · . (9.2)

This is the OGF of the given sequence.

9.1.1 Generating Functions in Statistics

There are four popular generating functions used in statistics—namely (i) probabil-
ity generating function (PGF), denoted by Px (t), (ii) MGF, denoted by Mx (t), (iii)
cumulant generating function (CGF), denoted by Kx (t), and (iv) characteristic func-
tion, denoted by 𝜙x(t). In addition, there are still others to generate factorial moments
(FMGF), inverse moments (IMGF), inverse factorial moments (IFMGF), absolute
moments, as well as for odd moments and even moments separately. These are called
“canonical functions” in some fields.

The PGF generates the probabilities of a random variable and is of type OGF.
MGF (page 382) has further subdivisions as ordinary, and central mgf, factorial mgf,
inverse mgf, inverse factorial mgf, CGF, and characteristic function (ChF). All of
these can also be defined for arbitrary origin. The CGF is defined in terms of the
MGF as Kx (t) = ln

(
Mx (t)

)
, which when expanded as a polynomial in t gives the

cumulants. As every distribution does not possess an MGF, the concept is extended to
the complex domain by defining the ChF as 𝜙x (t) = E

(
eitx

)
. Note that the logarithm

is to the base e (ln). If all of them exist for a distribution, then

Px

(
et
)
= Mx (t) = eKx(t)) = 𝜙x (it) . (9.3)

This can also be written in the alternate forms Px

(
eit
)
= Mx (it) = eKx(it)) = 𝜙x (−t)

or as Px (t) = Mx (ln (t)) = eKx(ln(t))) = 𝜙x (i ln (t)) (see Table 9.1).

9.2 PROBABILITY GENERATING FUNCTIONS (PGF)

The PGF of a random variable is used to generate probabilities. It is defined as

Px (t) = E (tx) =
∑

x

txp (x) = p (0) + t ∗ p (1) + t2 ∗ p (2) + · · · + tk ∗ p (k) + … ,

(9.4)
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TABLE 9.1 Summary Table of Generating Functions

Abbre- Symbol Definition Generates How Obtained Conditions
viation Used E = exp opr. What t = dummy-variable

PGF PX (t) E(tx) Probabilities pk =
𝜕

k

𝜕tk
PX (t) |t=0∕k! Discrete

MGF MX (t) E(etx) Moments 𝜇
′
k =

𝜕
k

𝜕tk
MX (t) |t=0 Expectation exists

CMGF MZ (t) E(et(x−𝜇)) Central moments 𝜇k =
𝜕

k

𝜕tk
MZ (t) |t=0 Expectation exists

ChF 𝜙X (t) E(eitx) Moments ik
𝜇
′
k =

𝜕
k

𝜕tk
𝜙X (t) |t=0 Always exist

CGF KX (t) log(E(etx)) Cumulants 𝜇k =
𝜕

k

𝜕tk
KX (t) |t=0 MGF exists

FMGF ΓX (t) E((1 + t)x) Factorial moments 𝜇(k) =
𝜕

k

𝜕tk
ΓX (t) |t=0 Discrete

PGF is of type OGF. MGF and ChF are of type EGF. MGF need not always exist, but characteristic function
always exists. Falling factorial moment is denoted as 𝜇(k) = E (x (x − 1) (x − 2) · · · (x − k + 1)).

where the summation is over the range of X. This is a finite series for distributions
with finite range. It may or may not possess a closed-form expression for other dis-
tributions. It converges for |t| < 1, and appropriate derivatives exist. Differentiat-
ing both sides of equation (9.4) k times with respect to t, we get

(
𝜕

k∕𝜕tk
)

Px (t) =
k!p (k) +terms involving t. If we put t= 0, all higher-order terms that have “t” or higher
powers vanish, giving k! p(k), from which p (k) is obtained as

(
𝜕

k∕𝜕tk
)

Px (0) ∕k!. If
the Px (t) involves powers or exponents, we take the log (with respect to e) of both
sides and differentiate k times, and then use the following result on Px (t = 1) to sim-
plify the differentiation.

EXAMPLE 9.3 PGF special values Px (t = 0) and Px (t = 1)

Find Px(t = 0) and Px(t = 1) from the PGF of a discrete distribution.

Solution 9.3 As
∑

kp (k), being the sum of the probabilities, is one, it follows
trivially by putting t = 1 in equation (9.4) that is Px (t = 1) = 1. Put t = 0 in
equation (9.4) to get Px (t = 0) = p(0), the first probability.

Similarly, put t = −1 to get the RHS as [p (0) + p (2) + · · · +] − [p (1) +
p[3] + p[5] + · · · ].

EXAMPLE 9.4 PGF of Poisson distribution

Find the PGF of a Poisson distribution, and obtain the difference between the
sum of even and odd probabilities.

Solution 9.4 The PGF of a Poisson distribution is

Px (t) = E (tx) =
∞∑

x=0

txe−𝜆𝜆x∕x! = e−𝜆
∞∑

x=0

(𝜆t)x

x!
= e−𝜆et𝜆 = e−𝜆[1−t]

. (9.5)
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Put t = −1 in equation (9.5) and use the above result to get the desired sum as
exp (−𝜆[1 − (−1)]) = exp (−2𝜆) (see Example 6.38 in Chapter 6, p. 233).

EXAMPLE 9.5 PGF of geometric distribution

Find the PGF of a geometric distribution, and obtain the difference between the
sum of even and odd probabilities.

Solution 9.5 As the geometric distribution takes x = 0, 1, 2, … ∞ values, we
get the PGF as

Px (t) = E (tx) =
∞∑

x=0

txqxp = p
∞∑

x=0

(qt)x = p∕ (1 − qt) . (9.6)

In Chapter 6, page 221 we have evaluated P[X is even] = q0p + q2p + · · · =
p[1 + q2 + q4 + · · · ] = p∕

(
1 − q2

)
= 1∕ (1 + q), and P[X is odd] = q1p +

q3p + · · · = qp[1 + q2 + q4 + · · · ] = qp∕
(
1 − q2

)
= q∕ (1 + q). Using the

above result, the difference between these must equal the value of Px (t = −1).
Put t = −1 in equation (9.6) to get p∕ (1 − q (−1)) = p∕ (1 + q), which is the
same as 1∕ (1 + q) − q∕ (1 + q) = p∕ (1 + q).

Closed-form expressions for Px (t) are available for most of the common discrete
distributions. They are seldom used for continuous distributions because ∫ txf (x) dx
may not be convergent.

EXAMPLE 9.6 PGF of BINO(n, p)

Find the PGF of BINO(n, p) and obtain the mean.

Solution 9.6 By definition

Px (t) = E (tx) =
n∑

x=0

(n
x

)

pxqn−xtx =
n∑

x=0

(n
x

)

(pt)xqn−x = (q + pt)n. (9.7)

The coefficient of tx gives the probability that the random variable takes the
value x. To find the mean, we take the log of both sides. Then log(Px (t)) =
n*log(q + pt). Differentiate both sides with respect to t to get P′

x (t) ∕Px (t) =
n ∗ p∕ (q + pt). Now put t = 1 and use Px (t = 1) = 1 to get the RHS as n*p/
(q + p) = np as q + p = 1.

Lemma 1 The PGF (E(tx)) can be used to obtain the factorial moments using the
relationship 𝜇(r) = P(r)

x (1) (see Table 9.1).

9.2.1 Properties of PGF

1. P(r) (0) ∕r! = P[X = r].
By restricting the argument of Px (t) to |t| < 1, it is easily seen that Px (t)
is infinitely differentiable in t. Differentiating Px (t) = E (tx) r times, we get
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𝜕
r

𝜕tr
Px (t) =

E[x (x − 1) · · · (x − r + 1) tx−r] =
∑

x≥r

[x (x − 1) · · · (x − r + 1) tx−r] f (x) . (9.8)

The first term in this sum is obviously [r (r − 1) · · · (r − r + 1) tr−r]f (x = r) =
[r!t0]f (x) = r!f (x = r). By putting t = 0, every term except the first vanishes,
and the RHS becomes r!f (x = r). Thus, 𝜕

r

𝜕tr
Px (t = 0) = r!f (x = r).

2. P(r) (1) ∕r! = E[X(r)].
By putting t = 1 in equation 9.8, the RHS becomes E[x (x − 1) · · · (x − r + 1)],
which is the rth factorial moment. Hence, some authors call this the factorial
MGF (see Section 9.8, p. 391).

3. 𝜇 = E (X) = P′ (1), and 𝜇′2 = E
(
X2

)
= P′ (1) + P′′ (1)

The first result follows directly from the above by putting r = 1. As
X2 = X (X − 1) + X, the second result also follows from it.

4. V (X) = P′ (1) + P′′ (1) [1 − P′ (1)]
This result follows from the fact that V (X) = E[X2] − E[X]2 = E[X (X − 1)] +
E[X] − E[X]2. Now use the above results.

5. ∫tP (t) dt = E
(

1
X+1

)

This is the first inverse moment, and holds for positive random variables.
6. PcX (t) = PX (tc)

This follows by writing tcX as (tc)X .
7. PX±c (t) = t±c ∗ PX (t)

This follows by writing tX±c as (t±c) tX .
8. PX (t) = MX (ln (t))

From equation (9.3), we have Px

(
et
)
= Mx (t). Write t′ = et so that t = ln(t′) to

get the result.
9. P(X±𝜇)∕𝜎 (t) = t±𝜇∕𝜎PX

(
t1∕𝜎)

This is called the change of origin and scale transformation of PGF. This follows
by combining (6) and (7).

9.3 GENERATING FUNCTIONS FOR CDF (GFCDF)

As the PGF of a random variable generates probabilities, it can be used to generate the
sum of left tail probabilities (CDF) as follows. We have seen in Example 9.2 that if f(x)
is the OGF of the sequence a0, a1, … , an, … , finite or infinite, then f(x)/(1−x) is the
OGF of the sequence a0, a0 + a1, a0 + a1 + a2, … By replacing ai’s by probabilities,
we obtain a GF that generates the sum of probabilities as

G (x) =
∞∑

k=0

(
k∑

j=0

pk

)

xk = p0 +
(
p0 + p1

)
x +

(
p0 + p1 + p2

)
x2 + · · · (9.9)

This works only for discrete distributions.
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EXAMPLE 9.7 GF for CDF of geometric distribution

Obtain the GF for CDF of a geometric distribution.

Solution 9.7 We know that the PGF of geometric distribution is p∕ (1 − qt)
from which the GFCDF is obtained as G (t) = p(1 − t)−1∕ (1 − qt). Expand both
(1 − t)−1 and (1 − qt)−1 as infinite series’ and combine like powers to get

G (t) = p[1 + t (1 + q) + t2 (1 + q + q2) + t3 (1 + q + q2 + q3) + · · · ]. (9.10)

Write
(
1 + q + q2 + q3 + · · · + qk

)
as

(
1 − qk+1

)
∕ (1 − q) and cancel (1 − q) =

p with the numerator to get the generating function for geometric CDF as

G (t) = [1 + t
(
1 − q2) + t2 (1 − q3) + t3 (1 − q4) + · · · ]. (9.11)

9.4 GENERATING FUNCTIONS FOR MEAN DEVIATION (GFMD)

The above result can be extended to obtain a GF for mean deviations of discrete
distributions. We have seen in Chapter 6 that the MD of discrete distributions is given
by

MD = 2
𝜇−1∑

x=ll

F (x) . (9.12)

where ll is the lower limit of the distribution, 𝜇 is the arithmetic mean, and F(x) is the
CDF. To obtain a GF for MD, first rewrite equation (9.9) as

G (t) = [1 + g1t + g2t2 + g3t3 + · · · ]. (9.13)

where gk denotes the sum of probabilities. Multiply both sides by (1 − t)−1 and denote
the LHS (1 − t)−1G (t) by H(t) to get

H (t) = [1 + g1t +
(
g1 + g2

)
t2 +

(
g1 + g2 + g3

)
t3 + · · · ]. (9.14)

The above step is equivalent to applying the result in Example 9.2 in page 376 where
pk = gk. As coefficients of H(t) accumulate the sum of the CDF (“sum of the sum” of
left tail probabilities), the MD is easily found as twice the coefficient of t𝜇−1 in H(t).
This can be stated as the following theorem.

Theorem 9.1 The MD of a discrete distribution is twice the coefficient of t𝜇−1 in the
power series expansion of (1 − t)−2Px (t), where 𝜇 is the mean (or the nearest integer
to it) and Px (t) is the probability generating function.

In the above derivation, we have marked the probabilities as p1, p2, and so on. If
they are denoted as p0, p1, p2, and so on, we need to consider the sums p0 + p1 and
so on. A similar result could be obtained using right tail probabilities.
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EXAMPLE 9.8 MD of geometric distribution

Find the MD of geometric distribution using Theorem 9.1.

Solution 9.8 We have seen in Example 9.7 in page 381 that the GF for CDF of
a geometric distribution is

G (t) = [1 + t
(
1 − q2) + t2 (1 − q3) + t3 (1 − q4) + · · · ]. (9.15)

Denote (1 − qk+1) by gk (note that there is no (1 − q) term in equation (9.15)
showing that the MD is zero when q <p or equivalently p >1/2) and obtain the
GFMD with coefficients hk =

∑
gk =

∑(
1 − qk+1

)
. As the mean of a geomet-

ric distribution is q/p, we can simply fetch the coefficient of t𝜇−1 = t[q∕p−1] in
H (t) and multiply by 2 to get the MD as 2

∑[q∕p−1]
k=0

(
1 − qk+1

)
, where [q∕p − 1]

denotes the integer part. See Chapter 6, p. 217 for further simplifications.

9.5 MOMENT GENERATING FUNCTIONS (MGF)

The MGF of a random variable is used to generate the moments algebraically. Let
X be a discrete random variable defined for all values of x. As etx has an infinite
expansion in powers of x as etx = 1 + (tx) ∕1! + (tx)2∕2! + · · · + (tx)n∕n! + · · ·, we
multiply both the sides by f(x), and take expectation on both the sides to get

Mx (t) = E
(
etx
)
=
⎧
⎪
⎨
⎪
⎩

∑

x
etxp (x) if X is discrete;

∫ ∞
−∞ etxf (x) dx if X is continuous.

In the discrete case, this becomes Mx (t) =
∑∞

x=0 etxf (x) = 1 +
∑∞

x=0 (tx) ∕1!f (x) +
∑∞

x=0 (tx)
2∕2!f (x) + · · ·. Replace each of the sums

∑∞
x=0 xkf (x) by 𝜇k to obtain the

following series (which is theoretically defined for all values, but depends on the
distribution)

Mx (t) = 1 + 𝜇′1t∕1! + 𝜇′2t2∕2! + · · · + 𝜇′ktk∕k! + . (9.16)

Analogous result holds for the continuous case by replacing summation by integra-
tion. By choosing |t| < 1, the above series can be made convergent for most random
variables.

Theorem 9.2 The MGF (p. 377) and the PGF are connected as MX (t) = Px

(
et
)
, and

MX (t = 0) = Px

(
e0
)
= Px (1) = 1.

Proof: This follows trivially by replacing t by et in equation (9.4). Note that it is
also applicable to continuous random variables. Put t = 0 and use e0 = 1 to get the
second part.
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EXAMPLE 9.9 MGF of binomial distribution from PGF

If the pgf of BINO(n, p) is (q + pt)n, obtain the MGF and derive the mean.

Solution 9.9 The mgf can be found from equation (9.7) by replacing t by et.
This gives MX (t) =

(
q + pet

)n
. Take log to get log

(
MX (t)

)
= n ∗ log

(
q + pet

)
.

Next differentiate as above: M′
X (t) ∕MX (t) = n ∗ pet∕

(
q + pet

)
. Put t = 0 to

get the mean as np. Take log again to get log
(
M′

X (t)
)
− log

(
MX (t)

)
=

log (np) + t − log
(
q + pet

)
. Differentiate again, and denote M′

X (t) simply by
M′ and so on. This gives M′′∕M′ − M′∕M = 1 − pet∕

(
q + pet

)
. Put t = 0

throughout and use M′ (0) = np and M(0) = 1 to get M′′ (0) ∕np − np = 1 − p
or equivalently M′′ (0) = (q + np) ∗ np. Finally, use 𝜎2 = M′′

X (0) − [M′
X (0)]2 =

(q + np4) ∗ np − (np)2 = npq.

EXAMPLE 9.10 MGF of exponential distribution

Obtain the MGF of an exponential distribution.

Solution 9.10 Consider the PDF of an EXP(𝜆) as f (x; 𝜆) = 𝜆 exp (−𝜆 x).
By definition Mx (t) = Eetx = ∫ ∞

0 etx
𝜆 exp (−𝜆 x) dx. As 𝜆 is a con-

stant, take it outside the integral, and combine the integrands to get
Mx (t) = 𝜆 ∫ ∞

0 exp ((t − 𝜆) x) dx. Write (t − 𝜆) x as− (𝜆 − t) x and integrate
to get Mx (t) = 𝜆∕ (𝜆 − t) = 1∕ (1 − t∕𝜆).

9.5.1 Properties of Moment Generating Functions

1. MGF of an origin changed variate can be found from MGF of original variable

Mx±b (t) = e±bt ∗ Mx (t) . (9.17)

This follows trivially by writing E[et[x±b]] as e±bt ∗ E[etx].

2. MGF of a scale changed variate can be found from MGF of original variable as

Mc∗x (t) = Mx (c ∗ t) . (9.18)

This follows trivially by writing E[et cx] as E[e(ct)∗x].

3. MGF of origin and scale changed variate can be found from MGF of original
variable as

Mc∗x∓b (t) = e±bt ∗ Mx (c ∗ t) . (9.19)

This follows by combining both the cases above.
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Theorem 9.3 The MGF of a sum of independent random variables is the product of
their MGFs. Symbolically MX+Y (t) = MX (t) ∗ MY (t).

Proof: We prove the result for the discrete case. MX+Y (t) = E
(
et(x+y)) = E

(
etxety

)
.

If X and Y are independent, we write the RHS as
∑

xetxf (x) ∗
∑

yetyf (y) = MX (t) ∗
MY (t). The proof for the continuous case follows similarly. This result can be
extended to any number of pairwise independent random variables.

If X1,X2, … ,Xn are independent, and Y =
∑

iXi then MY (t) =
∏

iMXi
(t).

EXAMPLE 9.11 Moments from Mx (t)

Prove that E (X) = 𝜕

𝜕t
Mx (t) |t=0 and E

(
X2

)
= 𝜕

2

𝜕t2
Mx (t) |t=0.

Solution 9.11 We know that Mx (t) = E
(
etx
)
. Differentiating equation (9.16)

with rspect to t gives 𝜕

𝜕t
Mx (t) =

𝜕

𝜕t
E
(
etx
)
= E

(
𝜕

𝜕t
etx
)

= E
(
xetx

)
because x

is considered as a constant (and t is our variable). Putting t = 0 on the RHS
we get the result, as e0 = 1. Differentiating a second time, we get 𝜕

2

𝜕t2
Mx (t) =

𝜕

𝜕t
E
(
xetx

)
= E

(
x2etx

)
. Putting t = 0 on the RHS, we get M′′

x (t = 0) = E
(
x2
)
.

Repeated application of this operation allows us to find the kth moment as
M(k)

x (t = 0) = E
(
xk
)
. This gives 𝜎2 = M′′

x (t = 0) − [M′
x (t = 0)]2.

EXAMPLE 9.12 MGF of BINO(n, p)

Find the MGF of BINO(n, p), and obtain the first two moments.

Solution 9.12 Mx (t) =E(etx) =
∑n

x=0 etx
(

n
x

)

pxqn−x =
∑n

x=0

(
n
x

) (
pet

)x
qn−x =

(
pet + q

)n =
(
q + pet

)n
. Differentiating with respect to t gives 𝜕

𝜕t
Mx (t) =

𝜕

𝜕t

(
q + pet

)n = n
(
q + pet

)n−1
.pet so that M′

x (t = 0) = np (q + p) = np. Differen-

tiating one more time, we get M′′
x (t) = np 𝜕

𝜕t
[
(
q + pet

)n−1
.et] = np[

(
q + pet

)n−1

.et + et (n − 1)
(
q + pet

)n−2
pet]. By putting t = 0, this becomes np[1 +

(n − 1) p] = np + n (n − 1) p2. This work can be greatly simplified by taking
log, then differentiating and using Mx (t = 0) = 1.

EXAMPLE 9.13 MGF of a Poisson distribution

Find the MGF for central moments of a Poisson distribution. Hence, show that
𝜇r+1 = 𝜆

[(
r
1

)

𝜇r−1 +
(

r
2

)

𝜇r−2 + · · ·
(

r
r

)

𝜇0

]

.

Solution 9.13 First consider the ordinary MGF defined as Mx (t) = E
(
etx
)
=

∑∞
k=0 etxe−𝜆𝜆x∕x! = e−𝜆

∑∞
k=0

(
𝜆et

)x∕x! = e−𝜆e𝜆et = e𝜆et−𝜆 = e𝜆(et−1). As the
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mean of a Poisson distribution is 𝜇 = 𝜆, we use the property 1 to get

Mx−𝜆 (t) = e−𝜆tMx (t) = e−𝜆te𝜆(et−1) = e𝜆(et−t−1) =
∞∑

j=0

𝜇jt
j∕j!. (9.20)

Differentiate
∑∞

j=0 𝜇jt
j∕j! = e𝜆(et−t−1) by t to get

∞∑

j=0

𝜇jjt
j−1∕j! = e𝜆(et−t−1)

𝜆
(
et − 1

)
= 𝜆

(
et − 1

)
∞∑

j=0

𝜇jt
j∕j!. (9.21)

Expand et as an infinite series. The RHS becomes 𝜆
∑∞

k=1 tk∕k!
∑∞

j=0 𝜇jt
j∕j!. This

can be written as 𝜆
∑∞

k=1
∑∞

j=0 𝜇jt
j+k∕[j!k!]. Equate coefficients of tr on both

sides to get 𝜇r+1∕r! = 𝜆

[
𝜇r−1

1!(r−1)! +
𝜇r−2

2!(r−2)! + · · · + 𝜇0
r!(r−r)!

]

. Cross-multiplying
and identifying the binomial coefficients, this becomes

𝜇r+1 = 𝜆

[( r
1

)

𝜇r−1 +
( r

2

)

𝜇r−2 + · · ·
( r

r

)

𝜇0

]

. (9.22)

Corollary 1 Prove that if E[|X|k] exists and is finite, then E[|X|j] exists and is finite
for each j < k.

Proof: We prove the result for the continuous case. The proof for discrete case
follows easily by replacing integration by summation. As E[|X|k] exists, we have
∫x|X|

kdF (x) < ∞. Now consider an arbitrary j < k for which

∫

∞

−∞
|x|jdF (x) =

∫

+1

−1
|x|jdF (x) +

∫|x|>1
|x|jdF (x) . (9.23)

As j < k, |x|j < |x|k for |x| > 1. Hence integral (9.23) becomes

∫

∞

−∞
|x|jdF (x) <

∫

+1

−1
|x|jdF (x) +

∫|x|>1
|x|kdF (x)

≤
∫

+1

−1
dF (x) +

∫|x|>1
|x|kdF (x) . (9.24)

The RHS of equation (9.24) is upper bounded by 1 + E[|X|k], and is< ∞. This proves
that the LHS exists for each j.
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EXAMPLE 9.14 MGF of a gamma distribution

Find the MGF of a gamma distribution f (x) = 𝜃
me−𝜃xxm−1∕Γ (m), where x ≥ 0

and 𝜃 > 0, and obtain the first two moments.

Solution 9.14 Mx (t) = E
(
etx
)
= ∫ ∞

0 etx
𝜃

me−𝜃xxm−1∕Γ (m) dx. Take the con-
stants outside the integral to get 𝜃m∕Γ (m) ∫ ∞

0 e−(𝜃−t)xxm−1dx = [𝜃∕ (𝜃 − t)]m =
(1 − t∕𝜃)−m. Take log and differentiate with t, to get M′

x (t) ∕Mx (t) =
−m∕ (1 − t∕𝜃) (−1∕𝜃) from which by putting t = 0 we get the first moment as
(m∕𝜃). Taking the derivative again, we get [Mx (t)M′′

x (t) − (M′
x (t))2]∕[Mx (t)]2

= (m∕𝜃) (1∕𝜃) ∕(1 − t∕𝜃)2. Put t = 0 and use Mx (t = 0) = 1 and M′
x (t) = m∕𝜃 to

get M′′
x (t = 0) = (m∕𝜃)2 +

(
m∕𝜃2

)
, from which the variance is obtained using

𝜎
2 = M′′

x (t = 0) − [M′
x (t = 0)]2 as m∕𝜃2.

9.6 CHARACTERISTIC FUNCTIONS (CHF)

The MGF of a distribution need not always exist. Those cases can be dealt with in the
complex domain by finding the expected value of eitx, where i =

√
−1, which always

exist. Thus, the ChF of a random variable is defined as

ChF = E
(
eitx

)
=

{∑∞
x=−∞ eitxpx if X is discrete;

∫ ∞
x=−∞ eitxf (x) dx if X is continuous.

We have seen above that the ChF, if it exists, can generate the moments. Irrespec-
tive of whether the random variable is discrete or continuous, we could expand the
ChF as a McClaurin series as

𝜙X (t) =
∞∑

j=0

𝜇
′
j (it)

j∕j! = 𝜙 (0) + t𝜙′′ (0) + t2∕2!𝜙′′ (0) + · · · . (9.25)

which is convergent for an appropriate choice of t (which depends on the distribution).
As𝜙X (t) in the continuous case can be represented as𝜙X (t) = ∫ ∞

−∞ eitxdF (x), succes-
sive derivatives with t gives ∫ inxndF (x) = in𝜇′n. Define 𝛿(n) (x) as the nth derivative
of the delta function. Then, the PDF can be written as an infinite sum as

f (x) =
∞∑

j=0

(−1)j𝜇′j𝛿
(j) (x) ∕j!. (9.26)

See References 134 and 287 for further details.

EXAMPLE 9.15 Characteristic function of the Cauchy distribution

Find the characteristic function of the Cauchy distribution.
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Solution 9.15 We have f (x) = [𝜋
(
1 + x2

)
]−1, so that 𝜙 (it) = 1

𝜋
∫ ∞
−∞

eit

1+x2 dx =
e−|t|

9.6.1 Properties of Characteristic Functions

Characteristic functions are Laplace transforms of the corresponding PDF. As all
Laplace transforms have an inverse, we could invert it to get the PDF. Hence, there is
a one-to-one correspondence between the ChF and PDF. This is especially useful for
continuous distributions as shown below. There are many simple properties satisfied
by the ChF.

1. 𝜙 (t) = 𝜙 (−t) , 𝜙 (0) = 1, and |𝜙 (±t) | ≤ 1. In words, this means that the com-
plex conjugate of the ChF is the same as that obtained by replacing t with -t in
the ChF. The assertion 𝜙 (0) = 1 follows easily because this makes eitx to be 1.

2. 𝜙ax+b (t) = eibt
𝜙x (at). This result is trivial as it follows directly from the defi-

nition.

3. If X and Y are independent, 𝜙ax+by (t) = 𝜙x (at) .𝜙y (bt). Putting a = b = 1, we
get 𝜙x+y (t) = 𝜙x (t) .𝜙y (t) if X and Y are independent.

4. 𝜙 (t) is continuous in t, and convex for t > 0. This means that if t1 and t2 are two
values of t > 0, then 𝜙

((
t1 + t2

)
∕2
)
≤ 1

2
[𝜙(t1) + 𝜙(t2)].

5. 𝜕n
𝜙 (t) ∕𝜕tn∣t=0 = inE (Xn)

EXAMPLE 9.16 Symmetric random variables

Prove that the random variable X is symmetric about the origin if the chF 𝜙 (it)
is real-valued for all t.

Solution 9.16 Assume that X is symmetric about the origin, so that f (−x) =
f (x). Then for a bounded and odd Borel function g (x)we have ∫ g (x) dF (x) = 0.
As g (x) is odd, this is equivalent to ∫ sin (tx) dF (x) = 0. Hence, 𝜙 (t) = E

(
eitx

)

= E[cos(tx)] is real. Also, as 𝜙−X (t) = 𝜙X (−t) = 𝜙X (t) = 𝜙X

(
t
)
,FX (x) and

F−X (x) are the same (Table 9.2).

Theorem 9.4 The characteristic function uniquely determines a distribution. The
inversion theorem provides a means to find the PDF from the characteristic function
as f (x) = 1∕ (2𝜋) ∫ ∞

−∞ 𝜙x (it) e−itxdt.

9.6.1.1 Uniqueness Theorem Let the random variables X and Y have MGF Mx (t)
and My (t), respectively. If Mx (t) = My (t) ∀t, then X and Y have the same probability
distribution.
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TABLE 9.2 Table of Characteristic Functions

Distribution Density Function Characteristic Function

Bernoulli px(1 − p)1−x q + peit

Binomial
(n

x

)

pxqn−x
(
q + peit

)n

Negative binomial
(x + k − 1

x

)

pkqx pk
(
1 − qeit

)−k

Poisson e−𝜆𝜆x∕x! exp
(
𝜆
(
eit − 1

))

Rectangular f (x) = Pr[X = k] = 1∕N
(
1 − eitN

)
∕[N

(
e−it − 1

)
]

Geometric qxp p∕
(
1 − qeit

)

Logarithmic qx∕[−x log p] ln
(
1 − qeit

)
∕ ln (1 − q)

Multinomial (n!∕
∏k

i=1 xi!)*
∏k

i=1 p
xi
i

[
k∑

j=1

pje
itj

]n

Cont. uniform 1∕ (b − a) Δa ≤ x ≤ b
(
eibt − eiat

)
∕[(b − a) it]

Exponential 𝜆e−𝜆x
𝜆∕ (𝜆 − it)

Gamma 𝜆
mxm−1e−𝜆x∕Γ (m) (1 − it∕𝜆)−m

Arcsine 1/𝜋
√
(1 − x2) e−it∕2I0(it∕2)1F1 (1∕2, 1; it)

Beta-I xa−1(1 − x)b−1∕B (a, b) 1F1 (a, a + b; it)

Normal
1

𝜎

√
2𝜋

e
−

1
2

(x − 𝜇
𝜎

)2

exp
(

it𝜇 − 1
2

t2
𝜎

2
)

Cauchy 1∕[b𝜋[1 + (x − a)2∕b2]] exp (ita − |t|b)

IG

√
𝜆

2𝜋x3
exp { − 𝜆

2𝜇2x
(x − 𝜇)2} exp(𝛿(1 −

(
1 − 2𝜇2it∕𝜆

)1∕2))

Pareto ckcx−(c+1) c(−ikt)cΓ (−c,−ikt)
Double expo. (1∕2b) exp(−|x − a|∕b) eiat∕

(
1 + b2t2

)

Chi-square xn∕2−1e−x∕2∕[2n∕2Γ (n∕2)] (1 − 2it)−n∕2

Student’s T K
(
1 + t2∕n

)−(n+1)∕2
exp

(

−|it
√

n|
)

Sn

(

|it
√

n|
)

F-distribution K
xn∕2−1

(m + nx)(m+n)∕2
K 1F1 (m∕2, 1 − n∕2; −nit∕m)

Z-distribution K
emz

(n + me2z)(m+n)∕2
K

e(mx)

(
n + e(𝜆x)

)(m+n)∕2

Weibull axa−1e−xa
∞∑

k=0

(bit)kΓ (1 + k∕a) ∕k!

Rayleigh x∕a2 e−x2∕(2a2) 1−bt exp
(

− b2t2

2

)

√
𝜋

2
[erfc

(

bt
√

2

)

− 1]

Maxwell
√

2∕𝜋x2e−x2∕(2a)∕a3 i{Φ (at)
√

2∕𝜋 −
exp

(
−a2t2∕2

) (
a2t2 − 1

)
× Φ(at)

The constant K = Γ ((n + 1) ∕2) ∕[
√

n𝜋 Γ (n∕2)] for Student’s T; K = [Γ ((m + n) ∕2) ∕Γ (n∕2)] for F and
Z distributions, MGFs are obtained by replacing it by t.
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9.7 CUMULANT GENERATING FUNCTIONS (CGF)

The CGF is slightly easier to work with for exponential, normal, and Poisson dis-
tributions. It is defined in terms of the MGF as Kx (t) = ln

(
MX (t)

)
=
∑∞

j=1 kjt
j∕j!,

where kj is the jth cumulant. This relationship shows that cumulants are polynomial
functions of moments (low-order cumulants can also be exactly equal to correspond-
ing moments). For example, for the general univariate normal distribution with mean
𝜇1 = 𝜇 and variance 𝜇2 = 𝜎

2, the first and second cumulants are, respectively, 𝜅1 = 𝜇

and 𝜅2 = 𝜎
2.

Theorem 9.5 KaX+b (t) = bt + Kx (at)

Proof: KaX+b (t) = log
(
MaX+b (t)

)
= log

(
ebtMX (at)

)
= bt + log

(
MX (at)

)
= bt

+ Kx (at) using log(ab) = log(a)+log(b), and log(ex) = x.

Corollary 2 CGF of a standardized variable can be expressed as K(X−𝜇)∕𝜎 (t) =
(−𝜇∕𝜎) t + Kx (t∕𝜎).

Proof: This follows from the above theorem by setting a = 1∕𝜎 and b = −𝜇∕𝜎.
The cumulants can be obtained from moments and vice versa [225, 288]. This

holds for cumulants about any origin (including zero) in terms of moments about the
same origin.

9.7.1 Relations Among Moments and Cumulants

We have seen in Chapter 8, equation 8.19 (p. 357) that the central and raw moments
are related as 𝜇k = E(X − 𝜇)k =

∑k
j=0

(
k
j

)

(−𝜇)k−j
𝜇
′
j . As the CGFs of some distribu-

tions are easier to work with, we can find cumulants and use the relationship with
moments to obtain the desired moment.

Theorem 9.6 The rth cumulant can be obtained from the CGF as 𝜅r =
𝜕

rKx(t)
𝜕tr

|t=0.

Proof: We have

Kx (t) =
∞∑

r=0

𝜅rt
r∕r! = 𝜅0 + 𝜅1t + 𝜅2t2∕2! + · · · . (9.27)

As done in the case of MGF, differentiate (9.27) k times and put t = 0 to get the kth
cumulant. See References 134 and 289 for details.

EXAMPLE 9.17 Moments from cumulants

Prove that 𝜅1 = 𝜇1, 𝜅2 = 𝜇2 = 𝜎
2, and 𝜅3 = 𝜇3 = E(X − 𝜇)3.

Solution 9.17 We know that KX (t) = log
(
MX (t)

)
or equivalently MX (t) =

exp
(
KX (t)

)
. We expand MX (t) = 1 + t∕1!𝜇1 + t2∕2!𝜇′2 + t3∕3!𝜇′3 + · · · and
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substitute for KX (t) also to get

∞∑

r=0

𝜇
′
rt

r∕r! = exp

( ∞∑

r=0

𝜅rt
r∕r!

)

. (9.28)

Differentiate n times and put t = 0 to get

𝜇
′
n+1 =

n∑

j=0

(
n
j

)

𝜇
′
n−j𝜅j+1. (9.29)

Put n = 0,1, and so on to get the desired result. There is another way to get
the result for low order cumulants. Truncate MX (t) as 1 + t∕1!𝜇1 + t2∕2!𝜇′2 +
t3∕3!𝜇′3. Expand the RHS using log (1 + x) = x − x2∕2 + x3∕3 − x4∕4, where
x = t∕1!𝜇1 + t2∕2!𝜇′2 + t3∕3!𝜇′3, and collect similar terms to get

KX (t) = 𝜇1t +
(
𝜇
′
2 − 𝜇

2
1

)
t2∕2! +

(
𝜇
′
3 − 3𝜇1𝜇

′
2 + 2𝜇3

1

)
t3∕3! + … . (9.30)

Compare the coefficients of tk∕k! to get 𝜅1 = 𝜇1, 𝜅2 = 𝜇2 − 𝜇2
1 = 𝜎

2, and 𝜅3 =
(
𝜇
′
3 − 3𝜇1𝜇

′
2 + 2𝜇3

1

)
= E(X − 𝜇)3.

Next, write MX (t) as 1 + [tx∕1! + (tx)2∕2! + · · ·], expand KX (t) = log
(
MX (t)

)
as

an infinite series to get

∞∑

r=0

𝜅rt
r∕r! = [tx∕1! + (tx)2∕2! + · · · ] − [tx∕1! + (tx)2∕2! + · · · ]2∕2! + · · · .

(9.31)
Equate like coefficients of t to get

𝜅n+1 = 𝜇
′
n+1 −

n−1∑

j=0

(
n
j

)

𝜇
′
n−j𝜅j+1. (9.32)

EXAMPLE 9.18 Moments of normal distribution from CGF

Obtain the first three moments of normal distribution using CGF method.

Solution 9.18 We know that the MGF of N
(
𝜇, 𝜎

2
)

is exp
(

t𝜇 + 1
2
t2
𝜎

2
)

.

Taking natural log, we get Kx (t) = t𝜇 + 1
2
t2
𝜎

2. Comparing the coefficients of
t∕1! and t2∕2!, we get 𝜇1 = 𝜇 and 𝜇2 = 𝜎

2. As the t3 term is missing, 𝜇3 = 0.
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9.8 FACTORIAL MOMENT GENERATING FUNCTIONS (FMGF)

There are two types of factorial moments known as falling factorial and raising facto-
rial moments. Among these, the falling factorial moments are more popular. The kth
(falling) factorial moment of X is defined as E[X (X − 1) (X − 2) · · · (X − k + 1)] =
E[X!∕ (X − k)!], where k is an integer ≥ 1. It is easier to evaluate for those distribu-
tions that have an x! or Γ (x + 1) in the denominator (e.g., binomial, negative bino-
mial, hypergeometric, and Poisson distributions). The factorial moments and ordinary
moments are related through the Stirling number of first kind as follows:–

X!∕ (X − r)! =
r∑

j=0

s (r, j)Xj ⇒ 𝜇
′
(r) =

r∑

j=0

s (r, j)𝜇′j . (9.33)

A reverse relationship exists between the ordinary and factorial moments using the
identity Xr =

∑r
j=0 S (r, j)X!∕ (X − j)! as 𝜇′r =

∑r
j=0 S (r, j)𝜇′(j), where S (r, j) is the

Stirling number of second kind [134].
There are two ways to get (falling) factorial moments. The simplest way is by

differentiating the PGF (see Section 9.2.1, p. 379). As PX (t) = E (tx) = E
(
ex log(t)) =

MX (log (t)), we could differentiate it k times as in equation (9.8), page 380, and put
t = 1 to get factorial moments.

We define it as E[(1 + t)x], because if we expand it using binomial theorem, we
get

E[(1 + t)x] = E[1 + tx + t2x (x − 1) ∕2! + t3x (x − 1) (x − 2) ∕3! + · · · ]. (9.34)

By taking term-by-term expectations on the RHS, we get the factorial moments. The
raising factorial moment is defined as E[X (X + 1) (X + 2) · · · (X + k − 1)] =
E[(X + k − 1)!∕ (X − 1)!]. An analogous expression can also be obtained
for raising factorials using the expansion (1 − t)−x =

∑∞
k=0

(
k+x−1

k

)

tk. Tak-

ing term-by-term expectations as E[(1 − t)−x] = E[1 + tx + t2x (x + 1) ∕2! +
t3x (x + 1) (x + 2) ∕3! + · · ·], we get raising factorial moments. We could also get
raising factorial moments from PGF Px (t) = E (t−x). Differentiating it once gives
P′

x (t) = E
(
−xt−x−1

)
. From this, we get P′

x (1) = E (−x). Differentiating it r times,
we get P(r)

x (t) = E (−x (−x − 1) (−x − 2) · · · (−x − r + 1) t−x−r). Putting t = 1, this
becomes

P(r)
x (1) = (−1)rE[x (x + 1) · · ·E (x + r − 1) = (−1)r𝜇(r). (9.35)

Replacing the summation by integration gives us the corresponding results for the
continuous distributions.

To distinguish between the two, we will denote the falling factorial moment as
E
(
X(k)

)
or 𝜇(k) and the raising factorial moment as E

(
X(k)) or 𝜇(k). Unless otherwise

specified, factorial moment will mean falling factorial moment 𝜇(k).
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EXAMPLE 9.19 Factorial moment of the Poisson distribution

Find the kth factorial moment of the Poisson distribution, and obtain the first two
moments.

Solution 9.19 By definition

𝜇(k) =
∞∑

x=0

x (x − 1) (x − 2) · · · (x − k + 1) e−𝜆𝜆x∕x! = e−𝜆𝜆k
∞∑

x=k

𝜆
x−k∕ (x − k)!

= e−𝜆𝜆k
∞∑

y=0

𝜆
y∕y! = e−𝜆𝜆ke𝜆 = 𝜆

k
. (9.36)

Alternatively, we could obtain the FMGF directly and get the desired moments.
FMGFX (t) = E[(1 + t)x] =

∑∞
x=0 (1 + t)xe−𝜆𝜆x∕x! = e−𝜆

∑∞
x=0 [𝜆 (1 + t)]x∕x! =

e−𝜆e𝜆(1+t) = e𝜆t. The kth factorial moment is obtained by differentiating this
expression k times and putting t = 0. We know that the kth derivative of e𝜆t is
𝜆

ke𝜆t, from which the kth factorial moment is obtained as 𝜆k. Putting k = 1 and
2 gives the desired moments.

Corollary 3 The factorial moments of a Poisson distribution are related as 𝜇(k) =
𝜆

r
𝜇(k−r). In particular, 𝜇(k) = 𝜆𝜇(k−1).

Proof: This follows easily because 𝜇(k)∕𝜇(k−r) = 𝜆
k∕𝜆k−r = 𝜆

r.

EXAMPLE 9.20 Factorial MGF of the geometric distribution

Find the factorial MGF of the geometric distribution.

Solution 9.20 By definition FMGFX (t) =

E[(1 + t)x] =
∞∑

x=0

(1 + t)xqxp = p
∞∑

x=0

[q (1 + t)]x = p∕[1 − q (1 + t)]. (9.37)

As 1 − q = p, the denominator becomes [1 − q (1 + t)] = p − qt. Hence,
FMGFX (t) = p∕ (p − qt). The kth factorial moment is obtained by differ-
entiating this expression k times and putting t = 0. We know that the kth
derivative of 1∕ (ax + b) is arr!(−1)r∕(ax + b)r+1. Hence, kth derivative of
1∕[1 − q (1 + t)] is r!qr∕pr+1, as q = 1 − p. This gives the kth factorial moment
as pr!qr∕pr+1 = r!(q∕p)r.

9.9 CONDITIONAL MOMENT GENERATING FUNCTIONS (CMGF)

Consider an integer random variable that takes values ≥ 1. We define a sum of inde-
pendent random variables as SN =

∑N
i=1 Xi. For a fixed value of N = n, the distribution
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of the finite sum Sn can be obtained in closed form for many distributions when the
variates are independent (see Table 7.47, Chapter 7). The conditional MGF can be
expressed as

MX|Y (t) =
∫x

f (x|y) etxdx. (9.38)

Replacing t by “it” gives the corresponding conditional characteristic function. If the
variates are mutually independent, this becomes MS|N (t|N) = [MX (t)]N .

9.10 CONVERGENCE OF GENERATING FUNCTIONS

Properties of generating functions are useful in deriving the distributions to which a
sequence of generating functions converge. Let Xn be a sequence of random variables
with ChF 𝜙n

X (t). If lim
n→∞

𝜙
n
X (t) converges to a unique limit, say 𝜙X (t) for all points in

a neighborhood of t = 0, then that limit determines the unique CDF to which the
distribution of Xn converge. Symbolically,

lim
n→∞

𝜙
n
X (t) = 𝜙X (t) ⇒ lim

n→∞
FXi

(x) = F (x) . (9.39)

9.11 SUMMARY

This chapter introduced various generating functions encountered in statistics. These
have wide applications in many other fields including astrophysics, fluid mechanics,
spectroscopy, and various engineering fields. Examples are included to illustrate the
use of various generating functions. The classical probability generating function of
discrete distributions is extended to get a new generating function for the CDF. This
is then used to derive the mean deviation by extracting just one coefficient.

See References 134, 284, 287 and 290 for further information.

EXERCISES

9.1 Mark as True or False

a) PGF of discrete distribution can be obtained from its MGF

b) PGFs of continuous distributions do not exist

c) MGF is defined only for positive random variables

d) Moments of order k > n of a BINO(n,p) are all zeros

e) All moments of F distribution are functions of numerator df

f) All odd moments of Cauchy distribution are nonexistent

g) All characteristic functions are periodic with period 2𝜋

h) ChF of a sum of random variables is always the product of the ChF.
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9.2 Find the CDF and MGF of the dis-
tribution f (x; a, b) = a

ba xa−1e−(x∕b)a ,
and obtain the first two moments.

9.3 Prove that Max (t) = Mx (at) and
Max+b (t) = ebtMx (at). Deduce
that M(x−𝜇)∕𝜎 (t) = e−𝜇t∕𝜎Mx (t∕𝜎).

9.4 For Geometric distribution with
PMF f (x) = qxp, find E (X) and
E
(
X2

)
and deduce Var(X).

9.5 If X1,X2, … ,Xn are IID and
Sn = X1 + X2 + · · · + Xn, prove
that MSn

(t) =
∏n

i=1 Mxi
(t).

9.6 Find the MGF and derive the
first two moments for the distri-
bution f (x) =

(
x−1
r−1

)

prqx−r
, x =

r, r + 1, …

9.7 What do you get as the result of
𝜕

k

𝜕tk
PX (t) |t=1, where PX (t) is the

probability generating function?

9.8 If Mx (t) = 1∕
(
b2 − t2

)
find the

mean and variance.

9.9 If X∼NBIN(n, p), prove that the

PGF is Px (t; n, p) =
(

p
1−qt

)n
.

9.10 Let {an}, n = 0, 1, 2, … ,∞ be
a sequence of bounded num-
bers with EGF

∑∞
n=0 anxn∕n!. Find

the sequence whose EGF is ex ∗
∑∞

n=0 anxn∕n!.

9.11 Find the PGF, mean, and variance
of f (x) =

(

1 − 𝜇

n

)n (
n
x

)(
𝜇

n−𝜇

)x
,

x = 0,1,… n. Derive the PGF of
n − X and obtain the GFCDF.

9.12 For the logarithmic series distri-
bution f (x) = c𝜃x∕x, where 0 <
𝜃 < 1, x = 1, 2, … , and c = −1∕
log (1 − 𝜃), find the MGF. Prove
that the rth factorial moment
𝜇(r) = c (r − 1)![𝜃 (1 − 𝜃)]r.

9.13 What are the conditions for a
function to be a moment gener-
ating function? Are these func-
tions true MGF? (a) ea(t−1)+b(t−1)2 ,
(b) ea(t−1)∕(1−bt), (c) ea(t−1)+b(t2−1),
(d) e|(t−1)∕(t2−1)|

9.14 Find the MGF and first three
moments of the triangular distri-
bution.

9.15 Find the ChF and first two
moments of the Pareto distribu-
tion.

9.16 Prove that KX+Y (t) = KX (t) +
KY (t) if X and Y are independent.

9.17 When is PX1+X2+ ··· +Xn
(t) =

∏
k

P
(
Xi (t)

)

9.18 Prove that the MGF of a truncated
exponential distribution is 1

𝜆−t
[𝜆 −

t exp (−m (𝜆 − t))] for t ≠ 𝜆.

9.19 The MGF of a random variable
is
(
e2t − e−2t

)
∕4t. Find the mean,

and the probability that P[|x −
1] < 0.5.

9.20 Show that the MGF of CUNI
(−c, c) with PDF f (x; c) = 1∕ (2c)
for −c < x < c is sinh(ct) ∕ct.
Prove that the even moments are
given by 𝜇2n = c2n∕ (2n + 1).

9.21 Check whether the PGF exists for
a discrete distribution with f (x) =
c∕[x (x + 1)], for x = 1, 2, …
where c is constant. Obtain
GFCDF and the MD.

9.22 If X and Y are related as X =
(2Y − (a + b)) ∕ (b − a), find the
moments of X from those of Y.
Find the relation among MGF of
X and Y.

9.23 If X and Y are IID, and Z = cX +
(1 − c)Y , find the MGF of Z in
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terms of MGF of X and Y. Deduce
the first two moments.

9.24 How are the PGF (Px (t)), MGF
(Mx (t)), ChF (𝜙x (t)), and KGF
(Kx (t)) related.

9.25 If X ∼BINO(n, p) find the PGF of
the random variable n − X. What
does Px (t = −1) give?

9.26 Obtain the CDF generating func-
tion for the Poisson distribution,
and obtain the mean deviation.

9.27 Obtain the CDF generating func-
tion for the Logarithmic series
distribution, and obtain the mean
deviation.

9.28 If X ∼ N
(
𝜇, 𝜎

2
)
, and g (x) is a

differentiable function of x with
E[X] < ∞, then E[g (x) (x − 𝜇)] =
𝜎

2E[g′(x)].

9.29 If f (y|x) = exp (− (y − x)) for
y ≥ x, prove that E (Y|X = x) =
(1 + x).

9.30 If X is a positive random variable
with PGF Px (t) find the PGF of the
random variables X − c, and |X|.

9.31 Prove that for a non-negative ran-
dom variable E[X2] = 2 ∫ ∞

0 x[1 −
FX (x)]dx.

9.32 In a sequence of IID Bernoulli
trials with probability of success
p, suppose we count either the
number of successes needed to
get the first Failure, or the num-
ber of Failures needed to get the
first Success. Find the PDF and the
probability generating function.

9.33 The Maxwell distribution gives
the velocity of a molecule at
absolute temperature x as f (X) =
4𝜋x2(m∕2𝜋KT)3∕2 exp(−mx2∕2KT)
where m = molecular weight, K =
Boltzmann constant. Find the PGF
and expected velocity at room
temperature tr.

9.34 If the PDF of a continuous random
variable is f (x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

2 (b + x) ∕[b (a + b)]
if − b ≤ x < 0

2 (a − x) ∕[a (a + b)]
if 0 ≤ x < a

0

elsewhere

find the MGF and the mean.

9.35 If the PDF of a continuous random
variable is f (x) =

⎧
⎪
⎨
⎪
⎩

(a + x) ∕a2 if − a ≤ x < 0

(a − x) ∕a2 if 0 ≤ x < a

0 elsewhere

find the MGF and the mean.

9.36 What does [KX (t) + KX (−t)]∕2
generate?

9.37 What does [PX (t) + PX (−t)]∕2
generate?

9.38 If all moments of X exist, prove
that 𝜙 (t) =

∑∞
k=0 (it)

k∕k! 𝜇′k
9.39 If f (x) = (c + 1) xc for 0 < x < 1,

find the PGF and E[ln (X)].

9.40 If 𝜙 (x) is a real-valued, monotonic function of a positive random variable
X, prove that E[𝜙 (x)] = 𝜙 (0) + ∫ ∞

0 [1 − F (x)]𝜕𝜙 (x) ∕𝜕x. Hence derive that
E[Xn] = n ∫ ∞

0 xn−1[1 − F (x)]dx.
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9.41 If Y ∼BETA(a, b − a), prove that Mx (t) =1F1 (a, b; y) = K ∫ 1
0 eytta−1

(1 − t)b−a−1dt where K = Γ(b)
Γ(a)Γ(b−a) and 1F1 (a, b; y) is the confluent hypergeo-

metric function. Hence, show that E (Y) = a∕b.

9.42 Find the factorial MGF of hypergeometric and negative binomial distribu-
tions and show that the factorial moments are as given: (i) HYPG(N,n,p):
n(r)Np(r)∕N(r) if f (x) =

(
Np
k

)(
Nq
n−k

)

∕
(

N
n

)

. (ii) NBIN(n,p): r (r + 1) .. (r + s)
(q∕p)s.

9.43 Find the factorial MGF of binomial and geometric distributions and show
that the factorial moments are as given: (i) BINO(n, p): n(r)p

r. (ii) GEOM(p):
r!qr−1∕pr.



10
FUNCTIONS OF RANDOM VARIABLES

After finishing the chapter, students will be able to

◾ Understand distribution of functions of random variables

◾ Distinguish linear and other transformations of random variables

◾ Comprehend trigonometric transformations of random variables

◾ Describe arbitrary transformations

◾ Apply various transformations to practical problems

10.1 FUNCTIONS OF RANDOM VARIABLES

This chapter discusses the distribution of functions of a single random variable. There
are many situations where simple functions of random variables have well-known
distributions. One example is the relation between a standard normal and a chi-square
distribution. As shown below, the square of a standard normal is chi-square distributed
with one DoF. If there are several independent normal variates, the sum of the squares
is also chi-square distributed with n DoF, where n is the number of variates.

Distribution of a function of random variable(s) has many applications in statis-
tical inference. For instance, any general normal variate can be transformed into the
standard normal (N(0, 1)) using a simple change of origin and scale transformation.
The classical method known as the method of distribution function (MoDF) is use-
ful when the CDF has closed form. The CDF of the transformed variable is easily
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TABLE 10.1 Summary Table of Transformation of Variates

Transformation Transformed Comments
y = h(x) Density Function

c ∗ X + d
1
|c|

f ((y − d)∕c) c ≠ 0, not near 0

|X| g(y) = f (y) + f (−y) g(y) = 2f (y) if Y symmetric

|X − c| g(y) = f (c+ y)+ f (c− y) g(y) = 2f (c+ y) if Y is symm.

x2 f (
√

y)/2
√

y x positive

x2 [f (
√

y)+ f (−
√

y)]/2
√

y −∞ < x <∞

cx2 [f (
√

y∕c)+ f (−
√

y∕c)]/2
√

y∕c Any x

1∕[cx2] 1/[2
√

cy3∕2] f (1/
√

cy)
√

x 2y f (y2) y f (y2) if Y is symmetric
√

cx 2(y/c) f (y2/c) 2y f (y2) if c = 1

1∕x f (1/y)/y2 x ≠ 0

x𝛼
1
𝛼

f (y1∕𝛼)y1∕𝛼−1 0 < 𝛼 < 1, x > 0

xn y1∕n−1

n
[f (y1∕n) + f (−y1∕n)] For y > 0

ex f(ln(y))/y log to base e

eax f(ln(y)/a)/ay log to base e

tan−1(x) f(tan y)sec2(y)

−2 ln(x) 1
2

e−y∕2f (e−y∕2) log base e

− ln(1− x)/𝜆 𝜆e−𝜆yf (1 − e−𝜆y) log base e

1∕[1 + e−x] f (ln (y/(1− y)))/[y (1− y)] Sigmoid function

ln
( x

1 − x

)

f
( ey

ey + 1

) ey

(1 + ey)2
0 < x < 1

ln
(1 + x

1 − x

)

f
( ey − 1

ey + 1

)

2
ey

(1 + ey)2
0 < x < 1

log2(1 + x) ln (2) 2y f (2y − 1) x is non-negative

The ranges are not shown above as it depends on the range of the original variate. Note that log x and
√

x
are concave functions.

obtained using MoDF when the transformation is strictly increasing or decreasing
function, from which the PDF follows readily by differentiation (see table above) in
the continuous case. This method can be used to find the PDF of the logistic, Gumbel,
Pareto, and uniform distributions.

We come across functions of a variate in engineering applications as well. These
are sometimes governed by physical laws such as that between resistance and current
in a circuit. These are usually represented as exact or approximate functional relation-
ships among dependent and independent variables. If the distribution of one of them is
known, the behavior of the other can easily be modeled. As an example, consider the
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electrical resistance of semiconductors, which depends on the temperature in ∘K as

r(t) = (a∕tb)ec∕t where t = temperature in K∘
, a, b, c are constants. (10.1)

If the temperature variation is known, the resistance distribution can be derived for
some values of the parameters. Similarly, the potential energy of weakly interacting
dielectric gas subjected to an external electric field is modeled using an exponential
law as f (y) = exp(−y∕(KT)), where y = potential energy, K = Boltzmann constant,
and T = absolute temperature in ∘K.

There are many ways to derive such related distributions (see References 137, 225,
291–293. The most popular among them are the (i) CDF method (ii) MGF (or ChF)
method (iii) trigonometric transformations (iv) geometric reasoning and (v) using
Jacobians.

10.2 DISTRIBUTION OF TRANSLATIONS

These are obtained by a change of origin transformation Y = X ± c. As the variate
values are shifted either to the right (c is positive) or to the left (c is negative), the
PDF remains the same, but the range is modified accordingly. A special translation is
called reflection as Y = −X + c, where c is a location measure. If X is symmetric, Y =
−X + c results in the same distribution if c is the mean, median, or mode (all of which
coincides for symmetric laws). This transformation is usually applied along with one
of the following transformations such as change of scale or square transformation.

EXAMPLE 10.1 Translations of CUNI(a, b) Distribution

If X is CUNI(a, b), find the distribution of (i) Y = X − a (ii) Y = (X − (a + b)∕2).

Solution 10.1 As both of these are change of origin transformations, the
PDF remains the same as f (y) = 1∕(b − a). In case (i) the lower limit
becomes 0 and upper limit becomes (b − a), so that f (y) = 1∕(b − a), 0 <
y < (b − a). In case (ii) the lower limit is a− (a + b)/2 = (a − b)/2, and
the upper limit is b − (a + b)∕2 = (b − a)∕2 = f (y) = 1∕(b − a). This gives
f (y) = 1∕(b − a),−(b − a)∕2 < y < (b − a)∕2. As (a + b)∕2 is the mean of a
rectangular distribution, this transformation is a reflection.

10.3 DISTRIBUTION OF CONSTANT MULTIPLES

First, consider the case of a discrete random variable X. If c is an integer, then Y =
c ∗ X is a change of scale transformation that maps X values to positive or negative
numbers. Hence, depending on the sign of c, Y could belong to the same family of
distribution. As an example, if X is Poisson (𝜆) with mgf exp(𝜆(et − 1)), Y has mgf
exp(𝜆(ect − 1)). This is the MGF of a Poisson distribution. If c is a fraction, the dis-
tribution is still well defined if we assume that X takes fractional values (but still it is
discrete distribution due to the discontinuity).
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EXAMPLE 10.2 Constant Multiple of CUNI(a, b) Distribution

If X is CUNI(a, b) find the distribution of Y = (2X − (a + b))∕(b − a).

Solution 10.2 Write Y = (2X − (a + b))∕(b − a) as c ∗ X + d, where
c = 2∕(b − a) and d = −(a + b)∕(b − a). Solve for X to get x = (Y − d)∕c.
Then use (10.3) to get g(y) = f ((y − d)∕c)∕c. As X is CUNI(a, b), f (x) =
1∕(b − a), a < x < b. As this does not involve x, putting x = (y − d)∕c has no
effect. The range is modified as −1 and +1. Substitute the values of c and d to
get g(y) = (1∕(b − a))∕(2∕(b − a)) = 1∕2,−1 < y < 1.

10.4 METHOD OF DISTRIBUTION FUNCTIONS (MODF)

The MoDF is a simple and powerful method to find the PDF of a variety of
continuous transformations. Consider the general transformation Y = h(X). The
MoDF works when (i) h(x) is either an increasing or a decreasing function of x
without discontinuities, (ii) the first derivative of h(x) exists throughout the range of
the variate, (iii) h(x) is invertible (so that x = h−1(y), is uniquely solvable), and (iv)
F(x) is differentiable once. We illustrate the use of MoDF for various forms of h(x) in
their respective sections. Consider the transformation Y = h(x) = c ∗ X + b, where X
has a known distribution. It satisfies all the three conditions on h(x). The CDF of Y is

G(y) = P(Y ≤ y) = P(cX + b ≤ y) = P(X ≤ (y − b)∕c) = F((y − b)∕c). (10.2)

Note that in equation (10.2), G(.) is the CDF of Y, and F(.) is the CDF of X. As the
CDF of Y contains only y; and the constants (b,c), we have simply expressed y in
terms of x. Differentiate with respect to y to get

g(y) = (𝜕∕𝜕y) F((y − b)∕c) = (1∕c) ∗ f ((y − b)∕c). (10.3)

Here, we need to consider two cases as c > 0 or c < 0. The above result holds for
c > 0. When c < 0 (Y = h(X) is a decreasing function), we get

GY (y) = Pr(cX + b ≤ y) = Pr(X ≥ (y − b)∕c) = 1 − F((y − b)∕c). (10.4)

Differentiation gives us g(y) = (−𝜕∕𝜕y)F((y − b)∕c) = (−1∕c) ∗ f ((y − b)∕c).
Combine both cases to get

g(y) = (±𝜕∕𝜕y) F((y − b)∕c) = (1∕|c|) ∗ f ((y − b)∕c), (10.5)

where the vertical line means “absolute value,” which absorbs the ± sign. Thus,
the PDF of Y is easily obtained from that of X. The only assumption we have
made is that F(y) is differentiable, as the other conditions are satisfied by the linear
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transformation. The constant c can be any nonzero real number. Depending on
whether |c| < 1 or > 1, the new range is either expanded or contracted.

10.4.1 Distribution of Absolute Value (|X|) Using MoDF

The MoDF can easily be adapted to find the distribution of Y = |X|. This is meaning-
ful only when X takes both positive and negative values (if X assumes only negative
values, then |x| = −x). As above, let G(y) be the CDF of Y. Then,

G(y) = P(Y ≤ y) = P(|X| ≤ y) = P(−y ≤ X ≤ y) = F(y) − F(−y). (10.6)

Differentiate both sides to get g(y) = f (y) + f (−y). In the particular case when Y is
symmetric, f (y) = f (−y) so that g(y) = 2 f (y).

EXAMPLE 10.3 Absolute value of CUNI(−𝜋∕2, 𝜋∕2)

If X is CUNI(−𝜋∕2, 𝜋∕2) variate, find the distribution of Y = |X|.

Solution 10.3 As the CUNI(−𝜋∕2, 𝜋∕2) distribution exhibits special symme-
try around zero point, f (−x) = f (x). We know f (x) = 1∕𝜋 for −𝜋∕2 ≤ x ≤ 𝜋∕2.
Thus, using equation (10.8) the PDF of Y = |X| is f (y) = 2 ∗ f (x) = 2∕𝜋 for
0 ≤ y ≤ 𝜋∕2.

EXAMPLE 10.4 Distribution of Absolute value of Cauchy Variate

If X is a standard Cauchy variate, find the distribution of Y = |X|.

Solution 10.4 We know that f (x) = 1∕[𝜋(1 + x2)], which is symmetric in x.
Using equation (10.8), the distribution of Y is 2 ∗ f (x) = 2∕[𝜋(1 + x2)] for
0 ≤ x ≤ ∞.

10.4.2 Distribution of F(x) and F−1(x) Using MoDF

Let F(x) be the CDF and F−1(x) be the inverse CDF of a continuous random variable.
Obviously, the minimum value that F(x) can take is 0, and the maximum value is 1.
The following section derives the distribution of F(x), irrespective of the range.

10.4.2.1 Distribution of F(x) If X is a continuous variate, U = F(x) is uniformly
distributed in [0, 1]. Consider

F(u) = P(U ≤ u) = P(F(x) ≤ u) = P(x ≤ F−1(u)) = F[F−1(u)] = u. (10.7)

We have seen in Chapter 7 that the CDF of a rectangular distribution is (x − a)∕(b −
a). Put a = 0, b = 1 to get F(x) = x. Equation (10.7) then shows that F(U) has a unit
rectangular distribution.
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10.4.2.2 Distribution of F−1(x) Distribution of Y = F−1(x) is well tractable in the
continuous case when x is defined on unit interval. If we define F−1(x) as the minimum
value of y satisfying F(y) ≥ x, we could use the MoDF to find the distribution in
certain cases. Obviously, F−1(x) is nondecreasing and satisfy (i) F−1(F(x)) ≤ x, for
−∞ < x < ∞ and (ii) F(F−1(y)) ≥ y for 0 < y < 1. Let Y = F−1(x). If there are no
discontinuities,

G(y) = P(Y ≤ y) = P(F−1(x) ≤ y) = P(x ≤ F(y)) = F[F(y)]. (10.8)

where we have used F(F−1(x)) = x (strictly). In the particular case, when y is
CUNI[0,1], we have F(y) = y. Substitute in the last term (in square bracket) of
equation (10.8) to get the CDF of F−1(x) as G(y) = F(F(y)) = F(y) = y showing that
Y is uniformly distributed with unit range. Next, consider the general case. As the
derivative of F(F(y)) is unambiguously determined when the argument (of outer F())
ranges over the unit interval, we could differentiate both sides of equation (10.8) to
get

g(y) = (𝜕∕𝜕y) F[F(y)] = (𝜕∕𝜕F(y)) F[F(y)] ∗ 𝜕(F(y)∕𝜕y) = f [F(y)] ∗ f (y) (10.9)

where we have used the function-of-a-function rule of differentiation because inner
F(y), being the CDF, satisfies 0 ≤ F(y) ≤ 1. Use F(y) − F(y − 1) = f (y) in the discrete
case. An application of the above result is to find the mean deviation of continuous
distributions given below.

Theorem 10.1 If f (F−1(x)) of a continuous distribution has closed form, and is inte-
grable in the proper range, the mean deviation is given by

MD = 2
∫

F(𝜇)

t=0
t dt∕f (F−1(t)). (10.10)

Proof: The proof follows easily by putting y = F−1(x) and using properties of distri-
bution functions in the above result. This is illustrated below.

EXAMPLE 10.5 Mean deviation of Exponential Distribution

If X is EXP(𝜆) find the mean deviation.

Solution 10.5 Consider the exponential distribution f (x) = 𝜆e−𝜆x with mean
𝜇 = 1∕𝜆 and CDF 1 − e−𝜆x. Put x = 1∕𝜆 in the CDF to get F(𝜇) = 1 − e−𝜆(1∕𝜆) =
1 − e−1 = (e − 1)∕e. The inverse CDF is F−1(x) = −(log (1 − x))∕𝜆, where log
is to the base e (i.e., ln(1 − x)). Put the values in equation (10.10) to get the
simple integral

MD = 2
∫

(e−1)∕e

t=0
tdt∕𝜆(1 − t). (10.11)
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where we have used

f (F−1(x)) = 𝜆e(−𝜆)∗(− ln (1−x)∕𝜆) = 𝜆eln (1−x) = 𝜆(1 − x).

Write t in the numerator as 1 − (1 − t) and split the integral into two. They eval-
uate to (1∕e − 1)∕𝜆 and 1∕𝜆. Adding them together gives the mean deviation as
1/(e𝜆).

EXAMPLE 10.6 Inverse of CUNI(a, b) Distribution Function

If X is CUNI(a, b) find the distribution of F−1(x).

Solution 10.6 We know that the CDF of CUNI(a, b) is F(x) = (x − a)∕(b − a).
Using equation (10.9), the PDF of Y = F−1(x) is f ((y − a)∕(b − a)) ∗ f (y). As
f (y) = 1∕(b − a) irrespective of the value of y, and f ((y − a)∕(b − a)) has unit
range, we get the PDF of Y as g(y) = 1∕(b − a), a ≤ y ≤ b.

EXAMPLE 10.7 Mean deviation of Uniform Distribution

If X is CUNI(a, b), find the mean deviation.

Solution 10.7 As the CDF of CUNI(a, b) is F(x) = (x − a)∕(b − a),F(𝜇) =
F((a + b)∕2) = 1∕2 (this also follows trivially from the fact that CUNI(a,b)
has special symmetry so that the area up to the mean is 1/2). As the density is
constant throughout the range, f (F−1(t)) = 1∕(b − a) always. Substitute these
values in equation (10.10) to get the MD as

MD = 2
∫

1∕2

t=0
tdt∕(1∕(b − a)) = 2(b − a) t2∕2|1∕2

0 = (b − a)∕4. (10.12)

This tallies with the result given in page 264.

10.5 CHANGE OF VARIABLE TECHNIQUE

The Change of Variable Technique (CoV-T) (also called Transformation of Variable
Technique (ToV-T)) is a useful method to find distributions of simple continuous
differentiable functions of real-valued random variables. It works on the principle that
the average value of an integral favg(x) = 1∕(b − a) ∫ b

a dF(x) can be equalized under
an arbitrary continuous transformation y = h(x) by the integral gavg(y) = 1∕(h(b) −
h(a)) ∫ h(b)

h(a) dG(y) provided that h(b) → h(a) as b→a. Equating the above gives

∫

b

a
dF(x) = (b − a)∕[(h(b) − h(a))]

∫

h(b)

h(a)
dG(y). (10.13)
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Now consider limb→a[(h(b) − h(a))∕(b − a)], which is the limiting value of the deriva-
tive h(x) at x = a. If this derivative of h

′ (x) exists for each point x in the interval (a,
b), then the RHS will be finite. When b → a from above, the LHS integral approaches
f (x) and RHS integral approaches g(y)∕h

′ (y). This allows us to equate the width of an
infinitesimal strip under the function f (x) as f (x)dx = g(y)dy for all points x in (a, b).
Because y = h(x) is invertible, we get g(y) = f (x)|𝜕h(y)∕𝜕y| = |1∕J|f (h−1(y)), where
J is called the Jacobian of the transformation. The only conditions in this transforma-
tion are that the mapping is once differentiable (i.e., h

′ (x) exists) and it is invertible
(x can be expressed in terms of y). This can also be proved using the CDF method as
follows.

Theorem 10.2 The CDF of one-variable transformation is given by G(y) =
F(u−1(y)) if u(x) is strictly increasing and 1 − F(u−1(y)) if u(x) is strictly decreasing.
The PDF in both cases is g(y) = f (u−1(y))| 𝜕x

𝜕y
|.

Proof: If u(x) is a strictly increasing function and invertible,

G(y) = Pr[Y ≤ y] = Pr[u(x) ≤ y] = Pr[x ≤ u−1(y)] = F(u−1(y)). (10.14)

As the derivative is positive, the transformation results in g(y)𝜕y = f (x)𝜕x, so that
g(y) = f (u−1(y))| 𝜕x

𝜕y
|. If u(x) is a strictly decreasing function, the derivative is negative

so that the transformation results in G(y) = 1 − F(u−1(y)) and g(y) = −f (u−1(y))| 𝜕x
𝜕y
|.

This is the reason why we take the absolute value of the Jacobian. These results can
easily be generalized to n-dimensions, as shown in Chapter 11.

The standardization transformation Z = (X − 𝜇)∕𝜎, where 𝜇 is the mean and 𝜎
is the standard deviation, is the simplest and the most frequent CoVT. The Jacobian
in this case is |𝜕z∕𝜕x| = 1∕𝜎. When applied to an arbitrary normal distribution, this
results in a standard normal distribution, which is extensively tabulated.

10.5.1 Linear Transformations

Any random variable X can be transformed linearly using y = cx + b, where c ≠ 0.
As they are linearly related, we could directly invert it to get x = (y − b)∕c and |J| =
1∕|c|. Let gY (y) denote the PDF of Y, and fX(x) denote the PDF of X. Then,

g(y) = f (x)|𝜕x∕𝜕y| = |J|f (h−1(y)) = (1∕|c|)f ((y − b)∕c), (10.15)

which is the same result obtained by the MoDF technique. When the variate
is discrete, we simply ignore the 1∕|c| multiplier. In general, if the trans-
formation is Y = h(X), the PDF of Y is g(y) = f (h−1(y)) if X is discrete and
g(y) = f (h−1(y))|𝜕h−1(y)∕𝜕y| if X is continuous.
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EXAMPLE 10.8 Linear functions of binomial distribution

If X ∼ BINO(n, p) find distributions of Y = n − X, and find E(Y),V(Y).

Solution 10.8 As Y = n − X takes integer values in reverse, it has the same dis-
tribution. The PMF is f (y) =

(
n

(n − y)

)

pn−yqy. Using
(

n
(n − y)

)

=
(

n
y

)

, this can also

be written as f (y) =
(

n
y

)

qypn−y
, y = 0, 1, .., n; which is the PMF of a BINO(n, q).

Hence, E(Y) = nq,V(Y) = npq.

10.6 DISTRIBUTION OF SQUARES

Distribution of squares is especially important in statistical inference and analysis
of variance. This is because we encounter sums of squares or functions thereof.
For instance, the ANOVA procedure is dependent on decomposing the total sum
of squares as between treatment and within sums of squares. Similarly, confidence
intervals for variances are constructed using the distribution of sample variance,
and testing of regression coefficients in multiple linear regression (MLR) uses the
ratio of sums of squares. All of these require the distribution of appropriate sums of
squares under normality assumption. In such cases we need to find the distribution of
sums of independent normal random variates. Although the distribution of squares
of other random variables is seldom used in practice, they do have great theoretical
significance. A special case of the above is the relation between Student’s T and
Snedecor’s F distributions. If T ∼ Tn, then the PDF of T2

n has an F distribution with 1

and n DoF. By definition, T = Z∕
√

𝜒
2
n∕n so that T2

n = Z2∕(𝜒2
n∕n). As the numerator

and denominator are independent, both of them are chi-squared distributed so that
their ratio has an F distribution.

There exist many methods to derive the distribution of squares. Let Y = X2 so that
dy∕dx = 2x and dx∕dy = 1∕(2

√
y). If X takes positive values, the PDF of Y is obtained

as
g(y) = f (x)|𝜕x∕𝜕y| = f (

√
y)∕(2

√
y). (10.16)

The corresponding relationship between distribution functions for strictly increasing
functions is

G(y) = Pr(X2 ≤ y) = Pr[−
√

y ≤ X ≤
√

y] = F(
√

y) − F(−
√

y). (10.17)

As (10.17) is valid for any x(−∞ < x <∞), we differentiate it with respect to y to
get the PDF as g(y) = (f (

√
y) + f (−

√
y))∕2

√
y (see Table 10.1).

EXAMPLE 10.9 Distribution of the square of a T variate

If X is T(n), find the distribution of X2∕n.
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Solution 10.9 The PDF of Student’s T distribution is given in Section 7.18
(p. 7–85) as

f (t) = K(1 + t2∕n)−(n+1)∕2
. (10.18)

where K = Γ((n + 1)∕2)∕[
√

n𝜋 Γ(n∕2)]. Using equation (10.17), the PDF of
Y = T2∕n is obtained as G(y) = Pr(Y ≤ y) =

Pr(T2∕n ≤ y) = Pr(−
√

ny ≤ T ≤
√

ny) = F(
√

ny) − F(−
√

ny). (10.19)

Differentiate (10.19) with respect to y to get the PDF of Y as

√
n[f (

√
ny) + f (−

√
ny)](1∕2

√
y). (10.20)

As the T distribution is symmetric, f (
√

y) = f (−
√

y). Substitute in

equation (10.18), and cancel out
√

n to get the desired PDF as

g(y, n) = Γ((n + 1)∕2)∕[
√
𝜋 Γ(n∕2)](1 + y)−(n+1)∕2∕

√
y. (10.21)

Write
√

y in the denominator as y1∕2−1 and take numerator expression to the
denominator. Then this is found to be a BETA-II distribution

(1∕B(1∕2, n∕2))y1∕2−1∕(1 + y)(n+1)∕2
. (10.22)

where B(1∕2, n∕2) = Γ((n + 1)∕2)∕[
√
𝜋 Γ(n∕2)] is the CBF.

10.7 DISTRIBUTION OF SQUARE-ROOTS

As the square root of a negative number is imaginary, this transformation is defined
only for random variables that take positive values. It makes sense for continuous
variates than discrete ones. Let Y =

√
X, which gives X = Y2 and dx∕dy = 2y. The

straightforward way to find the PDF of Y is to use

g(y) = f (x)|𝜕x∕𝜕y| = 2yf (y2). (10.23)

If the resulting distribution of Y is symmetric, we need to divide the final density
by 2 to get the correct PDF, because both (−y)2 and (+y)2 map to x. Symbolically,
g(y) = yf (y2) if Y is symmetric. This is summarized as

g(y) = f (x)|𝜕x∕𝜕y| =

{
2yf (y2) if Y is asymmetric;
yf (y2) if Y is symmetric.
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EXAMPLE 10.10 Distribution of the square-root of a 𝜒2 variate

If X is 𝜒2
n, find the distribution of

√
X.

Solution 10.10 The PDF of 𝜒
2
n variate is f (x) = e−x∕2xn∕2−1∕[2n∕2Γ(n∕2)],

where n is the DoF ≥ 1. Put Y =
√

X and use equation (10.23) to get

f (y) = 2y ∗ e−y2∕2(y2)n∕2−1∕[2n∕2Γ(n∕2)]. (10.24)

As y ∗ (y2)n∕2−1 = yn−1 the PDF becomes f (y) = e−y2∕2yn−1∕[2n∕2−1Γ(n∕2)].
This is the chi-distribution, or the standard form of Rayleigh distribution
(p. 7–107).

EXAMPLE 10.11 Distribution of the square-root of an F variate

If X is F(1, n), find the distribution of
√

X.

Solution 10.11 The PDF of F distribution was given in Chapter 7 (p. 316) as

f (x;m, n) =
Γ((m + n)∕2)mm∕2nn∕2

Γ(m∕2)Γ(n∕2)
xm∕2−1

(n + mx)(m+n)∕2
, 0 < x < ∞. (10.25)

Put m = 1 to get the PDF of F(1, n) as

f (x; n) =
Γ((1 + n)∕2)nn∕2

Γ(1∕2)Γ(n∕2)
x1∕2−1

(n + x)(1+n)∕2
, 0 < x <∞. (10.26)

Now use equation (10.23) to get

g(y) = 2yf (y2)

= 2yΓ((1 + n)∕2)nn∕2∕[Γ(1∕2)Γ(n∕2)](y2)1∕2−1∕(n + y2)(1 + n)∕2
. (10.27)

The y cancels out with (y2)1∕2−1 = 1∕y. Take n outside from the bracket in the
denominator and cancel out with nn∕2 in the numerator to get a

√
n in the denom-

inator. As the PDF now involves only powers of y2, it is symmetric. Hence, we
need to divide the resulting PDF by 2 to get the correct PDF as

g(y) = (1 + y2∕n)−(n+1)∕2∕[
√

nB(1∕2, n∕2)]. (10.28)

which is the Student’s T(n) distribution.
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10.8 DISTRIBUTION OF RECIPROCALS

Distribution of reciprocals is defined only in some particular cases. If the value of a
random variable X at x = 0 is nonzero, the random variable Y = 1∕X is well defined. It
can also be used (along with Section 10.5.1 discussed in p. 404) to find the distribution
of (X − 1)∕X = 1 − 1∕X and (1 − X)∕X = 1∕X − 1. The straightforward way to find
the PDF of Y is to use

g(y) = f (x)|𝜕x∕𝜕y| = f (1∕y)∕y2
. (10.29)

EXAMPLE 10.12 Distribution of the reciprocal of a Cauchy variate

If X is Cauchy distributed, find the distribution of Y = 1∕X.

Solution 10.12 We have seen in Chapter 7 that f (x) = 1
𝜋

1
1 + x2 , −∞ < x <

∞. As f (x = 0) is 1∕𝜋, distribution of the reciprocal is well-defined. Using
equation (10.29) the PDF becomes f (y) = 1

𝜋

1
1 + (1∕y)2 ∕y2. The y2 cancels out

from the numerator and denominator, giving f (y) = 1
𝜋

1
1 + y2 , which is Cauchy

distributed.

EXAMPLE 10.13 Reciprocal of a unit rectangular variate

If X is U(0, 1) distributed, find the distribution of Y = 1∕X.

Solution 10.13 Let G(y) be the CDF of Y. Then,

G(y) = Pr[Y ≤ y] = Pr[1∕X ≤ y] = Pr[X ≥ 1∕y] = 1 − 1∕y. (10.30)

Differentiate with respect to y to get the PDF as g(y) = 1∕y2, for y ≥ 1.

10.9 DISTRIBUTION OF MINIMUM AND MAXIMUM

The distribution of minimum and maximum (called extremes) finds applications in
many fields. For example, distribution of maximum is used in life sciences to model
the survival time of species, produce, machines, and various products. It is also used
in reliability theory to model the life of equipments and parts, various devices, and
consumer items (such as light bulbs and computer chips). The study of extremes
is called order statistics. Let X1,X2, … ,Xn be a random sample from an arbitrary
distribution with PDF f (y) and CDF F(y). Let Y1 = min(X1,X2, … ,Xn). Then,

1 − FY1
(y) = P(Y1 > y) = P(X1 > y) ∗ · · · ∗ P(Xn > y) = [1 − F(y)]n. (10.31)
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using independence. Differentiate the above to get the PDF of Y1 as

f (y1) = n(1 − F(y))n−1f (y). (10.32)

Similarly, the PDF of yn using CDF method is f (yn) = nf (y)[F(y)]n−1.

10.10 DISTRIBUTION OF TRIGONOMETRIC FUNCTIONS

Trigonometric functions of some random variables are easy to work with. One
example is the Cauchy distribution. If X has a standard Cauchy distribution, then
cos(X) has the same distribution. Trigonometric functions are also utilized to derive
some distributions using geometric concepts. One example is the correlation coef-
ficient. The cosine of the angle between two normalized vectors in n-dimensional
Euclidean space is called the correlation coefficient.

EXAMPLE 10.14 Distribution of U = tan(X)

If X has a U(0, 1) distribution, find the distribution of U = tan(X).

Solution 10.14 The PDF of X is f (x) = 1, 0 < x < 1. The inverse transformation
is X = tan−1(U). This gives |𝜕x∕𝜕u| = 1∕(1 + u2). The range of U is modified as
tan(0) = 0 to tan(1) = 𝜋∕4. Hence, the distribution of U is f (u) = 1∕(1 + u2) for
0 < u < 𝜋∕4.

EXAMPLE 10.15 Distribution of U = sin(X)

If X has a CUNI[−𝜋∕2, 𝜋∕2] distribution, find the distribution of U = sin(X).

Solution 10.15 The inverse transformation is x = sin−1(u) so that |𝜕x∕𝜕u| =
1∕
√

1 − u2. When x = −𝜋∕2, u = sin(−𝜋∕2) = − sin(𝜋∕2) = −1. When
x = 𝜋∕2, u = sin(𝜋∕2) = 1. As the PDF of X is 1∕𝜋, the PDF of U is
f (u) = (1∕𝜋)1∕

√
1 − u2, for −1 < u < +1.

10.11 DISTRIBUTION OF TRANSCENDENTAL FUNCTIONS

Distributions of transcendental functions are quite useful in engineering and related
fields. Several laws and principles in engineering and physical sciences are modeled
as mathematical equations called functionals involving the unknown variables and
known constants. In most applications, one variable (called dependent variable) is
modeled as a function of two or more other variables (called independent variables),
which can include time. If the number of variables involved is two, the CoVT tech-
nique is useful to derive the distribution of one, using the distribution of the other. For
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example, in data compression and telecommunications, the speech amplitude is mod-
eled using the Laplacian law f (x) = (1∕𝜎

√
2) exp(−

√
2|x|∕𝜎), and compressed using

the 𝜇−law as A ∗ sign(x)[ln(1 + 𝜇|x|)∕ ln(1 + 𝜇)], where “A” is the peak input mag-
nitude and 𝜇 is the compression constant (typically set to high, say 255). Similarly, in
wireless communication of fading channels, if X is N(𝜇, 𝜎2) distributed, Y = eX has
a lognormal distribution. This has applications in mining engineering, reliability, and
spectroscopy among many other fields (Chapter 7, p. 297).

EXAMPLE 10.16 Logarithmic transformation of CUNI Distribution

If X is CUNI[a, b] distributed (Chapter 7, p. 261), find the distribution of Y =
− log (X − a)∕(b − a).

Solution 10.16 The CDF of Y is F(y) = P[Y ≤ y] = P[(X − a)∕(b − a) ≥
e−y] = P[X ≥ a + (b − a)e−y]. As the CDF of CUNI(a, b) is (x − a)∕(b − a) this
becomes 1 − P[X ≤ a + (b − a)e−y] = 1 − e−y. From this the PDF is obtained
by differentiation as f (y) = e−y. Hence, Y is EXP(1).

EXAMPLE 10.17 Transformation of Arc-Sine Distribution

If X is Arc-Sine distributed (Chapter 7, p. 279), find the distribution of Y =
− log (X).

Solution 10.17 Let F(y) be the CDF of Y. Then, F(y) = P[Y ≤ y] = P[X ≥
e−y] = 1 − (2∕𝜋)sin−1(

√
e−y). Differentiate with respect to y to get the PDF

as f (y) = (2∕𝜋)e−y∕2∕[2(
√

1 − e−y)]. The 2 cancels out from numerator and
denominator giving

f (y) = (1∕𝜋)e−y∕2∕
√

1 − e−y, 0 ≤ y <∞. (10.33)

10.11.1 Distribution of Sums

If X and Y are independent random variables, we may need to find the distribution of
U = X + Y . This is easy to find using convolution of integrals when both X and Y are
continuous. Let FU(u) be the CDF of U. Then,

FU(u) = Pr[U ≤ u] =
∫ ∫x+y≤u

f (x)g(y)dxdy. (10.34)

due to the assumption of independence. As x + y ≤ u represents the region below a
straight line, the limits can be adjusted as ∫ ∞

x=−∞ ∫ u−x
y=−∞ f (x)g(y)dxdy. This can be fac-

tored as ∫ ∞
x=−∞

(

∫ u−x
y=−∞ g(y)dy

)

f (x)dx. Denote the inner integral by GY (u − x). The

above then becomes ∫ ∞
x=−∞ GY (u − x)f (x)dx. Owing to the symmetry of X and Y,
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we can rearrange the integrals to get a similar expression as ∫ ∞
x=−∞ FX(u − y)g(y)dy.

Differentiation with respect to u gives the PDF of X + Y as gU(u) =

𝜕

𝜕u ∫

∞

x=−∞
GY (u − x)f (x)dx =

∫

∞

−∞
g(u − x)f (x)dx =

∫

∞

−∞
f (u − y)g(y)dy. (10.35)

This is called the convolution of X and Y. The MGF is related as MX+Y (t) = MX(t) ∗
MY (t) and the CGF is related as KX+Y (t) = KX(t) + KY (t) if X and Y are indepen-
dent. This method can easily be extended to find the distribution of the difference of
independent random variables.

EXAMPLE 10.18 Sum of Poisson Variates

If X and Y are Poisson with parameters 𝜆1 and 𝜆2, find the PMF of X + Y .

Solution 10.18 We could easily get the required PDF using the MGF technique.
However, we proceed as follows to clarify the change of variable technique.
The joint PMF of X and Y is f (x, y) = e−𝜆1𝜆

x
1∕x!e−𝜆2𝜆

y
2∕y!. Let U = X + Y ,Y =

V . The inverse mapping is V = Y ,X = U − V . Thus, fU,V (u, 𝑣) = e−𝜆1𝜆
u−𝑣
1 ∕(u −

𝑣)!e−𝜆2𝜆
𝑣

2∕𝑣!, where v = 0,1,2.. and u = 𝑣, 𝑣 + 1,... The PMF of U is obtained by
summing over the entire range of V. As U has V as the lower bound, we need sum
over v from 0 to u. Hence fU(u) = e−(𝜆1+𝜆2)

∑u
𝑣=0 𝜆

u−𝑣
1 𝜆

𝑣

2∕[𝑣!(u − 𝑣)!]. Multiply
and divide by u! and take it outside the summation in the denominator. This gives
fU(u) =

e−(𝜆1+𝜆2)

u!

u∑

𝑣=0

(
u
𝑣

)

𝜆
u−𝑣
1 𝜆

𝑣

2 = e−(𝜆1+𝜆2)

u!
(𝜆1 + 𝜆2)u, u = 0, 1, 2 … . (10.36)

EXAMPLE 10.19 Sum of Exponential Variates

If X and Y are independent exponential variates with the same shape parameter,
find the distribution of U = X + Y .

Solution 10.19 We could use equation (10.35) to get the PDF. It is much eas-
ier to use the MGF. We know that the MGF of X is (1 − t∕𝜆)−1. As X and Y
are independent, MX+Y (t) = MX(t) ∗ MY (t) = (1 − t∕𝜆)−2, which is the MGF of
gamma(2, 𝜆).

EXAMPLE 10.20 PMF of sum X+Y

The joint PMF of X and Y is given in Table 10.2. Find the pmf of u = X + Y .
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TABLE 10.2 Joint Distribution

X Y f (x, y) Total

1 1 1/12 1/12
1 2 2/12 3/12
1 3 3/12 6/12
2 1 3/12 9/12
2 2 2/12 11/12
2 3 1/12 12/12

TABLE 10.3 Distribution of X + Y

X + Y f (x, y)

2 1/12
3 5/12
4 5/12
5 1/12

Total 1.0

Solution 10.20 Clearly, X + Y takes values in the range [2,5]. P[X + Y = 2] =
P[X = 1,Y = 1] = 1∕12. P[X + Y = 3] = P[X = 1,Y = 2] + P[X = 2,Y =
1] = 2∕12 + 3∕12 = 5∕12. Similarly, P[X + Y = 4] = P[X = 1,Y = 3] +
P[X = 2,
Y = 2] + P[X = 3,Y = 1] = 2∕12 + 3∕12 = 5∕12, and so on. The results
are given in Tables 10.2 and 10.3.

10.11.2 Distribution of Arbitrary Functions

Consider the transformation y = g(x), where g(x) is a one–one mapping that is invert-
ible. This means that x can be expressed in terms of Y as x = g−1(y). Then, the PDF
of Y can be represented in the continuous case as follows. First express the CDF of Y
in terms of the CDF of X as

FY (y) = P(Y ≤ y) = P(g(x) ≤ y) = P(x ≤ g−1(y) = FX(g−1(y)). (10.37)

Differentiate both sides to get the PDF as

fY (y) = fX(g−1(y))𝜕g−1(y)∕𝜕y. (10.38)

and in the discrete case Y = r(X) as

fY (y) = PrX(r(x) = y) =
∑

x∶r(x)=y

PrX(X = x). (10.39)
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EXAMPLE 10.21 Distribution of Integer Part

If X has Cauchy distribution, find the distribution of the integer part Y = ⌊X⌋.

Solution 10.21 We have f (x) = 1∕[𝜋(1 + x2)] for −∞ < x < ∞. The random
variable Y takes integer values on the entire real line including y = ∓∞ (see
discussion in Section 7.2.1, p. 260). Specifically,

Pr[Y = y] = Pr[y ≤ X < y + 1] =
∫

y+1

y
1∕[𝜋(1 + x2)]dx = (1∕𝜋)tan−1(x)|y+1

y

= (1∕𝜋)[tan−1(y + 1) − tan−1(y)].

A similar expression could be obtained for x < 0 as Pr[Y = y] = Pr[y − 1 ≤ X ≤
y]. As alternate terms in above equation (10.40) cancel out, this form is useful to
compute the CDF, and to prove that the probabilities add up to 1. For example,
sum from −∞ to ∞ to get tan(∞) − tan(−∞) = 𝜋∕2 − (−𝜋∕2) = 𝜋, which can-
cels with 𝜋 in the denominator. Now use the identity tan−1(x) − tan−1(y) = tan−1

((x − y)∕(1 + xy)) to get

Pr[Y = y] = (1∕𝜋)tan−1(y + 1 − y)∕[1 + y(y + 1)]

= (1∕𝜋)tan−1(1∕[1 + y(y + 1)]), (10.40)

which is the desired form. As the terms do not cancel, this form is not useful to
compute the CDF.

This example has an enormous use. It shows another way to specify a PMF as the
difference of two functions (say [tan−1(x + 1) − tan−1(x)] or [exp(−𝜆x) − exp(−𝜆(x +
1))]) that simply cancels out when summed over the proper range of x, leaving behind
only two extreme terms whose difference appears as the normalizing constant in the
denominator. This allows us to define a variety of new discrete distributions. As the
PMF should be positive, we should form the difference separately for positive and
negative values, to make it non-negative. The shape of the distribution (whether it is
unimodal and tails off to the extremes, or it is U-shaped or J-shaped, etc.) must be
known to form the PMF.

EXAMPLE 10.22 Distribution of Fractional Part

If X has an exponential distribution, find the distribution of the fractional part
Y = X − ⌊X⌋.

Solution 10.22 It was shown in Chapter 6 (p. 218) that if X has an Exponen-
tial distribution, the distribution of Y = ⌊X⌋ is GEO(1 − exp(−𝜆)). The possible
values of Y = X − ⌊X⌋ are 0 ≤ y ≤ 1. If we assume that the integer and fractional



412 FUNCTIONS OF RANDOM VARIABLES

parts are independent, Y is the difference between an exponential and geometric
random variables. This is of mixed type (as geometric distribution is discrete),
where the continuous distribution dominates. This means that Y has a contin-
uous distribution. Using the MoDF it is easy to show that Y is distributed as
f (y) = 𝜆 exp(−𝜆y)∕[1 − exp(−𝜆)], for 0 ≤ y ≤ 1.

10.11.3 Distribution of Logarithms

The logarithmic transformation can be applied to any random variable that takes
non-negative values. As log(0) = −∞, this transforms (0,∞) to the new range
(−∞,∞). As the log() is a real function of its argument, this transformation is
applied to continuous random variables. Unless otherwise stated, the base of the log-
arithm is assumed to be e. A special transformation encountered in communication
theory is Y = log2(1 + X). Using the method described above, the PDF of Y is given
by gY (y) = ln(2) f (2y − 1)2y.

10.11.4 Special Functions

There exist many symmetric and skew symmetric functions that possess interesting
properties. These can be in single or multiple variables. Examples are x∕(1 − x), (1 +
x)∕(1 − x), and ex∕(1 + ex). Consider Y = X∕

√
1 + X2. Square both sides to get Y2 =

X2∕(1 + X2), from which x = y∕
√

1 − y2. Differentiate with respect to y to get |J| =
|𝜕x∕𝜕y| = 1∕(1 − y2)3∕2. From this, the PDF of Y is easy to obtain as

g(y) = f (y∕
√

1 − y2)∕(1 − y2)3∕2
. (10.41)

If X is standard Cauchy distributed, then Y = X∕
√

1 + X2 has PDF

g(y) = (1∕𝜋)(1 − y2)∕(1 − y2)3∕2 = (1∕𝜋) 1∕(1 − y2)1∕2
, −1 ≤ y ≤ +1. (10.42)

EXAMPLE 10.23 Distribution of Ratio of sums

Let Xi’s be IID EXP(𝜆𝜃) for i = 1, 2, ..,m. Let Yj’s be IID EXP(𝜃) for j = 1, 2, .., n.
If Xi’s and Yj’s are pair-wise independent, find the distribution of the ratio W =
U∕V =

∑m
i=1 Xi∕

∑n
j=1 Yj.

Solution 10.23 As Xi’s are IID, the joint PDF is the product of individual PDFs.
We first use the MGF technique to find the distribution of numerator and denomi-
nator. The MGF of EXP(𝜆𝜃) is Mx(t) = 1∕[1 − 𝜆𝜃t]. As the Xi’s are IID, Mu(t) =
1∕[1 − 𝜆𝜃t]m. Similarly, M

𝑣
(t) = 1∕[1 − 𝜃t]n. These are the MGFs of gamma

distributions. Hence, W is the ratio of two independent gamma variates. See
References 134, 138, 285 and 294 for further properties.
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10.12 TRANSFORMATIONS OF NORMAL VARIATES

Most of the transformations discussed above are applicable to the normal variate. As
this has many practical applications, this section briefly discusses some of them.

10.12.1 Linear Combination of Normal Variates

Linear combination of any number of independent normal variates is normally
distributed. This can be proved using induction. A simpler method is to use the
MGF technique. We saw in Chapter 9 that the ChF of N(𝜇, 𝜎2) is exp(it𝜇 − 1

2
t2
𝜎

2).
If X1,X2, … ,Xn are independent normal random variables N(𝜇i, 𝜎

2
i ), the ChF of

Y = X1 + X2 + · · · + Xn is

𝜙y(t) =
n∏

i=1

𝜙xi
(t) = exp

(

it
∑

i

𝜇i −
1
2

t2
∑

i

𝜎
2
i

)

. (10.43)

As this is the ChF of a normal variate with mean
∑

i𝜇i and variance
∑

i𝜎
2
i , it follows

that Y is normally distributed. In the particular case, when each of the 𝜇
′
i s and 𝜎2

i are
equal, we have N(n𝜇, n𝜎2). If Y = c1X1 + c2X2 + · · · + cnXn, the ChF of Y is

𝜙y(t) =
n∏

i=1

𝜙cixi
(t) =

n∏

i=1

𝜙xi
(cit) = exp

(

it
∑

i

ci𝜇i −
1
2

t2
∑

i

c2
i 𝜎

2
i

)

. (10.44)

This shows that
∑

iciYi is normal with mean 𝜇 =
∑

ici𝜇i, and variance 𝜎2 =
∑

ic
2
i 𝜎

2
i .

Corollary 1 cX + b is normal with mean 𝜇′ = c ∗ 𝜇 + b and variance 𝜎
′2 = c2

𝜎
2.

10.12.2 Square of Normal Variates

The square of a normal variate is 𝜒2
1 distributed. In general, the sum of squares of

any number of independent normal variates is 𝜒2
n distributed. Similarly, the ratio of

independent normal variates is Cauchy distributed. This is proved in Chapter 11.

EXAMPLE 10.24 Distribution of the square of a normal variate

If X is N(0, 1), find the distribution of X2.

Solution 10.24 Applying the result, we get G(y) =

Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−
√

y ≤ X ≤
√

y)

=
∫

√
y

−
√

y
(1∕

√
2𝜋)e−z2∕2dz. (10.45)
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Differentiate with respect to y to get

g(y) = (1∕
√

2𝜋) 𝜕
𝜕y ∫

√
y

−
√

y
e−z2∕2dz. (10.46)

Using Leibnitz theorem this reduces to (1∕
√

2𝜋)(e−y∕2 ∗ 1∕(2
√

y) − e−y∕2 ∗
(−1)∕(2

√
y)) = (1∕

√
2𝜋)y1∕2−1e−y∕2. This is the PDF of a chi-square variate

with 1 DoF. Alternatively, write (10.46) as 𝜕

𝜕y
[Φ(

√
y) − Φ(−

√
y)] and proceed as

above.

10.13 SUMMARY

This chapter derives and explains the formulas for the probability distribution of a
sum, difference, product, and ratio of two independent random variables. The distri-
bution of squares, square-roots, of univariate and other transformations of two or more
random variables are derived and illustrated. Distribution of integer and fractional
parts of some continuous random variables are discussed, as also the distribution
of CDF (F(x)) and its inverse (F−1(x)). These known results are used to derive an
expression for the mean deviation of some continuous distributions as twice the sim-
ple integral of t∕f (F−1(t)) from zero to F(𝜇), where 𝜇 is the mean and F(x) is the
CDF (F(𝜇) = 1∕2 for symmetric laws). Several examples are included to understand
the need and usefulness of the transformations. Advanced treatment can be found in
References 134, 138, 225 and 295 and engineering applications in References 285
and 291.

EXERCISES

10.1 Mark as True or False

a) The CoVT is applicable to both discrete and continuous distributions.

b) If the range of a random variable X includes the origin, we cannot use the
transformation Y = 1∕X

c) A translation Y = X ± c is not applicable to discrete variates

d) The distribution of the square of a normal variate is Student’s T

e) The reciprocal of a Cauchy variate is Cauchy distributed.

10.2 If X is N(𝜇, 𝜎2), find distribu-
tion of (i) Y = c ∗ X + d, (ii)
Y = |X − 𝜇|.

10.3 If X is EXP(𝜆), find the distribu-
tion of Y = c ∗ X.

10.4 If f (x) = ke−kx
, x ≥ 0, find the

distribution of Y =
√

x.

10.5 If X is BINO(n, p) find distri-
bution of (i) Y = 1 − X∕n, (ii)
Y = n − X.
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10.6 If X is GEOM(p), find the dis-
tribution of Z =

∑n
i=1 Xi, where

each Xi is independent.

10.7 If F and G are two CDF’s sym-
metric around zero, with unit
second moment, prove that H =
c ∗ F + (1 − c) ∗ G is identically
distributed.

10.8 If X is DUNI(k) with f (x) =
1∕k, x = 1, 2, .., k, find distribu-
tion of Y = X + b

10.9 If X is BETA-I(p, q), find the dis-
tribution of (1 − X)∕X.

10.10 If X is CUNI(0, 1) prove that Y =
− ln (X) is standard exponential.
What is the distribution when the
logarithm is not to the base e.

10.11 If h(x) is a monotonic function,
prove that the CDF of Y = h(x)
can be expressed as FY (y) =
FX(h−1(y)) if x is increasing,
and FY (y) = 1 − FX(h−1(y))
otherwise.

10.12 If X is CUNI(0, 1), find the distri-
bution of Y = 1 − e−x

10.13 If X is CUNI[0,1], find the distri-
bution of U = c ∗ tan(1∕X)

10.14 If X1,X2 are IID CUNI(0, 1),
find the distribution of Y1 =√
−2loge(x1) cos(2𝜋x2) and Y2 =

√
−2loge(x1) sin(2𝜋x2) (the in-

verse transformation being X1 =
exp

[

− 1
2
(y2

1 + y2
2)
]

and x2 = 1
2𝜋

arctan(y2∕y1)).

10.15 Prove that the sum of indepen-
dent exponential random vari-
ables has a gamma distribution.

10.16 If conditional distribution of X
is BINO(n, p), where p is dis-
tributed as BETA(p, q), find the
mean and variance of X.

10.17 If X and Y are exponentially dis-
tributed, find the distribution of
X + Y and X − Y .

10.18 If X is distributed as GAMMA
(𝛼, 1), find the distribution of Y =
log (X∕𝛼).

10.19 If X is CUNI(a, b), find the PDF
of Y = − log (X). If a = −b, find
the distribution of Y = X2.

10.20 If X ∼ 𝜒n (i.e., X ∼
√

𝜒
2
n) and

Y ∼ BETA( n − 1
2
,

n − 1
2

) is inde-
pendent of X, prove that (2Y − 1)
X ∼ N(0, 1).

10.21 If X is BETA-I(p, q) distributed,
show that the variate Y =
ln (X∕(1 − X)) is generalized
logistic(p, q).

10.22 Find the distribution of abso-
lute value of a general normal
N(𝜇, 𝜎2), and its mean.

10.23 If X ∼ Weibull(a, b), find the dis-
tribution of Y = log (X∕b).

10.24 If X is CUNI(−(a + b)∕2,
(a + b)∕2) variate, find the dis-
tribution of Y = |X|.

10.25 If X ∼ standard Weibull distribu-
tion with PDF f (x) = bxb−1e−xb

find the distribution of Y = X(b).

10.26 If U is CUNI(0, 1) find the dis-
tribution of (i) |U − 1

2
|, (ii) 1/

(1 + U).

10.27 If f (x) = (c − 1)∕(1 + x)c for 0 <
x < ∞, find the distribution of
Y = 1∕(1 + x)c and find the mean
and variance.

10.28 If Y = g(x) is an arbitrary func-
tion of a discrete random vari-
able, prove that the PMF of Y is
f (y) =

∑
x∈g−1(y)f (x).



11
JOINT DISTRIBUTIONS

After finishing the chapter, students will be able to

◾ Distinguish joint and conditional distributions

◾ Find distribution of functions of a random variable

◾ Understand linear transformations of random variables

◾ Comprehend Jacobian of transformations

◾ Describe arbitrary transformations

◾ Apply Polar Transformations

◾ Utilize “do-little” technique to quickly find Jacobians

11.1 JOINT AND CONDITIONAL DISTRIBUTIONS

Definition 11.1 Joint distribution is the distribution of two or more (dependent or
independent) random variables.

Usually, the variables involved are either all discrete or all continuous. Symboli-
cally, it is represented as p(x, y) = p(X = x and Y = y) (such that

∑
(x,y)∈Ap(x, y) = 1

for discrete case and (∫ ∫Ap(x, y)dxdy = 1 for the continuous case).
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11.1.1 Marginal Distributions

Definition 11.2 Marginal distributions are distributions of individual variates.

Marginal PDF’s can be obtained from joint PDF’s by summation (in discrete case)
or integration (in continuous case) as follows:

f (x) =
∞∑

y=−∞
f (x, y) and f (y) =

∞∑

x=−∞
f (x, y) (discrete), (11.1)

f (x) =
∫

∞

y=−∞
f (x, y)dy and f (y) =

∫

∞

x=−∞
f (x, y)dx (continuous), (11.2)

where the summation or integration is carried out only throughout the range of proper
variate. Extension to more than two variates is straightforward. Joint PDF is the prod-
uct of constituent marginal PDFs when the variables are independent.

f (x, y) = f (x) ∗ f (y) and F(x, y) = F(x) ∗ F(y). (11.3)

This has important applications in obtaining likelihoods, finding estimators, and
so on.

EXAMPLE 11.1 Find marginal distribution

If the joint PDF of X and Y is given by f (x, y) = Kx(1 + y), {x = 1, 2}, {y =
1, 2, 3} find the marginal PMF of x and y.

Solution 11.1 Both X and Y are discrete in this example. As the total probability
is unity, we have K[2 + 3 + 4 + 4 + 6 + 8] = 1, giving K = 1∕27.

To obtain the marginal distribution of X, we sum out Y over its entire range.
Hence, f (x) = (x∕27)[9] = x∕3, {x = 1, 2}. Similarly, f (y) = ((1 + y)∕27)[3] =
(1 + y)∕9, {y = 1, 2, 3}.

EXAMPLE 11.2 Find marginal distribution

A radioactive source is emitting 𝛼-particles intermittently in different directions.
The number of particles emitted in a fixed time interval is Poisson(𝜆). A par-
ticle recorder is placed at a point in direct line-of-sight. It has probability p of
recording any particle coming toward it. Find the PMF of the number of particles
recorded.

Solution 11.2 Let X be the number of particles emitted and Y be the number of
particles recorded. Then, we are given that

p(x) = exp(−𝜆)𝜆x∕x! and p(y|x) =
(

x
y

)

py(1 − p)x−y
. (11.4)
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As these two sources are independent, f (x, y) is the product of the indi-
vidual PDFs. From this the marginal distribution of Y is obtained using
equation (11.1) as

f (y) =
∑

x

f (x, y) = exp(−𝜆)py∕y!
∞∑

x=y

𝜆
xqx−y∕(x − y)! (11.5)

Put t = x − y in equation (11.5) so that t varies between 0 and ∞,

f (y) = exp(−𝜆)(𝜆p)y∕y!
∞∑

t=0

(𝜆q)t∕t! = exp(−𝜆)(𝜆p)y∕y! ∗ exp(𝜆q). (11.6)

This simplifies to exp(−𝜆p)(𝜆p)y∕y!, for y = 0, 1, … , as q = 1 − p.

11.1.2 Conditional Distributions

Conditional distributions are obtained from joint distributions by conditioning on one
or more variables. Conditional PDF’s can be expressed in terms of joint PDF’s using
laws of conditional probabilities.

f (x|y) = f (x, y)∕f (y) and f (y|x) = f (x, y)∕f (x). (11.7)

It is easy to see that multiple conditional distributions exist by conditioning y at dif-
ferent levels.

EXAMPLE 11.3 Gamma distributed Poisson parameter

Assume that the number of accidents follows a Poisson law with parameter 𝜆. If
𝜆 itself is distributed according to the gamma law, prove that the unconditional
distribution is negative binomial distributed.

Solution 11.3 Let f (x, 𝜆) represent the PDF of Poisson distribution and f (𝜆,m, p)
denote the gamma PMF. Owing to independence, the joint distribution is the
product of the marginals and the unconditional distribution of x is obtained by
integrating out 𝜆 as

f (x,m, p) =
∫

∞

𝜆=0
[e−𝜆𝜆x]∕x! ∗ [mp∕Γ(p)]e−m𝜆

𝜆
p−1d𝜆. (11.8)

Take constants independent of 𝜆 outside the integral to get

f (x,m, p) = mp∕[Γ(p) x!]
∫

∞

𝜆=0
e−𝜆(m+1)

𝜆
x+p−1d𝜆. (11.9)
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The integral in equation (11.9) is easily seen to be the gamma integral, so that it
becomes

mp∕[Γ(p)x!]Γ(x + p)∕[(1 + m)x+p] =
(x + p − 1

x

)

(m∕(1 + m))p(1∕(1 + m))x.
(11.10)

where the last expression is obtained by writing (1 + m)x+p = (1 + m)x ∗
(1 + m)p and expanding the gamma functions as Γ(x + p) = (x + p − 1)! and
Γ(p) = (p − 1)!. This is a negative binomial distribution with p = 1∕(1 + m).

EXAMPLE 11.4 Find conditional distribution from trinomial

Let X and Y be jointly distributed as trinomial with pmf

f (x, y, n, p) = n!∕[x!y!(n − x − y)!]px
1py

2(1 − p1 − p2)n−x−y
, x + y ≤ n. (11.11)

Find the conditional distribution of (i) Y|X = x and (ii) X|X + Y = n. Obtain
E(Y|x) and E(X|X + Y = n).

Solution 11.4 We get the marginal PMF of y (resp x) by summing over x
(resp y). Multiply and divide the RHS by (n − y)! and sum over x to get

f (y) =
∑

x

n!(n − y)!
x!y!(n − y)!(n − x − y)!

px
1py

2(1 − p1 − p2)n−x−y

= n!
y!(n − y)!

py
2

∑

x

(n − y)!
x!(n − x − y)!

px
1(1 − p1 − p2)n−x−y

=
(

n
y

)

py
2

∑

x

(n − y
x

)

px
1(p3)n−x−y

. (11.12)

where p3 = 1 − p1 − p2. Expression inside the summation is simply the succes-
sive terms of the binomial expansion of (p1 + p3)n−y. However, (p1 + p3) = p1 +
(1 − p1 − p2) = (1 − p2). Substitute in the above to get f (y) =

(
n
y

)

py
2(1 − p2)n−y,

which is BINO(n, p2). Similarly, X ∼ BINO(n, p1). The PMF of Y|x is

f (x, y)
f (x)

= (n − x)!
y!(n − x − y)!

(
p2

1 − p1

)y(1 − p1 − p2

1 − p1

)n−x−y

, (11.13)

where y = 0, 1, …, n − x. This is the pmf of BINO(n − x, p2∕(1 − p1)). Hence,
E(Y|x) = (n − x)p2∕(1 − p1).

(ii) X + Y is clearly distributed as a BINO(n, p1 + p2), so that

P(X + Y = n) =
(n

n

)

(p1 + p2)n(1 − p1 − p2)n−n = (p1 + p2)n. (11.14)
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The PDF of Y|X + Y = n is thus f (x, n − x)∕P[X + Y = n] = n!
x!(n−x)!(n−x−(n−x))!

px
1p(n−x)

2 (1−p1 −p2)n−x−(n−x)∕(p1 + p2)n = n!
x!(n−x)!p

x
1p(n−x)

2 ∕(p1 + p2)n. Splitting
(p1 + p2)n as (p1 + p2)x(p1 + p2)n−x, the above reduces to a BINO(n, p1∕(p1 +
p2)). From this, we get E(X|X + Y = n) = np1∕(p1 + p2).

11.2 JACOBIAN OF TRANSFORMATIONS

The Jacobian is a useful concept in various fields of applied sciences, including vec-
tor calculus, differential equations, atmospheric sciences, astronomy, and statistics,
to name a few. The Jacobian determinant measures the stretching effect of a map-
ping or transformation as explained later. Carl Gustav Jacobi (1804–1851), whose
work originated in mathematical physics, invented it in 1841. It could mean either
the Jacobian matrix or its determinant (if the matrix is square).

The Jacobian matrix could be rectangular when a mapping is induced from the
Euclidean space ℝn → ℝm, where m < n. This matrix contains the partial derivatives
of the output variables with respect to the input variables in modeling problems that
involve many input and output variables (which need not tally in number). In other
words, the Jacobian relates infinitesimal areas in the input space to infinitesimal areas
in the output space of the same dimensionality (areas in 2D, volume elements in
≥ 3D). By analyzing the rows of the Jacobian matrix, we can study the impact or
sensitivity on output variables due to a selected subset of input variables (by keeping
the other variables at fixed levels).

As the determinant of a square matrix exists only if the matrix is of full-rank,
there are some regularity conditions to be satisfied by the transformations.
We assume that there are m real-valued functions y1 = f1(x1, x2, …, xn), y2 =
f2(x1, x2, …, xn), …, ym = fm(x1, x2, …, xn). Then the Jacobian matrix comprises of
all first-order partial derivatives of mapping functions:

J =
𝜕(x1, x2, …, xn)
𝜕(y1, y2, …, ym)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕x1

𝜕y1

𝜕x2

𝜕y1
· · ·

𝜕xn

𝜕y1
𝜕x1

𝜕y2

𝜕x2

𝜕y2
· · ·

𝜕xn

𝜕y2
⋮ ⋮ · · · ⋮
𝜕x1

𝜕ym

𝜕x2

𝜕ym
· · ·

𝜕xn

𝜕ym

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦(m×n).

The (i,j)th entry of the above matrix affirms that a small change dxi in the original
variate x should contract to (𝜕yi∕𝜕x)dxi in the transformed space. When m = n, the
transformation is concisely expressed as the determinant of above matrix. The deter-
minant of a square matrix |J| is the same as the determinant of its transpose matrix
|J′|. This means that the variable order is unimportant in statistical applications. A
geometric interpretation of Jacobians is that it represents the best linear approxima-
tion to mapped domain at a general point using a tangent plane in the transformed
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space. Thus, we get equivalent density contractions of space in transformed domain
by multiplying the original function by the Jacobian (which acts as a magnification
or contraction factor). For example,

∫ ∫R2
f (x, y)dxdy =

∫ ∫R′
2

f (g(u, 𝑣), h(u, 𝑣))
|
|
|
|

𝜕(x, y)
𝜕(u, 𝑣)

|
|
|
|
dud𝑣. (11.15)

Jacobian determinant is used to obtain the distribution of one-to-one (bijective)
invertible functions of continuous random variables in statistics (the one-to-one con-
dition can be relaxed in certain situations). Derivation is considerably simplified when
the original variates are either statistically independent, or are identically distributed.
All such transformation functions should be at least once differentiable. We denote
the Jacobian determinant simply as |J| (instead of ‖J‖), where the vertical line has
double meaning—it denotes the absolute value of the determinant (the double verti-
cal bar | has various meanings in different fields—it denotes the absolute value of the
argument in algebra, determinant in matrices, norm of a vector or a matrix in geome-
try, cardinality of a set or a set expression (such as A∩B) in set-theory and probability
theory, and so on. In some of the discussions below, the |J| denotes only the determi-
nant without absolute value. See Example 11.8 (p. 431), Table 11.1 (p. 425), etc).

11.2.1 Functions of Several Variables

Distribution of a function of random variable(s) has many applications in engineering
and applied sciences. These are easily obtained when the variates are independent. It
is fairly easy to obtain the joint distribution of identically distributed variables using a
correct set of transformations. In majority of problems of this type, we have to employ
one of the transformations summarized in Table 11.1. For functions of two variables,
we have to choose a convenient auxiliary function such that the Jacobian is nonzero,
and auxiliary variable is easy to integrate out.

The 2D Jacobian works on the principle that the average value of a double integral
favg(x, y) = 1∕[(b − a) ∗ (d − c)] ∫ b

a ∫ d
c dF(x, y) can be equalized under an arbitrary

transformation u = h(x, y); 𝑣 = g(x, y) as done in the univariate case. If the derivatives
of h(x, y) and g(x, y) exist for each point in the rectangular region [a, b]x[c, d], then
the above limit will be finite. This allows us to equate the width of an infinitesimal
strip under the surface f (x, y) as f (x, y)dxdy = 𝛾(u, 𝑣)dud𝑣 for all points within the
region. From this, we get 𝛾(u, 𝑣) = f (x, y)|J| = |J|f (h−1(u, 𝑣), g−1(u, 𝑣)), where J is
the Jacobian of the transformation. The only conditions in this transformation are that
the mapping is once differentiable (i.e., h−1(u, 𝑣), g−1(u, 𝑣)) exists), and it is invertible
(x, y can be expressed in terms of u, 𝑣).

11.2.2 Arbitrary Transformations

The above transformation can be applied to arbitrary continuously differentiable, and
invertible functions in higher dimensions (as bivariate, trivariate, and multivariate
transformations). Let X, Y be jointly distributed according to some PDF f (x, y).
Consider arbitrary continuously differentiable, and invertible functions of the form
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TABLE 11.1 Common Transformation of Two Variables

Transformation Inverse Transformation Jacobian |J|

u = x + y, 𝑣 = x − y x = (u + 𝑣)∕2, y = (u − 𝑣)∕2 −1∕2
u = x ± y, 𝑣 = y x = u ± 𝑣, y = 𝑣 1
u = x + y, 𝑣 = x∕y x = u𝑣∕(1 + 𝑣), y = u∕(1 + 𝑣) −u∕(1 + 𝑣)2

u = x + y, 𝑣 = x∕(x + y) x = u𝑣, y = u(1 − 𝑣) −u
u = ax + by, 𝑣 = cx + dy x = (du − bv)∕D,

y = (av − cu)∕D
1∕D,D = (ad − bc) ≠ 0

u = x∕y, 𝑣 = xy x =
√

u𝑣, y =
√
𝑣∕u 1/(2u)

u = mx∕ny, 𝑣 = y x = nuv∕m, y = 𝑣 nv∕m
u = xy, 𝑣 = y x = u∕𝑣, y = 𝑣 1∕𝑣
u =

√
x, 𝑣 = y x = u2

, y = 𝑣 2u

u =
√

x + y, 𝑣 =
√

y x = u2 − 𝑣2
, y = 𝑣

2 4u𝑣

u =
√

x2 + y2, 𝑣 = y x = ±
√

u2 − 𝑣2, y = 𝑣 u∕
√

u2 − 𝑣2

u =
√

x2 + y2, 𝑣 = x∕
√

x2 + y2 x = u𝑣, y = u
√

1 − 𝑣2 −u∕
√

1 − 𝑣2

u =
√

nx∕
√

y, 𝑣 =
√

y x = u𝑣∕
√

n, y = 𝑣
2 2𝑣2∕

√
n

u = x∕y, 𝑣 = xy∕
√

x2 + y2 x = 𝑣

√
u2 + 1, y = 𝑣

√
u2 + 1∕u 𝑣(1 + 1∕u2)

x = r cos(𝜃), y = r sin e(𝜃) r =
√

x2 + y2, 𝜃 = tan−1(y∕x) −r2 sin(𝜙)
x = r cos(𝜃) sin(𝜙),

y = r sin(𝜃) sin(𝜙),
z = r cos(𝜙)

r =
√

x2 + y2 + z2,

𝜃 = tan−1(y∕x)
r

x = r cos2(𝜃), y = r sin2(𝜃) r = x + y, 𝜃 = tan−1(
√

y∕x) r sin(2𝜃)

The order of the variables can be exchanged to get identical results, but the sign of Jacobian could differ.
For example, if u = xy, 𝑣 = x, |J| = −1∕𝑣. In the last case, as x + y = r, we can also write 𝜃 = 1

2
cos−1

((x − y)∕(x + y)). The sign of |J| is ignored in statistical applications.

u = g(x, y) and 𝑣 = h(x, y). If the mapping from (x, y) to (u, 𝑣) is one-to-one, it is
invertible. We can express x and y in terms of u and v (say x = G(u, 𝑣), y = H(u, 𝑣)).
The differential relation f (x, y)dxdy = f (u, 𝑣)dud𝑣 translates into

f (u, 𝑣) = f (x, y)

|
|
|
|
|
|
|
|

𝜕x
𝜕u

𝜕x
𝜕𝑣

𝜕y

𝜕u

𝜕y

𝜕𝑣

|
|
|
|
|
|
|
|

= f (G(u, 𝑣),H(u, 𝑣))

|
|
|
|
|
|
|
|

𝜕x
𝜕u

𝜕x
𝜕𝑣

𝜕y

𝜕u

𝜕y

𝜕𝑣

|
|
|
|
|
|
|
|

.

Here, either u or v is the required transformation, and the other is called the aux-
iliary function. The choice of the auxiliary function is quite often arbitrary. It can be
as simple as one of the original variables, provided that the inverse transformation is
easy to find. It can be polar or trigonometric transformation when expressions such
as

√
x2 + y2 or x2 ± y2 are present. Bivariate linear transformation is a special case

of the above in which the dependency is u = c1x + c2y and 𝑣 = c3x + c4y, where c′i s
are arbitrary constants. The Jacobian of the transformation considerably simplifies in
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this case as

|J| =
|
|
|
|

𝜕(x, y)
𝜕(u, 𝑣)

|
|
|
|
=
|
|
|
|

c1 c2
c3 c4

|
|
|
|

A challenge in this type of transformations is the range mapping (see
Figure 11.4). We could visualize the transformed mapping easily in the bivariate
case, but it is not easy in higher dimensions.

Finding the determinant of a transformation involves much work in some cases.
This can be reduced by the do-little method. Consider the transformation u = g(x, y)
and 𝑣 = h(x, y). If 𝑣 = y (or analogously u = x), we can reduce the work as follows.
Simply substitute for y = 𝑣 in u to get u = g(x, 𝑣). Next, find the derivative 𝜕u∕𝜕x =
𝜕g(x, 𝑣)∕𝜕x. Substitute for any x and take the reciprocal to get the Jacobian. Alterna-
tively, express x = G(u, 𝑣) and find J = 𝜕x∕𝜕u = 𝜕G(u, 𝑣)∕𝜕u. As examples, con-
sider the transformation u = x + y, 𝑣 = y. Put y = 𝑣 to get u = x + 𝑣, and 1∕J =
𝜕u∕𝜕x = 1; as v is constant. Alternatively, solve for x to get x = u − y = u − 𝑣.
Then, J = 𝜕x∕𝜕u = (𝜕∕𝜕u)(u − 𝑣) = 1. Similarly, if u = xy, 𝑣 = y, then x = u∕𝑣,
and J = 𝜕x∕𝜕u = 1∕𝑣; and for u = x∕y, 𝑣 = y we have x = uv and J = 𝜕x∕𝜕u = 𝑣.
As another example, if u = x∕(x + y) and 𝑣 = y, x = uv∕(1 − u), and J = 𝜕x∕𝜕u =
𝑣∕(1 − u)2. This works even for constant multiples. If u = kx∕y, 𝑣 = y; we have
x = uv∕k and J = 𝑣∕k. This idea can be extended to those cases where one of
the input variables is a function of just one output variable in the two variables
case. Consider x = u2 − 𝑣2 and y = 𝑣

2 (independent of u) so that J = 2u∗2𝑣 = 4u𝑣
(see Table 11.1).

EXAMPLE 11.5 Distribution of sum of rectangular variates

An electronic circuit consists of two independent identical transistors connected
in parallel. Let X and Y be the lifetimes of them, distributed as CUNI(0, b) with
PDF f (x) = 1∕b, 0 < x < b. Find the distribution of (i) Z = X + Y (ii) U = XY .

Solution 11.5 Consider the transformation Z = X + Y ,W = Y . The inverse
transformation is Y = W,X = Z − W. The absolute value of the Jacobian is

|J| =
|
|
|
|

−1 1
1 0

|
|
|
|
= | − 1| = 1

(here the first vertical bar denotes determinant and second one denotes absolute
value). As X and Y are IID, the joint PDF is f (x, y) = 1∕b2. The joint PDF of
W and Z is f (𝑤, z) = 1∕b2|J| = 1∕b2. The range for Z is [0, + 2b], and for W
is [0, b]. As 0 < x < b, we need to impose the condition 0 < z −𝑤 < b. This
in turn results in two regions of integration as shown in Figure 11.1. For 0 <
Z < b, w varies between 0 and z so that f (z) = ∫

𝑤
f (𝑤, z)dw = ∫ z

𝑤=0 dw∕b2 =
z∕b2. For b < z < 2b, w varies between z − b and b, so that f (z) = ∫

𝑤
f (𝑤, z)dw =
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Z

W

O

R1

R2

b

b

2b

w = z–
b

–b

Figure 11.1 Region of integration (i).

U

V

O

R1

b

u =
 bv

Figure 11.2 Region of integration (ii).

∫ b
𝑤=z−b dw∕b2 = (2b − z)∕b2. Combining both the cases, we can write the PDF as

f (z) = (b − |b − z|)∕b2 for 0 < z < 2b, because when z < b, |b − z| = b − z; and
for z ≥ b, |b − z| = z − b. In the second case, we put U = XY and V = Y so that
X = U∕V , and J = 1∕𝑣. The range for U is [0, b2], and for V is [0, b]. As 0 < x <
b, we need to impose the condition 0 < U∕V < b, or equivalently u < bv. The
region of integration is shown in Figure 11.2. The joint PDF of u and v is f (u, 𝑣) =
1∕(𝑣b2), 0 < u < bv < b2. The PDF of U is obtained as f (u) = ∫ b

u∕b 1∕(𝑣b2)dv =
(1∕b2)(ln(b) − ln(u∕b)), 0 < u < b2. Using log(x∕y) = log(x) − log(y), this can
be simplified as (1∕b2)[2 ln(b) − ln(u)].

11.2.3 Image Jacobian Matrices

Image Jacobian matrices used in robotics, unmanned aerial vehicles (UAVs), image
and video compression, medical imaging, and so on are often rectangular. In image
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compression and video processing applications, we look for an unknown displace-
ment vector (or matrix) to minimize two successive time frames (or subframes of
appropriate sizes) so as to align successive images with minimal loss of informa-
tion. Sparse residual distortions indicate almost still image frames. In this case, the
Jacobian matrix becomes

1∕J =
𝜕(y1 − uy1

, …, ym − uym
)

𝜕(x1, x2, …, xn)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕y1 − uy1

𝜕x1

𝜕y1 − uy1

𝜕x2
· · ·

𝜕y1 − uy1

𝜕xn
𝜕y2 − uy2

𝜕x1

𝜕y2 − uy2

𝜕x2
· · ·

𝜕y2 − uy2

𝜕xn

⋮ ⋮ · · · ⋮
𝜕ym − uym

𝜕x1

𝜕ym − uym

𝜕x2
· · ·

𝜕ym − uym

𝜕xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with the determinant sign (when the matrix is square, i.e., m = n) indicating volumet-
ric expansion (|J| > 1), shrinkage (|J| < 1), or steadiness (|J| = 1).

The Jacobian determinant is a function of the variates (or a constant) when applied
to variate transformations in statistics (Table 11.1). This means that the determinant
can be made nonzero almost always. As the first derivative of linear functions is a
constant, |J| is a scalar constant for linear transformations (If Y = AX, then |J| = |A|
for multivariate transformation). The range of the transformed variates should be
adjusted to account for this fact. As the Jacobian determinant is used as a multiplier,
we take the absolute value of Jacobian in statistical applications (the sign of a deter-
minant depends on the order of the columns (variables) in the corresponding matrix).
We can do better without the Jacobian method for simple transformation of variates
such as translations (u = x + c, 𝑣 = y + d), and scaling (u = c ∗ x, 𝑣 = d ∗ y) (using
the CDF or MGF methods). The power of the Jacobian method becomes apparent
when variable interactions are present. See References 137, 293 and 296 for further
examples.

EXAMPLE 11.6 Functions of exponential distribution

Let Xi’s be IID EXP(𝜆) with PDF f (xi) =
1
𝜆

e−xi∕𝜆. Define new variates Yi’s as
Y1 = X1∕(X1 + X2 + · · · + Xn),Y2 = (X1 + X2)∕(X1 + X2 + · · · + Xn), etc Yk =
(X1 + X2 + · · · + Xk)∕(X1 + X2 + · · · + Xn), and Yn = (X1 + X2 + · · · + Xn).
Prove that the joint distribution of (Y1,Y2, …,Yn) depends on yn and yn−1 only.

Solution 11.6 As Xi’s are IID, the joint PDF is the product of individual PDFs.
Thus f (x1, x2, …, xn) =

1
𝜆n e−

∑n
i=1 xi∕𝜆. The inverse mapping is x1 = y1yn, x2 =

yn(y2 − y1) , x3 = yn(y3 − y2), xk = yn(yk − yk−1) …, xn = yn(1 − yn−1). The
Jacobian is

|J| =
|
|
|
|

𝜕(x1, x2, …, xn)
𝜕(y1, y2, …, yn)

|
|
|
|
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=

|
|
|
|
|
|
|
|
|
|
|
|
|

yn 0 0 0 · · · 0 y1
−yn yn 0 0 · · · 0 y2 − y1

0 −yn yn 0 · · · 0 y3 − y2
0 0 −yn yn · · · 0 y4 − y3
⋮ ⋮ ⋮ ⋮ · · · 0 yk − yk−1
0 0 0 0 · · · −yn (1 − yn−1)

|
|
|
|
|
|
|
|
|
|
|
|
|

.

To evaluate this determinant, we apply the row transformations R′
2 = R2 + R1,

R′
3 = R3 + R′

2, · · · ,R
′
n−1 = Rn−1 + R′

n−2, and keep the nth row intact. The determi-
nant reduces to

|
|
|
|
|
|
|
|
|
|
|
|
|

yn 0 0 0 · · · 0 y1
0 yn 0 0 · · · 0 y2
0 0 yn 0 · · · 0 y3
0 0 0 yn · · · 0 y4
⋮ ⋮ ⋮ ⋮ · · · 0 yk
0 0 0 0 · · · −yn (1 − yn−1)

|
|
|
|
|
|
|
|
|
|
|
|
|

.

By expanding this determinant along the first column, we get |J| = yn
n(1 − yn−1).

Thus, f (y1, y2, …, yn) =
1
𝜆n e−yn∕𝜆yn

n(1 − yn−1).
This technique is applicable to discrete random variables as well. Let u = g(x, y)

and 𝑣 = h(x, y) be the bivariate mapping as before. Find the inverse transformation
(express x and y as functions of u and v, say x = f1(u, 𝑣) and y = f2(u, 𝑣). Then the
joint pmf of u and 𝑣 is pUV (u, 𝑣) = pXY (f1(u, 𝑣), f2(u, 𝑣)).

11.2.4 Distribution of Products and Ratios

The distribution of products and ratios of independent random variables are of interest
in some applications. These can be obtained by the Jacobian technique when the
variables involved are continuous and independent. Make the transformation U =
X∕Y and V = XY . Then, x =

√
u𝑣, and y =

√
𝑣∕u, so that the Jacobian is 1∕(2u).

The joint PDF is the product of the marginal PDFs (due to independence assumption).
From this, the PDF of either of them can be obtained by integrating out the other. An
alternate and simple method exists using the MoDF discussed in the last chapter.

Let F(z) be the CDF of the product. By definition,

F(z) = P[Z ≤ z] =
∫ ∫xy≤z

f (x, y)dxdy. (11.16)

As xy = c represents a parabolic curve, we split the range of integration of y from
(−∞, z∕x] and from [z∕x,∞) to get

F(z) =
∫

0

−∞

[

∫

∞

z∕x
f (x, y)dy

]

dx +
∫

∞

0

[

∫

z∕x

−∞
f (x, y)dy

]

dx. (11.17)
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Using the transformation U = XY this becomes

F(z) =
∫

0

−∞

[

∫

0

−∞
f (x, u∕x)du∕x

]

+
∫

∞

0

[

∫

z

−∞
f (x, u∕x)du∕x

]

dx. (11.18)

This, on rearrangement, becomes

F(z) =
∫

z

−∞

[

∫

∞

−∞
(1∕|x|)f (x, u∕x)dx

]

du. (11.19)

Differentiate with respect to z to get the PDF as

f (z) =
∫

∞

−∞
(1∕|x|)f (x, z∕x)dx. (11.20)

It is shown below that if X and Y are IID normal variates, the ratio X/Y has a Cauchy
distribution. Analogously U = X∕Y has PDF

f (u) =
∫

∞

−∞
|x| f (x, ux)dx. (11.21)

EXAMPLE 11.7 Ratio of uniform distributions

If X and Y are CUNI(0, b) distributed, find the distribution of U = X∕Y .

Solution 11.7 Let U = X∕Y ,V = Y so that the inverse mapping is Y = V ,X =
UV . The Jacobian is |J| = 𝑣. The joint PDF is f (x, y) = 1∕b2. Hence, f (u, 𝑣) =
𝑣∕b2. The PDF of u is obtained by integrating out v. A plot of the mapping is
shown in Figure 11.3. The region of interest is a rectangle of sides 1 × b at the
left, and a curve uv = b to its right. Integrating out v, we obtain f (u) = ∫ b

0
𝑣

b2 dv

for 0 < u ≤ 1, and f (u) = ∫ b∕u
0 𝑣∕b2dv = 1∕(2u2) for 1 < u <∞.

f (u) =

{
1∕2 for 0 < u < 1;
1∕(2u2) 1 < u < ∞

V

UO

R1
R2

b uv = b

1

Figure 11.3 Region of integration for X/Y.
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See Reference 294 for the distribution of ratios of exponential variates, and
Reference 297 for ratios of gamma variates.

EXAMPLE 11.8 Sum and ratio of gamma distribution

If X and Y are IID GAMM(𝛼, 𝛽i), find the distribution of (i) X + Y , (ii) X/Y.

Solution 11.8 Let U = X + Y and V = X∕Y . Solving for X and Y in terms of U
and V, we get x = u𝑣

1+𝑣 , and y = u
1+𝑣 . The Jacobian of the transformation is

|J| =
|
|
|
|
|
|
|

𝑣

1 + 𝑣
u

(1 + 𝑣)2
1

1 + 𝑣
− u
(1 + 𝑣)2

|
|
|
|
|
|
|

= −u
(1 + 𝑣)2

.

The joint PDF of X and Y is f (x, y) = 𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)
e−𝛼(x+y)x𝛽1−1y𝛽2−1. Multiply by

the Jacobian, and substitute for x, y to get

f (u, 𝑣) = 𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)
e−𝛼u(uv∕(1 + 𝑣))𝛽1−1(u∕(1 + 𝑣))𝛽2−1 u

(1 + 𝑣)2
. (11.22)

The PDF of u is obtained by integrating out v as

f (u) = 𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)
e−𝛼uu𝛽1+𝛽2−1

∫

∞

0
𝑣
𝛽1−1∕(1 + 𝑣)𝛽1+𝛽2dv. (11.23)

Put 1∕(1 + 𝑣) = t so that 𝑣 = (1 − t)∕t, and dv = −1∕t2dt. This gives us

f (u) = 𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)
e−𝛼uu𝛽1+𝛽2−1

∫

1

0
t𝛽2−1(1 − t)𝛽1−1dt

= 𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)
e−𝛼uu𝛽1+𝛽2−1B(𝛽1, 𝛽2). (11.24)

This simplifies to

f (u) = 𝛼
𝛽1+𝛽2

Γ(𝛽1 + 𝛽2)
e−𝛼uu𝛽1+𝛽2−1

, (11.25)

which is GAMMA(𝛽1, 𝛽2).

X
O

√y–√y

Y
x*x = y

Figure 11.4 Region of integration Y = X2
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The PDF of v is found by integrating out u as

f (𝑣) = 𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)
𝑣
𝛽1−1

(1 + 𝑣)𝛽1+𝛽2 ∫

∞

u=0
u𝛽1+𝛽2−1e−𝛼udu. (11.26)

This simplifies to f (𝑣) = Γ(𝛽1+𝛽2)
Γ(𝛽1)Γ(𝛽2)

𝑣
𝛽1−1

(1 + 𝑣)𝛽1+𝛽2
, which is BETA2(𝛽1, 𝛽2) (also called

Pearson type VI distribution).

EXAMPLE 11.9 Ratio of pairwise independent distributions

Let Xi’s be IID EXP(𝜆𝜃) for i = 1, 2, ..,m. Let Yj’s be IID EXP(𝜃) for j = 1, 2, .., n.
If Xi’s and Yj’s are pair-wise independent, find the distribution of W = U∕V =
∑m

i=1 Xi∕
∑n

j=1 Yj.

Solution 11.9 As Xi’s are IID, the joint PDF is the product of individual PDFs.
We first use the MGF technique to find the distribution of numerator and denomi-
nator. The MGF of EXP(𝜆𝜃) is Mx(t) = 1∕[1 − 𝜆𝜃t]. As the Xi’s are IID, Mu(t) =
1∕[1 − 𝜆𝜃t]m. Similarly, M

𝑣
(t) = 1∕[1 − 𝜃t]n. These are the MGFs of gamma

distributions. Hence, W is the ratio of two independent gamma variates, whose
distribution is found in Example 11.8.

EXAMPLE 11.10 From gamma to beta

If X and Y are IID GAMM(𝛼, 𝛽i), prove that X∕(X + Y) is BETA1 distributed.

Solution 11.10 We find the distribution of U = X + Y and V = X∕(X + Y). The
joint PDF is

f (x, y) = 𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)]
x𝛽1−1y𝛽2−1e−𝛼(x+y)

. (11.27)

The inverse mapping is x = uv, y = u(1 − 𝑣), so that the Jacobian is u. The joint
PDF of u and v is

f (u, 𝑣) = 𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)
(uv)𝛽1−1(u − uv)𝛽2−1e−𝛼uu, (11.28)

0 < u < 1, 0 < 𝑣 < ∞. Combining common terms this becomes

𝛼
𝛽1+𝛽2

Γ(𝛽1)Γ(𝛽2)
e−𝛼uu𝛽1+𝛽2−1

𝑣
𝛽1−1(1 − 𝑣)𝛽2−1

. (11.29)

Integrating out u, it is easy to show that v has a BETA1(𝛽1, 𝛽2) distribution.
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EXAMPLE 11.11 Ratio of independent normal distributions

If X,Y are IID N(0, 𝜎2
i ), find the distribution of U = X∕Y , and V =

XY∕
√

X2 + Y2.

Solution 11.11 Here, both U and V have range −∞ to ∞. From U = X∕Y , we
get x = uy. Substituting for x in V, we get V = (uy)y∕

√
(uy)2 + y2. Taking the y2

within the square-root in the denominator outside, and canceling it out with the
y in the numerator, this becomes 𝑣 = uy∕

√
u2 + 1 so that y = 𝑣

√
u2 + 1∕u, and

x = 𝑣

√
u2 + 1. The Jacobian is easily obtained as

J =
|
|
|
|
|
|

u
𝑣

√
u2 + 1

√
u2 + 1

−𝑣
u2
√

u2 + 1

√
u2 + 1∕u

|
|
|
|
|
|

= 𝑣(1 + 1∕u2).

We first find the distribution of U. The joint PDF of X and Y is

f (x, y) = 1
2𝜋𝜎1𝜎2

e−
1
2
(x2∕𝜎2

1
+ y2∕𝜎2

2
)
. (11.30)

Substituting the values of x and y, (x2∕𝜎2
1 + y2∕𝜎2

2 ) = 𝑣
2(1 + u2)

(
1
𝜎

2
1

+ 1
𝜎

2
2

u2

)

.

Write A = (1 + u2)( 1
𝜎

2
1

+ 1
𝜎

2
2

u2 ), which is independent of v. Then, f (u, 𝑣) =
1

2𝜋𝜎1𝜎2
e−

1
2

A𝑣2
. Multiply by the Jacobian, and integrate out v, to get the PDF of u

as

f (u) = 1
2𝜋𝜎1𝜎2

(1 + 1∕u2)
∫

∞

−∞
𝑣e−

1
2

A𝑣2
dv. (11.31)

Put 𝑣2∕2 = t in equation (11.31), so that vdv = dt, to get

f (u) = 1
2𝜋𝜎1𝜎2

(1 + 1∕u2)
∫

∞

0
e−Atdt = 1

2𝜋𝜎1𝜎2
(1 + 1∕u2)[0 + 1∕A]. (11.32)

Substituting A = (1 + u2)( 1
𝜎

2
1

+ 1
𝜎

2
2

u2 ) this becomes

f (u) = 1
2𝜋𝜎1𝜎2

(1 + 1∕u2) 1
(1 + u2)

[

1∕

(

1

𝜎
2
1

+ 1

𝜎
2
2u2

)]

. (11.33)

This, after simplification, becomes

f (u) =
𝜎1𝜎2

2𝜋
1

(𝜎2
1 + u2𝜎2

2 )
, −∞ < u < ∞. (11.34)
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This is the PDF of a scaled Cauchy distribution with scaling factor 𝜎2∕𝜎1. When
𝜎1 = 𝜎2, equation (11.34) reduces to the standard Cauchy distribution. Thus, the
ratio of two independent normals (with same variance) is Cauchy distributed.
This result can be used to characterize the normal law as follows:

Remark 1 If X and Y are independent random variables with the same variance,
whose ratio is Cauchy distributed, then X and Y are N(0, 𝜎2) distributed.

We have assumed the independence of the normal variates in the above derivation.
If they are dependent with correlation 𝜌, the ratio is no longer Cauchy distributed.

To find the PDF of V, integrate out u from −∞ to ∞. Write the exponent as

𝑣
2(1 + u2)

(

1

𝜎
2
1

+ 1

𝜎
2
2u2

)

= 𝑣
2[(1∕𝜎2

1 + 1∕𝜎2
2 ) + (u2∕𝜎2

1 + 1∕(𝜎2
2u2))].

Multiply by the Jacobian, and integrate out u, to get the PDF of v as

f (𝑣) = 1
2𝜋𝜎1𝜎2

𝑣e−
1
2

A𝑣2

∫

∞

−∞
e
− 1

2
𝑣

2

(

u2

𝜎
2
1

+ 1

𝜎
2
2

u2

)

(1 + 1∕u2)du, (11.35)

where A = (1∕𝜎2
1 + 1∕𝜎2

2 ). Split the integral

∫

∞

−∞
e
− 1

2
𝑣

2

(

u2

𝜎
2
1

+ 1

𝜎
2
2

u2

)

(1 + 1∕u2)du =
∫

∞

−∞
e
− 1

2
𝑣

2

(

u2

𝜎
2
1

+ 1

𝜎
2
2

u2

)

du

+
∫

∞

−∞
e
− 1

2
𝑣

2

(

u2

𝜎
2
1

+ 1

𝜎
2
2

u2

)

(1∕u2)du = I1 + I2(say). (11.36)

To evaluate I1, we use the formula

∫

∞

−∞
e−ax2−b∕x2

dx =
√
𝜋

a
e−2

√
ab (11.37)

(see equation 7.4.3 in page 302 of [170] or [298], where a = 𝑣
2∕(2𝜎2

1 ), and

b = 𝑣
2∕(2𝜎2

2 ), so that
√

ab = 𝑣
2∕(2𝜎1𝜎2). Thus, I1 = 𝜎1

𝑣

√
2𝜋e

− 𝑣
2

𝜎1𝜎2 . To evaluate
I2, we make a simple substitution t = 1∕u, so that dt = −du∕u2. Exponent of the

integrand is

(
u2

𝜎
2
1

+ 1
𝜎

2
2

u2

)

=
(

1
𝜎

2
1

t2
+ t2

𝜎
2
2

)

. Hence, I2 = I1 (with 𝜎1 and 𝜎2 swapped)

= 𝜎2
𝑣

√
2𝜋e

− 𝑣
2

𝜎1𝜎2 . Substitute these values in equation (11.35) to get the PDF of v as

f (𝑣) = 1
2𝜋𝜎1𝜎2

𝑣e−
1
2

A𝑣2

[
𝜎1

𝑣

√
2𝜋 e

− 𝑣
2

𝜎1𝜎2 +
𝜎2

𝑣

√
2𝜋 e

− 𝑣
2

𝜎1𝜎2

]

. (11.38)



POLAR TRANSFORMATIONS 433

Canceling out common factors (𝑣,
√

2𝜋 from numerator and denominator) and taking
the 𝜎1𝜎2 in the denominator into the brackets, we simplify this to the form

1
√

2𝜋
e
− 𝑣

2

2

[

A+ 2
𝜎1𝜎2

]

(1∕𝜎1 + 1∕𝜎2). (11.39)

Substitute A = (1∕𝜎2
1 + 1∕𝜎2

2 ), and note that (1∕𝜎2
1 + 1∕𝜎2

2 + 2
𝜎1𝜎2

) = (1∕𝜎1 + 1∕𝜎2)2,

we find that this is the PDF of a normal distribution with variance (𝜎1𝜎2∕[𝜎1 + 𝜎2])2.

Remark 2 If X and Y are independent continuous random variables with variances
𝜎

2
1 and 𝜎2

2 such that XY/
√

X2 + Y2 is N(0, (𝜎1𝜎2∕[𝜎1 + 𝜎2])2) distributed, then X and
Y are N(0, 𝜎2

i ) distributed.

11.3 POLAR TRANSFORMATIONS

Polar transformation finds applications in integral calculus, differential equations,
statistics, and image-based computing (log-polar transformations), among many
other fields. It is so-called because the Cartesian points that use horizontal and
vertical coordinate axes are transformed into polar coordinates that use radius
and angle with respect to a fixed set of coordinate axes. The most popular polar
transformations are discussed in the following section. Advanced treatment on this
topic can be found in References 296, 299 and 300, and so on.

11.3.1 Plane Polar Transformations (PPT)

The name comes from the fact that it is applied in 2D for Cartesian to polar mapping.
Let (x, y) represent the Cartesian coordinates and (r, 𝜃) denote the corresponding
polar coordinates. Then, the mapping is defined by the relation x = r cos(𝜃) and y =
r sin(𝜃). The inverse relation is r =

√
x2 + y2, 𝜃 = tan−1(y∕x). The Jacobian of the

transformation is

J =

|
|
|
|
|
|
|
|
|
|
|
|

𝜕x
𝜕r

𝜕x
𝜕𝜃

𝜕y

𝜕r

𝜕y

𝜕𝜃

|
|
|
|
|
|
|
|
|
|
|
|

=

|
|
|
|
|
|
|
|
|
|
|
|

cos(𝜃) −r sin(𝜃)

sin(𝜃) r cos(𝜃)

|
|
|
|
|
|
|
|
|
|
|
|

= r.

As x2 + y2 = r2, this transformation is especially useful in statistics when the PDF
contains functions of the form x2 or 1 ± x2 (in the univariate case) and

∑
ix

2
i or 1 ±

∑
ix

2
i (in the multivariate case).

EXAMPLE 11.12 Find distribution of
√

X2 + Y2

If X and Y are IID standard normal N(0, 𝜎2), find the PDF of
√

X2 + Y2.
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Solution 11.12 As they are independent, the joint PDF is

f (x, y) = 1

𝜎

√
2𝜋

e−x2∕2𝜎2 1

𝜎

√
2𝜋

e−y2∕2𝜎2 = 1
2𝜋𝜎2

e−(x
2+y2)∕2𝜎2

. (11.40)

Make the transformation x = r cos(𝜃) and y = r sin(𝜃), so that x2 + y2 = r2 and
𝜃 = tan−1(y∕x). The Jacobian is r. Hence, the joint PDF of r and 𝜃 is f (r, 𝜃) =

1
2𝜋𝜎2 re−r2∕2𝜎2

. The density of r is found by integrating out 𝜃 as

f (r) =
∫

2𝜋

𝜃=0

1
2𝜋𝜎2

re−r2∕2𝜎2
d𝜃 = 1

𝜎2
re−r2∕2𝜎2

, (11.41)

which is the Rayleigh distribution. As the joint PDF of r and 𝜃 is independent of
𝜃, this is an indication that 𝜃 is uniformly distributed.

EXAMPLE 11.13 𝜒
2
n to Student’s T distribution

If X and Y are IID 𝜒
2
n distributions, prove that Z =

√
n

2
X−Y
√

XY
has a Student’s T

distribution.

Solution 11.13 Consider the polar transformation x = r cos2(𝜃) and y =
r sin2(𝜃). Then, x + y = r(sin2(𝜃) + cos2(𝜃)) = r, x − y = r(cos2(𝜃) − sin2(𝜃)) =
r cos(2𝜃),

√
xy = r sin(𝜃) cos(𝜃) = r

2
sin(2𝜃), so that xy = r2

4
sin2(2𝜃). The

Jacobian of the transformation is

J =

|
|
|
|
|
|
|
|
|
|
|
|
|

𝜕x
𝜕r

𝜕x
𝜕𝜃

𝜕y

𝜕r

𝜕y

𝜕𝜃

|
|
|
|
|
|
|
|
|
|
|
|
|

=

|
|
|
|
|
|
|
|
|
|
|
|
|

cos2(𝜃) −r sin(2𝜃)

sin2(𝜃) r sin(2𝜃)

|
|
|
|
|
|
|
|
|
|
|
|
|

= r sin(2𝜃).

Substituting the values of X and Y in Z =
√

n

2
X−Y
√

XY
, we get Z =

√
n

2
2 cot(2𝜃) =

√
n cot(2𝜃). The joint PDF of X and Y is

f (x, y) = 1
2nΓ(n∕2)2

e−(x+y)∕2(xy)
n
2
−1
. (11.42)

Multiply by the Jacobian and substitute the values of x and y to get

f (r, 𝜃) = 1
2nΓ(n∕2)2

e−r∕2

(
r2

4
sin2(2𝜃)

) n
2
−1

r sin(2𝜃). (11.43)
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This, after simplification, reduces to

f (r, 𝜃) = rn−1e−r∕2

22n−2Γ(n∕2)2
sin (2𝜃)n−1

. (11.44)

Distribution of 𝜃 is obtained by integrating out r. Thus,

f (𝜃) = sin (2𝜃)n−1

22n−2(Γ(n∕2))2 ∫

∞

r=0
rn−1e−r∕2dr

= sin (2𝜃)n−1

22n−2(Γ(n∕2))2
2nΓ(n) = Γ(n)

2n − 2(Γ(n∕2))2
sin (2𝜃)n−1

. (11.45)

Consider the transformation t =
√

n cot(2𝜃), so that 𝜕𝜃

𝜕t
= 1∕[2

√
n cosec2

(2𝜃)] = 1∕[2
√

n(1 + cot2(2𝜃)]. Writing sin(2𝜃) = 1∕
√

1 + cot2(2𝜃), and
multiplying by the Jacobian, we get

f (t) = Γ(n)
√

n2n−1Γ(n∕2)2
1

(1 + t2∕n)(n+1)∕2
. (11.46)

Multiply the numerator and denominator by Γ((n + 1)∕2)Γ(1∕2) and use the for-
mula Γ(n)Γ(1∕2) = 2n−1Γ(n∕2)Γ( n+1

2
) to get the constant multiplier in the form

1∕[
√

nB( 1
2
,

n
2
)] (where Γ(1∕2) =

√
𝜋). This is the Student T distribution T(n).

See Cacoullos [254] for a CDF derivation of this and related results.

EXAMPLE 11.14 Functions of Weibull distributions

If X, Y are IID Weibull(2, b) with PDF f (x, b) = 2
b2 xe−x2∕b2

, for x ≥ 0, show that

Z = XY∕(X2 + Y2) has PDF f (z) = 2z∕
√

1 − 4z2, which is independent of b.

Solution 11.14 Put x = r cos(𝜃) and y = r sin(𝜃), so that x2 + y2 = r2 and 𝜃 =
tan−1(y∕x). The Jacobian of the transformation is r. Hence, the joint PDF of
r and 𝜃 is f (r, 𝜃) = 4r3

b4 sin(𝜃) cos(𝜃)e−r2∕b2
. Using 2 sin(𝜃) cos(𝜃) = sin(2𝜃) this

becomes f (r, 𝜃) = 2r3

b4 sin(2𝜃)e−r2∕b2
. The PDF of 𝜃 is obtained by integrating out

r as

f (𝜃) = 2 sin(2𝜃)
b4 ∫

∞

0
r3e−r2∕b2

dr. (11.47)

Put r2∕b2 = t, so that rdr = (b2∕2)dt. Then, f (𝜃) = 2 sin(2𝜃)
b4

b4

2
∫ ∞

0 te−tdt =
sin(2𝜃). Putting the values of x and y in Z gives Z = 1

2
sin(2𝜃) so that 𝜕z

𝜕𝜃
=

cos(2𝜃) =
√

1 − 4z2. Hence, f (z) = 2z∕
√

1 − 4z2,− 1
2
≤ z ≤ 1

2
.
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11.3.2 Cylindrical Polar Transformations (CPT)

This transformation is a simple extension of the above to 3D. The mapping is defined
by the relations x = r cos(𝜃), y = r sin(𝜃), and z = z. The Jacobian of this transfor-
mation also is r. This defines a cylinder of base r in the polar coordinates. Inverse
mapping is easily obtained as r =

√
x2 + y2, 𝜃 = tan−1(y∕x).

11.3.3 Spherical Polar Transformations (SPT)

This is a more general form of the above PPT to 3D. The mapping is defined by
the relations x = r cos(𝜃) cos(𝜙), y = r sin(𝜃) cos(𝜙), and z = r sin(𝜙), so that
x2 + y2 + z2 = r2 cos2(𝜙)[cos2(𝜃) + sin2(𝜃)] + r2 sin2(𝜙) = r2. The inverse mapping
is defined as r =

√
x2 + y2 + z2, 𝜃 = tan−1(y∕x), and 𝜙 = sin−1(z∕r). The Jacobian

of this transformation is r2cos2(𝜙). An equivalent mapping is defined by the relations
x = r cos(𝜃) sin(𝜙), y = r sin(𝜃) sin(𝜙), and z = r cos(𝜙). The inverse mapping is
given by r =

√
x2 + y2 + z2, 𝜃 = tan−1(y∕x), and 𝜙 = cos−1(z∕

√
x2 + y2 + z2), or

𝜙 = tan−1(
√

x2 + y2∕z). The Jacobian of this transformation is −r2 sin(𝜙) (so that
dxdydz = r2 sin(𝜙)drd𝜃d𝜙). The name spherical transformation comes from the
fact that its domain is of the form x2 + y2 + z2 or arithmetic functions of it.

11.3.4 Other Methods

The SPT can be generalized to n-dimensions in multiple ways. One simple way
is to use the Helmert transformation x1 = r cos(𝜃1), x2 = r sin(𝜃1) cos(𝜃2), x3 = r
sin(𝜃1) sin(𝜃2) cos(𝜃3), · · · , xn−1 = r sin(𝜃1) sin(𝜃2) … sin(𝜃n−2) cos(𝜃n−3), and xn =
r sin(𝜃1) sin(𝜃2) … sin(𝜃n−1). The Jacobian is given by |J| = rn−1sinn−2(𝜃1)sinn−3

(𝜃2)sinn−4(𝜃3) · · · sin(𝜃n−2). Squaring and adding each term, we get r2 = x2
1 + x2

2 +
· · · + x2

n.
Toroidal polar transformation (TPT) is an extension of SPT (see Table 11.2),

defined as

x = (r cos(𝜃) + R) cos(𝜙), y = (r cos(𝜃) + R) sin(𝜙), and z = r sin(𝜃), (11.48)

so that x2 + y2 + z2 = (r cos(𝜃) + R)2 [cos2(𝜙) + sin2(𝜙)] + r2 sin2(𝜃) = r2 + R2 +
2rR cos(𝜃). The inverse mapping is defined as

r = {[(x2 + y2)1∕2 − R]2 + z2}1∕2
, 𝜙 = tan−1(y∕x), and 𝜃 = sin−1(z∕r). (11.49)

The Jacobian is 1/J=

|
|
|
|
|
|
|
|
|

cos(𝜃) cos(𝜙) cos(𝜃) sin(𝜙) sin(𝜃)
−B ∗ sin(𝜙) B ∗ cos(𝜙) 0

−r cos(𝜙) sin(𝜃) −r sin(𝜙) sin(𝜃) r cos(𝜃).

|
|
|
|
|
|
|
|
|

.
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TABLE 11.2 Common Polar Transformation of Three Variables

Name Transformation Jacobian |J|

Cylindrical x = r cos(𝜃), y = r sin(𝜃), and z = z −1∕2

Spherical x = r cos(𝜃) cos(𝜙),
y = r sin(𝜃) cos(𝜙), z = r sin(𝜙)

r2cos2(𝜙)

Spherical x = r cos(𝜃) sin(𝜙),
y = r sin(𝜃) sin(𝜙), z = r cos(𝜙)

−r2 sin(𝜙)

Toroidal x = (r cos(𝜃) + R) cos(𝜙),
y = (r cos(𝜃) + R) sin(𝜙), z = r sin(𝜃)

(r cos(𝜃) + R)

Toroidal x = r ∗ cos(𝜃) cos(𝜙), y = Cr ∗ sin(𝜃),
z = Dr ∗ sin(𝜙)

r2 (m2cos2(𝜙) +
n2cos2(𝜃))∕[C ∗ D].

The sign of |J| is ignored in statistical applications. The inverses of the transformations appear in the

respective sections. Last row has C =
√

1 − m2sin2(𝜙),D =
√

1 − n2sin2(𝜃)

where B = (r cos(𝜃) + R). To evaluate this determinant, take out B from second row,
r from third row, multiply new first column by cos(𝜙), new second column by sin(𝜙),
and add new second column to the first column (C1 = C1 + C2). The (2, 2)th ele-
ment also becomes zero. Then, expand the determinant along second row to get the
Jacobian as B = (r cos(𝜃) + R).

Another general transformation is given by x = r cos(𝜃) cos(𝜙), y = r sin(𝜃)√
1 − m2sin2(𝜙), z = r sin(𝜙)

√
1 − n2sin2(𝜃), where m2 + n2 = 1. Squaring and

adding gives us x2 + y2 + z2 = r2. The Jacobian in this case is 1/J=

|
|
|
|
|
|
|
|
|
|
|
|

cos(𝜃) cos(𝜙) −r sin(𝜃) cos(𝜙) −r cos(𝜃) sin(𝜙)
sin(𝜃)

√
1 − m2sin2(𝜙) r cos(𝜃)

√
1 − m2sin2(𝜙) −m2r sin(𝜃) sin(𝜙) cos(𝜙)

√
1−m2sin2(𝜙)

sin(𝜙)
√

1 − n2sin2(𝜃) −n2r sin(𝜃) sin(𝜙) cos(𝜃)
√

1−n2sin2(𝜃)
r cos(𝜙)

√
1 − n2sin2(𝜃)

|
|
|
|
|
|
|
|
|
|
|
|

.

To evaluate this determinant, take r as a common factor from second and third
columns, multiply first column by sin(𝜃) and second column by cos(𝜃), and apply
C1 = C1 + C2 (i.e., add new second column to new first column). The first element
at (1,1) reduces to zero, so that the determinant becomes that of two 2×2 matri-
ces. Using the relationship m2 + n2 = 1, this is easily seen to be r2 (m2cos2(𝜙) +
n2cos2(𝜃))∕[

√
1 − m2sin2(𝜙)

√
1 − n2sin2(𝜃)] (see Table 11.2).

There are many other ways to find the distribution of transformed variables.
One possibility is to use the characteristic function (if it is easily invertible) of
the original variates. Let U = g(x1, x2, …, xn) be the transformation required. If
𝜙Z(t) = E(eitg(x)) = ∫ ∫ eitg(x)f (x1, x2, …, xn)dx1..dxn is easy to evaluate, we could
simply use inversion theorem to get the PDF of U.
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11.4 SUMMARY

This chapter discusses the methodology to obtain the marginal, joint, and conditional
probability distributions for both the discrete (i.e., count) distributions and continuous
distributions. The concept and tools for the Jacobian to derive the joint probability dis-
tribution of functions of continuous random variables are introduced and illustrated
in this chapter. Distribution of functions of two or more variates has received much
attention in the literature. Most of the research in this field uses the normal [218] and
exponential [294] distributions

See Shepp [217], Quine [218], Baringhaus et al. [301], and Jones [302] for alter-
native derivations of the result in Example 11.0 (p. 433). Bansal et al. [303] uses the
uniqueness of moments to prove that the distribution of 2XY/

√
X2 + Y2 is identical

to that of X and Y.

EXERCISES

11.1 Mark as True or False

a) The Jacobian method is applicable to both discrete and continuous variate
transformations.

b) If the range of a random variable X includes the origin, we cannot use the
transformation Y = 1∕X.

c) Marginal distributions can be obtained from joint distributions.

d) Marginal distributions determine joint distributions only when variates are
independent.

e) Joint PDF of random variables can be obtained uniquely from joint CDF.

11.2 If f (x, y) = c(x + y) is the joint
PDF of two discrete random vari-
ables (x = 1, 2, 3; y = 1, 2, 3, 4),
find the constant c and hence
obtain the conditional distribution
of Y given X = k, and the distribu-
tion of X2.

11.3 What is the Jacobian of the trans-
formation u = x(1 − y), 𝑣 = xy.
Use it to find the distribution of u
and v when x and y are (i) CUNI(0,
1) and (ii) BETA(0, 1).

11.4 Find the unknown K in the fol-
lowing joint PDFs: (a) f (x, y) =
Kx2y, 0 < x < 1, 0 < y < 2 (b)

f (x, y, z) = K(x + 2y + 3z) for 0 <
x < 1, 0 < y < 2, 0 < z < 1.

11.5 What is the Jacobian of the trans-
formation u = aX + bY , 𝑣 = cX −
dY . If X and Y are triangular, find
the distribution of U and V.

11.6 Find the Jacobian of the rotation
transformation u = x cos(𝜃) − y
sin(𝜃) and 𝑣 = x sin(𝜃) + y cos(𝜃).

11.7 If f (x, y) = K ∗ x3y2e−(x+(y∕2)) for
x, y > 0, find constant K. Are X
and Y independent?

11.8 What is the Jacobian of the trans-
formation x = r cosh(𝜃) cosh(𝜙), y
= r sinh(𝜃) cosh(𝜙), z = r sinh(𝜃)?
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11.9 If f (x, y) = K(x + y) for 0 < x <
1, 0 < y < 1 find constant K and
obtain the marginal distributions.

11.10 Find the inverse mapping and
Jacobian for the transformation
U = 2xy∕(x2 + y2), 𝑣 = x2 + y2

+ z2
, 𝑤 = (x2 + y2)∕z2 (hint: use

spherical polar transform).

11.11 Find the inverse mapping and
Jacobian for the transformation
U = x + y, 𝑣 = x2 − y2 if x and y
are IID chi-square variates.

11.12 Find the Jacobian of the shear
transformation (parallel to the
Y-axis) u = ax + y, 𝑣 = y. Use it to
find the distribution of u and v

when x and y are (i) CUNI(0, 1),
(ii) GAMM(mi, p), i = 1, 2, and
(iii) 𝜒2

n.

11.13 If f (x, y)=Γ(m)∕[Γ(a)Γ(b)Γ(m−a−
b − 1)]xa−1yb−1(1 − x − y)m−a−b−1,
prove that the marginals and con-
ditional distributions of X|Y, Y|X
are all beta distributed when the
variables are independent.

11.14 Find the Jacobian of the rota-
tion transformation u = x cos(𝜃) −
y sin(𝜃), and 𝑣 = x sin(𝜃) +
y cos(𝜃).

11.15 If X is BETA-I(p, q) and Y is inde-
pendent BETA-I(p + q, r) find the
distribution of X∕(X + Y).

11.16 If X1,X2 are IID N(0,1), find the distribution of Y1 =
√
−2log e(x1) cos(2𝜋x2)

and Y2 =
√
−2log e(x1) sin(2𝜋x2) (the inverse being X1 = exp

[

− 1
2
(y2

1 + y2
2)
]

and x2 = 1
2𝜋

arc tan(y2∕y1)).

11.17 If X and Y are independent Cauchy
distributed, prove that (i) Z =
(X + Y)∕2 and (ii) (X − Y)∕(1 +
XY) are also Cauchy distributed.

11.18 If X and Y are independent
Gamma distributed, prove that
Z = X∕(X + Y) is Type I beta dis-
tributed.

11.19 Find the Jacobian of the
transformation U1 = X1

Xn
,U2 =

X2
Xn
, …,Un−1 = Xn−1

Xn
, and X2

1 +
X2

2 + · · · + X2
n = 1. If X′

i s are IID
N(0,1), find the joint distribution
of U′

i s.

11.20 Suppose that X∼BINO(n, 𝜃),
where 𝜃 ∼ BETA(a, b). Find the
unconditional distribution of X,
conditional distribution of 𝜃|X and

prove that E(𝜃|X) = (a + X)∕(a +
b + n).

11.21 Find the inverse mapping

and Jacobian for the transfor-

mation x = r sin(𝜃) sin(𝜙), y =
r sin(𝜃) cos(𝜙), z = r cos(𝜃) sin(𝜉),
𝑤 = r cos(𝜃) cos(𝜉).

11.22 Suppose two fair dice are tossed.

Find the density function of

(X1,X2) where X1 and X2 are the

scores that show up.

11.23 If X,Y are IID CUNI(a, b), find

the PDF of U = − log(X∕Y). If

a=−b, find the distribution of

V = X2.

11.24 If f (x, y) = Ke−(aX+bY), find K and

obtain the PDF of X/Y and X − Y .
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11.25 If X ∼ 𝜒n (i.e., X ∼
√

𝜒
2
n) and

Y ∼ BETA( n−1
2
,

n−1
2

) is indepen-
dent of X, prove that (2Y − 1)X ∼
N(0, 1).

11.26 If X ∼ 𝜒
2
m, and Y ∼ 𝜒

2
n prove that

X∕(X + Y) ∼ BETA(m∕2, n∕2),
and X∕Y ∼ BETA2(m∕2, n∕2).

11.27 If X ∼ 𝜒
2
m, Y∼ 𝜒

2
n and Z∼ 𝜒

2
p Find

distribution of u = x∕y, 𝑣 = (x +
y)∕z and 𝑤 = x + y + z.

11.28 If X ∼ 𝜒
2
2m+2n and Y ∼

BETA1(p, q) be independent, find
distribution of XY and X(1 − Y).

11.29 If X and Y are Gamma distributed
with parameters (p,m) and (q,m)
find the distribution of X/Y and
X∕(X + Y).

11.30 If X, Y, Z are CUNI(−1,+1), find
the PDF of (i) XY, (ii) XY/Z,
(iii) (X + Y)∕(X − Y), (iv) (X +
Y − Z)∕(Y + Z − X)

11.31 If U = XY
Z
,V = YZ

X
, and W =

ZX
Y

, prove that the Jacobian is a
constant. Find the distribution of
U when X,Y, Z are (i) GAMM(m,
p) and (ii) CUNI(0, b).

11.32 If X1,X2, …,Xn are IID
Γ(m, p) prove that Yn =
min(X1,X2, …,Xn) is distributed
as GAMMA(mn, p).

11.33 Express the Cartesian coordinates
in terms of cylindrical and spheri-
cal polar coordinates.

11.34 If X and Y are exponentially dis-
tributed, find the distribution of
X + Y and X − Y .

11.35 If X1,X2,X3 are IID GAMMA(mk, p) for k = 1,2,3 prove that the joint dis-
tribution of Y1 = X1∕X3 and Y2 = X2∕X3 is bivariate BETA-II(mk) with PDF

f (y1, y2) =
Γ(m1 +m2 +m3)
Γ(m1)Γ(m2)Γ(m3)

y
m1−1

1
y

m2−1

2

(1+ y1 + y2)
m1 +m2 +m3

, y1, y2 > 0.

11.36 Find the Jacobian of the transformation x1 = r sin(𝜃1) sin(𝜃2) · · · sin(𝜃n−2) sin
(𝜃n−1), x2 = r cos(𝜃1) sin(𝜃2) sin(𝜃3) · · · sin(𝜃n−2) sin(𝜃n−1), x3 = r cos(𝜃2) sin
(𝜃3) · · · sin(𝜃n−2) sin(𝜃n−1), xn−1 = r cos(𝜃n−2) sin(𝜃n−1), and xn = r cos(𝜃n−1).
What is the inverse mapping?.

11.37 If U,V are IID CUNI(0, b) find
the distribution of (i) U + V , (ii)
|U − V|

11.38 If X and Y have joint PDF f (x, y) =
exp(−x − y), x, y ≥ 0, find the dis-
tribution of X/Y and X + Y assum-
ing independence.

11.39 Find the Jacobian of the
transformation y1 =

∑n
i=1 Xi∕√

n,Y2 = (X1 − X2)∕
√

2,Yi =

(X1 + X2 + · · · + Xi−1 − (i − 1)
Xn)∕

√
n(n − 1) for i = 3, 4, ..n.

11.40 If Y has a chi-distribution with
m DoF and Z is BETA-I((m −
1)∕2, (m − 1)∕2) is independent
of Y, then (2Z − 1)Y is standard
normal.

11.41 Find the inverse mapping and
Jacobian for the transforma-
tion u = x∕(x + y), 𝑣 = y∕(x + y +
z), 𝑤 = x + y + z.
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absolute value, 398

distribution of, 206, 399
of (S-F) of binomial distribution, 203
of Cauchy distribution, 399
of CUNI(−𝜋∕2, 𝜋∕2), 399
of determinant, 422
of Jacobian, 402, 426
of rectangular distribution, 399

additivity property, 266
𝜒

2 distribution, 308, 309
summary table, 267
binomial distribution, 202
gamma distribution, 283
negative binomial distribution, 227
normal distribution, 292
Poisson distribution, 233
unscaled F distribution, 317

algorithm
binomial distribution, 206
data discretization, 28
decimal to fraction, 115–118
divide-and-conquer, 79

for mean deviation, 189, 257
for sample covariance, 81
for sample variance, 78
non-repeating decimal, 114
Poisson distribution, 236
repeating decimal, 115
tail-repeating decimal, 116

application
in engineering, 268, 424
medical, 171

applications
continuous uniform, 264
double exponential distribution, 304
exponential distribution, 268
incomplete beta function, 276
log-normal distribution, 296
Rayleigh distribution, 321
spectral kurtosis, 106
Weibull distribution, 319

approximation
derangement probability, 151
for 𝜒2 distribution, 310
hypergeometric distribution, 241
log-normal, 298
median from ogive, 56
noncentral beta mean, 19, 357
Poisson distribution, 236
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to binomial, 209

arbitrary transformation, 422
arithmetic mean

coinciding with a data value, 54
of IID random variables, 259
recursive algorithm, 48

assigning probabilities, 156
associative law, 134
asymmetric, 10, 89, 98

distributions, 90, 103, 267
skew t distribution, 311
truncated distribution, 293

average absolute deviation
from median, 77
from medoid, 77

axiomatic approach, 154

B
Bayes theorem, 168, 169, 171
Bernoulli

distribution, 104, 188, 192, 194, 211
products, 194
trials, 202

beta distribution
moments, 270
random numbers, 278
tail area, 277
type 2, 274
vs logistic, 276

beta function
incomplete, 12, 202, 225, 227, 228, 276, 278,

312, 314
beta-binomial distribution

properties, 242
binomial

coefficients, 186, 238
recurrence , 187

distribution, 189, 194, 277
algorithms , 206

limiting form, 209
linear functions, 403
mean deviation, 200
moment recurrence, 197
tail probabilities, 207

binomial distribution, 257, 386
additivity property, 202
mode of, 197
properties, 202
reparametrization, 196

binomial theorem, 186, 199, 207
distributions obtainable, 188

bipartite graphs, 126
bivariate

transformations, 423
BETA-II, 440
linear transformation, 423

blind binning, 30
blood groups, 167, 246
BMI, 30, 32
BMI, ideal, 29
Boltzmann distribution, 284
bound for

expected value, 362
skewness-kurtosis, 104
standard deviation, 82

Bowley’s
skewness - range of values, 95
skewness measure, 94, 97

box plot, 35, 36, 73

C
cardinality, 122, 148

power-set, 122
categorical, 5
categorical data, 58
categorization

of dispersion measures, 69
of kurtosis measures, 101

Cauchy distribution, 293, 294, 313, 329, 432
absolute value, 399
characteristic function of, 384

CDF, 235
distribution of, 400
lognormal distribution, 298
Student’s t, 313

central 𝜒2, 75
central limit theorem, 209, 210, 259
CGF, 387
change of origin, 23, 49, 59, 83

and scale, 24
mean deviation, 77
transformation, 44, 219, 248

change of scale, 24, 59
transformation, 261

change of variable, 401
characteristic function, 384

summary table, 386
Cauchy distribution, 384
inversion theorem, 385
of symmetric distributions, 385
properties of, 385

Chebychev inequality, 362
chi-distribution, 405
chi-square

central, 235, 307
independent, 315
vs gamma, 284
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classical approach—probability, 156
coefficient

multinomial, 142
of Gini, 84
of kurtosis, 103, 213
of quartile deviation, 98
of skewness, 94
of variation, 82

coefficient of variation
advantages, 82

combination, 145
combined sample

covariance, 81
mean, 80
variance, 79

common birthday, 153, 160, 162, 163, 165, 175
commutative law, 133
complement-and-conquer

principle, 131, 159, 162
complete

beta function, 269, 276
gamma function, 275, 285

complete enumeration, 138, 139
conditional

variance, 361
distribution, 244, 417, 419, 420
expectation, 242
probability, 168, 169
variance, 359, 360

continuous distribution
mean deviation, 256

convergence of distribution, 259
convolution, 408
covariance, 353

as expected value, 353
combined sample, 81
hypergeometric, 239
properties of, 353

cumulants, 22, 106
generating function, 18

cumulative distribution function, 335
cylindrical polar

transformation, 436

D
data

discretization, 28
range, 73
sorting, 54
transformation, 23

date data type, 7
De’Morgan’s law, 135, 151
decimal

non-repeating to fraction, 114

to fractional form, 114–116, 118
degrees of freedom, 74–76, 307, 310, 346

of a statistical distribution, 76
Snedecor’s F, 316

dependent variable, 83
derangement, 149, 150
determinant, 421, 424, 427, 437

of transformations, 423, 437
discrete

signal, 106
uniform distribution, 211

discrete distribution
mean deviation, 189, 191

discretization
algorithm categorization, 28
entropy-based, 31
equal frequency binning, 30
equal interval binning, 28
errors, 34
of data, 28

dispersion measure
absolute and relative, 70
additive, 70
categorization, 69
comparison, 69
distance-based, 71
linear, 69
pivotal, 69
whole sample, 70

displaced distributions, 186
displaced Poisson distribution, 358
dissimilarity metrics, 362
distance

as expected value, 362
Euclidean, 63, 69, 71
Mahalanobis, 71, 106

distance metric, 56
distribution

Cauchy, 293
inverse Gaussian, 295
normal, 286
arcsine, 279
Bernoulli, 192
beta, 269

relationships , 276
beta binomial, 241
beta-type, 2

moments , 274
binomial, 194
Boltzmann, 284
central 𝜒2, 307
chi-square

relationships , 310
continuous uniform, 260
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applications , 264
properties , 261
relationships , 264

cosine, 285
discrete uniform, 211
double exponential, 304
Erlang, 283
exponential, 265

moments , 266
properties , 265
relationships , 268

F, 315
Fisher’s Z, 317

moments , 318
function of Weibull, 435
gamma, 282

general form , 269
properties , 283
relationships , 284

gamma moments, 283
geometric, 214

moments , 216
hypergeometric, properties, 238
inverse exponential, 267
log-normal

moments , 299
logarithmic series, 242
Maxwell, 324
multinomial, 243
negative binomial, 223, 420
negative hypergeometric, 241
of absolute Cauchy, 399
of absolute value, 203, 206, 399
of arbitrary functions, 410
of BMI, 29
of constant multiples, 397
of F−1(x), 400
of F(x), 399
of fractional part, 411
of integer part, 218, 411
of linear combinations, 413
of logarithms, 412
of minimum and maximum, 406
of products, 427
of ratio of normal, 431
of ratios, 412, 427
of reciprocals, 406
of rectangular

constant multiple, 398
of special functions, 412
of square roots, 404
of squares, 403
of sums, 408

of tan(x), 407
of transcendental functions, 407
of translations, 397
of trigonometric functions, 407
Pareto, 302
Poisson, 229
Rayleigh, 321, 434
skew t, 311
Snedecor’s F, 316
Student’s t, 310
sum of exponentials, 409
Weibull, 319

distribution function
method of, 398

distributions
symmetric, 44, 68

distributive law, 134
divide-and-conquer, 30, 70

algorithm for covariance, 81
algorithm for variance, 79

do-little method
complementary events, 131, 144, 151
determinant of transformation, 424
probability, 130

double exponential, 304

E
engineering

application, 268, 424
entropy, 168

based discretization errors, 31
computation, 33

equal frequency binning, 30
equal interval binning, 28
Erlang distribution, 283
Euler diagrams, 124
evaluating

xn for large n, 21
xn for large n, 20
mean deviation, 259

even moments
Laplace, 304
rectangular distribution, 262

even probabilities
geometric distribution, 221
negative binomial, 229
Poisson, 234, 249

event
categories, 129
complementary, 130
compound, 129
conditional, 131
dependent vs independent, 131
deterministic, 128
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discrete, 128
do-little principle, 131
equally likely, 130
independent, 163
laws of, 132
mutually exclusive, 129
union, 125

event algebra, 132
expectation

Cauchy-Schwartz inequality, 363
Jensen’s inequality, 363
summary table, 363
conditional, 355
meaning, 333
of function of binomial, 353
of function of Poisson, 351
of functions, 346, 350
of integer part, 345
operator, 338

expected value, 98, 337, 338
of functions of binomial, 349
of independent variates, 347
of linear combination, 348
properties of, 346
using CDF, 342

exponential distribution, 257, 386
functions of, 426
integer part, 218

F
F distribution

moments, 316
factorial moments, 378

binomial, 199
geometric distribution, 390
negative binomial, 224

falling factorial, 22
five-number summary, 57
fractional part

distribution of, 411
frequency band, 106
frequency transforms, 105
functions of

independent Cauchy, 294
independent normal, 290
random variables, 395, 422

G
gamma

distribution, 257, 282, 386
moments , 283
ratio of , 429

vs beta, 430
gamma mixture

of Poisson parameter, 226
GCD see greatest common divisor 117
general

Cauchy distribution, 293
exponential distribution, 269
lognormal distribution, 297
polar transformation, 437

generating function
binomial, 201
for CDF of geometric distribution, 379
for mean deviation

geometric distribution , 380
for probabilities, 375
in statistics, 375
ordinary, 374
summary table, 376

geometric distribution, 214, 257, 386
conditional form, 221
even probabilities, 221
factorial moments, 218, 390
left truncated, 219
mean deviation, 217, 222
moments, 216
properties, 219, 222
re-parametrized form, 219
sum of independent, 226
tail probabilities, 222

geometric mean, 59
log-normal, 301
updating formula, 60

geometric probability, 119
exceeding 1/p, 218

Gini index, 84, 189, 256
GIS, 5
greatest common divisor, 114–118
grouped data, 55

H
harmonic mean, 61

updating formula, 61
harmonics, 106
Helmert transformation, 436
histogram, 36
hydroponic farms, 47
hypergeometric distribution

approximation, 241
properties, 240

hypergeometric function, 239
confluent, 358
type 2, 316

I
IG-symmetry, 99
image Jacobians, 425
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incomplete
beta function, 12, 202, 207, 225, 227, 228, 248,

276, 312, 342
gamma function, 285, 308, 323
moments, 362

incomplete beta
symmetric, 278
tables, 278

incomplete beta function, 202, 225, 227, 228, 276
definition, 278
Fisher’s Z distribution, 317
in terms of hypergeometric series, 278
infinite summation, 343
related to central F, 277
related to other distributions, 277

independent
events, 158, 163
experiments, 130
exponential variates, 409
integer and fractional parts, 412
normal variates, 413
pair-wise, 412
random variables, 408, 409

inequality
Cauchy-Schwartz, 363
Chebychev, 362
Jensen’s, 363
mean-median-mode, 59, 93, 300, 308, 322, 331

infinity, 261, 411
discrete vs continuous, 260

integer part, 189, 259
distribution of, 411
expectation of, 345

integral method
for mean deviation, 400

interpretation of CV, 83
interval scale, 7
inverse, 407

exponential distribution, 267
Gaussian distribution, 37
mapping, 409
moments, 350, 361, 378
of CDF, 400
of CUNI(a,b), 401

inverse Gaussian, 99
inverse mapping, 423, 426, 428, 430
isochronous, 35

J
Jacknife estimator, 18
Jacobian, 402, 424

determinant, 421, 426
matrix, 421, 425
of transformations, 423, 437

Johnson’s conjecture, 257
joint distributions, 417

transformation, 423, 437

K
Kelly’s skewness measure, 97
kurtosis

Arc-Sin, 281
categorization, 101
comparable, 100
concept, 99
discrete uniform, 213
exponential distribution, 267
gamma, 283
geometric distribution, 219
interpretation, 99
inverse Gaussian, 296
measures, 102

quartile-based , 101
Pearson’s 𝛽2, 102
spectral, 105
student’s T, 310

L
L’Hospital’s rule, 269, 271, 302, 303, 309, 321,

323
L-kurtosis, 104
lack of symmetry, 37, 38
Laplace distribution, 304
large powers xn, 21
large powers xn, 20
law

associative, 134
commutative, 133
De’Morgan’s, 135, 151
distributive, 134
of conditional variance, 360
of total probability, 133

leap-year, 139
left tail probability, 222
Leibnitz theorem, 414
leptokurtic, 99

always, 283, 296, 311
limiting form

binomial, 209
negative binomial, 225

linear transformation, 402
location and scale

skewness measure, 93
location measure, 68

categorization, 44
most appropriate, 63

location parameter, 44
log-normal
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approximation, 298
characterize, 298
distribution, 267
geometric mean, 301
mean deviation, 299
partial expectation, 301
properties, 298, 300

log-Student’s T, 313
logarithmic distribution, 257, 386

properties, 243, 244
Lorenz curve, 189, 256

M
Mahalanobis distance, 57, 71, 106
marginal distribution, 418, 420
mathematical expectation, 337, 345

summary table, 363
matrix, 17, 426

of expected values, 362
of full-rank, 421
transpose, 421
variance-covariance, 106
variance–covariance, 71

McClaurin series, 384
MDL principle, 32
mean, 46, 83

advantages, 53
change of origin, 49
coinciding with a data value, 54
combined sample, 48, 80
corrected sample, 49
geometric, 59
grouped data, 51
harmonic, 61
noncentral beta, 357
of noncentral 𝜒2, 358
of noncentral beta, 357
of noncentral F, 359
properties, 53
quadratic, 63
updating formula, 46, 48, 49
weighted, 50

updating formula , 51
mean deviation

summary table, 257
advantages, 77
around the median, 259
as an integral, 400
beta distribution, 271
binomial distribution, 200, 202
central 𝜒2, 309
Chattamvelli’s power method, 189–191, 257,

258
continuous distributions, 256, 400

disadvantages, 77
discrete distribution, 189
exponential distribution, 268
geometric distribution, 217
inverse Gaussian, 297
Laplace, 306
log-normal, 299
normal distribution, 290
novel methods, 191, 259
of beta distribution, 271
of exponential distribution, 400
of negative binomial, 226
of uniform distribution, 401
Pareto, 303
power method, 191, 259, 268, 271, 282, 290,

299, 303, 324
Rayleigh distribution, 322
rectangular distribution, 263
recurrence relation, 192
Student’s t, 311
Weibull distribution, 320

mean vs variance
of beta-I, 273

mean-median-mode inequality
for 𝜒2, 308
for lognormal variates, 300
for negatively skewed, 93
for Rayleigh, 322

median, 7, 30, 35, 36, 63, 77, 95
advantages, 56
grouped data, 55

median absolute deviation, 77
medical application, 167, 171, 182
medoid, 44, 56, 63, 77
memory overflow, 12
memory underflow, 12
memory-less property, 221
MGF, 375, 380

conditional, 390
of binomial distribution, 382
of gamma distribution, 384
of Poisson distribution, 382
of sum of independent, 382
Pareto, 302
properties of, 381
rectangular, 262
Student’s T, 314

mode, 7, 46, 90
advantages, 58

mode of
beta-I, 271
binomial distribution, 197
Cauchy distribution, 294
chi-distribution, 324



462 INDEX

mode of (Continued)
gamma, 284
inverse Gaussian, 297
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modified Bessel function, 230
moment, 22
moment generating function see MGF,

380
binomial distribution, 381
exponential distribution, 381
properties, 381
summary table, 386

moment recurrence
binomial, 197
negative binomial, 227

moment-based
skewness measure, 93

moments
as expected value, 355
F distribution, 316
Fisher’s Z distribution, 318
hypergeometric, 239
incomplete, 362
negative binomial, 224
of beta distribution, 270
of binomial distribution, 196
Pareto, 302
Poisson, 231

multi-modal, 58
multinomial distribution, 243, 245

marginal, 244
properties, 244, 245

multivariate kurtosis, 106
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distribution, 420
properties , 228

factorial moments, 224
limiting form, 225
mean deviation, 226
moment recurrence, 227
tail probabilities, 225, 228
variance, 226
vs geometric, 226
vs Poisson, 226
x takes even values, 229

negative ogive, 35
nested sums, 12, 13
nominal scale, 6
noncentral beta, 278

mean computation, 358
mean, 19, 357, 358

noncentral chi-square
mean, 10, 358, 359
variance, 360

noncentral F, 10
mean of, 359

noncentrality parameter, 358, 359
normal approximation

to binomial, 209, 210
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normal distribution, 257
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properties, 289
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square of, 413
notation

Pochhammer, 22, 141
numeric variable, 25

O
obese, 30

morbidly, 29
obesity, 29
ogive, 56

curve, 35
negative, 35
plots, 35
positive, 35

order statistic, 94, 104, 406
ordinal scale, 6
outliers, 36, 58, 72, 77

P
parameter, 9
Pareto

distribution, 302
mean deviation, 303

partial expectation of log-normal, 301
partitions, 154
Pascal’s triangle, 105
Pearson
𝜂 coefficient, 98
skewness measure, 97

permutation, 140, 141, 161
cyclic, 143
notation, 141
of alike objects, 142
with restriction, 142

plane polar transformation, 433
plot

isochronous, 35
ogive, 35
P–P and Q–Q, 35
skewness-kurtosis, 36
stem-and-leaf, 36

Pochhammer notation, 22, 141, 163
Poisson

even probabilities, 234
vs binomial, 209, 230
vs gamma function, 234, 345
vs negative binomial, 225
vs Skellam distribution, 230
weighted distribution, 12
x takes even values, 249
zero-truncated, 237

Poisson distribution, 210, 225, 229, 230, 257, 386
E((−1)x), 351
E[e−x∕2], 351

algorithm, 236
applications, 237
approximations, 236
displaced, 358
incidence rate-restricted, 238
properties, 230, 232
truncated, 237

Poisson sum, 409
polar transformation, 433

toroidal, 436
Polya distribution, 215
pooled variance, 79
positive ogive, 35
power method

for mean deviation, 257, 268, 271, 282, 290,
297, 324

mean deviation, 189, 191
power-set, 123
prime number, 130, 156
principle

complement-and-conquer, 131, 142, 159, 162,
166

divide-and-conquer, 30, 79, 81
of counting, 135
of inclusion and exclusion, 147

probability
associated with, 112
classical approach, 156
conditional, 168
definition, 112
empirical, 165
fractional form, 114–116, 118
frequency approach, 166
generating function, 375
rules, 157
some symbols used, 113
space, 155
vs entropy, 168

probability density function, 334
probability generating function

geometric, 377
Poisson, 376
properties, 377
special values, 376

product notation, 19
product of

beta distributions, 276
log-normal, 267, 299
normal variates, 291
random variables, 427
rectangular distributions, 425

properties
𝜒

2 distribution, 308
Arcsine, 281
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Bernoulli distribution, 194
beta binomial distribution, 242
BETA-I, 270, 271
BETA-II, 274, 275
binomial distribution, 202
Cauchy distribution, 294
chi-distribution, 324
continuous uniform, 261
cosine distribution, 286
double exponential distribution, 304, 306
exponential, 265, 266
F distribution, 315, 317
Fisher’s Z distribution, 317, 318
gamma distribution, 283, 284
geometric distribution, 219, 222
hypergeometric distribution, 238, 240
inverse Gaussian distribution, 296, 297
Laplace, 304
logarithmic distribution, 244
lognormal, 298, 300
Maxwell distribution, 324, 326
multinomial distribution, 244, 245
negative binomial, 223
negative binomial distribution, 228
normal, 287, 289, 291
of binomial distribution, 195
of covariance, 353
of discrete uniform distribution, 212
of expectations, 346
of logarithmic distribution, 243
of variance, 352
Pareto distribution, 302, 304
Poisson distribution, 230, 232
Rayleigh distribution, 322, 323
rectangular distribution, 205
Student’s T distribution, 310, 312
Weibull distribution, 319, 320

Q
Q–Q plots, 35
quadratic mean, 63
qualitative, 4
quantile, 298, 344
quantitative, 4
quartile deviation, 73
quartile-based

skewness measure, 93

R
random numbers

beta distribution, 278
exponential distribution, 264
Pareto distribution, 303

U[a,b] distribution, 264
Weibull distribution, 321

random sample, 8
random variables, 334

summary table, 337
range

advantages, 72
applications, 73
disadvantages, 72
inter-quartile, 73

ratio
of IID gamma distributions, 429
of IID normal distributions, 431
of IID random variables, 427
of IID uniform distributions, 428

ratio measure, 68, 113
ratio scale, 7
Rayleigh distribution, 405, 434
re-parametrization

exponential, 266
geometric, 219
logarithmic, 243
Maxwell, 324
negative binomial, 223
of binomial, 196
Rayleigh, 322
uniform, 262

reciprocal
distribution of, 406
of Cauchy, 406

rectangular distribution
constant multiple of, 398
inverse of, 401
logarithmic transformation, 408
product of, 425

recurrence
binomial distribution, 202
geometric distribution, 222
hypergeometric distribution, 238, 240
logarithmic distribution, 244

recurrence relations, 149
recursive algorithm

arithmetic mean, 48
for sample variance, 78
geometric mean, 61
harmonic mean, 62

relational operator, 7
relationship

Cauchy–Student’s T , 295
central F–IBF, 277
F and T distributions, 316
IGD–chi-square, 296
incomplete beta

binomial tail , 202, 207
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Fisher’s Z , 317, 318
hypergeometric , 271
mean deviation , 227
negative binomial , 225, 228
Student’s t , 314

incomplete beta tail areas, 277
Laplace–exponential, 307
Pareto–exponential, 303
Student’s T–Cauchy, 𝜒2, 313

residual distortion, 426
rising factorial, 22
rule of sums, 135

S
sample, 18

combined mean, 49
random, 8
range, 72
vs population, 8

sample covariance, 78
sample range, 82

advantages, 72
applications, 73
disadvantages, 72

sample space, 119, 120, 157
scale variant, 81
scales of measurement, 4
sensors, 46
set, 122

-power, 122
-super, 122

Shannon’s entropy, 31
Shannon’s law, 28
Shepperd’s correction, 51
Skellam distribution, 230
skew t distribution, 311
skewed distributions, 58, 73
skewness, 92

absolute, 91
exponential, 267
function, 95
gamma, 283
hypergeometric, 239
inverse Gaussian, 296
measure, 89, 94

Bowley’s , 94
moment-based , 101

relative, 91
standard error, 92

skewness-kurtosis bound, 104
skewness-kurtosis plot, 36
spatial data, 5
spectral kurtosis, 105

application, 106

spherical polar
transformation, 436

square
of normal variates, 413
of Student’s T, 316, 403

standard
lognormal distribution, 297
Maxwell distribution, 324
normal, 295

standard deviation, 78
bound, 82

standard normalization, 27
statistic, 9, 10
statistical population, 8
statistics, 4, 5, 16
stem-and-leaf plot, 36
Stirling numbers

first kind, 200, 389
second kind, 200, 389

Student’s t, 277
distribution, 310
distribution, even df, 314
logarithm of, 313
mean deviation, 311
square, 403
tail areas, 313
vs central 𝜒2

n , 434
summary table
𝜒

2 distribution, 308
Jacobian of transformation, 437
mathematical expectation, 363
of characteristic functions, 386
of generating functions, 376
of mean deviations, 257
of moment generating functions, 386
of variance, 361
skewness measure ranges, 97
variance of discrete distributions, 211
Jacobian of transformation, 423
of transformations 1-variable, 396
arcsine distribution, 281
asymmetry of distributions, 90
Bernoulli distribution, 194
beta-binomial distribution, 242
beta-I distribution, 271
beta-II distribution, 275
binomial distribution, 202
Cauchy distribution, 294
continuous uniform distribution, 263
cosine distribution, 286
double exponential distribution, 306
exponential distribution, 266
F distribution, 317
Fisher’s Z distribution, 318
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gamma distribution, 284
geometric distribution, 222
hypergeometric distribution, 240
inverse Gaussian, 297
Laplace distribution, 306
logarithmic distribution, 244
lognormal distribution, 300
Maxwell distribution, 326
multinomial distribution, 245
negative binomial distribution, 228
normal distribution, 289
Pareto distribution, 304
Poisson distribution, 232
Rayleigh distribution, 322
rectangular distribution, 205
six sigma, 291
T distribution, 312
Weibull distribution, 320

summation
fractional steps, 14
increment step size c, 14
notation, 11
over a set, 17
partial subscript, 17
superscript varying, 18

survival function, 335

T
tail areas

F distribution, 316
relation to mean deviation, 259
Student’s t, 313

tail probabilities
binomial distribution, 202, 207
geometric distribution, 222
negative binomial, 225, 228

tail probability
relation to mean deviation, 191

tail, normal, 291
temporal data, 5
test statistic, 3
testing for normality, 37
text data, 5
toroidal polar transformation, 436, 437
transformation

summary table, 396
change of origin, 23
change of origin and scale, 24
change of scale, 24, 83
cylindrical polar, 436
Helmert, 436
min-max, 25
nonlinear, 27

of normal variates, 413
of three variables, 437
of two variables, 423
plane polar, 433
reflection, 397
spherical polar, 436
symmetric range, 26
to normality, 290
unit range, 25
variance-stabilizing, 237

tree diagrams, 125
trigonometric functions

distribution of, 407
trinomial, 420
trivariate

transformations, 437
truncated

geometric distribution, 219
negative binomial, 242
Poisson distribution, 237

U
unbiased estimator, 48
uniform distribution, 261

properties, 205, 212
ratio of, 428

urn and balls, 154
urn models, 152

V
variance, 78, 352

summary table, 361
advantages, 78, 81
as expected value, 352
as integral of F(x), 345
conditional, 359
maximum, 197
of Bernoulli distribution, 193
of beta distribution, 279
of discrete uniform distribution, 213
of geometric distribution, 216, 217
of logarithmic distribution, 243
of negative binomial, 226
of negative hypergeometric, 241
of noncentral 𝜒2, 360
of Poisson distribution, 230, 231
pooled, 79
population, 220
properties of, 352
scaled data, 81
stabilization, 27
stabilizing transformation, 237
symmetry in parms, 197
to mean ratio, 220
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vs tail area, 259
vs tail probability, 191

variance-covariance
matrix, 106

variance–covariance
matrix, 71

Venn diagrams, 124

W
Weibull distribution, 319, 435

mean deviation, 320

properties, 319, 320
random numbers, 321
related to U(0,1), 321

weighted mean, 45, 50, 339
example, 52
updating formula, 51

Z
z-scores, 27
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